Head irst
Design Patterns

Avold those
embarrassing |8
coupling mistakes

Learn why everything

your friends know aboul Paclory
Pattern is

probably wrong

-~

Discower the searaks

af the Patterns Guru d
ks

Load the patberns
bhat matter straight

into your brain

Find out how

Starbuzz Coffes doubled S

[T
their skook price with
the Decorator pattern

d=.
|
LS

See why Jim's
lowe life improwed
wien he ont down

his inheritanss
O REILLY"

Eric Freema

To the Gang of Four, whose insight and experase in capturing
and communicating Design Patterns has changed the face of
soltware design lorever, and betered the lives of developers
throughout the world.,

But sertously, wher are we going to see asecond edidon? After all,
it’s been only fiw years!

and [couldn’t stop, 1 waok it o the
i reading T'his 15 wres ‘cool’. 1t 15
really impressed.”

technical depth and greac practical
xe new o design patterns, or have
Ohjectville.”
ith rest of the

1d John Vlissides

el

Ward Cunningham, inventor of the Wiki
and founder of the Hillside Group

“This book s close w perfecy, becavse of the way e combines expertise and readabilice T speaks with
authority and i reads beautfully, 10 one of the very few sofware books e ever read thar sorikes me as
indispensable. [I'd put maybe 10 books in this catezory, at the ouside.)”

David Gelernter, Professor of Computer Science,
Yale University and author of “Mirror Worlds"” and “Machine Beauty™

A Nose Dive into the realm of paterns, a land where comyplex things hecome simple, but where simple

things can also become comples. Tean think of no beer wur guides than the Freemans.™

Miko Matsumura, Indusiry Analyst, The Middleware Company
Former Chief Java Evangelist, Sun Microsystems

“1 laughed, 1 eried, it moved me.”

Daniel Steinberg, Editor-in-Chief, java.net

bl I}. first reaction was o mll on the Hoor i;lLl_'_','I'L]J'J_:-; Alter l]}it‘ku-rl I'E'l:\."l"]l. g, I realized that not ut‘LE'}.' is the

hook 1'."'["“1;(':!“'!.' Accuratle, it is the easiest o understand introduction oo L[l'siﬂ,ﬂ |mm-rm that I have seen.”

Dr. Timothy A. Budd, Associate Professor of Computer Science at
Oregon State University and author of more than a dozen books,
including “C++ for Java Programmers™

“Jerry Rice runs paterns bewer than any receiver in the NFL, but the Freemans have out run him,
Serioushy..this 1s one of the funniest and smartest books on software design ve ever read.”

Aaron LaBerge, VP Technology, ESPN.com

sle designer is teaching a com-
“computers should turn out oo be
and subsianoal doses of clever
bout problem-solving™

rdom™
. Town™

it ean’t be that old hecause the
Life. What's particularly curious
afi of creating elecironic games
are engineer? An art director?
U Can an individual indeed e

JPArL 82l OF [AeS6S Al MOSE IMPOrianmy, Wno e “oeEol™ Cancss

It has been smdd that the “designed by™ credic in interactve entertainment is akin o the “directed by™
credic in filmmaking, which in fact allows it to share DNA with perhaps the single most controversial,
rverstiated, and oo often endrely lacking in humiliey eredit grab ever propagated on commercial art.
Groodd company, eh? Yer il Design is Life, then perhaps it s dme we spent some guality cveles thinking
abour what it is.

Eric and Elisabeth Freeman have intrepidly volunteered o look behind the code curtain for us in

“Head First Design Patterns.” I'm not sure either of them eares all that much about the PlayStnon
or X3-Bos, nor should thew, Yet they do address the notdon of design at a significantly honest level such
that o |Lulki1lg for efn reinforeement of his or her oswn biallian ;llllt'ul‘.‘jlliij 15 best acdvised not 1o
go digging here where truth s stunningly revealed. “Sophists and circus barkers need nocapply. Next
generation literad please come equipped with a penal.”

Ken Goldstein, Executive Vice President & Managing Director,
Disney Online

“Just the vight tone for the geeked-out, casual-cool gurn coder in all of us, The rght reference for
practical development strategies—ges my brain going without having o slog through a bunch ol tred,
stile professor-speak.”™

Travis Kalanick, Founder of Scour and Red Swoosh
Member of the MIT TR100

“1'his book combines good humors, great examples, and in-depth knowledge of Design Patterns in
such a way that makes learning fun. Being in the entertainment technology indusoy, T am inorigued
I the Hollvwood Principle and the home thearer Facade Patern, wo name o few. The underseanding
of Dresign Paterns not only helps us creare reusable and maingainable quality software, but also helps
sharpen our problem-solving skills across all problem domains, This book is a must read for all com-
puter professionals and students,”

Newton Lee, Founder and Editor-in-Chief, Association for Computing
Machinery’s (ACM) Computers in Entertainment {acmcie.org)

wames, PDAs, ATMs, smart
1name it I you develop
o

sident and CEOQ

n something!”

Isystems

roken up so well by puzzles and
USSP | 4 s 11 |

— Douglas Rowe, Columbia Java Users Group

* *Head First Java'... gives new meaning to their marketng phrase “There’s an O Beilly for thar” T picked
this up because several others T respect had deseribed it in terms like ‘revolutdonary” and a described a
radically different approach to the extbook. They were (are) right... Tn typical CFReilly Fashion, they've
taken a scientife and well considered approach. The result is funny, irreverent, wpical, interactve, and
brilbiant.. Reading this book s like sittng in the speakers lounge at o view conference, learning from

and laughing with — peers... IF vou want 0o UNDERSTAND Java, go buy this book.”

— Andrew Pollack, www.thenorth.com

“IF o want w frarm_Java, ook no further: welcome w the firse GL-based wechmical book! This perfectly-
executed, ground-breaking formart delivers benetis other Java wesis simply can'e... Prepare yourselt for a
truly remarkahle rade through Java land.”

— Neil R. Bauman, Captain & CEQ, Geek Cruises (www.GeekCruises.com)

What a lantastic way (o learn!!! TCAN NOT PUT THIS BOORK DOWNI My 3 vear old woke up at
LM aom, this morning, and 1 pac him back w bed with book in hand and o fashhighe so 1 eould conanue
to read for about another houn

— Ross Goldberg

*This stfl 15 so facking good it makes me wanna WEEP! I'm stunned.”

— Floyd Jones, Senior Technical Writer/Poolboy, BEA

active advocate for women m computing, developing
programs that encourage woman to enter the field,
These davs vou'll find her sipping some Java or Gocoa
on her Mac, although she dreams of a day when the
whole world is using Scheme.

Elisabeth has loved hiking and the oudoors since her
days growing up in Seotland. When she’s outdoors
her camera is never far. She’s also an avid evelise,
vegerarian and animal lover,

You can send her email ar bech@wickedlysmart.com

viii

. Freeman

r mechia and
1 years at

Al wireless
creating cool

tves o the
they're

v rive a file
Ph.ID, ax
wror Worlds
ercial

ks and
e e o s songen e asns s w00 B00IKS 25
Jreadpaces Principles Patterns ama Practier, Erie has fond
memories of implementing wple-space systems on
Thinking Machine CM-3s and creating some of the frsc
Internet informanion systems for NASA in the lace G5

Eric is currendy living in the high desert near Sania

Fe. When he's not writing rext or code vou'll find him
spending more tme tweaking than watching his home
theater and orving o restoring a circa 1980z Dragon’s Lair
video game, He also wouldn't mind moonlightng as an
electronica 1.

Write o him an ericilwickedlvsmart.com or visit his Dlog
at http:/ Avwwerdeleeman.com

T s i long-time soltware developer and architect,
tdecade-long stincin artficial intelbgence drove
iwerest in learning theory and technology-hased
ing. He's been helping clients becoming better
rammers ever since, Recently, he's heen heading
e cevelopment team for several of Sun's Java
ifeaton exams,

pent the first decade of his solbware career

Ming the world w help broadeaste elients like

o New Zealand, the Weather Channel, and the
& Entertainment Neowork (A & Bl One of s
me {avorite projects was building a full rail system
lation for Ulnion Pacific Railvoad,

15 a long-time, hopelessly addieted go player, and
wen working on a go program lor way o long.

a lair guitar player and is now oving his hand at

.
CLEL LR BAELAY LU SEAALEL AL LNLEL LU LALLM T L warun for him on javaranch, on the 1GS go server, or
she's had tw learn new words like, “ice scraper” and you can write (o him atwerrapinf@wickedlysmart.com.

“Heece”, but the lighining there is famrasdc,

Likes: runing, skiing, skateboarding, plaving with her
leelandie horse, and weird science. Dishkes: entropy,
You can find her on javaranch, or occasionally blogging
on javanet. Write to her at kathvigiwickedlvsmart.com.

table of contents

Table of Contents (summary)

Intro XXV
1 Welcome to Design Patterns: an introduction 1
2 Keeping your Objects in the know: the Observer Pattern 37
3 Decorating Objects: the Decorator Pattern 79
4 Baking with OO goodness: the Factory Patlern 109
5 One of a Kind Objects: the Singleton Pattern 169
6 Encapsulating Invocation: the Command Pattern 191
7 Being Adaptive: the Adapter and Facade Patlerns 235
8 Encapsulating Algorithms: theTemplate Method Pattern 275
9 Well-managed Collections: the lterator and Composite Patterns 315
10 The State of Things: the State Pattern 385
11 Controlling Object Access: the Proxy Pattern 429
12 Patterns of Patterns: Compound Fatterns 499
13 Patterns in the Real World: Better Living with Patterns 377
14 Appendix: Leflover Paiterns 611

Table of Contents (the rea] thing)

Intro

Your brain on Design Patterns. Here you are trying to learn something, while
here your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s
thinking,“Better leave room for more important things, like which wild animals to avoid and
whether naked snowboarding is a bad idea.” So how do you trick your brain into thinking

that your life depends on knowing Design Patterns?

Who is this book for? XXV1
We know what your brain is thinking XXVil
Metacognition XXIX
Bend your brain into submission XXX1
Technical reviewers XXXIV
Acknowledgements XXXV

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you a good object oriented
desigher. A design guru thinks
about how to create flexible
designs that are maintainable

and that can cope with
change.

o]
Q

intro to Design Patterns

Welcome to Design Patterns

Someone has already solved your problems. In this chapter,
you'’ll learn why (and how) you can exploit the wisdom and lessons learned by
other developers who've been down the same design problem road and survived
the trip. Before we’re done, we’ll look at the use and benefits of design patterns,
look at some key OO design principles, and walk through an example of how one
pattern works. The best way to use patterns is to load your brain with them and
then recognize places in your designs and existing applications where you can

apply them. Instead of code reuse, with patterns you get experience reuse.

The SimUDuck app
Joe thinks about inheritance...

How about an interface?

The one constant in software development

Separating what changes from what stays the same

Designing the Duck Behaviors

Testing the Duck code

Setting behavior dynamically

The Big Picture on encapsulated behaviors
HAS-A can be better than IS-A

The Strategy Pattern

The power of a shared pattern vocabulary
How do I use Design Patterns?

Tools for your Design Toolbox

Exercise Solutions

A B“"“‘ of Patterns

\(ow Code, ,‘ow.v\:‘“
and improved ¥

desion P aH;erns!

x® o o N

11
18
20
22
23
24
28
29
32
34

Xi

table of contents

the Qbserver Tattern

Keeping your Objects in the Know

Don’t miss out when something interesting happens!
We've got a pattern that keeps your objects in the know when something they
might care about happens. Objects can even decide at runtime whether they
want to be kept informed. The Observer Pattern is one of the most heavily used
patterns in the JDK, and it’s incredibly useful. Before we’re done, we’ll also look
at one to many relationships and loose coupling (yeah, that’s right, we said

coupling). With Observer, you'll be the life of the Patterns Party.

The Weather Monitoring application

Meet the Observer Pattern

00 Dasits

Acheaedion

Publishers + Subscribers = Observer Pattern
Five minute drama: a subject for observation

The Observer Pattern defined

00 Printiples

‘e what vavies The power of Loose Coupling

Ev\ca‘;su\a

kion over Designing the Weather Station
oS\ \O!
Favor Com?

inhevi—

Implementing the Weather Station

tante fates not
Program ko Inter aLes Using Java’s built-in Observer Pattern
4 .
'\m\v\cmc,\hakw"s e The dark side of java.util.Observable
e for loosely 2T .
Styive bietts tha Tools for your Design Toolbox
d es\%'\s \)C&‘NCC'\ o \)
'm’ccfacj" Exercise Solutions

ONE TO MANY RELATIONSH|P

Objeet that
hoﬁis state >

Dcpendcn{: Objeets

<&
Moyse 065

AU{oma{ic uyda‘[:c/ no{ifica‘[:ion

Xii

39
44
45
48
51
33
56
57
64
71
74
78

the Decorator Pattern

Decorating Objects

Just call this chapter “Design Eye for the Inheritance
Guy.” We’ll re-examine the typical overuse of inheritance and you’ll learn how
to decorate your classes at runtime using a form of object composition. Why?
Once you know the techniques of decorating, you'll be able to give your (or
someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

Welcome to Starbuzz Coffee

The Open-Closed Principle

T used to think real men
subclassed everything. That was until
T learned the power of extension

at runtime, rather than at compile
time. Now look at me!

Meet the Decorator Pattern

Constructing a Drink Order with Decorators
The Decorator Pattern Defined

Decorating our Beverages

Q Writing the Starbuzz code

Real World Decorators: Java I/0

Writing your own Java I/O Decorator

Tools for your Design Toolbox

Exercise Solutions

80
86
88
89
91
92
95
100
102
105
106

Xiii

table of contents

the Factory Pattern

Baking with OO Goodness

Get ready to cook some loosely coupled OO designs.
There is more to making objects than just using the new operator. You'll learn
that instantiation is an activity that shouldn’t always be done in public and can
often lead to coupling problems. And you don’t want that, do you? Find out how

Factory Patterns can help save you from embarrasing dependencies.

When you see “new”, think “concrete” 110
Objectville Pizza 112
Encapsulating object creation 114
Building a simple pizza factory 115
The Simple Factory defined 117
A Tramework for the pizza store 120
Allowing the subclasses to decide 121
Let’s make a PizzaStore 123
Declaring a factory method 125
Meet the Factory Method Pattern 131
Parallel class hierarchies 132
Factory Method Pattern defined 134
A very dependent PizzaStore 137
Looking at object dependencies 138
The Dependency Inversion Principle 139
Meanwhile, back at the PizzaStore... 144
Families of ingredients... 145
Building our ingredient factories 146
Looking at the Abstract Factory 153
Behind the scenes 154
Abstract Factory Pattern defined 156
Factory Method and Abstract Factory compared 160
Tools for your Design Toolbox 162
Exercise Solutions 164

Xiv

the Singleton Pattern

One of a Kind Objects

The Singleton Pattern: your ticket to creating one-of-a-
kind objects, for which there is only one instance. You
might be happy to know that of all patterns, the Singleton is the simplest in terms
of its class diagram; in fact the diagram holds just a single class! But don’t get
too comfortable; despite its simplicity from a class design perspective, we’ll
encounter quite a few bumps and potholes in its implementation. So buckle

up—this one’s not as simple as it seems...

One and only one object
The Little Singleton
Dissecting the classic Singleton Pattern
Confessions of a Singleton
The Chocolate Factory
Singleton Pattern defined
Bevshey, P

, we have a problem...
BE the JVM
Dealing with multithreading
Singleton Q&A
Tools for your Design Toolbox

Exercise Solutions

00 Patterrs -
S (‘t T

e (¢ e
\d f
MM smg\e’w‘
3 9 \ one \v\s‘ta b
S Ns of aveess toi

~

\y has
_ Bnsure 3 tlass oy poin

\obal
nd prov vide 3 9

o

170
171
173
174
175
177
178
179
180
184
186
188

XV

table of contents

XVi

0 =
Tt
The
o e
der O e Co* makeBurger(), makeShake()
oot
s

'akeOrde,()

N
‘y
o\

I

the Command Tattern

Encapsulating Invocation

In this chapter we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That's right, by encapsulating invocation we can crystallize pieces of computation
so that the object invoking the computation doesn’t need to worry about how to do
things; it just uses our crystallized method to get it done. We can also do some
wickedly smart things with these encapsulated method invocations, like save

them away for logging or reuse them to implement undo in our code.

Home Automation or Bust

Tl have a Burger
with Cheese and a Malt

‘Shake The Remote Control

i ard e 2 ;
Leare % .
N % Taking a look at the vendor classes
Meanwhile, back at the Diner...

Let’s study the Diner interaction

The Objectville Diner Roles and Responsibilities

From the Diner to the Command Pattern
Our first command object
The Command Pattern defined

The Command Pattern and the Remote Control

Implementing the Remote Control

N Putting the Remote Control through its paces

Time to write that documentation

Using state to implement Undo

Every remote needs a Party Mode!

Using a Macro Command

More uses of the Command Pattern: Queuing requests
More uses of the Command Pattern: Logging requests
Tools for your Design Toolbox

Exercise Solutions

192
193
194
197
198
199
201
203
206
208
210
212
215
220
224
225
228
229
230
232

European Wall Outlet

Standard AC Plug

the Adapter and Facade Patterns

Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. Sound impossible?
Not when we have Design Patterns. Remember the Decorator Pattern? We
wrapped objects to give them new responsibilities. Now we’re going to wrap some
objects with a different purpose: to make their interfaces look like something they’re
not. Why would we do that? So we can adapt a design expecting one interface to a
class that implements a different interface. That's not all, while we're at it we’re going

to look at another pattern that wraps objects to simplify their interface.

Adapters all around us

Object Oriented Adapters

The Adapter Pattern explained

Adapter Pattern defined

Object and Class Adapters
AC Power Adapter
Tonight’s talk: The Object Adapter and Class Adapter
Real World Adapters

Adapting an Enumeration to an Iterator

Tonight’s talk: The Decorator Pattern and the Adapter Pattern
Home Sweet Home Theater

Lights, Camera, Facade!

Constructing your Home Theater Facade

Facade Pattern defined

The Principle of Least Knowledge

Tools for your Design Toolbox

Exercise Solutions

(@
Client ey
B

The Client s implemented
against the target inferface. Aapter

o % oo)

erta® ey was the
oreet™ The Adapter implements the Takey i BE
{argel nterface and holds an adaptee
instance of the Adaploe

236
237
241
243
244
247
248
249
252
255
258
261
264
265
270
272

XVii

table of contents

the Template Methed Pattern

Encapsulating Algorithms

We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas... what could be next?
We’re going to get down to encapsulating pieces of algorithms so that subclasses can
hook themselves right into a computation anytime they want. We’re even going to

learn about a design principle inspired by Hollywood.

Whipping up some coffee and tea classes 277

Abstracting Coffee and Tea 280

Taking the design further 281

Tea o Abstracting prepareRecipe() 282
© pollsmert

© Stoopthoaaban n eVl What have we done? 285

zv::;:::mv Meet the Template Method 286

L_‘ Caffeine Beverage ‘_J Let’s make some tea 287

goneraze © Follsomewater goneraizs

O brew What did the Template Method get us? 288

@Eﬁ; 2 ?:::::::::.:mp @:ﬁ%i’ Template Method Pattern defined 289

e e Code up close 290

© S the s e - Hooked on Template Method... 292

O Addlewon et o / zt::’"’:::“:::‘k Using the hook 293

\ it Coffee? Tea? Nah, let’s run the TestDrive 294

The Hollywood Principle 296

The Hollywood Principle and the Template Method 297

Template Methods in the Wild 299

Sorting with Template Method 300

We’ve got some ducks to sort 301

Comparing ducks and ducks 302

The making of the sorting duck machine 304

Swingin’ with Frames 306

Applets 307

Tonight’s talk: Template Method and Strategy 308

Tools for your Design Toolbox 311

Exercise Solutions 312

xviii

the Iterator and Composite Patterns

Well-Managed Collections

There are lots of ways to stuff objects into a collection.
Put them in an Array, a Stack, a List, a Map, take your pick. Each has its own
advantages and tradeoffs. But when your client wants to iterate over your objects,
are you going to show him your implementation? We certainly hope not! That just
wouldn’t be professional. Don’t worry—in this chapter you'll see how you can let
your clients iterate through your objects without ever seeing how you store your
objects. You'’re also going to learn how to create some super collections of objects
that can leap over some impressive data structures in a single bound. You’re also

going to learn a thing or two about object responsibility.

Objectville Diner and Pancake House merge 316

Comparing Menu implementations 318

Can we encapsulate the iteration? 323

 Pancake Monw - Meet the Iterator Pattern 325
1‘"/”\ ey Adding an Iterator to DinerMenu 326
it Vessert\M;vm\‘ A% Looking at the design 331
Cleaning things up with java.util.Iterator 333

What does this get us? 335

Iterator Pattern defined 336

Single Responsibility 339

Iterators and Collections 348

Iterators and Collections in Java 5 349

Just when we thought it was safe... 353

The Composite Pattern defined 356

Designing Menus with Composite 359

Implementing the Composite Menu 362

Flashback to Iterator 368

The Null Iterator 372

The magic of Iterator & Composite together... 374

Tools for your Design Toolbox 380

Exercise Solutions 381

Xix

table of contents

the State Pattern

The State of Things

A little known fact: the Strategy and State Patterns were
twins separated at birth. As you know, the Strategy Pattern went on

to create a wildly successful business around interchangeable algorithms. State,
however, took the perhaps more noble path of helping objects learn to control their
behavior by changing their internal state. He’s often overheard telling his object

clients, “just repeat after me, I'm good enough, I'm smart enough, and doggonit...”

How do we implement state? 387

State Machines 101 388

@ for’s B vy we ik the bl e sl e o A first attempt at a state machine 390
EE;:?:%E;E;:;{%{ETJ:a.:&t:‘ﬁ:t:;vmﬂ e You knew it was coming... a change request! 394
Rualuiacesd The messy STATE of things... 396
Defining the State interfaces and classes 399

Implementing our State Classes 401

Reworking the Gumball Machine 402

The State Pattern defined 410

State versus Strategy 411

State sanity check 417

We almost forgot! 420

Tools for your Design Toolbox 423

Exercise Solutions 424

XX

objects.
Not
viot
<<interface>>
Subject
request()
RealSubject

request()

the Troxy Pattern

Controlling Object Access

Ever play good cop, bad cop? You're the good cop and you provide
all your services in a nice and friendly manner, but you don’t want everyone
asking you for services, so you have the bad cop control access to you. That’s
what proxies do: control and manage access. As you're going to see there are
lots of ways in which proxies stand in for the objects they proxy. Proxies have
been known to haul entire method calls over the Internet for their proxied objects;

they’ve also been known to patiently stand in the place for some pretty lazy

Monitoring the gumball machines
The role of the ‘remote proxy’

RMI detour

GumballMachine remote proxy
Remote proxy behind the scenes

The Proxy Pattern defined

Get Ready for virtual proxy
Designing the CD cover virtual proxy
Virtual proxy behind the scenes
Using the Java API’s proxy

Five minute drama: protecting subjects
Creating a dynamic proxy

The Proxy Zoo

Tools for your Design Toolbox

Exercise Solutions

<<interface>>
InvocationHandler

invoke()

< The \wc%‘f
¢ of two tlasses:

Proxy InvocationHandler
request() invoke()

now tonsists

430
434
437
450
458
460
462
464
470
474
478
479
488
491
492

XXi

table of contents

Compound Tatterns

Patterns of Patterns

Who would have ever guessed that Patterns could work
together? You've already witnessed the acrimonious Fireside Chats (and be
thankful you didn’t have to see the Pattern Death Match pages that the publisher
forced us to remove from the book so we could avoid having to use a Parent’s
Advisory warning label), so who would have thought patterns can actually get along
well together? Believe it or not, some of the most powerful OO designs use several
patterns together. Get ready to take your pattern skills to the next level; it's time for
Compound Patterns. Just be careful—your co-workers might kill you if you're struck

with Pattern Fever. Compound Patterns

Tates it) Duck reunion
would like to intrease it to 120
Adding an adapter
You click on .
e nreae Adding a decorator

beat button.

View \(Adding a factory
Which vesults in the
eontraller being invoked.

Adding a composite, and iterator

The contrale sits Adding an observer
Lhe model to vpdate
its BPM by enc.
Controller Patterns summary
You see the beatbar

ke every /2 et A duck’s eye view: the class diagram
2 %ao‘YMode Y
View Because the BPA is 120, the view gets on0)

 best rebficston cvery 112 szon, Model-View-Controller, the song
&’\ setBPM() off()

w gewt0 Design Patterns are your key to the MVC
v

The view s wpdated View s vokificd tht,the B2 Looking at MVC through patterns-colored glasses
o120 BPM, thanged ‘\tﬁﬁs aetBPMO on
the model state

Using MVC to control the beat...

The Model

The View

The Controller

Exploring strategy

Adapting the model

Now we’re ready for a HeartController
MVC and the Web

Design Patterns and Model 2

Tools for your Design Toolbox

Exercise Solutions

XXii

500
501

506
508

516
523
524
526
528
532
534
5337
539
542
545
546
547
549
557

561

Better Living with Patterns

Patterns in the Real World

Ahhhh, now you’re ready for a bright new world filled with
Design Patterns. But, before you go opening all those new doors of opportunity
we need to cover a few details that you'll encounter out in the real world—things get a
little more complex out there than they are here in Objectville. Come along, we've got

a nice guide to help you through the transition...

Your Objectville guide 578
Design Pattern defined 379
Looking more closely at the Design Pattern definition 581
May the force be with you 582
Pattern catalogs 583
How to create patterns 586
So you wanna be a Design Patterns writer? 587
Organizing Design Patterns 589
Thinking in patterns 594
Your mind on patterns 597
Don’t forget the power of the shared vocabulary 599
Top five ways to share your vocabulary 600
Cruisin’ Objectville with the Gang of Four 601
Your journey has just begun... 602
Other Design Pattern resources 603
The Patterns Zoo 604
Annihilating evil with Anti-Patterns 606
Tools for your Design Toolbox 608
Leaving Objectville... 609

qee® w

== Ralph

Johnson

méang of Four

7
John Vlissides

R

Erith Gamma

XXiii

table of contents

The Client asks the

Compor
New methods can be
added to the Visitor
without afFecting the

Al bhese compsit .
Classes have b do = 3dd Bridge 612
3 ok neted
ctor needs o be able o call and nok vorvy abos)
T:égvmto e s and his s cxposing themselues +) Builder 614
Jheve you can add new methods for
o e dent fovse /) o
o Chain of Responsibility 616
;«\e "’“\:z;"\\ s Menu
o \G’\o‘e“‘\\ - .) FI ioh 618
LN S visit / v yweight
o isitor N\
R e — Interpreter 620
y @ \ St enultem
P)
client/ O o, Mediator 622
Traverser A~ e / \
\ Memento 624
The Traverser knows how to Ingredient Ingredient B
otor throvah Prototype 626
g e YP 2
Visitor 628
Index 631

Compostte

N

XXiv

Appendix: Leftover Patterns

Not everyone can be the most popular. Aot has changed in

the last 10 years. Since Design Patterns: Elements of Reusable Object-Oriented
Software first came out, developers have applied these patterns thousands of times.
The patterns we summarize in this appendix are full-fledged, card-carrying, official
GoF patterns, but aren’t always used as often as the patterns we’ve explored so

far. But these patterns are awesome in their own right, and if your situation calls for
them, you should apply them with your head held high. Our goal in this appendix is

to give you a high level idea of what these patterns are all about.

r?

Sees” o all of these:

Java? (You don't need to be a guru.) Vou'll orabably be okay Y

you Krorw C# instead-

» learn, understand, remember, and
jattems, including the OO design
1 which design patterns are hasad?

' stimulating dinner party conversation
sademic lectures?

Lk,

Are you afraid to try something different?
Wiould you rather have a root canal than mix
stripes with plaid? Do you believe that a technical
book can't be serious if Java components are
anthropomorphized? &

this hook is not [or you,

[rote Frum marketingl this book i
for anYore with a eredid Lavd]

Vi intro

the intro

Soowhat does vour brain do with all the rouane, ordinary, normal things
vou encounter? Evervihing ic ean to stop them from ingerfering with the
brain’s wad job—recording things that madter, Tt doesn’t bother saving
the boring things: they never make it past the “this 15 olwviously not
important” fler

How does your braan fwere what's important? Suppose vou're out for a day
hike and a gger jumps in front of you, what happens inside your head and
by

Great. Only
637 more dull, dry,
baoring pages.

Neurons bire. Lmonons crank up. Chenseals sunge.

.'I|'|III| ||"|1'1th |Il:l'||'|' WORIr 1'I|'Hill |’i|'|||'||'|.'H...

This must be important! Don’t forget it! o ean brks 5
o

But imagine you're at home, or in a library: It's a safe, warm, tiger-free zone, THIS o0
YWou're studying, Gerting ready for an exam. Or oving o learn some tough sadindy
l‘l"l"]'lf'lil'.'l[ll)l]i" VLT |H|:"\.‘1 ||-Ii.]l.|'i."- '.'ni”. HIb'..l' il 'n'.'l'i'k.. L& ||i|'!|'h H1 lhl' mast.

Iju"l LT '|'|l‘ni:|ll'l't‘|. Your hrain's 1I":.'it1g 10 il Wil @]]'i}_',' favor It's I|"§.'jt1u|
to miake sure that this u-':.".'-rj.'r'.!"i I‘||||1—i|!1!:-m'|;||‘|1 content doesn’t clutler
up scarce resources, Resources that are bewer spent storing the really
bz things. Like tigers. Like the danger of fire. Like how vou should
never again snowhoard 1n shorts.

And there’s no simple way o tell vour brain, “Hey brain, thank vou
very much, bue no matter how dull chis book is, and how hiele T'm

registering on the emotonal Richier scale right now, | really os want
vou to keep this stufl around.™

ou are hera » Xxvii

how to use this book

we think of a “Head First” reader as a

So what does it take to jearn something? First, you hav
you don't forgetit. It's not about pushing facts into you
|atest research in cognitive science, neurcbiology, anc
learning takes a lot more than text on a page. We know

some of the Head First learning principles:

Make it visual. Images are far more memorable than words 2l

make learning much mare effective lup to 839 im provement in re

transfer studies). it also makes things mare understandable. Put
- within or near the graphics they relate ta, rather

Really Important Crocial o your well-being, As important as a dgen
Ortherwise, you're in for a constant batte, with your brain doing its best
keep the new content Irom sticking.

So how DO you get your brain to think Design
Patterns are as important as a tiger?

There's the stow, tedious way, or the faster, more effective way The slow
way is ahout sheer repetiton. You olwiously know that vou ae able

w learn and remember even the dullest of topics, il vou keep poum
same thing, With enough repedion, vour brain savs, “This doesn' e i
but he keeps looking ar the same thing over and seer and seer, so 1 suppos

The Faster way s wo do gnything thet increases brain activity, cop
fyfres of broon activiey, The chings on the previous page are a big part of
and thevre all things that have been proven w help your bram work in
exarmple, studies show that putting words westhin the pictures they deseril
somewhere else i the page, like a caption orin the body text) causes yo
mikes sense of how the words and picoure relate, and this causes more

More newrons liring = maore chances for your brain o gef that this s someunng worm

paying awendon to, and possibly recording

A conversational sivle helps because people tend to pay more anention when they

perceive that they're ina conversation, since they're expected w follow along and hold up
their end, The amazing ching is, your brain doesn’t necessarily sore that the “conversaion™
15 hetween vou and a book! On the other hand, if the writng sovle 13 formal and dry, vour
brain perceives it the same way vou experience being lectured wo while siting in a roomful

of passive attendees. No need o stay awake,

But pictures and conversatonal sevle are just the beginning,

you are here »

HMiX

rain is tuned for visuals, not wexe, As f
0 1024 words, And when text and pici
secause your brain works more effecty
vopposed w in a capon or buried in

same thing in i ways and with d
1ance that the content gers coded o

tnexpected wavs hecause yvour hrain

h at least s erotional contend, beca
emisty ol emotions. That which caus
ven il thae feeling is nothing maore that

We used A personalized, conpversational sgrf.e, because Youar bvadn is
attention when it believes you're in a conversation than il it thinks vou're
presengon, Your bram does this even when vou're g,

We included more than 40 ectévities, hecavnse vour brain is uned oo lea
mare when you de things than when vou sead about things. And we mad
challenging-vet-clomable, hecause thats what most peopde prefer,

We used maltiple learning styles, hecavse o might preler step-ln-st
someons else wanis o undersiand cthe |Jig [ftl:'[ul't' first, while someone els
cole example, But regardless of vour own learning preference, aoom b
same content represented nomualple wiys,

We mclude content for both sides of yowr brain, because the more of
engage, the more likely vou are o learn and remember, and the longer yw
Since working one side of the brain often means giving the other side a ¢
be move productive at learning for a longer period of ame.

And we included stordes and exercises thae prescnt miore than one po
your brain is tuned 1o learn more deeply when ics forced 10 make evalual

We included challenges, with cxercises, and by asking guestions that o

a sradght answer, because vour brain is wned o learn and remember when it has to werk at
something Think about it—you can't get vour dady in shape just by watdiing people at the gvm.
But we dhd our best to make sure that when yvou're working hard, ic's on the mght things, That
you 've not spending one extra dendrite processing o havd-wo-undersiand example, or
parsing difficult, jargon-laden, or overly terse wext,

We used people. In siories, examples, pictares, et because, well, hecanse yean e a person. Aned
vour brain pays more atiention o peapds than it does o tings,

We used an 8028 approach. We assume that if vou're going lor a PhDD) in soltware design, this
wan't he Yo nn.|1_.' book, Soowe don't talk aboue ﬂ'-‘r]'n'f.r.l.l.:g.tluzsl the sulf YL I :.Il'l_lL:Il.I'!.' el

HEX intro

[2] lllit':\lllﬂl. E o pammc l‘:':'t]
barzun e thank, the beter cha
learning and remembering,

Do the exercises. Write

W put thermn i, bue il we dic
that would be like having son
vour workouts for vou. And «
the exercises. Use a pencil.
evidence that physical activit
can increase the learning

Read the “There are No
That means all of them, The
side-bars—they ‘re part of
D't skip them,

Make this the last thing you read before

bed. Or at least the last challenging thing.

Part of the learning (especially the transfer 1o
lomg-term memory) happens aftervou put the
book down. Your brain needs time on its own, o
do more processing, If vou put in something new
cluring that processing-time, some of what vou
Just learned will be losi

Drink water. Lots of it.

Your brain works best in a nice bath of Huicl. De-
lyidranon (which can happen hefore vou ever feel
thirstv) decreases cognitive funeton.

the intro

¢ hrain,
g, or
t later, say
it loued
BUMLICUILIE T30, BLR LD BUGRE L DI L[L]\.. 4'1I|:r[
i might uncover ideas you hadn't known were
sre when you were reading about i

sten to your brain.

voattention o whether your brain is geuing
etoaded, IF vou find yoursell’ starting to skim the
rlace or forget what you just read, 1t's ame for o
rak. Once vou go past a certain point, you won't
urn faster by trving to shove more in, and vou

ght even hurt the process.

2] something!

ur brain needs to know that this mafiers, Get
solved with the stories. Make up vour own cap-
ns for the photos. Groaning over a bad joke is sl
ter than feeling northing an all.

@ Design something!
Apply this to something new vou're designing, or
refactor an older project. Just do something to get
some experience beyvond the exercises and activities
i this hook. All vou need is a pencil and a problem
to solve.., a problem that might benefic from one or

mare t]t'high iJEH{[‘!'HH.

you are here ¥ XXXI

a reference hook. We deliberately sori
ay of learning whatever it is we're wo
w through, vou need w begin at the |
1t what vou've already seen and learne

fiagrams.

H]"l.'ﬂ" T ACTss .Lr,\ljllh i|,~"\' IO OO e

If vou've never seen UML before, di
vity, S0 in other words, vou won't hay
ame tdme. Our diagrams are “U ML=
nes we hend the rules a bie, usually §

We don’t cover every single Design Pattern ever created.

There are a lof of Ili'ﬁign Patterns: The urig‘ilmi foundational Ppatlerns (known as the GoF
patterns), Sun's J2EE patterns, JSP patterns, architectural patterns, game design patterns
and a fof more, But our goal was to muke sure the book weighed less than the person
reading i, so we don’t cover them all here. Our focus 15 on the core patterns that smatier
trom the orginal Gol pacerns, and making sure that yvou really, truly, deeply understand
how and when w use them. You will find a briel” look ar some of the other paterns (the
Ones '!.'1 H].n' E.II' I':".\."\]Ii\"]\. Lop Lise I||':| [hl‘ ..tl Pl]l'l‘lﬂ]i.\'. III Jlr]':,' CSe, Oce !.'ﬂl_].r'f' ‘]ilnl‘ Wy |r1!'i Hl":l'll
First Design Pawerns, vou'll be able to pick up any pattern catadog and gec up o speed
quickhy

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the hook.
Some ol them are to help with memory, some for understanding, and some o help you
apply what you've learned, Don’t skip the exercises. The crossword pugaes are the

i chanee o think

mse, which is
n".

1at they are related
m and is the one
[1. has refined
vou I still be able
ssition s more

the intro

The redundancy is intentional and important.

One distinct dilference in a Head First hook is that we want vou to el get it And we want
vou to finish the book remembering what vouve learned, Most reference books don't hinee
retention and recall as a goal, bue this book is about feermimg, so vou'll see some of the same
concepts come up more than once.

The code examples are as lean as possible.

Our readers well us thae ics fresteating o wade througl 200 lines of code looking for the two
lines they need w understand, Mose examples in this book are shown within the smalles)
possible comtext, so that the part you're trang o learn is clear and smple, Don't expect

all of the code tw be robust, or even complete—the examples are written specifically for
learning, and aren’t abvays fully-functional.

In some cases, we haven't included all of the import stacements needed, o we assume that
if vou're a Java programmer, vou know that ArrayLise is in javasadl, for example, 1 the
imports were not part of the normal core 255 APL we mendon ic. Weve also placed all
the source code on the web so vou can download it You'll find ic

http:r/ fwww. wicked ;'_-r':-tcmar-t .com/headfirstdesignpatterns/codea. ntml

Also, Tor the sake of focusing on the learning side of the code, we did not pur our classes
into packages (in other words, they're all in the Java defuale package). We don’t recommend
this in the real world, and when vou download the code examples from this book, vou'll find
that all classes @ in packages.

The ‘Brain Power' exercises don't have answers.

For some of them. there 1s no nght answer, and for others, pare of the learning experience
ol the Brain Power actvides is for vou to decide i and when your answers are righe. In
some of the Brain Power exercises vou will find hines wo poing vou in the vight direction,

you are here » KRRl

Wipps Syt

e, relentless enthusiasm, and
| inspire us always.

akides ar O'Reilly for starting it all, and helping o shape the Head
big thanks to the driving foree behind Head First, Tim O*Reilly.
series mom” Kyle Hart, o rock and moll star Ellie Volkhausen for
[WEN Cuum Gﬂrm I]_Pr' |‘1t‘|‘]I;I I'(,!('HI",' l'i_'l!]'!.-'i'i]il,]-:inil_ll':.'. |,|'|4',|||'.I'Ch Hin
gpioning this Design Paterns book, and huiliding the weam.

-technical review dircctor Johannes defJong. You are our hero,

iate the contributions of the co-manager of the Javaranch review

+. You have single-handedly brightened the Iives of thousands of

¢ had on theirfand our) lives is forever.

h]'u!;.: |]I“{JIJ]I‘I‘TIH in oo dealt :'|l.‘|i:lt‘|‘.\i. and once ,"lguit'l macle o |‘||,Jg‘1'

¢! Valentin Cretazz (MO guv), who has been with us from the
very first Head Fisst book, proved (as always) just how much we really need his technical expertise
and insight. You rock Valentn (but lose the del.

Two newcomers to the HE review team, Barney Marispini and The Van Acca did a kick bute job on
the book—vou guvs gave us some really crucial feedback. Thanks for joining the team.

We also got some excellent technical help from Javaranch moderawors/ gurus Mark Spritzler,
Jason Menard. Dirk Schreckmann, Thomas Paul. and Margarita Isaeva. And as abwavs,
thanks especially to the javaranch.com Trail Boss, Panl Wheaton.

Thanks to the finalisis of the Javaranch “Pick the Head First Design Patterns Cover™ contest, The
winner, 31 Brewster, submicced the winning essay that persuaded us o pick the woman you see on
our cover. Other finalisis include Andrew Esse, (Gian Franco Clasula, Helen Croshie, Pho Tek, Helen
Thomas, Sateesh Kommineni, and Jefl Fisher.

the intro

you are here KEEW

3

el ride with two amazing wour guides: Kathy Sierra and

et vou throw out all book writing comention and enter a world
v. cognitive science, and pop culture, where the reader always
etting us enter vour amazing world: we hope we've done Heacd
en amazing. Thanks for all yvour careful guidance, for pushing
for trusing us (with vour balw, You're both cerainly “wickedly
29 year olds we know, So., what's nexe?

ides and Mike Hendrickson, Mike L. was with us every

feful feedback helped shape the book and your encouragement

hanks lor vour persistence over five years in trying to get us to
write a patterns hook; we finally did it and we're glad we waited {or Head First.

Awery special thanks wo Erich Gamma, who went far beyvond the call of dury in reviewing
this hook (he even took a draft with him on vacaton), Erich, your interest in this book inspired
us and vour thorowugh technical review improved it immeasarably, Thanks as well o the entire
Gang of Four [or theiv support & interest, and for making a special appearance in Objeciville,
We are also indebied 10 Ward Cunningham and the paterns community who ereated the
Portand Pateern Repository — an indespensible resource for us in wndng this book,

Lt takes a village w write a technical hook: Bill Pugh and Ken Arnold gave us expert advice
on singleton, Joshua Marinaeei provided rockin® Swing ops and advice. John Brewer®s

“"I.'h-h'_.,' a Duck?™ priper ill!i],l-i:l't'l] Sim U Dwck Ganed we're gl;u] he likes ducks 1oo), Dan Friedman
inspived the Litde Singleton example, Daniel Steinberg acted as our “echnical liason™ amd
our emotona support network, And thanks 1o Apple’s James Dempsey for allowing us 1o use
his MV song,

Last, a personal thank vou o the Javaranch review team lor their op-nowh reviews and
warm support. There’s more of you in this book than vou know,

From Kathy and Bert

Wee'd like tor thank Mike Hendmckson for finding Enc and Ehsaleth... but we can't, Because of
these owo, we discovered (1o our horror) that we aren’t the only ones who can do a Head First
book. : | However, il readers want to defiere that iCs really Kathy and Bert who did the cool things
in the bhook, well, who are we to ser them straighe?

*The large number of acknowledgments |s because we're testing the theary
hat everyone mentioned in a book acknowledgment will buy at least one copy,
probably more, what with relatives and everything. If you'd like to ba in tha
ecknowledgment of our next book, and you have a large family, write to us.

MRV intro

why {and how) you can exploit the wisdom and lessons learned by other developers who've
been down the same design problem read and survived the trip. Before we're done, we'll
lock at the use and benefits of design patterns, look at some key OO design principles, and
walk through an example of how one pattern works. The best way to use patterns is to load
your brajn with them and then recognize places in your designs and existing applications
where you can apply them. Instead of code reuse, with patterns you get experience reuse.

this is a naw chapter

In the lase year, the company has been under increasing pressure
trom competitors. Alter a week long oflssite hrainstorming
session over golf, the company executives think s ame fora hig
innovation. They need something wally impressive w show at the
upcoming shareholders meeang in Maw ped ek,

2 Chapter 1

ek
ent

Patterns

ull'tl 4

ded

you are here » 3

Joe fia
subela
Joe add
Duck ¢
Frebivi
foor sor
has fv
Siml]

A foeeli

Secarl i

ok
l:;"-rﬁl' g i‘n,'q'-““n:"
n?qf. '“l
e 4 =
S e
BB, E"L"L T

SO

nty)
t:‘._'n.‘-"{"

Y

{}uglwt
e

n't

o well
es to
B,

4, apatk,
svidden

Patterns

lowing are disadvantages of using imferilanee o
havior? [Choose all that apply

s suliclasses, 1 D Hard 1o gain knowledge of all duck hehaviors.
ages ave difficult,. [E. Ducks can’t fly and quack at the same time.

ance, O E Changes can unintentionally affeet other ducks,

you are here » 5

Chapter 7

atterns

sing

e anedSor Quackable solves part ol
¢ flying rubber ducks), it completely
Thaviors, so it just creates a diffenent
i course there might be more than
n among the ducks that de fly..

ng for a Design Pattern to come

ave the day. But what fun would that
it i solutdon the old-Fashioned way
Prineaples,

Wauldn't it be dreamy if
chly there were a way to build
software so that when we need to
change it, we could do so0 with the least
possible impact on the existing code?
We could spend less time reworking
l code and more making the program

No mater how well you design an apphcagon, over dme an
applicaton must grow and change or icwill die.

rpen your pencil
& y Lots of things can drive change. List some reasons

you've had o change code in your applications {we put
in a couple of our own to get you started).

MY tustomers or users detide {hc’?l wamt m:‘:hwﬁ else, or 'I:'I'l.qr want new Fun&flanall'h‘:,r.

My tempany detided it is geing with another database vendor and it is also purthasing
its data From another supplier that uses a2 difFevent data format. Avgh!

intro to Design Patterns

Take what varies and

"Enr:apsulate" it so it won't

Design Principle affect the rest of your code.
ldentify the aspects of your I
'3 application that vary and separate
them from what stays the same.
_______ N The result? Fewer
t Our Fivst of many design II]'I_iIltEﬂE[EE[EﬂnSEquEﬂEES
eintioles, We'll tpend more Time
j/! "'I-I"_'-f Irl','\.".'l:.'_l:H"-""- ':r"' &"" '-"Ir {mﬂl cﬁe El‘aﬂges aﬂ(i mm‘e
In other words, if vou've got some aspect of vour code that is {&Ki]:]ility iﬂ yﬂlll‘ SJ’S-'.'E‘!“SI

changing, sav with every new requirement, then vou know vou've
got i behwdor that needs w be pulled oo and separated from all
the sl that doesn’t change.

Here's another way to think about this principle: take the parts
that vary and encapsulate them, so that later you can
alter or extend the parts that vary without affecting
those that don’t.

As simple as this concept s, it forms the basis for almose every
design patern. All paterns provide a way 1w let seme part of a system
vary imedependently of all otfer ferls,

Okay, ome to pull the duck behavior out of the Duck classes!

you are here 9

SEULHIL LHESIE LD LTI,

ciple

in interface, not an
on.

each hehavior — lor instance,
ancl each implementation of a
g6 interfces,

lasses that will implement the
iteadd, we'll make a set ol classes

represent a behavior (for example,
lass, rather than the Duck class,
nterface,

rere doing things before, where
il DENAVIOr either came [rom a concrete implemnentadgon in the
superclass Duck, or by providing a speciabized implemencation in the
subelass iselll In both cases we were relying on an anplementation. We
were Incked into using thar specific implementation and there was no
room for changing out the ehavior (other than wiriting more code).

With our new desiom. the Duck subclasses will use a behavior
represented by an siterface [FlvBehavior and QuackBehavior), so that
the acoual splementation of the behavior (in other words, the specific
concrete behavior coded in the class thar implemenis the FlvBehavior
or ChuackBehavior) won't be locked inw the Duck subelass,

intro to Design Patterns

From now on, the Duck

hehaviors will live in a

" s that
lar

classes
-ﬂy 0{
letails

al
You

S,
ssupertype so that the acal rumime object
e code, And we could rephrase “program (o
he declared type of the vardaliles should be a
an abstract cluss or nterlace, so that the obyjects
anables can be ol any concrete implementaton
which means the class declaring them doesn’t
it the actual olyject ovpes!™

Ik news woyou, bt just o make sure we're

= thing, here’s asimple example of using a
—imagine an absract class Animal, with two
niations, Dog and Cat

0 an implementation would be:

Dog(): Drf.!armﬁ the variable "d" a5 type D
(a contrete implementation ‘::_ :in.al
ortes us to fode 4o &tk
implementation,

el be:

o8, but
Ve Animal
“phically.

“the
rete

attual
re about
Pend 1o

Patterns

e .\Ear.k
Lerkate
ackl}

e imple—

e oaty~

behaviorinaclass

here

ﬁllmﬁ%ﬁi&ﬁﬁi}nﬁ

Q: Do | always have to implement my application first, see
where things are changing, and then go back and separate &
encapsulate those things?

A: Mot always; often when you are designing an application,
you anticipate those areas that are going fo vary and then go ahead
and build the flexibility to deal with it into vour code. You'll find

that the principles and paltems can be applied at any stage of the
development lifecycle,

e

* face too?

ice wi've got everything

g Duck be a concrete
[lardDuck. inherit commaon

3 ramoved what varies from
3 of this structure without

Q: It feels a little weird to have a class that's just a
behavior. Aren't classes supposed to represent things? Aren't
classes supposed fo have both state AND behavior?

A: In an OO0 system, yes, classes represent things that
generally have both state {instance variables) and methods. And in
{his case, the thing happens to be a behavior. But even a behavior
can still have state and mathods; a flying behavior might have
instance variables representing the altributes for the fiying (wing
beats per minute, may altitude and speed, efc.) behavior.

design, what would you do if you need
tared flying to the SimUDuck app?

if a class that might want to use the Quack

in't & duck?

TIN5 SRR L LA
u| ppea yanp e fapdunec augy (F

AL
Jrl!_\l‘.ll.li'[_';t_.] [-|:|.ru|.a[|!|.||! ST
SET[I PAIAsO SISO AL] © ATRaLy (]

ST

intro to Design Patterns

3 flying
acking and
r subclass).

ck class called fhyBoharror and

ot a conerete class implementaion
wphically o reference the speeific
by }m'u]{. [Tl 8

he Duck class (and any subclasses

hat

nry about how the flyBehavior and
rinstance variables are set. Let's take o look at

k class:
MallardDuck extends Duck | L tlass te
the Guat
A MalardDeth 8 L earnGnatk
Frepdinaki). £ \andetioath BN e e
shavior = new Quack(}: ¢alled, wfﬂ?mu'm'h 5 v et
sior = new FlyWithWings{): ﬁ.,.,;r,k . deleaate ko the Quatk 0¥
k 3nd we ot 3 vedl auack.
Remember, MallavdDuek inherits the quack- pod it st Fwi{m."ﬁ‘ as ks

Behavier and Flyﬁehawinr instante variables
from tlass Duck.

yBeavir bt

public woid displayl() |
System.out.println(®I'm & real Mallard duck™);

}

so MallardDuck’s quack 15 a real live duck quack. not a squeak and
not @ mute gquack, So what happens bere? When a Mallard Duck

15 nstantaed, its constructor initdalizes the Mallard Duek's inherited
quackBehavior instance variahle o a new instance of tvpe Quack (a
COuackBehavior conerete implementation class!,

And the same is rrue for the duck’s Aying behavior—the MallardDuck's
constructor intdalizes the fivBehavior instance variable with an instance
ol tvpe FlyWithWings (a2 FlyBehavior conerete implementation class),

16 Chapter 1

intro to Design Patterns

Wait a second, didn't you
say we should MOT program to an
implementation? But what are we doing
in that constructor? We're making a
new instance of a concrete Quack
implementation class!

Good catch, that's exactly what we're doing,..

JOF R

Lacer i the book we'll hive more patterns in
our toolbox that can help us fix i

Sull, notee that while we ame :«'ll_iug the
behaviors to conerere classes (by instantating
a behavior elass like Quack or FlvWithWings
and assigning it to our hehavior reference
variable), we could sesify change thar ai

rUncimie,

50, we still have a lot of Hexibility here,

but we're doing a poor job ol intializing

||]1' il}.“ilil]“'l" '\:’Il'i.i.llli":‘\ J.l'l ol [ll'}&il]]l' L3 i'l.:\'. .Hlﬂ
ll]i IIJ'C. i_ll::ll BLIL il. :‘-i e JI“' l!:lLIiII'kIJIIt"'!lLL\"-H H
i]l:ilq'llll't" \.'Lll'ii,l,hlf‘ i."i n illl,l"l'l"jﬂ'l!‘ l'\.'lH'. WL
could (through the magic of polymorphism
dynamically assign a different QuackBehavior
implementanon class at runime.

Take a moment and think about how you
would implement a duck so that s behavior
could change at runtime, You'll see the code

||1i'||. I:i(il'w ||Ii!—~ il I.t".'n. |r:u,_'|:':-. I.!'l'l]II RLELLH

you are here » 17

18

..java), and the
ardDuck.java).

fevence vaviables

o wkeckace Tyves

juses [in the same
ok these

{3z '{_—_‘_" Dclcg.aﬁ: to the behavier elass

cEmQuack () |
.quack{);

i)
intin{™A11 ducks float, even decoys!”};

the FlyBehavior interface (FlyBehavior.java) and
mplementation classes (FlyWithWings.java and

The interbaze that all Fhying

shavior | ;
yBehavior { behavior £lasses 1h?|ﬂm!h+.,-

i

public class FlyWithWings implements FlyBeshavior |

public veid fiy(} | Pl behavior -m,‘—.kﬁgnta‘mm
System.out.println(™I'm flying!!™}): ; 0 £y
:] T 'ED"' dud‘.,l!ii ll-rha-l;,‘[} \II
]
public class FlyNoWay implements FlyBehavior | =
public void fiy() | J?IHS beha"'iﬂ" """f‘rtmc tﬂ‘E
System.out.println(®I can’t fy*}: or dutks thai do Hﬂ;-FI i
] rubbey duks gnd detoy 4 y (ke
| Y k)

Chapter 1

infro to Design Patterns

implements QuackBehavior |

i

An (=< Silence >>"):

olements QuackBehavior |

i
Int*squeak”) :

test class
va).

imulator

main{string[] args)

[

o the same *:,hing

) - d
h Mi“i‘rdDur.'i.i inherite
i:k{} methed, whith ther d:1t53h5 to

's GuatkBehavior {i.e calls nLuatk{} on the
vited 'u:&-ﬂ.ﬁ!'hiﬂ;ln\" verere
with Ma“a’rdthk's

niel

you are here »

19

yiirme we want o change the

e (ModelDuck.java).

1Duck extends Duck |
ucki{y | (1]

= new FlyNoWay(); €—

ier = new Quacki(): !

isplay() |
Jprintlon(™I*m a model duck®)

rior type

wa). /

pcketPowered implements FLlyBd
¥y 4
println(Ifm flving with a re

Patterns

deleaates

n the

y 15 &

Led

tailal The

ered
To change a duck's
hehavior at runtime, just
call the duck's setter

method for that hehavior.

you are here b 21

5
.-'l.‘E"""'

%X

Patterns

udent...

opper,
u have

hject-

v that
ted way
ple _ i Master: Grasshopper, continue. ..
ion over inheritance, i Student: Master, through inheritance
{ P all good things may be reused and
s0 we will come to drastically cut

developrment hime like we swiftly cut
bamboo in the woods.

i ;. Master: Grasshopper, 1S more
5 it let vou encapsulate : time spent on code before or after
wi set of classes, but it : development is complete?
f runtime - Iill'l A5 i E
i ; E y Student: The answer is after,
II'.I'I]J]{'I'.IH"]'IL‘& the correct Master We ﬂ.hl"ﬂ‘j,u"ﬁ SPEI'Td time

© o maintaining and changing soffware
mn patterns and vou’ll : thaninitial development.

g COmposiion gives you

s and disadvantages © Master: So Grasshopper, should effort
: go into reuse abowve maintaintabilify
and extensibility?

Student: Master, | balieve that there is
truth in this.

; % ;LM_, WAL Master: | can see that you sfill have
e * much fo leam. | would like for you to
POQOWEWw go and meditate on inheritance further.

As you've seen, inheritance has its
problems, and there are other ways of
achieving reuse,

A duck call is a device that hunters use to mimic the
calls (quacks) of ducks. How would you implement your
own duck call that does nof inherit from the Duck class?

you are here » 23

24

Chapter 1

intro to Design Patterns

enture game, You'll
aviars the characters
14t a ame, but can
Lall oac...

26

Flo

Givemea C.J.
White, o black & white, a
Jack Benny, a radio, a house

boat, a coffee regular and
burn onel

.

What's the difference between these two orders? Not a thing! Thev're both

the same order, except Alice 1s using twice the number of words and trving the

patience of a
What's Flo g0
cook. Not onl

Lo remember |

Desien Patten
oot the vocaln
inspire those
thinking abou
nitty gritty olj

vocabulary with the short order
th the cook. but it gives the cook less
iterns in his head.

“with other developers. Once you've
nunicate with other developers and
t learning them. It also elevates your

unk at the pattern level. not the

intro to Design Patterns

ég:B RAMVN
Lan you think of other shared vocabularies
that are used beyond OO design and diner
talk? (Hint: how about auto mechanics,
carpenters, gourmet chefs, air traffic control)

What qualiies are communicated along with
the linga?

Can you think of aspacts of OO design
that get communicated along with pattern
names? YWhat qualities get communicated
along with the name "Strategy Pattern™?

Rick, why
didn't you just say
you were using the
Observer Pattern?

Exactly. If you
communicate in patterns,
then other developers know
immediately and precisely the
design you're describing. Just don't
get Pattern Fever... you'll know
you have it when you start using
patterns for Hello
World...

28

4 ALLCELLS ALUYY VULL L DAY LIULE WAL LTS5, VY 100
vou use a pacern ina descripoon, other developers quickly
know precisely the design you have in mand,

Talking at the pattern level allows you to stay “in
the design™ longer. Talking about soltware systems using
prateerns allows you to keep the discussion al the design
lewel, without having to dive down to the nity grity deails
of implementing objects and classes.

Shared vocabularies can turbo charge your
development team. A team well versed in design
patterns can move more quickly with less room for
misunderstanding,

Shared vocabularies encourage more junior
developers to get up to speed. Junior developers ook
up to experenced developers. When senior developers
make use of design patterns, junior developers also become
motivated o learn them, Build a community of pattern
LSETS 8L VOUT OFZanizaion.

Chapter 1

\ry

s your team ;
ideas and expeviente

patkerns, ou will build a &

begirs Lo share desin

s
wml.-h'ljc‘f

of patherns wsers

Think about starting a patierns study
group at your araarization, maybe jyou
£an even aet paid while you're learn—

mﬁ.

i

Q: If design patterns are so great,
why can't someone build a library of
them so | don't have to?

A: Design patterns are higher level
than libraries. Design patterns tell us

haw to structure classas and chiscts o
solve certain problems and it is our job to
adapt those designs fo fit our particular
application,

intro to Design Patterns

e, write some code agaimst their APs,
omeone else has written. Think abow

T, 1Y, e, Libraries and frameworks go
andl choose componenis and plug them

1 oways that are easier o understand, more

vour BRAIN, Onee vou've loaded vour
e w apply them w your new designs,
Hexalsle mess of jungle spaghett code,

{vl: Aren't libraries and frameworks
also design patterns?

A: Frameworks and libraries are not
design patlerns; they provide specific
implementations that we link into our
code. Sometimes, however, libraries and
frameworks make use of design patierns
in their implementations. That's great,
because once you understand design
patterns, you'll more quickly

understand AFls that are structured
around design patterns.

Q; So, there are no libraries of
design patterns?

A: Mo, but you will learn laler about
pattern catalogs with fists of patterns that
you can apply la vour applications.

you are here b 29

why design patterns?

Patterns are
nathing more than using
00 design principles...

A commeon misconception,
Grasshopper, but it's more
subtle than that. You have
much to learn...

er ‘ru

hmm, but isn't this all just good obje
wapsulation and I know about abstre
really need to think about Design Pat
in't this why I took all those OO cou
for people who don't know good OO0 ¢

ie of the true misunderstandings of

¢ knowing the OO basics we are auto
sable, and maintainable systems.

15 out, constructing OO0 systems tha
nd has been discovered only through

Developer: I think I'm starting to get it. These, sometimes non-obvicus, ways of
constructing object-oriented systems have been collected...

Guru: ..yes, into a set of patterns called Design Patterns.

Developer: So, by knowing patterns, I can skip the hard work and jump straight to
designs that always work?

Guru: Yes, to an extent, but remember, design is an art. There will always be
tradeoffs. But, if you follow well thought-out and time-tested design patterns, you'll
be way ahead.

Developer: What do I do if T can't find a pattern?

30 Chapter 1

intro to Design Patterns

g
‘action,
orphism do
bject oriented
ru thinks about
: designs that
d that can

Guru: There are some object oriented-principles that
underlie the patterns, and knowing these will help you
to cope when you can't find a pattern that matches your
problem.

Developer: Principles? You mean beyond abstraction,
encapsulation, and...

Guru: Yes, one of the secretfs to creating maintainable

00 systems is thinking about how they might change in ti
future and these principles address those issues.

you are here » 31

at

Ln‘-"

LR

bowt
s vely

v e g e
build systems with good
00 design gualities.

Patterns are proven object-
oriented experience.

Patterns don't give you
code, they give you
general solutions to design
problems, You apply them
to your specific application.

Patterns aren't invented,
they are discovered,

Most patterns and
principles address issues of
change in software,

Most pattems allow some
part of a system fo vary
independently of all other
parts,

We often try to take what
varies in a system and
encapsulate it

Patterns provide a

shared language that can
maximize the value of your
communication with ofher
developers.

intro to Design Patterns

your right brain something to do.
tandard crossword; all of the solution words

his chapter
4 5
&
4
ik} 11
13
i4
15
16 i7
15 1%
]
Across Down
2. whatvaries 1. Patterns _____ in many applications

4, Desi%n patterns

6. Java |0, Netwerking, Sound

9. Rubberducks make a

13. Bartender thought they were called

15. Program to this, not an implementation
17. Patterns go into your

18. Learn from the other guy's

19. Development constant

20. Patterns give us a shared

3. Favor over inheritance

5. Dan was thrilled with this pattern
7. Most patterns follow from OO

8. Not vour own

10. High level libraries

11. Joe's favorite drink

12. Pattern that fixed the simulator
13. Duck that can't quack

14. Grilled cheese with bacon

16. Duck demo was located where

33

34

hote
e !

"

Chapter 1

intro to Design Patterns

Ty,

hick=

‘R

‘Einlelalpls|viclalrie

¢l G % loiclk

T8 1 FRAEs B °F

R P R CsialulEial K
o) I EE LRSS e T

Diels|rielnlElalelalT{Tlelmins IL

Ell 4 B Bl B K U

cHl T 4 1 Kk B3 pl 0

ol 1 PENERET Mitlelrlplalele

v Il o L B w B N B E 4 B

BN 4 1 F4 E K

v W s e y B R AIN

c A K E

xS viclec Elsis e slciH AN GE
I N

Violclalplule lalnly

rw—r Frﬁ What are soine Ecrors that dove change i your apphcations! Yoo noght
) } have n very different lise, bt lere’s a few oft owrs. Look familiac?
-

|"|-"|';|| tustomers ov wsers detide Ehc‘f want samething else, or Hu*; want new rum:{:,mq-.ah{'}f.

|"|-"|"F| Lompany detided it is geind with anether database vendor and it is alse plorthasing s data
Freom ancther 'S-I.tf"lP!I-:'r that uses 3 different data Format ﬁrﬁh:l

Well, teehnoloay thanges and we've get to update our tode to make use of protatels.
We've learned enough building owr system that we'd like to go back and do things a little better

you are here » 35

g happens! we've gota
pattern that keeps your objects in the know when something they might care about happens.
Ohbjects can even decide at runtime whether they want to be kept informed. The Obsearver
Pattern is one of the most heavily used patterns in the JDK, and it's incredibly useful. Before
we're done, we'll also look at ene to many relationships and loose coupling (yeah, that's right.
we said coupling). With Observer, you'll be the life of the Patterns Party.

this Is a new chapter ar

a8

JOTS L we=s

ased We eather

r station will be
ect. whm

muin

Ccmumuiat _
Mnnitcﬁng Sl

'Lmernet-

The weathe
WeatherDatd obj
{lempﬁw.ture. i}
o 10 CTE}EHL

display glements:
cimple fore ecast, all updutecl‘

object acquires the most T rece
able weath

Furthel. {his 15 an axp
5 1o reled an AP1 50 th

Rama want
write their oW 'eaths..r dmp\a}'s al
like for you 1o supply that APL
e have

Wﬂﬁthﬁfaﬂ-ﬁwa {hinks W
: Led, wWe it

C.'::'r}.r_r:Er 2

' pattern

e of
The

L shats

gvice

o pressure),

n app that
iplays for
.

Vo are herg & 39

rce files arrive.
orward:

Our job is to implement measurementsChanged()
so that it updates the three displays for current
conditions, weather stats, and forecast.

know that it is.

We need to implement three display elements that

use the weather data; a current conditions display, a
sfatistics display and a forecast display. These displays
must be updated each time WeatherData has new
measurements.

The system must be expandable—other developers
can create new custom display elements and users
can add or remove as many display elements as they
want to the application. Currently, we know about
only the initial three display types (current conditions,
statistics and forecast).

the chserver pattern

getTemperature ()
getHumidity ()
getPressure()

measurementsChanged ()

Mienkms Three

the Weather-(0)-
[7) myethid:

Lhe mast retent measuremets
o = aatisuparaturall; by ealling the WeatherData's ?JcH.'-t-r
e Skt s methods (already implemented)
float pressure = getPressure()

currentCondi tionsDisplay.update (temp, humidity, pressurs):;

statisticsDisplay.update(temp, humidity, pressure): Now L_'Fd_ﬂb:
forecastDisplay.update (temp, humidity, pressure); gy
|
ment, Lo
// other WeatherData me s here [all eath display ele Cw e
| vpdate 4y display, 750%

I g Em e
mask, vetent wed

arpen your Fennil

Hil.‘;!'(i On our I-ll'“_ i-!l'll lll:"n'"'r'lﬁil_til: M, 'L‘-'ili('ll 1]1- "l'll!" I-I:I“lffl'n\'lll]g ..h'l}ll]y.,J
(Choose all thae apply.)

A We are coding 1o cancrete D The display elements don’t implement a
implementations, not interfaces, common interface.

1 B Forevery new display element we need A E. We haven't encapsulated the pare that
1o alier code, changes,

€. We have no way o add (or remove) d F Weare violaing encapsulation of the

display elements ar run dme, WeatherDiara ¢lass,

Dufinition of SWAG: Swentfic Wild A™ Guess

42 Chapter 2

' pattern

5 we need

this.

l‘-.._____———""\-""—-—————"’,

By toding to tontrete implementations
we have ro way Lo add or remove
other display elements without making
tharnaes to the program.

Umm, I know I'm new

here, but given that we are in
the Observer Pattern chapter,
maybe we should start using it?

At least we seem o be wsing 3
f.omnrmgT im{.fl"{:ﬂlf.t to +alk ‘l:,»;! the
display elements- Ehey all have an
wpdatel) methed Lakes the temp,
hum’:dl{\f. and presswre values.

44

Chapler 2

hen vou don’t want papers anvmore,
g delivered.

r remains in business, people, hotels,
wisinesses constantly subscribe and

NCWSPA ML

'r pattern

ievibed to
whieet
n {Jhc

you are here » 45

46

sending out whenever its state

changes lock prefty inferesting...

The Duck object is now an
official cbserver.

Duck is psyched... he's on the
list and is waiting with great
anticipation for the next
natification so he can get an int,

Ject (9

The Subject gets a new
data value!

Mow Duck and all the rest of the

observers get a notification that
the Subject has changed.

Chapler 2

®@:

%Jé c;b ':F;

The Mouse object asks to be
removed as an observer.

The Mouse object has been
getting ints for ages and is tired
of it, so it decides it's time fo
stop being an observer.

Vet

(VN

Mouse is outta herel

The Subject ocknowledges the
Mouse's request and removes it
from the set of observers.

The Subject has another
new int.

All the observers gef another
notification, except for the
Mouse who is no lenger included.
Don't tell anyone, but the Mouse
secrefly misses those ints..,
maybe it'll ask to be an observer
again some day.

a7

I'm Jill, T've
nalotof ETB
ns, I'm interested
Jjeb you've got with
development,

ject

the observer pattern

Il life goes
ong, they'll
ey are ob-

Thanks, T'll
send my resume
right aver,

This guy is a real jerk,
whao needs him. I'm
looking for my own job.

bank. babwy!

Observer

Arghhhlll Mark my
wards Jill, you'll never waork
in this town again if I have
o nnytﬂing to do with it. You're

S L Epewn]}

49

50

in observer,
' signing

2 company
i

w |

But what has become of our dear Ron? We hear
he's beating the headhunter at his own game.

He's not only still an observer, he's got his own
call list now, and he is notifying his own observers.
Ron's a subject and an observer all in one.

futomatit wpdate/ notititatio

The subject and cbservers define t
The ohservers are dependent on th
subject’s state changes, the observ
the style of notification, the observ
new values.

As you'll discover, there are a few di
the Observer Pattern but most reve
includes Subject and Ohserver inte

Let's take a look...

the observer pattern

The Observer Pattern

Jﬂ.t:a-..l\ﬂ R N L T NN—

CICRINIED L U!II:"III"]IHI!IJ’
relatinnshi]J hetween a set
of objects.

When the state of one
ul)jec’t changes, all of its
Jelnenclents are notified.

you are here b 51

ﬁ f,ghf,rtqll!

