Detailed Solutions in Eight
Programming Languages

Expressions
Cookbook

Jan Goyvaerts

O’REILLY" & Steven Levithan

Programming

Regular Expressions Cookbook

Take the guesswork out of using regular expressions. With more
than 140 proven recipes, this cookbook provides everything you
need to solve a wide range of real-world problems. Novices will
learn basic skills and tools, and programmers and experienced
users will find a wealth of detail. Each recipe provides samples you
can use right away.

This revised edition covers the regular expression flavors used by
C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. You'll

learn powerful new tricks, avoid flavor-specific gotchas, and save
valuable time with this huge library of practical solutions.

B Learn regular expression basics through a detailed tutorial

B Use code listings to implement regular expressions with your
language of choice

B Understand how regular expressions differ from language
to language

® Handle common user input with recipes for validation and
formatting

m Find and manipulate words, special characters, and lines of text

Detect integers, floating-point numbers, and other numerical
formats

Parse source code and process log files

Use regular expressions in URLs, paths, and IP addresses
Manipulate HTML, XML, and data exchange formats

Discover little-known regular expression tricks and techniques

Jan Goyvaerts runs Just Great Software, where he designs and
develops some of the most popular regular expression software.

Steven Levithan is a leading JavaScript regular expression expert
and creator of several open source regular expression tools.

“ Regular expressions

are a timeless
technology, and the
Regular Expressions
Cookbook will surely
proveto bea
consistent source of
both information
and inspiration for

years lo come.”

—Ben Nadel
Chief software engineer at
Epicenter Consulting

US $49.99 CAN $52.99
ISBN: 978-1-449-31943-4

NUPIRAMNIN v

7814491319434

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

Download from Wow! eBook <www.wowebook.com>

SECOND EDITION

Regular Expressions Cookbook

Jan Goyvaerts and Steven Levithan

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol - Tokyo

Regular Expressions Cookbook, Second Edition
by Jan Goyvaerts and Steven Levithan

Copyright © 2012 Jan Goyvaerts, Steven Levithan. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: BIM Publishing Services
Production Editor: Holly Bauer Cover Designer: Karen Montgomery
Copyeditor: Genevieve d’Entremont Interior Designer: David Futato
Proofreader: BIM Publishing Services lllustrator: Rebecca Demarest
August 2012: Second Edition.

Revision History for the Second Edition:
2012-08-10 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319434 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Regular Expressions Cookbook, the image of a musk shrew, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31943-4
[LSI]
1344629030

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449319434

Table of Contents

Preface ..o ix
1. Introduction to Regular EXpressionscoovvuiiiiiiiienineenennennns 1
Regular Expressions Defined 1
Search and Replace with Regular Expressions 6
Tools for Working with Regular Expressions 8

2. BasicRegular Expression Skillsc.ccoviiiiiiiiiiiiiiiiiiin, 27
2.1 Match Literal Text 28

2.2 Match Nonprintable Characters 30

2.3 Match One of Many Characters 33

2.4 Match Any Character 38

2.5 Match Something at the Start and/or the End of a Line 40

2.6 Match Whole Words 45

2.7 Unicode Code Points, Categories, Blocks, and Scripts 48

2.8 Match One of Several Alternatives 62

2.9 Group and Capture Parts of the Match 63

2.10 Match Previously Matched Text Again 66

2.11 Capture and Name Parts of the Match 68

2.12 Repeat Part of the Regex a Certain Number of Times 72

2.13 Choose Minimal or Maximal Repetition 75

2.14 Eliminate Needless Backtracking 78

2.15 Prevent Runaway Repetition 81

2.16 Test for a Match Without Adding It to the Overall Match 84

2.17 Match One of Two Alternatives Based on a Condition 91

2.18 Add Comments to a Regular Expression 93

2.19 Insert Literal Text into the Replacement Text 95

2.20 Insert the Regex Match into the Replacement Text 98

2.21 Insert Part of the Regex Match into the Replacement Text 99

2.22 TInsert Match Context into the Replacement Text 103

3. Programming with Regular Expressionscccovviiiiiiininnnn.. 105

Programming Languages and Regex Flavors 105
3.1 Literal Regular Expressions in Source Code 111
3.2 Import the Regular Expression Library 117
3.3 Create Regular Expression Objects 119
3.4 Set Regular Expression Options 126
3.5 Test If a Match Can Be Found Within a Subject String 133
3.6 Test Whether a Regex Matches the Subject String Entirely 140
3.7 Retrieve the Matched Text 144
3.8 Determine the Position and Length of the Match 151
3.9 Retrieve Part of the Matched Text 156

3.10 Retrieve a List of All Matches 164
3.11 Tterate over All Matches 169
3.12 Validate Matches in Procedural Code 176
3.13 Find a Match Within Another Match 179
3.14 Replace All Matches 184
3.15 Replace Matches Reusing Parts of the Match 192
3.16 Replace Matches with Replacements Generated in Code 197
3.17 Replace All Matches Within the Matches of Another Regex 203
3.18 Replace All Matches Between the Matches of Another Regex 206
3.19 Split a String 211
3.20 Split a String, Keeping the Regex Matches 219
3.21 Search Line by Line 224
3.22 Construct a Parser 228
4, Validationand Formattingccoiuiiiiiiiiiiiiiiiiiiiiiieenanns 243
4.1 Validate Email Addresses 243
4.2 Validate and Format North American Phone Numbers 249
4.3 Validate International Phone Numbers 254
4.4 Validate Traditional Date Formats 256
4.5 Validate Traditional Date Formats, Excluding Invalid Dates 260
4.6 Validate Traditional Time Formats 266
4.7 Validate ISO 8601 Dates and Times 269
4.8 Limit Input to Alphanumeric Characters 275
4.9 Limit the Length of Text 278
4.10 Limit the Number of Lines in Text 283
4.11 Validate Affirmative Responses 288
4.12 Validate Social Security Numbers 289
4.13 Validate ISBNs 292
4.14 Validate ZIP Codes 300
4.15 Validate Canadian Postal Codes 301
4.16 Validate U.K. Postcodes 302
4.17 Find Addresses with Post Office Boxes 303

iv | Table of Contents

4.18 Reformat Names From “FirstName LastName” to “LastName,

FirstName” 305

4.19 Validate Password Complexity 308
4.20 Validate Credit Card Numbers 317
4.21 European VAT Numbers 323
5. Words, Lines, and Special Charactersc.cooviiiiiiiiiiiininnnns 331
5.1 Find a Specific Word 331
5.2 Find Any of Multiple Words 334
5.3 Find Similar Words 336
5.4 Find All Except a Specific Word 340
5.5 Find Any Word Not Followed by a Specific Word 342
5.6 Find Any Word Not Preceded by a Specific Word 344
5.7 Find Words Near Each Other 348
5.8 Find Repeated Words 355
5.9 Remove Duplicate Lines 358
5.10 Match Complete Lines That Contain a Word 362
5.11 Match Complete Lines That Do Not Contain a Word 364
5.12 Trim Leading and Trailing Whitespace 365
5.13 Replace Repeated Whitespace with a Single Space 369
5.14 Escape Regular Expression Metacharacters 371
6. Numberst 375
6.1 Integer Numbers 375
6.2 Hexadecimal Numbers 379
6.3 Binary Numbers 381
6.4 Octal Numbers 383
6.5 Decimal Numbers 384
6.6 Strip Leading Zeros 385
6.7 Numbers Within a Certain Range 386
6.8 Hexadecimal Numbers Within a Certain Range 392
6.9 Integer Numbers with Separators 395
6.10 Floating-Point Numbers 396
6.11 Numbers with Thousand Separators 399
6.12 Add Thousand Separators to Numbers 401
6.13 Roman Numerals 406
7. SourceCodeandLogFilesccovviiiniiiiiiiiiiiiiiiiiiiiiiiaenns 409
7.1 Keywords 409
7.2 Identifiers 412
7.3 Numeric Constants 413
7.4 Operators 414
7.5 Single-Line Comments 415

Table of Contents | v

7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

8. URLs, Paths, and Internet Addresses

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25

9. Markup and Data Formats
Processing Markup and Data Formats with Regular Expressions

9.1
9.2

9.3 Remove All XML-Style Tags Except and

9.4

Multiline Comments

All Comments

Strings

Strings with Escapes

Regex Literals

Here Documents

Common Log Format

Combined Log Format

Broken Links Reported in Web Logs

Validating URLs

Finding URLs Within Full Text

Finding Quoted URLs in Full Text

Finding URLs with Parentheses in Full Text
Turn URLs into Links

Validating URNs

Validating Generic URLs

Extracting the Scheme from a URL
Extracting the User from a URL

Extracting the Host from a URL

Extracting the Port from a URL

Extracting the Path from a URL

Extracting the Query from a URL
Extracting the Fragment from a URL
Validating Domain Names

Matching IPv4 Addresses

Matching IPv6 Addresses

Validate Windows Paths

Split Windows Paths into Their Parts
Extract the Drive Letter from a Windows Path
Extract the Server and Share from a UNC Path
Extract the Folder from a Windows Path
Extract the Filename from a Windows Path

Extract the File Extension from a Windows Path

Strip Invalid Characters from Filenames

Find XML-Style Tags
Replace Tags with

Match XML Names

oooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooo

416
417
418
421
423
425
426
430
431

435
435
438
440
442
444
445
447
453
455
457
459
461
464
465
466
469
472
486
489
494
495
496
498
499
500

503
503
510
526
530
533

vi | Table of Contents

9.5 Convert Plain Text to HTML by Adding <p> and
 Tags 539

9.6 Decode XML Entities
9.7 Find a Specific Attribute in XML-Style Tags

543
545

9.8 Add a cellspacing Attribute to <table> Tags That Do Not Already

Include It

9.9 Remove XML-Style Comments
9.10 Find Words Within XML-Style Comments
9.11 Change the Delimiter Used in CSV Files
9.12 Extract CSV Fields from a Specific Column
9.13 Match INT Section Headers
9.14 Match INI Section Blocks
9.15 Match INT Name-Value Pairs

oo

550
553
558
562
565
569
571
572

Table of Contents | vii

Preface

Over the past decade, regular expressions have experienced a remarkable rise in pop-
ularity. Today, all the popular programming languages include a powerful regular ex-
pression library, or even have regular expression support built right into the language.
Many developers have taken advantage of these regular expression features to provide
the users of their applications the ability to search or filter through their data using a
regular expression. Regular expressions are everywhere.

Many books have been published to ride the wave of regular expression adoption. Most
do a good job of explaining the regular expression syntax along with some examples
and a reference. But there aren’t any books that present solutions based on regular
expressions to a wide range of real-world practical problems dealing with text on a
computer and in a range of Internet applications. We, Steve and Jan, decided to fill that
need with this book.

We particularly wanted to show how you can use regular expressions in situations
where people with limited regular expression experience would say it can’t be done, or
where software purists would say a regular expression isn’t the right tool for the job.
Because regular expressions are everywhere these days, they are often a readily available
tool that can be used by end users, without the need to involve a team of programmers.
Even programmers can often save time by using a few regular expressions for informa-
tion retrieval and alteration tasks that would take hours or days to code in procedural
code, or that would otherwise require a third-party library that needs prior review and
management approval.

Caught in the Snarls of Different Versions

As with anything that becomes popular in the IT industry, regular expressions come
in many different implementations, with varying degrees of compatibility. This has
resulted in many different regular expression flavors that don’t always act the same
way, or work at all, on a particular regular expression.

Many books do mention that there are different flavors and point out some of the
differences. But they often leave out certain flavors here and there—particularly

when a flavor lacks certain features—instead of providing alternative solutions or
workarounds. This is frustrating when you have to work with different regular expres-
sion flavors in different applications or programming languages.

Casual statements in the literature, such as “everybody uses Perl-style regular expres-
sions now,” unfortunately trivialize a wide range of incompatibilities. Even “Perl-style”
packages have important differences, and meanwhile Perl continues to evolve. Over-
simplified impressions can lead programmers to spend half an hour or so fruitlessly
running the debugger instead of checking the details of their regular expression imple-
mentation. Even when they discover that some feature they were depending on is not
present, they don’t always know how to work around it.

This book is the first book on the market that discusses the most popular and feature-

rich regular expression flavors side by side, and does so consistently throughout the
book.

Intended Audience

You should read this book if you regularly work with text on a computer, whether that’s
searching through a pile of documents, manipulating text in a text editor, or developing
software that needs to search through or manipulate text. Regular expressions are an
excellent tool for the job. Regular Expressions Cookbook teaches you everything you
need to know about regular expressions. You don’t need any prior experience what-
soever, because we explain even the most basic aspects of regular expressions.

If you do have experience with regular expressions, you’ll find a wealth of detail that
other books and online articles often gloss over. If you’ve ever been stumped by a regex
that works in one application but not another, you’ll find this book’s detailed and equal
coverage of seven of the world’s most popular regular expression flavors very valuable.
We organized the whole book as a cookbook, so you can jump right to the topics you
want to read up on. If you read the book cover to cover, you’ll become a world-class
chef of regular expressions.

This book teaches you everything you need to know about regular expressions and then
some, regardless of whether you are a programmer. If you want to use regular expres-
sions with a text editor, search tool, or any application with an input box labeled
“regex,” you can read this book with no programming experience at all. Most of the
recipes in this book have solutions purely based on one or more regular expressions.

If you are a programmer, Chapter 3 provides all the information you need to implement
regular expressions in your source code. This chapter assumes you’re familiar with the
basic language features of the programming language of your choice, but it does not
assume you have ever used a regular expression in your source code.

X | Preface

Download from Wow! eBook <www.wowebook.com>

Technology Covered

.NET, Java, JavaScript, PCRE, Perl, Python, and Ruby aren’t just back-cover buzz-
words. These are the seven regular expression flavors covered by this book. We cover
all seven flavors equally. We’ve particularly taken care to point out all the inconsisten-
cies that we could find between those regular expression flavors.

The programming chapter (Chapter 3) has code listings in C#, Java, JavaScript, PHP,
Perl, Python, Ruby, and VB.NET. Again, every recipe has solutions and explanations
forall eight languages. While this makes the chapter somewhat repetitive, you can easily
skip discussions on languages you aren’t interested in without missing anything you
should know about your language of choice.

Organization of This Book

The first three chapters of this book cover useful tools and basic information that give
you a basis for using regular expressions; each of the subsequent chapters presents a
variety of regular expressions while investigating one area of text processing in depth.

Chapter 1, Introduction to Regular Expressions, explains the role of regular expressions
and introduces a number of tools that will make it easier to learn, create, and debug
them.

Chapter 2, Basic Regular Expression Skills, covers each element and feature of regular
expressions, along with important guidelines for effective use. It forms a complete tu-
torial to regular expressions.

Chapter 3, Programming with Regular Expressions, specifies coding techniques and
includes code listings for using regular expressions in each of the programming lan-
guages covered by this book.

Chapter 4, Validation and Formatting, contains recipes for handling typical user input,
such as dates, phone numbers, and postal codes in various countries.

Chapter 5, Words, Lines, and Special Characters, explores common text processing
tasks, such as checking for lines that contain or fail to contain certain words.

Chapter 6, Numbers, shows how to detect integers, floating-point numbers, and several
other formats for this kind of input.

Chapter 7, Source Code and Log Files, provides building blocks for parsing source code
and other text file formats, and shows how you can process log files with regular
expressions.

Chapter 8, URLs, Paths, and Internet Addresses, shows you how to take apart and
manipulate the strings commonly used on the Internet and Windows systems to find
things.

Preface | xi

Chapter 9, Markup and Data Formats, covers the manipulation of HTML, XML,
comma-separated values (CSV), and INI-style configuration files.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, program elements such as variable or function names,
values returned as the result of a regular expression replacement, and subject or
input text that is applied to a regular expression. This could be the contents of a
text box in an application, a file on disk, or the contents of a string variable.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

<Regulareexpression»
Represents a regular expression, standing alone or as you would type it into the
search box of an application. Spaces in regular expressions are indicated with gray
circles to make them more obvious. Spaces are not indicated with gray circles in
free-spacing mode because this mode ignores spaces.

«Replacementetext»
Represents the text that regular expression matches will be replaced within a
search-and-replace operation. Spaces in replacement text are indicated with gray
circles to make them more obvious.

Matched text
Represents the part of the subject text that matches a regular expression.

A gray ellipsis in a regular expression indicates that you have to “fill in the blank”
before you can use the regular expression. The accompanying text explains what
you can fill in.

(R}, [LF|, and

CR, LF, and CRLF in boxes represent actual line break characters in strings, rather
than character escapes such as \r, \n, and \r\n. Such strings can be created by
pressing Enter in a multiline edit control in an application, or by using multiline
string constants in source code such as verbatim strings in C# or triple-quoted
strings in Python.

The return arrow, as you may see on the Return or Enter key on your keyboard,
indicates that we had to break up a line to make it fit the width of the printed page.

xii | Preface

When typing the textinto your source code, you should not press Enter, butinstead
type everything on a single line.

W
. “
a)
DY
15

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

This icon signifies a tip, suggestion, or general note.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Regular Expressions Cookbook by Jan
Goyvaerts and Steven Levithan. Copyright 2012 Jan Goyvaerts and Steven Levithan,
978-1-449-31943-4.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Safar!

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley

Preface | xiii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata and any additional information.
You can access this page at:

http://oreilly.com/catalog/9781449319434
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: hitp://www.youtube.com/oreillymedia

Acknowledgments

We thank Andy Oram, our editor at O’Reilly Media, Inc., for helping us see this project
from start to finish. We also thank Jeffrey Friedl, Zak Greant, Nikolaj Lindberg, and
Ian Morse for their careful technical reviews on the first edition, and Nikolaj Lindberg,
Judith Myerson, and Zak Greant for reviewing the second, which made this a more
comprehensive and accurate book.

xiv | Preface

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreilly.com/catalog/9781449319434
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER1
Introduction to Regular Expressions

Having opened this cookbook, you are probably eager to inject some of the ungainly
strings of parentheses and question marks you find in its chapters right into your code.
If you are ready to plug and play, be our guest: the practical regular expressions are
listed and described in Chapters 4 through 9.

But the initial chapters of this book may save you a lot of time in the long run. For
instance, this chapter introduces you to a number of utilities—some of them created
by the authors, Jan and Steven—that let you test and debug a regular expression before
you bury it in code where errors are harder to find. And these initial chapters also show
you how to use various features and options of regular expressions to make your life
easier, help you understand regular expressions in order to improve their performance,
and learn the subtle differences between how regular expressions are handled by dif-
ferent programming languages—and even different versions of your favorite program-
ming language.

So we’ve put a lot of effort into these background matters, confident that you’ll read it
before you start or when you get frustrated by your use of regular expressions and want
to bolster your understanding.

Regular Expressions Defined

In the context of this book, a regular expression is a specific kind of text pattern that
you can use with many modern applications and programming languages. You can use
them to verify whether input fits into the text pattern, to find text that matches the
pattern within a larger body of text, to replace text matching the pattern with other
text or rearranged bits of the matched text, to split a block of text into a list of subtexts,
and to shoot yourself in the foot. This book helps you understand exactly what you’re
doing and avoid disaster.

History of the Term “Regular Expression”

The term regular expression comes from mathematics and computer science theory,
where it reflects a trait of mathematical expressions called regularity. Such an expres-
sion can be implemented in software using a deterministic finite automaton (DFA). A
DFA is a finite state machine that doesn’t use backtracking.

The text patterns used by the earliest grep tools were regular expressions in the math-
ematical sense. Though the name has stuck, modern-day Perl-style regular expressions
are not regular expressions at all in the mathematical sense. They’re implemented with
a nondeterministic finite automaton (NFA). You will learn all about backtracking
shortly. All a practical programmer needs to remember from this note is that some ivory
tower computer scientists get upset about their well-defined terminology being over-
loaded with technology that’s far more useful in the real world.

If you use regular expressions with skill, they simplify many programming and text
processing tasks, and allow many that wouldn’t be at all feasible without the regular
expressions. You would need dozens if not hundreds of lines of procedural code to
extract all email addresses from a document—code that is tedious to write and hard to
maintain. But with the proper regular expression, as shown in Recipe 4.1, it takes just
a few lines of code, or maybe even one line.

But if you try to do too much with just one regular expression, or use regexes where
they’re not really appropriate, you’ll find out why some people say:!

Some people, when confronted with a problem, think “I know, I'll use regular expres-
sions.” Now they have two problems.

The second problem those people have is that they didn’t read the owner’s manual,
which you are holding now. Read on. Regular expressions are a powerful tool. If your
job involves manipulating or extracting text on a computer, a firm grasp of regular
expressions will save you plenty of overtime.

Many Flavors of Regular Expressions

All right, the title of the previous section was a lie. We didn’t define what regular
expressions are. We can’t. There is no official standard that defines exactly which text
patterns are regular expressions and which aren’t. As you can imagine, every designer
of programming languages and every developer of text processing applications has a
different idea of exactly what a regular expression should be. So now we’re stuck with
a whole palette of regular expression flavors.

Fortunately, most designers and developers are lazy. Why create something totally new
when you can copy what has already been done? As a result, all modern regular ex-
pression flavors, including those discussed in this book, can trace their history back to

1. Jeffrey Friedl traces the history of this quote in his blog at http://regex.info/blog/2006-09-15/247.

2 | Chapter1: Introduction to Regular Expressions

http://regex.info/blog/2006-09-15/247

the Perl programming language. We call these flavors Perl-style regular expressions.
Their regular expression syntax is very similar, and mostly compatible, but not com-
pletely so.

Writers are lazy, too. We'll usually type regex or regexp to denote a single regular
expression, and regexes to denote the plural.

Regex flavors do not correspond one-to-one with programming languages. Scripting
languages tend to have their own, built-in regular expression flavor. Other program-
ming languages rely on libraries for regex support. Some libraries are available for mul-
tiple languages, while certain languages can draw on a choice of different libraries.

This introductory chapter deals with regular expression flavors only and completely
ignores any programming considerations. Chapter 3 begins the code listings, so you
can peek ahead to “Programming Languages and Regex Flavors” in Chapter 3 to find
out which flavors you’ll be working with. Butignore all the programming stuff for now.
The tools listed in the next section are an easier way to explore the regex syntax through
“learning by doing.”

Regex Flavors Covered by This Book

For this book, we selected the most popular regex flavors in use today. These are all
Perl-style regex flavors. Some flavors have more features than others. But if two flavors
have the same feature, they tend to use the same syntax. We’ll point out the few an-
noying inconsistencies as we encounter them.

All these regex flavors are part of programming languages and libraries that are in active
development. The list of flavors tells you which versions this book covers. Further along
in the book, we mention the flavor without any versions if the presented regex works
the same way with all flavors. This is almost always the case. Aside from bug fixes that
affect corner cases, regex flavors tend not to change, except to add features by giving
new meaning to syntax that was previously treated as an error:

.NET
The Microsoft .NET Framework provides a full-featured Perl-style regex flavor
through the System.Text.RegularExpressions package. This book covers .NET
versions 1.0 through 4.0. Strictly speaking, there are only two versions of the .NET
regex flavor: 1.0 and 2.0. No changes were made to the Regex classes at all
in .NET 1.1, 3.0, and 3.5. The Regex class got a few new methods in .NET 4.0, but
the regex syntax is unchanged.

Any .NET programming language, including C#, VB.NET, Delphi for .NET, and
even COBOL.NET, has full access to the .NET regex flavor. If an application de-
veloped with .NET offers you regex support, you can be quite certain it uses
the .NET flavor, even if it claims to use “Perl regular expressions.” For a long time,
a glaring exception was Visual Studio (VS) itself. Up until Visual Studio 2010, the
VS integrated development environment (IDE) had continued to use the same old

Regular Expressions Defined | 3

regex flavor it has had from the beginning, which was not Perl-style at all. Visual
Studio 11, which is in beta when we write this, finally uses the .NET regex flavor
in the IDE too.

Java
Java 4is the first Java release to provide built-in regular expression support through
the java.util.regex package. It has quickly eclipsed the various third-party regex
libraries for Java. Besides being standard and built in, it offers a full-featured Perl-
style regex flavor and excellent performance, even when compared with applica-
tions written in C. This book covers the java.util.regex package in Java 4, 5, 6,
and 7.

If you’re using software developed with Java during the past few years, any regular
expression support it offers likely uses the Java flavor.

JavaScript

In this book, we use the term JavaScript to indicate the regular expression flavor
defined in versions 3 and 5 of the ECMA-262 standard. This standard defines the
ECMAScript programming language, which is better known through its JavaScript
and JScript implementations in various web browsers. Internet Explorer (as of ver-
sion 5.5), Firefox, Chrome, Opera, and Safari all implement Edition 3 or 5 of
ECMA-262. As far as regular expressions go, the differences between JavaScript 3
and JavaScript 5 are minimal. However, all browsers have various corner case bugs
causing them to deviate from the standard. We point out such issues in situations
where they matter.

If a website allows you to search or filter using a regular expression without waiting
for a response from the web server, it uses the JavaScript regex flavor, which is the
only cross-browser client-side regex flavor. Even Microsoft’s VBScript and Adobe’s
ActionScript 3 use it, although ActionScript 3 adds some extra features.

XRegExp

XRegExp is an open source JavaScript library developed by Steven Levithan. You
can download it at http://xregexp.com. XRegExp extends JavaScript’s regular ex-
pression syntax and removes some cross-browser inconsistencies. Recipes in this
book that use regular expression features that are not available in standard Java-
Script show additional solutions using XRegExp. If a solution shows XRegExp as
the regular expression flavor, that means it works with JavaScript when using the
XRegExp library, but not with standard JavaScript without the XRegExp library.
If a solution shows JavaScript as the regular expression flavor, then it works with
JavaScript whether you are using the XRegExp library or not.

This book covers XRegExp version 2.0. The recipes assume you’re using xregexp-
all.js so that all of XRegExp’s Unicode features are available.

PCRE
PCRE is the “Perl-Compatible Regular Expressions” C library developed by Philip
Hazel. You can download this open source library at http://www.pcre.org. This
book covers versions 4 through 8 of PCRE.

4 | Chapter1: Introduction to Regular Expressions

http://xregexp.com
http://www.pcre.org

Though PCRE claims to be Perl-compatible, and is so more than any other flavor
in this book, it really is just Perl-style. Some features, such as Unicode support, are
slightly different, and you can’t mix Perl code into your regex, as Perl itself allows.

Because of its open source license and solid programming, PCRE has found its way
into many programming languages and applications. It is built into PHP and wrap-
ped into numerous Delphi components. If an application claims to support “Perl-
compatible” regular expressions without specifically listing the actual regex flavor
being used, it’s likely PCRE.
Perl

Perl’s built-in support for regular expressions is the main reason why regexes are
popular today. This book covers Perl 5.6, 5.8, 5.10, 5.12, and 5.14. Each of these
versions adds new features to Perl’s regular expression syntax. When this book
indicates that a certain regex works with a certain version of Perl, then it works
with that version and all later versions covered by this book.

Many applications and regex libraries that claim to use Perl or Perl-compatible
regular expressions in reality merely use Perl-style regular expressions. They use a
regex syntax similar to Perl’s, but don’t support the same set of regex features.
Quite likely, they’re using one of the regex flavors further down this list. Those
flavors are all Perl-style.

Python
Python supports regular expressions through its re module. This book covers
Python 2.4 until 3.2. The differences between the re modules in Python 2.4, 2.5,
2.6, and 2.7 are negligible. Python 3.0 improved Python’s handling of Unicode in
regular expressions. Python 3.1 and 3.2 brought no regex-related changes.

Ruby

Ruby’s regular expression support is part of the Ruby language itself, similar to
Perl. This book covers Ruby 1.8 and 1.9. A default compilation of Ruby 1.8 uses
the regular expression flavor provided directly by the Ruby source code. A default
compilation of Ruby 1.9 uses the Oniguruma regular expression library. Ruby 1.8
can be compiled to use Oniguruma, and Ruby 1.9 can be compiled to use the older
Ruby regex flavor. In this book, we denote the native Ruby flavor as Ruby 1.8, and
the Oniguruma flavor as Ruby 1.9.

To test which Ruby regex flavor your site uses, try to use the regular expression
<a++>. Ruby 1.8 will say the regular expression is invalid, because it does not support
possessive quantifiers, whereas Ruby 1.9 will match a string of one or more a
characters.

The Oniguruma library is designed to be backward-compatible with Ruby 1.8,
simply adding new features that will not break existing regexes. The implementors
even left in features that arguably should have been changed, such as using «(?
m)> to mean “the dot matches line breaks,” where other regex flavors use «(?s)>.

Regular Expressions Defined | 5

Search and Replace with Regular Expressions

Search-and-replace is a common job for regular expressions. A search-and-replace
function takes a subject string, a regular expression, and a replacement string as input.
The output is the subject string with all matches of the regular expression replaced with
the replacement text.

Although the replacement text is not a regular expression at all, you can use certain
special syntax to build dynamic replacement texts. All flavors let you reinsert the text
matched by the regular expression or a capturing group into the replacement. Recipes
2.20 and 2.21 explain this. Some flavors also support inserting matched context into
the replacement text, as Recipe 2.22 shows. In Chapter 3, Recipe 3.16 teaches you how
to generate a different replacement text for each match in code.

Many Flavors of Replacement Text

Different ideas by different regular expression software developers have led to a wide
range of regular expression flavors, each with different syntax and feature sets. The
story for the replacement text is no different. In fact, there are even more replacement
text flavors than regular expression flavors. Building a regular expression engine
is difficult. Most programmers prefer to reuse an existing one, and bolting a
search-and-replace function onto an existing regular expression engine is quite easy.
The resultis that there are many replacement text flavors for regular expression libraries
that do not have built-in search-and-replace features.

Fortunately, all the regular expression flavors in this book have corresponding replace-
ment text flavors, except PCRE. This gap in PCRE complicates life for programmers
who use flavors based on it. The open source PCRE library does not include any func-
tions to make replacements. Thus, all applications and programming languages that
are based on PCRE need to provide their own search-and-replace function. Most pro-
grammers try to copy existing syntax, but never do so in exactly the same way.

This book covers the following replacement text flavors. Refer to “Regex Flavors Cov-
ered by This Book” on page 3 for more details on the regular expression flavors that
correspond with the replacement text flavors:

.NET
The System.Text.RegularExpressions package provides various search-and-
replace functions. The .NET replacement text flavor corresponds with the NET
regular expression flavor. All versions of .NET use the same replacement text fla-
vor. The new regular expression features in .NET 2.0 do not affect the replacement
text syntax.

Java
The java.util.regex package has built-in search-and-replace functions. This book
covers Java 4,5, 6,and 7.

6 | Chapter1: Introduction to Regular Expressions

JavaScript
In this book, we use the term JavaScript to indicate both the replacement text flavor
and the regular expression flavor defined in editions 3 and 5 of the ECMA-262
standard.

XRegExp

Steven Levithan’s XRegExp has its own replace() function that eliminates cross-
browser inconsistencies and adds support for backreferences to XRegExp’s named
capturing groups. Recipes in this book that use named capture show additional
solutions using XRegExp. If a solution shows XRegExp as the replacement text
flavor, that means it works with JavaScript when using the XRegExp library, but
not with standard JavaScript without the XRegExp library. If a solution shows
JavaScript as the replacement text flavor, then it works with JavaScript whether
you are using the XRegExp library or not.

This book covers XRegExp version 2.0, which you can download at http://xregexp
.com.

PHP
In this book, the PHP replacement text flavor refers to the preg_replace function
in PHP. This function uses the PCRE regular expression flavor and the PHP re-
placement text flavor. It was first introduced in PHP 4.0.0.

Other programming languages that use PCRE do not use the same replacement
text flavor as PHP. Depending on where the designers of your programming lan-
guage got their inspiration, the replacement text syntax may be similar to PHP or
any of the other replacement text flavors in this book.

PHP also has an ereg_replace function. This function uses a different regular ex-
pression flavor (POSIX ERE), and a different replacement text flavor, too. PHP’s
ereg functions are deprecated. They are not discussed in this book.

Perl
Perl has built-in support for regular expression substitution via the s/regex/
replace/ operator. The Perl replacement text flavor corresponds with the Perl reg-
ular expression flavor. This book covers Perl 5.6 to Perl 5.14. Perl 5.10 added sup-
port for named backreferences in the replacement text, as it adds named capture
to the regular expression syntax.

Python
Python’s re module provides a sub function to search and replace. The Python
replacement text flavor corresponds with the Python regular expression flavor.
This book covers Python 2.4 until 3.2. There are no differences in the replacement
text syntax between these versions of Python.

Ruby
Ruby’s regular expression support is part of the Ruby language itself, including the
search-and-replace function. This book covers Ruby 1.8 and 1.9. While there are
significant differences in the regex syntax between Ruby 1.8 and 1.9, the

Search and Replace with Regular Expressions | 7

http://xregexp.com
http://xregexp.com

replacement syntax is basically the same. Ruby 1.9 only adds support for named
backreferences in the replacement text. Named capture is a new feature in Ruby
1.9 regular expressions.

Tools for Working with Regular Expressions

Unless you have been programming with regular expressions for some time, we rec-
ommend that you first experiment with regular expressions in a tool rather than in
source code. The sample regexes in this chapter and Chapter 2 are plain regular ex-
pressions that don’t contain the extra escaping that a programming language (even a
Unix shell) requires. You can type these regular expressions directly into an applica-
tion’s search box.

Chapter 3 explains how to mix regular expressions into your source code. Quoting a
literal regular expression as a string makes it even harder to read, because string es-
caping rules compound regex escaping rules. We leave that until Recipe 3.1. Once you
understand the basics of regular expressions, you’ll be able to see the forest through
the backslashes.

The tools described in this section also provide debugging, syntax checking, and other
feedback that you won’t get from most programming environments. Therefore, as you
develop regular expressions in your applications, you may find it useful to build a
complicated regular expression in one of these tools before you plug it in to your
program.

RegexBuddy

RegexBuddy (Figure 1-1) is the most full-featured tool available at the time of this
writing for creating, testing, and implementing regular expressions. It has the unique
ability to emulate all the regular expression flavors discussed in this book, and even
convert among the different flavors.

RegexBuddy was designed and developed by Jan Goyvaerts, one of this book’s authors.
Designing and developing RegexBuddy made Jan an expert on regular expressions, and
using RegexBuddy helped get coauthor Steven hooked on regular expressions to the
point where he pitched this book to O’Reilly.

If the screenshot (Figure 1-1) looks a little busy, that’s because we’ve arranged most of
the panels side by side to show off RegexBuddy’s extensive functionality. The default
view tucks all the panels neatly into a row of tabs. You also can drag panels off to a
secondary monitor.

To try one of the regular expressions shown in this book, simply type it into the edit
box at the top of RegexBuddy’s window. RegexBuddy automatically applies syntax
highlighting to your regular expression, making errors and mismatched brackets
obvious.

8 | Chapter1: Introduction to Regular Expressions

[regmtsey ===

(O totcn) & Repiace Z2 5okt | 1) Copy~ [paste~ | @ »)+ | i~ 5[@~ | NET [] Dot matches neiwine (Case nsenstiye) ~$ match at ine breaks Eree-spacng

T nzoms 1AW TETT] [@t 278
+X/ee0s
Enai address
52
B create |2 wrary |ghcrer | Foum Qrest B38| sveng 578
[&xplain Token [Insert Token~ | [, Bxport~ §LL"E'[E'.""°E”"Q'|QM"W‘B*@* 2
) Assert postion at a word boundary QL Lst Al | Line by ine 28
+{8] Match a sngle character present i the list below T 2
(S Between one and unimited tmes, as many ¢ mes3s possble, giving back as f|| Y2124 2997 2
5 A character in the range between "A” ant s 5
(& A character in the range between "0" and g 1.2.3.123 - n
{4 one of the characters *,_%" i —— 31
4 The character "+" john.doe +regexbut 1. cc 2
4 The cha Hike.0" 2

Watch the character“@” keraly
Match the regubr expression below 1
(S Between one and unlmited times, as many times as possble, giving back as 1
+{8] Watch a single character present i the st below
Between one and unimted times, as many times as possble, giing back || I
A character in the range between A" and "Z'
A character n the range between "0” and "9”
The character ™~
A Match the character ™. iteraly
4 {8 Match a sngle character in the range between “A”
[Between 2 and 6 tmes, as many times as postﬂe mvm back as needed (g
B Ascert postion at a word boundary

s valid. 33

Souvauswne

PikeX oDeligireland:con 33

al i | » 35

(s 278 3
) copy | 7 | Langusge: Java [=] Function; Use regex object to[<] 2

Regex object Subject text - 4
R - E
= M E

Match 5: president@whitehouse.gov

tatch 6:
3 tatch 7: Dellgireland.con 7 1

i v [l m J
[The subject string t tet the reguiar expression an 4

Figure 1-1. RegexBuddy

The Create panel automatically builds a detailed English-language analysis while you
type in the regex. Double-click on any description in the regular expression tree to edit
that part of your regular expression. You can insert new parts to your regular expression
by hand, or by clicking the Insert Token button and selecting what you want from a
menu. For instance, if you don’t remember the complicated syntax for positive look-
ahead, you can ask RegexBuddy to insert the proper characters for you.

Type or paste in some sample text on the Test panel. When the Highlight button is
active, RegexBuddy automatically highlights the text matched by the regex.

Some of the buttons you’re most likely to use are:

List All
Displays a list of all matches.

Replace
The Replace button at the top displays a new window that lets you enter replace-
ment text. The Replace button in the Test box then lets you view the subject text
after the replacements are made.

Split (The button on the Test panel, not the one at the top)
Treats the regular expression as a separator, and splits the subject into tokens based
on where matches are found in your subject text using your regular expression.

Click any of these buttons and select Update Automatically to make RegexBuddy keep
the results dynamically in sync as you edit your regex or subject text.

Tools for Working with Regular Expressions | 9

To see exactly how your regex works (or doesn’t), click on a highlighted match or at
the spot where the regex fails to match on the Test panel, and click the Debug button.
RegexBuddy will switch to the Debug panel, showing the entire matching processes
step by step. Click anywhere on the debugger’s output to see which regex token
matched the text you clicked on. Click on your regular expression to highlight that part
of the regex in the debugger.

On the Use panel, select your favorite programming language. Then, select a function
to instantly generate source code to implement your regex. RegexBuddy’s source code
templates are fully editable with the built-in template editor. You can add new functions
and even new languages, or change the provided ones.

To test your regex on a larger set of data, switch to the GREP panel to search (and
replace) through any number of files and folders.

When you find a regex in source code you’re maintaining, copy it to the clipboard,
including the delimiting quotes or slashes. In RegexBuddy, click the Paste button at
the top and select the string style of your programming language. Your regex will then
appear in RegexBuddy as a plain regex, without the extra quotes and escapes needed
for string literals. Use the Copy button at the top to create a string in the desired syntax,
so you can paste it back into your source code.

As your experience grows, you can build up a handy library of regular expressions on
the Library panel. Make sure to add a detailed description and a test subject when you
store a regex. Regular expressions can be cryptic, even for experts.

If you really can’t figure out a regex, click on the Forum panel and then the Login
button. If you’ve purchased RegexBuddy, the login screen appears. Click OK and you
are instantly connected to the RegexBuddy user forum. Steven and Jan often hang out
there.

RegexBuddy runs on Windows 98, ME, 2000, XP, Vista, 7, and 8. For Linux and Apple
fans, RegexBuddy also runs well on VMware, Parallels, CrossOver Office, and with a
few issues on WINE. You can download a free evaluation copy of RegexBuddy at http:
/www.regexbuddy.com/RegexBuddyCookbook.exe. Except for the user forum, the trial
is fully functional for seven days of actual use.

RegexPal

RegexPal (Figure 1-2) is an online regular expression tester created by Steven Levithan,
one of this book’s authors. All you need to use it is a modern web browser. RegexPal
is written entirely in JavaScript. Therefore, it supports only the JavaScript regex flavor,
as implemented in the web browser you’re using to access it.

10 | Chapter1: Introduction to Regular Expressions

http://www.regexbuddy.com/RegexBuddyCookbook.exe
http://www.regexbuddy.com/RegexBuddyCookbook.exe

Download from Wow! eBook <www.wowebook.com>

/6 Regex Tester - RegexPal - Windows Internet Explorer (E=5{EoH x|

@O - [&) hitps//unwregerpal.com/ - 49 x | Live Search 2 -]
o o I@ Regex Tester — RegexPal lil B - - b ~ [} Page v &} Tools v
r@é regexpal o.1.4 —aJavaScript regular expression tester Help Version History = Feedback = Blog

|

N Case insensitive (i) [l A§ match at line breaks (m) [£] Dot matches all (s; via XRegFxn) Options Quick Reference

AB[A-Z0-9._ %+-]1+@(?: [A-Z0-9-1+\.) +[BR-Z] {2,6}\b

Walid addresses:

president@whitehouse.gov

ip@1.2.3.123

pharach@egyptian.museum

john.doe+regexbuddy@gmail. com

Mike.0' Deli@irelandicon

"Mike\ O'Dell"@ireland.com

TPguy@[1.2.3.4]

The email address presidenc@whitehouse.gov is valid.

Invalid addresses:

1024x768860Hz
not.a.valid.email
not@valid.email
john@aol...com

Mike\ O'Dell@ireland.com

Need more power? Get RegexBuddy from JGsoft, a powerful regex tester & builder that inspired many of RegexPals features.
@ Permalink — @ 2008 Steven Levithan — Gooqle Code
[€ Internet | Protected Mode: On #100% ~

Figure 1-2. RegexPal

To try one of the regular expressions shown in this book, browse to http://regexpal
.com. Type the regex into the box at the top. RegexPal automatically applies syntax
highlighting to your regular expression, which immediately reveals any syntax errors
in the regex. RegexPal is aware of the cross-browser issues that can ruin your day when
dealing with JavaScript regular expressions. If certain syntax doesn’t work correctly in
some browsers, RegexPal will highlight it as an error.

Now type or paste some sample text into the large box at the center. RegexPal auto-
matically highlights the text matched by your regex.

There are no buttons to click, making RegexPal one of the most convenient online
regular expression testers.

RegexMagic

RegexMagic (Figure 1-3) is another tool designed and developed by Jan Goyvaerts.
Where RegexBuddy makes it easy to work with the regular expression syntax, Regex-
Magic is primarily designed for people who do not want to deal with the regular ex-
pression syntax, and certainly won’t read 500-page books on the topic.

With RegexMagic, you describe the text you want to match based on sample text and
RegexMagic’s high-level patterns. The screen shot shows that selecting the “email ad-
dress” pattern s all you need to do to get a regular expression to match an email address.
You can customize the pattern to limit the allowed user names and domain names, and
you can choose whether to allow or require the mailto: prefix.

Tools for Working with Regular Expressions | 11

http://regexpal.com
http://regexpal.com

s EXH
abe Samples ZE| @ Assistant =4 |

O - [a'|~4>' %‘x Mark Unmark‘ : [View =8 preferences @ Help ~

email addresses Valid addresses: * | Regular Expression
president@whitehouse.gov The regular expression generated by
ip@@1 3.123 RegexMagic.

ubject scope: pharach@egyptian.museum

Jjohn.doe+regexbuddyfigmail . com If you want to use this regular

Whale '] Mike.0'Dell@ireland.com expression in source code, click the
Show samples and/or replacements: "Miks\ 0'De1l1"@ireland.rom - | Copy button on the Regex toglbar
|5amples only B C— D and select the string style you're
working with to copy the regular
8b6 [atch |@BE Action expression. Or, generate a full code
.J% = |{ ‘ snippet on the Use panel.
Fields in the regular expression If you want to paste this regular
Begin regex match at: expression into the search box of an
it "as is".

Kind of field: Repeat this field: [Unlimited How to repeat this field:
[Patter Emai agaress) -] 1 SE B [Asmany bmess -]
End regex match at:

Patterns for the fields in the regular expression

Select field:

Email address -

Pattern to match field:

User name: Domain name: Mailto: prefix:

Allow any user name | [Allow any domain name | Mo prefix -

Overall options for generating the regular expression
Field vaiidation mode:
Average -

Jg Regex use EGREP |@ Library |mFomm |
{7 Generate| (] Copy~ ‘JGsoft |z|| Free-spacing Modlﬁersl ¥ RegexBuddy

|i[L#SIR' 4. /0922 _a 2|}~ JEH[.0 9a =]H\. [a 2] (2,63W B
[Dot matches newline [#] Case insensitive & match at line breaks

Figure 1-3. RegexMagic

Since you are reading this book, you are on your way to becoming well versed in regular
expressions. RegexMagic will not be your primary tool for working with them. But
there will still be situations where it comes in handy. In Recipe 6.7 we explain how you
can create a regular expression to match a range of numbers. Though a regular expres-
sion is not the best way to see if a number is within a certain range, there are situations
where a regular expression is all you can use. There are far more applications with a
built-in regex engine than with a built-in scripting language. There is nothing difficult
about the technique described in Recipe 6.7. But it can be quite tedious to do this by
hand.

Imagine that instead of the simple examples given in Recipe 6.7, you need to match a
number between 2,147,483,648 (23!) and 4,294,967,295 (2%21/n 1) in decimal nota-
tion. With RegexMagic, you just select the “Integer” pattern, select the “decimal” op-
tion, and limit the range to 2147483648. .4294967295. In “strict” mode, RegexMagic will
instantly generate this beast:

12 | Chapter1: Introduction to Regular Expressions

\b(?:429496729[0-5]|42949672[0-8][0-9]|4294967[01][0-9]{2}|429496[0-6] «
[0-9]{3}|42949[0-5][0-9]{4}|4294[0-8][0-9]{5}|429[0-3][0-9]{6}|42[0-8] <
[0-9]1{7}|4[01][0-9]{8}[3[0-9]{9}|2[2-9][0-9]{8}|21[5-9][0-9]{7}|214[89]«
[0-9]{6}|2147[5-9][0-9]{5}|214749[0-9]{4}|214748[4-9][0-9]{3}|2147483 «
[7-9][0-9]{2}|21474836[5-9][0-9]|214748364[89])\b

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

RegexMagic runs on Windows 98, ME, 2000, XP, Vista, 7, and 8. For Linux and Apple
fans, RegexMagic also runs well on VMware, Parallels, CrossOver Office, and with a
few issues on WINE. You can download a free evaluation copy of RegexMagic at http:
/www.regexmagic.com/RegexMagicCookbook.exe. Except for the user forum, the trial
is fully functional for seven days of actual use.

More Online Regex Testers

Creating a simple online regular expression tester is easy. If you have some basic web
development skills, the information in Chapter 3 is all you need to roll your own.
Hundreds of people have already done this; a few have added some extra features that
make them worth mentioning.

RegexPlanet

RegexPlanet is a website developed by Andrew Marcuse. Its claim to fame is that it
allows you to test your regexes against a larger variety of regular expression libraries
than any other regex tester we are aware of. On the home page you’ll find links to testers
for Java, JavaScript, .NET, Perl, PHP, Python, and Ruby. They all use the same basic
interface. Only the list of options is adapted to those of each programming language.
Figure 1-4 shows the .NET version.

Type or paste your regular expression into the “regular expression” box. If you want
to test a search-and-replace, paste the replacement text into the “replacement” box.
You can test your regex against as many different subject strings as you like. Paste your
subject strings into the “input” boxes. Click “more inputs” if you need more than five.
The “regex” and “input” boxes allow you to type or paste in multiple lines of text, even
though they only show one line at a time. The arrows at the right are the scrollbar.

When you’re done, click the “test” button to send all your strings to the regexpla-
net.com server. The resulting page, as shown in Figure 1-4, lists the test results at the
top. The first two columns repeat your input. The remaining columns show the results
of various function calls. These columns are different for the various programming
languages that the site supports.

regex.larsolavtorvik.com

Lars Olav Torvik has put a great little regular expression tester online at http://regex
darsolavtorvik.com (see Figure 1-5).

Tools for Working with Regular Expressions | 13

http://www.regexmagic.com/RegexMagicCookbook.exe
http://www.regexmagic.com/RegexMagicCookbook.exe
http://regex.larsolavtorvik.com
http://regex.larsolavtorvik.com

(<]SRCT G MEICIR| Y £ -]
i Favorites |) RegEx: online reqular expression testing for . (IR v] d v Pagev Safety~ Tools~ @~

RegexPlanet Testing-

Regular Expression Test Page for net [wson |

2ol 8 S @ o™ @ dz [| B Share

Test Results

Regular Expression \b[A-Z0-9_%+}+@[A-Z0-9 1\ [A-Z|{26}b
s a.Net string "NB[AZ0-9._%+1+@IAZ0-9 A ZIR B
Replacement

GetGroupNames() | D

GetGroupNumbers() 0

Test Target String Match() Result() Groups[0]
1 president@whitehouse.gov Yes president@whitehouse. gov
2 Mike.O'Dell@ireland.com Yes Dell@jireland.com
3 iP@123123 No
4 not an email address No

Expression to test

Regular expression

O

Options: @ Case-insensitive matching (IgnoreCase)
M ignore cultural differences in language (Culturelnvariant)
¥ *and $ so they match at the beginning and end, respectively, of any line. and not just the beginning and end of the entire string (Mulfiiine)
W dot () matches every character instead of every character except newlines (Singleline)
M only explicitly named or numbered groups of the form (?<name>...) are valid captures (ExplicitCapture)
¥ Eliminate unescaped white space from the pattem and enable comments marked with # (IgnorePatternWhitespace)
I search will be from right to left instead of from left to right (RightToLeft)

B ECMAScript-compliant behavior. This value can be sed only in conjunction with the IgnoreCase, Multiine, and Compiled values.
(ECMASeript)

APl More Inputs

Al More Inputs

@® | Make share code

Done & @ Internet | Protected Mode: On fa v ®10% v

Figure 1-4. RegexPlanet

To start, select the regular expression flavor you’re working with by clicking on the
flavor’s name at the top of the page. Lars offers PHP PCRE, PHP POSIX, and JavaScript.
PHP PCRE, the PCRE regex flavor discussed in this book, is used by PHP’s preg func-
tions. POSIX is an old and limited regex flavor used by PHP’s ereg functions, which

14 | Chapter1: Introduction to Regular Expressions

{€ Rubular: a Ruby regular expression editor and tester - Windows Internet Explorer [felre =

() IR ovonibutarcoms [&[4[x |[= sing £~

vorites 7] Rubular: a Ruby regular expression editor and test. % v B v [0 & v Pagev Ssfetyv Tools~ @~

Rubular

a Ruby regular expression editor

Your regular expression:

m

Your test string: Match result:

valid

make permalink clear fields,

& Intemet | Protected Mode: On f3 v ®10% -

Figure 1-5. regex.larsolavtorvik.com

are not discussed in this book. If you select JavaScript, you’ll be working with your
browser’s JavaScript implementation.

Type your regular expression into the Pattern field and your subject text into the Subject
field. A moment later, the Matches field displays your subject text with highlighted
regex matches. The Code field displays a single line of source code that applies your
regex to your subject text. Copying and pasting this into your code editor saves you
the tedious job of manually converting your regex into a string literal. Any string or
array returned by the code is displayed in the Result field. Because Lars used Ajax
technology to build his site, results are updated in just a few moments for all flavors.
To use the tool, you have to be online, as PHP is processed on the server rather than in
your browser.

The second column displays a list of regex commands and regex options. These depend
on the regex flavor. The regex commands typically include match, replace, and split
operations. The regex options consist of common options such as case insensitivity, as
well as implementation-specific options. These commands and options are described
in Chapter 3.

Tools for Working with Regular Expressions | 15

(=] (]

@& Nregex v/0.1 - Windows Internet Explorer ==

@@ - [] https//wwwnregexcom/nregex/defaitaspx = [42] x || Live Searen £ -

W I@Nragexwﬂl lil 5 - v deh v |2k Page v {GF Tools » =
Nregex

T e (M - ir<oex Bookmarkiet | \

Regular Expression: Manually evaluate regex (large documents, latency issues)

\B[A-Z0-9._%+-+@(7 [A-Z0-0-]+\ |+ [A-Z)(2 6}b

‘ Ignore Case | Single Line | Multi Line | Explicit Capture

Replacement String:

Matches & Replacements Send to Clipboard Matched Groups (click to find in match):
Valid sddresses él E é
2 hmm

__ -

john_doetregexbuddy@gmail . com| - q @ »

Load Target From File:

Browse...

president@whitehouse.gov

ip@l.2.3.123

pharach@egyprian.museum
john.dos+regexbuddyGomail. com
Mike.C'Dellfireland.com

"Mike\ Q'Dell"@ireland.com

IPguyB[1.2.3.4]

The email address president@whitehouse.gov is valid.

Invalid addresses:

1024x768860Hz
not.a.valid.email
not@valid.email
john@aol...com 2

Submit bugs, feature requests, and other feedback

‘ o Save to del.icio.us H L Email This

(@ @ Internet | Protected Mode: On ®100% v

Figure 1-6. Nregex
Nregex

http://'www.nregex.com (Figure 1-6) is a straightforward online regex tester built
on .NET technology by David Seruyange. It supports the .NET 2.0 regex flavor, which
is also used by .NET 3.0, 3.5, and 4.0.

The layout of the page is somewhat confusing. Enter your regular expression into the
field under the Regular Expression label, and set the regex options using the checkboxes
below that. Enter your subject text in the large box at the bottom, replacing the default
If I just had $5.00 then "she" wouldn't be so @#$! mad..If your subject is a web
page, type the URL in the Load Target From URL field, and click the Load button under
that input field. If your subject is a file on your hard disk, click the Browse button, find
the file you want, and then click the Load button under that input field.

16 | Chapter1: Introduction to Regular Expressions

http://www.nregex.com

‘€ Rubular: a Ruby regular expression editor and tester - Windows Intemet Explorer [ol& =]
&) - [rttpirmrbuior com/ <[4 [%][regulator reguier 2 -

8 4% | Rubular: o Ruby regular expression editor and test.. | | [v 8 v [} Page v £ Tools

Rubular

a Ruby regular expression editor

Your regular expr

m

Match result

president@vhi tehouss. gov]
SRRV

valid

[@ @ intemet| Protected Mode: On #®100% ~

Figure 1-7. Rubular

Your subject text will appear duplicated in the “Matches & Replacements” field at the
center of the web page, with the regex matches highlighted. If you type something into
the Replacement String field, the result of the search-and-replace is shown instead. If
your regular expression is invalid, ... appears.

The regex matching is done in .NET code running on the server, so you need to be
online for the site to work. If the automatic updates are slow, perhaps because your
subject text is very long, tick the Manually Evaluate Regex checkbox above the field
for your regular expression to show the Evaluate button. Click that button to update
the “Matches & Replacements” display.

Rubular

Michael Lovitt put a minimalistic regex tester online at http://www.rubular.com (Fig-
ure 1-7). At the time of writing, it lets you choose between Ruby 1.8.7 and Ruby 1.9.2.
This allows you to test both the Ruby 1.8 and Ruby 1.9 regex flavors used in this book.

Enter your regular expression in the box between the two forward slashes under “Your
regular expression.” You can turn on case insensitivity by typing an i in the small box
after the second slash. Similarly, if you like, turn on the option “the dot matches line
breaks” by typing an m in the same box. im turns on both options. Though these con-
ventions may seem a bit user-unfriendly if you’re new to Ruby, they conform to
the /regex/im syntax used to specify a regex in Ruby source code.

Tools for Working with Regular Expressions | 17

http://www.rubular.com

/& Regular Expression Editor - Windows Internet Explorer (=)= ===

6@ ~ |g, hittp://www.myregexp.com/ - ‘ ‘,‘ x ||Ltue£eorrh » v|
W e [g Regular Expression Editor lil B v B v & v [Page v @) Tools v
Online regex tester Eclipse Plugin IDEA Plugin Regex Examples

Regexp Editor

Flags Edit About

Regular expression [[] Case-insensitive (%) [] Multiline (?m) [_] Dot All Mode (?s) [... |

I(?:19|2E|] a dl([- /.1)(0[1-2]1]1[012])"2¢0[1-2] | [12] [O-21|3[01])

Find | Match | Split [Raplaca | L

Replﬂcemem:‘SI—SS—sq |
LEi-01-01 phing/08/13 p=lly. 01.01 &=y 01 01 1500-01.01 1200 13 01 [y 02 31 1200-01-01 2007-08-13
1900-01-01 1900-01-01
1900-01.01 1900 13 01
1900-02-31
Dene [@ @ Internet | Protected Mode: On #100% v

Figure 1-8. myregexp.com

Type or paste your subject text into the “Your test string” box, and wait a moment. A
new “Match result” box appears to the right, showing your subject text with all regex
matches highlighted.

myregexp.com

Sergey Evdokimov created several regular expression testers for Java developers. The
home page at hitp://www.myregexp.com (Figure 1-8) offers an online regex tester. It’s
a Java applet that runs in your browser. The Java 4 (or later) runtime needs to be
installed on your computer. The applet uses the java.util.regex package to evaluate
your regular expressions, which is new in Java 4. In this book, the “Java” regex flavor
refers to this package.

Type your regular expression into the Regular Expression box. Use the Flags menu to
set the regex options you want. Three of the options also have direct checkboxes.

If you want to test a regex that already exists as a string in Java code, copy the whole
string to the clipboard. In the myregexp.com tester, click on the Edit menu, and then
“Paste Regex from Java String.” In the same menu, pick “Copy Regex for Java Source”
when you’re done editing the regular expression. The Edit menu has similar commands
for JavaScript and XML as well.

Below the regular expression, there are four tabs that run four different tests:

18 | Chapter1: Introduction to Regular Expressions

http://www.myregexp.com

Find
Highlights all regular expression matches in the sample text. These are the matches
found by the Matcher.find() method in Java.

Match
Tests whether the regular expression matches the sample text entirely. If it
does, the whole text is highlighted. This is what the String.matches() and
Matcher .matches() methods do.

Split
The second box at the right shows the array of strings returned by
String.split() or Pattern.split() when used with your regular expression and
sample text.

Replace
Type in a replacement text, and the box at the right shows the text returned by
String.replaceAll() or Matcher.replaceAll().

At the top of the page at http://www.myregexp.com, you can click the link to get Sergey’s
regex tester as a plug-in for Eclipse.

More Desktop Regular Expression Testers

Expresso

Expresso (not to be confused with caffeine-laden espresso) is a .NET application for
creating and testing regular expressions. You can download it at http://www.ultrapico
.com/Expresso.htm. The .NET Framework 2.0 or later must be installed on your
computer.

The download is a free 60-day trial. After the trial, you have to register or Expresso will
(mostly) stop working. Registration is free, but requires you to give the Ultrapico folks
your email address. The registration key is sent by email.

Expresso displays a screen like the one shown in Figure 1-9. The Regular Expression
box where you type in your regular expression is permanently visible. No syntax high-
lighting is available. The Regex Analyzer box automatically builds a brief
English-language analysis of your regular expression. It too is permanently visible.

In Design Mode, you can set matching options such as “Ignore Case” at the bottom of
the screen. Most of the screen space is taken up by a row of tabs where you can select
the regular expression token you want to insert. If you have two monitors or one large
monitor, click the Undock button to float the row of tabs. Then you can build up your
regular expression in the other mode (Test Mode) as well.

In Test Mode, type or paste your sample text in the lower-left corner. Then, click the
Run Match button to get a list of all matches in the Search Results box. No highlighting
is applied to the sample text. Click on a match in the results to select that match in the
sample text.

Tools for Working with Regular Expressions | 19

http://www.myregexp.com
http://www.ultrapico.com/Expresso.htm
http://www.ultrapico.com/Expresso.htm

¥ Expresso - Mot registered, expires on March 30, 2009 - Samplesso
File Edit Settings Library Tools Help

Nd »rmek Q=06

Expression Library
Regex Anabze

(?<Month>d{1,2))/(?<Day>\d{1,2})/(?<Year=(?\d4}\d{2})) + Collapse Expand Edit Delet= [7] Show Whitespace

& [Month]: A named capture group. [ld{1.2}]

£l LS ayl: A named capture group. [\d{1.2}]

Replacement String i
$8 [${Day}-S(Month}-${Yean)] - [#-[Year]: A named capture group. [(?:\d{4}\d{2}1]

4 2

Characters |Gmups ISpecla\ I Paosition | Misc I Repetitions IODt\ons | Altematives |ASCII | Substltut\ons‘

Begex “w Insert Undock
Character class Repetitions
Match only if absent

[] s tew as possible 7
Any character

(@ Just once
) Any number *

() One or more +
Whitespace ‘s

A Ty | (@) Zero orone ?

(©) Specific character % ==

(@) Mamed Class "p{Class} Al Cortrol Char, = © Egactiyn n
(7) Specified Set [z-z4-2] 3zAZ -

leastn {n} m

(©) Class Subtraction [a-z-[asiou]] (7) Between n and m inm}

a7 minus aeiou

Compiled Ignare Case Muttiline Explicit Capture
ECMA Script Ignore White Singleline Right to Left Culture Invariant

Figure 1-9. Expresso

The Expression Library shows a list of sample regular expressions and a list of recent
regular expressions. Your regex is added to that list each time you press Run Match.
You can edit the library through the Library menu in the main menu bar.

The Regulator

The Regulator, which you can download from http://sourceforge.net/projects/regula
tor/, is not safe for SCUBA diving or cooking-gas canisters; it is another .NET applica-
tion for creating and testing regular expressions. The latest version requires .NET 2.0
or later. Older versions for .NET 1.x can still be downloaded. The Regulator is open
source, and no payment or registration is required.

The Regulator does everything in one screen (Figure 1-10). The New Document tab is
where you enter your regular expression. Syntax highlighting is automatically applied,
but syntax errors in your regex are not made obvious. Right-click to select the regex
token you want to insert from a menu. You can set regular expression options via the
buttons on the main toolbar. The icons are a bit cryptic. Wait for the tool tip to see
which option you’re setting with each button.

20 | Chapter1: Introduction to Regular Expressions

http://sourceforge.net/projects/regulator/
http://sourceforge.net/projects/regulator/

2 The Regulator ==
File View Document Tools Window Help

D & &2 Match ¢ Replace 3 spit [na]E]~ [Z] & =

Web Search % | [Regex Analyzer Tx]

=}
Search Regextiboom Word boundary between //w and //W B T\b[A-20-5. _5+-1+8 (2: [A-20-3-1+\)+ (A2 (2, 61\b
Any character in "A-Z0-9._%+-"
+ (one or more times)
@

Dl x

T e Tt ey

Non-capturing Group
Any character in "A-Z0-9-"
+(ane or more times)

K1l

[Matches (7, 0.000005 sec)

End Capture

+ (one or more times)
Any character in "A-Z" B (presidencewnic
At least 2, but not more than 6 times B [pharach@egyptian.museun]
Word boundary between //uw and //W I~ o
d B [pel! lpresident@whitehouse.gov

ip@1.2.3.123

bharaoh@egyptian.museum

Mike.O'Dell@ireland.com

"Mike\ O'Dell"@ireland.com

Pouy@[1.2.3.4]

[The email address president@whitehouse.gov is valid.

|Valid addresses:

B [not@valid.email]
B [De116ixe

Connection Opions.

[SnippetsControl ax]
(7<GroupName>)

1024x768@60Hz
Inot..a.valid.email
not@valid.email
ljohn@zol....com
Mike\ O

Figure 1-10. The Regulator

Below the area for your regex and to the right, click on the Input button to display
the area for pasting in your sample text. Click the “Replace with” button to type in the
replacement text, if you want to do a search-and-replace. Below the regex and to the
left, you can see the results of your regex operation. Results are not updated automat-
ically; you must click the Match, Replace, or Split button in the toolbar to update the
results. No highlighting is applied to the input. Click on a match in the results to select
it in the subject text.

The Regex Analyzer panel shows a simple English-language analysis of your regular
expression, but it is not automatic or interactive. To update the analysis, select Regex
Analyzer in the View menu, even if it is already visible. Clicking on the analysis only
moves the text cursor.

SDL Regex Fuzzer

SDL Regex Fuzzer’s fuzzy name does not make its purpose obvious. Microsoft bills it
as “a tool to help test regular expressions for potential denial of service vulnerabilities.”
You can download it for free at http://www.microsoft.com/en-us/download/details.aspx
2id=20095. Tt requires .NET 3.5 to run.

What SDL Regex Fuzzer really does is to check whether there exists a subject string
that causes your regular expression to execute in exponential time. In our book we call
this “catastrophic backtracking.” We explain this in detail along with potential solu-
tionsin Recipe 2.15. Basically, a regex that exhibits catastrophic backtracking will cause
your application to run forever or to crash. If your application is a server, that could be
exploited in a denial-of-service attack.

Figure 1-11 shows the results of a test in SDL Regex Fuzzer. In Step 1 we pasted in a
regular expression from Recipe 2.15. Since this regex can never match non-ASCII char-
acters, there’s no need to select that option in Step 2. Otherwise, we should have. We

Tools for Working with Regular Expressions | 21

http://www.microsoft.com/en-us/download/details.aspx?id=20095
http://www.microsoft.com/en-us/download/details.aspx?id=20095

P SDL Regex Fuzzervl1.0

Step 1.

Enter the regular expression feaca)ay
pattem to be tested

SDL Regex Fuzzerusesthe NET
traditional NFA regex engine to
perform its analysis

Step 2.

Choose a set of attack characters
to be used during fuzzing

) Reduced set of common attack characters fastest)

(&) All ASCII characters
The langer the st you choose, the B
more accurate the results will be, () All Unicode characters {most thorough, but very slow)

but the analysis will also be slower.

Step 3.

Choose how many fuzzing 100 .
fterations to perform

The more iterations, the maore
accurate the results wil be, but the
analysis will also be slower.

Step 4.
Start fuzzing!
Step 5.

Wait while the fuzzer perfforms the |
tests

Step 6.

Analyze the results. Any regexes Failed for evaluation string 0 -
that fail are potertially vulnerable

to denial-of-service attacks and 8
should be rewntten.

Step 7. (Optional)

File & bug. You can create a bug
and add it to a Microsoft Team

Foundation Server team project

Ready

Figure 1-11. SDL Regex Fuzzer

left Step 3 set to the default of 100 iterations. About five seconds after clicking the Start
button in Step 4, SDL Regex Fuzzer showed a sample string that will cause our regex
to fail in .NET 3.5.

Unfortunately, the usefulness of this tool is greatly limited because it only supports a
small subset of the .NET regex syntax. When we tried to test the naive solution from
Recipe 2.15, which would definitely fail this test, we received the error message shown
in Figure 1-12. Proper understanding of the concepts discussed in Recipe 2.15 is still
the only way to make sure you don’t bring down your applications with overly complex
regular expressions.

grep
The name grep is derived from the g/re/p command that performed a regular expression
search in the Unix text editor ed, one of the first applications to support regular

22 | Chapter1: Introduction to Regular Expressions

Error

(’ﬁ‘) An error occurred trying to test the regex: The following constructs are
S currently not supported: anchors \G, \b, \B, named groups, lookahead,
lookbehind, as-few-times-as-possible quantifiers, backreferences,

conditional alternation, substitution

Figure 1-12. SDL Regex Fuzzer Limitations

expressions. This command was so popular that all Unix systems now have a dedicated
grep utility for searching through files using a regular expression. If you’re using Unix,
Linux, or OS X, type man grep into a terminal window to learn all about it.

The following three tools are Windows applications that do what grep does, and more.

PowerGREP

PowerGREP, developed by Jan Goyvaerts, one of this book’s authors, is probably the
most feature-rich grep tool available for the Microsoft Windows platform (Fig-
ure 1-13). PowerGREP uses a custom regex flavor that combines the best of the flavors
discussed in this book. This flavor is labeled “JGsoft” in RegexBuddy.

To run a quick regular expression search, simply select Clear in the Action menu and
type your regular expression into the Search box on the Action panel. Click on a folder
in the File Selector panel, and select “Include File or Folder” or “Include Folder and
Subfolders” in the File Selector menu. Then, select Execute in the Action menu to run
your search.

To run a search-and-replace, select “search-and-replace” in the “action type” drop-
down list at the top-left corner of the Action panel after clearing the action. A Replace
box will appear below the Search box. Enter your replacement text there. All the other
steps are the same as for searching.

PowerGREP has the unique ability to use up to five lists of regular expressions at the
same time, with any number of regular expressions in each list. While the previous two
paragraphs provide all you need to run simple searches like you can in any grep tool,
unleashing PowerGREP’s full potential will take a bit of reading through the tool’s
comprehensive documentation.

PowerGREP runs on Windows 2000, XP, Vista, 7, and 8. You can download a free
evaluation copy at http://www.powergrep.com/Power GREPCookbook.exe. Except for
saving results and libraries, the trial is fully functional for 15 days of actual use. Though
the trial won’t save the results shown on the Results panel, it will modify all your files
for search-and-replace actions, just like the full version does.

Tools for Working with Regular Expressions | 23

http://www.powergrep.com/PowerGREPCookbook.exe

PowerGREP

leSelector Action Librory Results Editor Undo History View Help

SRpPazelm

R Fie Selector 8| (g Acien 78| [l Resuts [F Lray [Undo Histow |
Div@x » @@= 2 0@~ 6 B oo giserch gf uicksench | | @ | @ e e @ ups
Foldersand ctintpe: Search tpe: o
B e =] | (ospay searchmatcnes =) (Reguen copresson o ovegmrgsearch | e et anr] (e
"0 proram P
e] adept cas o repacement text) Sot s Sortgatches:
- e G| [Aohabescay a2 7] Bl
. vivm (1, 47/747) Seare -
. -mw Nb[A-z0-9._%+-J4el@R[A-20-9- 1%\ JE[A-Z){2,61\6 3
» I boamens (71, 77 o
541 Dowrioads
3 Favorites ‘F“E sectoning: ?
:: :’W |t | =L ‘mailto: sales@igsoft.com”
P‘i([Case sensitive search [Dot matches newiines = GREP\by txt
‘i 1to: salesBponergrep.con
3 ‘Saved Games. Section search: hd GRE tact. .

<a-href="[50]

anilto: gelasioo

path: - -
o sl 81
Fie Masks D) | Divertsearchresuts o
9]same masks for all foders Comments: L
) use regulr expressons to definemasts | [Find enail addresses in HTAL anchors ol
Incde fes: < =1
= U
<[m v«
Edta
Exdude files: hd =
T D@ &R AR ren @@ & B EES =
- 5 <H2>Buying PowerGREPC/H2> =
Fie Modiicaton Dates 10 oPlease see our <h WREF="buymonhialsordering pages</ for detailed explanation of the various options you have to acquire one
e licenses to PowerGREP. ALl information about pricing, online (Internet) and offline (paperwork) ordering methods can be
|Ignore file modification dates. * found lhere </P>
1
& Assitant

Section Search Type
Tre ki of e e or fems you ant o

12 <P>If you have 2 question that is not answered on the order page, you can email your question to
BEGDAE >.</P>

15 omtechnical Support</H2>

search for whie secton tronialrd . . . : :
e e e eirase o text T g ™ T must say it has been a positive experience doing

fragment that mst appear exactly this way n usiness with your

e search e (excepn o cage). 15 company. A lot of conpanies out there could learn o lot regording

Areouar pressoni s utim sty |[| 49 custoner care and setisfaction by folloving dn your faotsteps. "
<se>

e A Inbsp, ,lnbsp,za April 2005, Canada</P></TD></TR></TABLE>

"‘"”“‘,,,_‘mm‘b‘nm,,mwm 23 ceanefore contacting us for technical support, please make sure £f you have the latest version of PowerGREP. Hlew versions are

You enterin released often. Select Help|Check for Nlew Versions in PowerGREP's toolbar & ically open a web page that tells you

e al’stnmd\edfwmwmnenﬁyL whether you have the latest version or not. You can also read <A HREF- hxstory.html‘ PoverGREr s veraton historys/hs on tris web
), o one after the other. Eachitem i site.</P>

heist\savahd match. 2 L

i xen i nkct_mvemot thiat v

Figure 1-13. PowerGREP

ew Qptions Window Help

EHE V%Y MU =BE @D am

['[a-20-9]+ @[a-20-9.]+" in *.txt: 155 matches in 51 files. 586 files searched. 0 files sk [contact.page.bxt (Matches only)

[Mame (11 Tope [Foider [Matches | Size [Date/Time B
) affiate page.ta TT AL JGsaft 1 5087 172/200810:36:32 AM
) buged page tat T TestDocument CAUsers\WMAD ocuments\JG soft 1 195212472007 45340 P
T T I) 4 5
) order page.t T Tewt Document CALserstWh\D ocumentstGsoft 2 2071 T1/23/2007 £:2238 PM
mailstokadd page st T Test Document CAUsers\MAD ocuments\more 1 1454 1218/2003 427,52 PM
b * T 2 11389 54/2008 757,34 AM
) contact page st T TestDocument CAUsers\WM\D ocuments\ PowerGREF 6 4145 /12008 5.06:38 P
ouarartespagetst T Test Document CAUssrsWMAD oouments\PowsiGREP 2 2551 25/2008 112638 A
) mubiserpagett T T 1 7586 T1/22/2007 5:20:32 PM
) press pagetat T TestDocument CAUsersWM\D ocuments\PowsGREF 2 6907 12/10/2005 35055 AM
J wt T 2 3945 11/29/2007 4:2812 PH
) emailpagetit TT Al 9 1882 1/27/2008 531248 PM a

Windows Grep Search Results

Plain | File contents | File names » | Line numbers » | Whole line ¥ | Word wrap « | Fixed Font | Match window: +/- 0+ | 11213145

lin
tact. txt
om" om</TT>,</P>
etext.com’>suppe etext.com</Az</TT>
om" _com</A=</TT>
.com”: i om</A=</TT>
ipscribble.com”>supps ibble.com</TT>
P grep.com">s grep.com</A=</TT>

00036: <P o technical Support is available for ECPad Classie ant EditPad Lte as thess are postcardware and freeware products
respectwe\v. However, we do value user input Fnr these programs which you can send to <

<P>Just Great Software was founded by Jan Goyvaerts in 1996. Today, Jan Goyvaerts still owns the
business, and is now Chief Software Designer. He designs all our products, including PowerGREP, and leads the development. <I--If you
want, you can contact him directly at <TT>jg@jgsoft.com </TT>.--> <-- Translator: mention that
Jan can read English, Dutch, French and German, and that he can reply in English or Dutch.—-> <!-- Note that it may take a couple of days
before you receive a personal reply as Jan is a busy man. If you have a sales inquiry or your comments are about a specific product, please
use the addresses listed above for fast service.</P>->

Figure 1-14. Windows Grep

24 | Chapter1: Introduction to Regular Expressions

Windows Grep

Windows Grep (http://www.wingrep.com) is one of the oldest grep tools for Windows.
Its age shows a bit in its user interface (Figure 1-14), but it does what it says on the tin
just fine. It supports a limited regular expression flavor called POSIX ERE. For the
features that it supports, it uses the same syntax as the flavors in this book. Windows
Grep is shareware, which means you can download it for free, but payment is expected
if you want to keep it.

To prepare a search, select Search in the Search menu. The screen that appears differs
depending on whether you’ve selected Beginner Mode or Expert Mode in the Options
menu. Beginners get a step-by-step wizard, whereas experts get a tabbed dialog.

When you’ve set up the search, Windows Grep immediately executes it, presenting
you with a list of files in which matches were found. Click once on a file to see its
matches in the bottom panel, and double-click to open the file. Select “All Matches”
in the View menu to make the bottom panel show everything.

To run a search-and-replace, select Replace in the Search menu.

RegexRenamer

RegexRenamer (Figure 1-15) is not really a grep tool. Instead of searching through the
contents of files, it searches and replaces through the names of files. You can download
it at http://regexrenamer.sourceforge.net. RegexRenamer requires version 2.0 or later of
the Microsoft .NET Framework.

= RegexRenamer E@
Match: P iy Change Case = Fitter Stats
/g Mumbering - -
Replace: _ [A& Move/Copy =
ﬁ' Public * || Filename = Preview
=gk vm p i
El Contacts ,_,bu!Id.pl bu!Id.pl
B Deskicp || build_demo pl build_demo pl
i-JE| Documents || build_notepad pl build_natepad pl
Downloads || L_|build_regescpl build_regesc.pl
o[Favortes || build_regex_old pl build_regex_old pl
]l Links || build2004 pl build2004.pl
Music || build2006.p! build2006.pl
Pictures L | buildnew.pl build_new pl
Saved Games || buildeld pl buildald pl
Searches = ||| L_|buildprephp pl buildprephp pl
-] Videos || Emailin HTML Anchors pga Email_in_HTML_Anchers pga
E-.: J. Windows 4% | jgsoft ces igsoft ces
l\%’&l DVD RW Drive (D) ¥ |jgsoftsecure css jgsoftsecure css
-
| Control Panel
-y Public
-8l Network L=
N
Path: C:\Users"WM\Documents Options = Help - 2 [0

Figure 1-15. RegexRenamer

Tools for Working with Regular Expressions | 25

http://www.wingrep.com
http://regexrenamer.sourceforge.net

Type your regular expression into the Match box and the replacement text into the
Replace box. Click /i to turn on case insensitivity, and /g to replace all matches in each
filename rather than just the first. /x turns on free-spacing syntax, which isn’t very
useful, since you have only one line to type in your regular expression.

Use the tree at the left to select the folder that holds the files you want to rename. You
can set a file mask or a regex filter in the top-right corner. This restricts the list of files
to which your search-and-replace regex will be applied. Using one regex to filter and
another to replace is much handier than trying to do both tasks with just one regex.

Popular Text Editors

Most modern text editors have at least basic support for regular expressions. In the
search or search-and-replace panel, you’ll typically find a checkbox to turn on regular
expression mode. Some editors, such as EditPad Pro, also use regular expressions for
various features that process text, such as syntax highlighting or class and function lists.
The documentation with each editor explains all these features. Some popular text
editors with regular expression support include:

* BBEdit (PCRE)

¢ Boxer Text Editor (PCRE)

* Dreamweaver (JavaScript)

¢ EditPad Pro (custom flavor that combines the best of the flavors discussed in this
book; labeled “JGsoft” in RegexBuddy)

* Multi-Edit (PCRE, if you select the “Per]” option)
* Nisus Writer Pro (Ruby 1.9 [Oniguruma])

* Notepad++ (PCRE)

¢ NoteTab (PCRE)

e UltraEdit (PCRE)

* TextMate (Ruby 1.9 [Oniguruma])

26 | Chapter1: Introduction to Regular Expressions

Download from Wow! eBook <www.wowebook.com>

CHAPTER 2
Basic Regular Expression Skills

The problems presented in this chapter aren’t the kind of real-world problems that your
boss or your customers ask you to solve. Rather, they’re technical problems you’ll
encounter while creating and editing regular expressions to solve real-world problems.
The first recipe, for example, explains how to match literal text with a regular expres-
sion, and how to deal with characters that have special meanings in regular expressions.
This isn’t a goal on its own, because you don’t need a regex when all you want to do
is to search for literal text. But when creating a regular expression, you’ll likely need it
to match certain text literally, and you’ll need to know which characters to escape.
Recipe 2.1 tells you how.

The recipes start out with very basic regular expression techniques. If you’ve used reg-
ular expressions before, you can probably skim or even skip them. The recipes further
along in this chapter will surely teach you something new, unless you have already read
Mastering Regular Expressions by Jeffrey E.F. Friedl (O’Reilly) cover to cover.

We devised the recipes in this chapter in such a way that each explains one aspect of
the regular expression syntax. Together, they form a comprehensive tutorial to regular
expressions. Read it from start to finish to get a firm grasp of regular expressions. Or
dive right in to the real-world regular expressions in Chapters 4 through 9, and follow
the references back to this chapter whenever those chapters use some syntax you’re not
familiar with.

This tutorial chapter deals with regular expressions only and completely ignores any
programming considerations. The next chapter is the one with all the code listings. You
can peek ahead to “Programming Languages and Regex Flavors” in Chapter 3 to find
out which regular expression flavor your programming language uses. The flavors
themselves, which this chapter talks about, were introduced in “Regex Flavors Covered
by This Book” on page 3.

27

http://oreilly.com/catalog/9780596528126

2.1 Match Literal Text

Problem

Create a regular expression to exactly match this gloriously contrived sentence: The
punctuation characters in the ASCII table are: !"#$%&' ()*+,-./:;<=>20[\]*_“{|}~.

This is intended to show which characters have special meaning in regular expressions,
and which characters always match themselves literally.

Solution

This regular expression matches the sentence stated in the problem:

Theepunctuation®characterseinethe®ASCIIetable®are: o«
PS8 N\ VF\+, -\ /5 <>\ 2NN\ T\ [

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Any regular expression that does not include any of the dozen characters $()*+.?
[*{| simply matches itself. To find whether Mary had a little lamb in the text you’'re
editing, simply search for (Maryehadeaelittleelamb>. It doesn’t matter whether the
“regular expression” checkbox is turned on in your text editor.

The 12 punctuation characters that make regular expressions work their magic are
called metacharacters. If you want your regex to match them literally, you need to
escape them by placing a backslash in front of them. Thus, the regex: \$\(\)*\+\.\?

\[\\\"\{\ > matches the text $()*+.2[*{].

Notably absent from the list are the closing square bracket], the hyphen -, and the
closing curly bracket }. The first two become metacharacters only after an unescaped
[, and the } only after an unescaped {. There’s no need to ever escape }. Metacharacter
rules for the blocks that appear between [and] are explained in Recipe 2.3.

Escaping any other nonalphanumeric character does not change how your regular ex-
pression works—at least not when working with any of the flavors discussed in this
book. Escaping an alphanumeric character may give it a special meaning or throw a
Syntax error.

People new to regular expressions often escape every punctuation character in sight.
Don’t let anyone know you’re a newbie. Escape judiciously. A jungle of needless back-
slashes makes regular expressions hard to read, particularly when all those backslashes
have to be doubled up to quote the regex as a literal string in source code.

28 | Chapter2: BasicRegular Expression Skills

Variations

Block escape

We can make our solution easier to read when using a regex flavor that supports a
feature called block escape:

Theepunctuation®characterseinethe®ASCIIetable®are: e«
\Q!#E%& ()*F+,-./:;<=>20[\]"_{|}™\E

Regex options: None

Regex flavors: Java 6, PCRE, Perl

Perl, PCRE and Java support the regex tokens <\Q and <\E>. <\\Q> suppresses the meaning
of all metacharacters, including the backslash, until <\E>. If you omit <\E, all characters
after the (\Q@ until the end of the regex are treated as literals.

The only benefit of <\\Q...\E> is that it is easier to read than <\.\.\.>.
Though Java 4 and 5 support this feature, you should not use it. Bugs

in the implementation cause regular expressions with <\\Q-*-\E> to match
different things from what you intended, and from what PCRE, Perl, or

Java 6 would match. These bugs were fixed in Java 6, making it behave
the same way as PCRE and Perl.

Case-insensitive matching

By default, regular expressions are case sensitive. <regex> matches regex but not Regex,
REGEX, or ReGeX. To make <regex> match all of those, you need to turn on case
insensitivity.

In most applications, that’s a simple matter of marking or clearing a checkbox. All
programming languages discussed in the next chapter have a flag or property that you
can set to make your regex case insensitive. Recipe 3.4 in the next chapter explains how
to apply the regex options listed with each regular expression solution in this book in
your source code.
ascii
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you cannot turn on case insensitivity outside the regex, you can do so within by using
the «(?1)> mode modifier, such as «(?i)regex>. This works with the .NET, Java, PCRE,
Perl, Python, and Ruby flavors. It works with JavaScript when using the XRegExp
library.

(?i)ascii
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

2.1 Match Literal Text | 29

.NET, Java, PCRE, Perl, and Ruby support local mode modifiers, which affect only part
of the regular expression. «sensitive(?i)caseless(?-i)sensitive> matches sensitive
CASELESSsensitive but not SENSITIVEcaselessSENSITIVE. «(?i)> turns on case
insensitivity for the remainder of the regex, and «(?-i)» turns it off for the remainder
of the regex. They act as toggle switches.

Recipe 2.9 shows how to use local mode modifiers with groups instead of toggles.

See Also

Recipe 2.3 explains character classes. The metacharacters inside character classes are
different from those outside character classes.

Recipe 5.14 demonstrates how to use a regular expression to escape all metacharacters
in a string. Doing so converts the string into a regular expression that matches the string
literally.

“Example JavaScript solution” on page 334 in Recipe 5.2 shows some sample Java-
Script code for escaping all regex metacharacters. Some programming languages have
a built-in command for this.

2.2 Match Nonprintable Characters

Problem

Match a string of the following ASCII control characters: bell, escape, form feed, line
feed, carriage return, horizontal tab, vertical tab. These characters have the hexadeci-
mal ASCII codes 07, 1B, 0C, 0A, 0D, 09, 0B.

This demonstrates the use of escape sequences and how to reference characters by their
hexadecimal codes.

Solution
\a\e\f\n\r\t\v

Regex options: None

Regex flavors: .NET, Java, PCRE, Python, Ruby
\x07\x1B\f\n\r\t\v

Regex options: None

Regex flavors: .NET, Java, JavaScript, Python, Ruby
\a\e\f\n\r\t\xoB

Regex options: None

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

30 | Chapter2: BasicRegular Expression Skills

Discussion

Seven of the most commonly used ASCII control characters have dedicated escape se-
quences. These all consist of a backslash followed by a letter. This is the same syntax
that is used by string literals in many programming languages. Table 2-1 shows the
common nonprinting characters and how they are represented.

Table 2-1. Nonprinting characters

Representation Meaning Hexadecimal representation Regex flavors

Aa bell 0x07 .NET, Java, PCRE, Perl, Python, Ruby

Ae> escape 0x1B .NET, Java, PCRE, Perl, Ruby

AP form feed 0x0C .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
Anm line feed (newline) ~ 0x0A .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
A carriage return 0x0D .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
At horizontal tab 0x09 .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
Aw vertical tab 0x0B .NET, Java, JavaScript, Python, Ruby

In Perl 5.10 and later, and PCRE 7.2 and later, <\v> does match the vertical tab. In these
flavors <\\v> matches all vertical whitespace. That includes the vertical tab, line breaks,
and the Unicode line and paragraph separators. So for Perl and PCRE we have to use
a different syntax for the vertical tab.

JavaScript does not support <\a> and <\e>. So for JavaScript too we need a separate
solution.

These control characters, as well as the alternative syntax shown in the following sec-
tion, can be used equally inside and outside character classes in your regular expression.

Variations on Representations of Nonprinting Characters

The 26 control characters

Here’s another way to match the same seven ASCII control characters matched by the
regexes earlier in this recipe:

\cG\x1B\cL\cI\cM\cI\cK
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Ruby 1.9

Using <\cA> through <\c2>, you can match one of the 26 control characters that occupy
positions 1 through 26 in the ASCII table. The ¢ must be lowercase. The letter that
follows the c is case insensitive in most flavors. We recommend that you always use an
uppercase letter. Java requires this.

2.2 Match Nonprintable Characters | 31

This syntax can be handy if you’re used to entering control characters on console sys-
tems by pressing the Control key along with a letter. On a terminal, Ctrl-H sends a
backspace. In a regex, <\cH> matches a backspace.

Python and the classic Ruby engine in Ruby 1.8 do not support this syntax. The Oni-
guruma engine in Ruby 1.9 does.

The escape control character, at position 27 in the ASCII table, is beyond the reach of
the English alphabet, so we leave it as (\\x1B> in our regular expression.

The 7-bit character set

Following is yet another way to match our list of seven commonly used control
characters:

\x07\x1B\x0C\x0A\x0D\x09\x0B
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

A lowercase \x followed by two uppercase hexadecimal digits matches a single char-
acter in the ASCII set. Figure 2-1 shows which hexadecimal combinations from
A\x00> through (\x7F> match each character in the entire ASCII character set. The table
is arranged with the first hexadecimal digit going down the left side and the second
digit going across the top.

0o 1 2 3 4 5 6 7 8 9 A B C D E F
0 [NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VI FF CR SO SI
1 | DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2/ " & $ % & ' () * + , - ./
3fo 1 2 3 4 5 6 7 8 9 : 5 < = > 7
4, @ A B C D E F G H I J K L M N O
5P @ R S T U V W X Y zZ [\ 1 ~ _
6/ a b ¢ d e f g h i j k 1 m n o
71p q r s t u v w x y z { | } ~ DEL

Figure 2-1. ASCII table

The characters that (\\x80> through <\xFF> match depends on how your regex engine
interprets them, and which code page your subject text is encoded in. We recommend
that you not use (\x80> through (\xFF>. Instead, use the Unicode code point token
described in Recipe 2.7.

32 | Chapter2: BasicRegular Expression Skills

If you’re using Ruby 1.8 or you compiled PCRE without UTF-8 support,
"*% you cannot use Unicode code points. Ruby 1.8 and PCRE without
UTF-8 are 8-bit regex engines. They are completely ignorant about text
encodings and multibyte characters. <\\xAA> in these engines simply

matches the byte 0xAA, regardless of which character OxAA happens to
represent or whether OxAA is part of a multibyte character.

See Also

Recipe 2.7 explains how to make a regex match particular Unicode characters. If your
regex engine supports Unicode, you can match nonprinting characters that way too.

2.3 Match One of Many Characters

Problem

Create one regular expression to match all common misspellings of calendar, so you
can find this word in a document without having to trust the author’s spelling ability.
Allow an a or e to be used in each of the vowel positions. Create another regular ex-
pression to match a single hexadecimal character. Create a third regex to match a single
character that is not a hexadecimal character.

The problems in this recipe are used to explain an important and commonly used regex
construct called a character class.

Solution

Calendar with misspellings

c[ae]l[ae]nd[ae]r
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hexadecimal character
[a-fA-F0-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Nonhexadecimal character
[*a-fA-F0-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

2.3 Match One of Many Characters | 33

Discussion

The notation using square brackets is called a character class. A character class matches
a single character out of a list of possible characters. The three classes in the first regex
match either an a or an e. They do so independently. When you test calendar against
this regex, the first character class matches a, the second g, and the third a.

Inside a character class, only four characters have a special function: \, #, -, and]. If
you’re using Java or .NET, the opening bracket [is also a metacharacter inside character
classes.

Abackslash always escapes the character that follows it, just as it does outside character
classes. The escaped character can be a single character, or the start or end of a range.
The other four metacharacters get their special meanings only when they’re placed in
a certain position. It is possible to include them as literal characters in a character class
without escaping them, by positioning them in a way that they don’t get their special
meaning. <[][*-]> pulls off this trick. This works with all flavors in this book, except
JavaScript. JavaScript treats <[]> as an empty character class that always fails to match.
But we recommend that you always escape these metacharacters, so the previous regex
should be ([\]J\[\"\-]>. Escaping the metacharacters makes your regular expression
easier to understand.

All other characters are literals and simply add themselves to the character class. The
regular expression <[$()*+.?{|]> matches any one of the nine characters between the
square brackets. These nine characters only have special meanings outside character
classes. Inside character classes they are just literal text. Escaping them would only
make your regular expression harder to read.

Alphanumeric characters cannot be escaped with a backslash. Doing so may be an error
or may create a regular expression token (something with a special meaning in a regular
expression). In our discussions of certain other regex tokens, such as in Recipe 2.2, we
mention that they can be used inside character classes. All these tokens consist of a
backslash and a letter, sometimes followed by a bunch of other characters. Thus, [\r
\n]> matches a carriage return (\r) or line feed (\n).

A caret (") negates the character class if you place it immediately after the opening
bracket. It makes the character class match any character that is not in the list.

In all the regex flavors discussed in this book, a negated character class
“% matches line break characters, unless you add them to the negated char-

acter class. Make sure that you don’t accidentally allow your regex to
span across lines.

A hyphen (-) creates a range when it is placed between two characters. The range
includes the character before the hyphen, the character after the hyphen, and all char-
acters that lie between them in numerical order. To know which characters those are,
you have to look at the ASCII or Unicode character table. <[A-z]> includes all characters

34 | Chapter2: BasicRegular Expression Skills

in the ASCII table between the uppercase A and the lowercase z. The range includes
some punctuation, so <[A-Z\[\\\]*_“a-z]> matches the same characters more explic-
itly. We recommend that you create ranges only between two digits or between two
letters that are both upper- or lowercase.

W
. “
a)
DY
15

Reversed ranges, such as <[z-a]», are not permitted.

Variations

Shorthands

Six regex tokens that consist of a backslash and a letter form shorthand character
classes: \d>, \D>, A\w>, \W>, <\s> and <\S>. You can use these both inside and outside
character classes. Each lowercase shorthand character has an associated uppercase
shorthand character with the opposite meaning.

A\d> and «[\d]> both match a single digit. <\\D> matches any character that is not a digit,
and is equivalent to <[*\d]>.

Here is how we can use the (\d> shorthand to rewrite the “hexadecimal character” regex
from earlier in this recipe:

[a-fA-F\d]
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Aw> matches a single word character. A word character is a character that can occur as
part of a word. That includes letters, digits, and the underscore. The particular choice
of characters here may seem odd, but it was chosen because these are the characters
that are typically allowed in identifiers in programming languages. <\W> matches any
character that is not part of such a propellerhead word.