>

subject always

etk
lemerts the Cubiet
:E;Eau. Im ﬂdﬁlt'lﬂh Lo
he regster and vemove
t:ﬂ:agm Lhe contrete suhjcr.{

verel]
[T |. ™ n‘l;S a hﬂ'l;l'FTglﬂit'F e
mE{;ﬂ; that is wed Lo ufd.a{,t
3“ Lthe r:.ur‘rtn'li apsEriers
whenever state ehanges

52

Chapter 2

Q: What does this have to do
with one-to-many relationships?

A: With the Observer pattern, the
Subject is the abject that contains the
state and controls it. So, there is ONE
subject with state. The observers, on
the other hand, use the state, even

if they don't own it There are many
ohservers and they rely on the Subject
ta tell them when its state changes,

50 there is a relationship between the
OME Subject to the MANY Observers,

wikial observers need
ﬂ 'E:trntn‘k 4he G'bsf_Eu:f
inkerkate. This inter ;c.t-b:”
st has ont method, wpdatetls
that gets palled when the
Sl.n'nj:t.{'s chate thanyes

seimertarae
Observer

updale)

™+ How does dependence come
into this?

A: Because the subject is the sole
owner of that data, the obsarvers are
dependent on the subject to update
them when the data changes. This
leads to a cleaner OO0 design than

allowing many objects to control the
same data.

the observer pattern

interact,

where

t need o
bcsuer it

=

We can add new observers at any time. Because the onlv ching the sulject
depends on 1s a list of objects that implement the Observer interface, we can add new
observers whenever we want. In fact, we can replace any observer at runtime with
another observer and the subject will keep purring along. Likewise, we can remove

3 Heow man
ohservers at any time.

— d.i-';EE\"f-“ kinds
We never need to modify the subject to add new types of observers. Lot ¢'::'f oj; thande tan ‘fou
say we have a new concrete class come along that needs o be an observer: We don’t J i.d:h‘t'lﬁ*f here?
need w make any changes 1o the subject 1o accommuodate the new class ovpe, all

we havve to do is implement the Observer interface in the new class and register as

an observer. The subject doesn't care; it will deliver notifications to any object that

implements the Observer interlace.

We can reuse subjects or observers independently of each other. If we

have another use for a subject or an observer, we can easily rewse them becaose the

two aren't tightly coupled.

Changes to either the subject or an observer will not affect the other.
Because the two are loosely coupled, we are free o make changes o either, as long as
the ahieers sl meer their ahheatons momnlement the subieer oe nhsemver interfaces.

le 00
ninimize

you are here » 53

1, try sketching out the classes you'll need to implament the
including the WeatherData class and its display elements.

fiagram shows how all the pieces fit together and also how

i might implement her own display element.

1 help, read the next page; your teammates are already
{ to design the Weather Station.

54 Chapter 2

the observer pattern

i have

aor Pattern.

L 'y between objects so that when one
object changes state, all its dependents are notified and updated automatically.

Mary: That actually makes some sense when you think about it Our WeatherData
“ome™ and our “many” is the variows display elements that use the weather
Measurements,

class 1s the

Sue: Thar'’s right. The WeatherData class certainly has state... that's the iemperature,
humidivy and barormetric pressuee, and those definiely change,

Mary: Yup, and when those measurements change, we have 1o notify all the display
elements so they can do whatever it is they are going o do with the measurements,

Sue: Cool, I now think 1 see how the Observer Pattern can be applied w0 our Weather
Station problem,

Mary: There are siill a few things o consider that I'm not sure T understand yer.
Sue: Like what?
Mary: For one thing, how do we ger the weather measurements to the display elemenis?

Sue: Well, looking hack at the picire of the Observer Pacern, i7 we make the
WeatherDaa object the subject, and the display elements the observers, then the
dhsplavs will register themselyves with the WeatherDa object in order w gec che
information they wane, right!

Mary: Yes.. and once the Weather Stagon knows about a display element, then i can
Just call a method w eell ic abowt the measurements.

Sue: We goua remember that every display element can be different.., so 1 think that's
where having a common interface comes in, Even though every component has a
ditterent type, they should all implement the same interface so that the WeatherDara
object will know how o send them the measurements,

Mary: | see what vou mean. 5o every display will have, say, an update!) method that
WeatherData will call,

Sue: And updane]) is defined in o common interfiee that all the elements implement. .

you are here » &5

Leb's also treate an
: interfFace for all display
elements 4o im’f‘lcmcn{. The

dis'ria*; elements just need to
: i imﬂcm!h'll] dlﬂ?‘ja'fn method.
ﬁ | m«mﬁm& .
WeatherData now o
implements the of the min/a A
M}:ﬁt inkerface measurements | element.
d-'sFlﬂ'fS them.
e -
These thre /
WeatherD, fl:l{‘j
this di
nee 1 did.

56 Chapler 2

the observer pattern

Howing Mary
hat Java

s golng to get
make use of

wn (and 1’s

Beth of these methods £ake an
ﬂ"ascr\'t\- as an El-'rﬁum:n{.j H‘lﬂ‘i‘_ 15, {hf
Ohserver to be 'l'tﬂﬁ-‘l‘.!'l"‘ﬂd or remaved.

=

P T i e e e | b g p
public veoid notifylbservers()y
} k. This methed is zalled to na‘l;lf'f all observers
when the Subjest’s state has thanged.

public interface Observer | The Observer intevkate is
public void update (float temp, float humidity, float pressure); implemented by all cbservers,
?\ T ’T s {-_I-.e*r' Al have Lo |m'ﬁl|£nen4:.
These are the state values the Observers et from the uwpdatel) method. Here
the Suhjzct when @ weather medsurement thanes e TE £n||uw'mg| J'-']é'rjr and

Sue's lead and passing the

ic 1 i El asurements to the obsevvers.
puklic interface DisplayElesment | me ™

public vodd display(): (_‘\“‘\
The Dliﬂa‘fﬂ:m:n{ interFace just intludes
one method, display(), that we will tall when
the display element needs o be displayed

—Egp AN

PaweEw
Mary and Sue thought that passing the measurements directly to the
observers was the most straightforward method of updating state. Do
you think this is wise? Hint; is this an area of the application that

might change in the future? If it did change, would the change be well
encapsulated, or would it require changes in many parts of the code?

Can you think of other ways to approach the problem of passing the
updated state to the observers?

Don't worry, we'll come back to this design decision after we finish the
initial implemeantation.

you are here » 57

Here we implement the Subject Inkevfae

58

REMEMBER: we don't provide
import and package statements in
the tode listings. Get the tomplete
sourte tode From the wicked|

web site. You'll Find the URL. on
page wuxiii in the [nire.

the

"y

=~ WeatherData now implements
Ehe Euhjctf interLate.

f¢'ve added an Arvaylist te
ald Ehe Ohservers, and we
veake ik in the eonstrutdor.

cbservers = new ArrayList(}; &
I
When an cbierver veaisters, we _j.“‘ll
public void registerObserver (Observer o) { & 34d ik Lo the end of the st
observers.add(o);

|
Likewise, when an cbserver warts to un—vegister,

public void removeChserver (Observer o) | wE j“’f- fake it of F the lisk
int 1 = aobservers.index0f (o);
if {lb}= ay i . Here's The ‘{:'l‘-h ?a-'!'!'." Lhis is where we
chservers.remeve (i) 4ell all the observers about £he state.

o Because they are all Observers, ve
('/F— know they all implement vpdate(), so
public void notifyChservers() | we know hﬂwﬁ"ﬂﬁ“:‘f‘ them.
for (int i = 0; i < observers.size(); i++) |
Observer obaserver = (Observer)observers.get(ils
observer.update (temperature, humidity, pressure):

when
: We mﬁ“f the ﬂb‘r’ruﬂ:ﬂm
: : E.-—-— e 51{. ,?ﬁa'c.!d Mmfa:l;' .
public void measurementsChanged() | Lo the Weather Chation

notifyobservers{);
b

public wolid setMeasurements (float temperature, float humidity, float pressure) |

this.temperature = temperature;

this.humidity = humidity; Okay, while we wanted Lo shi Ly I

: 2 3 ! P a nite little
this ‘F‘:EEEUIzh‘ PIET:”’:E' & weather station with each book, £he publisher
measurementsChange : ' :
g wouldn't 80 for it S, rather than reading
actual weather dats off 5 device, we're

/¢ other WeatherData methods hers 9oing to use this method to test our display
clements. Or, For Fun, You torld write eode
to grab measurements off the web.

1

Chapter 2

[suriled the

the observer pattern

ions display, the
t conditons
¢ statisties and

¢ similar,
It al
uer %0 implemen s
fl'.:'"'-'! F:"-'-J.‘h:l' ol ﬁPj} i D“FJJ{:}"EIEMEH{
Tuice all die I3
N e
wer, DisplayElement |

private float humidity:
private Subject weatherData;

public CurrentConditionsDisplay(Subject weatherData) |
this.weatherbData = weatherData;
weatherData,registerObserver (this);

|

public veid update (float temperature, float humidity,
this.temperature = temperature;

The tonstruttor is passed the
weatherData object (the Subjeet)
and we use it to vegister the
display as an cbserver.

float presszure} |

this.humidity = humidizy; é;—"--..\ When u?dm” i talled, we

display{}:

] and eall display()-

public void displayi(} |

save the {.Em? and 'h.\lmid'l.Jql

System.out.println{™Current conditiaons: ™ + temperature

+ “F degrees and * + humidity + “% humidity®}):

The d;,;?'la'.lfﬂ rethod
) { jui‘l: prints out the most

retent temp and 'hl.i-m'ldifb]'

ﬁlﬁenb‘?waeﬁﬁﬂnﬁ

the way the data gets displayed, We
are going to see this when we get to
the model-view-controller pattern.

Q_,: Is update() the best place to
call display?

Q,: Why did you store a reference
to the Subject? It doesn'tlook

like you use it again after the
constructor?

A: In this simple example it made
sense to call display() when the values
changed, However, you are right,

there are much better ways to design

A: True, but in the future we
may want to un-register ourselves as
an observer and it would be handy
to already have a reference to the
subject.

you are here » 59

her Station

st harness

o g, all we need s some code 1o g‘]m‘
ur first atempt,. We'll come back Laer in
i components are casily pluggable via a
are’s how it all works:

Fursta fﬂ‘f-i"b" the
rataticn | wﬂat":rﬂaha
oid main(sString[] args) | goyel

B e e L o — e r|.1———h.-\.1-||—|:a|':|: ﬁ.’."’" ‘:I
rData):

ew Statisticesbisplay(weatherbata};
arecastDisplay (weatherData);

;;: ' & Create the three
2£) ¢ displays and

pass them the
wedbher WeatherData object
magic

the chserver pattern

qupen your pencil

Johnny Hurricane, Weather-O-Rama's CEO just called, they can't possibly ship without a Heat Index
display element. Here are the details:

The heat index is an index that combines temperature and humidity to determine the apparent

temperature (how hot is actually feels). To compute the heat index, you take the temperature, T, and the
relative humidity, RH, and use this formula:

heatindex =

16.923 + 1.85212 *+ 107 * T + 5.37941 * RH - 1.00254 * 107 * T
* RH O+ 9.41695 * 1077 + T 4+ 7.28898 * 107 * RA® + 3,.45372 * 10t
* T2 4 BH - 8,14071 & 10t & T + RA® 4 1.02102 * 10% + T2 & RE?

H

fireside chat: subject and obsarver

Fi;;_eside Cha.s

Tonight's talk: A Su ht
- way to get state infi
Subject Obs
I'm glad we're finallvy getting a chance to chat in
PEERIL, Rea “h about
us €

Well, I do my job, don’t I? 1 always tell vou what's

going on... Just because 1 don’t really know who
you are doesn’t mean [don't care. And besides, 1
do know the most important thing about you—
you implement the Observer interface.

Oh veah, like what?

Well exewnnise me. | have to send my state with my
nothicatons so all you lazy Observers will know
what happened!

Well... I guess that might work. I'd have to open

mysell” up even more though w let all vou Observers
come in and get the state that vou need. That might
L kind of dangerows. 1 ean't let vou come in and

Jjust snoop around looking at everything I've got.

62 Chapler 2

Well veah, but that's just a small part of who |
am. Anyvway, [know a lot more about vou...

Well, you're always passing your state around
o us Observers so we can see what's going
on inside you, Which gets a livde annoving at
times...,

Ok, wait just a minute here; first, we're not lazy.
we just have other stulf to do in between your
oh-so-important notheations, Mr Subject, and
second, why don’t vou let us come to you for
the state we want rather than pushing it out to
just everyone?

Well, I can see the advaniages to doing it both ways.

| have noticed that there is a built-in Java Observer
Pattern that allows you to use either push or pull.

Gireat... mavhe Il get to see a good example of
pull and change my mind.

the observer pattern

arver

¢ dlon't you just write some public getter
hoels that will let us pull out the state we

12

Don't be so pushy! There's so many different
kinds of us Observers, there’s no way vou can
anticipate everything we need. Juse let us come
to vou to get the state we need, That way; if
some ol us only need a livde bic ol state, we
aren’t forced o gevicall. It also makes things
easier o modify later. Say, for example, vou
expand yoursell aned add some more state, well
il you use pull, you don’t have 1o go around
and change the update calls on every observer.
vou just need o change voursell w allow more
getter methods to access our additional stae.

Oh really? I think we're going to look at that
NexXL,...

What, us agree on something? 1 guess there's
always hope.

you are here » 63

or the

ilt-in support
eneral 15 the
vathle class in
uite similar
face, bhut give
e box. You
or pull stvle of
All see,

L OWserver and

arcinesm e kil

]

ietk, whith we £an
e Dlbservable. We

£ YeY
_r,g,u-ug'rs” m!*:.hodi

phevik that behavier
E'r'ﬂﬂss..

wekerl(d, vemavel)

With Jaw
support, al
extend Ob
when to r

The APT

% 1

There wall be a few thanges to ma

method n the Lontrete Dleservers,

the same ided.. We have a3 Lommon

with an u?dﬂ":.tt} method ‘H‘lﬂfi E-E“:d- bjl' Eh»t

ke ko the vpdatel)
bt basically it's
bserver h&f£aur
E‘.u'nje.tl:.

update {Observable o, Object arg

/:a
The Subjeet that sent -”j

$he nobibitation it F:'ISS-td This will be the
in 3s this argument. passed to npﬁF':
a data object w

11 you want to “push™ data w the observers you can pass the di
to the notfyObsever{arg) method. I not, then the Obsener b
it wants from the Observable object passed i How? Let’s re
Station and you'll see.

'r pattern

ahes an
ta ob etk

ry wihER [

behind the scenes

Wait, before we get
to that, why do we need this
setChanged() methed? We didn't
need that before.

setChanged() {
changed = true
—_
!'é‘-"" ;. i
Lar notifyObservers(Object arg) {
2o s if (changed) { £
VL a0 for every observer on the list {
ot call update (this, arg)

changed = false

}

notifyObservers() {
natifyObservers(null)

The setChanged|) method is used to signify that the state has changed and that noafvOhservers)),
when ivis called, should updae s observers. I noilyObservers() is called without first calling
setChanged|), the observers will NOT he nodified, Let's ake a look behind the scenes of
{:]||ﬁr‘r\'u|;h:' [CER |Il:3l'n'|' lhi.‘i '|\r'1'||"jﬁ..‘i:

The s.c-tCha-ng:dU et hiod

= sets a thanged [lag 4o true.

I m’c‘.fj-ﬂhmruersf]' emly
nobilies its observers i
the thanged E|35 is TRUE-

Hind akter it r.:}i';irits-
the chservers, it sets the
thanaed Flag batk to False

Why is this necessary? The setChanged|) method is meant tw give you more Hexibility in how
vou update observers by allowing vou o optimize the notfications, For example, in our weather
station, imagine if’ our measurements were so sensitive that the wmperature readings were
constantly fluctuaring by a few tenths of a degree. That might cause the WeatherDiata object
o send out noifications constantle. Instead, we might want o send our notifications only if the
tl‘l['ll_H"['ulLJE"" l'h“llut‘.‘i TTIEH® lliil[‘l hql” i} I,ll'j_'"l'l‘l‘ i_ll'l{l WYL I:'“LII,I:I 'i";l,” "‘(I,'lf. :h“ll}_‘ﬁ'fl: Hf‘ll'!.' il:’ll'r lhi_lt

happened,

You might not use this funcuonalicy very often, but ics there i you need i In either case, vou
need to call setChanged) for nothcations wo work, 1 this funcioonalicy is something thar is useful
to you, you may also want w use the clearChanged!) method, which sets the changed state back o
false, and the hasChanged]) method, which tells vou the current state of the changed Hag,

66 Chapter 2

v pattern

L T s

_'}:1'.{ with

nEdns

=) |

public float getTe
return tempe:

public float getht
return humidi
|
sese mebhods aren't new, but

public float getE: 3use we are oing to use "pull
return pressi s thousht we'd remind Yyou
l wey are heve. The Dbservers
il uze fh!m.td grhﬂt the
eatherData object’s state.

you are here » 67

jaua.ufﬂ-

w takes an
e this to
nditions
(4 8
d the
thod
an
d ‘H\E
arqument.
PUDLLIE yO10 Qrsplay (fo| o . . e ‘n H‘Fdﬂ"‘.ﬂ”. we Fn.];
S‘fscem,outiprintln{“CErrent -!_Jﬂltldltlﬂ]:?: fdti:nq:e‘ruture mike s e bhe chnervible
+ “F degrees and + humidity + "% humiditwy®}); is =-F f‘ln?t W:a{h:rﬂa{:i
] and then we wse its
! getter methods to
obtain the temperature
and humidity

measurements. flter
that we call display()

=13] Chapter 2

- e P A — B T T =

Neither: we just chose o implement things in dilferent ways.

What would be incoreect, however, is i we swrote our code (o difiesd onaspecific
notification order,. Why? Beeaose iU vou need o changes Observable /Observer
implementations, the order of nodbeaton could change and vour applicadon would
produce incorrect resuls. Now thats defimitely sot what we'd consider loosely coupled.

70 Chapler 2

the observer pattern

iervable

elites, not an aderfce, and worse,

. the JavaLud], Obsenvable

it its uselulness and reuse. That's not
ome large potholes to watch out for

e Lo :-;ui::'|'.u'ei. '”n' r|r~.~aign \'i.HE:_II_t'!i | :-if"u;'1||11| Iir_‘.‘ii_L"‘ll |rr'i:|'||:'i|;|ir hl*r."..,f;fa."r.w

k J:]'.llfl'l '.".'.."r’.'FI-I' .t

do?

ay serve vour needs it vou can extend java.udl. Cbservable. On the other

v need o roll vour own implementation as we did at the beginning of the
ther case, vou know the Observer Patern well and you're in a good position
wy APT thiat makes use of the pattern,

you are here b 71

AT VTl 5,
nis that

m “listen in™
s. You'll find

horulel T i
iswer the
called the
£5:

the observer pattern

ires very littde code. Al we need w do is
JFrame and set up our listeners. We're going
. which is a common technigue in Swing
inner classes or Swing vou might want to

of Head First Javi.

Cimple Swind 3F hm?:::h "
‘Example | st eveates @ yeam

ihuwﬁahdﬁw““‘*

n{3tringl] args) |
. Jgle example = pnew SwingObsarverExample ()
example.gol) !
]

public void goi} |

frame = new JFrame(); Makes the devil and
JButton butten = new JButton (“Should I do it?"): angel objetts listeners
butten.addhictionlistenar (new AngelListener()): (obsevvers) of the button.

button.addhctionListensr {new DevilListensri(})s
frame.getContentPane () .add (BorderLayout .CENTER, button):
/¢ Set frame properties here

J

class Angellistaner implemsants ActionListensr |
public void actionPerformed(ActionEvent event) |
System.out.printlni®Don't do it, you might regret it!1*);
}

] H
ﬂ:‘c dre the elass del;,

'flﬂni-lf
class DevillListener implemsnts ActionListensr { ﬂfa;;.,, fh.;m dc-FH d 2 i o
public woid actionPerformed (ActionEvent event) | th .E have o
gystem.out.printlni{™Come on, do it!7); be.

b
]
’K Rather than vpdate(), the

attionPerformed() methed
l].l!{‘.s talled when the state
in the suhjcf;l: (in this case
the button) changes.

you are here » 73

hit
|E|'l‘l5 ave
. ahd

to 2
r. We
dtern

VORI IR R R 1Ty R B

than that they implement the
Observer Interface.

You can push or pull data from
the Observable when using
the pattern (pull is considered
more “correct’),

Don't depend on a specific
order of nofification for your
Observers,

Java has several
implementations of the
Observer Patiern, including
the general purpose java.util,
Observable,

Watch out for issues with
the java.util. Observable
implementation.

Oon't be afraid to create
your own Observable
implementation if nesded.

Swing makes heavy use of the
Observer Pattern, as do many
GUI frameworks.

You'll also find the pattern in
many other places, including
JavaBeans and RMI.

v pattern

‘|
4

e e B S e Pt i G e

| and separate them fram what stays the same. §

| Design Principl S S
| Program to an interface, not an implementation, —_— —_—

This is & hard one, hint: think about how chservers

e and subjetts work together.
| Design Principle |

Favor compaosition over inherifance. ‘

o _____

you are here » 75

76

ve your right brain something to do again!
all of the solution words are from chapter 2.

Across
1. Observable is a not an interface

3. Devil and Angel ars

o the button

4. Implement this method to get notified

5. Jilt got one of her own

&, CurrentConditionsDisplay implements this

interface

8. How to get yvourself off the Observer list

12, You forgot this if you're not getting notified

when you think you should be

15, One Subject likes to talk to ohsarvers

18, Don't count on this for notification
19, Temperature, humidity and

20. Observers are

21. Program to an

implementation
22. A Subject is similar to a

Chapter 2

on the Subject
not an

Down

2. Ron was both an Observer and a
3. You want to keep your coupling
7. He says you should go for it

9. can manage your observers for you
10. Java framewaork with lots of Observers

11. Weather-0-Rama's CEC named after this
kind of storm

13, Observers like 10 be when
someathing new happens
14. The WeatherData class the

Subject interface

16. He didn't want any more ints, 50 he removed
himself

17. CEQ almnost forgot the index display
18. Subject initially wanted to _____ all the data
o Observer

le
\ge

the observer pattern

e el

Cloese all dhan r.“:ll..-

‘ _‘1.. 1|'I'|,' anr |'||||||;;_' (O AT S L [
i|'|||l|l:|:|=l‘||1*ril.l||‘5- o iierfaces,

;'.I B, For svery piew |'|i$.:|>|:|'\5.' eleinient we need
1o alier cole,

5{ €, We have o way o add diqmlu\'
elEmnEnrs ar un e,

Beased onn onir firse mipdemieniation, which af’ the fallosang apply?

o I The display elements dan'rimpleowens a

o interfce,

A B We havent encapsidnned whar changes.

a3 FE Wear viddatmg encipsulanon of the
WeaherDa dass.

The thing that viries in the Obseever Fattern

is the state of the Subject and the number dnd

r'_'ﬂics of Chsevvers. Wikh this pattere, e Lam

use'y the obieets thab are deperdent on the shite

of the Subieet. withost havy £o thange that

Subjest That's called plarming ahead!

Both the Subiret and Hoserver use intevfates

The Sehiett keeps brack of obijeets mplement-

e the Clossvver imberFace, while $he dhusvvers

vegater with, dnd get notified by, the Subieet

interface. fis we've seen, this keeps 'Ehlhg,s rilE

sind leasely towpled

The Observer Pattern wies mmgmsl{'.lm to Lomboie

iy number of Obzervers with +heir Suhjnf.{:;-

Theze velationships ven't st wp h:r sowne Kind of

mhevitante b vy We, {h:}l ave set wp at

vunbime 5'?' tu-nfn'lrtmf

you are here »

7

78 Chapter 2

3 the DecoratorPattern

*
+ Decorating Objects *+

T used to think real men
subclassed everything. That was
until T learned the power of
extension at runtime, rather than
at compile time. Now look at me!

Just call this chapter “Design Eye for the Inheritance Guy.”
We'll re-examine the typical overuse of inheritance and you’'ll learn how to decorate

your classes at runtime using a form of object composition. Why? Once you know the
techniques of decorating, you'll be able to give your (or someone else’s) objects new

responsibilities without making any code changes to the underlying classes.

this is a new chapter 79

the starbuzz story

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the
fastest growing coffee shop around. If you’ve seen one
on your local corner, look across the street; you’ll see
another one.

Because they’ve grown so quickly, they’re scrambling
to update their ordering systems to match their
beverage offerings.

When they first went into business they designed their
classes like this...

i \ass,
a0 is an abstratt ¢
?:\;l:\;s?cd by all beverages
offeved in the toffee shop-
Beverage The destription instante vaviable

ipti T — s set in eath subelass and holds a
e deseription of the beverage, like

The tost() mc?\"d is getDescription() “Most Excellent Dark Roast”
abstract; subelassses ™ ——_ %I cost() iption() method
need to define theiv e 56{?;56;‘?:;“50: ’
own implementation I/l Other useful methods... veturns the destrip

HouseBlend DarkRoast Decaf

| | |
cost() I cost() I cost() I cost()

~) A

Each subtlass implements cost() to veturn the cost of the beverage.

Espresso

80 Chapter 3

the decorator pattern

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

Here’s their first attempt...

Beverage

description

getDescription()
cost()

11 Other useful methods...

1 Espi Witk dMilk
HouseBlendWithSteamedMilk DarkRoastWithSteamedM . . andMocha
andMocha andMocha DecafWith dMitk
HouseBlel andMocha cost()
_ad cCOS() cost() cost)
cost() . e EspressoWithSteamedMilk
DecafWithSteamedMik | andCaramel I
DarkRoastWithSteamedMilk Pl g - —
cost() andCaramel andCaramel cost() p Witk pandMocha
Hou! .
i DecafWithV
HouseBlel cost() DarkRoastWith! -
cost().

cost() cost() | cost(P— . DecafWithSoy

. . ecafWithSteamedMi L

HouseBlendWith: L DarkRoastWithSteamedMilk cost()
0 andSoy I kel | pressoWith!
HouseBlendWithWhip— n - | A
i DecafWithSteamedMilk |
1cosl()4r‘ DarkRoasththSteamedM DarkRoa: cost() DecaMithSoyandMocha
HouseB] cost()
cost()

cost()

HouseBlendWith

EspressoWithSteamedMilk
andWhip

cost()

Vith

dMilk DecaﬂNaithSleame

pressoWithWhi

i‘ D

DarkRoastWithWhipandSoy

DecafWith

cost()

Whoa!
Can you say
“class explosion?”

the

h tost method Lom?u{:ts.

E:sc{: oE the Lo”cc along with the
other tondiments in Lhe ovder-

81

violating design principles

i @ RALN
PQWEWR

themselves. What happens when the price

when they add a new caramel topping?

we’ve covered so far are they violating?

iAem Biq e ul

It's pretty obvious that Starbuzz has created a maintenance nightmare for

Thinking beyond the maintenance problem, which of the design principles that

of milk goes up? What do they do

wayj} jo om} Bunejoin e Aay) :JuiH

This is stupid; why do we need
instance variables and inheritance

condiments?

all these classes? Can't we just use

the superclass to keep track of the

in

Well, let's give it a try. Let's start with the Beverage base

class and add instance variables

not each beverage has milk, soy,

to represent whether or
mocha and whip...

Beverage
description New boolean values 1c0\r
milk i i
oy k/%/ eath tondiment
mo.cha
Gl Now we'll implement. eost() in Beverage (instead of
getDescription() — kcc\?ing it abstract), so that it can caleulate the
cost() @—// tosts assotiated with the condiments for a particular
hasMik() beverage instance. Subelasses will still overvide
setMilk() eost(), but they will also invoke the super version so
hasSoy/() that they can caleulate the total eost of the basie
setSoy() beverage plus the osts of the added tondiments.
hasMocha() \
setMocha()
hasWhip() | These oet and set the boolean
setWhip() values 20Y the Lond\mtn{',s-
/I Other useful methods..

82 Chapter 3

the decorator pattern

Beverage
, . descriofi
Now let's add in the subclasses, one m?ﬁ(Cf'P ion
for each beverage on the menu: soy
mocha
whip

ss tost() will calevlate the

The sw ertld of the Lond\mcn{:s, while getDescription()

i,‘\)\s{-’:ve\orvr'\;‘c\icn tost() in the sublasses > cost)

\c\ extend that §vné’c\°"a"‘bf to hasMilk()
. de tosks for that specitit setMilk()
ntlude o{\/‘:c hasSoy()
beverage) setSoy()

i h 3 s£() method needs o tompute hasMocha()

Bach i< of the beveraoe and then sethlocha()

the tost ks by calling the hasWhip()

add in the tondiments 0Y setWhip()

Lakion of tost().

SS Im lemen
5“?‘”“3 (/I Other useful methods..

lg\\ ——

HouseBlend i DarkRoast i Decaf i Espresso i

cost() cost() cost() I cost() I

G harpen our pencil
o y

Write the cost() methods for the following classes (pseudo-Java is okay):

public class Beverage { public class DarkRoast extends Beverage {

public double cost() {
public DarkRoast() {

description = "Most Excellent Dark Roast";

}
public double cost() {

you are here » 83

impact of change

See, five
classes total. This is
definitely the way to go.

I'm not so sure; I can
see some potential problems
with this approach by thinking
about how the desigh might need
to change in the future.

e dbharpen your penci
What requirements or other factors might change that will impact this design?

Price changes £or tondiments will foree us to alter existing tode.

New condiments will forte us to add new methods and alter the cost method in the superclass.

w

. 53*1)(,\;\S S
?\3 \ﬂ Y e \y .\6@3.
We may have new beverages. For some of these beverages (iced tea?), the condiments QX \\\,35
may not be appropriate, yet the Tea subelass will still inherit methods like hasWhipQ). 2 V¢

What if a customer wants a double motha?

y owe Roer

84 Chapter 3

the decorator pattern

Master and Student...

Master: Grasshopper, it has been some time since our last
meeting. Have you been deep in meditation on inheritance?

Student: Yes, Master. While inheritance is powerful, | have
learned that it doesn’t always lead to the most flexible or
maintainable designs.

Master: Ah yes, you have made some progress. So, tell me my student, how
then will you achieve reuse if not through inheritance?

Student: Master, | have learned there are ways of “inheriting” behavior at
runtime through composition and delegation.

Master: Please, go on...

Student: When | inherit behavior by subclassing, that behavior is set statically
at compile time. In addition, all subclasses must inherit the same behavior. If
however, | can extend an object’s behavior through composition, then | can do
this dynamically at runtime.

Master: Very good, Grasshopper, you are beginning to see the power of
composition.

Student: Yes, it is possible for me to add multiple new responsibilities to objects
through this technique, including responsibilities that were not even thought of
by the designer of the superclass. And, | don’t have to touch their code!

Master: What have you learned about the effect of composition on maintaining
your code?

Student: Well, that is what | was getting at. By dynamically composing objects,
I can add new functionality by writing new code rather than altering existing
code. Because I'm not changing existing code, the chances of introducing bugs
or causing unintended side effects in pre-existing code are much reduced.

Master: Very good. Enough for today, Grasshopper. | would like for you to
go and meditate further on this topic... Remember, code should be closed (to
change) like the lotus flower in the evening, yet open (to extension) like the
lotus flower in the morning.

85

the open-closed principle

The Open-Closed Principle

Grasshopper is on to one of the most important design principles:

Design Principle

Classes should be open
for extension, but closed for
modification.

Come on in; we’re
open. Feel free to extend

our classes with any new behavior you
like. If your needs or requirements change (and we
know they will), just go ahead and make your own
extensions.

Sorry, we’re closed.
That’s right, we spent
alot of time getting this code correct and

bug free, so we can’t let you alter the existing code.
It must remain closed to modification. If you don’t

like it, you can speak to the manager.

Our goal is to allow classes to be easily extended to
incorporate new behavior without modifying existing code.
What do we get if we accomplish this? Designs that are
resilient to change and flexible enough to take on new
functionality to meet changing requirements.

86 Chapter 3

there]gre no

Dumb Questions

Q': Open for extension and closed
for modification? That sounds very
contradictory. How can a design be
both?

A: That’s a very good question. It
certainly sounds contradictory at first.

After all, the less modifiable something
is, the harder it is to extend, right?

As it turns out, though, there are some
clever OO techniques for allowing
systems to be extended, even if we can't
change the underlying code. Think
about the Observer Pattern (in Chapter
2)...by adding new Observers, we can
extend the Subject at any time, without
adding code to the Subject.You'll see
quite a few more ways of extending
behavior with other OO design
techniques.

Q: Okay, | understand Observable,
but how do | generally design
something to be extensible, yet closed
for modification?

A: Many of the patterns give us
time tested designs that protect your

code from being modified by supplying
a means of extension. In this chapter
you'll see a good example of using the
Decorator pattern to follow the Open-
Closed principle.

Q: How can | make every part of
my design follow the Open-Closed
Principle?

the decorator pattern

A: Usually, you can’t. Making OO
design flexible and open to extension

without the modification of existing
code takes time and effort. In general,
we don't have the luxury of tying

down every part of our designs (and it
would probably be wastefu). Following
the Open-Closed Principle usually
introduces new levels of abstraction,
which adds complexity to our code.
You want to concentrate on those areas
that are most likely to change in your
designs and apply the principles there.

Q_: How do | know which areas of
change are more important?

A: That is partly a matter of
experience in designing OO systems and

also a matter of the knowing the domain
you are working in. Looking at other
examples will help you learn to identify
areas of change in your own designs.

While 1t may seem like a contradiction,
there are teclmin[ues for allowing code to be
extended without direct modification.

Be careful when choosing the areas of code
that need 1o bhe extended; applying the
Open-Closec[Principle EVERYWHERE

is wasteful, unnecessary, and can lead to
com]olex, hard to understand code.

87

meet the

Okay, enough of the "Object
Oriented Design Club." We have real
problems here! Remember us? Starbuzz
Coffee? Do you think you could use
some of those design principles to
actually help us?

Meet the Pecorator Pattern

Okay, we’ve seen that representing our beverage plus condiment pricing
scheme with inheritance has not worked out very well — we get class ©
explosions, rigid designs, or we add functionality to the base class that isn’t
appropriate for some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate”
it with the condiments at runtime. For example, if the customer wants a
Dark Roast with Mocha and Whip, then we’ll:

© Take a DarkRoast object
© Decorate it with a Mocha object
© Decorate it with a Whip object

Q Call the cost() method and rely on
delegation to add on the condiment costs

Okay, but how do you “decorate” an object, and how does delegation
come into this? A hint: think of decorator objects as “wrappers.” Let’s
see how this works...

88

the decorator pattern
Constructing a drink order with Decorators

@ We start with our DarkRoast object.

/—\ i’\C"‘C"\bC‘ ‘\’,ha*, D oY K‘ ’\oash

d has
) " Bc\lc‘(a%c an ‘us
'\nh6*‘§)£:2£hod ‘c\nahk LomyW
tos k-
ah\r\c tost ok the dein
DarkRroo®

cost()

e The customer wants Mocha, so we create a Mocha
object and wrap it around the DarkRoast.

i tor. ks
biett is a decord -
[—\ i M‘::::r: he ob)ct{ it is ‘fic.t,oraj,'mg
J'WY‘:\\:: case, @ Deverdde: (By)mvro .
:e mean it is the same Lyve-
cost () cost ()
Dar'kRooé"
Mocha

g 3 ?Y wm MOU\& as
an BCVC' aoe WY) Cd

6
4 Cia C) hoo bcca“sc ”lOCha \s a

6 The customer also wants Whip, so we create a
Whip decorator and wrap Mocha with it.

cost()

cost () cost()

DOarkRooS*

Whip is a decorator, so it also
Mocha

miveors DavkRoast’s {:\/Pc and
intludes a tost() method.

Whip

So, a DavkRoast wrapped in Motha and Whip is still

a Bcvcragc and we ¢an do anything with it we tan do
with a DavkRoast, intluding eall its tost() method.

you are here »

89

decorator

Q Now it’s time to compute the cost for the customer. We do this
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates.
Once it gets a cost, it will add on the cost of the Whip. .
(\(ou)\\ see how n
é/— 3 A(:C‘N \;agcsv)

4

First, we call cost() on the Mocha calls cost() on
outmost decorator, Whip. DarkRoast.

Q Whip calls cost() on Mocha.

cost/\cosmst() .
s129x 20 DR 20 N8 pin

MOChG e DarkRoast
Wh M returns its cost,
|p 99 cents.
Whip adds its total, 10 cents,
to the result from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29. o cents, to the result from

parkRoast, and returns
the new total, $1.19.

Okay, here’s what we know so far..

= Decorators have the same supertype as the objects they decorate.
= You can use one or more decorators to wrap an object.

= Given that the decorator has the same supertype as the object it decorates, we can pass
around a decorated object in place of the original (wrapped) object. |
ey Pore

= The decorator adds its own behavior either before and/or after delegating to the object it
decorates to do the rest of the job.

= Objects can be decorated at any time, so we can decorate objects dynamically at runtime
with as many decorators as we like.

Now let’s see how this all really works by looking at the
Pecorator Pattern definition and writing some code.

90

The Decorator Pattern defined

Let’s first take a look at the Decorator Pattern description:

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Component h

The Contrc{:eComPoncv\{:
is the objeet we're 9oing
to d\/namicall\/ add new
behavior to. [t extends

DY

methodA()

methodB()
Il other methods

the decorator pattern

Eath (.om?oncn{: ¢tan be used on its

C°MY°"°"J° ConcreteComponent i Decorator
methodA() methodA()
methodB() methodBy()

I other methods Il other methods

>

has an
The Cov\crc{:chcora{:or .
inskante vaviable Lor the thing
it decovates (the Com?oncv&
the Detorator wraps)-

\

ConcereteDecoratorA

ConcereteDecoratorB

own, or wraﬂ?cd b\/ a decorator.

component

Eath detorator HAS-A
(wraps) a tomponent, whith
means the detorator has an
instante vaviable that holds
a veferente to a component.

Dectorators implement the

same inkecfate or asbstract

tlass as the tomponent they

are 9oiny ko decorate

Component wrappedObj

methodA()
methodB()
newBehavior()
Il other methods

Component wrappedObj
Object newState

R

methodA()
methodBj()
Il other methods

Detovators tan extend the
skate of the ¢omponent.

—

Detorators tan add new methods; however, new
behavior is typically added by doing computation
before or after an existing method in the component.

you are here » 91

decorating beverages

Pecorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

Deveraoe atts as owr
Jbstract componen

AN

L class

Beverage

description

getDescription()
cost()
I/ other useful methods

component

HouseBlend DarkRoast CondimentDecorator
cost() cost() getDescription()
v 1
Espresso Decaf
cost() cost()
X Milk Mocha Soy Whip
erete B b B b B b B b
S}o\r‘f (X YC‘(everage beverage everage beverage everage beverage everage beverage
e e
T onent " cost() cost() cost() cost()
c’o:\;i et A\—‘\RC getDescription() getDescription() getDescription() getDescription()
t

NY 7oA

And here are our tondiment detorators; noti

get

estription(). We'll see why in @ moment...

ce

{hc%nccd to imFICmcn{; not only tost() but also

RANN
PQWEWR

Before going further, think about how you’d implement the cost() method of
the coffees and the condiments. Also think about how you’'d implement the
getDescription() method of the condiments.

92 Chapter 3

the decorator pattern

Cubicle Conversation

Some confusion over Inheritance versus Composition

going to use inheritance in this

Okay, I'm a little
confused...I thought we weren't

pattern, but rather we were going
to rely on composition instead.

Sue: What do you mean?

Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
That’s inheritance, right?

Sue: True. I think the point is that it’s vital that the decorators have the same type as the
objects they are going to decorate. So here we’re using inheritance to achieve the &ype matching,
but we aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new behavior. We
are acquiring new behavior not by inheriting it from a superclass, but by composing objects
together.

Mary: Okay, so we're subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the composition of decorators with
the base components as well as other decorators.

Sue: That’s right.

Mary: Ooooh, I see. And because we are using object composition, we get a whole lot more
flexibility about how to mix and match condiments and beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at
compile time. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we like... at runtime.

Mary: And as I understand it, we can implement new decorators at any time to add new
behavior. If we relied on inheritance, we’d have to go in and change existing code any time we
wanted new behavior.

Sue: Exactly.

Mary: Ijust have one more question. If all we need to inherit is the type of the component,
how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already /ad an abstract Beverage class.
Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if
the abstract class will work just fine.

93

decorator training

New barista training

Make a picture for what happens when the order is for a

“double mocha soy lotte with whip” beverage. Use the menu

to get the correct prices, and draw your picture using the
same format we used earlier (from a few pages back):

© whip calls cost() on Mocha.

First, we call cost() on the DowkRosat.
outmost decorator, Whip.
cost cost 0 CQS.._ 0
$29w 10~ ‘D_/ N8 s

Mocha
Whip
0 Whip adds its total, 10 cents,

to the result from Mocha, and
returns the final result—$1.29. o

Mocha adds its cost, 20
cents, to the result from
parkRoast, and returns
the new total, $1.19.

Mocha calls cost() on

Okay, I need for you to
make me a double mocha,
soy latte with whip.

for
ieture Was
T““‘Sdifv\i ‘roas‘\'« mothd

\“Y \)C“cra‘.))c

<,/

o DarkRoast
returns its cost,
99 cents.

Starbuzz Coffes

—@dharpen vour pencil
i your p

Draw your picture here.

Coffees
House Blend .89
Dark Roast .99
Decaf 1.05
Espresso 1.99
Condiments
Steamed Milk .10
Mocha .20
Soy .15

B .10

“\

Chapter 3

94

the decorator pattern

Writing the Starbuzz code

It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t need to
change from Starbuzz’s original design. Let’s take a look:

public abstract class Beverage { s an a\;s{:‘rac‘t

String description = “Unknown Beverage”; Bcvcvaff);h‘ the two methods
elass W 0 0.
‘ohi and Cos
public String getDescription () { 5:{:DCSL"‘\7£'°“
return description;
} \ getDeseription is alveady
i but we
public abstract double cost(); |mﬂtma¢£d£orus t w
} need to m?lcrncn{: COS‘[;()

in the subelasses.

Beverage is simple enough. Let’s implement the abstract
class for the Condiments (Decorator) as well:

public abstract class CondimentDecorator extends Beverage {

public abstract String getDescription(); <>-\\\
}

We've also going to require

that the tondiment

decorators all veimplement the
gc{:Dceriy{:ion() method. Aoain,

we'll see why in a sec..

95

implementing the beverages
Coding beverages

Now that we’ve got our base classes out of the way, let’s
implement some beverages. We’ll start with Espresso.
Remember, we need to set a description for the specific
beverage and also implement the cost() method.

First we extend the DPeverage

. .
¢lass, sinte Lhis 1s 3 beveraqy
public class Espresso extends Beverage {

public Espresso() {

otion, we
description = “Espresso”; & To takectare of the dcscrl?E|0h£:’
: set this in the tonstruttor Yor he
tlass. Remember the destription instance
public double cost() { vaviable is hevited ‘Crom Bcvevagc.
return 1.99;
| We dont
} tost of an Espresse :
L Finally, we reed ©0 eompute the B 0 b in Ehis lass, e just
' n)

need to worey about addin

1197
d ko vekuen the prite ot an Espresso |
nee

public class HouseBlend extends Beverage {
public HouseBlend() {

description = “House Blend Coffee”;
) : o
} SsarbuZZ Coffe ‘
bli doubl t s
public double cost () { 992222— - 9
return .89; House 99
/ park Roast .05
: pecaf 1.99
ss0
,L Okay, here’s another Beverage. All we Espre
do is set the ap row;ialcc deseviption, (w 10
“House Blend Coffee,” and then veturn = Coamed wilk L
the corveet tost: 89¢. ocha e
soy 10
Whip
You tan treate the other two Beverage elassses

(DavkRoast and Decaf) in exattly the same way.

96 Chapter 3

Coding condiments

the decorator pattern

If you look back at the Decorator Pattern class diagram, you’ll
see we’ve now written our abstract component (Beverage), we
have our concrete components (HouseBlend), and we have our
abstract decorator (CondimentDecorator). Now it’s time to
implement the concrete decorators. Here’s Mocha:

Motha is a detorator, so we b
extend CondimentDetorator. Reme™

e e.
L ke o %mfa‘b

public class Mocha extends CondimentDecorator ({
Beverage beverage; A -
(2) way to e
{ vaviable to Lhe dbjett we J;:‘c \::4 C\:“;S?
Here, we've 909 pass the beve

public Mocha (Beverage beverage)
this.beverage = beverage;

}

public String getDescription() {

return beverage.getDescription() + “, Mocha”;

N

}

public double cost () {
return .20 + beverage.cost();
}
: beverage
ouke Lhe eost of our beverad

¢ the tall to the

tom
Now we need {o to "'e deleoat

with Motha: Fiest, <o Fhat it tan compute the

| ' torating, |
Zb i:tj{l{\‘:‘:n“v:ca;; {:\ncgcos{: of Motha to fhe vesult
osT))

Condimer e

(',oralwY

to \v\shan{:\a{c Motha with
toa Peverage using
le Lo hold the

We've ooing
a3 rcﬁcrcncc

(1) An instante vaviab

¢ we are Wrappind

beveray
et this instance

we' e wrapping Lo the detorator's

COhs‘b'\AC‘hor N

We want our deseription to not only
intlude the beverage — say “Davk
Roast” - but also to intlude each

item decorating the beverage, for
insfancc,“l)ark Roast, Motha”. So
we first delegate to the object we ave
decorating to get its description, then
append “, Motha” to that destription.

On the next page we'll actually instantiate the beverage and
wrap it with all its condiments (detorators), but First..

Write and compile the code for the other Soy and Whip
condiments. You'll need them to finish and test the application.

e harpen our pencil
S y

you are here »

97

testing the beverages

Serving some coffees

Congratulations. It’s time to sit back, order a few coffees and marvel at
the flexible design you created with the Decorator Pattern.

Here’s some test code to make orders:

public class StarbuzzCoffee { o“&mﬂAﬁ
an €5 esso d Los‘\'/
; - ; ' : Ovdec ¥ wpuon
public static void main(String args[]) { Vs . &\ksdchv
_ . 4 prw
Beverage beverage = new Espresso();
System.out.println (beverage.getDescription ()
+ N $” + beverage.cost()); b t
objett
Ma\(C a Da‘(‘kRoas‘t \)
Beverage beverage2 = new DarkRoast (); ¢~ Wrap it with 3 Motha-
beverage2 = new Mocha (beverage2) ;
beverage2 = new Mocha (beverage?2) ; V——- W”'aP itina setond Motha.
beverage2 = new Whip (beverage2); &——— WV'&P itina Whip
System.out.println (beverage2.getDescription ()
+ N $” + beverage2.cost());
Beverage beverage3 = new HouseBlend() ; 4?’_—“\\\
beverage3 = new Soy (beverage3) ; F'm&“‘[; oive us a HouscBlcnd
beverage3 = new Mocha (beverage3) ; with Soy, Motha, and Whip-

beverage3 = new Whip (beverage3) ;
System.out.println (beverage3.getDescription ()
+ N $” + beverage3.cost());

*We've 9oing to see a much better way of
ereating detorated ochch,s when we tover the

Now, let’s get those orders in: Factory and Builder

% java StarbuzzCoffee
Espresso $1.99
Dark Roast Coffee, Mocha, Mocha, Whip $1.49

House Blend Coffee, Soy, Mocha, Whip $1.34

%

98 Chapter 3

csign Patterns.

therejare no

Dumb Questions

Q: I'm a little worried about code
that might test for a specfic concrete
component — say, HouseBlend - and

do something, like issue a discount.
Once I've wrapped the HouseBlend
with decorators, this isn’t going to work
anymore.

A: That is exactly right. If you have
code that relies on the concrete component’s

type, decorators will break that code.

As long as you only write code against

the abstract component type, the use of
decorators will remain transparent to your
code. However, once you start writing code
against concrete components, you'll want to
rethink your application design and your use
of decorators.

Q: Wouldn't it be easy for some
client of a beverage to end up with

a decorator that isn’t the outermost
decorator? Like if | had a DarkRoast with
Mocha, Soy, and Whip, it would be easy
to write code that somehow ended up
with a reference to Soy instead of Whip,
which means it would not including Whip
in the order.

A: You could certainly argue that

you have to manage more objects with

the Decorator Pattern and so there is

an increased chance that coding errors
will introduce the kinds of problems you
suggest. However, decorators are typically
created by using other patterns like Factory
and Builder. Once we've covered these
patterns, you'll see that the creation of the
concrete component with its decorator is
“well encapsulated” and doesn't lead to
these kinds of problems.

the decorator pattern

Q: Can decorators know about the
other decorations in the chain? Say, |
wanted my getDecription() method to
print “Whip, Double Mocha” instead of
“Mocha, Whip, Mocha”? That would
require that my outermost decorator
know all the decorators it is wrapping.

AZ Decorators are meant to add
behavior to the object they wrap. When
you need to peek at multiple layers into
the decorator chain, you are starting to
push the decorator beyond its true intent.
Nevertheless, such things are possible.
Imagine a CondimentPrettyPrint decorator
that parses the final decription and can print
“Mocha, Whip, Mocha” as “Whip, Double
Mocha.” Note that getDecription() could
return an ArrayList of descriptions to make
this easier.

— s oharpen your pencil
i’ your p

Our friends at Starbuzz have introduced sizes to their menu. You can now order
a coffee 1n tall, grande, and vent sizes (translation: small, medium, and large).
Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two
methods to the Beverage class: setSize() and getSize(). They’d also like for the
condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢
and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

929

decorators in java i/o

Real World Pecorators: Java 170

The large number of classes in the java.io package is... overwhelming. Don’t feel alone
if you said “whoa” the first (and second and third) time you looked at this API. But
now that you know the Decorator Pattern, the I/O classes should make more sense
since the java.io package is largely based on Decorator. Here’s a typical set of

objects that use decorators to add functionality to reading data from a file:

A text file for veading.

S

FileInpu'rS’ﬂ“"'dQ
N &
9% &
< 7eredTnputss ’
e ” & . Lhe tomponen fhat's
w \S .
hertpts pubnsiren
Y (4
o am, ST hers:
LineNumber[nputStream is F\\C\“Yuhgtr:\’u{;g&“am o ::c:{: Leom
also a tontrete decorator. Bul beredinputShream B\[‘c,cP‘ ke e S 3 base tom?
It adds the abifify To weveredin? the

i i evete detorator
tount the line numbevs as is @ ton oL

it veads data.

behavior in two ways: i

buffers input to improve
?cv(:ormancc, and also augmcn{:s
he interface with a new
method readLine() for veading
thavatter—based input, a line

at a time.

BufferedInputStream and LineNumberInputStream both extend
FilterInputStream, which acts as the abstract decorator class.

100 Chapter 3

Al of
Bu‘c‘ccrcdh\w{,g{xcam adds whith

to vead \,\’{',cs-

the decorator pattern

Pecorating the java.io classes

y\cn{’,
s owr a\)sjcxad’« tomye
fece

InputStream FilterlnputStream
/\ s an abs{:rac{:
decovator.

‘ FilelnputStream StnngBufferInputStream N ByteArraylnputStream FilterinputStream
‘ PushbackinputStream H BufferedinputStream h‘ DatalnputStream H LineNumberinputStream b
These InputStreams act as 7‘ / /
the tontrete tomponents that
we will wrap with detorators. ctovators.

Theve are a few more we didn't
show, like ObJCC‘EIn?u'ES‘Evcam

And (-"ma\l\/, heve ave all owr tontrete d

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various mput streams.

You'll see that the output streams have the same design. And you’ve probably
already found that the Reader/Writer streams (for character-based data)
closely mirror the design of the streams classes (with a few differences and
inconsistencies, but close enough to figure out what’s going on).

Java I70 also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes

that can be overwhelming to a developer trying to use the Decorator-based
API. But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

you are here » 101

write your own

Writing your own Java 170 Decorator

Okay, you know the Pecorator Pattern, you've
seen the 170 class diagram. You should be ready to
write your own input decorator.

No problem. I just have to
extend the FilterInputStream class
How about this: write a decorator that converts and override the read() methods.
all uppercase characters to lowercase in the
input stream. In other words, if we read in “1
know the Decorator Pattern therefore | RULE!” N
then your decorator converts this to “i know the

decorator pattern therefore i rule!”

mport Fiest, extend the FilteclnputStream, the
Dont foract :(\::;n; abstract detorator for all [nputStreams.

53Va.\o~-~ (not l

public class LowerCaselnputStream extends FilterInputStream {
public LowerCaselInputStream(InputStream in) {
super (in) ;

}

public int read() throws IOException {
int ¢ = super.read();
return (¢ == -1 ? ¢ : Character.tolLowerCase ((char)c));

}

public int read(byte[] b, int offset, int len) throws IOException {
int result = super.read(b, offset, len);

for (int i = offset; i < offset+result; i++) { \
b[i] = (byte)Character.toLowerCase ((char)b[i]); Now we need to im?lCmtn{: two
} vead methods. They take a
st e byte (ov an arvay of bytes)
} and tonvert each byte (that

vepresents a thavatter) to
lowevease if it's an upperease
tharatter.

REMEMBER: we don't provide import and package

statements in the code listings. Get the complete

sourte tode from the wickedlysmart web site. Youll

find the URL on page xxxiii in the [ntvo.

102

the decorator pattern

Test out your new Java 170 Decorator

Write some quick code to test the 1/0 decorator:

public class InputTest {
public static void main(String[] args) throws IOException {

int c;
try {
InputStream in =) wtStream
new LowerCaseInputStream (K"_\ Qet v the F‘\i“?ﬁ'\rsjc with
new BufferedInputStream and dct,ov‘a‘h\c ! ,{—,S{‘xca"‘
new FileInputStream(“test.txt”))); Leceding¥
a Bv& bvahd new

Lhen owr
while ((c = in.read()) >= 0) { alrgwcvcasc\y\vuhg{’xcam

System.out.print ((char)c);

}

in.close();

filker-

} catch (IOException e) {
e.printStackTrace() ;

I know the Decorator Pattern therefore I RULE!

}

} Just use the stream to vead

thavatters until the end of

test.ixt file
file and print as we 90 I

\(O“ v\CCd {',O
Give it a spin: | ke this Fle

File Edit Window Help DecoratorsRule

% java InputTest
i know the decorator pattern therefore i rule!

%

you are here »

103

decorator

104

Patterns Exposed
This week’s interview:
Confessions of a Decorator

HeadFirst: Welcome Decorator Pattern. We've heard that you’ve been a bit
down on yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but
you know, I've got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I've got the power to add flexibility to
designs, that much is for sure, but I also have a dark side. You see, I can sometimes
add a lot of small classes to a design and this occasionally results in a design
that’s less than straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/0 libraries. These are notoriously difficult for
people to understand at first. But if they just saw the classes as a set of wrappers
around an InputStream, life would be much easier.

HeadFirst: That doesn’t sound so bad. You're still a great pattern, and
improving this is just a matter of public education, right?

Decorator: There’s more, I'm afraid. I've got typing problems: you see,
people sometimes take a piece of client code that relies on specific types and
introduce decorators without thinking through everything. Now, one great thing
about me is that you can usually insert decorators transparently and
the client never has to know it’s dealing with a decorator. But like |
said, some code is dependent on specific types and when you start introducing
decorators, boom! Bad things happen.

HeadFirst: Well, I think everyone understands that you have to be careful
when inserting decorators, I don’t think this is a reason to be too down on
yourself.

Decorator: I know, I try not to be. T also have the problem that introducing
decorators can increase the complexity of the code needed to instantiate the
component. Once you’ve got decorators, you've got to not only instantiate the
component, but also wrap it with who knows how many decorators.

HeadFirst: I'll be interviewing the Factory and Builder patterns next week — I
hear they can be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs
and staying true to the Open-Closed Principle, so keep your chin up and think
positively!

Decorator: I’ll do my best, thank you.

Tools for your Design Toolbox

You’ve got another chapter under
your belt and a new principle and
pattern in the toolbox.

En(,a‘)su\ .
13 LomYOS\J(,'\OV\ over ‘“\n“‘kahu
avor
beoayam ko itertee” not
roovram
‘\m\’\Cvncn{’,a‘E\O"s s
S\
Ghrve Lor \oosely covv\ACi :c:
00} CC{’} {',\\3'\3 wCEY K\ eed
N Lor We now have the Ovcn—C,osc .
Classes dhovld be oFen " Pemenle bo quide ws. Welve gong
Lension but tlosed +o strive to design our S\Is{:em
“ (ieation: so that the tlosed Vav’cs are
mod™ isolated from our new extensions.

\

Shrad i
entay Dc(,ora{?otr *‘ho
-\V\'\ZCV" Y‘CSYOV\S.‘b.‘\‘ \eS i
wyl . Detocators

a\-\-,cvna‘\', ve Lo
— Q\,'\(,-E\ona\'\{'.\[-

for ereating dcs\SV\S.
le. Ov was!

veally he
used that

the decorator pattern

—— BULLET POINTS

= |nheritance is one form of
extension, but not necessarily
the best way to achieve flexibility
in our designs.

= |n our designs we should allow
behavior to be extended without
the need to modify existing code.

= Composition and delegation
can often be used to add new
behaviors at runtime.

= The Decorator Pattern provides
an alternative to subclassing for
extending behavior.

= The Decorator Pattern involves
a set of decorator classes that
are used to wrap concrete
components.

= Decorator classes mirror the
type of the components they
decorate. (In fact, they are the
same type as the components
they decorate, either through
inheritance or interface
implementation.)

= Decorators change the behavior
of their components by adding
new functionality before and/or
after (or even in place of) method
calls to the component.

= You can wrap a component with
any number of decorators.

= Decorators are typically
transparent to the client of the
component; that is, unless
the client is relying on the
component’s concrete type.

= Decorators can result in many
small objects in our design, and
overuse can be complex.

105

exercise

Exereise solutions

public class Beverage {

// declare instance variables for milkCost,
// soyCost, mochaCost, and whipCost, and
// getters and setters for milk, soy, mocha
// and whip.

public float cost() {

float condimentCost = 0.0;
if (hasMilk()) {
condimentCost += milkCost;
}
if (hasSoy()) {
condimentCost += soyCost;
}
if (hasMocha()) {
condimentCost += mochaCost;
}
if (hasWhip()) {
condimentCost += whipCost;
}

return condimentCost;

public class DarkRoast extends Beverage {
public DarkRoast() {
description = "Most Excellent Dark Roast";
public float cost() {

return 1.99 + super.cost():

New barista training

First, we call cost() on_the
o outmost decorator, Whip.

@ Finally, the result returns to
Whip’s cost(), which adds .10 and
we have a final cost of $1.54.

TN NN Y

“double mocha soy lotte with whip”

6 Whip calls cost() on Mocha

e Mocha calls cost() on another Mocha.

e Next, Mocha calls cost() on Soy.

(5]

Last topping! Soy calls
cost() on HouseBlend.

o

HouseBlend’s cost()
method returns .89
cents and pops off
the stack.

cost() cost() cost() cost() cost()
:20 .20 w & Soy’s cost() method
S ouse®” adds .15 and returns
/” < the result, and pops
00’90 off the stack.

The second Mocha’s

cost() method adds .20
and returns the result,
and pops off the stack.

The first Mocha’s cost() method
adds .20 and returns the result,
and pops off the stack.

o

106

the decorator pattern

Exercise soutions

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee in
tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz saw this
as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage class:
setSize() and getSize(). They’d also like for the condiments to be charged according to size, so
for instance, Soy costs 10¢, 15¢, and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

public class Soy extends CondimentDecorator ({
Beverage beverage;

aoate the
Now we need to YYJZ\: ‘3\6 wra\y\:cd_

public Soy(Beverage beverage) { N SC{S\u() md’,\\z\d wd also move 'S
this.beverage = beverage; beverage: We sho L elass sinte
} ethod to he bstrac detorators:
m‘l:’ s wsed In all CO“d""“"*‘ €
\

public getSize() {
return beverage.getSize();

}

public String getDescription() {
return beverage.getDescription() + %, Soy”;

}

public double cost() {

double cost = beverage.cost();

if (getSize() == Beverage.TALL) { L7\ Heve we 56{: the size (whith
cost += .10; onyasa’ccs all the way 4o the

} else if (getSize() == Beverage.GRANDE) ({ tontrete bcvcvagc) and then
cost += .15; add the appropriate cost.

} else if (getSize() == Beverage.VENTI) {

cost += .20;
}

return cost;

you are here » 107

Get ready to bake some loosely coupled OO designs. There is more to
making objects than just using the new operator. You'll learn that instantiation is an activity that
shouldn't always be done in public and can often lead to coupling problems. And you don't want
that, do you? Find out how Factory Patterns can help save you from embarrasing dependencies.

this Is a new chapter 109

thinking about “new’

Okay, it's been three chapters
and you still haven't answered my
guestion about new. We aren't supposed
to program to an implementation but

every time I use new, that's exactly
what I'm doing, right?

forced o write code like this:

Duck duck:

hunting) |
new DacoyDuck()
{inBathTub) |

= newW RubberDucki)i:

When you see “new”, think “concrete”.

Duek duck = pew MallavdDuck()

new MallardbDuck():

Yes, when you use mew you are certainly instantiating a concrete
class, so that's definitely an implementaton, not an nerlace. And
ir's a good question; you've learned that tving your code 1o a
concrete class can make it more lagile and less Qexible,

We want to use friterfazes Bt we have to ereate 3n |
; :
Lo keep tode flexible. : i of a3 tontrete tlass!

When vou have a whole ser of related concrere classes, often you're

&

¢ have 3 bunth of difFerent
we dont knew

one We el

]
dutk elasses, and
wrikil runfime whith

-l-_g TR I'a'.ﬂ“'l'-."a {-'E

Here we've sot several concrete classes being instanuaced, and the
decision of which to instantiate is made at runtme depending on

some set of conditions.,

When vou see code like this, you know that when it comes ome for
changes or extensions, vou'll have to reopen this code and examine
what needs o be added (or deleted), Often this kind of code ends

up in several parts of the applicaton making mainenanee and

updates more dithieult and ermor-prone,

110 Chapter 4

the factory pattern

(= 8

=]

By coding o an interface, vou know vou can insulate voursell
from a low ol changes that might happen w a system down
the road. Why? If vour code 18 written to an interface, then
it will work with any new classes implemenang chat inwerface
through polvmaorphizm. However, when you have code

that makes use of lots of conerete classes, you're looking for
troble because thar code may have o be changed as new

conceete classes are added. So, in other words, your code (l—'—\

will nat be “closed for modifeanon.” To extend iowith new

concrete ypes, vou'll have o reopen it

S0 what can vou do? Ie's imes like these that vou can Ball back
on OO Design Principles w look [or clues. Remember, our
first prineiple deals with change and modes us o datdify e
irifierts Wl verry el sefiarile them from wohat stavs the same,

How might you take all the parts of your application that instantiate concrete classes and
separate or encapsulate them from the rest of your application?

you are here v+ 111

112

Chapter 4

pizza.prepare(}):
pizza.bake();
pizza.cuti);
pizza.boxi);

return pizza;

e

te ol
and 3ssign it to the pizza -nstau-..::m
vaviable. Note that edth pizzg heve
has £o implement the Pizza interface.

Onte we have a Pizza, we prepave it
(you know, vell the dough, put on the
saute and add the Loppinas £ eheese),
then we bake it, eut it and bow it/

Eath Pizza subtype (CheesePiz=za,
VeggieFiz=a, eti) knows how to
prepave itsell.

y pattern

rm'f o I‘é‘hﬂ'{' {,M&

EE ?.T: okk t-rm'%;:'h_:t -
N b ke
¥k
nae moﬂ‘;'i -
pade and *

iy s
nd GYET:

o stay

part,

a!.kiaina,

£ SgmE

i We
e ke thange,
jus& Lhe przzas it epevates on

return pizza;

Clearly. dealing with which conerete class is instantiated is really messing up our
ovderPizzal) method and preventing i from being closed for modification. But now
that we know what is varying and what isn't, it’s probably ame o encapsulate it

you are here » 113

Fivst we poll the objeet

———— treation tode out of the
orderPizza Method

Then we place that tode n an ohJ::ti'r:t

is enly Boird to worry about how "
irzds. | any ather nhjzr,{: needi 3 P

: bieet ko tome Lo

f‘T.ﬂn:-a' exeated, this is the o
" to g, heves

i new object: we

Factories handle the deails ol object creation. Once we have
a SimplePizzaFactory, our orderPizzal) method just becomes
a client of thatobject. Any dme it needs a pizeam it ashs

the pizza lactory to make one, Gone are the days when the
orderPrzzal) method needs w know about Greek versus Clam
pizzas. Now the orderPizzal) method just cares that ic gews a
pizza, which implements the Pizza interface so that it can call
prepare), bake(), cucf), and box]).

Weve sill moc a few deculs wo Bl here; Tor mscanee, what does
the orderPizzal) method replace is creaton code with? Let's
implement a simple factory for the pizza store and fnd ou...

114 Chapler 4

if (Cype.equals(“cheese™))

Pizza
} elz=e if |
plzza
| mlza 1if
pizza

} else if (E

pizza =

I

return pizza;

type.

type.

s that

- *’(N"
k

l
CheessPizzal}:

equal s ("pepperoni®)} |
PepperoniPizzal):
equale ("clam™)) |
ClamPizza) :

aquals ("vegqgie”)) |
VeggiePizzall;

]

new

new

new

ype.
new

the factory pattern

encapsulates the object

W

,;r.a“ "‘i
s eza
s,pf“l T
Al ks
'i g e g ot
it b;‘tﬁ-
W

Here's the tode we
plucked out of the
ardevPizzal) method

This tode is skill ?ﬂramchriud by
the f.']r'[-‘l." of the pizzd, Jlu'i*l: ke our
eriginal orderPizzal) method was

> What's the advantage of this?
It looks like we are just pushing the
problem off to another abject.

A: One thing to remember is that the
SimplePizzaFactory may have many clients.
We've only seen the orderPizzal) method;
howeyer, there may be a PizzaShopMenu
class that uses the factory to gef pizzas

for their current description and price. We
might alzo have a HomeDelivery class that
handles pizzas in a different way than our

DI Cuestions

FizzaShop class but is also a client of the
factory.

So, by encapsulating the pizza creating
in one clasa, we now have only one
place to make modifications wihen the
implementation changes.

Daon't forget, we are also just about fo
remove the concrete instantiations from our
client code!

> I've seen a similar design where
a factory like this is defined as a static
method. What is the difference?

A: Defining a simple factory 2z a

static method is & common technigue and

is often called a static factory, Why uss a
static method? Because you don't need

to instantiate an object o make use of the
create method. But remember it also has
the disadvanage that you can't subclass and
change the behavior of the create method.

118

you are here

- (X BRAalN

'I‘-E-FE!'EM £

\

PizzaClore gets £he

faet
it in the ﬂans{:ruf_tg—_ iliaa

Aind the ovderPizzal) method uses the
factory to treate its pizzas by simply
passing, on the type of the ovder

the new
‘had on the
antrete

YT POWEWR

We know that object composition allows us to change behavior dynamically at runtime (amang
other things) because we can swap in and out implementations. How might we be able to use
that in the PizzaStore? \What factory implementations might we be able to swap in and out?

s1@|) sauojoey ezad apfis ejwojjies pue 'obfenyn Yok Map) Burjuiys a) @ 1ng 'nok INnoge mouy L Uop ap

(oo ‘Uane Map ek 1o

116 Chapler 4

‘extend the sbetract Pizes elass™ and S
.I:e tontrete, As long a5 that's the Lase,

it Lan be treated by the factory and

handed back to +he tlient.

Think of Simple Factory as a warm up. Next, we'll explore two heavy
that are both factories, But don’t worry, there's more pizea 1o come!

#Just ancther reminder: in desian patterns, the phrase “implement an intevfa
“write a elass the implements 3 Java interface, b']r using the “implements” keyw
the qeneval use of the phrase, 3 tontrete tlass implementing 3 method from a
elass OR interface) is still consideved 4o be “implementing the interface” of -

"y pattern

ttiern
»norahle

wed Pizzad
atk elass
l,.,:'[?;'.J.
shions that
wridden

b 117

N

One Franthise wants 3 Fattory
Lhat makes NY style pizzas
thin evust, tasty saute and
just a little eheese.

You wart all the franthise pizza stores
Lo leverane your Pizzaltore tode, so the
pizzds are ?ﬁ':?md in £he same way

7 Arother Franthise
wawts 3 -Fiﬁ‘l'.ﬁ"j that
wakes Chicago style
pizzas; thewr customers
like pizzas with thitk
pvust, vith saute, and
bons of theese.

and create three different
oPizzaFactory and

n just compose the PlezaSiore
Aranchise 15 good w go, That's

the factory pattern

H;nﬂ:_ we ereate a Fﬂlﬂtﬂ'?

i : : pE LS
N¥PizzaFactory nyFactory = new MYPizzaFactoryi(): for making f""]"f ;b;lie #

PizzaStore nyStore = new PlzzaStore (nyFactory)y —

nyStore.order ["Weggle®); Then we treate a PizzaStore and pass it

a referente o the NY Faetory.

cind when we make pizzas, we

get Ny—styled pizzas.