In Java 4 to 6, JavaScript, PCRE, and Ruby, \\w> is always identical to <[a-zA-Z0-9_]>.
In .NET, it includes letters and digits from all other scripts (Cyrillic, Thai, etc.). In Java
7, the other scripts are included only if you set the UNICODE_CHARACTER_CLASS flag. In
Python 2.x, the other scripts are included only if you pass the UNICODE or U flag when
creating the regex. In Python 3.x the other scripts are included by default, but you can
make (\w> ASCII-only with the ASCII or A flag. In Perl 5.14, the /a (ASCII) flag makes
\w> identical to <[a-zA-Z0-9_]>, while /u (Unicode) adds all Unicode scripts, and /1
(locale) makes \\w> depend on the locale. Prior to Perl 5.14, or when using /d (default)
or none of the /adlu flags in Perl 5.14, \w> automatically includes Unicode scripts if
the subject string or the regex are encoded as UTF-8, or the regex includes a code point
above 255 such as \\x{100}> or a Unicode property such as <\p{L}>. If not, the default
for A\w» is pure ASCIL.

2.3 Match One of Many Characters | 35

Ad> follows the same rules as <\w> in all these flavors. In .NET, digits from other scripts
are always included. In Python it depends on the UNICODE and ASCII flags, and whether
you’re using Python 2.x or 3.x. In Perl 5.14, it depends on the /adlu flags. In earlier
versions of Perl, it depends on the encoding of the subject and regex, and whether the
regex has any Uncicode tokens.

\s> matches any whitespace character. This includes spaces, tabs, and line breaks.
A\S> matches any character not matched by <\s> In .NET and JavaScript, <\s> also
matches any character defined as whitespace by the Unicode standard. In Java, Perl,
and Python, <\s> follows the same rules as (\w> and \d.

Notice that JavaScript uses Unicode for <\s> but ASCII for <\d> and <\\w>. Further in-
consistency arises when we add <\b> to the mix. <\b> is not a shorthand character class,
but a word boundary. Though you’d expect <\b> to support Unicode when \w> does
and to be ASCII-only when <\w> is ASCII-only, this isn’t always the case. The subsection
“Word Characters” on page 47 in Recipe 2.6 has the details.

(Case insensitivity
(?1)[A-F0-9]
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby
(?i)[~A-Fo0-9]
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Case insensitivity, whether set with an external flag (see Recipe 3.4) or a mode modifier
inside the regex (see “Case-insensitive matching” on page 29 in Recipe 2.1), also affects
character classes. The two regexes just shown are equivalent to the ones in the original
solution.

JavaScript follows the same rule, but it doesn’t support ¢(?1)>. To make a regular ex-
pression case-insensitive in JavaScript, set the /i flag when creating it. Or use the XRe-
gExp library for JavaScript, which adds support for mode modifiers at the start of the
regex.

Flavor-Specific Features

.NET character class subtraction
[a-zA-Z0-9-[g-2G-Z]]
Regex options: None
Regex flavors: .NET 2.0 or later

This regular expression matches a single hexadecimal character, but in a roundabout
way. The base character class matches any alphanumeric character, and a nested class

36 | Chapter2: BasicRegular Expression Skills

then subtracts the letters g through z. This nested class must appear at the end of the
base class, preceded by a hyphen, as shown here: <[class-[subtract]]>.

Character class subtraction is particularly useful when working with Unicode cate-
gories, blocks, and scripts. As an example, \\p{IsThai}> matches any character in the
Thai block. <\P{N}»> matches any character that is not in the Number category. Com-
bining them with subtraction, <[\p{IsThai}-[\P{N}]]> matches any of the 10 Thai
digits using character class subtraction. Recipe 2.7 has all the details on working with
Unicode properties.

Java character class union, intersection, and subtraction

Java allows one character class to be nested inside another. If the nested class is included
directly, the resulting class is the union of the two. You can nest as many classes as you
like. The regexes <[a-f[A-F][0-9]]> and <[a-f[A-F[0-9]]]> use character class union.
They match a hexadecimal digit just like the original regex without the extra square
brackets.

The regex <[\w8&[a-fA-F0-9\s]]> uses character class intersection to match a hexadec-
imal digit. It could win a prize in a regex obfuscation contest. The base character class
<[\w]> matches any word character. The nested class «[a-fA-F0-9\s]> matches any hex-
adecimal digit and any whitespace character. The resulting class is the intersection of
the two, matching hexadecimal digits and nothing else. Because the base class does not
match whitespace and the nested class does not match «[g-zG-Z_]», those are dropped
from the final character class, leaving only the hexadecimal digits.

<[a-zA-Z0-988&[*g-2zG-Z]]> uses character class subtraction to match a single hexadeci-
mal character in a roundabout way. The base character class <[a-zA-Z0-9]> matches
any alphanumeric character. The nested class <[*g-zG-Z]> then subtracts the letters g
through z. This nested class must be a negated character class, preceded by two am-
persands, as shown here: «[class88&[*subtract]]>.

Character class intersection and subtraction are particularly useful when working with
Unicode properties, blocks, and scripts. Thus, <\p{InThai}> matches any character in
the Thai block, whereas <\p{N}> matches any character that is in the Number category.
In consequence, <[\p{InThai}&&[\p{N}]]> matches any of the 10 Thai digits using char-
acter class intersection.

If you’re wondering about the subtle differences in the <\p> regex tokens, you’ll find
those all explained in Recipe 2.7. Recipe 2.7 has all the details on working with Unicode
properties.

See Also

Recipe 2.2 explains how to match nonprinting characters. Recipe 2.7 explains how to
match Unicode characters. You can use the syntax for nonprinting and Unicode char-
acters inside character classes.

2.3 Match One of Many Characters | 37

“Bat, cat, or rat” on page 338 in Recipe 5.3 describes some common character class
mistakes made by people who are new to regular expressions.

2.4 Match Any Character

This recipe explains the ins and outs of the dot metacharacter.

Problem

Match a quoted character. Provide one solution that allows any single character, except
a line break, between the quotes. Provide another that truly allows any character, in-
cluding line breaks.

Solution

Any character except line breaks

Regex options: None (the “dot matches line breaks” option must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Any character including line breaks
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

"[\s\s]"'
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Any character except line breaks

The dot is one of the oldest and simplest regular expression features. Its meaning has
always been to match any single character.

There is, however, some confusion as to what any character truly means. The oldest
tools for working with regular expressions processed files line by line, so there was
never an opportunity for the subject text to include a line break. The programming
languages discussed in this book process the subject text as a whole, no matter how
many line breaks you put into it. If you want true line-by-line processing, you have to
write a bit of code that splits the subject into an array of lines and applies the regex to
each line in the array. Recipe 3.21 in the next chapter shows how to do this.

38 | Chapter2: BasicRegular Expression Skills

Larry Wall, the developer of Perl, wanted Perl to retain the traditional behavior of line-
based tools, in which the dot never matched a line break. All the other flavors discussed
in this book followed suit. <.> thus matches any single character except line break
characters.

Any character including line breaks

If you do want to allow your regular expression to span multiple lines, turn on the “dot
matches line breaks” option. This option masquerades under different names. Perl and
many others confusingly call it “single line” mode, whereas Java calls it “dot all” mode.
Recipe 3.4 in the next chapter has all the details. Whatever the name of this option in
your favorite programming language is, think of it as “dot matches line breaks” mode.
That’s all the option does.

An alternative solution is needed for JavaScript, which doesn’t have a “dot matches
line breaks” option. As Recipe 2.3 explains, <\s> matches any whitespace character,
whereas <\S» matches any character that is not matched by <\s>. Combining these into
<[\s\S]> results in a character class that includes all characters, including line breaks.
<[\d\D]> and <[\w\W]> have the same effect.

Dot abuse

The dot is the most abused regular expression feature. <\d\d.\d\d.\d\d> is not a good
way to match a date. It does match 05/16/08 just fine, but it also matches 99/99/99.
Worse, it matches 12345678.

A proper regex for matching only valid dates is a subject for a later chapter (see
Recipe 4.5). But replacing the dot with a more appropriate character class is very easy.
Ad\d[/.\-1\d\d[/.\-1\d\d> allows a forward slash, dot, or hyphen to be used as the
date separator. This regex still matches 99/99/99, but not 12345678.

B
)

It’s just a coincidence that the previous example includes a dot inside
the character classes. Inside a character class, the dot is just a literal
s character. It’s worth including in this particular regular expression be-
" cause in some countries, such as Germany, the dot is used as a date
separator.

Use the dot only when you really want to allow any character. Use a character class or
negated character class in any other situation.

Variations

Here’s how to match any quoted character, including line breaks, with the help of an
inline mode modifier:

(?2s)"."

Regex options: None

2.4 Match Any Character | 39

Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python
(m)'.'

Regex options: None

Regex flavors: Ruby

If you cannot turn on “dot matches line breaks” mode outside the regular expression,
you can place a mode modifier at the start of the regular expression. We explain the
concept of mode modifiers, and JavaScript’s lack of support for them, in the subsection
“Case-insensitive matching” on page 29 in Recipe 2.1.

«(?s)> is the mode modifier for “dot matches line breaks” mode in .NET, Java, XRe-
gExp, PCRE, Perl, and Python. The s stands for “single line” mode, which is Perl’s
confusing name for “dot matches line breaks.”

The terminology is so confusing that the developer of Ruby’s regex engine copied it
wrongly. Ruby uses «<(?m)> to turn on “dot matches line breaks” mode. Other than the
different letter, the functionality is exactly the same. The new engine in Ruby 1.9 con-
tinues to use <(?m)> for “dot matches line breaks.” Perl’s very different meaning for <(?
m)> is explained in Recipe 2.5.

See Also

In many cases, you don’t want to match truly any character, but rather any character
except a select few. Recipe 2.3 explains how to do that.

Recipe 3.4 explains how to set options such as “dot matches line breaks” in your source
code.

When working with Unicode text, you may prefer to use <\X> to match a Unicode
grapheme instead of the dot which matches a Unicode code point. Recipe 2.7 explains
this in detail.

2.5 Match Something at the Start and/or the End of a Line

Problem

Create four regular expressions. Match the word alpha, but only if it occurs at the very
beginning of the subject text. Match the word omega, but only if it occurs at the very
end of the subject text. Match the word begin, but only if it occurs at the beginning of
a line. Match the word end, but only if it occurs at the end of a line.

Solution

Start of the subject

~alpha
Regex options: None (“” and $ match at line breaks” must not be set)

40 | Chapter2: Basic Regular Expression Skills

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
\Aalpha

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

End of the subject
omega$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
omega\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Start of a line
“begin
Regex options: ™ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

End of a line

end$
Regex options: ™ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Anchors and lines

The regular expression tokens <», ¢$», \A», \2», and <\z> are called anchors. They do
not match any characters. Instead, they match at certain positions, effectively anchoring
the regular expression match at those positions.

A line is the part of the subject text that lies between the start of the subject and a line
break, between two line breaks, or between a line break and the end of the subject. If
there are no line breaks in the subject, then the whole subject is considered to be one
line. Thus, the following text consists of four lines, one each for one, two, an empty
string, and four:

one
two

four

The text could be represented in a program as one|LFftwo|LF|LF|four.

2.5 Match Something at the Start and/or the End of aLine | 41

Start of the subject

The anchor \A> always matches at the very start of the subject text, before the first
character. Thatis the only place where it matches. Place <\A> at the start of your regular
expression to test whether the subject text begins with the text you want to match. The
“A” must be uppercase.

JavaScript does not support <\A>.

The anchor «* is equivalent to <\A>, as long as you do not turn on the “ and $ match

at line breaks” option. This option is off by default for all regex flavors except Ruby.
Ruby does not offer a way to turn this option off.

Unless you’re using JavaScript, we recommend that you always use <\A> instead of
«*y. The meaning of <\A> never changes, avoiding any confusion or mistakes in setting
regex options.

End of the subject

The anchors (\2> and <\z> always match at the very end of the subject text, after the last
character. Place <\2> or (\z> at the end of your regular expression to test whether the
subject text ends with the text you want to match.

.NET, Java, PCRE, Perl, and Ruby support both (\\2> and (\z>. Python supports only
A\2>. JavaScript does not support <\2> or <\z> at all.

The difference between (\2> and <\\z> comes into play when the last character in your
subject text is a line break. In that case, <\Z> can match at the very end of the subject
text, after the final line break, as well as immediately before that line break. The benefit
is that you can search for <omega\z> without having to worry about stripping off a trailing
line break at the end of your subject text. When reading a file line by line, some tools
include the line break at the end of the line, whereas others don’t; <\Z> masks this
difference. <\\z> matches only at the very end of the subject text, so it will not match
text if a trailing line break follows.

The anchor <$» is equivalent to <\2», as long as you do not turn on the “” and $ match

at line breaks” option. This option is off by default for all regex flavors except Ruby.
Ruby does not offer a way to turn this option off. Just like (\2>, <$> matches at the very
end of the subject text, as well as before the final line break, if any.

To help clarify this subtle and somewhat confusing situation, let’s look at an example
in Perl. Assuming that $/ (the current record separator) is set to its default \n, the
following Perl statement reads a single line from the terminal (standard input):

$line = <>;
Perl leaves the newline on the content of the variable $line. Therefore, an expression

such as <endeofeinput.\z> will not match the variable. But <endeofeinput.\z> and
endeofeinput.$> will both match, because they ignore the trailing newline.

42 | Chapter2: Basic Regular Expression Skills

Download from Wow! eBook <www.wowebook.com>

To make processing easier, Perl programmers often strip newlines with:
chomp $line;

After that operation is performed, all three anchors will match. (Technically, chomp
strips a string of the current record separator.)

Unless you’re using JavaScript, we recommend that you always use «\Z> instead of
«$>. The meaning of <\\2Z> never changes, avoiding any confusion or mistakes in setting
regex options.

Start of a line

By default, <*> matches only at the start of the subject text, just like <\A>. Only in Ruby
does *» always match at the start of a line. All the other flavors require you to turn on
the option to make the caret and dollar sign match at line breaks. This option is typically
referred to as “multiline” mode.

Do not confuse this mode with “single line” mode, which would be better known as
“dot matches line breaks” mode. “Multiline” mode affects only the caret and dollar
sign; “single line” mode affects only the dot, as Recipe 2.4 explains. It is perfectly pos-
sible to turn on both “single line” and “multiline” mode at the same time. By default,
both options are off.

With the correct option set, «*> will match at the start of each line in the subject text.
Strictly speaking, it matches before the very first character in the file, as it always does,
and also after each line break character in the subject text. The caret in <\n*» is redun-
dant because *» always matches after <\n.

End of a line

By default, <$» matches only at the end of the subject text or before the final line break,
just like <\2>. Only in Ruby does «$> always match at the end of each line. All the other
flavors require you to turn on the “multiline” option to make the caret and dollar match
at line breaks.

With the correct option set, <$> will match at the end of each line in the subject text.
(Of course, it also matches after the very last character in the text because that is always
the end of a line as well.) The dollar in «$\n> is redundant because $> always matches
before \n.

Zero-length matches

It is perfectly valid for a regular expression to consist of nothing but one or more an-
chors. Such a regular expression will find a zero-length match at each position where
the anchor can match. If you place several anchors together, all of them need to match
at the same position for the regex to match.

2.5 Match Something at the Start and/or the End of aLine | 43

You could use such a regular expression in a search-and-replace. Replace \A> or \2»
to prepend or append something to the whole subject. Replace <* or «$», in “” and $
match at line breaks” mode, to prepend or append something in each line in the subject
text.

Combine two anchors to test for blank lines or missing input. <\\A\Z> matches the empty
string, as well as the string that consists of a single newline. <\A\z> matches only the
empty string. <*$>, in “~ and $ match at line breaks” mode, matches each empty line
in the subject text.

Variations

(?m)~begin
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python

(?m)end$
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python

If you cannot turn on “” and $ match at line breaks” mode outside the regular expres-

sion, you can place a mode modifier at the start of the regular expression. The concept
of mode modifiers and JavaScript’s lack of support for them are both explained in the
subsection “Case-insensitive matching” on page 29 under Recipe 2.1.

<(?m)> is the mode modifier for “~ and $ match at line breaks” mode in .NET, Java,

XRegExp, PCRE, Perl, and Python. The m stands for “multiline” mode, which is Perl’s
confusing name for “ and $ match at line breaks.”

As explained earlier, the terminology was so confusing that the developer of Ruby’s
regex engine copied it incorrectly. Ruby uses ¢(?m)> to turn on “dot matches line breaks”
mode. Ruby’s <«(?m)> has nothing to do with the caret and dollar anchors. In Ruby,
«» and «$» always match at the start and end of each line.

Except for the unfortunate mix-up in letters, Ruby’s choice to use «*» and $» exclusively
for lines is a good one. Unless you’re using JavaScript, we recommend that you copy
this choice in your own regular expressions.

Jan Goyvaerts followed the same idea in his designs of EditPad Pro and PowerGREP.
You won’t find a checkbox labeled “~ and $ match at line breaks,” even though there
is one labeled “dot matches line breaks.” Unless you prefix your regular expression
with «(2-m)>, you’ll have to use (\A> and <\Z> to anchor your regex to the beginning or
end of your file.

See Also

Recipe 3.4 explains how to set options such as “” and $ match at line breaks” in your
source code.

44 | Chapter2: Basic Regular Expression Skills

Recipe 3.21 shows how to use procedural code to really make a regex process some
text line by line.

2.6 Match Whole Words

Problem

Create a regex that matches cat in My cat is brown, but not in category or bobcat.
Create another regex that matches cat in staccato, but not in any of the three previous
subject strings.

Solution

Word boundaries

\bcat\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Nonboundaries

\Bcat\B
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Word boundaries

The regular expression token «\b» is called a word boundary. It matches at the start or
the end of a word. By itself, it results in a zero-length match. <\b> is an anchor, just like
the tokens introduced in the previous section.

Strictly speaking, <\b> matches in these three positions:

* Before the first character in the subject, if the first character is a word character
* After the last character in the subject, if the last character is a word character

* Between two characters in the subject, where one is a word character and the other
is not a word character

To run a “whole words only” search using a regular expression, simply place the word
between two word boundaries, as we did with <\bcat\b>. The first <\b> requires the
<o to occur at the very start of the string, or after a nonword character. The second
\b> requires the «t» to occur at the very end of the string, or before a nonword character.

2.6 Match Whole Words | 45

Line break characters are nonword characters. <\\b> will match after a line break if the
line break is immediately followed by a word character. It will also match before a line
break immediately preceded by a word character. So a word that occupies a whole line
by itself will be found by a “whole words only” search. <\b> is unaffected by “multiline”
mode or «(?m)>, which is one of the reasons why this book refers to “multiline” mode

as “” and $ match at line breaks” mode.

None of the flavors discussed in this book have separate tokens for matching only before
or only after a word. Unless you wanted to create a regex that consists of nothing but
aword boundary, these aren’t needed. The tokens before or after the <\b> in your regular
expression will determine where <\b> can match. The <\b> in <\bx> and <!\b> could match
only at the start of a word. The (\b» in «x\b> and <\b!> could match only at the end of a
word. «<x\bx> and <!\b!> can never match anywhere.

If you really want to match only the position before a word or only after a word, you
can do so with lookahead and lookbehind. Recipe 2.16 explains lookahead and look-
behind. This method does not work with JavaScript and Ruby 1.8 because these flavors
do not support lookbehind. The regex «(?<!\w) (?=\w)> matches the start of a word by
checking that the character before the match position is not a word character, and that
the character after the match position is a word character. «(?<=\w) (?!\w)> does the
opposite: it matches the end of the word by checking that the preceding character is a
word character, and that the following character is not a word character. It’s important
to use negative lookaround with <\w> rather than positive lookaround with \\W> to check
for the absence of a word character. «(?<!\w)> matches at the start of the string because
there is no word character (or any character at all) before the start of the string. But
<(?2<=\W)> never matches at the start of the string. <(?!\w)> matches at the end of the
string for the same reason. So our two lookaround constructs will correctly match the
start of the string if the string begins with a word and the end of the string if it ends
with a word.

Nonboundaries

<\B> matches at every position in the subject text where <\b> does not match. <\B
matches at every position that is not at the start or end of a word.

Strictly speaking, <\B> matches in these five positions:
* Before the first character in the subject, if the first character is not a word character
* After the last character in the subject, if the last character is not a word character
* Between two word characters
* Between two nonword characters
* The empty string

<\Bcat\B> matches cat in staccato, but notin My cat is brown, category, or bobcat.

46 | Chapter2: Basic Regular Expression Skills

To do the opposite of a “whole words only” search (i.e., excluding My cat is brown
and including staccato, category, and bobcat), you need to use alternation to combine
<\Bcat> and «cat\B> into <\Bcat|cat\B>. «\Bcat> matches cat in staccato and bobcat.
<cat\B> matches cat in category (and staccato if <\\Bcat> hadn’t already taken care of
that). Recipe 2.8 explains alternation.

Word Characters

All this talk about word boundaries, but no talk about what a word character is. A word
character is a character that can occur as part of a word. The subsection “Short-
hands” on page 35 in Recipe 2.3 discussed which characters are included in \w>, which
matches a single word character. Unfortunately, the story is not the same for (\b>.

Although all the flavors in this book support <\\b> and <\B>, they differ in which char-
acters are word characters.

.NET, JavaScript, PCRE, Perl, Python, and Ruby have <\b> match between two char-
acters where one is matched by <\\w> and the other by (\W>. (\B> always matches between
two characters where both are matched by <\w> or <\W>.

JavaScript, PCRE, and Ruby view only ASCII characters as word characters. A\w> is
identical to <[a-zA-Z0-9_]>. With these flavors, you can do a “whole words only” search
on words in languages that use only the letters A to Z without diacritics, such as English.
But these flavors cannot do “whole words only” searches on words in other languages,
such as Spanish or Russian.

NET treats letters and digits from all scripts as word characters. You can do a “whole
words only” search on words in any language, including those that don’t use the Latin
alphabet.

Python gives you an option. In Python 2.x, non-ASCII characters are included only if
you pass the UNICODE or U flag when creating the regex. In Python 3.x, non-ASCII char-
acter are included by default, but you can exclude them with the ASCII or A flag. This
flag affects both <\b> and \w> equally.

In Perl, it depends on your version of Perl and /adlu flags whether \w> is pure ASCII
or includes all Unicode letters, digits, and underscores. The subsection “Short-
hands” on page 35 in Recipe 2.3 explains this in more detail. In all versions of Perl,
A\b» is consistent with \w>.

Java behaves inconsistently. <\w> matches only ASCII characters in Java 4 to 6. In Java
7, \w> matches only ASCII characters by default, but matches Unicode characters if
you set the UNICODE_CHARACTER_CLASS flag. But <\b> is Unicode-enabled in all versions of
Java, supporting any script. In Java 4 to 6, \\b\w\b> matches a single English letter, digit,
orunderscore that does not occur as part of a word in any language. (\bxomxa\b> always
correctly matches the Russian word for cat in Java, because <\b> supports Unicode. But
Aw+> will not match any Russian word in Java 4 to 6, because <\w> is ASCII-only.

2.6 Match Whole Words | 47

See Also

Recipe 2.3 discusses which characters are matched by the shorthand character class
A\w> which matches a word character.

Recipe 5.1 shows how you can use word boundaries to match complete words, and
how you can work around the different behavior of word boundaries in various regex
flavors.

2.7 Unicode Code Points, Categories, Blocks, and Scripts

Problem

Use a regular expression to find the trademark sign (™) by specifying its Unicode code
point rather than copying and pasting an actual trademark sign. If you like copy and
paste, the trademark sign is just another literal character, even though you cannot type
it directly on your keyboard. Literal characters are discussed in Recipe 2.1.

Create a regular expression that matches any character is in the “Currency Symbol”
Unicode category.

Create a regular expression that matches any character in the “Greek Extended” Uni-

code block.

Create a regular expression that matches any character that, according to the Unicode
standard, is part of the Greek script.

Create a regular expression that matches a grapheme, or what is commonly thought of
as a character: a base character with all its combining marks.

Solution

Unicode code point

\u2122
Regex options: None
Regex flavors: .NET, Java, JavaScript, Python, Ruby 1.9

\U00002122
Regex options: None
Regex flavors: Python

These regexes work in Python 2.x only when quoted as Unicode strings: u"\u2122" or
u"\U00002122".

\x{2122}
Regex options: None
Regex flavors: Java 7, PCRE, Perl

48 | Chapter2: Basic Regular Expression Skills

PCRE must be compiled with UTF-8 support; in PHP, turn on UTF-8 support with
the /u pattern modifier.

\u{2122}
Regex options: None
Regex flavors: Ruby 1.9

Ruby 1.8 does not support Unicode regular expressions.

Unicode category
\p{Sc}

Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support; in PHP, turn on UTF-8 support with
the /u pattern modifier. JavaScript and Python do not support Unicode properties.
XRegExp adds support for Unicode properties to JavaScript. Ruby 1.8 does not support
Unicode regular expressions.

Unicode block

\p{IsGreekExtended}
Regex options: None
Regex flavors: .NET, Perl

\p{InGreekExtended}
Regex options: None
Regex flavors: Java, XRegExp, Perl

JavaScript, PCRE, Python, and Ruby 1.9 do not support Unicode blocks. They do
support Unicode code points, which you can use to match blocks as shown in the
“Variations” section in this recipe. XRegExp adds support for Unicode blocks to
JavaScript.

Unicode script

\p{Greek}
Regex options: None
Regex flavors: XRegExp, PCRE, Perl, Ruby 1.9

\p{IsGreek}
Regex options: None
Regex flavors: Java 7, Perl

Unicode script support requires PCRE 6.5 or later, and PCRE must be compiled with
UTF-8 support. In PHP, turn on UTF-8 support with the /u pattern modifier. .NET,
JavaScript, and Python do not support Unicode properties. XRegExp adds support for
Unicode properties to JavaScript. Ruby 1.8 does not support Unicode regular
expressions.

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 49

Unicode grapheme
\X
Regex options: None
Regex flavors: PCRE, Perl

PCRE and Perl have a dedicated token for matching graphemes. PCRE must be com-
piled with UTF-8 support; in PHP, turn on UTF-8 support with the /u pattern modifier.

(2>\P{M}P\p{m}*)
Regex options: None
Regex flavors: .NET, Java, Ruby 1.9

(2:\P{M}\p{M}*)
Regex options: None
Regex flavors: XRegExp

.NET, Java, XRegExp, and Ruby 1.9 do not have a token for matching graphemes. But
they do support Unicode categories, which we can use to emulate matching graphemes.

JavaScript (without XRegExp) and Python do not support Unicode properties. Ruby
1.8 does not support Unicode regular expressions.

Discussion

Unicode code point

A code point is one entry in the Unicode character database. A code point is not the
same as a character, depending on the meaning you give to “character.” What appears
as a character on screen is called a grapheme in Unicode.

The Unicode code point U+2122 represents the “trademark sign” character. You can
match this with \u2122>, \\u{2122}, or \x{2122}>, depending on the regex flavor
you’re working with.

The \w> syntax requires exactly four hexadecimal digits. This means you can only use
it for Unicode code points U+0000 through U+FFFF.

Au{--pand \x{ - }> allow between one and six hexadecimal digits between the braces,
supporting all code points U+000000 through U+10FFFF. You can match U+00EQ
with \x{E0}> or \\x{00E0}>. Code points U+100000 and above are used very infre-
quently. They are poorly supported by fonts and operating systems.

Python’s regular expression engine has no support for Unicode code points. Literal
Unicode strings in Python 2.x and literal text strings in Python 3.x do have escapes for
Unicode code points. \u0000 through \uFFFF represent Unicode code points U+0000
through U+FFFF. \U00000000 through \U0010FFFF represent all Unicode code points.
You have to specify eight hexadecimal numbers after \U, even though there are no
Unicode code points beyond U+10FFFF.

50 | Chapter2: BasicRegular Expression Skills

When hard-coding regular expressions as literal strings in your Python code, you can
directly use <\u2122> and «<\U00002122> in your regexes. When reading regexes from a
file or receiving them from user input, these Unicode escapes will not work if you pass
the string you read or received directly to re.compile(). In Python 2.x, you can decode
the Unicode escapes by calling string.decode('unicode-escape'). In Python 3.x you
can call string.encode('utf-8").decode('unicode-escape").

Code points can be used inside and outside character classes.

Unicode category

Each Unicode code point fits into a single Unicode category. There are 30 Unicode
categories, specified with a code consisting of two letters. These are grouped into 7
super-categories that are specified with a single letter.

Ap{L}>: Any kind of letter from any language

Ap{L1}>: A lowercase letter that has an uppercase variant

Ap{Lu}>: An uppercase letter that has a lowercase variant

Ap{Lt}>: A letter that appears at the start of a word when only the first letter of the
word is capitalized

Ap{Lm}>: A special character that is used like a letter

Ap{Lo}>: A letter or ideograph that does not have lowercase and uppercase variants
A\p{M}>: A character intended to be combined with another character (accents,
umlauts, enclosing boxes, etc.)

Ap{Mn}>: A character intended to be combined with another character that does
not take up extra space (e.g., accents, umlauts, etc.)

Ap{Mc}>: A character intended to be combined with another character that does
take up extra space (e.g., vowel signs in many Eastern languages)

\p{Me}>: A character that encloses another character (circle, square, keycap, etc.)
A\p{Z}>: Any kind of whitespace or invisible separator

Ap{Zs}>: A whitespace character that is invisible, but does take up space
Ap{z1}>: The line separator character U+2028

Ap{Zp}>: The paragraph separator character U+2029

Ap{S}>: Math symbols, currency signs, dingbats, box-drawing characters, etc.
Ap{Sm}>: Any mathematical symbol

A\p{Sc}>: Any currency sign

A\p{Sk}>: A combining character (mark) as a full character on its own

\p{So}>: Various symbols that are not math symbols, currency signs, or combining
characters

Ap{N}>: Any kind of numeric character in any script

Ap{Nd}>: A digit 0 through 9 in any script except ideographic scripts

Ap{N1}>: A number that looks like a letter, such as a Roman numeral

Ap{No}>: A superscript or subscript digit, or a number that is not a digit 0...9 (ex-
cluding numbers from ideographic scripts)

Ap{P}>: Any kind of punctuation character

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 51

Ap{Pd}>: Any kind of hyphen or dash

Ap{Ps}>: Any kind of opening bracket

Ap{Pe}>: Any kind of closing bracket

Ap{Pi}>: Any kind of opening quote

Ap{Pf}>: Any kind of closing quote

Ap{Pc}>: A punctuation character such as an underscore that connects words
Ap{Po}>: Any kind of punctuation character that is not a dash, bracket, quote or
connector

Ap{Ch: Invisible control characters and unused code points

\p{Cc}>: An ASCII or Latin-1 control character 0x00...0x1F and 0x7F...0x9F
Ap{Cf}>: An invisible formatting indicator

Ap{Co}>: Any code point reserved for private use

Ap{Cs}>: One half of a surrogate pair in UTF-16 encoding

A\p{Cn}>: Any code point to which no character has been assigned

Ap{L1}> matches a single code point that is in the L1, or “lowercase letter,” category.
Ap{L}> is a quick way of writing <[\p{L1}\p{Lu}\p{Lt}\p{Lm}\p{Lo}]> that matches a
single code point in any of the “letter” categories.

<\P» is the negated version of (\p>. <\P{L1}> matches a single code point that is not in
the L1 category. <\P{L}> matches a single code point that does not have any of the “letter”
properties. Thisis not the same as <[\P{LL}\P{Lu}\P{Lt}\P{Lm}\P{Lo} >, which matches
all code points. (\P{L1}> matches the code points in the Lu category (and every other
category except L1), whereas <\P{Lu}> includes the L1 code points. Combining just these
two in a code point class already matches all possible code points.

W N
S In Perl as well as PCRE 6.5 and later <\p{L&}»> can be used as a shorthand
.‘s‘ . for ([\p{L1}\p{Lu}\p{Lt}]> to match all letters in all scripts that distin-
ok guish between uppercase and lowercase letters.

(N

Unicode block

The Unicode character database divides all the code points into blocks. Each block
consists of a single range of code points. The code points U+0000 through U+FFFF
are divided into 156 blocks in version 6.1 of the Unicode standard:

<U+0000..U+007F \p{InBasicLatin}>

<U+0080..U+00FF \p{InLatin-1Supplement}>
<U+0100..U+017F \p{InLatinExtended-A}>
<U+0180..U+024F \p{InLatinExtended-B}>
<U+0250..U+02AF \p{InIPAExtensions}>
<U+02B0..U+02FF \p{InSpacingModifierLetters}
<U+0300..U+036F \p{InCombiningDiacriticalMarks}>»
<U+0370..U+03FF \p{InGreekandCoptic}»
<U+0400..U+04FF \p{InCyrillich

52 | Chapter2: BasicRegular Expression Skills

<U+0500..U+052F \p{InCyrillicSupplement}>
<U+0530..U+058F \p{InArmenian}>
<U+0590..U+05FF \p{InHebrew}»
<U+0600..U+06FF \p{InArabic}»
<«U+0700..U+074F \p{InSyriac}h
«U+0750..U+077F \p{InArabicSupplement}»
<U+0780..U+07BF \p{InThaana}»
<U+07C0..U+07FF \p{InNKo}>
<U+0800..U+083F \p{InSamaritan}>
<U+0840..U+085F \p{InMandaic}>
<U+08A0..U+08FF \p{InArabicExtended-A}>
<U+0900..U+097F \p{InDevanagari}»
<U+0980..U+09FF \p{InBengali}»
<U+0A00..U+0A7F \p{InGurmukhi}>»
<U+0A80..U+OAFF \p{InGujarati}>
<U+0B00..U+0B7F \p{InOriya}»
<U+0B80..U+0BFF \p{InTamil}
<U+0C00..U+0C7F \p{InTelugu}>
<U+0C80..U+0CFF \p{InKannada}>
<U+0D00..U+0D7F \p{InMalayalam}>
<U+0D80..U+0DFF \p{InSinhala}>
<U+0E00..U+OE7F \p{InThai}>
<U+0E80..U+OEFF \p{InLao}»
<U+0F00..U+OFFF \p{InTibetan}>
<U+1000..U+109F \p{InMyanmar}>
<U+10A0..U+10FF \p{InGeorgian}>
<U+1100..U+11FF \p{InHangullamo}>
<U+1200..U+137F \p{InEthiopic}
<U+1380..U+139F \p{InEthiopicSupplement}>
<U+13A0..U+13FF \p{InCherokee}>
<U+1400..U+167F \p{InUnifiedCanadianAboriginalSyllabics}>
<U+1680..U+169F \p{InOgham}>
<U+16A0..U+16FF \p{InRunic}h
U+1700..U+171F \p{InTagalog}
<U+1720..U+173F \p{InHanunoo}>
<U+1740..U+175F \p{InBuhid}>
U+1760..U+177F \p{InTagbanwa}>
<U+1780..U+17FF \p{InKhmer}>
<U+1800..U+18AF \p{InMongolian}>
<U+18B0..U+18FF \p{InUnifiedCanadianAboriginalSyllabicsExtended}>
<U+1900..U+194F \p{InLimbu}>
<U+1950..U+197F \p{InTailLe}
<U+1980..U+19DF \p{InNewTailLue}>

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 53

<U+19E0..U+19FF \p{InKhmerSymbols}>

<U+1A00..U+1A1F \p{InBuginese}>

<U+1A20..U+1AAF \p{InTaiTham}>

<U+1B00..U+1B7F \p{InBalinese}>

<U+1B80..U+1BBF \p{InSundanese}»

<U+1BCO..U+1BFF \p{InBatak}»

<U+1€00..U+1C4F \p{InLepcha}>

<U+1C50..U+1C7F \p{InOlChiki}>

<U+1CCO..U+1CCF \p{InSundaneseSupplement}>
<U+1CDO..U+1CFF \p{InVedicExtensions}»

<U+1D00..U+1D7F \p{InPhoneticExtensions}»

<U+1D80..U+1DBF \p{InPhoneticExtensionsSupplement}>
<U+1DCO..U+1DFF \p{InCombiningDiacriticalMarksSupplement}>
<U+1E00..U+1EFF \p{InLatinExtendedAdditional}>
<U+1F00..U+1FFF \p{InGreekExtended}»

<U+2000..U+206F \p{InGeneralPunctuation}»

<U+2070..U+209F \p{InSuperscriptsandSubscripts}
<U+20A0..U+20CF \p{InCurrencySymbols}»

<U+20D0..U+20FF \p{InCombiningDiacriticalMarksforSymbols}>
<U+2100..U+214F \p{InLetterlikeSymbols}>

<U+2150..U+218F \p{InNumberForms}>

<U+2190..U+21FF \p{InArrows}»

<U+2200..U+22FF \p{InMathematicalOperators}»
<U+2300..U+23FF \p{InMiscellaneousTechnical}
<U+2400..U+243F \p{InControlPictures}

<U+2440..U+245F \p{InOpticalCharacterRecognition}>
<U+2460..U+24FF \p{InEnclosedAlphanumerics}»
<U+2500..U+257F \p{InBoxDrawing}»

<U+2580..U+259F \p{InBlockElements}>

<U+25A0..U+25FF \p{InGeometricShapes}>

<U+2600..U+26FF \p{InMiscellaneousSymbols}>
<U+2700..U+27BF \p{InDingbats}>

<U+27C0..U+27EF \p{InMiscellaneousMathematicalSymbols-A}>
U+27F0..U+27FF \p{InSupplementalArrows-A}>
<U+2800..U+28FF \p{InBraillePatterns}»

<U+2900..U+297F \p{InSupplementalArrows-B}>
<U+2980..U+29FF \p{InMiscellaneousMathematicalSymbols-B}>
<U+2A00..U+2AFF \p{InSupplementalMathematicalOperators}
<U+2B00..U+2BFF \p{InMiscellaneousSymbolsandArrows}>
<U+2€00..U+2C5F \p{InGlagolitic}

<U+2C60..U+2C7F \p{InLatinExtended-C}>

<U+2C80..U+2CFF \p{InCoptic}

<U+2D00..U+2D2F \p{InGeorgianSupplement}>

54 | Chapter2: BasicRegular Expression Skills

«U+2D30...
«U+2D80...
<U+2DEO...
«U+2E00...
U+2E80...
«U+2Fo00..
U+2FFo...
<«U+3000...
«U+3040..
<U+30A0...
«U+3100...
«U+3130...
«U+3190...
<U+31A0...
«WU+31Co0...
«U+31F0..
<«U+3200...
<«U+3300...
«U+3400...
«U+4DCo..
<U+4E00...
<U+A000...
<U+A490...
<U+A4Do...
<U+A500...
U+A640...
<U+AB6AO...
<U+A700...
«U+A720...
<U+A800...
<U+A830..
U+A840...
<U+A880...
<U+A8EO...
<U+A900...
<U+A930...
U+A960...
<U+A980...
<U+AA0O...
<U+AA6O...
<U+AA80...
<U+AAEO..
<U+ABOO...

U+2D7F \p{InTifinagh}>

U+2DDF \p{InEthiopicExtended}>

U+2DFF \p{InCyrillicExtended-A}>

U+2E7F \p{InSupplementalPunctuation}»

U+2EFF \p{InCJKRadicalsSupplement}>

U+2FDF \p{InKangxiRadicals}»

U+2FFF \p{InIdeographicDescriptionCharacters}
U+303F \p{InCIKSymbolsandPunctuation}»

U+309F \p{InHiragana}

U+30FF \p{InKatakana}»

U+312F \p{InBopomofo}>

U+318F \p{InHangulCompatibilityJamo}>»

U+319F \p{InKanbun}»

U+31BF \p{InBopomofoExtended}>

U+31EF \p{InCIKStrokes}>

U+31FF \p{InKatakanaPhoneticExtensions}»
U+32FF \p{InEnclosedCIKLettersandMonths}>
U+33FF \p{InCIKCompatibility}>

U+4DBF \p{InCIKUnifiedIdeographsExtensionA}>

U+4DFF \p{InYijingHexagramSymbols}>

U+9FFF \p{InCIKUnifiedIdeographs}»
U+A48F \p{InYiSyllables}»

U+A4CF \p{InYiRadicals}

U+A4FF \p{InLisu}>

U+A63F \p{Invai}p

U+A69F \p{InCyrillicExtended-B}>
U+A6FF \p{InBamum}>

U+A71F \p{InModifierToneletters}
U+A7FF \p{InLatinExtended-D}>
U+A82F \p{InSylotiNagri}

U+A83F \p{InCommonIndicNumberForms}>

U+A87F \p{InPhags-pa}>

U+A8DF \p{InSaurashtra}

U+A8FF \p{InDevanagariExtended}»
U+A92F \p{InKayahLi}>

U+A95F \p{InRejang}

U+A97F \p{InHangulJamoExtended-A}>
U+A9DF \p{InJavanese}>

U+AASF \p{InCham}>

U+AA7F \p{InMyanmarExtended-A}>
U+AADF \p{InTaiviet}

U+AAFF \p{InMeeteiMayekExtensions}

U+AB2F \p{InEthiopicExtended-A}>

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 55

<U+ABCO..U+ABFF \p{InMeeteiMayek}>

<U+AC00..U+D7AF \p{InHangulSyllables}>
<«U+D7B0..U+D7FF \p{InHangulJamoExtended-B}>
<U+D800..U+DB7F \p{InHighSurrogates}»
<U+DB80..U+DBFF \p{InHighPrivateUseSurrogates}
<U+DC00..U+DFFF \p{InLowSurrogates}
<U+E000..U+F8FF \p{InPrivateUseArea}
<U+F900..U+FAFF \p{InCIKCompatibilityIdeographs}»
<U+FB00..U+FB4F \p{InAlphabeticPresentationForms}>
<U+FB50..U+FDFF \p{InArabicPresentationForms-A}>
<U+FE00..U+FEOF \p{InVariationSelectors}
<U+FE10..U+FE1F \p{InVerticalForms}>
<U+FE20..U+FE2F \p{InCombiningHalfMarks}>
<U+FE30..U+FE4F \p{InCIKCompatibilityForms}»
<U+FE50..U+FE6F \p{InSmallFormVariants}»
<U+FE70..U+FEFF \p{InArabicPresentationForms-B}>
<U+FF00..U+FFEF \p{InHalfwidthandFullwidthForms}»
<U+FFFO..U+FFFF \p{InSpecials}h

A Unicode block is a single, contiguous range of code points. Although many blocks
have the names of Unicode scripts and Unicode categories, they do not correspond
100% with them. The name of a block only indicates its primary use.

The Currency block does not include the dollar and yen symbols. Those are found in
the Basiclatin and Latin-1Supplement blocks, for historical reasons. Both are in the
Currency Symbol category. To match any currency symbol, use (\p{Sc}> instead of
A\p{InCurrency}.

Most blocks include unassigned code points, which are in the category <\p{Cn}>. None
of the other Unicode categories, and none of the Unicode scripts, include unassigned
code points.

The <\p{InBlockName}> syntax works with .NET, XRegExp, and Perl. Java uses the
<\p{IsBlockName}» syntax.

Perl also supports the Is variant, but we recommend you stick with the In syntax, to
avoid confusion with Unicode scripts. For scripts, Perl supports <\p{Script}> and
Ap{IsScript}>, but not \p{InScript}h.

The Unicode standard stipulates that block names should be case insensitive, and that
any differences in spaces, hyphens, or underscores should be ignored. Most regex fla-
vors are not this flexible, unfortunately. All versions of .NET and Java 4 require the
block names to be capitalized as shown in the preceding list. Perl 5.8 and later and Java
5 and later allow any mixture of case. Perl, Java, and .NET all support the notation
with hyphens and without spaces used in the preceding list. We recommend you use
this notation. Of the flavors discussed in this book, only XRegExp and Perl 5.12 and

56 | Chapter2: BasicRegular Expression Skills

later are fully flexible with regard to spaces, hyphens, and underscores in Unicode block
names.

Unicode script

Each Unicode code point, except unassigned ones, is part of exactly one Unicode script.
Unassigned code points are not part of any script. The assigned code points up to
U+FFFF are assigned to these 72 scripts in version 6.1 of the Unicode standard:

<\p{Common}» A\p{Lepcha}>
\p{Arabich Ap{Limbu}>
\p{Armenian}> Ap{Lisup
\p{Balinese}> \p{Malayalam}»
\p{Bamum}» <\p{Mandaic}
\p{Batak}» A\p{Meetei Mayek}>
\p{Bengali} \p{Mongolian}>
<\p{Bopomofo}> Ap{Myanmar}»
\p{Braille} A\p{New_Tai Lue}
\p{Buginese}> \p{Nko}>
\p{Buhid}> \p{Ogham}>
<\p{Canadian_Aboriginal}» \p{0l _Chiki}
\p{Cham}> \p{Oriya}
\p{Cherokee}> <\p{Phags_Pa}
\p{Coptich Ap{Rejang}
Ap{Cyrillichp A\p{Runich
<\p{Devanagari}» \p{Samaritan}>
\p{Ethiopic} \p{Saurashtra}
\p{Georgian} \p{Sinhala}
\p{Glagolitic}h <\p{Sundanese}»
\p{Greek}» A\p{Syloti Nagri}h
\p{Gujaratip Ap{Syriach
Ap{Gurmukhi}> \p{Tagalog}
\p{Han}> \p{Tagbanwa}»
\p{Hangul} Ap{Tai_Le}
\p{Hanunoo}» \p{Tai_Tham}>
\p{Hebrew}> \p{Tai Viethp
\p{Hiragana} Ap{Tamil}
A\p{Inherited} \p{Telugu}p>
\p{Javanese} \p{Thaana}>
\p{Kannada}» Ap{Thai}
\p{Katakana}» \p{Tibetan}
\p{Kayah_Li}> Ap{Tifinagh}>
\p{Khmer}» A\p{vaip
A\p{Lao} Ap{Yip

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 57

Download from Wow! eBook <www.wowebook.com>

Ap{Latin}

A script is a group of code points used by a particular human writing system. Some
scripts, such as Thai, correspond with a single human language. Other scripts, such as
Latin, span multiple languages. Some languages are composed of multiple scripts. For
instance, there is no Japanese Unicode script; instead, Unicode offers the Hiragana,
Katakana, Han, and Latin scripts that Japanese documents are usually composed of.

We listed the Common script first, out of alphabetical order. This script contains all sorts
of characters that are common to a wide range of scripts, such as punctuation, white-
space, and miscellaneous symbols.

Java requires the name of the script to be prefixed with Is, as in <\p{IsYi}>. Perl allows
the Is prefix, but doesn’t require it. XRegExp, PCRE, and Ruby do not allow the Is
prefix.

The Unicode standard stipulates that script names should be case insensitive, and that
any differences in spaces, hyphens, or underscores should be ignored. Most regex fla-
vors are not this flexible, unfortunately. The notation with the words in the script names
capitalized and with underscores between the words works with all flavors in this book
that support Unicode scripts.

Unicode grapheme

The difference between code points and characters comes into play when there are
combining marks. The Unicode code point U+0061 is “Latin small letter a,” whereas
U+00EOQ is “Latin small letter a with grave accent.” Both represent what most people
would describe as a character.

U+0300 is the “combining grave accent” combining mark. It can be used sensibly only
after a letter. A string consisting of the Unicode code points U+0061 U+0300 will be
displayed as a, just like U+00EQ. The combining mark U+0300 is displayed on top of
the character U+0061.

The reason for these two different ways of displaying an accented letter is that many
historical character sets encode “a with grave accent” as a single character. Unicode’s
designers thought it would be useful to have a one-on-one mapping with popular legacy
character sets, in addition to the Unicode way of separating marks and base letters,
which makes arbitrary combinations not supported by legacy character sets possible.

What matters to you as a regex user is that all regex flavors discussed in this book
operate on code points rather than graphical characters. When we say that the regular
expression <.» matches a single character, it really matches just a single code point. If
your subject text consists of the two code points U+0061 U+0300, which can be rep-
resented as the string literal "\u0061\u0300" in a programming language such as Java,
the dot will match only the code point U+0061, or a, without the accent U+0300. The
regex ¢..> will match both.

58 | Chapter2: BasicRegular Expression Skills

Perl and PCRE offer a special regex token «<\X>, which matches any single Unicode
grapheme. Essentially, it is the Unicode version of the venerable dot. <\X> will find two
matches in the text aa, regardless of how it is encoded. If it is encoded as
\u00E0\u0061\u0300 the first match is \uooEo, and the second \uo061\u0300. The dot,
which matches any single Unicode code point, would find three matches as it matches
\U0OEO, \u0061, and \u0300 separately.

The rules for exactly which combinations of Unicode code points are considered
graphemes are quite complicated.! Generally speaking, to match a grapheme we need
to match any character that is not a mark and all the marks that follow it, if any. We
can match this with the regex «(?>\P{M}\p{M}*)> in all regex flavors that support Uni-
code but not the \X> token for graphemes. <\\P{M}> matches any character that is not in
the Mark category. <\p{M}*» matches all the marks, if any, that follow it.

We put these two regex tokens in an atomic group to make sure the \\p{M}*> won’t
backtrack if any following regex tokens fail to match. \\X{2}.> does not match aa, be-
cause there is nothing left for the dot to match after <\X{2}> has matched the two ac-
cented letters. <(2>\P{M}\p{M}*){2}.> does not match aa for the same reason. But «(?:
\P{M}I\p{M}*){2}.> with an non-capturing group does match aa if it is encoded as
\u00E0\u0061\u0300. Upon the second iteration of the group, \p{M}*> will match
\u0300. The dot will then fail to match. This causes the regex to backtrack, forcing
Ap{M}* to give up its match, allowing the dot to match \uo300.

JavaScript’s regex engine does not support atomic grouping. This is not a feature that
could be added by XRegExp, because XRegExp still relies on JavaScript’s regex engine
for the actual pattern matching. So when using XRegExp, <«(?:\P{M}\p{M}*)> is the
closest we can get to emulating <\X>. Without the atomic group, you’ll have to keep in
mind that \p{M}* may backtrack if whatever follows «(?:\P{M}\p{M}*)> in your regex
can match characters in the Mark category.

Variations

Negated variant

The uppercase <\P> is the negated variant of the lowercase \p>. For instance, <\P{Sc}>
matches any character that does not have the “Currency Symbol” Unicode property.
<\P» is supported by all flavors that support <\p>, and for all the properties, block, and
scripts that they support.

1. You can find all the details in Unicode Standard Annex #29 at http://www.unicode.org/reports/tr29/. The
“Graphemes and Normalization” section in Chapter 6 in the fourth edition of Programming Perl has more
practical details on how to deal with Unicode graphemes in your software.

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 59

http://www.unicode.org/reports/tr29/

Character classes

All flavors allow all the Aw, <\x>, \\p>, and \P> tokens they support to be used inside
character classes. The character represented by the code point, or the characters in the
category, block, or script, are then added to the character class. For instance, you could
match a character that is either an opening quote (initial punctuation property), a clos-
ing quote (final punctuation property), or the trademark symbol (U+2122) with:

[\p{Pi}\p{Pf}\u2122]
Regex options: None
Regex flavors: .NET, Java, XRegExp, Ruby 1.9

[\p{PiF\p{Pf}\x{2122}]
Regex options: None
Regex flavors: Java 7, PCRE, Perl

Listing all characters

Ifyour regular expression flavor does not support Unicode categories, blocks, or scripts,
you can list the characters that are in the category, block, or script in a character class.
For blocks this is very easy: each block is simply a range between two code points. The
Greek Extended block comprises the characters U+1F00 to U+1FFF:

[\u1F00-\u1FFF]
Regex options: None
Regex flavors: .NET, Java, JavaScript, Python, Ruby 1.9

[\x{1F00}-\x{1FFF}]
Regex options: None
Regex flavors: Java 7, PCRE, Perl

For most categories and many scripts, the equivalent character class is a long list of
individual code points and short ranges. The characters that comprise each category
and many of the scripts are scattered throughout the Unicode table. This is the Greek
script:
[\u0370-\u0373\u0375-\u0377\u037A-\u037D\u0384\u0386\u0388-\u038A«
\u038C\u038E-\u03A1\u03A3-\u03E1\u03F0-\u03FF\u1D26-\u1D2A\u1D5D-\u1D61 <
\u1D66-\u1D6A\u1DBF\u1F00-\u1F15\u1F18-\u1F1D\u1F20-\u1F45\u1F48-\u1F4D
\u1F50-\u1F57\u1F59\u1F5B\u1F5D\u1F5F-\u1F7D\u1F80-\u1FB4\u1FB6-\u1FC4
\u1FC6-\u1FD3\u1FD6-\u1FDB\u1FDD-\u1FEF\u1FF2-\u1FF4\u1FF6-\u1FFE\u2126+
\U00010140-\U0001018A\U0001D200-\U0001D245]
We generated this regular expression using the UnicodeSet web application at http://
unicode.org/cldr/utility/list-unicodeset.jsp. We entered \p{Greek} as the input, ticked the
“Abbreviate” and “Escape” checkboxes, and clicked the “Show Set” button.

Only Python supports this syntax for Unicode code points as we explained earlier in
this recipe in the section “Unicode code point” on page 50. To make this regular ex-
pression work with other regex flavors, we need to make some changes.

60 | Chapter2: BasicRegular Expression Skills

http://unicode.org/cldr/utility/list-unicodeset.jsp
http://unicode.org/cldr/utility/list-unicodeset.jsp

The regex will work with many more flavors if we remove the code points beyond U
+FFFF from the character class:

Regex options: None

Regex flavors: Python
[\u0370-\u0373\u0375-\u0377\u037A-\u037D\u0384\u0386\u0388-\uo38A«
\u038C\u038E-\u03A1\u03A3-\u03E1\uo3Fo-\uo3FF\u1D26-\u1D2A\u1D5D-\u1D61«
\u1D66-\u1D6A\u1DBF\u1F00-\u1F15\u1F18-\u1F1D\u1F20-\u1F45\u1F48-\u1F4D«
\u1F50-\u1F57\u1F59\u1F5B\u1F5D\u1F5F-\u1F7D\u1F80-\u1FB4\u1FB6-\u1FC4«
\U1FC6-\u1FD3\u1FD6-\u1FDB\u1FDD-\u1FEF\u1FF2-\u1FF4\u1FF6-\u1FFE\u2126]

Regex options: None

Regex flavors: .NET, Java, JavaScript, Python, Ruby 1.9

Perl and PCRE use a different syntax for Unicode code points. In the original regex, we
need to replace \\uFFFF> with \\x{FFFF}> and <\U0010FFFF> with \\x{10FFFF}>. This regex
also works with Java 7.

[\x{0370}-\x{0373}\x{0375}-\x{0377}\x{037A}-\x{037D}\x{0384}\x{0386} «
\x{0388}-\x{038A}\x{038C}\x{038E}-\x{03A1}\x{03A3}-\x{03E1}«
\x{03F0}-\x{03FF}\x{1D26}-\x{1D2A}\x{1D5D}-\x{1D61}\x{1D66 } - \x{1D6A} <
\x{1DBF}\x{1F00}-\x{1F15}\x{1F18}-\x{1F1D}\x{1F20}-\x{1F45}
\x{1F48}-\x{1F4D}\x{1F50}-\x{1F57 }\x{1F59 }\x{1F5B}\x{1F5D}\x{1F5F}- ¢
\x{1F7D}\x{1F80}-\x{1FB4}\x{1FB6}-\x{1FC4}\x{1FC6}-\x{1FD3}\x{1FD6}- <
\x{1FDB}\x{1FDD}-\x{1FEF}\x{1FF2}-\x{1FF4}\x{1FF6}-\x{1FFE}\x{2126}«
\x{10140}-\x{10178}\x{10179}-\x{10189}\x{1018A}\x{1D200}-\x{1D245}]

Regex options: None

Regex flavors: Java 7, PCRE, Perl

See Also

http://'www.unicode.org is the official website of the Unicode Consortium, where you
can download all the official Unicode documents, character tables, etc.

Unicode is a vast topic, on which entire books have been written. One such book is
Unicode Explained by Jukka K. Korpela (O’Reilly).

We can’t explain everything you should know about Unicode code points, categories,
blocks, and scripts in just one section. We haven’t even tried to explain why you should
care—you should. The comfortable simplicity of the extended ASCII table is a lonely
place in today’s globalized world.

“Limit input to alphanumeric characters in any language” on page 277 in Recipe 4.8
and “Limit the number of words” on page 281 in Recipe 4.9 solve some real-world
problems using Unicode categories.

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 61

http://www.unicode.org
http://oreilly.com/catalog/9780596101213

2.8 Match One of Several Alternatives

Problem

Create a regular expression that when applied repeatedly to the text Mary, Jane, and
Sue went to Mary's house will match Mary, Jane, Sue, and then Mary again. Further
match attempts should fail.

Solution

Mary |Jane | Sue
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The vertical bar, or pipe symbol, splits the regular expression into multiple alterna-
tives. (Mary|Jane|Sue> matches Mary, or Jane, or Sue with each match attempt. Only one
name matches each time, but a different name can match each time.

All regular expression flavors discussed in this book use a regex-directed engine. The
engine is simply the software that makes the regular expression work. Regex-directed?
means that all possible permutations of the regular expression are attempted at each
character position in the subject text, before the regex is attempted at the next character
position.

When you apply Mary|Jane|Sue> to Mary, Jane, and Sue went to Mary's house, the
match Mary is immediately found at the start of the string.

When you apply the same regex to the remainder of the string—e.g., by clicking “Find
Next” in your text editor—the regex engine attempts to match «Mary» at the first comma
in the string. That fails. Then, it attempts to match <Jane> at the same position, which
also fails. Attempting to match <Sue> at the comma fails, too. Only then does the regex
engine advance to the next character in the string. Starting at the first space, all three
alternatives fail in the same way.

Starting at the J, the first alternative, (Mary>, fails to match. The second alternative,
Jane», is then attempted starting at the J. It matches Jane. The regex engine declares
victory.

Notice that Jane was found even though there is another occurrence of Mary in the
subject text, and that Mary> appears before «Jane> in the regex. At least in this case, the

2. The other kind of engine is a text-directed engine. The key difference is that a text-directed engine visits
each character in the subject text only once, whereas a regex-directed engine may visit each character
many times. Text-directed engines are much faster, but support regular expressions only in the
mathematical sense described at the beginning of Chapter 1. The fancy Perl-style regular expressions that
make this book so interesting can be implemented only with a regex-directed engine.

62 | Chapter2: BasicRegular Expression Skills

order of the alternatives in the regular expression does not matter. The regular expres-
sion finds the leftmost match. It scans the text from left to right, tries all alternatives in
the regular expression at each step, and stops at the first position in the text where any
of the alternatives produces a valid match.

If we do another search through the remainder of the string, Sue will be found. The
fourth search will find Mary once more. If you tell the regular engine to do a fifth search,
that will fail, because none of the three alternatives match the remaining ’s house string.

The order of the alternatives in the regex matters only when two of them can match at
the same position in the string. The regex <Jane|Janet> has two alternatives that match
at the same position in the text Her name is Janet. There are no word boundaries in
the regular expression. The fact that <Jane> matches the word Janet in Her name is
Janet only partially does not matter.

<Jane|Janet> matches Jane in Her name is Janet because a regex-directed regular ex-
pression engine is eager. In addition to scanning the subject text from left to right,
finding the leftmost match in the text, it also scans the alternatives in the regex from
left to right. The engine stops as soon as it finds an alternative that matches.

When <Jane|Janet> reaches the J in Her name is Janet, the first alternative, <Janej,
matches. The second alternative is not attempted. If we tell the engine to look for a
second match, the t is all that is left of the subject text. Neither alternative matches
there.

There are two ways to stop Jane from stealing Janet’s limelight. One way is to put the
longer alternative first: <Janet|Jane>. A more solid solution is to be explicit about what
we're trying to do: we’re looking for names, and names are complete words. Regular
expressions don’t deal with words, but they can deal with word boundaries.

So <\bJane\b|\bJanet\b> and <\bJanet\b|\bJane\b> will both match Janet in Her name
is Janet. Because of the word boundaries, only one alternative can match. The order
of the alternatives is again irrelevant.

Recipe 2.12 explains the best solution: \bJanet?\b>.

See Also

Recipe 2.9 explains how to group parts of a regex. You need to use a group if you want
to place several alternatives in the middle of a regex.

2.9 Group and Capture Parts of the Match

Problem

Improve the regular expression for matching Mary, Jane, or Sue by forcing the match to
be a whole word. Use grouping to achieve this with one pair of word boundaries for
the whole regex, instead of one pair for each alternative.

2.9 Group and Capture Parts of the Match | 63

Create a regular expression that matches any date in yyyy-mm-dd format, and sepa-
rately captures the year, month, and day. The goal is to make it easy to work with these
separate values in the code that processes the match. You can assume all dates in the
subject text to be valid. The regular expression does not have to exclude things like
9999-99-99, as these won’t occur in the subject text at all.

Solution

\b(Mary|Jane|Sue)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

\b(\d\d\d\d)-(\d\d)-(\d\d)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The alternation operator, explained in the previous section, has the lowest precedence
of all regex operators. If you try <\bMary | Jane| Sue\b>, the three alternatives are <\bMary>,
Jane», and «Sue\b>. This regex matches Jane in Her name is Janet.

If you want something in your regex to be excluded from the alternation, you have to
group the alternatives. Grouping is done with parentheses. They have the highest
precedence of all regex operators, just as in most programming languages. <\b(Mary |
Jane|Sue)\b> has three alternatives—«Mary>, Jane>, and (Sue>—between two word
boundaries. This regex does not match anything in Her name is Janet.

When the regex engine reaches the J in Janet in the subject text, the first word boundary
matches. The engine then enters the group. The first alternative in the group, Mary>,
fails. The second alternative, <Jane», succeeds. The engine exits the group. All that is
left is <\\b>. The word boundary fails to match between the e and t at the end of the
subject. The overall match attempt starting at J fails.

A pair of parentheses isn’t just a group; it’s a capturing group. For the Mary-Jane-Sue
regex, the capture isn’t very useful, because it’s simply the overall regex match. Cap-
tures become useful when they cover only part of the regular expression, as in

Ab(\d\d\d\d)- (\d\d)- (\d\d)\b>.

This regular expression matches a date in yyyy-mm-dd format. The regex <\b\d\d\d\d-
\d\d-\d\d\b> does exactly the same. Because this regular expression does not use any
alternation or repetition, the grouping function of the parentheses is not needed. But
the capture function is very handy.

The regex \b(\d\d\d\d)-(\d\d)-(\d\d)\b> has three capturing groups. Groups are
numbered by counting opening parentheses from left to right. «(\d\d\d\d)» is group
number 1. ¢(\d\d)> is number 2. The second «(\d\d)» is group number 3.

64 | Chapter2: BasicRegular Expression Skills

During the matching process, when the regular expression engine exits the group upon
reaching the closing parenthesis, it stores the part of the text matched by the capturing
group. When our regex matches 2008-05-24, 2008 is stored in the first capture, 05 in the
second capture, and 24 in the third capture.

There are three ways you can use the captured text. Recipe 2.10 in this chapter explains
how you can match the captured text again within the same regex match.
Recipe 2.21 shows how to insert the captured text into the replacement text when doing
a search-and-replace. Recipe 3.9 in the next chapter describes how your application
can use the parts of the regex match.

Variations

Noncapturing groups

In the regex <\b(Mary|Jane|Sue)\b>, we need the parentheses for grouping only. Instead
of using a capturing group, we could use a noncapturing group:

\b(?:Mary|Jane|Sue)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The three characters «(?:> open the noncapturing group. The parenthesis <)> closes it.
The noncapturing group provides the same grouping functionality, but does not cap-
ture anything.

When counting opening parentheses of capturing groups to determine their numbers,
do not count the parenthesis of the noncapturing group. This is the main benefit of
noncapturing groups: you can add them to an existing regex without upsetting the
references to numbered capturing groups.

Another benefit of noncapturing groups is performance. If you’re not going to use a
backreference to a particular group (Recipe 2.10), reinsert it into the replacement text
(Recipe 2.21), or retrieve its match in source code (Recipe 3.9), a capturing group adds
unnecessary overhead that you can eliminate by using a noncapturing group. In prac-
tice, you’ll hardly notice the performance difference, unless you’re using the regex in a
tight loop and/or on lots of data.

Group with mode modifiers

In the “Case-insensitive matching” variation of Recipe 2.1, we explain that .NET,
Java, PCRE, Perl, and Ruby support local mode modifiers, using the mode toggles:
«<sensitive(?i)caseless(?-i)sensitive>. Although this syntax also involves parenthe-
ses, a toggle such as «(?1)> does not involve any grouping.

Instead of using toggles, you can specify mode modifiers in a noncapturing group:

\b(?i:Mary|Jane|Sue)\b
Regex options: None

2.9 Group and Capture Parts of the Match | 65

Regex flavors: .NET, Java, PCRE, Perl, Ruby
sensitive(?i:caseless)sensitive

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

Adding mode modifiers to a noncapturing group sets that mode for the part of the
regular expression inside the group. The previous settings are restored at the closing
parenthesis. Since case sensitivity is the default, only the part of the regex inside:

(?i:)
1S case insensitive.

You can combine multiple modifiers. <(?ism: -)>. Use a hyphen to turn off modifiers:
«(?-ism:--)> turns off the three options. «(?i-sm)> turns on case insensitivity (i), and
turns off both “dot matches line breaks” (s) and “” and $ match at line breaks” (m).
These options are explained in Recipes 2.4 and 2.5.

See Also

Recipe 2.10 explains how to make a regex match the same text that was matched by a
capturing group.

Recipe 2.11 explains named capturing groups. Naming the groups in your regex makes
the regex easier to read and maintain.

Recipe 2.21 explains how to make the replacement text reinsert text matched by a
capturing group when doing a search-and-replace.

Recipe 3.9 explains how to retrieve the text matched by a capturing group in procedural
code.

Recipe 2.15 explains how to make sure the regex engine doesn’t needlessly try different
ways of matching a group.

2.10 Match Previously Matched Text Again

Problem

Create a regular expression that matches “magical” dates in yyyy-mm-dd format. A
date is magical if the year minus the century, the month, and the day of the month are
all the same numbers. For example, 2008-08-08 is a magical date. You can assume all
dates in the subject text to be valid. The regular expression does not have to exclude
things like 9999-99-99, as these won’t occur in the subject text. You only need to find
the magical dates.

Solution
\b\d\d(\d\d)-\1-\1\b

66 | Chapter2: Basic Regular Expression Skills

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

To match previously matched text later in a regex, we first have to capture the previous
text. We do that with a capturing group, as shown in Recipe 2.9. After that, we can
match the same text anywhere in the regex using a backreference. You can reference
the first nine capturing groups with a backslash followed by a single digit one through
nine. For groups 10 through 99, use (\10> to <\\99.

Do not use <\\oD>. That is either an octal escape or an error. We don’t
h use octal escapes in this book at all, because the <\xFF> hexadecimal

escapes are much easier to understand.

When the regular expression <\b\d\d(\d\d)-\1-\1\b> encounters 2008-08-08, the first
«\d\d> matches 20. The regex engine then enters the capturing group, noting the position
reached in the subject text.

The (\d\d> inside the capturing group matches 08, and the engine reaches the group’s
closing parenthesis. At this point, the partial match 08 is stored in capturing group 1.

The next token is the hyphen, which matches literally. Then comes the backreference.
The regex engine checks the contents of the first capturing group: 08. The engine tries
to match this text literally. If the regular expression is case-insensitive, the captured
text is matched in this way. Here, the backreference succeeds. The next hyphen and
backreference also succeed. Finally, the word boundary matches at the end of the sub-
ject text, and an overall match is found: 2008-08-08. The capturing group still holds 08.

If a capturing group is repeated, either by a quantifier (Recipe 2.12) or by backtracking
(Recipe 2.13), the stored match is overwritten each time the capturing group matches
something. A backreference to the group matches only the text that was last captured
by the group.

If the same regex encounters 2008-05-24 2007-07-07, the first time the group captures
something is when \b\d\d(\d\d)> matches 2008, storing 08 for the first (and only) cap-
turing group. Next, the hyphen matches itself. The backreference, which tries to match
<08, fails against 05.

Since there are no other alternatives in the regular expression, the engine gives up the
match attempt. This involves clearing all the capturing groups. When the engine tries
again, starting at the first 0 in the subject, <\1> holds no text at all.

Still processing 2008-05-24 2007-07-07, the next time the group captures something is
when <\b\d\d(\d\d)>» matches 2007, storing 07. Next, the hyphen matches itself. Now
the backreference tries to match «07>. This succeeds, as do the next hyphen, backre-
ference, and word boundary. 2007-07-07 has been found.

2.10 Match Previously Matched Text Again | 67

Because the regex engine proceeds from start to end, you should put the capturing
parentheses before the backreference. The regular expressions «<\b\d\d\1- (\d\d)-\1
and \b\d\d\1-\1-(\d\d)\b> could never match anything. Since the backreference is
encountered before the capturing group, it has not captured anything yet. Unless you’re
using JavaScript, a backreference always fails if it points to a group that hasn’t already
participated in the match attempt.

A group that hasn’t participated is not the same as a group that has captured a zero-
length match. A backreference to a group with a zero-length capture always succeeds.
When «(*)\1> matches at the start of the string, the first capturing group captures the
caret’s zero-length match, causing <\1> to succeed. In practice, this can happen when
the contents of the capturing group are all optional.

W

o JavaScript is the only flavor we know that goes against decades of back-
"‘:‘ reference tradition in regular expressions. In JavaScript, or at least in
T Qi8¢ implementations that follow the JavaScript standard, a backreference
" to a group that hasn’t participated always succeeds, just like a backre-
ference to a group that captured a zero-length match. So, in JavaScript,

A\b\d\d\1-\1-(\d\d)\b> can match 12--34.

See Also

Recipe 2.9 explains the capturing groups that backreferences refer to.

Recipe 2.11 explains named capturing groups and named backreferences. Naming the
groups and backreferences in your regex makes the regex easier to read and maintain.

Recipe 2.21 explains how to make the replacement text reinsert text matched by a
capturing group when doing a search-and-replace.

Recipe 3.9 explains how to retrieve the text matched by a capturing group in procedural
code.

Recipes 5.8, 5.9, and 7.11 show how you can solve some real-world problems using
backreferences.

2.11 Capture and Name Parts of the Match

Problem

Create a regular expression that matches any date in yyyy-mm-dd format and separately
captures the year, month, and day. The goal is to make it easy to work with these
separate values in the code that processes the match. Contribute to this goal by as-
signing the descriptive names “year,” “month,” and “day” to the captured text.

68 | Chapter2: BasicRegular Expression Skills

Create another regular expression that matches “magical” dates in yyyy-mm-dd format.
A date is magical if the year minus the century, the month, and the day of the month
are all the same numbers. For example, 2008-08-08 is a magical date. Capture the
magical number (08 in the example), and label it “magic.”

You can assume all dates in the subject text to be valid. The regular expressions don’t
have to exclude things like 9999-99-99, because these won’t occur in the subject text.

Solution

Named capture

\b(?<year>\d\d\d\d) - (?<month>\d\d)- (?<day>\d\d)\b

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
\b(?'year '\d\d\d\d)-(? 'month'\d\d)-(?"'day'\d\d)\b

Regex options: None

Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9
\b(?P<year>\d\d\d\d)- (?P<month>\d\d)- (?P<day>\d\d)\b

Regex options: None

Regex flavors: PCRE 4 and later, Perl 5.10, Python

Named backreferences

\b\d\d(?<magic>\d\d)-\k<magic>-\k<magic>\b
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

\b\d\d(?'magic'\d\d)-\k'magic'-\k"'magic'\b
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9
\b\d\d(?P<magic>\d\d)-(?P=magic)-(?P=magic)\b
Regex options: None
Regex flavors: PCRE 4 and later, Perl 5.10, Python

Discussion

Named capture

Recipes 2.9 and 2.10 illustrate capturing groups and backreferences. To be more precise:
these recipes use numbered capturing groups and numbered backreferences. Each
group automatically gets a number, which you use for the backreference.

Modern regex flavors support named capturing groups in addition to numbered groups.
The only difference between named and numbered groups is your ability to assign a
descriptive name, instead of being stuck with automatic numbers. Named groups make

2.11 Capture and Name Parts of the Match | 69

your regular expression more readable and easier to maintain. Inserting a capturing
group into an existing regex can change the numbers assigned to all the capturing
groups. Names that you assign remain the same.

Python was the first regular expression flavor to support named capture. It uses the
syntax <(?P<name>regex)>. The name must consist of word characters matched by (\w>.
<(?P<name>> is the group’s opening bracket, and <) is the closing bracket.

The designers of the .NET Regex class came up with their own syntax for named capture,
using two interchangeable variants. «(?<name>regex)» mimics Python’s syntax, minus
the P. The name must consist of word characters matched by (\w>. <(?<name>> is the
group’s opening bracket, and «)» is the closing bracket.

The angle brackets in the named capture syntax are annoying when you’re coding in
XML, or writing this book in DocBook XML. That’s the reason for .NET’s alternate
named capture syntax: <(?'name'regex)>. The angle brackets are replaced with single
quotes. Choose whichever syntax is easier for you to type. Their functionality is
identical.

Perhaps due to .NET’s popularity over Python, the .NET syntax seems to be the one
that other regex library developers prefer to copy. Perl 5.10 and later have it, and so
does the Oniguruma engine in Ruby 1.9. Perl 5.10 and Ruby 1.9 support both the syntax
using angle brackets and single quotes. Java 7 also copied the .NET syntax, but only
the variant using angle brackets. Standard JavaScript does not support named capture.
XRegExp adds support for named capture using the .NET syntax, but only the variant
with angle brackets.

PCRE copied Python’s syntax long ago, at a time when Perl did not support named
capture at all. PCRE 7, the version that adds the new features in Perl 5.10, supports
both the .NET syntax and the Python syntax. Perhaps as a testament to the success of
PCRE, in a reverse compatibility move, Perl 5.10 also supports the Python syntax. In
PCRE and Perl 5.10, the functionality of the .NET syntax and the Python syntax for
named capture is identical.

Choose the syntax that is most useful to you. If you’re coding in PHP and you want
your code to work with older versions of PHP that incorporate older versions of PCRE,
use the Python syntax. If you don’t need compatibility with older versions and you also
work with .NET or Ruby, the .NET syntax makes it easier to copy and paste between
all these languages. If you’re unsure, use the Python syntax for PHP/PCRE. People
recompiling your code with an older version of PCRE are going to be unhappy if the
regexes in your code suddenly stop working. When copying a regex to .NET or Ruby,
deleting a few Ps is easy enough.

Documentation for PCRE 7 and Perl 5.10 barely mention the Python syntax, but it is
by no means deprecated. For PCRE and PHP, we actually recommend it.

70 | Chapter2: BasicRegular Expression Skills

Named backreferences

With named capture comes named backreferences. Just as named capturing groups are
functionally identical to numbered capturing groups, named backreferences are func-
tionally identical to numbered backreferences. They’re just easier to read and maintain.

Python uses the syntax <(?P=name)> to create a backreference to the group name. Al-
though this syntax uses parentheses, the backreference is not a group. You cannot put
anything between the name and the closing parenthesis. A backreference «(?P=name)>
is a singular regex token, just like <\1>. PCRE and Perl 5.10 also support the Python
syntax for named backreferences.

.NET uses the syntax <\k<name>> and <\k'name">. The two variants are identical in func-
tionality, and you can freely mix them. A named group created with the bracket syntax
can be referenced with the quote syntax, and vice versa. Perl 5.10, PCRE 7, and Ruby
1.9 also support the .NET syntax for named backreferences. Java 7 and XRegExp sup-
port only the variant using angle brackets.

We strongly recommend you don’t mix named and numbered groups in the same regex.
Different flavors follow different rules for numbering unnamed groups that appear
between named groups. Perl 5.10, Ruby 1.9, Java 7, and XRegExp copied .NET’s syn-
tax, but they do not follow .NET’s way of numbering named capturing groups or of
mixing numbered capturing groups with named groups. Instead of trying to explain
the differences, we simply recommend not mixing named and numbered groups. Avoid
the confusion and either give all unnamed groups a name or make them noncapturing.

Groups with the same name

Perl 5.10, Ruby 1.9, and .NET allow multiple named capturing groups to share the
same name. We take advantage of this in the solutions for recipes 4.5, 8.7, and 8.19.
When a regular expression uses alternation to find different variations of certain text,
using capturing groups with the same name makes it easy to extract parts from the
match, regardless of which alternative actually matched the text. The section “Pure
regular expression” on page 262 in Recipe 4.5 uses alternation to separately match
dates in months of different lengths. Each alternative matches the day and the month.
By using the same group names “day” and “month” in all the alternatives, we only need
to query two capturing groups to retrieve the day and the month after the regular ex-
pression finds a match.

All the other flavors in this book that support named capture treat multiple groups with
the same name as an error.

2.11 Capture and Name Parts of the Match | 71

Using multiple capturing groups with the same name only works relia-
% bly when only one of the groups participates in the match. That is the

case in all the recipes in this book that use capturing groups with the
same name. The groups are in separate alternatives, and the alternatives
are not inside a group that is repeated. Perl 5.10, Ruby 1.9, and .NET
do allow two groups with the same name to participate in the match.
But then the behavior of backreferences and the text retained for the
group after the match will differ significantly between these flavors. It
is confusing enough for us to recommend to use groups with the same
name only when they’re in separate alternatives in the regular
expression.

See Also

Recipe 2.9 on numbered capturing groups has more fundamental information on how
grouping works in regular expressions.

Recipe 2.10 explains how to make a regex match the same text that was matched by a
named capturing group.

Recipe 2.11 explains named capturing groups. Naming the groups in your regex makes
the regex easier to read and maintain.

Recipe 2.21 explains how to make the replacement text reinsert text matched by a
capturing group when doing a search-and-replace.

Recipe 3.9 explains how to retrieve the text matched by a capturing group in procedural
code.

Recipe 2.15 explains how to make sure the regex engine doesn’t needlessly try different
ways of matching a group.

Many of the recipes in the later chapters use named capture to make it easier to retrieve
parts of the text that was matched. Recipes 4.5, 8.7, and Recipe 8.19 show some of the
more interesting solutions.

2.12 Repeat Part of the Regex a Certain Number of Times

Problem
Create regular expressions that match the following kinds of numbers:

* A googol (a decimal number with 100 digits).
* A 32-bit hexadecimal number.
* A 32-bit hexadecimal number with an optional h suffix.

* Afloating-point number with an optional integer part, a mandatory fractional part,
and an optional exponent. Each part allows any number of digits.

72 | Chapter2: BasicRegular Expression Skills

Solution

Googol
\b\d{100}\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hexadecimal number

\b[a-f0-9]{1,8}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hexadecimal number with optional suffix

\b[a-f0-9]{1,8}h?\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Floating-point number
\d*\.\d+(e\d+)?

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Fixed repetition

The quantifier <{n}>, where n is a nonnegative integer, repeats the preceding regex token
n number of times. The <\\d{100}> in <\b\d{100}\b> matches a string of 100 digits. You
could achieve the same by typing <\d> 100 times.

«{1}> repeats the preceding token once, as it would without any quantifier. <ab{1}c> is
the same regex as <abc>.

«{0}> repeats the preceding token zero times, essentially deleting it from the regular
expression. «ab{0}c> is the same regex as <ac.

Variable repetition

For variable repetition, we use the quantifier «{n,m}>, where n is a nonnegative integer
and m is greater than n. \\b[a-f0-9]{1,8}\b> matches a hexadecimal number with one
to eight digits. With variable repetition, the order in which the alternatives are attemp-
ted comes into play. Recipe 2.13 explains that in detail.

2.12 Repeat Part of the Regex a Certain Number of Times | 73

If n and m are equal, we have fixed repetition. <\b\d{100,100}\b> is the same regex as
A\b\d{100}\b>.

Infinite repetition

The quantifier «{n, }>, where n is a nonnegative integer, allows for infinite repetition.
Essentially, infinite repetition is variable repetition without an upper limit.

A\d{1, b> matches one or more digits, and <\d+> does the same. A plus after a regex token
that’s not a quantifier means “one or more.” Recipe 2.13 shows the meaning of a plus
after a quantifier.

A\d{o0, }> matches zero or more digits, and <\d*» does the same. The asterisk always
means “zero or more.” In addition to allowing infinite repetition, <{0, }> and the asterisk
also make the preceding token optional.

Making something optional

If we use variable repetition with n set to zero, we’re effectively making the token that
precedes the quantifier optional. <h{0,1}> matches the <h> once or not at all. If there is
no h, <h{0,1}> results in a zero-length match. If you use <h{0,1}> as a regular expression
all by itself, it will find a zero-length match before each character in the subject text
that is not an h. Each h will result in a match of one character (the h).

<h?> does the same as <h{0,1}>. A question mark after a valid and complete regex token
that is not a quantifier means “zero or once.” The next recipe shows the meaning of a
question mark after a quantifier.

A question mark, or any other quantifier, after an opening parenthesis
is a syntax error. Perl and the flavors that copy it use this to add “Perl
extensions” to the regex syntax. Preceding recipes show noncapturing
groups and named capturing groups, which all use a question mark after
an opening parenthesis as part of their syntax. These question marks
are not quantifiers at all; they’re simply part of the syntax for noncap-
turing groups and named capturing groups. Following recipes will show
more styles of groups using the «(?> syntax.

Repeating groups
If you place a quantifier after the closing parenthesis of a group, the whole group is

repeated. «(?:abc){3}> is the same as <abcabcabc>.

Quantifiers can be nested. <(e\d+)?> matches an e followed by one or more digits, or a
zero-length match. In our floating-point regular expression, this is the optional
exponent.

Capturing groups can be repeated. As explained in Recipe 2.9, the group’s match is
captured each time the engine exits the group, overwriting any text previously matched

74 | Chapter2: Basic Regular Expression Skills

by the group. «(\d\d){1,3}> matches a string of two, four, or six digits. The engine exits
the group three times. When this regex matches 123456, the capturing group will hold

6, because 56 was stored by the last iteration of the group. The other two matches by
the group, 12 and 34, cannot be retrieved.

<«(\d\d){3}> captures the same text as \d\d\d\d(\d\d)>. If you want the capturing group
to capture all two, four, or six digits rather than just the last two, you have to place the
capturing group around the quantifier instead of repeating the capturing group: «((?:
\d\d){1,3})>. Here we used a noncapturing group to take over the grouping function
from the capturing group. We also could have used two capturing groups: «((\d\d)
{1,3})>. When this last regex matches 123456, <\1> holds 123456 and <\2> holds 56.

NET’s regular expression engine is the only one that allows you to retrieve all the
iterations of a repeated capturing group. If you directly query the group’s Value prop-
erty, which returns a string, you’ll get 56, as with every other regular expression engine.
Backreferences in the regular expression and replacement text also substitute 56, but if
you use the group’s CaptureCollection, you’ll get a stack with 56, 34, and 12.

See Also
Recipe 2.9 explains how to group part of a regex, so that part can be repeated as a whole.

Recipe 2.13 explains how to choose between minimal repetition and maximal
repetition.

Recipe 2.14 explains how to make sure the regex engine doesn’t needlessly try different
amounts of repetition.

2.13 Choose Minimal or Maximal Repetition

Problem

Match a pair of <p> and </p> XHTML tags and the text between them. The text between
the tags can include other XHTML tags.

Solution

<p>.*2¢</p>
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

All the quantifiers discussed in Recipe 2.12 are greedy, meaning they try to repeat as
many times as possible, giving back only when required to allow the remainder of the
regular expression to match.

2.13 Choose Minimal or Maximal Repetition | 75

This can make it hard to pair tags in XHTML (which is a version of XML and therefore
requires every opening tag to be matched by a closing tag). Consider the following
simple excerpt of XHTML:

<p>

The very first task is to find the beginning of a paragraph.

</p>

<p>

Then you have to find the end of the paragraph

</p>

There are two opening <p> tags and two closing </p> tags in the excerpt. You want to
match the first <p> with the first </p>, because they mark a single paragraph. Note that
this paragraph contains a nested tag, so the regex can’t simply stop when it en-
counters a < character.

Take a look at one incorrect solution for the problem in this recipe:
<p>.¥</p>
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The only difference is that this incorrect solution lacks the extra question mark after
the asterisk. The incorrect solution uses the same greedy asterisk explained in
Recipe 2.12.

After matching the first <p> tag in the subject, the engine reaches <.*>. The dot matches
any character, including line breaks. The asterisk repeats it zero or more times. The
asterisk is greedy, and so <.* matches everything all the way to the end of the subject
text. Let me say that again: <.*) eats up your whole XHTML file, starting with the first
paragraph.

When the <.* has its belly full, the engine attempts to match the «> at the end of the
subject text. That fails. But it’s not the end of the story: the regex engine backtracks.

The asterisk prefers to grab as much text as possible, but it’s also perfectly satisfied to
match nothing at all (zero repetitions). With each repetition of a quantifier beyond the
quantifier’s minimum, the regular expression stores a backtracking position. Those are
positions the engine can go back to, in case the part of the regex following the quantifier
fails.

When <« fails, the engine backtracks by making the ¢.*> give up one character of its
match. Then « is attempted again, at the last character in the file. If it fails again, the
engine backtracks once more, attempting << at the second-to-last character in the file.
This process continues until <> succeeds. If <<> never succeeds, the <.*> eventually runs
out of backtracking positions and the overall match attempt fails.

If <> does match at some point during all that backtracking, </> is attempted. If </> fails,
the engine backtracks again. This repeats until «</p>> can be matched entirely.

76 | Chapter2: Basic Regular Expression Skills

So what’s the problem? Because the asterisk is greedy, the incorrect regular expression
matches everything from the first <p> in the XHTML file to the last </p>. But to correctly
match an XHTML paragraph, we need to match the first <p> with the first </p> that
follows it.

That’s where lazy quantifiers come in. You can make any quantifier lazy by placing a
question mark after it: <*2>, <+2>, @, and «{7,42}?> are all lazy quantifiers.

Lazy quantifiers backtrack too, but the other way around. A lazy quantifier repeats as
few times as it has to, stores one backtracking position, and allows the regex to con-
tinue. If the remainder of the regex fails and the engine backtracks, the lazy quantifier
repeats once more. If the regex keeps backtracking, the quantifier will expand until its
maximum number of repetitions, or until the regex token it repeats fails to match.

«p>.*?2</p> uses a lazy quantifier to correctly match an XHTML paragraph. When
«p> matches, the «.*?), lazy as it is, initially does nothing but procrastinate. If <</p>>
immediately occurs after <p>, an empty paragraph is matched. If not, the engine back-
tracks to <.*?>, which matches one character. If «</p>> still fails, <.*?> matches the next
character. This continues until either «</p>> succeeds or <.*? fails to expand. Since the
dot matches everything, failure won’t occur until the <.*?> has matched everything up
to the end of the XHTML file.

The quantifiers <¢*» and ¢*?> allow all the same regular expression matches. The only
difference is the order in which the possible matches are tried. The greedy quantifier
will find the longest possible match. The lazy quantifier will find the shortest possible
match.

If possible, the best solution is to make sure there is only one possible match. The
regular expressions for matching numbers in Recipe 2.12 will still match the same
numbers if you make all their quantifiers lazy. The reason is that the parts of those
regular expressions that have quantifiers and the parts that follow them are mutually
exclusive. \d> matches a digit, and <\b> matches after <\d> only if the next character is
not a digit (or letter).

It may help to understand the operation of greedy and lazy repetition by comparing
how \d+\b> and <\d+?\b> act on a couple of different subject texts. The greedy and lazy
versions produce the same results, but test the subject text in a different order.

If we use \\d+\b> on 1234, \d+> will match all the digits. <\\b> then matches, and an
overall match is found. If we use (\d+?\b>, \\d+?> first matches only 1. <\\b> fails between
1 and 2. \d+?> expands to 12, and <\b> still fails. This continues until <\d+?> matches
1234, and <\b> succeeds.

If our subject text is 1234X, the first regex, <\d+\b>, still has <\d+> match 1234. But then
Ab> fails. <\d+» backtracks to 123. <\b» still fails. This continues until <\d+> has back-
tracked to its minimum 1, and <\b» still fails. Then the whole match attempt fails.

If we use \d+?\b> on 1234X, <\d+?> first matches only 1. <\\b> fails between 1 and 2.
A\d+?> expands to 12. \\b» still fails. This continues until <\d+?> matches 1234, and <\b>

2.13 Choose Minimal or Maximal Repetition | 77

still fails. The regex engine attempts to expand <\d+?> once more, but \d> does not
match X. The overall match attempt fails.

If we put \\d+> between word boundaries, it must match all the digits in the subject
text, or it fails. Making the quantifier lazy won’t affect the final regex match or its
eventual failure. In fact, <\b\d+\b> would be better off without any backtracking at all.
The next recipe explains how you can use a possessive quantifier <\b\d++\b> to achieve
that, at least with some flavors.

See Also

Recipe 2.8 describes how the regex engine attempts different alternatives when you use
alternation. That is also a form of backtracking.

Recipe 2.12 shows the different alternation operators supported by regular expressions.
Recipe 2.9 explains how to group part of a regex, so that part can be repeated as a whole.

Recipe 2.14 explains how to make sure the regex engine doesn’t needlessly try different
amounts of repetition.

Recipe 2.15 explains how to make sure the regex engine doesn’t needlessly try different
ways of matching a group.

2.14 Eliminate Needless Backtracking

Problem

The previous recipe explains the difference between greedy and lazy quantifiers, and
how they backtrack. In some situations, this backtracking is unnecessary.

Ab\d+\b> uses a greedy quantifier, and <\b\d+?\b> uses a lazy quantifier. They both
match the same thing: an integer. Given the same subject text, both will find the exact
same matches. Any backtracking that is done is unnecessary. Rewrite this regular ex-
pression to explicitly eliminate all backtracking, making the regular expression more
efficient.

Solution

\b\d++\b
Regex options: None
Regex flavors: Java, PCRE, Perl 5.10, Ruby 1.9

The easiest solution is to use a possessive quantifier. But it is supported only in a few
recent regex flavors.
\b(?>\d+)\b
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

78 | Chapter2: Basic Regular Expression Skills

An atomic group provides exactly the same functionality, using a slightly less readable
syntax. Support for atomic grouping is more widespread than support for possessive
quantifiers.

JavaScript and Python do not support possessive quantifiers or atomic grouping. There
is no way to eliminate needless backtracking with these two regex flavors.

Discussion

A possessive quantifier is similar to a greedy quantifier: it tries to repeat as many times
as possible. The difference is that a possessive quantifier will never give back, not even
when giving back is the only way that the remainder of the regular expression could
match. Possessive quantifiers do not keep backtracking positions.

You can make any quantifier possessive by placing a plus sign after it. For example,
Gy, 0, (20, and (7,42} are all possessive quantifiers.

Possessive quantifiers are supported by Java 4 and later, the first Java release to include
the java.util.regex package. All versions of PCRE discussed in this book (version 4
to 7) support possessive quantifiers. Perl supports them starting with Perl 5.10. Classic
Ruby regular expressions do not support possessive quantifiers, but the Oniguruma
engine, which is the default in Ruby 1.9, does support them.

Wrapping a greedy quantifier inside an atomic group has the exact same effect as using
a possessive quantifier. When the regex engine exits the atomic group, all backtracking
positions remembered by quantifiers and alternation inside the group are thrown away.
The syntax is <(?>"**)>, where <> is any regular expression. An atomic group is essen-
tially a noncapturing group, with the extra job of refusing to backtrack. The question
mark is not a quantifier; the opening bracket simply consists of the three characters

(.

When you apply the regex <\b\d++\b> (possessive) to 123abc 456, <\b> matches at the
start of the subject, and <\d++ matches 123. So far, this is no different from what
Ab\d+\b> (greedy) would do. But then the second «\b> fails to match between 3 and a.

The possessive quantifier did not store any backtracking positions. Since there are no
other quantifiers or alternation in this regular expression, there are no further options
to try when the second word boundary fails. The regex engine immediately declares
failure for the match attempt starting at 1.

The regex engine does attempt the regex starting at the next character positions in the
string, and using a possessive quantifier does not change that. If the regex must match
the whole subject, use anchors, as discussed in Recipe 2.5. Eventually, the regex engine
will attempt the regex starting at the 4 and find the match 456.

The difference with the greedy quantifier is that when the second «\b» fails during the
first match attempt, the greedy quantifier will backtrack. The regex engine will then
(needlessly) test <\b> between 2 and 3, and between 1 and 2.

2.14 Eliminate Needless Backtracking | 79

The matching process using atomic grouping is essentially the same. When you apply
the regex <\b(?>\d+)\b> (possessive) to 123abc 456, the word boundary matches at the
start of the subject. The regex engine enters the atomic group, and «\d+> matches 123.
Now the engine exits the atomic group. At this point, the backtracking positions re-
membered by (\d+> are thrown away. When the second \b> fails, the regex engine is
left without any further options, causing the match attempt to fail immediately. As with
the possessive quantifier, eventually 456 will be found.

We describe the possessive quantifier as failing to remember backtracking positions,
and the atomic group as throwing them away. This makes it easier to understand the
matching process, but don’t get hung up on the difference, as it may not even exist in
the regex flavor you’re working with. In many flavors, «x++> is merely syntactic sugar
for «(?>x+)», and both are implemented in exactly the same way. Whether the engine
never remembers backtracking positions or throws them away later is irrelevant for the
final outcome of the match attempt.

Where possessive quantifiers and atomic grouping differ is that a possessive quantifier
applies only to a single regular expression token, whereas an atomic group can wrap a
whole regular expression.

Aw++\d++> and «(?>\w+\d+)> are not the same at all. \w++\d++>, which is the same as
<«(2>\w+) (2>\d+)>, will not match abc123. \w++> matches abc123 entirely. Then, the regex
engine attempts \d++> at the end of the subject text. Since there are no further characters
that can be matched, \d+#+> fails. Without any remembered backtracking positions, the
match attempt fails.

«(>\w+\d+)> has two greedy quantifiers inside the same atomic group. Within the
atomic group, backtracking occurs normally. Backtracking positions are thrown away
only when the engine exits the whole group. When the subject is abc123, \w+> matches
abc123. The greedy quantifier does remember backtracking positions. When \d+> fails
to match, \w+> gives up one character. \\d+» then matches 3. Now, the engine exits the
atomic group, throwing away all backtracking positions remembered for \w+> and
A\d+. Since the end of the regex has been reached, this doesn’t really make any differ-
ence. An overall match is found.

If the end had not been reached, as in <(?>\w+\d+)\d+>, we would be in the same sit-
uation as with \w++\d++>. The second \d+> has nothing left to match at the end of the
subject. Since the backtracking positions were thrown away, the regex engine can only
declare failure.

Possessive quantifiers and atomic grouping don’t just optimize regular expressions.
They can alter the matches found by a regular expression by eliminating those that
would be reached through backtracking.

This recipe shows how to use possessive quantifiers and atomic grouping to make
minor optimizations, which may not even show any difference in benchmarks. The
next recipe will showcase how atomic grouping can make a dramatic difference.

80 | Chapter2: BasicRegular Expression Skills

See Also
Recipe 2.12 shows the different alternation operators supported by regular expressions.

Recipe 2.15 explains how to make sure the regex engine doesn’t needlessly try different
ways of matching a group.

2.15 Prevent Runaway Repetition

Problem

Use a single regular expression to match a complete HTML file, checking for properly
nested html, head, title, and body tags. The regular expression must fail efficiently on
HTML files that do not have the proper tags.

Solution

<html>(?>.*2<head>) (?>.*¥2<title>) (2>.%?</title>) ¢

(2>.%2</head>) (2>.*2<body[*>]*>) (2>.*2</body>) . *2</html>
Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Ruby

JavaScript and Python do not support atomic grouping. There is no way to eliminate
needless backtracking with these two regex flavors. When programming in JavaScript
or Python, you can solve this problem by doing a literal text search for each of the tags
one by one, searching for the next tag through the remainder of the subject text after
the one last found.

Discussion

The proper solution to this problem is more easily understood if we start from this naive
solution:

<html>.*?<head>.*?<title> . *?</title>«
.¥2</head>.*?<body[*>]*>.*?</body>.*?</html>

Regex options: Case insensitive, dot matches line breaks

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

When you test this regex on a proper HTML file, it works perfectly well. <.*?» skips
over anything, because we turn on “dot matches line breaks.” The lazy asterisk makes
sure the regex goes ahead only one character at a time, each time checking whether the
next tag can be matched. Recipes 2.4 and 2.13 explain all this.

But this regex gets you into trouble when it needs to deal with a subject text that does
not have all the HTML tags. The worst case occurs when </html> is missing.

2.15 Prevent Runaway Repetition | 81

Imagine the regex engine has matched all the preceding tags and is now busy expanding
the last <.*?>. Since «</html>> can never match, the <.*?> expands all the way to the end
of the file. When it can no longer expand, it fails.

But that is not the end of the story. The other six <.*?> have all remembered a back-
tracking position that allows them to expand further. When the last <. *?> fails, the one
before expands, gradually matching </body>. That same text was previously matched
by the literal «</body>> in the regex. This <.*?> too will expand all the way to the end
of the file, as will all preceding lazy dots. Only when the first one reaches the end of
the file will the regex engine declare failure.

This regular expression has a worst-case complexity3 of O(n”), the length of the subject
text to the seventh power. There are seven lazy dots that can potentially expand all the
way to the end of the file. If the file is twice the size, the regex can need up to 128 times
as many steps to figure out it doesn’t match.

We call this catastrophic backtracking. So much backtracking occurs that the regex
either takes forever or crashes your application. Some regex implementations are clever
and will abort runaway match attempts early, but even then the regex will still kill your
application’s performance.

Catastrophic backtracking is an instance of a phenomenon known as a
combinatorial explosion, in which several orthogonal conditions inter-
N “ . . .

o5 sect and all combinations have to be tried. You could also say that the
" regex is a Cartesian product of the various repetition operators.

The solution is to use atomic grouping to prevent needless backtracking. There is no
need for the sixth <.*?) to expand after «</body>> has matched. If «</html>> fails, ex-
panding the sixth lazy dot will not magically produce a closing html tag.

To make a quantified regular expression token stop when the following delimiter
matches, place both the quantified part of the regex and the delimiter together in an
atomic group: «(?>.*?</body>)>. Now the regex engine throws away all the matching
positions for <.*?</body> when «/body> is found. If «</html>> later fails, the regex
engine has forgotten about <.*?</body>>, and no further expansion will occur.

If we do the same for all the other <.*?> in the regex, none of them will expand further.
Although there are still seven lazy dots in the regex, they will never overlap. This reduces
the complexity of the regular expression to O(n), which is linear with respect to the
length of the subject text. A regular expression can never be more efficient than this.

3. Complexity of computer algorithms is usually described using the “big O notation.” The article at http:
/len.wikipedia.org/wiki/Time_complexity provides a good overview of common time complexities for
computer algorithms.

82 | Chapter2: BasicRegular Expression Skills

http://en.wikipedia.org/wiki/Time_complexity
http://en.wikipedia.org/wiki/Time_complexity

Variations

If you really want to see catastrophic backtracking at work, try <«(x+x+)+y> on
xxxxxxxxxx. If it fails quickly, add one x to the subject. Repeat this until the regex starts
to take very long to match or your application crashes. It won’t take many more x
characters, unless you’re using Perl.

Of the regex flavors discussed in this book, only Perl is able to detect that the regular
expression is too complex and then abort the match attempt without crashing.

The complexity of this regex is O(2"). When «y> fails to match, the regex engine will
try all possible permutations of repeating each «x+> and the group containing them. For
instance, one such permutation, far down the match attempt, is <x+» matching xxx, the
second «x+> matching x, and then the group being repeated three more times with each
«+> matching x. With 10 x characters, there are 1,024 such permutations. If we increase
the number to 32, we’re at over 4 billion permutations, which will surely cause any
regex engine to run out of memory, unless it has a safety switch that allows it to give
up and say that your regular expression is too complicated.

In this case, this nonsensical regular expression is easily rewritten as <xx+y>, which finds
exactly the same matches in linear time. In practice, the solution may not be so obvious
with more complicated regexes.

Essentially, you have to watch out when two or more parts of the regular expression
can match the same text. In these cases, you may need atomic grouping to make sure
the regex engine doesn’t try all possible ways of dividing the subject text between those
two parts of the regex. Always test your regex on (long) test subjects that contain text
that can be partially but not entirely matched by the regex.

See Also

Recipe 2.13 explains how to choose between minimal repetition and maximal
repetition.

Recipe 2.14 explains how to make sure the regex engine doesn’t needlessly try different
amounts of repetition.

The section “Unicode grapheme” on page 58 in Recipe 2.7 has another example of how
atomic grouping can prevent undesirable match results.

“SDL Regex Fuzzer” on page 21 describes SDL Regex Fuzzer, which is a tool that can
test (some) regular expressions for catastrophic backtracking.

2.15 Prevent Runaway Repetition | 83

2.16 Test for a Match Without Adding It to the Overall Match

Problem

Find any word that occurs between a pair of HTML bold tags, without including the
tags in the regex match. For instance, if the subject is My cat is furry, the only
valid match should be cat.

Solution

(2<=)\w+(?=)
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 support the lookahead «(?=)>, but not the lookbehind
«(2<=).

Discussion

Lookaround

The four kinds of lookaround groups supported by modern regex flavors have the spe-
cial property of giving up the text matched by the part of the regex inside the look-
around. Essentially, lookaround checks whether certain text can be matched without
actually matching it.

Lookaround that looks backward is called lookbehind. This is the only regular expres-
sion construct that will traverse the text from right to left instead of from left to right.
The syntax for positive lookbehind is «(2<="--)>. The four characters «(?<=)> form the
opening bracket. What you can put inside the lookbehind, here represented by ¢« -,
varies among regular expression flavors. But simple literal text, such as «(?<=)>,
always works.

Lookbehind checks to see whether the text inside the lookbehind occurs immediately
to the left of the position that the regular expression engine has reached. If you match
«(?<=)> against My cat is furry, the lookbehind will fail to match until the
regular expression starts the match attempt at the letter ¢ in the subject. The regex
engine then enters the lookbehind group, telling it to look to the left. «> matches to
the left of c. The engine exits the lookbehind at this point, and discards any text matched
by the lookbehind from the match attempt. In other words, the match-in-progress is
back at where it was when the engine entered the lookbehind. In this case, the match-
in-progress is the zero-length match before the c in the subject string. The lookbehind
only tests or asserts that «> can be matched; it does not actually match it. Lookaround
constructs are therefore called zero-length assertions.

After the lookbehind has matched, the shorthand character class (\w+> attempts to
match one or more word characters. It matches cat. The <\\w#+> is not inside any kind of

84 | Chapter2: BasicRegular Expression Skills

lookaround or group, and so it matches the text cat normally. We say that (\w+> matches
and consumes cat, whereas lookaround can match something but can never consume
anything.

Lookaround that looks forward, in the same direction that the regular expression nor-
mally traverses the text, is called lookahead. Lookahead is equally supported by all regex
flavors in this book. The syntax for positive lookahead is <(?="")>. The three characters
«(?=> form the opening bracket of the group. Everything you can use in a regular ex-
pression can be used inside lookahead, here represented by <.

When the \w+> in <(?<=)\w+(?=)> has matched cat in My cat is furry,
the regex engine enters the lookahead. The only special behavior for the lookahead at
this point is that the regex engine remembers which part of the text it has matched so
far, associating it with the lookahead. «> is then matched normally. Now the regex
engine exits the lookahead. The regex inside the lookahead matches, so the lookahead
itself matches. The regex engine discards the text matched by the lookahead, by re-
storing the match-in-progress it remembered when entering the lookahead. Our overall
match-in-progress is back at cat. Since this is also the end of our regular expression,
cat becomes the final match result.

Negative lookaround

«(21--+)>, with an exclamation point instead of an equals sign, is negative lookahead.
Negative lookahead works just like positive lookahead, except that whereas positive
lookahead matches when the regex inside the lookahead matches, negative lookahead
matches when the regex inside the lookahead fails to match.

The matching process is exactly the same. The engine saves the match-in-progress when
entering the negative lookahead, and attempts to match the regex inside the lookahead
normally. If the sub-regex matches, the lookahead fails, and the regex engine back-
tracks. If the sub-regex fails to match, the engine restores the match-in-process and
proceeds with the remainder of the regex.

Similarly, (?<!--*) is negative lookbehind. Negative lookbehind matches when none of
the alternatives inside the lookbehind can be found looking backward from the position
the regex has reached in the subject text.

Different levels of lookbehind

Lookahead is easy. All regex flavors discussed in this book allow you to put a complete
regular expression inside the lookahead. Everything you can use in a regular expression
can be used inside lookahead. You can even nest other lookahead and lookbehind
groups inside lookahead. Your brain might get into a twist, but the regex engine will
handle everything nicely.

Lookbehind is a different story. Regular expression software has always been designed
to search the text from left to right only. Searching backward is often implemented as

2.16 Test for a Match Without Adding It to the Overall Match | 85

a bit of a hack: the regex engine determines how many characters you put inside the
lookbehind, jumps back that many characters, and then compares the text in the look-
behind with the text in the subject from left to right.

For this reason, the earliestimplementations allowed only fixed-length literal text inside
lookbehind. Perl and Python still require lookbehind to have a fixed length, but they
do allow fixed-length regex tokens such as character classes, and allow alternation as
long as all alternatives match the same number of characters.

PCRE and Ruby 1.9 take this one step further. They allow alternatives of different
lengths inside lookbehind, as long as the length of each alternative is constant. They
can handle something like «(?<=one | two | three | forty-two|gr[ae]y)>, but nothing more
complex than that.

Internally, PCRE and Ruby 1.9 expand this into six lookbehind tests. First, they jump
back three characters to test <one|two>, then four characters to test «gray|grey», then
five to test ¢three>, and finally nine to test ¢forty-two>.

Java takes lookbehind one step further. Java allows any finite-length regular expression
inside lookbehind. This means you can use anything except the infinite quantifiers <*,
<, and «{42, }> inside lookbehind. Internally, Java’s regex engine calculates the mini-
mum and maximum length of the text that could possibly be matched by the part of
the regex in the lookbehind. It then jumps back the minimum number of characters,
and applies the regex in the lookbehind from left to right. If this fails, the engine jumps
back one more character and tries again, until either the lookbehind matches or the
maximum number of characters has been tried.

If all this sounds rather inefficient, it is. Lookbehind is very convenient, but it won’t
break any speed records. Later, we present a solution for JavaScript and Ruby 1.8,
which don’t support lookbehind at all. This solution is actually far more efficient than
using lookbehind.

The regular expression engine in the .NET Framework is the only one in the world*
that can actually apply a full regular expression from right to left. .NET allows you to
use anything inside lookbehind, and it will actually apply the regular expression from
right to left. Both the regular expression inside the lookbehind and the subject text are
scanned from right to left.

Matching the same text twice

If you use lookbehind at the start of the regex or lookahead at the end of the regex, the
net effect is that you’re requiring something to appear before or after the regex match,
without including it in the match. If you use lookaround in the middle of your regular
expression, you can apply multiple tests to the same text.

4. RegexBuddy’s regex engine also allows a full regex inside lookbehind, but does not (yet) have a feature
similar to .NET’s RegexOptions.RightToLeft to reverse the whole regular expression.

86 | Chapter2: BasicRegular Expression Skills

In “Flavor-Specific Features” on page 36 (a subsection of Recipe 2.3), we showed how
to use character class subtraction to match a Thai digit. Only .NET and Java support
character class subtraction.

With lookahead, you can test both requirements on the same character:

(?=\p{Thai})\p{N}
Regex options: None
Regex flavors: PCRE, Perl, Ruby 1.9

This regex works only with the three flavors that support Unicode scripts, as we explain
in Recipe 2.7. But the principle of using lookahead to match the same character more
than once works with all flavors discussed in this book.

When the regular expression engine searches for «(?=\p{Thai})\p{N}>, it starts by en-
tering the lookahead at each position in the string where it begins a match attempt. If
the character at that position is not in the Thai script (i.e., \\p{Thai}> fails to match),
the lookahead fails. This causes the whole match attempt to fail, forcing the regex
engine to start over at the next character.

When the regex reaches a Thai character, <\p{Thai}> matches. Thus, the <«(?=
\p{Thai})> lookaround matches, too. As the engine exits the lookaround, it restores
the match-in-progress. In this case, that’s the zero-length match before the character
just found to be Thai. Next up is <\p{N}>. Because the lookahead discarded its match,
Ap{N}> is compared with the same character that \p{Thai}> already matched. If this
character has the Unicode property Number, <\p{N}> matches. Since <\p{N}> is not inside
a lookaround, it consumes the character, and we have found our Thai digit.

Lookaround is atomic

When the regular expression engine exits a lookaround group, it discards the text
matched by the lookaround. Because the text is discarded, any backtracking positions
remembered by alternation or quantifiers inside the lookaround are also discarded.
This effectively makes lookahead and lookbehind atomic. Recipe 2.14 explains atomic
groups in detail.

In most situations, the atomic nature of lookaround is irrelevant. A lookaround is
merely an assertion to check whether the regex inside the lookaround matches or fails.
How many different ways it can match is irrelevant, as it does not consume any part of
the subject text.

The atomic nature comes into play only when you use capturing groups inside look-
ahead (and lookbehind, if your regex flavor allows you to). While the lookahead does
not consume any text, the regex engine will remember which part of the text was
matched by any capturing groups inside the lookahead. If the lookahead is at the end
of the regex, you will indeed end up with capturing groups that match text not matched

2.16 Test for a Match Without Adding It to the Overall Match | 87

by the regular expression itself. If the lookahead is in the middle of the regex, you can
end up with capturing groups that match overlapping parts of the subject text.

The only situation in which the atomic nature of lookaround can alter the overall regex
match is when you use a backreference outside the lookaround to a capturing group
created inside the lookaround. Consider this regular expression:

(2=(\d+))\w+\1
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

At first glance, you may think that this regex would match 123x12. \d+» would capture
12 into the first capturing group, then \w+> would match 3x, and finally <\1> would
match 12 again.

But that never happens. The regular expression enters the lookaround and the captur-
ing group. The greedy «\d+> matches 123. This match is stored into the first capturing
group. The engine then exits the lookahead, resetting the match-in-progress to the start
of the string, discarding the backtracking positions remembered by the greedy plus but
keeping the 123 stored in the first capturing group.

Now, the greedy «\w+> is attempted at the start of the string. It eats up 123x12. \1,
which references 123, fails at the end of the string. (\w+> backtracks one character.
A fails again. \w+> keeps backtracking until it has given up everything except the first
1 in the subject. \\1> also fails to match after the first 1.

The final 12 would match «\1» if the regex engine could return to the lookahead and
give up 123 in favor of 12, but the regex engine doesn’t do that.

The regex engine has no further backtracking positions to go to. \w+> backtracked all
the way, and the lookaround forced <\d+> to give up its backtracking positions. The
match attempt fails.

Alternative to Lookbehind

\K\w+(2=)
Regex options: Case insensitive
Regex flavors: PCRE 7.2, Perl 5.10

Perl 5.10, PCRE 7.2, and later versions, provide an alternative mechanism to lookbe-
hind using <\K>. When the regex engine encounters <\K> in the regular expression, it will
keep the text it has matched so far. The match attempt will continue as it would if the
regex did not include the (\K>. But the text matched prior to the \K> will not be included
in the overall match result. Text matched by capturing groups before the (\K> will still
be available to backreferences after the <\K>. Only the overall match result is affected
by <\K>.

The result is that \\K> can be used instead of positive lookbehind in many situations.
<before\Ktext> will match text but only when immediately preceded by before, just as

88 | Chapter2: BasicRegular Expression Skills

«(?<=before)text> does. The benefit of \\K> over positive lookbehind in Perl and PCRE
is that you can use the full regular expression syntax with <\K>, while lookbehind has
various restrictions, such as not allowing quantifiers.

The major difference between (\K> and lookbehind is that when you use <\K», the regex
is matched strictly from left to right. It does not look backwards in any way. Lookbehind
does look backward. This difference comes into play when the part of the regex after
the \\K> or after the lookbehind can match the same text as the part of the regex before
the \K> or inside the lookbehind.

The regex <(?<=a)a> finds two matches in the string aaa. The first match attempt at the
start of the string fails, because the regex engine cannot find an a while looking back.
The match attempt starting between the first and second a is successful. Looking back
the regex engine sees the first a in the string, which satisfies the lookbehind. The second
<@ in the regex then matches the second a in the string. The third match attempt starting
between the second and third a is also successful. Looking back the second a in the
string satisfies the lookbehind. The regex then matches the third a. The final match
attempt at the end of the string also fails. Looking back the third a in the string does
satisfy the lookbehind. But there are no characters left in the string for the second <a»
in the regex to match.

The regex <a\Ka> finds only one match in the string. The first match attempt at the start
of the string succeeds. The first <a> in the regex matches the first a in the string. \K>
excludes this part of the match from the result that will be returned, but does not change
the matching process. The second <a> in the regex then matches the second a in the
string, which is returned as the overall match. The second match attempt begins be-
tween the second and third a in the string. The first <a> in the regex matches the third
a in the string. \\K> excludes it from the overall result, but the regex engine continues
normally. But there are no characters left in the string for the second <a> in the regex to
match, so the match attempt fails.

Asyou can see, when using <\K>, the regex matching process works normally. The regex
a\Ka> will find the exact same matches as the capturing group in the regex <a(a)>. You
cannot use <\K> to match the same part of the string more than once. With lookbehind,
you can. You can use <(?<=\p{Thai})(?<=\p{Nd})a> to match an a that is preceded by a
single character that is both in the Thai script and is a digit. If you tried <\p{Thai}\K
\p{Nd}\Ka> you’d be matching a Thai character followed by a digit followed by an a,
but returning only the a as the match. Again, this is no different from matching all three
characters with \p{Thai}\p{Nd}(a)> and using only the part matched by the capturing

group.
Solution Without Lookbehind

All the preceding arcane explanations are of no use if you’re using Ruby 1.8 or Java-
Script, because you cannot use lookbehind at all. There’s no way to solve the problem
as stated with these regex flavors, but you can work around the need for lookbehind

2.16 Test for a Match Without Adding It to the Overall Match | 89

by using capturing groups. This alternative solution also works with all the other regex
flavors:

() (\w#) (2=¢/b>)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Instead of using lookbehind, we used a capturing group for the opening tag «>. We
also placed the part of the match we’re interested in, the (\w+>, into a capturing group.

When you apply this regular expression to My cat is furry, the overall regex
match will be cat. The first capturing group will hold , and the second, cat.

If the requirement is to match only cat (the word between the tags) because you
want to extract only that from the text, you can reach that goal by simply storing the
text matched by the second capturing group instead of the overall regex.

If the requirement is that you want to do a search-and-replace, replacing only the word
between the tags, simply use a backreference to the first capturing group to reinsert the
opening tag into the replacement text. In this case, you don’t really need the capturing
group, as the opening tag is always the same. But when it’s variable, the capturing group
reinserts exactly what was matched. Recipe 2.21 explains this in detail.

Finally, if you really want to simulate lookbehind, you can do so with two regular
expressions. First, search for your regex without the lookbehind. When it matches,
copy the part of the subject text before the match into a new string variable. Do the test
you did inside the lookbehind with a second regex, appending an end-of-string anchor
(<\2> or <$»). The anchor makes sure the match of the second regex ends at the end of
the string. Since you cut the string at the point where the first regex matched, that
effectively puts the second match immediately to the left of the first match.

In JavaScript, you could code this along these lines:

var mainregexp = /\w+(?=<\/b>)/;
var lookbehind = /$/;
if (match = mainregexp.exec("My cat is furry")) {
// Found a word before a closing tag
var potentialmatch = match[o0];
var leftContext = match.input.substring(0, match.index);
if (lookbehind.exec(leftContext)) {
// Lookbehind matched:
// potentialmatch occurs between a pair of tags
} else {
// Lookbehind failed: potentialmatch is no good

} else {
// Unable to find a word before a closing tag
}

90 | Chapter2: BasicRegular Expression Skills

See Also

Recipes 5.5, 5.6, and 7.10 solve some real-world problems using lookaround.

2.17 Match One of Two Alternatives Based on a Condition

Problem

Create a regular expression that matches a comma-delimited list of the words one,
two, and three. Each word can occur any number of times in the list, and the words
can occur in any order, but each word must appear at least once.

Solution
\b(?:(?:(one) | (two) | (three))(?:,|\b)){3,}(2(1)[(21))(2(2)1(21))(2(3) | (21))

Regex options: None
Regex flavors: .NET, PCRE, Perl, Python

Java, JavaScript, and Ruby do not support conditionals. When programming in these
languages (or any other language), you can use the regular expression without the con-
ditionals, and write some extra code to check if each of the three capturing groups
matched something.

\b(?:(?:(one) | (two)|(three))(?:,]|\b)){3,}
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

.NET, PCRE, Perl, and Python support conditionals using numbered capturing groups.
«(?(1)then|else)> is a conditional that checks whether the first capturing group has
already matched something. If it has, the regex engine attempts to match «them. If the
capturing group has not participated in the match attempt thus far, the <else> part is
attempted.

The parentheses, question mark, and vertical bar are all part of the syntax for the con-
ditional. They don’t have their usual meaning. You can use any kind of regular expres-
sion for the <them> and <else> parts. The only restriction is that if you want to use
alternation for one of the parts, you have to use a group to keep it together. Only one
vertical bar is permitted directly in the conditional.

If you want, you can omit either the <then> or <else> part. The empty regex always finds
a zero-length match. The solution for this recipe uses three conditionals that have an
empty <them part. If the capturing group participated, the conditional simply matches.

An empty negative lookahead, «(?!)», fills the <else> part. Since the empty regex always
matches, a negative lookahead containing the empty regex always fails. Thus, the con-

2.17 Match One of Two Alternatives Based on a Condition | 91

Download from Wow! eBook <www.wowebook.com>

ditional «(?(12)[(?!))> always fails when the first capturing group did not match
anything.

By placing each of the three required alternatives in their own capturing group, we can
use three conditionals at the end of the regex to test if all the capturing groups captured
something. If one of the words was not matched, the conditional referencing its cap-
turing group will evaluate the “else” part, which will cause the conditional to fail to
match because of our empty negative lookahead. Thus the regex will fail to match if
one of the words was not matched.

To allow the words to appear in any order and any number of times, we place the words
inside a group using alternation, and repeat this group with a quantifier. Since we have
three words, and we require each word to be matched at least once, we know the group
has to be repeated at least three times.

.NET, Python, and PCRE 6.7 allow you to specify the name of a capturing group in a
conditional. «(?(name)then|else)> checks whether the named capturing group name
participated in the match attempt thus far. Perl 5.10 and later also support named
conditionals. But Perl requires angle brackets or quotes around the name, as in «(?
(<name>)then|else)> or «(?('name')then|else)>. PCRE 7.0 and later also supports Perl’s
syntax for named conditional, while also supporting the syntax used by .NET and
Python.

To better understand how conditionals work, let’s examine the regular expression
«(a)?b(?2(1)c|d)>. This is essentially a complicated way of writing <abc |bd>.

If the subject text starts with an a, this is captured in the first capturing group. If not,
the first capturing group does not participate in the match attempt at all. It is important
that the question mark is outside the capturing group because this makes the whole
group optional. If there is no a, the group is repeated zero times, and never gets the
chance to capture anything at all. It can’t capture a zero-length string.

If you use <(a?)>, the group always participates in the match attempt. There’s no quan-
tifier after the group, so it is repeated exactly once. The group will either capture a or
capture nothing.

Regardless of whether <a> was matched, the next token is . The conditional is next.
If the capturing group participated in the match attempt, even if it captured the zero-
length string (not possible here), «c> will be attempted. If not, «d> will be attempted.

In English, <(a)?b(?(1)c|d)> either matches ab followed by ¢, or matches b followed by
d.

With .NET, PCRE, and Perl, but not with Python, conditionals can also use look-
around. «(?(?=if)then|else)> first tests <(?=if)> as a normal lookahead. Recipe 2.16
explains how this works. If the lookaround succeeds, the <then> part is attempted. If
not, the <else> part is attempted. Since lookaround is zero-width, the <thenm> and
else> regexes are attempted at the same position in the subject text where «<if> either
matched or failed.

92 | Chapter2: BasicRegular Expression Skills

You can use lookbehind instead of lookahead in the conditional. You can also use
negative lookaround, though we recommend against it, as it only confuses things by
reversing the meaning of “then” and “else.”

W

o A conditional using lookaround can be written without the conditional
"‘.“ L s «(?=if)then| (?!if)else>. If the positive lookahead succeeds, the
* _as cthem part is attempted. If the positive lookahead fails, the alternation
" kicks in. The negative lookahead then does the same test. The negative
lookahead succeeds when «if> fails, which is already guaranteed because
«(?=if)> failed. Thus, <else> is attempted. Placing the lookahead in a

conditional saves time, as the conditional attempts «if> only once.

See Also

A conditional is essentially the combination of a lookaround (Recipe 2.16) and alter-
nation (Recipe 2.8) inside a group (Recipe 2.9).

“Eliminate incorrect ISBN identifiers” on page 299 in Recipe 4.13 and “Using a con-
ditional” on page 349 in Recipe 5.7 show how you can solve some real-world problems
using conditionals.

2.18 Add Comments to a Regular Expression

Problem

Ad{4}-\d{2}-\d{2}> matches a date in yyyy-mm-dd format, without doing any valida-
tion of the numbers. Such a simple regular expression is appropriate when you know
your data does not contain any invalid dates. Add comments to this regular expression
to indicate what each part of the regular expression does.

Solution

\d{4} # Year
- # Separator
\d{2} # Month
- # Separator
\d{2} # Day
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

2.18 Add Comments to a Regular Expression | 93

Discussion

Free-spacing mode

Regular expressions can quickly become complicated and difficult to understand. Just
as you should comment source code, you should comment all but the most trivial
regular expressions.

All regular expression flavors in this book, except JavaScript, offer an alternative regular
expression syntax that makes it very easy to clearly comment your regular expressions.
You can enable this syntax by turning on the free-spacing option. It has different names
in various programming languages.

In .NET, set the RegexOptions.IgnorePatternWhitespace option. In Java, pass the
Pattern.COMMENTS flag. Python expects re.VERBOSE. PHP, Perl, and Ruby use the /x flag.

Though standard JavaScript does not support free-spacing regular expressions, the
XRegExp library adds that option. Simply add 'x' to the flags passed as the second
parameter to the XRegExp() constructor.

Turning on free-spacing mode has two effects. It turns the hash symbol (#) into a
metacharacter, outside character classes. The hash starts a comment that runs until the
end of the line or the end of the regex (whichever comes first). The hash and everything
after it is simply ignored by the regular expression engine. To match a literal hash sign,
either place it inside a character class <[#]> or escape it \#>.

The other effect is that whitespace, which includes spaces, tabs, and line breaks, is
also ignored outside character classes. To match a literal space, either place it inside a
character class <[®]> or escape it <\®. If you’re concerned about readability, you could
use the hexadecimal escape <\x20> or the Unicode escape <\u0020> or <\x{0020}» instead.
To match a tab, use <\t>. For line breaks, use <\r\n> (Windows) or <\n> (Unix/Linux/
0OS X).

Free-spacing mode does not change anything inside character classes. A character class
is a single token. Any whitespace characters or hashes inside character classes are literal
characters that are added to the character class. You cannot break up character classes
to comment their parts.

Java has free-spacing character classes

Regular expressions wouldn’t live up to their reputation unless at least one flavor was
incompatible with the others. In this case, Java is the odd one out.

In Java, character classes are not parsed as single tokens. If you turn on free-spacing
mode, Java ignores whitespace in character classes, and hashes inside character classes
do start comments. This means you cannot use <[®]> and «[#]> to match these charac-
ters literally. Use <\u0020> and (\#> instead.

94 | Chapter2: BasicRegular Expression Skills

Variations

(?#vear)\d{4} (?#Separator)- (?#Month)\d{2}- (?#Day)\d{2}
Regex options: None
Regex flavors: .NET, XRegExp, PCRE, Perl, Python, Ruby

If, for some reason, you can’t or don’t want to use free-spacing syntax, you can still add
comments by way of «(2#comment)>. All characters between «(?#> and <)> are ignored.

Unfortunately, JavaScript, the only flavor in this book that doesn’t support
free-spacing, also doesn’t support this comment syntax. XRegExp, which adds support
for free-spacing regular expressions to JavaScript, also adds support for the comment
syntax. While Java supports comments in free-spacing regular expressions, it does not
support the «(?#comment)> syntax.

(2x)\d{4} # Year

- # Separator
\d{2} # Month

- # Separator
\d{2} # Day

Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

If you cannot turn on free-spacing mode outside the regular expression, you can place
the mode modifier <(?x)> at the very start of the regular expression. Make sure there’s
no whitespace before the «(?x)>. Free-spacing mode begins only at this mode modifier;
any whitespace before it is significant.

Mode modifiers are explained in detail in “Case-insensitive matching” on page 29, a
subsection of Recipe 2.1.

2.19 Insert Literal Text into the Replacement Text

Problem

Search and replace any regular expression match literally with the eight characters

$%*$1\1.

Solution

$%*$$1\1
Replacement text flavors: .NET, JavaScript

\$\\F\$1\\1

Replacement text flavor: Java

$%*¥\$1\\1
Replacement text flavor: PHP

2.19 Insert Literal Text into the Replacement Text | 95

\$%*¥\$1\\1

Replacement text flavor: Perl

$%*$1\\1
Replacement text flavors: Python, Ruby

Discussion

When and how to escape characters in replacement text

This recipe shows you the different escape rules used by the various replacement text
flavors. The only two characters you may ever need to escape in the replacement text

are the dollar sign and the backslash. The escape characters are also the dollar sign and
the backslash.

The percentage sign and asterisk in this example are always literal characters, though
a preceding backslash may be treated as an escape instead of a literal backslash. «$1»
and/or «\1» are a backreference to a capturing group. Recipe 2.21 tells you which
flavors use which syntax for backreferences.

The fact that this problem has five different solutions for seven replacement text flavors
demonstrates that there really is no standard for replacement text syntax.

.NET and JavaScript

NET and JavaScript always treat a backslash as a literal character. Do not escape it
with another backslash, or you’ll end up with two backslashes in the replacement.

A lone dollar sign is a literal character. Dollar signs need to be escaped only when they
are followed by a digit, ampersand, backtick, straight quote, underscore, plus sign, or
another dollar sign. To escape a dollar sign, precede it with another dollar sign.
You can double up all dollar signs if you feel that makes your replacement text more
readable. This solution is equally valid:

$$%*$$1\1
Replacement text flavors: .NET, JavaScript

NET and XRegExp also require dollar signs followed by an opening curly brace to be
escaped. «${group}» is a named backreference in .NET and XRegExp. Standard Java-
Script without the XRegExp library does not support named backreferences.

Java

In Java, the backslash is used to escape backslashes and dollar signs in the replacement
text. All literal backslashes and all literal dollar signs must be escaped. If you do not
escape them, Java will throw an exception.

96 | Chapter2: BasicRegular Expression Skills

PHP

PHP requires backslashes followed by a digit, and dollar signs followed by a digit or
opening curly brace, to be escaped with a backslash.

A backslash also escapes another backslash. Thus, you need to write «\\\\» to replace
with two literal backslashes. All other backslashes are treated as literal backslashes.

Perl

Perl is a bit different from the other replacement text flavors: it does not really have a
replacement text flavor. Whereas the other programming languages have special logic
in their search-and-replace routines to substitute things such as «$1», in Perl that’s just
normal variable interpolation. In the replacement text, you need to escape all literal
dollar signs with a backslash, just as you would in any double-quoted string.

One exception is that Perl does support the «\1» syntax for backreferences. Thus, you
need to escape a backslash followed by a digit if you want the backslash to be a literal.
A backslash followed by a dollar sign also needs to be escaped, to prevent the backslash
from escaping the dollar sign.

A backslash also escapes another backslash. Thus, you need to write «\\\\» to replace
with two literal backslashes. All other backslashes are treated as literal backslashes.

Python and Ruby

The dollar sign has no special meaning in the replacement text in Python and Ruby.
Backslashes need to be escaped with another backslash when followed by a character
that gives the backslash a special meaning.

With Python, «\1» through «\9» and «\g<» create backreferences. These backslashes
need to be escaped.

For Ruby, you need to escape a backslash followed by a digit, ampersand, backtick,
straight quote, or plus sign.

In both languages, a backslash also escapes another backslash. Thus, you need to write
«\\\\» to include two literal backslashes in replacement text. All other backslashes are
treated as literal backslashes.

More escape rules for string literals

Remember that in this chapter, we deal only with the regular expressions and replace-
ment text themselves. The next chapter covers programming languages and string
literals.

The replacement texts shown earlier will work when the actual string variable you’re
passing to the replace() function holds this text. In other words, if your application
provides a text box for the user to type in the replacement text, these solutions show
what the user would have to type in order for the search-and-replace to work as in-

2.19 Insert Literal Text into the Replacement Text | 97

tended. If you test your search-and-replace commands with RegexBuddy or another
regex tester, the replacement texts included in this recipe will show the expected results.

But these same replacement texts will not work if you paste them directly into your
source code and put quote characters around them. String literals in programming
languages have their own escape rules, and you need to follow those rules on top of the
replacement text escape rules. You may indeed end up with a mess of backslashes.

See Also

Recipe 3.14 shows how to add a search-and-replace to source code.

2.20 Insert the Regex Match into the Replacement Text

Problem

Perform a search-and-replace that converts URLs into HTML links that point to the
URL, and use the URL as the text for the link. For this exercise, define a URL as
“http:” and all nonwhitespace characters that follow it. For instance, Please visit
http://www.regexcookbook.combecomes Please visit <a href="http://www.regexcook
book.com">http://www.regexcookbook.com.

Solution

Regular expression

http:\S+
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement

<a®href="%$&">$&

Replacement text flavors: .NET, JavaScript, Perl
<a®href="$0">$0

Replacement text flavors: .NET, Java, XRegExp, PHP
<a®href="\0">\0

Replacement text flavors: PHP, Ruby
<aohref="\&">\8

Replacement text flavor: Ruby

<a®href="\g<0>">\g<0>
Replacement text flavor: Python

98 | Chapter2: BasicRegular Expression Skills

Discussion

Inserting the whole regex match back into the replacement text is an easy way to insert
new text before, after, or around the matched text, or even between multiple copies of
the matched text. Unless you’re using Python, you don’t have to add any capturing
groups to your regular expression to be able to reuse the overall match.

In Perl, «$8» is actually a variable. Perl stores the overall regex match in this variable
after each successful regex match. Using «$8» adds a performance penalty to all your
regexes in Perl, so you may prefer to wrap your whole regex in a capturing group and
use a backreference to that group instead.

.NET and JavaScript have adopted the «$&» syntax to insert the regex match into the
replacement text. Ruby uses backslashes instead of dollar signs for replacement text
tokens, so use «\&» for the overall match.

Java, PHP, and Python do not have a special token to reinsert the overall regex match,
but they do allow text matched by capturing groups to be inserted into the replacement
text, as the next section explains. The overall match is an implicit capturing group
number 0. For Python, we need to use the syntax for named capture to reference group
zero. Python does not support «\0».

NET, XRegExp, and Ruby also support the zeroth capturing group syntax, but it
doesn’t matter which syntax you use. The result is the same.

See Also

“Search and Replace with Regular Expressions” in Chapter 1 describes the various
replacement text flavors.

Recipe 3.15 explains how to use replacement text in source code.

2.21 Insert Part of the Regex Match into the Replacement Text

Problem

Match any contiguous sequence of 10 digits, such as 1234567890. Convert the sequence
into a nicely formatted phone number—for example, (123) 456-7890.

Solution

Regular expression
\b(\d{3}) (\d{3}) (\d{4})\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

2.21 Insert Part of the Regex Match into the Replacement Text | 99

Replacement

($1)°$2-%3
Replacement text flavors: .NET, Java, JavaScript, PHP, Perl

(${1})*${2}-${3}

Replacement text flavors: NET, PHP, Perl
(\1)*\2-\3

Replacement text flavors: PHP, Python, Ruby

Discussion

Replacements using capturing groups

Recipe 2.10 explains how you can use capturing groups in your regular expression to
match the same text more than once. The text matched by each capturing group in
your regex is also available after each successful match. You can insert the text of some
or all capturing groups—in any order, or even more than once—into the replacement
text.

Some flavors, such as Python and Ruby, use the same «\1» syntax for backreferences
in both the regular expression and the replacement text. Other flavors use Perl’s «$1»
syntax, using a dollar sign instead of a backslash. PHP supports both.

In Perl, «$1» and above are actually variables that are set after each successful regex
match. You can use them anywhere in your code until the next regex match. .NET,
Java, JavaScript, and PHP support «$1» only in the replacement syntax. These pro-
gramming languages do offer other ways to access capturing groups in code. Chap-
ter 3 explains that in detail.

$10 and higher

All regex flavors in this book support up to 99 capturing groups in a regular expression.
In the replacement text, ambiguity can occur with «$10» or «\10» and above. These
can be interpreted as either the 10th capturing group, or the first capturing group fol-
lowed by a literal zero.

.NET, XRegExp, PHP, and Perl allow you to put curly braces around the number to
make your intention clear. «${10}» is always the 10th capturing group, and «${1}o» is
always the first followed by a literal zero.

Java and JavaScript try to be clever with «$10». If a capturing group with the specified
two-digit number exists in your regular expression, both digits are used for the cap-
turing group. If fewer capturing groups exist, only the first digit is used to reference the
group, leaving the second as a literal. Thus «$23» is the 23rd capturing group, if it exists.
Otherwise, it is the second capturing group followed by a literal «3».

100 | Chapter2: BasicRegular Expression Skills

.NET, XRegExp, PHP, Perl, Python, and Ruby always treat «$10» and «\10» as the
10th capturing group, regardless of whether it exists. If it doesn’t, the behavior for
nonexistent groups comes into play.

References to nonexistent groups

The regular expression in the solution for this recipe has three capturing groups. If you
type «$4» or «\4» into the replacement text, you’re adding a reference to a capturing
group that does not exist. This triggers one of three different behaviors.

Java, XRegExp, and Python will cry foul by raising an exception or returning an error
message. Do not use invalid backreferences with these flavors. (Actually, you shouldn’t
use invalid backreferences with any flavor.) If you want to insert «$4» or «\4» literally,
escape the dollar sign or backslash. Recipe 2.19 explains this in detail.

PHP, Perl, and Ruby substitute all backreferences in the replacement text, including
those that point to groups that don’t exist. Groups that don’t exist did not capture any
text and therefore references to these groups are simply replaced with nothing.

Finally, .NET and JavaScript (without XRegExp) leave backreferences to groups that
don’t exist as literal text in the replacement.

All flavors do replace groups that do exist in the regular expression but did not capture
anything. Those are replaced with nothing.

Solution Using Named Capture

Regular expression

\b(?<area>\d{3}) (?<exchange>\d{3}) (?<number>\d{4})\b

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
\b(?'area'\d{3}) (?'exchange'\d{3}) (? 'number'\d{4})\b

Regex options: None

Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\b(?P<area>\d{3}) (?P<exchange>\d{3}) (?P<number>\d{4})\b
Regex options: None
Regex flavors: PCRE, Perl 5.10, Python

Replacement

(${area})e${exchange}-${number}
Replacement text flavors: .NET, Java 7, XRegExp

(\g<area>)®\g<exchange>-\g<number>
Replacement text flavor: Python

(\k<area>)®\k<exchange>-\k<number>

2.21 Insert Part of the Regex Match into the Replacement Text | 101

Replacement text flavor: Ruby 1.9

(\k'area')e®\k'exchange'-\k'number"
Replacement text flavor: Ruby 1.9

($+{area})*$+{exchange}-$+{number}
Replacement text flavor: Perl 5.10

($1)°$2-3$3
Replacement text flavor: PHP

Flavors that support named capture

.NET, Java 7, XRegExp, Python, and Ruby 1.9 allow you to use named backreferences
in the replacement text if you used named capturing groups in your regular expression.
The syntax for named backreferences in the replacement text differs from that in the
regular expression.

Ruby uses the same syntax for backreferences in the replacement text as it does in
the regular expression. For named capturing groups in Ruby 1.9, this syntax is
«\k<group>» or «\k'group'». The choice between angle brackets and single quotes is
merely a notational convenience.

Perl 5.10 and later store the text matched by named capturing groups into the hash %
+. You can get the text matched by the group “name” with $+{name}. Perl interpolates
variables in the replacement text, so you can treat «$+{name}» as a named backreference
in the replacement text.

PHP (using PCRE) supports named capturing groups in regular expressions, but not
in the replacement text. You can use numbered backreferences in the replacement text
to named capturing groups in the regular expression. PCRE assigns numbers to both
named and unnamed groups, from left to right.

NET, Java 7, XRegExp, Python, and Ruby 1.9 also allow numbered references to
named groups. However, .NET uses a different numbering scheme for named groups,
as Recipe 2.11 explains. Mixing names and numbers with .NET, Java 7, XRegExp,
Python, or Ruby is not recommended. Either give all your capturing groups names or
don’t name any groups at all. Always use named backreferences for named groups.

See Also
Recipe 2.9 explains the capturing groups that backreferences refer to.

Recipe 2.11 explains named capturing groups. Naming the groups in your regex and
the backreferences in your replacement text makes them easier to read and maintain.

“Search and Replace with Regular Expressions” in Chapter 1 describes the various
replacement text flavors.

Recipe 2.10 shows how to use backrefreences in the regular expression itself. The syntax
is different than for backreferences in the replacement text.

102 | Chapter2: BasicRegular Expression Skills

Recipe 3.15 explains how to use replacement text in source code.

2.22 Insert Match Context into the Replacement Text

Problem

Create replacement text that replaces the regex match with the text before the regex
match, followed by the whole subject text, followed by the text after the regex match.
For example, if Match is found in BeforeMatchAfter, replace the match with Before
BeforeMatchAfterAfter, yielding the new text BeforeBeforeBeforeMatchAfterAfterAfter.

Solution
$°% %'
Replacement text flavors: .NET, Perl
VAN
Replacement text flavor: Ruby
$°$ 383"
Replacement text flavor: JavaScript

Discussion

The term context refers to the subject text that the regular expression was applied to.
There are three pieces of context: the subject text before the regex match, the subject
text after the regex match, and the whole subject text. The text before the match is
sometimes called the left context, and the text after the match is correspondingly the
right context. The whole subject text is the left context, the match, and the right context.

.NET and Perl support «$*», «$'», and «$_» to insert all three forms of context into
the replacement text. Actually, in Perl these are variables set after a successful regex
match and are available in any code until the next match attempt. Dollar backtick is
the left context. You can type the backtick on a U.S. keyboard by pressing the key to
the left of the 1 key in the top-left corner of your keyboard. Dollar straight quote is the
right context. The straight quote is the usual single quote. On a U.S. keyboard, it sits
between the semicolon and Enter keys. Dollar underscore is the whole subject text.
Like .NET and Perl, JavaScript uses «$*» and «$'» for left and right context. However,
JavaScript does not have a token for inserting the entire subject text. You can recompose
the subject text by inserting the whole regex match with «$8» between the left and right
context.

Ruby supports left and right context via «\"» and «\'», and uses «\&» to insert the
whole regex match. Like JavaScript, there is no token for the whole subject text.

2.22 Insert Match Context into the Replacement Text | 103

See Also

“Search and Replace with Regular Expressions” in Chapter 1 describes the various
replacement text flavors.

Recipe 3.15 explains how to use replacement text in source code.

104 | Chapter2: BasicRegular Expression Skills

CHAPTER 3
Programming with Reqular
Expressions

Programming Languages and Regex Flavors

This chapter explains how to implement regular expressions with your programming
language of choice. The recipes in this chapter assume you already have a working
regular expression at your disposal; the previous chapters can help in that regard. Now
you face the job of putting a regular expression into your source code and actually
making it do something.

We’ve done our best in this chapter to explain exactly how and why each piece of code
works the way it does. Because of the level of detail in this chapter, reading it from start
to finish may get a bit tedious. If you’re reading Regular Expression Cookbook for the
first time, we recommend you skim this chapter to get an idea of what can or needs to
be done. Later, when you want to implement one of the regular expressions from the
following chapters, come back here to learn exactly how to integrate the regexes with
your programming language of choice.

Chapters 4 through 9 use regular expressions to solve real-world problems. Those
chapters focus on the regular expressions themselves, and many recipes in those chap-
ters don’t show any source code at all. To make the regular expressions you find in
those chapters work, simply plug them into one of the code snippets in this chapter.

Because the other chapters focus on regular expressions, they present their solutions
for specific regular expression flavors, rather than for specific programming languages.
Regex flavors do not correspond one-on-one with programming languages. Scripting
languages tend to have their own regular expression flavor built-in, and other pro-
gramming languages rely on libraries for regex support. Some libraries are available for
multiple languages, while certain languages have multiple libraries available for them.

“Many Flavors of Regular Expressions” on page 2 describes all the regular expression
flavors covered in this book. “Many Flavors of Replacement Text” on page 6 lists the

105

replacement text flavors, used for searching and replacing with a regular expression.
All of the programming languages covered in this chapter use one of these flavors.

Languages Covered in This Chapter

This chapter covers eight programming languages. Each recipe has separate solutions
for all eight programming languages, and many recipes also have separate discussions
for all eight languages. If a technique applies to more than one language, we repeat it
in the discussion for each of those languages. We’ve done this so you can safely skip
the discussions of programming languages that you’re not interested in:

C#
C# uses the Microsoft .NET Framework. The System.Text.RegularExpressions
classes use the “.NET” regular expression and replacement text flavor. This book
covers C# 1.0 through 4.0, or Visual Studio 2002 until Visual Studio 2010.

VB.NET
This book uses VB.NET and Visual Basic.NET to refer to Visual Basic 2002 and
later, to distinguish these versions from Visual Basic 6 and earlier. Visual Basic now
uses the Microsoft .NET Framework. The System.Text.RegularExpressions classes

use the “.NET” regular expression and replacement text flavor. This book covers
Visual Basic 2002 until Visual Basic 2010.

Java
Java 4 s the first Java release to provide built-in regular expression support through
the java.util.regex package. The java.util.regex package uses the “Java” regular
expression and replacement text flavor. This book covers Java 4, 5, 6, and 7.

JavaScript
This is the regex flavor used in the programming language commonly known as
JavaScript. All modern web browsers implement it: Internet Explorer (as of version
5.5), Firefox, Opera, Safari, and Chrome. Many other applications also use
JavaScript as a scripting language.

Strictly speaking, in this book we use the term JavaScript to indicate the program-
ming language defined in versions 3 and 5 of the ECMA-262 standard. This stan-
dard defines the ECMAScript programming language, which is better known
through its implementations JavaScript and JScript in various web browsers.

ECMA-262v3 and ECMA-262v5 also define the regular expression and replace-
ment text flavors used by JavaScript. Those flavors are labeled as “JavaScript” in
this book.

XRegExp
XRegExp is an open source JavaScript library developed by Steven Levithan. You
can download it at http://xregexp.com. XRegExp extends JavaScript’s regular ex-
pression syntax. XRegExp also provides replacement functions for JavaScript’s
regex matching functions for better cross-browser consistency, as well as new
higher-level functions that make tasks such as iterating over all matches easier.

106 | Chapter3: Programming with Regular Expressions

http://xregexp.com

Download from Wow! eBook <www.wowebook.com>

Most recipes in this chapter do not have separate JavaScript and XRegExp solu-
tions. You can use the standard JavaScript solutions with regular expressions cre-
ated by XRegExp. In situations where XRegExp’s methods offer a significantly
better solution, we show code for both standard JavaScript, as well as JavaScript
with XRegExp.

PHP
PHP has three sets of regular expression functions. We strongly recommend using
the preg functions. Therefore, this book only covers the preg functions, which are
builtinto PHP as of version 4.2.0. This book covers PHP 4 and 5. The preg functions
are PHP wrappers around the PCRE library. The PCRE regex flavor is indicated as
“PCRE” in this book. Since PCRE does not include search-and-replace function-
ality, the PHP developers devised their own replacement text syntax for
preg_replace. This replacement text flavor is labeled “PHP” in this book.

Themb_ereg functions are part of PHP’s “multibyte” functions, which are designed
to work well with languages that are traditionally encoded with multibyte character
sets, such as Japanese and Chinese. In PHP 5, the mb_ereg functions use the Oni-
guruma regex library, which was originally developed for Ruby. The Oniguruma
regex flavor is indicated as “Ruby 1.9” in this book. Using themb_ereg functions is
recommended only if you have a specific requirement to deal with multibyte code
pages and you’re already familiar with the mb_ functions in PHP.

The ereg group of functions is the oldest set of PHP regex functions, and are offi-
cially deprecated as of PHP 5.3.0. They don’t depend on external libraries, and
implement the POSIX ERE flavor. This flavor offers only a limited feature set,
and is not discussed in this book. POSIX ERE is a strict subset of the Ruby 1.9 and
PCRE flavors. You can take the regex from any ereg function call and use it with
mb_ereg or preg. For preg, you have to add Perl-style delimiters (Recipe 3.1).

Perl
Perl’s built-in support for regular expressions is the main reason why regexes are
popular today. The regular expression and replacement text flavors used by Perl’s
m// and s/// operators are labeled as “Perl” in this book. This book covers Perl 5.6,
5.8,5.10,5.12, and 5.14.

Python
Python supports regular expressions through its re module. The regular expression
and replacement text flavor used by this module are labeled “Python” in this book.
This book covers Python 2.4 until 3.2.

Ruby
Ruby has built-in support for regular expressions. This book covers Ruby 1.8 and
Ruby 1.9. These two versions of Ruby have different default regular expression
engines. Ruby 1.9 uses the Oniguruma engine, which has more regex features than
the classic engine in Ruby 1.8. “Regex Flavors Covered by This Book” on page 3
has more details on this.

Programming Languages and Regex Flavors | 107

In this chapter, we don’t talk much about the differences between Ruby 1.8 and
1.9. The regular expressions in this chapter are very basic, and they don’t use the
new features in Ruby 1.9. Because the regular expression support is compiled into
the Ruby language itself, the Ruby code you use to implement your regular ex-
pressions is the same, regardless of whether you’ve compiled Ruby using the classic
regex engine or the Oniguruma engine. You could recompile Ruby 1.8 to use the
Oniguruma engine if you need its features.

More Programming Languages

The programming languages in the following list aren’t covered by this book, but they
do use one of the regular expression flavors in this book. If you use one of these lan-
guages, you can skip this chapter, but all the other chapters are still useful:

ActionScript
ActionScript is Adobe’s implementation of the ECMA-262 standard. As of version
3.0, ActionScript has full support for ECMA-262v3 regular expressions. This regex
flavor is labeled “JavaScript” in this book. The ActionScript language is also very
close to JavaScript. You should be able to adapt the JavaScript examples in this
chapter for ActionScript.

C can use a wide variety of regular expression libraries. The open source PCRE
library is likely the best choice out of the flavors covered by this book. You can
download the full C source code at hitp://www.pcre.org. The code is written to
compile with a wide range of compilers on a wide range of platforms.

C++
C++ can use a wide variety of regular expression libraries. The open source PCRE
library is likely the best choice out of the flavors covered by this book. You can
either use the C API directly or use the C++ class wrappers included with the PCRE
download itself (see http://www.pcre.org).

On Windows, you could import the VBScript 5.5 RegExp COM object, as ex-
plained later for Visual Basic 6. That could be useful for regex consistency between
a C++ backend and a JavaScript frontend.

C++ TRI1 defines a <regex> header file that defines functions such as
regex_search(), regex_match(), and regex_replace() that you can use to search
through strings, validate strings, and search-and-replace through strings with reg-
ular expressions. The regular expression support in C++ TR1 is based on the
Boost.Regex library. You can use the Boost.Regex library if your C++ compiler
does not support TR1. You can find full documentation at http://www.boost.org/
libs/regex/.

Delphi
Delphi XE was the first version of Delphi to have built-in support for regular ex-
pressions. The regex features are unchanged in Delphi XE2. The RegularExpres

108 | Chapter3: Programming with Regular Expressions

http://www.pcre.org
http://www.pcre.org
http://www.boost.org/libs/regex/
http://www.boost.org/libs/regex/

sionsAPI unit is a thin wrapper around the PCRE library. You won’t use this unit
directly.

The RegularExpressionsCore unit implements the TPerlRegEx class. It provides a
full set of methods to search, replace, and split strings using regular expressions.
It uses the UTF8String type for all strings, as PCRE is based on UTF-8. You can use
the TPerlRegEx class in situations where you want full control over when strings
are converted to and from UTF-8, or if your data is in UTF-8 already. You can also
use this unit if you’re porting code from an older version of Delphi that used Jan
Goyvaerts’s TPer1RegEx class. The RegularExpressionsCore unit is based on code
that Jan Goyvaerts donated to Embarcadero.

The RegularExpressions unit is the one you’ll use most for new code. It implements
records such as TRegex and TMatch that have names and methods that closely mimic
the regular expression classes in the .NET Framework. Because they’re records,
you don’t have to worry about explicitly creating and destroying them. They pro-
vide many static methods that allow you to use a regular expression with just a
single line of code.

If you are using an older version of Delphi, your best choice is Jan Goyvaerts’s
TPerlRegEx class. You can download the full source code at http://www.regexp
.info/delphi.html. It is open source under the Mozilla Public License. The latest
release of TPerlRegEx is fully compatible with the RegularExpressionsCore unit in
Delphi XE. For new code written in Delphi 2010 or earlier, using the latest release
of TPerlRegEx is strongly recommended. If you later migrate your code to Delphi
XE, all you have to do is replace Per1RegEx with RegularExpressionsCore in the uses
clause of your units. When compiled with Delphi 2009 or Delphi 2010, the Perl
RegEx unit uses UTF8String and fully supports Unicode. When compiled with Del-
phi 2007 or earlier, the unit uses AnsiString and does not support Unicode.

Another popular PCRE wrapper for Delphi is the TIc1RegEx class part of the JCL
library at http://www.delphi-jedi.org. It is also open source under the Mozilla Public
License.

Delphi Prism
In Delphi Prism, you can use the regular expression support provided by the NET
Framework. Simply add System.Text.RegularExpressions to the uses clause of any
Delphi Prism unit in which you want to use regular expressions.

Once you’ve done that, you can use the same techniques shown in the C# and
VB.NET code snippets in this chapter.

Groovy
You can use regular expressions in Groovy with the java.util.regex package, just
as you can in Java. In fact, all of the Java solutions in this chapter should work with
Groovy as well. Groovy’s own regular expression syntax merely provides nota-
tional shortcuts. A literal regex delimited with forward slashes is an instance of
java.lang.String and the =~ operator instantiates java.util.regex.Matcher. You

Programming Languages and Regex Flavors | 109

http://www.regexp.info/delphi.html
http://www.regexp.info/delphi.html
http://www.delphi-jedi.org

can freely mix the Groovy syntax with the standard Java syntax—the classes and
objects are all the same.

PowerShell
PowerShell is Microsoft’s shell-scripting language, based on the .NET Framework.
PowerShell’s built-in -match and -replace operators use the .NET regex flavor and
replacement text as described in this book.

The R Project supports regular expressions via the grep, sub, and regexpr functions
in the base package. All these functions take an argument labeled perl, which is
FALSE if you omit it. Set it to TRUE to use the PCRE regex flavor as described in this
book. The regular expressions shown for PCRE 7 work with R 2.5.0 and later. For
earlier versions of R, use the regular expressions marked as “PCRE 4 and later” in
this book. The “basic” and “extended” flavors supported by R are older and limited
regex flavors not discussed in this book.

REALDbasic
REALbasic has a built-in RegEx class. Internally, this class uses the UTF-8 version
of the PCRE library. This means that you can use PCRE’s Unicode support, but
you have to use REALbasic’s TextConverter class to convert non-ASCII text into
UTF-8 before passing it to the RegEx class.

All regular expressions shown in this book for PCRE 7 will work with REALDbasic
2011. One caveat is that in REALbasic, the “case insensitive” (Regex.Options.Case
Sensitive) and “” and $ match at line breaks” (Regex.Options.TreatTargetAsOne
Line) options are on by default. If you want to use a regular expression from this
book that does not tell you to turn on these matching modes, you have to turn
them off explicitly in REALbasic.

Scala
Scala provides built-in regex support through the scala.util.matching package.
This support is built on the regular expression engine in Java’s java.util.regex
package. The regular expression and replacement text flavors used by Java and
Scala are labeled “Java” in this book.

Visual Basic 6
Visual Basic 6 is the last version of Visual Basic that does not require the .NET
Framework. That also means Visual Basic 6 cannot use the excellent regular ex-
pression support of the .NET Framework. The VB.NET code samples in this chap-
ter won’t work with VB 6 at all.

Visual Basic 6 does make it very easy to use the functionality provided by ActiveX
and COM libraries. One such library is Microsoft’s VBScript scripting library,
which has decent regular expression capabilities starting with version 5.5. The
scripting library implements the same regular expression flavor used in JavaScript,
as standardized in ECMA-262v3. This library is part of Internet Explorer 5.5 and
later. It is available on all computers running Windows XP or Vista, and previous

110 | Chapter3: Programming with Regular Expressions

versions of Windows if the user has upgraded to IE 5.5 or later. That includes
almost every Windows PC that is used to connect to the Internet.

To use this library in your Visual Basic application, select Project|References in the
VB IDE’s menu. Scroll down the list to find the item “Microsoft VBScript Regular
Expressions 5.5”, which is immediately below the “Microsoft VBScript Regular
Expressions 1.0” item. Make sure to tick the 5.5 version. The 1.0 version is only
provided for backward compatibility, and its capabilities are less than satisfactory.

After adding the reference, you can see which classes and class members the library
provides. Select View|Object Browser in the menu. In the Object Browser, select
the “VBScript_RegExp_55” library in the drop-down list in the upper-left corner.

3.1 Literal Regular Expressions in Source Code

Problem

You have been given the regular expression <[$" '\n\d/\\]> as the solution to a problem.
This regular expression consists of a single character class that matches a dollar sign,
a double quote, a single quote, a line feed, any digit between 0 and 9, a forward slash,
or a backslash. You want to hardcode this regular expression into your source code as
a string constant or regular expression operator.

Solution

(€
As a normal string:
"[$\""\n\\d/A\\\]"

As a verbatim string:

@"[$"" " \n\d/\]"

VB.NET
"[$"" \n\d/\\]"

Java
"[$\" \n\\d/\\\\]"

JavaScript
/18" "\n\d\/\\1/

3.1 Literal Regular Expressions in Source Code | 111

XRegExp
"[$\"\n\\d/A\\\\]"

PHP
%%\ \n\d/\\\\1%"

Perl

Pattern-matching operator:
/TN$" "\n\d\/\\]/
mI[\$""\n\d/\\]!

Substitution operator:

sI\$""\n\d/\\]!!

Python
Raw triple-quoted string:
r" nn [$|l) \n\d/\\] mnn

Normal string:

"I\ AN/

Ruby
Literal regex delimited with forward slashes:
/18" \n\d\/\\]/

Literal regex delimited with punctuation of your choice:

%r![$" " \n\d/\\]!

Discussion

When this book shows you a regular expression by itself (as opposed to as part of a
larger source code snippet), it always shows regular expressions unadorned. This recipe
is the only exception. If you’re using a regular expression tester such as RegexBuddy
or RegexPal, you would type in the regex this way. If your application accepts a regular
expression as user input, the user would type it in this way.

But if you want to hardcode the regular expression into your source code, you have
extra work. Carelessly copying and pasting regular expressions from a regular expres-
sion tester into your source code—or vice versa—will often leave you scratching your
head as to why the regular expression works in your tool but not in your source code,
or why the tester fails on a regex you’ve copied from somebody else’s code. All pro-
gramming languages discussed in this book require literal regular expressions to be

112 | Chapter3: Programming with Regular Expressions

delimited in a certain way, with some languages requiring strings and some requiring
aspecial regex constant. If your regex includes the language’s delimiters or certain other
characters with special meanings in the language, you have to escape them.

The backslash is the most commonly used escape character. That’s why most of the
solutions to this problem have far more backslashes in them than the four in the original
regular expression.

€

In C#, you can pass literal regular expressions to the Regex() constructor, and to various
member functions in the Regex class. The parameter that takes the regular expression
is always declared as a string.

C# supports two kinds of string literals. The most common kind is the double-quoted
string, well-known from languages such as C++ and Java. Within double-quoted
strings, double quotes and backslashes must be escaped with a backslash. Escapes for
nonprintable characters, such as <\n», are also supported in strings. There is a difference
between "\n" and "\\n" when using RegexOptions.IgnorePatternWhitespace (see
Recipe 3.4) to turn on free-spacing mode, as explained in Recipe 2.18. "\n" is a string
with a literal line break, which is ignored as whitespace. "\\n" is a string with the regex
token <\n», which matches a newline.

Verbatim strings start with an at sign and a double quote, and end with a double quote
on its own. To include a double quote in a verbatim string, double it up. Backslashes
do not need to be escaped, resulting in a significantly more readable regular expression.
@"\n" is always the regex token <\n>, which matches a newline, even in free-spacing
mode. Verbatim strings do not support <\n> at the string level, but can span multiple
lines instead. That makes verbatim strings ideal for free-spacing regular expressions.

The choice is clear: use verbatim strings to put regular expressions into your C# source
code.

VB.NET

In VB.NET, you can pass literal regular expressions to the Regex() constructor, and to
various member functions in the Regex class. The parameter that takes the regular ex-
pression is always declared as a string.

Visual Basic uses double-quoted strings. Double quotes within the string must be dou-
bled. No other characters need to be escaped.

Java

In Java, you can pass literal regular expressions to the Pattern.compile() class factory,
and to various functions of the String class. The parameter that takes the regular ex-
pression is always declared as a string.

3.1 Literal Regular Expressions in Source Code | 113

Java uses double-quoted strings. Within double-quoted strings, double quotes and
backslashes must be escaped with a backslash. Escapes for nonprintable characters,
such as \\n», and Unicode escapes such as <\\uFFFF> are also supported in strings.

There is a difference between "\n" and "\\n" when using Pattern.COMMENTS (see
Recipe 3.4) to turn on free-spacing mode, as explained in Recipe 2.18. "\n" is a string
with a literal line break, which is ignored as whitespace. "\\n" is a string with the regex
token <\n», which matches a newline.

JavaScript

In JavaScript, regular expressions are best created by using the special syntax for de-
claring literal regular expressions. Simply place your regular expression between two
forward slashes. If any forward slashes occur within the regular expression itself, escape
those with a backslash.

Although it is possible to create a RegExp object from a string, it makes little sense to
use the string notation for literal regular expressions in your code. You would have to
escape quotes and backslashes, which generally leads to a forest of backslashes.

XRegExp

If you use XRegExp to extend JavaScript’s regular expression syntax, then you will be
creating XRegExp objects from strings, and you’ll need to escape quotes and backslashes.

PHP

Literal regular expressions for use with PHP’s preg functions are a curious contraption.
Unlike JavaScript or Perl, PHP does not have a native regular expression type. Regular
expressions must always be quoted as strings. This is true for the ereg and mb_ereg
functions as well. But in their quest to mimic Perl, the developers of PHP’s wrapper
functions for PCRE added an additional requirement.

Within the string, the regular expression must be quoted as a Perl-style literal regular
expression. That means that where you would write /regex/ in Perl, the string for PHP’s
preg functions becomes '/regex/'. As in Perl, you can use any pair of punctuation
characters as the delimiters. If the regex delimiter occurs within the regex, it must be
escaped with a backslash. To avoid this, choose a delimiter that does not occur in the
regex. For this recipe, we used the percentage sign, because the forward slash occurs
in the regex but the percentage sign does not. If the forward slash does not occur in the
regex, use that, as it’s the most commonly used delimiter in Perl and the required
delimiter in JavaScript and Ruby.

PHP supports both single-quoted and double-quoted strings. Both require the quote
(single or double) and the backslash within a regex to be escaped with a backslash. In
double-quoted strings, the dollar sign also needs to be escaped. For regular expressions,

114 | Chapter3: Programming with Regular Expressions

you should use single-quoted strings, unless you really want to interpolate variables in
your regex.

Perl

In Perl, literal regular expressions are used with the pattern-matching operator and the
substitution operator. The pattern-matching operator consists of two forward slashes,
with the regex between it. Forward slashes within the regular expression must be es-
caped with a backslash. There’s no need to escape any other characters, except perhaps
$ and @, as explained at the end of this subsection.

An alternative notation for the pattern-matching operator puts the regular expression
between any pair of punctuation characters, preceded by the letter m. If you use any
kind of opening and closing punctuation (parentheses, braces, or brackets) as the de-
limiter, they need to match up: for example, m{regex}. If you use other punctuation,
simply use the same character twice. The solution for this recipe uses the exclamation
point. That saves us having to escape the literal forward slash in the regular expression.
Only the closing delimiter needs to be escaped with a backslash.

The substitution operator is similar to the pattern-matching operator. It starts with s
instead of m, and tacks on the replacement text. When using brackets or similar punc-
tuation as the delimiters, you need two pairs: s[regex][replace]. If you mix different
delimiters, you also need two pairs: s[regex]/replace/. For all other punctuation, use
it three times: s/regex/replace/.

Perl parses the pattern-matching and substitution operators as double-quoted strings.
Ifyouwritem/I am $name/ and $name holds "Jan", you end up with the regular expression
<IeameJan>. $" is also a variable in Perl, so we have to escape the literal dollar sign in
the character class in our regular expression in this recipe.

Never escape a dollar sign that you want to use as an anchor (see Recipe 2.5). An escaped
dollar sign is always a literal. Perl is smart enough to differentiate between dollars used
as anchors, and dollars used for variable interpolation, due to the fact that anchors can
be used sensibly only at the end of a group or the whole regex, or before a newline. You
shouldn’t escape the dollar in m/*regex$/> if you want to check whether “regex”
matches the subject string entirely.

The at sign does not have a special meaning in regular expressions, but it is used for
variable interpolation in Perl. You need to escape it in literal regular expressions in Perl
code, as you do for double-quoted strings.

Python

The functions in Python’s re module expect literal regular expressions to be passed as
strings. You can use any of the various ways that Python provides to quote strings.
Depending on the characters that occur in your regular expression, different ways of
quoting it may reduce the number of characters you need to escape with backslashes.

3.1 Literal Regular Expressions in Source Code | 115

Generally, raw strings are the best option. Python raw strings don’t require any char-
acters to be escaped. If you use a raw string, you don’t need to double up the backslashes
in your regular expression. r"\d+" is easier to read than "\\d+", particularly as your
regex gets long.

The only situation where raw strings aren’t ideal is when your regular expression in-
cludes both the single quote and double quote characters. Then you can’t use a raw
string delimited with one pair of single or double quotes, because there’s no way to
escape the quotes inside the regular expression. In that case, you can triple-quote the
raw string, as we did in the Python solution for this recipe. The normal string is shown
for comparison.

If you want to use the Unicode features explained in Recipe 2.7 in your regular expres-
sionin Python 2.x, you need to use Unicode strings. You can turn a string into a Unicode
string by preceding it with a u. In Python 3.0 and later, all text is Unicode.

Raw strings don’t support nonprintable character escapes such as \n. Raw strings treat
escape sequences as literal text. This is not a problem for the re module. It supports
these escapes as part of the regular expression syntax, and as part of the replacement
text syntax. A literal \n in a raw string will still be interpreted as a newline in your
regular expressions and replacement texts.

There is a difference between the string "\n" on one side, and the string "\\n" and the
raw string r"\n" on the other side when using re.VERBOSE (see Recipe 3.4) to turn on
free-spacing mode, as explained in Recipe 2.18. "\n" is a string with a literal line break,
which is ignored as whitespace. "\\n" and r"\n" are both strings with the regex token
\n>, which matches a newline.

When using free-spacing mode, triple-quoted raw strings such asr"""\n""" are the best
solution, because they can span multiple lines. Also, <\n> is not interpreted at the string
level, so it can be interpreted at the regex level to match a line break.

Ruby

In Ruby, regular expressions are best created by using the special syntax for declaring
literal regular expressions. Simply place your regular expression between two forward
slashes. If any forward slashes occur within the regular expression itself, escape those

with a backslash.

If you don’t want to escape forward slashes in your regex, you can prefix your regular
expression with %r and then use any punctuation character of your choice as the
delimiter.

Although it is possible to create a Regexp object from a string, it makes little sense to
use the string notation for literal regular expressions in your code. You then would have
to escape quotes and backslashes, which generally leads to a forest of backslashes.

116 | Chapter3: Programming with Regular Expressions

Ruby is very similar to JavaScript in this respect, except that the name
of the class is Regexp as one word in Ruby, whereas it is RegExp with
~ 98 camel caps in JavaScript.

See Also

Recipe 2.3 explains how character classes work, and why two backslashes are needed
in the regular expression to include just one in the character class.

Recipe 3.4 explains how to set regular expression options, which is done as part of
literal regular expressions in some programming languages.

3.2 Import the Regular Expression Library

Problem

Tobe able to use regular expressions in your application, you want to import the regular
expression library or namespace into your source code.

The remainder of the source code snippets in this book assume that you
have already done this, if needed.

Solution

€

using System.Text.RegularExpressions;

VB.NET

Imports System.Text.RegularExpressions

XRegExp
For JavaScript code running in a browser:
<script src="xregexp-all-min.js"></script>
For JavaScript code running on a server using Node.js:

var XRegExp = require('xregexp').XRegExp;

Java

import java.util.regex.*;

3.2 Import the Regular Expression Library | 117

Python

import re

Discussion

Some programming languages have regular expressions built-in. For these languages,
you don’t need to do anything to enable regular expression support. Other languages
provide regular expression functionality through a library that needs to be imported
with animport statementin your source code. Some languages don’t have regex support
at all. For those, you’ll have to compile and link in the regular expression support
yourself.

€

If you place the using statement at the top of your C# source file, you can reference
the classes that provide regular expression functionality directly, without
having to fully qualify them. For instance, you can write Regex() instead of
System.Text.RegularExpressions.Regex().

VB.NET

If you place the Imports statement at the top of your VB.NET source file, you can
reference the classes that provide regular expression functionality directly, without
having to fully qualify them. For instance, you can write Regex() instead of
System.Text.RegularExpressions.Regex().

Java

You have to import the java.util.regex package into your application to be able to
use Java’s built-in regular expression library.

JavaScript

JavaScript’s regular expression support is built-in and always available.

XRegExp

If you want to use XRegExp to extend JavaScript’s regular expression syntax, your web
page will need to load the XRegExp library. The easiest way to do that is to load xregexp-
all-min.js which includes all of XRegExp’s functionality in minimized form. The
XRegExp recipes in this book assume you’re doing just that.

If you’re concerned about page loading times and you do not use Unicode categories,
blocks, and/or scripts, you can load the base library xregexp-min.js and load the
addon libraries as needed. Load unicode-base. js to enable the \p{***}> syntax for Uni-
code properties. You can then load unicode-blocks. js, unicode-categories. js, and/or

118 | Chapter3: Programming with Regular Expressions

unicode-scripts.js to make it possible to match Unicode blocks, categories, and/or
scripts with \p{--}.

If you are using Node.js to run JavaScript on a server, then you’ll need to install
XRegExp as an npm package. This can be done by entering npm install xregexp on
the command line. Once installed, your server-side scripts can import the XRegExp
library as shown in the Solution section.

PHP

The preg functions are built-in and always available in PHP 4.2.0 and later.

Perl

Perl’s regular expression support is built-in and always available.

Python

You have to import the re module into your script to be able to use Python’s regular
expression functions.

Ruby

Ruby’s regular expression support is built-in and always available.

3.3 Create Regular Expression Objects

Problem

You want to instantiate a regular expression object or otherwise compile a regular
expression so you can use it efficiently throughout your application.

Solution

C#
If you know the regex to be correct:

Regex regexObj = new Regex("regex pattern");

If the regex is provided by the end user (UserInput being a string variable):

try {

Regex regexObj = new Regex(UserInput);
} catch (ArgumentException ex) {

// Syntax error in the regular expression
}

3.3 Create Regular Expression Objects | 119

VB.NET
If you know the regex to be correct:
Dim RegexObj As New Regex("regex pattern")
If the regex is provided by the end user (UserInput being a string variable):

Try

Dim RegexObj As New Regex(UserInput)
Catch ex As ArgumentException

'Syntax error in the regular expression
End Try

Java
If you know the regex to be correct:

Pattern regex = Pattern.compile("regex pattern");

If the regex is provided by the end user (userInput being a string variable):

try {

Pattern regex = Pattern.compile(userInput);
} catch (PatternSyntaxException ex) {

// Syntax error in the regular expression
}

To be able to use the regex on a string, create a Matcher:

Matcher regexMatcher = regex.matcher(subjectString);

To use the regex on another string, you can create a new Matcher, as just shown, or
reuse an existing one:

regexMatcher.reset(anotherSubjectString);

JavaScript
Literal regular expression in your code:
var myregexp = /regex pattern/;

Regular expression retrieved from user input, as a string stored in the variable
userinput:

var myregexp = new RegExp(userinput);

XRegExp

If you want to use XRegExp’s extended regular expression syntax in JavaScript, you
need to create an XRegExp object from a string:

var myregexp = XRegExp("regex pattern");

120 | Chapter3: Programming with Regular Expressions

Perl

$myregex = qr/regex pattern/
Regular expression retrieved from user input, as a string stored in the variable
$userinput:

$myregex = qr/$userinput/

Python

reobj = re.compile("regex pattern")

Regular expression retrieved from user input, as a string stored in the variable
userinput:

reobj = re.compile(userinput)

Ruby

Literal regular expression in your code:
myregexp = /regex pattern/;

Regular expression retrieved from user input, as a string stored in the variable
userinput:

myregexp = Regexp.new(userinput);

Discussion

Before the regular expression engine can match a regular expression to a string, the
regular expression has to be compiled. This compilation happens while your applica-
tion is running. The regular expression constructor or compile function parses the
string that holds your regular expression and converts it into a tree structure or state
machine. The function that does the actual pattern matching will traverse this tree or
state machine as it scans the string. Programming languages that support literal regular
expressions do the compilation when execution reaches the regular expression
operator.

{NET

In C# and VB.NET, the .NET class System.Text.RegularExpressions.Regex holds one
compiled regular expression. The simplest constructor takes just one parameter: a
string that holds your regular expression.

If there’s a syntax error in the regular expression, the Regex() constructor will throw
an ArgumentException. The exception message will indicate exactly which error was
encountered. It is important to catch this exception if the regular expression is provided
by the user of your application. Display the exception message and ask the user to
correct the regular expression. If your regular expression is a hardcoded string literal,

3.3 Create Regular Expression Objects | 121

you can omit catching the exception if you use a code coverage tool to make sure the
line is executed without throwing an exception. There are no possible changes to state
or mode that could cause the same literal regex to compile in one situation and fail to
compilein another. Note thatif there is a syntax error in your literal regex, the exception
will occur when your application is run, not when your application is compiled.

You should construct a Regex object if you will be using the regular expression inside
a loop or repeatedly throughout your application. Constructing the regex object in-
volves no extra overhead. The static members of the Regex class that take the regex as
a string parameter construct a Regex object internally anyway, so you might just as well
do it in your own code and keep a reference to the object.

If you plan to use the regex only once or a few times, you can use the static members
of the Regex class instead, to save a line of code. The static Regex members do not throw
away the internally constructed regular expression object immediately; instead, they
keep a cache of the 15 most recently used regular expressions. You can change the cache
size by setting the Regex.CacheSize property. The cache lookup is done by looking up
your regular expression string in the cache. But don’t go overboard with the cache. If
you need lots of regex objects frequently, keep a cache of your own that you can look
up more efficiently than with a string search.

Java

In Java, the Pattern class holds one compiled regular expression. You can create objects
of this class with the Pattern.compile() class factory, which requires just one param-
eter: a string with your regular expression.

If there’s a syntax error in the regular expression, the Pattern.compile() factory will
throw a PatternSyntaxException. The exception message will indicate exactly which
error was encountered. It is important to catch this exception if the regular expression
is provided by the user of your application. Display the exception message and ask the
user to correct the regular expression. If your regular expression is a hardcoded string
literal, you can omit catching the exception if you use a code coverage tool to make
sure the line is executed without throwing an exception. There are no possible changes
to state or mode that could cause the same literal regex to compile in one situation and
fail to compile in another. Note that if there is a syntax error in your literal regex, the
exception will occur when your application is run, not when your application is
compiled.

Unless you plan to use a regex only once, you should create a Pattern object instead of
using the static members of the String class. Though it takes a few lines of extra code,
that code will run more efficiently. The static calls recompile your regex each and every
time. In fact, Java provides static calls for only a few very basic regex tasks.

A Pattern object only stores a compiled regular expression; it does not do any actual
work. The actual regex matching is done by the Matcher class. To create a Matcher, call

122 | Chapter3: Programming with Regular Expressions

the matcher () method on your compiled regular expression. Pass the subject string as
the only argument to matcher ().

You can call matcher () as many times as you like to use the same regular expression on
multiple strings. You can work with multiple matchers using the same regex at the same
time, as long as you keep everything in a single thread. The Pattern and Matcher
classes are not thread-safe. If you want to use the same regex in multiple threads, call
Pattern.compile() in each thread.

Ifyou’re done applying a regex to one string and want to apply the same regex to another
string, you can reuse the Matcher object by calling reset(). Pass the next subject string
as the only argument. This is more efficient than creating a new Matcher object.
reset() returns the same Matcher you called it on, allowing you to easily reset and use
a matcher in one line of code—for example, regexMatcher.reset (nextString).find().

JavaScript

The notation for literal regular expressions shown in Recipe 3.2 already creates a new
regular expression object. To use the same object repeatedly, simply assign it to a
variable.

If you have a regular expression stored in a string variable (e.g., because you asked the
user to type in a regular expression), use the RegExp() constructor to compile the regular
expression. Notice that the regular expression inside the string is not delimited by
forward slashes. Those slashes are part of JavaScript’s notation for literal RegExp objects,
rather than part of the regular expression itself.

Since assigning a literal regex to a variable is trivial, most of the
JavaScript solutions in this chapter omit this line of code and use
W' the literal regular expression directly. In your own code, when using the
" same regex more than once, you should assign the regex to a variable
and use that variable instead of pasting the same literal regex multiple
times into your code. This increases performance and makes your code
easier to maintain.

XRegExp

If you want to use XRegExp’s enhancements to JavaScript’s regular expression syntax,
you have to use the XRegExp() constructor to compile the regular expression. For best
performance when using the same regular expression repeatedly, you should assign it
to a variable. Pass that variable to methods of the XRegExp class when using the regular
expression.

In situations where it isn’t practical to keep a variable around to hold the XRegExp object,
you can use the XRegExp. cache() method to compile the regular expression. This meth-
od will compile each regular expression only once. Each time you call it with the same
parameters, it will return the same XRegExp instance.

3.3 Create Regular Expression Objects | 123

PHP

PHP does not provide a way to store a compiled regular expression in a variable.
Whenever you want to do something with a regular expression, you have to pass it as
a string to one of the preg functions.

The preg functions keep a cache of up to 4,096 compiled regular expressions. Although
the hash-based cache lookup is not as fast as referencing a variable, the performance
hit is not as dramatic as having to recompile the same regular expression over and over.
When the cache is full, the regex that was compiled the longest ago is removed.

Perl

You can use the “quote regex” operator to compile a regular expression and assign it
to a variable. It uses the same syntax as the match operator described in Recipe 3.1,
except that it starts with the letters qr instead of the letter m.

Perl is generally quite efficient at reusing previously compiled regular expressions.
Therefore, we don’t use qr// in the code samples in this chapter. Only Recipe 3.5
demonstrates its use.

qr// is useful when you’re interpolating variables in the regular expression or when
you’ve retrieved the whole regular expression as a string (e.g., from user input). With
qr/$regexstring/, you can control when the regex is recompiled to reflect the new
contents of $regexstring. m/$regexstring/ would recompile the regex every time,
whereas m/$regexstring/o never recompiles it. Recipe 3.4 explains /o.

Python

The compile() function in Python’s re module takes a string with your regular expres-
sion, and returns an object with your compiled regular expression.

You should call compile() explicitly if you plan to use the same regular expression
repeatedly. All the functions in the re module first call compile(), and then call the
function you wanted on the compiled regular expression object.

The compile() function keeps a reference to the last 100 regular expressions that it
compiled. This reduces the recompilation of any of the last 100 used regular expressions
to a dictionary lookup. When the cache is full, it is cleared out entirely.

If performance is not an issue, the cache works well enough that you can use the func-
tions in the re module directly. But when performance matters, calling compile() is a
good idea.

Ruby

The notation for literal regular expressions shown in Recipe 3.2 already creates a
new regular expression object. To use the same object repeatedly, simply assign it to a
variable.

124 | Chapter3: Programming with Regular Expressions

Download from Wow! eBook <www.wowebook.com>

If you have a regular expression stored in a string variable (e.g., because you asked the
user to type in a regular expression), use the Regexp.new() factory or its synonym
Regexp.compile() to compile the regular expression. Notice that the regular expression
inside the string is not delimited by forward slashes. Those slashes are part of Ruby’s
notation for literal Regexp objects and are not part of the regular expression itself.

W

Since assigning a literal regex to a variable is trivial, most of the Ruby
solutions in this chapter omit this line of code and use the literal regular
W expression directly. In your own code, when using the same regex more
" than once, you should assign the regex to a variable and use the variable
instead of pasting the same literal regex multiple times into your code.
This increases performance and makes your code easier to maintain.

Compiling a Regular Expression Down to CIL

G

Regex regexObj = new Regex("regex pattern", RegexOptions.Compiled);

VB.NET
Dim RegexObj As New Regex("regex pattern", RegexOptions.Compiled)

Discussion

When you construct a Regex object in .NET without passing any options, the regular
expression is compiled in the way we described in “Discussion” on page 121. If you
pass RegexOptions.Compiled as a second parameter to the Regex() constructor, the
Regex class does something rather different: it compiles your regular expression down
to CIL, also known as MSIL. CIL stands for Common Intermediate Language, a low-
level programming language that is closer to assembly than to C# or Visual Basic.
All .NET compilers produce CIL. The first time your application runs, the .NET
Framework compiles the CIL further down to machine code suitable for the user’s
computer.

The benefit of compiling a regular expression with RegexOptions.Compiled is that it can
run up to 10 times faster than a regular expression compiled without this option.
The drawback is that this compilation can be up to two orders of magnitude slower
than simply parsing the regex string into a tree. The CIL code also becomes a permanent
part of your application until it is terminated. CIL code is not garbage collected.

Use RegexOptions.Compiled only if a regular expression is either so complex or needs
to process so much text that the user experiences a noticeable wait during operations
using the regular expression. The compilation and assembly overhead is not worth it
for regexes that do their job in a split second.

3.3 Create Regular Expression Objects | 125

See Also
Recipe 3.1 explains how to insert regular expressions as literal strings into source code.

Recipe 3.2 explains how to import the regular expression library into your source code.
Some programming languages require this extra step before you can create regular
expression objects.

Recipe 3.4 explains how to set regular expression options, which is done as part of
literal regular expressions in some programming languages.

3.4 Set Regular Expression Options

Problem

You want to compile a regular expression with all of the available matching modes:
free-spacing, case insensitive, dot matches line breaks, and “” and $ match at line

breaks.”
Solution

G

Regex regexObj = new Regex("regex pattern",
RegexOptions.IgnorePatternWhitespace | RegexOptions.IgnoreCase |
RegexOptions.Singleline | RegexOptions.Multiline);

VB.NET

Dim RegexObj As New Regex("regex pattern",
RegexOptions.IgnorePatternWhitespace Or RegexOptions.IgnoreCase Or
RegexOptions.Singleline Or RegexOptions.Multiline)

Java

Pattern regex = Pattern.compile("regex pattern",
Pattern.COMMENTS | Pattern.CASE_INSENSITIVE | Pattern.UNICODE CASE |
Pattern.DOTALL | Pattern.MULTILINE);

JavaScript
Literal regular expression in your code:
var myregexp = /regex pattern/im;
Regular expression retrieved from user input, as a string:

var myregexp = new RegExp(userinput, "im");

126 | Chapter3: Programming with Regular Expressions

XRegExp

var myregexp = XRegExp("regex pattern", "xism");

PHP

regexstring = '/regex pattern/xism';

Perl

m/regex pattern/xism;

Python

reobj = re.compile(“"regex pattern",
re.VERBOSE | re.IGNORECASE |
re.DOTALL | re.MULTILINE)

Ruby

Literal regular expression in your code:
myregexp = /regex pattern/xim;

Regular expression retrieved from user input, as a string:
myregexp = Regexp.new(userinput,

Regexp: :EXTENDED or Regexp::IGNORECASE or
Regexp: :MULTILINE);

Discussion

Many of the regular expressions in this book, and those that you find elsewhere, are
written to be used with certain regex matching modes. There are four basic modes that
nearly all modern regex flavors support. Unfortunately, some flavors use inconsistent
and confusing names for the options that implement the modes. Using the wrong
modes usually breaks the regular expression.

All the solutions in this recipe use flags or options provided by the programming lan-
guage or regular expression class to set the modes. Another way to set modes is to use
mode modifiers within the regular expression. Mode modifiers within the regex always
override options or flags set outside the regular expression.

{NET

The Regex() constructor takes an optional second parameter with regular expressions
options. You can find the available options in the RegexOptions enumeration.

Free-spacing: RegexOptions.IgnorePatternWhitespace
(ase insensitive: RegexOptions.IgnoreCase
Dot matches line breaks: RegexOptions.Singleline

3.4 Set Regular Expression Options | 127

A and $ match at line breaks: RegexOptions.Multiline

Java

The Pattern.compile() class factory takes an optional second parameter with regular
expression options. The Pattern class defines several constants that set the various
options. You can set multiple options by combining them with the bitwise inclusive or
operator |.

Free-spacing: Pattern.COMMENTS

Case insensitive: Pattern.CASE_INSENSITIVE | Pattern.UNICODE_CASE
Dot matches line breaks: Pattern.DOTALL

A and $ match at line breaks: Pattern.MULTILINE

There are indeed two options for case insensitivity, and you have to set both for full
case insensitivity. If you set only Pattern.CASE_INSENSITIVE, only the English letters A
to Z are matched case insensitively. If you set both options, all characters from all scripts
are matched case insensitively. The only reason not to use Pattern.UNICODE CASE is
performance, in case you know in advance you’ll be dealing with ASCII text only. When
using mode modifiers inside your regular expression, use <(?i)> for ASCllI-only case
insensitivity and «<(?iu)> for full case insensitivity.

JavaScript

In JavaScript, you can specify options by appending one or more single-letter flags to
the RegExp literal, after the forward slash that terminates the regular expression. When
talking about these flags in documentation, they are usually written as /i and /m, even
though the flag itself is only one letter. No additional slashes are added to specify regex
mode flags.

When using the RegExp() constructor to compile a string into a regular expression, you
can pass an optional second parameter with flags to the constructor. The second pa-
rameter should be a string with the letters of the options you want to set. Do not put
any slashes into the string.

Free-spacing: Not supported by JavaScript.

Case insensitive: /1

Dot matches line breaks: Not supported by JavaScript.
A and $ match at line breaks: /m

XRegExp

XRegExp extends JavaScript’s regular expression syntax, adding support for the “free-
spacing” and “dot matches line breaks” modes with the letters “x” and “s” commonly
used by other regular expression flavors. Pass these letters in the string with the flags

in the second parameter to the XRegExp() constructor.

Free-spacing: "x"

128 | Chapter3: Programming with Regular Expressions

(Case insensitive: "i"
Dot matches line breaks: "s"
A and $ match at line breaks: "m"

PHP

Recipe 3.1 explains that the PHP preg functions require literal regular expressions to
be delimited with two punctuation characters, usually forward slashes, and the whole
lot formatted as a string literal. You can specify regular expression options by appending
one or more single-letter modifiers to the end of the string. That is, the modifier letters
come after the closing regex delimiter, but still inside the string’s single or double
quotes. When talking about these modifiers in documentation, they are usually written
as /x, even though the flag itself is only one letter, and even though the delimiter be-
tween the regex and the modifiers doesn’t have to be a forward slash.

Free-spacing: /x

(Case insensitive: /i

Dot matches line breaks: /s

A and $ match at line breaks: /m

Perl

You can specify regular expression options by appending one or more single-letter
modifiers to the end of the pattern-matching or substitution operator. When talking
about these modifiers in documentation, they are usually written as /x, even though
the flag itself is only one letter, and even though the delimiter between the regex and
the modifiers doesn’t have to be a forward slash.

Free-spacing: /x

Case insensitive: /i

Dot matches line breaks: /s

A and $ match at line breaks: /m

Python

The compile() function (explained in the previous recipe) takes an optional second
parameter with regular expression options. You can build up this parameter by using
the | operator to combine the constants defined in the re module. Many of the other
functions in the re module that take a literal regular expression as a parameter also
accept regular expression options as a final and optional parameter.

The constants for the regular expression options come in pairs. Each option can be
represented either as a constant with a full name or as just a single letter. Their func-
tionality is equivalent. The only difference is that the full name makes your code easier
to read by developers who aren’t familiar with the alphabet soup of regular expression
options. The basic single-letter options listed in this section are the same as in Perl.

3.4 Set Regular Expression Options | 129

Free-spacing: re.VERBOSE or re.X

(ase insensitive: re. IGNORECASE or re.I

Dot matches line breaks: re.DOTALL or re.S

A and $ match at line breaks: re .MULTILINE or re.M

Ruby

In Ruby, you can specify options by appending one or more single-letter flags to the
Regexp literal, after the forward slash that terminates the regular expression. When
talking about these flags in documentation, they are usually written as /i and /m, even
though the flag itself is only one letter. No additional slashes are added to specify regex
mode flags.