ChicagoPizzaFactory chicagcoFaciory = new ChicagoPizzaFactory(li:
PizzaStore chicagoStore = new PizzaStore(chicagoFactary):
chicagoStore.order (™Veggis™);

[

itago przza stores we ereate
8¢ pizzas and ereate a store
ha 'Cili-:iﬁo Fac{m—y When
et the Chicage Flavored

T've been making pizza for
years so I thought I'd add my
own "improvernents” to the
PizzaStore procedures...

o - I
Wt

MEZQ Creanon oE@einer, Yel sl allosys Hngs (0 renatn
flexihle,

In our early code, before the SimplePizzalactory, we had

the pizza-making code ded o the PizeaSvore, bue it wasn't
fexilde. 5o, how can we have our pizea and eat it too?

oad
£ what you wark in 3 O
g:an:h]ﬂ- ‘31.’-:» do NOT want to know

'\ﬂha*. e ?H-b on his ?lr_z.:'lis..

you are here » 119

SLre,

T Now ereatePizza is batk to being 3
tall o a method im the PizzaStore

vather than on ‘Faﬂ-b?f‘f cbj_ti.'.{'.

Bl Ehis looks j-uth. the same..

“'\’

Now 'ﬁ':‘\lt moved owr ‘Fﬂ-l'.

t
abjeet to Lhis method. T

L

Dur "Lt methad” i
abstraet in ;iu.agfm e_‘ e

Now we've got a store waiting for subclasses; we're going o have a
subclass for each regional ope (NYPizzaStore, ChicagoPizzaStore,
CaliforniaPzzastore) and each subclass is going to make the decision al
what makes up a pizza. Let's take a look at how this is going w work.

120 Chapter 4

7

1§ a Franthise wants Ny style
pizzas for its customers, it

uses the NY subelass, whith has
its own ﬁ-\"f;ihpmi” methad,

eveating NY style pizzas

\

it

-
“ﬂﬂi‘il!-i.ui
spperoni®) |
pperoniPizzailk
lam"l |
anPizzaily
agria®) |
galepizza(l:

the factory pattern

s orderPizzal)

iake — New York
wing to push all

ar ereating the
zzastore define
concrete subclasses
izzEaSoe

Eath subtlass everrides the ereatePizzal)
.4 o bila all eulkélacces l-u‘kf usE
ined
3
really

.+. an
atePizzal)

122

Chapter 4

cred
piz

S0,
orce
ErH
choc

hod: 1t 1s
helasses.

t
1
vhually

tha
izzal) has

ACTIO [0
hotee of

ceve of
which

wl by

gets made,

the factory pattern

T The NYPizzaStore extends
PizzaStore, w0 it inhevits Lhe

pontrete FIEzd 1T L J i (s 4 others).
public class WNYPizzaStors extends PizzaStors |
Pizza createPizza(String item) | e We've 5.,4; +a mq:l.:m:n-i;
if (item.eguals{“cheese”)) { eveatePizzal), sinte it is
return newW NYStyleChessePizza(): shstract in PizzaStore.

] elae if (item.egquals (Mveggie™i) |
return new NYStyleVeggieFizzal():

} else if {(item.equals(“clam™)) | '
i e H
return new NYStyleClamPizzal): ere s where we treate ow

] else if (item.ecuals|“peppercni®}) | :‘Fm'_-tt‘! tlasses. For eath {W‘E
return new NYStylePepperoniPizza(l: Fizza we ereate the NY style
| else return null;

Noke that the orderPizzal) method in the
supertlass has o clue whith Pizza we are ereating it
just knows it ean prepare, bake, tut, and bo it!

Chnee we'se ot our PizzaStore subelasses buile, o will be time
to see about ordering up a pieza or twe, But before we do thar,
why don't vou ke a crack at bailding the Chicago Stvle and
California Sevle plzza stores on the next page.

you are here » 123

the WY PizzaStore, just two more 0 zo and we'll be ready o franchise!
i California PizzasStore implementatons here:

124 Chapter 4

y pattern

M

il SUIERCLebss, B TS [ll-[-‘.}l']”f'ﬁ {0 L A A R ‘_\lll}n'l"l;!_h\ [RLE] h _E'a:. mfthud- fﬂa“i h-ﬂ
the object creation code in the subclass, vy A o)
parameterize 2
sevEr
-5:1{!.'1:. amﬁl
W ot a ?rﬂd“‘t{"

wariathons

ahstract Product factoryMethod(String type)

A fattor . T‘ ﬁ\

absfraed ! Tﬂn i A Fatkory method returns A factory method Proaal)

are found !: . subelasses 3 Product that tjr?lf-&”‘;' pode in the wfth.hss, like evder |£

uanedi: £r :It-gh to handle used wikhin methods defimed Frowm knowmg what kind ok tontrele
e in the superclass. Pradutt is actualty treated.

isolakes the tlient: (the

you are here » 125

= in hand, both Ethan and Joel call the orderPizzal] method and pass
2t they want (cheese, vegoie, and so on).

eas, the creace Pizeal) method 15 called, which iz defined in the

Y PizzaStwore and ChicagoPizzaswore. As we defined them, the
stantages a WY style pizza, and the ChicagoPizzahtore instantiates
#za. In either case, the Pizza s returned o the orderPizzal mechod.

miethod has no idea what kind of pieza was created, but ic knows it is
pares, bakes, cuts, and boxes it for Ethan and Joel,

y pattern

ie pizzas are

ithan’s order: first we ne«

PizzaStore = new WY¥PizzasS

' Crea

NYP
T T T T TTT e an vrue: v
“WPizzaStO

/ 3

|[:I mﬂ‘k_ht;ld. 5 Hn{d on E!

we instance (the method 3

MzeaStare yung) r;

e createPizza() :

3

eal), the Fattory
d in {-M S‘Fbl:lasi. I'n

N"f'll Cheese Fizza “-1_____?

Pizza

ve the unprepared pizza in hand and the
nethod finishes preparing it:

(13
f Al of these methads ave defined
m th eibie pizzd returned
S N rathory method
from the rattery
ﬂ.rtittPl:-zﬂ{:', defined n the
N‘{IP]IZHS{AJTC

you are here » 127

128

23 has 3 name, 3 type of dough, 3
<aute, and a set of toppings

String name; type of
String dough; /
String sauce;

ArrayList toppings = new ArrayListi();

void prepare(} | The abstract tlass provides
System.out.println{“Preparing ™ + name); some basie defaults for baking,
System.out.println("Tossing dough...")} tutting and bovims,

gystem.ocut.println({*Adding sauce..."}:
System.out.println{*Adding toppings: ™)
for (int i = 8; i < toppings.size(): i++) |

System.out.printlni™ “ + toppings.geti(i))s
: Prepaation follovs 3
] rwwthﬂI Hl?sina

?y-l;a.-,uiar sequente,
vold bakel) |

System.out.println{“Bake for 25 minutes at 3507);

vold cutd) |
System.out.println(*Cutting the pizza into diagonal slices™);

]

void box{) |
System.out.println{“Place pizza in official FizzaStore box"):

]

pubklic String getamed({) |
refurn name;

]

REMEMBER: we don't provide import and package statements in the
tode listings. Get the complete sourte tode From the witkedlysmart
web site. You'll find the URL on page %xxiii in the Intro

Chapter 4

the factory pattern

oncrete subclasses... how about defining
'yle cheese pizzas?

The Ny Pizza has s own

eCheesePizza extends Pizza | mavinara shyle sauce and thin erust,
heesaPizza (} |
Style Sauce and Cheese Plzza™:
in Crust Dough®;
B ..-rinara Sauce”;

toppings.add ("Grated Reggiano Cheese”):

g S

Ard one topping, refidno thepse!

The Chicage Pizza uses plum
Lomakees a3 a saute along
public class ChicagoStyleCheesePizza extends Pizza | with extra thitk trust.
public ChicagoStyleCheesePizzal) |
name = "Chicago Style Deep Dish Cheese Pizza™:
dough = "Extra Thick Crust Dough™;
sauce = “Plum Tomato Sauce™;

toppings.add ("Shredded Mozzarella Cheese¥); g The {:h;f_aﬁg ﬂ:},r]: decs

: dish pizza has lots of

mozzire|| !
vald cut() | rella theesel

System.out.println{™Cutting the pizza into sguare slices"):

| "
The Chitago skyle pizza also overvides the eut()
mebhod 50 that the pieces are tut into squares.

you are here » 129

S-{'UTE
order

mskanbiating the vight piz=3

Cheese

350

square slices

PizzaStore box

Style Deep Dish Cheese Pizza

y pattern

it

ks ks
tore,

Thesze are the tontrete
produtts — all the piz2as that

are produted by our stores. o

-

P 131

the factory pattern

good wav
anew

pizza,

you are here + 133

Iﬂlufl’ [ERLELE LN B -"Ill? AFLLIL L BRI L
operate on produces produced by
the tactory methodd and creae pn

As in the official definition, vou'll
subclasses decide which class won
allows subclasses themselas w de
without knowledge of the actual |
the choice of the subclass that 151

ran veher 40 the wherkates
nok the tontrete tlass.

d —Tll[

134 Chapler 4

-apsulate the

i can see that the
vt also known as the

'
L e L

|

e for
duets |4
dledag of

"Wk we
' %
ey 4
A
Lhe
ks,
od
-yMcﬁhad{}
whelasses

The ContreteCreater

mlf"lcmﬂlﬁ- the

FatkoryMethod(), which

the method that actuall

produtes flmdut'l:S-

Dimb Guestions

Q,: What's the advantage of the Factory Method
Pattern when you only have one ConcreteCraator?

A: The Factory Method Pattermn is useful if
you've only got one concrate creator becausa you are
decoupling the implementation of the product from

its use. If you add additional products or change a
product's implementation, it will nol affect your Creator
(because the Creator is nof tightly coupled o any
ConcreteProduct).

= Would it be correct to say that our NY and
Chicago stores are implemented using Simple
Factory? They look just like it.

A: They're similar, but used in different ways, Even
thaugh the impiementation of each concrete store looks
a lot like the SimplePizzaFactory, remember that the
concrets stores are extending a class which has defined
crealePizzal) as an abstract mathod. |Lis up to each
store to defing the behavior of the createPizzal) method.,
In Simple Faciory, the faciory is another object that is
composed with the PizzaStore.

Q: Are the factory method and the Creator
always abstract?

AI Mo, you can define a default factory method

to produce some concrete product. Then you always
have a means of creating products even if there are no
subclasses of the Creatar.

= Each store can make four different kinds
of pizzas based on the type passed in. Do all
concrete creators make multiple products, or do they
sometimes just make one?

the factory pattern

AI We implemented what is known as the
parameterized factory method. It can make more than
ane abject based on a parameler passed in, as you
noticed. Often, howewvar, a factory just produces one
object and is not parameterized. Both are valid forms
of the pattern,

Q: Your parameterized types don't seem “type-
safe." I'm just passing in a Stringl What if | asked for
a “CalmPlzza™?

AI You are certainly correct and that would causs,
what we call in the business, a “runtime error.” There
are several other more sophisticated techniques that
can be used 1o make parameters more “type safe”, or,
in other words, 1o ensure erros in paramelers can be
caught at compile time. For instance, you can create
abjacts that represent the parameler lypes, use stalic
constants, or, in Java 5, you can use enums,

Q: I'm still a bit confused about the difference
between Simple Factory and Factory Method, They
look very similar, except that in Factory Method, the
class that returns the pizza is a subclass. Can you
explain?

= You're right that the subclasses do look a (o
like Simple Factory, howewver think of Simple Factory
as a ane shot deal, while with Factory Method you are
creating a framewark that let's the subclasses decida
which implementation will be used. For example, the
arderPizzal) mathod in the Factory Method provides a
general framewark for creating pizzas that relies on a
factory method to actually create the concrete classes
that go into making a pizza. By subclassing the
PizzaStore class, you decide what concrete products
go into making the pizza that crderPizzal) returns,
Compare thal with SimpleFactory, which gives you a
way to encapsulate object creation, but doesn't give
yau the flexibility of the Factary Method because there
is no way to vary the products you're creating.

you are here »

135

master a1 student

\\2 Master and Student..
: S Master: Grasshopper, tell me how your training is going?

Student: \Master, | have taken my study of “encapsulate what
varies” further.

Master: Goon...

Student: | have learned that one can encapsulate the code that
creates obyjects. When you have code fhat instantiales cancrefe
classes, this js an area of frequent change. |'ve leamed a
technigue called “factories” that allows you to encapsulate this
behavior of instantiation.

Master: And these “factonies,” of what benefit are they?

Student: Thare are many, By placing all my creation code in one
object or method, | avoid duplication in my code and provide one
place to parform maintenance. That also means clients depend
only upon interfaces rather than the concrate classes required to
instantiate objects. As | have leamed in my studies, this allows me
to program to an interface, not an implementation, and that makes
my code more Mexible and extensible in the future,

Master: Yas Grasshopper, your OO instincts are growing. Do
you have any guestions for your master today?

Student: Master, | know that by encapsuwiating object creation
I am coding to abstractions and decoupling my client code from
actual implemeantations. But my factory code must still use
concrete classes to instantiate real objects. Am | nof pulling the
wool over my own eyes?

Master: Grasshopper, object creafion is a reality of life; we must
create objects or we will never create a single Java program. But,
with knowladge of this reality, we can design our code so thal we
have corralled this creation code like the sheep whose woo! you
would pull over your eyes. Once corralled, we can profect and
care for the creahion code. If we lef our creation code run wild,
then we will never collect its “wool.”

Student: Master, | see the truth in this.

Master: As | knew you would., Now, please go and meditate on
object dependeancies,

136 Chapler 4

the factory pattern

e's aversion of the PizzaStore that
omorete pizza objects this class s
s PizzaSwore, how many objects would i

type] |

if (type.equals{“chasse™}) |
pizza = new NYStyleCheesePizzall:
| else if (type.eguals (“veggie®}) [
pizza = new NYStyleVeggiePizzal):
| elsa 1f (type.equals(Meclam™)) |
pizza = new NYStyleClamPizzal);
| el=ze if (type.equals (“pepperoni®)) |
pizza = new NYStylePepperoniBizzal)i
i
1 €lse if (styleleguals({“Chicage™}) |
1f (type.eguals("cheese”)) |
plizza = naw ChicagostyleCheesePizzal():
| else if (type.equals(“veggie”)) |

pizrza = new ChicagostyleVeggiePizzal); Effﬂm

| else Lf (type.equals(“clam™)) |
plzza = new ChicagoStyleClamPizzal):
| 2lse if (type.squals (Mpepperoni®™)) |
pizza = new ChicagoStylePepperonifizzal):
i
} alse {

System.ocut.println{"Error: invalid type of pizza®}:

return null;
]
plzza.prepare():
pizza.bakel);
pizza.cut ()
pizza.box({);
return. pizza;

You tan write

?ﬂﬂ'mwwhlhﬂff nrmp Y

Handles all the NY

e g

Handles all the
Chicago style

g with alifornia too

you are here »

137

those pizza objects, betavse
it's ereating them directly.
these) Betause any thanges to the tontrete
implementations of pizzas affeets the
PizzaStore, we say that the PizzaStore
"depends on” the pizza implementations.

Every new kind of pizza
we add ereates another _)
d-:‘i'thd{‘nl:f for PizzaShare.

138 Chapter 4

f

e P e i P P i e

A frse, this principle sounds a o like “Program w an
interface, notan implementadion,” rghe? Leis similar;

however, the Dependency Iinversion Principle makes an even

srromger statement about absracton. [t sugoests that our
high-level components should not depend on our low-level

components, rather, they should foth depend on absoractions,

But what the heck does that mean?

Well, lets start by looking again at the pizea store diagram
on the previous page. PizzaStore is our “high-level
component”™ and the pizza implementations are cor “low-
level componens.”™ amd olearly the PizzaStore is dependent
on the concrete pizea classes,

Now, this principle tells us we should instead write our code
g0 that we are depending on alstmctions, not concrets
classes, That goes for both our high level modules and our
low-level modules,

But how do we do this? Lecs think about how we'd
apply this prnciple w our Very Dependent PlzzaStore
implementaton...

5

the factory pattern

v prvase Yo 62
st the ets
qur raisg will
, o sek the tost
ook, and Yo' 98

pueleper™

A “high—level” tomporent is @ tlass
with behavior defined in tevms of
ather, “low level” c.-nm?nncn-l::--

For erample, Pizzaltove 1.3
high—level tomponent betause

iks behavior is defined m terms
of pizzas — it ereates all the
difbevent pizza cbjetts, prepares,
bakes, tuks, and boxes them, while
the pizzas it uses are ow—level
mm?an.ew{:s-

139

you are here »

sadtore is that it depends
concrete vpes in its

theless crealing concrene
ol this abstraction,

izzal) method? Well, as

amt looks like this:

sChore now depends orly
223, the abstract eass

Pizzg
elass. e:: :; che pizza tlasses depend on
= ~\ The tontrese Tt betause they

the Pizza -Eib-'rb‘atji.inh s
implem 4 the Pizza im
u:::: ::wﬁ woherface” n the n‘»,f.r-:ral

serse) in the Pizzd spstract elass

ﬂEau Eumgﬂhn'l

Adter applving the Factory Method, vou'll notice that our high-level component,
the PrzzaStore, and our low-level components, the pizzas, both depend on Pizeza,
the abstraction. Factory Method is not the only wechnique for adhering to the
Dependency Inversion Principle, but it is one of the more powerful ones.

140 Chapler 4

the factory pattern

Okay, I get the dependency
part, but why is it called
dependency inversion?

Where’s the “inversion” in Dependency
Inversion Principle?

The “mversion™ in the name Dependency Inversion
Principle is there because it inverts the way vou
typically might think about your OO design. Look
2 at the diagram on the previous page, notice that the
low-level components now depend on a higher level
abstraction. Likewise, the high-level component

is also ted o the same abstraction. 5o, the wop-to-
bottom dependency chart we drew a couple of pages
1 hack has inverted itself, with both high-level and low-
! level modules now depending on the abstraction,

L Let's also walk through the thinking behind the typical
' design process aned see how introducing the principle
can invert the way we think about the design...

yvou are here 144

142

Chapter 4

Well, a CheesePizza and a
VeggiePizza and a ClamPizza

are all just Pizzas, so they

should shore a Pizza interface,

Since I now have a Pizza
abstraction, I can desigh my

Pizza Store and not worry about
the concrete pizza classes.

;50 vou need w implement a PlezaStore.
"s the first thought that pops into your head?

L vou start af top and follow things down o

merete classes, But, as you've seen, vou don’t
want your store to know about the concrewe plzza
wypes, because then iUl be dependent on all those
conerete classes!

Nowy, lecs “invert” your thinking... instead of
starting at the top, stareat the Pizzas and chink
about what vou can absiract.

Right! You are thinking about the abstraction
FPizza, So now, go back and think about the design
of the Plzza Store asain.

Close, But to do tha you'll have w rely on a
{actory w get those concrete classes our of

vour Pizza Store. Onee you've done that, vour
different conerere pizza npes depend only on an
abstraction and so does your store, We've taken
a design where the swore depended on coneree
classes and mvereed those dependencies (along
with vour thinking).

the factory pattern

£ you use new youlll be helding
3 veferente 1o 3 contrete class

|
' Use a Fackory to 2et aroumd that

|£ ou derive from a contrete élass,
o've depending on a cantrete tlass

Bz\riuc [rom an abstraction, like an
inkerfate or an abstract elass.

L —
ide an imp|,
® Nomethod should overnide an implemented method of &._-/ then Your base #la:s I::?E:j”’;ihﬂdr

any ol its base classes, ab’f"ﬂﬁhn to stard with Th
& methods imp) oz
Plemented i the bas
m e tla
ednt to be shaved by all ot sub.:l;: are

But wait, aren't these
guidelines impossible to follow?
If I follow these, T'll never be

able to write a single program!

You'te exactly right! Like many of our principles, chis is a guideline
yorg should surve for, rather than a rule vou should follow all the dme, N
Clearly, every single Java program ever woiten violawes these guidelines! /

But, if you internalize these guidelines and have them in the back of
vour mind when vou design, you'll know when you are violating the o
principle and you'll have a good reason for doing so. For instance, 1 vou £ |
have a class that isn't likely to change, and you know it, then ics not the [
end ol the world it vou instandace a concrere class in vour code. Think \’
about i we instantare Sring objects all the tme withour thinking rwice,

Does thar vielawe the principle? Yes, Is thar okay? Yes, Why? Because

String is very unlikely w change,

IE, on the other hand, a class you write is likely to change, vou have some

good wechniques like Factory Method o encapsulate that change,

<

you are here » 143

Each family consists of a ty)
3 ype of sauee, 3 type of ¢

ood topping (along with :
haven't shown, like veggies am

public interface PizzalngredientFactory |

dekine 3
N g anmyedent e e

public
public
public
public
public
public

Dough createloughl}:

Sauce createSauce();
Cheese createCheess(};
Veggies[] createVeggies();

Pepperonl createPeppercnl():

Clams creataClam();

)

Lots of new elasses here
one pET i.-.ﬁredu!nh

Here’s what we’re going to do:

redients; the
ent in the

red to create
@ are going to

at is going to

cveake method ™

If wed had some Lomman “n\ilf.hlnr.f'f"
{0 lhﬂtmﬂh{i in gath inshante a:
-Fad;or'-]l, wie tould have made his an
abstrack elass instead.

ach region, To do this, vou'll create a subclass of
ory that implements cach ereate method

ingredient classes o be used with the factory, like
edPeppers, and ThickCrusitDough. These classes can he

ns where appropriate,

o hook all this up by working our new ingredient

A4 PizzaStore code,

the factory pattern

The Ny ingredient Fatkory implements
the mkevLace For all 'mgﬂdi:nl:
Fattories

iIngredientFactory |

return new rhinCrustboughl)

y ddﬂ\t ;|l|. tht
: ‘\-' For :iﬂi{ ::“H, wé preate

'
public Sauce createSauce() | — Iﬁ:tﬁ: York yErsian:
return new MarinaraSauce()s g{/
]
public Cheese createCheese(} |
returh new RegglanoCheese();
]
public Veggies[] createVeggies() |
Veggies veggies[] = [new Garlie(), new Onion(), new Mushroom(}, hew RedPeppar{)]:
| return veggies; For veagjes, we veturn an array of
Vengjes. Heve we've havdeoded the
public Pepperoni createPepperoni(}l | vegaies. We eould make this "'J“*':
return new SlicedPepperoni(): sophisticated, buk that doesn't veally
] add anykhing to learning the Fattory
public Clams createClam{) | pattern, so we'll keep it simple.
return new FreshClams (}:
]
j The best shiced pepperoni. This
is chared between New York
New York is on the toast; it and Chitago. Make svre you
5;1;; Lresh elams, Chitago has use it on the next page when
b settle for Frozen you get to implement the
Chicage Factory yourselk

you are here v 147

Write the ChicagoPizzalngredientFactory. You can
reference the classes below in vour implementation:

the factory pattern

SIS oW W
ients. We'll

a set of]nﬂ_‘r:dilhb

it Fg?aration-
ST T T S T T AT - - O Mad‘ ﬁhﬂ f"l'Efi‘hE M'Ehﬂd ahi";l'xf.
Clams clam; This is where we are going Lo tollect the
[/_\ ingredients needed For the pizza, whith of

abstract vaid preparei); tourse will tome From the ihﬂ*!ditﬁ{' 'FBE{W\JL
vold bake(} |
System.out.printin{™Bake for 25 minutes -at 350");

}

void cut() {
System.cut.printin(®Cutting the pizza into diagenal slices");
}

vold box() |
System.out.println(®Flace pizza in cfficial PizzaStore box”);
|

vold setMame (String name) |
this.name = name; F.;

| &-EH Dur other methods remam the same, with
String getName(} | m/ sptere s A .

return name:
!

public String toStringi) |
/f code to print pizza here
H

you are here » 149

ng

ey

Ly
LR IMEeedient Tcuory 15 Somg Lo Banale the regonal ierenees 10e us.
Here's the Cheese Plzza

i - e reed
public class CheesePizza extends Pizza | To make 8 piz=a MJ:M
FizzalngredientFactory ingredientFactory: 3 Factory to provide
maredients 59 eath Piz2d
public CheessPizza(PizzalngredientFactery ingredientFactory) { elass 5&_; a3 fattory Ti‘“d’,

this.ingredientFactory = ingredientFactory; ko s mnsb'%i'-'?"'r an.d-. lt.ll;
! cbored in an insbance vaviavie
vald prepare(} |

System.out.println{“Preparing " + name);:

dough = ingredientFactory.createboughi);

sauce = ingredientFactory.createSauce|): ' Here's where the magie ha??:hi.r

cheese = ingredientFactory.createCheese()

The prepare() method steps throush treatmg
2 cheese Fizza, and each time it needs an
ingredient, it asks the fattory to produce it

150 Chapter 4

the factory pattern

Code Up Close

The Pizza code uses the factory it has heen composed with o produce the ingredients used in the
pizza, The ingredients produced depend on which Gictory we're using. The Pizza class doesn’t care:
il knows how o make pizeas. Now, iUs decoupled Trom the differences in regional ingredients and
can be easily reused when there are factories for the Rockies, the Pacific Northwest, and bevond,

(/'7 sauce = ingredientFactory.createSauce();

We're setting the T\ f\\

e sault
Pizzy insfgne, This is owr 'mn_lrtd.i:hf. *Faf-{'.w';'- The ﬂ_rtatfgald.tl:} -rthod "E't:;:‘.f:ﬂf
variable 4o E‘ The Pizza doesn £ Lare whith Fhat s wsed i ks region: i i R
the sFen'.f.,-,r;: o factory is used, as long as it is maredient fatkaocy, then we get. mavm
wsed in Lhis Fi’—l-: an mg,rtdlch{. Far.{;nry-

Let’s check out the ClamPizza as well:

public class ClamPizza extends Pizza |
PirzalngredientFactory ingredientFactory;

public ClamPizza (PizzaIngredientFactory ingredientFactory) |
this.ingredientFactory = ingredientFactory;

} = ClamPizza also stashes an
msrq_dul_n‘l; 'Fil'-tm"f
void prepars() |
System.out.println(™Preparing “ + name};
dough = ingredientFactory.createDough(};
gauce = ingredientFactory.createSauce() ;
cheese = ingredientFactory.createChesse(); =\ To make a tlam pizza, the
clam = ingredientFactory.createclam()) prepare method tolletts the right

'mgr:di-:nts Lo its lozal Fac-l;nw

|§ ks a New York Far.{n'r]'.l
the tlams will be Frtlh; l-F its
Chizage, they'll be frozen

you are here + 151

ip to our

rrect
eir local
; with 3 Ny
The MY S r',: E:? T wil
: die et
gy Sy
'.-_"‘l_ wsEl
/ e N\I'I t*.‘fl" przzds
NEW MIFlZZIAINGLSeRlSNTractoly)s;
i ' 3 w o=t
if (item.equals("chess=")) | We wow pass eath pizzd the
pizza = new CheesePizzalingredientFactory): ‘Fa‘:h""}' that :hw.h.’- be vacd $s
pizza.setName({“New York Style Cheese Pizza®): produce its ingredients
} else if (item.equals (“veggie®™)) |
Look batk ane page and make sure
pizza = new VeggiePizza (ingredientFactary): y undevskand hew the pizza and
= " ., ol i g - o . hoka
pizza.setName ("New York Style Veggie Pizza”™); e Fi&n’r‘f werk wﬂ,ﬁi
} else if (item.equals(™clam™)) |
pilzza = pnew ClamPizza({lngredlientFactory): ‘ES
plzza.setName("Hew York Style Clam Pizza”™):
&__..—n .Fﬂl' each 'E.'ﬂ:': n-F P-lm; we
} 2lse if (item.equals (“pepperoni™)) f"’ﬁﬂfiab: a new Przza and e
pizza = new PepperaoniPizraiingredientFactory): .'+r the Fﬂﬂtoql it needs £ 5:{:.
pizza.setlams ("New York Style Pepperoni Pizza™): its mdredients.

}

return pizza;

@g RALN
PQOQWEW
Compare this version of the createPizza() method

to the one in the Factory Method implementation
earlier in the chapter.

152 Chapler 4

decoupled from the actu:
products, we can substit
different factories to get
different behaviors (like
getting marinara instead
plum tomatoes).

¥ pattern

i, wWe
‘ete

£ same
it

‘'0cess hasn’t changed at
Ir again:

f PizzaStore:

Store = new NYPizzaStorel)

a store, we can take an ¢

‘izza ("cheaese™) ; /

\— the orderPizzal) mithod is talled om
bhe nyPizzaStore instante

iethod first calls the cre-

teFizza (“chesse™);

the factory pattern

, because we
actory Behind s
the Scenes

izza() method is called, that’s
nt factory gets involved:

.] nd
& Lattory is thesen 38
o .Laﬂ{.ur: and then
eath pizzd

The ingredient =
mskantiated in the P

ko the c.ms'bruc'l:uf of

?ass:d

CheesePizza (nylngredientFactory);

___ Creates 3 instance of

Pizza that s Lomposed

with the Ney Yok —m—>
mgrcdleh{; 'Fi&{::nr:,r

repare the pizza. Once the
is called, the factory is asked
ents:

L
v
m
i
T
A

you are here b 156

Trim 0t

sry.creatabough () ; M

o = dringdvd
ry.creataelauce (h:
rory.creataCheeseal() ;s \‘3

o
ang

and the
s the pizza.

[[4

bovies

Faset

tts. This is the produt
iawﬁiy Eath ton

. fattory tan prod

e enbive set of 'E*E

N

¥ pattern

ated class ot
it all in terms of

interview w1 factory patterns

ls. It makes sense, nght? The job of an
interface for ereanng a set ol products.

s responsible for creating a conereee
ubclass ol the Abstract Factory 1o
1 So, factory methods are a natral way w

‘ wls in vour abstract factories,

ict Factory, on each other

HeadFirst: Wow, w! This is a Arst for us,

Factory Method: oo v o compedl i with Abstrawct Factory,

you know. Just because we're both factory patterns doesn’t mean we shouldn’t get our own
Interviews.

HeadFirst: Don't he mifled, we wanted w interview vou ogether so we could help clear up
any confusion about who's who [or the readers. You do have similarities, and 've heard thar

people sometimes gel vou confused,

Abstract Factory: liis orue, there hive been ames ve been mistaken for Factory Method,
and 1 know vou've had gmilar issues. Factory Method, We're both really good ac decoupling
applications from specific implementatons: we just do it in different ways. 5o 1 ean see why
people might sometimes get us confused.

Factnry Method: Well, it still doks me off, Afier all, T use classes to create and YR s
(?I‘i!il'l:_'!'i; 1|Ii.l| I.‘i. [I_H,iI,I.I‘J I:Ii”.l'l"'l]l!

158 Chapler 4

HeadFirst: Can vou explain more about that, Factory
Method?

Factury Method: Sure. Both Absiract 1";.\11-::-1'1..' an
1 create objects — that’s our jobs, But I do it through
inheritance...

Abstract Factory: .and | du v through ohject
COMpE1 o,

Factory Method: Righi, So that means, o crea
ohjects using Factory Method, vou need o extend a class
andd override a factory method,

HeadFirst: And that factory method does whad?

Factory Method: 1t creates objects, of course! I mean,
the whole point of the Facrory Method Pawern is tha
vounte using a subclass to dooyvour

that way, clients only need w know

are using, the subclass worries abo

So, in other words, 1 keep chienis d

CONCIELE LYpes.

Abstract Factory: And [do wo

different way.

HeadFirst: Go on, Abstract Fac

something about object composit

Abstract Factory: | provide ar

ereating a family of products. Sub

detine how those products are pro

Factory, you instantiate one and pa

that is written againsi the abstract

Method, my clients are decoupled

concrete products they use,

HeadFirst: (h, [see. so anothe

aroup wgether a set of related products.

Abstract Factory: That's vight.

HeadFirst: What happens il vou need w extend tha
set ol related products, w say add another one? Doesn't
that require changing your interface?

Abstract Factory: That's true; my interface has o
change if’ new products arve added, which 1 know people
don't like o do,,..

Factory Method: <snicker=

Abstract Factory: What are vou snickering at,
Factory Method?

the factory pattern

Factory Method: Oh, come on, that's a big deal!
Changing vour interface means vou have o go in and
change the nterlace of every subclass! Thar sounds like a
Lot ol wonk.,

Abstract Factory: Yeah, but | need a lng interface
because | am used o create endre families of products,
You're only creating one produce, so you don’t really need
a hig interface, vou just need one methodd,

HeadFirst: Absuract Factory, [heard that vou often use
f':u'lnj".,' methodds {4 -II'.I'Il’]]l'h'It']'II VO concrela t-'.'u'h:n'ii,':a:,'

Abstract Factory: Yes, Ul adoi it, my conerewe
factories often implement a factory method o create
their products. In my case, they arve used purely to create
nroducts. .

Method: __.while in my casze 1 usually
Leode in the abstract creator thar makes use of
te types the subclasses create.

st: 1t sounds like vou bhoth are good at what
m sure people like having a choice; after all.
re souseful, they'll wane to use them in all
iferent situations, You both encapsulae

wion o keep applications loosely coupled
spendent on implementatons, which is really
ther you're using Factory Method or Absract
lay I allow vou each a parting word?

.Factory: Thanks. Remember me, Abstract
ul use me whenever vour have families of

Ll t‘li_'l\{.l L Creale Ll]‘ld "}"1 WL Lo Iﬂ;lkl" s
s oreate procducts thae belong wogether,

WMethod: And 'm Factory Method; use me o
~our client codde from the concrete classes you
need o dnstantace, or i vou don't know ahead of tme
all the concrete classes vou are going w necd, To use me,
just subclass me and mplement my facory mechocd!

159

you are here »

The Factory Method

The NyPizzaStore subel:
i.'ni'!;ilh‘h.-la'{.ti Nf 54:‘1"11 fiz

attory
sle 1o

region.
region

'ui\‘:.

5 Shove

pattern

an
ate
ith

Provides an dbstratt =2 -

m{'.ﬂ'FHE 'FW t'Ha‘tmﬁ ’ :::!;

Faniy of praducks

New Yerk Y

l NYPizzalnoredientFa

re

patterns
treation

leeovpled,

WEMELYAIEY W USRS Wil

implement the factory method to
create objects.

Absiract Factory relies on object
composition: object creation

is implemented in mathods
exposed in the factory interface.

All factary patterns promote
loose coupling by reducing the
dependency of your application
on concrete classes.

The intent of Factory Method
is 1o allow a class to defer
instantiation to its subclasses.

The intent of Abstract Factory

is lo create families of related
objects without having to depend
on their concrate classes.

The Dependency Inversion
Principle guides us to avoid
dependencies on concrete types
and to strive for abstractions.

Factories are a powerful
technique for coding to
abstractions, not concrete
classes

n along chapter. Grab a.slice of 1
weword; all of the solution words

Across
1, In Factory Method, each franchise is a

4, In Factory Mathod, who decides which class
lo instantiate ?

6. Rale of PizzaStare in Factory Method Pattern
7. All New York Stvle Pizzas use this kind of
cheese

8. In Abstract Factory, each ingredsent factory is

g

9. When you Use new, yol are programming 1o
an

11. ereatePizzal) is a

words)

12. Joel likas this Kind of pizza
13. In Factony Method, the PizzaStore and the
concrete Pizzas all depend on this abstraction
14, When a class instantiates an object from a
concrete class, it's on that abject
15, All factory patterns allow us fo

chject creation

{bwi

Down

2. We used in Simple Factory
and Abstract Factory and inheritance in Factory
Methaod

3. Abstract Factory creales a of
praducts

5. Mot a REAL faciory pattern, but handy
nonetheless

10. Ethan likes this kind of pizza

you are here »

v pattern

163

o and we'll be ready o tranchise!
ations here:

the New york
¥ love. they jusk treate dibberent Rind i preza

public class ChicagoPirzaStore extends PizzaStore |
protected Pizza createPizza(String item) |
if (item.equals {(“chease”}} |)
return new ChicagoStyleCheessFPizza(): . Fop the Chitase yinzd

] elsa if (item.edquals(®veggis™)) | shore, "'"-,'.'l“‘t have
return new ChicagoftvleVeggiePizza(l: & ke sure we ereate

| elee if (item.equals (“clam™)) | g/ Chitase ,‘bﬁg pizras-.
return new ChicagedtyleClamPizzall: l«/

| else if (item.equals|“pepperoni®)) {
return new ChicagoStylePepperoniPizzal);
] else return null:

public class CaliforniaPizzasStore extends PizzasStore |
protected Fizza createPizza(String item) |

1f [(item.equals{“chease™}} | ||'|.$ ‘3
return new CaliforniaStyleCheesePizza(); w and for the Calitorn

} elzse if (item.edquals (“veggie®)) | prezd shove, WE tred
return new CaliforniaStyleVeggiePizza(): £, California ;bf'l: pizzat

] else if (item.equals(™clam™)) |
return new CaliforniaStyleClamPizzali):s f

| elze if (item.equals (“pepperoni™)ji |
return new CaliforniaStylePepperoniPizzat);

| mlse returpn null;

164

Chapter 4

the factory pattern

GOOD way of
ww California

) {o

fteve's everyoning 1“::&._:'
dd s Caliyorrid 7Y toee £lass
:ﬂg ?‘I.'l—ll'a."'

i v 165

re'sa version of the PizzaStore
~of concrete pizza objeces this
zas 1o this PizzaStore, how many

I type)

if (type.egquals{“cheese”}) |
pizza = new NYStyleCheesePizzal):
| elze if (type.equals (“weggie¥)) | thﬂg;aﬂ-ﬂw Hf
izza = new HYStyleVeggiePizzal):
} elEE i itype.Equafs(“c?EE"]] { 9bﬂ¢?mzju
pizza = new NYStyleClamPizzal):
} else if (type.equals (“pepperoni®™)) |
pizza = new NYStylePepperoniPizzal):
¥
] else if (style.equals({“Chicago™)) |
if (type.equals(“chsese™)) |
pizza = new ChicagoStyleCheeszePizzal); Hmdhsin*hf
} else if (type.equals (“veggie™)) | Cﬁbﬂﬁ'&ﬂ'
pizza = new ChicagoStyleVegglePizzal);

} else if (type.equals("clam”™)) | e
pizza = new ChicagoStyleClamPizza():
| else if (type.equals (“pepperoni™)) |
pizza = new ChicagoStylePepperoniPizzal):
}
I oalse |
System.out.println(“Error: invalid type of pizza®™);:
return nuil;
]
plzza.prepare(l:
pizza.bake{);
pizza.cut{)s
pizza.box ()}
return pizza;
|
1
You ean write ! 1 Eormia too
Your answers heve: g - ||1 - wiikh Calirerm

166 Chapler 4

the factory pattern

the ChicagoPizzalngredientFactory: you can relerence the
rimplementarion:

i3 ChicagoPizralngredientFactory
:mts PizzalngredientFactory
Dough createDough() |

urn new ThickCrustDough();

Zauce createSaucel} |
rn new PlumTomatoSaucea():

public Cheese createChesse() |
return new MozzarellaCheeses();

public Veggies[] createVeggies() [
Veggiss veggies[] = { new BlackOlives(),
new Spinachi},
new Eggplant() }:

return vedglies;i

public Peppercni createPepperonii) |
return new SlicedPeppercni();

public Clams createClam() |
return new FrozenClams({);

167

alvlolr]
il
HEEEEEHE
(Rlelelelrlalnlol

L

EENEHHHEEHEHEHE

AnnmEnENGRGan:S
nEGOnnnERNAD a
amAnnoooGonn f
0B Le1» [c lielo lelul T

168 Chaptler 4

Our next stop is the Singleton Pattern, our ticket to creating one-
of-a-kind objects for which there is only one instance. ‘ou might be
happy to know that of all patterns, the Singleten is the simplest in terms of its class diagram),
in fact, the diagram halds just a single class! But don't get too comfortable; despite its
simplicity from a class design perspective, we are going o encounter quite a few bumps and
potholes in its implementation. So buckle up.

this Is a new chapler 169

one and only one

What is this? An
entire chapter about how to

instantiate just
OME OBRJECT!

That's ohe and ONLY
OME object.

Developer: What use is that?

Guru: There are many objects we only need one of: thread pools, caches, dialog boxes, objects that handle
preferences and registry seftings, objects used for logging, and objects that act as device drivers To devices
like printers and graphics cards. In fact, for many of these types of objects, if we were to instantiate

more than one we'd run inte all sorts of problems like incorrect program behavior, overuse of resources, or
inconsistent results.

Developer: Okay, so maybe there are classes that should only be instantiated once, but do I need a whole
chapter for this? Can't I just do this by convention or by global variables? You know, like in Java, I could do it
with a static variable.

Guru: Inmany ways, the Singleton Pattern is a convention for ensuring one and only one object is instantiated
for a given class. If you've got a better one, the world would like o hear about it; but remember, like all
patterns, the Singleton Pattern is a time-tested method for ensuring only one object gets created. The
Singleton Pattern also gives us a global point of access, just like a global variable, but without the downsides,

Developer: What downsides?

Guru: Well, here's one example: if you assign an object to a global variable, then you have to create that object
when your application begins®. Right? What if this object is resource intensive and your application never ends
up using it? As you will see, with the Singleton Pattern, we can create our ob jects only when they are needed.

Developer: This still doesn't seem like it should be so difficult.

Guru: If you've got a good handle on static class variables and methods as well as access modifiers, it's not.
But, in either case, it is interesting to see how a Singleton works, and, as simple as it sounds, Singleton code is
hard to get right. Just ask yourself: how do I prevent more than one object from being instantiated? It's not
so ohvious, is it?

“This Is actually Implementation dependent. Some JWM's will create these objects lazily,

170 Chapter 5

B EAS LLFLIE LT WWL BEERWL 04 LLCLOR, LALEE VEL ALLRVELY O

nstantate it one or more imes?

the singleton pattern

Mytoject () ;

of course.

eve Well, onlyv if ics a public class.

Anc if no?

Well, 1 ics not a public class, only elasses in the same
package can instantiace it But they can sill instantiae
it more than onee,

Hirim, interesting,

Dl o know vou eould deo this?

public MyClass |

private MyClassi{) [}

No, I'd never thought of i bue 1 guess it makes
sense Decause ie1s a legal definidon,

What dloes it mean?

I suppose i is o class that can't be instandated
because it has o privawe constructor,

Well, 15 there ANY object that could use
the private constructor?

Hmm, | think the code in MyClass is the only
code that could call i But that doesn™t make
much sense,

you are here v+ 1T1

creating a singleion

Why o ?

Because 'd have to have an instance of the
class ro call ie, but [can’t have an instance
hecause no other class can instantate e It's
a chicken and egg problem: 1 can use the
constructor from an object of type MyClass,
but I can never instantate that object because
no other ohject can use “new MyClass()™.

Olkay, [t was just a thoughe

What does this mean?

public MyiZlass |

public static MyClass getlnstancel()

}

My Class 15 a class with a stane method, We can
call the state method hke this:

MyClass.getInstance ();

Why did yvou use MyClass, instead of
some alyject name?!

Well, getInstance!) is a statie method; in other
words, it is a CLASS method, You need to use
the: class name o reference astatie mechaod.

Very interesting. What if we put things wgether,

Naze can I instanoate a My Class?

public MyClass |
private MyClass(] {]

public static MyClass getInstancel()
return new MyClass{}];

Wom, vou sure can,

Sa, now can you think of & second way w imstantiae
an olyject?

MyClass.getInstance ();

Can you finish the code so that only ONE instance
of MyClass is ever created?

172 Chapter 5

Yes, | think so...

You'll find the code on the next page.)

S

the singleton pattern

Kt

e <

ge ke ha’:; n:; If you're just

pskantt flipping through

e the book, don't

5 Sy)
blindly type in this
code, you'll see a
it has a few issues

shruttor s later in the chapter.

d ?'rwi{',ti

wleton tan

nce == null) | inetantiate Ehis elass!
nce = new Singleton k

The getlnstancel)
methed gives us 3 way

to instantiste the elass

hods here ind alse to veturn an
instante of it

OF tourse, Sinaleton is
3 normal elass; it has
other wselyl instange
variables and methods,

stance;

Up Clese

i uninluelnshanne o5 rall, Ehen we

ante holds ouwr ONE haven'h eveated the instance yet-
remember, it 5 3 and, if ik doesn 't exist, we
shatie variable inskantiate Emﬁh'l:un Hhrouih its

private tonstruttor and assign
it o mlqut'ns'l:dnﬂc Note £hat
if we wever meed the inskante, it
never gets ereated; this is lazy
instantiation.

if {(uniqueInstance == null) |
uniguelnstance = new MyClass({);

£
1% uniquelnstante wasn £ rull,

+hen it was ?-rfnonh?l ereated.
We just Fall throuah to the
B']r the time we hit this tode, we return statement.

have an instante and we return it

|
return uniguelnstance;

you are here » 173

interview with singleton

e

-

HeadFirst: Today we are please

vou begin by welling us a bit about

Singleton: Well, I'm totally unig

HeadFirst: One?

Singletun: “*.\.l e, I'm |‘.-:g:-cH'|. i

there is only one mstance of me,

HeadFirst: lso't thatsortol awe .
now all we can get s one object our ol i?

Singleton: Mot at all! There is power in (OONE. Let's sav vou have an object that contains
eegistry settings. You don't want multiple copies of that object and s values running around

that would lead o chaos, Hy I,:I.‘i;lllg.‘ ian Ul)il‘l'[like mie VO CAT Assure that VY uhiw,‘l it pLE T
application is making use of the same global resource,

HeadFirst: Tell us more. ..

Singleton: Oh, I'm good for all kinds of things. Being single sometimes has its advanuges you
know: I'm olien used o manage pools of resources, like connection or thread pools,

HeadFirst: Sill. only one of your kind? That sounds lonely,

Singleton: Because theres onby one of me, 1 do keep busy, bue it would be mee il more
developers knew me — many developers run into bugs because they have multple copies of
objects Hoating around they're not even aware of,

HeadFirst: 5o il we may ask, how do Vi know there 15 1‘1]1!1_. one of '_-.uuf' Clan't aAnvone with a
1w (5E}L‘I'il‘l:ll' creale a e '!r"l_ll_lni.:'

Singleton: Nope! I'm truly unique.

HeadFirst: Well, do developers swear an oath not wo instangate vou more than onee?

Singleton: Of course not. The truth be wold. .. well, this s getting kind of personal but. . |
have no public constrocor,

HeadFirst: NO PUBLIC CONSTRUCTOR! Oh, sorey, no public constructor?
Singleton: Thats right. My constructor is declared private,
HeadFirst: How does that work? How do vou EVER ger instantiaced?

Singleton: You see. 1o zet a hold of a Singlecon object, you don’t instantate one, you just ask
for an instance. S0 my class has a statie method called getlnstance. Call thae, and Tl show up
at onee, ready w work. In fact, T may already be helping other objects when you request me.

HeadFirst: Well, Mr. Singlewon, there seems o be a lot under yvour covers w make all this work,
Thanks for revealing voursell and we hope o speak with vou again soon!

174 Chapler 5

ory

hocolate factories have computer con
hoiler is to take in chocolate and milk
1 the next phase of making chocolate

e=0Holic, Ine.’s induswrial sirength €
notice theyve ried o be very careful
deaining 500 zallons of unboiled miy
full, or boiling an empey hoiler!

i

empty = true: when the boiler is emptyl
boiled = false:

public ChocolateBoiler() | J This tede 15 only startea

]

= be
T K s rie vt
Lf (isEmptyi)) | empty, and, onte | .
i ;rsni;zi I falze; 4he emPty and boiled flaee

hoiled = false;
F4 111 the boiler with a milk/chocolate mixture

]

public void drain() | /_\\ : ! [
if (lisEmpty() && isBoiled()) | To drain the boiler, it must be bull
fFf drain the boiled milk and chaocolate {ron “"?{T} and also boiled. Onee s

empty = true; drained we set empty back {o drue
J

publiec void boil({) {

if (!isEmpty() && !isBailed(}} { T . ’
!/ bring the contents to a builf&/‘ I\: k:ibtl?mmﬁu, the boiler
boiled = trus; . vl '?"i not already
} boiled. Once it's boiled we set
] ﬂll hﬁlrd nag 4;.0 {'ru.:.

public boolean isEmpty() |
return emptys

]

public boolean isBoilad{) |
return boiled;
]

you are here » 175

chocolate boiler singleton

S BRANN

Yrvawew

Choc-C-Haolic has done a decent job of ensuring bad things don't happen, don't ya think? Then
again, you probably suspect that if two ChocolateBoiler instances get loose, some very bad
things can happen.

How might things go wrang if more than one instance of ChocolateBoiler is created in an
application?

1 you help Choc-O-Holic imprave their ChocolateBoiler class
turning it into a singleton?

sz ChocolateBoiler |
2 boolean empty:
g2 boolean bolled;

public wvoid fill{) {

if {isEmpty(}) |
empty = [alse:
boiled = false;

A/ fH11 the beiler with a milk/chocolate mixture

176 Chapter 5

Mo big surprises there. But, let's break it down a bit more:

" What's really going on here? We're tuking a class and lewing it manage o
single instance of isell. We're also preventng any other class from creadng a
new instance on it own, To get an instance, vou've got to go through the class
isell

B We're also providing a global access point to the instance: whenever vou
need an mstance, just query the class and 0 will hand vou back the smgle
instance. As vou've seen, we can implement this so that the Singleion is created
in i Jaey manner, which is especiallv important for resource intensive objects,

Okay, let’s check out the class diagram:

% '5{3{.':" The uh'ﬂil.lelns‘bﬂhﬁl!

"I |:|5|i. I} 'rnf-ka'i ! 55 Vary b|= hﬂd;w
0 d

mEdn® 13
h;t.hm“ rient) st :adc vy
gan arpwhere Thats)
ETW *.lln's. ik 'l .‘a'ﬂ-abll“
S'mﬂ_’llfk'o“'ﬁ;:ﬁ. a 'Ilr:llﬂ'a N n#

easy a;, i‘;mtm A
“i i e Simajeten

n pattern

v 177

We don't know what happened! The
sw Singleton code was running fine.
ing we can think of is that we just ¢
ptimizations to the Chocolate Boiler
that makes use of multiple thi

_N/

caused
"ve set
sole

lis to
me

ire you check your answer on
/8 before turning the page!

Thread Value of
Two || uniqueInstance

er 179

180

if (uniguelnstance == null)

t making

By adding the ynehronized kcywmddkfn
{Jnstamcefl we forte every {hr:?
=% & ke turn befave it tan erter the
:I:EW. Thak is, no twe bhveads may

T ber the method at. the same time

ance() |

unigueInstance = new Singletont();

1

return unigquelInstance;

S/ other useful methods here

Crovod poing, and s acoaally a linde worse than you make out: the only
time synchronization is relevant is the first dme through this method, In
other words, onee weve set the uniguelnstance varable w an instance
ol Singleton, we have no further need o synchronize this method. After
the first dme through, synchronizacion is wally unneeded overheac!

Chapler 5

I agree this
fixes the problem.
But synchronization
is expensive; is this an
issue?

the singleton pattern

igletom works in the presence
getlnstanee | method, sowhaoe

icel) isn’t eritical o

il onverhead for your
orward and effeciive. Just keep

I treate an
-‘“ﬂlftﬂh im
ilizer. This

teed £o be

T We'we avedoy 3T
| 'l'n!.'ﬂntt. WJ'.-"-", 'n'[l;ﬂ'n vk

Using this approach, we rely on the JWM to create the unigque instance of the Singleton when
the elass 1s loaded. The VA guarantees that the instance will be created hefore any thread
accesses the stane uniguelnstance variable,

you are here » 181

f

and if not, THEN we
AL Wi want.

Chetk Lov am mstante ard
if there ik one enter 3

wﬁmlﬂd bl-ﬂt'k'
\ Note e only synchronize

the Fiest time Ehrough!

¢ in the block, eheek asain and
till null, eveate am instante

method of

loesn't
il

many

reyword
-checked

Singleton.

n pattern

Synchronize the getinstance() method;

Use eager instantiation:

Double-checked locking:

v is @ happy customer and Choe-C-Holic was glad 1o have some

[I';'. x[l matier \'ll‘t]{]‘l n“.l.l“[l“ll"'-‘lll‘i]i;: H:lil”if”’l '!|"| M1 EHI]!J]it"lL |..|'H' }.llfilﬂ'l-
nore mishaps, Congratulagons, You've not only managed o escape
prer, but vou've been through all the potential problems of the Singleton,

you are here b 183

g&a about singlelon

 Forsucha simple pattern
consisting of anly one class,
Singletons sure seem to have some
problems.

A: Well, we warned you up

front! But don’t let the problems
discourage you; while implementing
Singletons correctly can be tricky, after
reading this chapter you are now

well informed on the techniques for
creating Singletons and should use
them wherever you need to contraol
the number of instances you are
creating.

o
o

DT Gliestions

Q: Can't | just create a class in
which all methods and variables are
defined as static? Wouldn't that be
the same as a Singleton?

A: Yes, if your class is self-
contained and doesn’t depend on

complex initialization. However,
becauze of the way static
initializations are handled in Java,
this can get very messy, especially if
multiple classes are involved. Often
this scenario can result in subtle,
hard to find bugs involving order

of initialization. Unless thereisa
compelling need to implement your
“singleton” this way, it is far better to
stay in the object world.

Q3 What about class loaders?

| heard there is a chance that two
class loaders could each end up with
their own instance of Singleton.

A: Yes, that is true as each class
loader defines a namespace, If you
have two or more classloaders, you
can load the same class multiple times
(once in each classloader). Mow, if that
class happens to be a Singleton, then
zsince we have more than one version
of the class, we also have more than
ane instance of the Singleton. 5o, if
you are using multiple classloaders
and Singletons, be careful, One way
around this problem is to specify the
classloader yoursalf.

‘Re Rumors of Singlefons being eaten by the garbage :
colflectors are greatly exaggerated :

Frior to Java 1.2, a bug in the garbage collector allowed Singletons
to be prematurely collected if there was no global reference to them. In other
wards, you could create a Singlefon and if the only refarence to the Singleton
was in the Singlefan itself, if wouwd be collected and destroyed by the garbage
collector. This leads to confusing bugs because after the Singleton is

“‘collected,” the next call fo getinstance() produced a shiny new Singlefon. In
many spplications, this can cause confusing behavior as state is mysteriously
rasat to initial values or things like network connachions are resat,

Since Java 1.2 this bug has been fixed and a global reference is no longer
required. If you are, for some reason, still using & pre-Java 1.2 JWM, then be
aware of this issue, otherwise, you can sleep well knowing your Singletons
won't be prematurely collected,

184

Chapler 5

Q: I've always been taught that
a class should do one thing and one
thing only. For a class to do twe
things is considered bad OO design.
Isn't a Singleton violating this?

A: You would be referring to

the “One Class, One Responsibility”
principle, and yes, you are correct,

the Singleton is not only responsible
for managing its one instance [and
providing global access), itis also re-
spansible for whataver its main rola is
in your application. 5o, certainly it can
be argued it is taking on two respon-
sibilities. Mewvertheless, it isn't hard

to see that there is utility in a class
managing its own instance; it certainly
makes the overall design simpler. In
addition, many developers are familiar
with the Singleton pattern as it is in
wide use. That said, some developers
do feel the need to abstract out the
Singleton functionality,

Q: I wanted to subclass my
Singleton code, butl ran into
problems. Is it okay to subclass a
Singleton?

AI One problem with subclassing
Singleton is that the constructor is
private. You can't extend a class with
a private constructor. 5o, the first
thing you'll have to do is change
your constructor so that it's public

or protected. But then, it's not really
a Singleton anymote, because other
classes can instantiate it.

If you do change your constructor,
there's another issue. The
implementation of Singleton is based
on a static variable, so if you do a
straightforward subclass, all of your
derived classes will share the same
instance variable. This is probably
not what you had in mind. 5o, for
subclassing to work, implementing
registry of sorts is required in the base
class.

Before implementing such a scheme,
you should ask yourself what you
are really gaining from subclassing

a Singleton. Like most patterns, the
Singleton is not necessarily meant
to be a solution that can fit into a

library. In addition, the Singleton code

is trivial to add to any existing class.
Last, if you are using a large number
of Singletons in your application,
yvou should take a hard look at your
design. Singletons are meant to be
used sparingly.

the singleton pattern

Q: I still don't totally understand
why global variables are worse than
a Singleton.

A: In Java, alobal variables are
basically static references to objects.
There are a couple of disadvantages
to using global variables in this
manner. We've already mentioned
ane: the issue of lazy versus eager
instantiation, But we need to keep

in mind the intent of the pattern:to
ensure only one instance of a class
exists and to provide global access, A
global variable can provide the latter,
but not the former, Global variables
also tend to encourage developers
to pollute the namespace with lots
of global references to small objects.
Singletons don't encourage this in
the same way, but can be abused
nonetheless.

185

you are here »

a tlass
athon,

ol details
ehavter,

Java's implementation of the
Singleton Pattern makes use
of a private constructor, a static
method combined with a static
variable.

Examine your performance

and resource constraints and
carefully choose an appropriate
Singleton implementation for
multithreaded applications

(and we should consider all
applications multithreaded!).

Beware of the double-chacked
locking implementation; it is not
thread-safe in versions before
Java 2, version 5.

Be careful if you are using
multiple ciass loaders; this
cauld defeat the Singletan
implementation and result in
multiple instances.

If you are using a JVM earlier
than 1.2, you'll need to create a
registry of Singletons to defeat
the garbage collector.

the singleton pattern

em that case of chocolate that you were sent for solving
reading problem, and hawve some downtime working on
oesword puzzle; all of the solution words are from this

Across

1. It was "one of a kind"

2. Added to chocolate in the baoiler

B. An incorrect implementation caused this to

overflow

10. Singleton pravides a single instance and

(three words)

12. Flawed multithreading approach if not using

Java 1.5

13. Chocolate capital of the US

14, One advantage over global variables:
creation

15. Company that produces boilers

16. To totally defeat the new constructor, we

have to declare the constructor

Down

1. Multiple can cause problems
3. A Singleton is a class that manages an
instance of

4. If you don't need to worry about lazy
instantiation, you can create your instance

5. Prior to 1.2, this can eat your Singletons {two
words)

6. The Singleton was embarassed it had no
public

7. The classic implementation doesn't handle
this

9. Singleton ensures only one of these exist
11. The Singleton Pattern has one

187

yoL are frerg »

publics atatlc

LE

H {Tesalel BT o] R

faniguelnatancs =m=

lliet

nulill

getinetanss ||

uniquelnstance = new ChocolateBoiler i)

retErn UniqueInetanse:

pubklic yold HI14) |

!

rest

IisEmpby (h) |
simpty = Ealm
berlled = fal

#f fill the boilesx

of ChocolateBol ler

with a milksoh

oo, o,

Colate mixbure

188

Chapter 5

| doesn 't

event

We have
slateBailer
If

the singleton pattern

n, describe its applicability to the problem of fixng the Chocolate

etinstance() method:

d deehmnue that is auavanteed fo work. We don't seem to have any

rent with the thetolite boiler, 1o this would be 2 good thote.

ation:

ny Ta &M‘t’.in{':atd the thotold te boiler 1n owr tods, 1o stahtalblr mldllung the

e mo Lonterns T R solubion would work a5 well 35 the '.\fhthr\onl:_d method,

be less chvicus 4o 3 developer Familar wibh the shandard pattern

Louble checked locking:

Given we have ne I-'{Y'Fﬂ"‘rnﬂnﬂf tonteres, dewble—thecked |n|'_'|t|n:| seems Jike overkill |n addition, wed

have to ensure that we dre renning at least Java 5.

you are here ¢+ 189

I

]

2|
B B
E B K
g B B
E K o
REE E
B E)
0 B I
E B
E B
i
E

JEEERE
o

| x| af wl <] o] n] 2] o]
w

m._u-l

Chapler 5

180

H’u‘

In thi
we’'re
Encapst
object ir
our cry's
these e

implene

el:
‘hod invocation. That's right, by
stallize pieces of computation so that the
to worry about how to do things, it just uses
n also do some wickedly smart things with

save them away for logging or reuse them to

this is a new chapter 191

ar Bust, ne
ynui Bulte om0
L

d a demo and brisfing from Johnoy

F Weather-O0-Fama, on thelr new

jar gtation. [have to say, I was 80

18 software architecturs that I'd like to
the AFT for our new Home Automation
In return for your services we'd be hap

mward you with stook options in Home

126, Ing.

ratotype of our ground-breaking remet

seryizal, The remote control featuras se
ota (each can bea assigned to & differen'

1) alomg with corresponding on/off butt

pote slao has 8 gobal undo button,

g & get of Java classes on CD-E that we
1= vendors to control home automaklon
ighta, fans, hot tubs, audic equipment,
itrellabls appliances.
apeate an AF] for programming the ren
can be assignad to contrel 8 device or £
at it is important that we ba able to con
aes on the dise, and also any future dex
1 may supply.
you did on the Weather-0-Bama weathe
v you'll do a graat job on our remote cot

| to saeing your design.

'{'. :‘.‘:I'Ia'fflt oL T
i‘n{:ﬂ;w devite names heve

L

you are here v 183

lest of
a. Not
&es in the
eresting,

194 Chapler B

ready discussing how to de:

another design to do.
ation is that we've got a

vith on and of f buttens but
* classes that are quite
se.

ry: Yes, | thought we'd see a bunch of classes with on()
ofIl) methods, but here we've got methods like dimi),
emperature]), setVolume(), setDirection|).

« Not only that, it sounds like we can expect more vendor
ses in the future with just as diverse methods,

ry: | think it's important we view this as a separation ol
cerns: the remote should know how to interpret button presses
mitke requests, but it shouldn’t know a lot about home
wnation or hos to turn on a hol b,

¢ Sounds like good design. But if” the remote is dumb and
knows how to make genenic requests, how do we design the
ote so that it can invoke an action that, say, turns on a light or
ns a garage door?
Mary: I'm not sure, but we don’t want the remote o have w
know the specifics ol the vendor classes,

Sue; What do you mean?

Mary: We don't want the remote to consist of a set of if
statements, like “if slot] == Light, then highton(), elseaf slot] =
Hottub then hottubgjesOind™ We know that 15 a bad design.
Sue: | arrce, Whenever a new vendor class comes out, we'd have
to goin and modify the code, potentially creating bugs and more
work [or ourselves!

you are here b

195

196

Chapter B

Hey, I couldn't help
rhearing. Since Chapter 1
: been boning up on Design
itterns. There's a pattern
4 "Command Pattern" I think
might help,

y: Yeah? Tell us more.

I'he Command Pattern allows vou to decouple the requester of an action
the object that actually performs the action. So, here the requester would be
smote control and the object that performs the action would be an instance
e of your vendor classes,

How is that possible? How can we decouple them? After all, when I press a
1. the remote has to wrn on a light.

You can do that by introducing “command objects™ into vour design. A
nand object encapsulates a request to do something (like wirn on a light) on
cific object (say, the living room light object]. So, if’ we store a command

t for each buttom, when the button is pressed we ask the command object to
mie work, The remote doesn’t have any idea what the work is, it just has a
nand object that knows how to talk 1o the right olyect w get the work done,
au see, the remote is decoupled from the light object!

This certainly sounds like ics going in the nghe divecton.
y: Still, I'm having a hard time wrapping my head around the pattern.

Given that the objects are so decoupled, it's a liede difficult to picture how the
rn actually works,

Mary: Let me see if 1 at least have the right wdea: using this pattern we, could
create an AP@in which these command objects can be loaded into button

slots, allowing the remote code o stay very simple. And, the command objects
encapsulate how w do a home automation task along with the object that needs
o do it

Joe: Yes, [think so. 1 also think this pattern can help you with that Undo button,
but T haven’t studied that part yet

Mary: This sounds really encouraging, but 1 think I have a bit of wark to do to
really “get™ the pattern,

Sue: Me ton,

mer
‘Order

o197

Order
5 the
of

‘ meal

The Short Order Cook has the knowledge
required to prepare the meal.

The Short Order Cook is the object that really knows
how to prepare meals. Unce the Waitress has invoked

the orderlpl method: the Short Ohder Cook takes over and
implements all the methods thar are needed o create meals.
.\-Hlil':' [hl' H“:lill'ﬂ'h‘i j|[1rE ‘]‘"' ‘: :‘:ll'lk are L H,.!l.t". ‘lli"'l::ll_lE:l]l":I: lllt‘
Waitress has Order Slips thae encapsulate the degails o the
meal; she just calls a method on each order w get it prepared.
Likewise, the Cook gets his instructons from the Order Slip; he
never needs w directly communicate with the Waitress.

200

id pattern

a
itress who is
he Cook by an
what? Get to
it

Yatience, we're petting there...

Think of the Diner as a model for an OO design pattern that allow
us to separate an ohject making a request from the objects that
receive and execute those requests. For instance, in our remote
contral APL we need o separate the code that gets invoked when
we press a button from the objects of the vendor-specific classes
that carry out those requests, What if cach slot of the remote held
an object like the Diner’s order slip object? Then, when a button is
pressed, we could just call the equivalent of the “orderUp()™ method
on this object and have the lights turn on without the remaote
knowing the details of how to make those things happen or what
objects are making them happen.

Now, let’s switch gears a hit and map all this Diner talk to the
Command Pattern...

‘R — =

Before we move on, spend some time studying
the diagram two pages back along with Diner
rales and responsibilities until you think vou've
got a handle on the Objectville Diner objects and
relationships. Once you've done that, get ready
to nail the Command Pattern|

Chapter &

the command pattern

1

Il the
ark the
Vers

etions and Lhe

v are bound Logether
Lommand abJ-::_{.

e sible for
he f’] : +;\ s V.Ei?fn,_.-l Anieed. The

slore
1ot in

asks
cute

in

the

d into
‘be
wd, ar
be

o201

vy O

WHEQ DAES WH

wer ohjects and methods with the con

ILLE e,

r Co
Waitress Command
Short Qrder Cook execute()
orderlip() (lient
Oreer Invoker
(Customer Receiver
takel) setCommand()

202 Chapler B

public interface Command |
public waid execute();
I

o Simple All v

Implementing a Command to turn a light on

Now, let’s say vou want to implement a command for turning a ligh
Referring to our set of vendor classes, the Light class has two methe
and offf), Here’s how vou can implement this as a commancd:

public class LightOnCommand implements Command
Light light;

public LightOnCommand(Light light)

{ lL.c/ JEAAL MG LIS Gsmmar, = ey
this.light = light: tontral - say the ii-ﬁnﬁ e hﬁh‘l‘_
I — and stashes it in the ||a'h{. instante
vaviable. When exetute gets called, fhis
e s Lhe It dbject that is ging ko be
light.on{}s
|
J

the Receiver of the Ffﬂucs{-,.
The exetute wethod t.a'llf Jchﬂ
orl) mebhad on the vetennd
.;hj;ct. whith is the l»&H;. wt
are sontralling

Now that vou've gota LightOnCompmand class, leds see 6 we can put it 1o use,.,

you are here

203

LEgian L pAgigl T SLTY daLgaEn ypop

LightonCommand lightOn = new LightOnCommand{li

remote . secCormmand (1ighton) ;
remote . buttonWasPressed () D

Here, Pass the command

to the [mvckey.

ﬁnd then we simulate the

on Ly} “d
button bemg presse S

—

Here's the ﬁ“t?""t of
rwnm‘nﬂ, ‘H’ﬂi *—‘Ft Eﬂdt!

204 Chapter 8

ane

+ enc slok Lo hold our command:
will contrel one deviee
/_‘_\ We have 3 method For setting
the tommand the slot is gaing
Lo tontrel. This could be called
multiple times if the elient of
his tode warted 4o chanae the
hehavior of the remote button

WOlEY)

3t can
q'.-u{ r{:i-

\ .T.'a“-; tode heve

Now that you've got your class, what is the output of the following
code? (Hint: the GarageDoor up() method prints out *Garage Door is
Open™ when it is complete.)

pulblic class RemoteControlTest |

Your output heve

public static vold main{String[] args) |

SimpleRemoteControl remote = new SimpleRemcteControal():

Light light = new Light():
GarageDoor garageloor = neW GarageDoor()!
LightOnCommand lighton = pew LightOonCommand (light) s
GarageloorOpenCommand garagelpen =

new GaragebDoorOpenCommand (garageloar) ;

remots
remote
remote
remote

you are here »

205

Let’s step through this, We know that a command object
encapsidates o rguest by binding together a set ol actions on a
specific receiver. To achieve this, it packages the actions and the
recelver up into an object that exposes just one method, execute().
When called, execure]) causes the actions w be invoked on the
receiver. From the ouside, no other objects veally know whai
actions get performed on what receiver; they just know that if they
citll the execute; method, thear request will be semvaced,

Weve also seen a couple examples of fanmearizing an oliject with

a command. Back at the diner the Wattress was parametenzed
with multple orders throughout the day. In the simple remote
control, we first loaded the button slot with a “light on™ command
anil then later replaced it with a “garage door open™ command.
Like the Waitress, vour remoe slot didn’t cave what commaned
object it had, as long as it implemented the Command inerface,

What we haven't encountered vet is using commands to
implement grenes and lags and sugdor! unds oferations, Don't worry,
those are prewy straightforwarnd extensions of the basic Command
Pattern and we will get o them soon. We can also casily support
what’s known as the Meta Command Pattern once we have the
basics in place. The Mea Command Pattern allows you to create
macros o commands so that vou can execute multiple commands
at onee.