When using the Regexp.new() factory to compile a string into a regular expression, you
can pass an optional second parameter with flags to the constructor. The second pa-
rameter should be either nil to turn off all options, or a combination of constants from
the Regexp class combined with the or operator.

Free-spacing: /r or Regexp: : EXTENDED

Case insensitive: /i or Regexp: : IGNORECASE

Dot matches line breaks: /m or Regexp::MULTILINE. Ruby indeed uses “m” and
“multiline” here, whereas all the other flavors use “s” or “singleline” for “dot
matches line breaks.”

A and $ match at line breaks: The caret and dollar always match at line breaks in Ruby.
You cannot turn this off. Use <\\A> and «\2> to match at the start or end of the subject

string.
Additional Language-Specific Options

{NET

RegexOptions.ExplicitCapture makes all groups, except named groups, noncapturing.
With this option, «(***)> is the same as «(?:*). If you always name your capturing
groups, turn on this option to make your regular expression more efficient without the
need to use the ¢(?:°)> syntax. Instead of using RegexOptions.ExplicitCapture, you
can turn on this option by putting <(?n)> at the start of your regular expression. See
Recipe 2.9 to learn about grouping. Recipe 2.11 explains named groups.

Specify RegexOptions.ECMAScript if you’re using the same regular expression in
your .NET code and in JavaScript code, and you want to make sure it behaves in the
same way. This is particularly useful when you’re developing the client side of a web
application in JavaScript and the server side in ASP.NET. The most important effect is
that with this option, (\w> and <\d> are restricted to ASCII characters, as they are in
JavaScript.

130 | Chapter3: Programming with Regular Expressions

Java

An option unique to Java is Pattern.CANON_EQ, which enables “canonical equivalence.”
As explained in the discussion in “Unicode grapheme” on page 58, Unicode provides
different ways to represent characters with diacritics. When you turn on this option,
your regex will match a character, even if it is encoded differently in the subject string.
For instance, the regex <\u0oE0> will match both "\u0ooE0" and "\u0061\u0300", because
they are canonically equivalent. They both appear as “a4” when displayed on screen,
indistinguishable to the end user. Without canonical equivalence, the regex <\uooEo»
does not match the string "\u0061\u0300". This is how all other regex flavors discussed
in this book behave.

In Java 7, you can set Pattern.UNICODE CHARACTER CLASS to make shorthand character
classes match Unicode characters rather than just ASCII characters. See “Short-
hands” on page 35 in Recipe 2.3 for details.

Finally, Pattern.UNIX_LINES tells Java to treat only <\n> as a line break character for the
dot, caret, and dollar. By default, all Unicode line breaks are treated as line break
characters.

JavaScript

If you want to apply a regular expression repeatedly to the same string (e.g., to iterate
over all matches or to search and replace all matches instead of just the first) specify
the /g or “global” flag.

XRegExp

XRegExp needs the “g” flag if you want to apply a regular expression repeatedly to the
same string just as standard JavaScript does. XRegExp also adds the “n” flag which
makes all groups, except named groups, noncapturing. With this option, <(--*) is the
same as <(?:--)». If you always name your capturing groups, turn on this option to
make your regular expression more efficient without the need to use the <(?:---)» syntax.
See Recipe 2.9 to learn about grouping. Recipe 2.11 explains named groups.

PHP

/u tells PCRE to interpret both the regular expression and the subject string as UTF-8
strings. This modifier also enables Unicode regex tokens such as <\x{FFFF}> and
Ap{L}>. These are explained in Recipe 2.7. Without this modifier, PCRE treats each
byte as a separate character, and Unicode regex tokens cause an error.

/U flips the “greedy” and “lazy” behavior of adding an extra question mark to a quan-
tifier. Normally, <.*) is greedy and <.*?> is lazy. With /U, <.*) is lazy and <.*?> is greedy.
We strongly recommend that you never use this flag, as it will confuse programmers
who read your code later and miss the extra /U modifier, which is unique to PHP. Also,

3.4 Set Regular Expression Options | 131

don’t confuse /U with /u if you encounter it in somebody else’s code. Regex modifiers
are case sensitive.

Perl

If you want to apply a regular expression repeatedly to the same string (e.g., to iterate
over all matches or to search-and-replace all matches instead of just the first one),
specify the /g (“global”) flag.

If you interpolate a variable in a regex as inm/I am $name/ then Perl will recompile the
regular expression each time it needs to be used, because the contents of $name may
have changed. You can suppress this with the /o modifier. m/I am $name/o is compiled
the first time Perl needs to use it, and then reused the way it is after that. If the contents
of $name change, the regex will not reflect the change. See Recipe 3.3 if you want to
control when the regex is recompiled.

If your regex uses shorthand character classes or word boundaries, you can specify one
of the /d, /u, /a, or /1 flags to control whether the shorthands and word boundaries
will match only ASCII characters, or whether they use Unicode or the current locale.
The “Variations” sections in Recipes 2.3 and 2.3 have more details on what these flags
do in Perl.

Python

Python has two extra options that change the meaning of word boundaries (see
Recipe 2.6) and the shorthand character classes (\w>, (\d>, and \s>, as well as their
negated counterparts (see Recipe 2.3). By default, these tokens deal only with ASCII
letters, digits, and whitespace.

The re.LOCALE or re. L option makes these tokens dependent on the current locale. The
locale then determines which characters are treated as letters, digits, and whitespace
by these regex tokens. You should specify this option when the subject string is not a
Unicode string and you want characters such as letters with diacritics to be treated as
such.

The re.UNICODE or re.U makes these tokens dependent on the Unicode standard. All
characters defined by Unicode as letters, digits, and whitespace are then treated as such
by these regex tokens. You should specify this option when the subject string you’re
applying the regular expression to is a Unicode string.

Ruby

The Regexp.new() factory takes an optional third parameter to select the string encoding
your regular expression supports. If you do not specify an encoding for your regular
expression, it will use the same encoding as your source file. Most of the time, using
the source file’s encoding is the right thing to do.

132 | Chapter3: Programming with Regular Expressions

To select a coding explicitly, pass a single character for this parameter. The parameter
is case-insensitive. Possible values are:

n
This stands for “None.” Each byte in your string is treated as one character. Use
this for ASCII text.
e
Enables the “EUC” encoding for Far East languages.
s
Enables the Japanese “Shift-JIS” encoding.
u

Enables UTF-8, which uses one to four bytes per character and supports all lan-
guages in the Unicode standard (which includes all living languages of any
significance).

When using a literal regular expression, you can set the encoding with the modi-
fiers /n, /e, /s, and /u. Only one of these modifiers can be used for a single regular
expression. They can be used in combination with any or all of the /x, /i, and /m
modifiers.

,—_ Do not mistake Ruby’s /s for that of Perl, Java, or .NET. In Ruby, /s
"*’@ forces the Shift-JIS encoding. In Perl and most other regex flavors, it
turns on “dot matches line breaks” mode. In Ruby, you can do that

with /m.

See Also

The effects of the matching modes are explained in detail in Chapter 2. Those sections
also explain the use of mode modifiers within the regular expression.

Free-spacing: Recipe 2.18
Case insensitive: “Case-insensitive matching” on page 29 in Recipe 2.1

Dot matches line breaks: Recipe 2.4
A and $ match at line breaks: Recipe 2.5

Recipes 3.1 and 3.3 explain how to use literal regular expressions in your source code
and how to create regular expression objects. You set the regular expression options
while creating a regular expression.

3.5 Test If a Match Can Be Found Within a Subject String

Problem

You want to check whether a match can be found for a particular regular expression
in a particular string. A partial match is sufficient. For instance, the regex «regexepat

3.5 Test If a Match Can Be Found Within a Subject String | 133

tern> partially matches The regex pattern can be found. You don’t care about any of
the details of the match. You just want to know whether the regex matches the string.

Solution

G

For quick one-off tests, you can use the static call:

bool foundMatch = Regex.IsMatch(subjectString, "regex pattern");

If the regex is provided by the end user, you should use the static call with full exception
handling:

bool foundMatch = false;

try {
foundMatch = Regex.IsMatch(subjectString, UserInput);
} catch (ArgumentNullException ex) {
// Cannot pass null as the regular expression or subject string
} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex("regex pattern");
bool foundMatch = regexObj.IsMatch(subjectString);

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

bool foundMatch = false;

try {
Regex regexObj = new Regex(UserInput);

try {

foundMatch = regexObj.IsMatch(subjectString);
} catch (ArgumentNullException ex) {

// Cannot pass null as the regular expression or subject string
}

} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

VB.NET
For quick one-off tests, you can use the static call:

Dim FoundMatch = Regex.IsMatch(SubjectString, "regex pattern")

If the regex is provided by the end user, you should use the static call with full exception
handling:

134 | Chapter3: Programming with Regular Expressions

Dim FoundMatch As Boolean
Try
FoundMatch = Regex.IsMatch(SubjectString, UserInput)
Catch ex As ArgumentNullException
'Cannot pass Nothing as the regular expression or subject string
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex(“"regex pattern")
Dim FoundMatch = RegexObj.IsMatch(SubjectString)

The IsMatch() call should have SubjectString as the only parameter, and the call should
be made on the Regex0bj instance rather than the Regex class:

Dim FoundMatch = RegexObj.IsMatch(SubjectString)

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim FoundMatch As Boolean
Try
Dim RegexObj As New Regex(UserInput)
Try
FoundMatch = Regex.IsMatch(SubjectString)
Catch ex As ArgumentNullException
'Cannot pass Nothing as the regular expression or subject string
End Try
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Java
The only way to test for a partial match is to create a Matcher:

Pattern regex = Pattern.compile("regex pattern");
Matcher regexMatcher = regex.matcher(subjectString);
boolean foundMatch = regexMatcher.find();

If the regex is provided by the end user, you should use exception handling:

boolean foundMatch = false;
try {
Pattern regex = Pattern.compile(UserInput);
Matcher regexMatcher = regex.matcher(subjectString);
foundMatch = regexMatcher.find();
} catch (PatternSyntaxException ex) {
// Syntax error in the regular expression
}

3.5 Test If a Match Can Be Found Within a Subject String | 135

JavaScript

if (/regex pattern/.test(subject)) {
// Successful match

} else {
// Match attempt failed

}

PHP

if (preg match('/regex pattern/', $subject)) {
Successful match

} else {
Match attempt failed

}

Perl
With the subject string held in the special variable $ _:

if (m/regex pattern/) {

Successful match
} else {

Match attempt failed
}

With the subject string held in the variable $subject:

if ($subject =~ m/regex pattern/) {
Successful match

} else {
Match attempt failed

}

Using a precompiled regular expression:

$regex = qr/regex pattern/;
if ($subject =~ $regex) {
Successful match
} else {
Match attempt failed
}

Python
For quick one-off tests, you can use the global function:

if re.search("regex pattern", subject):
Successful match

else:
Match attempt failed

136 | Chapter3: Programming with Regular Expressions

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("regex pattern")
if reobj.search(subject):

Successful match
else:

Match attempt failed

Ruby

if subject =~ /regex pattern/
Successful match
else
Match attempt failed
end

This code does exactly the same thing:

if /regex pattern/ =~ subject
Successful match
else
Match attempt failed
end

Discussion

The most basic task for a regular expression is to check whether a string matches the
regex. In most programming languages, a partial match is sufficient for the match
function to return true. The match function will scan through the entire subject string
to see whether the regular expression matches any part of it. The function returns true
as soon as a match is found. It returns false only when it reaches the end of the string
without finding any matches.

The code examples in this recipe are useful for checking whether a string contains
certain data. If you want to check whether a string fits a certain pattern in its entirety
(e.g., for input validation), use the next recipe instead.

C# and VB.NET

The Regex class provides four overloaded versions of the IsMatch() method, two of
which are static. This makes it possible to call IsMatch() with different parameters. The
subject string is always the first parameter. This is the string in which the regular ex-
pression will try to find a match. The first parameter must not be null. Otherwise,
IsMatch() will throw an ArgumentNullException.

You can perform the test in a single line of code by calling Regex.IsMatch() without
constructing a Regex object. Simply pass the regular expression as the second parameter
and pass regex options as an optional third parameter. If your regular expression has
a syntax error, an ArgumentException will be thrown by IsMatch(). If your regex is valid,

3.5 Test If a Match Can Be Found Within a Subject String | 137

the call will return true if a partial match was found, or false if no match could be
found at all.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first, and calling IsMatch() on that
object. The first parameter, which holds the subject string, is then the only required
parameter. You can specify an optional second parameter to indicate the character
index at which the regular expression should begin the check. Essentially, the number
you pass as the second parameter is the number of characters at the start of your subject
string that the regular expression should ignore. This can be useful when you’ve already
processed the string up to a point, and you want to check whether the remainder should
be processed further. If you specify a number, it must be greater than or equal to zero
and less than or equal to the length of the subject string. Otherwise, IsMatch() throws
an ArgumentOutOfRangeException.

Java

To test whether a regex matches a string partially or entirely, instantiate a Matcher object
as explained in Recipe 3.3. Then call the find() method on your newly created or newly
reset matcher.

Do not call String.matches(), Pattern.matches(), or Matcher.matches(). Those all re-
quire the regex to match the whole string.

JavaScript

To test whether a regular expression can match part of a string, call the test() method
on your regular expression. Pass the subject string as the only parameter.

regexp.test() returns true if the regular expression matches part or all of the subject
string, and false if it does not.

PHP

The preg_match() function can be used for a variety of purposes. The most basic way
to call it is with only the two required parameters: the string with your regular
expression, and the string with the subject text you want the regex to search through.
preg_match() returns 1 if a match can be found and 0 when the regex cannot match the
subject at all.

Later recipes in this chapter explain the optional parameters you can pass to
preg match().

Perl

In Perl, m// is in fact a regular expression operator, not a mere regular expression con-
tainer. If you use m// by itself, it uses the $_ variable as the subject string.

138 | Chapter3: Programming with Regular Expressions

If you want to use the matching operator on the contents of another variable, use the
=~ binding operator to associate the regex operator with your variable. Binding the
regex to a string immediately executes the regex. The pattern-matching operator returns
true if the regex matches part of the subject string, and false if it doesn’t match at all.

If you want to check whether a regular expression does not match a string, you can
use !, which is the negated version of =".

Python

The search() function in the re module searches through a string to find whether the
regular expression matches part of it. Pass your regular expression as the first parameter
and the subject string as the second parameter. You can pass the regular expression
options in the optional third parameter.

The re.search() function calls re.compile(), and then calls the search() method on
the compiled regular expression object. This method takes just one parameter: the
subject string.

If the regular expression finds a match, search() returns a MatchObject instance. If the
regex fails to match, search() returns None. When you evaluate the returned value in
an if statement, the MatchObject evaluates to True, whereas None evaluates to False.
Later recipes in this chapter show how to use the information stored by MatchObject.

Don’t confuse search() with match(). You cannot use match() to find a
match in the middle of a string. The next recipe uses match().

Ruby

The =~ operator is the pattern-matching operator. Place it between a regular expression
and a string to find the first regular expression match. The operator returns an integer
with the position at which the regex match begins in the string. It returns nil if no
match can be found.

This operator is implemented in both the Regexp and String classes. In Ruby 1.8, it
doesn’t matter which class you place to the left and which to the right of the operator.
In Ruby 1.9, doing so has a special side effect involving named capturing groups.
Recipe 3.9 explains this.

In all the other Ruby code snippets in this book, we place the subject
string to the left of the =~ operator and the regular expression to the
%is: right. This maintains consistency with Perl, from which Ruby borrowed
the =~ syntax, and avoids the Ruby 1.9 magic with named capturing
groups that people might not expect.

3.5 Test If a Match Can Be Found Within a Subject String | 139

See Also
Recipe 3.6 shows code to test whether a regex matches a subject string entirely.

Recipe 3.7 shows code to get the text that was actually matched by the regex.

3.6 Test Whether a Regex Matches the Subject String Entirely

Problem

You want to check whether a string fits a certain pattern in its entirety. That is, you
want to check that the regular expression holding the pattern can match the string from
start to end. For instance, if your regex is <regexepattern, it will match input text
consisting of regex pattern but not the longer string The regex pattern can be found.

Solution

G
For quick one-off tests, you can use the static call:

bool foundMatch = Regex.IsMatch(subjectString, @"\Aregex pattern\z");
To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex(@"\Aregex pattern\z");
bool foundMatch = regexObj.IsMatch(subjectString);

VB.NET
For quick one-off tests, you can use the static call:

Dim FoundMatch = Regex.IsMatch(SubjectString, "\Aregex pattern\Z")
To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("\Aregex pattern\z")
Dim FoundMatch = RegexObj.IsMatch(SubjectString)

The IsMatch() call should have SubjectString as the only parameter, and the call should
be made on the Regex0bj instance rather than the Regex class:

Dim FoundMatch = RegexObj.IsMatch(SubjectString)

Java
If you want to test just one string, you can use the static call:

boolean foundMatch = subjectString.matches("regex pattern");

If you want to use the same regex on multiple strings, compile your regex and create a
matcher:

140 | Chapter3: Programming with Regular Expressions

Pattern regex = Pattern.compile("regex pattern");
Matcher regexMatcher = regex.matcher(subjectString);
boolean foundMatch = regexMatcher.matches(subjectString);

JavaScript

if (/*regex pattern$/.test(subject)) {
// Successful match

} else {
// Match attempt failed

}

PHP

if (preg_match('/\Aregex pattern\z/', $subject)) {
Successful match

} else {
Match attempt failed

}

Perl

if ($subject =~ m/\Aregex pattern\z/) {
Successful match

} else {
Match attempt failed

}

Python
For quick one-off tests, you can use the global function:

if re.match(r"regex pattern\Z", subject):
Successful match

else:
Match attempt failed

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"regex pattern\z")
if reobj.match(subject):

Successful match
else:

Match attempt failed

Ruby

if subject =~ /\Aregex pattern\z/
Successful match
else

3.6 Test Whether a Regex Matches the Subject String Entirely | 141

Download from Wow! eBook <www.wowebook.com>

Match attempt failed
end

Discussion

Normally, a successful regular expression match tells you that the pattern you want is
somewhere within the subject text. In many situations you also want to make sure it
completely matches, with nothing else in the subject text. Probably the most common
situation calling for a complete match is validating input. If a user enters a phone num-
ber or IP address but includes extraneous characters, you want to reject the input.

The solutions that use the anchors «$» and <\2> also work when you’re processing a file
line by line (Recipe 3.21), and the mechanism you’re using to retrieve the lines leaves
the line breaks at the end of the line. As Recipe 2.5 explains, these anchors also match
before a final line break, essentially allowing the final line break to be ignored.

In the following subsections, we explain the solutions for various languages in detail.

C# and VB.NET

The Regex class in the .NET Framework does not have a function for testing whether
a regex matches a string entirely. The solution is to add the start-of-string anchor <\A»
to the start of your regular expression, and the end-of-string anchor <\\2> to the end of
your regular expression. This way, the regular expression can only match a string either
in its entirety or not at all. If your regular expression uses alternation, as in <one|two|
three>, make sure to group the alternation before adding the anchors: <\A(?:one|two|
three)\2>.

With your regular expression amended to match whole strings, you can use the same
IsMatch() method as described in the previous recipe.

Java

Java has three methods called matches(). They all check whether a regex can match a
string entirely. These methods are a quick way to do input validation, without having
to enclose your regex with start-of-string and end-of-string anchors.

The String class has a matches() method that takes a regular expression as the only
parameter. It returns true or false to indicate whether the regex can match the whole
string. The Pattern class has a static matches() method, which takes two strings: the
first is the regular expression, and the second is the subject string. Actually, you can
pass any CharSequence as the subject string to Pattern.matches (). That’s the only reason
for using Pattern.matches() instead of String.matches().

Both String.matches() and Pattern.matches() recompile the regular expression each
time by calling Pattern.compile("regex").matcher(subjectString).matches(). Be-
cause the regex is recompiled each time, you should use these calls only when you want
to use the regex only once (e.g., to validate one field on an input form) or when efficiency

142 | Chapter3: Programming with Regular Expressions

is not an issue. These methods don’t provide a way to specify matching options outside
of the regular expression. A PatternSyntaxException is thrown if your regular expres-
sion has a syntax error.

If you want to use the same regex to test many strings efficiently, you should compile
your regex and create and reuse a Matcher, as explained in Recipe 3.3. Then call

matches() on your Matcher instance. This function does not take any parameters, be-
cause you’ve already specified the subject string when creating or resetting the matcher.

JavaScript

JavaScript does not have a function for testing whether a regex matches a string entirely.
The solution is to add «* to the start of your regular expression, and «$» to the end of
your regular expression. Make sure that you do not set the /m flag for your regular
expression. Only without /m do the caret and dollar match only at the start and end of
the subject string. When you set /m, they also match at line breaks in the middle of the
string.

With the anchors added to your regular expression, you can use the same
regexp.test() method described in the previous recipe.

PHP

PHP does not have a function for testing whether a regex matches a string entirely. The
solution is to add the start-of-string anchor <\A» to the start of your regular expression,
and the end-of-string anchor (\\Z> to the end of your regular expression. This way, the
regular expression can only match a string either in its entirety or not at all. If your
regular expression uses alternation, as in <one|two|three>, make sure to group the al-
ternation before adding the anchors: (\A(?:one|two|three)\2.

With your regular expression amended to match whole strings, you can use the same
preg_match() function as described in the previous recipe.

Perl

Perl has only one pattern-matching operator, which is satisfied with partial matches. If
you want to check whether your regex matches the whole subject string, add the
start-of-string anchor <\A> to the start of your regular expression, and the end-of-string
anchor \\2> to the end of your regular expression. This way, the regular expression can
only match a string either in its entirety or not at all. If your regular expression uses
alternation, as in <one|two|three>, make sure to group the alternation before adding
the anchors: (\A(?:one|two|three)\2>.

With your regular expression amended to match whole strings, use it as described in
the previous recipe.

3.6 Test Whether a Regex Matches the Subject String Entirely | 143

Python

The match() function is very similar to the search() function described in the previous
recipe. The key difference is that match() evaluates the regular expression only at the
very beginning of the subject string. If the regex does not match at the start of the string,
match() returns None right away. The search() function, however, will keep trying the
regex at each successive position in the string until it either finds a match or reaches
the end of the subject string.

Thematch() function does not require the regular expression to match the whole string.
A partial match is accepted, as long as it begins at the start of the string. If you want to
check whether your regex can match the whole string, append the end-of-string anchor
A\2> to your regular expression.

Ruby

Ruby’s Regexp class does not have a function for testing whether a regex matches a
string entirely. The solution is to add the start-of-string anchor <\A> to the start of your
regular expression, and the end-of-string anchor (\2> to the end of your regular
expression. This way, the regular expression can only match a string either in its entirety
or not at all. If your regular expression uses alternation, as in <one|two|three>, make
sure to group the alternation before adding the anchors: (\A(?:one|two|three)\2>.

With your regular expression amended to match whole strings, you can use the same
=~ operator as described in the previous recipe.

See Also
Recipe 2.5 explains in detail how anchors work.

Recipes 2.8 and 2.9 explain alternation and grouping. If your regex uses alternation
outside of any groups, you need to group your regex before adding the anchors. If your
regex does not use alternation, or if it uses alternation only within groups, then no extra
grouping is needed to make the anchors work as intended.

Follow Recipe 3.5 when partial matches are acceptable.

3.7 Retrieve the Matched Text

Problem

You have a regular expression that matches a part of the subject text, and you want to
extract the text that was matched. If the regular expression can match the string more
than once, you want only the first match. For example, when applying the regex
A\d+> to the string Do you like 13 or 42?, 13 should be returned.

144 | Chapter3: Programming with Regular Expressions

Solution

C#
For quick one-off matches, you can use the static call:

string resultString = Regex.Match(subjectString, @"\d+").Value;

If the regex is provided by the end user, you should use the static call with full exception
handling:

string resultString = null;
try {
resultString = Regex.Match(subjectString, @"\d+").Value;
} catch (ArgumentNullException ex) {
// Cannot pass null as the regular expression or subject string
} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex(@"\d+");
string resultString = regex0Obj.Match(subjectString).Value;

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

string resultString = null;

try {
Regex regexObj = new Regex(@"\d+");

try {

resultString = regexObj.Match(subjectString).Value;
} catch (ArgumentNullException ex) {

// Cannot pass null as the subject string

} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

VB.NET
For quick one-off matches, you can use the static call:

Dim ResultString = Regex.Match(SubjectString, "\d+").Value

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim ResultString As String = Nothing
Try
ResultString = Regex.Match(SubjectString, "\d+").Value

3.7 Retrieve the Matched Text | 145

Catch ex As ArgumentNullException

'Cannot pass Nothing as the regular expression or subject string
Catch ex As ArgumentException

'Syntax error in the regular expression
End Try

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("\d+")
Dim ResultString = RegexObj.Match(SubjectString).Value

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim ResultString As String = Nothing
Try
Dim RegexObj As New Regex("\d+")
Try
ResultString = RegexObj.Match(SubjectString).Value
Catch ex As ArgumentNullException
'Cannot pass Nothing as the subject string
End Try
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Java
Create a Matcher to run the search and store the result:

String resultString = null;
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
resultString = regexMatcher.group();
}

If the regex is provided by the end user, you should use full exception handling:

String resultString = null;
try {
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
resultString = regexMatcher.group();
}

} catch (PatternSyntaxException ex) {
// Syntax error in the regular expression
}

146 | Chapter3: Programming with Regular Expressions

JavaScript

var result = subject.match(/\d+/);
if (result) {
result = result[o];
} else {
result = '';
}

PHP

if (preg match('/\d+/', $subject, $groups)) {
$result = $groups[o0];

} else {
$result = '';
}
Perl
if ($subject =~ m/\d+/) {
$result = $&;
} else {
$result = '';
}
Python

For quick one-off matches, you can use the global function:

matchobj = re.search("regex pattern", subject)
if matchobj:

result = matchobj.group()
else:

result =

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("regex pattern")
matchobj = reobj.search(subject)
if match:
result = matchobj.group()
else:
result =

Ruby
You can use the =~ operator and its magic $& variable:

if subject =~ /regex pattern/
result = $&
else

3.7 Retrieve the Matched Text | 147

result =
end

Alternatively, you can call the match method on a Regexp object:

matchobj = /regex pattern/.match(subject)
if matchobj

result = matchobj[0]
else

result =
end

Discussion

Extracting the part of a longer string that fits the pattern is another prime job for regular
expressions. All programming languages discussed in this book provide an easy way to
get the first regular expression match from a string. The function will attempt the reg-
ular expression at the start of the string and continue scanning through the string until
the regular expression matches.

.NET

The .NET Regex class does not have a member that returns the string matched by the
regular expression. But it does have a Match() method that returns an instance of the
Match class. This Match object has a property called Value, which holds the text matched
by the regular expression. If the regular expression fails to match, it still returns a
Match object, but the Value property holds an empty string.

A total of five overloads allows you to call the Match() method in various ways. The
first parameter is always the string that holds the subject text in which you want the
regular expression to find a match. This parameter should not be null. Otherwise,
Match() will throw an ArgumentNullException.

If you want to use the regular expression only a few times, you can use a static call. The
second parameter is then the regular expression you want to use. You can pass regex
options as an optional third parameter. If your regular expression has a syntax error,
an ArgumentException will be thrown.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first and then calling Match() on that
object. The first parameter with the subject string is then the only required parameter.
You can specify an optional second parameter to indicate the character index at which
the regular expression should begin to search. Essentially, the number you pass as the
second parameter is the number of characters at the start of your subject string that the
regular expression should ignore. This can be useful when you’ve already processed
the string up to a point and want to search the remainder of the string. If you specify
this number, it must be in the range from zero to the length of the subject string.
Otherwise, IsMatch() throws an ArgumentOutOfRangeException.

148 | Chapter3: Programming with Regular Expressions

If you specify the second parameter with the starting position, you can specify a third
parameter that indicates the length of the substring the regular expression is allowed
to search through. This number must be greater than or equal to zero and must not
exceed the length of the subject string (first parameter) minus the starting offset (second
parameter). For instance, regexObj.Match("123456", 3, 2) tries to find a match in
"45". If the third parameter is greater than the length of the subject string, Match()
throws an ArgumentOutOfRangeException. If the third parameter is not greater than the
length of the subject string, but the sum of the second and third parameters is greater
than the length of the string, then another IndexOutOfRangeException is thrown. If you
allow the user to specify starting and ending positions, either check them before calling
Match() or make sure to catch both out-of-range exceptions.

The static overloads do not allow for the parameters that specify which part of the string
the regular expression can search through.

Java

To get the part of a string matched by a regular expression, you need to create a
Matcher, as explained in Recipe 3.3. Then call the find() method on your matcher,
without any parameters. If find() returns true, call group() without any parameters to
retrieve the text matched by your regular expression. If find() returns false, you should
not call group(), as all you’ll get is an I1legalStateException.

Matcher.find() takes one optional parameter with the starting position in the subject
string. You can use this to begin the search at a certain position in the string.
Specify zero to begin the match attempt at the start of the string. An IndexOut0fBound
sException is thrown if you set the starting position to a negative number, or to a
number greater than the length of the subject string.

If you omit the parameter, find() starts at the character after the previous match found
by find(). If you’re calling find() for the first time after Pattern.matcher() or
Matcher.reset(), then find() begins searching at the start of the string.

JavaScript

The string.match() method takes a regular expression as its only parameter. You can
pass the regular expression as a literal regex, a regular expression object, or as a string.
If you pass a string, string.match() creates a temporary regexp object.

When the match attempt fails, string.match() returns null. This allows you to differ-
entiate between a regex that finds no matches, and a regex that finds a zero-length
match. It does mean that you cannot directly display the result, as “null” or an error
about a null object may appear.

When the match attempt succeeds, string.match() returns an array with the details of
the match. Element zero in the array is a string that holds the text matched by the regular
expression.

3.7 Retrieve the Matched Text | 149

Make sure that you do not add the /g flag to your regular expression. If you do,
string.match() behaves differently, as Recipe 3.10 explains.

PHP

The preg_match() function discussed in the previous two recipes takes an optional third
parameter to store the text matched by the regular expression and its capturing groups.
When preg_match() returns 1, the variable holds an array of strings. Element zero in
the array holds the overall regular expression match. The other elements are explained
in Recipe 3.9.

Perl

When the pattern-matching operator m// finds a match, it sets several special variables.
One of those is the $& variable, which holds the part of the string matched by the regular
expression. The other special variables are explained in later recipes.

Python

Recipe 3.5 explains the search() function. This time, we store the MatchObject instance
returned by search() into a variable. To get the part of the string matched by the regular
expression, we call the group() method on the match object without any parameters.

Ruby

Recipe 3.8 explains the $~ variable and the MatchData object. In a string context, this
object evaluates to the text matched by the regular expression. In an array context, this
object evaluates to an array with element number zero holding the overall regular ex-
pression match.

$& is a special read-only variable. It is an alias for $~[0], which holds a string with the
text matched by the regular expression.

See Also

Recipe 3.5 shows code to test whether a regex matches a subject string, without re-
trieving the actual match.

Recipe 3.8 shows code to determine the position and length of the match.

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex.

Recipe 3.10 shows code to get a list of all the matches a regex can find in a string.

Recipe 3.11 shows code to iterate over all the matches a regex can find in a string.

150 | Chapter3: Programming with Regular Expressions

3.8 Determine the Position and Length of the Match

Problem

Instead of extracting the substring matched by the regular expression, as shown in the
previous recipe, you want to determine the starting position and length of the match.
With this information, you can extract the match in your own code or apply whatever
processing you fancy on the part of the original string matched by the regex.

Solution

G

For quick one-off matches, you can use the static call:

int matchstart, matchlength = -1;
Match matchResult = Regex.Match(subjectString, @"\d+");
if (matchResult.Success) {

matchstart = matchResult.Index;

matchlength = matchResult.Length;

}

To use the same regex repeatedly, construct a Regex object:

int matchstart, matchlength = -1;
Regex regexObj = new Regex(@"\d+");
Match matchResult = regexObj.Match(subjectString).Value;
if (matchResult.Success) {
matchstart = matchResult.Index;
matchlength = matchResult.Length;

}

VB.NET
For quick one-off matches, you can use the static call:

Dim MatchStart = -1
Dim MatchLength = -1
Dim MatchResult = Regex.Match(SubjectString, "\d+")
If MatchResult.Success Then
MatchStart = MatchResult.Index
MatchLength = MatchResult.Length
End If

To use the same regex repeatedly, construct a Regex object:

Dim MatchStart = -1

Dim MatchLength = -1

Dim RegexObj As New Regex("\d+")

Dim MatchResult = Regex.Match(SubjectString, "\d+")

3.8 Determine the Position and Length of the Match | 151

If MatchResult.Success Then
MatchStart = MatchResult.Index
MatchLength = MatchResult.Length

End If

Java

int matchStart, matchLength = -1;
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
matchStart = regexMatcher.start();
matchLength = regexMatcher.end() - matchStart;
}

JavaScript

var matchstart = -1;
var matchlength = -1;
var match = /\d+/.exec(subject);
if (match) {
matchstart = match.index;
matchlength = match[0].length;

PHP

if (preg_match('/\d+/', $subject, $groups, PREG OFFSET CAPTURE)) {
$matchstart = $groups[o][1];
$matchlength = strlen($groups[o][0]);

Perl

if ($subject =~ m/\d+/g)
$matchstart = $-[0];
$matchlength = $+[0] - $-[0];
}

Python
For quick one-off matches, you can use the global function:

matchobj = re.search(r"\d+", subject)
if matchobj:
matchstart = matchobj.start()
matchlength = matchobj.end() - matchstart

To use the same regex repeatedly, use a compiled object:

152 | Chapter3: Programming with Regular Expressions

reobj = re.compile(r"\d+")
matchobj = reobj.search(subject)
if matchobj:
matchstart = matchobj.start()
matchlength = matchobj.end() - matchstart

Ruby

You can use the =~ operator and its magic $~ variable:

if subject =~ /regex pattern/
matchstart = $~.begin()
matchlength = $~.end() - matchstart
end

Alternatively, you can call the match method on a Regexp object:

matchobj = /regex pattern/.match(subject)
if matchobj

matchstart = matchobj.begin()

matchlength = matchobj.end() - matchstart
end

Discussion

NET

To get the match index and length, we use the same Regex.Match() method described
in the previous recipe. This time, we use the Index and Length properties of the Match
object returned by Regex.Match().

Index is the index in the subject string at which the regex match begins. If the regex
match begins at the start of the string, Index will be zero. If the match starts at the
second character in the string, Index will be one. The maximum value for Index is
the length of the string. That can happen when the regex finds a zero-length match at
the end of the string. For example, the regex consisting solely of the end-of-string anchor
A\2> always matches at the end of the string.

Length indicates the number of characters that were matched. It is possible for a valid
match to be zero characters long. For example, the regex consisting only of the word
boundary \b> will find a zero-length match at the start of the first word in the string.

If the match attempt fails, Regex.Match() still returns a Match object. Its Index and
Length properties will both be zero. These values can also happen with a successful
match. The regex consisting of the start-of-string anchor \\A> will find a zero-length
match at the start of the string. Thus, you cannot rely on Match.Index or
Match.Length to indicate whether the match attempt was successful. Use Match
.Success instead.

3.8 Determine the Position and Length of the Match | 153

Java

To get the position and length of the match, call Matcher.find() as described in the
previous recipe. When find() returns true, call Matcher.start() without any parame-
ters to obtain the index of the first character that is part of the regex match. Call

end() without any parameters to get the index of the first character after the match.
Subtract the start from the end to get the length of the match, which can be zero. If you
call start() orend() without a prior call to find(), you’ll get an I11egalStateException.

JavaScript

Call the exec() method on a regexp object to get an array with details about the match.
This array has a few additional properties. The index property stores the position in
the subject string at which the regex match begins. If the match begins at the start of
the string, index will be zero. Element zero in the array holds a string with the overall
regex match. Get the length property of that string to determine the length of the match.

If the regular expression cannot match the string at all, regexp.exec() returns null.

Do not use the lastIndex property of the array returned by exec() to determine the
ending position of the match. In a strict JavaScript implementation, the lastIndex does
not exist in the returned array at all, but only in the regexp object itself. You shouldn’t
use regexp.lastIndex either. It is unreliable, due to cross-browser differences (see
Recipe 3.11 for more details). Instead, simply add up match.index and
match[0].1length to determine where the regex match ended.

PHP

The previous recipe explains how you can get the text matched by the regular expres-
sion by passing a third parameter to preg_match(). You can get the position of the match
by passing the constant PREG_OFFSET_CAPTURE as a fourth parameter. This parameter
changes what preg match() stores in the third parameter when it returns 1.

When you either omit the fourth parameter or set it to zero, the variable passed as the
third parameter receives an array of strings. When you pass PREG_OFFSET_CAPTURE as the
fourth parameter, the variable receives an array of arrays. Element zero in the overall
array is still the overall match (see the preceding recipe), and elements one and beyond
are still capturing groups one and beyond (see the next recipe). But instead of holding
a string with the text matched by the regex or a capturing group, the element holds an
array with two values: the text that was matched and the position in the string at which
it was matched.

To get the details of the overall match, subelement zero of element zero gives us the
text matched by the regex. We pass this to the strlen() function to calculate its length.
Subelement one of element zero holds an integer with the position in the subject string
at which the match starts.

154 | Chapter3: Programming with Regular Expressions

Download from Wow! eBook <www.wowebook.com>

Perl

Perl stores the position where the match of each capturing group starts in the array
@- and the position where each group ends in @-. The overall regex match is group
number zero. You can get starting position of the overall match with $-[0] and the
ending position with $+[0].

Python

The start() method of MatchObject returns the position in the string at which the
regular expression match begins. The end() method returns the position of the first
character after the match. Both methods return the same value when a zero-length
regular expression match is found.

You can pass a parameter to start() and end() to retrieve the range of text matched by
one of the capturing groups in the regular expressions. Call start(1) for the first cap-
turing group, end(2) for the second group, and so on. Python supports up to 99 cap-
turing groups. Group number 0 is the overall regular expression match. Any number
other than zero up to the number of capturing groups in the regular expression (with
99 being the ceiling) causes start() and end() to raise an IndexError exception. If the
group number is valid but the group did not participate in the regex match, start()
and end() both return -1 for that group.

If you want to store both the starting and ending positions in a tuple, call the span()
method on the match object.

Ruby

Recipe 3.5 uses the =~ operator to find the first regex match in a string. A side effect of
this operator is that it fills the special $~ variable with an instance of the MatchData class.
This variable is thread-local and method-local. That means you can use the contents
of this variable until your method exits or until the next time you use the =~ operator
in your method, without worrying that another thread or another method in your
thread will overwrite it.

If you want to keep the details of multiple regex matches, call the match() method on
a Regexp object. This method takes a subject string as its only parameter. It returns a
MatchData instance when a match can be found, or nil otherwise. It also sets the $~
variable to the same MatchObject instance, but does not overwrite other MatchObject
instances stored in other variables.

The MatchData object stores all the details about a regular expression match. Recipes
3.7 and 3.9 explain how to get the text matched by the regular expression and by
capturing groups.

The begin() method returns the position in the subject string at which the regex match
begins. end() returns the position of the first character after the regex match.
offset() returns an array with the beginning and ending positions. These three meth-

3.8 Determine the Position and Length of the Match | 155

ods take one parameter. Pass 0 to get the positions of the overall regex match, or pass
a positive number to get the positions of the specified capturing group. For example,
begin(1) returns the start of the first capturing group.

Do notuse length() or size() to get the length of the match. Both these methods return
the number of elements in the array that MatchData evaluates to in array context, as
explained in Recipe 3.9.

See Also

Recipe 3.5 shows code to test whether a regex matches a subject string, without re-
trieving the actual match.

Recipe 3.7 shows code to get the text that was actually matched by the regex.

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex.

3.9 Retrieve Part of the Matched Text

Problem

As in Recipe 3.7, you have a regular expression that matches a substring of the subject
text, but this time you want to match just one part of that substring. To isolate the part
you want, you added a capturing group to your regular expression, as described in
Recipe 2.9.

For example, the regular expression <http://([a-z0-9.-]+)> matches http://www.regex
cookbook.comin the string Please visit http://www.regexcookbook.com for more infor
mation. The part of the regex inside the first capturing group matches www.regexcook
book.com, and you want to retrieve the domain name captured by the first capturing
group into a string variable.

We’'re using this simple regex to illustrate the concept of capturing groups. See Chap-
ter 8 for more accurate regular expressions for matching URLs.

Solution

€

For quick one-off matches, you can use the static call:
string resultString = Regex.Match(subjectString,
"http://([a-z0-9.-]1+)").Groups[1].Value;
To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex("http://([a-z0-9.-]+)");
string resultString = regexObj.Match(subjectString).Groups[1].Value;

156 | Chapter3: Programming with Regular Expressions

VB.NET

For quick one-off matches, you can use the static call:

Dim ResultString = Regex.Match(SubjectString,
"http://([a-20-9.-]+)").Groups(1).Value

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("http://([a-z0-9.-]1+)")
Dim ResultString = RegexObj.Match(SubjectString).Groups(1).Value

Java

String resultString = null;
Pattern regex = Pattern.compile("http://([a-20-9.-]+)");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
resultString = regexMatcher.group(1);
}

JavaScript

var result;
var match = /http:\/\/([a-2z0-9.-]+)/.exec(subject);
if (match) {
result = match[1];
} else {
result = "";
}

PHP

if (preg match('%http://([a-z0-9.-]1+)%", $subject, $groups)) {
$result = $groups[1];

} else {
$result = '';
}
Perl
if ($subject =~ mlhttp://([a-20-9.-1+)!) {
$result = $1;
} else {
$result = '';
}
Python

For quick one-off matches, you can use the global function:

3.9 Retrieve Part of the Matched Text | 157

matchobj = re.search("http://([a-z0-9.-]+)", subject)
if matchobj:

result = matchobj.group(1)
else:

result =

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("http://([a-20-9.-]+)")
matchobj = reobj.search(subject)
if match:
result = matchobj.group(1)
else:
result =

Ruby
You can use the =~ operator and its magic numbered variables, such as $1:

if subject =~ %r!http://([a-z0-9.-]+)!
result = $1
else
result =
end

Alternatively, you can call the match method on a Regexp object:

matchobj = %r!http://([a-z0-9.-]+)!.match(subject)
if matchobj

result = matchobj[1]
else

result =
end

Discussion

Recipe 2.10 and Recipe 2.21 explain how you can use numbered backreferences in the
regular expression and the replacement text to match the same text again, or to insert
part of the regex match into the replacement text. You can use the same reference
numbers to retrieve the text matched by one or more capturing groups in your code.

In regular expressions, capturing groups are numbered starting at one. Programming
languages typically start numbering arrays and lists at zero. All programming languages
discussed in this book that store capturing groups in an array or list use the same
numbering for capturing groups as the regular expression, starting at one. The zeroth
element in the array or list is used to store the overall regular expression match. This
means that if your regular expression has three capturing groups, the array storing their
matches will have four elements. Element zero holds the overall match, and elements
one, two, and three store the text matched by the three capturing groups.

158 | Chapter3: Programming with Regular Expressions

{NET

To retrieve details about capturing groups, we again resort to the Regex.Match() mem-
ber function, first explained in Recipe 3.7. The returned Match object has a property
called Groups. This is a collection property of type GroupCollection. The collection
holds the details for all the capturing groups in your regular expression. Groups[1] holds
the details for the first capturing group, Groups[2] the second group, and so on.

The Groups collection holds one Group object for each capturing group. The Group class
has the same properties as the Match class, except for the Groups property.
Match.Groups[1].Value returns the text matched by the first capturing group, in the
same way thatMatch.Value returns the overall regex match. Match.Groups[1].Index and
Match.Groups[1].Length return the starting position and length of the text matched by
the group. See Recipe 3.8 for more details on Index and Length.

Groups[0] holds the details for the overall regex match, which are also held by the match
object directly. Match.Value and Match.Groups[0].Value are equivalent.

The Groups collection does not throw an exception if you pass an invalid group number.
For example, Groups[-1] still returns a Group object, but the properties of that Group
object will indicate that the fictional capturing group -1 failed to match. The best way
to test this is to use the Success property. Groups[-1].Success will return false.

To determine how many capturing groups there are, check Match.Groups.Count. The
Count property follows the same convention as the Count property for all collection
objects in .NET: it returns the number of elements in the collection, which is the highest
allowed index plus one. In our example, the Groups collection holds Groups[0] and
Groups[1]. Groups.Count thus returns 2.

Java

The code for getting either the text matched by a capturing group or the match details
of a capturing group is practically the same as that for the whole regex match, as shown
in the preceding two recipes. The group(), start() and end(), methods of the Matcher
class all take one optional parameter. Without this parameter, or with this parameter
set to zero, you get the match or positions of the whole regex match.

If you pass a positive number, you get the details of that capturing group. Groups are
numbered starting at one, just like backreferences in the regular expression itself. If you
specify a number higher than the number of capturing groups in your regular expres-
sion, these three functions throw an IndexOutOfBoundsException. If the capturing group
exists but did not participate in the match, group(n) returns null, whereas start(n)
and end(n) both return -1.

JavaScript

As explained in the previous recipe, the exec() method of a regular expression object
returns an array with details about the match. Element zero in the array holds the overall

3.9 Retrieve Part of the Matched Text | 159

regex match. Element one holds the text matched by the first capturing group, element
two stores the second group’s match, etc.

If the regular expression cannot match the string at all, regexp.exec() returns null.

PHP

Recipe 3.7 explains how you can get the text matched by the regular expression by
passing a third parameter to preg_match(). When preg_match() returns 1, the parameter
is filled with an array. Element zero holds a string with the overall regex match.

Element one holds the text matched by the first capturing group, element two the text
from the second group, and so on. The length of the array is the number of capturing
groups plus one. Array indexes correspond to backreference numbers in the regular
expression.

If you specify the PREG_OFFSET_CAPTURE constant as the fourth parameter, as explained
in the previous recipe, then the length of the array is still the number of capturing groups
plus one. But instead of holding a string at each index, the array will hold subarrays
with two elements. Subelement zero is the string with the text matched by the overall
regex or the capturing group. Subelement one is an integer that indicates the position
in the subject string at which the matched text starts.

Perl

When the pattern-matching operatorm// finds a match, it sets several special variables.
Those include the numbered variables $1, $2, $3, etc., which hold the part of the string
matched by the capturing groups in the regular expression.

Python

The solution to this problem is almost identical to the one in Recipe 3.7. Instead of
calling group() without any parameters, we specify the number of the capturing group
we're interested in. Call group(1) to get the text matched by the first capturing group,
group(2) for the second group, and so on. Python supports up to 99 capturing
groups. Group number 0 is the overall regular expression match. If you pass a number
greater than the number of capturing groups in your regular expression, then group()
raises an IndexError exception. If the group number is valid but the group did not
participate in the regex match, group() returns None.

You can pass multiple group numbers to group() to get the text matched by several
capturing groups in one call. The result will be a list of strings.

If you want to retrieve a tuple with the text matched by all the capturing groups, you
can call the groups() method of MatchObject. The tuple will hold None for groups that
did not participate in the match. If you pass a parameter to groups(), that value is used
instead of None for groups that did not participate in the match.

160 | Chapter3: Programming with Regular Expressions

If you want a dictionary instead of a tuple with the text matched by the capturing
groups, call groupdict() instead of groups(). You can pass a parameter to
groupdict() to put something other than None in the dictionary for groups that did not
participate in the match.

Ruby

Recipe 3.8 explains the $~ variable and the MatchData object. In an array context, this
object evaluates to an array with the text matched by all the capturing groups in your
regular expression. Capturing groups are numbered starting at 1, just like backrefer-
ences in the regular expression. Element 0 in the array holds the overall regular ex-
pression match.

$1, $2, and beyond are special read-only variables. $1 is a shortcut to $~[1], which holds
the text matched by the first capturing group. $2 retrieves the second group, and so on.

Named Capture

If your regular expression uses named capturing groups, you can use the group’s name
to retrieve its match in your code.

Gt
For quick one-off matches, you can use the static call:
string resultString = Regex.Match(subjectString,
"http://(?<domain>[a-z0-9.-]+)").Groups["domain"].Value;
To use the same regex repeatedly, construct a Regex object:
Regex regexObj = new Regex("http://(?<domain>[a-z0-9.-]+)");
string resultString = regexObj.Match(subjectString).Groups["domain"].Value;

In C#, there’s no real difference in the code for getting the Group object for a named
group compared with a numbered group. Instead of indexing the Groups collection with
an integer, index it with a string. Also in this case, .NET will not throw an exception if
the group does not exist. Match.Groups["nosuchgroup”].Success merely returns false.

VB.NET

For quick one-off matches, you can use the static call:
Dim ResultString = Regex.Match(SubjectString,
"http://(?<domain>[a-z0-9.-]+)").Groups("domain").Value
To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("http://(?<domain>[a-z0-9.-]+)")
Dim ResultString = RegexObj.Match(SubjectString).Groups("domain").Value

3.9 Retrieve Part of the Matched Text | 161

In VB.NET, there’s no real difference in the code for getting the Group object for a named
group compared with a numbered group. Instead of indexing the Groups collection with
an integer, index it with a string. Also in this case, .NET will not throw an exception if
the group does not exist. Match.Groups("nosuchgroup").Success merely returns False.

Java

String resultString = null;
Pattern regex = Pattern.compile("http://(?<domain>[a-z0-9.-]+)");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
resultString = regexMatcher.group("domain");
}

Java 7 adds support for named capturing groups. It also adds an overload to the
Matcher.group() method that takes the name of a capturing group as its parameter, and
returns the text matched by that capturing group. It throws an I1legalArgumentExcep
tion if you pass the name of a group that does not exist.

Unfortunately, the Matcher.start() and Matcher.end() methods do not have similar
overloads. If you want to get the start or the end of a named capturing group, you have
to reference it by its number. Java numbers both named and unnamed capturing groups
from left to right. The group(), start(), and end() methods of the Matcher class all take
one optional parameter. Without this parameter, or with this parameter set to zero,
you get the match or positions of the whole regex match.

XRegExp

var result;
var match = XRegExp.exec(subject,
XRegExp("http://(2<domain>[a-z0-9.-1+)"));
if (match) {
result = match.domain;
} else {
result = "";
}

XRegExp extends JavaScript’s regular expression syntax with named capture. XReg
Exp.exec() adds a property for each named capturing group to the match object it re-
turns, allowing you to easily reference each group by name.

PHP

if (preg_match('%http://(?P<domain>[a-z0-9.-]+)%", $subject, $groups)) {
$result = $groups['domain'];

} else {
$result = '';

}

162 | Chapter3: Programming with Regular Expressions

If your regular expression has named capturing groups, then the array assigned to
$groups is an associative array. The text matched by each named capturing group is
added to the array twice. You can retrieve the matched text by indexing the array with
either the group’s number or the group’s name. In the code sample, $groups[0] stores
the overall regex match, whereas both $groups[1] and $groups['domain'] store the text
matched by the regular expression’s only capturing group.

Perl
if ($subject =~ '!http://(?<domain>[a-z0-9.-]+)%!) {
$result = $+{'domain'};
} else {
$result = '';
}

Perl supports named capturing groups starting with version 5.10. The %+ hash stores
the text matched by all named capturing groups. Perl numbers named groups along
with numbered groups. In this example, both $1 and $+{name} store the text matched
by the regular expression’s only capturing group.

Python

matchobj = re.search("http://(?P<domain>[a-z0-9.-]+)", subject)
if matchobj:

result = matchobj.group("domain")
else:

result =

If your regular expression has named capturing groups, you can pass the group’s name
instead of its number to the group() method.

Ruby

Ruby 1.9 adds support for named capture to the regular expression syntax. It also
extends the $~ variable and the MatchData object explained in Recipe 3.8 to support
named capture. $~["name"] or matchobj["name"] returns the text matched by the named
group “name.” Call matchobj.begin("name") and matchobj.end("name") to retrieve the
beginning and ending positions of the match of a named group.

See Also
Recipe 2.9 explains numbered capturing groups.

Recipe 2.11 explains named capturing groups.

3.9 Retrieve Part of the Matched Text | 163

3.10 Retrieve a List of All Matches

Problem

All the preceding recipes in this chapter deal only with the first match that a regular
expression can find in the subject string. But in many cases, a regular expression that
partially matches a string can find another match in the remainder of the string. And
there may be a third match after the second, and so on. For example, the regex \d+
can find six matches in the subject string The lucky numbers are 7, 13, 16, 42, 65,
and 99: 7, 13, 16, 42, 65, and 99.

You want to retrieve the list of all substrings that the regular expression finds when it
is applied repeatedly to the remainder of the string, after each match.

Solution

(€
You can use the static call when you process only a small number of strings with the
same regular expression:

MatchCollection matchlist = Regex.Matches(subjectString, @"\d+");
Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"\d+");
MatchCollection matchlist = regexObj.Matches(subjectString);

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim MatchList = Regex.Matches(SubjectString, "\d+")

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("\d+")
Dim MatchList = RegexObj.Matches(SubjectString)

Java

List<String> resultlist = new Arraylist<String>();

Pattern regex = Pattern.compile("\\d+");

Matcher regexMatcher = regex.matcher(subjectString);

while (regexMatcher.find()) {
resultlist.add(regexMatcher.group());

}

164 | Chapter3: Programming with Regular Expressions

JavaScript
var list = subject.match(/\d+/g);

PHP

preg match all('/\d+/', $subject, $result, PREG_PATTERN ORDER);
$result = $result[o];

Perl
@result = $subject =~ m/\d+/g;

This only works for regular expressions that don’t have capturing groups, so use
noncapturing groups instead. See Recipe 2.9 for details.

Python

If you process only a small number of strings with the same regular expression, you can
use the global function:

result = re.findall(r"\d+", subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"\d+")
result = reobj.findall(subject)

Ruby
result = subject.scan(/\d+/)

Discussion

{NET

The Matches() method of the Regex class applies the regular expression repeatedly to
the string, until all matches have been found. It returns a MatchCollection object that
holds all the matches. The subject string is always the first parameter. This is the string
in which the regular expression will try to find a match. The first parameter must not
be null. Otherwise, Matches() will throw an ArgumentNullException.

If you want to get the regex matches in only a small number of strings, you can use the
static overload of Matches(). Pass your subject string as the first parameter and your
regular expression as the second parameter. You can pass regular expression options
as an optional third parameter.

If you’ll be processing many strings, construct a Regex object first, and use that to call
Matches(). The subject string is then the only required parameter. You can specify an
optional second parameter to indicate the character index at which the regular expres-
sion should begin the check. Essentially, the number you pass as the second parameter

3.10 Retrieve a List of All Matches | 165

is the number of characters at the start of your subject string that the regular expression
should ignore. This can be useful when you’ve already processed the string up to a
point and want to check whether the remainder should be processed further. If you
specify the number, it must be between zero and the length of the subject string. Other-
wise, IsMatch() throws an ArgumentOutOfRangeException.

The static overloads do not allow for the parameter that specifies where the regex at-
tempt should start in the string. There is no overload that allows you to tell
Matches() to stop before the end of the string. If you want to do that, you could call
Regex.Match("subject", start, stop) in aloop, as shown in the next recipe, and add
all the matches it finds to a list of your own.

Java

Java does not provide a function that retrieves the list of matches for you. You can easily
do this in your own code by adapting Recipe 3.7. Instead of calling find() in an if
statement, do it in a while loop.

To use the List and ArrayList classes, as in the example, put import java.util.*; at
the start of your code.

JavaScript

This code calls string.match(), just like the JavaScript solution to Recipe 3.7. There is
one small but very important difference: the /g flag. Regex flags are explained in
Recipe 3.4.

The /g flag tells the match() function to iterate over all matches in the string and put
them into an array. In the code sample, 1ist[0] will hold the first regex match,
list[1] the second, and so on. Check list.length to determine the number of matches.
If no matches can be found at all, string.match returns null as usual.

The elements in the array are strings. When you use a regex with the /g flag,
string.match() does not provide any further details about the regular expression
match. If you want to get match details for all regex matches, iterate over the matches
as explained in Recipe 3.11.

PHP

All the previous PHP recipes used preg_match(), which finds the first regex match in a
string. preg_match_all() is very similar. The key difference is that it will find all matches
in the string. It returns an integer indicating the number of times the regex could match.

The first three parameters for preg match_all() are the same as the first three for
preg match(): a string with your regular expression, the string you want to search
through, and a variable that will receive an array with the results. The only differences
are that the third parameter is required and the array is always multidimensional.

166 | Chapter3: Programming with Regular Expressions

Download from Wow! eBook <www.wowebook.com>

For the fourth parameter, specify either the constant PREG_PATTERN ORDER or
PREG_SET_ORDER. If you omit the fourth parameter, PREG_PATTERN_ORDER is the default.

If you use PREG_PATTERN_ORDER, you will get an array that stores the details of the overall
match at element zero, and the details of capturing groups one and beyond at elements
one and beyond. The length of the array is the number of capturing groups plus one.
This is the same order used by preg match(). The difference is that instead of each
element holding a string with the only regex match found by preg_match(), each ele-
ment holds a subarray with all the matches found by preg matches(). The length of
each subarray is the same as the value returned by preg_matches().

To get a list of all the regex matches in the string, discarding text matched by capturing
groups, specify PREG_PATTERN_ORDER and retrieve element zero in the array. If you're
only interested in the text matched by a particular capturing group, use PREG_PAT
TERN_ORDER and the capturing group’s number. For example, specifying $result[1] after
calling preg match('%http://([a-20-9.-]+)%', $subject, $result) gives you the list
of domain names of all the URLs in your subject string.

PREG_SET_ORDER fills the array with the same strings, but in a different way. The length
of the array is the value returned by preg matches(). Each element in the array is a
subarray, with the overall regex match in subelement zero and the capturing groups in
elements one and beyond. If you specify PREG_SET_ORDER, then $result[o0] holds the
same array as if you had called preg_match().

You can combine PREG_OFFSET CAPTURE with PREG_PATTERN_ORDER or PREG_SET ORDER.
Doing so has the same effect as passing PREG_OFFSET_CAPTURE as the fourth parameter
to preg_match(). Instead of each element in the array holding a string, it will hold a two-
element array with the string and the offset at which that string occurs in the original
subject string.

Perl

Recipe 3.4 explains that you need to add the /g modifier to enable your regex to find
more than one match in the subject string. If you use a global regex in a list context, it
will find all the matches and return them. In this recipe, the list variable to the left of
the assignment operator provides the list context.

If the regular expression does not have any capturing groups, the list will contain the
overall regex matches. If the regular expression does have capturing groups, the list will
contain the text matched by all the capturing groups for each regex match. The overall
regex match is not included, unless you put a capturing group around the whole regex.
If you only want to get a list of overall regex matches, replace all capturing groups with
noncapturing groups. Recipe 2.9 explains both kinds of grouping.

3.10 Retrieve a List of All Matches | 167

Python

The findall() function in the re module searches repeatedly through a string to find
all matches of the regular expression. Pass your regular expression as the first parameter
and the subject string as the second parameter. You can pass the regular expression
options in the optional third parameter.

The re.findall() function calls re.compile(), and then calls the findall() method on
the compiled regular expression object. This method has only one required parameter:
the subject string.

The findall() method takes two optional parameters that the global re.findall()
function does not support. After the subject string, you can pass the character position
in the string at which findall() should begin its search. If you omit this parameter,
findall() processes the whole subject string. If you specify a starting position, you can
also specify an ending position. If you don’t specify an ending position, the search runs
until the end of the string.

No matter how you call findall(), the result is always a list with all the matches that
could be found. If the regex has no capturing groups, you get a list of strings. If it does
have capturing groups, you get a list of tuples with the text matched by all the capturing
groups for each regex match.

Ruby

The scan() method of the String class takes a regular expression as its only parameter.
It iterates over all the regular expression matches in the string. When called without a
block, scan() returns an array of all regex matches.

If your regular expression does not contain any capturing groups, scan() returns an
array of strings. The array has one element for each regex match, holding the text that
was matched.

When there are capturing groups, scan() returns an array of arrays. The array has one
element for each regex match. Each element is an array with the text matched by each
of the capturing groups. Subelement zero holds the text matched by the first capturing
group, subelement one holds the second capturing group, etc. The overall regex match
is not included in the array. If you want the overall match to be included, enclose your
entire regular expression with an extra capturing group:

Ruby does not provide an option to make scan() return an array of strings when the
regex has capturing groups. Your only solution is to replace all named and numbered
capturing groups with noncapturing groups.

See Also
Recipe 3.7 shows code to get only the first regex match.

Recipe 3.11 shows code to iterate over all the matches a regex can find in a string.

168 | Chapter3: Programming with Regular Expressions

Recipe 3.12 shows code to iterate over all the matches a regex can find in a string and
only retain those matches that meet certain criteria.

3.11 Iterate over All Matches

Problem

The previous recipe shows how a regex could be applied repeatedly to a string to get a
list of matches. Now you want to iterate over all the matches in your own code.

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

Match matchResult = Regex.Match(subjectString, @"\d+");
while (matchResult.Success) {
// Here you can process the match stored in matchResult
matchResult = matchResult.NextMatch();

}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"\d+");

matchResult = regexObj.Match(subjectString);

while (matchResult.Success) {
// Here you can process the match stored in matchResult
matchResult = matchResult.NextMatch();

}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim MatchResult = Regex.Match(SubjectString, "\d+")

While MatchResult.Success
'Here you can process the match stored in MatchResult
MatchResult = MatchResult.NextMatch

End While

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("\d+")
Dim MatchResult = RegexObj.Match(SubjectString)

3.11 Iterate over All Matches | 169

While MatchResult.Success
'Here you can process the match stored in MatchResult
MatchResult = MatchResult.NextMatch

End While

Java

Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
while (regexMatcher.find()) {
// Here you can process the match stored in regexMatcher
}

JavaScript

If your regular expression may yield a zero-length match, or if you’re simply not sure
about that, make sure to work around cross-browser issues dealing with zero-length
matches and exec():

var regex = /\d+/g;
var match = null;
while (match = regex.exec(subject)) {
// Don't let browsers get stuck in an infinite loop
if (match.index == regex.lastIndex) regex.lastIndex++;
// Here you can process the match stored in the match variable

}

If you know for sure your regex can never find a zero-length match, you can iterate over
the regex directly:

var regex = /\d+/g;

var match = null;

while (match = regex.exec(subject)) {
// Here you can process the match stored in the match variable

}

XRegExp

If you're using the XRegExp JavaScript library, you can use the dedicated XReg
Exp.forEach() method to iterate over matches:

XRegExp.forEach(subject, /\d+/, function(match) {
// Here you can process the match stored in the match variable

B;

PHP

preg match all('/\d+/', $subject, $result, PREG_PATTERN ORDER);
for ($i = 0; $i < count($result[o]); $i++) {

Matched text = $result[o0][$i];
}

170 | Chapter3: Programming with Regular Expressions

Perl

while ($subject =~ m/\d+/g) {
matched text = $&
}

Python

If you process only a small number of strings with the same regular expression, you can
use the global function:

for matchobj in re.finditer(r"\d+", subject):
Here you can process the match stored in the matchobj variable

To use the same regex repeatedly, use a compiled object:
reobj = re.compile(r"\d+")
for matchobj in reobj.finditer(subject):
Here you can process the match stored in the matchobj variable

Ruby

subject.scan(/\d+/) {|match|
Here you can process the match stored in the match variable
}

Discussion

{NET

Recipe 3.7 explains how to use the Match() member function of the Regex class to
retrieve the first regular expression match in the string. To iterate over all matches in
the string, we again call the Match() function to retrieve the details of the first match.
The Match() function returns an instance of the Match class, which we store in the
variable matchResult. If the Success property of the matchResult object holds true, we
can begin our loop.

At the start of the loop, you can use the properties of the Match class to process the
details of the first match. Recipe 3.7 explains the Value property, Recipe 3.8 explains
the Index and Length properties, and Recipe 3.9 explains the Groups collection.

When you’re done with the first match, call the NextMatch() member function on the
matchResult variable. Match.NextMatch() returns an instance of the Match class, just like
Regex.Match() does. The newly returned instance holds the details of the second match.

Assigning the result from matchResult.NextMatch() to the same matchResult variable
makes it easy to iterate over all matches. We have to check matchResult.Success again
to see whether NextMatch() did in fact find another match. When NextMatch() fails, it
still returns a Match object, but its Success property will be set to false. By using a single

3.1 Iterate over All Matches | 171

matchResult variable, we can combine the initial test for success and the test after the
call to NextMatch() into a single while statement.

Calling NextMatch() does not invalidate the Match object you called it on. If you want,
you could keep the full Match object for each regular expression match.

The NextMatch() method does not accept any parameters. It uses the same regular ex-
pression and subject string as you passed to the Regex.Match() method. The Match object
keeps references to your regular expression and subject string.

You can use the static Regex.Match() call, even when your subject string contains a very
large number of regex matches. Regex.Match() will compile your regular expression
once, and the returned Match object will hold a reference to the compiled regular ex-
pression. Match.MatchAgain() uses the previously compiled regular expression
referenced by the Match object, even when you used the static Regex.Match() call. You
need to instantiate the Regex class only if you want to call Regex.Match() repeatedly
(i.e., use the same regex on many strings).

Java

[terating over all the matches in a string is very easy in Java. Simply call the find()
method introduced in Recipe 3.7 in a while loop. Each call to find() updates the
Matcher object with the details about the match and the starting position for the next
match attempt.

JavaScript

Before you begin, make sure to specify the /g flag if you want to use your regex in a
loop. This flag is explained in Recipe 3.4. while (regexp.exec()) finds all numbers
in the subject string when regexp = /\d+/g. If regexp = /\d+/, then while
(regexp.exec()) finds the first number in the string again and again, until your script
crashes or is forcibly terminated by the browser.

Note thatwhile (/\d+/g.exec()) (loopingover aliteral regex with /g) also will get stuck
in the same infinite loop, at least with certain JavaScript implementations, because the
regular expression is recompiled during each iteration of the while loop. When the
regex is recompiled, the starting position for the match attempt is reset to the start of
the string. Assign the regular expression to a variable outside the loop, to make sure it
is compiled only once.

Recipes 3.8 and 3.9 explain the object returned by regexp.exec(). This object is the
same, regardless of whether you use exec() in a loop. You can do whatever you want
with this object.

The only effect of the /g is that it updates the lastIndex property of the regexp object
on which you’re calling exec(). This works even when you’re using a literal regular
expression, as shown in the second JavaScript solution for this recipe. Next time you

172 | Chapter3: Programming with Regular Expressions

call exec(), the match attempt will begin at lastIndex. If you assign a new value to
lastIndex, the match attempt will begin at the position you specified.

There is, unfortunately, one major problem with lastIndex. If you read the
ECMA-262v3 standard for JavaScript literally, then exec() should set lastIndex to
the first character after the match. This means that if the match is zero characters long,
the next match attempt will begin at the position of the match just found, resulting in
an infinite loop.

All modern browsers implement the standard as written, which means regexp.exec()
may get stuck in an infinite loop. This outcome is not unlikely. For example, you can
use re = /*.*$/gm; while (re.exec()) to iterate over all lines in a multiline string. If
the string has a blank line, your script will get stuck on it.

The workaround is to increment lastIndex in your own code if the exec() function
hasn’t already done this. The first JavaScript solution to this recipe shows you how. If
you’re unsure, simply paste in this one line of code and be done with it.

Older versions of Internet Explorer avoided this problem by incrementing
lastIndex by one if the match is zero-length. Internet Explorer 9 only does this when
running in quirks mode. This is why Recipe 3.7 claims that you cannot use lastIndex
to determine the end of the match, as you’ll get incorrect values in Internet Explorer’s
quirks mode.

All other regular expression engines discussed in this book deal with this by automat-
ically starting the next match attempt one character further in the string, if the previous
match was zero-length.

This problem does not exist with string.replace() (Recipe 3.14) or when finding all
matches with string.match() (Recipe 3.10). For these methods, which use lastIndex
internally, the ECMA-262v3 standard does state that lastIndex must be incremented
for each zero-length match.

XRegExp

If you’re using the XRegExp JavaScript library, the dedicated XRegExp. forEach() meth-
od makes your life much easier. Pass your subject string, your regular expression, and
a callback function to this method. Your callback function will be called for each match
of the regular expression in the subject string. The callback will receive the match array,
the index of the match (counting from zero), the subject string, and the regex being
used to search the string as parameters. If you pass a fourth parameter to
XRegExp.forEach(), then this will be used as the context that is used as the value for
this in the callback and will also be returned by XRegExp.forEach() after it finishes
finding matches.

XRegExp.forEach() ignores the global and lastIndex properties of the RegExp object you
pass to it. It always iterates over all matches. Use XRegExp.forEach() to neatly sidestep
any issues with zero-length matches.

3.1 Iterate over All Matches | 173

XRegExp also provides its own XRegExp.exec() method. This method ignores the last
Index property. Instead, it takes an optional third parameter that lets you specify the
position at which the match attempt should begin. To find the next match, specify the
position where the previous match ended. If the previous match was zero-length, spec-
ify the position where the match ended plus one.

PHP

The preg_match() function takes an optional fifth parameter to indicate the position in
the string at which the match attempt should start. You could adapt Recipe 3.8 to
pass $matchstart + $matchlength as the fifth parameter upon the second call to
preg_match() to find the second match in the string, and repeat that for the third and
following matches until preg_match() returns 0. Recipe 3.18 uses this method.

In addition to requiring extra code to calculate the starting offset for each match at-
tempt, repeatedly calling preg_match() is inefficient, because there’s no way to store a
compiled regular expression in a variable. preg_match() has to look up the compiled
regular expression in its cache each time you call it.

An easier and more efficient solution is to call preg_match_all(), as explained in the
previous recipe, and iterate over the array with the match results.

Perl

Recipe 3.4 explains that you need to add the /g modifier to enable your regex to find
more than one match in the subject string. If you use a global regex in a scalar context,
it will try to find the next match, continuing at the end of the previous match. In this
recipe, the while statement provides the scalar context. All the special variables, such
as $& (explained in Recipe 3.7), are available inside the while loop.

Python

The finditer() function in re returns an iterator that you can use to find all the matches
of the regular expression. Pass your regular expression as the first parameter and the
subject string as the second parameter. You can pass the regular expression options in
the optional third parameter.

The re.finditer() function calls re.compile(), and then calls the finditer() method
on the compiled regular expression object. This method has only one required
parameter: the subject string.

The finditer() method takes two optional parameters that the global re.finditer()
function does not support. After the subject string, you can pass the character position
in the string at which finditer() should begin its search. If you omit this parameter,
the iterator will process the whole subject string. If you specify a starting position, you
can also specify an ending position. If you don’t specify an ending position, the search
runs until the end of the string.

174 | Chapter3: Programming with Regular Expressions

Ruby

The scan() method of the String class takes a regular expression as its only parameter
and iterates over all the regular expression matches in the string. When it is called with
a block, you can process each match as it is found.

If your regular expression does not contain any capturing groups, specify one iterator
variable in the block. This variable will receive a string with the text matched by the
regular expression.

If your regex does contain one or more capturing groups, list one variable for each
group. The first variable will receive a string with the text matched by the first capturing
group, the second variable receives the second capturing group, and so on. No variable
will be filled with the overall regex match. If you want the overall match to be included,
enclose your entire regular expression with an extra capturing group.

subject.scan(/(a)(b)(c)/) {la, b, c|
a, b, and c hold the text matched by the three capturing groups
}

If you list fewer variables than there are capturing groups in your regex, you will be
able to access only those capturing groups for which you provided variables. If you list
more variables than there are capturing groups, the extra variables will be set to nil.

If you list only one iterator variable and your regex has one or more capturing groups,
the variable will be filled with an array of strings. The array will have one string for
each capturing group. If there is only one capturing group, the array will have a single
element:
subject.scan(/(a)(b)(c)/) {]abc|
abc[0], abc[1], and abc[2] hold the text
matched by the three capturing groups

}
See Also

Recipe 3.12 expands on this recipe by only retaining those matches that meet certain
criteria.

Recipe 3.7 shows code to get only the first regex match.
Recipe 3.8 shows code to determine the position and length of the match.
Recipe 3.10 shows code to get a list of all the matches a regex can find in a string.

Recipe 3.22 shows how you can build a simple parser by iterating over all the matches
of a regular expression.

3.1 Iterate over All Matches | 175

3.12 Validate Matches in Procedural Code

Problem

Recipe 3.10 shows how you can retrieve a list of all matches a regular expression can
find in a string when it is applied repeatedly to the remainder of the string after each
match. Now you want to get a list of matches that meet certain extra criteria that you
cannot (easily) express in a regular expression. For example, when retrieving a list of
lucky numbers, you only want to retain those that are an integer multiple of 13.

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

StringCollection resultlist = new StringCollection();
Match matchResult = Regex.Match(subjectString, @"\d+");
while (matchResult.Success) {
if (int.Parse(matchResult.Value) % 13 == 0) {
resultList.Add(matchResult.Value);
}

matchResult = matchResult.NextMatch();
}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

StringCollection resultlist = new StringCollection();
Regex regexObj = new Regex(@"\d+");
matchResult = regexObj.Match(subjectString);
while (matchResult.Success) {
if (int.Parse(matchResult.Value) % 13 == 0) {
resultlList.Add(matchResult.Value);
}

matchResult = matchResult.NextMatch();
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultlList = New StringCollection
Dim MatchResult = Regex.Match(SubjectString, "\d+")
While MatchResult.Success
If Integer.Parse(MatchResult.Value) Mod 13 = 0 Then
ResultlList.Add(MatchResult.Value)

176 | Chapter3: Programming with Regular Expressions

End If
MatchResult = MatchResult.NextMatch
End While

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim ResultlList = New StringCollection
Dim RegexObj As New Regex("\d+")
Dim MatchResult = RegexObj.Match(SubjectString)
While MatchResult.Success
If Integer.Parse(MatchResult.Value) Mod 13 = 0 Then
ResultlList.Add(MatchResult.Value)
End If
MatchResult = MatchResult.NextMatch
End While

Java

List<String> resultList = new ArraylList<String>();
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
while (regexMatcher.find()) {
if (Integer.parselnt(regexMatcher.group()) % 13 == 0) {
resultList.add(regexMatcher.group());
}

}

JavaScript

var list = [];
var regex = /\d+/g;
var match = null;
while (match = regex.exec(subject)) {
// Don't let browsers get stuck in an infinite loop
if (match.index == regex.lastIndex) regex.lastIndex++;
// Here you can process the match stored in the match variable
if (match[o] % 13 == 0) {
list.push(match[0]);
}

}

XRegExp

var list = [];
XRegExp.forEach(subject, /\d+/, function(match) {
if (match[o] % 13 == 0) {
list.push(match[0]);
}

};

3.12 Validate Matches in Procedural Code | 177

PHP

preg match all('/\d+/', $subject, $matchdata, PREG PATTERN ORDER);
for ($i = 0; $i < count($matchdata[o0]); $i++) {
if ($matchdata[o][$i] % 13 == 0) {
$1list[] = $matchdata[0][$i];
}

Perl
while ($subject =~ m/\d+/g) {
if ($8 % 13 == 0) {
push(@list, $&);

}

Python

If you process only a small number of strings with the same regular expression, you can
use the global function:
list = []
for matchobj in re.finditer(r"\d+", subject):
if int(matchobj.group()) % 13 == 0:
list.append(matchobj.group())

To use the same regex repeatedly, use a compiled object:
list = []
reobj = re.compile(r"\d+")
for matchobj in reobj.finditer(subject):
if int(matchobj.group()) % 13 == 0:
list.append(matchobj.group())

Ruby

list = []
subject.scan(/\d+/) {|match|

list << match if (Integer(match) % 13 == 0)
}

Discussion

Regular expressions deal with text. Though the regular expression <\d+» matches what
we call a number, to the regular expression engine it’s just a string of one or more digits.

If you want to find specific numbers, such as those divisible by 13, it is much easier to
write a general regex that matches all numbers, and then use a bit of procedural code
to skip the regex matches you’re not interested in.

178 | Chapter3: Programming with Regular Expressions

The solutions for this recipe all are based on the solutions for the previous recipe, which
shows how to iterate over all matches. Inside the loop, we convert the regular expression
match into a number.

Some languages do this automatically; other languages require an explicit function call
to convert the string into an integer. We then check whether the integer is divisible by
13. If it is, the regex match is added to the list. If it is not, the regex match is skipped.

See Also

Recipe 3.12 was used as a basis for this recipe. It explains how iterating over regex
matches works.

Recipe 3.7 shows code to get only the first regex match.
Recipe 3.8 shows code to determine the position and length of the match.

Recipe 3.10 shows code to get a list of all the matches a regex can find in a string.

3.13 Find a Match Within Another Match

Problem

You want to find all the matches of a particular regular expression, but only within
certain sections of the subject string. Another regular expression matches each of the
sections in the string.

Suppose you have an HTML file in which various passages are marked as bold with
 tags. You want to find all numbers marked as bold. If some bold text contains
multiple numbers, you want to match all of them separately. For example, when pro-
cessing the string 1 2 3 4 5 6 7, you want to find four matches: 2, 5,
6, and 7.

Solution

€

StringCollection resultlist = new StringCollection();
Regex outerRegex = new Regex("(.*?)", RegexOptions.Singleline);
Regex innerRegex = new Regex(@"\d+");
// Find the first section
Match outerMatch = outerRegex.Match(subjectString);
while (outerMatch.Success) {
// Get the matches within the section
Match innerMatch = innerRegex.Match(outerMatch.Groups[1].Value);
while (innerMatch.Success) {
resultlist.Add(innerMatch.Value);
innerMatch = innerMatch.NextMatch();

3.13 Find a Match Within Another Match | 179

// Find the next section
outerMatch = outerMatch.NextMatch();

VB.NET

Dim ResultlList = New StringCollection
Dim OuterRegex As New Regex("(.*?)", RegexOptions.Singleline)
Dim InnerRegex As New Regex("\d+")
'Find the first section
Dim OuterMatch = OuterRegex.Match(SubjectString)
While OuterMatch.Success
'Get the matches within the section
Dim InnerMatch = InnerRegex.Match(OuterMatch.Groups(1).Value)
While InnerMatch.Success
ResultlList.Add(InnerMatch.Value)
InnerMatch = InnerMatch.NextMatch
End While
OuterMatch = OuterMatch.NextMatch
End While

Java
[terating using two matchers is easy, and works with Java 4 and later:

List<String> resultList = new ArraylList<String>();
Pattern outerRegex = Pattern.compile("(.*?)", Pattern.DOTALL);
Pattern innerRegex = Pattern.compile("\\d+");
Matcher outerMatcher = outerRegex.matcher(subjectString);
while (outerMatcher.find()) {
Matcher innerMatcher = innerRegex.matcher(outerMatcher.group(1));
while (innerMatcher.find()) {
resultlist.add(innerMatcher.group());
}

}

The following code is more efficient (because innerMatcher is created only once), but
requires Java 5 or later:

List<String> resultList = new ArraylList<String>();

Pattern outerRegex = Pattern.compile("(.*?)", Pattern.DOTALL);

Pattern innerRegex = Pattern.compile("\\d+");

Matcher outerMatcher = outerRegex.matcher(subjectString);

Matcher innerMatcher = innerRegex.matcher(subjectString);

while (outerMatcher.find()) {
innerMatcher.region(outerMatcher.start(1), outerMatcher.end(1));
while (innerMatcher.find()) {

resultList.add(innerMatcher.group());

180 | Chapter3: Programming with Regular Expressions

}

JavaScript

var result = [];
var outerRegex = /([\s\S]*?)<\/b>/g;
var innerRegex = /\d+/g;
var outerMatch;
var innerMatches;
while (outerMatch = outerRegex.exec(subject)) {
if (outerMatch.index == outerRegex.lastIndex)
outerRegex.lastIndex++;
innerMatches = outerMatch[1].match(innerRegex);
if (innerMatches) {
result = result.concat(innerMatches);
}

}

XRegExp

XRegExp has a matchChain() method that is specifically designed to get the matches of
one regex within the matches of another regex:

var result = XRegExp.matchChain(subject, [
{regex: XRegExp("(.*?)", "s"), backref: 1},
/\d+/

D;

Alternatively, you can use XRegExp.forEach() for a solution similar to the standard
JavaScript solution:

var result = []
var outerRegex = XRegExp("(.*?)", "s");
var innerRegex = /\d+/g;
XRegExp.forEach(subject, outerRegex, function(outerMatch) {
var innerMatches = outerMatch[1].match(innerRegex);
if (innerMatches) {
result = result.concat(innerMatches);
}

e

B;

PHP

$1list = array();
preg match all('%(.*?)%s"', $subject, $outermatches,
PREG_PATTERN_ORDER);
for ($i = 0; $i < count($outermatches[0]); $i++) {
if (preg_match all('/\d+/', $outermatches[1][$i], $innermatches,
PREG_PATTERN_ORDER)) {

3.13 Find a Match Within Another Match | 181

Download from Wow! eBook <www.wowebook.com>

$list = array merge($list, $innermatches[0]);

Perl

while ($subject =~ ml(.*?)!gs) {
push(@list, ($1 =~ m/\d+/g));

This only works if the inner regular expression (<\d+, in this example) doesn’t have
any capturing groups, so use noncapturing groups instead. See Recipe 2.9 for details.

Python
list = []
innerre = re.compile(r"\d+")
for outermatch in re.finditer("(?s)(.*?)", subject):
list.extend(innerre.findall(outermatch.group(1)))

Ruby
list = []
subject.scan(/(.*?)<\/b>/m) {|outergroups|
list += outergroups[1].scan(/\d+/)
}

Discussion

Regular expressions are well suited for tokenizing input, but they are not well suited
for parsing input. Tokenizing means to identify different parts of a string, such as num-
bers, words, symbols, tags, comments, etc. It involves scanning the text from left to
right, trying different alternatives and quantities of characters to be matched. Regular
expressions handle this very well.

Parsing means to process the relationship between those tokens. For example, in a
programming language, combinations of such tokens form statements, functions,
classes, namespaces, etc. Keeping track of the meaning of the tokens within the larger
context of the input is best left to procedural code. In particular, regular expressions
cannot keep track of nonlinear context, such as nested constructs.!

Trying to find one kind of token within another kind of token is a task that people
commonly try to tackle with regular expressions. A pair of HTML bold tags is easily
matched with the regular expression «b>(.*?).2 A number is even more easily

1. A few modern regex flavors have tried to introduce features for balanced or recursive matching. These
features result in such complex regular expessions, however, that they only end up proving our point that
parsing is best left to procedural code.

182 | Chapter3: Programming with Regular Expressions

matched with the regex (\d+>. But if you try to combine these into a single regex, you’ll
end up with something rather different:
\d+(?=(?:(21).)*)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Though the regular expression just shown is a solution to the problem posed by this
recipe, it is hardly intuitive. Even a regular expression expert will have to carefully
scrutinize the regex to determine what it does, or perhaps resort to a tool to highlight
the matches. And this is the combination of just two simple regexes.

A better solution is to keep the two regular expressions as they are and use procedural
code to combine them. The resulting code, while a bit longer, is much easier to under-
stand and maintain, and creating simple code is the reason for using regular expressions
in the first place. A regex such as «b>(.*?) is easy to understand by anyone with
a modicum of regex experience, and quickly does what would otherwise take many
more lines of code that are harder to maintain.

Though the solutions for this recipe are some of the most complex ones in this chapter,
they’re very straightforward. Two regular expressions are used. The “outer” regular
expression matches the HTML bold tags and the text between them, and the text in
between is captured by the first capturing group. This regular expression is imple-
mented with the same code shown in Recipe 3.11. The only difference is that the place-
holder comment saying where to use the match has been replaced with code that lets
the “inner” regular expression do its job.

The second regular expression matches a digit. This regex is implemented with the
same code as shown in Recipe 3.10. The only difference is that instead of processing
the subject string entirely, the second regex is applied only to the part of the subject
string matched by the first capturing group of the outer regular expression.

There are two ways to restrict the inner regular expressions to the text matched by (a
capturing group of) the outer regular expressions. Some languages provide a function
that allows the regular expression to be applied to part of a string. That can save an
extra string copy if the match function doesn’t automatically fill a structure with the
text matched by the capturing groups. We can always simply retrieve the substring
matched by the capturing group and apply the inner regex to that.

Either way, using two regular expressions together in a loop will be faster than using
the one regular expression with its nested lookahead groups. The latter requires the
regex engine to do a whole lot of backtracking. On large files, using just one regex will
be much slower, as it needs to determine the section boundaries (HTML bold tags) for
each number in the subject string, including numbers that are not between tags.

2. To allow the tag to span multiple lines, turn on “dot matches line breaks” mode. For JavaScript, use
«b>([\s\S]*?)>.

3.13 Find a Match Within Another Match | 183

The solution that uses two regular expressions doesn’t even begin to look for numbers
until it has found the section boundaries, which it does in linear time.

The XRegExp library for JavaScript has a special matchChain() method that is specifi-
cally designed to get the matches of one regex within the matches of another regex.
This method takes an array of regexes as its second parameter. You can add as many
regexes to the array as you want. You can find the matches of a regex within the matches
of another regex, within the matches of other regexes, as many levels deep as you want.
This recipe only uses two regexes, so our array only needs two elements. If you want
the next regex to search within the text matched by a particular capturing group of a
regex, add that regex as an object to the array. The object should have a regex property
with the regular expression, and a backref property with the name or number of the
capturing group. If you specify the last regex in the array as an object with a regex and
a backref property, then the returned array will contain the matches of that capturing
group in the final regex.

See Also

This recipe uses techniques introduced by three earlier recipes. Recipe 3.8 shows code
to determine the position and length of the match. Recipe 3.10 shows code to get a list
of all the matches a regex can find in a string. Recipe 3.11 shows code to iterate over
all the matches a regex can find in a string.

3.14 Replace All Matches

Problem

You want to replace all matches of the regular expression <before» with the replacement
text «after».

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString, "before", "after");

If the regex is provided by the end user, you should use the static call with full exception
handling:

string resultString = null;
try {

resultString = Regex.Replace(subjectString, "before", "after");
} catch (ArgumentNullException ex) {

// Cannot pass null as the regular expression, subject string,

184 | Chapter3: Programming with Regular Expressions

// or replacement text
} catch (ArgumentException ex) {

// Syntax error in the regular expression
}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex("before");
string resultString = regexObj.Replace(subjectString, "after");

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

string resultString = null;

try {
Regex regexObj = new Regex("before");

try {

resultString = regexObj.Replace(subjectString, "after");
} catch (ArgumentNullException ex) {

// Cannot pass null as the subject string or replacement text
}

} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultString = Regex.Replace(SubjectString, "before", "after")

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim ResultString As String = Nothing
Try
ResultString = Regex.Replace(SubjectString, "before", "after")
Catch ex As ArgumentNullException
"Cannot pass null as the regular expression, subject string,
'or replacement text
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("before")
Dim ResultString = RegexObj.Replace(SubjectString, "after")

3.14 Replace All Matches | 185

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim ResultString As String = Nothing
Try
Dim RegexObj As New Regex("before")
Try
ResultString = RegexObj.Replace(SubjectString, "after")
Catch ex As ArgumentNullException
"Cannot pass null as the subject string or replacement text
End Try
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Java

You can use the static call when you process only one string with the same regular
expression:

String resultString = subjectString.replaceAll("before", "after");

If the regex or replacement text is provided by the end user, you should use the static
call with full exception handling:

try {
String resultString = subjectString.replaceAll("before", "after");
} catch (PatternSyntaxException ex) {
// Syntax error in the regular expression
} catch (IllegalArgumentException ex) {
// Syntax error in the replacement text (unescaped $ signs?)
} catch (IndexOutOfBoundsException ex) {
// Non-existent backreference used the replacement text
}

Construct a Matcher object if you want to use the same regular expression with a large
number of strings:

Pattern regex = Pattern.compile("before");
Matcher regexMatcher = regex.matcher(subjectString);
String resultString = regexMatcher.replaceAll("after");

If the regex or replacement text is provided by the end user, you should use the
Matcher object with full exception handling:

String resultString = null;
try {
Pattern regex = Pattern.compile("before");
Matcher regexMatcher = regex.matcher(subjectString);

try {
resultString = regexMatcher.replaceAll("after");

186 | Chapter3: Programming with Regular Expressions

} catch (IllegalArgumentException ex) {

// Syntax error in the replacement text (unescaped $ signs?)
} catch (IndexOutOfBoundsException ex) {

// Non-existent backreference used the replacement text
}

catch (PatternSyntaxException ex
Yy p
// Syntax error in the regular expression

JavaScript
result = subject.replace(/before/g, "after");

PHP
$result = preg replace('/before/', 'after', $subject);

Perl
With the subject string held in the special variable $_, storing the result back into $_:

s/before/after/g;

With the subject string held in the variable $subject, storing the result back into
$subject:

$subject =~ s/before/after/g;

With the subject string held in the variable $subject, storing the result into $result:
($result = $subject) =~ s/before/after/g;

Python
If you have only a few strings to process, you can use the global function:

result = re.sub("before", "after", subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("before")
result = reobj.sub("after", subject)

Ruby
result = subject.gsub(/before/, 'after')

Discussion

{NET

In .NET, you will always use the Regex.Replace() method to search and replace with
a regular expression. The Replace() method has 10 overloads. Half of those take a

3.14 Replace All Matches | 187

string as the replacement text; those are discussed here. The other half take a
MatchEvaluator delegate as the replacement, and those are discussed in Recipe 3.16.

The first parameter expected by Replace() is always the string that holds the original
subject text you want to search and replace through. This parameter should not be
null. Otherwise, Replace() will throw an ArgumentNullException. The return value of
Replace() is always the string with the replacements applied.

If you want to use the regular expression only a few times, you can use a static call. The
second parameter is then the regular expression you want to use. Specify the replace-
ment text as the third parameter. You can pass regex options as an optional fourth
parameter. If your regular expression has a syntax error, an ArgumentException will be
thrown.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first, and then calling Replace() on
that object. Pass the subject string as the first parameter and the replacement text as
the second parameter. Those are the only required parameters.

When calling Replace() on an instance of the Regex class, you can pass additional pa-
rameters to limit the search-and-replace. If you omit these parameters, all matches of
the regular expression in the subject string will be replaced. The static overloads of
Replace() do not allow these additional parameters; they always replace all matches.

As the optional third parameter, after the subject and replacement, you can pass the
number of replacements to be made. If you pass a number greater than one, that is the
maximum number of replacements that will be made. For example, Replace(subject,
replacement, 3) replaces only the first three regular expression matches, and further
matches are ignored. If there are fewer than three possible matches in the string, all
matches will be replaced. You will not receive any indication that fewer replacements
were made than you requested. If you pass zero as the third parameter, no replacements
will be made at all and the subject string will be returned unchanged. If you pass -1, all
regex matches are replaced. Specifying a number less than -1 will cause Replace() to
throw an ArgumentOutOfRangeException.

If you specify the third parameter with the number of replacements to be made, then
you can specify an optional fourth parameter to indicate the character index at which
the regular expression should begin to search. Essentially, the number you pass as the
fourth parameter is the number of characters at the start of your subject string that the
regular expression should ignore. This can be useful when you’ve already processed
the string up to a point, and you want to search and replace only through the remainder
of the string. If you specify the number, it must be between zero and the length of the
subject string. Otherwise, Replace() throws an ArgumentOutOfRangeException. Unlike
Match(), Replace() does not allow you to provide a parameter that specifies the length
of the substring the regular expression is allowed to search through.

188 | Chapter3: Programming with Regular Expressions

Java

If you only want to search and replace through one string with the same regex, you
can call either the replaceFirst() or replaceAll() method directly on your string.
Both methods take two parameters: a string with your regular expression and a
string with your replacement text. These are convenience functions that
call Pattern.compile("before").matcher(subjectString).replaceFirst("after") and
Pattern.compile("before").matcher(subjectString).replaceAll("after").

If you want to use the same regex on multiple strings, you should create the Matcher
object as explained in Recipe 3.3. Then, call replaceFirst() or replaceAll() on your
matcher, passing the replacement text as the only parameter.

There are three different exception classes you have to contend with if the regex
and replacement text are provided by the end user. The exception class
PatternSyntaxException is thrown by Pattern.compile(), String.replaceFirst(), and
String.replaceAll() if the regular expression has a syntax error.
IllegalArgumentException is thrown by replaceFirst() and replaceAll() if there’s a
syntax error in the replacement text. If the replacement text is syntactically valid but
references a capturing group that does not exist, then IndexOutOfBoundsException is
thrown instead.

JavaScript

To search and replace through a string using a regular expression, call the replace()
function on the string. Pass your regular expression as the first parameter and the string
with your replacement text as the second parameter. The replace() function returns a
new string with the replacements applied.

If you want to replace all regex matches in the string, set the /g flag when creating your
regular expression object. Recipe 3.4 explains how this works. If you don’t use the /g
flag, only the first match will be replaced.

PHP

You can easily search and replace through a string with preg_replace(). Pass your
regular expression as the first parameter, the replacement text as the second parameter,
and the subject string as the third parameter. The return value is a string with the
replacements applied.

The optional fourth parameter allows you to limit the number of replacements made.
If you omit the parameter or specify -1, all regex matches are replaced. If you specify
0, no replacements are made. If you specify a positive number, preg replace() will
replace up to as many regex matches as you specified. If there are fewer matches, all of
them are replaced without error.

3.14 Replace All Matches | 189

If you want to know how many replacements were made, you can add a fifth parameter
to the call. This parameter will receive an integer with the number of replacements that
were actually made.

A special feature of preg_replace() is that you can pass arrays instead of strings for the
first three parameters. If you pass an array of strings instead of a single string as the
third parameter, preg_replace() will return an array with the search-and-replace done
on all the strings.

If you pass an array of regular expression strings as the first parameter,
preg replace() will use the regular expressions one by one to search and replace
through the subject string. If you pass an array of subject strings, all the regular ex-
pressions are used on all the subject strings. When searching for an array of regular
expressions, you can specify either a single string as the replacement (to be used by all
the regexes) or an array of replacements. When using two arrays, preg_replace() walks
through both the regex and replacement arrays, using a different replacement text for
each regex. preg replace() walks through the array as it is stored in memory, which is
not necessarily the numerical order of the indexes in the array. If you didn’t build the
array in numerical order, call ksort() on the arrays with the regular expressions and
replacement texts before passing them to preg_replace().

This example builds the $replace array in reverse order:

$regex[0] = '/a/';
$regex[1] = '/b/";
$regex[2] = "/c/';

$replace[2] = '3';
$replace[1] = '2';
$replace[0] = '1';

echo preg replace($regex, $replace, "abc");
ksort($replace);
echo preg replace($regex, $replace, "abc");

The first call to preg_replace() displays 321, which is not what you might expect. After
using ksort(), the replacement returns 123 as we intended. ksort() modifies the vari-
able you pass to it. Don’t pass its return value (true or false) to preg_replace().

Perl

In Perl, s/// is in fact a substitution operator. If you use s/// by itself, it will search and
replace through the $_ variable, storing the result back into $_.

If you want to use the substitution operator on another variable, use the =~ binding
operator to associate the substitution operator with your variable. Binding the substi-
tution operator to a string immediately executes the search-and-replace. The result is
stored back into the variable that holds the subject string.

190 | Chapter3: Programming with Regular Expressions

The s/// operator always modifies the variable you bind it to. If you want to store the
result of the search-and-replace in a new variable without modifying the original, first
assign the original string to the result variable, and then bind the substitution operator
to that variable. The Perl solution to this recipe shows how you can take those two
steps in one line of code.

Use the /g modifier explained in Recipe 3.4 to replace all regex matches. Without it,
Perl replaces only the first match.

Python

The sub() function in the re module performs a search-and-replace using a regular
expression. Pass your regular expression as the first parameter, your replacement text
as the second parameter, and the subject string as the third parameter. The global
sub() function does not accept a parameter with regular expression options.

The re.sub() function calls re.compile(), and then calls the sub() method on the com-
piled regular expression object. This method has two required parameters: the replace-
ment text and the subject string.

Both forms of sub() return a string with all the regular expressions replaced. Both take
one optional parameter that you can use to limit the number of replacements to be
made. If you omit it or set it to zero, all regex matches are replaced. If you pass a positive
number, that is the maximum number of matches to be replaced. If fewer matches can
be found than the count you specified, all matches are replaced without error.

Ruby

The gsub() method of the String class does a search-and-replace using a regular ex-
pression. Pass the regular expression as the first parameter and a string with the re-
placement text as the second parameter. The return value is a new string with the
replacements applied. If no regex matches can be found, then gsub() returns the original
string.

gsub() does not modify the string on which you call the method. If you want the original
string to be modified, call gsub! () instead. If no regex matches can be found, gsub!()
returns nil. Otherwise, it returns the string you called it on, with the replacements
applied.

See Also

“Search and Replace with Regular Expressions” in Chapter 1 describes the various
replacement text flavors.

Recipe 3.15 shows code to make a search-and-replace reinsert parts of the text matched
by the regular expression.

3.14 Replace All Matches | 191

Recipe 3.16 shows code to search and replace with replacements generated in code for
each regex match instead of using a fixed replacement text for all matches.

3.15 Replace Matches Reusing Parts of the Match

Problem

You want to run a search-and-replace that reinserts parts of the regex match back into
the replacement. The parts you want to reinsert have been isolated in your regular
expression using capturing groups, as described in Recipe 2.9.

For example, you want to match pairs of words delimited by an equals sign, and swap
those words in the replacement.

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString, @"(\w+)=(\w+)",
"$2=$1");

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"(\w+)=(\w+)");
string resultString = regexObj.Replace(subjectString, "$2=$1");

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultString = Regex.Replace(SubjectString, "(\w+)=(\w+)", "$2=$1")
Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("(\w+)=(\w+)")
Dim ResultString = RegexObj.Replace(SubjectString, "$2=$1")

Java

You can call String.replaceAll() when you process only one string with the same
regular expression:

String resultString = subjectString.replaceAll("(\\w+)=(\\w+)", "$2=$1");

192 | Chapter3: Programming with Regular Expressions

Construct a Matcher object if you want to use the same regular expression with a large
number of strings:

Pattern regex = Pattern.compile("(\\w+)=(\\w+)");
Matcher regexMatcher = regex.matcher(subjectString);
String resultString = regexMatcher.replaceAll("$2=$1");

JavaScript
result = subject.replace(/(\w+)=(\w+)/g, "$2=$1");

PHP
$result = preg replace('/(\w+)=(\w+)/', '$2=$1', $subject);

Perl
$subject =~ s/(\w+)=(\w+)/$2=$1/g;

Python

If you have only a few strings to process, you can use the global function:
result = re.sub(r"(\w+)=(\w+)", r"\2=\1", subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r" (\w+)=(\w+)")
result = reobj.sub(r"\2=\1", subject)

Ruby
result = subject.gsub(/(\w+)=(\w+)/, '\2=\1")

Discussion

The regular expression «(\w+)=(\w+)> matches the pair of words and captures each word
into its own capturing group. The word before the equals sign is captured by the first
group, and the word after the sign by the second group.

For the replacement, you need to specify that you want to use the text matched by the
second capturing group, followed by an equals sign, followed by the text matched by
the first capturing group. You can do this with special placeholders in the replacement
text. The replacement text syntax varies widely between different programming lan-
guages. “Search and Replace with Regular Expressions” in Chapter 1 describes the
replacement text flavors, and Recipe 2.21 explains how to reference capturing groups
in the replacement text.

3.15 Replace Matches Reusing Parts of the Match | 193

{NET

In .NET, you can use the same Regex.Replace() method described in the previous
recipe, using a string as the replacement. The syntax for adding backreferences to the
replacement text follows the .NET replacement text flavor Recipe 2.21.

Java

In Java, you can use the same replaceFirst() and replaceAll() methods described in
the previous recipe. The syntax for adding backreferences to the replacement text fol-
lows the Java replacement text flavor described in this book.

JavaScript

In JavaScript, you can use the same string.replace() method described in the previous
recipe. The syntax for adding backreferences to the replacement text follows the
JavaScript replacement text flavor described in this book.

PHP

In PHP, you can use the same preg_replace() function described in the previous recipe.
The syntax for adding backreferences to the replacement text follows the PHP replace-
ment text flavor described in this book.

Perl

In Perl, the replace part in s/regex/replace/ is simply interpreted as a double-quoted
string. You can use the special variables $8&, $1, $2, etc., explained in Recipe 3.7 and
Recipe 3.9 in the replacement string. The variables are set right after the regex match
is found, before it is replaced. You can also use these variables in all other Perl code.
Their values persist until you tell Perl to find another regex match.

All the other programming languages in this book provide a function call that takes the
replacement text as a string. The function call parses the string to process
backreferences such as $1 or \1. But outside the replacement text string, $1 has no
meaning with these languages.

Python

In Python, you can use the same sub() function described in the previous recipe. The
syntax for adding backreferences to the replacement text follows the Python replace-
ment text flavor described in this book.

Ruby

In Ruby, you can use the same String.gsub() method described in the previous recipe.
The syntax for adding backreferences to the replacement text follows the Ruby re-
placement text flavor described in this book.

194 | Chapter3: Programming with Regular Expressions

You cannot interpolate variables such as $1 in the replacement text. That’s because
Ruby does variable interpolation before the gsub() call is executed. Before the call,
gsub() hasn’t found any matches yet, so backreferences can’t be substituted. If you try
to interpolate $1, you’ll get the text matched by the first capturing group in the last
regex match before the call to gsub().

Instead, use replacement text tokens such as «\1». The gsub() function substitutes
those tokens in the replacement text for each regex match. We recommend that you
use single-quoted strings for the replacement text. In double-quoted strings, the back-
slash is used as an escape, and escaped digits are octal escapes. '\1' and "\\1" use the
text matched by the first capturing group as the replacement, whereas "\1" substitutes
the single literal character oxo1.

Named Capture

If you use named capturing groups in your regular expression, you can reference the
groups by their names in your replacement string.

€

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString,
@" (?<left>\w+)=(?<right>\w+)", "${right}=${left}");
Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"(?<left>\w+)=(?<right>\w+)");
string resultString = regexObj.Replace(subjectString, "${right}=${left}");

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultString = Regex.Replace(SubjectString,
"(2<lefto\wt)=(2<right>\w+)", "${right}=${left}")
Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("(?<left>\w+)=(?<right>\w+)")
Dim ResultString = RegexObj.Replace(SubjectString, "${right}=${left}")

Java7

Java 7 adds support for named capture to the regular expression syntax and for named
backreferences to the replacement text syntax.

3.15 Replace Matches Reusing Parts of the Match | 195

You can call String.replaceAll() when you process only one string with the same
regular expression:

String resultString = subjectString.replaceAll(
"(2<lefto\\w+)=(2<right>\\w+)", "${right}=${left}");
Construct a Matcher object if you want to use the same regular expression with a large

number of strings:

Pattern regex = Pattern.compile("(?<left>\\w+)=(2<right>\\w+)");
Matcher regexMatcher = regex.matcher(subjectString);
String resultString = regexMatcher.replaceAll("${right}=${left}");

XRegExp
The XRegExp.replace() method extends JavaScript’s replacement text syntax with

named backreferences.

var re = XRegExp("(?<left>\\w+)=(?<right>\\w+)", "g");
var result = XRegExp.replace(subject, re, "${right}=${left}");

PHP
$result = preg replace('/(?P<left>\w+)=(?P<right>\w+)/",
'$2=$1", $subject);

PHP’s preg functions use the PCRE library, which supports named capture. The
preg_match() and preg_match_all() functions add named capturing groups to the array
with match results. Unfortunately, preg_replace() does not provide a way to use named
backreferences in the replacement text. If your regex has named capturing groups,
count both the named and numbered capturing groups from left to right to determine
the backreference number of each group. Use those numbers in the replacement text.

Perl
$subject =~ s/(?<left>\w+)=(?<right>\w+)/$+{right}=$+{1left}/g;
Perl supports named capturing groups starting with version 5.10. The %+ hash stores

the text matched by all named capturing groups in the regular expression last used.
You can use this hash in the replacement text string, as well as anywhere else.

Python
If you have only a few strings to process, you can use the global function:
result = re.sub(r"(?P<left>\w+)=(?P<right>\w+)", r"\g<right>=\g<left>",
subject)
To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"(?P<left>\w+)=(?P<right>\w+)")
result = reobj.sub(r"\g<right>=\g<left>", subject)

196 | Chapter3: Programming with Regular Expressions

Download from Wow! eBook <www.wowebook.com>

Ruby
result = subject.gsub(/(?<left>\w+)=(?<right>\w+)/, '\k<left>=\k<right>')

See Also

“Search and Replace with Regular Expressions” in Chapter 1 describes the replacement
text flavors.

Recipe 2.21 explains how to reference capturing groups in the replacement text.

3.16 Replace Matches with Replacements Generated in Code

Problem

You want to replace all matches of a regular expression with a new string that you build
up in procedural code. You want to be able to replace each match with a different string,
based on the text that was actually matched.

For example, suppose you want to replace all numbers in a string with the number
multiplied by two.

Solution

€

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString, @"\d+",
new MatchEvaluator(ComputeReplacement));

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"\d+");
string resultString = regexObj.Replace(subjectString,
new MatchEvaluator(ComputeReplacement));

Both code snippets call the function ComputeReplacement. You should add this method
to the class in which you’re implementing this solution:

public String ComputeReplacement(Match matchResult) {
int twiceasmuch = int.Parse(matchResult.Value) * 2;
return twiceasmuch.ToString();

3.16 Replace Matches with Replacements Generated in Code | 197

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim MyMatchEvaluator As New MatchEvaluator (AddressOf ComputeReplacement)
Dim ResultString = Regex.Replace(SubjectString, "\d+", MyMatchEvaluator)

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("\d+")
Dim MyMatchEvaluator As New MatchEvaluator(AddressOf ComputeReplacement)
Dim ResultString = RegexObj.Replace(SubjectString, MyMatchEvaluator)

Both code snippets call the function ComputeReplacement. You should add this method
to the class in which you’re implementing this solution:

Public Function ComputeReplacement(ByVal MatchResult As Match) As String
Dim TwiceAsMuch = Int.Parse(MatchResult.Value) * 2;
Return TwiceAsMuch.ToString();

End Function

Java

StringBuffer resultString = new StringBuffer();

Pattern regex = Pattern.compile("\\d+");

Matcher regexMatcher = regex.matcher(subjectString);

while (regexMatcher.find()) {
Integer twiceasmuch = Integer.parseInt(regexMatcher.group()) * 2;
regexMatcher.appendReplacement(resultString, twiceasmuch.toString());

}
regexMatcher.appendTail(resultString);

JavaScript

var result = subject.replace(/\d+/g, function(match) {
return match * 2;

};

PHP

Using a declared callback function:

$result = preg replace callback('/\d+/', 'compute replacement', $subject);

function compute_replacement($groups) {
return $groups[0] * 2;
}

Using an anonymous callback function:

198 | Chapter3: Programming with Regular Expressions

$result = preg replace callback(
"\d+/",
create_function(
"$groups’,
'return $groups[o] * 2;'

)s
$subject

)5

Perl
$subject =~ s/\d+/$& * 2/eg;

Python
If you have only a few strings to process, you can use the global function:

result = re.sub(r"\d+", computereplacement, subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"\d+")
result = reobj.sub(computereplacement, subject)

Both code snippets call the function computereplacement. This function needs to be
declared before you can pass it to sub().

def computereplacement(matchobj):
return str(int(matchobj.group()) * 2)

Ruby

result = subject.gsub(/\d+/) {|match|
Integer(match) * 2
}

Discussion

When using a string as the replacement text, you can do only basic text substitution.
To replace each match with something totally different that varies along with the match
being replaced, you need to create the replacement text in your own code.

G

Recipe 3.14 discusses the various ways in which you can call the Regex.Replace()
method, passing a string as the replacement text. When using a static call, the replace-
ment is the third parameter, after the subject and the regular expression. If you passed
the regular expression to the Regex() constructor, you can call Replace() on that object
with the replacement as the second parameter.

3.16 Replace Matches with Replacements Generated in Code | 199

Instead of passing a string as the second or third parameter, you can pass a
MatchEvaluator delegate. This delegate is a reference to a member function that you
add to the class where you’re doing the search-and-replace. To create the delegate, use
the new keyword to call the MatchEvaluator() constructor. Pass your member function
as the only parameter to MatchEvaluator().

The function you want to use for the delegate should return a string and take one
parameter of class System.Text.RegularExpressions.Match. This is the same Match class
returned by the Regex.Match() member used in nearly all the previous recipes in this
chapter.

When you call Replace() with a MatchEvaluator as the replacement, your function will
be called for each regular expression match that needs to be replaced. Your function
needs to return the replacement text. You can use any of the properties of the
Match object to build your replacement text. The example shown earlier uses
matchResult.Value to retrieve the string with the whole regex match. Often, you’ll use
matchResult.Groups[] to build up your replacement text from the capturing groups in
your regular expression.

If you do not want to replace certain regex matches, your function should return
matchResult.Value. If you return null or an empty string, the regex match is replaced
with nothing (i.e., deleted).

VB.NET

Recipe 3.14 discusses the various ways in which you can call the Regex.Replace()
method, passing a string as the replacement text. When using a static call, the replace-
ment text is the third parameter, after the subject and the regular expression. If you
used the Dim keyword to create a variable with your regular expression, you can call
Replace() on that object with the replacement as the second parameter.

Instead of passing a string as the second or third parameter, you can pass a
MatchEvaluator object. This object holds a reference to a function that you add to the
class where you’re doing the search-and-replace. Use the Dim keyword to create a new
variable of type MatchEvaluator. Pass one parameter with the AddressOf keyword fol-
lowed by the name of your member function. The AddressOf operator returns a refer-
ence to your function, without actually calling the function at that point.

The function you want to use for MatchEvaluator should return a string and should take
one parameter of class System.Text.RegularExpressions.Match. This is the same
Match class returned by the Regex.Match() member used in nearly all the previous recipes
in this chapter. The parameter will be passed by value, so you have to declare it with
ByVal.

When you call Replace() with a MatchEvaluator as the replacement, your function will
be called for each regular expression match that needs to be replaced. Your function
needs to return the replacement text. You can use any of the properties of the Match

200 | Chapter3: Programming with Regular Expressions

object to build your replacement text. The example uses MatchResult.Value to retrieve
the string with the whole regex match. Often, you’ll use MatchResult.Groups() to build
up your replacement text from the capturing groups in your regular expression.

If you do not want to replace certain regex matches, your function should return
MatchResult.Value. If you return Nothing or an empty string, the regex match is replaced
with nothing (i.e., deleted).

Java

The Java solution is very straightforward. We iterate over all the regex matches as
explained in Recipe 3.11. Inside the loop, we call appendReplacement() on our
Matcher object. When find() fails to find any further matches, we call appendTail().
The two methods appendReplacement() and appendTail() make it very easy to use a
different replacement text for each regex match.

appendReplacement() takes two parameters. The first is the StringBuffer where you're
(temporarily) storing the result of the search-and-replace in progress. The second is the
replacement text to be used for the last match found by find(). This replacement text
can include references to capturing groups, such as "$1". If there is a syntax error in
your replacement text, an I11egalArgumentException is thrown. If the replacement text
references a capturing group that does not exist, an IndexOutOfBoundsException is
thrown instead. If you call appendReplacement() without a prior successful call to
find(), it throws an I1legalStateException.

If you call appendReplacement() correctly, it does two things. First, it copies the text
located between the previous and current regex match to the string buffer, without
making any modifications to the text. If the current match is the first one, it copies all
the text before that match. After that, it appends your replacement text, substituting
any backreferences in it with the text matched by the referenced capturing groups.

If you want to delete a particular match, simply replace it with an empty string. If you
want to leave a match in the string unchanged, you can omit the call to appendReplace
ment() for that match. By “previous regex match,” We mean the previous match for
which you called appendReplacement (). If you don’t call appendReplacement () for certain
matches, those become part of the text between the matches that you do replace, which
is copied unchanged into the target string buffer.

When you’re done replacing matches, call appendTail(). That copies the text at the end
of the string after the last regex match for which you called appendReplacement().

JavaScript

In JavaScript, a function is really just another object that can be assigned to a
variable. Instead of passing a literal string or a variable that holds a string to the
string.replace() function, we can pass a function that returns a string. This function
is then called each time a replacement needs to be made.

3.16 Replace Matches with Replacements Generated in Code | 201

You can make your replacement function accept one or more parameters. If you do,
the first parameter will be set to the text matched by the regular expression. If your
regular expression has capturing groups, the second parameter will hold the text
matched by the first capturing group, the third parameter gives you the text of the
second capturing group, and so on. You can set these parameters to use bits of the
regular expression match to compose the replacement.

The replacement function in the JavaScript solution for this recipe simply takes the text
matched by the regular expression, and returns it multiplied by two. JavaScript handles
the string-to-number and number-to-string conversions implicitly.

PHP

The preg_replace callback() function works just like the preg replace() function de-
scribed in Recipe 3.14. It takes a regular expression, replacement, subject string, op-
tional replacement limit, and optional replacement count. The regular expression and
subject string can be single strings or arrays.

The difference is that preg replace callback() expects the second parameter to be a
function rather than the actual replacement text. If you declare the function in your
code, then the name of the function must be passed as a string. Alternatively, you can
pass the result of create_function() to create an anonymous function. Either way, your
replacement function should take one parameter and return a string (or something that
can be coerced into a string).

Each time preg_replace _callback() finds a regex match, it will call your callback func-
tion. The parameter will be filled with an array of strings. Element zero holds the overall
regex match, and elements one and beyond hold the text matched by capturing groups
one and beyond. You can use this array to build up your replacement text using the
text matched by the regular expression or one or more capturing groups.

Perl

The s/// operator supports one extra modifier that is ignored by the m// operator: /e.
The /e, or “execute,” modifier tells the substitution operator to execute the replacement
part as Perl code, instead of interpreting it as the contents of a double-quoted string.
Using this modifier, we can easily retrieve the matched text with the $& variable, and
then multiply it by two. The result of the code is used as the replacement string.

Python

Python’s sub() function allows you to pass the name of a function instead of a string
as the replacement text. This function is then called for each regex match to be replaced.

You need to declare this function before you can reference it. It should take one pa-
rameter to receive a MatchObject instance, which is the same object returned by the

202 | Chapter3: Programming with Regular Expressions

search() function. You can use it to retrieve (part of) the regex match to build your
replacement. See Recipe 3.7 and Recipe 3.9 for details.

Your function should return a string with the replacement text.

Ruby

The previous two recipes called the gsub() method of the String class with two pa-
rameters: the regex and the replacement text. This method also exists in block form.

In block form, gsub() takes your regular expression as its only parameter. It fills one
iterator variable with a string that holds the text matched by the regular expression. If
you supply additional iterator variables, they are set to nil, even if your regular ex-
pression has capturing groups.

Inside the block, place an expression that evaluates to the string that you want to use
as the replacement text. You can use the special regex match variables, such as $~, $8,
and $1, inside the block. Their values change each time the block is evaluated to make
another replacement. See Recipes 3.7, 3.8, and 3.9 for details.

You cannot use replacement text tokens such as «\1». Those remain as literal text.

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex.

Recipe 3.15 shows code to make a search-and-replace reinsert parts of the text matched
by the regular expression.

3.17 Replace All Matches Within the Matches of
Another Regex

Problem

You want to replace all the matches of a particular regular expression, but only within
certain sections of the subject string. Another regular expression matches each of the
sections in the string.

Say you have an HTML file in which various passages are marked as bold with tags.
Between each pair of bold tags, you want to replace all matches of the regular expression
<before> with the replacement text <after>. For example, when processing the string
before first before before before before, you want to end up with:
before first after before after after.

3.17 Replace All Matches Within the Matches of Another Regex | 203

Solution

€

Regex outerRegex = new Regex(".*?", RegexOptions.Singleline);
Regex innerRegex = new Regex("before");
string resultString = outerRegex.Replace(subjectString,

new MatchEvaluator(ComputeReplacement));

public String ComputeReplacement(Match matchResult) {
// Run the inner search-and-replace on each match of the outer regex
return innerRegex.Replace(matchResult.Value, "after");

}

VB.NET

Java

Dim OuterRegex As New Regex(".*?", RegexOptions.Singleline)

Dim InnerRegex As New Regex("before")

Dim MyMatchEvaluator As New MatchEvaluator(AddressOf ComputeReplacement)
Dim ResultString = OuterRegex.Replace(SubjectString, MyMatchEvaluator)

Public Function ComputeReplacement(ByVal MatchResult As Match) As String
'Run the inner search-and-replace on each match of the outer regex
Return InnerRegex.Replace(MatchResult.Value, "after");

End Function

StringBuffer resultString = new StringBuffer();
Pattern outerRegex = Pattern.compile(".*?");
Pattern innerRegex = Pattern.compile("before");
Matcher outerMatcher = outerRegex.matcher(subjectString);
while (outerMatcher.find()) {
outerMatcher.appendReplacement(resultString,
innerRegex.matcher(outerMatcher.group()).replaceAll("after"));

}
outerMatcher.appendTail(resultString);

JavaScript

PHP

var result = subject.replace(/.*?<\/b>/g, function(match) {
return match.replace(/before/g, "after");

};

$result = preg replace callback('%.*?2%",
replace within_tag, $subject);

204 | Chapter3: Programming with Regular Expressions

function replace within tag($groups) {
return preg replace('/before/', 'after', $groups[o]);
}

Perl
$subject =~ s¥h.*2%($match = $&) =~ s/before/after/g; $match;%eg;

Python

innerre = re.compile("before")
def replacewithin(matchobj):
return innerre.sub("after", matchobj.group())

result = re.sub(".*?", replacewithin, subject)

Ruby
innerre = /before/

result = subject.gsub(/.*2<\/b>/) {|match|
match.gsub(innerre, 'after')
}

Discussion

This solution is again the combination of two previous solutions, using two regular
expressions. The “outer” regular expression, «b>.*?>, matches the HTML bold
tags and the text between them. The “inner” regular expression matches the “before,”
which we’ll replace with “after.”

Recipe 3.16 explains how you can run a search-and-replace and build the replacement
text for each regex match in your own code. Here, we do this with the outer regular
expression. Each time it finds a pair of opening and closing tags, we run a
search-and-replace using the inner regex, just as we do in Recipe 3.14. The subject
string for the search-and-replace with the inner regex is the text matched by the outer
regex.

See Also

This recipe uses techniques introduced by three earlier recipes. Recipe 3.11 shows code
to iterate over all the matches a regex can find in a string. Recipe 3.15 shows code to
find regex matches within the matches of another regex. Recipe 3.16 shows code to
search and replace with replacements generated in code for each regex match instead
of using a fixed replacement text for all matches.

3.17 Replace All Matches Within the Matches of Another Regex | 205

3.18 Replace All Matches Between the Matches of Another
Regex

Problem

You want to replace all the matches of a particular regular expression, but only within
certain sections of the subject string. Another regular expression matches the text be-
tween the sections. In other words, you want to search and replace through all parts of
the subject string not matched by the other regular expression.

Say you have an HTML file in which you want to replace straight double quotes with
smart (curly) double quotes, but you only want to replace the quotes outside of HTML
tags. Quotes within HTML tags must remain plain ASCII straight quotes, or your
web browser won’t be able to parse the HTML anymore. For example, you
want to turn "text" "text" "text" into “text”
“text” “text”.

Solution

G

string resultString = null;
Regex outerRegex = new Regex("<[*<>]*>");
Regex innerRegex = new Regex("\"([*\"T*)\"");
// Find the first section
int lastIndex = 0;
Match outerMatch = outerRegex.Match(subjectString);
while (outerMatch.Success) {
// Search and replace through the text between this match,
// and the previous one
string textBetween =
subjectString.Substring(lastIndex, outerMatch.Index - lastIndex);
resultString += innerRegex.Replace(textBetween, "\u201C$1\u201D");
lastIndex = outerMatch.Index + outerMatch.Length;
// Copy the text in the section unchanged
resultString += outerMatch.Value;
// Find the next section
outerMatch = outerMatch.NextMatch();
}
// Search and replace through the remainder after the last regex match
string textAfter = subjectString.Substring(lastIndex,
subjectString.Length - lastIndex);
resultString += innerRegex.Replace(textAfter, "\u201C$1\u201D");

206 | Chapter3: Programming with Regular Expressions

VB.NET

Dim ResultString As String = Nothing
Dim OuterRegex As New Regex("<[*<>]*>")
Dim InnerRegex As New Regex("""([~""]*)""")
'Find the first section
Dim LastIndex = O
Dim OuterMatch = OuterRegex.Match(SubjectString)
While OuterMatch.Success
'Search and replace through the text between this match,
"and the previous one
Dim TextBetween = SubjectString.Substring(LastIndex,
OuterMatch.Index - LastIndex);
ResultString += InnerRegex.Replace(TextBetween,
ChrW(&H201C) + "$1" + ChrW(8H201D))
LastIndex = OuterMatch.Index + OuterMatch.Length
'Copy the text in the section unchanged
ResultString += OuterMatch.Value
'Find the next section
OuterMatch = OuterMatch.NextMatch
End While
'Search and replace through the remainder after the last regex match
Dim TextAfter = SubjectString.Substring(LastIndex,
SubjectString.Length - LastIndex);
ResultString += InnerRegex.Replace(TextAfter,
ChrW(8H201C) + "$1" + ChrW(&H201D))

Java

StringBuffer resultString = new StringBuffer();

Pattern outerRegex = Pattern.compile("<[*<>]*>");

Pattern innerRegex = Pattern.compile("\"([~\"]*)\"");

Matcher outerMatcher = outerRegex.matcher(subjectString);

int lastIndex = 0;

while (outerMatcher.find()) {
// Search and replace through the text between this match,
// and the previous one
String textBetween = subjectString.substring(lastIndex,

outerMatcher.start());

Matcher innerMatcher = innerRegex.matcher(textBetween);
resultString.append(innerMatcher.replaceAll("\u201C$1\u201D"));
lastIndex = outerMatcher.end();
// Append the regex match itself unchanged
resultString.append(outerMatcher.group());

// Search and replace through the remainder after the last regex match
String textAfter = subjectString.substring(lastIndex);

Matcher innerMatcher = innerRegex.matcher(textAfter);
resultString.append(innerMatcher.replaceAll("\u201C$1\u201D"));

3.18 Replace All Matches Between the Matches of Another Regex | 207

JavaScript

var result = "";
var outerRegex = /<[*<>]*>/g;
var innerRegex = /"([*"]*)"/g;
var outerMatch = null;
var lastIndex = 0;
while (outerMatch = outerRegex.exec(subject)) {
if (outerMatch.index == outerRegex.lastIndex) outerRegex.lastIndex++;
// Search and replace through the text between this match,
// and the previous one
var textBetween = subject.slice(lastIndex, outerMatch.index);
result += textBetween.replace(innerRegex, "\u201C$1\u201D");
lastIndex = outerMatch.index + outerMatch[o0].length;
// Append the regex match itself unchanged
result += outerMatch[o0];
}
// Search and replace through the remainder after the last regex match
var textAfter = subject.slice(lastIndex);
result += textAfter.replace(innerRegex, "\u201C$1\u201D");

PHP

$result = '';
$lastindex = 0;
while (preg match('/<[*<>]*>/', $subject, $groups, PREG OFFSET CAPTURE,
$lastindex)) {
$matchstart = $groups[o0][1];
$matchlength = strlen($groups[o][0]);
// Search and replace through the text between this match,
// and the previous one
$textbetween = substr($subject, $lastindex, $matchstart-$lastindex);
$result .= preg replace('/"([*"]*)"/', '“$1”', $textbetween);
// Append the regex match itself unchanged
$result .= $groups[o][o0];
// Move the starting position for the next match
$lastindex = $matchstart + $matchlength;
if ($matchlength == 0) {
// Don't get stuck in an infinite loop
// if the regex allows zero-length matches
$lastindex++;
}
}
// Search and replace through the remainder after the last regex match
$textafter = substr($subject, $lastindex);
$result .= preg replace('/"([~"]*)"/', '“$1”', $textafter);

208 | Chapter3: Programming with Regular Expressions

Perl

use encoding "utf-8";

$result = '';
while ($subject =~ m/<[*<>]*>/g) {
$match = $&;

$textafter = $';
($textbetween = $°) =~ s/"([~"]*)"/\x{201C}$1\x{201D}/g;
$result .= $textbetween . $match;

}

$textafter =~ s/"([*"]1*)"/\x{201C}$1\x{201D}/g;

$result .= $textafter;

Python
innerre = re.compile('"([*"]*¥)"")
result = "";

lastindex = 0;
for outermatch in re.finditer("<[*<>]*>", subject):
Search and replace through the text between this match,
and the previous one
textbetween = subject[lastindex:outermatch.start()]
result += innerre.sub(u"\u201C\\1\u201D", textbetween)
lastindex = outermatch.end()
Append the regex match itself unchanged
result += outermatch.group()
Search and replace through the remainder after the last regex match
textafter = subject[lastindex:]
result += innerre.sub(u"\u201C\\1\u201D", textafter)

Ruby

result = '';

textafter = "'

subject.scan(/<[*<>]1*>/) {|match]|
textafter = §'
textbetween = $.gsub(/"([*"]*)"/, "“\1”")
result += textbetween + match

}
result += textafter.gsub(/"([*"]*)"/, "“\1”")

Discussion

Recipe 3.13 explains how to use two regular expressions to find matches (of the second
regex) only within certain sections of the file (matches of the first regex). The solution
for this recipe uses the same technique to search and replace through only certain parts
of the subject string.

3.18 Replace All Matches Between the Matches of Another Regex | 209

It is important that the regular expression you use to find the sections continues to
work on the original subject string. If you modify the original subject string, you have
to shift the starting position for the regex that finds the section as the inner regex adds
or deletes characters. More importantly, the modifications can have unintended side
effects. For example, if your outer regex uses the anchor «*> to match something at the
start of a line, and your inner regex inserts a line break at the end of the section found
by the outer regex, then «* will match right after the previous section because of the
newly inserted line break.

Though the solutions for this recipe are quite long, they’re very straightforward. Two
regular expressions are used. The “outer” regular expression, «<[*<>]*>>, matches a
pair of angle brackets and anything between them, except angle brackets. Thisisa crude
way of matching any HTML tag. This regex works fine as long as the HTML file does
not contain any literal angle brackets that were (incorrectly) not encoded as entities.
We implement this regular expression with the same code shown in Recipe 3.11. The
only difference is that the placeholder comment in that code that said where to use the
match was replaced by the code that does the actual search-and-replace.

The search-and-replace within the loop follows the code shown in Recipe 3.14. The
subject string for the search-and-replace is the text between the previous match of the
outer regex and the current match. We append the result of the inner search-and-
replace to the overall result string. We also append the current match of the outer
regular expression unchanged.

When the outer regex fails to find further matches, we run the inner search-and-replace
once more, on the text after the last match of the outer regex.

The regex <"([*"]*)™, used for the search-and-replace inside the loop, matches a pair
of double-quote characters and anything between them, except double quotes. The
text between the quotes is captured into the first capturing group.

For the replacement text, we use a reference to the first capturing group, which is placed
between two smart quotes. The smart quotes occupy Unicode code points U+201C and
U+201D. Normally, you can simply paste the smart quotes directly into your source code.
Visual Studio 2008, however, insists on being clever and automatically replaces literal
smart quotes with straight quotes.

In a regular expression, you can match a Unicode code point with (\u201C> or
Ax{201C}>, but none of the programming languages discussed in this book support
such tokens as part of the replacement text. If an end user wants to insert smart quotes
into the replacement text he types into an edit control, he’ll have to paste them in
literally from a character map. In your source code, you can use Unicode escapes in the
replacement text, if your language supports such escapes as part of literal strings. For
example, C# and Java support \u201C at the string level, but VB.NET does not offer a
way to escape Unicode characters in strings. In VB.NET, you can use the ChrW function
to convert a Unicode code point into a character.

210 | Chapter3: Programming with Regular Expressions

Perl and Ruby

The Perl and Ruby solutions use two special variables available in these languages that
we haven’t explained yet. $° (dollar backtick) holds the part of the text to the left of
the subject match, and $' (dollar single quote) holds the part of the text to the right of
the subject match. Instead of iterating over the matches in the original subject string,
we start a new search on the part of the string after the previous match. This way, we
can easily retrieve the text between the match and the previous one with $°.

Python

The result of this code is a Unicode string because the replacement text is specified as
a Unicode string. You may need to call encode() to be able to display it, for example

print result.encode('1252")

See Also

This recipe uses techniques introduced by three earlier recipes. Recipe 3.11 shows code
to iterate over all the matches a regex can find in a string. Recipe 3.15 shows code to
find regex matches within the matches of another regex. Recipe 3.16 shows code to
search and replace with replacements generated in code for each regex match instead
of using a fixed replacement text for all matches.

3.19 Splita String

Problem

You want to split a string using a regular expression. After the split, you will have an
array or list of strings with the text between the regular expression matches.

For example, you want to split a string with HTML tags in it along the HTML tags.
Splitting Ielike®boldeande<i>italic</i>®fonts should result in an array of
five strings: Ielike®, bold, ®ande, italic, and ®fonts.

Solution

€

You can use the static call when you process only a small number of strings with the
same regular expression:

string[] splitArray = Regex.Split(subjectString, "<[*<>]*>");

If the regex is provided by the end user, you should use the static call with full exception
handling:

3.19 SplitaString | 211

string[] splitArray = null;
try {
splitArray = Regex.Split(subjectString, "<[*<>]*>");
} catch (ArgumentNullException ex) {
// Cannot pass null as the regular expression or subject string
} catch (ArgumentException ex) {
// Syntax error in the regular expression

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex("<["<>]*>");
string[] splitArray = regexObj.Split(subjectString);

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

string[] splitArray = null;
try {
Regex regexObj = new Regex("<[*<>]*>");
try {
splitArray = regexObj.Split(subjectString);
} catch (ArgumentNullException ex) {
// Cannot pass null as the subject string
}

} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim SplitArray = Regex.Split(SubjectString, "<[*<>]*>")

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim SplitArray As String()
Try
SplitArray = Regex.Split(SubjectString, "<[*<>]*>")
Catch ex As ArgumentNullException
"Cannot pass null as the regular expression or subject string
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

212 | Chapter3: Programming with Regular Expressions

Dim RegexObj As New Regex("<[*<>]*>")
Dim SplitArray = RegexObj.Split(SubjectString)

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim SplitArray As String()
Try
Dim RegexObj As New Regex("<[*<>]*>")
Try
SplitArray = RegexObj.Split(SubjectString)
Catch ex As ArgumentNullException
"Cannot pass null as the subject string
End Try
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Java

You can call String.Split() directly when you want to split only one string with the
same regular expression:

String[] splitArray = subjectString.split("<[*<>]*>");
If the regex is provided by the end user, you should use full exception handling:

try {

String[] splitArray = subjectString.split("<[*<>]*>");
} catch (PatternSyntaxException ex) {

// Syntax error in the regular expression
}

Construct a Pattern object if you want to use the same regular expression with a large
number of strings:

Pattern regex = Pattern.compile("<[*<>]*>");
String[] splitArray = regex.split(subjectString);

If the regex is provided by the end user, you should use the Pattern object with full
exception handling:

String[] splitArray = null;

try {
Pattern regex = Pattern.compile("<[*<>]*>");
splitArray = regex.split(subjectString);

} catch (ArgumentException ex) {
// Syntax error in the regular expression

}

3.19 SplitaString | 213

Download from Wow! eBook <www.wowebook.com>

JavaScript

The string.split() method can split a string using a regular expression:

result = subject.split(/<[*<>]*>/);
XRegExp

result = XRegExp.split(subject, /<[*<>]*>/);
PHP

$result = preg split('/<[*<>]*>/", $subject);
Perl

@result = split(m/<[*<>]*>/, $subject);
Python

If you have only a few strings to split, you can use the global function:
result = re.split("<["<>]*>", subject))
To use the same regex repeatedly, use a compiled object:

reobj = re.compile("<[*<>]*>")
result = reobj.split(subject)

Ruby
result = subject.split(/<[*<>]*>/)

Discussion

Splitting a string using a regular expression essentially produces the opposite result of
Recipe 3.10. Instead of retrieving a list with all the regex matches, you get a list of the
text between the matches, including the text before the first and after the last match.
The regex matches themselves are omitted from the output of the split function.

C# and VB.NET

In .NET, you will always use the Regex.Split() method to split a string with a regular
expression. The first parameter expected by Split() is always the string that holds the
original subject text you want to split. This parameter should not be null. If it is,
Split() will throw an ArgumentNullException. The return value of Split() is always an
array of strings.

If you want to use the regular expression only a few times, you can use a static call. The
second parameter is then the regular expression you want to use. You can pass regex

214 | Chapter3: Programming with Regular Expressions

options as an optional third parameter. If your regular expression has a syntax error,
an ArgumentException will be thrown.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first, and then calling Split() on that
object. The subject string is then the only required parameter.

When calling Split() on an instance of the Regex class, you can pass additional pa-
rameters to limit the split operation. If you omit these parameters, the string will be
split at all matches of the regular expression in the subject string. The static overloads
of Split() do not allow these additional parameters. They always split the whole string
at all matches.

As the optional second parameter, after the subject string, you can pass the maximum
number of split strings you want to end up with. For example, if you call
regexObj.Split(subject, 3), you will receive an array with at most three strings in it.
The Split() function will try to find two regex matches, and return an array with the
text before the first match, the text between the two matches, and the text after the
second match. Any further possible regex matches within the remainder of the subject
string are ignored, and left in the last string in the array.

If there are not enough regex matches to reach your limit, Split() will split along all
the available regex matches and return an array with fewer strings than you specified.
regex0Obj.Split(subject, 1) does not split the string at all, returning an array with the
original string as the only element. regex0Obj.Split(subject, 0) splits at all regex
matches, just like Split() does when you omit the second parameter. Specifying a
negative number will cause Split() to throw an ArgumentOutOfRangeException.

If you specify the second parameter with the maximum number of strings in the re-
turned array, you also can specify an optional third parameter to indicate the character
index at which the regular expression should begin to find matches. Essentially, the
number you pass as the third parameter is the number of characters at the start of your
subject string that the regular expression should ignore. This can be useful when you’ve
already processed the string up to a point, and you only want to split the remainder of
the string.

The characters skipped by the regular expression will still be added to the returned
array. The first string in the array is the whole substring before the first regex
match found after the starting position you specified, including the characters before
that starting position. If you specify the third parameter, it must be between
zero and the length of the subject string. Otherwise, Split() throws an
ArgumentOutOfRangeException. Unlike Match(), Split() does not allow you to specify a
parameter that sets the length of the substring the regular expression is allowed to
search through.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other

3.19 SplitaString | 215

in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Java

If you have only one string to split, you can call the split() method directly on your
subject string. Pass the regular expression as the only parameter. This method simply
calls Pattern.compile("regex").split(subjectString).

If you want to split multiple strings, use the Pattern.compile() factory to create a
Pattern object. This way, your regular expression needs to be compiled only once.
Then, call the split() method on your Pattern instance, and pass your subject string
as the parameter. There’s no need to create a Matcher object. The Matcher class does
not have a split() method at all.

Pattern.split() takesan optional second parameter, but String.split() doesnot. You
can use the second parameter to pass the maximum number of split strings you want
to end up with. For example, if you call Pattern.split(subject, 3), you will receive
an array with at most three strings in it. The split() function will try to find two regex
matches, and return an array with the text before the first match, the text between the
two matches, and the text after the second match. Any further possible regex matches
within the remainder of the subject string are ignored, and left in the last string in the
array. If there are not enough regex matches to reach your limit, split() will split along
all the available regex matches, and return an array with fewer strings than you speci-
fied. Pattern.split(subject, 1) does not split the string at all, returning an array with
the original string as the only element.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Java, however, will eliminate empty strings at the end of the array. If you want the
empty strings to be included, pass a negative number as the second parameter to
Pattern.split(). This tells Java to split the string as many times as possible, and leave
any empty strings at the end of the array. The actual value of the second parameter
makes no difference when it is negative. You cannot tell Java to split a string a certain
number of times and also leave empty strings at the end of the array at the same time.

JavaScript

In JavaScript, call the split() method on the string you want to split. Pass the regular
expression as the only parameter to get an array with the string split as many times as
possible. You can pass an optional second parameter to specify the maximum number
of strings you want to have in the returned array. This should be a positive number. If

216 | Chapter3: Programming with Regular Expressions

you pass zero, you get an empty array. If you omit the second parameter or pass a
negative number, the string is split as many times as possible. Setting the /g flag for the
regex (Recipe 3.4) makes no difference.

In a standards-compliant browser, the split() method includes the matches of
capturing groups in the returned array. It even adds undefined for nonparticipating
capturing groups. If you do not want these extra elements in your array, use only
noncapturing groups (Recipe 2.9) in regular expressions you pass to split().

All the major web browsers now implement String. prototype.split() correctly. Older
browsers have various issues with capturing groups and adjacent matches. If you want
an implementation of String.prototype.split() that follows the standard and also
works with all browsers, Steven Levithan has a solution for you at http://blog.stevenle
vithan.com/archives/cross-browser-split.

XRegExp

When using XRegExp in JavaScript, call XRegExp.split(subject, regex) instead of
subject.split(regex) for standards-compliant results in all browsers.

PHP

Call preg_split() to split a string into an array of strings along the regex matches. Pass
the regular expression as the first parameter and the subject string as the second pa-
rameter. If you omit the second parameter, $_is used as the subject string.

You can pass an optional third parameter to specify the maximum number of split
strings you want to end up with. For example, if you call preg split
($regex, $subject, 3), you will receive an array with at most three strings in it. The
preg_split() function will try to find two regex matches, and return an array with the
text before the first match, the text between the two matches, and the text after the
second match. Any further possible regex matches within the remainder of the subject
string are ignored, and left in the last string in the array. If there are not enough regex
matches to reach your limit, preg_split() will split along all the available regex matches
and return an array with fewer strings than you specified. If you omit the third param-
eter or set it to -1, the string is split as many times as possible.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string. By default, preg_split() includes those empty strings in the
array it returns. If you don’t want empty strings in the array, pass the constant
PREG_SPLIT_NO_EMPTY as the fourth parameter.

3.19 SplitaString | 217

http://blog.stevenlevithan.com/archives/cross-browser-split
http://blog.stevenlevithan.com/archives/cross-browser-split

Perl

Call the split() function to split a string into an array of strings along the regex match-
es. Pass a regular expression operator as the first parameter and the subject string as
the second parameter.

You can pass an optional third parameter to specify the maximum number of split
strings you want to end up with. For example, if you call split(/regex/, subject,
3), you will receive an array with at most three strings in it. The split() function will
try to find two regex matches, and return an array with the text before the first match,
the text between the two matches, and the text after the second match. Any further
possible regex matches within the remainder of the subject string are ignored, and left
in the last string in the array. If there are not enough regex matches to reach your limit,
split() will split along all the available regex matches and return an array with fewer
strings than you specified.

If you omit the third parameter, Perl will determine the appropriate limit. If you assign
the result to an array variable, as the solution for this recipe does, the string is split as
many times as possible. If you assign the result to a list of scalar variables, Perl sets the
limit to the number of variables plus one. In other words, Perl will attempt to fill all the
variables, and will discard the unsplit remainder. For example, ($one, $two, $three)
= split(/,/) splits $_ with a limit of 4.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Python

The split() function in the re module splits a string using a regular expression. Pass
your regular expression as the first parameter and the subject string as the second pa-
rameter. The global split() function does not accept a parameter with regular expres-
sion options.

The re.split() function calls re.compile(), and then calls the split() method on the
compiled regular expression object. This method has only one required parameter: the
subject string.

Both forms of split() return a list with the text between all the regex matches. Both
take one optional parameter that you can use to limit the number of times the string
should be split. If you omit it or set it to zero, the string is split as many times as possible.
If you pass a positive number, that is the maximum number of regex matches at which
the string will be split. The resulting list will contain one more string than the count
you specified. The last string is the unsplit remainder of the subject string after the last

218 | Chapter3: Programming with Regular Expressions

regex match. If fewer matches can be found than the count you specified, the string is
split at all regex matches without error.

Ruby

Call the split() method on the subject string and pass your regular expression as the
first parameter to divide the string into an array of strings along the regex matches.

The split() method takes an optional second parameter, which you can use to indicate
the maximum number of split strings you want to end up with. For example, if you call
subject.split(re, 3), you will receive an array with at most three strings in it. The
split() function will try to find two regex matches, and return an array with the text
before the first match, the text between the two matches, and the text after the second
match. Any further possible regex matches within the remainder of the subject string
are ignored, and left in the last string in the array. If there are not enough regex matches
to reach your limit, split() will split along all the available regex matches, and return
an array with fewer strings than you specified. split(re, 1) does not split the string at
all, returning an array with the original string as the only element.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Ruby, however, will eliminate empty strings at the end of the array. If you want the
empty strings to be included, pass a negative number as the second parameter to
split(). This tells Ruby to split the string as many times as possible and leave any empty
strings at the end of the array. The actual value of the second parameter makes no
difference when it is negative. You cannot tell Ruby to split a string a certain number
of times and also leave empty strings at the end of the array at the same time.

See Also

Recipe 3.20 shows code that splits a string into an array and also adds the regex matches
to the array.

3.20 Split a String, Keeping the Regex Matches

Problem

You want to split a string using a regular expression. After the split, you will have an
array or list of strings with the text between the regular expression matches, as well as
the regex matches themselves.

3.20 Splita String, Keeping the Regex Matches | 219

Suppose you want to split a string with HTML tags in it along the HTML tags, and also
keep the HTML tags. Splitting Ielike®bold®ande<i>italic</i>®fonts should
result in an array of nine strings: I®1likee, , bold, , ®and®, <i>, italic, </i>, and
efonts.

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

string[] splitArray = Regex.Split(subjectString, "(<[*<>]*>)");

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex("(<[*<>]*>)");

string[] splitArray = regexObj.Split(subjectString);

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim SplitArray = Regex.Split(SubjectString, "(<[*<>]*>)")

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("(<[*<>]*>)")
Dim SplitArray = RegexObj.Split(SubjectString)

Java

List<String> resultList = new ArrayList<String>();

Pattern regex = Pattern.compile("<[*<>]*>");

Matcher regexMatcher = regex.matcher(subjectString);

int lastIndex = 0;

while (regexMatcher.find()) {
resultlist.add(subjectString.substring(lastIndex,

regexMatcher.start()));

resultlList.add(regexMatcher.group());
lastIndex = regexMatcher.end();

}
resultlist.add(subjectString.substring(lastIndex));

JavaScript
result = subject.split(/(<[*<>]*>)/);

220 | Chapter3: Programming with Regular Expressions

XRegExp
result = XRegExp.split(subject, /(<[*<>]*>)/);

PHP
$result = preg split('/(<[*<>]*>)/', $subject, -1,
PREG_SPLIT DELIM CAPTURE);
Perl
@result = split(m/(<["<>]*>)/, $subject);
Python

If you have only a few strings to split, you can use the global function:
result = re.split("(<["<>]*>)", subject))
To use the same regex repeatedly, use a compiled object:

reobj = re.compile("(<[*<>]*>)")
result = reobj.split(subject)

Ruby
list = []
lastindex = 0;
subject.scan(/<[*<>]1*>/) {|match]|
list << subject[lastindex..$~.begin(0)-1];
list << $&
lastindex = $~.end(0)

}
list << subject[lastindex..subject.length()]

Discussion

.NET

In .NET, the Regex.Split() method includes the text matched by capturing groups into
the array. .NET 1.0 and 1.1 include only the first capturing group. .NET 2.0 and later
include all capturing groups as separate strings into the array. If you want to include
the overall regex match into the array, place the whole regular expression inside a
capturing group. For .NET 2.0 and later, all other groups should be noncapturing, or
they will be included in the array.

The capturing groups are not included in the string count that you can pass to the
Split() function. If you call regex0Obj.Split(subject, 4) with the example string and
regex of this recipe, you’ll get an array with seven strings. Those will be the four strings
with the text before, between, and after the first three regex matches, plus three strings

3.20 Splita String, Keeping the Regex Matches | 221

between them with the regex matches, as captured by the only capturing group in the
regular expression. Simply put, you’ll get an array with: Ielikee, , bold, , ®ande,
<i>, and italic</i>efonts. If your regex has 10 capturing groups and you’re us-
ing .NET 2.0 or later, regex0Obj.Split(subject, 4) returns an array with 34 strings.

.NET does not provide an option to exclude the capturing groups from the array. Your
only solution is to replace all named and numbered capturing groups with noncaptur-
ing groups. An easy way to do this in .NET is to use RegexOptions.ExplicitCapture,
and replace all named groups with normal groups (i.e., just a pair of parentheses) in
your regular expression.

Java

Java’s Pattern.split() method does not provide the option to add the regex matches
to the resulting array. Instead, we can adapt Recipe 3.12 to add the text between the
regex matches along with the regex matches themselves to a list. To get the text between
the matches, we use the match details explained in Recipe 3.8.

JavaScript

JavaScript’s string.split() function does not provide an option to control whether
regex matches should be added to the array. According to the JavaScript standard, all
capturing groups should have their matches added to the array.

All the major web browsers now implement String. prototype.split() correctly. Older
browsers did not always correctly add capturing groups to the returned array. If you
want an implementation of String.prototype.split() that follows the standard and
also works with all browsers, Steven Levithan has a solution for you at http://blog.ste
venlevithan.com/archives/cross-browser-split.

XRegExp

When using XRegExp in JavaScript, call XRegExp.split(subject, regex) instead of
subject.split(regex) for standards-compliant results in all browsers.

PHP

Pass PREG_SPLIT DELIM CAPTURE as the fourth parameter to preg_split() to include the
text matched by capturing groups in the returned array. You can use the | operator to
combine PREG_SPLIT DELIM_CAPTURE with PREG_SPLIT NO_EMPTY.

The capturing groups are not included in the string count that you specify as the third
argument to the preg split() function. If you set the limit to four with the example
string and regex of this recipe, you’ll get an array with seven strings. Those will be the
four strings with the text before, between, and after the first three regex matches, plus
three strings between them with the regex matches, as captured by the only capturing

222 | Chapter3: Programming with Regular Expressions

http://blog.stevenlevithan.com/archives/cross-browser-split
http://blog.stevenlevithan.com/archives/cross-browser-split

group in the regular expression. Simply put, you’ll get an array with: I®1ike®, , bold,
, ®and®, <i>, and italic</i>®fonts.

Perl

Perl’s split() function includes the text matched by all capturing groups into the array.
If you want to include the overall regex match into the array, place the whole regular
expression inside a capturing group.

The capturing groups are not included in the string count that you can pass to the
split() function. If you call split(/(<[*<>]*>)/, $subject, 4) with the example string
and regex of this recipe, you’ll get an array with seven strings. Those will be the four
strings with the text before, between, and after the first three regex matches, plus three
strings between them with the regex matches, as captured by the only capturing group
in the regular expression. Simply put, you’ll get an array with: I®1ike®, , bold, ,
®ande, <i>, and italic</i>®fonts. If your regex has 10 capturing groups,
split($regex, $subject, 4) returns an array with 34 strings.

Perl does not provide an option to exclude the capturing groups from the array. Your
only solution is to replace all named and numbered capturing groups with
noncapturing groups.

Python

Python’s split() function includes the text matched by all capturing groups into the
array. If you want to include the overall regex match into the array, place the whole
regular expression inside a capturing group.

The capturing groups do not affect the number of times the string is split. If you call
split(/(<[*<>]*>)/, $subject, 3) with the example string and regex of this recipe,
you’ll get an array with seven strings. The string is split three times, which results in
four pieces of text between the matches, plus three pieces of text matched by the cap-
turing group. Simply put, you’ll get an array with: “I 1ike”, “”, “bold”, “”,
" and ", “<i>”, and “italic</i> fonts”. If your regex has 10 capturing groups,
split($regex, $subject, 3) returns an array with 34 strings.

Python does not provide an option to exclude the capturing groups from the array.
Your only solution is to replace all named and numbered capturing groups with non-
capturing groups.

Ruby

Ruby’s String.split() method does not provide the option to add the regex matches
to the resulting array. Instead, we can adapt Recipe 3.11 to add the text between the
regex matches along with the regex matches themselves to a list. To get the text between
the matches, we use the match details explained in Recipe 3.8.

3.20 Splita String, Keeping the Regex Matches | 223

See Also

Recipe 2.9 explains capturing and noncapturing groups. Recipe 2.11 explains named
capturing groups. Some programming languages also add text matched by capturing
groups to the array when splitting a string.

Recipe 3.19 shows code that splits a string into an array without adding the regex
matches to the array.

3.21 Search Line by Line

Problem

Traditional grep tools apply your regular expression to one line of text at a time, and
display the lines matched (or not matched) by the regular expression. You have an array
of strings, or a multiline string, that you want to process in this way.

Solution

G
If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:
string[] lines = Regex.Split(subjectString, "\r?\n");
Then, iterate over the lines array:

Regex regexObj = new Regex("regex pattern");
for (int i = 0; i < lines.Length; i++) {
if (regexObj.IsMatch(lines[i])) {
// The regex matches lines[i]
} else {
// The regex does not match lines[i]
}

}

VB.NET

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

Dim Lines = Regex.Split(SubjectString, "\r?\n")
Then, iterate over the lines array:

Dim RegexObj As New Regex("regex pattern")
For i As Integer = 0 To Lines.length - 1
If RegexObj.IsMatch(Lines(i)) Then
'The regex matches Lines(i)

224 | Chapter3: Programming with Regular Expressions

Else

'The regex does not match Lines(i)
End If
Next

Java

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

String[] lines = subjectString.split("\r?\n");
Then, iterate over the lines array:

Pattern regex = Pattern.compile("regex pattern");
Matcher regexMatcher = regex.matcher("");
for (int i = 0; i < lines.length; i++) {
regexMatcher.reset(lines[i]);
if (regexMatcher.find()) {
// The regex matches lines[i]
} else {
// The regex does not match lines[i]
}

}

JavaScript

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text.

var lines = subject.split(/\r?\n/);
Then, iterate over the lines array:

var regexp = /regex pattern/;
for (var i = 0; i < lines.length; i++) {
if (lines[i].match(regexp)) {
// The regex matches lines[i]
} else {
// The regex does not match lines[i]
}

PHP

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

$lines = preg split('/\r?\n/', $subject)

Then, iterate over the $lines array:

3.21 Search Line by Line | 225

foreach ($lines as $line) {
if (preg match('/regex pattern/', $line)) {
// The regex matches $line
} else {
// The regex does not match $line
}

Perl

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

@lines = split(m/\r?\n/, $subject)
Then, iterate over the $lines array:

foreach $line (@lines) {
if ($line =~ m/regex pattern/) {
The regex matches $line
} else {
The regex does not match $line
}

}

Python
If you have a multiline string, split it into an array of strings first, with each string
in the array holding one line of text:
lines = re.split("\r?\n", subject)
Then, iterate over the lines array:

reobj = re.compile("regex pattern")
for line in lines[:]:
if reobj.search(line):
The regex matches line
else:
The regex does not match line

Ruby

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

lines = subject.split(/\r?\n/)
Then, iterate over the lines array:

re = /regex pattern/
lines.each { |line|
if line =~ re

226 | Chapter3: Programming with Regular Expressions

Download from Wow! eBook <www.wowebook.com>

The regex matches line
else
The regex does not match line

}

Discussion

When working with line-based data, you can save yourself a lot of trouble if you split
the data into an array of lines, instead of trying to work with one long string with
embedded line breaks. Then, you can apply your actual regex to each string in the array,
without worrying about matching more than one line. This approach also makes it easy
to keep track of the relationship between lines. For example, you could easily iterate
over the array using one regex to find a header line and then another to find the footer
line. With the delimiting lines found, you can then use a third regex to find the data
lines you’re interested in. Though this may seem like a lot of work, it’s all very straight-
forward, and will yield code that performs well. Trying to craft a single regex to find
the header, data, and footer all at once will be a lot more complicated, and will result
in a much slower regex.

Processing a string line by line also makes it easy to negate a regular expression. Regular
expressions don’t provide an easy way of saying “match a line that does not contain
this or that word.” Only character classes can be easily negated. But if you've already
split your string into lines, finding the lines that don’t contain a word becomes as easy
as doing a literal text search in all the lines, and removing the ones in which the word
can be found.

Recipe 3.19 shows how you can easily splita string into an array. The regular expression
A\r\n> matches a pair of |CR] and Characters, which delimit lines on the Microsoft
Windows platforms. <\n> matches an |LF| character, which delimits lines on Unix and
its derivatives, such as Linux and even OS X. Since these two regular expressions are
essentially plain text, you don’t even need to use a regular expression. If your pro-
gramming language can split strings using literal text, by all means split the string that
way.

If you’re not sure which line break style your data uses, you could split it using the
regular expression (\r?\nm>. By making the [CR| optional, this regex matches either a
Windows line break or an [LF| Unix line break.

Once you have your strings into the array, you can easily loop over it. Inside the loop,
follow the recipe shown in Recipe 3.5 to check which lines match, and which don’t.

See Also

This recipe uses techniques introduced by two earlier recipes. Recipe 3.11 shows code
to iterate over all the matches a regex can find in a string. Recipe 3.19 shows code to
split a string into an array or list using a regular expression.

3.21 Search Line by Line | 227

3.22 Construct a Parser

Problem

You have an application that stores certain data in a table. Your task is to add a new
feature to this application to import that data from a file format that your application
does not yet support. There are no off-the-shelf parsers available for this file format.
You will have to roll your own.

The rules of the file format you need to parse are as follows:

1.

The keyword table begins a new table. A file can have an unlimited number of
tables, and must have at least one.

. Any strings that follow the table keyword form the table’s caption. A table does

not need to have a caption.

. The keyword row begins a new row. A row cannot exist outside of a table. A table

can have an unlimited number of rows, and must have at least one.

4. The row keyword cannot be followed by a string.

10.

11.

. The keyword cell begins a new cell. A cell cannot exist outside of a row. A row

can have an unlimited number of cells, but does not need any. Different rows in
the same table can have different numbers of cells.

. Any strings that follow the cell keyword form the content of the cell. A cell does

not need to have any content.

. A string is a sequence of zero or more characters enclosed by percentage signs. A

string with nothing between the percentage signs is an empty string. Two sequen-
tial percentage signs in a character string denote a single character, a percentage
sign. No characters other than the percentage sign have a special meaning in strings.
Line breaks and other control characters that appear between the percentage signs
are all part of the string.

. If two or more strings follow the same table or cell keyword, those strings form

separate lines in the table’s caption or the cell’s content, regardless of whether there
is a line break between the strings in the file.

. Keywords are case insensitive. Cell, cell, CELL, and CelLl are all the same.

Any whitespace between keywords and/or strings must be ignored. Whitespace is
required to delimit adjacent keywords. Whitespace is also required to delimit ad-
jacent strings. Whitespace is not required to delimit keywords from strings.

Any characters in the file that do not form a keyword or string are an error.

This sample file illustrates the rules:

table %First table%
row cell %A1% cell %B1% cell%Ci%cell%D1%
ROW row CELL %The previous row was blank%

228

| Chapter3: Programming with Regular Expressions

cell %B3%
oW
cell %A4% %second line%
cE1l %B4%
%second line%
cell %C4
second line%
row cell %%%string%%%
cell %%
cell %%%%
cell %%%%hdkb

Formatted as a table, it would look like Table 3-1.

Table 3-1. Table to be parsed from the sample file

Al B1 Q D1
(omitted) (omitted) (omitted) (omitted)
The previous row was blank B3 (omitted) (omitted)
A4 B4 4 (omitted)
second line second line second line

%string% (blank) % %%

Your solution should define a function that parses a string containing the entire con-
tents of the file that needs to be imported. You should use the application’s existing
data structures RECTable, RECRow, and RECCell to store the tables imported from the file.

Solution

G

static RECTable ImportTable(string fileContents) {
RECTable table = null;
RECRow row = null;
RECCell cell = null;
Regex regexObj = new Regex(
@" \b(?<keyword>table|row|cell)\b
| %(2<string>[%]* (2 :%%[%]*)*)%
| (?<error>\S+)",
RegexOptions.IgnoreCase | RegexOptions.IgnorePatternWhitespace);
Match match = regexObj.Match(fileContents);
while (match.Success) {
if (match.Groups["keyword"].Success) {
string keyword = match.Groups["keyword"].Value.ToLower();
if (keyword == "table") {
table = new RECTable();
row = null;
cell = null;

3.22 Constructa Parser | 229

}
}
}

} else if (keyword == "row") {
if (table == null)
throw new Exception("Invalid data: row without table");
row = table.addRow();
cell = null;
} else if (keyword == "cell") {
if (row == null)
throw new Exception("Invalid data: cell without row");
cell = row.addCell();
} else {
throw new Exception("Parser bug: unknown keyword");

else if (match.Groups["string"].Success) {
string content = match.Groups["string"].vValue.Replace("%%", "%");
if (cell != null)

cell.addContent(content);
else if (row != null)

throw new Exception("Invalid data: string after row keyword");
else if (table != null)

table.addCaption(content);
else

throw new Exception("Invalid data: string before table keyword");
else if (match.Groups["error"].Success) {
throw new Exception("Invalid data: " + match.Groups["error"].Value);
else {
throw new Exception("Parser bug: no capturing group matched");

match = match.NextMatch();

}

if (table == null)
throw new Exception("Invalid data: table keyword missing");
return table;

}

VB.NET

Function ImportTable(ByVal FileContents As String)

Dim
Dim
Dim
Dim

Dim

Table As RECTable = Nothing

Row As RECRow = Nothing

Cell As RECCell = Nothing

RegexObj As New Regex(

" \b(?<keyword>table|row|cell)\b" & _

"| %(2<string> [~B]*(2:%B[B]F)*)%" &

"| (2<error>\S+)",

RegexOptions.IgnoreCase Or RegexOptions.IgnorePatternWhitespace)
MatchResults As Match = RegexObj.Match(FileContents)

While MatchResults.Success
If MatchResults.Groups("keyword").Success Then

230 | Chapter3: Programming with Regular Expressions

Dim Keyword As String = MatchResults.Groups("keyword").Value
Keyword = Keyword.ToLower()
If Keyword = "table" Then
Table = New RECTable
Row = Nothing
Cell = Nothing
ElseIf Keyword = "row" Then
If Table Is Nothing Then
Throw New Exception("Invalid data: row without table")
End If
Row = Table.addRow
Cell = Nothing
ElseIf Keyword = "cell" Then
If Row Is Nothing Then
Throw New Exception("Invalid data: cell without row")

End If

Cell = Row.addCell
Else

Throw New Exception("Parser bug: unknown keyword")
End If

ElseIf MatchResults.Groups("string").Success Then
Dim Content As String = MatchResults.Groups("string").Value
Content = Content.Replace("%%", "%")
If Cell IsNot Nothing Then
Cell.addContent(Content)
ElseIf Row IsNot Nothing Then
Throw New Exception("Invalid data: string after row keyword")
ElseIf Table IsNot Nothing Then
Table.addCaption(Content)
Else
Throw New Exception("Invalid data: string before table keyword")
End If
ElseIf MatchResults.Groups("error").Success Then
Throw New Exception("Invalid data")
Else
Throw New Exception("Parser bug: no capturing group matched")
End If
MatchResults = MatchResults.NextMatch()
End While
If Table Is Nothing Then
Throw New Exception("Invalid data: table keyword missing")
End If
Return Table
End Function

3.22 Constructa Parser | 231

Java

RECTable ImportTable(String fileContents) throws Exception {
RECTable table = null;
RECRow row = null;
RECCell cell = null;
final int groupkeyword = 1;
final int groupstring = 2;
final int grouperror = 3;
Pattern regex = Pattern.compile(

" \\b(table|row|cell)\\b\n" +

"1 BCLABTHF(2 BB %]*)*)%\n" +

" (\sH)",

Pattern.CASE_INSENSITIVE | Pattern.COMMENTS);
Matcher regexMatcher = regex.matcher(fileContents);
while (regexMatcher.find()) {

if (regexMatcher.start(groupkeyword) >= 0) {

String keyword = regexMatcher.group(groupkeyword).toLowerCase();

if (keyword.equals("table")) {
table = new RECTable();
row = null;
cell = null;
} else if (keyword.equals("row")) {
if (table == null)
throw new Exception("Invalid data: row without table");
row = table.addRow();
cell = null;
} else if (keyword.equals("cell")) {
if (row == null)
throw new Exception("Invalid data: cell without row");
cell = row.addCell();
} else {
throw new Exception("Parser bug: unknown keyword");

} else if (regexMatcher.start(groupstring) >= 0) {
String content = regexMatcher.group(groupstring);
content = content.replaceAll("%%", "%");
if (cell != null)

cell.addContent(content);
else if (row != null)

throw new Exception("Invalid data: String after row keyword");

else if (table != null)
table.addCaption(content);
else

throw new Exception("Invalid data: String before table keyword");

} else if (regexMatcher.start(grouperror) >= 0) {
throw new Exception("Invalid data: " +
regexMatcher.group(grouperror));
} else {

232 | Chapter3: Programming with Regular Expressions

throw new Exception("Parser bug: no capturing group matched");
}
}
if (table == null)

throw new Exception("Invalid data: table keyword missing");
return table;

}

JavaScript

function importTable(fileContents) {
var table = null;
var row = null;
var cell = null;
var groupkeyword = 1;
var groupstring = 2;
var grouperror = 3;
var myregexp = /\b(table|row|cell)\b|%([%]*(?:%%["%]*)*)%| (\S+)/ig;
var match;
var keyword;
var content;
while (match = myregexp.exec(fileContents)) {
if (match[groupkeyword] !== undefined) {
keyword = match[groupkeyword].tolLowerCase();
if (keyword == "table") {
table = new RECTable();
row = null;
cell = null;
} else if (keyword == "row") {
if (!table)
throw new Error("Invalid data: row without table");
row = table.addRow();
cell = null;
} else if (keyword == "cell") {
if ('row)
throw new Error("Invalid data: cell without row");
cell = row.addCell();
} else {
throw new Error("Parser bug: unknown keyword");
}
} else if (match[groupstring] !== undefined) {
content = match[groupstring].replace(/%%/g, "%");
if (cell)
cell.addContent(content);
else if (row)
throw new Error("Invalid data: string after row keyword");
else if (table)
table.addCaption(content);

3.22 Constructa Parser | 233

else
throw new Error("Invalid data: string before table keyword");

} else if (match[grouperror] !== undefined) {

throw new Error("Invalid data: " + match[grouperror]);
} else {

throw new Error("Parser bug: no capturing group matched");
}

}
if (!table)

throw new Error("Invalid data: table keyword missing");
return table;

}

XRegExp

function importTable(fileContents) {
var table = null;
var row = null;
var cell = null;
var myregexp = XRegExp("(?ix)\\b(?<keyword>table|row|cell)\\b" +
" | %(<string> [AB]*(2:%B[AB]F))% +
" | (2<error>\\S+)");
XRegExp.forEach(fileContents, myregexp, function(match) {
var keyword;
var content;
if (match.keyword !== undefined) {
keyword = match.keyword.toLowerCase();
if (keyword == "table") {
table = new RECTable();
row = null;
cell = null;
} else if (keyword == "row") {
if (!table)
throw new Error("Invalid data: row without table");
row = table.addRow();
cell = null;
} else if (keyword == "cell") {
if (!row)
throw new Error("Invalid data: cell without row");
cell = row.addCell();
} else {
throw new Error("Parser bug: unknown keyword");

} else if (match.string !== undefined) {
content = match.string.replace(/%%/g, "%");
if (cell)

cell.addContent(content);
else if (row)

234 | Chapter3: Programming with Regular Expressions

throw new Error("Invalid data: string after row keyword");
else if (table)
table.addCaption(content);

else
throw new Error("Invalid data: string before table keyword");
} else if (match.error !== undefined) {
throw new Error("Invalid data: " + match.error);
} else {
throw new Error("Parser bug: no capturing group matched");

}

1;
if (!table)

throw new Error("Invalid data: table keyword missing");
return table;

}

Perl

sub importtable {
my $filecontents = shift;
my $table;
my $row;
my $cell;
while ($filecontents ="~
m/ \b(table|row|cell)\b
| (%1% (2% "%]*)*)%
| (\s+)/ixg) {
if (defined($1)) { # Keyword
my $keyword = lc($1);
if ($keyword eq "table") {
$table = new RECTable();
undef $row;
undef $cell;
} elsif ($keyword eq "row") {
if (!defined($table)) {
die "Invalid data: row without table";
}
$row = $table->addRow();
undef $cell;
} elsif ($keyword eq "cell") {
if (!defined($row)) {
die "Invalid data: cell without row";
}
$cell = $row->addCell();
} else {
die "Parser bug: unknown keyword";

}
} elsif (defined($2)) { # String

3.22 Constructa Parser | 235

my $content = $2;

$content =~ s/%%/%/g;

if (defined($cell)) {
$cell->addContent($content);

} elsif (defined($row)) {

die "Invalid data: string after row keyword";

} elsif (defined($table)) {
$table->addCaption($content);
} else {

die "Invalid data: string before table keyword";

}

} elsif (defined($3)) { # Error
die "Invalid data: $3";

} else {

die "Parser bug: no capturing group matched";

}

}
if (!defined(table)) {

die "Invalid data: table keyword missing";

}

return table;

}

Python

def importtable(filecontents):
table = None
row = None
cell = None
for match in re.finditer(

""" (?ix)\b(?P<keyword>table|row|cell)\b
| %(2P<string>["%1*(2:%%["%]*)*)%
| (?P<error>\S+)""", filecontents):

if match.group("keyword") != None:

keyword = match.group("keyword").lower()

if keyword == "table":
table = RECTable()
row = None
cell = None

elif keyword == "row":
if table == None:

raise Exception("Invalid data:

row = table.addRow()
cell = None

elif keyword == "cell":
if row == None:

raise Exception("Invalid data:

cell = row.addCell()

row without table")

cell without row")

236 | Chapter3: Programming with Regular Expressions

else:
raise Exception("Parser bug: unknown keyword")
elif match.group("string") != None:
content = match.group("string").replace("%%", "%")
if cell != None:
cell.addContent(content)
elif row != None:
raise Exception("Invalid data: string after row keyword")
elif table != None:
table.addCaption(content)
else:
raise Exception("Invalid data: string before table keyword")
elif match.group("error") != None:
raise Exception("Invalid data: "
else:
raise Exception("Parser bug: no capturing group matched")
if table == None:
raise Exception("Invalid data: table keyword missing")
return table

+ match.group("error"))

PHP

function importTable($fileContents) {
preg_match all(
'/ \b(?P<keyword>table|row|cell)\b
| (2P<string>%[%1% (2:%%[%]1*)*%)
| (?P<error>\S+)/ix',
$fileContents, $matches, PREG_PATTERN_ORDER);
$table = NULL;
$row = NULL;
$cell = NULL;
for ($i = 0; $i < count($matches[0]); $i++) {
if ($matches['keyword'][$i] != NULL) {
$keyword = strtolower($matches['keyword'][$i]);
if ($keyword == "table") {
$table = new RECTable();

$row = NULL;
$cell = NULL;
} elseif ($keyword == "row") {

if ($table == NULL)
throw new Exception("Invalid data: row without table");
$row = $table->addRow();
$cell = NULL;
} elseif ($keyword == "cell") {
if ($row == NULL)
throw new Exception("Invalid data: cell without row");
$cell = $row->addCell();
} else {

3.22 Constructa Parser | 237

throw new Exception("Parser bug: unknown keyword");

}
} elseif ($matches['string'][$i] != NULL) {
$content = $matches['string'][$i];
$content = substr($content, 1, strlen($content)-2);
$content = str replace('%%', '%', $content);
if ($cell !'= NULL)
$cell->addContent($content);
elseif ($row != NULL)
throw new Exception("Invalid data: string after row keyword");
elseif ($table != NULL)
$table->addCaption($content);
else
throw new Exception("Invalid data: string before table keyword");
} elseif ($matches['error'][$i] != NULL) {
throw new Exception("Invalid data: " + $matches['error'][$i]);
} else {
throw new Exception("Parser bug: no capturing group matched");
}
}
if ($table == NULL)
throw new Exception("Invalid data: table keyword missing");
return $table;

}

Ruby

def importtable(filecontents)
table = nil
row = nil
cell = nil
groupkeyword = 0;
groupstring = 1;
grouperror = 2;
regexp = / \b(table|row|cell)\b
| %([MB1*(2:%m[%]*)*)%
| (\S+)/ix
filecontents.scan(regexp) do |match]|
if match[groupkeyword]
keyword = match[groupkeyword].downcase
if keyword == "table"
table = RECTable.new()

row = nil
cell = nil
elsif keyword == "row"

if table.nil?
raise "Invalid data: row without table"
end

238 | Chapter3: Programming with Regular Expressions

row = table.addRow()
cell = nil
elsif keyword == "cell"
if row.nil?
raise "Invalid data: cell without row"

end

cell = row.addCell()
else

raise "Parser bug: unknown keyword"
end

elsif not match[groupstring].nil?
content = match[groupstring].gsub("%%", "%")
if not cell.nil?
cell.addContent(content)
elsif not row.nil?
raise "Invalid data: string after row keyword"
elsif not table.nil?
table.addCaption(content)
else
raise "Invalid data: string before table keyword"
end
elsif not match[grouperror].nil?
raise "Invalid data: " + match.group("error")
else
raise "Parser bug: no capturing group matched"
end
end
if table.nil?
raise "Invalid data: table keyword missing"
end
return table
end

Discussion

A straightforward way to create a parser is to use a regular expression to tokenize the
input and to use procedural code to parse those tokens.

To tokenize means to scan the file for tokens, which are the smallest elements that the
syntax allows. In the file format we’re working with, those tokens are the three
keywords, strings enclosed by percentage signs, whitespace between keywords and
strings, and nonwhitespace other than keywords and strings. We can easily create a
regular expression that matches each of these tokens.

\b(?<keyword>table|row|cell)\b
| %(2<string>[~B]* (2 : %% %]*)*)%
| (?<error>\S+)
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

3.22 Constructa Parser | 239

\b(?P<keyword>table|row|cell)\b
| %(2P<string>[~%]*(?: %% ~%5]*)*)%
| (?P<error>\S+)
Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4 and later, Perl 5.10, Python

\b(table|row|cell)\b
| (%1% (2% %]*)*)%
I (\s+)
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

\b(table|row|cell)\b|%([%]*+(?:%%[~%]*+)*+)%]| (\S+)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you iterate over all the matches of this regular expression in the sample file, it will
match each keyword and string separately. On another file with invalid characters, each
sequence of invalid characters would also be matched separately. The regular expres-
sion does not match the whitespace between keywords and strings because the parser
does not need to process it. The word boundaries around the list of keywords are all
that is needed to make sure that keywords are delimited with whitespace. We use a
separate capturing group for each kind of token. That makes it much easier to identify
the token that was matched in the procedural part of our solution.

We use free-spacing and named capture to make our regular expression and our code
more readable in the programming languages that have regex flavors that support free-
spacing and named capture. There is no functional difference between these four reg-
ular expressions.

The capturing group for the strings does not include the percentage signs that enclose
the strings. The benefit is that the procedural code won’t have to remove those per-
centage signs to get the content of the string that was matched. The drawback is that
when the regex matches an empty string (two percentage signs with nothing in be-
tween), the capturing group for the string will find a zero-length match. When we test
which capturing group found the match, we have to make sure that we accept a zero-
length match as a valid match. In the JavaScript solution, for example, we use if
(match[groupstring] !== undefined), which evaluates to true if the group participated
in the match attempt, even when the match is empty. We cannot use if (match[group
string]) because that evaluates to false when the group finds a zero-length match.

240 | Chapter3: Programming with Regular Expressions

Internet Explorer 8 and prior do not follow the JavaScript standard that
requires nonparticipating groups to be undefined in the match object.
1E8 stores empty strings for nonparticipating groups, making it impos-
sible to distinguish between a group that did not participate, and one
that participated and captured a zero-length string. This means the
JavaScript solution will not work with IE8 and prior. This bug was fixed
in Internet Explorer 9.

"

The XRegExp.exec() method does return a match object that leaves non-
participating groups undefined, regardless of the browser running the
code. So does XRegExp.forEach() as it relies on XRegExp.exec(). If you
need a solution for browsers such as IE8 that aren’t standards-compliant
in this area, you should use the solution based on XRegExp.

In PHP, the preg match_all() function stores NULL in the array for capturing groups
that found a zero-length match as well as for capturing groups that did not participate
in the match. Thus the PHP solution includes the enclosing percentage signs in the
string group. An extra line of PHP code calls substr to remove them.

The procedural code implements our parser. This parser has four different states. It
keeps track of the state it is in by checking which of the variables table, row, and cell
are assigned.

1. Nothing: nothing has been read yet. The variables table, row, and cell are all
unassigned.

2. Inside table: a table keyword has been parsed. The variable table is assigned, while
row and cell are unassigned. Since a table can have any number of caption strings,
including none, the parser does not need a separate state to track whether a string
was parsed after the table keyword.

3. Inside row: a row keyword has been parsed. The variables table and row have been
assigned, while cell is unassigned.

4. Inside cell: a cell keyword has been parsed. The variables table, row, and cell have
all been assigned. Since a cell can have any number of caption strings, including
none, the parser does not need a separate state to track whether a string was parsed
after the cell keyword.

When the parser runs, it iterates over all matches in the regular expression. It checks
what kind of token was matched by the regular expression (a keyword, a string, or
invalid text) and then processes that token depending on the state the parser is in, as
shown in Table 3-2.

3.22 Constructa Parser | 241

Table 3-2. Regex matches are handled depending on the state of the parser

Match State

Nothing Inside table Inside row Inside cell
keyword (reate new table and Create new table and Create new table and Create new table and
table change state to “inside change state to “inside change state to “inside change state to “inside

table” table” table” table”
keyword Fail: data is invalid Add row to table and Add row to table Add row to table and
Tow change state to “inside change state to “inside

row” row”
keyword Fail: data is invalid Fail: data is invalid Add cell to row and Add cell to row
cell change state to “inside
cell”
string Fail: data is invalid Add caption to table Fail: data is invalid Add content to cell
invalid text Fail: data is invalid Fail: data is invalid Fail: data is invalid Fail: data is invalid
See Also

Techniques used in the regular expression in this recipe are discussed in Chapter 2.
Recipe 2.6 explains word boundaries and Recipe 2.8 explains alternation, which we
used to match the keywords. Recipe 2.11 explains named capturing groups. Naming
the groups in your regex makes the regex easier to read and maintain.

To match the strings enclosed in percentage signs, we used the same technique ex-
plained in Recipe 7.8 for matching quoted strings in source code. The only difference
is that here the strings are enclosed with percentage signs rather than quotes.

The parser iterates over all the matches found by the regular expression. Recipe 3.11
explains how that works.

242 | Chapter3: Programming with Regular Expressions

CHAPTER 4
Validation and Formatting

This chapter contains recipes for validating and formatting common types of user input.
Some of the solutions show how to allow variations of valid input, such as U.S. postal
codes that can contain either five or nine digits. Others are designed to harmonize or
fix commonly understood formats for things such as phone numbers, dates, and credit
card numbers.

Beyond helping you get the job done by eliminating invalid input, these recipes can
also improve the user experience of your applications. Messages such as “no spaces or
hyphens” next to phone or credit card number fields often frustrate users or are simply
ignored. Fortunately, in many cases regular expressions allow you to let users enter
data in formats with which they are familiar and comfortable, with very little extra work
on your part.

Certain programming languages provide functionality similar to some recipes in this
chapter through their native classes or libraries. Depending on your needs, it might
make more sense to use these built-in options, so we’ll point them out along the way.

4.1 Validate Email Addresses

Problem

You have a form on your website or a dialog box in your application that asks the user
for an email address. You want to use a regular expression to validate this email address
before trying to send email to it. This reduces the number of emails returned to you as
undeliverable.

Solution

Simple

This first solution does a very simple check. It only validates that the string contains
an at sign (@) that is preceded and followed by one or more nonwhitespace characters.

243

M\S+@\S+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A\S+@\S+\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Simple, with restrictions on characters

The domain name, the part after the @ sign, is restricted to characters allowed in domain
names. Internationalized domain names are not allowed. The local part, the part before
the @ sign, is restricted to characters commonly used in email local parts, which is
more restrictive than what most email clients and servers will accept:
A[A-Z0-9+ .-]+@[A-Z0-9.-]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A[A-Z0-9+ .-]+@[A-Z0-9.-]+\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Simple, with all valid local part characters

This regular expression expands the previous one by allowing a larger set of rarely used
characters in the local part. Not all email software can handle all these characters, but
we've included all the characters permitted by RFC 5322, which governs the email
message format. Among the permitted characters are some that present a security risk
if passed directly from user input to an SQL statement, such as the single quote (') and
the pipe character (]). Be sure to escape sensitive characters when inserting the email
address into a string passed to another program, in order to prevent security holes such
as SQL injection attacks:
A[A-Z0-9_ 1H$%8" *+/=2" {|}7. -]+@[A-20-9.-]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A[A-Z0-9 !#$%8"*+/=2"{|}~".-]+@[A-Z0-9.-]+\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

No leading, trailing, or consecutive dots

Both the local part and the domain name can contain one or more dots, but no two
dots can appear right next to each other. Furthermore, the first and last characters in
the local part and in the domain name must not be dots:

244 | Chapter4: Validation and Formatting

Download from Wow! eBook <www.wowebook.com>

AA-Z0-9 1H$%8" *+/=2"{| }~"-1+(2:\. [A-Z20-9 1H#$%&" *+/=2"{| }~*-]+4
)*@[A-Z0-9-1+(?:\.[A-Z0-9-]+)*$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
\A[A-Z0-9_1#$%8" *+/=2"{| }~"-1+(2:\. [A-Z0-9_1#$%&" *+/=2"{| }~"-]+d
Y*@[A-Z0-9-1+(2:\. [A-20-9-]+)*\Z

Regex options: Case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Top-level domain has two to six letters

This regular expression adds to the previous versions by specifying that the domain
name must include at least one dot, and that the part of the domain name after the last
dot can only consist of letters. That is, the domain must contain at least two levels,
such as secondlevel.com or thirdlevel.secondlevel.com. The top-level domain (.com
in these examples) must consist of two to six letters. All country-code top-level domains
(.us, .uk, etc.) have two letters. The generic top-level domains have between three
(.com) and six letters (.museum):
AW %8 K+ /=27 { | I =14 (2N [\wlHS%& $4+ /=27 {| ™0 -]+) @4
(?:[A-20-9-1+\.)+[A-Z1{2,6}%
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
NAD\W! 8% *4+/=27 {| }A-1+(2: N [\w ! #9%8 " *+/=2" {| }~A-]+) %@«
(?:[A-20-9-1+\.)+[A-Z]{2,6}\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Discussion

About email addresses

If you thought something as conceptually simple as validating an email address would
have a simple one-size-fits-all regex solution, you’re quite wrong. This recipe is a prime
example that before you can start writing a regular expression, you have to decide
exactly what you want to match. There is no universally agreed-upon rule as to which
email addresses are valid and which not. It depends on your definition of valid.

asdf@asdf.asdf is valid according to RFC 5322, which defines the syntax for email
addresses. But it is not valid if your definition specifies that a valid email address is one
that accepts mail. There is no top-level asdf domain.

The short answer to the validity problem is that you can’t know whether john. doe@some
where. comis an email address that can actually receive email until you try to send email
to it. And even then, you can’t be sure if the lack of response signals that the

4.1 Validate Email Addresses | 245

somewhere.com domain is silently discarding mail sent to nonexistent mailboxes, or if
John Doe hit the Delete button on his keyboard, or if his spam filter beat him to it.

Because you ultimately have to check whether the address exists by actually sending
email to it, you can decide to use a simpler or more relaxed regular expression. Allowing
invalid addresses to slip through may be preferable to annoying people by blocking
valid addresses. For this reason, you may want to select the “simple” regular expression.
Though it obviously allows many things that aren’t email addresses, such as #$%@. -,
the regex is quick and simple, and will never block a valid email address.

If you want to avoid sending too many undeliverable emails, while still not blocking
any real email addresses, the regex in “Top-level domain has two to six let-
ters” on page 245 is a good choice.

You have to consider how complex you want your regular expression to be. If you’re
validating user input, you’ll likely want a more complex regex, because the user could
type in anything. But if you’re scanning database files that you know contain only valid
email addresses, you can use a very simple regex that merely separates the email ad-
dresses from the other data. Even the solution in the earlier subsection “Simple” may
be enough in this case.

Finally, you have to consider how future-proof you want your regular expression to be.
In the past, it made sense to restrict the top-level domain to only two-letter combina-
tions for the country codes, and exhaustively list the generic top-level domains—that
is, <com|net |org|mil|edu>. With new top-level domains being added all the time, such
regular expressions now quickly go out of date.

Regular expression syntax

The regular expressions presented in this recipe show all the basic parts of the regular
expression syntax in action. If you read up on these parts in Chapter 2, you can already
do 90% of the jobs that are best solved with regular expressions.

All the regular expressions, except the “simple” one, require the case-insensitive match-
ing option to be turned on. Otherwise, only uppercase characters will be allowed.
Turning on this option allows you to type <[A-Z]> instead of <[A-Za-z]>, saving a few
keystrokes.

A\S is a shorthand character class, as Recipe 2.3 explains. <\S» matches any character
that is not a whitespace character.

«@ and <\.» match a literal @ sign and a dot, respectively. Since the dot is a metachar-
acter when used outside character classes, it needs to be escaped with a backslash. The
@ sign never has a special meaning with any of the regular expression flavors in this
book. Recipe 2.1 gives you a list of all the metacharacters that need to be escaped.

<[A-Z0-9.-]> and the other sequences between square brackets are character classes.
This one allows all letters between A and Z, all digits between 0 and 9, as well as a literal
dot and hyphen. Though the hyphen normally creates a range in a character class, the

246 | Chapter4: Validation and Formatting

hyphen is treated as a literal when it occurs as the first or last character in a character
class. Recipe 2.3 tells you all about character classes, including combining them with
shorthands, as in <[A-Z0-9_1#$%8&"'*+/=2"{|}~*.- . This class matches a word charac-
ter, as well as any of the 19 listed punctuation characters.

< and ¢, when used outside character classes, are quantifiers. The plus sign repeats
the preceding regex token one or more times, whereas the asterisk repeats it zero or
more times. In these regular expressions, the quantified token is usually a character
class, and sometimes a group. Therefore, <[A-Z0-9.-]+> matches one or more letters,
digits, dots, and/or hyphens.

As an example of the use of a group, «(?:[A-Z0-9-]+\.)+> matches one or more letters,
digits, and/or hyphens, followed by one literal dot. The plus sign repeats this group
one or more times. The group must match at least once, but can match as many times
as possible. Recipe 2.12 explains the mechanics of the plus sign and other quantifiers
in detail.

<«(?:)»isanoncapturing group. The capturing group <(-*)> does the same thing with
a cleaner syntax, so you could replace «(?:> with <(> in all of the regular expressions
we've used so far without changing the overall match results. But since we’re not in-
terested in separately capturing parts of the email address, the noncapturing group is
somewhat more efficient, although it makes the regular expression somewhat harder
to read. Recipe 2.9 tells you all about capturing and noncapturing groups.

In most regex flavors, the anchors <* and «$» force the regular expression to find its
match at the start and end of the subject text, respectively. Placing the whole regular
expression between these characters effectively requires the regular expression to match
the entire subject.

This isimportant when validating user input. You do not want to acceptdrop database;
-- joe@server.com haha! asavalid email address. Without the anchors, all the previous
regular expressions will match because they find joe@server.com in the middle of the
given text. See Recipe 2.5 for details about anchors. That recipe also explains why the
[{WaN . 9 . .

and $ match at line breaks” matching option must be off for these regular
expressions.

In Ruby, the caret and dollar always match at line breaks. The regular expressions using
the caretand dollar work correctly in Ruby, but only if the string you’re trying to validate
contains no line breaks. If the string may contain line breaks, all the regexes using «*
and ¢ will match the email address in drop database; -- [LFljoe@server.comLF]
haha!, where |LF| represents a line break.

To avoid this, use the anchors <\A> and «<\2> instead. These match at the start and end
of the string only, regardless of any options, in all flavors discussed in this book, except
JavaScript. JavaScript does not support <\A> and <\2> at all. Recipe 2.5 explains these
anchors.

4.1 Validate Email Addresses | 247

The issue with ¢ and $> versus <\A> and \2> applies to all regular ex-
pressions that validate input. There are a lot of these in this book. Al-

though we will offer the occasional reminder, we will not constantly
repeat this advice or show separate solutions for JavaScript and Ruby
for each and every recipe. In many cases, we’ll show only one solution
using the caret and dollar, and list Ruby as a compatible flavor. If you're
using Ruby, remember to use \\A> and <\2> if you want to avoid matching
one line in a multiline string.

Building a regex step-by-step

This recipe illustrates how you can build a regular expression step-by-step. This tech-
nique is particularly handy with an interactive regular expression tester, such as
RegexBuddy.

First, load a bunch of valid and invalid sample data into the tool. In this case, that would
be a list of valid email addresses and a list of invalid email addresses.

Then, write a simple regular expression that matches all the valid email addresses.
Ignore the invalid addresses for now. «*\S+@\S+$> already defines the basic structure of
an email address: a local part, an at sign, and a domain name.

With the basic structure of your text pattern defined, you can refine each part until
your regular expression no longer matches any of the invalid data. If your regular ex-
pression only has to work with previously existing data, that can be a quick job. If your
regex has to work with any user input, editing the regular expression until it is restrictive
enough will be a much harder job than just getting it to match the valid data.