206 Chapter B

arptute

talling one or wore ab

the command pattern

d detlaves an interFace for all commands fs

:ady know, 3 tommand is invoked throwgh its

i) method, whith asks 3 retewer te Frtgm'h an
You'll also notite $his interFace has an undel)

|, which we'll eover a bit laker in the ehapter

%

[} and TRC e wam—

kions on the Receiver

d
R
-

of the Command Pattern support the decoupling of the invaker of a

iver of the request?

you are hera #

207

where do we begin?

208

Mary: Me too. 50 where do we begin?

Sue: Like we did in the Simple Remote, we need o provide a way
to assign commands o slots. In our case we have seven slots, each
with an “on”™ and “oft™ button. 5o we might assign commands o

the remote something like this:

Mary: That makes sense, except for the Light objecis, How does

the remote know the Iiving room from the kitchen light?

Sue: Ah, that's just it, it doesn't! The remote doesn’t know
anything but how o call execuce!) on the corresponding
command object when a button s pressed.

Mary: Yreah, I soria got that, bue in the implementaton, how do
we make sure the right objects ave turning on and ol the right
dlevices?

Sue: When we create the commands to be loaded into the
rermote, we create ane LightCommand thad is bound o the hving
room light object and another that is bound o the kitchen light
object. Remember, the recetver of the request gets bound o

the command its encapsulated in, So, by the dme the button

is pressed, no one cares which light is which, the right thing just
happens when the execute(] method is called.

Mary: | think ['ve gotit. Lets implement the remote and [think
this will get clearer!

Sue: Sounds good. Let's give it a shot...

Chapter B

the command pattern

(2] Wher the button is pressed, the exetute(}

mnbbiad e sallad m B i A e e al d

hioms

the remote is going to
nd OFF tommands, whith

g;?andlng, arrays:

‘he Lonsbruttor all we need o do s
anbiate and initialize the on and off

a‘jl‘.i.

offCommands[i] = noCommand;

)

public void setCommand{int slot, Command onCommand, Command of fCommand) |

ocnCommands(slot] = onCommand;y L
offcommands [slot] = offCommand; 28 The setCommand() method takes 3 slot pesition
} K and an On and OFF ommand to be stored in
that slot. [£ puts these commands i the on and

public void cnButtonWasPushed{int slot) | of £ arvays For later use.
onCommnands [slot] .execute () ;

} A When an On or OFF butdon is
pressed, the hardware takes

public wvoid offButtonWasPushed {int slot) | o :)
sffCommands [slob] cexecute () tare of calling the tarresponding
) methods onButtorWasPushed() or
ot FButtoniVasPushed!).
public String toStringi) |
StringBuffer stringBuff = new StringBuffer(};
stringBuff.append(™\n-===== Bemote Control =-===--=- An™Y;
for (int L = 0; 1 < onCommands.length; i++) |
stringBuff.append (*[slot ™ 4 1 +] ™ + onCommands[i].getflass() .getlame ()
+ @ " + offCommands[1] .getClass () .getHame() + “\n"):

|
return stringBuff.toStringi) s
| We've averwrithen 'Eug'i:fhsﬂ to print out each slot and i

Lorvesponding tommand. You'll see us use this when 5
remate Lonbrol e st

210 Chapler B

the command pattern

vl for
erything
Command

ightOf Command works exactly

' alAam 5

public volid execute() | the 5 e A A
light.off{); 'q___________/- extep
I toa

Lets v something a livle more challenging, how about writing on and
commands for the Stereo? Okay, off s easy, we qust bind the Stereo o ©
method in the StereoOMCommand. Onis a licde more complicawd; le
want 1o write a SterenOnWithCDOommand. .

public class SterecOnWithCDCommand implemsnts Co
Stereo sterec;

public SterecOnWithCOCommand (Steres sterea)

this.stereas = stereo;
] ot

publi: vold e:tc?:utel:} { W in @ lotal mstante varanie:
stersc.oni):

sterso.setCD({)} m

gteren,setVolume (11);

Tn';.hidrr‘:f nut this reqp;::f., we need to tall three
methods on the steveo: tirst, furn it on, then set
it to play the CD, and Finally set the volume £o ||.
Why 117 Well, it's better than IO, right?

Not wn badl. Take a ook ag the rest of the vendor classes; by now, you can definitely
knock out the rest ol the Command classes we need for those,

you are here » 211

212

Light livingRoomLight = new Light ("Living Room"); Ck‘ﬁjﬂ all he devites n
Light kitchenlight = new Light (“Eitchen™}: g ot abions
CeilingFan ceilingFan= new CeilingFan (“Living Room"); Eheir proper
GarageDoor garageDoor = new GarageDoor (™)}

Stereo sterea = new Sterso("“Living Foom®})r

LightOnCommand livingRoomLightOn =
new LightOnCommand(livinaRoomLight)
LightOffCommand livingBoomLightOff = Create all the Light
new Lightoffcermand(livinaRoomLight) ; Command n’n‘ju{s.
LightOnCommand kitchenLightGn =
new LightOnCommand(kitchenLight);
LightOffCommand kitchenLightOff =
new LightOoffCemmand (kitchenLight):

CeilingFanOnCommand ceilingFanOn = Create the On and OFF
new CeilingFanCnCommand (ceilingFan); Eor the ceilma Lan
CellingFan0ffCommand ceilingFanQff = caf
new CeilingFan0ffCommand (ceilingFan) ;

GarageDoocrUpCommand darageDoorUp =

new GarageloorUpCommand (garageloor) s
GarageDoorDownCommand garageDoorDown =

new GarageboorDownCommand {garageDoor};

Create the Up and Down
tommands for the Garane

SterecnWithcDCommand sterecOnWithoDh =
new StereoclnWithCDCommandi{sterea); Create fiee 4 O
SterealfiCommand sterecQff = EJHL il
new Stersc0ffCommand(steren): and e

Chaptler 6

VETY

So, howy do we gec around that? Tmplement a command that does noching!

public class NeCommand implements Command |
public veid executel) { }

Then. in our RemoteControl constructor, we assign every slot a
NoCommand object by default and we know we’ll always have some
command to call in each slow

Command noCommand = naw NoCommand () ;
for {(int 1 = 0; i < 7; 144} |
anCommands [1] = noCommand;

offCommands [1] = noCommand;

Soin the output of our st run, vou are seeing slots that haven’t been
assignied wa command, other than the default NoCommand oliject
which we assigned when we ereated the RemoteContral,

e NoCommand object is an example of a null ebject. A null object is useful

1en you don't have a meaningful object to return, and yet you want to remove
2 responsibility for handling null from the client. Forinstance, in our remote
ntrol we didn't have a meaningful object to assign to each slot out of the box,
we provided a NoCommand object that acts as a surrogate and does nothing
ien its execute method is called.

u'll find uses for Mull Objects in conjunction with many Design Patterns and
metimes you'll even see Null Object listed as a Design Pattern,

the comman

Inc.,

jramming interface for your Home

g control code as simple as possible so that
& have employed the Command Fattern 1o
sy this will reduce the cost of producing

ssed,

ad is
nthe
&’ |

don't forget unda

Great job: it looks
you've come up with a te
but aren't you forgetting
the customer ask
LIKE THE UNDO

Whoops! We almost forgot... luckily, once w

have our basic Command classes, undo is e;

ves A Teg’s step through adding undo to o
Is and to the remote contmol...

¢ o support the undo button on the n
off and you press the on buwon on ok
55 the undo button then the last acdo
fore we et into more complex examj

it unddo, they have an undeo|) method ¢
utel) last did, undof) reverses. So, befi
add an undof] method o the Commar

public interface Command [
public void execute();
public wveoid undol):

} R“__‘_. Here's the mew undel) methad.

That was simple enough.

Now let’s dive into the Light command and implement the undeol) methoe.

216 Chapler B

the command pattern

wommand: if’ the LightOnCommand's execute]) method
wel wias st called. We knosw that undo) needs to do the
< ofll} methesd,

ghtOnCommand implemsnts Command |

*

tonCommand {(Light light} |
ght = light:

exacute(} [
nikz

public void undof{) i
light.off () o,
y e M " e lpt
e
lack otk

e
erervtel] s)

Piece of cake! Now for the LightOMCommand, Here the undol) medhod juse
needs to call the Light's ond) methad.

public class LightOffCommand implements Command |
Light light:

public LightOffCommand {Light light} {
this.light = light;
]

public woid execute() |
light.off (};
]

public void undof{) | Luers
light.on(}: pind heve: el

Coulel this be any easier? Okay, we aren’t done ve; we need wowork a linde
support int the Bemote Conerol wo handle cracking che lase butcon pressed
and the undo button press.

you are here + 217

the undo button we only have to make a few small changes to the Remote

e's how we're going o do ic we'll add a new instance variable to twack the
ked; then, whenever the undo button is pressed, we retrieve that command
Al methodd,

moteControlWithUndo |
nfommands:

FfCommands ; This s where we'll stash Ehe last command
nConmand; J exetwked For the unde button.

teControlWithUndo ()} |
nds = new Command([7T];
ands = new Command[7]:

Just like the other slots, unde
starts of £ with 2 Nolommand, so
pressing undo before any other
button won't do ahf{hmg at all.

d anCommand, Command cffCommand) |

[When a button is pressed, we Lake
Lhe eommand and Fiest exetute
it: then we save a refevente Lo
it in the undoCommand inskante

variable. We do this For bath Won
tommands and “off" commands.

When the undo button is pressed, we
inveke the undol) method of 4he
tommand stoved in undoCommand.

This reverses the cpevation of the
last eommand exetuted.

the command pattern

keControlWithUnda ()

| i W hhdt}{}
RS Create a Liaht, and our ne
/i enabled LlE,H:. Oy and r‘}ﬂ gemands:

v 219

220

public static final int QFF = 0;
String location:

int speedy;

public CeilingFan (String location} |
this.location = locations

speed =
]

public wold
spaad =
!4 code
)

public woid
speed: =
£ code
]

publie wveid
speed =
£ code
]

public wvoid
spaad =
/! code
]

public int getSpeed(} |
return speed;

]

Chaptler 6

OFF:
i
to
high{) the
HIGH;

to set fan to high

medium(} |
HMEDTUM:
to set fan to madium

% These methods
Tow() | speed of the &

LOW:
to set fan to low

affl) |
OFF:
to turn fan off

= |n eveeute, before we thange
the speed of the Fan, we
need o First vecord its
Previous shate, }ust in LasE we
need to undo our actions

To unde, we sl th
:E—-— r L £ S?l{d
#ﬂﬂrnb;ﬂktﬁiﬁ

Prévious ;-F-,: ed.

Eﬁ RANN

PAOWEWR
We've got three more ceiling fan commands to write: low, medium, and off. Can you see
how these are implemented?

you are here b 221

public class Remoteloader |

222

public static vold main{string[] args) |
BemoteControlWithlndo remoteControl = new Remo

CeilingFan ceilingFan = new CeilingFan{“Living

CeilingFanMediumZommand ceilingFanMedium =

new CeilingFanMediumCommand (ceilingFar bt
CeilingFanHighCommand ceilingFanHigh =

new CeilingFanHighCeommand (ceilingFan):

CeilingFanOffCommand ceilingFanQff = pediin in
new CeilingFancffCommand{ceilingFan): | kigh in
o . also load
remoteControl .setCommand {0, ceilingFanMedium, i
o

remoteControl . setCommand{l, ceilingFanHigh, ce

remateControl .onButtonWasFushed (0); -— Fi

remoteControl .offButtonWasPushed (0] o
System.out.println{remoteControl); T

remoteControl .undoButtonWasPushed () ; e— Undo! |& should g0 back T meune:

remoteControl onButtonWasFushed (1) ; == _ Tuen it on to high this Lime

System.out.println{remotaeControl); ik should ae back to medim.
remoteControl .undoButtonWasPushed () ; k—— find, one mare undo; 1% ¥

Chapter B

ne more undo, and the

bae o (d itamn

o 223

L a0 TS, Huf:
50 8L
da this

Mary's idea is to make 3 new
kind of Command that can
exetute other Commands...
and more than ene of them!
Pretty geod idea, huh?

4 F ©
public class MacroCommand implements Command
Command[] commands;

public MacroCommand (Command[] commands) |
this.commands = commands;
| ®, Take an arvay of
Cﬁnﬂa‘hdl al'hd- Etﬂk‘d ‘thgu [T 4;]-‘ mcmcm“nd
public wvaid execute() |
for (int i = 0 i < commands.length: i++) |
commands [1] .execute ()

R__ When the matro gets executed by the remote,
exetute those tommands one at 3 fime.

}

224 Chapter 6

the command pattern

LACTOY

Create all the devices, 3 |i

/ tv, steveo, and hot +ub

Now ereate all the On
ind {Light); Iy tommands o tontrol them.

mmand (stereo) ;

ymmand (hottub) ;

immands for the off buttons,
cate those here:
Create an arvay For On
fisr the OHT com- and an array For OFF
-!',i Eewwenands-.
:tyOn = { lightOn, steresolOn, tvon, hottubkon}:

EyOff = [1ightOff, stereoOff, ©viLf, hottubOff}:

partyinMacro = new MacrocCommand {partyon) —and treate fus
partyOffMacro = new MacroCommand (party0ff); Corvespording matros
'!:dj'lﬂd 'E.htn.

command toa bunon like we always do;

¢ Pssign the matvo

setCommand (0, partyOnMacro, partyoffMacro); tommand to 3 button as
we would ary Lommand.

you are here » 225

er'rdh:j: m
arre eretuted when we inveke

he on matr

dnd wher v

malire. |

NEE 1T ‘wigh

the command pattern

ing our MacroCommand is missing its undo funcdonalinge. When the

1 s pressed after a macro command, all the commands thar were mvoked
CF IFIASE |l| |,| H'i'lI I]r[‘\.'iﬂit.‘i At it:lllh. H#‘ I't".‘.i lhi‘ (R RL]1' !lﬂl' ‘."'. [i_l_['i'ﬂ(Kl rr1‘||'ﬁ:.||'|{|;
il implement the undal) method;

ass MacroCommand implements Command {
ad[] commands;

2 MacroCommand {Command[] commands) |

1is.commands = commands;

2 yold execute() {
3r (int 1 = D; 1 <
commands 1] .execute (]

public woid undol(} |

commands. length;

':a..|.| I

. !19-1‘&- re
Q— Do | always need a receiver? '[']]E'r @uegﬁ ons
Why can’t the command object
implement the details of the

execute() method?
Q: How can | implement a history
of undo operations? In other words,
| want to be able to press the undo
button multiple times.

A: In general, we strive for "dumb”
command objects that just invoke
an action on a receiver; however,
there are many examples of "smart”
command objects that implement
mast, if not all, of the logic needed
to carry out a request. Certainly
you can do this; just keep in mind
you'll no longer have the same level
of decoupling between the invoker
and receiver, nor will you be able to
parameterize your commands with
receivers.

A: Great question! 1t's pretty

easy actually; instead of keeping just
areference to the last Command
executed, you keep a stack of previous
cammands, Then, whenever undo is
pressed, your invoker pops the first
item off the stack and calls its undo()
method.

Q: Could | have just implemented
Party Mode as a Command by
creating a PartyCommand and
putting the calls to execute the other
Commands in the PartyCommand's
execute() method?

A'.' You could; however, you'd
essentially be "hardcoding”the
party mode into the PartyCommand.
Why go to the trouble? With the
MacroCommand, you can decide
dynamically which Commands you
want to go into the PartyCommand,
s0 you have more flexibility using
MacroCommands. In general, the
MacroCammand is a mare elegant
solution and requires less new code.

227

you are here »

LR Ay s b

oy findsh, then discard o
new e,

he commm

€ way
a
£
Threads remeve
from the queue
and tall their e
method. Once |
thev oo back £
ke
t other

if?

1

WEraAlons (o our
ang to implemend
N wriling a copy
<] applications
i ! We add two methods
Asactonal :
For loggina,

Pbter a system Faibure

the obietts ave

veloaded and exetuted

i bhe torveet ovder
_ Restore e

o
LR

1&[5 gaﬂ.’h Ml'n'l'l"a"'d
s exetuted, it s
staved on disk.

£ an

use

AN INVOKET MAKes 3 request or
a Command object by calling
its execute() mathod, which
invokes those actions on the
recaiver.

Invokers can be parameterized
with Commands, even
dynamically at runtime.

Commands may support undo
by implementing an unda
method that restores the object
to its previous state before

the excute() method was last
called.

Macro Commands are a simple
extension of Command that
allow multiple commands to

be invoked. Likewise, Macro
Commands can easily support
undad).

In practics, it is not uncommon
for “smart” Command objects
to implement the request
themselves rather than
delegating to a receiver.

Commands may also be used
to implement logging and
transactional systems.

the command pattern

1 take a breather and let it all sink in.

ther crossword; all of the solution words are from

ipter

C L L

Across

3. The Waitress was one

4 Acommand & set of actions and a
recejver

7. Dr. Seuss diner food

8. Our favorite city

9. Act as the receivers in the remote control
13, Object that knows the actions and the
receiver

14. Ancther thing Command can do

15. Object that knows how to get things done
17. A command encapsulates this

i JEEEEEEN

Down

1. Role of customer in the command pattern

2. Our first command object controlled this

5, Invoker and recaiver are

6. Company that got us word of mouth business
10. All commands provide this

11. The cook and this person were definitely
decoupled

12. Carries out a request

16. Waitress didn't do this

232

+

‘Wwa pe

.-..-\.'\-'l-'-] +
._! W AT

Maich the diner objecis o methiocs witls it cormespondeng names o the

Commmansd Farberm

Wititress

St Oralisr Cook

caderlip()

Orador

oy

takerdor(l

Command Pattern

Command

axEcige])

. lhent

froker

Tacaivar

set e mpandi)

Chapter B

the command pattern

h Write thie mndn | method for MacroCommand
L
Exercise
pruk o mmand E T i
1] 187
puk Macrol nd 2t
Bs]
puat | i
r [ink 1 ATIF L t |
I
puk i_l___l |
r Lint AT Erig]
e do) ;

W’I W m[l We will also need commands for the off button,
.. Write the code to create those here:

LightOf fCommand 1lightQff = new LightOEfCommand{lightl
SterectifCommand ste tf = new StereclfifCommandisterec);
TWoffCommand twoEf = TVoffCommand (&

HottubOoffCommand hottubOff = new Hottubd If«. mmand (hottub) ¢

¢ |
£
- 1inlviolkleln
Eﬂﬁﬂmﬂﬂﬂhﬂ=ﬂﬂlﬂ
olelslelelr|vizlilLlel

]
EEEEEEEEHHEEH
X

you are here + 233

IN s cnapler we re going 1o atempt sucn impossipie 1eats as
putting a square peg in a round hole. Socund impossible? Mot when we have
Design Pattemsz, Remember the Decorator Pattern? We wrapped objects to give them new
responsibilities. Now we're going to wrap some objects with a different purpose: to make their
interfaces look like something they're not. Why would we do that? So we can adapt a design
expecting one interface to a class that implements a different interface, That's not all; while
we're at it, we're going to look at another pattern that wraps objects to simplify their interface.

this Is a new chapler 235

iter is

n example:
iropean
dapter...

AL Vower Adapter

Standard AC Plug

The US laptop enpects
another intevfate.

| gutlet 9

i

for oetT™ A -/
. t
orE wkerkate \\:,

The adapter tonverts one
interface inba anather.

The Buroped”

You know what the adapter does: it sits in between the plug of your laptop and the
Evropean AC outet; its job is w adapt the European outet so that vou can plog vour
laptop o it and receive power, Or look ac ic this way: the adapier changes the interface
ol the outlet inw one that vour laptop expects,

Some AC adapters are simple — they only change the shape of the outlet so thar it maches
vour plug, and they pass the AC currene straizht through — but other adapters are more
complex internally and may need to step the power up or down o macch your devices’
needs.

Okay, that'’s the real wodd, what about object oriented adapters? Well, our OO adapters
play the same role as their real world counterpans: they take an interfice and adapt it o
one that a client is expecting.

236 Chapler 7

the adapter pattern

vendor class libeary
st vendor

uhtum‘r“" |
":T'm M‘E‘.‘F“’ﬁhuﬂ'

de fand you cant
lass that adagps the

o inteviate
;ﬁ..

t and converting

fion
\ of @ sl
":ra'“ 1‘” &:1 r!‘.&“l"

wrike MJ."'{ a'ddlbmal vendor
ks .m{;E'ra'C’E tah.a::.“"“ vy +he
plasses? Fow elass-

ek 5“??*]' the ;ﬂa?h"
£

you are here » 237

public we ERL -
public we bhat 3'1"":1”
I qtua.!-l't an
Here’s a subclass of Di
public class 1
public "
Syste Lakions Lhe dut
3 (R | ErmER i
| — g“‘fk :llzch what T o3
st oLy
public Wi o J
Syate

}

Now it’s time to meet the newest fowl on the block:

cbible
Twrkeys don & quath, el 3

public interface Turkey | [—
public void gobble():

public wolid fly ()
} \ Turkeys ean Hly, althovah they

tan only Fly short distantes

238 Chapler 7

r pattern

public class WildTurkey implements Turkey
public woid gobble{) |
System.out.println{*Gabble gobble’
|

public void fly() |
System.out.println("I'm fiving a sl
|

Now, let's say you're short on Duck objects and
- o - T ily we can’t
ferent interface.

s need to |n-?||:rntn'|:. the interFaze
'ﬁt 'jlc#?'r: ad:’l‘rtmﬂ {'e. This is tht
: your tlient expects o see

Next, we need 1o g,:‘l; a vekevenze to
the ahl}et-{ Ehat we are adapting; here
we do that throuah the tonstruttor

public weold guack() | ™ Mew we need J.'.ﬂ |m?bElnEl\t all the mtt’hﬂd: I
turkey.gaobble (}; qr_J the interFace; the quack() translation between
! tlasses is easy just eall the gobble() method.

public veid fly ()
for{int i=0; 1 < 5; i++) {

FuFKey My Even though both interfates have a JF[\;:{}

methed, Turkeys 'Fl'f in short spurts — they
tan't do long-distance Fljlimg, like dutks To
map between 3 Duek's £|*;'f:| method and a
ka:fs. we reed +o £all the Turkeys -Fl'?l{'J
wethod Live fimes to make up for it

]

you are here v 239

dapter:

Leks preate @ Dtk

I a.nd a kaf-"l

i [-\ And then wrap the turkey
eyl s ina kaqrﬁd.;ﬁ:er, whith
akes it look like a Duck.

C\-z__""‘- »
Then, let's test the Turkey
make it aobble, make it «Fljr_

S Now let’s test the duck
0= I 1 h'j' HH'I'I'I.E_ the {.tsfﬂ'u&k{}
method, whith expects a

™~ " Duek object.

£ The Torkey sobbes and
les 3 short distante.

The Duck quatks and Flies
just fike youd expect

J_\/"\ hﬂd the ada.'f-l::r n_p'n'nl::- wher

quack() s called and flies a few
imes when Fly() s called. The
testDutkl() method never knows it
has a turkey disquised as 3 dutk!

the adapter pattern

Adaptee

)
Pe;_..—-—'—.'

Vol

Adapter
E interface ﬁ
The Adapter implemeants the K the
target interface and holds an)| L
instance of the Adaptes, adaptee n
merted
Tﬂﬂhﬁa J: EEEL;D“':I
e barte
's the Adapter
a request to the
ot that the Clint and AdaTEEE
are decougled = “"H"“ R
'qut the ﬂ‘t

you are here » 241

Let's say we also need an Adapter that converts a Duck to a Turke
Let's call it Duckadapter, \Write that class;

How did you handle the fly method {after all we know ducks fiy lo
the end of the chapter for our solution. Did you think of a better

Q: How much “adapting" does

an adapter need to do? It seems like
if | need to implement a large target
interface, | could have a LOT of work on
my hands.

A: You cerlainly could, The job
of implementing an adapler really is

proporional fo the size of the interface you
need to support as your target interfaca.
Think about your options, however. You
could rework all vour client-side calls o
the interface. which would resultin a lot

of investigative work and code changes.
Or, you can cleanly provide one class that
encapsulates all the changes in cne class.

242 Chapter 7

f‘let"e fre o
Dumb Questions

Q: Does an adapter always wr
and only one class?

A: The Adapfer Pattern's rale is to
convert one interface into ancther. While
moat examples of the adapter pattern show
an adapter wrapping one adaptes, we both
know the world is afien a bil more messy.
S0, you may well have situations whera an
adapter holds two or more adaptees that are
needed to implement the target interface.

This relates to another patiern called the
Facade Pattem; people often confuse the
two. Remind us to revisit this point when we
falk about facades |ater in this chapter.

~ers at

1ew parts

pect the

: already

B & new

vender interface? It is going to get
confusing using an adapter here and the
unwrapped interface there. Wouldn't | be
better off just writing my older code and
forgatting the adapter?

A: Mot necessarily. One thing you
can do is create @ Two Way Adapter that

aupports both interfaces. To create a Two
Way Adapter, just implement both interfaces
involviad, sa the adapter can act as an old
interface or a new interface.

the adapter pattern

t the oflicial

e interface by
«ehient from

il r:"t"ﬂr"-‘ b
ip{tr i tompesed \—j T""‘/ d:l:&ahd to the
1 the ﬁd;P{“_ Maf{:t-

d OO0 design prnciples: check out the use of ohject
vith an altered interface. This approach has the
an adapier with any subclass of the adapree.

1cls the client to an nterface, not an
ral adapters, cach converting a different backend
=w implementations after the fact, as long as they

you are here » 243

sLOry yet,
s, This
Dus page is a

['!|T”.| ".!‘l":l

chat dlaesn’t
when using
ram for

he
+er now
rtee

H55E5

L0 3Lss TeCjuests 1oy @ .""I.d;l]]ﬂfl'.

B : 1. 7 N
T POWEW

Object adapters and class adapters use two different means of
adapting the adaptee (composition versus inheritance). How do these
implementation differences affect the flexibility of the adapter?

244 Chapler 7

mets

)

e duck and warkey magnets and
sart of the diagram that deseribes
it bird, in our earlier example. (Try
ugh the pages . Then add your own
1be heow 1 works,

- Target Adaples
raquash] spechicRaquesti]
Adapter
requssti]
Object Adapter
Chient ' S <<inferfaces>
i Targat
requesst]
i
Adapter 1 Adaptes
muest) spacificReguestl)

Dy

9 these onto the ¢] i
1o show which part of {',a::: {:.flf
Yepresents Lh, Dw:k and whi I:
represents fhe Turkey, :

the adapter pattern

245

5 as
ﬂa.'ﬁ
WBVE v ﬁda?fﬁ'{s
_ — Duck, 02 S e el
P Du — Lake Uﬂ“wfd andd W
s and Tore on kne kel
wm . I-CE'*.ad'5
rwlu.':';.r respond
by extendin
i ka:yl
Object Adapter
The kat}r elass doesn't have the s3me
o interfae as the Duek. fn othe words,

Turkeys don't have quack(} wolt_a te.
Client hinks he's f Q

‘-Eﬂ.rklh& {ﬂ- d Dﬂ'.k 'Eh claﬂ'l ﬁda?‘j.'ﬁ ;
gl Du‘.k]

Jusk 'a[;a'r ﬁc‘c s he the et : |
'Eht i 1w x

T Mmr _.E
\ass- khods o7 1
t"mmkt‘ 0 tequesty B

The Adapter imPlements the Dyl 4
interface, but when it aets 3

method call it furns dround and

delegates the a3)ls to a Turkey.

246 Chapter 7

Filj_eside Chats

\w

Object Adapter

Because T use composition I've got aleg up. [ean
not only adapt an adaptee class, but any of its
subelasses,

In my part of the world, we like 1o use
composition over inheritance: vou may be
saving a fow lines of code, but all 'm doing is
writing a little code o delegate o the adaptee.
We like o keep things fexible.

You're worried about one Litde object! You
might be able to quickly override a methaod,
but anv behavior T add w my adapter code
works with my adaptee class and all its
suhiclasses,

Hey, come on, cut me a break, [just need o
compose with the subclass to make that work.

You wanna see messy? Look in the mirror!

the adapter pattern

Tonight's talk: The Object Adapter and Class Adapter
meet face to face.

Class Adapter

That's true, I do have trouble with that because

I am committed o one specific adapree class,
but I have a huge advantage because I don’t
have o reimplement my entire adaptee. 1 can
also override the behavior of my adaptee it |
need to because I'm just subelassing,

Flexible maybe. efficient? No. Using a class
adapter there is just one ol me, not an adapter
and an adaptee,

Yeah, but what if a subclass of adaptee adds

some new behavior Then what?

Sounds messy..,

you are here ¢ 247

[Eh NS TU“ r
callection
if how they

recenl
1sing an
meration,
set ol items
L7 H.l]-ili[}-‘ (8]

e 1r-lf.f-'f£'a'“"

ration v 35
Tells you if theve ave any |
= moke Lcmthb in the tollettion
E
Eitmﬂhﬁi}
::r-ca.rf.
llfol-l i
idecia i ihems in
Itaralar
hastiet])
nexlil
.-mﬂﬂueﬂ
—— "

code that exposes the
like for our new code o only
el to build an adapter,

to use [Levators, even
i'F {h:r:'s rzﬂih‘ an
Enumeration underneath.

Enumeration/terator ~
is the adapter.

'r pattern

T Adaptee interfate

implements
hasNext() and
Lo adaplee:
we()? Think
or now, here's

making, the Erumerations

h‘bhﬁ
amEva ;
see i the

p 249

read only™ interface.
1 on the adapter. The
=rs of the Iterator

aat it supports an

satch out for potenaal
vell documented this 1s

Here's simple but effective cade for all those legacy classes sull producing Enumerations:

m Cinte we've adapting Envmeration

i Enu ; : to [tevator, our Adapter
15::111::1111 class Enumerationlterator implements Iterator '|mf|mn{.s the [terator interbace...

Enumeration enum; it has to look like an [terator.
.) The Enumeration we're adapts
public Enumeratlonlterater (Enumeraticon m We') i ?-E'! W
this.anum = enum; € re wsing Lomposition 5o we

] it in an instante variable.

. The [terator's hasNext() method
public boolean hasNext () |

is delegated to the Enumeration’s
: return enum.hasMorsElements () 7 hasoreBlonitid) webbod..

- and the [tevater's newt() methed
public Object next () | [_’"—-’h

15 delegated to the Enumerations's
return enum.nextElement () : nexdElement() method.
]

piblic void remave () | ,
throw new UnsupportedOperaticnException() i ~ Unfortunately, we tan't support
; erator's removel) method, so

: we have to punt {in other words,
we give u'fj_']. Heve we jus{'. +hrew

an :Me?{inn-

250 Chapter 7

the adapter pattern

1 has PN L the direction ol the lerator, there 15 nevertheless a lot of
sat code that depends on the Enumeration interdace, so an Adapter
rts an lterator to an Enumeraton 1s also quite useful,

'l.ili'l,l_]ll.‘:l' that ;‘l:i;||1l.~i an Trerator to an Enumeration. You can test your
lapting an ArravList. The ArrayList class supports the Iterator interface
t support Enumeratons (well, not vet anvway),

POWEWR

Some AC adapters do more than just change the interface - they add other features like surge
protection, indicator lights and other bells and whistles,

If you were going to implement these kinds of features, what pattern would you use?

you are here v+ 251

fireside chats: decorator and ad

Fireside Chaxts

Decorator

I'm important. My job s all ab

you know that when a Decoratc

going to be some new responsibilities or behaviors
adlded to your design.

That may be true, but don’t think we don’t
work hard, When we have o decorate a big
interface, whoa, that can take a lot of code.

Cute, Don't think we get all the glory: sometimes
I'm just one decorator that is being wrapped In
who knows how many other decorators, When a
method call gets delegated o vou, vou have no
iclea how many other decorators have already deal
with it and you don’t know that vou'll ever get
noticed for vour efforts servicing the request,

252 Chapter 7

Decorator Pattern and the Adapter
ir differences.

You guys want all the glory while us adapters
are down in the trenches doing the dirty work:
converting interfaces. Our jobs may not be
glamorous, but our chients sure do appreciate
us making their lives simpler.

Try being an adapter when you've got to bring
several classes wogether o provide the mterface
vour client is expecting. Now that’s tough. But
we: have a saving: “an uncoupled client is a
happy client.”

Hey: il adapters are doing their job, our clients
never even know we're there. It can be a thank-
less job.

'r pattern

s that we
ies and

¢ just rely
Loy, it's @

(] 1]

decorators — | mean, just like us, you wrap an object.

No. no, no, not at all. ' We always convert the
interface of what we wrap, yvou aezer do. 1'd
say a decorator 1s like an adapter; it is just that
you don't change the interface!

Uh, no. Our job in life is w0 extend the
behaviors or responsibilities of the objects we
Wrap, we aren’t a smple pass through,

Hey, who are vou calling a simple pass
through? Come on down and we’ll see how
long you last converting a few interfaces!
Mayhe we should agree to disagree. We seem
to look somewhat similar on paper, but clearly

we are miles away in our intend,

Oh veah, I'm with you there,

you are here » 253

Adapter

Facade

lass o
wa by
bject that

for a
wadle
e

Doesn’t alter the mterface, but
adds responsibility

Makes an interface simpler

254

Chapter 7

'r pattern

lot. of
:‘.t'luhs.-

set of
s to

» 2585

256

Chapler 7

s« Oh,
ito

I'm already exhausted
and all I've done is turn
everything on!

the adapter pattern

ne tasks in terms of the classes and the
ierform them:

Turn on Lhe poptorn popper and start

/—\ popFing.
spar.oni) i’

sper.popll;
jhts.dim{10); ‘:_________,_,._-—-—
reen . down ()
c.___,__‘-____' Puk the sereen down..

projector.on();

jector.setl T {dvd]) ¢ -
\\ prajector.setinpu il shor and F"{ i+ in

Frejectar.vidsscreantioda (i, Tuwrn on the ?'ﬂ?jﬂ ;
de streen mode Fov the movie.

Dim the lights to 10%-.

Lig GrFRLeeT —
involved!

Wi
amp.oni);

amp . setivd (dvd)

amp.setSurround3ound) 7 Tun oh the arp, 5& 3 +o DUD. l[-“h"l:
amp.setVolums (5); £ ins Around sound mode and et the
volume to 5.

dvd.onl);
dvd.play (movie) 7

Turn on the pvD ﬂa'-lrr_-r n !
and FW&LLT’I, ?k.v]r the movie!

But there’s more...

When the movie is over, how do vou tarn everything ofl?
Wouldn't vou have wo do all of this over again, in reverse?
Wouldn' it be as complex w listen to a CD or the radio?

® I you decide w upgrade your system, vou're probably going

to have to learn a slighdy differemt procedure.

5o what to do?’ The complexaty of wsing vour home theater is becoming apparent!

Let's see how the Facade Pawern can get us out ol this mess so we can enjoy the movie...

you are here v+ 257

complex
1

poweT

ad s a

e The Facade class treats
the home theater
Tomessst S

d calls
tem

its
methad,

your client code now calls
methods on the home theater
Facade, not on the subs*,rsteml.
5o now to watch a movie we ju st
call one method, watchMoviedl,
and it communicates uf.lith the
lights, DVD player, projector,
amplifier, screen, and popcarn
maker for us.

I've got to have my

low-level access!

e The Facade still leaves the subsystem
accessible to be used directly. If you

N need the advanced functionality
ko of the subsystem classes, they are
zw?rﬁ: ?;H}Jrugh il available for your use.
he Fushim

A Stiente Club.

you are here + 259

facade versus adapter

there are no

Dumb Questions

Q- If the Facade encapsulates the
subsystem classes, how does a client
that needs lower-level functionality gain
access to them?

A: Facades don't “encapsulate” the
subsystem clagses; they maraly provide a
simplified inferface to their functionality. The
subsystem classes still remain available

for direct use by clients that need to use
more specific interfaces. This is a nice
praperty of the Facade Pattern: it provides

a simplified interface whila still exposing the
full functionality of the system to those who
may need it.

Q: Does the facade add any
functicnality or does it just pass through
each request to the subsystem?

A: A facade is free to add its own
*smarts” in addition to making use of the
subsystemn. For instance, while our home
theater facade doesn't implement any new
hehavior, it is smart enough 1o know that the
popcorn popper has o be turned on before it
can pop [as well as the details of how to turn
on and stage a mavie showing).

Q: Does each subsystem have only
one facade?

A: Mot necessarily. The pattern
certainly aliows for any number of facades to

bie created for a given subsystem.

260 Chapter 7

Q: What is the benefit of the facade
other than the fact that | now have a
simpler interface?

A: The Facade Pattern alao allows
yau lo decauple vour clignt implementation
from any one subsystem, Lel's say for
instance that you get a big raise and decide
to upgrade your home theater to all new
components that have different interfaces.
Wall, if you coded yvour client to the facade
rather than the subsystem, your client code
doesn't nead to change. just the facada
tand hopefully the manufaciurer is supplying
that!).

Q_: So the way to tell the difference
between the Adapter Pattern and the
Facade Pattern is that the adapter wraps
one class and the facade may represent
many classes?

A: Nol Remember, the Adapter Pattern
changes the interface of one or more
classes into one interface that a client is
expeciing. While most textbook exampies
show the adapter adapting one class, you
may need to adapt many classes to provide
the inlerface a client is coded lo. Likewise,
a Facade may provide a simplified interfacs
to a single class with a very complex
interface.

The difference between the two iz not in
terms of how many classes they “wrap,” It
i5 in their intent. The intent of the Adapler
Pattern is o alter an interface so that it
matches one a client is expecting. The
intent of the Facade Pattern is to provide a
simplified interface to & subsystem.

A facade not
unly simpli{ies
an interface, it
decouples a client
from a sul::system
of {:nml}onents.

Facades and

adapters may
wrap muEtiPle
classes, but a
facade's intent is
to sim]:li{y, while
an Eu-[apter’s

1s to convert

the interface

to something

different.

Tuner tunser}
DvdPlayer dvd:
CdPlayer cd;
Frojector projector;
TheaterLights lights;
Screen screen:
PopcorenPopper papper:

J

public HomeTheaterFacade (Amplifier
Tuner tuner,
DvdPlayer dvd,
CdPlayer od,
Prajector projactor,
Screen screen,
TheaterLights lights,
PopcornPopper popper)

thiz.amp = amp;
this.tuner = tuner;
this.dvd = dvd;
this.cd = cd;

this.projectaor

projector;

this.screen = scresn;
this.lights = lights;
this.popper = popper:

/7 other methods here d—\

the adapter pattern

romposition; Lhese
ik:i“th!ﬁﬂm?mﬁhkiuﬁ‘Hﬂ
subsystem we ave going Lo vse

Al ,

The Fatade is passed a
i vebevente to eath tomponent
i of the subsystem in its
torstruttor. The Facade
Ehen assigns eath to the
m;?wdinﬁ instante 'H'a-l‘iﬂblﬂ--

We've Just about 4o £ these ;

261

you are here »

-.@ﬁgwntn
TaweEw

unified interface,

movie...");

WMoviel) Follows the same sequente
:it:adm to cda by hand before, but wraps
it wpna handy mebhod that does all
the work. Notice that For eath task we

amp.an{); . nsibility to the
ce ol LA v e i Ry o 0%
amp:setSurroundSound() ; wcs?mﬂlrﬁ ey

amp . getVolume (5) ;

dvd.on{);

dvd.play (movie) ;
I

public woid endMovie(] |
Syatem.out.printin(*shutting movie theater down...");
popper . .off();
lights.on():
screen.up();: m
projector.off({); fin
amp.off(); of
dvd.stop (};
dvd.eject ()7
dvd.off(};

d endMoviel) takes care
shu{finﬂ everyything down
for us, ﬁﬂaim eath fask is
delegated to the appropriate
Lomponent in the subsyst.em

Think about the facades you've encountered in the Java API.
Where would yvou like to have a few new ones?

262

Chapter 7

More wflﬂ.‘l‘ i"h*Ts“'

That’s it; you've got another patte:
Watch out, this one can challenge

264 Chapler 7

the adapter pattern

But what does this mean in real terms? T means when vou
are designing a svseem, for any object, be careful of the
number of classes it interacts with and also how it comes
interact with those classes,

This principle prevents us from creating designs than have

a large number of classes coupled ogether so that changes
in one part of the system cascade w other parts. When you
build a lot ol dependencies between many classes, you are
building a fragile svstem that will be costly o maintaim and
complex for others o understand,

WA\
QW E W How many classes is this code coupled to?

public float getTemp() |
return station.getThermometer () .getTemperature() ;

you are here ¢+ 265

This sounds kind of stringent doesn’t 10" What's the harm in
calling the method of an object we get back from another
call? Well, if we were o do that, then we'd he making a
recquest of another objects subpart and increasing the
number of objects we directly know), Tn such cases, the
principle forees us woask the object 1o make the request for us;
that way we don’t have o know about its component objects
[and we keep our circle of friends small). For example:

public float getTemp () {

Wikhoub the Thermometer thermometer = station.getThermcocmeter() ;
Printigle return thermometer.getTemperature () ;
}

Here we 3;4; bhe thermometer uhfl:i
Crom the station and then eall the
ﬁ:‘lz_llfm?clra-l’_wzf] method ourselves.

With the public float getTemp() {
P—r;cn?lt return station.getTemperature(); %
}

When we apply the principle, we add a
withod +o the Station class that makes
the vequest Lo the thermometer For u
This vedutes the nurdber of elasses we're
dﬂf’! ndtn‘l:. an

266 Chapter 7

the adapter pattern

and siill

m[n‘h 'TE
Larm gall

we're treating a new

public void start (Ksy }ﬂ:_‘?},:- /

Doors doors

boolean authorized =

if jauthorized) |

%, its methods are legal

new Doors{);

Q—//—

engine.start () i]

You tan 2all & method

on an ﬂhj:n‘.t passed ds
./_‘ a parameter

Vou tan tall 3 metho?d
towmpanent of the ﬂhJﬂi

thod on 3

updateDashboardDisplay () 2] 'f'--..___‘___ "]"Iou can eall @ lotal methad
doors.lock{):

wl‘thln ﬂlf ﬂh‘}fﬂ{-'

You tan eall 2 method on 3n
ob_j:.:t You treate or instantiate

public weoid updateDashboardDisplay{) |
/f update display

Q: There is another principle called
the Law of Demeter; how ara thay
related?

A: The two are one and the same

and you'll encounter these terms being
intermixed, We prefer 1o use the Principle of
Least Knowledge for a couple of reasons: (1)
the name is mare intuitive and (2) the use of
the word “Law” implies we always have fo

tf:ere. fire no

Dumb Questions

apply this principle, In fact, no principla is a
law, all principles should be used when and
where they are helpful. All design involves
tradeaffs (abstractons versus speed, space
versus time, and so an) and while principles
provide guidance, all factors should be taken
into account before applying them.

Q: Are there any disadvantages
to applying the Principle of Least
Knowledge?

A: Yes; while the principle reduces
the dependencies between objects and
studies have shown this reduces software
maintenance. it is alao the casze that
applying this principle resulls in more
“wrapper” classes being written to handle
methad calls to other companents. This
can result in increased complexity and
development time as well as decreased
runtime performance.

267

you are here

nowledge

Do either of these classes violate the Principle of Least Knowledge
Why or why not?

ion;
1d constructor

I |
1.getThermometer () .getTemperatured) ;

public House |
WeatherStation station;

¢/ other methods and constructor

public float getTemp() |
Thertemeter thermometer = statian.getThers

return getTempHelper (Chermometer);

public fioat getTempHelpar (Thermometer thermomel
return thermometer.getTemperature();

- PQOQWEW

Can you think of a comman use of Java that violates the Principle of Least Knowledge?
Should you care?

&llupupdno weisis INocge MOoH J1amsuy

268 Chapter 7

r pattern

The HomeTheaterFatade .~
minages all those subsystem
dm?qn:n{.s For the elient.

[t keeps the elient simple

and flexible

1111111

T

e cn 2% 5
Peater towf

JfFeeking the hert:

e

keep svb Laws adhering
::l:i P*:nr:;\?c a#Tea:Jc Erowledog
a5 well. 1F this gets too ;:’:1‘5 “;nd
-#ri ds are ity im Gl »
t.':: ::ridmnadd&mﬂi §acades te
e of subsystems:

P

?;-l-_tn-h's-
y intEr ¥ ate,
Lonvert

o um-F"F

FOUT SR Nl W PR U

interface into one a client
expects.

A facade decouples a client
fram a complex subsystem.

Implementing an adapter may
require litle work or a great deal
of work depending on the size
and complexity of the target
intarface.

Implementing a facade requires
that we compose the facade
with its subsystem and use
delegation to parform the work
of the facade.

There are two forms of the

Adapter Pattern: object and

Heos destees e adapters
Ance.

yre than
ystem.

sbject to
decorator
1 new
sibilities,
asetof

the adapter pattern

her crossword. All of the sclution words are from this chapter.

Across

1. True or false, Adapters can only wrap one
object

2. An Adapter an interface

6. Movie we watched (5 words)

10. If in Eurcpe you might need one of these
(two words)

11. Adapter with two roles (two words)

14. Facade still low level access

153. Ducks do it better than Turkeys

16. Disadvantage of the Principle of Least
Knowledge: foo many

17. A simplifies an interface

19. New American dream (two words)

Down

2. Decorator called Adapter this (3 words)

3. One advantage of Facade

4, Principle that wasn't as easy as it sounded

(twa words)

7.8 adds new behavior

8. Masquerading as a Duck

9. Example that vioclates the Principle of Least

Knowledge: System.out,

12. No mavie is complete without this

13. Adapter client uses the interface

18. An Adapter and a Decorator can be said to
an ohject

vou are here » 271

P o prl

aﬁw

ksl | e
Duck diacky
Randon rand;

pablic Duckpdapter [Deck duock) |

public woid gobble(l |

Yo penod

Let's say we alse need an agapber that converts a Duck 1o a Turkey,
Lat's call it Duckfdapter. Write that class:

Tukett
Hn-""'“'imﬂj v b

P L
T ke mwher B

[

zlans hickpdaptar laglemnts Turksy |

We skath 4 vefevence to Ehe Dhk we der sdaptoy

t duck = duck;

rand = pew FBandemibs
¢\\ We aha retrerte 3 randos. oleec

kake & luck at the Thll method

\Lﬂ s2e how ok s wsed
aokble et betomes 3 s

tack . iquack 1)

pablic woid My Q|
1f Jrand.naxbInt{8F == O3 |
e 1 \
|
e o T

Gimee duilia Ty 3 w{llmyﬂ :
1::#"-|:~|th d-lt'-&cd-u:unl'}[h‘ﬂrt
bl om AVETERE v ol e Hireen

For edch, why ar why nol?

public Bousa |
Weghherstation atation;

i ther mrthods ard constroctor

poblic Ooat gebtTenpi] |

raturn station.getTherposeter |) .getTemperatureo(]

I '_‘—'_‘—|___\—'__

| _—

public Bauge

WeatherStation stabion:

FF ather methods Al conitroetot

fublic b oaekTemp i)
Thernomster tharmorma Tar
return. getTerpHelpar {Chermonatar) ¢

public Boat gek!
PRTUFR Tharncmet ey . gatTunparatuead]

s

sk, moed v the

4

Da aithar of these classes vickate the Principle of Least Knowladge?

Thocer'k smlate Protile

Tha teee e hikig oo -
e Vaan arykiing really Ehamaped s

e
Wi Peint ok Lot
b :',,:"'q,ﬂ' _d._,:?.t
Y Gy aneie” 51

i

atation.gatThamoretar (]

pHalpar |Tharmomatar tharmogstas) |

o Lrart Erowioder!
iy argeid Pre

sall 4o ather method?

272

Chapter 7

the adapter pattern

i an Enumeration tooan
- to o Enumaration,

ents Enumeration |

public IteratorEnumeration(Iterator iterator) |
thig.iterator = iterator;

]

public boclean hasMoreElementsi{) |
return iterator.hasNext():

]

public Ohject nextElement () |
return iterator.next();

wWH o Do ~ W AT T
Manch each parrers with i intent:
ttern Intent
p— Convert one interface (o
ancther
pter Don't alter interface. but add
resporsibility
ihle
--_-__‘_hh_‘f} Make interface simpler

you are here ¢+ 273

¢ El
i ﬂgﬂﬂﬁﬁﬂﬁﬁﬂ!ﬂﬂﬂﬂﬂﬂ
u u

© |
> |

A T|E

>=
m |
i [

4

!
Al
El
7|
x|
N
o]
i
Ed

x [o]clolm [z] fo Jn 2o Jm)

274 Chapter 7

We're on an encapsulation roll; we've encapsulated object
creation, method invocation, complex interfaces, ducks,
pizzas... what could be next? we're going to get down to encapsulating
pieces of algorthms so that subclasses can hook themselves right into a computation
anytime they want. \We're even going to learn about a design principle inspired by
Hallywood

a follo¥ these recipes
;reparind srarbuz® peverages:
Rech
qater
in poiling waker
e in cUP
and milk The vetipe For
pobfee looks @ lek:
P the vetipe for
Recipt Lea, doesn t it?
water
in poiling water
(3} pour =2 in cup
(a8} ndd 1 emor
al1 secipet apa Srarbnts cotfes grade umoEets and shauld e kePt
lt‘l:iﬂ-tl]! ;mdiﬂ-'nt:i.ll-

2 "y
76 Chapter 8

HErE 3 wwe et - =

| £ ';-GT m##ﬂﬂa
“Lfﬁf T4 of the brainnd mamsal
public class Coffee | / soran
vold prepareRecipa() | G 4 the shes i 1..-;1;#“"-"'-* as
L

beoilWater(): elhod-
brewCcoffeeGrinds () ; J_\ a “‘T“# =
pourlInCup();

addsugarandMilk () ;
}

public void beoilWater() |
System.out.printlin("Boiling water”); T"__ Eath of these methods
! i....fl:r-!nl.'.i one step of

¥
pablic void brewCoffeeGrinds() | t Iﬁzhhﬂii walan,
System.out.printin(*Dripping Coffee through filter™): R

o brew the toffee, pour

the eofFee m a eup and
public void pourInCup() | / add suadr and milk.
Bystem.out.printin(™Pouring into cup”):

H
public void addSugardndMilki() {

System.out.println(™Adding Sugar and Milk™);:
}

you are here » 277

This locks very
ane wWe Jl.-s-{'. il
CQ-FF::,' {:h: e
pell 1 steps ave diff
basically the =

Water{) |
rintln{*Boiling water®):

pTeaBag() | bhese fwo

rintln{"Steeping the tea”y;g._‘\ These Lwe methods are
methods are Eﬂr’{l& the
Sll'-'t‘-.la];lud {')J' same 35 ‘H\{']I are

emon() | Tea. m Coffeel So

eineln {"Adding Leamon™) ; é‘/ G dcf'm'lﬂll‘f

have some Lode
InCup{) |{ duplication 8eirg

|

rintln(*Pouring inte cup”): &_/ om here.

When we've got code
duplication, that's a good sign
we need to cleah up the design. It
seems like here we should abstract
the commonality into a base class
since coffee and tea are so
similar?

the template method pattern

of code duplication. Take
w5 “.il.",.ir.'l:l'l'l Fhl.ﬂ'\ i.]i:' h“'l\ '!-' H.IL(!

() and powrinCort)
ker 4 both subclasses

Lhe super tlass

The bailWa
methods are shared by
o they are defined in

/

—rm AW b Iy

IdE'Fiin{d a ﬂb‘ifra.c-[_

Eath subclass /_\a = overrides
m'F'Cmfn{j its prepareR %E{I?{”

awn rELIPE breweCatts Ih?l}mmb
S
b Siiga 5
T

- PQWEW

Did we do a good job on the redesign? Hmmmm, take another look. Are we overlooking somea other
commonality? What are other ways that Coffee and Tea are similar?

280 Chapter 8

d pattern

are
shracted

ase ¢lass.

w? Yes, let's find out...

you are here b 281

il aned
il addlemon()

Tea

fie i e the ['mu
erclass:

the template method pattern

same 'f‘r!?artﬂch?tn method will be vsed
both Tea and Cothee f\rc?mﬂer.lfeﬂ i
Final betause we don b want ovr subtlasses
e Lo averride this method and thange the
We've aenevalized steps 2 and & o brewl)
rrage and 3ddCondinerts()

Coblee and Tea hardle these methods

wrent ways, they're goms $o have to
sred as abstract Let the subelasses

tbout that stufH!

~ Remember, we meved these inke
the CaffeineBeverage ¢lass (back
in our elass diaﬁrar,.l

w rely on
¢ brewing and

§in owr design Tea and Cobfee
s evkend CabbeineBeverane.

et Tea needs to define brewl) and

raLt

e deals
mstead

283

ages

Draw the new class diagram now that we've moved the
implementation of prepareRecipe() into the CaffeineBeverage class

r

Cakbeme Beverage know
and conbrols the st
and ?erE“ "

khe vecive:

eps | and B hselh, be
velies om Tea or Enl:&
4o do skeps T and &

water

d pattern

"E:
el

P qu'fldl

milk

285

VolQ POUCinuupi) 1
/f implementation
}

= that!

Let’s look

mplate method:™

— ?-n_-?argﬁgr.i?cﬂ is our 'I:;nh?lirfz method

rlr |

//

Why?

B:t.au!n::
L (D) It is 3 method, after all

—— (2) |+ sevves 3s 3 template Lor an
a.|3¢r|-|:_hm. in Ehit ase, an a|5ur'|ﬂm for
making taf feimated beverages.

R In the template, each step of
[— the alaorithe is

— y represented
" b"lr' a method

- Some methods are handled
" by this elass

wand somé gre handled

by the subelass

The methods that reed fo
~. be supplied by a subtlass are
detlared abstract

The Te:n]:late Method defines the steps of an algorithm and allows

subclasses to]:ruvicle the im]llementatian for one or more steps.

286 Chapler 8

dace methodd:;

reRecipe () ;

rithm for making caffeine

v T —————

feineBeverage.

the e, which only the subclass know

i the cup; this is the same for all beverages so i
sverage:

]

ncliments, which are specific to each heverage, so
us this:

tsi):

you are here

288

VRIS LA LTS

FVYITUI DU T ID'FIFIFA LD AWAD I-Il'Jd

Coffee and Tea are running the show;
they control the algorithm,

Code is duplicated across Coffee and
Tea.

Code changes to the algorithm
require opening the subclasses and
making multiple changes.

Classes are organized in a structure
that requires a lot of work to add a
new caffeine beverage.

Knowledge of the algorithm and how
to implement it is distributed over
many classes.

Chapler 8

The CaffeineBeverage class runs
the show, it has the algorithm, and
protects it.

The CaffeineBeverage class
maximizes reuse among the
subclasses.

The algorithm lives in one place and
code changes only need to be made
there.

The Template Method version provides
a framawork that other caffeine
beverages can be plugged into. New
caffeine beverages only need to
implement a couple of methods,

The CaffeineBeverage class
concentrates knowledge about the
algerithm and relies on subclassas to
provide complete implementations.

d pattern

This pattern is all about creating a
As you've seen i's just a methaod; ¢
algorithm as aset of steps. One o
implemented by o subelass, This e
while subelasses provide some par

Lets check out the class diagram:;

The AbstractClass
gontains the Lemplate
method

_and abstract versions
of the cperations used —
i the *.E'-Fh‘l;ﬁ method

/’-)
ward The ContreteClass implements

be
There 7 Rasen 20 the abstract operations,
WLﬂﬂE‘“@r Kok e #&f which are talled when the
m!i"l*-"':: * d"‘w:d 2 f;gmfla{-,:.ﬂ.qe{-,hndﬂ needs them.
prata® ,
fﬂ"ﬂ# .,.zh'm'd'

you are here v 289

template method pattern up close

Code Up Close

Let’s take a closer look at how the AbstractClass is defined, including the emplate method

and primitve operations,

Heve we have our shebract tlass ik
1s declaved abstract and meant to
be subelassed by tlasses that provide
'|n='r|£mtr-4:a'|:'|w5 of the operations ki s
detlared Final to prevent subtlasses
from veworking the sequentt

it'l?" b ‘I:,hlf a'|ua.¢r|.‘|;’_hm.
abstract class Abstractflass |
final void templateMetheod() { The JJE"‘"T":T'I‘I wekhod
primitiveOperationl () ; d:—FiM;, the sequence of
pramitiveoperation2 (07 ¢ Ly ey reenlt
concreteOperation() : b',- ey Presented
} i
abstract void primitiveCperationl () :j

abstract veoid primitiveCperationz ()
In this exomple, tuo of

void concreteQperation() { the primitiy
// implementation here "”{FL‘ :“FL:"E‘;:ML
} tontrete subdlgezes

We alse have a tontrete operation de’ -~
in the abstract glass. More about th
kinds of metheds in a bit.

290 Chapter 8

the template method pattern

Code Way Up Close

Now we're going o look even closer at the oypes ol method chat can go in the abstract class:

We've thanged the
JL:-?'IB-JCEMCJE,’hod[:' Lo ntlude

a vew method 2l

abstract class AbstractClass |

final wvoid templateMethod() |
primitiveOperationl ()}
primitivedperation2();

concreteOperation() ; We still have our primitive
hook () ; (—\ methods; these are

abstract and implemented
b*:,l tontrete subtlasses.

H
abstract veid primitiveOperationl{):

T e At A Lortrete a?er;harn i dt-‘r"m:.d. in the

final wvoid concreteCperation() | sbstract elass This one 1 Ii“_:i::;: 5
f‘f imlmnt‘tiﬂn HEES FI.'HHH 1] tha-l‘. !-ubﬂaisci tan T @ mrl:hod
} It may be used in the ’ccm?lab:

divetthy, or wsed by sulbe] asses-
woid hook() {}

T

[q tonevete method, bd._R_//' We tan alse have tontrete methods Lhat de no‘l;hmgl
it dots nothing! by default; we tall these “hooks." Subelasses are Free

to ovevride these but don't have 4o We've aoing to
see how these are useful on the next pane-

you are here v+ 201

il in the
npty
Aves

y" the

¢ wish: a
ik,

s take
it a fesw

With a hook, I can override

the method, or not. Tt's my choice.
If I don't, the abstract class

pravides a default implementation.

Fignal chatement

Weve added 3 likkle eond

on E-ort.'rr_-l'_:
yak bases s seLess .
; :'i;hnd Euslr.p'mt.ﬂ'\rélnbﬂﬂﬁilr.wthﬂ;j |I
Z‘h Ln."-{,:!rhﬂ WF\NT Ca f.m'td.lmfn 1 n"h"ir
; anhd'lmr_r.{:sJ

thew do we call ad

we Ve dedin |
: H'E‘:; 3 [mosthy) empty dekautt
m - This methed Jml:.

i
m?'ltml'_n{'.-a il a{hmﬁ A

weburns free and does m

This is 3 hook betauze the
subtlass £an override Hhis
method, but doesn't have +o

‘the template method pattern

our subelass, Here, the hook controls whether
sertain part of the algorithm: that is, whether

o

stomer wants the condiment? Just ask !

thHook extends CaffeineBeverageWithHoaok |

Vool

=— (reate a tea
itHook () ;]
2l F‘l £o|r-¢¢:

cipel) on bothl

to
like lemon with your tea
O

ok tup of cofkee

d a mite b
hrd £ 'uaus{.'ﬁm:

ot ot well pass on th

to cup ‘I.:l
like milk and sugar with your coffee (y/n)? n <

offea through filter expanding ton Db

Mow, I would have thought
that functionality like asking the
customer could have been used by
all subclasses?

the template method pattern

You know what? We agree with vou. But vou
have o admit before vou thought of that it was a
precy cool example of how a hook can be psed
to conditonally control the How of the algorithm

m the abstract class. Righe?

Were sure you can think of many other more
realisc scenarios where you could use the
template method and hooks in your own code,

Q: When I'm creating a template
method, how da | know when to use
abstract methods and when to use
hooks?

A: Use abstract methods when your
subclass MUST provide an implementation
of the method or step in the algarithm.

Lise hooks when that part of the algorithm

is opfional. With hooks, a subclass may
choose to implement that hook, bul it doesn't
have ta.

Q,: What are hooks really supposed
to be used for?

A: There are a few uses of hooks. As
we just said, a hook may provide a way for
a subclass fo implemant an optional part

thererare o o
Dumb Questions

af an algorithm, or if it isn't important to
the subclass’ implementation, it can skip
it, Anather use is o give the subclass

a chance to react to some step in the
template methad that is about to happen,
or just happened. For instance, a hook
method like justReCrderedListi) allows the
subclass to perform some activity (such as
redisplaying an cnscreen representation)
after an internal list is reordered, As you've
seen a hook can also provide a subclass
with the ability to make a decision for the
abstract class,

Q: Does a subclass have to
implement all the abstract methods in the
AbstractClass?

A: Yes, each concrete subclass defines
{he entire sel of abstract methods and

provides a complete implementation of the
undefined steps of the template method's
algarithm.

Q: It seems like | should keep my
abstract methods small in number,
otherwise it will be a big job to implement
them in the subclass,

A: That's & good thing to keep in

mind when you wrile template methods,
Somelimes this can be done by not making
the steps of your algorithm too granular, Bul
it's obviously a trade off: the less granularity,
the less flexibility,

Femember, foo, that some steps will be
optional; 50 you can implement these as
haoks rather than abstract Gasses, easing
the burden on the subclasses of your
absfract class.

205

you are here »

1ciple b

le for you: it's called the

od Principle
@il call you.

By LUF PCHIRCIRINT L, LRREIL A3 vl |'l:l!-| il, j.;l:ll ik fli_l ".'I.'-H.h f](]
design?

The Hollywood principle gives us a way o prevent
“dependency o™ Dependency ror happens when you have
high-level components depending on low-level components
depending on high-level componenes depending on sideways
components depending on low-level components, and so on,
When rot etz in, no one can easily understand the way a
system is designed.

With the Hollywood Principle, we allow lowdlevel components
0 hook themselves o a system, bt the high-level
components determine when they are needed, and how, In
other words, the high-level components give the low-level
components a “don’t call ws, we'll call you™ treament.

296 Chapter 8

Pt the mug =
mm?ar-tﬁ'h-" tontre
when il"'d' Therw-

|

é-.’_‘\ Jﬁl JW-|:\Itf ﬂm?ﬂ‘ﬂ.‘n{

ealls & i
dn—:cHuIIr

never
gh-level ¢om Ponent

brewi
addCor
T

The subelgesa; dre ug
Provide mplementati,

;@%‘gwnsu
PaweERw

d pattern

‘emd

th

ver
Jass
£im

What other patterns make use of the Hollywood Principle?

AsiaUio Aue Janaasqn 'pouisiy Aotoed eyl

you are here v 297

who does what

therejare no

Dumb Questions

* How does the Hollywood Principle
relate to the Dependency Inversion
Principle that we learned a few chapters
back?

A: The Dependency Inversion
Principle teaches us to avoid the use of

concrete ciasses and instead work as
much as passible with abstractions, Tha
Hollywaod Principle is a technique for
building frameworks or components so that
lower-level components can be hooked

Strategy

Fﬂuﬂn}' Method

inte the computation, bul without creating
dependencies between the lower-level
components and the higher-level layers. So,
they both have the goal of decoupling, but
the Dependency Imversion Principle makes a
much stronger and general stalement aboul
how to aveid dependancies in design,

The Hollywood Principle gives us a
technique for creating designs that allow
low-level struciures to interoperate while
preventing other classes from becoming too
dependent on them.

Q: |5 a low-level component
disallowed from calling a method in a

higher-level companent?

A‘.’ Mot really. In fact, a low level
component will often end up calling a8 method
defined above it in the inheritance hierarchy
purely through inheritance. Bul we want o
avoid creating explicit circular dependencies
batween the low-level component and the
high-level ones,

Subelasses decide how
to implement steps in an

algorithm

Subelasses decide which

conerete classes to create

298 Chapter 8

the template method pattern

okay. in the Java API...

Int
classi
when we
must lea
out of ¢
to recoc
becau
hole

S a®

L

you are here + 209

s eveates 3 L1 ©% T TNy Corkl) method

er to
35 the dﬁb“‘h#:?]ﬂm Lh of the arvdy and tells
[abo pases s Busk dement

public static void =sort (Object[] a) |
Qbject aux[] = (Object[]l)a.clons()s
mergeSort (aux, a, 0, a.length, 0);

The ma-ﬁcgari:ﬂ methed Eontaing
the sort atgaﬁ{:hh. and relies on an

implementation of the f.nn-far:To{]
methed to tm?l:{;: the ﬂhﬂiﬂ!m—
& Think of this a5 {
private static volid mergeSort (Object src[], Object dest[], bﬂﬂ'l’li‘h methad.

int low, int high, int off)
{

for (int 1i=low; i<highs 1++){
for {(int j=i; j>low &&
{{Comparable}deat[j=1]) .compareTo({ (Comparable)dest [J]120; Jj==1
[

swap (dest, j., J=1}; &_,—\
* \ tompareTol) i the method we

[This is 3 onerete method, alvead i "l out”
. ; ; weed Lo im ement o il
return; defined in the ﬂr\'a';rs tlass. 4 +;¢ hm?lafl methed.

300 Chapler 8

I: the designers of sort(} wanted it

. 50 they had w make sort]) a saic
rom anvwhere, But that’s okay,

if it were inoa superclass, Now,
ause sort]| really isn't defined in
thod needs to know that you've

o) method, or else vou don’t have
e the sort algorvithm,

s maile use of the Comparable
s implement this ineerfce, which
ompare Tol),

3

lement the Comparable
G interface since we aren't veally swbelassing,

public class Duck implemsnts Comparabls [
String name;

int weight; F‘\\ Our Ducks have a name ard 3 weight

public Duck{String name, int weight) |
this.name = name;
this.weight = weight:
|
WE ve hm.n |-|;_ 1|lh?l!| ill D'-I.E-kl .dﬂ

public String testring() | is print their name and weight!
return name + " weighs “ + weight;

p Dieay, heve's what sort needs...

public int compareTo{Object cbject) |

]

: tompareTol) Lakes another Dutk 1o tompare THIS Dutk te
Duck etherbDuck = (Duck)cobiect:

if (thiz.weight < otherDuck.weight) |

return -1;

| else if (this.weight == otherDuck.weight) E'.-.HH Here's where we ’?‘“‘g how Dutks
return 0; tompare. |§ THIS I}w:k weighs |ess

| elze | // this,weight > otherDuck.weight Fhan otherDuck then we vetues =1
return 1; if they are equal, we rebuen O and i

] THIS Duck weighs more, we veduen |,

302 Chapler 8

),
2) .
1),
2).

11
Lk}

g 2

the template method pattern

an El1"';"f ‘?;
lock goott

We recd
Dutks; these

,

e~ Let's print them to see
Lheir names and weights

&=

117

It's sort fimel

£ Let's ‘r"'ri.n‘l'_ them '.raaam.] to see
bheir names and weigh ts

you are here » 203

The sork) method conbrols

(template method in the Array the alagrithm, no tlass tan

acks: change bhie, sovt() tounts
on 3 Comparable elass o
(ducks) ; provide the implementation of
. . tompare Tol)
il its helper mergeSort)) conrol
1eed (0 compare two items one
list is in sorced order.
iparing vwo ducks, the sort
Juck’s compareTol) method
s, The compareTol) method
wk and passed the duck 1w be
mpareTo (ducks([1]); —— e Duck I

X

Dugk 4o tompare it to

1 sorted order, they're swapped with
ethodd in Arrays:

inues comparing and swapping Duck
2 correct order!

theregare 1o

Dumb Questions

Q_: Is this really the Template
Method Pattern, or are you trying too
hard?

A: The pattem calls for implementing
an algorithm and letting subclasses supply
fhe implementation of the steps - and the
Arrays sort is chearly not doing that! But,

as we know, patierns in the wild aren't
always just like the textbook patterns. They
have to be madified ta fit the context and
implementation constraints,

The designers of the Arrays sort{) method
had a few constraints, Ingeneral, vou cant
subclass a Java array and they wanted the
sart to be used on all arrays (and gach array
i a different class). So they defined a static
method and deferred the compansan part of

the algarithm to the items being sorted.

So, while it's not a texibook template
method, this implementation is stll in the
spiril of the Template Method Pattern, Also,
by eliminating the requirement that you have
to subclass Arrays to use this algorithm,
they've made sarfing in some ways more
flexible and useful.

Q: This implementation of sorting
actually seems more like the Strategy
Pattarn than the Template Mathod
Pattern. Why do we consider it
Template Method?

AI You're probably thinking that
because the Strategy Pattern uses objec!
composition. You're right in a way - we're

the template method pattern

using the Arrays object to sort our array, so
thal's similar o Strategy. But remember,

in Strateqy, the class that you compose
with implements the antire algarithm. The
algorithm that Arrays implements for sorf

is incomplete; it needs a class to fill in the
missing compareTal) methad. So, in that
way, it's more like Template Method.

Q: Are there other examples of
template metheds in the Java API?

A: Yes, you'll find them in a few
places, For example, java.io has a read()
method in InputStream that subclasses
musl implement and is used by the tempale
method read(byie bl], int off, int len).

-.__g,(fipwntn
PTAWEWR

We know that we should favor composition over inheritance, right? Well, the implementers of the
sort() template method decided not to use inheritance and instead to implement sort(} as a static
method that is composed with a Comparable at runtime. How is this better? How is it worse? How
would you approach this problem? Do Java arrays make this particulary tricky?

- p 4
—.-_wAuu
"PAOWEWR

Think of another pattern that is a specialization of the template method. In this specialization, primitive
operations are used to create and return objects. What pattern is this?

305

you are here »

Don't lock behind the
public MyFrame(String title} { .t.u'rhin? Jusk sowe
super {titie} ; imikialization heve.
this,setDefaultClosebperation (JFrams,EXIT ON_CTLOSE) :

this.setSize (300,300} ;
this,.saetVisible (frue);

i
TN JFrame's update alaorithm calls paint(). By

public void paint(Graphics graphics) | default, pamtl) deoes nothing.. it's 3 hook.
super.paint (graphics); We've overriding paint(), and telling the
String msg = “I rule!!”; JFvame to draw a message in the windew.

graphics.drawitring{msag, 100, 100):
!

public static void main{string[] args) |{
MyFrame myFrame = new MyFrame|“Head First Design Patterns”):

]

he message that gets .
in bhe Frame betause we ve
b the i) method.

public vold start()

repaint () ;
]

public void stop()
message = "“Oh,
repaint (}:

I

iplet.

small program that runs inaweb pag
his eluss provides several hooks, Lets

The
:ends Applet | / it Wi

rt?&i‘l'l'l'.
glass ¢
the ap)

World, I'm alive!™;

1 € The start hook allows the applet o do

message = "Now I'm starting up...":

1

now I'm being stopped...”;

public veid destroyi() |

ff applet 18 golng away. ..

]

public void paint (Graphics g) |

]

Concrete a

X

semething when the applet is just sbout
to be displayed on the web page.

the
if Lhe wser goes Lo another page,
skop hook is wsed; and the applet 3 do-
whatever it needs to do Lo stop ks aetions.

find the destroy hook is used when the applet

is going to be destroyed, say, when the browser
g.drawstring (message, 5, 15}; pane is tlosed. We tould try to display

something here, but what weuld be the pomt?

Well looky heve! Our old friend the
paintl) method! Applet also makes
uie of this method as @ hook.

Pplets make extensive use of hooks to su]:]:nly their

own behaviors. Because these methods are implﬁnﬂnted as
hooks, the applet isn't re-quimc[to imple:nent them.

you are here » 307

1 was just kidding! But seriously, what are vou
doing here? We haven't heard from you in eight
chapters!

You might want w remind the reader what
vou're all about, since it’s been so long,

Hey, that does sound a lot like what T do, But
my intent's a litde different from yours; my job
is to detine the outline of an algorichm, but

let mv subelasses do some of the work, That
way, | can have different implementations of an
algorithm’s individual steps, but keep control
over the algorithm’s soructure, Seems like you
have to give up control of vour algorithms.

308 Chapler 8

O,

N e e and
Factory Method are related, aren’t you?

I'd heard you were on the final dralt of vour
chapter and | thought 'd swing by to see how
it was going. We have a lot in common, so |
thought 1 might be able to help...

I don't know, since Chapter 1, people have
heen stopping me in the street saving, “Aren’t
you that pattern...” So I think they know who
I am. But for your sake: I define a family of
algorithms and make them interchangeable.
Since each algorithm is encapsulated, the client
can use different algorithms easily.

I'm not sure U'd put it quite like gat... and
anyway, I'm not stuck using inheritance for
algorithm implementations, [offer clients a
choice of algorithm implementation through
ohject composition.

are conirol over
sate code, In Gact,
+the same excepl
s are ITILIL'fh nuore
slicated code

all the subwelasses

Yeah, well, I'm real happy for ya, but don't
forget I'm the most used pactern around.
Why? Because I provide a fundamental
mcthod for code reuse that allows subclasses w
specily behavior. I'm sure you can see that this
is perfect for creating frameworks,

How's that? My superclass 15 abstract,

Like I said Strategy, I'm real happy for you.
Thanks for stopping by, but I've got ta get the
rest of this chapter done,

Gotit, Don’t eall us, we'll call you,.,

the template method pattern

Strategy

You might be a litthe more efficient (just a little)
and require fewer objects. Ard you might also
be a little less complicated in comparison to
my delegation model, but 'm more flexable
because 1 use object compaosition. With me,
clients can change their algorithms at runtime
simply by using a different strategy object.
Come on, they didn’t choose me for Chaprer |
lor nothing!

Yeah, | guess... but, what about dependency?
You're way more dependent than me.

But you have to depend on methods
implemented in your superclass, which are part
of vour algorithm, 1 don’t depend on anyone;
I can do the entire algorithm myself!

Okay, okav, don’t get touchy. T'll let you
work, but let me know if’ vou need my special
technigques anyway, I'm always glad to help.

you are here + 309

310

again....

Across

1. Strategy uses
inheritance
4, Type of sort used in Arrays
3. The JFrame hook method that we overrode to
print "l Rule"
6. The Template Method Pattern uses

to defer implementation to other

rather than

classes

g, Coffee and

9, Don't call us, wa'll call you is known as the
Principle

12, A template method defines the steps of an

13. In this chapter we gave you more

14, The template method is usually defined in an method as a

class

16. Class that likes weh pages

Chapler 8

Down

2. algorithm steps are implemented
by hook meathods

3, Factory Method is a of

Template Method
7. The steps in the algorithm that must be
supplied by the subclasses are usually declared

8. Huey, Louie and Dewey all weigh

pounds

9. A mathod in the abstract superclass that doas

nothing or provides default behavior is called a
method

10. Big headed pattern

11. Our favorite coffee shop in Objectville

15. The Arrays class implemenis its template

method

winen

ey

4 pattern
ple menting
icFr_r somt
|SELES.

Abstract methods are
implemented by subclasses.

Hooks are methods that do
nothing or defaull behavior in
the abstract class, but may be
ovemidden in the subclass.

To prevent subclasses from
changing the algorithm in the
template method, declare the
template method as final.

The Hollywood Principle guides
us o put decision-making in
high-level modules that can
decide how and when to call
low level modules.

You'll see lots of uses of the
Temnplate Method Pattern in
real world code, but don't
expect it all {like any pattern) fo
be designed "by the book."

The Strategy and Template
Method Pattems both
encapsulate algorithms, one
by inheritance and one by
composition.

The Factary Method is a
specialization of Template
Method.

you are hera » 311

312

Encapsilate interchangable
Template Methed behayiors and oee dalepagion o

decide which behavior 1o mea

Subelamses docide o
o implement seps in an
alporithm

Steatepy

Factory Method Subclnsses Jecile which
S concrete clijsses (o cregie

Chapter 8

noved
lass:

the template method pattern

AlclT

7R
[alplplilelT]

&
A
K
x |
2

5]

€|

o
L

There are lots of »

in an Array, a Stack, a Lis

tradecffs, Bul Sl SOME Plu i pumn s i sy oo Trsar i i poss i e w2 5w e,
when he does, are you going to show him your implementation? We certainly hope not!
That just wouldn't be professional. Well, you don't have to risk your career; you're going
to see how you can allow your clients to iterate through your objects without ever getting
a peek at how you store your objects. You're also going to learn how to create some
super collections of objects that can leap over some impressive data structures in a single
bound. And if that's not enough, you're alse going to learn a thing or two about object

responsibility.

this Is a new chapter 315

it the
Bur,

-.. but we can't agree on
hawr +a imnlement Ane menns
n

5, and
Fusis
1tions...
ritten

public class Menultem |
String name;
String description;
boolean vegetarian;
double price:

public Menultem(String name,
String description,

boolean vegetarian, (——-.\
A Menuld

double price)

{ a flag 4o
this.name = name: and 3 prit
this.description = description; Lonstrued,

this.vegetarian = vegetarian;
this.price = price:
|

public string getName() |
return name;
|
e) . These aekter methods
5t LD t +
plille Brelay gaepaesrERtlon () | let you access the Fields
return description: J bl v e,
1

public double getPrice() |
return price;
1

public boolesn isVegetarian() {

return vegetar ian;

}

you are here » 317

I
318

menultems = new ArrayList();

addItem ("KLB' s Pancake Breakfast®,
“Pancakes with scrambled eqgs, and toast”,
true;

addItem{“Regular Pancake Breakfast",
“"Pancakes with fried =ggs, sausage”,
false,
2.98);

addItem({"Blueberry Pancakes",
“Pancakes made with fresh blueberries”,

true,
3.49);

addItem(“Waffles",

Eath menw ttem is added o the

2.99%; q_\ﬁwﬂuﬂ; heve, in the tonstruttor

E—ad'l M“uljgtm has @ wamiE; a

deseription, whether or 'n-ﬂt. itsa
v:yﬁjﬁﬂhifzmjinﬂ{hc?rmz

“waffles, with vour choice cof blueberries or strawberries”,

true,
3.689);
|
public void addItem{String name, String description,
boolean vegetarian, double price)
1
Mznultem menultem = new Menulteminame, description,
menultems.add (menultem)

1

public ArraylList getMenultems(} | kr"'_ThE L
return menultems:

Toadd 3
Merwltem cBie

H'UE'“"' l'*,ﬂ""l L:'“
\eth, pass™

ik bo the

nﬁﬂzla

in gath av

nEw

EIML

ﬁ:BL*“‘"
vegetarian, price);

| rede that depends
Low has bunth of other menu "
. 'l:i'ED'l' dotsn wahf
// other menu methods here “'I// ﬂﬁJf-"'fil""a"fL“t imple e

'E.ﬂ‘ haqt b TEI,.H“TEI a“ {h

Chapter 8

at tode!

Menulbems() method veturns the list of menu items

the iterator and composite patterns

Haah! An Arraylist.. T
used a REAL Array so I can
control the maximum size of my menu
and get my Menultems without
having to use a cast.

£y e

Din
/__\ Pnd heve's Mel's w?i:me-,-&a{m of the

ad by he's waing an fireay se he
'EMS = &; el saes 2 ke J??:-Foa:ht menu and retrieve meni

gan tonbrol the mas size el
Menultem{] menultems; <,_/’/—/ thems oub without having to east, his objects

public DinerMenud} |
menuTtems = new MenuTtem[MAY TTEMS]; Like Lou, Mel treates his menu items in the
' o cosbrucon, uing the addlten) heper mcthod
addItem({“Vegetarian BLT",
“(Fakin') Bacon with lettuce & tomato on whole wheat®™, true, 2.99);
addItem (“BLT",
"Bacon with lettuce & tomakteo on whole wheat”™, false, 2.99);
addItem{"Soup of the day”,
"Soup of the day, with -a side of potate salad”, false, 3.290):
addItem (“Hotdog”,
"A hot dog, with saurkraut, relish, cnions, topped with cheese”,
false, 3.05);
ff a vouple of other Diner Menu items added here
) addlbeml) takes all the pavameters
netessary to treate 3 Mens|tem and
public void addltem{String name, 3tring description, o charkiabes ene. [E also thetks to make
i boolean vegetarian, double price) e haven't hit the menu size limit:
Menultem menultem = new Msnultem{name, dascription, wvegetarian, price);
if (numberofltems >= MAX ITEMS) |
System.err.println(*Sorry, menu is full! Can’t add item to menu®): 5)
] else |
menultems [numberofitems] = menultem: Mel srczifically wints to keep his menu under 2
numberofItems = numberdfItems + 1; tertain size frﬂmabﬁm he doesn's have o
; | remember too redny retipes),

public Menultem|[] getMepnultems() | 5eﬂﬂ=mltemf] veburns the arvay oF mens e
return menultems;

}

Like Low, Mel has a bunth of code that depends on the implementation of
// other menu methods here &— L P !"-'""5 an ful'r'ra‘f- He's +oo hu-.*:,r tocking Lo vewrite all of Ehis

you are here » 319

The Java-Enabled Waitress Specification

- “plice”
Java-Enabled Waitress: code-namsa

rintMenut)

tha memnld
ints every
- Pr incs =

i item on

reakfasr.!ﬂ.e:‘lu]

just preakfast 1iTEMS

printE
— prints

: ST o }
LuncnMenat .
o inst lynch 1Tems

~ prints

iantenail

11 =ia L] r [k 1 EmnS
PR
WV arid e ML

prlnLUege:ar
- prints &

the iterator and composite patterns

v we'd implement the printhlenul) method:

ch menu, vou'll need to call the getMenulem)

wsedlenu and the DinerMenuo o retrieve their

te that each requrns a diffevent oype: The methed looks
Lhe same, but the
umsarcrtb"“hﬂ

ditFevent types

cakeHouseMenu = new FPancakeHouseMenul();:
tems = pancakeHouseMenu.getMenultemsi():

= new DinerMenu();
3 = dinerMenu.getMenultems () : The imrrm:ntaﬁm
is lhwins 'E-h-rﬂllﬁh;
i’""ﬂk":ifﬁ items are
in dn ﬁr'ranﬂ__i,;f:‘ luneh
items are in an ﬂ‘rra*l

from the Pancake HouseMenu, we'll loop through the
s ArravList, And w pring out the Diner items we'll

Mo, we have to
& 'm?!lmc-n{ tuo dif Fevert

loops +o step throvah
Ehe two iu?lcmtnﬂ'lf-"\?ﬂ"

< breakfastItems.size)z L1++) |

[tem = (Menultem)breakfastItems.get (i)}
int {menultem.getMams() + " “);
intlnimenultem.getPrice () + ™ ™); of the menu items..
intln (menultem.getDescription())

}h_ One]W‘F for the

< lunchItems.lengthy i++) | Prraylist..
[tem = lunchItems[i];

int (menultem.getNHame() + ™ "); and ancther for
intln(menultem.getPrice(} + * »); the Array

intlnimenultem.getDescription{)):

method in the Waitress is going 1o be a variatgon of
oing to need o ger both menus and use two loops 0

I another restaurant with a different implementation
thiree loups,

you are here » 321

what's the goal

pen your Fencil

d A, We are coding to the
PancakeHouseMeno and DinerMenuo
concrele implementations, not (o an
mterface,

(3 B. The Waitress doesn’t implement the
Java Waitress API and so she isn't

dar.

witch from using
ather type of menu
its list of menw items
we'tl have Lo modify
e Waitress,

d

Based on our implementation of printMenu),

I

which ol the following apply?

. The Wattress needs to know how cach

menu represents is internal collection of
menu items: this violates encapsulation.

We have duplicate cade: the printddenu)
method needs two separate I"""'i"‘“ 0
ierate over the two dillerent kinds of
menus And if we added a third menn,
we'd have yet another loop.

The implementation isn't based on
MEML (Meno XML and so 150’ as
interoperable as it should be,

in & difficult positon. They don’t want o change their

wottld mean rewridng a loc of code that 35 10 each respectve menn
e e e e e emenee - CEIUE gIVE 111, then we're going w have the job of implementing a
Waitress thar 15 going to e hard o maintain and extend.

It would really be nice it we could find 2 way w allow them w implement the same incerface for
their menus (they're alreacy close, except for the return type of the gethlenultems!) method).
That way we can minimize the concrete references in the Waitress code and also hopefully ged
ridl of the muliple loops required o iecae over both mens,

Sound good? Well, how are we going o do tha?

322 Chapter 9

the iterator and composite patterns

I"rl‘]\.'i_l: LIS
yerts
rk

i and get()

Vi i+H) {

astTteama oat (1) :

‘ray

—
for (int i = 0; i < lunchItems.length;
Menultem menultem
}

i.
lunchItems[i]; f
N

We use the arvay
subsfrr;"f"i:-= te "tz?
J:'hrmn_lh ibems.

324

Wew, this code
15 eﬂl‘.ﬂj the

me 35 the
breakbastMene
tode.

Came situation heve: the tlie
hasiextl) and nextl); behing
the iterator indexes into th

Chapter 8

We ask the breakfastMenu
¥~ foraniberator of i g

telterator() Menultems.

L ﬁhd while '!:l'vt'rl!' are more i'b:n.i]:-F-f'_...

‘ator.next() ;

We f.l!{'v H.}-M‘-\"-t item,

——'-_""--..\\
rnatiIl

\‘\ The nextl) methed
returns fhe rent

ﬂaljtf-{ in the a’flfl"'fﬂa'tf

we can implement Iierators for

wriys, lists, hashwables, | pick
Lats sy we wanted o
ay used in the DinerMenu, I

ey Meru|terator is an
slementation oF Herator
st knows how to iterate
er an arvay o; Mgl ems

Ieevator and hook it ing the

the iterator and composite patterns

When we say
COLLECTION we just
mean a group of objects. They
might be stored in very different
data structures like lists, arrays,
hashtables, but they're
still collections. We also
sometimes call these
AGGREGATES,

b 325

define the

o nlﬂ'thﬂds'

¥ method returns 3 boolean
chher or not there ave more
fevate over..

) methad

it ‘J'El'hﬁnl:.

And now we need to implement a concrete Iterator that works

for the Diner menu:
We |n?t:ht"-£ the
[—\ [tevator interface

public class DinserMenulterator implemsnts Iterator | s khe
Menultem|[] items; ?m-lﬁ,m ,,.;m. ho; the
int position = 0; £ Larert Tﬂ""'{i"“" .
1{,_...;{',@ ovEr bhe arvay

public DinerMenulterator{Menultem[] items) |

this.items = items;
} _J The tonstrustor takes the

Frray oF meru ihems we are

public Object next{) | going to tevate over.
Menultem menultem = items[positian];
positien = position + 1: The nextl) method veturns the

return menultem; next item in the array and
H intrements the position.

public boolean hasWext() |
if (position »= items.length || items[pesition] == null) {
return false:

} eiza {
reiurn true:
I

Betause the diner thef went shead and

t The hasNext() method eheeks Lo allocated a max sized arvay, we need to
see it we've seen all the elements thetk not only if we ave at the end of
of the arrady and retuwrns true if the arvay, but also if he mext ikem is
there are more to iterate 'E.hrvu;'h. viell, whigh inditates there are mo meore

i{::ms.

326 Chapter 9

patterns

// constructor here

: We've not acing Lo need the getiMenultems()
k- BRICRRS RS //—\ ”-I;r:pd ag-\:mfg and in Faet, we dom + want it

3 betause it exposes our internal implementation!

ey
-
public Iterator createlterator{() | "—\
return new DinerMenulterater(menultems); '
\ Here's the ereatelterator) method.
It treates a DinecMenu[terator
M} other menu methods here from the mens/tems array and

veturns it to the lient.

We're returning the [terator wherkace. The tlient

doesnt need 4o know hew +he menultems are maintained

in the DinerMeru, nor does it need to know how the

e st berator is implemented. [+ Jwt needs to use the
w0 step throwgh the items in +he menu

ent the PancakeHouselterator yourself and make the changes
it into the PancakeHouselMeanu,

you are here » 327

public class Waitress |

328

PancakeHouseMenu pancakeHouseManu; [n the torstruttor the Waitress
DinerMenu dinerMenu: f'\Jc:al:c:. the two menus.

public Wailtress(PancakeHouseMenu pancakeHouseMenu, DinerMenu dinerMenu} |
this.pancakeHouseMenu = pancakeHouseMenus

this.dinerMenu = dinerMsnu; The ?ﬁhwcmn
greates dwo
public void printMenu(} | l[' ibevabors one For
Iterator pancakelterator = pancakeHouseMenu.createlterator()i eath mene
Iterator dinerlterator = dinerMenu.createlterateri); —
System.out.printin ("MENU\n----\nEREAKFAST™) ;
printMenu(pancakelterator): - Aind then H“f the 0
System.cut.printin (™\nLUMCH™) ; cuerloaded ?"""LM""
printMenu(dinerliterator); Ef with each wterator.
|
Test if theve are The sverloadéd
private void printMenu(Iterator iteratc-r] E‘/ anyf mare items. l[-rlhﬂ'-"ltn'-f}
while (iterator.nasHexti()) Geb Lhe | cbhed v
Menultem menultem = [MenuI tem) iterator . .next {] F
System.out.print {menultem.getNams () + ", "} next item the H‘“a{“ to
System.out.print {menultem.getPrice() + * —= “j; step through the
System.out.printlni{menultem.getDescription()) ; meni items and
] V) print them.
b |Aze ‘H‘I\! e ‘kﬂ-
// other methods here Nete that we're dewn get name, price
teo m___E_l*’_"l and destription
and fhnﬁ them.

Chapter 8

the iterator and composite patterns

Let’s write some
aitress works...

Fivst we treate the new menus.
T /
miString argsf]) |
rancakeHouseMenu = new PancakeHouseMenu();
i = new DinerMenu () ;

= new Waltress(pancakseHouseManu, dinerMenu): €&~ Then we treate a

il athiiass ad maee

The Waitress is bound to concrete
classes (Menultem[] and ArrayList).

The Waitress is bound to two different
concrete Menu classes, despite their
interfaces being almost identical.

330 Chapter 9

w

kG

The Waitress now uses an interface
(lterator),

The Menu interfaces are now exactly
the same and, uh oh, we still dont
have a common interface, which
means the Waitress is still bound to
two concrete Menu classes. We'd
better fix that.

Nete that the iterator e us g war 5

throuh the elements of ?an ag,grcga{i J:T%ti.i
-F-.:rf.ihg, the agareqate to clutber its own interlace
with 3 bunth of methods to support traversal of iks
elements £ also allows Lhe implementation of the
iterator to live outside of the asaregate; in ather
words, we've entapsulated the inberation

the iterator and composite patterns

vespetkive mend ’

you are here »

g
5 be decowpled W_EJ" oW,
the contrete uiing 3 Lommon
£a Memwis _!h"m
ayList, or with ;:;!"'F-’j&
E she can get a i
A i'ﬂ'Fh.'mEh{gd
twe Lontrete
— tlasses
sment
Ui lVjgns wmposmEn
Pane gkettouse . Lhey are
the new Lrti’f,tl'h“'iw} *Et::iw ov their
cronsible For treating te
Yen Lems implemen :

3

Q: What if | don't want to provide
the ability to remove something from the
underlying collection of objects?

A: The remove/|| method is considered
oplianal. You don'l have o provide remove
functionality, But, cbvicusly you do need fo
provide the method because it's part of the
lterator interface. If you're not going fo allow
remavel} in your iterator you'llwant to throw

332 Chapter 9

are exactly the same
ng to do that and

we dlid that so vou
hiar, we're going to
rage by implementing
|;-1|‘:’ You'll soon see,

ksh:,ust like gur previous delLimition.

ve have an addibional methed that
to remove the last item returned by

"} method from the agaresate.

e that both

nost... actually, its
Eace, bul ArrayList has
reeded o implement
tation for the

ator) method (or any

therapare o
Dumb (Jiuesﬁmﬁ

the rurlime exception

java.lang, UnsuppartedCperationException.
The lterator AP documentation specifies that
this exception may be thrown from remove)
and any client that is a good citizen will
check for this exception when calling the
rermave() method.

Q} How does remove() behave
under multiple threads that may be
using different iterators over the sama
collection of objects?

= The behavior of the removel) is
unspecified if the collection changes while
wou are iterating over it, So you should ba
careful in designing your own multithreaded
code when accessing a collection
concurmently.

public class DinerMenulterator implements Iterator |

Now we need w make the changes w allow the DinerMenu o work with java.utl lierator.

Fiest we import. java util [evator, {
intevface we've going to implement.
Menultem[] list;

int positian = 0;

public DinerMenulterator(Menultem(] list) |
this.list = list; ;
} Nene of our ewrrent
h?ltmh{';'ﬂh ﬁ'hﬁlﬁﬂ-‘-
public Object next{) {
//implementation here
j Jut we do need to implement vemovel).
public boolean hasNext() { Here, betause the ehef is using a Fived
J/implementation here sized Array, we just shift all the

| elements up one when removel) is talled.

t
334

printMenu {dinerIterator):
¥

private void printMenu(lIterator iterater) |
while (iterator.hasNext()) |

1ress
& More
s eomnirol

a simple mterfaee that just
ents aet an iterator for

tms in the menu

Ehe Jivautil [terator as well

————— Weneed 1o veplace the
contvete Menu elasses
with the Menu Interface.

Menu) |

reatelterator();
ator{):

Hn{'.hmﬂ_ ¢ hinjc:

Menultem menultem = (Menultem)iterator.next();

System.out.print (menultem.getWame ()} +

A

“:';

System.out.print (menultem.getPrice() + ™ -- “j;
Bystem.out.printlo(menultem.getDescription()):

}

/¢ other metheds here

Chapter 8

patterns

em of
I.rﬁ on

lem of

|.m.5 an
of the

Lhr

3

Q PM}kEH‘duHMgnu and DimMehu hew implement
the Menu ;h'Eﬂ"FaGI_. whith megns {‘_h:'f' need £a

implement the new eveatelteratorl) methed. We're no

itevator

‘Q' We don't
Eath eontrete Menu is vesponsible j
for ereating the appropriate
tentrete |[terator elass.

T'his makes a low of sense: the patern gives you a way
to step through the elements of an aggregate without
hawving to know how things are represented under the
covers, Youve seen thar with the two implementations
of Menus, Bug the eflece of wsing iverators i your

dlesign is just as importanc: once you have a uniform way

ol accessing the elemenis of” all vour aggregate ohjects,
you can write polyimorphic code thar works with any
of these ageregates — just like the printddenu) methodd,
which doesn’t care i the meno items are held inan
Arrav or ArravList (or anvihing else that can ereate an
leeracor), as long as it can get hold of an leraton

The other important impact on your design is thac the
Leerawor Patern takes the responsibility ol gaversing
elements and gives that responsibilive o the iwerawr
ohject, not the aggregae object. This not only keeps
the agoregate interface and implementation simpler,

it removes the responsibility for iteration from the
aggregate and keeps the aggregate focused on the
things it should be focused on (managing a collection of
obijects), not on iteraton,

Let's check out the class diagram wo put all the pieces in
Context...

336 Chapler 8

'he [terator Pattern allows
raversal of the elements

{f an aggregate without
xp-osing‘ the unJErlying

im]:lem'an tation.

[t also places the task of

traversal on the iterator
object, not on the aggregate,
which simplifies the
aggregate interface and
imPIEmEntaiinn, and Places
the mspunsil;i[i{y where it
should be.

patterns

-.t:'rFEH,E
bevclaee
oS

=, and

adds

aver
Lotlettion
w the

o Hr: o
use Javas
kace, You
Ite Yo

K\

EHH C,Dm‘:rfil'.ti'ul 55r:%§-|:_,g
is responsible For
instantiating &
Contretelterator that -
tan iterate over its

Lol |t¢£lan G-F nb}:a',‘ll:\.

@p RALN
The class diagram for the lterator Pattern looks very similar to another Pattem you've studied; can you
think of what it is? Hint: A subclass decides which object to create.

you are here » 337

g&a about (lerator

Q: I've seen other books show the
[terator class diagram with the methods
first(), next(), isDane() and currentitem().
Why are these methods different?

» Those are the “classic” method
names that have been used. Thess names
have changed over ime and we now have
nexll), hasMNext(} and even remove() in
java.ufil lheratar,

Let's look at the classic methods, The
nexti) and currentitern({) have been merged
into one method in java.util. The eDone()
method has obviously become hasMext();
bt we have no method corresponding to
firstl}. Thaf's because in Java we fend fo
just get a new iterator whenever wa need to
start the traversal over. Nevertheless, you
can see there is very little difference in these
interfaces. In fact, there is a whole range
of behaviors you ¢an give your iterators,
The remaove() method is an example of an
extension in java.util. terator,

Q': I've heard about “internal”
iterators and “external” iterators. What
are they? Which kind did we implament
in the exampla?

* We implemented an external iterator,
which means that the client contralz the
iteration by calling next() to gel the next
alament. An infermal iterator is contralled
by the iterator itself, In that case, because
it's the iterator that's stepping through the
elements, you have to tell the terator what
la do with those elements 2s it goas through
them. Thal means you need a way 1o pass
an operation fo an iterator. Internal iterators
are less flexible that external iterators
because the client doesn't have control of
the iteration. However, some might argue

338

Chapter 8

therejare o

Dumb Questions

that they are easier to use because you just
hand them an operation and el them to
iterate, and they do all fhe work for you.

Q: Could | implement an Iterator that
can go backwards as well as backwards?

A: Definitely. In thal case, you'd
probably want to add twa methods, one to
get to the previous element, and ane to tell
you when you're at the beginning of the
collection of elements. Java's Collection
Framework provides another type of erator
interface called Listlerator, This Haralos
adds previous{) and a few athar methods

to the standard herator interface. If is
supported by any Collection that implements
the List interface.

Q: Who defines the ordering of the
iteration in a collection like Hashtable,
which are inherently unordered?

A: lferators imply no ordering. The
underlying collections may be unordered as
in a hashtable ar in a bag; they may even
contain duplicates, So ordering is refated
to both the properties of the underlying
collection and fo the implementation. In
general, you should make no assumptions
about ordering unless the Caollection
documentation indicates otherwise.

Q: You said we can write
“polymorphic code” using an iterator;
can you explain that more?

AI When we write methods that take
Iterators as parameters, we are using
palymarphic iteration. That means we are
creating code that can Rerate over any

collection as long as it supports lterator.
We don'l care about how the collection
is implemented, we can still write code to
iterate owver it,

Q': If I'm using Java, won't | always
want to use the java.util.lterator
interface so | can use my own iterator
implementations with classes that are
alraady using the Java iterators?

A: Probably. If you have a common
Iterator interface, it will certainly make it
easier for you to mix and match your cwn
aggragates with Java aggregates fike
ArrayList and Vector, But remember, if you
need to add funclionality to your iterator
interface for your aggregates, you can
always extend the lterator interface.

Q: I've seen an Enumeration
interface in Java; does that implement
the Iterator Pattern?

A: We talked about this in the Adapter
Chapter. Remember? The java.util,
Enumeration is an older implemantation

of [terafor thai has since been replaced

by java.util.lterator. Enumeration has

twio methods, hasMoreElemants(),
correspanding to hasMext{). and
nextElementr), correspanding to next(),
However, you'll probably want to use [terator
over Enumeration as more Java classes
support it. If you need to convert from one
to another, review the Adapler Chapter
again where you implemanted the adapter
for Enumeration and |terator,

JLELY DAL TTECMEE" I'i':‘jl_](lltﬁllll]llu‘h

< elass two reasons Lo 1'h;lr'|,L',='.

ae collection changes in
> way we iterawe changes, So
15 at the center of another

ciple [
id have only one
ange. :

¢ in a class like the plague

i of opportunites for

!'\'\.H‘:'.‘i (LN I'.I!"_l,l'lgﬂ' il'l.l.hl'l';l‘if‘h

ge in the futre, and when
it does, 105 going o atlect two aspects of vour design.

The solution? The principle guides us 10 assign each
responstbility w one class, and only one class,

That's right, it%s as easy as that, and then again s not:
separating responsibility in design is one of the most
difficult things to do. Qur brains are just too good at secing
a set ol behaviors and grouping them wgether even when
there are actually two or more responsibiliies. The only
way o suceeed 5w be diligent in examining vour designs
andl 1o watch out for signals thar a dlass s changing in more
Lhan ome wiy s Your sysiem grows,

the iterator and composite patterns

Ever_f rw:s]:«:msilyilj‘r}F of a
class is an area of Potmtial
cl-aangm Mﬂre than one

mspunsi]:ility means more
than one area of change.

is to

ngle

au’ll
& of
a
gle
lity.

eor
Jon
it of
) . 1as jow
cohesion when it is designed around a
set of unrelated functions.

Cohesion iz a more general concept
than the Single Responsibility Principle,
but the two are closaly related,

Classes that adhere to the principle
tend to have high cohesion and are
more maintainable than classes that
{ake on multiple responsibilities and
have low cohesion.

you are here » 339

an.

the iterator and composite patterns

1 thing you're learning
I the Iterator pattern
[just heard that Objectville
rs and Acquisitions has done
i deal... we're merging with
tville Café and adopting their
dinner menu.

Come on,
think positively, T'm
sure we can find o way to
work them into the
Iterator Pattern

you are here v 341

e the

er Thems in 3 Hashtable.

4 =k gl &hﬁr"
he Cafe is storing the > Welll see shorthy..

Joes that suﬂ'ﬂr{‘. [ferater

Like the other Menus, the mens ibems are
. inibialized in the tonstruttor.

1ce, tomato, and fries",

......... Ve e e g g
“A cup of the soup of the day, with a side salad”,
falza, 3.89};
addItem(™Burrito”,
"& large burrito, with whole pinte beans, salsa, guacamole”,
true, 4.29);
|
f\\ Here's where we treate 3 new Mensltem
public void addItem(Str'}.:}g nams, StrJi.ng des:riptimﬁ:, and 3dd it o the v LEms hashtable:
boolean vegetarian, double price)
!
Menultem menultem = new Menultem[name, description, vegetarian, price);
memiltems.put (menultem.getiame (), menultem);
] M
the k‘t}‘ i the it the value is the imenistem Dh_j'ti'.{.
public Hashtable getItems () | Fdme,

return menultems:
| (—\

| We're not aoing 4o need this anymore.

your pen:ul
Before looking at the next page, guickly jot down the three things
we have to do to this code to fit it into our framewaork:

342 Chapter 8

the iterator and composite patterns

& Il

plements the Menu
the Waitress can use
he ather fwo Menws

_ We've using Hashtable becavse it's a
tommen data struttuce For storing values,
you tould also use the newer HashMap.

on,
irice)

pticn, wvegetarian, price):

we tan get nid of g,ctlb:ms{:' so we don't
entation of merultems fo the Waitress

here's where we implement Lhe treatelderator)
ol Notice that we've rot gettimg an [terator
khe whole Hashtable, _}uﬁ; For the values

re complex than the ArrayList because it

supports both keys and values, but we can still get an Iterator
for the values (which are the Menultems).

public Iterator createlterator() {
return menultems.values () .iterator() ;

}]
First we get the values of 4he Hathtable,

whith is JusE 3 telleztion of all the
objects in the hashiable

)

Luckily that collection F
iterateor!) rethed, Svort e

objeet of type Javautil Hevator

whith veturns 3

you are here » 343

344

lenu?

|r|.JC|: H‘Il'_ 'I'lr-ﬂ;f‘b'ﬂﬁ in
. other merws; dnd we

viable. }/

lenu, 'Menu cafeMend) |

eatelterator(}:
ibard):

L T We're using the Cafes
mens for our dinner mems.
All we have to do to print
it s treate the iterator,

— pass it o printMenul).

That's it!

i = Hﬂmng thanges heve

"V

- “:l;

S;rsl:em. cut .i:nrintln {menul tﬂ!‘}l getDescription());

Chapter 8

patterns

|‘-'1 Erile

wartress

>

wted 1o -5,'-':: the
35 an easy way to
" pdEr mEnk :Ihﬂ---

Dur e ihems
dferert imle
and two dﬁ#""’
'|nh'f$m for

we didn't want her to

shout how the mens

are]hfhtmthﬂd-

R

1 she doesn't have to worry abouwt which

ementation we used; she always uses the s
vlace - [terator — to ierate over mem
s been decoupled from the implementatio

—

I Nqﬁ-
r ‘Fﬂr hgﬂ
! Ldn g 'U'I:
ievate over
Jetts fnd
[FH bﬂtm
len detaily
le,
h"

Mast have different

mtevFates.

But almost all of

Ehem support 3

way to obtain @n

[evator.

L

patterns

Herator
ashiable

£asy; when

rtarl]

348

+ H heve. 'fou tan add :.IMJ- u.;-m..-h
T:'I:mtrujc.s ‘C'ran- \ram' tnﬁl!t‘.‘_mn wthmrl‘_

ever Knowing how ks 'lmlfltm:h'b!d-

Here's owr old Friend, the itevatorl)
method. With this method, you tan get
an [terator for any tlass that implements
the Collestion Ihll:,l:r'['ﬂf-t

Dther hardy methads intlude sizel)
to get the number of elements

and 'Eaﬁrra&ﬂ to turn Your
tollection into zn array

The nice thing about Collections and

Iterator is that each Collection object
knows how to create its own Iterator.
Calling iterater() on an ArrayList returns a

concrete Iterator made for Arraylists, but

you never need to see or worry about the
concrete class it uses; you just use the

Tterator interface,

Chapter 8

Wateh it!

Hashtable is one of a faw
classes that indirectly
supports lterator. As you saw
when we implemented the
CafeMenu, you could get an
lterator from it, but only by
first retrieving its Collection
called values. If you think
about it, this makes sense:
the Hashtable holds two
sets of objects: keys and
values, If we want to iterate
aver its values, we first need
o retrieve them from the
Hashtable, and then obtain
the iterator.

Lo use bor fin, VORI WSE 3 for statement that looks Like:

abju assigned be the rent
element in Lhe collettion
cath Lime threush the loop

]‘['.l:lr‘i{::: avier
eath ohieet in
the tollection.

\

for (Object obj: collection) {

1

Here's how vou iterate over an Array List using for/in:

Arraylist items = new ArrayList():

items.add (new MenuItem("Pancakes”, “delicious pancake:
items.add (new Menultem(*Wafflea™, “yummy waffles”™, true,
items.add (new Menultem(“Toast”, “perfect teoast", trus,

faor (Menultem item: items) |
System.out.println(“Breakfast item: ™ + item});
] %
J‘tﬂ'iﬁ oVER 'H-.g]is* and f‘rin'f:
eath rem,

patterns

35 new
wre for/
dre you
before
in.

ternate their lunch menu items;in other words,
ay and Sunday, and other items on Tuesday,
de for a new “Alternating” DinerMenu Iterator
d it up and put it on the fridge in the Diner as a
braces fell on the floor and they were too small
ieed,

printManu() |

r pancakelterator = pancakeHeouseMenu.createlterator();
r dinperIteratar = dinerMenu.createlteratar():

r cafelterator = cafeMenu.createlterator():

out.println("MENU\N----"nBREAKFAST") ;

nu{pancakelterator};

sut.println ("\nLUNCH"):
nu{dinerIterator); Three calls o printMens.

aut.println (*\nDINNER") ; =
nu{cafelterator);

J

E:vcrw,ll;me we add or remeve 3 meni we re going

{o have to opén +his tode up Fur Iihahaﬂ

I's ot the Waitress”™ Tl We have done a geeat job ol decoupling the menu implementation and
extracting the iteration into an iterator. But we stll are handling the menus with separate, mdependent
objects — we need a way w manage them together,

EEB RALN
POQOWEWR
The Waitress still needs to make three calls to printMenu(), one for each menu. Can you think of a

way to combine the menus so that only one call neads to be made? Or perhaps so that one [terator is
passed to the Waitress to iterate over all the menus?

you are here ¢+ 351

a new design¥

This isn't so bad, all we

need to do is package
the menus up inte an Arraylist
and then get its iterator to iterat
through each Menu, The code in th
Waitress is going to be simple
and it will handle any number of
manus,

Sounds like the chel is on 1w something. Lets give it a ry:

public class Waitress | /-__—\ Now we jus
ArrayList menus; h..aTj_,,;-t
public Waitress (ArrayList menus) |
this.menus = menus;

}

public void printMenu() |
Iterator menulterator = menus.iterator(); g___
while (menuiterator.hasNext(}) |
Menu menu = [(Menulmenulterator.next ()i
printMenu (menu.createlterator())

}

vioid printMenu(Iterater iterator) |
while (iterater.hasNext()) {
Menultem menultem = [(Menultem)iterator.ne._ ..,
System.out.print (menultem. getName() + ", “}; tharaes here
System.ont.print (menultem.getPrice () + » —— "7
System.cut.printlnimenultem.getDescription())

This looks prety good, although we've lost the names of the menus,
bt we could add the names o each menu,

352 Chapter 9

the iterator and composite patterns

I just heard the
Diner is going To be
creating a dessert menu that
is going to be an insert info
their regular menu.

Mernw to hold 3 submens, but
ision @ merw to d Menultem

M
pes are dlf-r.f'rcnt_, o this

sert menu to

you are here b 353

354

pontive decision w
into something that
the menus (and

e aoing o ell the
to reimplement their

level of complexity
PEIEn fow, we're
san accommodate

" our new design?

We need some kind of a tree shaped structure tha
will accommoddate menus, submenus and menu
ILErs.

We need to make sure we maintain a way to
traverse the items n each meno thac is ac least
as convenient as what we are doing now with
HLCTaLoes,

We may need w be able traverse the items in a
more Hexible manner. For instance, we might
need o iterate over only the Diner's dessert menu,
ar we might need w iterate over the Diner's entire
menu, including che dessert submenu,

Chapter 8

There comesatime
when we must refactor
our code in order for it to grow.
To not do so would leave us with
rigid, inflexible code that has
ho hope of ever sprouting
new life.

the iterator and composite patterns

Betause we need }o represent
menus, nested cub menus and e
e 1hEmMS; WE Lam na-twally 1
Lhem n 3 bree—like shrutfure.

We need to 7
K -'.5 steomodate Mc_.-.us... _

Hh-- and wEnu items.
@ 99089 =5
we shill need Lo be able

Lo braverse the al the
items in the tree.

We alsg need {5 b, able L,
raverse moye FIembI}rj for

i
nitange VEr One mepy

Q

e

et et egur Mg

-

- PQWEWR

How would you handle this new wrinkle to our design requirements? Think about it before tuming the page.

you are here + 3565

menu items, then any menu is a “compositon” because

it van contain both other menus and menu items. The
individual objects are just the menu items — they don’t hold
other objects, As you'll see, using a design that follows the
Composite Pattern is going to allow us o write some simple
code that can apply the same operation (like printng!) over
the entire menu strucore,

356 Chaptler 9

Hﬂq'; a i:ﬂt !'-Em'hl'l't

4 with
;hmthh
lled nodes-

B, N
Elements without thildren
ave called leaves.

2
Mlz:mTar: rodes and

Merskboms ae leaves

We tan treate arbibrarily
mm?ﬁg-}. 'l:'r’tEE

o it ot
N PN N
goe 0c0 @ ceo@
? — NN
Meru|Cems Q @ Q Q
Pind breat them a5 3 whole
/ F‘-‘-‘-‘
O =2
<4 N
QQQ 2089
M:nﬂh"" OH
cations £an ® Y
RO
Alpgr — Menus
LN O S odves O
e o ‘2 g
AN Y AN
goe 0e0 @ eeoe
1 TN e
s YIS
i ?rlhtt.'l

the iterator and composite patterns

The Composite Pattern
allows us to build structures
of u];jecis in the form of
trees that contain hoth

cnm]:ositiuns of u];jects and
individual nLjects as nodes.

Using a cumpoﬁte structure,
we can apply the same
oPeratinns over hoth
mmpﬁsitﬂ and individual
n]::ie:ts. In other words, in
most cases we can ignore
the differences hetween
compositions of objects and
individual nl;jects.

as7

you are here #

TR MRS

rtn:ﬂll’{'ﬂ' dnd &f’b::hlldf-}_. whr.l'..h L
don't mecessay] make a lot of
sense for 5 leat nods. We've

B0ing Lo Lome byelk to this issue

H L'Cﬂ'F has ne
-f-hlrdrf_h

1ﬁ| L-t&-l: de!
elements in
ﬂﬁs !JT' th'l
the Compos

Q:-' Compenent, Composite, Trees?
I'm confused.

AI A composite containg compangnts,

Componants come in two flavors;
composites and leaf elements, Sound
recursive? It is. & composite holds a set
of children, those children may be ather
compaosites or keaf elements.

358 Chaptler 9

T]'I-l!' Cﬂm‘}ghzht
default behavio
9etChild() and

mﬂ':fl i*'"FJCI'N!:I'-E a
v for add(), it
its operations.

thererare no
Dumkb @ueﬁtmns
When you organize data in this way you end
up with a tree structure (actually an upside
down tree structure) with a composite at the

root and branches of composites growing up
io leaf nodes.

Q: How does this relate to ferators?

ki
?q {L]Lt 1

kbt

A: Remember, we're taking a new
approach, We're gaing ta re-implement the
menus with a mew solution; the Compaosite
Pattern. 3o don't look for scme magical
framsformation from an iterator to a
composite. That said, the two work very
nicely fogether. You'll soon see thal we
can use ilerators in a couple of ways in he
composife implamentation,

L

Merultem overrides the me
sense, dnd uses fhe default
MeruComponent £or thase |
sense (like 3dd() _ it deesy’
3dd 3 tomponent 1o 3 Men
3dd eomponents 4o 3 Merw).

the iterator and composite patterns

h, we need o create a
and menu ems and allows

O MCTIUS OF e Zi.lf.‘!'.ﬁ."i.

o i menu, bt we can deal

. a sketch of how the menus

onent vepresents the interface for
stem and Menu. We've used an abstract
because we want to provide default
stions for these methods

/

:

"_,.-"-"ﬂ

We have some ok the
same methads you'll
rtm:mh!’r -F'rm'n ol
?‘rtvinu& YErsions of
Mewaltem and Meny,
and we've added fﬂn{f?.
add(), vemovel) and
ﬁ!‘{:l:h'lldﬂ. We'll desevibe
+hese soon, when we
implement owr new Mens
and Merultem elasses

ke
1 {‘_z L]
s

namit

_— for Mensltems, and some only make sense for
MenuComponent provides detau Menus, the default implementation is
mplementations for every method UnsupportedOperationException That way,
if Menultem or Mens doesn't support an
operation, they don't have to do anything,

public abstract class MenuComponent | H'DC';I'HH sugk Tihevik Ehe
e

3860

; . t implementation.
public void add(MsnuComponsnt menuCompenent) | Mﬁ

throw new UnsupportedfperationException();

}

public volid remove {(MenuConmponent menuCemponent) |
throw new UnsupportediperationExceptiond):

ﬂ We've EWLIF:d {:oge{.hrr the

!

it i i
public MenuCocmponent getChildiint i) | tompasite” methods — that is,
threw new UnsupportedOperationExceptioni); methods to add, vemave and et
} Menulomponents,

public String getHame () |
throw new UnsupportedOperationExceptiond)y

| Here ave the "operation’ methods,

¥ ‘h,ﬂi'ﬂ!-
public String getDescriptioni) | these are used bj'{h Mero!

throw hew UnsupportedOperaticonException{); | turns out we £an also use 3
} couple of them in Mens too, 35
public double getPricel) | 1| see in @ Louple of pages when
throw new UnsupportediperationExceptioni); we show the Menw tode.

}
public baaolean isVegetariani() |

throw new UnsupportedOperationExceptiond):
}

Fi‘in'tf,] 5 @n “n?ﬁa\hnn“ methad
public vaid printi) | /{:hat both our Menus and Menultems
throw new UnsupportedOperationExceptioni); will 1m1?|£mtn‘|:, bk we provide 3

'f default operation here.

Chapter 8

statog gescription, € IO,
boolean vegetarian, '-F ve Cobhers 2l
double price) ku_?s.ﬂlr: Erence : AL
This is f\‘:‘H‘.‘f muth like owr old
this.name = nams; menu item implementation

this.description = description;
this.vegstarian = vegstarian:
this.price = price;

]

public String getHame() |
return name;

l Heve's ow 5.=£+.:r methods — Jui{

A . lik ions implementats
public String getDescriptioni() | PNl P i W Wt o

return description;
I

public deouble getPrice() |
return price:
I
blic boal Ot P This is dif fevent from the previous imflcn-tn{.aﬂon-
3 i:tuiz ﬁ:neizrigi.arlan A Were we've overriding the print{) method in the
: ’ MenaCompenent tlass. For Menultem this method

| prints the complete mens endrys name, destription,

publie veid print(} { prite and whether or not it's veagie-
System.out.print{(® " + getName()):
if {isVegetarian()] |

System.out.print (™ {v)");
]
System.out.println (™, ™ + getPrice()):
System.out.println(™ == " + getDescription(h)i

you are here » 361

3e2

ch we're
ither Menus,
mplement:
ra Menu.

Meru Eaw have dn'y number of thildven

DI Mtnhﬂm?mtnh wt’“ usE an
in&,z]f; Arvaylist to hold these-

MLEAY el SL FSIUACDIEIRONEIl LY = [ow SAILAdYLLSL) ¢ T

String name;

SLIihy eREiption This is dif fevent than our old implementation:
K—-\ we're going to give eath Menu 3 name and 3

public Menu (String name, String description) |
this.nams = nams;
this.description = description;

deseription. Before, we just velied on havirg
diffevent tlasses for cath mene

I

public weid add{MenuComponent menuCcmponent) |
menuComponent s, add (menuCompanant) ; el e you 3dd Merultems o

| K-v obher Menus o a3 Men. Bﬂ'.im

y dre

public volid remove (MenuCompotent menuComponent) | both Menultems and M;;u& o i

menuCeomponents . remeve (menuCompensnt) ; MeruComponents, we just nee
] method to do both.

move 3 MeruComponent

public MenuConponent getChild({int 1) Y’w £an also ve a :‘- F

return (MenuComponent jmenuComponents.get (i) o 5"'-" a MenuComponent.
]

public String getMName() | E_’/—* ::f‘:hE:I‘f getter methods For getting the name and
return name;:
] Notice, we aren't overviding aetPricel) or isVegetarian()
b!'l:i'-l&l 'I:I'IDIE m:'thﬂdi d-ﬂh."*. m&kt LEnaE Ew 3 Menu
public String gei:_De?t:r;i.ptiﬂn {14 {although you tould arque that isV/eqetavian() might make
tBture, descoiptson; sense). |F someone Lries to tall those methods on a Merw,
| fwu &E{: dn Hhihﬂﬁﬁd{#:r}{ﬁm‘Emﬂ]M_
public vold print(} {
System.out.print ("\a" + getName(]))}:
System.out.printlni(™, " + getDescriptioni}}:
EYETAM. ONE .. PEIREIN (M —s—r e s e =Y

! L To print the Meny, we print. the

Menw's name and deseription.

Chapter 8

the iterator and composite patterns

Wait a sec, I don't understand the
implementation of print(). I thought I was
supposed to be able to apply the same operations to a
composite that T could fo a leaf. If I opply print() foa
composite with this implementation, all T getisa

simple menu name and description. I don't get a
printout of the COMPOSITE.

Excellent carch. Because menu is a composite and contains
bt Menu Items and other Menus, its pring) method shouald
|r|‘i|1| 1'\'L*I'}1]f|l1g it coneains. I i didn’o we'd have o iterate
lhrﬁugh the entire ('nﬂ'|[:u.-cil:' and]:ll‘iul each item ourselves,
That kind of defeats the purpose of having a composice
SETUCTure,

Az Wi 't L4 rfli;{ 0 S8, impl{-mu-miug |Hf"i:lt|:_ I:'ill'l*ﬂ":'ll.'\.\.' i LAY
|H"'“L'|:‘if' W 4l rl"l'!f' 4 r"i,ll.l:'h I:'rfr'll]]l:l]ll'l]t (£} |_H" i_l.l]]ﬂ' [ER} |}Ei|H_
itselll Ic's all wonde dully recursive and groovy, Check it out:

MenuComponent
its = new ArraylList():

do is tharge the printl) method

=
All we need o information about

1y the
make it print ML. anly . .
t;'::u'. Mers, but Al of this Meru's Lompant ts

ather Menus and Merultems-

e

~ Look! We aet to use an [terator We
use it +o iterate through all the Menv's
/ tomponents.. those tould be other Menus,
or they could be Menu|tems. Sinte both
Menus and Menultems implement printll, we
Ju'at'*. eall Fr-nfcf:' and the rest is uf to Lhem

ancther Meru
{ﬂ'.ﬂ-tlﬁn. and so on

you are herg » 363

the Waitress code belore

The Waitress tode veally = l-ihu. simple
‘Ehﬂ‘hdhfl‘ {Mw LE'I'C mERs

::Ii‘:. Lhe ane that tontains all the

menus, We've called that allMerns.

s has o do e print the entire meru
. . rehy - all £he mevus, and all the mens
AHEGUspEbAn e ibems — is all printl) on the Lop level mens

Wg‘i': 5ﬂhhi| I'ﬁ-rf ohe haFFl,’ wil":rgss_

Okay, one last thing before we write our test drive. Let’s get an idea of what the menu
composite is going 10 look like at rundme:

Every Menu and :::f:ﬂ“d menu halds 3]
Merultem implements the items,

MEMCanmJL in‘ber—Fir_:. C"‘”"‘P‘“ltﬂ —— 0 k‘/

A gt

Camn ke
Eath Menu
vg holds itewms...
k s Lav ikems and O

CREE AN TR

364 Chaptler 9

the iterator and composite patterns

Zoing Lo
O Eive us

Leb's First ereate al
bi €T e mem chipths

We alse need two h‘?

- Iq.
new Menu (“CAFE MENU®, “Dinnec”): level meny new that we
MenuConmponent dessertMenu = pame allMenus-
new Menu (“DE3ZSERT MENU", “Deszert of course!”™);

MenuComponent allMenus = new Menu(“ALL MENUSY, “All menus combined”™);
allMenus.add {pancakeHocuseMenu) ; £— We're using the Compasite add() method to add

allMenus.add (dinerMenu) ; eath menu 1o the top level meny, allMenus.
allMenus.add (cafeMenu) ;
New we weed to add all

[/ add menu items here e Lhe menu ikems, here's one
f_ﬁ..?[c, -Fm' +he \'ES‘L.- Ik
dinerMenu.add{new Menultem at the mr]._.h sourte Lode.
“"Fasta”,
“spaghetti with Marinara Sauce, and a siice of sourdough bread”,
true,
3.89)) And we've also adding 3 menu to 3
/ wems. Al dinexMenu caves about is that
dinerMant.add (dessertMenu) ; :ver*ﬁ;h%hg ik holds, whether it's 3 meru

them ov 3 meny, is @ MenuComponent

dessertMenu.add {new Menultem(
“Apple Pie”,
“Apple pie with a flakey crust, topped with wvanilla icecream”,
true,

1.59)): I'\\ Add some apple 'f'l:'EaL'hE

ff add more menu items hers dessert memw.

Waitress waitress = new Waitress{allMenus):

é“"\ Onte we've tonstrueted our enkire

waltress:printMenu(} ; e hi!rﬂ?ﬁ"-'fa we hand the whale
thing to the Wartress, and as

've seem, it easy as apple pie
F'l: her 1o frin{', it out. £

you are here » 365

lueberry syrup

strawberries

of potato salad

':':]ppﬁ'-{:i with cheese

of sourdough bread

,_é--""'"_'_rﬂ The new dessert

ménu id I_!'hn t."_d

anilla icecream “h‘""fakﬂ_
P |1-.{'.Ilr'-f| all he
graham crust [}

LAImET imERl

L nn-'F'nr!ﬁh{:.'E-

, tomato, and fries

lsa, guacamole

the iterafor and composite patterns

the story? First you tell us
sg, One Responsibility, and now you
us a pattern with two responsibilities
ss. The Composite Pattern manages

rarchy AND it performs operations
related to Menus.

e is some truth o that observation, We could sy thae the

posite Pattern takes the Single Responsibilite desien principle and
s it lor fransparency. What's transparency? Well, by allowing the
ponent interface to contain the child management operations aed
al operations, a client can reat both composites and leal nodes
rmly; so whether an element is a composite or leal” node becomes
parent o the elient,

given we have both tvpes of operations in the Component

wee lose a it ol saféty because aclient might try to do something
sropriae or meaningless on an element like v o add a menu
nenu item). This is a design decision: we could ke the design in
ther direction and separate out the responsibilides into interfaces.
would make our design safe, in the sense thar any mappropriate
an elements would be caught an compile time or runtime, but we'd
ransparency and our code would have to use conditionals and the
wnceaf OGP0

Sa. 1o return w vour guestion, this is a classic case of wadeoll, We are
H"l_l'-“ :li""i ||"- llt'h'i L';IF]}l'il'll:'lti'l]":\. I]ut Wt .l.'l.‘-“";"\ |'.|"f"fl L} 1_|]_k‘i[‘t'\"t‘ tlll"‘ "1‘[‘111
they have on our designs. Sometimes we purposely do things ina way
that seems to violaw the panciple. In some cases, however, this is a
matter of perspective; for instance, it might seem incorrect o have
child management operagons in the leaf nodes (like add]), remove(] and
getChild’), but then again you can always shift vour perspective and see
a leal as a node with zero children,

you are here v 367

for
el
55 10

[ER G20

i every

ratorl) methed
to the MenuComponent. This means
that each Merw and Menultem will
need to implement this method. [t also
means that ta“mﬁ treatelterator() on
a tomposite should apply to all thildren
of the composite.

wethod in the Menu and Menultem classes:

MenuConponent | Heve we're using 3 new itevator called
Compesitelterator. It knows how Lo
:sn’t change e,/ itevate over any tomposite. We pass

it the ¢)
sTterator{) | ! urrent tomposite’s iterabor,

ttelterator (menuComponents. iterator ()}

public ecldass Menultem extends MenuComponent |

ff other code here deoesn’t change Mow For the Menultem
public Iterator createlterator() | Whoa! What's this Nulllterator?
return new Mulllterator(}: You'll see in fwo pages.

t

368 Chapler 8

public Compositelterator(Iterator iterator) | is passed in. We throw that in &

stack.push{iterator); stack data structure.
|
Okay, when the client wants
public Object next(} | BT e get the rext element we
if (hasMext()) first make sure theve is oine
Iterator iterator = (Iterator) stack.peek(): by calling hasNext()..

MenuComponent component = (MenuComponent) iterator.next();:
if (component instanceocf Menu] |
stack.push (zompenent.creatalterator()):

I K If there is a mext element, we

return component;

et the turvent itevatar of [the
| alse | stack and et its next element
return null;
) I that element is @ mens, we have

; another Lomposite that needs to
be intluded in the itevation, so we
Ehirow it on the stack. [n either
tase, we vebwrn the Lomponert.

public boolean hasNext () |
if (stack.empty()) {
return false:

} else | $_-———-.. To see i there is 3 next element,

Iterator iterator = (Iterater] stack.peeki{): we thetk 4o ses iF Ehe staek is
if (literator.hasNext()) { emply; iF so, theve it
stack.pop(); itevator
Hherwize, we + the e,
return hasNext i)+
| else | f—-\. of £ 4he top of the stack and see
return trues; o ik has a next element. £ it
| Otherwise there is 3 next element 4 o0 pop it of f £he shack
i and we vetwrn brue. and tall hasiewtl) rttﬂ"ﬁlﬂﬂ‘f-
|
public void remove(} | ™
throw new UnsupportediperationException(); We're ot www{'mg

] rEmOvE, Jus{ ‘{','FE'I'E'I'Q]

you are here » 369

internal =nd external

That is serious code... I'm frying
to understand why iterating over
a composite like this is more difficult
than the iteration code we wrote for
print(} in the MenuComponent class?

When we wrote the prini) method in the
MenuComponent class we used an eratwr
step through each item in the component and if
that itern was a Menu (rather than a Menulem),
then we recarsively called the pring) method oo
handle it In other words, the MenuComponent
handled the weraton itself, miomally.

With this code we are implementing an eviermid
erator so there is a lot more w keep oack of,
For starters, an external lterator must maintain ics
A posidon in the iteration so that an outside client
4 can drive the teration by calling hasNext() and
next]. But in this case, our code also needs to
maintain that position over @ composite, recursive
structure, That's why we use stacks to maintain
our positon as we move up and down the
composive hierarchy

370 Chaptler 9

the iterator and composite patterns

.-_’g;‘g-pwntu
“PTOWEWR

Draw a diagram of the Menus and Menultems. Then pretend you are the Compositelterator, and your job is
to handle calls to hasMext() and next{). Trace the way the Compaositelterator traverses the structure as this
code is executed:

public woild testCompositelterator (MenuComponent component) |

Compositelterator iterator = new Compositelterator(component.iterator):

while{iterator.hasNext{))
MenuCompenent compenent = ilterater.nexti);

re v 37M

e all abour? Think abou it this wav: a

wer, right? So how doowe handle the

or(| method? ‘Well, we have two cholces: NOTE: Hinather example ok E‘“
Null Object “Design Patter™

createlerator), but then we'd
he elient to see i null was

noice TWo:

Return an iterator that always returns
false when hasMext() is called

This seems like a bevter plan, We can stll return an iterator, but
the client doesn’t have to worry about whether or not null is ever
returned. In effect, we're creating an iterator that s a “no op™,

The second choice certainly seems beter. Lecs call it Nullleerawor ancd
implement it

372

Thiz is the lsziest [Lerator you've

. EVEr Seen, a~|; v
import Jjava.utll.lteratcr; v sﬁ? of the

waly it punts

public class Mulllterator implements Iterator |

public Cbject next{)
return null;

\ R-L_‘H"“* When next() is 2alled, we vetuwrn nll

public boolean hasNext() | ,_4_'...:-"—‘\ Mest importantly when hasNext() is

return false; talled we always redurn Falze.
}

public vold remowe(} | i ;
throw new UnsupportedOperationException(): ¢&— And the Nulllbevator weuldn t think

} of supporting remave.

Chapter 8

i
We implemented isl/eaetavian() on the
Menus to always throw an exception, [f
that happens we tateh Lhe exteption, but

tontinue with our iteration.

the iterator and composite patterns

The printV/egetavianMensl) method

composites. Lan you
SEE wh‘ﬁ'

you are here v+ 373

 tomato, and fries

lsa, guacamole

the iterator and composite patterns

I noticed in your
printVegetarianMenu() method that you
used the try/catch ta handle the logic of the
Menus hot supporting the isVegetarian{) method.
T've always heard that isn't good programming
form.

Let's ke a look at what vou're talking about:

try [ﬁ

if (menuCompohent.isVegetariani)) |
menuComponent .print () #
I
} zatch (UnsupporteddperaticonException) [}

|'F J'..,hnl: MR ﬂ.umpm-{

.t;.,..,anf.] o all

s\ ene
We eall 3 ks, but Merus

m:nqu?""ﬁ”
hrow an ErLER

dont support the gperation

nt doetn't support Lhe

operation, we just throw away the exception

ﬂh.d l!lnair{ |t.

I general we agree; wy/cawch is meant for ervor handling,
not program logic, What are our other options? We could
have checked the runtime [yp(" ol the menu :_‘(BI'E'II‘_HII'II‘I'II_ with
stanceol to make sure its a Menultem before making the
call to sVegemman(. Butin the process we'd lose gy
hecause we wouldn't be treating Menus and Menulems
umnitormiy:

We could also change isVegetariang) in the Menus so that it
returns [alse. This privides a simple solution and we keep our
PSS PNy,

In our goluton we are going for clarity: we really want o
communicate that this 15 an unsupported operation on the
Mena (which s different than saving isVege tariand) is false). It
also allows [or someone o come along and actually implement
a reasonalile sVegetran]) method for Memo and have i work
with the existing code,

That’s our swry and we're stickin® w i,

you are here

Fion beeause they

375

interview with composite

HeadFirst: We're here wonighn s
f::;:'n[rrk-sil,d' Pagern, E'H'hy dlom't Y
voursell, Composite?

Compeosite: Surc.. I'm the pat
have collectons of objects with wi
and vou want o be able to treat th

HeadFirst: Ok, lec's dive righ
miean by whale-part relationships?

Composite: Imagine a praphic
vou'll often find a top level compo
a Panel, containing other compon
panes, serollbars and burtons. 5o
of several parts, but when you disy
think of it as a whole, You tell the
to alisplay, and count oo that comy
its parts. We call the components
components, composite objects, ar
clon't contain other components, |

HeadFirst: 1: thar what vou me;
abijects uniformly? Having comm
call on composites and leaves?
Composite: Right | canwell aq
dlisplay or a leal object w display
right thing. The composite object
all ies components to display.

HeadFirst: That implies that ev
interface. What il you have objec
that do diflerent things?

Compeosite: Well, in order for il
transparenty to the client, vou mu
i]“{‘]'r:ﬂ."" "Jl‘ '-]I.I ”l :!j‘l‘i'“ﬁ]l‘l [I“‘ CORTY
client has to worry about which in
is implementing, which kind of de
Obviously that means that at dme
which some of the method calls o

HeadFirst: S0 how do Wbkl hiln{

376 Chapter 9

ion issues

te: Well there's a couple of ways w handle
1S YO Can _i1_|.-..l, e nnqhin}_r', ar return null or
wever makes sense inovour application, Other
Il want o be more proactive and throw an

Of course, then the client has to be willing to
work and make sure that the method call didn’
ing unexpected,
it: Butif the client doesn’t know which kind
}“_":,.rf' ‘11‘..‘“]]g 'I.||i|_.|!. h' Wy W 111_']1_{ Ll'll‘":t. [kl k'ﬁf“ﬁ:
i to make without checking the tvpe?
te: I vou're a livle creative vou can structure
oils so that the default implementations do
that does make sense. For instance, if the
|Ii|'|;|‘I H't'l(:l“l{l |, CKE1 1_]“,‘ l'EJI'F][_H lhil'_' lhi‘\ n"l.;,l,!x““
1 i makes sense on aleal o, iF vou think of
an ohject with no children.

o Ahe. smart. Bue, Pve heard some cliens

ried about this issue. that they require separate

lor chiftferent objects so they aren’t allowed

msensical method ealls. Is thae sl the
Latern?

te: Yes. It's a much safer version of the

: Pareern, but it reqquires the client wo check the
=y ohject before making a call so the object

I q‘ul'!‘t'rl!}.

it Tell us a linde maore abowt how these

and leal objects are structured,

te: Lsually it's a wee structure, some kind of
The root s the wp level composite, and all is
e either composites or leal nodes.

it: Do children ever point back up o their

te: %es, a component can have a pointer to a
nake traversal of the structure easier. Andd, if
creference to a child, and you need o delete i,
Lo get the parent o remowve the child, Having
relerence makes that easier oo,

HeadFirst: 'T'here’s really quite a lot to consider in vour
implementation. Are there other issues we should think
about when implementing the Composite Pattern?

Composite: Actually there are.. one is the ordering

ol childeen, Whae if Vi hiave 31 COHTI]H wite that needs (o
I;H_'Ey its children in a |Jn.’u'Li:_‘uh||‘nr\:i:'|‘? Then :.'r_rl.fll el
a more sophisticated management scheme for adeding and
removing children, and vou'll have to be careful about
how vou traverse the hierarchy

HeadFirst: A good point I hadn’t thought of,
Composite: And did you think about caching?
HeadFirst: Caching?

Compesite: Yeah, caching Sometimes, it the
composite siructure is complex or expensive o traverse,
it's helplul to implement caching of the composice nodes.
For instance, i vou are constantly traversing a composite
i,l,“d (II] I“_:} 1'|"|Il||:l|1'“ R l_'(jlt1l}u‘f' 00 If"li'.‘il.l.ll.:I 'I\r":ll_l I‘I:ll;_ll,[l
implement a cache that stores the result temporarily w
save traversals,

HeadFirst: Well, there’s a lot more o the Composite
Pagterns than I ever would have guessed. Before we
'h‘-'l'i'l,l] lhi.ﬁ HE?. O more lli]t\.‘ili“”: ‘!‘ﬁrhfﬁ l]“ .'_HJ'I_I l‘(”‘lhi[lf"]'
vour greatest strength?

Composite: | chink 'l definitely have o say
simplifving lile for my chiens, My clients don’t have o
worry about whether they're dealing with a composite
object or a leal object, so they don't have o write il
statements evervwhere to make sure thev're calling the
right methods on the right objects, Ofien, they can make
one method call and execute an operaton over an enre
SUTUCTUTE,

HeadFirst: That does sound like an important bhenefic.
There’s no doubt you're a useful pattern w have around
for collecting and managing objects. And, with that,
we're out of tme.. Thanks so much for joining us and
come hack soon lor another Patterns Exposed.

the iterator and composite patterns

you are here

377

378

T

5

A T T O

Across

1. User interface packages often use this pattern
for their components.

3. Collection and lterator are in this package
5. We encapsulated this.

6. A separate object that can traverse a
collection.

10. Merged with the Diner.

12. Has no children,

13. Name of principle that states only one
responsibility per class.

14. Third company acquired.

15. A class should have only one reason to do
this.

16. This class indirectly supports lterator.

17. This menu caused us to change our entire
implementation.

Chapler 9

Down

1. A composite holds this,

2. We java-enabled her.

4. We deleted PancakeHousaMenulterator
because this class already provides an iterator.
5. The Iterator Pattern decouples the client from
the aggregates .

7. Compesitelterator used a lot of this.

8. lterators are usually created using this
pattarn,

9. A component can be a composite or this.

11. Hashtable and ArrayList both implement this
interface.

the iterator and composite patterns

v’

ption

collections of
AL

oveets and individual objects

unitormly

Frovides a way (o traverse a
Adapter collection of chjects without
exposing the collection’s
implementation

fterator] 1
Sri'mp['i'ﬁe#. the interface of g

group of classes

Fﬂﬂﬂde Cilﬂh;eﬁ f_he fhtel.'fﬂce ol one
or more classes

C ; Allows a group of ohjects o
(o e :-
o be netified when some state
duﬁﬂ;eﬂ

Allows an object to change
its behavior when some state

dﬁn;;ehi

Observer

you are here » 379

.[._'l'i'llt

A

responsibility of supporting
operations for traversing its
data.

An Iterator provides a commaon
interface for traversing the
items of an aggregate, allowing
yiou to use polymorphism when
wrifing code that makes use of
the items of the agaregate.

We should strive to assign
only one responsibility to each
class.

The Composite Pattem
provides a structure to hold
both individual objects and
composites.

Tha Manso il H-H-m a"ms
isites and
formily.

abject
ure,
other
ides,

n
iting
ito
rand
5.

the iterator and composite patterns

hee Fallowing apgply!

resz neeels to kmosy hoay each

wehdenu and Dinerdenm e represents i mrernal collection of

slerieneations, nod toan mien itens s amplernenied, this violates
cncapsilanion.