Variations

If you want to search for email addresses in larger bodies of text instead of checking
whether the input as a whole is an email address, you cannot use the anchors <*» and
«$>. Merely removing the anchors from the regular expression is not the right solution.
If you do that with the final regex, which restricts the top-level domain to letters, it will
match john@doe.com in john@doe.com77, for example. Instead of anchoring the regex
match to the start and end of the subject, you have to specify that the start of the local
part and the top-level domain cannot be part of longer words.

This is easily done with a pair of word boundaries. Replace both «* and «$» with \b>.
For instance, (*[A-Z0-9+ .-]+@[A-Z0-9.-]+$> becomes (\b[A-Z0-9+ .-]+@[A-Z0-9.-]+
\b>.

See Also

RFC 5322 defines the structure and syntax of email messages, including the email ad-
dresses used in email messages. You can download RFC 5322 at http://www.ietf.org/
html/rfc5322.txt.

248 | Chapter4: Validation and Formatting

http://www.ietf.org/html/rfc5322.txt
http://www.ietf.org/html/rfc5322.txt

Wikipedia maintains a comprehensive list of top-level domain names at http://en.wiki
pedia.org/wiki/List_of_Internet_top-level_domains.

Chapter 8 has a lot of solutions for working with URLs and Internet addresses.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains word boundaries.
Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

4.2 Validate and Format North American Phone Numbers

Problem

You want to determine whether a user entered a North American phone number, in-
cluding the local area code, in a common format. These formats include 1234567890,
123-456-7890, 123.456.7890, 123 456 7890, (123) 456 7890, and all related combina-
tions. If the phone number is valid, you want to convert it to your standard format,
(123) 456-7890, so that your phone number records are consistent.

Solution

A regular expression can easily check whether a user entered something that looks like
a valid phone number. By using capturing groups to remember each set of digits, the
same regular expression can be used to replace the subject text with precisely the format
you want.

Regular expression

M2 ([0-9]{3H\)?[-.*]2([0-9]{3})[-.*]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement
($1)°$2-%3
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

(\1)*\2-\3
Replacement text flavors: Python, Ruby

C# example
Regex phoneRegex =

new Regex(@""\(?([0-9]1{3})\)?[-. 12([0-91{3})[-. 1?([0-91{4})$");

if (phoneRegex.IsMatch(subjectString)) {
string formattedPhoneNumber =

4.2 Validate and Format North American Phone Numbers | 249

http://en.wikipedia.org/wiki/List_of_Internet_top-level_domains
http://en.wikipedia.org/wiki/List_of_Internet_top-level_domains

phoneRegex.Replace(subjectString, "($1) $2-$3");
} else {
// Invalid phone number
}

JavaScript example
var phoneRegex = /"\(?([0-91{3})\)?[-. 1?([0-9]1{3})[-. 12([0-9]{4})$/;

if (phoneRegex.test(subjectString)) {
var formattedPhoneNumber =
subjectString.replace(phoneRegex, "($1) $2-$3");
} else {
// Invalid phone number
}

Other programming languages

If you need help converting the examples just listed to your programming language of
choice, Recipe 3.6 shows how to implement the test of whether a regex matches the
entire subject, and Recipe 3.15 has code listings for performing a replacement that
reuses parts of a match (done here to reformat the phone number).

Discussion

This regular expression matches three groups of digits. The first group can optionally
be enclosed with parentheses, and the first two groups can optionally be followed with
a choice of three separators (a hyphen, dot, or space). The following layout breaks the
regular expression into its individual parts, omitting the redundant groups of digits:

>
=+

Assert position at the beginning of the string.
Match a literal "("
between zero and one time.
Capture the enclosed match to backreference 1:
Match a digit
exactly three times.
End capturing group 1.
Match a literal ")"
between zero and one time.
Match one hyphen, dot, or space
between zero and one time.
[Match the remaining digits and separator.]
Assert position at the end of the string.

N—
HH HH TR

Let’s look at each of these parts more closely.

The <*» and «$> at the beginning and end of the regular expression are a special kind of
metacharacter called an anchor or assertion. Instead of matching text, assertions match
a position within the text. Specifically, «*> matches at the beginning of the text, and

250 | Chapter4: Validation and Formatting

%> at the end. This ensures that the phone number regex does not match within longer
text, such as 123-456-78901.

As we've repeatedly seen, parentheses are special characters in regular expressions, but
in this case we want to allow a user to enter parentheses and have our regex recognize
them. This is a textbook example of where we need a backslash to escape a special
character so the regular expression treats it as literal input. Thus, the <\(> and <\)»
sequences that enclose the first group of digits match literal parenthesis characters.
Both are followed by a question mark, which makes them optional. We’ll explain more
about the question mark after discussing the other types of tokens in this regular
expression.

The parentheses that appear without backslashes are capturing groups and are used to
remember the values matched within them so that the matched text can be recalled
later. In this case, backreferences to the captured values are used in the replacement
text so we can easily reformat the phone number as needed.

Two other types of tokens used in this regular expression are character classes and
quantifiers. Character classes allow you to match any one out of a set of characters.
<[0-9]> is a character class that matches any digit. The regular expression flavors cov-
ered by this book all include the shorthand character class <\d> that also matches a digit,
but in some flavors <\d> matches a digit from any language’s character set or script,
which is not what we want here. See Recipe 2.3 for more information about «\d>.

¢([-.®]> is another character class, one that allows any one of three separators. It’s
important that the hyphen appears first or last in this character class, because if it
appeared between other characters, it would create a range, as with <[0-9]>. Another
way to ensure that a hyphen inside a character class matches a literal version of itself
is to escape it with a backslash. <[.\-®]> is therefore equivalent. The <> represents a
literal space character.

Finally, quantifiers allow you to repeatedly match a token or group. <{3}» is a quantifier
that causes its preceding element to be matched exactly three times. The regular ex-
pression <[0-9]{3}> is therefore equivalent to <[0-9][0-9][0-9]>, but is shorter and
hopefully easier to read. A question mark (mentioned earlier) is a quantifier that causes
its preceding element to match zero or one time. It could also be written as «{0,1}>.
Any quantifier that allows something to match zero times effectively makes that element
optional. Since a question mark is used after each separator, the phone number digits
are allowed to run together.

Note that although this recipe claims to handle North American phone
numbers, it’s actually designed to work with North American Number-
s ing Plan (NANP) numbers. The NANP is the telephone numbering plan
" for the countries that share the country code “1.” This includes the
United States and its territories, Canada, Bermuda, and 17 Caribbean
nations. It excludes Mexico and the Central American nations.

4.2 Validate and Format North American Phone Numbers | 251

Variations

Eliminate invalid phone numbers

So far, the regular expression matches any 10-digit number. If you want to limit matches
to valid phone numbers according to the North American Numbering Plan, here are
the basic rules:

* Area codes start with a number 2-9, followed by 0-8, and then any third digit.

* The second group of three digits, known as the central office or exchange code,
starts with a number 2-9, followed by any two digits.

* The final four digits, known as the station code, have no restrictions.

These rules can easily be implemented with a few character classes.

M\(2([2-9][0-8][0-91)\)?[-.*]2([2-9][0-9]{2})[-.*]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Beyond the basic rules just listed, there are a variety of reserved, unassigned, and re-
stricted phone numbers. Unless you have very specific needs that require you to filter
out as many phone numbers as possible, don’t go overboard trying to eliminate unused
numbers. New area codes that fit the rules listed earlier are made available regularly,
and even if a phone number is valid, that doesn’t necessarily mean it was issued or is
in active use.

Find phone numbers in documents

Two simple changes allow the previous regular expressions to match phone numbers
within longer text:

\N(?\b([0-9]{3})\)?[-.*]2([0-9]{3})[-.*]1?([0-9]{4})\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here, the <*> and «$> assertions that bound the regular expression to the beginning and
end of the text have been removed. In their place, word boundary tokens (<\b>) have
been added to ensure that the matched text stands on its own and is not part of a longer
number or word.

Similar to <» and «$>, <\b> is an assertion that matches a position rather than any actual
text. Specifically, <\b> matches the position between a word character and either a non-
word character or the beginning or end of the text. Letters, numbers, and underscore
are all considered word characters (see Recipe 2.6).

Note that the first word boundary token appears after the optional, opening parenthe-
sis. This is important because there is no word boundary to be matched between two
nonword characters, such as the opening parenthesis and a preceding space character.

252 | Chapter4: Validation and Formatting

The first word boundary is relevant only when matching a number without parentheses,
since the word boundary always matches between the opening parenthesis and the first
digit of a phone number.

Allow a leading “1”

You can allow an optional, leading “1” for the country code (which covers the North
American Numbering Plan region) via the addition shown in the following regex:

ARA21[- 012\ (2([0-91{3\) ?[-. #]2([0-9]{3})[-. *]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In addition to the phone number formats shown previously, this regular expression
will also match strings such as +1 (123) 456-7890 and 1-123-456-7890. It uses a non-
capturing group, written as <(?:-:-)>. When a question mark follows an unescaped left
parenthesis like this, it’s not a quantifier, but instead helps to identify the type of
grouping. Standard capturing groups require the regular expression engine to keep
track of backreferences, so it’s more efficient to use noncapturing groups whenever the
text matched by a group does not need to be referenced later. Another reason to use a
noncapturing group here is to allow you to keep using the same replacement string as
in the previous examples. If we added a capturing group, we’d have to change $1 to
$2 (and so on) in the replacement text shown earlier in this recipe.

The full addition to this version of the regexis «(?:\+?1[-.®]?)?>. The “1” in this pattern
is preceded by an optional plus sign, and optionally followed by one of three separators
(hyphen, dot, or space). The entire, added noncapturing group is also optional, but
since the “1” is required within the group, the preceding plus sign and separator are
not allowed if there is no leading “1.”

Allow seven-digit phone numbers

To allow matching phone numbers that omit the local area code, enclose the first group
of digits together with its surrounding parentheses and following separator in an op-
tional, noncapturing group:

AEAQ[0-91{3H\)?2[-.212)2([0-91{3})[-. *]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Since the area code is no longer required as part of the match, simply replacing any
match with «($1)$2-$3» might now result in something like () 123-4567, with an
empty set of parentheses. To work around this, add code outside the regex that checks
whether group 1 matched any text, and adjust the replacement text accordingly.

See Also

Recipe 4.3 shows how to validate international phone numbers.

4.2 Validate and Format North American Phone Numbers | 253

As noted previously, the North American Numbering Plan (NANP) is the telephone
numbering plan for the United States and its territories, Canada, Bermuda, and 17
Caribbean nations. More information is available at http://www.nanpa.com.

Techniques used in the regular expressions and replacement text in this recipe are
discussed in Chapter 2. Recipe 2.1 explains which special characters need to be escaped.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.9 explains
grouping. Recipe 2.12 explains repetition. Recipe 2.6 explains word boundaries.
Recipe 2.21 explains how to insert text matched by capturing groups into the replace-
ment text.

4.3 Validate International Phone Numbers

Problem

You want to validate international phone numbers. The numbers should start with a
plus sign, followed by the country code and national number.

Solution

Regular expression
M+(?:[0-9]°?){6,14}[0-9]$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

JavaScript example

function validate(phone) {
var regex = /M\+(?:[0-9] ?){6,14}[0-9]%/;

if (regex.test(phone)) {

// Valid international phone number
} else {

// Invalid international phone number
}

}

Follow Recipe 3.6 to implement this regular expression with other programming
languages.

Discussion

The rules and conventions used to print international phone numbers vary significantly
around the world, so it’s hard to provide meaningful validation for an international
phone number unless you adopt a strict format. Fortunately, there is a simple, industry-
standard notation specified by ITU-T E.123. This notation requires that international

254 | Chapter4: Validation and Formatting

http://www.nanpa.com

phone numbers include a leading plus sign (known as the international prefix sym-
bol), and allows only spaces to separate groups of digits. Although the tilde character
(~) can appear within a phone number to indicate the existence of an additional dial
tone, it has been excluded from this regular expression since it is merely a procedural
element (in other words, it is not actually dialed) and is infrequently used. Thanks to
the international phone numbering plan (ITU-T E.164), phone numbers cannot con-
tain more than 15 digits. The shortest international phone numbers in use contain seven
digits.
With all of this in mind, let’s look at the regular expression again after breaking it into
its pieces. Because this version is written using free-spacing style, the literal space char-
acter has been replaced with (\x20>:

A

\+

(2:

[0-9]

\x20
?

E=3

Assert position at the beginning of the string.
Match a literal "+" character.
Group but don't capture:

Match a digit.

Match a space character

between zero and one time.

End the noncapturing group.

Repeat the group between 6 and 14 times.
Match a digit.
Assert position at the end of the string.
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

(6,14}
[0-9]
$

e e

E=3

The «» and «$> anchors at the edges of the regular expression ensure that it matches
the whole subject text. The noncapturing group, enclosed with <(?::-)», matches a
single digit followed by an optional space character. Repeating this grouping with the
interval quantifier «{6,14}> enforces the rules for the minimum and maximum number
of digits, while allowing space separators to appear anywhere within the number. The
second instance of the character class <[0-9]> completes the rule for the number of digits
(bumping it up from between 6 and 14 digits to between 7 and 15), and ensures that
the phone number does not end with a space.

Variations

Validate international phone numbers in EPP format
M\+[0-9]{1,3}\.[0-9]{4,14}(?:x.+)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This regular expression follows the international phone number notation specified by
the Extensible Provisioning Protocol (EPP). EPP is a relatively recent protocol (finalized
in 2004), designed for communication between domain name registries and
registrars. It is used by a growing number of domain name registries, including .com,

4.3 Validate International Phone Numbers | 255

.info, .net, .org, and .us. The significance of this is that EPP-style international phone
numbers are increasingly used and recognized, and therefore provide a good alternative
format for storing (and validating) international phone numbers.

EPP-style phone numbers use the format +CCC. NNNNNNNVNNXEEEE, where C is the 1-3 digit
country code, N is up to 14 digits, and E is the (optional) extension. The leading plus

sign and the dot following the country code are required. The literal “x” character is
required only if an extension is provided.

See Also
Recipe 4.2 provides more options for validating North American phone numbers.

ITU-T Recommendation E.123 (“Notation for national and international telephone
numbers, e-mail addresses and web addresses”) can be downloaded at hitp:/www.itu
.int/rec/T-REC-E.123. ITU-T Recommendation E.164 (“The international public tele-
communication numbering plan”) can be downloaded at http://www.itu.int/rec/T-REC
-E.164. National numbering plans can be downloaded at http://www.itu.int/ITU-T/inr/
nnp/.

RFC 5733 defines the syntax and semantics of EPP contact identifiers, including inter-
national phone numbers. You can download RFC 5733 at http://tools.ietf.org/html/
rfc5733.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition.

4.4 Validate Traditional Date Formats

Problem

You want to validate dates in the traditional formats mm/dd/yy, mm/dd/yyyy,
dd/mm/yy, and dd/mm/yyyy. You want to use a simple regex that simply checks
whether the input looks like a date, without trying to weed out things such as February
318t

Solution

Solution 1: Match any of these date formats, allowing leading zeros to be omitted:

~[0-3]?[0-9]/[0-3]2[0-9]/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 2: Match any of these date formats, requiring leading zeros:

256 | Chapter4: Validation and Formatting

http://www.itu.int/rec/T-REC-E.123
http://www.itu.int/rec/T-REC-E.123
http://www.itu.int/rec/T-REC-E.164
http://www.itu.int/rec/T-REC-E.164
http://www.itu.int/ITU-T/inr/nnp/
http://www.itu.int/ITU-T/inr/nnp/
http://tools.ietf.org/html/rfc5733
http://tools.ietf.org/html/rfc5733

~[0-3][0-9]/[0-3][0-9]/(?:[0-9][0-9])?[0-9][0-9]%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 3: Match m/d/yy and mm/dd/yyyy, allowing any combination of one or two
digits for the day and month, and two or four digits for the year:
~(1[0-2]|0?[1-9])/(3[01]|[12][0-9]|0?[1-9])/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 4: Match mm/dd/yyyy, requiring leading zeros:
~(1[0-2]]0[1-9])/(3[01]|[12][0-9][0[1-9])/[0-9]{4}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 5: Match d/m/yy and dd/mm/yyyy, allowing any combination of one or two
digits for the day and month, and two or four digits for the year:
~(3[01]][12][0-9]]0?[1-9])/(a[0-2]]0?[1-9])/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 6: Match dd/mm/yyyy, requiring leading zeros:
~(3[01]][12][0-9]]0[1-9])/(1[0-2][0[1-9])/[0-9]{4}$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 7: Match any of these date formats with greater accuracy, allowing leading
zeros to be omitted:

~(?:(1[0-2]]0?[1-9])/(3[01][[12][0-9]|0?[1-9])| ¢
(3[01][[12][0-9]|0?[1-9])/(1[0-2]]02[1-9]))/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

We can use the free-spacing option to make this regular expression easier to read:
r2:
m/d or mm/dd
(1[0-2]]0?[1-9])/(3[01]|[12][0-9]|0?[1-9])

d/m or dd/mm
(3[01][[12][0-9]|0?[1-9])/(2[0-2]]0?[1-9])

/yy or /yyyy
/(2:[0-9]{2})?[0-9]{2}$
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

4.4 Validate Traditional Date Formats | 257

Solution 8: Match any of these date formats with greater accuracy, requiring leading
zeros:

~(?:(1[0-2]]o[1-9])/(3[01][[12][0-9]|0[1-9])| ¢
(3[01][[12][0-9]|0[1-9])/(1[0-2]]0[1-9]))/[0-9]{4}$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The same solution using the free-spacing option to make it easier to read:
A(2:
mm/dd
(1[0-2]|o[1-9])/(3[01]|[12][0-9]|0[1-9])

dd/mm
) (3[01][[12][0-9]|o[1-9])/(1[0-2]|0[1-9])

/yyyy
/[0-91{4}$

Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Discussion

You might think that something as conceptually trivial as a date should be an easy job
for a regular expression. Butitisn’t, for two reasons. Because dates are such an everyday
thing, humans are very sloppy with them. 4/1 may be April Fools’ Day to you. To
somebody else, it may be the first working day of the year, if New Year’s Day is on a
Friday.

The other issue is that regular expressions don’t deal directly with numbers. You can’t
tell a regular expression to “match a number between 1 and 317, for instance. Regular
expressions work character by character. We use «3[01]|[12][0-9]|0?[1-9]> to match
3 followed by 0 or 1, or to match 1 or 2 followed by any digit, or to match an optional
0 followed by 1 to 9. In character classes, we can use ranges for single digits, such as
¢«[1-9]>. That’s because the characters for the digits 0 through 9 occupy consecutive
positions in the ASCII and Unicode character tables. See Chapter 6 for more details on
matching all kinds of numbers with regular expressions.

Because of this, you have to choose how simple or how accurate you want your regular
expression to be. If you already know your subject text doesn’t contain any invalid
dates, you could use a trivial regex such as \\d{2}/\d{2}/\d{4}>. The fact that this
matches things like 99/99/9999 is irrelevant if those don’t occur in the subject text.

The first two solutions for this recipe are quick and simple, too, and they also match
invalid dates, such as 0/0/00 and 31/31/2008. They only use literal characters for the
date delimiters, character classes (see Recipe 2.3) for the digits, and the question mark
(see Recipe 2.12) to make certain digits optional. <(?:[0-9]{2})?[0-9]{2}> allows the

258 | Chapter4: Validation and Formatting

Download from Wow! eBook <www.wowebook.com>

year to consist of two or four digits. <[0-9]{2}> matches exactly two digits.
<«(?:[0-9]{2})?> matches zero or two digits. The noncapturing group (see Recipe 2.9)
is required, because the question mark needs to apply to the character class and
the quantifier «{2}> combined. <[0-9]{2}?> matches exactly two digits, just like
<[0-9]{2}>. Without the group, the question mark makes the quantifier lazy, which has
no effect because «{2}> cannot repeat more than two times or fewer than two times.

Solutions 3 through 6 restrict the month to numbers between 1 and 12, and the day to
numbers between 1 and 31. We use alternation (see Recipe 2.8) inside a group to match
various pairs of digits to form a range of two-digit numbers. We use capturing groups
here because you’ll probably want to capture the day and month numbers anyway.

The final two solutions are a little more complex, so we’re presenting these in both
condensed and free-spacing form. The only difference between the two forms is read-
ability. JavaScript does not support free-spacing. The final two solutions allow all of
the date formats, just like the first two examples. The difference is that the last two use
an extra level of alternation to restrict the dates to 12/31 and 31/12, disallowing invalid
months, such as 31/31.

Variations

If you want to search for dates in larger bodies of text instead of checking whether the
input as a whole is a date, you cannot use the anchors «*> and «$>. Merely removing the
anchors from the regular expression is not the right solution. That would allow any of
these regexes to match 12/12/2001 within 9912/12/200199, for example. Instead of an-
choring the regex match to the start and end of the subject, you have to specify that the
date cannot be part of longer sequences of digits.

This is easily done with a pair of word boundaries. In regular expressions, digits are
treated as characters that can be part of words. Replace both «*» and «$» with \b>. As
an example:

\b(1[0-2]|0[1-9])/(3[01][[12][0-9]|0[1-9])/[0-9]{4}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also

This chapter has several other recipes for matching dates and times. Recipe 4.5 shows
how to validate traditional date formats more accurately. Recipe 4.6 shows how to
validate traditional time formats. Recipe 4.7 shows how to validate date and time for-
mats according to the ISO 8601 standard.

Recipe 6.7 explains how you can create a regular expression to match a number in a
given range of numbers.

4.4 Validate Traditional Date Formats | 259

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

4.5 Validate Traditional Date Formats, Excluding Invalid Dates

Problem

You want to validate dates in the traditional formats mm/dd/yy, mm/dd/yyyy, dd/mm/
yy, and dd/mm/yyyy, as shown in Recipe 4.4. But this time, you also want to weed out
invalid dates, such as February 315

Solution

G

The first solution requires the month to be specified before the day. The regular ex-
pression works with a variety of flavors:

~(?2<month>[0-3]?[0-9])/(?<day>[0-3]?[0-9])/(?<year>(?:[0-9]{2})?[0-9]1{2})$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10

This is the complete solution implemented in C#:

DateTime foundDate;

Match matchResult = Regex.Match(SubjectString,
"~(?2<month>[0-3]?[0-9])/(?<day>[0-3]?[0-9])/" +
"(?<year>(?:[0-9]{2})?[0-9]{2})$");

if (matchResult.Success) {
int year = int.Parse(matchResult.Groups["year"].Value);
if (year < 50) year += 2000;
else if (year < 100) year += 1900;
try {

foundDate = new DateTime(year,
int.Parse(matchResult.Groups["month"].Value),
int.Parse(matchResult.Groups["day"].Value));
} catch {
// Invalid date
}

}

The second solution requires the day to be specified before the month. The only dif-
ference is that we’ve swapped the names of the capturing groups in the regular
expression.

~(?<day>[0-3]?[0-9])/(?<month>[0-3]?[0-9])/(?<year>(?:[0-9]{2})?[0-9]{2})$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10

260 | Chapter4: Validation and Formatting

The C# code is unchanged, except for the regular expression:

DateTime foundDate;

Match matchResult = Regex.Match(SubjectString,
"A(2<day>[0-3]?[0-9])/(?<month>[0-3]?[0-9])/" +
"(2<year>(?:[0-9]{2})?[0-9]{2})$");

if (matchResult.Success) {
int year = int.Parse(matchResult.Groups["year"].Value);
if (year < 50) year += 2000;
else if (year < 100) year += 1900;
try {

foundDate = new DateTime(year,
int.Parse(matchResult.Groups["month"].Value),
int.Parse(matchResult.Groups["day"].Value));
} catch {
// Invalid date
}

Perl

The first solution requires the month to be specified before the day. The regular ex-
pression works with all flavors covered in this book.

~([0-3]12[0-9])/([0-3]?[0-9]1)/((?:[0-9]{2})?[0-9]{2})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This is the complete solution implemented in Perl:

@daysinmonth = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
$validdate = 0;

if ($subject - m!~([0-3]?[0-9])/([0-3]2[0-9])/((?:[0-9]{2})?[0-9]{2})$!)

$month = $1;
$day = $2;
$year = $3;

$year += 2000 if $year < 50;
$year += 1900 if $year < 100;
if ($month == 2 83 $year % 4 == 0 & ($year % 100 != 0 ||
$year % 400 == 0)) {
$validdate = 1 if $day >= 1 && $day <= 29;
} elsif ($month >= 1 && $month <= 12) {
$validdate = 1 if $day >= 1 && $day <= $daysinmonth[$month-1];
}

}

The second solution requires the day to be specified before the month. The regular
expression is exactly the same. The Perl code swaps the meaning of the first two cap-
turing groups.

4.5 Validate Traditional Date Formats, Excluding Invalid Dates | 261

@daysinmonth =
$validdate = 0;
if ($subject =~ m!"([0-3]?[0-9])/([0-3]2[0-9])/((?:[0-9]{2})?[0-9]{2})$!)

(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

$day = $1;
$month = $2;
$year = $3;

$year += 2000 if $year < 50;
$year += 1900 if $year < 100;
if ($month == 2 83 $year % 4 == 0 & ($year % 100 != 0 ||
$year % 400 == 0)) {
$validdate = 1 if $day >= 1 && $day <= 29;
} elsif ($month >= 1 8& $month <= 12) {
$validdate = 1 if $day >= 1 && $day <= $daysinmonth[$month-1];
}

}

Pure regular expression

You can solve this problem with one regular expression without procedural code, if
that is all you can use in your application.
Month before day:
A2
February (29 days every year)
(?<month>0?2)/(?<day>[12][0-9]|0?[1-9])
|
30-day months
(?<month>0?[469]|11)/(?<day>30|[12][0-9]|0?[1-9])

I
31-day months

(?<month>0?[13578]|1[02])/(?<day>3[01]|[12][0-9]|0?[1-9])
)

Year
/(2<year>(?:[0-9]{2})?[0-9]{2})$
Regex options: Free-spacing
Regex flavors: .NET, Perl 5.10, Ruby 1.9
~2:
February (29 days every year)
(0?2)/([12][0-9]]0?[1-9])
|
30-day months

(02[469]|11)/(30[[12][0-9]]0?[1-9])
|

31-day months
(02[13578]|1[02])/(3[01][[12][0-9][0?[1-9])

262 | Chapter4: Validation and Formatting

Year
/((?:[0-9]{2})?[0-9]{2})$
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

~(?2:(072)/([12][0-9]|0?[1-9]) [(0?2[469][11)/ (30| [12] [0-9]|0?[1-9]) | «

(02[13578][1[02])/(3[01]|[12][0-9]0?[1-9]))/((?:[0-9]{2})?[0-9]{2})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Day before month:

A2
February (29 days every year)
(?<day>[12][0-9]]|0?[1-9])/(?<month>0?2)

I
30-day months
(?<day>30|[12][0-9]|0?2[1-9])/(2<month>0?[469]|11)

I
31-day months
(?<day>3[01]|[12][0-9]|0?[1-9])/(?<month>0?[13578]|1[02])

Year
/(2<year>(?:[0-9]{2})?[0-9]{2})$
Regex options: Free-spacing
Regex flavors: .NET, Perl 5.10, Ruby 1.9
~2:
February (29 days every year)
I ([12][0-9]]0?[1-9])/(0?2)
30-day months
(30][12][0-9][0?[1-9])/([469] |11)

31-day months
(3[o1][[12][0-9]|0?[1-9])/(0?[13578] |1[02])

Year
/((2:[0-9]{2})?[0-9]{2})$
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby
~(2:([12][0-9]]0?[1-9])/(0?2) | (30[[12][0-9][0?[1-9])/([469]|11) |«
(3[01]|[12][0-9]|0?[1-9])/(0?[13578]|1[02]))/((?:[0-9]{2})?[0-9]{2})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

4.5 Validate Traditional Date Formats, Excluding Invalid Dates | 263

Discussion

Regex with procedural code

There are essentially two ways to accurately validate dates with a regular expression.
One method is to use a simple regex that merely captures groups of numbers that look
like a month/day/year combination, and then use procedural code to check whether
the date is correct.

The main benefit of this method is that you can easily add additional restrictions, such
as limiting dates to certain periods. Many programming languages provide specific
support for dealing with dates. The C# solution uses .NET’s DateTime structure to
check whether the date is valid and return the date in a useful format, all in one step.

We used the first regex from Recipe 4.4 that allows any number between 0 and 39 for
the day and month. That makes it easy to change the format from mm/dd/yy to dd/
mm/yy by changing which capturing group is treated as the month. When we’re using
named capture, that means changing the names of the capturing groups in the regular
expression. When we’re using numbered capture, that means changing the references
to the numbered groups in the procedural code.

Pure regular expression

The other method is to do everything with a regular expression. We can use the same
technique of spelling out the alternatives as we did for the more final solutions presented
in Recipe 4.4. The solution is manageable, if we take the liberty of treating every year
as a leap year, allowing the regex to match February 29th regardless of the year. Al-
lowing February 29th only on leap years would require us to spell out all the years that
are leap years, and all the years that aren’t.

The problem with using a single regular expression is that it no longer neatly captures
the day and month in a single capturing group. We now have three capturing groups
for the month, and three for the day. When the regex matches a date, only three of the
seven groups in the regex will actually capture something. If the month is February,
groups 1 and 2 capture the month and day. If the month has 30 days, groups 3 and 4
return the month and day. If the month has 31 days, groups 5 and 6 take action. Group
7 always captures the year.

Perl 5.10, Ruby 1.9, and .NET help us in this situation. Their regex flavors allow mul-
tiple named capturing groups to share the same name. See the section “Groups with
the same name” on page 71 in Recipe 2.11 for details. We take advantage of this by
using the same names “month” and “day” in each of the alternatives. When the regex
finds a match, we can retrieve the text matched by the groups “month” and “day”
without worrying about how many days the month has.

264 | Chapter4: Validation and Formatting

For the other regex flavors, we use numbered capturing groups. When a match is found,
three different groups have to be checked to extract the day, and three other groups to
extract the month.

The pure regex solution is interesting only in situations where one regex is all you can
use, such as when you’re using an application that offers one box to type in a regex.
When programming, make things easier with a bit of extra code. This will be particu-
larly helpful if you want to add extra checks on the date later.

Variations

To show how complicated the pure regex solution gets as you add more requirements,
here’s a pure regex solution that matches any date between 2 May 2007 and 29 August
2008 in d/m/yy or dd/mm/yyyy format:

2 May 2007 till 29 August 2008
A(2:
2 May 2007 till 31 December 2007
(?:
2 May till 31 May
(?<day>3[01]|[12][0-9]|0?[2-9])/(?<month>0?5)/(?<year>2007)

1 June till 31 December

(2:
30-day months
(?<day>30([12][0-9]]|02[1-9])/(?<month>02[69]|11)

|
31-day months
(?2<day>3[01]|[12][0-9]|0?[1-9])/(2<month>0?[78]|1[02])

/(2<year>2007)
)
|

1 January 2008 till 29 August 2008

(2:
1 August till 29 August
(?<day>[12][0-9]|0?[1-9])/(?<month>0?8)/(?<year>2008)

1 Janary till 30 June

(?:
February
(?<day>[12][0-9]]0?[1-9])/(?<month>0?2)

|
30-day months
(?<day>30([12][0-9]]0?[1-9])/(?<month>02[46])

|
31-day months
(?2<day>3[01]][12][0-9]]|02[1-9])/(2<month>0?[1357])

4.5 Validate Traditional Date Formats, Excluding Invalid Dates | 265

/(2<year>2008)

)$
Regex options: Free-spacing
Regex flavors: .NET, Perl 5.10, Ruby 1.9

See Also

This chapter has several other recipes for matching dates and times. Recipe 4.5 shows
how to validate traditional date formats more simply, giving up some accuracy.
Recipe 4.6 shows how to validate traditional time formats. Recipe 4.7 shows how to
validate date and time formats according to the ISO 8601 standard.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition.

4.6 Validate Traditional Time Formats

Problem

You want to validate times in various traditional time formats, such as hh:mm and
hh:mm:ss in both 12-hour and 24-hour formats.

Solution
Hours and minutes, 12-hour clock:

~(1[0-2]]0?[1-9]): ([0-5]?[0-9]) (*?[AP]M)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours and minutes, 24-hour clock:

~(2[0-3]|[01]?[0-9]):([0-5]?[0-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
Hours, minutes, and seconds, 12-hour clock:

~(1[0-2]|0?[1-9]):([0-5]?[0-9]): ([0-5]?[0-9]) (*?[AP]M)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours, minutes, and seconds, 24-hour clock:

~(2[0-3]][01]2[0-9]): ([0-5]?[0-9]): ([0-5]?[0-9])$
Regex options: None

266 | Chapter4: Validation and Formatting

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The question marks in all of the preceding regular expressions make leading zeros
optional. Remove the question marks to make leading zeros mandatory.

Discussion

Validating times is considerably easier than validating dates. Every hour has 60 minutes,
and every minute has 60 seconds. This means we don’t need any complicated alterna-
tions in the regex. For the minutes and seconds, we don’t use alternation at all. <[0-5]?
[0-9]> matches a digit between 0 and 5, followed by a digit between 0 and 9. This
correctly matches any number between 0 and 59. The question mark after the first
character class makes it optional. This way, a single digit between 0 and 9 is also ac-
cepted as a valid minute or second. Remove the question mark if the first 10 minutes
and seconds should be written as 00 to 09. See Recipes 2.3 and 2.12 for details on
character classes and quantifiers such as the question mark.

For the hours, we do need to use alternation (see Recipe 2.8). The second digit allows
different ranges, depending on the first digit. On a 12-hour clock, if the first digit is 0,
the second digit allows all 10 digits, but if the first digit is 1, the second digit must be
0,1,or2.Inaregular expression, we write thisas<1[0-2]|0?[1-9]>. On a 24-hour clock,
if the first digit is 0 or 1, the second digit allows all 10 digits, but if the first digit is 2,
the second digit must be between 0 and 3. In regex syntax, this can be expressed as
«2[0-3]|[01]?[0-9]>. Again, the question mark allows the first 10 hours to be written
with a single digit. Whether you’re working with a 12- or 24-hour clock, remove the
question mark to require two digits.

We put parentheses around the parts of the regex that match the hours, minutes, and
seconds. That makes it easy to retrieve the digits for the hours, minutes, and seconds,
without the colons. Recipe 2.9 explains how parentheses create capturing groups.
Recipe 3.9 explains how you can retrieve the text matched by those capturing groups
in procedural code.

The parentheses around the hour part keeps two alternatives for the hour together. If
you remove those parentheses, the regex won’t work correctly. Removing the paren-
theses around the minutes and seconds has no effect, other than making it impossible
to retrieve their digits separately.

On a 12-hour clock, we allow the time to be followed by AM or PM. We also allow a
space between the time and the AM/PM indicator. <([AP]M> matches AM or PM. <e?»
matches an optional space. <(®?[AP]M)?> groups the space and the indicator, and makes
them optional as one unit. We don’t use <#?([AP]M) ?> because that would allow a space
even when the indicator is omitted.

4.6 Validate Traditional Time Formats | 267

Variations

If you want to search for times in larger bodies of text instead of checking whether
the input as a whole is a time, you cannot use the anchors <*> and «$>. Merely removing
the anchors from the regular expression is not the right solution. That would allow the
hour and minute regexes to match 12:12 within 9912:1299, for instance. Instead of
anchoring the regex match to the start and end of the subject, you have to specify that
the time cannot be part of longer sequences of digits.

This is easily done with a pair of word boundaries. In regular expressions, digits are
treated as characters that can be part of words. Replace both «*» and «$» with \b>. As
an example:

\b(2[0-3][[01]?[0-9]):([0-5]?[0-9])\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Word boundaries don’t disallow everything; they only disallow letters, digits and un-
derscores. The regex just shown, which matches hours and minutes on a 24-hour clock,
matches 16:08 within the subject text The time is 16:08:42 sharp. The space is not a
word character, whereas the 1 is, so the word boundary matches between them. The
8 is a word character, whereas the colon isn’t, so <\b> also matches between those two.

If you want to disallow colons as well as word characters, you need to use lookaround
(see Recipe 2.16), as shown in the following regex. Unlike before, this regex will not
match any part of The time is 16:08:42 sharp. It only works with flavors that support
lookbehind:

(2<![:\w])(2[0-3]][01]?[0-9]): ([0-5]2[0-9]) (?! [:\w])
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

See Also

This chapter has several other recipes for matching dates and times. Recipes 4.4 and
4.5 show how to validate traditional date formats. Recipe 4.7 shows how to validate
date and time formats according to the ISO 8601 standard.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround.

268 | Chapter4: Validation and Formatting

4.7 Validate IS0 8601 Dates and Times

Problem

You want to match dates and/or times in the official ISO 8601 format, which is the
basis for many standardized date and time formats. For example, in XML Schema, the
built-in date, time, and dateTime types are all based on ISO 8601.

Solution

TheISO 8601 standard defines a wide range of date and time formats. Most applications
that use ISO 8601 only use a subset of it. These solutions match the most commonly
used ISO 8601 date and time formats. We’ve also added solutions for XML Schema,
which is one particular implementation of ISO 8601.

Dates

The following matches a calendar month (e.g., 2008-08). The hyphen is required:
~([0-91{4})-(1[0-2]]0[1-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Named capture makes the regular expression and any code that may reference the
capturing groups easier to read:

~(2<year>[0-9]{4})-(?<month>1[0-2]]0[1-9])$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Python uses a different syntax for named capture, adding a P. For brevity, we only show
one solution using the Python syntax. All the other solutions using .NET-style named
capture can be easily adapted to Python-style named capture in the same way.

~(?P<year>[0-9]1{4})- (?P<month>1[0-2]|0[1-9])$
Regex options: None
Regex flavors: PCRE, Python

ISO 8601 allows hyphens to be omitted from calendar dates, making both 2010-08-20
and 20100820 valid representations of the same date. The following regex accounts for
this, but also allows for invalid formats like YYYY-MMDD and YYYYMM-DD.
~([0-9]{4})-?(1[0-2]|0[1-9])-?(3[01]|0[1-9]|[12][0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(?<year>[0-9]{4})-?(?<month>1[0-2]]|0[1-9])-?«
(?<day>3[01]|0[1-9]|[12][0-9])$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

4.7 Validate 150 8601 Dates and Times | 269

Calendar date, such as 2008-08-30 or 20080830. The hyphens are optional. This regex
uses a capturing group and a backreference to match YYYY-MM-DD or YYYYMMDD,
but not YYYY-MMDD or YYYYMM-DD.
~([0-9]{4})(-?)(1[0-2]]o[1-9])\2(3[01] |0[1-9] |[12][0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(?<year>[0-9]{4}) (?<hyphen>-?)(2<month>1[0-2]|0[1-9]) ¢
\k<hyphen>(?<day>3[01]|0[1-9]|[12][0-9])%
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Python also uses a different syntax for named backreferences:
~(?P<year>[0-9]{4}) (?P<hyphen>-2) (?P<month>1[0-2]|0[1-9]) «
(?P=hyphen) (?<day>3[01]|0[1-9]|[12][0-9])%

Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Ordinal date (e.g., 2008-243). The hyphen is optional:

~([0-9]{4})-?(36[0-6][3[0-5][0-9][[12][0-9]{2}|0[1-9][0-9][00[1-9])$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(2<year>[0-9]{4})-?«
(?<day>36[0-6]|3[0-5][0-9]|[12][0-9]{2}|0[1-9][0-9]|00[1-9])$

Regex options: None

Regex flavors: .NET, Java 7, PCRE 7, Perl 5.10, Ruby 1.9

Weeks
Week of the year (e.g., 2008-W35). The hyphen is optional:

~([0-9]{4})-2W(5[0-3][[1-4][0-9] |0[1-9])%

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(?2<year>[0-9]{4})-2W(?<week>5[0-3]|[1-4][0-9]|0[1-9])$%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Week date (e.g., 2008-W35-6). The hyphens are optional.

~([0-91{4})-?w(5[0-3][[1-4][0-9]|o[1-9])-?([1-7])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

~(2<year>[0-9]{4})-2W(?<week>5[0-3]|[1-4][0-9]|0[1-9])-?(?<day>[1-7])$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

270 | Chapter4: Validation and Formatting

Times

Hours and minutes (e.g., 17:21). The colon is optional:

~(2[0-3]|[o1][0-9]):2([0-5][0-9])%

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
A(?2<hour>2[0-3]|[01][0-9]):?(?<minute>[0-5][0-9])%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Hours, minutes, and seconds (e.g., 17:21:59). The colons are optional:

~(2[0-3]][01][0-9]):2([0-5][0-9]):?([0-5][0-9])$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(?<hour>2[0-3]]|[01][0-9]):?(?<minute>[0-5][0-9]):?«
(?<second>[0-5][0-9])%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Time zone designator (e.g., Z, +07 or +07:00). The colons and the minutes are optional:

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours, minutes, and seconds with time zone designator (e.g., 17:21:59+07:00). All the
colons are optional. The minutes in the time zone designator are also optional:

*(2[0-3]|[01][0-9]):?([0-5][0-9]):?([0-5][0-9]) <«

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

A(2<hour>2[0-3]|[01][0-9]):2(?<minute>[0-5][0-9]):?(?<second>[0-5][0-9]) <

Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Date and time

Calendar date with hours, minutes, and seconds (e.g., 2008-08-30 17:21:59 or 20080830
172159). A space is required between the date and the time. The hyphens and colons
are optional. This regex matches dates and times that specify some hyphens or colons
but omit others. This does not follow ISO 8601.
~([0-91{4})-?(1[0-2]|0[1-9])-?(3[01]|0[1-9]|[12][0-9]) ¢
*(2[0-3]|[01][0-9]):?([0-5][0-9]):?([0-5][0-9])$
Regex options: None

4.7 Validate 150 8601 Dates and Times | 271

Download from Wow! eBook <www.wowebook.com>

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

~(2<year>[0-9]{4})-?(?2<month>1[0-2]|0[1-9])-2«
(?<day>3[01]|0[1-9]|[12][0-9])®(?<hour>2[0-3]|[01][0-9])+«
:?2(?<minute>[0-5][0-9]):?(?<second>[0-5][0-9])%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

A more complicated solution is needed if we want to match date and time values that
specify either all of the hyphens and colons, or none of them. The cleanest solution is
to use conditionals. But only some flavors support conditionals.

~([0-91{4})(-)?(1[0-2]]0[1-9])(?(2)-)(3[01]|0[1-9]|[12][0-9]) ¢
*(2[0-3][[01][0-9])(?(2):)([0-5][0-9])(?(2):)([0-5][0-9])%
Regex options: None
Regex flavors: .NET, PCRE, Perl, Python

~(2<year>[0-9]{4}) (?<hyphen>-)?(2<month>1[0-2]]|0[1-9]) ¢
(?(hyphen)-)(?<day>3[01]]|0[1-9]|[12][0-9])® (?<hour>2[0-3]|[01][0-9]) <«
(?(hyphen):) (?<minute>[0-5][0-9])(?(hyphen):)(?<second>[0-5][0-9])$
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10
~(?P<year>[0-9]{4}) (?P<hyphen>-)?(?P<month>1[0-2]|0[1-9]) «
(?(hyphen)-) (?P<day>3[01]|0[1-9]|[12][0-9])®(?P<hour>2[0-3]|[01][0-9])«
(?(hyphen):) (?P<minute>[0-5][0-9]) (?(hyphen):)(?P<second>[0-5][0-9])$
Regex options: None
Regex flavors: PCRE, Perl 5.10, Python

If conditionals are not available, then we have to use alternation to spell out the alter-
natives with and without delimiters.

~(?:([0-9]{4})-?(1[0-2]|0[2-9])-?(3[01] |0[2-9][[12][0-9]) «
*(2[0-3][[o1][0-9]):?([0-5][0-9]):?([0-5][0-9]) |«
([0-9]{4})(1[0-2]|o[1-9])(3[01]|0[1-9][[12][0-9])
*(2[0-3][[01][0-9])([0-5][0-9])([0-5][0-9]))$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

XML Schema dates and times

The date and time types defined in the XML Schema standard are based on the ISO
8601 standard. The date types allow negative years for years before the start of the
calendar (B.C. years). It also allows for years with more than four digits, but not for
years with fewer than four digits. Years with more than four digits must not have leading
zeros. If you only want to allow years with four digits as in the preceding solutions,
remove -?(?:[1-9][0-9]*)? from the following solutions.

Date, with optional time zone (e.g., 2008-08-30 or 2008-08-30+07:00). Hyphens are
required. This is the XML Schema date type:

272 | Chapter4: Validation and Formatting

~(-2(2:[1-9][0-9]*)?[0-9]{4})-(1[0-2]|0[1-9])-(3[01] |0[1-9]|[12][0-9])«
(Z|[+-1(2:2[0-3]|[01][0-9]):[0-5][0-9])?$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

~(2<year>-2(?:[12-9][0-9]1*)?[0-9]{4})- (?<month>1[0-2]|0[1-9])-«
(?<day>3[01]|0[1-9]|[12][0-9])«
(?<timezone>Z|[+-](?:2[0-3]|[01][0-9]):[0-5][0-9])?%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Time, with optional fractional seconds and time zone (e.g., 01:45:36 or
01:45:36.123+07:00). There is no limit on the number of digits for the fractional sec-
onds. This is the XML Schema time type:

~(2[0-3]|[01][0-9]): ([0-5][0-9]): ([0-5][0-9]) (\.[0-9]+)?
(Z|[+-1(2:2[0-3]|[01][0-9]):[0-5][0-9])?$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

A(?2<hour>2[0-3]|[01][0-9]): (?<minute>[0-5][0-9]):(?<second>[0-5][0-9]) <
(2<frac>\.[0-9]+)?(2<timezone>Z|[+-](?:2[0-3]|[01][0-9]):[0-5][0-9])?%
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Date and time, with optional fractional seconds and time zone (e.g.,
2008-08-30T01:45:36 or 2008-08-30T01:45:36.123Z). This is the XML Schema date
Time type:

~(-2(?2:[1-9][0-9]*)?[0

T(2[0-3]|[01][0-9]): ([0~

(Z|[+-1(?:2[0-3][[01][
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

~(2<year>-2(?:[12-9][0-9]1*)?[0-9]{4})- (?<month>1[0-2]|0[1-9])-«
(?<day>3[01]|0[1-9]|[212][0-9])T(?<hour>2[0-3]|[01][0-9]): <
(?2<minute>[0-5][0-9]): (?<second>[0-5][0-9]) (2<ms>\.[0-9]+)?«
(?2<timezone>Z|[+-](?:2[0-3]|[01][0-9]):[0-5][0-9])?%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

-91{4})- (1[0 2]|o[1-9])-(3[01] | [1-9][[12][0-9])+
5][0-91):([o- 5][0 91)(\.[0-9]+)24
-9]):[0-5][0-9])?%

Discussion

ISO 8601 defines a wide range of date and time formats. The regular expressions pre-
sented here cover the most common formats, but most systems that use ISO 8601 only
use a subset. For example, in XML Schema dates and times, the hyphens and colons
are mandatory. To make hyphens and colons mandatory, simply remove the question
marks after them. To disallow hyphens and colons, remove the hyphens and colons
along with the question mark that follows them. Do watch out for the noncapturing

4.7 Validate 150 8601 Dates and Times | 273

groups, which use the <(?:---)> syntax. If a question mark and a colon follow an opening
parenthesis, those three characters open a noncapturing group.

We put parentheses around all the number parts of the regexes. That makes it easy to
retrieve the numbers for the years, months, days, hours, minutes, seconds, and time
zones. Recipe 2.9 explains how parentheses create capturing groups. Recipe 3.9 ex-
plains how you can retrieve the text matched by those capturing groups in procedural
code.

For most regexes, we also show an alternative using named capture. Some of these date
and time formats may be unfamiliar to you or your fellow developers. Named capture
makes the regex easier to understand. .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, and
Ruby 1.9 support the <(?<name>--*)> syntax used in the solutions in this recipe. All
versions of PCRE and Python covered in this book support the alternative «(?
P<name>---)» syntax, which adds a «P>. See Recipes 2.11 and 3.9 for details.

The number ranges in all the regexes are strict. For example, the calendar day is re-
stricted between 01 and 31. You'll never end up with day 32 or month 13. None of the
regexes here attempts to exclude invalid day and month combinations, such as Febru-
ary 31 Recipe 4.5 explains how you can deal with that.

The regular expressions, except those in the XML Schema subsection, make the indi-
vidual hyphens and colons optional. This does not follow ISO 8601 exactly. For ex-
ample, 1733:26 is not a valid ISO 8601 time, but will be accepted by the time regexes.
Requiring all hyphens and colons to be present or omitted at the same time makes your
regex quite a bit more complex.

If the delimiters are all the same, we can do this quite easily using a capturing group
for the first delimiter and backreferences for the remaining delimiters. The “dates”
subsection of the “Solution” section shows an example. For the first hyphen, we use
<(-?)», <(2<hyphen>-2)> or «(2P<hyphen>-?)> to match an optional hyphen and capture
it into a named or numbered group. If the hyphen was omitted, the capturing group
stores the zero-length string. The question mark that makes the hyphen optional must
be inside the group. If we made the group itself optional, then backreferences to that
group would always fail to match if the hyphen was not matched, as the group would
not have participated in the match at all. For the remaining hyphens, we use \2,
<\k<hyphen>>, or «(?P=hyphen)> to match the same text that was matched by the cap-
turing group, which is either a hyphen or nothing at all, depending on whether the first
hyphen was matched or not. When using numbered capture, make sure to use the
correct number for the backreference.

If the delimiters are different, such as when matching a single string with both a date
and a time, the solution is more complex. The “date and time” subsection shows an
example. This time, we use <(-)?>, <(?<hyphen>-)?> or «(?P<hyphen>-)?> to match the
hyphen. Now the question mark is outside the capturing group so that it will not par-
ticipate in the match at all when the hyphen is omitted. This allows us to use the
capturing group with a conditional. <(?(2)-)> matches a hyphen and <(?(2):)> matches

274 | Chapter4: Validation and Formatting

a colon if the second capturing group participated in the match. The conditionals have
no alternative, which means they will match nothing at all (but still succeed) when the
second capturing group did not participate in the match. «(?(hyphen)-)> and «(?
(hyphen):)> do the same using named capture.

Only some flavors support conditionals. If conditionals are not available, the only sol-
ution is to use alternation to spell out the two alternatives with and without delimiters.
The disadvantage of this solution is that it results in two capturing groups for each part
of the date and time. Only one of the two sets of capturing groups will participate in
the match. Code that uses this regex will have to check both groups.

See Also

This chapter has several other recipes for matching dates and times. Recipes 4.4 and
4.5 show how to validate traditional date formats. Recipe 4.6 shows how to validate
traditional time formats.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.10 explains backreferences.
Recipe 2.11 explains named capturing groups. Recipe 2.12 explains repetition.
Recipe 2.17 explains conditionals.

4.8 Limit Input to Alphanumeric Characters

Problem

Your application requires that users limit their responses to one or more alphanumeric
English characters (letters A—Z and a—z, and digits 0-9).

Solution

With regular expressions at your disposal, the solution is dead simple. A character class
can set up the allowed range of characters. With an added quantifier that repeats the
character class one or more times, and anchors that bind the match to the start and end
of the string, you’re good to go.

Regular expression
~[A-Z0-9]+%
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Ruby example

if subject =~ /7[A-Z0-9]+$/i
puts "Subject is alphanumeric"

4.8 Limit Input to Alphanumeric Characters | 275

else
puts "Subject is not alphanumeric"
end

Follow Recipe 3.6 to add this regex to your code in other programming languages.
Recipe 3.4 shows how to set regular expression options, including the “case insensitive”
modifier used here.

Discussion
Let’s look at the four pieces of this regular expression one at a time:
A # Assert position at the beginning of the string.
[A-Z0-9] # Match a character from A to Z or from 0 to 9
+ # between one and unlimited times.
$ # Assert position at the end of the string.

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

The <» and «$» assertions at the beginning and end of the regular expression ensure
that the entire input string is tested. Without them, the regex could match any part of
a longer string, letting invalid characters through. The plus quantifier ¢+ repeats the
preceding element one or more times. If you wanted to allow the regex to match an
entirely empty string, you could replace the «+» with ¢. That’s because the asterisk
quantifier ¢*» allows zero or more repetitions, effectively making the preceding element
optional.

Variations

Limit input to ASCII characters

The following regular expression limits input to the 128 characters in the seven-bit
ASCII character table. This includes 33 nonvisible control characters:

AT\x00-\x7F]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Limit input to ASCII noncontrol characters and line breaks

Use the following regular expression to limit input to visible characters and whitespace
in the ASCII character table, excluding control characters. The line feed and carriage
return characters (at positions 0x0A and 0x0D, respectively) are the most commonly
used control characters, so they’re explicitly included using (\n> (line feed) and
A\r> (carriage return):

A\n\r\x20-\x7E]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

276 | Chapter4: Validation and Formatting

Limit input to shared 1S0-8859-1 and Windows-1252 characters

[SO-8859-1 and Windows-1252 (often called ANSI) are two commonly used eight-bit
character encodings that are both based on the Latin-1 standard (or more formally,
ISO/IEC 8859-1). However, the characters they map to the positions between 0x80
and 0x9F are incompatible. ISO-8859-1 uses these positions for control codes, whereas
Windows-1252 uses them for an extended range of letters and punctuation. These
differences sometimes lead to difficulty displaying characters, particularly with docu-
ments that do not declare their encoding or when the recipient is using a non-Windows
system. The following regular expression can be used to limit input to characters that
are shared by ISO-8859-1 and Windows-1252 (including shared control characters):

~[\x00-\x7F\xA0-\xFF]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The hexadecimal notation might make this regular expression hard to read, but it works
the same way as the <[A-Z0-9]> character class shown earlier. It matches characters in
two ranges: \x00-\x7F and \xA0-\xFF.

Limit input to alphanumeric characters in any language

This regular expression limits input to letters and numbers from any language or script:

A\p{LN\p{MH\p{Nd}]+$
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

This uses a character class that includes shorthands for all code points in the Unicode
Letter, Mark, and Decimal Number categories, which follows the official Unicode def-
inition of an alphanumeric character. The Mark category is included since marks are
required for words of many languages. Marks are code points that are intended to be
combined with other characters (for example, to form an accented version of a base
letter).

Unfortunately, Unicode categories are not supported by all of the regular expression
flavors covered by this book. Specifically, this regex will not work with JavaScript (un-
less using XRegExp), Python, or Ruby 1.8’s native flavor. Using this regex with PCRE
requires PCRE to be compiled with UTF-8 support, and Unicode categories can be used
with PHP’s preg functions (which rely on PCRE) if the /u option is appended to the
regex.

The following regex shows a workaround for Python:
A [/\\w_] +$
Regex options: Unicode
Regex flavors: Python

4.8 Limit Input to Alphanumeric Characters | 277

Here, we work around the lack of Unicode categories in Python by using the UNICODE
or U flag when creating the regular expression. This changes the meaning of some regex
tokens by making them use the Unicode character table. <\w> then gets us most of the
way to a solution since it matches alphanumeric characters and the underscore. By
using its inverse <\W> in a negated character class, we can remove the underscore from
this set. Double negatives like this are occasionally quite useful in regular expressions,
though they can be difficult to wrap your head around.! Python 3.x includes non-ASCII
characters in shorthands like (\w> by default, and therefore doesn’t require the
UNICODE flag.

See Also
Recipe 4.9 shows how to limit text by length instead of character set.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.2 explains how to match nonprinting characters. Recipe 2.3 explains character
classes. Recipe 2.5 explains anchors. Recipe 2.12 explains repetition. Recipe 2.7 ex-
plains how to match Unicode characters.

4.9 Limit the Length of Text

Problem

You want to test whether a string is composed of between 1 and 10 letters from A to Z.

Solution

All the programming languages covered by this book provide a simple, efficient way to
check the length of text. For example, JavaScript strings have a length property that
holds an integer indicating the string’s length. However, using regular expressions to
check text length can be useful in some situations, particularly when length is only one
of multiple rules that determine whether the subject text fits the desired pattern. The
following regular expression ensures that text is between 1 and 10 characters long, and
additionally limits the text to the uppercase letters A—Z. You can modify the regular
expression to allow any minimum or maximum text length, or allow characters other
than A-Z.

Regular expression

~[A-Z1{1,10}$
Regex options: None

1. For even more fun (if you have a twisted definition of fun), try creating triple, quadruple, or even greater
levels of negatives by throwing in negative lookaround (see Recipe 2.16) and character class subtraction
(see “Flavor-Specific Features” on page 36 in Recipe 2.3).

278 | Chapter4: Validation and Formatting

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Perl example
if ($ARGV[0] =~ /~[A-Z]{1,10}$/) {
print "Input is valid\n";
} else {
print "Input is invalid\n";
}

See Recipe 3.6 for help with implementing this regular expression with other program-
ming languages.

Discussion
Here’s the breakdown for this very straightforward regex:

" # Assert position at the beginning of the string.
[A-Z] # Match one letter from A to Z

{1,10} # between 1 and 10 times.
$ # Assert position at the end of the string.

Regex options: Free-spacing

Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

The ¢ and «$> anchors ensure that the regex matches the entire subject string; other-
wise, it could match 10 characters within longer text. The <[A-Z]> character class
matches any single uppercase character from A to Z, and the interval quantifier
«{1,10}> repeats the character class from 1 to 10 times. By combining the interval quan-
tifier with the surrounding start- and end-of-string anchors, the regex will fail to match
if the subject text’s length falls outside the desired range.

Note that the character class <([A-Z]> explicitly allows only uppercase letters. If you want
to also allow the lowercase letters a to z, you can either change the character class to
«[A-Za-z]> or apply the case insensitive option. Recipe 3.4 shows how to do this.

B
)

A mistake commonly made by new regular expression users is to try to
save a few characters by using the character class range <([A-z]>. At first
W+ glance, this might seem like a clever trick to allow all uppercase and
" lowercase letters. However, the ASCII character table includes several
punctuation characters in positions between the A—Z and a—z ranges.
Hence, <[A-z]> is actually equivalent to <[A-Z[\]* “a-z]>.

4.9 Limitthe Length of Text | 279

Variations

Limit the length of an arbitrary pattern

Because quantifiers such as <{1,10}» apply only to the immediately preceding element,
limiting the number of characters that can be matched by patterns that include more
than a single token requires a different approach.

As explained in Recipe 2.16, lookaheads (and their counterpart, lookbehinds) are a
special kind of assertion that, like «*> and «$», match a position within the subject string
and do not consume any characters. Lookaheads can be either positive or negative,
which means they can check if a pattern follows or does not follow the current position
in the match. A positive lookahead, written as «(?=""")>, can be used at the beginning
of the pattern to ensure that the string is within the target length range. The remainder
of the regex can then validate the desired pattern without worrying about text length.
Here’s a simple example:

r(?2=.{1,10}%).*
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

~(2=[\S\s]{1,10}$)[\S\s]*
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

It is important that the <$> anchor appears inside the lookahead because the maximum
length test works only if we ensure that there are no more characters after we’ve reached
the limit. Because the lookahead at the beginning of the regex enforces the length range,
the following pattern can then apply any additional validation rules. In this case, the
pattern <.® (or <[\S\s]*® in the version that adds native JavaScript support) is used to
simply match the entire subject text with no added constraints.

The first regex uses the “dot matches line breaks” option so that it will work correctly
when your subject string contains line breaks. See Recipe 3.4 for details about how to
apply this modifier with your programming language. Standard JavaScript without
XRegExp doesn’t have a “dot matches line breaks” option, so the second regex uses a
character class that matches any character. See “Any character including line
breaks” on page 39 for more information.

Limit the number of nonwhitespace characters

The following regex matches any string that contains between 10 and 100 nonwhite-
space characters:
Ms*(?:\S\s*){10,100}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

280 | Chapter4: Validation and Formatting

By default, \\s> in .NET, JavaScript, Perl, and Python 3.x matches all Unicode white-
space, and <\\S> matches everything else. In Java, PCRE, Python 2.x, and Ruby, <\s»
matches ASCII whitespace only, and <\S> matches everything else. In Python 2.x, you
can make (\s> match all Unicode whitespace by passing the UNICODE or U flag when
creating the regex. In Java 7, you can make <\s> match all Unicode whitespace by pass-
ing the UNICODE_CHARACTER CLASS flag. Developers using Java 4 to 6, PCRE, and Ruby
1.9 who want to avoid having any Unicode whitespace count against their character
limit can switch to the following version of the regex that takes advantage of Unicode
categories (described in Recipe 2.7):

MAP{ZRN\sT*(2: ["\p{Z\s[\p{Z}\s]*){10,100}$
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support for this to work. In PHP, turn on UTF-8
support with the /u pattern modifier.

This latter regex combines the Unicode <\p{Z}» Separator property with the <\s> short-
hand for whitespace. That’s because the characters matched by <\p{z}» and <\s> do not
completely overlap. <\\s> includes the characters at positions 0x09 through 0x0D (tab,
line feed, vertical tab, form feed, and carriage return), which are not assigned the Sep-
arator property by the Unicode standard. By combining \\p{z}> and <\s> in a character
class, you ensure that all whitespace characters are matched.

In both regexes, the interval quantifier <{10,100}» is applied to the noncapturing group
that precedes it, rather than a single token. The group matches any single nonwhite-
space character followed by zero or more whitespace characters. The interval quantifier
can reliably track how many nonwhitespace characters are matched because exactly
one nonwhitespace character is matched during each iteration.

Limit the number of words

The following regex is very similar to the previous example of limiting the number of
nonwhitespace characters, except that each repetition matches an entire word rather
than a single nonwhitespace character. It matches between 10 and 100 words, skipping
past any nonword characters, including punctuation and whitespace:

AW (? :\w+\b\W*){10,100}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In Java 4 to 6, JavaScript, PCRE, Python 2.x, and Ruby, the word character token
Aw in this regex will match only the ASCII characters A—Z, a—z, 0-9, and _, and there-
fore this cannot correctly count words that contain non-ASCII letters and numbers.
In .NET and Perl, \\w> is based on the Unicode table (as is its inverse, <\W>, and the word
boundary <\b>) and will match letters and digits from all Unicode scripts. In Python
2.x, you can choose to make these tokens Unicode-based by passing the UNICODE or U
flag when creating the regex. In Python 3.x, they are Unicode-based by default. In Java

4.9 Limit the Length of Text | 281

7, you can choose to make the shorthands for word and nonword characters Unicode-
based by passing the UNICODE_CHARACTER_CLASS flag. Java’s <\b> is always Unicode-based.

If you want to count words that contain non-ASCII letters and numbers, the following
regexes provide this capability for additional regex flavors:

MINP{LNp{MP\p{Nd}\p{Pc}]*(?: [\p{L}\p{M}\p{Nd}\p{Pc}]+«
\b[\p{L}\p{M}\p{Nd}\p{Pc}1*){10,100}$

Regex options: None

Regex flavors: .NET, Java, Perl

AM\P{LINp{MINp{Nd}\p{Pc}T*(?: [\p{L}\p{M}\p{Nd}\p{Pc}]+«
(2:["\p{LI\p{M}p{Nd}\p{Pc}]+|$)){10,100}$

Regex options: None

Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support for this to work. In PHP, turn on UTF-8
support with the /u pattern modifier.

As noted, the reason for these different (but equivalent) regexes is the varying handling
of the word character and word boundary tokens, explained more fully in “Word
Characters” on page 47.

The last two regexes use character classes that include the separate Unicode categories
for letters, marks (necessary for matching words of many languages), decimal numbers,
and connector punctuation (the underscore and similar characters), which makes them
equivalent to the earlier regex that used (\w> and <\W>.

Each repetition of the noncapturing group in the first two of these three regexes matches
an entire word followed by zero or more nonword characters. The \W> (or <[*\p{L}
\p{M}I\p{Nd}\p{Pc}]>) token inside the group is allowed to repeat zero times in case the
string ends with a word character. However, since this effectively makes the nonword
character sequence optional throughout the matching process, the word boundary as-
sertion <\b> is needed between <\w> and \W> (or <[\p{L}\p{M}\p{Nd}\p{Pc}]> and «[*
\p{LI\p{M}\p{Nd}\p{Pc}]>), to ensure that each repetition of the group really matches
an entire word. Without the word boundary, a single repetition would be allowed to
match any part of a word, with subsequent repetitions matching additional pieces.

The third version of the regex (which adds support for XRegExp, PCRE, and Ruby 1.9)
works a bit differently. It uses a plus (one or more) instead of an asterisk (zero or more)
quantifier, and explicitly allows matching zero characters only if the matching process
has reached the end of the string. This allows us to avoid the word boundary token,
which is necessary to ensure accuracy since <\b> is not Unicode-enabled in XRegExp,
PCRE, or Ruby. <\b> is Unicode-enabled in Java, even though Java’s (\w> is not (unless
you use the UNICODE_CHARACTER_CLASS flag in Java 7).

Unfortunately, none of these options allow standard JavaScript or Ruby 1.8 to correctly
handle words that use non-ASCII characters. A possible workaround is to reframe the
regex to count whitespace rather than word character sequences, as shown here:

282 | Chapter4: Validation and Formatting

Ms*(2:\S+(?:\s+|$)){10,100}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, Perl, PCRE, Python, Ruby

In many cases, this will work the same as the previous solutions, although it’s not
exactly equivalent. For example, one difference is that compounds joined by a hyphen,
such as “far-reaching,” will now be counted as one word instead of two. The same
applies to words with apostrophes, such as “don’t.”

See Also

Recipe 4.8 shows how to limit input by character set (alphanumeric, ASCII-only, etc.)
instead of length.

Recipe 4.10 explains the subtleties that go into precisely limiting the number of lines
in your text.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.4 explains that the dot matches any
character. Recipe 2.5 explains anchors. Recipe 2.7 explains how to match Unicode
characters. Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround.

4.10 Limit the Number of Lines in Text

Problem

You need to check whether a string is composed of five or fewer lines, without regard
for how many total characters appear in the string.

Solution

The exact characters or character sequences used as line separators can vary depending
on your operating system’s convention, application or user preferences, and so on.
Crafting an ideal solution therefore raises questions about what conventions for indi-
cating the start of a new line should be supported. The following solutions support the
standard MS-DOS/Windows (<\r\m), legacy Mac OS (<\\r»), and Unix/Linux/BSD/OS
X (\m) line break conventions.

Regular expression

The following three flavor-specific regexes contain two differences. The first regex uses
atomic groups, written as «(?>')», instead of noncapturing groups, written as
«(?:)>, because they have the potential to provide a minor efficiency improvement
here for the regex flavors that support them. Python and JavaScript do not support
atomic groups, so they are not used with those flavors. The other difference is the tokens
used to assert position at the beginning and end of the string (<\A> or ¢*» for the beginning

4.10 Limit the Number of Lines in Text | 283

of the string, and <\z>, \2», or <$> for the end). The reasons for this variation are dis-
cussed in depth later in this recipe. All three flavor-specific regexes, however, match
exactly the same strings:
\A(>[M\L\nT*(2>\r\n?|\n)){0,4}["\r\n]*\z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby
\A(Z: [M\r\n]*(2:\r\n? |[\n)){0,4}["\r\n]*\Z
Regex options: None
Regex flavor: Python
A2 [M\\n]*(2:\r\n? | \n)){0,4}["\r\n]*$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavor: JavaScript

PHP (PCRE) example
if (preg_match('/AA(Z>[*\r\n]*(?>\r\n?|\n)){0,4}["\r\n]*\z/",
$ _POST['subject'])) {
print 'Subject contains five or fewer lines';
} else {
print 'Subject contains more than five lines';
}

See Recipe 3.6 for help implementing these regular expressions with other program-
ming languages.

Discussion

All of the regular expressions shown so far in this recipe use a grouping that matches
any number of non-line-break characters followed by an MS-DOS/Windows, legacy
Mac OS, or Unix/Linux/BSD/OS X line break sequence. The grouping is repeated be-
tween zero and four times, since four line breaks occur in five lines of text. After the
grouping, we allow one last sequence of non-line-break characters to fill out the fifth
line, if present.

In the following example, we’ve broken up the first version of the regex into its indi-
vidual parts. We’ll explain the variations for alternative regex flavors afterward:

\A # Assert position at the beginning of the string.
P g g g
?> # Group but don't capture or keep backtracking positions:
P P P g P
[*\r\n]* # Match zero or more characters except CR and LF.
(» # Group but don't capture or keep backtracking positions:
\r\n? # Match a CR, with an optional following LF (CRLF).
| # Or:
\n # Match a standalone LF character.
) # End the noncapturing, atomic group.
{0,4} # End group; repeat between zero and four times.
group P

284 | Chapter4: Validation and Formatting

Download from Wow! eBook <www.wowebook.com>

[*\r\n]* # Match zero or more characters except CR and LF.
\z # Assert position at the end of the string.

Regex options: Free-spacing

Regex flavors: .NET, Java, PCRE, Perl, Ruby

The leading \\A> matches the position at the beginning of the string, and <\z> matches
at the end. This helps to ensure that the entire string contains no more than five lines,
because unless the regex is anchored to the start and end of the text, it can match any
five lines within a longer string.

Next, an atomic group (see Recipe 2.14) encloses a character class that matches any
number of non-line-break characters and a subgroup that matches one line break se-
quence. The character class is optional (in that its following quantifier allows it to repeat
zero times), but the subgroup is required and must match exactly one line break per
repetition of the outer group. The outer group’s immediately following quantifier al-
lows it to repeat between zero and four times. Zero repetitions allows matching a com-
pletely empty string, or a string with only one line (no line breaks).

Following the outer group is another character class that matches zero or more non-
line-break characters. This lets the regex fill in the match with the fifth line of subject
text, if present. We can’t simply omit this class and change the preceding quantifier to
«{0,5}>, because then the text would have to end with a line break to match at all. So
long as the last line was empty, it would also allow matching six lines, since six lines
are separated by five line breaks. That’s no good.

In all of these regexes, the subgroup matches any of three line break sequences:

* A carriage return followed by a line feed (<\r\n, the conventional MS-DOS/Win-
dows line break sequence)

* A standalone carriage return (<\r, the legacy Mac OS line break character)

¢ A standalone line feed (<\\n», the conventional Unix/Linux/BSD/OS X line break
character)

Now let’s move on to the cross-flavor differences.

The first version of the regex (used by all flavors except Python and JavaScript) uses
atomic groups rather than simple noncapturing groups. Although in some cases the
use of atomic groups can have a much more profound impact, in this case they simply
let the regex engine avoid a bit of unnecessary backtracking that can occur if the match
attempt fails.

The other cross-flavor differences are the tokens used to assert position at the beginning
and end of the string. All of the regex flavors discussed here support «*> and <$», so why
do some of the regexes use \\), \\2>, and (\z> instead? The short explanation is that
the meaning of these metacharacters differs slightly between regular expression flavors.
The long explanation leads us to a bit of regex history....

4.10 Limit the Number of Lines in Text | 285

When using Perl to read a line from a file, the resulting string ends with a line break.
Hence, Perl introduced an “enhancement” to the traditional meaning of «$» that has
since been copied by most regex flavors. In addition to matching the absolute end of a
string, Perl’s <$» matches just before a string-terminating line break. Perl also introduced
two more assertions that match the end of a string: <\\Z> and <\z>. Perl’s (\\2> anchor has
the same quirky meaning as <$, except that it doesn’t change when the option to let
» and «$> match at line breaks is set. (\\z> always matches only the absolute end of a
string, no exceptions. Since this recipe explicitly deals with line breaks in order to count
the lines in a string, it uses the <\z> assertion for the regex flavors that support it, to
ensure that an empty, sixth line is not allowed.

Most of the other regex flavors copied Perl’s end-of-line/string anchors. .NET, Java,
PCRE, and Ruby all support both <\Z> and <\z> with the same meanings as Perl. Python
includes only \\2> (uppercase), but confusingly changes its meaning to match only the
absolute end of the string, just like Perl’s lowercase <\z>. JavaScript doesn’t include any
“z” anchors, but unlike all of the other flavors discussed here, its <$> anchor matches
only at the absolute end of the string (when the option to let <*> and «$> match at line

breaks is not enabled).

As for <\A, the situation is somewhat better. It always matches only at the start of a
string, and it means exactly the same thing in all flavors discussed here, except Java-
Script (which doesn’t support it).

B
o)

Although it’s unfortunate that these kinds of confusing cross-flavor in-

consistencies exist, one of the benefits of using the regular expressions
- . . . E)

o5 in this book is that you generally won’t need to worry about them. Gory

" details like the ones we’ve just described are included in case you care
to dig deeper.

Variations

Working with esoteric line separators

The previously shown regexes limit support to the conventional MS-DOS/Windows,
Unix/Linux/BSD/OS X, and legacy Mac OS line break character sequences. However,
there are several rarer vertical whitespace characters that you might occasionally en-
counter. The following regexes take these additional characters into account while
limiting matches to five lines of text or fewer
\A(?>\V*¥\R){0,4}\V*\z
Regex options: None
Regex flavors: PCRE 7.2 (with the PCRE_BSR_UNICODE option), Perl 5.10

\A(2>[M\n-\r\x85\x{2028 }\x{2029} |*(?>\r\n?| «
[\n-\f\x85\x{2028}\x{2029}1)){0,4} [*\n-\r\x85\x{2028}\x{2029}]*\z

Regex options: None

286 | Chapter4: Validation and Formatting

Regex flavors: Java 7, PCRE, Perl

\A(?>[*\n-\r\u0085\u2028\u2029]*(?>\r\n?| «
[\n-\f\u0085\u2028\u2029])){0,4}[*\n-\r\uoo8s5\u2028\u2029]*\z
Regex options: None
Regex flavors: .NET, Java, Ruby 1.9

\A(?>["\n-\r\x85\u2028\u2029]*(?>\r\n?| «

[\n-\f\x85\u2028\u2029])){0,4}[~\n-\r\x85\u2028\u2029]*\z
Regex options: None
Regex flavors: .NET, Java

\A(?:["\n-\r\x85\u2028\u2029]*(?:\r\n?| ¢
[\n-\f\x85\u2028\u2029])){0,4}[*\n-\r\x85\u2028\u2029]1*\z
Regex options: None
Regex flavor: Python
A(2:["\n-\r\x85\u2028\u2029]*(?:\r\n?| «
[\n-\f\x85\u2028\u2029])){0,4}[*\n-\r\x85\u2028\u2029]*$

Regex options: None (

[LWAN

Regex flavor: JavaScript

and $ match at line breaks” must not be set)

Ruby 1.8 does not support Unicode regular expressions, and therefore cannot use any
of these options. Ruby 1.9 does not support the shorter <\x¥\> syntax for non-ASCII
character positions (anything greater than 0x7F), and therefore must use <\u0085> in-

stead of <\x85>.

All of these regexes handle the line separators in Table 4-1, listed with their Unicode
positions and names. This list comprises the characters that the Unicode standard rec-
ognizes as line terminators.

Table 4-1. Line separators

Unicode sequence
U+000D U+000A

U+000A

U+000B

U+000C
U+000D
U+0085
U+2028

U+2029

Regex equivalent

Ar\m

A

A\ or <\\x0B>»

AP
Ap
<\x85> or <\uoo8s>

<\u2028> or
\x{2028}>

<\u2029> or
Ax{2029}>

Name

Carriage return and line feed

Line feed

Line tabulation (aka vertical
tab)

Form feed
Carriage return
Next line

Line separator

Paragraph separator

Abbr.
CRLF

LF

VT

FF
QR
NEL
LS

PS

Common usage

Windows and MS-DOS text
files

Unix, Linux, BSD, and 0S X text
files

(Rare)

(Rare)
Legacy Mac 0S text files
IBM mainframe text files
(Rare)

(Rare)

4.10 Limit the Number of Lines in Text | 287

See Also

Recipe 4.9 shows how to limit the length of text based on characters and words, rather
than lines.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.2 explains how to match nonprinting characters. Recipe 2.3 explains character
classes. Recipe 2.5 explains anchors. Recipe 2.7 explains how to match Unicode char-
acters. Recipe 2.9 explains grouping. Recipe 2.12 explains repetition. Recipe 2.14 ex-
plains atomic groups.

4.11 Validate Affirmative Responses

Problem

You need to check a configuration option or command-line response for a positive
value. You want to provide some flexibility in the accepted responses, so that true, t,
yes, y, okay, ok, and 1 are all accepted in any combination of uppercase and lowercase.

Solution

Using a regex that combines all of the accepted forms allows you to perform the check
with one simple test.

Regular expression

~(2:1]t(2:rue)?|y(?:es)?|ok(?:ay)?)$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

JavaScript example
var yes = /*(?:1|t(?:rue)?|y(?:es)?|ok(?:ay)?)$/i;
if (yes.test(subject)) {
alert("Yes");

} else {
alert("No");

Follow Recipe 3.6 to run this regex with other programming languages. Recipe 3.4
shows how to apply the “case insensitive” regex option, among others.

Discussion

The following breakdown shows the individual parts of the regex. Combinations of
tokens that are easy to read together are shown on the same line:

288 | Chapter4: Validation and Formatting

" # Assert position at the beginning of the string.

(2: # Group but don't capture:

1 # Match "1".

| # Or:

t(?:rue)? # Match "t", optionally followed by "rue".
| # Or:

y(?:es)? # Match "y", optionally followed by "es".
| # Or:

ok(?:ay)? # Match "ok", optionally followed by "ay".

End the noncapturing group.
$ # Assert position at the end of the string.

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

This regex is essentially a simple test for one of seven literal, case-insensitive values. It
could be written in a number of ways. For example, <*(?:[1ty]|true|yes|ok(?:ay)?)
$» is an equally good approach. Simply alternating between all seven values as <*(?:1|
t|truely|yes|ok|okay)$> would also work fine, although for performance reasons it’s
generally better to reduce the amount of alternation via the pipe ¢<|» operator in favor
of character classes and optional suffixes (using the <?> quantifier). In this case, the
performance difference is probably no more than a few microseconds, but it’s a good
idea to keep regex performance issues in the back of your mind. Sometimes the differ-
ence between these approaches can surprise you.

All of these examples surround the potential match values with a noncapturing group
to limit the reach of the alternation operators. If we omit the grouping and instead use
something like *true|yes$>, the regex engine will search for “the start of the string
followed by ‘true’” or “‘yes’ followed by the end of the string.” <*(?:true|yes)$> tells
the regex engine to find the start of the string, then either “true” or “yes,” and then the
end of the string.

«we

See Also

Recipes 5.2 and 5.3 provide more examples of matching any one out of many or similar
words.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.5 explains anchors. Recipe 2.8 explains alternation. Recipe 2.9 explains
grouping. Recipe 2.12 explains repetition.

4.12 Validate Social Security Numbers

Problem

You need to check whether a user has entered a valid Social Security number in your
application or website form.

4.12 Validate Social Security Numbers | 289

Solution

If you simply need to ensure that a string follows the basic Social Security number
format and that obvious, invalid numbers are eliminated, the following regex provides
an easy solution. If you need a more rigorous solution that checks with the Social Se-
curity Administration to determine whether the number belongs to a living person,
refer to the “See Also” section of this recipe.

Regular expression

~(21000|666)[0-8][0-9]{2}-(?'00)[0-9]{2}-(?!0000)[0-9]{4}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Python example

if re.match(r"~(?'000|666)[0-8][0-9]{2}-(?!00)[0-9]{2}-+«
(?10000)[0-9]{4}$", sys.argv[1]):

print "SSN is valid"
else:

print "SSN is invalid"

See Recipe 3.6 for help with implementing this regular expression with other program-
ming languages.

Discussion

United States Social Security numbers are nine-digit numbers in the format
AAA-GG-SSSS:

* The first three digits were historically (prior to mid-2011) assigned by geographical
region, and are thus called the area number. The area number cannot be 000, 666,
or between 900 and 999.

* Digits four and five are called the group number and range from 01 to 99.

* The last four digits are serial numbers from 0001 to 9999.

This recipe follows all of the rules just listed. Here’s the regular expression again, this
time explained piece by piece:

" # Assert position at the beginning of the string.
(2'000|666) # Assert that neither "000" nor "666" can be matched here.
[0-8] # Match a digit between 0 and 8.

[0-9]{2} # Match a digit, exactly two times.

- # Match a literal "-".

(?'00) # Assert that "00" cannot be matched here.

[0-9]{2} # Match a digit, exactly two times.

- # Match a literal "-".

(2'10000) # Assert that "0000" cannot be matched here.

290 | Chapter4: Validation and Formatting

[0-9]{4} # Match a digit, exactly four times.

$ # Assert position at the end of the string.
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Apart from the <> and «$> tokens that assert position at the beginning and end of the
string, this regex can be broken into three sets of digits separated by hyphens. The first
set allows any number from 000 to 899, but uses the preceding negative lookahead
<(21000|666)> to rule out the specific values 000 and 666. This kind of restriction can
be pulled off without lookahead, but having this tool in our arsenal dramatically sim-
plifies the regex. If you wanted to remove 000 and 666 from the range of valid area
numbers without using any sort of lookaround, you’d need to restructure <(?!1000|666)
[0-8][0-9]{2} as «(?:00[1-9]]|0[1-9][0-9]|[1-578][0-9]{2}|6[0-57-9][0-9]|
66[0-57-9])>. This far less readable approach uses a series of numeric ranges, which
you can read all about in Recipe 6.7.

The second and third sets of digits in this pattern simply match any two- or four-digit
number, respectively, but use a preceding negative lookahead to rule out the possibility
of matching all zeros.

Variations

Find Social Security numbers in documents

If you’re searching for Social Security numbers in a larger document or input string,
replace the «* and $» anchors with word boundaries. Regular expression engines con-
sider all alphanumeric characters and the underscore to be word characters.

\b(?!000|666)[0-8][0-9]{2}-(?!00)[0-9]{2}-(?'0000)[0-9]{4}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also

The Social Security Number Verification Service (SSNVS) at http://www.socialsecurity
.gov/employer/ssnv.htm offers two ways to verify over the Internet that names and Social
Security numbers match the Social Security Administration’s records.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround.

4.12 Validate Social Security Numbers | 291

http://www.socialsecurity.gov/employer/ssnv.htm
http://www.socialsecurity.gov/employer/ssnv.htm

4.13 Validate ISBNs

Problem

You need to check the validity of an International Standard Book Number (ISBN),
which can be in either the older ISBN-10 or the current ISBN-13 format. You want to
allow a leading “ISBN” identifier, and ISBN parts can optionally be separated by hy-
phens or spaces. All of the following are examples of valid input:

e ISBN 978-0-596-52068-7

e ISBN-13: 978-0-596-52068-7

®* 978 0 596 52068 7

* 9780596520687

* ISBN-10 0-596-52068-9

* 0-596-52068-9

Solution

You cannot validate an ISBN using a regex alone, because the last digit is computed
using a checksum algorithm. The regular expressions in this section validate the format
of an ISBN, whereas the subsequent code examples include a validity check for the final
digit.

Regular expressions

Three regex solutions follow that allow you to match ISBN-10s and ISBN-13s, either
exclusively or together. Each of the solutions is shown with and without free-spacing
and comments. JavaScript doesn’t support free-spacing, but with other programming
languages you can choose whichever suits you best.

In the free-spaced regexes, literal space characters have been escaped with backslashes.
Java’s free-spacing mode requires that even spaces within character classes be escaped.

ISBN-10:
A(?:ISBN(?:-10)?:20)?(?=[0-9X]{10}$| (?=(?:[0-9]+[-*]){3})[-*0-9X]{13}$) ¢
[0-9]{1,5}[-*12[0-9]+[-*]2[0-9]+[-*]2[0-9X]$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

AN

(?:ISBN(?:-10)?:2\)? # Optional ISBN/ISBN-10 identifier.

(2= # Basic format pre-checks (lookahead):
[0-9X]{10}$ # Require 10 digits/Xs (no separators).
| # Or:

(?2=(2:[0-9]+[-\ 1){3}) # Require 3 separators
[-\ 0-9x]{13}$ # out of 13 characters total.

292 | Chapter4: Validation and Formatting

) # End format pre-checks.

[0-91{1,5}[-\]? # 1-5 digit group identifier.
[0-9]+[-\]?[0-9]+[-\]? # Publisher and title identifiers.
[0-9X] # Check digit.

$

Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

ISBN-13:

M(2:ISBN(?:-13)2:29)2(?=[0-9]1{13}$[(?=(?:[0-9]+[-*]){4})[-*0-9]{17}$)«
97[89][-*]?[0-9]{1,5}[-*]?[0-9]+[-*]?[0-9]+[-*]?[0-9]%

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

A

(?:ISBN(?:-13)2:2\)? # Optional ISBN/ISBN-13 identifier.
(2= # Basic format pre-checks (lookahead):
[0-9]{13}% # Require 13 digits (no separators).
| # Or:
(?=(2:[0-9]+[-\ 1){4}) # Require 4 separators
[-\ 0-9]{17}% # out of 17 characters total.
) # End format pre-checks.
97[89][-\ 1? # ISBN-13 prefix.
[0-9]{1,5}[-\]? # 1-5 digit group identifier.
[0-9]+[-\]?[0-9]+[-\]? # Publisher and title identifiers.
[0-9] # Check digit.
$

Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby
ISBN-10 or ISBN-13:

A(?:ISBN(?:-1[03])?:2@)?(?=[0-9X]{20}$|(?=(?:[0-9]+[-*]){3})
[-°0-9X]{13}$]97[89][0-9]{10}$| (?=(?:[0-9]+[-*]){4})[-*0-9]{17}$)«
(2:97[89][-*1?)2[0-9]{1,5}[-*]?[0-9]+[-*]?[0-9]+[-*]?[0-9X]$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

(?:ISBN(?:-1[03])?:?\)? # Optional ISBN/ISBN-10/ISBN-13 identifier.

(2= # Basic format pre-checks (lookahead):
[0-9X]{10}% # Require 10 digits/Xs (no separators).
| # Or:
(?=(2:[0-9]+[-\ 1){3}) # Require 3 separators
[-\ 0-9x]{13}% # out of 13 characters total.
| # Or:
97[89][0-9]{10}$ # 978/979 plus 10 digits (13 total).
| # Or:
(?=(?:[0-9]+[-\ 1){4}) # Require 4 separators

4.13 Validate ISBNs | 293

[-\ 0-9]{17}% # out of 17 characters total.
End format pre-checks.

(2:97[89]1[-\ 12)? # Optional ISBN-13 prefix.
[0-9]{1,5}[-\]? # 1-5 digit group identifier.
[0-9]+[-\]?[0-9]+[-\]? # Publisher and title identifiers.
[0-9X] # Check digit.

$

Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

JavaScript example, with checksum validation

var subject = document.getElementById("isbn").value;

// Checks for ISBN-10 or ISBN-13 format

var regex = /~(2:ISBN(?:-1[03])?:?)?(?=[0-9X]{10}$]|«
(?=(?:[0-9]+[- D{3})[- 0-9x]{13}$|97[89][0- 9]{10}19|<J
(?=(2:[0-9]+[- D{4})[- 0-91{17}$)(?:97[89][- 1?)?[0-9]{1,5}[-]2«
[0-9]+[-]?[0-9]+[-]?[0-9X]$/;

if (regex.test(subject)) {
// Remove non ISBN digits, then split into an array
var chars = subject.replace(/[-]|~ISBN(?:-1[03])?:2/g, "").split("");
// Remove the final ISBN digit from “chars’, and assign it to “last’
var last = chars.pop();
var sum = 0,
var check, i;

if (chars.length == 9) {
// Compute the ISBN-10 check digit
chars.reverse();
for (i = 0; i < chars.length; i++) {
sum += (i + 2) * parseInt(chars[i], 10);

check = 11 - (sum % 11);
if (check == 10) {

check = "X";
} else if (check == 11) {
check = "0";
}
} else {

// Compute the ISBN-13 check digit
for (i = 0; i1 < chars.length; i++) {
sum += (i % 2 * 2 + 1) * parselnt(chars[i], 10);

check = 10 - (sum % 10);
if (check == 10) {

check = "0";

294 | Chapter4: Validation and Formatting

}

if (check == last) {
alert("valid ISBN");
} else {
alert("Invalid ISBN check digit");

} else {
alert("Invalid ISBN");
}

Python example, with checksum validation

import re
import sys

subject = sys.argv([1]

Checks for ISBN-10 or ISBN-13 format
regex = re.compile("~(?:ISBN(?:-1[03])?:?)?(?=[0-9X]{10}$|«

(2=(2:[0-9]+[- DA3})[- 0-9X]{13}$|97[89][0-9]{10}$|«
(?=(2:[0-9]+[- 1){4})[- 0-9]{17}$)(?:97[89][- 1?)?[0-9]{1,5}[-]?<
[0-9]+[- 1?[0-9]+[- 1?[0-9X]$")

if regex.search(subject):
Remove non ISBN digits, then split into a list
chars = list(re.sub("[-]|~ISBN(?:-1[03])?:?", "", subject))
Remove the final ISBN digit from “chars’, and assign it to "last’
last = chars.pop()

if len(chars) == 9:
Compute the ISBN-10 check digit
val = sum((x + 2) * int(y) for x,y in enumerate(reversed(chars)))
check = 11 - (val % 11)
if check == 10:

check = "X"
elif check == 11:
check = "0"

else:
Compute the ISBN-13 check digit
val = sum((x % 2 * 2 + 1) * int(y) for x,y in enumerate(chars))
check = 10 - (val % 10)
if check == 10:
check = "0"

if (str(check) == last):
print("valid ISBN")

4.13 Validate ISBNs | 295

else:
print("Invalid ISBN check digit")
else:
print("Invalid ISBN")

Discussion

An ISBN is a unique identifier for commercial books and book-like products. The 10-
digit ISBN format was published as an international standard, ISO 2108, in 1970. All
ISBNs assigned since January 1, 2007 are 13 digits.

ISBN-10 and ISBN-13 numbers are divided into four or five elements, respectively.
Three of the elements are of variable length; the remaining one or two elements are of
fixed length. All five parts are usually separated with hyphens or spaces. A brief de-
scription of each element follows:

* 13-digit ISBNs start with the prefix 978 or 979.

* The group identifier identifies the language-sharing country group. It ranges from
one to five digits long.

* The publisher identifier varies in length and is assigned by the national ISBN agency.

* The title identifier also varies in length and is selected by the publisher.

* The final character is called the check digit, and is computed using a checksum
algorithm. An ISBN-10 check digit can be either a number from 0 to 9 or the letter
X (Roman numeral for 10), whereas an ISBN-13 check digit ranges from 0 to 9.
The allowed characters are different because the two ISBN types use different
checksum algorithms.

All three regex solutions shown earlier are composed of similar parts, so here we’ll focus
on the “ISBN-10 or ISBN-13” regex. Its leading <*(?:ISBN(?:-1[03])?:?)?> part has
three optional elements, allowing it to match any one of the following seven strings (all
except the empty-string option include a space character at the end):

* ISBNe

e ISBN-10°

e ISBN-13e

* ISBN:e

e ISBN-10:e

* ISBN-13:e

* The empty string (no prefix)
After the leading «<*(?:ISBN(?:-1[03])?:?¢)?> that we just discussed, there is a positive
lookahead that enforces one of four options (separated by the ¢|» alternation operator)

for the length and character set of the rest of the match, as well as the number of allowed
separators (zero or three for ISBN-10s, and zero or four for ISBN-13s). Because there

296 | Chapter4: Validation and Formatting

are four alternatives within it, the lookahead is quite long. Here’s the full lookahead:
«(?=[0-9X]{10}$] (?=(?:[0-9]+[-*]1){3})[-*0-9X]{13}$]97[89][0-9]{10}$| (?=(?:
[0-9]+[-2]){4})[-°0-9]{17}$)>. Since that’s difficult to analyze on its own, each of the
four options within it are shown next. They all end with the <$» anchor, which ensures
that there cannot be any trailing text that doesn’t fit into one of the patterns:

<[0-9X]{10}$>

Allows an ISBN-10 with no separators (10 total characters)
«(?=(2:[0-9]+[-*1){3})[-*0-9X]{13}$>

Allows an ISBN-10 with three separators (13 total characters)
«97[89][0-9]{10}$>

Allows an ISBN-13 with no separators (13 total characters)

«(2=(2:[0-9]+[-*]){4})[-*0-9]{17}$

Allows an ISBN-13 with four separators (17 total characters)

Two of these options (the ones that allow separators) include their own, nested look-
aheads to ensure the right number of separators are present, before moving on to test
the length of the string.

After the positive lookahead validates the length, character set, and number of sepa-
rators, we can match the individual elements of the ISBN without worrying about their
combined length. <(?:97[89][-*]?)?> matches the “978” or “979” prefix required by
an ISBN-13. The noncapturing group is optional because it will not match within an
ISBN-10 subject string. <[0-9]{1, 5}[-®]?> matches the one to five digit group identifier
and an optional, following separator. <[0-9]+[-®]?[0-9]+[-®]?> matches the variable-
length publisher and title identifiers, along with their optional separators. Finally,
<[0-9X]$> matches the check digit at the end of the string.