& I'll'_rl,'s“li |||'||?JI"'|'|Hf'|]| ||]I‘ H’Il 1|‘I'¢-1' I'Ii"."." ':'IIIE:'TH':!II' I.'\::':.II': |||f‘]1r'i1|||"|I1'|.|.|1

5 APL and 0 iso't adbeving metho] needhs pwo separate loop

I. i.ll'll:l]l’ll"’]]r?ﬂ i'JII‘.- [ix i.‘":'l.ﬂ L& oy L]T Dw'ii

different kincs of menus. And if we
illl':ll":! i |JJ.5I(.| TIEPIILL W :Illi.lt'_ilul]tﬂ\'l.' ({1}
wiled ver nnoiher loop,

ol to swiich from wsing

T et bt Lype of menn

erniedl s list of menn iems

tabibe, we'd lave o modify d E. The aniplementation ise'i based on

1 the Whitress BT A Tenn XML and so i’ as
interaperable as i should b,

——, Betore turning the page, quickly jot down the three things we have
to do to this code to fit it into our framework:

|. imwplement the AMens inkevlace

2. get vid of get|tems()

31, add eveatelterator() and veturn an [terator that tan step through the Hashiable values

you are here » 381

iz

the iterator and composite patterns

+ O

* i »

March each partern with its descrapiti:

Pattern Description
Cliengs rea collections ok
Sage ohjects and individual objects
umitorm]y

Provides a way to draverse o
Adapter collection of ohjects without
axpesing the collection’s
_~ implementation

iterator _ }
Simplilies the inderface of a
group of ¢lasses

Eh'ffhj’." l:_:]‘ﬁ'lu;&_ﬁ !_F)E inlertace of one
or mete clasies

(- . Allows a greup of obfeets 1o

o] posi e p

Pt be notified men sope stde

ﬂ]ﬂng_'e-i

Observer Allows an ohject o change

its behavior when some state

you are here »

383

rlalvial Julric]l]
H O

i = [4
clalelelkloluls|c Y
: A a
LElalF] B
elslplolnlsirlelrlilzlrly

<=

=4
© |- jo |= < Jo fm]

384 Chapiler 9

[clHlalnlole

A little known fact: the Strategy and State Patterns were twins
separated at birth. As you know, the Strategy Pattern went on to create a wildly
successful business amound interchangeable algorithms. State, however, took the perhaps
more noble path of helping objects to control their behavior by changing their internal
state, He's often overheard telling his object clients, “Just repeat after me: I'm good

enough, I'm smart enough, and doggonit...”

this Is a new chapter 385

sople are building Java inw
5. That's right, gumball
» major manufacturers have
heir machines, they can

wer the nerwork and measure B
ltl]‘:a.- f"—"'/ 24

sl machine experts, not
sked for your help:

| m hine tonbroller reeds to
H‘:‘l"l.i ‘Hﬂ way we ‘L.I‘I“'ik 'u"ﬂ T:. 'ﬂa“{l\‘l{.a:i:‘: Ja_\rﬂ -Fﬂ'l' |- We

/ [tan h'n? EnET
w?kh:f:;;.:ﬂ:?-:‘f;mw in the Luture, s0 need Lo keep

5 ' I
the design as flerible and maintainable as pess ble!
| Mighty Gumball Engineers

Let's take a look
at this diagroam and see

what the Mighty Gumball
guys want ...

Anne: T'his diagram looks lik
Joe: Right, cach of those cin
Anne: .. and each of the arr

Frank: Slow down. you two,
Clan you remind me what they’re all abowt?

Anne: Sure, Frank. Look at the circles; those are staes, “No Quarter™ is

probably the startng state for the gumball machine because 1t's just siting

there wainng {or vou to put vour quareer in. All states are just different

configurations of the machine that hehave in a certain way and need some
action o take them w another siaee,

o state, you need (o do something like puta quarter in the machine. See the arrow
irger?™

gumball machine is in the “No Cuarter™ state and you put a quarter in, it will
. That's the state transition,

the “Has Quarter” state, | can turn the crank and change w the “Gumball Sold”
wnge back to the “No Quarter” state.

d then: We've obvdously got Tour states, and T think we also have four actions: “inserts
g g s e werank™ and “dispense” But.. when we dispense, we test for zero or more gumballs
in the “(rumlmll Soled™ stare, Lmd then either go o the “Chae of Gumballs™ ste or the “No Quarter™ staue. So we
actually have five ransidons from one state w another.

Anne; That west for zero or more gumballs also implies weve go wo keep orack of the number of gumballs o, Any
time the machine gives you a gumball, it might be the last one, and il it is, we need w ransidon o the “Out of’
Crumballs” state,

Joe: Also, don't forger thar vou could do nonsensical things, like ty o eject the quareer when the gumball machine
is in the “No Quarter” state, or insert (wo quarters,

Frank: Oh. | didn’t think of that; we'll have wo take care of those oo,

JDE: I"Hl' t'\'['l'}"]]l]‘;ﬁi]l‘l" LLI:Lil:F" 1|'h'1'LH ill":ql, h ave [L'hl,'l.'k. Loy S0 'r\hi{l‘l sLatie 1|'|.'I"|"|.‘ |r'| |\|1f] acl ﬂlfl}r'ﬁip'l'i“l_l"l"_t". ‘!Iﬁ-il\' Cdn 1]”
this! Let’s start mapping the state diagram to code,.,

you are here v 387

tstae chagram o actual code? Here's o quick
© machines:

table to hold the current state, and define values for each of the states:

OLD_OUT = ;

O QUARTER = 1;

AS QUARTER = 2;

OLD = 3;
and here's an instante vavidble that helds the

JUTs é_\\ twrrent state. We'll ao ahead and set it to
"Sold Ot sinte the mathine will be unfilled when
ib's Fivst Laken ouk of its bor and fwrned o

Weve's eath state vepresented
35 @ unique mbegev...

dons that can happen in the system:

These attions are

. the aumball machine's
inserts 1uar{£* turns erank _IHJ; Laze — the thinas
ejetts quarter you tan do with it

[] dispense —~

Disperse is more of an internal

Locking st the disavam, imvoking any of these attion the mathine invokes on itself.

aekioms tauses @ skate transition

388 Chapter 10

the state pattern

15 as the state machine, For each acoon,
conditional statements w determine

in cach state, For instance, for the insert
te a method like this:

rter (} |
JURRETER) | q‘f—..._““\
Eath possible
intln{*You can’t insert another gquarter”); state is ehetked
with a tonditional
== SOLD_OUT) | d—""f' ehabement...

intln(*You can’t insert a guarter, the machine ig~Hold out”);

| elsae 1if (state == SOLD) {

System.out.println (“Flease wait, we're already giving you a gumball®™);

| else if (state == NO_QUARTER} |

state = HA3 QUARTER:
System.out.println("Y¥ou inserted a gquarter”™);

bhe a.ﬁ..w?'nil:.t

it
and exhibits ath pesible skate

! behavier For

_buk ean alss transition to other
states, just as depicted in the diagram

Here we're talking
about a commoen technique:
modeling state within an object
by creating an instance variable to hold
the state values and writing conditional
code within our methods to handle
the various states.

With that T.-it.l: review, let's g0 implement the Gumball Mathine!

you are here » 389

390

I Machine. We know we're going 1o have an instance

. From there, we just need o handle all the actions,

van happen, For actions, we need w implement inserting
ing the crank and dispensing a gumball; we also haee the

nent as well,
W the
Lour skates; they mi\‘tf-
h:_;:_’cir:n?ﬂfahﬂ .ﬁmhah'l'f. shate diagram
. Heve's the instante variable hat i ?uing, to
I ; keep tratk of the turvent shate we've in.
Rk - 1 We start in the SOLD_OUT state

final static int HAS QUARTER = 2;

final static int S0LL = 3; We have a setond instanee varighle Fhat

keeps track of the number of qumballs in

int state = SOLD_OUT; the machine,
int count = 0O
The tonstructor takes an initial
public GumballMachine{int count} | inventory of gumballs £ the inventory
this.count = count; isn't 2eve, the mathine enters stale

if {ecount > 0) { NO_QUARTER, meani i P
N . = . it is waiting £
: state = NO_QUARTER; g ﬁhﬁ . ﬂ{hcr:n_!'“ :‘:
stays in the SOLD OUT state.

Now we start implemerting
C Fhe atkions 3s methads.- Whien 3 sparkeh s wserked, 16
public void insertQuarter() | é________——-"" a “1"3"&"' is alveady inserted
if {state == HAS_QUARTER} { ('/— we tell the tustomer;
System.cut.printin(“You can't insert ancther guarter”); 07 T H-‘-&?‘E the

} else 1f (state == NO QUARTER) | haon Fhe
state = HAS_QUARTER: quarter and transitio to

System.out.printin(™You inserted a guarter”): Hﬁg_&HﬁRTER state
} else if (state == 30LD OUT) |

System.out.println{®You can’t insert a gquarter, the machine is sold out”):
} else if (state == SCGLD) |

Ssystem.out .printin{™Please wait, we're already giving you a gumball”™}:

| I R“-—-_

1§ bhe tustomer just bouaht 3 and iF he wachine is ol
aumball he needs bo wark until the ok e rgjﬂ_.*l; the quarter.
'tlran!if-‘hun is Lw?ltl:e h:-{:m

insevting another 1ua.\-+ﬂ.

Chapter 10

the state pattern

0 Now, if the customer fries Lo vemove the quarter..

public void ejectQuarter(} |

is a auarber, we
if (state == HAS QUARTER) | i{wﬁumﬂg,ohﬂ &
System.out.println(Quarter returned”}; & M .
state = NO QUARTER; he Hﬂ__ﬂMﬁRTER state
fredeeil (state = W) CUARIER), | A (hherwise, if there isn't

System.cut.println(®¥ou haven't inserted a guarter”):
i else 1f (state == 2QLD) (

System.out.println{"Serry, you already turned the crank®}):
} else if (state == S0LD OUT) {

System.out.println(*¥ou can't eject, you haven't inserted a guarter yet®);

ome we tan't give it batk

}

] Q_, You ean't EJE(‘.‘E i the mathine is sold If dhe evtbomer j"‘*{'-
out, it deesn't ateept quarkers! bvmed Ehe trank. we et
. giwe a vefund; he already
The tustomer Lries to tuen the trank has the qumball

public void turnCrank() | i ;
if {state =— SOLD) { { Someone's trying to theat the mathine.
System.out.printin{"Turning twice doesn't get you another gumball!™);
} else if (state v [_\]G_QUP;RTER,‘I [= We need a
System.out.printin(™¥ou turhed but there's no quarter”);

Fiest.
} else if (state == SOLD_OUT) | i rat
System.out.println(®You turned, but there are no gumballs”); ' deliv
} else if (state == HAS QUARTER) { b | We ean't deliver
System.out.println(™You turned..."); ﬁmhallsj there
state = 30LD; Fré nonk
dispense(]; F-"“-
} Curtess! T!-u:':r ﬁz{: @ ﬁurnha“ C'hahﬁ-t
| I di a cumbsll: the shate £0 SOLD and eall the
.,f Called to dispense a qu v dusainel) o
[

public volid dispensed) We're in the
if (state == SOLD} | ¥ cpLD state g

System.out.printlin (™A gumball comes rolling out the slot™): ~m;,5u...'hal!1,
count = count - 1;
if (count == 0) { b here we handle the
System.out . .println(*Oops, out of gumballs!™); Here s " condition
state = SOLD_OUT; "ouk of gunb " lask ones ¥
| else | I s S bo
state = NO_QUARTER; sek the mathing £ S5 ©
] coL D OMT: nﬁ“”‘“;w.
} else if {(state == NO QUARTER) | vatk to ot having 3 9
System.out.println(®You need to pay first™):
1 == +-“-
} elze if (atate . 30LD oUT) | . HM@-F'EHH: should
Syatem.out.printin(™No gumball dispensed”): £ — e b but if
| else if (state = HAS_QUARTER) | g g S

1 L]
System.out.printini™¥o gumball dispensed™): they do, we give ‘em an

} ervor; not 3 gqueball
I

£f other methods here like toString() and refill ()

you are here v+ 391

392

sing i well-thought out methodology doesn’t
¢ before we hand icoft w Mighty Gumball tw

I machines. Here's our test harness:

eTestDrive { Load it wp with
n as L (=]
in{string[] args) | five aumballs total

mpallMachine = new GumballMachine(5);
MIGURBALIMACIANG) 7 €~ Print out the state of the mathine J

gumballMachine. insertQuarter(); &E— Throw 3 gquarter in.. /"’__‘/
gumballMachine. turnCrank (} ;
N Tien the trank; we should get our qumball

System.out.println (gumballMachine) /
N Print out the state of the mathine, 3aain

gumballMachine. insertQuarter|(); -
gumballMachine.ejectQuarter(); é’\ﬁrw a quarter in.. ‘_r_.__-——'"""
gumballMachine. turnCrank (}; Ask Lor it back.

1‘-—-—_____\ Turn the trank; we shouldn't get ow qumball,

System.out.println(gumballMachine);
Prink ovt the state of the machine, again.

gumballMachine., inssertQuarter();

gumballMachine., turnCrank (} t‘.::___:_ Throw 3 q_uar't:r i
gumballMachine, insertQuarter(); == Turn the trank; we should get our qumball
gumballMachine. turnCrank () : - Throw a quarter in.

Turn the erank; we should aet our qumball
E M for 2 qparker back we dide't ot in

System.out.println(gumballMachine) ‘f_____ ;
Print out the state of the machine, 383in. /

gumballMachine.ejectluarter();

gumballMachine.inssrtQuarter(); &)

gumbal IMachine. insertQuarter(); L Throw TWO q-"":*{‘" e

gumballMachine., turnCrank () ¢ - — Turn the crank; we should ﬁd: o ﬂm'“"' /__/
gumballMachine.insertQuarter():)
gumballMachine.turnCrank(}; & Now for the stress testing.. ()

gumballMachine. insertQuarter ()
gumballMachine. turnCrank (} ;

% /
System.out.println{gumballMachine); Print that mathine state one more time.

Chapter 10

the state pattern

-]

1 Model #2004
er

the slot

1 Model #2004

er

arter

1 Model #2004

1 Model #2004

ar

rter

tha slot

the slot

the machine is sold out

gumballs

1 Model #2004

you are here » 393

Mig]ﬁ}' Gumba], Inc.

Where the Gumball Machine
is Maver Half Empty

the sta

at handles the 1.in 10
d state leads to two
=r with ours (at the

re yau go further, ..

/

imniry Lo draw your state disaram.

vou are her

3986

2r code here

out methodolomy doesn’t
sk at vour code and think

| have Lo add a new WINNER state
5 '|srnj“: ‘l:.ﬂd‘ bad...

K\ . bt then, j'uu'd have to add a mew tondrbional n

arter() |
r code here

F— ciery single method o handle the WINNER statei
/. that's a lok of tade to modify

nki) |
yde here
burnCrank() will aet espetially messy, beeause
5 fou’d have to add tode to heek to see whether
: t:-_l&ie Tm-'ut 50*. a WINNER and then switth to ether

bhe WINNER state or the SOLD state.

veruen on e following describe the state of our implementaton?

(Choose all that apply.)

O A, This code certainly isn't adhering tothe - C.
Open Closed Prnciple,

1 B. This code would make a FORTRAN
programmer proud, d D

€. This design isn't even very ohject
orienied, d E.

State transitions aren't explicit: they
are buried in the maddle of a bunch of
conditional statements.

We haven't encapsulated anything that
varies here,

Further additons are likely t cause bugs
in working code,

Chapter 10

the state pattern

Okay, this isn't good. I think
our first version was great, but
it isn't going fo hald up over time as Mighty
Gumball keeps asking for new behavior. The
rate of bugs is just going to make us look
bad, not to mention that CEO will drive
us crazy.

Joe: You're right about that! We need 1o relactor this code so that ic's easy
o maintain and modilfy

Anne:; We really should ty o localize the hehavior for each stae so thae il
wee miake changes w one state, we don’t run the risk of messing up the other
cohe,

Joe: Righe; in other words, follow that ol “encapsulate what varies™

principle.
Anne: Fxactly,

Joe: Il we put each state’s behavior in its own class, then every state just
implements its own actons,

Anne: Right And mavbe the Gumball Machine can just delegate wo the
state object that represents the current state.

Joe: Ah, vou're good: Bvor composition... more principles at work.

Anne: Cute, Well, lm not 100% sure how this 15 going toowork, bat 1 think
we're on o something,

Joe: T wonder il this will this make it easier o add nesw sees?

Anne: [think so... We'll sill have w change code, but the changes will e
much more limited in scope because adding a new staie will mean we jusi

have o add a new class and mayvbe change a few transitions here and there,

Joe: [like the sound of that, Lets start hashing our this new design!

you are naereg 2097

insteid of maintuming our existing code, we're going to
ris in their own classes and then delegate 1o the current

des here, soowe should end up wich a design that s easier wo

ow we're going o do i

j to define a State interface that
vd for every action in the Gumball

| to implement a State class for

g2 machine. These classes v “-
1@ behavior of the machine
mding state.

ng to get rid of all of our co
| delegate to the state clas:

wrinciples, as vou'll see, we're actually
he official Seate Pawern stufl after we

put all the |
state into one
we're localizing
making thin
change a

398 Chapter 10

and encapsulate it in a class
implewments the State interf,

Te $'|§w£ out what
shates we need, we look

ﬂ+_ o ?c,-{l_wmi I!.Ddl---

public ¢lass GumballMa

final statiec int SO
final atatic int NO

Don't Forget, we need 3 new “winner sti
Ehat implements the state mterkace. Wi
baek to this after we veimplement the f
version of the Gumball Mathine

| ejectQuarter)
; turnCrank(}
| dispenae(]

you are here

e pattern

lement our states_ we first need to 5
each action is called. Annotate the
jction in each class; we've already fi

Stabe ——

"You haven't inserted a quarter.”

——

GotoSoldState .~ ——

Tell the custormer, "Please waik, we're already giving you 2 qumball"

Dispense one gqumball. Cheek number of qumballs; if > 0, fo
to NofuarterState, otherwise, a0 to SeldOutState

—

Tell the tustomer, "There are no qumbialls.” e

Be ahead and Fill Lhis o

400

Chapter 10

the state pattern

eed w0 ger it down in code, We're going
is broken out into different classes,

We 3:'|: passed a velevente to
~— the Gumball Machine \{:hrnuah the

construetor. We've just going to

stash this in an instance vaviable.

N [f someone msevts & quar ter,

: ssaqe saying the
this.gumballMachine = gumballMachine; we print @ me ™3 Lh
] qluar‘i:\‘.\' was ﬂﬁ-f.f?‘tﬂd il'ld en

é/’/ thanae the mathine's state to
public woid inzertQuarter() | the aaaﬁ‘uarﬁﬂ-g:.a{,:.
System.out.println ("You inserted a quarter”);

gumbal IMachine. set3tate {gumballMachine.getHasQuarteritate ()] ;

~_

I Y’W'” see how ";hf;:

work in just a see..
public void ejectQuarter(} |

System.out.println{™You haven't inserted a guarter™); i
| == Vou tant get money

back if you never gave
public veoid turnCrank() | it £a “‘5!

System.out.println (“You turned, but there’s no gquarter™):
b

K nd, you tan't get 3 qumball
public wvold dispense() |

o you don't pay us.
System.out.println ("You need to pay first®): &;"—\\ ,
] We tan't be dispensing

gmb&”s without ?a?m:h{;.

"hat we're doing is
menting the behaviors
re appropriate for the
Yre in. In some cases, this
vior includes moving the
hachine to a new state.

you are here » 401

402

Chapter 10

1;&?4:::: 1}1; 'n-:w tlasses vather than

¢ inteaers. The tode auite
E:ZG:FE:;L:EE;at i ome Llass we have

integers and in the abher nh:}tf:t,s...

lass GumballMachine |

saldoutsState;
noQuartersitate;
hasQuarterstate;
soldstate;

M om mom

e state = goldOotState;
count = 0; ﬁ

the state pattern

Now, let’s look at the complete GumballMachine class...

public class GumballMachine | i
Heve are all the Gtates again-

State =zoldOutState; ﬁ
and the State instante variable

State noQuarteritate;
State hasQuarterState;)
State soldState; /—- The tount instanee vaviable holds

P the count. of qumballs — initially the
State state = soldOutState; mathine is Emrb;.l.
int count = O;

E’_,..-'-_--.\ Dur cm{‘m{pr +akes l:.:n: "
public GumballMachina(int numberGumballs) | inibial pumber nii:ﬁbﬂi & a-ah[e_
soldOutstate = new Soldoutitate (this): choves L moan i e Var
nofuarterState = new NoQuarterState(this); Clate

hasQuarterState = new HasQuarterstate({this); i Ik alse :.'rta’c-t:;"""uh
soldState = new Sold3tate(this); instantes, ont Lerel
this.count = numberGumballs;
if {(numberGumballs > 0} { I there are more than O
state = noQuarterState; & qumballs we set the state Lo Lhe
} NoBuarterState
]
. These ave
. he att We
public vald insertQuarter(} { Mow for t hl'ﬂ'-"'"h :
state.lnsertQuarter(); T ur‘ERf EP{S.YI Lo im? skate.
%o the LT En
] Z/ J"‘Ft deleaate
public void ejectQuarter(} { s
state.ejectQuarter(); Note that we don't need an

] attion method For d'sr:nscf]' in
GumballMathine because it's Just an
public woid turnCrank() { é"_____—l—' mkevnal action; 3 vser R R T
Scate .rc_ltlrncrank :{; mathine to disperse divectly But we
e do tall disperse() on the State o’nj:t:i:

vaold setState|State state) |

this.state = state; @ T This method allows other objects (like
] our State ohjcth} to transition the
mathine to a dirfevent state
vold releaseBall() |
System.out.println(“A gumball comes rolling out the slot...");
if {count != 4} |

count = ceunt - 1; The mathine supports a veleaseBall()

d helper method that releases the ball and
J F_\—’ detrements the tount instance vaviable.

// More methods here including getters for esach State...

A= This inthudes methods ke getNofuarterStatel) for getting each
state obj:t.{,,. and 3:-[:Caun{:f] for getting the qumball count.

you are here » 403

A the states

T
. iskantiated
When the state {,:Liu
we pass 1t 3 vekeverée
umball Machine: ThE B 75
§o bransition the mathint
) dif ferent state
ne) |
P i qn-iatﬂ
public void inseml:l:uarteri} { e,/"_“" Jekion o Lhis
] System.out.println({“¥ou can’t insert another gquarter”); ckate.
public void ejectQuarter() | &’-""‘ Reburn the tustomers
System.out.println("Quarter returned”); 'L"a"*": and
gumballMachine.setstate (gumballMachine ,getNoQuarterstate()); transition batk to the
] Nn&ua‘rﬂrgﬁ&-

public void turnCrank() |
System.out.println(™You turned...”):

£ When the trank i
gumballMachine.setstate (gumballMachine.getSaldstate()); kurned we transition
b the mathine to the
public veid dispense() |

. SoldState state by
Bystem.out.println("No gumball dispensed®); ullinﬁ ks Stﬂhﬂ“
; | method and passing it
’3 Lhe SoldState nhj:.:i:.
Bnother The SoldState object
: iake . is vekrieved by the
aekion ¥or s 5&&11!54:3{!)
state fhar nebhod
?;,h:‘rt i ene of these
#ﬂr methods for
eath state).

404 Chapter 10

Now, lee's check out the SoldSeawe class,.,

the state pattern

public class ScldState implements State | auf-'f-““""' &
Jlconstructor and instance variabhles here 5-},.;)0!
public void insertQuarteri} |
System.out.println{"Please walit, we're already giving vou a gumball™);
I
public woid sjectQuarter(} |
System.out.println{"Sorry, you already turned the crank”):

]

public woid turnCrank{)
Bystem.out.println("Turning twice doesn’t get you another gumballl”):

]

public void diapenss() |
gumballMachine.releaseBall () ;
if {gumballMachine.getlounti} > 0) |
gumbal IMachipe. satState (gqumbal 1Machings
| else {
System.out.println(™Oops, out of
gumballMachine. setState (gumbal 1

JgetNoQuarterState ())

chine.getSoldOutsState ())

mathint what
 in khe S,::'ldgjf-a'b!_' wihith Then we A E“{: o gikher

Hind here s where the
.I.'l'ls-" rlr
) work bes we b St e NolarberS

< Lhe
we bivst need 1o 3% 0y e SoldOvSkate

=
- %gg RANN
PQOWEW
Look back at the GumballMachine implementation, If the crank is tumed and not successiul (say
the customer didn't insert a quarter first), we call dispense anyway, even though it's unnecessary.

Haow might you fix this?

you are here v 4056

public void

public void

public waid

public woid

We have one remaining class we haven't implemented: SoldOutSta
Why don't you implement it? To do this, carefully think through how
the Gumball Machine should behave in each situation. Check your
answer before moving on...

tate implements [:::::::::] |

iballMachine;

ce({GumballMachine gumballMachine) |

insertOuarter() |

ejectQuarter() |

turnCrank () |

disper

4086

Chapter 10

The Gue
imijtah“

The ewrvent state of the
machine 15 always one

hese elass imi{ihﬁﬂi-

e pattern

¥ 407

either g0 to

the SoldOut

or Nofjuarter
state dependin
en the rﬁh:r ?ﬁ
gumballs remaining
m the machne.

4"’) sold out

e,

isible,

the state pattern

ec,
remember
xgy Pattern,
diagram is
"the same.

ot i good eve! Yes, the class dingrams are cssentally the
1t the owo patterns difter in their mitent.

s State Pattern, we have o set ol behaviors encapsulated in
ects; at any ome the context is delegating to one of those
Wer tme, the current state changes across the set ol state
o reHect the internal stace of the context, so the context's
r L'ha\jlgﬁ.-i e til'i'll‘ AS 1.'.'1'”. Tht‘ 4_;|EL'|'H |_;|.-_-;|.|:|]|':.-' knosws VETY
anvthing, about the state alyjects.

aregy, the client usually specifies the steategy object that

ext is composed with, Now, while the patern provides the

v o change the strategy object ar runtime, often there is 2
object that s most appropriate for a context object. For

» i Chapter 1, some of our ducks were configured to Hy
ical Byving behavior (like mallard ducks), while others were
el with a Hy hehavior chat kept them grounded (like rabber
ul decoy ducks),

al, think of the Strategy Parern as a flexible alternative to

ing: il vou use inheritance w define the behavior of a class,

1're stuck with that behavior even il vou need o change it
v cittegy you can change the behavior by composing with a
difterent abject.
Think of the Staee Patern as an aliernative w puiting los of
conditonils i vour context: by encapsulatng the behavors within
state ohjeets, you can simply change the state object in context w
change its hehavior.

you are herg

411

g&a about the stale patiern

412

theregare 1o

Dumb

QI In the GumballMachine, the states decide
what the next state should be. Do the ConcreteStates
always decide what state to go to next?

A: Mo, not atways. The alternative is to let the Context
decide on the flow of state transitions.

s 3 general guideline, when the state transitions are fixed
they are appropriate for putting in the Context; howaver,
‘whean the transitions are mare dynamic, they are typically
placed in the state classes themselves (for instance, in the
GumbatiMachine the choice of the transition to NoQuarter or

SaldCut depended an the runtime count of gumballs).

The disadvantage of having state transitions in the state
clagses is that we create dependencies betweaen the state
classes. In our implementation of the GumballMachine
we Iried to minimize this by using getter methods an the
Context, rather than hardcoding explicit concrete state
classes,

Nofica that by making this decision, you are making a
decision a2 io which classes are closed for modification
— the Context or the stale classes — as lhe system evolves,

Q,: Do clients ever interact directly with the
states?

A: Mo. The states are used by the Contenxt 1o
represent its internal state and behaviar, so all requests
fo the states come from the Context. Clients don't directiy
change the state of the Contexl. 1tis the Context’s job

to overses ifs state, and you don't usually want a client
changing the state of a Conlext without that Context's
knowledge.

Q; If | have lots of instances of the Context in my
application, is it possible to share the state objects
across them?

A‘.’ Yas, absolutely, and in fact this i a very commoen
scenarin. The only requirement is that vour state objects do
nat keep their own internal state; otherwise, you'd need a

Chapter 10

Questions

unique instance per conlexl,

To share your states, you'll typically assign each state to a
stafic instance variable, If your state needs to make use of
methads or ingtance variables in your Contaxt, you'll atsa
have to give it a reference to the Context in each handler()
method.

Q: It seems like using the State Pattern always
increases the number of classes in our designs. Look
how many more classes our GumballMachine had
than the original designl

A: You're right, by encapsulating siate behavior

into separate state classes, you'll always end up with
more classes in your design. That's often the price you
pay for flexibility. Unless your code is some “one off’
implementation you're going to throw away (yeah. right),
consider building it with the addifional casses and you'll
prohably thank yourself down the road, Note that often
what is impertant is the number of classes that you expose
1o your chents, and there are ways 1o hide these extia
classes from your clients (say, by declaring them package
vigihle),

Also, consider the altermafive; if you have an application
that has a lot of state and you decide not fo use separate
abjects, you'll instead end up with very large, manalithic
conditional statements. This makes your code hard to
maintain and understand, By using objects, you make
states explicit and reduce the effort needed to understand
and maintan your code,

Q: The State Pattern class diagram shows
that State is an abstract class, But didn't you use
an interface in the implementation of the gumball
machine's state?

AI Yes, Given we had no comman functionality 1o

put into an abafract class, we went with an interface. In
your awn implementation, you might want to consider an
abstract class. Doing so has the benefit of allowing you to
add methods (o the abstract class later, withoul breaking tha
concrate state implemantations.

e pattern

e wwL W W B T

int count = 0j : e
Don't foraet you also have

// methods here / baddagr&&rr-c’chnd for
WinnerState toe

Now let’s implement the WinnerSare class isell] it's remarkably similar 1o the SoldSeate class:

public class WinnerState implemsnts State |

// instance wariables and constructor f Just Wke GoldState.

J/ insertQuarter error message

/! electQuarter error message Heve we velease twe ﬁ-““h"‘“" and then
either g0 to the NofuarterState or the

ff turnCrank error message ColdDutState.

public void dispensed) |
System.out.println ("YOUTRE A WINNER! You get two gumballs for your quarter .
gumballMzchine.raleasshall ()
if {gumballMachine.getCount () ==) |
gumbzllMachine.sstState (gumbal IMachins.getSoldOutState (1)

| else |
gumballMachine.releaseBall(); = s lomg 3s we
if (gumballMachine,getCount{) > 0) | e 3 setond
gumballMachine.setitate (gumbal lMachine.getNeQuarterstate ()) ; ﬁ“h;u we
heaken § velease it

System.out.println(“Qops, out of gumballs!™);
gumbal IMachine.set3tate (qumbal IMachine,get3cldCutState())

you are here » 413

|0%
mm&--

{etermine
tomer wom.

ind +here's
. _ _ L s left for
System.out.println("No gumball dispensed™): _' them fo 5{:1: {;m_ e
80 to the WinnerState;
otherwise, we go to the
SeldState '-':_],us{: like we
-i|wa'fs did).

W, that was pretoy simple wo implement! We just added a new state to the GumballMachine
and then implemented i, All we had to do from there was to implement our chance game and
transition to the correct state. It looks like our new code strategy is paying oL,

414 Chapter 10

the siate pattern

C.

cumball game code. Let's
(the short attention span of

at least once,

eharaed at all

bt
Onte, again, start with a 3umba||
pupnllec Class LUMPBallMacnlnerestUrive | ﬂ(/"_ mathine with 5 glumlna'l]x.
public static void main{String[] args) |
GumballMachine gumballMachine = pnew GumballMachine(5);
System.out.printlin{gumballMachine);
gumballMachine.insertDuartar (] ; (___‘_‘_‘_‘_ i
= K o A o % L%y £
gumballMachine.turnCrank () : We want to '3*4: a AN : ate,
so we just keep Pumping in Those
system.out.printin{gumballMachine) ; ql..aH:evs and Turning the erark. We
?rin'l'. out the state of the E“mba”
gumballMachine.insert{uarter () ; machine every so ofLen..

gumballMachine . turnCrank():
gumballMachine . insertQuarter () ;
gumballMachine . turnfrank () ;

System.out.printin{gumballMachine} ;

EnainEEring feam is waﬂ;mﬁ
3 aom To SEE

based

The whale
owtside the tonkerente v

-I.EI ‘H\E e Etﬂtﬁ- Pﬂ{*.ﬁrn—-
design 15 going Lo work!]

vou are here » 41 5

there,are no

Dumb Questions

Q: Why do we need the WinnerState? Couldn't we just have the SoldState dispense two gumballs?

A: That's a greal question. SoldState and WinnerState are almast identical, except that WinnerState dispenseas twa
gumbaliz instead of one. You cerainly could put the code io dispense two gumballs into the SoldState. The downside
i, of caurse, that now you've gat TWO slates representad in one State class: the state in which you're a winner, and the
state in which you're not. So you are sacrificing clarity in your State class fo reduce code dupfication. Ancther thing to
consider is the principle you leamed in the previous chapter: One class, One responsibility, By putting the WinnesState
responsibility into the SoldState, you've just given the SoldState TWO respensibiliies. What happens when the
pramation ends? Or the stakes of the contest chanae? So, iV's & radeoff and comes down to a design decision,

416 Chapter 10

—_— =

Brave! Great job
gang. Our sales ar
through the roof wi
You know, we also ma

ond T was thinking 1
these slot machine ¢
make that o gome t
year olds gambling w
machines: why s

Yes, the CGEQ of Mighey Gumball probably needs a samity check, but ok
not what we're talking about here. Let's think through some aspects ol
l’::"l,l]||hi_'|,”."l.[;“']lir'lt" |h;ll WAL Ini.ghl WATEL Loy .‘i]“:l]'t' 'I,il! |H'|—[ln' Wi .Q-hi.ll ll]i' d]

" We've got alot of duplicate code in the Sold and Winning
states and we might want o clean those up. How would we
do ! We could make Stare inwo an abstract class and build i
some default behavior fone the methods; alver all, error messag
like, “You already inserted a quarter,” aren’t going to be seen
b the customer. So all “error response™ behavior could be
genenie and inheriwed rom the absoract State class.

® The dispense]) mechod always gees called, even i the crank is
wirned when there is no quarter. While the machine operates
correctly and doesn’t dispense unless i's in the nghe seae, we
could easily fix this by having twrmCrank() return a boolean,
or by introducing exceptions. Which do vou think is a bewer
solution?

B Al of the intellizence for the staie ransidons is i the Stace
classes, What problems might this cause? Would we want o
mowe that logic inw the Gumball Machine? What would be
the advantages and disadvancages of tha?

" Wil vou be instangading a lot of GumballMachine objecs?
If =0, vou may want 1o move the state instances into stade
instance variables and share them. What changes would this
require to the GumballMachine and the Staes?

you are here » 417

AEER LIV lll‘.;‘ e A T A A IIJ LAAL AN LA™ LFE) LLdL R
chapter. 5o, anyway, what 15 my noble brother up
to?

I dlon’t know, you adwins sound like vou've just
copied what | do and you're using different words
to deseribe it Think aboue 1t 1 allow objects w
incorporate different behaviors or algordims
through composition and delegation, Youre just
COpying me,

Oh veah? How so? 1 don't get it

Yeah, that was some fine work... and I'm sure you
can see how that's more powerful than inheriting
your behavior, right?

Sorry, you'te going o have o explain that,

418 Chapter 10

and State Pattern Reunlon.

t, waord is definitely geming around.

Same as abways — helping classes w exhibit different
Behaviors in different states,

I admic that what we do s definiely relaged, hut my
imtent is totally dilferemt than yours, And, the way 1
teach my clients o use composidon and delegation
i totally dilferent,

Well if vou spent a litthe more ome thinking about
something other than youmelf yvou might. Amvway,
think about how you work: you have a class vou're
instanoaing and vou usually give it a strategy
object that implements some behavior Like, in
Chapter | you were handing out quack behaviors,
rght? Real ducks got a real quack, rubber ducks
got a quack that squeaked.

Yes, of course, Now, think abour how T works ic's
cotally different.

HE"'r.r'1 come on, 1 can 1‘1‘1:!!1:_..&* B avior at runime
(LR I.h'.u'.-i whﬂ[L'l:u'r‘||_'ru:=.ilii;|!'| is i;'l.” :;'II_]HI,II!

Well, T admit, T don’t encourage my objects w have
a well-defined ser ol ransimions beoween staes. In
Fact, 1 oypically like o control what strategy my
objects are using

Yeah, veah, keep ving vour pipe dreams brother,
You act like you're o big pacern like me, bue check
it owte: I'm in Chapeer 1; they stuck you way out in
Chaper 1Y T mean, how many people are actually
going o read this far?

That's mv brother, always the dreamer,

the state pattern

State

Olkay, when my Context objeces get created, T may
el them the soe o stare in, bue then they change
their own state over dme.

sure you can, but the way 1 work 1s buile around
cliserere states; my Context objects change state
over time according w some well defined state
eransitions, In other words, changing behaaor is
built in to my scheme — is how D work!

Lok, we've already saicd we're alike in structure, bt
what we do is quite different in intent, Face i, the
wordd has uses for both of s,

Are vou kidding? This is a Head First book and
Head First readers rock. Of course theyre going 1o
get to Chaper 10!

you are here » 419

J‘IJEI.I.I.J’ I

Whana the Gumball Maching
i M Hat Empty

Thede's ane branstion we Sorgot: b0 put in the orignd) Spec

“we need @ way Lo velill he 5i.v.mbaﬂ mathing when | 's out of

lls| Heve's the mew diagram — £3n implement. it for w?
You did suth 3 good pr on the vest of E'I: 5uuha]1 mathing we
have no doubt you tan add this in ay“f '

— The Mighty Gumball Ergjineers

bl

the state pattern

o write the refill{) method for the Gumball machine. It has one
e number of gumballs you're adding to the machine — and should
mball machine count and reset the machine's state,

You've done some am
T've got some more ic
are going to change tk
industry and I need y
them. Shhhhh! Tl le:
ideas in the next chap

b 421

who does whal?

+ +

'S 2

WHQ DQAES WHAT?
Match each pattern with its deseription:
Pattern Description
EHEE_F:{!J]HIG Fniemhﬂn;cﬂi"]@
State behaviors and use delegation o
decide which behavior to use
Stetsgy Subclasses decide how

'Etllpjﬂte Methed

422

Chapter 10

to implement steps in an

algorithm

Encapsulate state-based
behavior and delegate
behavior to the current state

the sta

K

h

il

® The State Pattern all
object ta have many
behaviars that are be
internal state.

® Unlike a procedural £
machine, the State P
represents state as a
class.

" The Context gets It5 e
by delegating to the current
state object it is composed
with.

® By encapsulating each state
inta a class, we localize any
changes that will need fo be
made,

= The State and Strategy
Patterns have the same class
diagram, but they differ in

new intent.

.'; '\fﬂ\.l."l'c

-I:’;l__f n

e Ghate

(ves ‘ou

e for = Siate Pattemn allows a Context

g that to change its behavior as the

state of the Context changes.

) " State transitions can be
controlled by the State classes
or by the Context classes.

® |Using the State Pattern will
typically result in 2 greater
number of classes in your
design.

= Strategy Pattern typically
configures Context classes
with a behavior or algorithm.

® State classes may be shared
amang Context instances.

you are here + 423

Mighty Gumbal]. Ine.

Whene the Gumball Machine
I Mevar Half Empty

gumbalit = O

ok

the state pattern

aly]

LT r:q:lir'tl: they
b pdddelle of & bunch of
e

rapsulared amything thae

3/r Further addirions are likely o conse bogs

in working cade,

We have one remaining class we haven't implemented: SaldOuiSiate,
Why don’l you implement itT To do this. carefully think through haw
the Gumball Machine should behave in each siluation. Cheok your
answer before moving on...

1 e Sld Ok states
: T
Lark do anythmt i 2o
Sbakbe implemenls State | ::E Ais the ﬁ'"biﬂ Machise
mibial 1Mac

tina;

ste tGumbalIMachine gumballMachine) |
faching = guakbs]lMschine;

Sbuarter (]
intln{™¥ou can*t lnsert a quatrber, the machine 15 sold out®);

public woid ejectiuartarc(y |
System.out println ("You can®t eject, you haven't lnperted a quarker yet®);
|

public woid turn@rank (] i
System,cnt println (Yoo turmed, but there are no gumballs™);

public void dispsnge{) |
System.oot . println {"No gqumball dispensad®);

you are here ¢+ 425

lement the states, we first need to d
he corresponding action is called. ¢
ior of each action in each class; we"

Stte ——~—__

"‘?‘w haven't inserted a quarter”

ou turned, but there's no quarter’
“you need Lo pay First”

ou £an't insevt another quarter” —_
Hive batk quarter, 9o to No Quarter state —
e to SoldState

Tell the tustomer, "o gumball dispensed” _ —

Tell the customer “please wait, we've alveady giving you 2 qumball”
Tell the tustomer “sorvy, you alveady turned the tvank”

Tell the eustomer “turning twite doesn't aet you ancther aumball” -

Dispense one gqumball. Chetk number of gumballs; if = 0, e
to Noffuarter state, otherwise, ge to Sold Out shate

Tell the tustomer “the mathine is sold oul” "'__"‘\

Tell the eustomer "you haven't inserted a quarter yet”
A‘n\‘-\-‘-
Tell the tustomer “Theve ave no gumballs” —_—

Tell the ustomer “ne qumball dispersed” ——————

—

Tell the tustomer "Please wait, we've already giving you 2 gumball”
Tell the customer “sorry, you alveady turned the trank”

Tell the customer “turning tuice doesn't get you another aumball” -

Dulffm two qumballs. Cheek number of numballs; if =0,
40 to Noffuarter state, obherwise, ac to SoldOutSiate

426 Chapler 10

exarcise solutffons

=
+ b "’“,;j +
WHG DOQES WH AT T

:"- LI“'I.I [=H A J!: JJI HIELLL i‘EI. i!:i III.":I(:I. i].l':i.i i

Pattern Description

Encapwilate interchangeable
State | bebawiors and ise delegation to
decida which behavior (o use

Subelaseas decile how

Strategy o, i §
o Tmplement steps In an
alporithm
Encapsulate state-base
Template Method behapfior and delepate

iheh'n-:it*r fo ff—m copvernt siile

We need you o write the rehll]) method for the Gumball machine, It has one
argument, the number of gumballs vou're adding w the machine, and should
update the gumball machine count and reset the machine’s state.

void refill (int count)
this.count = count;
state = nefQuarterState;

428 Chapter 10

Ever pl:

services in a nice and friendly manner, but you don't want everyone asking you for services,
s you have the bad cop confrol access to you, That's what proxies do: control and manage
access. As you're going to see, there are lots of ways in which proxies stand in for the
objects they proxy. Proxies have been known to haul entire method calls over the Internet for
their proxied objects; they've also been known to patiently stand in the place for some pretty

lazy objects.

this is a new chapter 429

430

Chapter 11

#— ¢ Hey team, I'd
. really like to get
some better monitoring for
vy gumball machines. Can you
ind a way to get me a report of
wentory and machine state?

Sounds easy enough. IF vou remember, we've alveady
ot methods in the gumball machine code [or gewing the
count of gumballs (petCoung)), and geting the current
state of the machine (geiSoae()),

All we need o do is create a report thae can be pringed ow
and sene back w the CEO. Hmmm, we should probably

add a locavon field o each gumball machine as well; that
way the CEC) can keep the machines siraight.

Let's just jump in and code this, We'll impress the CEG
with a very fast twrnaround,

Prtid ki Wiatd L SR Ly

the proxy pattern

lotation 11\'114{ a E{"ﬁ"ﬁ'

The lotation is Passed into +h
tonstrittor and stored in ‘f:h:
instante variable.

—

Let's also add a getter methad .io
grab 4he location when we need it

mballMonitor, that retrieves the machine's
il the current machine state and prings them

v ol
@

The monitor fakes the mathing in

tonstruetor and assians it Lo
‘(Gumbal IMachine machina) | matking ine 5 i the
chine; instance variable.

{

System.out.println("“Gumball Machine: "™ + machine.getLocation()):
System.out.printlni{™Current inventory: ™ + machine.getCount() + " gumballs"):
Syatem.out.println(*Current state: * + machine.getstate()):

Dur veport method | t report wi
i g Jus prints 3 rth
location, inventory and the machine's s{'.a::-

you are here » 431

r

The CEO 15 going w be thrilled and amazed by our

CrumballMonitor and give it a machine to monitor:

%

ntln(™GumballMachine <name> <inventory=T):

count = Integer.p:
GumballMachine gun

GumballMonitor mar

!/ rast of test ¢

monitor.report(});

When we need 3 rep
the mathine, we eall
report() methed

S

eTestDriva | Pass in @ lotation and inikial # of

niStringl] args) A [— meaus on Lhe tommand fine.

2) |

"

monitor cutput looks great,
“guess I wasn't clear. I need to
ar gumball machines REMOTELY!

:t, we already have the networks

lace for monitoring. Come on guys,
u're supposed to be the Internet
generation|

Dan'{'_ F '-'.'E ‘b: w
{I’It f.dh!::?.g{m aﬁ :
letation and count .

Pnd heres TRE o

the proxy pattern

Don't worry guys, T've
been brushing up on my design
patterns, All we need is a remote
proxy and we'll be ready fo go.

Well, that will teach us fo gather
some requirements before we jump
inand code. I hope we don't have
to start over..,

Jot Framk

Joe: A remote what?

Frank: fRenotr prooy. Think abouc i we've already got the monitor code writen, right? We give the
GumballMonitor a relerence to a machine and it gives us a repore. ' The problem is that monitor runs
in the same JVA as the pumball machine and the CEC) wants o sic at his desk and semofely monitor the

machines! So what il we left our CGumballMonicor class as i, bue handed ic a prosy 1o 2 semel object?

Joe: I'm not sure | getiL
Jim: Me neither,

Frank: Les siare at the beginning.., a proxy is a stand in for a weel object. In this case, the proxy acts
ili,l:il_ like it 15 a Gumball Machine nh';r‘l'l,, Lt behind the scenes i is |'1:Ti||r1|_1|1ir;|li|1;: onver Lthe network to

talk to the real, remaote GumballMachine,
\l’im: Hll WY I'|_I.|-I:" "'\..l_'\'lrlL" T LLI"l'II‘ T I"I'Hli' e 'il, ih. ..,IlHl Wt gi".'l' |i:|il"' m()]lill"l'l' A]'I"!."I'l!"]ll"l" [(4] |“"'Ix"-' '\'I"!"iiill'l
ol the GumballMachine...

J'DE: Andd this ‘I.ll'l.r:\i':. Ilf‘t‘il.‘Jll.E:“ it's the real |r|g'rl-|'l. Tt s ﬁ':n”:.'liual 1'(:1':1!'|'||||‘1i.t‘:'|[i|‘:|;; owver the net o the

n';|| c:ah:i:'t'l:.
Frank: Yeah, that's precy much the story
Joe: It sounds like something that 1s easier said than done.

Frank: Perhaps, but | don’t chink ic'll be that bad. 'We have o make sure that the gumball machine
can act as a service and accept requests over the network: we also need to give our monitor a way to get
a reference to a proxy object, but we've got some great tools alveady bailt into_Java o help us. Lets talk
a licle morve about remaote prosdes firse.

M
vlachine
i space).

thodls on

p R.tl'nﬂ'te ﬁunb&" Mﬂﬂhih!
" with 3 Ji/

A el)

Your client ohject acts like it’s making remote method calls.
But what it’s rea]ly doing is ca]ling methods on a heap-

loca] ‘proxy’ object that hand]es al] the Jow-]eve] details of
network communication.

434 Chapter 11

the proxy pattern

This is a pretty slick idea. We're
going to write some code that takes a
method invecation, somehow transfers it over
the network and invokes the same method ona
remote object. Then I presume when the call is
complete, the result gets sent back over the
network to our client. But it seems to me
this code is going to be very
tricky to write.

Hald on now, we
aren’t going to write that code
ourselves, it's pretty much built
into Java's remote invocation
functionality. All we have to do
is retrofit our code so that it
takes advantage of RML.

- imeaiw
v aweEw

Before going further, think about how you'd desian a system to enable remote method invocation.
How would you make it easy on the developer so that she has to write as little code as possible?
How would you make the remote invocation look seamless?

- ewaiw”
U PAWER

Should making remote calls be totally transparent? Is that a good idea? Vihat might be a problem
with that approach?

you are here » 435

- e m—=— = - g mmmmm= — e

GumballMachine, again

ut the monitoring system

i that the CEO can monitor
'mote machines.

w o invoke a method on an
, right! In ather words, vou
H B |]H' i"'ll:it" I-I,l'lll'lill-g [l'lr"

wte Method [nvocaton
ows us to invoke their

o take a shight detour and
thall Machine code.

If you're new to RMI,

take the detour that runs
over the next few pages:
otherwise, you might want to
Jjust quickly thumb through
the detour as a review

the proxy pattern

=]

An RMI Detour
that Torwards each
e of helper objects
* for the client o
The client calls a
ce. The client helper
ote service, hecause
the thing with the
helper aces like it
nt helper doesn’t
client helper
etk 15
-\d"-it- ll‘l""I i
Lhe Mfﬂ"ud
|y dot* the

v 437

55 the
14 RE'hL'
The ont
+ veal

¥ pattern

=i

MI Detour

» 439

ne difference between RMI calls and loeal
method calls. Remember that even though o
it looks like the method call is local, the client
wls the method call across the network, So
stworking and LAOL And what do we know
working and 1/0) methods?

isky! They can Fil! And 5o, they throw
s all aver the place. As a vesult, the client does
knowledge the msk, We'll see how ina few

tionz

e
’E"PJ'EH:
jeed,
ihﬂ on
tide

ling

Vg,

out tweo _—
Fnr the
objeets

T
pl_Stub.class
EP

o
[
!

pl_Skel class

4 LT LTUORRILIALY BRI B T A% LLEC N,
ather words, the client invok
remote interface, That some
doing networking and 1/0), ;
has o acknowledge the risks
the methods in an interface «
reference of that type [the in

import java.rmi.*,

public interface !
public String

Be sure arguments and |

Arguments and retrn value:

or Serializable. Think about)
across the nevwork, and thats done through
th rerurn values. IF vou use primidves, Sirings, and
APT (including areays and collections), vou'll be fine,
ur own vpes, just be suree thae you make vour classes

Hello () throws RemoteException;

return value is Sonna be shi

PPed over the wi
e back to the tlient, so it must e chr:h:arhj:.&;:afte
3vys and veturn values get packaged wp and sent

be wsed

alls.

method call is
‘f- Dcr:fari..,a
ioh on eve

the thient

i dnd

at things

Check out Head Fi\'si:
Ji}& it You need to
rerresh Your memor'y
on Serializable

related to *heing remote’. Tk
[from the javarmiserver pac
worrh for vou.

public class MyRemo wte |

(@ Write a no-arg constru

Your new superclass, Unicasi
constrctor throws a Remot
declare a constructor lor you
place w declare the Remotel
its superclass constructor is a
an exception, vou have no ol

A ExCeon, 'u“.""'g W
weed 2

public MyRemoteImpl supertlass
eption.

I L Fermone
regisiry (which
mplementanon
that's what the
wthod of the

™ [{hi‘k‘. t-'lilr.n{..! Lan -.rsc
a name _

CJ4:.'r-u‘. r:g,lsi:'ﬂf] and rzarskﬂ [
l;w]l. Whhen Yo bind the

| swaps the cevvite For the

b in the registry

ﬁ.l'f! .TN w'ﬂ'lf.-
Lo lock it vp in
with the R wegis
= cote u_'hjgf,‘l:,, RM
st'l-"li! aﬂd ?ch,s t'h.t

you are here » 443

enerates L,
asses for {he
o ._jn‘,f_s

114N
na
118
19

Lo L.l'l'.l'l'."\."'ll TN PR S \I\'.ﬂ.‘ LL LB B

you'll usually do it The class mpl_Stub.class

ll]l'l."l;‘ll.rl'}.' (1.0 whatever vou « -

e must be able to see you A
. = - 1 1a

you'll probably run rmic Tron 3

remoue implementadon is Lo mpl_Skel.class

not using packages here, wr

World, vou’ll need o accoun

structures and fully=qualified

Step four: run n

(@) Bring up a terminal and
Be sure vou start ic from a dn
vour classes. The simplest wa
‘classes” direciory.,

otk is the
3 unllmsmﬂmhﬁhjtﬂ .
:?a\; $o make rewmote nhjcti.

implements MyRemote {

+all the 'ﬁ/pu MUST """FII Ty
f tourse. But remote in&y.[:#:_ﬁt : four
OT have to .

T r—yy.] 1

public MyRemoteImpl () throws RemoteException { } g i e
our swpertlass onstr
S UnicastRemoteObject) :&11::. ?,:.-, :Fﬂt?‘iloh; :n
| . : : . Ol must wirite 3 LonsTrullor usg i 1-n N
public static void main (String[] args) { I’Ht e s conel mllm& e L
. supey eomstruttor).

MyRemote service = new MyRemoteImpl(): "-\
Naming. rebind (“"RemoteHallo", sarvice):

} catch(Exception ex) { Make the remote obs 0
1 ex-printstacirrace(): \ rmiregistery using ﬂfiiﬁr;&rd Iti:m the
name You register it undey nyweod(s. The

is th :
vse to look it uP in the RMm| reg;il\:;c i

you are here » 445

Iﬁgrt.'!*m' .-

/O Code Up (I

The elient afwa}r: uses the ve
implementation as the type o
servite. |n ical‘.{, the client: ne i

needs {:ﬂ krew ‘H‘lc Jf.{l-ﬂ-| ela: {‘hai 'E:I
of Your remete seryigs

t be the nime
j 4 SErvite was
rcﬁu‘f::rcd under

MyRemote service = /

(MyRemote) Nami 1/RemoteHella™) ;
't\ ;‘\r"--__..f
‘T‘rﬂ"-' have 'Eﬂ ﬂaS‘t |{ L L Ve nera g nadmE o |P
interFate, sinte the lookup address wheve the
method returns type E'bjef.-l:. SEVViLe 1S Funning.

446 Chapter 11

1= the stub object

|'Il‘ l(lll-kl,ll.l I['II'll:IIHl-i.lHIl R.‘"l.“ 'i:ll'hl'l'ii,lli?.l'.‘\ 1|ﬁl' 'il_l.li?l

ST have the stab class (that rmic generated for yoo)

swon't be deserialized.

thod on the stub, as if the
rvice

you are here

attern

detour

447

the Fmireaisd
dije > 3y

rf.“'_uﬁh"f as LR
:‘E Lhe g,ai‘L

AR NI F W R M R RN AR T RAATEEEEY R TR IIGe WA AR WAT I BT AT TR IR WIS e LR ETe DA ASALSAR] MR M Earie 0. MRS TR

be deserialized on the client and the whole thing blows up. The client also needs classes for any
serialized objects returned by method calls to the remote object. In a simple system, you can simply
hand-deliver the these classes to the client.

There's a much cooler way, although it's beyond the scope of this book. But just in case you're
interested, the cooler way is called “dynamic class downleading” With dynamic class downloading,
Serialized objacts (like the stub) are *stamped”™with a URL that tells the RMI system on the client where
te find the class file for that object. Then, in the process of deserializing an object, if RMI can't find the
class locally, it uses that URL to do an HTTP Get to retrieve the class file. So you'd need a simple web
server to serve up class files, and you'd also need to change some security parameters on the client.
There are a few other tricky issues with dynamic class downloading, but that's the overview.

For the stub object specifically, there's another way the client can get the class. This is only available in
lava 5 though, We'll briefly talk about this near the end of the chapter.

ary .

used to
e servibe-

448

Chapter 171

stulb Class, but The Chent
never vefers to the stub
elass in eode. The client
always uses the remote
interface, as though the
vemote interface WERE the
actual remote object.

s do wrong with RMI are:
= starting remote service (when the se
qust be running!)

wturn types seralizable (you won't kn
et

MyRemote class

10 20 FTTTE =
oL ey s ALe]
an, g ey o
Lo B [0 i k1
iz MyServicelmpl_Skel class
MyRemote.class

Cevver needs both the Stub and Skeleton
tlasses, as well as the sevvice and the

vemoke interlate. £ needs the shub elass
betause vemember, the stub is substituted
For the veal service when £he veal servite

it bound to the RM| registry.

you are here » 449

450

ek

"J:I-:'\|C|‘1|r.r_
b
4
q\)
A
r_'h'-'f"t [+3
5t1|--u'll'.ﬂl
o5t
ko €%
L&
i . "r'!l'.'tf !kla
¥ T N
T e thent ¥
Xon
wail

the proxy pattern

e the
15,

©asel

wt Java.rui-*
J This is the remote interfate.

illMachinekemote extends Hemote |
1t {} throws FemoteException;
woecation() throws RemoteException;
:ate{) throws RemoteException:

\

Heve ave the metheds weve 3=i-nlg| ta wy?ov{.
Eath one throws RemoteExeeption

Serializable: the Stae class, Lecs fix it up...

package.

we st extend the E:t'-aliub'IF
fare Luhith has no methods in it).
now Ghate in all the subelasses ean
vansherred over the network.

you are here » 451

452

PR T I R W L

}

public State getState() |
return state;

}

i machine

ializable yver; we have one problem with State. As vou may
tains a relerence w a gumbald] machine so thae e can call the
change its state, We don’cwant the entre gumball machine
i Seae object. There is an easv way wo Ax this;

erState implemsnts State |
IMachine gumballMachine: —®—— | .y jmolementation of Chate, we

3dd the dransient keyword to the _
AR GumballMachine inskanee vaviable. This

tells the JVM not te cerialize this field.

SumbaliMachine, but we need to make sune it can act as a service and
r the neowork. ‘Lo do that, we have 1o make sure the GumballMachine is
ement the GumballMachine Remaote interface.

st
x?gmxm

tien |

~and the tonstruttor needs
R ‘E‘E {-h“ﬂw 4 \"tl'lﬂ'!',e !’-e-ﬂ?{iﬂhr

betause the superelass does

& That's it/ Nothing

/ thanges here at alll
public 8tring getlocation{) |

return locaticn;

}

/¢ other methods here

Chapter 71

the proxy pattern

i up so it can
[regisery so

15 for s

h blatk
:fl‘.ﬂl.l.‘;: oy
'L|ﬂr'l5

[his gets the GumballMathine up and running
ind vegisters it with the RMI registry

you are here » 453

454

Chapter 11

is working out quite
nicelyl

\eLause we e

Lo vely on the vemats
Lhan the tontrete

e 5‘5"“5
& wather
Wachine tlass

achine . .getlLocatian());
machine.getlounti{) + " gumballs™);
hine.getStata ())

io tateh ahr remate exteptions
Pen 3s we try to mvoke methods
a{-tr}' happening over the network.

the proxy pattern

, tions
tee's all the ‘:c;-,lcm-_ We treate an

wiert '::||"'.“'ﬂ5I {ﬂ Frrd Q-F 1ﬂt-a'b|mr

one Yor eath
mathine.
Sstring{] location =

[(*rmi://zantafe.mightygurball. com/gumbal Imachine®,
“rmi://boulder.mightygumball. com/gumbal lmachine”,
“rmi:/fzeattle. mightygumball. com/gumbal Imachine®) ;

GumballMoniter[] menltor =

new GumballMenitor[locatien,.length]:

for {int i=0:;1i = location.length; i++)

oy { '_ We also ereate an

GumballMachineRemote machine =

array of menitors
(GumballMachineRemote) Maming.lookup (location[i]):
moniteor{i] = new GumballMonitor (machine):
System.out.printlnimonitor{i]);:
} match {(Excepticn =) {
e.printstackTrace()
}
} New we need to get a prony
to eath vemete mathine.
farlint i=0; 1 < moniter.length: i++) |

monitor[i] .report ()

}

™

Then we iterate through eath
nﬂ:lh'l.c and print ovt s veport:

you are here » 455

the gumball machine proxy

| T vl .
Cﬂde UP Ll@% Remember, Naming lookup() is 2
statit method in the RM| package

This veturns 3 prowy to the remeote that takes a lozation and servite
ﬁ“mhﬁﬂ Mathine {or throws anm E?f.f_ﬂ?‘l;inn name and looks it up in the
if one tan't be lotated) -,-m]lrgellgs‘l:;r*f at that lotation

try | x[KfF
Gumbal lMachineRemnote machine =

(GumbrallMachineRemote) Naming.lookup{leocaticonli]):

monitar[i] = new GumballMonitor{machine);

} catch (Exception e) |
e.print3tackTrace()};

uJ aanw ul."llls A% b AELFLAF LAl AL rl. u_!.'r! LE L SRR R

is made across the wire and a String, an inl
and a State object are returned. Because w
using a proxy, the GumballMonitor doesn't |
or care, that calls are remote (other than h:
to worry about remote exceptinns}.

¥ pattern

458

ir, which first grabs the proxies-
en calls getState() on each one (¢

e NN

Wae hine

= fogy, RMI registry (on gumball machine)
T et

y pattern

Likewise, the QumballMathine

_ Ler implements another intevfate and
excepk it knows it TE;T::; b may throw a remote exception in its
remoke eALETTION: pislps Levbate vather tonstructor, but other than that, the
GuwballMachinenem . tode hamn't thanged.

We also have a small bit of tode to veaister and lotate stubs using the
Rm| vﬁﬂisﬁr}r- But ne matter what, it we were m'l;mg mmt-l:hhma to
work over the Internet, we'd need some kind of lotator servite.

you are hera v 459

e ."l"\ Wi]{['IIZIT.'-', A rermage |]r'(my ot Pl.‘i L S

remote ohject.
A virtual proxy controls access (o a resource that is

t"]ﬂl[’ﬂi-l‘ﬂ' I Creare.

A protection proxy controls access to a resource
based on access righes.

Now that vou've got the gist of the general patern, check out the

class diagram...

460 Chapter 11

Use the Proxy
Pattern to create a
representative nhjec’t
that controls access
to another object,
which may bhe remote,
expensive to create or
in need of securing.

the proxy pattern

& and the
nTl,f_‘mEh‘t the
face This
wk to treat
& like the

Trory keeys 8
cente to Ehe
eek, so it a0
ward reaues
:.'h‘- Eubjti'h
n .\cf.'c!-‘ﬂ"“f

tand the Proxy:
i R.l’!:!.l.Ellllf!il!l:l'

at the Proxy

The Proxy holds a reference to the RealSubject. In some cases, the Proxy may he
responsible for creating and destroving the RealSubject. Clients inoeract with the
RealSubject through the Proxy. Because the Proxv and RealSubject implement the
same mtertace (Subject), the Proxy can be substmed anywhere the subject can be
wsed, The Prowy also controls access to the RealSubject; this control may be needed
il the Subject is running on a remote machine, if the Subject is expensive to create in
somne wiay o il aceess to the subject needs o be protected in some way

Noww that vou understand the general pattern, let's ook at some other ways of using
proxy beyond the Remote Prox..

you are here v 461

for an object that lives ina
different JVM. A method call
on the proxy results in the cal
being transferred over the wi
invoked remotely, and the res
being returned back to the pr
and then to the Client,

Virtval Proxy

Virtual Proxy acts asa
representative for an object
may be expensive to create. T
Virtual Proxy often defers th
creation of the object until it
is needed; the Virtual Proxy
also acts as a surrogate for
the object before and while it
is being created. After that,
proxy delegates requests dire
the RealSubject.

462 Chapter 11

D taver
i b b e
o bre =

S

lication thar displayvs your favorive compact dise
of the G ddes and then regrieve the images
neom, IF vou're using Swing, vou might create
e from the network, The only problem is,

il the bandwidth of your connection, retrieving
5o vour application should display something
e to Joad, We also don’t want 1o hang up the
son the image. Onee the image iz loaded, the
should see the image,

ugh a virtwal proxy. The virtual proxy can
«the background loading, and before the
sowork, display “Loading CD cover, please

the proxy pattern

464

(2

o

B e

While the bytes o
ImageProxy displ
wait...”.

When the image i
egates all methoc
paintlcon(), getW

If the user reques
new proxy and st

[“.'I?_:'I'.:'II:I'I.

he proxy 1s
rriewve the data
i sommewhere

ved,
158

fel-
sluding

y pattern

ion that we
en it's loaded.
tinto
mage
sded!
return 5047
}
| ™ We veburn a default width and height
public int getlconHeight() | wnkil the imageleon is loaded; then we
if {(imagelcon != null) { Z/ Lurn it over to the imageeon
return imagelcon.getIconHeight();
I =lse {

return &00;
]
I

public void paintIcon{final Component o, Graphics g, int %, int y} |
if (imagelcon != null) |
imagelcon.paintIconi(c, g, %, y):
} else |
g.drawsdtring ("Loading CD cover, please wait...”, »x+300, y+190);
if ('retrieving) |
retrieving = trus;
retrievalThread = new Thread|new Runnablei) |
public woid run(} |
ery {
imagelcon = new Imagelcon{imageURL, "CD Cover™):
c.rapaint(};
| catch (Exception =) |
e.print3tackTrace():

} : Heve's where {-.hln&: aet in‘l::rﬁ{:ing.

N This tode paints the iton on the

; . sereen (by deleaating to the
retrievalThread.start () ri/ ima&tlﬂ " Rosaver: S AT

t a F-.-Ihjl treated Imageleon, then we
! treate ome. Let's look at this eloser
on the rext page...

yvou are here v 4B5

image proxy up close

) Code Up (lose

This methed 15 talled when it's time to ?Eiht the iton on i:'hc stréen

\

if (imagelcon '= null) {
imagelcon.paintIconic, g, %, ¥):!

} else {

if (lretrieving) |

retrieving = true;
retrievalThread = new Thread(new Runnable () {
public void run{} {
tey |

c.rapaint() ;
} catch (Exception e) {
e.printStackTrace():
i
|
|3

retrievalThread.start () ;

public veoid paintlIcon (final Component <, Graphics g, int x, int y) {

an item ﬂrtidp we |

IF we've
€ head and tell # to paint rhself

g.drawstring (“Loading CD cover, please wait...”, x+300, y+150};

FC“-’ 'ﬂ{htrm.;e e
dISFl,ﬂ'}r thf
d'ﬂﬁ messade.

imagelcon = new Imagelcon{imageURL, "“CD Cowver"):;

466 Chapter 11

the proxy pattern

Code Way Up Close

I we aven & already {-T‘J"“'"E. fo vetrieve the imane.

then it's time to sbart vebrievimg it (in case you
were wondering un-'l\jl ant

if (!retrieving) {
retrieving = tru

retrievalThread -
public wvoid 3
try |
image
<. ref
} catch
e.pr:
}
1
b
retrievalThread.:

Sn. {',ht nt'l‘-'E. 'E:Ill'-E H
method will paint the image, not the loading message.

theead ealls paint, so we
erms of theead sakeby).

— We don't want to hang wp flhc
entive user inkerfate, so weve

[gems, to use another thread to
vebrieve the imase

iL, “CD Cowver”);
I
\.____ N oup 'Elﬂ'fﬂd e

"stantiate 4,
leon object, H:Es

i ‘:W‘f'.'ru;_{.
. '::at_. ."‘E'Eur,, "‘hf;j" g]::lf ol
;‘d image is ledded

ton is instantiated, the paintlecn

. 467

e

The ImageProxy class appears to have two states that are controlle
by conditional statements. Can you think of another pattern that
might clean up this code? How would you redesign ImageProxy?

ats Iecon {
5 & constructor here

pupric rnc gecrconnwodth{) |

if {imagelIcon != null)} { ﬁm\\
return imagelcon.getIconWidthi);
| else | Two states

return 800; &//

public int gstIconbHsight(} |

if (imagelcon != null) |
return imagelcon.getIconHelight () s
| else | Tweo states

return &00;
|

public vwoid paintIcon{final Component <, Graphics g, int x, int ¥ |

if {imagelcon != null}) | 4—-\\
imagelcon.paintIconic, g, %, ¥): Two st
| else |
g.drawstring{"Leoading CO cover, please wait...”, x+300, y+1980);)

// more code

468

Chapler 11

the proxy pattern

ncy new virtual proxy, Behind the

new ImageProxyTestDrive that sets up

stalls the menus and creates our proxy.

de in gory detail here, but you can

id have a look, or check it out at the end
the source code for the Virtual Proxy,

drive code:

eptlion |
MestDrive ()

T Heve we treats an image prowy and set
it to an wmitial URL. Whenever you

thoose a selettion Lrom the D meny,
you'll aet 3 new image proxy

So— Next we wrap our prexy in 3

compement so it tan be added to
the Frame. The tompenent, will
: fake tave of the f"r‘qi.'fls width,
Tme hewght and similar details.

Q: The Remote Proxy and Virtual
Proxy seem so different to me; are
they really ONE pattern?

A: You'll find a lot of variants of the
Progy Pattern in the real world; what
they all have in commaon is that they
intercept a method invocation that

the client is making on the subject.
This level of indirection allows us to

do many things, including dispatching
requests to a remote subject, praviding
a representative for an expensive
object as it is created, or, as you'll see,
providing some level of protection that
can determine which clients should be
calling which methods, That's just the
beginning; the general Proxy Pattern
can be applied in many different ways,
and we'll cover some of the other ways
at the end of the chapter.

Q: ImageProxy seems just like
a Decorator to me. | mean, we are
basically wrapping one object with
another and then delegating the
calls to the Imagelcon. What am |
missing?