Although a regular expression can check that the final digit uses a valid character (a
digit or X), it cannot determine whether it’s correct for the ISBN’s checksum. One of
two checksum algorithms (determined by whether you’re working with an ISBN-10 or
ISBN-13) are used to provide some level of assurance that the ISBN digits haven’t been
accidentally transposed or otherwise entered incorrectly. The JavaScript and Python
example code shown earlier implemented both algorithms. The following sections de-
scribe the checksum rules in order to help you implement these algorithms with other
programming languages.

ISBN-10 checksum

The check digit for an ISBN-10 number ranges from 0 to 10 (with the Roman numeral
X used instead of 10). It is computed as follows:

1. Multiply each of the first 9 digits by a number in the descending sequence from 10
to 2, and sum the results.

2. Divide the sum by 11.

4.13 Validate ISBNs | 297

3. Subtract the remainder (not the quotient) from 11.
4. If the result is 11, use the number 0; if 10, use the letter X.

Here’s an example of how to derive the ISBN-10 check digit for 0-596-52068-?:

Step 1:

sum = 10x0 + 9x5 + 8x9 + 7x6 + 6x5 + 5%x2 + 4x0 + 3x6 + 2x8
= 0+ 45+ 72+ 42+ 30+ 10+ O+ 18 + 16
= 233

Step 2:
233 + 11 = 21, remainder 2

Step 3:
11 -2 =9

Step 4:
9 [no substitution required]

The check digit is 9, so the complete sequence is ISBN 0-596-52068-9.

ISBN-13 checksum

An ISBN-13 check digit ranges from 0 to 9, and is computed using similar steps:

1. Multiply each of the first 12 digits by 1 or 3, alternating as you move from left to
right, and sum the results.

2. Divide the sum by 10.

3. Subtract the remainder (not the quotient) from 10.

4. 1f the result is 10, use the number 0.

For example, the ISBN-13 check digit for 978-0-596-52068-? is calculated as follows:

Step 1:

sum = 1x9 + 3x7 + 1x8 + 3x0 + 1x5 + 3x9 + 1x6 + 3x5 + 1x2 + 3x0 + 1x6 + 3x8
= 9 + 21 + 8 + 0 + 5+ 27 + 6 + 15 + 2+ 0+ 6 + 24
=123

Step 2:
123 + 10 = 12, remainder 3

Step 3:
10-3=7

Step 4:

7 [no substitution required]

The check digit is 7, and the complete sequence is ISBN 978-0-596-52068-7.
Variations

Find ISBNs in documents

This adaptation of the “ISBN-10 or ISBN-13” regex uses word boundaries instead of
anchors to help you find ISBNs within longer text while ensuring that they stand on

298 | Chapter4: Validation and Formatting

Download from Wow! eBook <www.wowebook.com>

their own. The “ISBN” identifier has also been made a required string in this version,
for two reasons. First, requiring it helps eliminate false positives (without it, the regex
could potentially match any 10- or 13-digit number), and second, ISBNs are officially
required to use this identifier when printed:

\bISBN(?:-1[03])?:?e(?=[0-9X]{10}$|(?=(?:[0-9]+[-*]){3})«
[-°0-9X]{13}$]97[89][0-9]{10}$| (?=(?:[0-9]+[-*]){4})[-*0-9]{17}$)«
(2:97[89][-*]?)?[0-9]{1,5}[-*]?[0-9]+[-*]?[0-9]+[-*]?[0-9X]\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Eliminate incorrect ISBN identifiers

A limitation of the previous regexes is that they allow matching an ISBN-10 number
preceded by the “ISBN-13” identifier, and vice versa. The following regex uses condi-
tionals (see Recipe 2.17) to ensure that an “ISBN-10” or “ISBN-13” identifier is followed
by the appropriate ISBN type. It allows both ISBN-10 and ISBN-13 numbers when the
type is not explicitly specified. This regex is overkill in most circumstances because the
same result could be achieved more manageably using the ISBN-10 and ISBN-13 spe-
cific regexes that were shown earlier, one at a time. It’s included here merely to demon-
strate an interesting use of regular expressions:

A

(2:ISBN(-1(?:(0)[3))?:2\)?
(?(1)
(2(2)
ISBN-10
(?=[0-9X]{10}$| (?=(?:[0-9]+[- 1){3})[- 0-9X]{13}$)
[0-9]{1,5}[- J?[0-9]+[-]?[0-9]+[-]?[0-9X]
|# ISBN-13
(?=[0-9]{13}$] (?=(?:[0-9]+[- 1){4})[- 0-9]{17}$)
) 97[89][- 1?[0-9]{1,5}[-]?[0-9]+[-]? [9]+[-]?[0-9]

No explicit identifier, allow ISBN-10 or ISBN-13
(?=[0-9X]{10}$| (?=(?:[0-9]+[- 1){3})[- 0-9X]{13}$]97[89][0-9]{10}$|
(?=(2:[0-9]+[- D{aD[- 0 9]{17}$)
) (?:97[89][- 1?)?[0-9]{1,5}[-]?[0-9]+[-]?[0-9]+[-]?[0-9X]
$
Regex options: Free-spacing
Regex flavors: .NET, PCRE, Perl, Python

4.13 Validate ISBNs | 299

See Also

The most up-to-date version of the ISBN Users’ Manual, along with tools for validating
individual ISBNs and converting between ISBN-10 and ISBN-13, can be found on the
International ISBN Agency’s website at http://www.isbn-international.org.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround. Recipe 2.17 explains
conditionals.

4.14 Validate ZIP Codes

Problem

You need to validate a ZIP code (U.S. postal code), allowing both the five-digit and
nine-digit (called ZIP+4) formats. The regex should match 12345 and 12345-6789, but
not 1234, 123456, 123456789, or 1234-56789.

Solution

Regular expression

~0-9]{5}(?:-[0-9]{4})?%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

VB.NET example

If Regex.IsMatch(subjectString, "~[0-9]{5}(?:-[0-9]{4})?$") Then
Console.WriteLine("Valid ZIP code")

Else
Console.WriteLine("Invalid ZIP code")

End If

See Recipe 3.6 for help with implementing this regular expression with other program-
ming languages.

Discussion

A breakdown of the ZIP code regular expression follows:

" # Assert position at the beginning of the string.
[0-9]{5} # Match a digit, exactly five times.
(2: # Group but don't capture:

- # Match a literal "-".

[0-9]{4} # Match a digit, exactly four times.

300 | Chapter4: Validation and Formatting

http://www.isbn-international.org

) # End the noncapturing group.
? # Make the group optional.

$ # Assert position at the end of the string.
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

This regex is pretty straightforward, so there isn’t much to add. A simple change that
would allow you to find ZIP codes within a longer input string is to replace the «*> and
«$> anchors with word boundaries, so you end up with \\b[0-9]{5}(?:-[0-9]{4})?\b>.

W8

There is one valid ZIP+4 code that this regex will not match: 10022-

"‘:‘ - SHOE. This is the only ZIP code that includes letters. In 2007, it was
T Wy assigned specifically to the eighth floor Saks Fifth Avenue shoe store in
© New York, New York. At least thus far, however, the U.S. Postal Service

has not created any other vanity ZIP codes. Mail addressed to ZIP code

10022 will still reach the shoe store (and pass validation) just fine, so we

don’t think it’s worthwhile to modify the regex to shoehorn in this sole
exception.

See Also

For people who deal with non-U.S. addresses, we’ve covered Canadian postal codes in
Recipe 4.15, and U.K. postcodes in Recipe 4.16.

Recipe 4.17 shows how to determine whether something looks like a P.O. box address,
for cases where you need to treat P.O. boxes differently than normal street addresses.

You can look up cities by ZIP code, or ZIP codes by city and state or address, at https:
/www.usps.com/zip4/. However, ZIP codes actually correspond to mail delivery paths
rather than specific geographic locations, so there are many unusual cases including
ZIP codes that cross state boundaries or that service military vessels, specific corporate
buildings, or P.O. boxes.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.9 explains
grouping. Recipe 2.12 explains repetition.

4.15 Validate Canadian Postal Codes

Problem

You want to check whether a string is a Canadian postal code.

Solution

~(?1.*[DFIOQU])[A-VXY][0-9][A-Z]®?[0-9][A-Z][0-9]%
Regex options: None

4.15 Validate Canadian Postal Codes | 301

https://www.usps.com/zip4/
https://www.usps.com/zip4/

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The negative lookahead at the beginning of this regular expression prevents D, F, I, O,
Q, or U anywhere in the subject string. The <[A-VXY]> character class further prevents
W or Z as the first character. Aside from those two exceptions, Canadian postal codes
simply use an alternating sequence of six alphanumeric characters with an optional
space in the middle. For example, the regex will match K1A 0B1, which is the postal
code for Canada Post’s Ottawa headquarters.

See Also
See Recipe 4.14 for coverage of U.S. ZIP codes, and Recipe 4.16 for U.K. postcodes.

Recipe 4.17 explains how to determine whether something looks like a P.O. box ad-
dress, in case you need to treat P.O. boxes differently than normal street addresses.

Canada Post offers a web page to look up postal codes at http://www.canadapost.ca/
cpotools/apps/fpc/personal/findByCity.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.4 explains that the dot matches any
character. Recipe 2.5 explains anchors. Recipe 2.12 explains repetition. Recipe 2.16
explains lookaround.

4.16 Validate U.K. Postcodes

Problem

You need a regular expression that matches a U.K. postcode.

Solution
A[A-Z1{1,2}[0-9R][0-9A-Z]?®[0-9][ABD-HILNP-UW-Z]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Postal codes in the U.K. (or postcodes, as they’re called) are composed of five to seven
alphanumeric characters separated by a space. The rules covering which characters can
appear at particular positions are rather complicated and fraught with exceptions. The
regular expression just shown therefore sticks to the basic rules.

If you need a regex that ticks all the boxes for the postcode rules at the expense of
readability, here you go:

302 | Chapter4: Validation and Formatting

http://www.canadapost.ca/cpotools/apps/fpc/personal/findByCity
http://www.canadapost.ca/cpotools/apps/fpc/personal/findByCity

A(?2:(2:[A-PR-UWYZ][0-9]{1,2}|[A-PR-UWYZ][A-HK-Y][0-9]{1,2}+
| [A-PR-UNYZ][0-9][A-HIKSTUW] | [A-PR-UWYZ][A-HK-Y][0-9] ¢
[ABEHMNPRV-Y])®[0-9][ABD-HILNP-UW-Z]{2}|GIR 0AA)$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also

British Standard BS7666, available at http://interim.cabinetoffice.gov.uk/govtalk/sche
masstandards/e-gif/datastandards/address/postcode.aspx, describes the U.K. postcode
rules.

The Royal Mail’s website at http://www.royalmail.com/postcode-finder lets you use an
address to look up an individual postcode.

Recipes 4.14 and 4.15 show how to validate U.S. ZIP codes and Canadian postal codes.
Recipe 4.17 explains how to identify addresses that contain a P.O. box.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

4,17 Find Addresses with Post Office Boxes

Problem

You want to catch addresses that contain a P.O. box, and warn users that their shipping
information must contain a street address.

Solution

Regular expression

A(?:Post(?:al)?e(?:0ffice®)?|P[.®]?0\.?®)?Box\b
Regex options: Case insensitive, © and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

C# example
Regex regexObj = new Regex(
@"~(?:Post(?:al)? (?:0ffice)?|P[.]?0\.?)?Box\b",
RegexOptions.IgnoreCase | RegexOptions.Multiline

5
if (regexObj.IsMatch(subjectString) {
Console.WriteLine("The value does not appear to be a street address");
} else {

4.17 Find Addresses with Post Office Boxes | 303

http://interim.cabinetoffice.gov.uk/govtalk/schemasstandards/e-gif/datastandards/address/postcode.aspx
http://interim.cabinetoffice.gov.uk/govtalk/schemasstandards/e-gif/datastandards/address/postcode.aspx
http://www.royalmail.com/postcode-finder

Console.WriteLine("Good to go");

}

See Recipe 3.5 for help with running a regular expression match test like this with other
programming languages. Recipe 3.4 explains how to set the regex options used here.

Discussion

The following explanation is written in free-spacing mode, so each of the meaningful
space characters in the regex has been escaped with a backslash:

A

E=3

Assert position at the beginning of a line.

(2: # CGroup but don't capture:
Post(?:al)?\ # Match "Post " or "Postal ".
(?:0ffice\)? # Optionally match "Office ".
| # Or:
P[.\ 12 # Match "P" and an optional period or space character.
0\.?\ # Match "0", an optional period, and a space character.
)? # Make the group optional.
Box # Match "Box".
\b # Assert position at a word boundary.

Regex options: Case insensitive, ™ and $ match at line breaks, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

This regular expression matches all of the following example strings when they appear
at the beginning of a line:

* Post Office Box

* Postal Box

* post box

* P.0. box

* P 0 Box

* Po. box

* PO Box

* Box
Despite the precautions taken here, you might encounter a few false positives or false
negatives because many people are used to shippers being flexible in how they decipher
addresses. To mitigate this risk, it’s best to state up front that P.O. boxes are not al-

lowed. If you get a match using this regular expression, consider warning users that it
appears they have entered a P.O. box, while still providing the option to keep the entry.

See Also

Recipes 4.14, 4.15, and 4.16 show how to validate U.S., Canadian, and U.K. postal
codes, respectively.

304 | Chapter4: Validation and Formatting

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition.

4,18 Reformat Names From “FirstName LastName” to
“LastName, FirstName”

Problem

You want to convert people’s names from the “FirstName LastName” format to
“LastName, FirstName” for use in an alphabetical listing. You additionally want to
account for other name parts, so that you can, say convert “FirstName MiddleNames
Particles LastName Suffix” to “LastName, FirstName MiddleNames Particles Suffix.”

Solution

Unfortunately, it isn’t possible to reliably parse names using a regular expression. Reg-
ular expressions are rigid, whereas names are so flexible that even humans get them
wrong. Determining the structure of a name or how it should be listed alphabetically
often requires taking traditional and national conventions, or even personal preferen-
ces, into account. Nevertheless, if you’re willing to make certain assumptions about
your data and can handle a moderate level of error, a regular expression can provide a
quick solution.

The following regular expression has intentionally been kept simple, rather than trying
to account for edge cases.

Regular expression

ALY ([M\s, 1+) (,20(2:[3S]r\.?|III?|1IV))?%
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement
$2,41%3
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\2,°\1\3
Replacement text flavors: Python, Ruby

JavaScript example

function formatName(name) {
return name.replace(/~(.+?) ([*\s,]+)(,? (2:[3S]r\.?|III?|1V))?$/1,

4.18 Reformat Names From “FirstName LastName” to “LastName, FirstName” | 305

"$2, $1$3");
}

Recipe 3.15 has code listings that will help you add this regex search-and-replace to
programs written in other languages. Recipe 3.4 shows how to set the “case insensitive”
option used here.

Discussion

First, let’s take a look at this regular expression piece by piece. Higher-level comments
are provided afterward to help explain which parts of a name are being matched by
various segments of the regex. Since the regex is written here in free-spacing mode, the
literal space characters have been escaped with backslashes:

n # Assert position at the beginning of the string.
(# Capture the enclosed match to backreference 1:
47 # Match one or more characters, as few times as possible.
) # End the capturing group.
\ # Match a literal space character.
(# Capture the enclosed match to backreference 2:
["\s,]+ # Match one or more non-whitespace/comma characters.
) # End the capturing group.
(# Capture the enclosed match to backreference 3:
, 2\ # Match ", "or " ".
(2: # Group but don't capture:
[Is]r\.? # Match "Jr", "Jr.", "Sr", or "Sr.".
| # Or:
III? # Match "II" or "III".
| # Or:
IV # Match "IV".
) # End the noncapturing group.
)? # Make the group optional.
$ # Assert position at the end of the string.

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

This regular expression makes the following assumptions about the subject data:

* TItcontainsat least one first name and one last name (other name parts are optional).

¢ The first name is listed before the last name (not the norm with some national
conventions).

¢ If the name contains a suffix, it is one of the values “Jr”, “Jr.”, “Sr”, “Sr.”, “II”,
“III”, or “IV”, with an optional preceding comma.

A few more issues to consider:

* The regular expression cannot identify compound surnames that don’t use hy-
phens. For example, Sacha Baron Cohen would be replaced with Cohen, Sacha
Baron, rather than the correct listing, Baron Cohen, Sacha.

306 | Chapter4: Validation and Formatting

* Tt does not keep particles in front of the family name, although this is sometimes
called for by convention or personal preference (for example, the correct alpha-
betical listing of “Charles de Gaulle” is “de Gaulle, Charles” according to the
Chicago Manual of Style, 16" Edition, which contradicts Merriam-Webster’s
Biographical Dictionary on this particular name).

* Because of the <V and «$» anchors that bind the match to the beginning and end
of the string, no replacement can be made if the entire subject text does not fit the
pattern. Hence, if no suitable match is found (for example, if the subject text con-
tains only one name), the name is left unaltered.

As for how the regular expression works, it uses three capturing groups to split up the
name. The pieces are then reassembled in the desired order via backreferences in the
replacement string. Capturing group 1 uses the maximally flexible <.+?> pattern to grab
the first name along with any number of middle names and surname particles, such as
the German “von” or the French, Portuguese, and Spanish “de.” These name parts are
handled together because they are listed sequentially in the output. Lumping the first
and middle names together also helps avoid errors, because the regular expression
cannot distinguish between a compound first name, such as “Mary Lou” or “Norma
Jeane,” and a first name plus middle name. Even humans cannot accurately make the
distinction just by visual examination.

Capturing group 2 matches the last name using <[*\s,]+. Like the dot used in capturing
group 1, the flexibility of this character class allows it to match accented characters and
any other non-Latin characters. Capturing group 3 matches an optional suffix, such as
“Jr.” or “IlL,” from a predefined list of possible values. The suffix is handled separately
from the last name because it should continue to appear at the end of the reformatted
name.

Let’s go back for a minute to capturing group 1. Why was the dot within group 1
followed by the lazy +?> quantifier, whereas the character class in group 2 was followed
by the greedy «+> quantifier? If group 1 (which handles a variable number of elements
and therefore needs to go as far as it can into the name) used a greedy quantifier,
capturing group 3 (which attempts to match a suffix) wouldn’t have a shot at partici-
pating in the match. The dot from group 1 would match until the end of the string, and
since capturing group 3 is optional, the regex engine would only backtrack enough to
find a match for group 2 before declaring success. Capturing group 2 can use a greedy
quantifier because its more restrictive character class only allows it to match one name.

Table 4-2 shows some examples of how names are formatted using this regular ex-
pression and replacement string.

Table 4-2. Formatted names

Input Output
Robert Downey, Jr. Downey, Robert, Jr.
John F. Kennedy Kennedy, John F.

4.18 Reformat Names From “FirstName LastName” to “LastName, FirstName” | 307

Input Output

Scarlett O’Hara 0’Hara, Scarlett
Pepé Le Pew Pew, Pepé Le
J.R.R. Tolkien Tolkien, J.R.R.

Catherine Zeta-Jones Zeta-Jones, Catherine

Variations

List surname particles at the beginning of the name

An added segment in the following regular expression allows you to output surname
particles from a predefined list in front of the last name. Specifically, this regular ex-
pression accounts for the values “de”, “du”, “la”, “le”, “St”, “St.”, “Ste”, “Ste.”, “van”,
and “von”. Any number of these values are allowed in sequence (for example, “de 1a”):
A(.42)e((?2:(2:d[eu]|1[ae]|Ste?\.?|v[ao]n)®)*[*\s,]+)
(,20(2:[3S]x\.?|III?|1V))?$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

$2,0$1%3
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\2,°\1\3
Replacement text flavors: Python, Ruby

See Also

Techniques used in the regular expressions and replacement text in this recipe are
discussed in Chapter 2. Recipe 2.1 explains which special characters need to be escaped.
Recipe 2.3 explains character classes. Recipe 2.4 explains that the dot matches any
character. Recipe 2.5 explains anchors. Recipe 2.8 explains alternation. Recipe 2.9 ex-
plains grouping. Recipe 2.12 explains repetition. Recipe 2.13 explains how greedy and
lazy quantifiers backtrack. Recipe 2.21 explains how to insert text matched by captur-
ing groups into the replacement text.

4.19 Validate Password Complexity

Problem

You’re tasked with ensuring that any passwords chosen by your website users meet
your organization’s minimum complexity requirements.

308 | Chapter4: Validation and Formatting

Solution

The following regular expressions check many individual conditions, and can be mixed
and matched as necessary to meet your business requirements. At the end of this sec-
tion, we’ve included several JavaScript code examples that show how you can tie these
regular expressions together as part of a password security validation routine.

Length between 8 and 32 characters
~.{8,32}%
Regex options: Dot matches line breaks (
be set)
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

“~ and $ match at line breaks” must not

Standard JavaScript doesn’t have a “dot matches line breaks” option. Use <[\s\S]>
instead of a dot in JavaScript to ensure that the regex works correctly even for crazy
passwords that include line breaks:

~[\s\S]{8,32}$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

ASClI visible and space characters only

If this next regex matches a password, you can be sure it includes only the characters
A-Z, a-z, 0-9, space, and ASCII punctuation. No control characters, line breaks, or
characters outside of the ASCII table are allowed:

~[\x20-\x7E]+$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

(AN

If you want to additionally prevent the use of spaces, use *[\x21-\x7E]+$> instead.

One or more uppercase letters
ASCII uppercase letters only:

[A-Z]
Regex options: None (“case insensitive” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Any Unicode uppercase letter:

\p{Lu}
Regex options: None (“case insensitive” must not be set)
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

4.19 Validate Password Complexity | 309

If you want to check for the presence of any letter character (not limited to uppercase),
enable the “case insensitive” option or use ¢[A-Za-z]>. For the Unicode case, you can
use <\p{L}>, which matches any kind of letter from any language.

One or more lowercase letters

ASCII lowercase letters only:

[a-z]
Regex options: None (“case insensitive” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Any Unicode lowercase letter:

\p{L1}
Regex options: None (“case insensitive” must not be set)
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

One or more numbers

[0-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

One or more special characters

ASCII punctuation and spaces only:

[o!"#$%&" ()*+,\-./:;<=>20[\\\]"_"{|}*]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Anything other than ASCII letters and numbers:

[*A-Za-z0-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Disallow three or more sequential identical characters

This next regex is intended to rule out passwords like 111111. It works in the opposite
way of the others in this recipe. If it matches, the password doesn’t meet the condition.
In other words, the regex only matches strings that repeat a character three times in a
row.

()\1\2
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

([\s\SI)\1\1

Regex options: None

310 | Chapter4: Validation and Formatting

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Example JavaScript solution, basic

The following code combines five password requirements:

* Length between 8 and 32 characters.

* One or more uppercase letters.

¢ One or more lowercase letters.

* One or more numbers.

* One or more special characters (ASCII punctuation or space characters).

function validate(password) {
var minMaxLength = /*[\s\S]{8,32}$/,

}

upper = /[A-Z]/,
lower = /[a-z]/,
number = /[0-9]/,
special = /[1"#3$%&"' ()*+,\-./:;<=>2@[\\\]1*_*{|}~1/;

if (minMaxLength.test(password) &&

) {
}

upper.test(password) &&
lower.test(password) &&
number.test(password) &&
special.test(password)

return true;

return false;

The validate function just shown returns true if the provided string meets the password
requirements. Otherwise, false is returned.

Example JavaScript solution, with x out of y validation

This next example enforces a minimum and maximum password length (8-32 char-
acters), and additionally requires that at least three of the following four character types
are present:

* One or more uppercase letters.

¢ One or more lowercase letters.

¢ One or more numbers.

* One or more special characters (anything other than ASCII letters and numbers).

function validate(password) {
var minMaxLength = /~[\s\S]{8,32}$/,

4.19 Validate Password Complexity | 311

upper = /[A-Z]/,

lower = /[a-z]/,

number = /[0-9]/,

special = /[*A-Za-z0-9]/,
count = 0;

if (minMaxLength.test(password)) {
// Only need 3 out of 4 of these to match
if (upper.test(password)) count++;
if (lower.test(password)) count++;
if (number.test(password)) count++;
if (special.test(password)) count++;

}

return count >= 3;

}

As before, this modified validate function returns true if the provided password meets
the overall requirements. If not, it returns false.

Example JavaScript solution, with password security ranking

This final code example is the most complicated of the bunch. It assigns a positive or
negative score to various conditions, and uses the regexes we’ve been looking at to help
calculate an overall score for the provided password. The rankPassword function returns
a number from 0—4 that corresponds to the password rankings “Too Short,” “Weak,”
“Medium,” “Strong,” and “Very Strong”:

var rank = {
TOO_SHORT: 0,
WEAK: 1,
MEDIUM: 2,
STRONG: 3,
VERY_STRONG: 4
b

function rankPassword(password) {
var upper = /[A-Z]/,
lower = /[a-z]/,
number = /[0-9]/,

special = /[*A-Za-z0-9]/,
minlLength = 8,
score = 0;

if (password.length < minLength) {
return rank.TOO SHORT; // End early
}

// Increment the score for each of these conditions

312 | Chapter4: Validation and Formatting

if (upper.test(password)) score++;
if (lower.test(password)) score++;
if (number.test(password)) score++;
if (special.test(password)) score++;

// Penalize if there aren't at least three char types
if (score < 3) score--;

if (password.length > minLength) {
// Increment the score for every 2 chars longer than the minimum
score += Math.floor((password.length - minLength) / 2);

}

// Return a ranking based on the calculated score

if (score < 3) return rank.WEAK; // score is 2 or lower
if (score < 4) return rank.MEDIUM; // score is 3

if (score < 6) return rank.STRONG; // score is 4 or 5
return rank.VERY_STRONG; // score is 6 or higher

}

// Test it...
var result = rankPassword("passwordi"),
labels = ["Too Short", "Weak", "Medium", "Strong", "Very Strong"];

alert(labels[result]); // -> Weak

Because of how this password ranking algorithm is designed, it can serve two purposes
equally well. First, it can be used to give users guidance about the quality of their
password while they’re still typing it. Second, it lets you easily reject passwords that
don’t rank at whatever you choose as your minimum security threshold. For example,
the condition if(result <= rank.MEDIUM) can be used to reject any password that isn’t
ranked as “Strong” or “Very Strong.”

Discussion

Users are notorious for choosing simple or common passwords that are easy to re-
member. But easy to remember doesn’t necessarily translate into something that keeps
their account and your company’s information safe. It’s therefore typically necessary
to protect users from themselves by enforcing minimum password complexity rules.
However, the exact rules to use can vary widely between businesses and systems, which
is why this recipe includes numerous regexes that serve as the raw ingredients to help
you cook up whatever combination of validation rules you choose.

Limiting each regex to a specific rule brings the additional benefit of simplicity. As a
result, all of the regexes shown thus far are fairly straightforward. Following are a few
additional notes on each of them:

4.19 Validate Password Complexity | 313

Download from Wow! eBook <www.wowebook.com>

Length between 8 and 32 characters
To require a different minimum or maximum length, change the numbers used as
the upper and lower bounds for the quantifier «{8,32}>. If you don’t want to specify
amaximum, use {8, }», or remove the «$» anchor and change the quantifier to «({8}>.

All of the programming languages covered by this book provide a simple and effi-
cient way to determine the length of a string. However, using a regex allows you
to test both the minimum and maximum length at the same time, and makes it
easier to mix and match password complexity rules by choosing from a list of
regexes.

ASCII visible and space characters only
As mentioned earlier, this regex allows the characters A-Z, a—z, 0-9, space, and
ASCII punctuation only. To be more specific about the allowed punctuation char-
acters, they are I, ", #,$,%,8, ',), %, +, -, o, /, 5,5, 5>, 2,0, [,\, 1, ., 5, {,
[, },~, and comma. In other words, all the punctuation you can type using a stan-
dard U.S. keyboard.

Limiting passwords to these characters can help avoid character encoding related
issues, but keep in mind that it also limits the potential complexity of your
passwords.

Uppercase letters
To check whether the password contains two or more uppercase letters, use <[A-
Z].*[A-Z]>. For three or more, use <[A-Z].*[A-Z].*[A-Z]> or <«(2:[A-Z].*){3}. If
you’re allowing any Unicode uppercase letters, just change each <[A-Z]> in the
preceding examples to <\p{Lu}>. In JavaScript, replace the dots with [\s\S]>.

Lowercase letters
As with the “uppercase letters” regex, you can check whether the password con-
tains at least two lowercase letters using <[a-z].*[a-z]>. For three or more, use
([a-z].*[a-z].*[a-z]> or <((?:[a-z].*){3}. If you're allowing any Unicode lower-
case letters, change each «[a-z]> to \\p{LL}>. In JavaScript, replace the dots with
<[\s\SD.

Numbers
You can check whether the password contains two or more numbers using
<[0-9].*[0-9]>, and <[0-9].*[0-9].*[0-9]> or «(?:[0-9].*){3}> for three or more.
In JavaScript, replace the dots with <[\s\S]>.
We didn’t include a listing for matching any Unicode decimal digit (<\p{Nd}»),
because it’s uncommon to treat characters other than 0-9 as numbers (although
readers who speak Arabic or Hindi might disagree!).

Special characters
Use the same principles shown for letters and numbers if you want to require more
than one special character. For instance, using <[“A-Za-z0-9].*[*A-Za-z0-9]>
would require the password to contain at least two special characters.

314 | Chapter4: Validation and Formatting

Note that <[*A-Za-z0-9]> is different than <\W> (the negated version of the \w»
shorthand for word characters). (\W> goes beyond ¢[*A-Za-z0-9]> by additionally
excluding the underscore, which we don’t want to do here. In some regex flavors,
AW also excludes any Unicode letter or decimal digit from any language.

Disallow three or more sequential identical characters
This regex matches repeated characters using backreferences to a previously
matched character. Recipe 2.10 explains how backreferences work. If you want to
disallow any use of repeated characters, change the regex to <«(.)\1. To allow up
to three repeated characters but not four, use <(.)\1\1\1> or <(.)\1{3}.

Remember that you need to check whether this regular expression doesn’t match
your subject text. A match would indicate that repeated characters are present.

Example JavaScript solutions

The three blocks of JavaScript example code each use this recipe’s regular expressions
a bit differently.

The first example requires all conditions to be met or else the password fails. In the
second example, acing the password test requires three out of four conditional re-
quirements to be met. The third example, titled “Example JavaScript solution, with
password security ranking”, is probably the most interesting. It includes a function
called rankPassword that does what it says on the tin and ranks passwords by how secure
they are. It can thus help provide a more user-friendly experience and encourage users
to choose strong passwords.

The rankPassword function’s password ranking algorithm increments and decrements
an internal password score based on multiple conditions. If the password’s length is
less than the specified minimum of eight characters, the function returns early with the
numeric equivalent of “Too Short.” Not including at least three character types incurs
a one-point penalty, but this can be balanced out because every two additional char-
acters after the minimum of eight adds a point to the running score.

The code can of course be customized to further improve it or to meet your particular
requirements. However, it works quite well as-is, regardless of what you throw at it.
As a sanity check, we ran it against several hundred of the known most common (and
therefore most insecure) user passwords. All came out ranked as either “Too Short” or
“Weak,” which is exactly what we were hoping for.

Using JavaScript to validate passwords in a web browser can be very
"‘*’@ beneficial for your users, but make sure to also implement your valida-

tion routine on the server. If you don’t, it won’t work for users who
disable JavaScript or use custom scripts to circumvent your client-side
validation.

4.19 Validate Password Complexity | 315

Variations

Validate multiple password rules with a single regex

Up to this point, we’ve split password validation into discrete rules that can be tested
using simple regexes. That’s usually the best approach. It keeps the regexes readable,
and makes it easier to provide error messages that identify why a password isn’t up to
code. It can even help you rank a password’s complexity, as we’ve seen. However, there
may be times when you don’t care about all that, or when one regex is all you can use.
In any case, it’s common for people to want to validate multiple password rules using
a single regex, so let’s take a look at how it can be done. We’ll use the following
requirements:

* Length between 8 and 32 characters.
* One or more uppercase letters.
¢ One or more lowercase letters.

¢ One or more numbers.

Here’s a regex that pulls it all oft:
~(?=.18,32}%) (?=.*[A-Z]) (?=.*[a-2]) (?=.*[0-9]) .*

Regex options: Dot matches line breaks (“” and $ match at line breaks” must not
be set)
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

This regex can be used with standard JavaScript (which doesn’t have a “dot matches
line breaks” option) if you replace each of the five dots with «[\s\S]>. Otherwise, you
might fail to match some valid passwords that contain line breaks. Either way, though,
the regex won’t match any invalid passwords.

Notice how this regular expression puts each validation rule into its own lookahead
group at the beginning of the regex. Because lookahead does not consume any char-
acters as part of a match (see Recipe 2.16), each lookahead test runs from the very
beginning of the string. When a lookahead succeeds, the regex moves along to test the
next one, starting from the same position. Any lookahead that fails to find a match
causes the overall match to fail.

The first lookahead, <(?=.{8,32}$)>, ensures that any match is between 8 and 32 char-
acters long. Make sure to keep the <$> anchor after «{8,32}>, otherwise the match will
succeed even when there are more than 32 characters. The next three lookaheads search
one by one for an uppercase letter, lowercase letter, and digit. Because each lookahead
searches from the beginning of the string, they use <.*) before their respective character
classes. This allows other characters to appear before the character type that they’re
searching for.

316 | Chapter4: Validation and Formatting

By following the approach shown here, it’s possible to add as many lookahead-based
password tests as you want to a single regex, so long as all of the conditions are always
required.

The <.* at the very end of this regex is not actually required. Without it, though, the
regex would return a zero-length empty string when it successfully matches. The trailing
«.*) lets the regex include the password itself in successful match results.

It’s equally valid to write this regex as «*(?=.*[A-Z])(?=.*[a-2])(?
) =.*[0-9]).{8,32}$>, with the length test coming after the lookaheads.
|__g Unfortunately, writing it this way triggers a bug in Internet Explorer

5.5-8 that prevents it from working correctly. Microsoft fixed the bug
in the new regex engine included in IE9.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.2 explains how to match nonprinting characters. Recipe 2.3 explains character
classes. Recipe 2.4 explains that the dot matches any character. Recipe 2.5 explains
anchors. Recipe 2.7 explains how to match Unicode characters. Recipe 2.9 explains
grouping. Recipe 2.10 explains backreferences. Recipe 2.12 explains repetition.
Recipe 2.16 explains lookaround.

4.20 Validate Credit Card Numbers

Problem

You’re given the job of implementing an order form for a company that accepts payment
by credit card. Since the credit card processor charges for each transaction attempt,
including failed attempts, you want to use a regular expression to weed out obviously
invalid credit card numbers.

Doing this will also improve the customer’s experience. A regular expression can in-
stantly detect obvious typos as soon as the customer finishes filling in the field on the
web form. A round trip to the credit card processor, by contrast, easily takes 10 to 30
seconds.

Solution

To keep the implementation simple, this solution is split into two parts. First we strip
out spaces and hyphens. Then we validate what remains.

Strip spaces and hyphens

Retrieve the credit card number entered by the customer and store it into a variable.
Before performing the check for a valid number, perform a search-and-replace to strip

4.20 Validate Credit Card Numbers | 317

out spaces and hyphens. Replace all matches of this regular expression with blank
replacement text:
[e-]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Recipe 3.14 shows you how to perform this initial replacement.

Validate the number

With spaces and hyphens stripped from the input, the next regular expression checks
if the credit card number uses the format of any of the six major credit card companies.
It uses named capture to detect which brand of credit card the customer has:
A(2:
(2<visa>4[0-9]{12}(?:[0-9]{3})?) |
(?2<mastercard>5[1-5][0-9]{14}) |
(?<discover>6(?:011|5[0-9]{2})[0-9]{12}) |
(?<amex>3[47][0-9]{13}) |
(?<diners>3(?:0[0-5]|[68][0-9])[0-9]{11}) |
§7<Jcb>(7 :2131|1800|35[0-9]{3})[0-9]{11})
$
Regex options: Free-spacing
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
A(2:
(?P<visa>4[0-9]1{12}(?:[0-9]{3})?) |
(?P<mastercard>5[1-5][0-9]{14}) |
(?P<discover>6(?:011|5[0-9]1{2})[0-9]{12}) |
(?P<amex>3[47][0-91{13}) |
(?P<diners>3(?:0[0-5]|[68][0-9])[0-9]{11}) |
(?P<jcb>(?:2131]|1800(35[0-9]{3})[0-9]{11})
)$
Regex options: Free-spacing
Regex flavors: PCRE, Python
Java 4 to 6, Perl 5.8 and earlier, and Ruby 1.8 do not support named capture. You can

use numbered capture instead. Group 1 will capture Visa cards, group 2 MasterCard,
and so on up to group 6 for JCB:

A(2:

(4[0-9]{22}(?:[0-91{3})?) | # Visa
(5[1-5][0-9]{14}) | # MasterCard
(6(?:011|5[0-91{2})[0-9]{12}) | # Discover
(3[47][0-9]{13}) | # AMEX

(3(?:0[0-5]|[68][0-9])[0-9]{11}) | # Diners Club
((?:2131|1800(35[0-9]{3})[0-9]{11}) # 1CB
)$

Regex options: Free-spacing

318 | Chapter4: Validation and Formatting

Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Standard JavaScript does not support named capture or free-spacing. Removing white-
space and comments, we get:

M(2:(4[0-9]{12}(?:[0-91{3})?) | (5[1-5][0-9]{14}) | «
(6(?:011]5[0-9]{2})[0-9]{12}) [(3[47][0-9]{13}) |«
(3(?:0[0-5]|[68]1[0-9]1)[0-9]{11}) | ((2:2131]|1800|35[0-9]1{3})[0-9]1{11}))%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you don’t need to determine which type the card is, you can remove the six capturing
groups that surround the pattern for each card type, as they don’t serve any other
purpose.

Follow Recipe 3.6 to add this regular expression to your order form to validate the card
number. If you use different processors for different cards, or if you just want to keep
some statistics, you can use Recipe 3.9 to check which named or numbered capturing
group holds the match. That will tell you which brand of credit card the customer has.

Example web page with JavaScript

<html>
<head>
<title>Credit Card Test</title>
</head>

<body>
<h1>Credit Card Test</h1>

<form>

<p>Please enter your credit card number:</p>
<p><input type="text" size="20" name="cardnumber"
onkeyup="validatecardnumber(this.value)"></p>

<p id="notice">(no card number entered)</p>
</form>

<script>
function validatecardnumber(cardnumber) {

// Strip spaces and dashes

cardnumber = cardnumber.replace(/[-1/g, '');

// See if the card is valid

// The regex will capture the number in one of the capturing groups

var match = /~(?:(4[0-9]{12}(?:[0-9]{3})?)| (5[1-5][0-9]{14})|
(6(?:011]|5[0-9]{2})[0-9]{12}) [(3[47][0-9]{13}) | (3(?:0[0-5]|[68][0-9]) ¢
[0-9]1{11})] ((?:2131]1800|35[0-9]{3})[0-9]{11}))$/.exec(cardnumber);

if (match) {

4.20 Validate Credit Card Numbers | 319

// List of card types, in the same order as the regex capturing groups
var types = ['Visa', 'MasterCard', 'Discover', 'American Express’,
'Diners Club', 'JCB'];
// Find the capturing group that matched
// Skip the zeroth element of the match array (the overall match)
for (var i = 1; i < match.length; i++) {
if (match[i]) {
// Display the card type for that group
document.getElementById('notice').innerHTML = types[i - 1];
break;

}

}
} else {
document.getElementById('notice').innerHTML = '(invalid card number)';

}
}

</script>
</body>
</html>

Discussion

Strip spaces and hyphens

On an actual credit card, the digits of the embossed card number are usually placed
into groups of four. That makes the card number easier for humans to read. Naturally,
many people will try to enter the card number in the same way, including the spaces,
on order forms.

Writing a regular expression that validates a card number, allowing for spaces, hyphens,
and whatnot, is much more difficult that writing a regular expression that only allows
digits. Thus, unless you want to annoy the customer with retyping the card number
without spaces or hyphens, do a quick search-and-replace to strip them out before
validating the card number and sending it to the card processor.

The regular expression [®-]» matches a character thatis a space or a hyphen. Replacing
all matches of this regular expression with nothing effectively deletes all spaces and
hyphens.

W

Credit card numbers can consist only of digits. Instead of using <[®-]>

to remove only spaces and hyphens, you could use the shorthand char-
N

o4, acter class <\D> to strip out all nondigits.

320 | Chapter4: Validation and Formatting

Validate the number

Each of the credit card companies uses a different number format. We’ll exploit that
difference to allow users to enter a number without specifying a company; the company
can be determined from the number. The format for each company is:
Visa
13 or 16 digits, starting with 4.
MasterCard
16 digits, starting with 51 through 55.
Discover
16 digits, starting with 6011 or 65.
American Express
15 digits, starting with 34 or 37.
Diners Club
14 digits, starting with 300 through 305, 36, or 38.
JCB
15 digits, starting with 2131 or 1800, or 16 digits starting with 35.

If you accept only certain brands of credit cards, you can delete the cards that you don’t
accept from the regular expression. When deleting JCB, make sure to delete the last
remaining <|> in the regular expression as well. If you end up with <[|> or <|)> in your
regular expression, it will accept the empty string as a valid card number.

For example, to accept only Visa, MasterCard, and AMEX, you can use:

A2

4[0-9]{12}(?:[0-9]{3})? | # Visa
5[1-5][0-9]1{14} | # MasterCard
3[47][0-9]{13} # AMEX

)$

Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Alternatively:

N(2:4[0-9]{12}(?:[0-9]{3})?[5[1-5][0-9]{14}|3[47][0-9]{13})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you’re searching for credit card numbers in a larger body of text, replace the anchors
with <\b> word boundaries.

Incorporating the solution into a web page

The section “Example web page with JavaScript” on page 319 shows how you could
add these two regular expressions to your order form. The input box for the credit card
number has an onkeyup event handler that calls the validatecardnumber () function. This

4.20 Validate Credit Card Numbers | 321

function retrieves the card number from the input box, strips the spaces and hyphens,
and then validates it using the regular expression with numbered capturing groups.
The result of the validation is displayed by replacing the text in the last paragraph on
the page.

If the regular expression fails to match, regexp.exec() returns null, and (invalid card
number) is displayed. If the regex does match, regexp.exec() returns an array of strings.
The zeroth element holds the overall match. Elements 1 through 6 hold the text match-
ed by the six capturing groups.

Our regular expression has six capturing groups, divided by alternation. This means
that exactly one capturing group will participate in the match and hold the card num-
ber. The other groups will be empty (either undefined or the empty string, depending
on your browser). The function checks the six capturing groups, one by one. When it
finds one that is not empty, the card number is recognized and displayed.

Extra Validation with the Luhn Algorithm

There is an extra validation check that you can do on the credit card number before
processing the order. The last digit in the credit card number is a checksum calculated
according to the Luhn algorithm. Since this algorithm requires basic arithmetic, you
cannot implement it with a regular expression.

You can add the Luhn check to the web page example for this recipe by inserting the
call luhn(cardnumber) ; before the “else” line in the validatecardnumber () function. This
way, the Luhn check will be done only if the regular expression finds a valid match,
and after determining the card brand. However, determining the brand of the credit
card is not necessary for the Luhn check. All credit cards use the same method.

In JavaScript, you can code the Luhn function as follows:

function luhn(cardnumber) {
// Build an array with the digits in the card number
var digits = cardnumber.split('');
for (var i = 0; 1 < digits.length; i++) {
digits[i] = parseInt(digits[i], 10);

// Run the Luhn algorithm on the array
var sum = 0;
var alt = false;
for (i = digits.length - 1; i >= 0; i--) {
if (alt) {
digits[i] *= 2;
if (digits[i] > 9) {
digits[i] -= 9;
}

sum += digits[i];
alt = lalt;

322 | Chapter4: Validation and Formatting

}
// Check the result
if (sum % 10 == 0) {

document.getElementById('notice').innerHTML += '; Luhn check passed';
} else {

document.getElementById('notice').innerHTML += '; Luhn check failed';
}

}

This function takes a string with the credit card number as a parameter. The card
number should consist only of digits. In our example, validatecardnumber () has already
stripped spaces and hyphens and determined the card number to have the right number
of digits.

First, we split the string into an array of individual characters. Then we iterate over the
array to convert the characters into integers. If we don’t convert them, the sum variable
will end up as a string concatenation of the digits, rather than the integer addition of
the numbers.

The actual algorithm runs on the array, calculating a checksum. If the sum modulus
10 is zero, then the card number is valid. If not, the number is invalid.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition.

4.21 European VAT Numbers

Problem

You're given the job of implementing an online order form for a business in the Euro-
pean Union.

European tax laws stipulate that when a VAT-registered business (your customer) lo-
cated in one EU country purchases from a vendor (your company) in another EU
country, the vendor must not charge VAT (Value-Added Tax). If the buyer is not VAT-
registered, the vendor must charge VAT and remit the VAT to the local tax office. The
vendor must use the VAT registration number of the buyer as proof to the tax office
that no VAT is due. This means that for the vendor, it is very important to validate the
buyer’s VAT number before proceeding with the tax-exempt sale.

The most common cause of invalid VAT numbers are simple typing mistakes by the
customer. To make the ordering process faster and friendlier, you should use a regular
expression to validate the VAT number immediately while the customer fills out your

4.21 European VAT Numbers | 323

online order form. You can do this with some client-side JavaScript or in the CGI script
on your web server that receives the order form. If the number does not match the
regular expression, the customer can correct the typo right away.

Solution

To keep the implementation simple, this solution is split into two parts. First we strip
out spaces and punctuation. Then we validate what remains.

Strip whitespace and punctuation

Retrieve the VAT number entered by the customer and store it into a variable. Before
performing the check for a valid number, replace all matches of this regular expression
with a blank replacement text:
[-.°]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Recipe 3.14 shows you how to perform this initial replacement. We’ve assumed that
the customer wouldn’t enter any punctuation except hyphens, dots, and spaces. Any
other extraneous characters will be caught by the upcoming check.

Validate the number

With whitespace and punctuation stripped, this regular expression checks whether the
VAT number is valid for any of the 27 EU countries:

~(

(AT)?U[0-9]{8} | # Austria
(BE)?0[0-9]{9} | # Belgium
(BG)?[0-9]{9,10} | # Bulgaria
(Cv)?[0-9]{8}L | # Cyprus
(Cz)?[0-9]{8,10} | # Czech Republic
(DE)?[0-9]{9} | # Germany
(DK)?[0-9]{8} | # Denmark
(EE)?[0-9]{9} | # Estonia
(EL|GR)?[0-9]{9} | # Greece
(ES)?[0-9A-Z][0-9]{7}[0-9A-Z] | # Spain
(FI)?[0-9]{8} | # Finland
(FR)?[0-9A-Z]{2}[0-91{9} | # France
(GB)?([0-91{9}([0-91{3})?|[A-Z]1{2}[0-91{3}) | # United Kingdom
(HU)?[0-9]{8} | # Hungary
(IE)?[0-9]S[0-9]{5}L | # Ireland
(IT)?[0-9]{11} | # Italy
(LT)?([0-9]{9}|[0-9]{12}) | # Lithuania
(LU)?[0-9]{8} | # Luxembourg
(Lv)?[0-9]{11} | # Latvia
(MT)?[0-9]{8} | # Malta

324 | Chapter4: Validation and Formatting

(NL)?[0-9]{9}B[0-9]{2} | # Netherlands
(PL)?[0-9]{10} | # Poland
(PT)?[0-9]{9} | # Portugal
(RO)?[0-9]{2,10} | # Romania
(SE)?[0-9]{12} | # Sweden
(s1)?[0-9]{8} | # Slovenia
(SK)?[0-9]{10} # Slovakia

)$

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

The above regular expression uses free-spacing mode to make it easy to edit later. Every
now and then, new countries join the European Union, and member countries change
their rules for VAT numbers. Unfortunately, JavaScript does not support free-spacing.
In this case, you’re stuck putting everything on one line:

~((AT)?U[0-9]{8}| (BE)?0[0-9]{9}| (BG)?[0-9]{9,10} | (CY)?[0-9]{8}L] «
(€Cz)?[0-9]{8,10}| (DE)?[0-9]{9} | (DK)?[0-9]{8}| (EE)?[0-9]{9} |«
(EL[GR)?[0-9]{9}| (ES)?[0-9A-Z][0-9]{7}[0-9A-Z] | (FI)?[0-9]{8}]
(FR)?[0-9A-Z]{2}[0-9]{9}](GB)?([0-9]{9}([0-9]{3})?| [A-Z]{2}[0-9]{3})] «
(HU)?[0-91{8}| (IE)?[0-9]S[0-9]{5}L| (IT)?[0-9]{11}]| «
(LT)?([0-9]{9}[[0-9]{12}) | (LU)?[0-9]{8}| (LV)?[0-9]{11}|(MT)?[0-9]{8}]«
(NL)?[0-9]{9}B[0-9]{2}|(PL)?[0-9]{10} | (PT)?[0-9]{9} | (RO)?[0-9]{2,10}|«
(SE)?[0-9]{12}|(SI)?[0-9]{8}| (SK)?[0-9]{10})$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Follow Recipe 3.6 to add this regular expression to your order form.
Discussion

Strip whitespace and punctuation

To make VAT numbers easier to read for humans, people often type them in with extra
punctuation to split the digits into groups. For instance, a German customer might
enter his VAT number DE123456789 as DE 123.456.789.

A single regular expression that matches VAT numbers from 27 countries in any pos-
sible notation is an impossible job. Since the punctuation is only for readability, it is
much easier to first strip all the punctuation, then validate the resulting bare VAT
number.

The regular expression <[-.®]> matches a character that is a hyphen, dot, or space.
Replacing all matches of this regular expression with nothing effectively deletes the
punctuation characters commonly used in VAT numbers.

4.21 European VAT Numbers | 325

VAT numbers consist only of letters and digits. Instead of using

([-.®]> to remove only common punctuation, you could use ¢[*A-
N . . .

03! Z0-9]> to strip out all invalid characters.

Validate the number

The two regular expressions for validating the number are identical. The only difference
is that the first one uses the free-spacing syntax to make the regular expression more
readable, and to indicate the countries. JavaScript does not support free-spacing unless
you use the XRegExp library. The other flavors give you the choice.

The regex uses alternation to accommodate the VAT numbers of all 27 EU countries.
The essential formats are shown in Table 4-3.

Table 4-3. EU VAT number formats

Country VAT number format
Austria U99999999

Belgium 0999999999

Bulgaria 999999999 or 9999999999
Cyprus 999999991

Czech Republic 99999999, 999999999, or 9999999999
Germany 999999999

Denmark 99999999

Estonia 999999999

Greece 999999999

Spain X9999999X

Finland 99999999

France XX999999999

United Kingdom 999999999, 999999999999, or XX999
Hungary 99999999

Ireland 95999991

Italy 99999999999

Lithuania 999999999 or 99999999999
Luxembourg 99999999

Latvia 99999999999

Malta 99999999

Netherlands 999999999899

Poland 999999999

Portugal 999999999

326 | Chapter4: Validation and Formatting

Country VAT number format

Romania 99,999, 9999, 99999, 999999, 9999999, 99999999, 999999999, or 9999999999
Sweden 99999999999

Slovenia 99999999

Slovakia 999999999

Strictly speaking, the two-letter country code is part of the VAT number. However,
people often omit it, since the billing address already indicates the country. The regular
expression will accept VAT numbers with and without the country code. If you want
the country code to be mandatory, remove all the question marks from the regular
expression. If you do, mention that you require the country code in the error message
that tells the user the VAT number is invalid.

If you accept orders only from certain countries, you can leave out the countries that
don’t appear in the country selection on your order form. When you delete an alter-
native, make sure to also delete the <|> operator that separates the alternative from the
next or previous one. If you don’t, you end up with ¢| |> in your regular expression.
<||» inserts an alternative that matches the empty string, which means your order form
will accept the omission of a VAT number as a valid VAT number.

The 27 alternatives are grouped together. The group is placed between a caret and a
dollar sign, which anchor the regular expression to the beginning and ending of the
string you're validating. The whole input must validate as a VAT number.

If you’re searching for VAT numbers in a larger body of text, replace the anchors with
A\b> word boundaries.

Variations

The benefit of using one regular expression to check for all 27 countries is that you only
need to add one regex validation to your order form. You could enhance your order
form by using 27 separate regular expressions. First, check the country that the cus-
tomer specified in the billing address. Then, look up the appropriate regular expression
according to the country in Table 4-4.

Table 4-4. EU VAT number regular expressions

Country VAT number regular expression
Austria (AT)?2U[0-9]{8}%>
Belgium <"(BE)?0[0-9]{9}$>
Bulgaria «*(BG)?[0-9]{9,10}$>
Cyprus < (CY)?[0-9]1{8}L$>

(zech Republic *(CZ)?[0-9]{8,10}$>
Germany «(DE)?[0-9]{9}%

4.21 European VAT Numbers | 327

Country VAT number regular expression

Denmark «(DK)?[0-9]{8}%

Estonia (EE)?[0-9]{9}%

Greece ~(EL|GR)?[0-9]{9}$>

Spain «*(ES)?[0-9A-Z][0-9]{7}[0-9A-Z]%>
Finland < (FI)?[0-9]{8}%

France <M(FR)?[0-9A-Z]{2}[0-9]{9}%
United Kingdom <*(GB)?([0-91{9}([0-91{3})?|[A-Z]{2}[0-9]{3})$
Hungary (HU)?[0-9]{8}%

Ireland «M(IE)?[0-9]S[0-9]{5}L$>

[taly < (IT)?[0-9]1{11}%>

Lithuania A (LT)?([0-91{9}|[0-9]{212})$>
Luxembourg (LU)?[0-9]{8}%

Latvia < (Lv)?[o0-91{11}%>

Malta < (MT)?[0-9]{8}%

Netherlands «M(NL)?[0-9]{9}B[0-9]{2}$>
Poland «(PL)?[0-9]{10}%>

Portugal < (PT)?[0-9]{9}%

Romania «(RO)?[0-9]{2,10}$>

Sweden «(SE)?[0-91{12}%>

Slovenia (SI)?[0-9]{8}%

Slovakia «(SK)?[0-9]{10}$>

Implement Recipe 3.6 to validate the VAT number against the selected regular expres-
sion. That will tell you if the number is valid for the country the customer claims to
reside in.

The main benefit of using the separate regular expressions is that you can force the
VAT number to start with the correct country code, without asking the customer to
type it in. When the regular expression matches the provided number, check the con-
tents of the first capturing group. Recipe 3.9 explains how to do this. If the first cap-
turing group is empty, the customer did not type the country code at the start of the
VAT number. You can then add the country code before storing the validated number
in your order database.

Greek VAT numbers allow two country codes. EL is traditionally used for Greek VAT
numbers, but GR is the ISO country code for Greece.

328 | Chapter4: Validation and Formatting

Download from Wow! eBook <www.wowebook.com>

See Also

The regular expression merely checks if the number looks like a valid VAT number.
This is enough to weed out honest mistakes. A regular expression obviously cannot
check whether the VAT number is assigned to the business placing the order. The
European Union provides a web page at http://ec.europa.eu/taxation_customs/vies/vie
shome.do where you can check which business a particular VAT number belongs to, if
any.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

4.21 European VAT Numbers | 329

http://ec.europa.eu/taxation_customs/vies/vieshome.do
http://ec.europa.eu/taxation_customs/vies/vieshome.do

CHAPTER 5
Words, Lines, and Special Characters

This chapter contains recipes that deal with finding and manipulating text in a variety
of contexts. Some of the recipes show how to do things you might expect from an
advanced search engine, such as finding any one of several words or finding words that
appear near each other. Other examples help you find entire lines that contain partic-
ular words, remove repeated words, or escape regular expression metacharacters.

The central theme of this chapter is showing a variety of regular expression constructs
and techniques in action. Reading through it is like a workout for a large number of
regular expression syntax features, and will help you apply regular expressions gener-
ally to the problems you encounter. In many cases, what we search for is simple, but
the templates we provide in the solutions allow you to customize them for the specific
problems you’re facing.

5.1 Find a Specific Word

Problem

You’re given the simple task of finding all occurrences of the word cat, case insensi-
tively. The catch is that it must appear as a complete word. You don’t want to find
pieces of longer words, such as hellcat, application, or Catwoman.

Solution

Word boundary tokens make this a very easy problem to solve:

\bcat\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

331

Discussion

The word boundaries at both ends of the regular expression ensure that cat is matched
only when it appears as a complete word. More precisely, the word boundaries require
that cat is set apart from other text by the beginning or end of the string, whitespace,
punctuation, or other nonword characters.

Regular expression engines consider letters, numbers, and underscores to all be word
characters. Recipe 2.6 is where we first talked about word boundaries, and covers them
in greater detail.

A problem can occur when working with international text in JavaScript, PCRE, and
Ruby, since those regular expression flavors only consider letters in the ASCII table
to create a word boundary. In other words, word boundaries are found only at the
positions between a match of <[*A-Za-z0-9_]|* and <[A-Za-z0-9_]>, or between
<[A-Za-20-9_]> and <["A-Za-2z0-9_]|$>. The same is true in Python when the UNICODE or
U flag is not set. This prevents <\b> from being useful for a “whole word only” search
within text that contains accented letters or words that use non-Latin scripts. For ex-
ample, in JavaScript, PCRE, and Ruby, <\biiber\b> will find a match within dariiber, but
not within dar iiber. In most cases, this is the exact opposite of what you would want.
The problem occurs because ii is considered a nonword character, and a word boundary
is therefore found between the two characters rii. No word boundary is found between
a space character and i, because they create a contiguous sequence of nonword
characters.

You can deal with this problem by using lookahead and lookbehind (collectively, look-
around—see Recipe 2.16) instead of word boundaries. Like word boundaries, look-
arounds match zero-width positions. In PCRE (when compiled with UTF-8 support)
and Ruby 1.9, you can emulate Unicode-based word boundaries using, for example,
«2<=["\p{LN\p{M}]|*)cat(?=["\p{L}\p{M}1|$)>. This regular expression also uses Uni-
code Letter and Mark category tokens (\p{L}> and <\p{M}»), which are discussed in
Recipe 2.7. If you want the lookarounds to also treat any Unicode decimal numbers
and connector punctuation (underscore and similar) as word characters, like <\\b> does
in regex flavors that correctly support Unicode, replace the two instances of <[*\p{L}

\p{M}]> with <["\p{L\p{MP\p{Nd}\p{Pc}].

JavaScript and Ruby 1.8 support neither lookbehind nor Unicode categories. You can
work around the lack of lookbehind support by matching the nonword character pre-
ceding each match, and then either removing it from each match using procedural code
or putting it back into the string when replacing matches (see the examples of using
parts of a match in a replacement string in Recipe 3.15). The additional lack of support
for matching Unicode categories (coupled with the fact that both programming lan-
guages” \w> and \\W> tokens consider only ASCII word characters) means you might
need to make do with a more restrictive solution. Code points in the Letter and Mark
categories are scattered throughout Unicode’s character set, so it would take thousands
of characters to emulate ([*\p{L}\p{M}]> using Unicode escape sequences and character

332 | Chapter5: Words, Lines, and Special Characters

class ranges. A good compromise might be ¢[*A-Za-z\xAA\xB5\xBA\xCO-\xD6\xD8-
\xF6\xF8-\xFF]>, which matches all except Unicode letter characters in eight-bit ad-
dress space (i.e., the first 256 Unicode code points, from positions 0x00 to OxFF). There
are no code points in the Mark category within this range. See Figure 5-1 for the list of
nonmatched characters. This negated character class lets you exclude (or in nonnegated
form, match) some of the most commonly used, accented characters.

o 1 2 3 4 5 6 7 8 9 A B C D E F
4 AAB C D E F G H I J K L M N O
5(P Q@ R S T U V W X Y Z
6 a b c¢c d e f g h i1 j k 1 m n o
7/p 9 r s t u v w x y z
A :
B H e
ClA AA A A A £ ¢ tE E E E I I I I
p|® N 0 0 0 0 O ¢ 0 0 0 0 Y p B
E|la & a & 8 a4 = ¢ & é & & 1 1 1 1
F|d A & 6 o6 & © g U0 a 0o Oy p y

Figure 5-1. Unicode letter characters in eight-bit address space

Following is an example of how to replace all instances of the word “cat” with “dog”
in JavaScript. It correctly accounts for common, accented characters, so écat is not
altered. To do this, you’ll need to construct your own character class instead of relying
on the built-in \\b> or \\w>:

// 8-bit-wide letter characters

var pL = "A-Za-z\xAA\xB5\xBA\xCO-\xD6\xD8-\xF6\xF8-\xFF",
pattern = "([*{L}]|*)cat(["{L}]|$)".replace(/{L}/g, pL),
regex = new RegExp(pattern, "gi");

// replace cat with dog, and put back any
// additional matched characters
subject = subject.replace(regex, "$1dog$2");

Note that JavaScript string literals use \xHH (where HH is a two-digit hexadecimal num-
ber) to insert special characters. Hence, the pL variable that is passed to the regular
expression actually ends up containing the literal versions of the characters. If you
wanted the \xHH metasequences to be passed through to the regex itself, you would
have to escape the backslashes in the string literal (i.e., "\\xHH"). However, in this case
it doesn’t matter and will not change what the regular expression matches.

5.1 Find a SpecificWord | 333

See Also

This chapter has a variety of recipes that deal with matching words. Recipe 5.2 explains
how to find any of multiple words. Recipe 5.3 explains how to find similar words.
Recipe 5.4 explains how to find all except a specific word. Recipe 5.10 explains how
to match complete lines that contain a word.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.7 explains how to match Unicode characters. Recipe 2.8
explains alternation. Recipe 2.9 explains grouping. Recipe 2.16 explains lookaround.

5.2 Find Any of Multiple Words

Problem

You want to find any one out of a list of words, without having to search through the
subject string multiple times.

Solution

Using alternation
The simple solution is to alternate between the words you want to match:

\b(?:one|two|three)\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

More complex examples of matching similar words are shown in Recipe 5.3.

Example JavaScript solution

var subject = "One times two plus one equals three.";
// Solution 1:
var regex = /\b(?:one|two|three)\b/gi;

subject.match(regex);
// Returns an array with four matches: ["One","two","one","three"]

// Solution 2 (reusable):
// This function does the same thing but accepts an array of words to

// match. Any regex metacharacters within the accepted words are escaped
// with a backslash before searching.

334 | Chapter5: Words, Lines, and Special Characters

function matchWords(subject, words) {
var regexMetachars = /[(){[*+?.\\"$|]1/g;

for (var i =
words[1i]
}

var regex = new RegExp("\\b(?:" + words.join("|") + ")\\b", "gi");

0; 1 < words.length; i++) {
= words[i].replace(regexMetachars, "\\$&");

return subject.match(regex) || [];

}

matchWords(subject, ["one","two","three"]);
// Returns an array with four matches: ["One","two","one","three"]

Discussion

Using alternation

There are three parts to this regular expression: the word boundaries on both ends, the
noncapturing group, and the list of words (each separated by the ¢|» alternation oper-
ator). The word boundaries ensure that the regex does not match part of a longer word.
The noncapturing group limits the reach of the alternation operators; otherwise, you’d
need to write <\bone\b | \btwo\b | \bthree\b> to achieve the same effect. Each of the words
simply matches itself.

Since the words are surrounded on both sides by word boundaries, they can appear in
any order. Without the word boundaries, however, it might be important to put longer
words first; otherwise, you’d never find “awesome” when searching for <awe|awe
some>. The regex would always just match the “awe” at the beginning of the word.

B
)

Because the regex engine attempts to match each word in the list from
left to right, you might see a very slight performance gain by placing the
s words that are most likely to be found in the subject text near the be-
" ginning of the list.

Note that this regular expression is meant to generically demonstrate matching one out
of alist of words. Because both the «two> and «three> in this example start with the same
letter, you can more efficiently guide the regular expression engine by rewriting the
regex as <\b(?:one|t(?:wo|hree))\b>. Don’t go crazy with such hand-tuning, though.
Most regex engines try to perform this optimization for you automatically, at least in
simple cases. See Recipe 5.3 for more examples of how to efficiently match one out of
a list of similar words.

5.2 Find Any of Multiple Words | 335

Example JavaScript solution

The JavaScript example matches the same list of words in two different ways. The first
approach is to simply create the regex and search the subject string using the match()
method that is available for JavaScript strings. When the match() method is passed a
regular expression that uses the /g (global) flag, it returns an array of all matches found
in the string, or null if no match is found.

The second approach creates a function called matchWords() that accepts a string to
search within and an array of words to search for. The function first escapes any regex
metacharacters that might exist in the provided words (see Recipe 2.1), and then splices
the word list into a new regular expression. That regex is then used to search the string
for all of the target words at once, rather than searching for words one at a time in a
loop. The function returns an array of any matches that are found, or an empty array
if the generated regex doesn’t match the string at all. The desired words can be matched
in any combination of upper- and lowercase, thanks to the use of the case-insensitive
(/1) flag.

See Also

This chapter has a variety of recipes that deal with matching words. Recipe 5.1 explains
how to find a specific word. Recipe 5.3 explains how to find similar words.
Recipe 5.4 explains how to find all except a specific word.

Recipe 4.11 shows how to validate affirmative responses, and similarly matches any of
several words.

Some programming languages have a built-in function for escaping regular expression
metacharacters, as explained in Recipe 5.14.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.6 explains word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 ex-
plains grouping.

5.3 Find Similar Words

Problem
You have several problems in this case:

* You want to find all occurrences of both color and colour in a string.
* You want to find any of three words that end with “at”: bat, cat, or rat.
* You want to find any word ending with phobia.

¢ You want to find common variations on the name “Steven”: Steve, Steven, and
Stephen.

* You want to match any common form of the term “regular expression.”

336 | Chapter5: Words, Lines, and Special Characters

Solution

Regular expressions to solve each of the problems just listed are shown in turn. All of
these solutions are listed with the case insensitive option.

Color or colour

\bcolou?r\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Bat, cat, or rat

\b[bcr]at\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Words ending with “phobia”

\b\w*phobia\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Steve, Steven, or Stephen

\bSte(?:ven?|phen)\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Variations of “regular expression”

\breg(?:ulareexpressions?|ex(?:ps?|e[sn])?)\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Use word boundaries to match complete words

All five of these regular expressions use word boundaries (<\b>) to ensure that they
match only complete words. The patterns use several different approaches to allow
variation in the words that they match.

Let’s take a closer look at each one.

5.3 Find Similar Words | 337

Color or colour

This regular expression will match color or colour, but will not match within
colorblind. It uses the <?> quantifier to make its preceding u optional. Quantifiers such
as «?» do not work like the wildcards that many people are more familiar with. Instead,
they bind to the immediately preceding element, which can be either a single token (in
this case, the literal character u) or a group of tokens wrapped in parentheses. The 2>
quantifier repeats the preceding element zero or one time. The regex engine first tries
to match the element that the quantifier is bound to, and if that doesn’t work, the engine
moves forward without matching it. Any quantifier that allows zero repetitions effec-
tively makes the preceding element optional, which is exactly what we want here.

Bat, cat, or rat

This regular expression uses a character class to match b, c, or r, followed by the literal
characters at. You could do the same thing using \\b(?:b|c|r)at\b>, \b(?:bat|cat|
rat)\b>, or \\bbat\b|\bcat\b|\brat\b>. However, any time the difference between al-
lowed matches is a choice from one of a list of characters, you're better off using a
character class. Not only do character classes provide a more compact and readable
syntax (thanks to being able to drop all the vertical bars and use ranges such as A-7),
most regex engines also provide far superior optimization for character classes. Alter-
nation using vertical bars requires the engine to use the computationally expensive
backtracking algorithm, whereas character classes use a simpler search approach.

A few words of caution, though. Character classes are among the most frequently mis-
used regular expression features. It’s possible that they’re not always documented well,
or maybe some readers just skimmed over the details. Whatever the reasons, don’t let
yourself make the same newbie mistakes. Character classes are only capable of match-
ing one character at a time from the characters specified within them—no exceptions.

Following are two of the most common ways that character classes are misused:

Putting words in character classes
Sure, something like <[cat]{3}> will match cat, but it will also match act, ttt, and
any other three-character combination of the listed characters. The same applies
to negated character classes such as «[*cat]>, which matches any single character
thatisnotc, a, or t.

Trying to use the alternation operator within character classes
By definition, character classes allow a choice between the characters specified
within them. <[a|b|c]> matches a single character from the set “abc|”, which is
probably not what you want. And even if it is, the class contains a redundant ver-
tical bar.

See Recipe 2.3 for all the details you need to use character classes correctly and
effectively.

338 | Chapter5: Words, Lines, and Special Characters

Words ending with “phobia”

This pattern combines features from the two previous regexes to provide the variation
in the strings it matches. Like the “bat, cat, or rat” regex, it uses a character class (the
shorthand <\w>) that matches any word character. It then uses the ¢*) quantifier to repeat
the shorthand class zero or more times, similar to the “color or colour” regex’s use of
.

This regular expression matches, for example, arachnophobia and hippopotomonstro
sesquipedaliophobia. Because the <*» allows zero repetitions, it also matches phobia on
its own. If you want to require at least one word character before the “phobia” suffix,
change the <*) to <.

Steve, Steven, or Stephen

Here we add alternation to the mix as yet another means for regex variation. A non-
capturing group, written as <(?:-*)>, limits the reach of the ¢|» alternation operator.
The 2> quantifier used inside the group’s first alternation option makes the preceding
<> character optional. This improves efficiency (and brevity) versus the equivalent
\bSte(?:ve|ven|phen)\b>. The same principle explains why the literal string «Ste> ap-
pears at the front of the regular expression, rather than being repeated three times as
with <\b(?:Steve|Steven|Stephen)\b> or <\bSteve\b|\bSteven\b|\bStephen\b>. Some
backtracking regular expression engines are not smart enough to figure out that any
text matched by these latter regexes must start with Ste. Instead, as the engine steps
through the subject string looking for a match, it will first find a word boundary, then
check the following character to see if it is an S. If not, the engine must try all alternative
paths through the regular expression before it can move on and start over again at the
next position in the string. Although it’s easy for a human to see that this would be a
waste of effort (since the alternative paths through the regex all start with Ste), the
engine doesn’t know this. If instead you write the regex as <\bSte(?:ven?|phen)\b>, the
engine immediately realizes that it cannot match any string that does not start with
those characters.

For an in-depth look under the hood of a backtracking regular expression engine, see
Recipe 2.13.

Variations of “regular expression”

The final example for this recipe mixes alternation, character classes, and quantifiers
to match any common variation of the term “regular expression.” Since the regular
expression can be a bit difficult to take in at a glance, let’s break it down and examine
each of its parts.

This next regex uses the free-spacing option, which is not available in standard
JavaScript. Since whitespace is ignored in free-spacing mode, the literal space character
has been escaped with a backslash:

5.3 Find Similar Words | 339

\b # Assert position at a word boundary.

reg # Match "reg".
(2: # Group but don't capture:
ular\ # Match "ular ".
expressions? # Match "expression" or "expressions".
| # Or:
ex # Match "ex".
(2: # Group but don't capture:
ps? # Match "p" or "ps".
| # Or:
e[sn] # Match "es" or "en".
)? # End the group and make it optional.
) # End the group.
\b # Assert position at a word boundary.

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

This pattern matches any of the following seven strings, with any combination of upper-
and lowercase letters:

regular expressions

regular expression

regexps
regexp

regexes
regexen

regex

See Also

Recipe 5.1 explains how to find a specific word. Recipe 5.2 explains how to find any
of multiple words. Recipe 5.4 explains how to find all except a specific word.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

5.4 Find All Except a Specific Word

Problem

You want to use a regular expression to match any complete word except cat.
Catwoman, vindicate, and other words that merely contain the letters “cat” should be
matched—just not cat.

340 | Chapter5: Words, Lines, and Special Characters

Solution
A negative lookahead can help you rule out specific words, and is key to this next regex:

\b(?!cat\b)\w+
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Although a negated character class (written as <[***-]>) makes it easy to match anything
except a specific character, you can’t just write <[~cat]> to match anything except the
word cat. ([*cat]> is a valid regex, but it matches any character except c, a, or t. Hence,
although (\b[*cat]+\b> would avoid matching the word cat, it wouldn’t match the
word time either, because it contains the forbidden letter t. The regular expression
Ab[~c][*a][*t]\w*> is no good either, because it would reject any word with c as its
first letter, a as its second letter, or t as its third. Furthermore, that doesn’t restrict the
first three letters to word characters, and it only matches words with at least three
characters since none of the negated character classes are optional.

With all that in mind, let’s take another look at how the regular expression shown at
the beginning of this recipe solved the problem:

\b # Assert position at a word boundary.
(2! # Not followed by:

cat # Match "cat".

\b # Assert position at a word boundary.
) # End the negative lookahead.
\w+ # Match one or more word characters.

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

The key to this pattern is its negative lookahead, «(?!---)>. The negative lookahead
disallows the sequence cat followed by a word boundary, without preventing the use
of those letters when they do not appear in that exact sequence, or when they appear
as part of a longer or shorter word. There’s no word boundary at the very end of the
regular expression, because it wouldn’t change what the regex matches. The «+> quan-
tifier in (\w+> repeats the word character token as many times as possible, which means
that it will always match until the next word boundary.

When applied to the subject string categorically match any word except cat, the regex
will find five matches: categorically, match, any, word, and except.

5.4 Find All Except a SpecificWord | 341

Variations

Find words that don’t contain another word

If, instead of trying to match any word that is not cat, you are trying to match any word
that does not contain cat, a slightly different approach is needed:

\b(?:(?!cat)\w)+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In the earlier section of this recipe, the word boundary at the beginning of the regular
expression provided a convenient anchor that allowed us to simply place the negative
lookahead at the beginning of the word. The solution used here is not as efficient, but
it’s nevertheless a commonly used construct that allows you to match something other
than a particular word or pattern. It does this by repeating a group containing a negative
lookahead and a single word character. Before matching each character, the regex en-
gine makes sure that the word cat cannot be matched starting at the current position.

Unlike the previous regular expression, this one requires a terminating word boundary.
Otherwise, it could match just the first part of a word, up to where cat appears within
it.

When applied to the subject string categorically match any word except cat, the regex
will find four matches: match, any, word, and except.

See Also

Recipe 5.1 explains how to find a specific word. Recipe 5.5 explains how to find any
word not followed by a specific word. Recipe 5.6 explains how to find any word not
preceded by a specific word. Recipe 5.11 explains how to match complete lines that do
not contain a word.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.9 explains grouping. Recipe 2.12 explains repetition. Recipe 2.16 explains
lookaround.

5.5 Find Any Word Not Followed by a Specific Word

Problem

You want to match any word that is not immediately followed by the word cat, ignoring
any whitespace, punctuation, or other nonword characters that appear in between.

342 | Chapter5: Words, Lines, and Special Characters

Solution
Negative lookahead is the secret ingredient for this recipe:

\b\w+\b(?!\W+cat\b)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

As with many other recipes in this chapter, word boundaries (<\b>) and the word char-
acter token (\w>) work together to match a complete word. You can find in-depth
descriptions of these features in Recipe 2.6.

The <(?!"-)> surrounding the second part of this regex is a negative lookahead. Look-
ahead tells the regex engine to temporarily step forward in the string, to check whether
the pattern inside the lookahead can be matched just ahead of the current position. It
does not consume any of the characters matched inside the lookahead. Instead, it
merely asserts whether a match is possible. Since we’re using a negative lookahead, the
result of the assertion is inverted. In other words, if the pattern inside the lookahead
can be matched just ahead, the match attempt fails, and regex engine moves forward
to try all over again starting from the next character in the subject string. You can find
much more detail about lookahead (and its counterpart, lookbehind) in Recipe 2.16.

As for the pattern inside the lookahead, the \\W+> matches one or more nonword char-
acters, such as whitespace and punctuation, that appear before «cat>. The word bound-
ary at the end of the lookahead ensures that we skip only words not followed by cat as
a complete word, rather than just any word starting with cat.

Note that this regular expression even matches the word cat, as long as the subsequent
word is not also cat. If you also want to avoid matching cat, you could combine this
regex with the one in Recipe 5.4 to end up with \b(?!cat\b)\w+\b(?!\W+cat\b)>.

Variations

If you want to only match words that are followed by cat (without including cat and
its preceding nonword characters as part of the matched text), change the lookahead
from negative to positive, then turn your frown upside-down:
\b\w+\b(?=\W+cat\b)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also

Recipe 5.4 explains how to find all except a specific word. Recipe 5.6 explains how to
find any word not preceded by a specific word.

5.5 Find Any Word Not Followed by a SpecificWord | 343

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround.

5.6 Find Any Word Not Preceded by a Specific Word

Problem

You want to match any word that is notimmediately preceded by the word cat, ignoring
any whitespace, punctuation, or other nonword characters that come between.

Solution

Lookbehind you

Lookbehind lets you check if text appears before a given position. It works by instruct-
ing the regex engine to temporarily step backward in the string, checking whether
something can be found ending at the position where you placed the lookbehind. See
Recipe 2.16 if you need to brush up on the details of lookbehind.

The following regexes use negative lookbehind, <(?<!---)>. Unfortunately, the regex
flavors covered by this book differ in what kinds of patterns they allow you to place
within lookbehind. The solutions therefore end up working a bit differently in each
case. Read on to the “Discussion” section of this recipe for further details.

Words not preceded by “cat”
Any number of separating nonword characters:

(?2<!\bcat\W+)\b\w+
Regex options: Case insensitive
Regex flavor: .NET

Limited number of separating nonword characters:

(?2<!\bcat\W{1,9})\b\w+
Regex options: Case insensitive
Regex flavors: .NET, Java

Single separating nonword character:

(?2<!\bcat\W)\b\w+

Regex options: Case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python
(2<!"\Wcat\W) (<! cat\W) \b\w+

Regex options: Case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

344 | Chapter5: Words, Lines, and Special Characters

Simulate lookbehind

JavaScript and Ruby 1.8 do not support lookbehind at all, even though they do support
lookahead. However, because the lookbehind for this problem appears at the very be-
ginning of the regex, it’s possible to simulate the lookbehind by splitting the regex into
two parts, as demonstrated in the following JavaScript example:

var subject = "My cat is fluffy.",
mainRegex = /\b\w+/g,
lookbehind = /\bcat\W+$/i,
lookbehindType = false, // false for negative, true for positive
matches = [],
match,
leftContext;

while (match = mainRegex.exec(subject)) {
leftContext = subject.substring(0o, match.index);

if (lookbehindType == lookbehind.test(leftContext)) {
matches.push(match[0]);

} else {
mainRegex.lastIndex = match.index + 1;

}

}

// matches: ["My", "cat", "fluffy"]
Discussion

Fixed, finite, and infinite length lookbehind

The first regular expression uses the negative lookbehind «(?<!\bcat\W+)>. Because the
<+ quantifier used inside the lookbehind has no upper limit on how many characters
it can match, this version works with the .NET regular expression flavor only. All of
the other regular expression flavors covered by this book require a fixed or maximum
(finite) length for lookbehind patterns.

The second regular expression replaces the <+ within the lookbehind with «{1,9}>. As
a result, it can be used with .NET and Java, both of which support variable-length
lookbehind when there is a known upper limit to how many characters can be matched
within them. I’ve arbitrarily chosen a maximum length of nine nonword characters to
separate the words. That allows a bit of punctuation and a few blank lines to separate
the words. Unless you’re working with unusual subject text, this will probably end up
working exactly like the previous .NET-only solution. Even in .NET, however, pro-
viding a reasonable repetition limit for any quantifiers inside lookbehind is a good safety
practice since it reduces the amount of unanticipated backtracking that can potentially
occur within the lookbehind.

5.6 Find Any Word Not Preceded by a SpecificWord | 345

The third regular expression entirely dropped the quantifier after the <\W> nonword
character inside the lookbehind. Doing so lets the lookbehind test a fixed-length string,
thereby adding support for PCRE, Perl, and Python. But it’s a steep price to pay, and
now the regular expression only avoids matching words that are preceded by “cat” and
exactly one separating character. The regex correctly matches only cat in the string cat
fluff, but it matches both cat and fluff in the string cat, fluff.

Since Ruby 1.9 doesn’t allow <\b> word boundaries in lookbehind, the fourth regular
expression uses two separate lookbehinds. The first lookbehind prevents cat as the
preceding word when it is itself preceded by a nonword character such as whitespace
or punctuation. The second uses the «*» anchor to prevent cat as the preceding word
when it appears at the start of the string.

Simulate lookbehind

JavaScript does not support lookbehind, but the JavaScript example code shows how
you can simulate lookbehind that appears at the beginning of a regex. It doesn’t impose
any restrictions on the length of the text matched by the (simulated) lookbehind.

We start by splitting the <(?<!\bcat\W+)\b\w+> regular expression from the first solution
into two pieces: the pattern inside the lookbehind (\bcat\W+>) and the pattern that
comes after it (<\b\w+>). Append a <$> to the end of the lookbehind pattern. If you need
to use the “” and $ match at line breaks” option (/m) with the lookbehind regex, use
«$(2!1\s)> instead of «$» at the end of the lookbehind pattern to ensure that it can match
only at the very end of its subject text. The lookbehindType variable controls whether
we’re emulating positive or negative lookbehind. Use true for positive and false for
negative.

After the variables are set up, we use mainRegex and the exec() method to iterate over
the subject string (see Recipe 3.11 for a description of this process). When a match is
found, the part of the subject text before the match is copied into a new string variable
(leftContext), and we test whether the lookbehind regex matches that string. Because
of the anchor we appended to the end of lookbehind, this can only match immediately
to the left of the match found by mainRegex, or in other words, at the end of leftCon
text. By comparing the result of the lookbehind test to lookbehindType, we can deter-
mine whether the match meets the complete criteria for a successful match.

Finally, we take one of two steps. If we have a successful match, append the text
matched by mainRegex to the matches array. If not, change the position at which to
continue searching for a match (using mainRegex.lastIndex) to the position one char-
acter after the starting position of mainRegex’s last match, rather than letting the next
iteration of the exec() method start at the end of the current match.

Whew! We’re done.

This is an advanced trick that takes advantage of the lastIndex property that is dy-
namically updated with JavaScript regular expressions that use the /g (global) flag.

346 | Chapter5: Words, Lines, and Special Characters

Usually, updating and resetting lastIndex is something that happens automagically.
Here, we use it to take control of the regex’s path through the subject string, moving
forward and backward as necessary. This trick only lets you emulate lookbehind that
appears at the beginning of a regex. With a few changes, the code could also be used
to emulate lookbehind at the very end of a regex. However, it does not serve as a full
substitute for lookbehind support. Due to the interplay of lookbehind and backtrack-
ing, this approach cannot help you accurately emulate the behavior of a lookbehind
that appears in the middle of a regex.

Variations

If you want to match words that are preceded by cat (without including the word
cat and its following nonword characters as part of the matched text), change the
negative lookbehind to positive lookbehind, as shown next.

Any number of separating nonword characters:

(?2<=\bcat\W+)\w+
Regex options: Case insensitive
Regex flavor: .NET

Limited number of separating nonword characters:

(?2<=\bcat\W{1,9})\w+
Regex options: Case insensitive
Regex flavors: NET, Java

Single separating nonword character:

(?2<=\bcat\W)\w+
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python

(2:(2<=\Wcat\W) | (?<="cat\W)) \w+
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

These adapted versions of the regexes no longer include a \\b> word boundary before
the \w+> at the end because the positive lookbehinds already ensure that any match is
preceded by a nonword character. The last regex (which adds support for Ruby 1.9)
wraps its two positive lookbehinds in <(?:--|--*)», since only one of the lookbehinds
can match at a given position.

PCRE 7.2 and Perl 5.10 support the fancy <\\K> or keep operator that resets the starting
position for the part of a match that is returned in the match result (see “Alternative to
Lookbehind” on page 88 for more details). We can use this to come close to emulating
leading infinite-length positive lookbehind, as shown in the next regex:

\bcat\W+\K\w+
Regex options: Case insensitive

5.6 Find Any Word Not Preceded by a Specific Word | 347

Download from Wow! eBook <www.wowebook.com>

Regex flavors: PCRE 7.2, Perl 5.10

There is a subtle but important difference between this and the .NET-only regex that
allowed any number of separating nonword characters. Unlike with lookbehind, the
text matched to the left of the \\K> is consumed by the match even though it is not
included in the match result. You can see this difference by comparing the results of
the regexes with (\K> and positive lookbehind when they’re applied to the subject string
cat cat cat cat. In Perl and PHP, if you replace all matches of <(?<=\bcat\W)\w+> with
«dog», you’ll get the result cat dog dog dog, since only the first word is not itself pre-
ceded by cat. If you use the regex \bcat\W+\K\w+> to perform the same replacement,
the result will be cat dog cat dog. After matching the leading cat cat (and replacing
it with cat dog), the next match attempt can’t peek to the left of its starting position
like lookbehind does. The regex matches the second cat cat, which is again replaced
with cat dog.

See Also

Recipe 5.4 explains how to find all except a specific word. Recipe 5.5 explains how to
find any word not followed by a specific word.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.
Recipe 2.16 explains lookaround. It also explains (\K», in the section “Alternative to
Lookbehind” on page 88.

5.7 Find Words Near Each Other

Problem

You want to emulate a NEAR search using a regular expression. For readers unfamiliar
with the term, some search tools that use Boolean operators such as NOT and OR also
have a special operator called NEAR. Searching for “wordl NEAR word2” finds
word1 and word2 in any order, as long as they occur within a certain distance of each
other.

Solution

If you’re searching for just two different words, you can combine two regular
expressions—one that matches word1 before word2, and another that flips the order of
the words. The following regex allows up to five words to separate the two you’re
searching for:

\b(?:word1\W+(?:\w+\W+){0,5}?word2 |word2\W+(?: \w+\W+){0, 5} ?word1)\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

348 | Chapter5: Words, Lines, and Special Characters

\b(?:

word1 # first term
\W+ (?:\w+\W+){0,5}? # up to five words
word2 # second term
| # or, the same pattern in reverse:
word2 # second term
\W+ (2:\w+\W+){0,5}? # up to five words
wordl # first term
)\b

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

The second regular expression here uses the free-spacing option and adds whitespace
and comments for readability. Apart from that, the two regular expressions are iden-
tical. JavaScript doesn’t support free-spacing mode unless you use the XRegExp library,
but the other listed regex flavors allow you to take your pick. Recipes 3.5 and 3.7 show
examples of how you can add these regular expressions to your search form or other
code.

Discussion

This regular expression puts two inverted copies of the same pattern back to back, and
then surrounds them with word boundaries. The first subpattern matches wordi, fol-
lowed by between zero and five words, and then word2. The second subpattern matches
the same thing, with the order of word1 and word2 reversed.

The lazy quantifier <{0,5}?> appears in both of the subpatterns. It causes the regular
expression to match as few words as possible between the two terms you’re searching
for. If you run the regular expression over the subject text wordl word2 wordz, it will
match wordl word2 because that has fewer words (zero) between the start and end
points. To configure the distance permitted between the target words, change the 0
and 5 within the two quantifiers to your preferred values. For example, if you changed
them to «{1,15}?, that would allow up to 15 words between the two you’re looking
for, and require that they be separated by at least one other word.

The shorthand character classes that are used to match word characters and nonword
characters (<\w> and \\W», respectively) follow the quirky regular expression definition
of which characters words are composed of (letters, numbers, and underscore).

Variations

Using a conditional

Often, there are many ways to write the same regular expression. In this book, we’ve
tried hard to balance the trade-offs between portability, brevity, efficiency, and other
considerations. However, sometimes solutions that are less than ideal can still be ed-
ucational. The next two regular expressions illustrate alternative approaches to finding

5.7 Find Words Near Each Other | 349

words near each other. We don’t recommend actually using them, because although
they match the same text, they will typically take a little longer to do so. They also work
with fewer regular expression flavors.

This first regular expression uses a conditional (see Recipe 2.17) to determine whether
to match word1 or word2 at the end of the regex, rather than simply stringing reversed
patterns together. The conditional checks if capturing group 1 participated in the
match, which would mean that the match started with word2:

\b(?:word1| (word2)) \W+(?:\w+\W+){0,5}?(?(1)word1|word2)\b
Regex options: None
Regex flavors: .NET, PCRE, Perl, Python

This next version once again uses a conditional to determine which word should be
matched at the end, but it adds two more regular expression features into the mix:

\b(?: (2<wi>word1) | (?<w2>word2)) \W+(?: \w+\W+){0,5}2(2(w2) (2&w1) | (?&w2))\b
Regex options: None
Regex flavors: PCRE 7, Perl 5.10

Here, named capturing groups, written as <(?<name>--*)», surround the first instances
of word1> and word2>. This allows you to use the «(?&name)> subroutine syntax to reuse
a subpattern that is called by name. This does not work the same as a backreference to
a named group. A named backreference, such as <\k<name>> (.NET, Java 7, XRegExp,
PCRE 7, Perl 5.10) or «(?P=name)> (PCRE 4, Perl 5.10, Python) lets you rematch text
that has already been matched by a named capturing group. A subroutine such as «(?
&name)> allows you to reuse the actual pattern contained within the corresponding
group. You can’t use a backreference here, because that would only allow rematching
words that have already been matched. The subroutines within the conditional at the
end of the regex match the word from the two provided options that hasn’t already
been matched, without having to spell out the words again. This means there is only
one place in the regex to update if you need to reuse it to match different words.

W

: Ruby 1.9 supports named subroutines using the syntax <\g<name>>, but
since Ruby 1.9 doesn’t support conditionals, it can’t run the regexes

.\ shown earlier. PCRE 4 was the first regex library to support named sub-
routines, but back then it used the syntax «(?P>name)>, which is now
discouraged in favor of the Perl-compatible «(?&name)> that was added
in Perl 5.10 and PCRE 7. PCRE 7.7 added Ruby 1.9’s subroutine syntax
as yet another supported alternative.

oy

Match three or more words near each other

Exponentially increasing permutations. Matching two words near each other is a fairly
straightforward task. After all, there are only two possible ways to order them. But what
if you want to match three words in any order? Now there are six possible orders (see
Example 5-1). The number of ways you can shift a given set of words around is n!, or

350 | Chapter5: Words, Lines, and Special Characters

the product of consecutive integers 1 through n (“n factorial”). With four words, there
are 24 possible ways to order them. By the time you get to 10 words, the number of
arrangements explodes into the millions. It is simply not viable to match more than a
few words near each other using the regular expression techniques discussed so far.

The concepts in the rest of this section are among the most dense and
difficult to understand in the book. Proceed with your wits about you,

and don’t feel bad if it doesn’t all click on the first read-through.

The ugly solution. One way to solve this problem is by repeating a group that matches the
required words or any other word (after a required word has been matched), and then
using conditionals to prevent a match attempt from finishing successfully until all of
the required words have been matched. Following is an example of matching three
words in any order with up to five other words separating them:

\b(?:(?>(word1) | (word2) | (word3) | (2(2) | (2(2)] (?2(3)|(2!))))\w+)\b\W*?){3,8}«
COCE@CEIEMNICIIEY)

Regex options: Case insensitive

Regex flavors: NET, PCRE, Perl

Example 5-1. Many ways to arrange a set

Two values:
[12, 21]
= 2 possible arrangements

Three values:
[123, 132,
213, 231,
312, 321]
= 6 possible arrangements

Four values:
[1234, 1243, 1324, 1342, 1423, 1432,
2134, 2143, 2314, 2341, 2413, 2432,
3124, 3142, 3214, 3241, 3412, 3421,
4123, 4132, 4213, 4231, 4312, 4321]
= 24 possible arrangements

Factorials:
2 =2 x1 = 2
31 =3x2x1 = 6
4! =4 x3 x2x1 = 24
5 x4 x3x%x2x1 = 120

51 =

10 =10 x 9 x 8 x 7 x 6 x5 x4 %x 3 x2x 1= 3628800

5.7 Find Words Near Each Other | 351

Here again is the regex, except that the atomic group (see Recipe 2.14) has been replaced
by a standard, noncapturing group. This adds support for Python at the cost of some
efficiency:

\b(?:(?:(word1) | (word2) | (word3) | (2(2)|(2(2)](2(3)|(2!))))\w+)\b\W*?){3,8}«
C@WC@CEIEMIENIEH)

Regex options: Case insensitive

Regex flavors: .NET, PCRE, Perl, Python

The «{3,8}> quantifiers in the regular expressions just shown account for the three
required words, and thus allow zero to five words in between them. The empty negative
lookaheads, which look like «(?!)>, will never match and are therefore used to block
certain paths through the regex until one or more of the required words have been
matched. The logic that controls these paths is implemented using two sets of nested
conditionals. The first set prevents matching any old word using <\w+> until at least one
of the required words have been matched. The second set of conditionals at the end
forces the regex engine to backtrack or fail unless all of the required words have been
matched.