AI Sometimes Proxy and Decorator
look very similar, but their purposes are
different: a decorator adds behavior to
a class, while a proxy controls access
to it, You might say, "Isn't the loading
message adding behavior?” In some

tharezare no

Dumb Questions

ways it is; however, more importantly,
the ImageProxy is controlling access
to an Imagelcon. How does it control
access! Well, think about it this way:
the proxy is decoupling the client from
the Imagelcon. If they were coupled
the client would have to wait until each
image is retrieved before it could paint
it entire interface. The proxy controls
access to the Imagelcon so that before
it is fully created, the proxy provides
another on screen representation.
Once the Imagelcon is created the
proxy allows access.

Q: How do | make clients use the
Proxy rather than the Real Subject?

A: Good question. One common
technique is to provide a factory that
instantiates and returns the subject.
Because this happens in a factory
method we can then wrap the subject
with a proxy before returning it, The
client never knows or cares that it's
using a proxy instead of the real thing.

Q: | noticed in the ImageProxy
example, you always create a new
Imageleon to get the image, even

if the image has already been
retrieved. Could you implement
something similar to the ImageProxy
that caches past retrievals?

the proxy patiern

AI You are talking about a special-
ized form of a Virtual Proxy called
a Caching Proxy. A caching proxy
maintains a cache of previous created
objects and when a request is made it
returns cached object, if poassible,

We're going to look this and at several
other variants of the Proxy Pattern at
the end of the chapter.

Q: | see how Decorator and Proxy
relate, but what about Adapter? An
adapter seems very similar as well.

A: Both Proxy and Adapter sitin
front of other objects and forward
requests to them, Remember that
Adapter changes the interface of
the ohjects it adapts, while the Proxy
implements the same interface.

There is one additional similarity that
relates to the Protection Proxy. A
Protection Proxy may allow or disallow
a client access to particular methods
in an object based on the role of the
client. In this way a Protection Proxy
may only provide a partial interface to
a client, which is quite similar to some
Adapters, We are going to take a look
at Protection Proxy in a few pages.

471

you are here »

fireside chats: proxy and decor:

Fi_r_eside Chats

Hello, Decoraton 1 presume yo
because peaple sometimes et u

Me copying yeur ideas? Please. 1 control access
to objects. You just decorate them. My job is
so0 much more important than vours ic's just not
even funny,

Fine, so maybe you're not entirely frivolous...
but 1 still don’t get why you think 'm copying
all vour ideas. 'm all about representing my
subjects, not decorating them.,

I don't think vou getit, Decorator. 1 stand in for
my Subyjects; Idon just add behavior. Clients
use me as a surrogate of a Real Subject, because

| can protect them from unwanted access, or keep
their GUIs from hanging up while theyv're waiting
[or big objects o load, or hide the fet thae their
Subjects are running on remote machines. I'd say
that’s a very different intent from vours!

472 Chapter 11

| Decorator get intentional.

|, T think the reason people zet us confused

al vou go around pretending o be an

rely different pattern, when in fact, you're

a Decorator in disguise, | really don’t
think you should be copying all my ideas,

“Just” decorate? You think decorating is some
frivolous unimportant pattern? Let me tell
vor huddy, T add befaznor. That's the most
important thing about objects - what they do!

You can call it “representation” but il it looks
like a duck and walks like a duck... T mean, just
look at vour Virtual Proxy; ics just another
way of adding behavior to do something while
some big expensive object is loading, and your
Remote Proxy is a way of Lalking to remote
objects so vour clients don’t have to bother
with that themselves, 1t's all about behavior,
Just like [said,

Call it what vou want. I implement the same
interface as the objects I wrap; so do you.

Proxy

Olkay, let’s review that statement, You wrap
an object. While sometimes we informally sy
a proxy wraps its Subject, that’s not really an
daccurate werm.

Think about a remote proxy.. what object am
I wrapping? The object I'm representng and
eontrolling access to lives on another machine!
Let's see you do that.

Sure, okay, take a virtual proxy... think about
the CD viewer example. When the client first
uses me as a proxy the subject doesn’t even
exist! So what am | wrapping there?

I never knew decorators were so dumhb! OF
eourse | sometimes create objects, how do you
think a virtual proxy gets its subject! Okay, vou
Just pointed out a big difference between us:
we both know decorators only add window
tdressing; they never gel w instantiate anything,

Hevy, alter this conversation I'm convineed
vou're just a demby prosy!

Very seldom will you ever see a proxy get into
wrapping a subject multiple times; in fact, if
you're wrapping something 1) imes, you
better go back reexamine your design.

the proxy pattern

Decorator

Oh yeah? Why not?

Okay, but we all know remote progies are kinda
weird, Got a second example? T doubt i

Uh huh, and the next thing vou'll be saving is
that vou actually get to create objects,

Oh yeah? Instantate chis!

Dumb proxy? I'd like to see you recursively
wrap an object with 10 decorators and keep
vour head straight at the same tme.

Just like a proxy, acting all real when in fact you

just stand in for the objects doing the real work.
You know, @ actually feel sorry for vou.

you are here v 473

gns.iijﬁ

0 wavd and implements : lev. whith 5&’
fhﬂ ntl \ ol S H l;ht |nﬂD¢i‘E‘l€mHand £Y)
ke o ethod cal that are muked on the

Prowy. The 1nvn¢a'|:ianﬁahdlcr tontrols attess to
the methods of the ReaiEuhjcr.Jc-

Because Java creates the Prosy class for ye, you need a way o tell the Proxy class what o do. You can't
put that code into the Prosy class like we did belore, becanse you're not implementing one directy. So, if
vorn can 't put this code in the Prosy class, whiere do von put it? In an InvocanonHandler,. The job of’ the
InvocatonHandler 1 w0 respond to any method calls on the prossy,. Think of the IvocadonHandler as the
object the Pros asks o do all the veal work atier ics recetved the method calls,

Okay, let’s step through how to use the dynamic proxy...

474 Chapter 11

Lhe i
aet ko
n .m‘ha 'Y Hﬂ'f et ca..,
? \ Sbout L postr " oPmatio
hame

public interface PersonBean [

String getHams();

String getGender();
S5tring getInterests();
int getHotOrNotRating({);

vold setName (String name);

vold setGender (3tring gender):

vold setInterests{String interests);

vold setHotOorNotRatingi{int rating): ‘j

7
NotRatingl) 124
mtiﬁtﬂ*ﬂ and adds it to the
We tan also set the same a“.,-.-.nirnﬁ averade for Ehis persen
in‘wma{iq.. {:hﬂhﬂh bhe b

vespeetive method calls.

MNow let’s check out the implementation...

you are here » 475

476

: g
public String getGender() |
return gender;
J
public String getInterests() |
return interests:
]
public int getHotOrNotRating() | G"'".-

if (ratingCount == () return 0;
return (rating/ratingCount);

public void setName (String name) |
this.nams = name;
]

public void setGender (String gender) |
this.gender = gender;
]

public void setlnterests(String interests) |
this.intereste = interasts;
]

public vold setHotOrMotRatingiint rating) |

this.rating += rating:
ratingCount++;

Chapter 11

inker-fate

| the aekter methods; they eath returm
the appropriate mstance variable..

entept For
ywctﬂrﬁu’cﬂahngi}. whith
;Wuhs the averdge '""F the
vatings by dividing the vatimgs
'b‘,' the ra{iQth{v

2 Mdherdsall the sebher

mt*jﬂdﬂu \'A’nﬂh !-Et ‘H‘l!
torvesponding instante variable.

—_ “etiotOrNotRsting()
r&{ahg{:mﬁ and adds the

vating fo Lhe running fots]

the proxy pattern

I wasn't very successful finding
dates. Then I noticed someone had changed
my interests. I also noticed that a lot of people
are bumping up their HotOrMNot scores by giving
themselves high ratings. You shouldn't be able
to change someone else's interests or give
yourself a rating!

While we suspect other factors mayv be keeping Elroy from gevang

daces, he 1s nght: vou shouldn't be able w vote for yvoursell or o change
another customer’s data. The way our PersonBean 1= debned. any client
can call any of the methods.

Ihis is a pertect example of where we might be able w use o Protecton
Proze. What's a Protection Proxy? It's a proay that controls access o
arn |||'|i|'1'| hased on access l'i:!_':l.'l[.“. For instance, if we had an I.'i'l"l|r|.lr‘!|l.'l." T\
0l PiL"l'l._ | |r]'1||t't'!in:|‘|. |||‘r|-13. |‘J'si',£|':l allony the 1'I'I'.I|'I|1I‘:.'l.'l' 1o call certain -
methods on the rr|:ir|'|.. A managrer to call additonal methods (like ey
setSalary])), and a human resources employee o call any method on the

H|Jil.‘i'l.

I our dating service we want (o make sure that a customer can sel his
own informaton while preventing others from aleerng i We also want
to allonw just the apposice with the HotOrNot ratings: we want the other
customers to be able to set the ranng, but not that parncular customer.
We also have a number of geter methods in the PersonBean, and
hecause none of these remirn |-rir;u:* information, any Cusiomer shuuld
b alile o eall them,

Step three:

Wrap any PersonBean ob)
the appropriate proxy.

When we need o use a Pers
cither it's the object of the ¢
(in that case, will call him e
;:IILH[I:'H.'I' s 1]]‘ 1]“' :‘i'.'l"l.'.l{":' 1
1']“‘.(";.5”]-_"' el i‘ill ||]-'l| LS Wil
awner

In either case, we create the
for the PersonBean,

There’s only one method, invoke()
method 1s what gets called on the

Let's say the setHotOrNc
method is called on the pr

proxy.setl

invoke (Object

(@) The handler decides
what it should do
with the request
and possibly
forwards it on to
the RealSubject. —==
How does the
handler decide?
We'll find out next.

480 Chapter 11

il ane for the non-owner, Buai
=t method call is made on the
s ealling the imvocaton handler's
wionHandler interface:

lewd om the prosey, the invaked)

@) The proxy then
turns around and
calls invoke() on the

w InvocationHandler.
ject[] args) é’-———)

___.-—'___--._‘\
The Method elass, part of the

: vellection AP, tells us what
manc . mithed mekhod was called on the proxy

on 'I:-hﬂ R.Ea‘ via H:S 5:{:”3":{) hﬂ{hﬂ'd'
Subject /

return method.invoke {person, args);

I 7N

Heve we involie the Dl vow we with the wigma'l
at ! et

original method that w35 e it on the argments

talled on the proxy. This o cibioed

obiett was passed to ws in R J

the invoke 2all

the call?
nake
simplement

" m'nlaﬁaﬂm.l

indlers implement

i J"'""Pﬂ‘r:'lﬂnﬂandm—
berLace.

the proxy pattern

l/ We've passed the
)) ; Real Subiect in Lhe

public class OwnerIinvocationHandler implements InvocationHandler |

PerscnBean persan;
public CwnerlnvocationHandler{PersonBean person) | é—//

tonstruttor nd we
i‘.‘!‘-ﬂf" d 'I‘EF{rgm 4o it

Heve's the invoke

this.person = parson; wekhod that ﬁcfl
] / called every time a
public Object invoke(Cbject proxy, Method method, Cbhject[] args) method is invoked
throws IllegalAccessException { on the Fro®y:
try | — [f the method is a
if (metheod.getName () .startsWithi{™get™)) (31‘{'.{:\', we 0o ahead
return method. invoke (person, args);: and mvoke it on the
| elze if (method.getName().equals{*setHotOrNotRating™)) | weal ﬂbjtf-‘t-
throw new IllegalhAccessException(): K_
e i Il Qeetanel) staxe et U N O € i b
) ' e ey setttobDr NotRating0)
} cateh [InvecaticnTargetException e) | r"‘ﬂ""d b ‘:1'“”"""
e.printStackTrace(); l‘th‘r‘ {'.hvownn&a
+ i NegalAecessException.
return null; This i Bfﬂa
ig wil| I"aP'Pth i_F MSE W dirp
] the
3 the real subjeet owner an
throws an exteption. :nﬁh_” set method
If a ; B Tine and we
: "". other method is talled, ahead and invoke
WE e JHS‘E 5@”15 'Eg 'r'!{;hh'n. i it L
vather tham Lake i on the real
E| f.hﬂnﬂ‘.:, mb‘jﬂﬂt

you are here » 481

dler

1w NonOwnerlnvocatonHandler works just like the
wnerlnvacanonHandler except that it affss calls w setHotOrNotRating)
b i disalfores calls woany other set method, G abead and wce this
ndler vourself:

482 Chapter 11

the proxy pattern

tdate the proxy object. Let's start by writing a
axy for it. That s, we're going to create the

midler. Here's the code:

: tode treates the

#Y. Now this is some
hty waly tode, so let's
p through it LHFEE"“'}'

To treate 3 prowy we use

farsonBaan person) | / the statie M-...—Frw.*f!hsﬂnf-t
i—"—__// methad on the F‘ru!"f elass..

oy . newProxyInstance |
s5() .getClassLoader(}, & We pass ik the elassloader
i) cgetInterfaces(), Eaﬁr our subjﬂ'.f-

rationHandler nipprs-::un:l |
and the set of interfaces the
provy needs to implement..

the ¢m5Eru¢{:n1r
You lock batk w-and an wvetation handler, in thiz

i the handler 3(‘&5 case owr Dwnerlnvotationtandler.

Nhile it is a little complicated, there isn't much to creating a dynamic proxy.

Why don’t you write getNonOwnerProxy(), which returns a proxy for the
NenOwnerinvocationHandler:

Take it further; can you write one method getProxy() that takes a
handler and a person and returns a proxy that uses that handler?

483

58 to the

Main just ereates the test
drive and ¢alls iks dviveld
method to 561.'. l:.hin:'s going,

itDrive () ;

The tonstructor mitializes
=" sw DBt pecple in the

llllulalisesidMidpg=sg) ¢ mﬂ'b!‘-hﬂ‘ak“lﬂ w“

) , i

public veid drive() | vl Lgks rfhlztha DB
PersonBean joe = getPersonFromDatabase ("Joe Javabesan™); perion Trom e
PerzonBean ownerProxy = getOwnerProxy(jce}; - _ard treate an
System.out.println{™Nams is ™ + cwnerProxv.getWNams{}); owner Proty.
oWnerkFroxy.setInterests ("bowling, Go");
System.out.println({*Interests set from owner proxy™)i Call a ‘FH:"
try | and then a setter

by B .setHotOrHotRati 10):
ownerProxy.setHotOrNotBating (10) &’—.\\—. md&nb‘ffﬂ

} zateh (Exception e) | Lh £
System.out.printini(™Can't set rating from ocwner proxy”™): change the rating

b
System.out.println(“Rating is ™ + ownerProxy.getHotOrNotRating())¢ fhis shouldn't work!

PerzonBean nonOwnerProxy = getNonOwnerProxyljoe): g Now treate 3 non—

System.out.println{*Nams is ™ + nonOwnerProxy.getMame()); owner pravy

REY | _) = .-and eall a ﬁl‘t{-ﬂ'
nonOwnerProxy.setinterests ("bowling, Go"):

} cateh [Exception e) | = followed "’Ta
System.out.println(*Can’'t set interests from non owner proxy™): sether

}

noncwnerProxy . setHotOrHotRating(3) ;
System.out.printlni{™Rating set from non owner proxy™):
System.out.printlni™Bating is ™ + nonOwnerBroxy.getHotOrNotRatingd)): Then .h.}. ta

J set the ratirg
/4 othaer methods like getOwnerProxy and getNonOwnerProxy here T.
This should 'H'D"*-F

This shouldn't Wk.i

484 Chapter 11

ts from non owner proxy

ON OWNer proxy

¥ pattern

K YOom
allows getting only, but
alse allows calls 4o set the

Ha‘t.ﬂrfﬂ'a‘ll: vati né

you are here » 485

g&a about proxy

Q: So what exactly is the
“dynamic” aspect of dynamic
proxies? Is it that I'm instantiating
the proxy and setting it to a handler
at runtime?

A: Ma, the proxy is dynamic
because its class is created at runtime.

Think about it: before your code runs
there is no proxy class; it is created on
demand from the set of interfaces you
pass it

Q: My InvocationHandler seems
like a very strange proxy, it doesn’t
implement any of the methods of
the class it's proxying.

A: That is because the
InvocationHandler isn't a proxy — it is
a class that the proxy dispatches to

for handling method calls. The proxy
itself is created dynamically at runtime
by the static Proxy.newProxylnstance()
method.

Q: Is there any way to tell if a

class is a Proxy class?

486

Chapter 11

therejare no
b

Dumb Questions

A: Yes, The Praxy class has a statle
method called isProxyClass(). Calling
this method with a class will return
true if the class is a dynamic proxy
class, Other than that, the proxy class
will act like any other class that imple-
ments a particular set of interfaces.

Q: Are there any restrictions on
the types of interfaces | can pass into
newProxylnstance()?

A: Yes, there are a few. First,it is
waorth pointing out that we always

pass newProxylnstancel) an array of
interfaces - only interfaces are allowed,
no classes. The major restrictions are
that all non-public interfaces need to
be fram the same package. You also
can't have interfaces with clashing
method names (that is, two interfaces
with a method with the same
signature). There are a few other minor
nuances as well, so at some point you
should take a look at the fine print on
dynamic proxies in the javadoc.

Q: Why are you using skeletons?
| thought we got rid of those back in
Java 1.2,

A: You're right; we don't need

to actually generate skeletons. As

of Java 1.2, the RMI runtime can
dispatch the client calls directly to
the remote service using reflection,
But we like to show the skeleton,
because conceptually it helps you to
understand that there is something
under the covers that's making that
communication betweesn the client
stub and the remaote service happen.

Q: | heard that in Java 5, 1
don't even need to generate stubs
anymaore either. Is that true?

A: It sure is. In Java 5, BM| and
Dynamic Proxy got together and now
stubs are generated dynamically using
Dynamic Proxy. The remote object’s
stub is a java.lang.reflect. Proxy instance
(with an invecation handler) that is
automatically generated to handle all
the details of getting the local method
calls by the client to the remote object.
S0, now you don't have to use rmic at
all; everything you need to get a client
talking to a remote object is handled
for you behind the scenes.

Decorator

Facade

Adapter

Wraps anether object
and provides a different
interface to it

Wraps ancther ohject
and provides additional
behavior for it

Wraps another ohject to
comtro] access to it

Wraps a bunch of
objects to simplify their
interface

you are here »

487

virtual and protection proxies, bl
lons of muations of this pattern,
the zoo welve ot a nice collecoon
aptured for your sty

0°Te FOINE Lo See More variaions ol
ve us a hand in catalomng more

daing collection:

a

Firewall Proxy
confrols access fo a
set of network
resources, protecting
the subject from "bad” clients.

Mabitat: often seen in the location

of torporate Lirewall systems

Help Find a habitat

Smart Reference Proxy

provides additional actions

whenever a subject is

referenced, such as counting

the number of references to
an object.

Caching Prox
femporary stc
results of ope
that are expen
can also allow multiple client
the results to reduce compu
network latency.

sen seen in web sevver provies as well
ranagfrr.er-{ and publishing 5'7'5{::"-‘3

488 hapter 11

Synchronization Proxy

provides safe access to

a subject from multiple
threads.

Help Find 2 habitat

the proxy pattern

& I

:wrlc:r. h'ahE:mﬂ around \.,I:'r\félg?ﬂf.tﬂ_, wheye
it .ohtuT.s Bynthronized difess £q

an andtr.}';r:lj set of -:-I':er:,; i
distribud [=

ted EnYIrorment.

~— % Complexity Hiding Proxy

hides the complexity of
and controls nccess to a

complex sef of classes.
This is sometimes called

the Facade Proxy for obvious reasons.
The Complexity Hiding Proxy differs

Copy-On-Write Proxy

controls the copying of

an object by deferring

the copying of an
object until it is required by
a client. This is a variant of
the Virtual Proxy.

from the Facade Pattern in that the
proxy controls access, while the Facade
Pattern just provides an alternative
interface.

A Iﬁ
Habibat: seen in the vitinity of the
Java 92 I':.all:“jlf:'r.l."'-rr'l'l C]‘!‘.rra'?'L-ls*;

Field Notes: please add Your obsevvations of other provies in the wild heve:

e v 489

490

ﬁ

ING chapter. Why not unwind by doing a
1zzle before it ends?

AlEEEEEEEE B =
ZNENRERE

Across Down

1. Group of first CO cover displayed (two words) 2. Java's dynamic proxy forwards all requests to
3. Proxy that stands in for expensive objects this (two words)

4. We took one of these to learn REMI 5. Group that did the album MCMXC AD.

7. Remote was used to implemeant &, This utility acts as a lockup service for BEMI
the gumball machine monitor (two words) 8. Why Elroy couldn't get dates

9. Software developer agent was being this kind 10, Similar to proxy, but with a different purpose
of praxy 12. Objectville Matchmaking gimmick (three

11. In BMI, the object that takes the network words)

requests on the service side 13, Our first mistake: the gumball machineg

14. Proxy that protects method calls from reporting was not

unauthorized callers

15. A

proxy class is created at runtime

16. Place to leam about the many proxy varnants
17. Commonly used proxy for web services (two

words)

18. In RMI, the proxy is called this
148, The CD viewer used this kind of proxy

Chapter 11

7

wattern
atts as d
-ative for
c-b";lcri-

P

AVirtual Proxy controls access
to an object that is expensive
to instantiate.

A Protection Proxy controls
access to the methods of an
object based on the caller.

Many other variants of

the Proxy Pattern axist
including caching proxies,
synchronization proxies,
firewall proxies, copy-on-write
proxies, and so on.

Proxy is structurally similar to
Decorator, but the two differ in

their purpose.
The Decorator Pattern adds

behavior fo an object, while a
Proxy controls access.

Java's built-in support for Proxy
can build a dynamic proxy
class on demand and dispatch
all calls on it to a handler of
your choosing.

Like any wrapper, proxies will
increase the number of casses
and objects in your designs.

you are here » 491

s just like the
Callows calls o setHotOrNotRating)|
sthod. Go ahead and write chis

3 InvocationHandler {
FETSQNESAN PErsSon;

public NonOwnerlnvecatlonHandler (PersonBean person) |
this.perscn = person;

public Object invoke(Object proxy, Method method, Object[] args)
throws IllegalhccessException |

tey |
if {method.getNams().startsWith (Mget”)) |
return method.invoke (persan, args);
} else if (method.getName(}.equals(™setHotOrNotRating®)) |
return method.invoke (person, args);
} else if (method.getName().startsWith(“set”)) |
throw new IllegaliccessException():
| catch (InvocationTargetException =) |
e.printStackTracea();
|
return null:

Our ImageProxy class appears to have two states that are controlled
by conditional statements, Can you think of another pattern that
might clean up this code? How would you redesign ImageProxy?

two states, ImageLoaded and ImageNotLoaded. Then put the code from
spective states, Start in the ImageNotLoaded scare and then mransidon w the
Imageleon had heen retrieved,

the proxy pattern

there isn't much to creating a dynamic
tNenOwnerProxy(), which returns a
itionHandler:

:rson) |
stance |

ader (),
eall;

Clparson))

: vizlelTlulalLd
o lelrloluls] o [
EEEEEE
A
plrlolrlelclrizloln
'slelelilelr/o NIl
N

e
6|
B

e oo (o lo x|y o]

B
B
B
11;:.
n
it
B

JMenuBar menuBar;
JMenu menus
Hashtable cds = new Hashtable{);

public static woid main (String[] args) throws Exception |
ImageProxyTestDrive testDrive = new ImageProxyTestDrive():
l

public ImageProxyTestDrive(} throws Exceptiond
cds.put [“Ambient: Music for Alrports", "http://images.amazon.com/images/E/
BOOOOO3S2K. 01 . LESEBEEE. Ipg™) s
cds.put (“Buddha Bar™, *http://images.amazon.comn/images/P/BO0Q009XEBYK.01. LEZ2REEE.

ipg”):
cds.put (“Ima”™, "http://images.amazon.com/images/P/BO0OOOOSIRM, 01, LEZRREAE . Jpg™) ¢
cds.put (“Earma”™, “http: //images.amazon.com/ images /B/BOGOODSDCR. 01 . LEZZZZEE .gif™) ¢
cds.put ("MCMXC A.D.", Yhttp://images.amazon.com/images/P/BO0OG02URY . 01.LEZEREES .
ipg"ye

cds. put (“Morthern Exposure”, *http://images.amazon.com/images/P,/BO0000035FN.01.
LEZERZEZE.Jpg”) ;

cds.put (“Selected Ambient Works, Veol. 2%,"http://images.amazon.com/images/P/
BOOOOOZMNE 0L . LEZERZEE . Jpg™) ;

cds,put ("oliver”, *hitp: //WwwW.cs.yale. edu/homes/freeman-elisabeth/2004/9/01liver

sm.ipa”) ¢

URL initialURL = new URL{{3tring)cds.get("Selected Ambient Works, Vol. 27)):
menuBar = new JMenuBari):

meny = new JMenu(™Favorite CDs™);

menuBar.add imenu} ;

frame.setJMenuBar {(menuBar) ;

494 Chapter 11

the proxy pattern

for(Enumeration e = cds.keys(}; e.hasMoreElements():) |
String name = (String)e.nextElementi);
JMenultem menultem = fpew JManultemn{name)
menu ..add {(menultem) ;
menultem.addActionlistener (new ActionListener() |
public vold actionPerformed (hActionBEvent event) |
imageComponent. setIcon (new ImageFProxy (getChDUrl (event.getictionCom-
mand (})]s
frame.repaint():

bis
b

A4 set up frame and menus

Icon icon = new ImageProxy(initialORL);
imageComponent = new ImageComponent (icon);
frame.getContentPane () .add (imageComponant) ;
frame.setDefaultClosedperation (JFrams EXIT o
frame.sebtSize (8O0, 600) ;
frame.setVisible(true) ;

URL getCDUrl (String name) |
try |
return new URL{{(8tring)cds.get (name)) ;
} cateh (MalformedURLException a) |
e.printStackTrace(}:
return noull;

you are here » 495

dMHLAERAL LTLALSTVELLILLTAW
boolean retrieving = false;

public ImagePraxy (URL url) | imageURL = url:)

public int getIcenWwidth{) {
if (imagelcon !'= null} |
return imagelcon.getIconWidthi();
} else |
return 200;
b
]

public int getIcendsight({) {

if (imageIcon '= null) |
return imageIlcon.getIconHeight ()
} alse |

return a0d;

]

public void paintIcon{final Component ¢, Graphics g, int %, int ¥} [

if (imagelcon != null) {
imagelcon.paintlconic, g, X, ¥li
I elge |
g.drawstring (“Leading CD cover, please wait...", x+300, y+190);

if (lrstrieving)
retrieving = true;

retrievalThread = new Thread(new Runnable() |
pubblic woid run{} |

try |
imagelcon = new Imagelcon{imagelRL, "CD Cover”™):

c.repaint(};
] catch {(Excepticn e} |

496 Chapter 11

the proxy pattern

e.printstackTrace{);

|
11¢
retrievalThread.start():

package headlirst . proxy.virtnalproxy;
import java.awt.*:
import javax.swing.*;

class ImageComponent extends JComponent [
private Icon icon:

public ImageCompeonent (Icon icon) |
this.icon = icon;

!

public veid zetlecon(Icen icon) |
this.icon = icon;
)

public void paintComponent (Graphics g) |
super.paintComponent (g) :
int w = icon.getIconWidth():
int h = icon.getIconHeight ()
int x (800 = w) /24
int ¥ (B00 — h)}/S2;
icon.paintIcon (this, g, = y}:

you are here » 497

TS W AR § W R G W Rl R R P el R TR T AR 0 AR R AT W B R e el 0

You've already witnessad the acrimoenious Fireside Chats (and you haven't even seen the Pattem
Death Match pages that the editor forced us to remove from the book®), so who would have thought
patterns can actually get along well together? \Well, balieve it or not, some of the most poweriul OO0
designs use several patterns together. Get ready to take your pattern skills to the next level, it's time

for compound patterms.

" send us email for a copy.
this is a new chapter 4949

&35 1o get therm oul of the house so they
it o vou use patterns the mone yoo're
her in your designs, We hinoe o special

¢ together in a design that can be applied
tra, That's right, we are now talking

ms in use in the real world, Now that
'l see that they are really just paterns
e easier o understand,

revisiting our triendly ducks in the

¢ fieting tha the ducks should be here
when we combime patterns: abter all, theyve been with us throughout the
entire book and they've been good sports about taking part in Jots ol patterns,
The ducks are poing o help vou understand how patterns can work together
in the same solugon, But just because weve combined some patterns doesn'’t
mean we hive a solution that qualibies as a compound pattern. For that, it
hias o be a general purpose solution that can be applied © many problems.
5o, in the second hall” of the chapeer we'll visic a sal compound pattern:
that’s right, Mr, Model-View-Controller himsell, 15 you haven’t heard of
hirm, you will, and vou'll find this compound pattern s one of the most
powerful patterns in your design wolbos,

Patterns are often used tugether and
combined within the same design solution.

A unmPounJ pattern combines two or

more pattems into a solution that solves a

recurring or gEnEral Pro]::lém

500 Chapter 12

compound patterns

Lo el Do wi wk with the ducks 1I,_E|:;'l.;]'l, This time the ducks
can coexist and even cooperate within the same solution,

1||;Llur ﬁ'c:t'n M'I';Jl,l:'l"l ;ll'ld g‘iu* il: = ir]lrh'ﬁlihg {';llmi:i|iti1'h
lets gt started,.

Juackable interface.

ting from scratch. This time around, the Ducks are
Jackable interface. That way we'll know what things
ick() - like Mallard Ducks, Redhead Ducks, Duck

1 see the Rubber Duck sneak back in.

public interface Quackable | Lo da
public void guack():

i — &u:’-

Now, some Ducks that implement Quackable

What good is an interface without some classes to implement it? Time to
create some concrete ducks (but not the “lawn art” kind, if you know what

we mean).
/\ - andard

Mallard ok

public class MallardDuck implements Quackable |
public veid dquack() |
System.out.println{"Quack”™)
I

public class RedheadDuck implements Quackable |
public wvoid quack() |
System.out.println{®Quack”);
i \.__ We've 'EI’°£ o have some variation
of speties if we want this to be an
....-I;;lrfi.{.mg, simulator

you are here b 501

adding more ducks

Thizs wouldn't be much fun if we didn't add other kinds of Ducks too.

Remember last time? We had duck calls (those things hunters use, they
are definitely quackable) and rubber ducks.

public class DuckCall implements Quackable |
piblic void gquack{) |
System.out.println ("“Kwak"}
' A DuckCall that auatks but doesn't
sound auite like the veal thing

public class RBubberbuck implements Quackable |
publie woid gquack(} {

System.out.println (“Sgueak®}: g_' ﬁ RubberDuck that makes a
}

cawral when it auatks.

Okay, we've got our ducks; now all we need is a simu

Let's cook up a simulator that creates a few ducks and r
quackers are working...
'

public class DucksSimulator |

public static wveoid main(Stringl] args) cimulator

PuckSimulator simulator = new Ducks
simulator.simulate():

| rthod

veld simalace() |
Uuackable mallardDuck = new Mallard
Quackable redheadDuck = new Redhead
Uuackable duckCall = new DuckCall ()
Quackable rubberDuck = new RubberDu

System.out.println(“\nbDuck Simulator®):

simulate (mallardDuck) ;

simulate {redheadbuck) ; Ehen we smulate
simulate (duckZall) s R
simulate {rubberDuck) ;

l Heve we overload the simulate
/ m:;;hod- {a ilmhlﬂtt jui't -1 dw:i:
veld simulate (Quackable duck)

duck.guack();

Q/ Here we let polymorphism do its magit: no
matter what kind of Quackable gets passed in,
the simulate() method asks it to auatk

502 Chapter 12

goose adapter

@. We need a goose adapter.
Our simulator expects to see Quackable interfaces. Since geese
aren’t quackers (they're honkers), we can use an adapter to adapt
a goose to a duck.

Rtm:mhb’.. an Mﬁ?{tr :
public class GooseRdapter implements Quackable | '....?'I:n:nﬁs khe La-r&g'l; inkertati

Goose goase; hich in Lhis case i freackable

public Goosehdapter [(Goose goose) |

: & The consbruttor takes the
. thiz.gonze = goosa; goose we are going to adapt

!

public vold quack() | - i wale alTed B il ks o

a,r_{s. Jikee
¢ Hoose

System.out.printlo(™\nDuck Simulator: With Goose Adapter™):

gimulate (mallardbuck) ;
simulate{redheadluck) ;

simulate(duckcall) Dnte the Gosose is wrapped, we tan treat

=imulate I:rubbEIDLJ_l:k] ; i sk lke other duck fruatkables.
simulate (gooseDuck) ; J

[

vold simulate{Quackable duck) |

duck.quack({)
|

504 Chapter 12

patterns

e behavior. One
total number of

t having to

Can you think of a pattern that would help?

duck decorator

(8 We're going to make those Quackologists happy and give
them some quack counts.
How? Let's create a decorator that gives the ducks some new

behavior (the behavior of counting) by wrapping them with a
decorator object. We won't have to change the Duck code at all.

Like with fidapher, we need to

BuatkCounter is 3 decorator mhlement. the target interfate
l \’ We've aot an instante variable
4o hold on to the quatker

public class QuackCounter implements Quackable | we've d:f.m-abng.

Duackable duck: Ard e -
static int numberofQuacks; e were .:a:mtmﬂ ALL
quitks, 1o we'll use a statie

public QuackCounter (Quackable duck} | variable ‘E.dhﬂt'p track.

this.duck = duck: &
b We 5,5{:. 'H‘ag' \'I'FErEhﬁt ta t]\E‘

Buatckable we're d:-twi{i:-.g, [

public void guacki) { th
duck.quack () ; = Wik ¥ estativelin:
numberfQuacks++: en quack() i ¢a]leg
. th L e delegat,
} e Ruatkable we g d:ﬂa—aﬂ“? the call 4
public static int getQuacks() | w- then WE infveg
€dse the number of quacks

return numberGiQuacks;y
b
]

We're adding ome other method
to the detorator. This statie

method Just retirns the number
of quacks that have ottvrred

in all Buackables.

506 Chapter 12

compound patterns

We need to update th d ducks,
Mow, we must wrap eac teina
QuackCounter decorat "unning

around making uncounte

public class DucksSin
public static wc -
., b it O i Eaghk J-'Irml' " —
DuckSimulatc torci): LimE we Lredte 3
simulator.si ﬁﬁchbk-wfwﬁrut

| with 3 new detoralor
void similate()

Quackable ma [new MallardDucki()):
Quackable re finew RedheadDucki{));
MrzrlraTa An wa Tarel ™= 1T 8 =

you are here b 507

508

public abstract class BbstractDuckFactory |

publics
public
public
public

Chapter 12

quack counting is
Je're learning things we
ibout the little quackers.
: finding that toe many

zn't being counted. Can
you help?

You have to decorate objects
to get decorated behavior.

He's visrhit. thats the nmoblem with wru]]]]inq l'li]'ii_‘d,'l_h;

ped or they don't

1cks and localize
ake the duck

late 1.

cks get wrapped.
1em. The factory
ferent types of
rn.

ory:
We've defimirg an abskratt Fattery

f—\ bhat svbelasses swill 'u-?l:m:n{,-l

eveate difFevent Families

abstract Quackable createMallardbuck{}:
abstract Quackable createRedheadbuck({}:
abstract Quackable createDuckCalli):

abstract

Quackable createRubberDuck():

Eath method treates one kind of dutk

compound patterns

Let's start by creating a factory that creates ducks without decorators,
just to get the hang of the factory:

public class DuckPacteory extends AbstractDuckFactory |

public Quackable createMallardDuck() |

return new MallardDuck()! D“"‘Faf'm extends the
| abstract Fattory.
public Quackable createRedheadDuck{) | Eath wekhod peeates a ?n,—gdur.{;
] return new BedheadDucki): : f.aH:.it-Hlﬂf wind of &“anu\ﬂg.
The ackual product "'"J"'T“
i 3 TS
public Quackable createDuckCall() | 4o the smulator - "'L—:[:‘t o
return new DuckCall(}: it's gething 3 Guatkable.

]

public Quackable createRubberDuck() |
return new RubberDuck():
]

Now let's create the factory we really want, the CountingDuckFactory:

CountingDutkF attory

alio extends the

abstract Factory
public zlass CountingDuckFactory extends AbstractDuckFactory |

public Quackable createMallardDucki) |
returh new QuackCounter (new MallardDuck{));

Eath method wirdps the
] fuackable with the quack
. counting decorator. The
rublic Quackable createRedheadDucki) |

return new QuackCounter (new RedheadDucki)): shinil ¥ sl M‘_Iﬂ- i
] the diffevence; it just

aets back 3 Quatkable.

public Quackable createfuckCalll) | But new our Fangers Lan
return new QuackCounter {new DuckCalli)): be sure that all quatks are
J bgin& Lownted.

public Quackable createRubberbuck() |
return new QuackCounter (new RubberDuck()):

]

you are here ¢+ 509

families of duchs

@) Let's set up the simulator to use the factory.

Remember how Abstract Factery works? We create a polymorphic method
that takes a factory and uses it to create objects. By passing in different

factories, we get to use different product families in the method.

We're going to alter the simulate() method so that it takes a factory and

uses it to create ducks.

public class DuckSimulator

public static weid main{Stringl[] args) |
DuckSimulator :
AbstractDuckFaz

simulator.

simu!

wold simulate (Abst)

Quackable
Quackable
Quackable
Quackable
Quackable

mall:
redhe
duckt
rubis
JoosE

System.out.prir

simulate(mallas
simulate {redhe:
simulate (duckC:
simulate (rubbe:
simulate (goosel

]

System.out.println ("The ducks guacked " +

QuackCounter.getfuacks(}
" times”};

vold simulate (Quackable duck) |
duck.quacki();

510 Chapter 12

+

F'l'rit WE t‘r'ﬁ'ﬂ
e Faetory
ek we've 9573

e
ass |
to ¥ wLa}

el)

tes an
uekFaetary
to tveate
v £han

-E|_ {hl:'m

Mothing f.hang,.e:. hev '
Same ol tode

atterns

on concrete classes, Can you write
ndle creating "goose ducks"?

you are here » 511

flock of ducks

This isn't very -
naa-.aryza'nlc! \

512

Chapter 12

AL
flock of ducks.
Here's another good question from Ranger Brewer:
Why are we managing ducks individually?

Quackable mallardluck = duckFactory.createMallardDuck():
Quackable redheadDuck = duckFactory.createRedheadDuck(];
Quackable duckCall = duckFactory.createluckCall ()
guackable rubberfuck = duckFactory.createRubberDuck();
Quackable gooselDuck = new GoosehAdapter (new Goosel());

simulate (mallardbDuck) ;
simulate (redheadluck) ;
simulate (duckCall);
simulate (rubberbDuck) s
simulate (JooseDuck) ;

What we need is a way to talk about collections of
ducks and even sub-collecdons ol ducks (1o deal with
the family request from Ranger Brewer). 1t would
also be nice i we could apply operations across the
whaole set of ducks,

What pattern can help us?

compound patterns

@ Let's create a flock of ducks (well, actually a flock of Quackables).

Remember the Compesite Pattern that allows us to freat a collection of

objects in the same way as individual objects? What better composite
than a flock of Quackables!

Let's step through how this is going to work:

{ d.s ba- |mlf‘ﬁl':r-£n‘|.'.
Remember, Lhe tompesite nte
{';r. iah-t Ih‘l:.-!'.'r’:ﬂ-l:-! as the 'h:a.JF :||:-i:ln'|:.5- Che
leal elements ave fruackables

public class Flock implements Quackable | Weve LEing, o ﬁ”a}"l'”'st nside
Arraylist quackers = new Arraylist(): &— cath Flock to hold the Quatkables
that belong to the Flock
public void add (Quackable gquacker) |

| quackers.add (quacker); '5-_.\‘_‘_____‘ The add() method adds 3

Guackable to the Flotk.
publiec vold guack() |
Iterator iterator = quackers.iterator();:
while (iterator.hasNHext{)) |

Quackable guacker = (Quackable)lterator.nexti);
gquacker.quack();

|
t Now for the auackl() method — sfter all, the Floek is a Buatkable too
The auack() methed in Flotk meeds to wovk over the entire F‘lud’--; Here
we |Jc;rat: Lhirough the ﬂwajL.us-l*. and eall q.u;-t.'r.ij on cath glement

Code Up (ose

Did you natice that we tried to sneak a Design Pattern by
you without mentioning it?

public veid quack() | & TS Theve it is] The [tevator
Iterator iterator = quackers.iterator(): C_’___,/—/‘ Pabbern at work!
while [iterator.hasNext()) | i '

Quackable quacker = (Quackable)iterator.nexti)
quacker.quack () ;

you are hera » 513

d up the

Create all the
fuatkables, ju
like before.

ieadluck () 2
B
srDuck() ¢
wme ()
posite = Flocks"}i

‘\‘\\ Fivst we treate a Flock, and
load it up with Quackables.
.--"'"-.---’J
Then we treate 8 new
é’/——” Flatk of Mallawds.

irdPuck () : L'f'r_-\ Here we've

irdbuck{) ; treating a
Jdarduck(): liktle .Fa...ihr of

.ardbuek() : mallards...

__— and adding ther to the

Flotk of mallavds.
Then we add the Flock of
-4""'"-’. mallards o the maim Flock

ock Simulation”);

& Leb's test out the entire Flock!

Flock Simulation™}:

Then let's Just test out the mallard's Flack

e Finﬂhr, led’s ajive the
Quackologist the data.

thanae here, a Flock is a Guackable!

compound patterns

e P — r e g g B T T

(the Menult&ms] had lhe same exact set of methods, |n1:|ut||ng the add() method. Because they had the
same set of methods, we could call methods on Menultems that didn't really make sense (like trying to add
gomething to a Menultem by calling add()). The benefit of this was that the distinction between leaves and
composites was fransparent: the client didn't have to know whether it was dealing with a leaf or a composite;
it just calted the same methods on both,

Here, we've decided to keep the composite’s child maintenance methods separate from the leaf nodes: that
is, only Flocks have the add{) method. We know it doesn't make sense to try to add something to a Duck,
and in this implemeantation, you can't. You can only add() 1o & Flock, So this design is safer — you can't call
methods that don't make sense on components — but it's less transparent, Now the client has to know that a
Cuackable is a Flock in order to add Quackables o i,

As always, there are trade-offs when you do OO0 design and you need fo consider them as you create your
QW Composites.

you are here »

515

B v abserve individual
ehavior, That leads us right o a pacern made for ohserving
havior of objects: the Observer Patern,

:rvable interface.

ervable is the object being observed. An Observable
stering and notifying observers. We could also have
observers, but we'll keep the implementation simple

BuackObservable is he interkate
/—_\ bhat Quackables should implement
ik they want, 1o be abserved

ckUbservable |
starObserver {Observer ohservear);

fythservers{);
R\.____./' It has a method for reguteving

K Observers. fny objeet implementing

the Observer interface can listen
It also has 3 methad for to quatks. We'll define the Dbserver
ho{.i-F';.ling the sbizrvers. interfate in 3 set.

MNow we need to make sure all Quackables implement this interface...

public interface Quackable axtends QuackbDbservable |

public woid guack():
: L
Soy we extend the Guackable

interfate with BuatkObserver.

516 Chapter 12

compound patterns

Stop looking at
me. You're making

I
¢ sure all the concrete me nervous
t Quackable can handle

ble.

by implementing registration and o
every class (like we did in Chapter
1 it a little differently this time:
ite the registration and netification
all it Observable, and compose it
e. That way we only write the real
:kObservable just needs enough
helper class Observable.

Let's start with the Observable helper class...

kammwgrah'lt
wnt-bionalid
Dlservable nn?\gmtnﬁi all JE-!"l:: :i:i;:h 1 Observable must implement. GuackObsevvable
a Buatkable needs lin '1! 3;} ::I.as:- and betause these are the same method calls
-] | 35} .

We Jusi. r!?;rdi;?ﬁah to Dhcacwible: that ave gaing to be dtlt&é{zd to it
have that ¢ g |n the tonshruttor we 5f+'

_ i . o) passed the QuatkDlservable
Tt s e e g that s uig s et o

™ ihs cbservable behavior-
JuackOhservable ducks / C::EEM - “M*{} ki,

public Observable (QuackObservable duck)

! below you'll see that when 3
this.duck = duck; mjc.rh eours, Dbservable passes
| +his anjeﬂL along 5o that i-,hr..
chserver knows whith nhjtt.{. is
public veoid registerCbssrver{Observer cbserver) [ﬂ“ﬂﬂkinﬁ.
observers,add (obhsarver) ;
| Here's the tode for

public void notifyObservers() |
Tterator iteratear = observers.iterateor();

while (iterator.hasMext()) |
Observer obhserver =

r:ais{,:ring an ohs::rvcr-

(Observer) iterator.next(};
chserver.update (duck) ;

Ft__ And the tode For doing
the hc‘f:l‘Fica'EianS

Now let's see how a Buatkable £lass uses this helper-.

you are here » 517

guack decorators are observall

@ Integrate the helper (

This shouldn't be too ba
are composed with an C
that, they're ready to b
the other ducks are the

public class Mallarc
Chsprvable ohzer

public MallardDu

observable =
1

classes,

z the Quackable classes
w to delegate to it. After
mentation of MallardDuck;

Eath Guackable has an
Dlservable instante variable.

— In the tonstruttor, we eveate an
Observable and pass it a relevente
to the MallardDuck ohiett

When we quatk, we
need to let the
observers know abeut it

ey

L1
Here's cur two HuatkObservable
= methods. Netice that we et
delesate to the helper

T, We haven't changed the implementation of one Quackable, the QuackCounter

decorator. We need to make it an Observable too. Why don't you write that one:

518 Chapter 12

compound patterns

We're almost there! bserver side
of the pattern.

We've implemented evel bles; now we
need some Observers. terface:

e ihfgy-‘-‘a“ J“&'E
thod, wpdatel), whith
| Q'ﬁiﬂkﬂbgﬁ\.ﬂbk
tking,

public interface Obsarver |
public void update (QuackObservable duck):
i

Now we need an Observer: where are
those Quackologists?!

We need to implement the Observable interface or else
we won + be able to rcl‘j,isl:tr with a ﬁ'uétkﬂ'hs{rﬁb]g.

y

public class Quackologist implemsnts Observer |

public void update (QuackObservanle duck) |
System.out.println(*Quackelogist: ™ + duck + * just guacked."};

| T
I
The Quackologist is

methad, update(}
fYuackable that jos

simple; F{‘.‘j,us{ has one
whith prints ouf Lhe
t quatked

you are here » 519

flock composites are cbservables too

wrpen your pencil
w

What if a Quackologist wants to observe an entire flock? What does that mean
anyway? Think about it like this: if we observe a composite, then we're observing
everything in the composite. So, when you register with a flock, the flock
composite makes sure you get registerad with all its children (sorry, all its little
quackers), which may include other flocks

Go ahead and write the Flock abserver code before we go any further...

520

Chapter 12

compound patterns

We're ready to observe. Let's update the
simulator and give it try:

public class DuckSimulator
public static void main{String[] args) |
Ducksimulator simulator = new DuckSimulator():
BbstractDuckFactory duckFactery = new CountingDuckFactory (s

simulator.simulate (duckFactery):

eveate 3
i cet him a5
he Floek.

you are here » 521

Q: So this was a compound pattern?

A: Mo, this was just a set of patierns
working together. A compound pattern is a
sef of a few palierns that are combined to
solve a general problam, We're just about
to take & look at the Model-\View-Contraller
compaund patierm; it's a coliection of a few
patterns that has been used over and over in
many design solutions.

522

Chapter 12

Duck just guacked.

Q: So the real beauty of Design
Patterns is that | can take a problem, and
start applying patterns to it until | have a
solution. Right?

A: Wrong, We went through this
exercise with Ducks to show you haw
patterns can work together, You'd never
actually want to approach a design like we
justdid. Infact, there may be solutions to
parts of the duck simulator for which some
af these patterns were big time overkill,

Sometimes just using good OO design
principles can salve a problem well enough
o its own.

WWe're aoing to talk more about this in the
next chapter, but you only want to apply
patterns when and where they make
sense. You never want to start out with the
intention of using patlems just for the sake
of it, You should consider the desian of the
DuckSimulator o be forced and artificial,
But hey, it was fun and gave us a good
idea of how several patterns can fit into a
solution.

compound patterns

of Quackables...

wanted to act like a Quackable too. 5owe
it the goose to a Quackable. Now, you can call quack() on a
nd it will honk!

decided they wanted to count quacks. 5o we
d a QuackCounter decorator that keeps track of the number
en delegates the quack to the Quackable it's wrapping.

But the Quackologists w 1 add the

QuackCounter decoratol
for them. Now, whenever they v
a decorated duck. (And don't fol
un-decorated duck!)

We had management pr¢
geese and quackables. !
into Flocks. The pattern also alle
families. We used the (terator Pc
ArrayList.

The Quackologists also 1
gquacked. 5o we used the Ob
Observers. Now they're notified
in this implementation. The Quz
composites.

1ttern to create ducks
ane, and it hands back
factory if they want an

those ducks and
group quackables
locks to manage duck
¢ java.util's iterator in

any quackable

ts reqister as Quackable
Ne used iterator again
2t Pattern with their

That was quite a Design Pattern
workout. You should study the
class diagram on the next page
and then take a relaxing break before
continuing on with the Model-View-
Controller.

you are here » 523

iz big picture of what we did:

f.rei"bf Dhﬂu-
thevent
wrodute
of
) JuekFattory
md the
atary
m.;??:d L
ok o
medng
fRuack,
be not
a Muae
We only impl,
for the Bk
any £lges that imFJ;men'f::ffu‘.
,-: ;:v HEE L3n cheprye ducks--.EI
Plementing 4 Birdh"atthn* ok

524 Chapter 12

compound patterns

th Guackable has an

S Say kance of Dbservable

E:;Z-:llﬂ:l iz the -n{::r-Fat: mw:”ﬂh biar keep track of Eheir
el e fmﬂ ; mm',- . s and notify them
e ek i v_c ' - :v{:}:: Mkabllz?ﬁuach.

fuatkables: dutks and = |
other Hhings that wart. !
Guatkable behavior: like the : % .
Goesepdapter, whith wraps 3

Boose and makes it look like 3
a Gratkable; Flotk, whith is :
a Buatkable Compasite, and ;
&mﬂkﬂqunkcr, whieh adds :

behaviar £o {fuathables.

you are here » 525

Model View, Model View, Model View Controller

Model objetts represent your applications raison d'etre
Custom objects that eontain data, logic, and et eetera
You treate custom tlasses, in your app's problem domain
you tan thoose to veuse them with all the views

but the model objects stay the same.

526 Chapter 12

Ny You Ean model all the models that pose for

n Controller

P

ts tend to be tontrols used to display and edit
t a lot of those, well written +o its evedit.
STextliew, hand it any old Unitode string

an interact with it, it tan hold most anything
ew don't know about the Model

g could be a phone number or the works of

'.al.i?lhmﬂ_ loote
ieve 3 massive level of veuse

Model View, all rendered very ricely in fqua blu
Model iew Contreller

You're probably wondering now
fﬂJrc r\'niﬂhlj wondering how
Data Flows between Model and View
The Controller has to mediate
Between eath layer's changing state
To synthronize the data of the two

It pulls and pushes every changed value

Model View, mad props to the smalltalk erewl
Model View Centraller

Model View, it's pronownted Oh Oh not Doo oo
Medel View Controller

There's a little left £o this story
A few more miles upon +his voad
Nobody seems to get much glory
From writing the tontroller tode

Well the model’s mission evitical

find goraeous is the view

| might be lazy, but sometimes it's just erazy
How muth tode | write is Jus{', 5|u:

Aind it wouldn't be so tragic

But the tode aint doing magic

It's just moving values through

:ﬂlhd I don't mean o be vitious
But it gets vepititions
Dcihg, all the thinas controllers do

compound patterns
[sent 3 TextField Stringl/alue.

Model View
How we gonna deep six all that glue
Model VView Controller

Controllers know the Model and View very in{hihhr
The’f often use hardeeding which £an be Fw:hodmﬁ for
rtu.sal:lili‘{:.’f

But new you tan tonnett eath model key that you select
to any view propevty

frd onte You start 'nmd'mg
| £hink ‘,Iau'H be I:ihding less tode in your sourte tree

Yeah | know | was elated by the stubf they've automated
and the things you get for free

Ard | think it bears repeating
all the eode you won't be needing
when you hook it up 1B~ {jny 547
Model View, even hardles multiple selections too
Model View Conbroller

Model \View, bet | ship my application before you
Madel View Conbroller

R

:ad! After all this is a Head First book... grab your iPod, hit this URL:

awickedlysmart.com/headfirstdesignpatterns/media.html

1 give it a listen.

you are here v+ 527

528

Chapter 12

- mwa

o whet vour appetice,
rout findsh reading chis

[listen to the song again
we fun,

hiadl @ bad run in with
of us have, You've
Tevelopers tell you it's
el could possibly create
owerful compound

1 while we can’t claim it
o, it will save you hours
syou know it

learn it righo! Well,
big difference this @me
Vi o frettera!

sare the key o MV,
Learmng ML irom the wop down is difficuly
not many developers suceeed. Here's the
secret oy learning NV i just a e patterns
fit tngeifier When you approach learning
MVC by looking at the pawerns, all of the
suchden it starts w make sense.

Let's ger startedt. This dme aroond vou're
going to nail MY

compound patterns

s its mterface to add

1 maintaining a little
It alzo takes care of

1 with the current song

Now let’s zoom into the

us & lagh level view of MYVC, bo i really docsn’t help vou

the compound pattern works, how you'd build one vourself, or
tart by stepping through the relatonships among the model, view
second look from the perspective of’ Design Patterns,

VIEW

Gives you o presentation
of the model. The view
usually gets the state
and data it needs to
display directly from
the model.

The user did
something

This is the user
mberfate

Chapter 12

@ v o

View ® /
.T. T need your state

CONTROLLER

Takes user input and figures out

what it means to the medel.
MODEL

The model holds all

the data, state and
application logic. The
model is oblivious te
the view and controlier,
although it provides an
interface to manipulate
and retrieve its

state and it can send
notifications of state
changes to observers,

Here's the freamy
tontrollen vk lives n

bhe widdle- Ty,

Controller state
display

I've changed ———u—__

Model

Hﬂ‘EFS Ihe mﬂdﬁli
ik hardles all
aw[‘ubo‘n data
and lomit.

information

interact with the view.
to the model. When you do something to the view (like click
e view tells the controller what you did. It's the controller’s

e model to change its state.
Jr actions and interprets them. If you click on a button, it's
igure out what that means and how the model should be

nat action.

o ask the view to change.
ceives an action from the view. it may need to fell the view
enable or disable certain

to change as a result. F
buttons or menu items |

The model notifies the
When something change
clicking a button) or sor
has started), the model

@

The view asks the moc
The view gets the state
model notifies the view
song hame from the mo
state as the result of +

- Does the controller ever becon
an observer of the model?

A: Sure. In some designs the confralier
reqgisters with the model and is notified

af changes. This can be the case when
samething in the maodel directly affects the
user interface controls. For instance, certain
states in the model may dictate that some
interface items be enabled or disabled, |f
sa, itis really controller's job to ask the view
o update its display accordingly,

ed

compound patterns

;nn:m action you took (like
2 next song in the playlist
has changed.

del. For instance, when the
'ing, the view requests the
1t also ask the model for
ange in the view,

- ke user
input from the view and send it to the
model, correct? Why have it at all if that
is all it does? Why not just have the code
in the view itself? In most cases isn't the
controller just calling a method on the
model?

A: The confroller does more than

just *send i to the model®, the contraller is
responsible for interpreting the input and
maniputating the model basad on thal inpul.
But your real question is probably “why can't
| just do that in the view code?”

You could; howeaver, you don't want to

for two reasons; First, you'll complicate
your view code because it now has two
responsibilities: managing the user interface
and dealing with lagic of how to control the
modal, Second, you're tightly coupling yaur
view to the model. If you want to reuse

the view with another model, forget it. The
controlier separates the logic of contral from
the view and decouplas the view from the
model, By keaping the view and controller
loosaly coupled, you are building a more
flexible and extensible design, one that can
more easily accommodate change down the
roae.

531

you are here »

f win-

S0 0N,
ite (like
1en the
nly has
ymposite

Pattern
vhen state
Pattern
ydent of
us to use
, or BVen

TLEY e e

"5:,5{;\-:. with the

mnd-ﬂ a5 an hsevver.

patterns

rers will be
iev state
model.

The model has ne deperdenties o
viewers or tontrollers!

The user did

something
A

Controller

Fation, the tontroller worries Controller

sioms on the model.

The mb-dlﬁ i Ehl
b’i’cﬂﬁ‘f .E{A' H‘Iﬂ- il
s the dbiect that
knows hew 4o handle
Fhe user attioms-

We Cdn Wap in

::n{hgr behavior for
€ Vit b}f th .
the Cmtrdgﬁ_*ﬁmﬂ

painﬂ}/\
-~

D00 Wadow

=

9

M

The view i= 8 f-“""?"ﬁ;'h of
Ul components (labels,
bkt ont, fesk tn‘li'l"f.

ﬁmfmm’c&. whith tontain
other tomponents and o
on unkil you aet to the

you are here

533

tight stan
ane then
o vour set

ng o builed

8 bar shows the beat in real time.

i shows the twrrent BPMs and is
-.‘.allf set whenever the BFPM thanges.

You tan enter 3 :p:r.ifm BFM and thi
= the Set button to set a spetific beats

per minute, or You tan use the intrease

and detrease buttons for Fine funing

-

The BeatModel is the heart of
application. I implements the I
£o start and stop the beat, set
the beats per minute (BPM), an
fenerate the sound.

The made|
obtain its
the getBP

he D iew...

You tan start the beat
atlking, by :,hw&h:, the
Et.ﬂl'k P 1:1:,;.-. in

lotice Stop is
lisabled wntil you
tart the beat

You ust
button
diown +
genera

Netice Sts
disabled al
beat has =

antroller

/

Cjﬂ on the
intrease beat
button..

Controller

View is motified that the BPM
thamgd. [t calls aetBPMO on
Jd'\! mnd.t.. s‘;at!.

These are the methods
the tentroller will wse e
divect the medel based on
wser inkerattion

These methods allow
thgﬂtwand{hf
controller 4o get

ckate and Lo betome

ghaervers

patterns

X
) led
public interface BeatModelInterface | Ths 5‘2;:115 w{ﬂ.hf‘a'u&'

void initialize(}: < — Beatt '
. &——— These methods turn the beat
void onl):

/_ generator on and of .

void off(}; This methed sets the beats per
L kb After it is called, the beat

void set3PM{int bpm); ﬁ"';“"‘f thanges imgd'-a{-,:ltf.

int getBPM(); ‘f-_______"“'- The thPMfJ methad reburns

the ewerent BPMs, or O if
void registerObserver (BeatObserver o): the genevator is off.

void removeCbserver {BeatObserver o)

void rEgisterﬂbs-erver[w a) i

void removeCbhserver (EFMObserver o)

A

This f“”“‘fhl: We've spiik thic inbo wo kinds of
Familiar, chservers: ohservers that want £o be
“:tw: aﬁw_ ber notified on every beat, and cbservers
objeets to veys Ehot juet want £o be notified with
a‘;t“:::;ﬁw the beats per minute tharae.

% .

you are here » 537

A This s needed for

the MID| eade.

MetaEventListener |

The sequenter is the object that knows how to
aenevate veal beats (Ehat you tan hearl).

_ These frraylists hold the twe kinds of
~ abzervers { and BPM chservers).

The bpm instante vaviable holds the Freauenty
of beats — by default, 90 BPM.

public void onil) |

sequencer.start () E——— The onl) method starts the sequenter and
| SetBEM(50) ; sets the BPMs Lo the default: 90 BPM.
public veoid off() | S Ad oLEG sk i o ;

actBEM (O}) 3 i b}rse{.tng BPM:&

O ard stepping the sequenter.

sequencer. stop ()

] g-""____-'\- The setBPM) method is the way the tontroller

public void setBPFM{int bepm) | manipulates the beat. [t does three things
this.bpm = bpm; =—— (|} Sets the bpm instante variable
sequencer. setTempolnBPM (getBEM)) ;
notifyBPMObservers|(): Q'\'-:____ (23 Asks the sesuenter to thange iks BPMs.

) (3) NotiFies all BPM Obsevvers that the BPM

public int getBEM{) | t_’\ has thanaed.
) R The aetBPMO) method just returns the bpm instante vaviable, whith
inditates the turvent beats per minute.
e - * akhod, whith is not n the B:a-l;Mad:lIn{.:rFau, i
| tode whenever 4 new beat starts This method
peevvers that a new beat has Jurl; stturred.

SEN

wort to generate beats, You can check out the
the DJ classes in the Java source files available
wr look at the code at the end of the chapter,

The DJ view
displays two
as?ff.{'.'- a-IF ﬂ'il'.
BeatModel.
.and a pulsing “beat
‘l‘.'hl: n'.ur'rtni: beats b:‘llr” Tﬂ.-'s-!t N ST'nE.h
per mlnutq.b rom with e beat, driven
{:’h:.BPMQ SEFYET b‘]’ Lhe BeatObserver T
nn{:lFu:a-tmm... m{#%n&bms- £
Th
do

Egy RANN
- POWEWR
Dur BeatModel makes no assumptions about the view., The m

Observer Pattern, so it just notifies any view registered as an ¢

T jplementad one ype of view, can you
d state in the BeathModel?

APM (ambient, downbeat, tethno, ete.).

patterns

you are here »

539

The code on these two
paues is il.l_ﬂ'l an Qm“m‘

Watch it!

What we've done here is split ONE
class into TWO, showing you one part
of the view on this page, anf.‘_ the other
part on the next page. Al this code ’?s
really in ONE class - DJViewjava. It
all listed at the back of the chapter.

]

t beats and BPM thanges

N v; v

public class DJView implements Actionlistensr, EBestObhserver, BPMObssrver |

540

BeatModelInterface model;
ControllerInterface controller: c-:__i The view holds a referente o both the model and
JFrame viewFrame; the tontroller. The tontreller is only used by the

JPanel viewPanel; H control inteelace, whith we'll 4o ever in 3 seb.

BeatBar beatBar; ere, we treate g Lo

JLabel bpmoutputlLabel; omponents Lor Lhe display

public DJView(ControllerInterface controller, BeatModellInterface model) |
'.:h.1..5 controller =1 cantroller: cL_____‘\- The sonsbruttor 5’54:5 3 m-l::\'l:wf-ﬂ
this.model = model; g\x Moo Lo wae]
model . registerCbserver | (BeatObserver) this) to the tontro "E s :Jc.h E
model, registerchserver { (BEMObserver) this) ; and we store rererentes ey

| the mstante vaviables.

public void createView() | We also register as a BeatObserver and a
/f Create all SwWwing components here BPMObsevver of the model.

|
é___,.-—-—'~ The ufda'l:,:E-PMf:l method is called when 3
public void updateBEM{) | i T

ic v otturs in the model. When that happens we update £h
int bpm = model .getBRM{); % di$?|a‘l||' with the turrent BPM. We 2 3!{ 4:1:': vilue)

if (bpm == 0} | reaquest i
bpmOutputLabel. setText (“offline®) s b.f resting ‘{dllrﬁtl? From the model

| else |
bpmiutputlabel. setText ("Current BEM: ™ + model.g=tBEMI()}:
I
I
E7N Likewise, the wpditeBestl) mebhod is called
when the model starts 2 rew beat When that
happens, we need to pulse cur "beat bar” We
do this by setting it Lo its masimum value (100)
ard iei:'tinu_; it handle the animation of the pulse,

public veid updateBeat () |
beatBar.setvValue {100} ;
f

Chapter 12

JMenuBar menuBar;
JManu menu;

patterns

JMenuItem starLMEnuItemj _/\j_/\

JMenuItem stopMenultem;

public void createContrels(} |
/4 Create zll Bwing components here

]

public veoid enableStopMenultem(]) |
stopMenultem.setEnabled (true) ;

]

public void disableStopMenultem(} |
stopMenultem.setEnabled (false);

]

public veid enableStartMenultem(} |
startMenultem.setEnabled{trus);

!

public void disableStartMenultemi) |
startMenultem.setEnabled {false);
]

public void actienPerformed (ActionEvent event) |

if (event.getSource () == sstBEMButton) |

int bpm = Integer.parselnt (bpmTextField.getTaxt()]s

controller.setBEM (bpm) ;
} else if (event.getBource() ==
controller.increaseBPM() ;

} =lze if (event.getSource() == decreaseBFMButton) |

contraller.decreasaBFM() ;
b

or start items are chosen
talled on the controller.

increassBPMButton) |

V/_\ This method traztes all the contrals and plates them in £he

ace. |t also takes tave of the mens When the stop
s the torresponding methods gre

All these methods allow the start and
stop items in the meru Lo be erabled and
disabled. We'll see Lhat bhe tontroller uses
these to thange the interface.

This methed is zalled when a button is licked.

I the Seb button is
elitked then it is passed
on 4o the tonbroller ﬂimﬁ
with the rew bpm.

Likewise, if Lthe intrease

or detrease buttons ave
7 clicked, his information is

pasted on 4o the tontroller

541

you are here »

542

Chapter 12

1

oing

Heve are all the
methods dhe view Lan
tall on the tontroller.

"hese sheuld look Familiar after seeing the madel's
wherfate You tan stop and start the beat
jenevation and thange the BPM. This inkerFate is
qther” than the BeatModel imterface betause ou
tan adjust the BFMs with intrease and decrease.

he Strategy Pattern. Can you draw a

¥iew.createControls ()

view.disableStopMenulItemy) ;
view.enableStartMenultem({)

model .initialize();
]

public woid start() |
modal.oni);

view.disabledtartMenultem() ;
wiew.enableStopMenultem();

]

public void stop() |
model.off();

£

view.disableStopMenultem() ;
view.enablaStarcMenultem() ;

Aﬂ

I £he intrease bubton is chicked, the

]

public void increaseBPM{) |
int bpm = model.getBEM()
model . setBPM{bpm + 1);

]

public void decreaseBFM{) |
int bpm = model.getBEM()
model . setEPM (bpm — 1) ;

]

public void setBFMiint bpm)
modal . =atBPM {bpm) ¢
]

@

compound patterns

— The tontroller implements
the Controllerinterfate

face |

The tontroller is the eveamy stuff
in the middle of the MVC oren
T tookie, to it is the objeet that
gets to hold on o the view and the
model and glues it all Logether.

-~ ~ 1o semureller is passed the
wodel in the Lonstructor and
then ereates the view.

o ou thoase Start Feom the wer
Tﬁ j;:"liln'.r. menis, the conbroller buirns the
model om and then alters bhe weer inkerkate
co Lhat the stark meny item is disabled and
Lhe rb:? ERU item is :ha'ﬂ'll:d-

Likewise, when you thoose Stop From the
meny, the tontroller Lurns Lhe model of f
and alters the wser inkerface so that
£he E‘r:d? menu item it disabled ard the
start menu item iz enabled.

eontroller gets the curvent BPM NOTE: the eontroller is

Lrom the model, adds one, and then "akiﬂﬁ the ih‘h:”iﬁ:n‘{-_

sets a new BPM. detisions for the view.
The view __]uﬂ-_ knows how

to turn
Same thing here, only we subbract i #_F]*:i“::::: :“
l one: i S st B M the situations in which it
<’\ should disable them

F'ma"f, if the user interfate is used +o
set an arbitrary BPM, the ontroller
instruets the model to set its BPM.

you are here » 543

'patterns

1 little further o get a beter
‘re going to see another

ern vou'll often see hanging
Pactern,

D View does: 1t displios
ound like something else?
iappens we happen o have a
diagram:

We've aok 3 methed for agtbms
bhe turvent heart rate

—% .r_“'_'"\ Firnd |.uc.|¢||:jr. its developers knew aheut

the Beat and BPM Observer o

It certainly would be nice to reuse our current view with the HearthModel, but we need a controller that
works with this model. Also, the interface of the HeatModel doesn't match what the view expects
because it has a getHeartRate() method rather than a getBPM(). How would you design a set of
classes to allow the view to be reused with the new model?

you are herg 545

5486

UL L

|
#*

whapt the HeartModel o a BeacdModel. IF we don't, the view
el, because the view only knows how o getBPM, and the
stHeartRate]. How are we going o do this? We're going to
It furns out that this is a common technigue when working
Tapt a model w work with exisang conmollers amd views.

wlel o a BearhModel:
We reed to |hlfl!=n¢h't the
T T,
gase, BeatModelInterFace

implements BeatModelInterface |
sart;

aearLsaapLer \aeartModel Interface heart) | x m e shoic ar:#:htm'-ﬂ
EVE,

thi . R = t:
| his.hear hear P'L/ ko the heart model.

public woid initialize() {] F‘\

. : ' hat these would do
public veid oni{) [} We don't know w

= ta a heart, but it sownds iHl‘T-" Sa
public veid off() (] £— wtll just leave them 3s “no ops.
public int getBEMI() | £) e ealied. we'll st
e Wi g BPNO s called el
: return heart.getHeartRate(); {,rm!i: 4 to a 5:4;9*53 () eall
on the heart model.
public void setBPM(int bpm) [ﬁ———\\
We don't want to do this on 3 l‘vtﬂ'l"ﬂ

public void registerObserver (BeatObserver o) | ﬁ'}&im let's leave it as @ "no op”.

heart.registerfhsarveri(ol;

]

public volid removeObserver (BeatChserver o) | Rere ave cur cheerver methods.
heart.removelbserver (o} ; We Jm'l'. d!itgﬂ‘t! them to the
public void registerCbhserver (BFMObserver a) |

heart.registerCbserver (o)

]

public void removelbsarver (BPMObserver a) |
heart.removeChserver (o) ;

]

Chapter 12

compound patterns

el get the
The HeartController implements
the Controllerinterfate, just
like the BeatContreller did
2rface |
. [Like before, the tonbraller
treates the view and gets
1) everything alwed Losether.

Theve is one thange: we are passed 3

HeartModel, not a B:a’c.M;di)

N Land we need 4o wrap that
model with an adapter belore
we hand i+ £o the view

the HeartContreller disables £he

eme 3t they dren't reeded

s not a lot to do heve;
all, we eant veally tontral
(like we ean beat mathines

public class HaartTestDrive |
public static woid main (Stringl] args) |
HeartModel heartModel = new HeartModel({);
ControllerInterface model = new HeartCentroller (heartModel)

= 1
Al we need to do is eveate

bhe contreller and pass it 3
heart monitor.

you are here » 547

Rhn this

ay works great with a heart!
15t like a pulse. Because the
ports BPM and Beat Observers
i just like with the DJ beats.

i natural variation, notice the
ith the new beats per minute.

Ml ccmalmi e ke ek e Dx ol

()

The servlet plays the role of the controller and processes your request,
most likely making requests on the model (usually a database). The result
of processing the request is usually bundled up in the form of a JavaBean.

The controller forwards control to the view.

The View is represented by a JSP. The J5P's only job is to generate
the page representing the view of model {@which it obtains via the
JavaBean) aleng with any controls needed for further actions.

The view returns a page to the browser via HTTP.

A page is returned to the browser, where it is displayed as the view. The
user submits further requests, which are processed in the same fashion.

you are here

patterns

549

550

re than just
n.

separation of the view,
muoilel and controller arve prevy clear o
vou now. But you need 1o know the “rest
of the story™ with Model 2 - that it saved
many weh shops from sinking inw chaos,

How? Well, Model 2 not only provides

a separaton of components in wrms of
design, it also provides a separation in
production responsibilities. Lews face i, in the
oldd davs, anvone with aceess to vour JSPs
could get in and write any Java code they
wanted, rght? And that included a lot
of peaple who didn’t knew a jar fle from
a jar of peanut butter. The reality is that
most web producers froee abau! caplend and
HTMLEL wof soffveare.

Luckily Model 2 came to the rescue,
With Model 2 we can leave the developer

Johs o the guvs & girls who know their

servlets and let the wel producers loose
on simple Model 2 siyle [SPs swhere all
the producers have access w s HTML
and simple JavaBeans,

Chapter 12

You
know whai
Model 2 can

—— = mew-gy W g

sat up your sarviet environment is a little bit
Jesign Patterns, at least if you don't want the
Jou do!

wser and head siraight lo
vargdomeat! for the Apache Jakarta Project’s
ainar. You'll find everything you need there 1

1eck out Head First Sendets & J5P by Bryan
-a and Bert Bates.

s 0r
* have
also
e,

n that
Wi
vl

WIGH LV LG WUTILL VIS 2L VIG]

Remember, the servlet s going o act as our controller; it will receiae Web broawser
input in a HTTP request and ranslate it into actions that can be applied w the
molel.

Then, given the way the Web works, we need w return aview o the browser To
do this we'll pass control w the view, which takes the form of a |SP We'll get o
that in step three.

Here's the outline of the servler; on the next page, we'll look at the Tull
implementation.

We extend the HEtpSevviet elass

so that we tan do serviet kinds of
thirgs, like veteive HTTP rtqlmsb-

public class DJView extends HttpServlet | Here's the vt method;
&= thisis called when the
public veid init () throws ServletException | sevlet is Fivst ereated.
BeatModel heatModel = new BeatModel(): q\
beatModel, initialize() ;

getServlietContext () .sethAttribute ("beatModel”, beatModel}): We Forst ereate a
]

/} doPoast method here and Plate 3 *E‘Fﬁtnﬂt =

ghe |]
public void doGet (HttpServletReguest request, # Iﬁ::e 5 ‘4.: s eantext
HttpServletResponse response) » s easily ateessed.
throws I0Exception, ServiletExcepticn : |

/f implemsntation here
] Heve's the dofet() method. This is wheve the veal work
happens. We've got its implementation on the next page

552 Chapter 12

compound patterns

Here's the implementation of the doCset]) method from the page hefiore;

First we grab the model from

public void doSet (HttpServletRBeguest request, the sevviet context. We tan't
HttpServletResponse response) maripulate the model witheut 4
throws IOExzception, ServletException veferente £o it

BeatModel beatModel =
({BeatModel)getSarvletContext () .getAttribute (“beatModel®) ;

String bpm = request.getParameter (“bpm®};

if (bpm == null) | Next. we arab all the HTTF
bpm = beatModel.getBEM() + “*; tommands/parameters..
) 5
String set = request.getParameter|"set"}: e I£ we get a set commard, then
if {set != null) { we aet the value of the set,
int bprNumber = 90; and tell the model.

bpmHumber = Integer.parselnt (opm);
beatModel . setBPM(bpmHumber) ;

]

String decreaze = request.getParameter(“decrease™); ,:'\\
if {decrease != null) {

beatModel, setBEM {beatModel . getBEM(] - 1); To intrease or detredst
] | ewrent BPMs From the =
String inecrease = rejgquest.gatParameter(™increasea’); idj'tﬂi‘“i‘“" dowm 'ﬂ"i' -
if {increase != null) |

beatModel . setBFM (beatModel . getBEM() + 1);

wr.ﬁﬂ‘tﬂ"
odel, and

]

String on = request.getParameter (Yon®); &________

if fon = null) | 1§ we get an on or ofF tommand, we
beatModel.stark (}; (/ tell the wodel to start or s{',qr.

]

String off = regquest.getParameter (™off”);

if (off != null) | Finally, our job s & tontreller
beatModel.stop(); is dome. All we need Lo do is

! ask the view to take over and

treate an HTML view.
regquest. setAttribute (“heatModel”, beatModel); é_\
RagquestDisparchar dispatchar = Fn”wihg the Model 2 definition,

request .getBequesthispatcher (*/jsp/DIView. Jsp”) 7 t/ we pass the JSP 3 bean with the
dispatcher. forward (request, responsa); model state in it [n this tase, we
) pass it the attual model, since i
happens to be a bean

you are here » 583

;o !
cetves
nly

h that

Here's our bean, whith

[the servlet passed vs

dfirat . combined, djview, BeatModel™ />
chaad> 1ere we use the model bean fo
<title>Dd View</title> &_/ extract the BPM property.

</head>
<bhody> :l
New we

<hl>DJ View</hl>

Bsatf per minutes = <jspigetProperty name="beatModel” property="BEM"” /> ?::t:;:ht

<hr> ?‘Hh‘l:.!- out

 the twrrent
beats per

<form method="post? action="/dijview/servliet/DIViaw"> minte.

BPM: <input type=text name="bpm”

value="<jspigetProperty name="beatModel”
property="BEM™ />">

<input type="submit” name="set” walue="set"»<hr />

<lhput type="submit" name="decreaszae” wvalue="<L%> ﬁ,d here's the candrel 'Par":.

<input type="submit” name="increase” valus=">>"><hr /> ob Hha e We have a text

<input types*submit” name="on® wvalue="on">

T - s S e entry for entering 3 BPM
<input type="submit"” name="off" value="off">

</ form> alons with increase/deerease
and on/off butions
</ body>
</html> | e
Pnd here's the end
of the HTML-

NOTICE hat ju.'-‘[', like MVC, in Medel 2
the view doesn t alber the model (Hhat's the
eontroller's jabl; all it does is use its state!

554 Chapter 12

patterns

 fwrned
at
1 BPM

11 rt{.mbd'
" and

enters new

Rt ‘F"!H-

:llr!k-i

» 55§

things 2 do with model 2

(@) Ceantroller
ehanaes model £o
|50 BPMs

(%) VView veburns

HT ML \'!Flt&{l'm!l

v 4

set” button. The page should
u should hear the beat

to adjust the beat up and down.

xs. The HTML interface makes
wrvlet parses the user input and
it then passes control to the
that is returned and displayed.

Observer

The view is no longer an observer
of the model in the classic
sense; that is, it doesn't register
with the model to receive state
change notifications.

However, the view does receive
the eguivalent of notifications
indirectly from the controller
when the medel has been
changed. The controller even
passes the view a bean that
allows the view to refrieve the
model’s state.

If you think about the browser
model, the view only needs an
update of state information
when an HTTF response is
returned to the browser;
notifications at any other time
would be pointless. Only when
a page is being created and
returned does it make sense to
create the view and incorporate
the model's state.

compound patterns

|.|:' W |ll[|-|_'[1‘ll.5_'|’ wht'n' lh:' |_h'|_|,1_{'|,'|1.‘\
e o hstener of the maodel, We hine
1 the Strategy Pavtern? And what

o i & seb browser, 1s that soll dhe

res e sl there; theyve just been
another look..,

., the
vade up
graphical
s case,

by a

however
s an
‘most
wosite.

e still
g ViEw

ven iF it
sed with
ing a'hj:c{,

Change your
state

558 Chapter 12

= It seems like you are really hand
waving the fact that the Composite
Pattern is really in MVC. Is it really
there?

A: Yes, Virginia, there really is a
Composite Pattern in MVC. But, actually,
this is a very good gquestion. Today GUI
packages, like Swing, have become so
sophisticated that we hardly notice the
intermal structure and the use of composite
in the building and update of the display.
Its even harder to see when we have We
browsers that can take markup language
and convert it into a user interface.

Back when MVC was first discovered,
creafing GUIs required a lot more manua
intervention and the patterm was mofa
abwicusly part of the MVC.

(\1: Does the controller ever
implement any application logic?

A: Mo, the controller implements
behavior for the view. Itis the smarts

that franslates the actions from the view
to actions on the model. The model

{akes those aclions and implements the
application logic to decide what to do in
respansea o those actions. The confrolle
might have fo do a little work (o determine
what method calls to make on the model,
but that's not considered the “application
logic.” The application logic is the code that
manages and manipulates your data and i
lives in your model.

Q: I've always found the word
“model" hard to wrap my head around.
| now get that it's the guts of the
application, but why was such a vague,
hard-te-understand word used to
describe this aspect of the MVC?

therejare yo

Dumb Questions

A: When MVC was named they needed
a word that began with a "M" or otherwise
they couldn't have called it MVC.

But seriously, we agree with you, averyone
acrafches their head and wonders what a
model is. But then everyone comes to the
realization that they can't think of a better
ward either.

e state
15 the

a of
use the
Il states,

ie MVC
153

the

ting the

jator
iy of
) on't go

into too much detail here, but the intent of
the mediator is to encapsulate how objects
interact and promate loose coupling by
keaping two objects from referring to each
other explicitly. So, to some degree, the
controller can be seen as a med:alor, since
the view never sels siale directly on the
madel, but rather always goes through the
controller. Remember, however, that the
view does have a reference to the model fo
access its state. |f the controller were truly a
mediataor, the view would have to ga through
the controller fo get the state of the madel
aswell,

compound patterns

Q: Does the view always have to ask
the model for its state? Couldn't we use
the push model and send the model's
state with the update notification?

-

« Yes, the model could certainly send
its state with the notification, and in fack, if
you look again at the JSPHTML view, that's
exactly whal we're doing. We're sending
the entire madel in a bean, which the view
uses i accass the siate it needs using the
bean properties, We could do something
similar with the Beathode! by sending just
the state that the view is interssted in. If you
remember the Obsarver Patlern chapter,
however, you'll also remember that there's a
couple of disadvantages fo this. If you don't
go back and have a second book.

Q': If | have more than one view, do |
always need more than one contraller?

A: Typically, you need one contraller
per view al runtime; however, the same
controller class can easily manage many
ViEws.

Q: The view is not supposed to
manipulate the moedel, however | noticed
in your implementation that the view has
full aceess to the methods that change
the model's state. Is this dangerous?

A: You are comect: we gave the view
full acoess to the model's sel of methods,
We did this to keep things simple, but there
may be circumstances whare you want to
give the view access to only part of your
model’'s AF1. There's a great design pattern
that allows you lo adapt an interface to only
provide a subset, Can you think of it?

559

you are here »

mEW
myC

| L are
patterns

KEep ODSErVers Upoalea yet
stay decoupled from them.

The controller is the strategy
for the view. The view can use
different implementations of
the contraller to get differant
behavior.

The vigw uses the Composite
Pattern to implement the

user interface, which usually
consists of nested components
like panels, frames and
buttons.

These patterns work together
to decouple the three players in
the MVC model, which keeps
designs clear and flexible.

The Adapter Pattern can be
used to adapt a new mode! to
an existing view and controller,

Model 2 is an adaptation of
MVC for web applications,

In Model 2, the controller is
implemented as a serviet and
JSP & HTML implement the
vigw.

compound patterns

hange Quackable to extend
hat implements Quackable,

leable, 5o
. GuatkCounber 15 3 Quat
& 15« Farkfhservable too-

I

public void notifyObaervers() | ik
duck . notifyobservers(): L
I o

ackologist wants to observe an entire flock? What does that mean
« about it like this: if we observe a composite, then we're obsarving
i composite. So, when you register with a flock, the flock composite
J get registered with all its children, which may include other flocks.

Flotk 15 a3 Quat.'ka!nk. Lo mow
[Ir“ 1. BearkiTheerevable boo.

paeyvEr
.|'*]|
thing
S

s a

the
anl

kable
do

delegates is how s
Lortrol the madel
hﬂj{d o uEEr -Ih?-l.l'E

compound patterns

Il directly instantiating Geese by relying on concrete classes. Can you write
act Factory for Geese? How should it handle creating “goose ducks?”

i 3 ereateGooseDuck() method 4o the existing Duck Factories. Ov, Yo
a tompletely sepavate Fattory for ereating Eam'niifs ot Geese

updaeBP M)
updaneteall)
crestalormols])
enahieSaphanahem])
disabieSiopkanuliem])
erablaSiartMenuliem)
disableSiarthdenultsmi]
ahonPeriamed])

eekate
ate

reke
m?ﬁgmm‘t-

Avatesy

]

whrollews
Flevent

th-! Vil

djview;

LInterface |

void registerOhserver (BeatObserver o))
vold removeObserver (BeatObserver o);:
vold registerObserver (BFMObserver o):

volid removeObsearver (BFMObserver o) :

564 Chapter 12

rplementation of the DiView. |t shows all the
: the sound, and all the Swing components to
an also download this code at

mart.com. Have fun!

roller{model)

compound patterns

package headfirst.combined. djview;

import javax.scund.midi.=*;
import java.util.*;
public £lass BeatModel implements BeatModellInterface, MetaEventListener |
Sequencer sequencer;
ArrayList beatCbhservers = new ArrayListi);
ArrayLizt bpmObsgservers = new Arraylist():
int bpm = 90;
/{ other instance wvariables here
Sequence sequence;
Track track;

public void initialize() |
setUpMidi();
buildTrackindStarct():
!

publiec weid om{) |
sequencer.start ()
setBEPM (50) ;

J

public wvoid off{) |
setBPFM (O}
sequencer.stopl):
]

public void setBPFM(int bpm) |
this.bpm = bpmn;
sequencer. setTempalnBPM (getBPM ()) -
notifyBPMObzervers() ;

]

public int getBEMI() |
return bpm:

]

void beatEvent{} |
notifyBsatChservars();

]

public void registerObserver (BeatObserver o) |
beatfbservers.add o)
]

public void notifyBeatObservers() |
fortint i = 0; i < beatCbservers.size(}; i++) |

you are here » 565

:Dbservers.get (i) ;

100 Pl L o= Uy 1 % DOIUDSSLVELS NLES[)y Let) |
BPMObserver aobserver = (BPMObserver)bpmObservers.geb(i)y
observer.updateBPM () ;

public void removelbssrver (Beatlbssrver a) |
int 1 = beatobservers.indexof (o) ;
if (1 »= 0} {
beatObservers, remove (1) ;

public veid removelbserver (BPMObssrver o) |
int i = bpmOhservers.indexOf (o) ;
if (i == 0} |
bpmObsarvers.remove (1) 7

public void metalMetaMessage messages) |
if imessags.getType() == 47) {
beatEvent () ;
sequencer.start{);
setBPM(getBEM{)) ;

]
public vold setUpMidil) |

try |
sequencar = MidiSystem:getSequencer();

566 Chapter 12

compound patterns

sequencer.opent);
segquencer.addMetaEventListener (this);
seguence = new Seguence {Sequence. PP, 4);
track = seguence.creataTrack():
sequencer . setTempoInBPH (getBEPM ())
} catch (Exception e) |
e.printStackTrace();

public void buildTrackAndStart() |
int[] tracklist = {35, 0, 46, 0];

sequence.deleteTrack (null) ;
track = sequence.createTrackl} ;

makeTracks (trackList) ;
track.add (makeEvent (192,9,1,0,4}));
try |
seguencer.setiequence (sequence) ;
} catch({Exception e} {
e.printStackTrace ():
b
]

public void makeTracks({int[] list) |

for (dnt 1 = 03 1 -« lisvr. length: 1++) |
int key = list[i]:

if (key = @) |
track.add (makeEvent {144, 9, key, 100, i)}
track.add (makeEvent (128,05, key, 100, i+1))

]

public MidiEvent makeEwent {int comd, int chan, int one, int two, int tick) |
MidiEvent event = pnull;
try |
ShortMessage a = new ShortMesszage();
a.setMessage(comd, chan, ons, two):
event = new MidiBEventi{a, tick):

} catch(Exception &) |
e.printstackTrace ();

:
return event;

you are here » 567

dijview;

war |

diview:

rer |

packags headfirst.combined.djview;

import java.awb.*;

import java.awt.event.*;

import javax.swing.*:

public class DIView implements ActionListener, BeatObserver, BEFMObserver |
BeatModelInterface modely
Cantrallerinterface controller:
JFrame viewFrams:
JPanel viewPansl:
BeatBar beatBar:
JLabel bpmOutputlabel;
JErame controlFrame;
JPanel controlPanel;
JLabel bpmLabel:
JTextFi=ld bpmTextFisld;
JButton setBFMBUtton:
JButton increasseBFMButton;
JButten decreaseBPMButton;
JMenuBar menuBar:
JMany menug
JMenuItem startMenultem;
JMenultem stopMenultem;

public DIView(ContrallerInterface controller, BeatModelInterface model) |
this.controller = controller:
this.model = model;
model .. registerdbserver | (BeatObserver) this):
model . registerobserver | (BFMObserver)this) ;

]

public void createView() |

568 Chapter 12

compound patterns

// Create all Swing components here

viewPanel = new JPanel (new GridLayout(l, 2));

viewFrame = new JFrame (“View"};
viewFrame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE);
viewFrame.setSize (new Dimension (100, 80)):

bpmCutputLabel = new Jlabel (“offline”, SwingConstants.CENTER);
beatBar = new BeatBar():

beatBar.setvValue(0);

JPanel bpmPanel = new JPanel (new GridLayout(2, 1))
bpmPanel.add (beatBar) ;

bpmPanel . add (bpmOutputlLabel) ;

viewPanel.add (bpmPanel) :
viewFrame.getContentPane () .add (viewPanel, BorderLayout.CENTER);
viewFrame.pack(}:

viewFrame.setVisible (true);

public void createControls() |
// Create all Swing components here
JFrame.setDefaultlLoockAndFeelDecorated (true) ;
controlFrame = new JFrame("“Contrel”):
controlFrame.5etDefaultClose0perationtJFrame.EKIT_ON_CLOSE);
controlFrame.setSize (new Dimension (100, 80)):

controlPanel = new JPanel {new GridLayout(l, 2)};

menuBar = new JMenuBar();
menu = new JMenu("DJ Control”};
startMenultem = new JMenultem({™Start”):;
menu.add (startMenultem) ;
startMenultem.addActionListener (new ActionListener() |
public woid actionPerformed({ActionEvent event) {
controller.start (j;
}
¥)#
stopMenultem = new JMenultem(“Stop”):;
menu.add (stopMenultem) ;
stopMenultem.addActionlistener (new ActionListensr() |
public veoid actionPerformed(ActionEvent esvent) (
controller.stop()
//opmOutputlabel . setText (“offline”) ;
}
e
JMenultem exit = new JMenultem(“Quit”);
exit.addActionListener (new Actienlistener() |
public woid actionPerformed (ActionEvent event) {
System.exit (D) ;

b

you are here » 569

ready-bake code: view

r_: =
=

 Ready-bake Code

menu.add (exit);
menuBar.add (menu) ;
controlFrame.setJMenuBar (menuBar) ;

bpmTextField = new JTextField(2):

bpmLabel = new JLabel (“Enter BPM:", SwingConstants.RIGHT);
setBPMButton = new JButton{“Set”);
setBPMButton.setSize (new Dimension(10,40));
increaseBPMButton = new JButton (“>>7);

decreaseBPMButton = new JButton (“<<");
setBPMButton.addhctionListener (this)
increaseBPMButton.addActionListener(this);
decreaseBPMEButton.addActionListener(this);

JPanel buttenPanel = new JPanel (new GridLayout(l, 2)):

buttonPanel.add {(decreaseBPMButton) ;
buttonPanel.add (increaseBFMButton) ;

JPanel enterPanel = new JPanel (new GridLayout(l, 2)):
enterPanel .add (bpmLabel)

enterPanel .add (bpmTextField) ;

JPanel insideControlPanel = new JPanel (new GridLayout(3, 1));:
insideControlPanel.add (enterPanel});

insideContrelPanel.add (setBEMButten) ;

insideControlPanel.add (buttonPanel) ;
controlPanel.add(insideControlPanel) ;

bpmLabel .setBorder (BorderFactory.createEmptyBorder (5,5,5,5))¢
bpmCutputLabel. setBorder (BorderFactory.createEmptyBorder(5,5,5,5));

controlFrame.getRootPane () .setDefaultButton (setBPMButton) 7
controlFrame.getContentPane () .add (controlPanel, BorderLayout.CENTER):

controlFrame.pack();
controlFrame.setVisible (true);

public void enableStopMenultem() {
stopMenultem.setEnabled (true);

public woid disableStopMenultem() {
stopMenultem. setEnabled(false);

570 Chapter 12

compound patterns

J

public woid enableStartMenultem() {
startMenultem.setEnabled (true) ;

!

public veoid disableStartMenuItem(} |
startMenultem.setEnabled(false);

J

public veoid actionPerformed(ActionEvent event) {
if (event.getSource() == setBPMButton) |{
int bpm = Integer.parselnt (bpmTextField.getText()):
controller.setBPM (bpm) ;

} else if (event.getSource() == increaseBPMButton) ({
cantroller. increaseBPM ()
} else if (event.getSource() == decreaseBPMButton) |

controller.decreaseBPM() ;

]

public wvoid updateBPM () {
int bpm = model.getBEM();
if (bpm == 0) {
bpmOutputLabel.setText (“offline”) ;

} else |
bpmOutputLabel.setText ("Current BPM: “ + model.getBEM({));

]

public void updateBeat() {
beatBar.setValue (100) ;

1

The Controller

package headfirst.combined.djview;

public interface ControllerInterface {
void start();
void stop():
void increaseBPM();
vold decreaseBPM();
vold setBPM(int bpm);

you are here v 571

ready-bake code: controller

package headfirst.combined.djview;

public class BeatController implements ControllerInterface |
BeatModelInterface medsl;
DIView view;

public BeatController (BeatModellInterface model) |
this.model = model;
view = new DJView(this, model);
view.createView() ;
view.createControls():
view.disableStopMenultem() ;
view.enableStartMenultem() ;
model.initialize();

]

public wveoid start() {
model.on () ;
view.disableStartMenultem();
view.enableStopMenultem();

1

public void stop() |
model.off ()
view.disableStopMenultem() ;
view.enableStartMenultem() ;
}

public void increaseBPM() {
int bpm = model.getBPM()
model.setBEM(bpm + 1):

)

public void decreaseBPM() |
int bpm = meodel.getBPM();
model.setBFM{bpm = 1)

}

public wveoid setBPM(int bpm) {
model . setBEM (bpm) ;
]

572 Chapter 12

compound patterns

The Heart Model

package headfirst.combined.djview;

public £lass HeartTestDrive (
public statiec woid main (String[] args) {
HeartModel heartModel = new HeartModel():
Controllerinterface model = new HeartController (heartModel):

package headfirst.combined.djview;

public interface HeartModelInterface |{
int getHeartRate():
voeid registerObserver (BeatObserver o)
void removeObserver (BeatChserver o);
void registerObserver (BFMObserver o);
veid removeObserver (BPMObserver o)

package headfirst.combined.djview;
import java.uktil.*;

public class HeartModel implements HeartModellInterface, Runnable {
ArrayList beatObservers = new ArrayList():
ArraylList bpmObservers = new ArrayList():
int time = 1000;
int bpm = 90;
Random random = new Random (System.currentTimeMillis()):
Thread thread:

public HeartModel (} |
thread = new Thread(this);
thread.start {):

]

public void run{) {

int lastrate = -1;

for(s:) {
int change = random.nextInt (10);
if (random.nextInt(2) == 0} {

change = 0 - change;
1
int rate = 60000/ (time + change);
if (rate < 120 && rate > 50) {
time += change;

you are here » 573

ready-bake code: heart beat model

notifyBeatObservers();

if (rate != lastrate) |
lastrate = rate;
notifyBPMObservers () ;

}
try |
Thread.sleep(time);
} catch (Exception e) {]
}

1
public int getHeartRate() {

return 60000/time;
)

public wvoid registerObserver (BeatObserver o) |
beatObservers.add (a);
]

public veld remocveObserver (BeatObserver o) |
int i = beatObservers.index0f (o);
if (L >=0) {
beatCbservers.remove (1) ;

]

public wvoid notifyBeatObservers() {
for(int 1 = 0; 1 < beatObservers.size(): i++) |
BeatObserver chkserver = (BeatUbserver)beatObservers.get(i);
observer.updateBeat();

]

public void registerObserver (BEMObserver o)
bpmObservers.add (o) ;
]

public wvoid removeObserver (BPMObserver o) {
int i = bprnobservers.index0f (o)}
if (L >=0) {
bpmObservers, remove (1) 7

]

public woid notifyBPMObservers() |
for(int i = 0; i < bpmObservers.sizel); i++) {
BPFMObgerver observer = (BPFMObserver)bpmObservers.get(i):
observer.updateBPM() ;

574 Chapter 12

compound patterns
The Heart Adapter

package headfirst.combined.djview;
public class HeartAdapter implements BeatModelInterface |
HeartModelInterface heart;

public HeartAdapter (HeartModellInterface heart) |
this.heart = heart;
|

public void imnitialize() {}
public void on(} {}
public void off() {]

public int getBPM() {
return heart.getHeartRate ()
}

public void setBPM({int bpm) (]}

public void registerObserver (BeatObserver o) |
heart.registerObserver (o) ;

|

public void removeObserver (BeatObserver o) |
heart.removeObserver (o) ;
¥

public void registerCbserver (BEMObserver o) |
heart.registerObserver (o);

}

public void removeObserver (BEMObserver o) (
heart.removeldbserver (o) ;
|

you are here » 575

ready-bake code: heart beat controller

The Controller Ready-bake Code

package headfirst.combined.djview;
public class HeartCentroller implements ControllerInterface |
HeartModelInterface model;
DIView view;
public HeartController (HeartModelInterface model) |
this.model = model;
view = new DJView(this, new HeartAdapter (model)};
view.createView() ;
view.createControls ()
view.disableStopMenuItem()
view.disableStartMenultem({) ;
public veoid start () [}
public woid stop() {1}
public wvoid increaseBPM() {}

public void decreaseBPM() {}

public void setBPMiint bpm) ({}

576 Chapter 12

Ahhhh, now you're ready for a bright new world filled with
Design Patterns. But, before you go opening all those new doors of opportunity, we
need to cover a few details that you'll encounter out in the real world — that's right. things get
a litthe more complex than they are here in Objectvile. Come along, we've got a nice guide to

help you through the transition on the next page...

this Is a new chapter

57T

better living with patterns

this book, But
chit be o bt

1 Lo step
through each of these pares, context, problem and soluton:

Example: 'T’a"" have 3

' eallection of opjects

The context is the situaton in which the patern applies. This V. it ks
should be a recarving situation. T 2
throush the objects
The preblem refers 1o the goal you are trying o achieve in this e—— witheut exposing
context, but it also relers w any constraing that eccur in the fhe sollsetion's
context, implementation

The selution is what vou're after: a general design thar anvone F"--.,___._ £
can apply which resolves the goal and set o constrains, _ nedpsulate +he
itevation into 5

sepavate ¢lass

This 15 one of those definidons thae tikes a while w sink in, bue take icone siep aca
tme. Here's a little mnemonic you can repeat to yourself o remember ic

M vou Find self in a tontext with a problem that has a geal
ﬂ-.ai iz aﬂ:?l::;l by a set of tomstrainkts, then You tan apply
a design that vesolves the aoal and tonstraints and leads to 2

solution.”

Now, this seems like a lor of work just to figure our what a Design Pactern s, Adver all,
voul alveady know thar a Dresign Pacern gives vou a soluton o a commeon recurring
design problem. What is all this formalicy geoing vou? Well, vou're going o see tha
by having a formal way of describing patterns we can create a afeloe of paterns,
which has all kinds of benetis,

you are here » 579

design pattern defined

I've been thinking
about the three-part
definition, and I den't think
it defines a pattern at all.

You might be right lecs think ahour this a bie.. We need a frofle
softion anel a condext

Problem: How do | get to work on tme?
Context: I've locked my kevs in the car

Solution: Break the window, get in the car, start

the engine and dive o work,

We have all the components of the definiton: we have a problem.
which includes the goal of gewing o work, and the constraings of dme,
distance and probably some other Eactors, We also have a concext in
which the kevs wo the car are inaccessible. And we hayve a soluion tha
weets s w0 the kevs and resolves both the ame and distance constrams,
We must have a patern now! Righe?

We followed the Design Pattern definition and defined a problem, a context, and a solution (which

works!). |s this a pattern? If not, how did it fail? Could we fail the same way when defining an OO
Design Pattern?

580 Chapter 13

OL LU SERRLICLme
micque problem,
int but simple
T given it a

i cloesn't

can be shared

Fandd documented
slution; we

g puerns ':Il'H.l
Wx eirlalngs,

‘E_‘l: Pattern descriptions, which you'll
typically find in pattern catalogs, are usually
a bit more revealing than that. We're going
fa ook al pattern catalogs in detail in just

a minute; they describe a lof mare about a
pattern's Intent and molivation and whers it
might apply, along with the solution design
and the consequences (good and bad) of
using it.

better living with patterns

Mext time someane tells you
pattern is a solution to a problem
I a cohtext, just nod and smile. You
ow what they mean, even if it isn't a
iefinition sufficient to describe what

Q: Is it okay to slightly alter a
pattern’'s structure to fit my design? Or
am | going to have to go by the strict
definition?

A: {f course you can alter it Like
design principles, patterns are not meant
to be laws or rules; they are guidefines that
you can alter to fit your nesds. As you've
seen, a lot of real-world examples don't fit
the classic pattern designs.

However, when you adapt patterns, it
never hurts to document how your pattemn
differs from the classic design - that way,
other developers can quickly recognize the
patterns you're uging and any diffarences
between your paliern and the classic
pattern.

a Design Pattern really is.

Q: Where can | get a patterns
catalog?

A: The first and most definitive
palterns cataleg is Design Patlerms:
Elaments of Reusahle Object-Oriented
Soffware, by Gamma, Helm, Johnson &
Viissides (Addison Wasley). This catalog
lays out 23 fundamental patterns, We'll talk
a litthe mare about this boak in a few pages,

Many other patterns catalogs are starting fo
be published in various domain areas such
as enterprise software, concurrent systems
and business syslems.

you are here b 581

1e force be with you

t
a
HUQJ QI QoL W WAool anl J'tS.
Patterns gurus have a term
for these: they call them
forces. Why? Well, we're sure
they have their own reasons, but if
you remember the movie, the force
“shapes and controls the Universe.”
Likewise, the forces in the pattemn
definition shape and control the solution.
Only when a solution balances both sides of
the force (the light side: your goal, and the dark
side: the constraints) dowe have auseful pattern.

This “force” terminology can be quite confusing
when you first see it in pattern discussions, but
just remember that there are two sides of the force

(goals and constraints) and that they need to be
balanced or resolved to create a pattern solution. Don't
let the lingo get in your way and may the force be with you!

582 Chapter 13

1e force be with you

t
a
HUCM g a Gl W U raLuanl J'ts.
Patterns gurus have a term
for these: they call them
forces. Why? Well, we're sure
they have their own reasons, but if
you remember the movie, the force
“shapes and controls the Universe.”
Likewise, the forces in the pattern
definition shape and control the solution.
Only when a solution balances both sides of
the force (the light side: your goal, and the dark
side: the constraints) dowe have auseful pattern.

This “force” terminology can be quite confusing
when you first see it in pattern discussions, but
just remember that there are two sides of the force

(goals and constraints) and that they need to be
balanced or resolved to create a pattern solution. Don't
let the lingo get in your way and may the force be with you!

I wish I'd known about
patterns catalogs a long
time ago...

Frank: Fill usin, Jim. I've just been learning patterns by reading a
[ew articles here and there,

Jim; Sure, each patern catalog wakes a sec off pacterns and describes
each in dewil along with it reladonship o the other paterns,

Joe: Are vou saying there is more than one paterns caalog?

Jim; Of course; there are catalogs for lundamental Desizn Paterns
and there are also catalogs on domam specibic patterns, like EJB
patterns.

Frank: Which catalog are vou looking at?

Jim: Thas is the classic GoF catalog; i contans 25 lundamental
Desion Patterns,

Frank: (ol

Jim: Right, thar stands for the Gang of Four, The Gang of Four are
the guys that put wgether the st patterns catalog,

Joe: What's in the catalog?

Jim: There is a sec of related paverns. For each pactern there is a

deseription that follows a template and spells owt a lot of deeails of the

pactern. For instance, each pattern has a e,

better living with patterns

using a pattern catalog

584

Frank: Wow, that's earth-shauering — a name! Imagine that.

Jim: Hold on Frank; actally, the name is really important, When we have a name
for a patern, 1t gives us a way w talk about the pacern; vou know, that whole shared
vocabulary thing,

Frank: Okay, okay. [was just kidding. Go on, what else is there?

dJim: Well, like T was saving, every pattern follows o wmplae. For cach pattern we have

g name and a few secdons thae well us more about the pattern, For instance, there is an
Intent secton that deseribes what the pacern is, kind of like a definidon. Then there are
Muotivation and Applicability sections that describe when and where the pattern might be
usedd,

Joe: What about the design iseli?

Jim: There are several secions that descnbe the class design along with all the classes
that make it up and what their roles are. There is also a section that describes how o
implement the pattern and often sample cocle o show vou how

Frank: It sounds like theyvve thought of everything

Jim: Theres more, There are also examples of where the pattern has been used inreal
svstems as well as what 1 think is one of the most sseful seetnons: how the pattern relates
o offier patterns.

Frank: Oh. vou mean they tell vou things like how safe and strategr differ?
Jim: Exactly!

Joe: 5o Jim, how are you actually using the catalog? When you have a problem, do you
oo fishing in the catalog for a solution?

Jim: I oy o ger familiar with all the pacterns and their relationships Grse. Then, when 1
need a patiern, 1 have some idea of whaticis, Tgo back and look at the Morivation and
Applicability sections o make sure Pve goc e vight, Thene is also another really importam
section; Consequences. | review thae wo make sure there won't be some anineended effece
o my desigm,

Frank: That makes sense. So once vou know the pattern s fght, how do you approach
working it nto vour design and implementng i

Jim: That's where the class diagram comes in. T fiese read over the Structure section 1o
review the dingram and then over the Partcipanes section to make sure 1 ondersiand each
classes” ole, From there D work ic into my design, making any alterations 1 need o make
it fie. "Then 1 review the Implementadon and Sample code sections w make sure 1 know
about any good implementation wehnicues or gorchas [might encounter,

Joe: [can see how a catalog is really going w accelerate my use of patterns!

Frank: Towally, Jim, can vou walk us through a pattern description?

Chapter 13

ﬁ“ ?a‘E‘h‘lTll- (] Ea{,}lgﬁ 5':]& /-_ﬂ SENGLE T

with 4 pame. The name is a vital s
part of a pattern - without a T T
good name, a pattern tant betome Mucivation

part of the votabulary that you
share with other devtlp?eﬂ-

The motivation gives you a contrete
stenavio that deseribes the problem and

how the solution solves the problem. /l

m [il d!ﬂr‘l’ﬂ!! S-E'E.Hm c;_;';__
in whith the pattern tan be applied ==
T |

v 4 s

it and
The tan_rj;n:-gan{s are the .*.lasscs_
a’nj:r.{,s wn the desigp. This settion
deseribes their r:s?nu‘n'niiil;iu ard
voles in the pattern.

i e gk
gyt e e T

/'—‘) Comsequences

The tonseauenges destribe the i oot

[

effects that using this patiern
may have: good and bad.

Wik v i Camr [
e -y
S i B ki s ity 1y
Ll L T A

Impleame naation fSampls Code
gl jon provides — 7 e e e

hniques ou need £o use when SRR
implementing this pattern, and =

issues You should wateh out for

Enown uses destribes
examples of this patiern
found in veal siirsf,ln!.

patterns

pattern’s

E o
We'll +alk
tia

ies what

n a short

n also think
tern's

e we ve been

provides a
rting the
vhitipate

ls us
nts work
attevn

ind others.

discovering vour own patterns

therejare ne

Dumb Questions

Q_,: Is it possible to create your own Design
Patterns? Or is that something you have to be a
“patterns guru” to da?

A: First, remember that patterns are discovered,
nat creatad. So, anyone can discover a Design Paltern
and then author its description; however, it's not easy
and doesn't happen quickly, nor often. Being a “pallems
writer” takes commitment,

Yau should first think about why you'd want ta — the
majority of people don't author patterns; they just vse
them. However, you might work in a specialized domain
far which you think new pattermns would be helpful, or
you might have come across a soluticn fo what you
think s & recurring problem, or you may just want fo gel
involved in the patterns community and contribute fo the
growing body of work,

@

I'm game; how do | get started?

= Like any discipline, the mare you know the
batter. Studying existing patterns, what they do and
how they relate to other patterns is crucial. Mot only
does it make you familiar with how patterns are crafted,
it prevents you from reinventing the wheel, From there
wou'll want 1o start writing your patterns on paper, 50 you
can communicate them to other developers; we're gaing
{a talk mare about how lo communicats your pattems in
a bit. If you'ra really interested, you'll want to read the
segtion that follows these Q&As.

Q: How do | know when | really have a pattern?

A'.' That's a very good question; you don't have a
pattern until others have used it and found it to work.

In general, you don't have a pattern unfil it passes the
*Rule of Three." This rule siates that a pattern can be
called a pattern anly if it has been applied in a real-waorld
solution at least three times.

586 Chapler 13

So you wanna be a :iﬂign
Patterns star?

Well listen now to what I tell.

Get {uurself a patterns
catalog,

Then take some time and
learn it well.

And when you've got your
c[escri]:ltiun right,

And three developers agre
without a {ight,ope

Then yuu‘u know it's a
pattern alright.

)

To the tune of "So you wanna
h: a Raf,'lﬂjr. Ra“ S‘La"f

and not new patterns. And when vou do find what looks fike a
new pattern, is applicabiliy may be oo narow o gqualify as a
real pattern,

Get your ideas down on paper in a way others can
understand, Locating new patterns isn't of muoch use i0 others
can't make use of your find; vou need w document vour patern
candidates so that others can read, understand, and apply them
to their own solution and then supphy vou with Teedback. Luckily,
vou don't need w invent your own method of documenting vour
paerns, As vou've aleeady seen with the GoF template, a loc of
thouoght has already gone inm how (o deseribe paccerns and their
characteristics,

Have others try your patterns; then refine and refine
some more. Don't expect to get vour pattern right the firse
time, Think of vour pattern as & work in progress that will
improve over time, Have other developers review your candidace
pateern, try it out, and give you feedback, Incorporate that
feedback into your descrption and oy again, Your description
will never be perlect, but at some point it should be solid enough
that other developers can read and understand it

Don’t forget the rule of three. Remember unless your
pattern has been successtully applied in three real-world
solutions, it can't qualify as a pattern. That's another good
reason o ger your patern int the hands of others so they can
try i, give Teedback, and allow vou o converge on a working
pattern,

patterns

Use one of the existing
?E‘H:.:\"n hm?'ﬂ'l:.ﬂ to
define your pattern. A
lot. of thought has gone
into these templates and
ether ?ﬂ‘l‘.tﬂ'ﬂ users will
vetognize the format

you are here v+ BBT

FTLE ST

Facade

Strategy

Proxy

Factory Method
Adapter
Observer
Template Method
Composite
Singleton
Abstract Factory

Command

de which concrete classes to

[enly object is ereated.

terchangeable behaviors and
to decide which one to use.

lections of objects and
ts uniformly.

tte-based behaviors and uses
H’Lc]:- l'-etWeen i'-e]}ﬂ\f"icrrﬁ.

to traverse a collection of
exposing its implementation.

WL TS S +“tET'¥ﬂ_C$ '?¥ i set D'F Eiﬂﬁ.‘iéﬁ-
Wraps an object 1o provide new behavior.

Allows a client to create families of objects
without specifying their concrete classes.

Allows objects to be notified when state
chﬂnge:-:,

Wraps an object to control access to it.
Encapsulates a request as an object.

588

Chapler 13

| patterns

see
their
But
¢ out

avioral
1 how
act and

589

e exercise difficult,
w category, Don't worry,

Any pattern that is a Behavioral
Pattern is concerned with how
‘ o rract and

¥-

erns

T~ (in grey) that you haven't
seen yet. Youll Find an
oveviiew of the these
patterns in the appendic

B e e L R e T

with the three calegories and then add
subcategories, like "Decoupling Patterns.”
You'll want to be familiar with the most
comman schemas for organizing pattems,
but alzo feel free lo creale your own, Ifil
halps you fo understand the pafierns batier,

Q} Does organizing patterns into
categories really help you remember
them?

P e W R M R R AR I WL AR T

structural and behavioral categonies; often
a pattern seems 1o fit into more than one
categaory, The most important thing is to
know the patterns and the relationships
among them. When categories help, use
them!

Q': Why is the Decorator Pattern in
the structural category? | would have
thought of that as a behavioral pattern;
after all it adds behavior!

patterns

scribe
zn
aarily
ion.
=ct

and
ic and

54
et

sl

zay that!
aang of Four
3 describe
mposed to
nctionality,
N |1 1
compose objects by wrapping one object
with another 1o provide new functionality,
S0 the focus is on how you compose the
objects dynamically to gain functicnality,
rather tham on the communication and
interconnection between objects, which
is the purposa of behavioral patterns, If's
a subtle distinction, especially when you
consider the structural simitarities between
Decorator {a structural pattern) and Proxy,
{a behavioral paltern). Bul remember, the
intent of these pafterns is different, and
that's aften the key to understanding which
category a pattern belongs to.
591

you are hera #

pattern calegories

592

Chapter 13

Master and Student...
Master: Grasshopper, you look troubled,

Student: Yes, I've just learned about
pattern classification and I'm confused.

Master: Grasshopper, continue.,,

Student: Afier leaming much about patferns, I've

Jjust been told that each pattern fits into one of three
classifications: structural, behavioral or creational. Why
do we need these classifications?

Master: Grasshopper, whenever we have a large
collection of anything, we naturally find categones fo fit
thaose things info. (t helps us to think of the items af a
more abstract level,

Student: Master, can you give me an example?

Master: Of course. Take autormmobiles; there are many
different models of aufomobiles and we naturally put
them into categories like economy cars, sports cars,
SUVs, trucks and luxury car categories,

Master: Grasshopper, you look shocked, does this not
make sense?

Student: Master, it makes a jot of sense, but | am
shocked you know so much about cars!

Master: Grasshopper, | can't relate everything to lotus
flowers ar rice bowls. Now, may | confinue?

Student: Yes, yes, I'm sorry, please continue.

Master: Once you have classifications or categornes
you can easily talk about the different groupings: "If
you're doing fthe mountain drive from Silicon Valley fo
Santa Cruz, a sports car with good handling is the best
option.” Or, “With the worsening oil situation you really
want fo buy a economy car, they're more fuel-efficient.”

Student: So by having categories we can talk about a
set of patterns as & group. We might know we need a
creafional pattern, without knowing exactly which ane,
but we can sfill talk about creational pattemns.

Master: Yes, and it also gives us a way to compare a
mamber fo the rest of the category, for axampla, “the
Mini reafly is the most siylish compact car around”, or
to narrow our search, I need a fuel efficient car.™

better living with patterns

Student: | see, so | might say that the Adapter pattern
is the best structural pattern for changing an object's
interface.

Master: Yes. We also can use categories for one more
purpose! fo flaunch into new territory, for instance,

“we really want to deliver a sporfs car with ferrari
performance at miata prices.”

Student: That sounds like a death frap.
Master: |'m sorry, | did not hear yo
Student: Uh, | said | see that™

Student: So categories give Us a\
way groups of patterns relate and .
a group relate to one another, The
to extrapolate to new patterns. Bul
categaries and nof four, or five?

Master: Ah, like stars in the night :
categories as you want fo see. Thr
number and a number that many
makes for a nice grouping of patte
suggested four, five or more.

Your Braim on Patterns

Ah... the most important questdon: when do yvou use a patern? As vou approach your design, introduce a
pattern when vou're sure it addresses a problem in vour design. I1 a simpler solution might work, give that
consideration before vou commit o using a patiern.

Aimremg when a patcern applies is where your experience and knowledge come in. Onee vou're sure a
simple soluton will not meet vour needs, vou should consider the problem along with the set of consirains
under which the solution will need 1o operawe — these will help vou macch vour problem w a patern. If
vou've got a good knowledge of pawerns, yvou may know of a patern that is a good march, Otherwise,
survey patcerns that look like they might solve the problem, The inen and appheabiliy sectons of the
patterns catalogs are particularly wseful for this, Onee you've found a pateern that appears wo be a good
miatch, make sure it has a set of consequences vou can live with and soody is effect on che resc of vour
design. 1" everything looks good, go for il

594 Chapter 13

better living with patterns

15,

Center your thinking
on design, net on patterns.
Use patterns when there

is a natural need for them.
If something simpler will
work, then use it

!

you are here » 595

*initial training (s almost
lans?

wiland! And, then I'm
ode with patterns!

15 unless you have to.

it I've leamed design
igns to achieve

should anly be used

warning design principles.
AW YS STEFT ITUITT WUUE DFICIpnes i cregme me simplest code you can
that does the job. However, if you see the need for a paftern emerge,
then use it,

Student: So | shouldn't build my designs from patterns?

Master: That should nof be your goal when beginning a design. Lef
patterns emerge nafurally a5 your design progressses.

Student: If palterns are so great, why should | be 5o careful about
using them?

Master: Pafterns can introduce complexity, and we never want
complexity where it is nof needed. But patfermns are powerful when used
where they are needed. As you already know, patterns are proven
design expenence that can be used fo avoid commaon mistakes. Theyre
also a shared vocabulary for communiceting our design to others.

Student; Well, when do we know it’s okay fo introduce design patterns?

Master: Infroduce a pattern when you are sure jit's necessary fo solve g
problem in your design, or when you are quite sure that it is needed to
deal with a future change in the requirements of your appiication

Student: | guess my leaming is going fo continue even though | already
understand a iot of patterns.

Master: Yes, grasshopper; leaming to manage the complexity and
change in software is a life long pursuit. But now that yvou know a good

set of patterns, the ime has come fo apply them where needed in your
design and to continue l2arming more patterns.

Student: Wait & minute, you mean | don't know them ALL?

Master: Grasshopper, you've leamed the fundamental patterns; you're
going to find there are many more, including patterns that just apply to
particular domains such as concurrent systems and enterprise systems.
But now that you know the basics, you're in good shape to leam them!

596 Chapler 13

better living with patterns

terns everywhere, This s good:
experience with and practice using
alza thinks, “The more patterns | usa,
he beginner will learn this is not so,
g &5 simple a5 possible, Complexity

' be used where they are needed for

As learning progresses, the Intermediate mind
starts to see where patterns are needed and
where they aren't. The intermediate mind still tries
to fit too many square pattems into round holes, but
also begins o see that patterns can be adapted to
fit situations where the canonical pattern doesn't fit,

The Zen mind is able to see patterns where they fit naturally.
The Zen mind 15 nol chaessed with using patterns; rather it
looks for simple solutions that best soive the problem. The Zen
mind thinks in farms of the object principles and their trade-offs.
When a need for a pattern naturally arises, the Zen mind applies
it knowing wedl that it may require adaptation. The Zen mind
also sees relationships to similar patterns and understands the
sublleties of differences in the intent of related patterns. The
orator” Zan mind is also a Beginner mind — it doesn't let all that pattem
knowledge overly influence design decisions.

you are here v+ 597

598

Chapter 13

minute; I've
entire book and now
lling me NOT to use

WARNING: Overyse of design pattems can lead to code that
is downright over-engineered Aiwiays go with the simplest

L1 e [tiw] W

vant you to
terns!

a rood (0 designer even

n calls for a pattern, vou get
solution thar has been time
e, You're also using a
wumented and that other

o recognize (vou know, that
iy thing).

i Dresipm Patterns, there

e Desipm Patterns often

lasses and ohjects, and so

omplexity of your designs,
Diesign Paoerns can also add more lavers o vour
{li'.‘iigil. 'l'\'l'li['i'l il.l'|1 |.‘j [RCR]| 1:l|!|!|' I::("[ll_l‘ll."ﬂhj" |H|| .'ll..‘;'ll
melficiency,
Alsor, 1|.-;i1|5; i i_}i'.‘i'ig!h Pattern can sometimes be
outright overkill, Many times you can fall back on
vour design principles and find a much simpler
solution to solve the same problem. It thar
happens, don't fight it Use the simpler solution,

Dot let ns discourage vou, though, When a
Design Pattern is the right tool for the job, the
advantages arc many.

better living with patterns

air’s
[l
ither
one ol

1ared
“owwn!
w frorm
W

Now that vouve got the Design Pattern basics down, its time for you to
o out and spread the word o others, Why? Because when your fellow
developers know patterns and use a shared vocabulary as well, i leads w
better desiens, better communicaoon and, best of all, 161 sooe vou a lot of
time that vou can spend on cooler things,

5o I created this broadcast class. Tt
keeps frack of all the objects listening to it
and anytime a new piece of data comes aleng
it sends a message to each listener. What's cool

is that the listeners can join the broadcast at any
time or they can even remove themselves. And the
broadcast closs itself doesn't know anything about
the listeners, any object can register that
implements the right interface.

)

[ntomplete -
Lontusing

(" T T !me---'_'.onsuhn%hﬁ

509

five ways (0 share your vocabul

vdiscuss
sign”
atterns
YWTEIN
qs.

15 with
1B

14 what
itd”

amount
Jlearer

Y | - 3
you're writing code, clearly identify the patterns you're using in
comments. Also, choose class and methods names that reveal any
patterns underneath, Other developers who have to read your
code will thank you for allowing them to guickly understand your
implementation,

5 To groups of interested developers: Share your knowledge.
Many developers have heard about patterns but don't have a good
understanding of what they are. Volunteer to give a brown-bag lunch
on patterns or a talk at your local user group.

. y X i
Cuteinet W e

-

Peetise —=

Complete —71

800

“rang element” rui ing around Oljectalle, could vou think of a

picer bunch ol guys? In fact, thevve even agreed to pay us aovsice,

Today
there are more
patterns than in the
zoF book; learn about
them as well,

Shoot for practical
extensibility. Don't
provide hypathetical

generality. be extensible

in ways that matter,

tools not rules - they
need fo be tweaked and

adapted to
your problem.

John flissides

N s ":g [4 Erich Gamma

601

noL a computer selentst. Alexanc
pacterns for bailding living archis
houses, tonwns and citdes).

The nexe dme vou're in the mood
engaging reading, pick up T T
Buibding and A Pattern Language. Yo
beginnings of Desion Patterns an
the direct analogies between creal
architecture”™ and Hexible, exeensil

Sograb a cup of Sarbuez Colles
ey,

602 Chapler 13

vie gol three delinidve

ive Design Patterns text

that kicked off the entire field of Design
twas released in 1995, You'll hind all che
teerns here, In fact, this hook 15 the basis for
nswe used n Head Fost Desige Patterns,

his book to bee the last word on Design
elid has grown substandally since s

1 ;l i‘. I1'IF"' HI".F ".'Il'ln’l nsr r!r-“n'ilirr*

better living with patterns

Patterns Repository, run Iy
am, 15 a WIKI devored w all
pacterns, Anvone can partcipate,
ds of discussion on every wpic
“related w paterns and OO

‘oglfwikitWelcomeVisitors

roup [osiers commaon

il design practices and provides
w for patterns work, The site
o on many patterns-relaed

s articles, books, mailing lists and

. net/

) . eato=face time with
the patterns community, he sure o check out the
many paterns related conferences and workshops.
The Hillside sive mainwains a complewe lse A
the least you'll want w check our OOPSLA, the
ACM Conference on Objec=-Ohrienced Svstems,
Languages and Applicatons,

you are here + 603

t start with software: thev started
and towns. In faect, the pateerns
iterent domains. Take a walk

™

WL

ural Patterns are
~eate the living, b—\\

vibrant architecture of Habitat: found in buildings you

b'l-i”dingsr towns, and cities. like to live in, look at and visit

This is where patterns got

their start.

P

Habitat: seen hanting arownd Application Patterns are
3_tier avthitethores, tlient- patterns for creating
sevver systems and the web. system level architecture.

Many multi-tier
architectures fall into this

category. S

Field note: MVC has been
C o
krgem ko pass Yor an

application pattern

Domain-Specific Patterns \'f,f\ Relp ¥ind a habitat
are patterns that concern J1EE
problems in specific domains,
like concurrent systems or
real-time systems.

604 Chapter 13

better living with patterns

/—’_‘w :
Seen iaanﬁmﬁ dvround o

IS - porate
n i:nrdronmil and :I-‘"'C!Jffr"lf
i n.ﬂf‘E“‘lfP‘E FAER r""EI!
d
W
d
5.
_ Y Drganli'zaﬁannl Patterns
habitat describe the structures
et Lo and practices of human

arganizations, Most

efforts to date have
focused on organizations
that produce and/or

Customer ".l.-lf‘ll?o'r‘l team

support sof tware.
User Interface -
Design Patterns !
address the Habitat: seen in the '\-"-f,lr.lj.:fl
problems of how to of video aame designers, GUl
design interactive builders, and produters.

software programs.

Field notes: please add your observations of pattern domains heve:

=+ BO5

You're probably asking voursell, “Why on earth would anyone
waste their time :1:::'1||T||'|:1|,i.|'|.;_: bad solutons?™

Thimk about 1 ike this: if there 15 a recurrmg bad solugon o a
common problem, then by documenting it we can prevent other

l:lf'\'l'tilll.!l:‘l'!- FI"('!I'I"I I'I"I.illlil'l'_"' ll'!l' ST ['I':Ii:il:!kf'. ."1'I.I.|.I'r' i-I]l. .'1‘|[I.t(]i!'lj._'|]HILE

'iHIII‘I;HHh [A | |H' ill.\[as 1';1'1,!:;]]]]1' il I‘Irlrtili]_: gnur| t:ﬂlt‘!"!

|4'1'5~' lovnk al l|‘.|{' i'll‘I'I'H_'I'I[.‘i al’ An :;tllli—!):_ﬂh‘fﬂ;

An anti-pattern tells you why a bad solution is
ath'acﬁ"’e- IJ“llh i.}ll'i' El. TNes e 'l\‘]ll]‘.l 4'|“ Wase]h]‘ll =0 ||L]Lill!] -|[
there wasn't something about it that seemed attractve up frone.
One of the biggest jobs of the ang-pattern s w alert vou o the
sedluctive aspect of the solution.

An anti-pattern tells vou why that solution in the long

term is bad. 1n order to understand why it's an ant-patiern,
vou've got to understand how it's going to have a negative eflect
down the road. The ant-pattern describes where vou'll ger into

rrouhle using the solution,

An anti-pattern suggests other patterns that are
applicable which may provide good solutions. T he
eruly helpbul an ant-pattern needs 1o poine you in the right
|li1'r~|'li|r||: il. .-..h|_H_,|||l huy‘gﬂ-.t ::tllr*r l](!l!ihihillll'-ll'.‘i |]r.'l|l iy '|r|'m| Ly
g solutions,

Let’s have a look at an and-pattern.

606 Chapter 13

An anti-]:attern always
looks like a gooc[solution,
but then turns out to he
a had solution when it is
applied.

B.y Jocumenting anti-
patterns we 11&1]1
others to recognize bad
solutions before they
implmnent them.

Like Patterm, there
are many ’tyPes

of anti-patterns
im:luc[ing c[evelopment.
00, organizational,
and domain speci{in

anti—Patterns.

Here's an example of a softwa

Just like 3 Desian Patitern
an anti-pattern has a nam
o we £3n treate 3 shaved
'-'ﬂﬁﬂlhrak'*!'.

%,

The 'F'rnl.'rli!l'n and tontert,
_jus-E like a Dzmgn Pattern

deseription

Tells you why
{he solution i
athrattive.

The bad, yet attractive solution

R
How to get 1o 3 /
T

Example of where this anti-pattern

has been observed.

o

Adapted fyrom the P and Pattem

e /
P s WIK| at Wekpi/ /€2 tom

nd many ant ?;-I;{-,mi and

L e R e LI UL LIS LR

or piece of software that doesn't fit well with the
technoiogy that the development team is familiar with.

Forces:

* The development leam is committed 1o the
technology they know.

» The development team is not familiar with
aother technologies.

* Unfamiliar technologies are seen as risky.

* |t iz 2asy o plan and estimate far
development using the familiar technolagy,

Supposed Solution: Uss the familiar technology
anyway. The technology is applied obsessively to
many problems, including places where it is clearly
inappropriate.

Refactored Solution: Expanding the knowledge of
developers thraugh education, training, and baok

study groups that expose developers fo new solutions,

Examples:

Web companies keep using and maintaining their
internal homegrown caching systems when open
source alternatives are in use.

iatterns

you are here »

‘e
Eard
rthern
re are
eifie
:nrt EVER
nieve dird
Hiaral
wer
atterns

reate

I

st the

& w[""

uw 3 heads
ofmE movE
tiomal

ns }'w'“

|‘:|| Wﬂnt '!:9
lock at.

even ifit dossn'tinclude a
pattem,

Study Design Pattern catalogs
to familiarize yourself with
pattems and the relationships
among them,

Pattern classifications (or
categories) provide groupings
for pattems. When they help,
use them,

You need to be committed to
be a patterns writer: it takes
time and patience, and you
have to be willing to do lots of
refinement.

Remember, most patterns you
encountar will be adaptations
of existing patterns, not new
patterns.

Build your team's shared
vocabulary, This is one of the
most powerful benefits of using
patterns.

Like any community, the
patiems community has its
own lingo. Don't let that hold
you back. Having read this
book, you now know mast of it

patterns

0 DOOKSUQOESIONSI@WICKEY SMart.com.

you are here v 60D

. @
VHEO DOAES Whid

a
description:

Desc

Wraps an ebje
interface to it.

Subelasses de
an algorithm.

Subclasses decide which concrete classes to
crefle.

Ensures one and ﬂnf_}’ ﬂi'-ject is created.

Encapsulates interchangeable behaviors and
uses delegation to decide which one to use.

(lients treat collections of objects and
Factory Methe individual ebjects uniformly.

Encapsulates state-based behaviors and uses
deleg:ﬁ.‘iun to switch between behaviors.

Provides a way to traverse a collection of
objects without expesing its implementatior

Template Meth Simplilies the interface of a set of classes.
Wraps an ohject to provide new behavior.

Composite Allows a client to create families of ohjects
without specifying their concrete classes.
Singleton

Allows objects to be notitied when state

Changes.
Abstract Factory bang

Wraps an object to contro] access to .

__,.-—--'—'_-_"_-"_‘ﬂ = o 5
Command Encapsulates a request as an object.

610

Chapter 13

utions

of times. The patterns we summarize in this appendix are full-fledged, card-
carrying, official GoF patterns, but aren't always used as often as the patterns
wa've explored so far. But these patterns are awesome in their own right, and
if your situation calls for them, you should apply them with your head held high.
Qur goal in this appendix is to give you a high level idea of what these patterns
are all about.

this is the appendix 611

o vary not only your
so your abstractions.

wze Yexireme
o o new

ae control for
AL LD use

le the remote is
= will be lots of
el ol TV,

Lots of .

implementations,
one for cach TV

Your dilemma

You know that the remote’s user interface won't he right the
first tme. In fact, vou expect thar the product will be vefined
many times as usability daca is collected on the rermone
control,

So your dilemma is that the remotes are going o change and
1'1':' IT\I".‘i dare ﬂ"{!il]?_‘: Ik ('Illll]g{‘. ‘Ii]'lll'\'[' ;.'||!‘1‘;,11 |}" r.rll:l.'u'mr'.n'ﬂf I:l'l.r' s r
interface so that vou can vary the ipdementation over the many
TWVs your customers will cavn, But you are also going w need
toy vary e adstraction because 1t is going to change over ime as
the remote s improved based on the user feedback.

S0 how are vou going to create an OO design that allows vou
o vary the implementadon asd the abstraction?

612 appendix

Ev:r'vf vemote has 1
L= -?-.D?E*ﬂf-b“'

Wsing Lhis design we &am Vary
é?‘th! T'n.l'r lm‘lf'|:mth*1:j+.i.un, no
Hhe wser inkevfate.

i patterns

' Uses and Drawbacks
ful in graphic and windowing systems that need to
over multiple platforms.

ful any time you need to vary an inferface and an
ementation in different ways.

sases complexity.

you are here » 613

ctHon of

ww theme
1ous types of
wents, To ereate

— Eath vatation is planned
over some number of days.

ae number of davs and opes of acovides it includes,
¢ not need @ hotel, bt wanis o make dinner and

o guest might be tyving into Objectville and needs a
mission tckets,

are that can represent guest planners and all their

a sequence of potentally complex steps to create the
vay to create the complex structure without mixing i

1 object is

d in a multistep and
1 one step factories).

in of the product from

e swapped in and out
| abstract interface.

patterns

builder
wodutts
L4
=11
r'.tf-*l"-'" -
-Builde
* Ofte
= Con
knoy clory.

r B15

616

appendix

want to
|uest.

v the GEQO,
prument and
il tjll.'l‘iil:ll‘.‘\:i.
leleted,

o some Al

is spaum, fan

at they need vou
detectors to

i patterns

saceount,” Tha key elient
They're going to buy 1,0H0
7're using vour soltware

e planned commuanities,
<k, vour clien is

= large groves of trees, the

dass

caton. In
ation, and they
thing s, a user
= designs, It

nstane -
oW state.

feftover patferns

In_*:l- :
T Sngle, stats_p.

OUYEL L3y = = ==

this ‘J..‘D —dvraY \ r

f

tically.
ICE

15 of the
¢ from

819

ern to build an

ze.
uires
to? You have a hunch i nmars
1al ool for childeen to learn
s each child gews o contol one thf‘:’“fg:
e's an example of the language: gistot?
kvt
T Tt b
i CE A F! a” d
while (daylight) fly; & @ 1° %%
quack; <
ﬂhd {l'lfh c['-'ﬂl:k
Now, remembenng how o create grammars from one of your old
imtroductory programming classes, you write out the grammar; coression porsistind

yobyram i an E : "
Pig? 5:2:5“555 DE Lﬂ;ﬂmi‘ﬂl{.!\ Ehb}.
‘:' ?c’c.i{mhs (*while skatem
re

expression ::= <command> | <sequence> | <repetition> é{’"_
sequence ::= <aXpression> ';’' <expression>

command ::= right | gquack | fly
repetition ::= while ‘(' <wvariable> ')'<expresion> We have three

H sequente 15 3
;g-l; DF ef.li!'rtssluh!
separated by

semitelons.

variable ::= [A-Z,a-z]+ tommands: ight,

IT.I&E,!C, and -F"Jf
R A whi

le statement s t
3 tonditional ?&TGE’EJ“
and an expression,

Now what?

You've got a grammar; now all you need is a way o represent and
interpret sentences in the grammar so that the students can see the
eltects of their programming on the simulated ducks.

620 appendix

i patterns

Variab
inberpi ext)

To interpret the language, call the
expression type. This method is p
contains the input stream of the p
matches the input and evaluaces it

the
1585 8
Jpriate.

= B2

n to centralize complex
ntrol between related objects.

e, thanks o the pood folks at House O The Fumire,
o miake has lile easier, When Bob SLOps !\il{]:lg‘ the
5 the coffee maker o start brewmg Even though
lients are alwavs asking for lots of new feamres:

1 ofl’ the sprinkler 15 minutes before a shower is
n rash days...

k ol which rules reside in which abje
veach other

all completely decopled from cach ol

The Mediator contains all of the «
loygie fone the entire system. When
il]]]_]li"ll“"' [H'i_:i_l:‘i al TR l'l]ll'.. L8] e
appliance s added to the system,
that all of the necessary logic will
the Mediator

objects supported by
m fram the system.

ystem by centralizing

2ty of messages sent

— Me

GuUl
" Adn

prop
over

s related

hout
iecome

» 823

n when you need
‘bject to one of its
ance, if your user

e 1s hugely successful,
w5, all rying o get
Progress o more

ol encountering
Fans who have
!'iFII_'II[LIS JH'[MFTERSTIIEY 100 dlll dvd i e !
unclerstandably miffed when thei
and thew have o seart all over, T
“save progress” command, so that
wame progress and at least recove
when their character is unfairly e
“save progress” [unction needs o
a resurrected plaver o the last les
successtullv

624 appendix

e

While this unt @ Ju'rri’bl‘?'
]Fﬂ'nfp‘f im?l:mn-hatim.
notite that the Client
has no actess to the
Memento's data

—— Memento Benefits —Memento Uses and Drawbacks
® Keeping the saved state external from the key object ® The Memento is used fo save state.
PRSI0 RGN conasn. = Adrawback to using Memento is that saving and
* Keeps the key object's data encapsulated. restoring state can be time consuming.
* Provides easy-to-implement recovery capability. "

In Java systems, consider using Serialization to save
a system's siate.

you are here v+ 625

rn when creating an
; is either expensive or

= has an insatable appetite for monsters. As vour

a dynamically created landseape, they encouner
be subddued. Youd ke the monseer’s characteristics
':IlH". I[{]”f!‘ﬂ‘l‘l n‘;!ki" | I.H[“r SeNs: 'i:ll' |fi]'1 |—|”\'.11'

s inte underseas realms, Finally, vou'd like wallow
W CUSLOMT ITONSIers,

g new instances from
t to generate objects

| an object can be
“w object.

. The tlient needs a rew mr{;:r
Jporopviate Lo the turven
si?Eu:élon. (The tlient won £ know
what kind of monster he 5{{:5.3'

Tht rﬂﬂrs{;r}r ‘Find {h
dpPropriate ’"""Sf:rl 4

: makes 3
tlone of it, 3pd vreturns Lhe lone.,
— Prototype Uses and Drawbacks

Prototype should be considered when a system must
create new objects of many types in a complex class
higrarchy.

Adrawback to using the Prototype is thal making a
copy of an object can sometimes be complicated.

you are here » 827

when you want to
nposite of objects
t important.

zetville Diner and Objeciville
ome more health conscions. They
tion hefore ordering their meals.
LAY i”il £ L0 Creaie !‘.l H'l"i'll,t ‘IIITIt‘!'.“-.
or nutrdonal information on a

Lou’s proposed solution:

fandora’s hox, Who knows what
to add next, and every dme we
it in two places, Plus, what if
lication with, sav, a recipes class?
anges in three different places,..”

/

it ol the Composite; that

ct. The Visicor is guided by the

of the obyjects in the Composite,
Client can have the Visitor perform
hen new functionality is required,

The Visitor needs 4o be able to ﬂ.ﬂ“
3:{514;31::{} atvass elasses, and this 15
wheve You Lan add new methods For

feftover patferns

All these composite
tlasses have o de s add
a getStatel) method
{and not warry about
exposing themselves).

_)

—— Visitor Benefits —Visitor Drawbacdks
structure without changing the structure itself. when the Visitor is used.
Adding new operations is relatively easy. = Because the traversal function is involved, changes to
The code for operations performed by the Visitor is the Composite structure are more difficult.
centralized.

you are here » 629

	Head First Design Patterns
	Table of Contents
	Intro
	Chapter 1 intro to Design Patterns
	Chapter 2 the Observer Pattern
	Chapter 3 the Decorator Pattern
	Chapter 4 the Factory Pattern
	Chapter 5 the Singleton Pattern
	Chapter 6 the Command Pattern
	Chapter 7 the Adapter and Facade Patterns
	Chapter 8 the Template Method Pattern
	Chapter 9 the Iterator and Composite Patterns
	Chapter 10 the State Pattern
	Chapter 11 the Proxy Pattern
	Chapter 12 Compound Patterns
	Chapter 13 Better Living with Patterns
	Appendix: Leftover Patterns