That’s the brief overview of how this works, but rather than getting further into the
weeds and describing how to add additional required words, let’s take a look at an
improved implementation that adds support for more regex flavors, and involves a bit
of a trick.

Exploiting empty backreferences. The ugly solution works, but it could probably win a regex
obfuscation contest for being so difficult to read and manage. It would only get worse
if you added more required words into the mix.

Fortunately, there’s a regular expression hack you can use that makes this a lot easier
to follow, while also adding support for Java and Ruby (neither of which supports
conditionals).

The behavior described in this section should be used with caution in
production applications. We’re pushing expectations for regex behavior

into places that are undocumented for most regex libraries.

\b(?: (?>word1() |word2() |word3()|(?>\1]\2|\3)\w+)\b\W*?){3,8}\1\2\3
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Ruby

\b(?:(?:word1() |word2() |word3()|(?:\1]\2|\3)\w+)\b\W*?){3,8}\1\2\3
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Using this construct, it’s easy to add more required words. Here’s an example that
allows four required words to appear in any order, with a total of up to five other words
between them:

352 | Chapter5: Words, Lines, and Special Characters

\b(?:(?>word1() |word2() |word3() |word4() |«
(>\1\2]\3[\4)\w+)\b\W*?){4,9}\1\2\3\4
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Ruby

\b(?:(?:word1() |word2()|word3()|word4() |«
(2:\1]\2[\3[\4)\w+)\b\W*?){4,91\1\2\3\4

Regex options: Case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

These regular expressions intentionally use empty capturing groups after each of the
required words. Since any attempt to match a backreference such as (\1> will fail if the
corresponding capturing group has not yet participated in the match, backreferences
to empty groups can be used to control the path a regex engine takes through a pattern,
much like the more verbose conditionals we showed earlier. If the corresponding group
has already participated in the match attempt when the engine reaches the backrefer-
ence, it will simply match the empty string and move on.

Here, the <(2>\1|\2]\3)> grouping prevents matching a word using <\w+> until at least
one of the required words has been matched. The backreferences are repeated at the
end of the pattern to prevent any match from successfully completing until all of the
required words have been found.

Python does not support atomic groups, so once again the examples that list Python
among the regex flavors replace such groups with standard noncapturing groups. Al-
though this makes the regexes less efficient, it doesn’t change what they match. The
outermost grouping cannot be atomic in any flavor, because in order for this to work,
the regex engine must be able to backtrack into the outer group if the backreferences
at the end of the pattern fail to match.

JavaScript backreferences by its own rules. Even though JavaScript supports all the syntax
used in the Python versions of this pattern, it has two behavioral rules that prevent this
trick from working like the other flavors. The first issue is what is matched by backre-
ferences to capturing groups that have not yet participated in a match. The JavaScript
specification dictates that such backreferences match the empty string, or in other
words, they always match successfully. In just about every other regular expression
flavor, the opposite is true: they never match, and as a result they force the regex engine
to backtrack until either the entire match fails or the group they reference participates,
thereby providing the possibility that the backreference too will match.

The second difference with the JavaScript flavor involves the value remembered by
capturing groups nested within a repeated, outer group—for example, <((a)|(b))+.
With most regex flavors, the value remembered by a capturing group within a repeated
grouping is whatever the group matched the last time it participated in the match. So,
after <(?:(a)|(b))+ is used to match ab, the value of backreference 1 would be a.
However, according to the JavaScript specification, the value of backreferences to nes-
ted groups is reset every time the outer group is repeated. Hence, <(?:(a) | (b))+> would

5.7 Find Words Near Each Other | 353

still match ab, but backreference 1 after the match is complete would reference a non-
participating capturing group, which in JavaScript would match an empty string within
the regex itself and be returned as undefined in, for example, the array returned by the
regexp.exec() method.

Either of these behavioral differences found in the JavaScript regex flavor are enough
to prevent emulating conditionals using empty capturing groups, as described here.

Multiple words, any distance from each other

If you simply want to test whether a list of words can be found anywhere in a subject
string without regard for their proximity, positive lookahead provides a way to do so
using one search operation.

W
. In many cases it’s simpler and more efficient to perform discrete search-
"‘:\ es for each term you’re looking for, while keeping track of whether all
T Uy tests come back positive.

N

A(?=.*%?\bword1\b) (?=.*?\bword2\b).*
Regex options: Case insensitive, dot matches line breaks (
breaks” must not be set)
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

~(2=[\s\S]*?\bword1\b) (?=[\s\S]*?\bword2\b)[\s\S]*
Regex options: Case insensitive (“” and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

“~ and $ match at line

These regular expressions match the entire string they’re run against if all of your target
words are found within it; otherwise, they will not find any match. JavaScript pro-
grammers cannot use the first version unless using the XRegExp library, because stan-
dard JavaScript doesn’t support the “dot matches line breaks” option.

You can implement these regular expressions by following the code in Recipe 3.6. Sim-
ply change the word1> and word2> placeholders to the terms you’re searching for. If
you’re checking for more than two words, you can add as many lookaheads to the front
of the regex as you need. For example, *(?=.*?\bword1\b)(?=.*?\bword2\b) (?=.*?
\bword3\b).*) searches for three words.

See Also

Recipe 5.5 explains how to find any word not followed by a specific word. Recipe 5.6
explains how to find any word not preceded by a specific word.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.8 explains alternation. Recipe 2.9 explains grouping. Recipe 2.10 explains

354 | Chapter5: Words, Lines, and Special Characters

backreferences. Recipe 2.11 explains named capturing groups. Recipe 2.12 explains
repetition. Recipe 2.14 explains atomic groups. Recipe 2.17 explains conditionals.

5.8 Find Repeated Words

Problem

You’re editing a document and would like to check it for any incorrectly repeated
words. You want to find these doubled words despite capitalization differences, such
as with “The the.” You also want to allow differing amounts of whitespace between
words, even if this causes the words to extend across more than one line. Any separating
punctuation, however, should cause the words to no longer be treated as if they are
repeating.

Solution

A backreference matches something that has been matched before, and therefore pro-
vides the key ingredient for this recipe:

\b([A-Z]+)\s+\1\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you want to use this regular expression to keep the first word but remove subsequent
duplicate words, replace all matches with backreference 1. Another approach is to
highlight matches by surrounding them with other characters (such as an HTML tag),
so you can more easily identify them during later inspection. Recipe 3.15 shows how
you can use backreferences in your replacement text, which you’ll need to do to im-
plement either of these approaches.

If you just want to find repeated words so you can manually examine whether they
need to be corrected, Recipe 3.7 shows the code you need. A text editor or grep-like
tool, such as those mentioned in “Tools for Working with Regular Expressions” in
Chapter 1, can help you find repeated words while providing the context needed to
determine whether the words in question are in fact used correctly.

Discussion

There are two things needed to match something that was previously matched: a cap-
turing group and a backreference. Place the thing you want to match more than once
inside a capturing group, and then match it again using a backreference. This works
differently from simply repeating a token or group using a quantifier. Consider the
difference between the simplified regular expressions «(\w)\1> and \w{2}>. The first
regex uses a capturing group and backreference to match the same word character
twice, whereas the latter uses a quantifier to match any two word characters.
Recipe 2.10 discusses the magic of backreferences in greater depth.

5.8 Find Repeated Words | 355

Back to the problem at hand. This recipe only finds repeated words that are composed
of letters from A to Z and a to z (since the case insensitive option is enabled). To also
allow accented letters and letters from other scripts, you can use the Unicode Letter
category <\p{L}> if your regex flavor supports it (see “Unicode category” on page 51).

Between the capturing group and backreference, <\s+> matches any whitespace char-
acters, such as spaces, tabs, or line breaks. If you want to restrict the characters that
can separate repeated words to horizontal whitespace (i.e., no line breaks), replace the
s> with ([®\t\xA0]>. This prevents matching repeated words that appear across mul-
tiple lines. The <\xA0> in the character class matches a no-break space, which is some-
times found in text copied and pasted from the Web (most web developers are familiar
with using 8nbsp; to insert a no-break space in their content). PCRE 7.2 and Perl 5.10
include the shorthand character class <\h> that you might prefer to use here since it is
specifically designed to match horizontal whitespace, and matches some additional
esoteric horizontal whitespace characters.

Finally, the word boundaries at the beginning and end of the regular expression ensure
that it doesn’t match within other words (e.g., with “this thistle”).

Note that the use of repeated words is not always incorrect, so simply removing them
without examination is potentially dangerous. For example, the constructions “that
that” and “had had” are generally accepted in colloquial English. Homonyms, names,
onomatopoeic words (such as “oink oink” or “ha ha”), and some other constructions
also occasionally result in intentionally repeated words. In most cases you should vis-
ually examine each match.

Variations

The solution shown earlier was intentionally kept simple. That simplicity came at the
cost of not accounting for a variety of special cases:

* Repeated words that use letters with accents or other diacritical marks, such as
“café café” or “naive naive.”

* Repeated words that include hyphens, single quotes, or right single quotes, such
as “co-chair co-chair,” “don’t don’t,” or “rollin’ rollin.””

* Repeated words written in a non-English alphabet, such as the Russian words
“mpysbs opysbs.”

Dealing with these issues prevents us from relying on the <\b> word boundary token,
which we previously used to ensure that complete words only are matched. There are
two reasons <\b> won’t work when accounting for the special cases just mentioned.
First, hyphens and apostrophes are not word characters, so there is no word boundary
to match between the whitespace or punctuation that separates words, and a hyphen
or apostrophe that appears at the beginning or end of a word. Second, «\b> is not Uni-
code aware in some regex flavors (see “Word Characters” on page 47 in Recipe 2.6),

356 | Chapter5: Words, Lines, and Special Characters

so it won’t always work correctly if your data uses letters other than A to Z without
diacritics.

Instead of «\b>, we’ll therefore need to use lookahead and lookbehind (see
Recipe 2.16) to make sure that we still match complete words only. We’ll also use
Unicode categories (see Recipe 2.7) to match letters (\p{L}>) and diacritical marks
(\p{M}>) in any alphabet or script:
(<! T\p{LI\p{M}\-"\u20291) ([\-"\u201912(2: [\p{L}\p{M}][\- ' \u2019]2)+) o
\s+\1(2! [\p{L}\p{M}\- "\u2019])
Regex options: Case insensitive
Regex flavors: .NET, Java, Ruby 1.9

Even though (\p{L}> matches letters in any casing, you still need to enable the “case
insensitive” option, because the backreference matched by <\1> might use different
casing than the initially matched word.

The \u2019> tokens in the regular expression match a right single quote mark (*). Perl
and PCRE use a different syntax for matching individual Unicode code points, so we
need to change the regex slightly for them:

(< I\P{LN\p{MIN-"\x{2029}]1) ([\-"\x{2019}] 2(?: [\p{L}\p{M}] ¢
[\-"\x{2019}]2)*)\s\1(2! [\p{LP\p{M}\- ' \x{2019}])

Regex options: Case insensitive

Regex flavors: Java 7, PCRE, Perl

Neither of these regexes work in JavaScript, Python, or Ruby 1.8, because those flavors
lack support for Unicode categories like <\p{L}>. JavaScript and Ruby 1.8 additionally
lack support for lookbehind.

Following are several examples of repeated words that these regexes will match:
¢ The the
* café café
° 3b4d 3b4
* don't don't
¢ rollin’ rollin’
* 0’Keeffe’s 0’Keeffe’s

® co-chair co-chair

* devil-may-care devil-may-care

Here are some examples of strings that are not matched:

* hello, hello
* 1000 1000

¢ test’’ing test’’ing

5.8 Find Repeated Words | 357

* one--two one--two

See Also
Recipe 5.9 shows how to match repeated lines of text.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.7 explains how to match Unicode characters. Recipe 2.9 explains grouping.
Recipe 2.10 explains backreferences. Recipe 2.12 explains repetition. Recipe 2.16 ex-
plains lookaround.

5.9 Remove Duplicate Lines

Problem

You have a log file, database query output, or some other type of file or string with
duplicate lines. You need to remove all but one of each duplicate line using a text editor
or other similar tool.

Solution

There is a variety of software (including the Unix command-line utility uniq and Win-
dows PowerShell cmdlet Get-Unique) that can help you remove duplicate lines in a file
or string. The following sections contain three regex-based approaches that can be
especially helpful when trying to accomplish this task in a nonscriptable text editor
with regular expression search-and-replace support.

When you’re programming, options two and three should be avoided since they are
inefficient compared to other available approaches, such as using a hash object to keep
track of unique lines. However, the first option (which requires that you sort the lines
in advance, unless you only want to remove adjacent duplicates) may be an acceptable
approach since it’s quick and easy.

Option 1: Sort lines and remove adjacent duplicates

If you’re able to sort lines in the file or string you’re working with so that any duplicate
lines appear next to each other, you should do so, unless the order of the lines must be
preserved. This option will allow using a simpler and more efficient search-and-replace
operation to remove the duplicates than would otherwise be possible.

After sorting the lines, use the following regex and replacement string to get rid of the
duplicates:
ACE)Y(2:(2:\r2\n] \r)\2)+$
Regex options: © and $ match at line breaks (“dot matches line breaks” must not
be set)

358 | Chapter5: Words, Lines, and Special Characters

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
Replace with:

$1
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\1
Replacement text flavors: Python, Ruby

This regular expression uses a capturing group and a backreference (among other in-
gredients) to match two or more sequential, duplicate lines. A backreference is used in
the replacement string to put back the first line. Recipe 3.15 shows example code that
can be repurposed to implement this.

Option 2: Keep the last occurrence of each duplicate line in an unsorted file

If you are using a text editor that does not have the built-in ability to sort lines, or if it
is important to preserve the original line order, the following solution lets you remove
duplicates even when they are separated by other lines:
AMT\N]*) (2:\r2\n | \r) (2=.%"M\1$)
Regex options: Dot matches line breaks, © and $ match at line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Here’s the same thing as a regex compatible with standard JavaScript, without the
requirement for the “dot matches line breaks” option:
ALY (2 \r2\n | \r) (2=[\s\S]**\1$)
Regex options: ~ and $ match at line breaks (“dot matches line breaks” must not
be set)
Regex flavor: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replace with:
(The empty string—that is, nothing.)
Replacement text flavors: N/A

Option 3: Keep the first occurrence of each duplicate line in an unsorted file

If you want to preserve the first occurrence of each duplicate line, you’ll need to use a
somewhat different approach. First, here is the regular expression and replacement
string we will use:

AIMN\NT®)$(L*¥2) (2: (2:\r2\n|\1)\1$)+
Regex options: Dot matches line breaks, © and $ match at line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Once again, we need to make a couple changes to make this compatible with JavaScript-
flavor regexes, since standard JavaScript doesn’t have a “dot matches line breaks”
option.

5.9 Remove Duplicate Lines | 359

ACEYS(INS\ST*2) (2: (2:\r2\n|\1)\1$)+
Regex options: © and $ match at line breaks (“dot matches line breaks” must not
be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replace with:

$1%2
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\1\2
Replacement text flavors: Python, Ruby

Unlike the Option 1 and 2 regexes, this version cannot remove all duplicate lines with
one search-and-replace operation. You’ll need to continually apply “replace all” until
the regex no longer matches your string, meaning that there are no more duplicates to
remove. See the “Discussion” section of this recipe for further details.

Discussion

Option 1: Sort lines and remove adjacent duplicates

This regex removes all but the first of duplicate lines that appear next to each other. It
does not remove duplicates that are separated by other lines. Let’s step through the
process.

First, the <% at the front of the regular expression matches the start of a line. Normally
it would only match at the beginning of the subject string, so you need to make sure
that the option to let © and $ match at line breaks is enabled (Recipe 3.4 shows you
how to set regex options in code). Next, the «.*» within the capturing parentheses
matches the entire contents of a line (even if it’s blank), and the value is stored as
backreference 1. For this to work correctly, the “dot matches line breaks” option must
not be set; otherwise, the dot-asterisk combination would match until the end of the
string.

Within an outer, noncapturing group, we’ve used <(?:\r?\n|\r)> to match a line sep-
arator used in Windows/MS-DOS (<\r\m), Unix/Linux/BSD/OS X (\m), or legacy
Mac OS (\p) text files. The backreference «<\1> then tries to match the line we just
finished matching. If the same line isn’t found at that position, the match attempt fails
and the regex engine moves on. If it matches, we repeat the group (composed of a line
break sequence and backreference 1) using the ¢+ quantifier to match any immediately
following duplicate lines.

Finally, we use the dollar sign at the end of the regex to assert position at the end of
the line. This ensures that we only match identical lines, and not lines that merely start
with the same characters as a previous line.

360 | Chapter5: Words, Lines, and Special Characters

Because we're doing a search-and-replace, each entire match (including the original
line and line breaks) is removed from the string. We replace this with backreference 1
to put the original line back in.

Option 2: Keep the last occurrence of each duplicate line in an unsorted file

There are several changes here compared to the Option 1 regex that finds duplicate
lines only when they appear next to each other. First, in the non-JavaScript version of
the Option 2 regex, the dot within the capturing group has been replaced with «[*\r
\n]> (any character except a line break), and the “dot matches line breaks” option has
been enabled. That’s because a dot is used later in the regex to match any character,
including line breaks. Second, a lookahead has been added to scan for duplicate lines
at any position further along in the string. Since the lookahead does not consume any
characters, the text matched by the regex is always a single line (along with its following
line break) that is known to appear again later in the string. Replacing all matches with
the empty string removes the duplicate lines, leaving behind only the last occurrence
of each.

Option 3: Keep the first occurrence of each duplicate line in an unsorted file

Lookbehind is not as widely supported as lookahead, and where it is supported, you
still may not be able to look as far backward as you need to. Thus, the Option 3 regex
is conceptually different from Option 2. Instead of matching lines that are known to
be repeated earlier in the string (which would be comparable to Option 2’s tactic), this
regex matches a line, the first duplicate of that line that occurs later in the string, and
all the lines in between. The original line is stored as backreference 1, and the lines in
between (if any) as backreference 2. By replacing each match with both backreference
1 and 2, you put back the parts you want to keep, leaving out the trailing, duplicate
line and its preceding line break.

This alternative approach presents a couple of issues. First, because each match of a
set of duplicate lines may include other lines in between, it’s possible that there are
duplicates of a different value within your matched text, and those will be skipped over
during a “replace all” operation. Second, if a line is repeated more than twice, the regex
will first match duplicates one and two, but after that, it will take another set of dupli-
cates to get the regex to match again as it advances through the string. Thus, a single
“replace all” action will at best remove only every other duplicate of any specific line.
To solve both of these problems and make sure that all duplicates are removed, you’ll
need to continually apply the search-and-replace operation to your entire subject string
until the regex no longer matches within it. Consider how this regex will work when
applied to the following text:

valuel
value2
value2
value3

5.9 Remove Duplicate Lines | 361

value3
valuel
value2

Removing all duplicate lines from this string will take three passes. Table 5-1 shows
the result of each pass.

Table 5-1. Replacement passes

Pass one Pass two Pass three Final string
" valuel valuel valuel valuel
value2 " value2 " value2 value2
value2 walve2 value3 value3
value3 " value3 value2 |

value3 yatued |

vatuet | value2

value2

One match/replacement Two matches/replacements One match/replacement No duplicates remain

See Also
Recipe 5.8 shows how to match repeated words.

Recipe 3.19 has code listings for splitting a string using a regular expression, which
provides an alternative, (mostly) non-regex-based means to remove duplicate lines
when programming. If you use a regex that matches line breaks (such as \r?\n|\r) as
the separator for your split operation, you’ll be left with a list of all lines in the string.
You can then loop over this list and keep track of unique lines using a hash object,
discarding any lines you’ve previously encountered.

Techniques used in the regular expressions and replacement text in this recipe are
discussed in Chapter 2. Recipe 2.2 explains how to match nonprinting characters.
Recipe 2.3 explains character classes. Recipe 2.4 explains that the dot matches any
character. Recipe 2.5 explains anchors. Recipe 2.8 explains alternation. Recipe 2.9 ex-
plains grouping. Recipe 2.10 explains backreferences. Recipe 2.12 explains repetition.
Recipe 2.21 explains how to insert text matched by capturing groups into the replace-
ment text.

5.10 Match Complete Lines That Contain a Word

Problem

You want to match all lines that contain the word error anywhere within them.

362 | Chapter5: Words, Lines, and Special Characters

Solution

A *\berror\b.*$
Regex options: Case insensitive,
breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

~ and $ match at line breaks (“dot matches line

Discussion

It’s often useful to match complete lines in order to collect or remove them. To match
any line that contains the word error, we start with the regular expression «\berror
\b>. The word boundary tokens on both ends make sure that we match “error” only
when it appears as a complete word, as explained in Recipe 2.6.

To expand the regex to match a complete line, add <.*> at both ends. The dot-asterisk
sequences match zero or more characters within the current line. The asterisk quanti-
fiers are greedy, so they will match as much text as possible. The first dot-asterisk
matches until the last occurrence of “error” on the line, and the second dot-asterisk
matches any non-line-break characters that occur after it.

Finally, place caret and dollar sign anchors at the beginning and end of the regular
expression, respectively, to ensure that matches contain a complete line. Strictly speak-
ing, the dollar sign anchor at the end is redundant since the dot and greedy asterisk will
always match until the end of the line. However, it doesn’t hurt to add it, and makes
the regular expression a little more self-explanatory. Adding line or string anchors to
your regexes, when appropriate, can sometimes help you avoid unexpected issues, so
it’s a good habit to form. Note that unlike the dollar sign, the caret at the beginning of
the regular expression is not necessarily redundant, since it ensures that the regex only
matches complete lines, even if the search starts in the middle of a line for some reason.

Remember that the three key metacharacters used to restrict matches to a single line
(the <*> and «$» anchors, and the dot) do not have fixed meanings. To make them all
line-oriented, you have to enable the option to let ™ and $ match at line breaks, and
make sure that the option to let the dot match line breaks is not enabled. Recipe 3.4
shows how to apply these options in code. If you’re using JavaScript or Ruby, there is
one less option to worry about, because JavaScript does not have an option to let dot
match line breaks, and Ruby’s caret and dollar sign anchors always match at line breaks.

Variations
To search for lines that contain any one of multiple words, use alternation:

~.*\b(one|two|three)\b.*$
Regex options: Case insensitive, © and $ match at line breaks (“dot matches line
breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

5.10 Match Complete Lines That ContainaWord | 363

This regular expression matches any line that contains at least one of the words “one,”
“two,” or “three.” The parentheses around the words serve two purposes. First, they
limit the reach of the alternation, and second, they capture the specific word that was
found on the line to backreference 1. If the line contains more than one of the words,
the backreference will hold the one that occurs farthest to the right. This is because the
asterisk quantifier that appears before the parentheses is greedy, and will expand the
dotto match as much text as possible. If you make the asterisk lazy, as with <*.*?\b(one |
two|three)\b.*$>, backreference 1 will contain the word from your list that appears
farthest to the left.

To find lines that must contain multiple words, use lookahead:

A(?=.*%?\bone\b) (?=.*?\btwo\b) (?=.*?\bthree\b).+$
Regex options: Case insensitive, ” and $ match at line breaks (“dot matches line
breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This regular expression uses positive lookahead to match lines that contain three re-
quired words anywhere within them. The <.+ at the end is used to actually match the
line, after the lookaheads have determined that the line meets the requirements.

See Also
Recipe 5.11 shows how to match complete lines that do not contain a particular word.

If you’re not concerned with matching complete lines, Recipe 5.1 describes how to
match a specific word, and Recipe 5.2 shows how to match any of multiple words.

Recipe 3.21 includes code listings for searching through text line by line, which can
simplify the process of searching within and identifying lines of interest.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.4 explains that the dot matches any character. Recipe 2.5 explains anchors.
Recipe 2.6 explains word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 ex-
plains grouping. Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround.

5.11 Match Complete Lines That Do Not Contain a Word

Problem

You want to match complete lines that do not contain the word error.

Solution
A(?2:(2"\berror\b).)*$
Regex options: Case insensitive, © and $ match at line breaks (“dot matches line

breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

364 | Chapter5: Words, Lines, and Special Characters

Discussion

In order to match a line that does not contain something, use negative lookahead (de-
scribed in Recipe 2.16). Notice that in this regular expression, a negative lookahead
and a dot are repeated together using a noncapturing group. This is necessary to ensure
that the regex <\berror\b> fails at every position in the line. The *» and «$> anchors at
the edges of the regular expression make sure you match a complete line, and addi-
tionally prevent the group containing the negative lookahead from limiting it’s tests to
only some part of the line.

The options you apply to this regular expression determine whether it tries to match
the entire subject string or just one line at a time. With the option to let ~ and $ match
at line breaks enabled and the option to let dot match line breaks disabled, this regular
expression works as described and matches line by line. If you invert the state of these
two options, the regular expression will match any complete string that does not con-
tain the word “error.”

Testing a negative lookahead against every position in a line or string is
%@ rather inefficient. This solution is intended to be used in situations
where one regular expression is all that can be used, such as when using
an application that can’t be programmed. When programming, it is

more efficient to search through text line by line. Recipe 3.21 shows the
code for this.

See Also
Recipe 5.10 shows how to match complete lines that do contain a particular word.

Recipe 3.21 includes code listings for searching through text line by line, which can
simplify the process of searching within and identifying lines of interest.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.4 explains that the dot matches any character. Recipe 2.5 explains anchors.
Recipe 2.6 explains word boundaries. Recipe 2.9 explains grouping. Recipe 2.12 ex-
plains repetition. Recipe 2.16 explains lookaround.

5.12 Trim Leading and Trailing Whitespace

Problem

You want to remove leading and trailing whitespace from a string. For instance, you
might need to do this to clean up data submitted by users in a web form before passing
their input to one of the validation regexes in Chapter 4.

5.12 Trim Leading and Trailing Whitespace | 365

Download from Wow! eBook <www.wowebook.com>

Solution

To keep things simple and fast, the best all-around solution is to use two
substitutions—one to remove leading whitespace, and another to remove trailing
whitespace.

Leading whitespace:

\A\s+
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

A\S+
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Trailing whitespace:

\s+\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\s+$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Simply replace matches found using one of the “leading whitespace” regexes and one
of the “trailing whitespace” regexes with the empty string. Follow the code in
Recipe 3.14 to perform replacements. With both the leading and trailing whitespace
regular expressions, you only need to replace the first match found since the regexes
match all leading or trailing whitespace in one go.

Discussion

Removing leading and trailing whitespace is a simple but common task. The regular
expressions just shown contain three parts each: the shorthand character class to match
any whitespace character (<\s»), a quantifier to repeat the class one or more times
(«+), and an anchor to assert position at the beginning or end of the string. \A> and
«» match at the beginning; (\Z> and «$» at the end.

We've included two options for matching both leading and trailing whitespace because
of incompatibilities between Ruby and JavaScript. With the other regex flavors, you
can chose either option. The versions with ¢* and «$> don’t work correctly in Ruby,
because Ruby always lets these anchors match at the beginning and end of any line.
JavaScript doesn’t support the <\A> and <\Z> anchors.

Many programming languages provide a function, usually called trim or strip, that
can remove leading and trailing whitespace for you. Table 5-2 shows how to use this
built-in function or method in a variety of programming languages.

366 | Chapter5: Words, Lines, and Special Characters

Table 5-2. Standard functions to remove leading and trailing whitespace

Language Function

(i#, VB.NET String.Trim([Chars])
Java, JavaScript string.trim()

PHP trim($string)

Python, Ruby string.strip()

Perl does not have an equivalent function in its standard library, but you can create
your own by using the regular expressions shown earlier in this recipe:

sub trim {
my $string = shift;
$string =~ s/"\s+//;
$string =~ s/\s+$//;
return $string;

}

JavaScript’s string.trim() method is a recent addition to the language. For older
browsers (prior to Internet Explorer 9 and Firefox 3.5), you can add it like this:

// Add the trim method for browsers that don't already include it
if (!String.prototype.trim) {
String.prototype.trim = function() {
return this.replace(/\s+/, "").replace(/\s+$/, "");

};

In both Perl and JavaScript, <\s> matches any character defined as white-
space by the Unicode standard, in addition to the space, tab, line feed,
oo and carriage return characters that are most commonly considered
" whitespace.

Variations

There are in fact many different ways you can write a regular expression to help you
trim a string. However, the alternatives are usually slower than using two simple sub-
stitutions when working with long strings (when performance matters most). Following
are some of the more common alternative solutions you might encounter. They are all
written in JavaScript, and since standard JavaScript doesn’t have a “dot matches line
breaks” option, the regular expressions use <[\s\S]> to match any single character,
including line breaks. In other programming languages, use a dot instead, and enable
the “dot matches line breaks” option.

5.12 Trim Leading and Trailing Whitespace | 367

string.replace(/"\s+|\s+$/g, "");
This is probably the most common solution. It combines the two simple regexes
via alternation (see Recipe 2.8), and uses the /g (global) flag to replace all matches
rather than just the first (it will match twice when its target contains both leading
and trailing whitespace). This isn’t a terrible approach, but it’s slower than using
two simple substitutions when working with long strings since the two alternation
options need to be tested at every character position.

string.replace(/"\s*([\s\S]*?)\s*$/, "$1")
This regex works by matching the entire string and capturing the sequence from
the first to the last nonwhitespace characters (if any) to backreference 1. By re-
placing the entire string with backreference 1, you’re left with a trimmed version
of the string.

This approach is conceptually simple, but the lazy quantifier inside the capturing
group makes the regex do a lot of extra work (i.e., backtracking), and therefore
tends to make this option slow with long target strings.

Let’s step back to look at how this actually works. After the regex enters the cap-
turing group, the <[\s\S]> class’s lazy <*?> quantifier requires that it be repeated as
few times as possible. Thus, the regex matches one character at a time, stopping
after each character to try to match the remaining <\s*$> pattern. If that fails because
nonwhitespace characters remain somewhere after the current position in the
string, the regex matches one more character, updates the backreference, and then
tries the remainder of the pattern again.

string.replace(/"\s*([\s\S]*\S)?\s*¢/, "$1")
This is similar to the last regex, but it replaces the lazy quantifier with a greedy one
for performance reasons. To make sure that the capturing group still only matches
up to the last nonwhitespace character, a trailing <\S» is required. However, since
the regex must be able to match whitespace-only strings, the entire capturing group
is made optional by adding a trailing question mark quantifier.

Here, the greedy asterisk in <[\s\S]*> repeats its any-character pattern to the end
of the string. The regex then backtracks one character at a time until it’s able to
match the following <\S>, or until it backtracks to the first character matched within
the group (after which it skips the group).

Unless there’s more trailing whitespace than other text, this generally ends up being
faster than the previous solution that used a lazy quantifier. Still, it doesn’t hold
up to the consistent performance of using two simple substitutions.
string.replace(/"\s*(\S*(2:\s+\S+)*)\s*$/, "$1")

This is a relatively common approach, but there’s no good reason to use it since
it’s consistently one of the slowest of the options shown here. It’s similar to the
last two regexes in that it matches the entire string and replaces it with the part you
want to keep, but because the inner, noncapturing group matches only one word
at a time, there are a lot of discrete steps the regex must take. The performance hit

368 | Chapter5: Words, Lines, and Special Characters

may be unnoticeable when trimming short strings, but with long strings that con-
tain many words, this regex can become a performance problem.

Some regular expression implementations contain clever optimizations that alter the
internal matching processes described here, and therefore make some of these options
perform a bit better or worse than we’ve suggested. Nevertheless, the simplicity of using
two substitutions provides consistently respectable performance with different string
lengths and varying string contents, and it’s therefore the best all-around solution.

See Also
Recipe 5.13 explains how to replace repeated whitespace with a single space.

Techniques used in the regular expressions and replacement text in this recipe are
discussed in Chapter 2. Recipe 2.3 explains character classes. Recipe 2.5 explains an-
chors. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping. Recipe 2.12 ex-
plains repetition. Recipe 2.13 explains how greedy and lazy quantifiers backtrack.
Recipe 2.21 explains how to insert text matched by capturing groups into the replace-
ment text.

5.13 Replace Repeated Whitespace with a Single Space

Problem

As part of a cleanup routine for user input or other data, you want to replace repeated
whitespace characters with a single space. Any tabs, line breaks, or other whitespace
should also be replaced with a space.

Solution

To implement either of the following regular expressions, simply replace all matches
with a single space character. Recipe 3.14 shows the code to do this.

Clean any whitespace characters

\s+
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Clean horizontal whitespace characters
[e\t\xA0]+
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby 1.8
[\t\uooAo]+
Regex options: None

5.13 Replace Repeated Whitespace with a Single Space | 369

Regex flavors: .NET, Java, JavaScript, Python, Ruby 1.9

\h+
Regex options: None
Regex flavors: PCRE 7.2, Perl 5.10

Discussion

A common text cleanup routine is to replace repeated whitespace characters with a
single space. In HTML, for example, repeated whitespace is simply ignored when ren-
dering a page (with a few exceptions). Removing repeated whitespace can therefore
help to reduce the file size of some pages (or at least page sections) without any negative
effects.

Clean any whitespace characters

In this solution, any sequence of whitespace characters (line breaks, tabs, spaces, etc.)
is replaced with a single space. Since the «+> quantifier repeats the <\s> whitespace class
one or more times, even a single tab character, for example, will be replaced with a
space. If you replaced the «+» with «{2,}>, only sequences of two or more whitespace
characters would be replaced. This could result in fewer replacements and thus im-
proved performance, but it could also leave behind tab characters or line breaks that
would otherwise be replaced with space characters. The better approach, therefore,
depends on what you’re trying to accomplish.

Clean horizontal whitespace characters

This works exactly like the previous solution, except that it leaves line breaks alone.
Only spaces, tabs, and no-break spaces are replaced. HTML no-break space entities
(8nbsp;) are unaffected.

PCRE 7.2 and Perl 5.10 include the shorthand character class <\h> that you might prefer
to use here since it is specifically designed to match horizontal whitespace. It also
matches some additional esoteric horizontal whitespace characters.

Using <\\xA0> to match no-break spaces in Ruby 1.9 may lead to an “invalid multibyte
escape” or other encoding related errors, since it references a character beyond the
ASCII range <\x00> to <\x7F>. Use <\u00A0> instead.

See Also
Recipe 5.12 explains how to trim leading and trailing whitespace.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.2 explains how to match nonprinting characters. Recipe 2.3 explains character
classes. Recipe 2.12 explains repetition.

370 | Chapter5: Words, Lines, and Special Characters

5.14 Escape Regular Expression Metacharacters

Problem

You want to use a literal string provided by a user or from some other source as
part of a regular expression. However, you want to escape all regular expression
metacharacters within the string before embedding it in your regex, to avoid any un-
intended consequences.

Solution

By adding a backslash before any characters that potentially have special meaning
within a regular expression, you can safely use the resulting pattern to match a literal
sequence of characters. Of the programming languages covered by this book, all except
JavaScript have a built-in function or method to perform this task (listed in Ta-
ble 5-3). However, for the sake of completeness, we’ll show how to pull this off using
your own regex, even in the languages that have a ready-made solution.

Built-in solutions

Table 5-3 lists the built-in functions and methods designed to solve this problem.

Table 5-3. Built-in solutions for escaping regular expression metacharacters

Language Function

(#, VB.NET Regex.Escape(str)

Java Pattern.quote(str)

XRegExp XRegExp.escape(str)

Perl quotemeta(str)

PHP preg_quote(str, [delimiter])
Python re.escape(str)

Ruby Regexp.escape(str)

Notably absent from the list is JavaScript (without XRegExp), which does not have a
native function designed for this purpose.

Regular expression

Although it’s best to use a built-in solution if available, you can pull this off on your
own by using the following regular expression along with the appropriate replacement
string (shown next). Make sure to replace all matches, rather than only the first.
Recipe 3.15 shows code for replacing matches with strings that contain backreferences.
You’ll need a backreference here to bring back the matched special character along with
a preceding backslash:

5.14 Escape Regular Expression Metacharacters | 371

[INIEFO*+2.A\ [7$\-, 8#\s]
Regex options: None
Regex flavors: NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement

N

The following replacement strings contain a literal backslash character.
The strings are shown without the extra backslashes that may be needed
s to escape backslashes when using string literals in some programming
" languages. See Recipe 2.19 for more details about replacement text

flavors.

\$&

Replacement text flavors: .NET, JavaScript
\$o

Replacement text flavors: .NET, XRegExp
\\$&

Replacement text flavor: Perl
\\$0

Replacement text flavors: Java, PHP
\\\o

Replacement text flavors: PHP, Ruby
\\\&

Replacement text flavor: Ruby
\\\g<o0>

Replacement text flavor: Python

Example JavaScript function

Here’s an example of how you can put the regular expression and replacement string
to use to create a static method called RegExp.escape() in JavaScript:

RegExp.escape = function(str) {
return str.replace(/[[\1{}()*+?.\\|*$\-,8&#\s]/g, "\\$&");
};

// Test it...

var str = "<Hello World.>";

var escapedStr = RegExp.escape(str);

alert(escapedStr == "<Hello\\ World\\.»"); // -> true

372 | Chapter5: Words, Lines, and Special Characters

Discussion

This recipe’s regular expression puts all the regex metacharacters inside a single char-
acter class. Let’s take a look at each of those characters, and examine why they need
to be escaped. Some are less obvious than others:

[{

()

<[> creates a character class. ({> creates an interval quantifier and is also used with
some other special constructs, such as Unicode properties. (> and ¢)> are used for
grouping, capturing, and other special constructs.

?

These three characters are quantifiers that repeat their preceding element zero or
more, one or more, or between zero and one time, respectively. The question mark
is also used after an opening parenthesis to create special groupings and other
constructs (the same is true for the asterisk in Perl 5.10 and PCRE 7).

A dot matches any character within a line or string, a backslash makes a special
character literal or a literal character special, and a vertical bar alternates between
multiple options.

The caret and dollar symbols are anchors that match the start or end of a line or
string. The caret can also negate a character class.

The remaining characters matched by the regular expression are only special in special
circumstances. They’re included in the list to err on the side of caution.

]

A right square bracket ends a character class. Normally, this would not need to be
escaped on its own, but doing so avoids unintentionally ending a character class
when embedding text inside one. Keep in mind that if you do embed text inside a
character class, the resulting regex will not match the embedded string, but rather
any one of the characters in the embedded string.

A hyphen creates a range within a character class. It’s escaped here to avoid inad-
vertently creating ranges when embedding text in the middle of a character class.

A right curly bracket ends an interval quantifier or other special construct. Since
most regular expression flavors treat curly brackets as literal characters if they do
not form a valid quantifier, it’s possible to create a quantifier where there was none
before when inserting literal text in a regex if you don’t escape both ends of curly
brackets.

5.14 Escape Regular Expression Metacharacters | 373

A comma is used inside an interval quantifier such as «{1,5}>. It’s possible (though
a bit unlikely) to create a quantifier where there was none before when inserting
literal text in a regex if you don’t escape commas.

The ampersand is included in the list because two ampersands in a row are
used for character class intersection in Java (see “Flavor-Specific Fea-
tures” on page 36). In other programming languages, it’s safe to remove the am-
persand from the list of characters that need to be escaped, but it doesn’t hurt to
keep it.
and whitespace

The pound sign and whitespace (matched by <\s») are metacharacters only if the
free-spacing option is enabled. Again, it doesn’t hurt to escape them anyway.

As for the replacement text, one of five tokens («$8&», «\8», «$0», «\0», or «\g<0>») is
used to restore the matched character along with a preceding backslash. In Perl, $& is
actually a variable, and using it with any regular expression imposes a global perfor-
mance penalty on all regular expressions. If $& is used elsewhere in your Perl program,
it’s OK to use it as much as you want because you’ve already paid the price. Otherwise,
it’s probably better to wrap the entire regex in a capturing group, and use $1 instead of
$& in the replacement.

Variations

As explained in “Block escape” on page 29, you can create a block escape sequence
within a regex using <\Q'--\E>. However, block escapes are only supported by Java,
PCRE, and Perl, and even in those languages block escapes are not foolproof. For com-
plete safety, you’d still need to escape any occurrence of \E within the string you plan
to embed in your regex. In most cases it’s probably easier to just use the cross-language
approach of escaping all regex metacharacters.

See Also

Recipe 2.1 discusses how to match literal characters and escape metacharacters. How-
ever, its list of characters that need to be escaped is shorter since it doesn’t concern
itself with characters that may need to be escaped in free-spacing mode or when drop-
ped into an arbitrary, longer pattern.

The example JavaScript solution in Recipe 5.2 creates a function that escapes any reg-
ular expression metacharacters within words to be searched for. It uses the shorter list
of special characters from Recipe 2.1.

Techniques used in the regular expression and replacement text in this recipe are dis-
cussed in Chapter 2. Recipe 2.3 explains character classes. Recipe 2.20 explains how
to insert the regex match into the replacement text.

374 | Chapter5: Words, Lines, and Special Characters

CHAPTER 6
Numbers

Regular expressions are designed to deal with text, and don’t understand the numerical
meanings that humans assign to strings of digits. To a regular expression, 56 is not the
number fifty-six, but a string consisting of two characters displayed as the digits 5 and
6. The regex engine knows they’re digits, because the shorthand character class <\d>
matches them (see Recipe 2.3). But that’s it. It doesn’t know that 56 has a higher mean-
ing, just as it doesn’t know that :-) is anything but three punctuation characters
matched by \p{P}{3}>.

But numbers are some of the most important input you’re likely to deal with, and
sometimes you need to process them inside a regular expression instead of just passing
them to a conventional programming language when you want to answer questions
such as, “Is this number within the range 1 through 100?” So we’ve devoted a whole
chapter to matching all kinds of numbers with regular expressions. We start off with a
few recipes that may seem trivial, but actually explain important basic concepts. The
later recipes that deal with more complicated regexes assume you grasp these basic
concepts.

6.1 Integer Numbers

Problem

You want to find various kinds of integer decimal numbers in a larger body of text, or
check whether a string variable holds an integer decimal number.

Solution
Find any positive integer decimal number in a larger body of text:

\b[0-9]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

375

Check whether a text string holds just a positive integer decimal number:

\A[0-9]+\Z

Regex options: None

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
"[0-9]+$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find any positive integer decimal number that stands alone in a larger body of text:

(2¢<="[\s)[0-9]+(?=$|\s)
Regex options: None
Regex flavors: .NET, Java, PCRE, Ruby 1.9

For Perl and Python, we have to tweak the preceding solution, because they do not
support alternatives of different lengths inside lookbehind:
(2:7[(2¢=\s))[0-9]+(?=$|\s)
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

Find any positive integer decimal number that stands alone in a larger body of text,
allowing leading whitespace to be included in the regex match:
(*1\s)([0-91+) (?=$]\s)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find any integer decimal number with an optional leading plus or minus sign:

[+-1?\b[0-9]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether a text string holds just an integer decimal number with optional sign:

\A[+-]?[0-9]+\Z

Regex options: None

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
~[+-]12[0-9]+%

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find any integer decimal number with optional sign, allowing whitespace between the
number and the sign, but no leading whitespace without the sign:
([+-1*)2\b[0-9]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

376 | Chapter6: Numbers

Discussion

An integer number is a contiguous series of one or more digits, each between zero and
nine. We can easily represent this with a character class (Recipe 2.3) and a quantifier
(Recipe 2.12): <[0-9]+>.

W N

We prefer to use the explicit range <[0-9]> instead of the shorthand
Ad. In .NET and Perl, \\d> matches any digit in any script, but
<[0-9]> always just matches the 10 digits in the ASCII table. If you know
your subject text doesn’t include any non-ASCII digits, you can save a
few keystrokes and use <\\d> instead of <[0-9]>.

Ko

If you don’t know whether your subject will include digits outside
the ASCII table, you need to think about what you want to do with the
regex matches and what the user’s expectations are in order to decide
whether you should use \d> or <[0-9]>. If you plan to convert the text
matched by the regular expression into an integer, check whether the
string-to-integer function in your programming language can interpret
non-ASCII digits. Users writing documents in their native scripts will
expect your software to recognize digits in their native scripts.

Beyond being a series of digits, the number must also stand alone. A4 is a paper size,
not a number. There are several ways to make sure your regex only matches pure
numbers.

If you want to check whether your string holds nothing but a number, simply put start-
of-string and end-of-string anchors around your regex. <\\A> and <\Z> are your best op-
tion, because their meaning doesn’t change. Unfortunately, JavaScript doesn’t support
them. In JavaScript, use <* and «$>, and make sure you don’t specify the /m flag that
makes the caret and dollar match at line breaks. In Ruby, the caret and dollar always
match at line breaks, so you can’t reliably use them to force your regex to match the
whole string.

When searching for numbers within a larger body of text, word boundaries
(Recipe 2.6) are an easy solution. When you place them before or after a regex token
that matches a digit, the word boundary makes sure there is no word character before
or after the matched digit. For example, <4> matches 4 in A4. «4\b> does too, because
there’s no word character after the 4. <\b4> and <\b4\b> don’t match anything in A4,
because «\b> fails between the two word characters A and 4. In regular expressions, word
characters include letters, digits and underscores.

If you include nonword characters such as plus or minus signs or whitespace in your
regex, you have to be careful with the placement of word boundaries. To match +4
while excluding +4B, use \\+4\b> instead of <\b\+4\b>. The latter does not match +4,
because there’s no word character before the plus in the subject string to satisfy the

6.1 Integer Numbers | 377

word boundary. \\b\+4\b> does match +4 in the text 3+4, because 3 is a word character
and + is not.

A\+4\b> only needs one word boundary. The first \\b> in \\+\b4\b> is superfluous. When
this regex matches, the first <\b> is always between a + and a 4, and thus never excludes
anything. The first <\b> becomes important when the plus sign is optional. (\+?\b4\b>
does not match the 4 in A4, whereas \\+24\b> does.

Word boundaries are not always the right solution. Consider the subject text
$123,456.78. If you iterate over this string with the regex \b[0-9]+\b>, it’ll match 123,
456, and 78. The dollar sign, comma, and decimal point are not word characters, so the
word boundary matches between a digit and any of these characters. Sometimes this
is what you want, sometimes not.

If you only want to find integers surrounded by whitespace or the start or end of a
string, you need to use lookaround instead of word boundaries. <(?=$|\s)> matches at
the end of the string or before a character that is whitespace (whitespace includes line
breaks). «(?<="|\s)> matches either at the start of the string, or after a character that is
whitespace. You can replace <\s> with a character class that matches any of the char-
acters you want to allow before or after the number. See Recipe 2.16 to learn how
lookaround works.

Perl and Python support lookbehind, but they don’t allow alternatives of different
length inside lookbehind. Since «*» is zero-length and <\s> matches a single character,
we have to put the "> alternative outside the lookbehind. Thus «(?<=*|\s)> becomes
«(2:7](2<=\s))> for Perl and Python. These two regexes are functionally identical. The
latter just takes a bit more effort on the keyboard.

JavaScript and Ruby 1.8 don’t support lookbehind. You can use a normal group instead
of lookbehind to check if the number occurs at the start of the string, or if it is preceded
by whitespace. The drawback is that the whitespace character will be included in the
overall regex match if the number doesn’t occur at the start of the string. An easy
solution to thatis to put the part of the regex that matches the number inside a capturing
group. The fifth regex in the section “Solution” captures the whitespace character in
the first capturing group and the matched integer in the second capturing group.

See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround.

378 | Chapter6: Numbers

6.2 Hexadecimal Numbers

Problem

You want to find hexadecimal numbers in a larger body of text, or check whether a
string variable holds a hexadecimal number.

Solution
Find any hexadecimal number in a larger body of text:
\b[0-9A-F]+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
\b[0-9A-Fa-f]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether a text string holds just a hexadecimal number:
\A[0-9A-F]+\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
~[0-9A-F]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find a hexadecimal number with a ox prefix:

\box[0-9A-F]+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal number with an &H prefix:

&H[0-9A-F]+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal number with an H suffix:
\b[0-9A-F]+H\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
Find a hexadecimal byte value or 8-bit number:

\b[0-9A-F]{2}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

6.2 Hexadecimal Numbers | 379

Find a hexadecimal word value or 16-bit number:

\b[0-9A-F]{4}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal double word value or 32-bit number:

\b[0-9A-F]{8}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal quad word value or 64-bit number:

\b[0-9A-F]{16}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a string of hexadecimal bytes (i.e., an even number of hexadecimal digits):
\b(?:[0-9A-F]{2})+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The techniques for matching hexadecimal integers with a regular expression is the same
as matching decimal integers. The only difference is that the character class that match-
es a single digit now has to include the letters A through F. You have to consider whether
the letters must be either uppercase or lowercase, or if mixed case is permitted. The
regular expressions shown here all allow mixed case.

By default, regular expressions are case-sensitive. <[0-9a-f]> allows only lowercase
hexadecimal digits, and <[0-9A-F]> allows only uppercase hexadecimal digits. To allow
mixed case, use <[0-9a-fA-F]> or turn on the option to make your regular expression
case insensitive. Recipe 3.4 explains how to do that with the programming languages
covered by this book. The first regex in the solution is shown twice, using the two
different ways of making it case-insensitive. The others shown use only the second
method.

If you only want to allow uppercase letters in hexadecimal numbers, use the regexes
shown with case insensitivity turned off. To allow only lowercase letters, turn off case
insensitivity and replace <A-F> with <a->.

«(?:[0-9A-F]{2})+> matches an even number of hexadecimal digits. <[0-9A-F]{2}>
matches exactly two hexadecimal digits. «(?:[0-9A-F]{2})+> does that one or more
times. The noncapturing group (see Recipe 2.9) is required because the plus needs to
repeat the character class and the quantifier <{2}> combined. <[0-9]{2}+> is not a syntax
errorin Java, PCRE, and Perl 5.10, but it doesn’t do what you want. The extra +» makes

380 | Chapter6: Numbers

the «{2}> possessive. That has no effect, because «{2}> cannot repeat fewer than two
times anyway.

Several of the solutions show how to require the hexadecimal number to have one of
the prefixes or suffixes commonly used to identify hexadecimal numbers. These are
used to differentiate between decimal numbers and hexadecimal numbers that happen
to consist of only decimal digits. For example, 10 could be the decimal number between
9 and 11, or the hexadecimal number between F and 11.

Most solutions are shown with word boundaries (Recipe 2.6). Use word boundaries as
shown to find numbers within a larger body of text. Notice that the regex using the
8H prefix does not have a word boundary at the start. That’s because the ampersand is
not a word boundary. If we put a word boundary at the start of that regex, it would
only find hexadecimal numbers immediately after a word character.

If you want to check whether your string holds nothing but a hexadecimal number,
simply put start-of-string and end-of-string anchors around your regex. <\A> and <\2
are your best options, because their meanings don’t change. Unfortunately, JavaScript
doesn’t support them. In JavaScript, use <> and «$», and make sure you don’t specify
the /m flag that makes the caret and dollar match at line breaks. In Ruby, the caret and
dollar always match at line breaks, so you can’t reliably use them to force your regex
to match the whole string.

See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.12 explains repetition.

6.3 Binary Numbers

Problem

You want to find binary numbers in a larger body of text, or check whether a string
variable holds a binary number.

Solution
Find a binary number in a larger body of text:

\b[01]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether a text string holds just a binary number:

6.3 Binary Numbers | 381

Download from Wow! eBook <www.wowebook.com>

\A[01]+\Z

Regex options: None

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
~lo1]+$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find a binary number with a ob prefix:
\bob[01]+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
Find a binary number with a B suffix:

\b[01]+B\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a binary byte value or 8-bit number:

\b[01]{8}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a binary word value or 16-bit number:

\b[01]{16}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a string of bytes (i.e., a multiple of eight bits):
\b(?:[01]{8})+\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

All these regexes use techniques explained in the previous two recipes. The key differ-
ence is that each digit is now a 0 or a 1. We easily match that with a character class that
includes just those two characters: <[01]>.

See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.12 explains repetition.

382 | Chapter6: Numbers

6.4 Octal Numbers

Problem

You want to find octal numbers in a larger body of text, or check whether a string
variable holds an octal number. An octal number is a number that consists of the digits
0 to 7. The number must either have at least one leading zero, or it must be prefixed
with 0o.

Solution
Find an octal number in a larger body of text:

\bo[0-7]*\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether a text string holds just an octal number:
\A0[0-7]*\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
A0[0_7]*$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find an octal number with a 0o prefix:
\boo[0-7]+\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

These regexes are very similar to the ones in the preceding recipes in this chapter. The
only significant difference is that the prefix 0 is also part of the octal number itself. In
particular, the digit 0 all by itself is also a valid octal number. So while the solutions for
preceding recipes use the plus to repeat the digit ranges one or more times, the first two
solutions in this recipe use the asterisk to repeat the digit ranges zero or more times.
This way we allow octal numbers of any length, including the number 0.

The third solution uses the plus again, because we require at least one digit after the
0o prefix.

See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression.

6.4 Octal Numbers | 383

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.5 explains anchors. Recipe 2.12 explains repetition.

6.5 Decimal Numbers

Problem

You want to find various kinds of integer decimal numbers in a larger body of text, or
check whether a string variable holds an integer decimal number. The number must
not have a leading zero, as only octal numbers can have leading zeros. But the number
zero itself is a valid decimal number.

Solution
Find any positive integer decimal number without a leading zero in a larger body of text:

\b(o[[1-9][0-9]*)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether a text string holds just a positive integer decimal number without a
leading zero:

\A(0][1-9][0-9]*)\z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

~(0[[1-9][0-9]%)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion

Recipe 6.1 shows a lot of solutions for matching integer decimal numbers, along with
a detailed explanation. But the solutions in that recipe do not take into account that in
many programming languages, numbers with a leading zero are octal numbers rather
than decimal numbers. They simply use <[0-9]+> to match any sequence of decimal
digits.

The solutions in this recipe exclude numbers with a leading zero, while still matching
the number zero itself. Instead of matching any sequence of decimal digits with
<[0-9]+, these regular expressions use «0|[1-9][0-9]* to match either the digit zero,
or a decimal number with at least one digit that does not begin with a zero. Since the
alternation operator has the lowest precedence of all regular expression operators, we
use a group to make sure the anchors and word boundaries stay outside of the
alternation.

384 | Chapter6: Numbers

See Also
Recipe 6.4 has solutions for matching octal numbers.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition.

6.6 Strip Leading Zeros

Problem

You want to match an integer number, and either return the number without any lead-
ing zeros or delete the leading zeros.

Solution

Regular expression

\bo*([1-9][0-9]*|0)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement

$1
Replacement text flavors: .NET, Java, JavaScript, PHP, Perl

\1
Replacement text flavors: PHP, Python, Ruby

Getting the numbers in Perl

while ($subject =~ m/\bo*([1-9][0-9]*|0)\b/g) {
push(@list, $1);

Stripping leading zeros in PHP
$result = preg replace('/\bo*([1-9][0-9]*|0)\b/", '$1', $subject);

Discussion

We use a capturing group to separate a number from its leading zeros. Before the group,
«0*» matches the leading zeros, if any. Within the group, <[1-9][0-9]* matches a num-
ber that consists of one or more digits, with the first digit being nonzero. The number

6.6 Strip Leading Zeros | 385

can begin with a zero only if the number is zero itself. The word boundaries make sure
we don’t match partial numbers, as explained in Recipe 6.1.

To get a list of all numbers in the subject text without leading zeros, iterate over the
regex matches as explained in Recipe 3.11. Inside the loop, retrieve the text matched
by the first (and only) capturing group, as explained in Recipe 3.9. The solution for this
shows how you could do this in Perl.

Stripping the leading zeros is easy with a search-and-replace. Our regex has a capturing
group that separates the number from its leading zeros. If we replace the overall regex
match (the number including the leading zeros) with the text matched by the first
capturing group, we’ve effectively stripped out the leading zeros. The solution shows
how to do this in PHP. Recipe 3.15 shows how to do it in other programming languages.

See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition.

6.7 Numbers Within a Certain Range

Problem

You want to match an integer number within a certain range of numbers. You want
the regular expression to specify the range accurately, rather than just limiting the
number of digits.

Solution
1 to 12 (hour or month):

~(2[0-2]|[1-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 24 (hour):

~(2[0-4]]1[0-9][[1-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 31 (day of the month):
~(3[o1]][12][0-9][[1-9])$

386 | Chapter6: Numbers

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 53 (week of the year):

~(5[0-3]|[1-4][0-9][[1-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 59 (minute or second):

~1-5]2[0-9]%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
0 to 100 (percentage):

~(100][1-9]?[0-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 100:

"(100[[1-9][0-9]?)%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

32 to 126 (printable ASCII codes):

~(12[0-6][1[01][0-9][[4-9][0-9](3[2-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 127 (nonnegative signed byte):

~(12[0-7]|2[01][0-9]|[1-9]?[0-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

—128 to 127 (signed byte):

~(12[0-7]]1[01][0-9][[1-9]?[0-9]|-(12[0-8]|1[01][0-9][[1-9]?[0-9]))%

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 255 (unsigned byte):

~(25[0-5][2[0-4][0-9][1[0-9]{2}|[1-9]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 366 (day of the year):

~(36[0-6]]3[0-5][0-9]][12][0-9]{2}|[1-9][0-9]?)$
Regex options: None

6.7 Numbers Within a Certain Range | 387

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
1900 to 2099 (year):
~(19]20)[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 32767 (nonnegative signed word):

~(3276[0-7]|327[0-5][0-9]|32[0-6][0-91{2}|3[01][0-9]{3}|[22][0-9]1{4}] «
[1-9]1[0-9]{1,3}|[0-9])$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

—32768 to 32767 (signed word):

"(3276[0-7][327[0-5][0-9]|32[0-6][0-9]{2}|3[01][0-9]{3}| [12][0-9]{4} |«
[1-9][0-9]{1,3}[[0-9]|-(3276[0-8][327[0-5][0-9]|32[0-6][0-9]{2}]«
3[01][0-9]{3}][12][0-9]{4}[[1-9][0-9]{1,3}[[0-9]))$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 65535 (unsigned word):
~(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|6[0-4][0-9]{3}|[1-5][0-9]{4}]|«
[1-9][0-9]{1,3}|[0-9])$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The previous recipes matched integers with any number of digits, or with a certain
number of digits. They allowed the full range of digits for all the digits in the number.
Such regular expressions are very straightforward.

Matching a number in a specific range (e.g., a number between 0 and 255) is not a
simple task with regular expressions. You can’t write <[0-255]>. Well, you could, but
it wouldn’t match a number between 0 and 255. This character class, which is equiv-
alent to <[0125]>, matches a single character that is one of the digits 0, 1, 2, or 5.

W
\
- Because these regular expressions are quite a bit longer, the solutions
ﬁ:\ all use anchors to make the regex suitable to check whether a string,
N\ N
* 98 such as user input, consists of a single acceptable number. Recipe 6.1

explains how you can use word boundaries or lookaround instead of
the anchors for other purposes. In the discussion, we show the regexes
without any anchors, keep the focus on dealing with numeric ranges. If
you want to use any of these regexes, you’ll have to add anchors or word
boundaries to make sure your regex doesn’t match digits that are part
of a longer number.

388 | Chapter6: Numbers

Regular expressions work character by character. If we want to match a number that
consists of more than one digit, we have to spell out all the possible combinations for
the digits. The essential building blocks are character classes (Recipe 2.3) and alterna-
tion (Recipe 2.8).

In character classes, we can use ranges for single digits, such as <[0-5]>. That’s because
the characters for the digits 0 through 9 occupy consecutive positions in the ASCIT and
Unicode character tables. <[0-5]> matches one of six characters, just like <[j-0]> and
<[\x09-\x0E]> match different ranges of six characters.

When a numeric range is represented as text, it consists of a number of positions. Each
position allows a certain range of digits. Some ranges have a fixed number of positions,
such as 12 to 24. Others have a variable number of positions, such as 1 to 12. The range
of digits allowed by each position can be either interdependent or independent of the
digits in the other positions. In the range 40 to 59, the positions are independent. In
the range 44 to 55, the positions are interdependent.

The easiest ranges are those with a fixed number of independent positions, such as 40
to 59. To code these as a regular expression, all you need to do is to string together a
bunch of character classes. Use one character class for each position, specifying the
range of digits allowed at that position.

[45][0-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The range 40 to 59 requires a number with two digits. Thus we need two character
classes. The first digit must be a 4 or 5. The character class <[45]> matches either digit.
The second digit can be any of the 10 digits. <[0-9]> does the trick.

N

We could also have used the shorthand <\d> instead of <[0-9]>. We use
. the explicit range <[0-9]> for consistency with the other character
o4 classes, to help maintain readability. Reducing the number of back-
slashes in your regexes is also very helpful if you’re working with a pro-
gramming language such as Java that requires backslashes to be escaped
in literal strings.

The numbers in the range 44 to 55 also need two positions, but they’re not independent.
The first digit must be 4 or 5. If the first digit is 4, the second digit must be between 4
and 9. That covers the numbers 44 to 49. If the first digit is 5, the second digit must be
between 0 and 5. That covers the numbers 50 to 55. To create our regex, we simply
use alternation to combine the two ranges:

4[4-9]|5[0-5]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

6.7 Numbers Within a Certain Range | 389

By using alternation, we’re telling the regex engine to match «4[4-9]> or <5[0-5]>. The
alternation operator has the lowest precedence of all regex operators, and so we don’t
need to group the digits, as in <(4[4-9]) | (5[0-5)>.

You can string together as many ranges using alternation as you want. The range 34 to
65 also has two interdependent positions. The first digit must be between 3 and 6. If
the first digit is 3, the second must be 4 to 9. If the first is 4 or 5, the second can be any
digit. If the first is 6, the second must be 0 to 5:

3[4-9]1[45][0-9]]6[0-5]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Just like we use alternation to split ranges with interdependent positions into multiple
ranges with independent positions, we can use alternation to split ranges with a variable
number of positions into multiple ranges with a fixed number of positions. The range
1 to 12 has numbers with one or two positions. We split this into the range 1 to 9 with
one position, and the range 10 to 12 with two positions. The positions in each of these
two ranges are independent, so we don’t need to split them up further:

1[0-2]][1-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

We listed the range with two digits before the one with a single digit. This is intentional
because the regular expression engine is eager. It scans the alternatives from left to right,
and stops as soon as one matches. If your subject text is 12, then <1[0-2|[1-9]> matches
12, whereas <[1-9]|1[0-2]> matches just <1>. The first alternative, <[1-9]>, is tried first.
Since that alternative is happy to match just 1, the regex engine never tries to check
whether <1[0-2]> might offer a “better” solution.

Some Regex Engines Are Not Eager

POSIX-compliant regex engines and DFA regex engines do not follow this rule. They
try all alternatives, and return the one that finds the longest match. All the flavors
discussed in this book, however, are NFA engines, which don’t do the extra work
required by POSIX. They will all tell you that <[1-9]|1[0-2]> matches 1 in 12.

In practice, you’ll usually use anchors or word boundaries around your list of alterna-
tives. Then the order of alternatives doesn’t really matter. <*([1-9]|1[0-2])$> and
«M(1[0-2]|[2-9])$> both match 12 in 12 with all regex flavors in this book, as well as
POSIX “extended” regular expressions and DFA engines. The anchors require the regex
to match either the whole string or nothing at all. DFA and NFA are defined in the
sidebar “History of the Term “Regular Expression”” on page 2 in Chapter 1.

The range 85 to 117 includes numbers of two different lengths. The range 85 to 99 has
two positions, and the range 100 to 117 has three positions. The positions in these

390 | Chapter6: Numbers

ranges are interdependent, and so we have to split them up further. For the two-digit
range, if the first digit is 8, the second must be between 5 and 9. If the first digit is 9,
the second digit can be any digit. For the three-digit range, the first position allows only
the digit 1. If the second position has the digit 0, the third position allows any digit.
But if the second digit is 1, then the third digit must be between 0 and 7. This gives us
four ranges total: 85 to 89, 90 to 99, 100 to 109, and 110 to 117. Though things are
getting long-winded, the regular expression remains as straightforward as the previous
ones:

8[5-9][9[0-9]|10[0-9]|11[0-7]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

That’s all there really is to matching numeric ranges with regular expressions: simply
split up the range until you have ranges with a fixed number of positions with inde-
pendent digits. This way, you’ll always get a correct regular expression that is easy to
read and maintain, even if it may get a bit long-winded.

There are some extra techniques that allow for shorter regular expressions. For exam-
ple, using the previous system, the range 0 to 65535 would require this regex:

6553[0-5]]655[0-2][0-9]|65[0-4][0-9][0-9]|6[0-4][0-9][0-9][0-9]] ¢
[1-5][0-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9] <
[1-9][0-9][[0-9]

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This regular expression works perfectly, and you won’t be able to come up with a regex
that runs measurably faster. Any optimizations that could be made (e.g., there are
various alternatives starting with a 6) are already made by the regular expression engine
when it compiles your regular expression. There’s no need to waste your time to make
your regex more complicated in the hopes of getting it faster. But you can make your
regex shorter, to reduce the amount of typing you need to do, while still keeping it
readable.

Several of the alternatives have identical character classes next to each other. You can
eliminate the duplication by using quantifiers. Recipe 2.12 tells you all about those.

6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|6[0-4][0-9]{3}|[1-5][0-9]{4}|«
[1-9][0-9]{3}([1-9][0-9]{2}|[1-9][0-9]|[0-9]

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The <[1-9][0-91{3}|[1-9][0-9]1{2}|[1-9][0-9]> part of the regex has three very similar
alternatives, and they all have the same pair of character classes. The only difference is
the number of times the second class is repeated. We can easily combine that into
«[1-9][0-9]{1,3}.

6.7 Numbers Within a Certain Range | 391

6553[0-5]]655[0-2][0-9]|65[0-4][0-9]{2}|6[0-4][0-9]{3}|[1-5][0-9]{4} |«
[1-9]1[0-9]{1,3}|[0-9]

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Any further tricks will hurt readability. For example, you could isolate the leading 6
from the first four alternatives:
6(2:553[0-5] |55[0-2][0-9] | 5[0-4][0-91{2}| [0-41[0-91{3}) | [1-5] [0-9] {4} |
[1-9][0-9]{1,3}|[0-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

But this regex is actually one character longer because we had to add a noncapturing
group to isolate the alternatives with the leading 6 from the other alternatives. You
won’t get a performance benefit with any of the regex flavors discussed in this book.
They all make this optimization internally.

See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression. Recipe 6.8 shows how to match ranges of hexa-
decimal numbers.

Recipe 4.12 shows how to remove specific numbers from a valid range, using negative

lookahead.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

6.8 Hexadecimal Numbers Within a Certain Range

Problem

You want to match a hexadecimal number within a certain range of numbers. You want
the regular expression to specify the range accurately, rather than just limiting the
number of digits.

Solution
1to C (1 to 12: hour or month):

A[1-9a-c]$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 18 (1 to 24: hour):

392 | Chapter6: Numbers

Download from Wow! eBook <www.wowebook.com>

~(1[0-8][[1-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 1F (1 to 31: day of the month):
A(1[0-9a-f]|[1-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
1to 35 (1 to 53: week of the year):

~(3[0-5]|[12][0-9a-f][[1-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 3B (0 to 59: minute or second):

~(3[0-9a-b]|[12]?[0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 64 (0 to 100: percentage):

~(6[0-4]|[1-5]2[0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 64 (1 to 100):

~(6[0-4]|[1-5][0-9a-f][[1-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

20 to 7E (32 to 126: printable ASCII codes):

~(7[0-9a-e]|[2-6][0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 7F (0 to 127: 7-bit number):

~[1-7]2[0-9a-f]$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to FF (0 to 255: 8-bit number):

*[1-9a-f]?[0-9a-f]$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 16E (1 to 366: day of the year):
~(16[0-9a-e]|1[0-5][0-9a-f]|[1-9a-f][0-9a-f]?)$

6.8 Hexadecimal Numbers Within a Certain Range | 393

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

76C to 833 (1900 to 2099: year):

~(83[0-3]|8[0-2][0-9a-f][7[7-9a-f][0-9a-f]|76[c-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 7FFF: (0 to 32767: 15-bit number):

~([1-7]1[0-9a-f]{3}|[1-9a-f][0-9a-f]{1,2}|[0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to FFFF: (0 to 65535: 16-bit number):

*([1-9a-f][0-9a-f]{1,3}|[0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

There’s no difference between matching decimal numeric ranges and hexadecimal nu-
meric ranges with a regular expression. As the previous recipe explains, split the range
into multiple ranges, until each range has a fixed number of positions with independent
hexadecimal digits. Then it’s just a matter of using a character class for each position,
and combining the ranges with alternation.

Since letters and digits occupy separate areas in the ASCII and Unicode character tables,
you cannot use the character class <[0-F]> to match any of the 16 hexadecimal digits.
Though this character class will actually do that, it will also match the punctuation
symbols that sit between the digits and the letters in the ASCII table. Instead, place two
character ranges in the character class: [0-9A-F].

Another issue that comes into play is case-sensitivity. By default, regular expressions
are case-sensitive. <[0-9A-F]> matches only uppercase characters, and <[0-9a-f]>
matches only lowercase characters. <[0-9A-Fa-f]> matches both.

Explicitly typing both the uppercase and lowercase ranges in each character class
quickly gets tedious. Turning on the case insensitivity option is much easier. See
Recipe 3.4 to learn how to do that in your favorite programming language.

See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

394 | Chapter6: Numbers

6.9 Integer Numbers with Separators

Problem

You want to find various kinds of integer numbers in a larger body of text, or check
whether a string variable holds an integer number. Underscores are allowed as sepa-
rators between groups of numbers, to make the integers easier to read. Numbers may
not begin or end with an underscore. You want to allow decimal, octal, hexadecimal,
and binary numbers. Hexadecimal and binary numbers must be prefixed with ox and ob.

0b0111 1111 1111 1111 1111 1111 1111 1111, 0177_7777_7777, 2_147 483 647, and
ox7fff_ffff are examples of valid numbers.

Solution
Find any decimal or octal integer with optional underscores in a larger body of text:

\b[0-9]+(_+[0-9]+)*\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find any hexadecimal integer with optional underscores in a larger body of text:

\box[0-9A-F]+(_+[0-9A-F]+)*\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find any binary integer with optional underscores in a larger body of text:

\bob[01]+(_+[01]+)*\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find any decimal, octal, hexadecimal, or binary integer with optional underscores in a
larger body of text:
\b([0-9]+(_+[0-9]+)*|0x[0-9A-F]+(_+[0-9A-F]+)*|ob[01]+(_+[01]+)*)\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether a text string holds just a decimal, octal, hexadecimal, or binary integer
with optional underscores:
\A([0-9]+(_+[0-9]+)*|0x[0-9A-F]+(_+[0-9A-F]+)*|ob[01]+(_+[01]+)*)\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

A([0-9]+(_+[0-9]+)*|0ox[0-9A-F]+(_+[0-9A-F]+)*|ob[01]+(+[01]+)*)$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

6.9 Integer Numbers with Separators | 395

Discussion

Recipes 6.1, 6.2, and 6.3 explain in detail how to match integer numbers. These recipes
do not allow underscores in the numbers. Their regular expressions can easily use
<[0-9]+>, <[0-9A-F]+>, and <[01]+> to match decimal, hexadecimal, and binary numbers.

If we wanted to allow underscores anywhere, we could just add the underscore to these
three character classes. But we do not want to allow underscores at the start or the end.
The first and last characters in the number must be a digit. You might think of <[0-9]
[0-9_]+[0-9]> as an easy solution. But this fails to match single digit numbers. So we
need a slightly more complex solution.

Our solution «[0-9]+(_+[0-9]+)*> uses ¢[0-9]+> to match the initial digit or digits as
before. We add «(_+[0-9]+)*%> to allow the digits to be followed by one or more under-
scores, as long as those underscores are followed by more digits. < +» allows any number
of sequential underscores. <[0-9]+> allows any number of digits after the underscores.
We put those two inside a group that we repeat zero or more times with a asterisk. This
allows any number of nonsequential underscores with digits in between them and after
them, while also allowing numbers with no underscores at all.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition.

6.10 Floating-Point Numbers

Problem

You want to match a floating-point number and specify whether the sign, integer, frac-
tion and exponent parts of the number are required, optional, or disallowed. You don’t
want to use the regular expression to restrict the numbers to a specific range, and instead
leave that to procedural code, as explained in Recipe 3.12.

Solution
Mandatory sign, integer, fraction, and exponent:

AL-+]1[0-9]+\.[0-9]+[eE][-+]?[0-9]+%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Mandatory sign, integer, and fraction, but no exponent:

~[-+1[0-9]+\.[0-9]+$

396 | Chapter6: Numbers

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign, mandatory integer and fraction, and no exponent:

AL-+]2[0-9]+\.[0-9]+%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign and integer, mandatory fraction, and no exponent:

A[-+]?[0-9]1*\.[0-9]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign, integer, and fraction. If the integer part is omitted, the fraction is manda-
tory. If the fraction is omitted, the decimal dot must be omitted, too. No exponent.
M-+17([0-9]+(\.[0-9]+)?[\.[0-9]+)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign, integer, and fraction. If the integer part is omitted, the fraction is manda-
tory. If the fraction is omitted, the decimal dot is optional. No exponent.
M-+12([0-91+(\.[0-91%)?|\.[0-9]+)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign, integer, and fraction. If the integer part is omitted, the fraction is manda-
tory. If the fraction is omitted, the decimal dot must be omitted, too. Optional
exponent.
Al-+12([0-9]+(\.[0-9]+)?|\.[0-9]+) ([eE][-+]?[0-9]+)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign, integer, and fraction. If the integer part is omitted, the fraction is manda-
tory. If the fraction is omitted, the decimal dot is optional. Optional exponent.
M-+12([0-91+(\.[0-9]*)?|\. [0-9]+) ([eE][-+]?[0-9]+)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The preceding regex, edited to find the number in a larger body of text:

[-+]2(\b[0-9]+(\.[0-9]*)?|\.[0-9]+) ([eE][-+]?[0-9]+\b)?
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

6.10 Floating-Point Numbers | 397

Discussion

All regular expressions are wrapped between anchors (Recipe 2.5) to make sure we
check whether the whole input is a floating-point number, as opposed to a floating-
point number occurring in a larger string. You could use word boundaries or look-
around as explained in Recipe 6.1 if you want to find floating-point numbers in a larger
body of text.

The solutions without any optional parts are very straightforward: they simply spell
things out from left to right. Character classes (Recipe 2.3) match the sign, digits, and
the e. The plus and question mark quantifiers (Recipe 2.12) allow for any number of
digits and an optional exponent sign.

Making just the sign and integer parts optional is easy. The question mark after the
character class with the sign symbols makes it optional. Using an asterisk instead of a
plus to repeat the integer digits allows for zero or more instead of one or more digits.

Complications arise when sign, integer, and fraction are all optional. Although they are
optional on their own, they are not all optional at the same time, and the empty string
is not a valid floating-point number. The naive solution, <[-+]?[0-9]*\.?2[0-9]%, does
match all valid floating-point numbers, but it also matches the empty string. And be-
cause we omitted the anchors, this regex will match the zero-length string between any
two characters in your subject text. If you run a search-and-replace with this regex and
the replacement «{$8}» on 123abc456, you’ll get {123}{}a{}b{}c{456}{}. The regex does
match 123 and 456 correctly, but it finds a zero-length match at every other match
attempt, too.

When creating a regular expression in a situation where everything is optional, it’s very
important to consider whether everything else remains optional if one part is actually
omitted. Floating-point numbers must have at least one digit.

The solutions for this recipe clearly spell out that when the integer and fractional parts
are optional, either of them is still required. They also spell out whether 123. is a
floating-point number with a decimal dot, or whether it’s an integer number followed
by a dot that’s not part of the number. For example, in a programming language, that
trailing dot might be a concatenation operator or the first dot in a range operator speci-
fied by two dots.

To implement the requirement that the integer and fractional can’t be omitted at the
same time, we use alternation (Recipe 2.8) inside a group (Recipe 2.9) to simply spell
out the two situations. <[0-9]+(\.[0-9]+)?> matches a number with a required integer
part and an optional fraction. <\.[0-9]+> matches just a fractional number.

Combined, <[0-9]+(\.[0-9]+)?|\.[0-9]+ covers all three situations. The first alterna-
tive covers numbers with both the integer and fractional parts, as well as numbers
without a fraction. The second alternative matches just the fraction. Because the alter-
nation operator has the lowest precedence of all, we have to place these two alternatives
in a group before we can add them to a longer regular expression.

398 | Chapter6: Numbers

<[0-9]+(\.[0-9]+)?|\.[0-9]+> requires the decimal dot to be omitted when the fraction
is omitted. If the decimal dot can occur even without fractional digits, we use <[0-9]+
(\.[0-9]*)?]\.[0-9]+ instead. In the first alternative in this regex, the fractional part
is still grouped with the question mark quantifier, which makes it optional. The dif-
ference is that the fractional digits themselves are now optional. We changed the plus
(one or more) into an asterisk (zero or more). The result is that the first alternative in
this regex matches an integer with optional fractional part, where the fraction can either
be a decimal dot with digits or just a decimal dot. The second alternative in the regex
is unchanged.

This last example is interesting because we have a requirement change about one thing,
but change the quantifier in the regex on something else. The requirement change is
about the dot being optional on its own, rather than in combination with the fractional
digits. We achieve this by changing the quantifier on the character class for the frac-
tional digits. This works because the decimal dot and the character class were already
inside a group that made both of them optional at the same time.

See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains alternation.
Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

6.11 Numbers with Thousand Separators

Problem

You want to match numbers that use the comma as the thousand separator and the
dot as the decimal separator.

Solution
Mandatory integer and fraction:

"[0-9]{1,3}(, [0-9]{3})*\.[0-9]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Mandatory integer and optional fraction. Decimal dot must be omitted if the fraction
is omitted.

~[0-91{1,3}(, [0-9]{31)*(\.[0-9]+)?$

Regex options: None

6.11 Numbers with Thousand Separators | 399

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional integer and optional fraction. Decimal dot must be omitted if the fraction is
omitted.

~([0-91{1,3}(, [0-9]{3})*(\.[0-9]+)?|\.[0-9]+)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The preceding regex, edited to find the number in a larger body of text:

\b[0-9]{1,3}(,[0-9]{3})*(\.[0-9]+)2\b|\.[0-9]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Since these are all regular expressions for matching floating-point numbers, they use
the same techniques as the previous recipe. The only difference is that instead of simply
matching the integer part with <[0-9]+>, we now use <[0-9]{1,3}(,[0-9]{3})®. This
regular expression matches between 1 and 3 digits, followed by zero or more groups
that consist of a comma and 3 digits.

We cannot use <[0-9]{0,3}(,[0-9]{3})* to make the integer part optional, because
that would match numbers with a leading comma (e.g., ,123). It’s the same trap of
making everything optional, explained in the previous recipe. To make the integer part
optional, we don’t change the part of the regex for the integer, but instead make it
optional in its entirety. The last two regexes in the solution do this using alternation.
The regex for a mandatory integer and optional fraction is alternated with a regex that
matches the fraction without the integer. That yields a regex where both integer and
fraction are optional, but not at the same time.

See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression. Recipe 6.12 shows how you can add thousand
separators to numbers that don’t have them.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains word boundaries.
Recipe 2.8 explains alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains
repetition.

400 | Chapter6: Numbers

6.12 Add Thousand Separators to Numbers

Problem

You want to add commas as the thousand separator to numbers with four or more
digits. You want to do this both for individual numbers and for any numbers in a string
or file.

For example, you’d like to convert this:

There are more than 7000000000 people in the world today.

To this:

There are more than 7,000,000,000 people in the world today.

W

- Not all countries and written languages use the same character as the
ﬁ:\ thousand separator. The solutions here use a comma, but some people
T+ W use dots, underscores, apostrophes, or spaces for the same purpose. If

you want, you can replace the commas in this recipe’s replacement
strings with one of these other characters.

Solution

The following solutions work both for individual numbers and for all numbers in a
given string. They’re designed to be used in a search-and-replace for all matches.

Basic solution

Regular expression:

[0-91(2=(2:[0-9]{3})+(?![0-9]))
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Although this regular expression works equally well with all of the flavors covered by
this book, the accompanying replacement text is decidedly less portable.

Replacement:

$&,
Replacement text flavors: .NET, JavaScript, Perl

$o,
Replacement text flavors: .NET, Java, XRegExp, PHP

\o,
Replacement text flavors: PHP, Ruby

\&,
Replacement text flavor: Ruby

6.12 Add Thousand Separators to Numbers | 401

\g<0>,
Replacement text flavor: Python

These replacement strings all put the matched number back using backreference zero
(the entire match, which in this case is a single digit), followed by a comma. When
programming, you can implement this regular expression search-and-replace as ex-
plained in Recipe 3.15.

Match separator positions only, using lookbehind

Regular expression:

(2¢=[0-9]) (2=(2:[0-9]{31)+(?! [0-9]))
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

Replacement:

b

Replacement text flavors: .NET, Java, Perl, PHP, Python, Ruby

Recipe 3.14 explains how you can implement this basic regular expression search-and-
replace when programming.

This version doesn’t work with JavaScript or Ruby 1.8, because they don’t support any
type of lookbehind. This time around, however, we need only one version of the re-
placement text because we’re simply using a comma without any backreference as the
replacement.

Discussion

Introduction

Adding thousand separators to numbers in your documents, data, and program output
is a simple but effective way to improve their readability and appearance.

Some of the programming languages covered by this book provide built-in methods to
add locale-aware thousand separators to numbers. For instance, in Python you can use
locale.format('%d', 1000000, True) to convert the number 1000000 to the string
'1,000,000', assuming you’ve previously set your program to use a locale that uses
commas as the thousand separator. For other locales, the number might be separated
using dots, underscores, apostrophes, or spaces.

However, locale-aware processing is not always available, reliable, or appropriate. In
the finance world, for example, using commas as thousand separators is the norm,
regardless of location. Internationalization might not be a relevant issue to begin with
when working in a text editor rather than programming. For these reasons, and for
simplicity, in this recipe we’ve assumed you always want to use commas as the thousand

402 | Chapter6: Numbers

separator. In the upcoming “Variations” section, we’ve also assumed you want to use
dots as decimal points. If you need to use other characters, feel free to swap them in.

Although adding thousand separators to all numbers in a file or string
*t% can improve the presentation of your data, it’s important to understand
what kind of content you’re dealing with before doing so. For instance,
you probably don’t want to add commas to IDs, four-digit years, and

ZIP codes. Documents and data that include these kinds of numbers
might not be good candidates for automated comma insertion.

Basic solution

This regular expression matches any single digit that has digits on the right in exact
sets of three. It therefore matches twice in the string 12345678, finding the digits 2 and
5. All the other digits are not followed by an exact multiple of three digits.

The accompanying replacement text puts back the matched digit using backreference
zero (the entire match), and follows it with a comma. That leaves us with 12,345,678.
Voila!

To explain how the regex determines which digits to match, we’ll split it into two parts.
The first part is the leading character class <[0-9]> that matches any single digit. The
second part is the positive lookahead «(?=(?:[0-9]{3})+(?![0-9]))> that causes the
match attempt to fail unless it’s at a position followed by digits in exact sets of three.
In other words, the lookahead ensures that the regex matches only the digits that should
be followed by a comma. Recipe 2.16 explains how lookahead works.

The «(?:[0-9]{3})+> within the lookahead matches digits in sets of three. The negative
lookahead «(2![0-9])> that follows is there to ensure that no digits come immediately
after the digits we matched in sets of three. Otherwise, the outer positive lookahead
would be satisfied by any number of following digits, so long as there were at least three.

Match separator positions only, using lookbehind

This adaptation of the previous regex doesn’t match any digits at all. Instead, it matches
only the positions where we want to insert commas within numbers. These positions
are wherever there are digits on the right in exact sets of three, and at least one digit on

the left.

The lookahead used to search for sets of exactly three digits on the right is the same as
in the last regex. The difference here is that, instead of starting the regex with <[0-9]>
to match a digit, we instead assert that there is at least one digit to the left by using the
positive lookbehind «(?<=[0-9])>. Without the lookbehind, the regex would match the
position to the left of 123 and therefore the search-and-replace would convert it to ,
100. Lookbehind is explained together with lookahead in Recipe 2.16.

JavaScript and Ruby 1.8 don’t support lookbehind, so they cannot use this version of
the regular expression.

6.12 Add Thousand Separators to Numbers | 403

Variations

Don't add commas after a decimal point

The preceding regexes add commas to any sequence of four or more digits. A rather
glaring issue with this basic approach is that it can add commas to digits that come
after a dot as the decimal separator, so long as there are at least four digits after the dot.
Following are two ways to fix this.

Use infinite lookbehind. The problem is easy to solve if you’re able to use an infinite-length
quantifier like <+ or at least a long finite-length quantifier like <{1,1200}> within
lookbehind.

Regular expression:

[0-91(?=(?:[0-9]{3})+(?![0-9])) (?<!\.[0-9]+)
Regex options: None
Regex flavors: .NET

[0-9](?=(?:[0-9]{3})+(?![0-9])) (?<!\.[0-9]{1,100})
Regex options: None
Regex flavors: .NET, Java

Replacement:

$0)
Replacement text flavors: .NET, Java

The first regex here works in .NET only because of the <+ in the lookbehind. The second
regex works in both .NET and Java, because Java supports any finite-length quantifier
inside lookbehind—even arbitrarily long interval quantifiers like {1,100}. The .NET-
only version therefore works correctly with any number, whereas the Java version
avoids adding commas to numbers after a decimal place only when there are 100 or
fewer digits after the dot. You can bump up the second number in the <{1,100}> quan-
tifier if you want to support even longer numbers to the right of a decimal separator.

With both regexes, we’ve put the new lookbehind at the end of the pattern. The regexes
could berestructured to add the lookbehind at the front, as you might intuitively expect,
but we’ve done it this way to optimize efficiency. Since the lookbehind is the slowest
part of the regex, putting it at the end lets the regex fail more quickly at positions within
the subject string where the lookbehind doesn’t need to be evaluated in order to rule
out a match.

Search-and-replace within matched numbers. If you’re not working with .NET or Java and
therefore can’t look as far back into the subject string as you want, you can still use
fixed-length lookbehind to help match entire numbers that aren’t preceded by a dot.
That lets you identify the numbers that qualify for having commas added (and correctly
exclude any digits that come after a decimal point), but because it matches entire num-
bers, you can’t simply include a comma in the replacement string and be done with it.

404 | Chapter6: Numbers

Completing the solution requires using two regexes. An outer regex to match the num-
bers that should have commas added to them, and an inner regex that searches within
the qualifying numbers as part of a search-and-replace that inserts the commas.

Outer regex:

\b(?<!\.)[0-9]{4,}
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

This matches any entire number with four or more digits that is not preceded by a dot.
The word boundary at the beginning of the regex ensures that any matched numbers
start at the beginning of the string or are separate from other numbers and words.
Otherwise, the regex could match the 2345 from 0.12345. In other words, without the
word boundary, matches could start from the second digit after a decimal point, since
a dot is no longer the preceding character at that point.

The inner regex and replacement text to go with this are the same as the “Basic solu-
tion” on page 401.

In order to apply the inner regex’s generated replacement values to each match of the
outer regex, we need to replace matches of the outer regex with values generated in
code, rather than using a simple string replacement. That way we can run the inner
regex within the code that generates the outer regex’s replacement value. This may
sound complicated, but the programming languages covered by this book all make it
fairly straightforward.

Here’s the complete solution for Ruby 1.9:

subject.gsub(/\b(?<!\.)[0-9]{4,}/) {|match|
match.gsub(/[0-9](?=(?:[0-9]{3})+(?![0-9]))/, "\o,")
}

The subject variable in this code holds the string to commafy. Ruby’s gsub string
method performs a global search-and-replace. For other programming languages, fol-
low Recipe 3.16, which explains how to replace matches with replacements generated
in code. It includes examples that show this technique in action for each language.

The lack of lookbehind support in JavaScript and Ruby 1.8 prevents this solution from
being fully portable, since we used lookbehind in the outer regex. We can work around
this in JavaScript and Ruby 1.8 by including the character, if any, that precedes a num-
ber as part of the match, and requiring that it be something other than a digit or dot.
We can then put the nondigit/nondot character back using a backreference in the gen-
erated replacement text.

Here’s the JavaScript code to pull this oft:
subject.replace(/(*|[*0-9.])([0-9]1{4,})/g, function($0, $1, $2) {
return $1 + $2.replace(/[0-9](?=(?:[0-9]1{3})+(?![0-9]))/g, "$8,");
D;

6.12 Add Thousand Separators to Numbers | 405

See Also
Recipe 6.11 explains how to match numbers that already include commas within them.

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression.

6.13 Roman Numerals

Problem

You want to match Roman numerals such as IV, XIII, and MVIIL.

Solution
Roman numerals without validation:

A[MDCLXVI]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Modern Roman numerals, strict:

~(?=[MDCLXVI])M*(C[MD]|D?C{0,3}) (X[CL]|L?X{0,3})(I[XV]|V?I{0,3})$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Modern Roman numerals, flexible:

A(2=[MDCLXVI])M*(C[MD] |D?C*) (X[CL]|L2X*) (I[XV] [V?1*)$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Simple Roman numerals:

A(?=[MDCLXVI])M*D?C{0,4}L?X{0,4}V?1{0,4}$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Roman numerals are written using the letters M, D, C, L, X, V, and I, representing the
values 1,000, 500, 100, 50, 10, 5, and 1, respectively. The first regex matches any string
composed of these letters, without checking whether the letters appear in the order or
quantity necessary to form a proper Roman numeral.

In modern times (meaning during the past few hundred years), Roman numerals have
generally been written following a strict set of rules. These rules yield exactly one Ro-
man numeral per number. For example, 4 is always written as IV, never as IIIL

406 | Chapter6: Numbers

Download from Wow! eBook <www.wowebook.com>

The second regex in the solution matches only Roman numerals that follow these
modern rules.

Each nonzero digit of the decimal number is written out separately in the Roman nu-
meral. 1999 is written as MCMXCIX, where M is 1000, CM is 900, XC is 90, and IX is
9. We don’t write MIM or IMM.

The thousands are easy: one M per thousand, easily matched with .

There are 10 variations for the hundreds, which we match using two alternatives.
«C[MD]> matches CM and CD, which represent 900 and 400. <0?C{0,3}> matches DCCC,
DCC, DC, D, CCC, CC, C, and the empty string, representing 800, 700, 600, 500, 300,
200, 100, and nothing. This gives us all of the 10 digits for the hundreds.

We match the tens with <X[CL]|L?X{0,3}> and the units with <I[XV]|V?1{0,3}>. These
use the same syntax, but with different letters.

All four parts of the regex allow everything to be optional, because each of the digits
could be zero. The Romans did not have a symbol, or even a word, to represent zero.
Thus, zero is unwritten in Roman numerals. While each part of the regex should indeed
be optional, they’re not all optional at the same time. We have to make sure our
regex does not allow zero-length matches. To do this, we put the lookahead
<(?=[MDCLXVI])> at the start of the regex. This lookahead, as Recipe 2.16 explains, makes
sure that there’s at least one letter in the regex match. The lookahead does not consume
the letter that it matches, so that letter can be matched again by the remainder of the
regex.

The third regex is a bit more flexible. It also accepts numerals such as IIII, while still
accepting IV.

The fourth regex only allows numerals written without using subtraction, and therefore
all the letters must be in descending order. 4 must be written as IlII rather than IV. The
Romans themselves usually wrote numbers this way.

W

- All regular expressions are wrapped between anchors (Recipe 2.5) to
"‘:\ make sure we check whether the whole input is a Roman numeral, as
T Uay opposed to a floating-point number occurring in a larger string. You can

replace ¢ and «$> with \\b> word boundaries if you want to find Roman
numerals in a larger body of text.

Convert Roman Numerals to Decimal

This Perl function uses the “strict” regular expression from this recipe to check whether
the input is a valid Roman numeral. If it is, it uses the regex <[MDLV]|C[MD]?|X[CL]?|
I[XV]?> to iterate over all of the letters in the numeral, adding up their values:

sub roman2decimal {
my $roman = shift;

6.13 Roman Numerals | 407

if ($roman =~
m/*(?=[MDCLXVI])
() # 1000
(C[mp]|D2C{0,3}) # 100
(X[CL]|L?X{0,3}) # 10
(I[xv]|v?I{0,3}) #1

$/ix)
{
Roman numeral found
my %r2d = ('I' => 1, 'IV' =>4, 'V' = 5, "IX' => 9,
‘X' => 10, 'XL' => 40, 'L' => 50, 'XC' => 90,
'C' => 100, 'CD" => 400, 'D' => 500, 'CM' => 900,
'M' => 1000);
my $decimal = 0;
while ($roman =~ m/[MDLV]|C[MD]?|X[CL]?|I[XV]?/ig) {
$decimal += $r2d{uc($8)};
}
return $decimal;
} else {
Not a Roman numeral
return 0;
}
}
See Also

All the other recipes in this chapter show more ways of matching different kinds of
numbers with a regular expression.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains alternation.
Recipe 2.9 explains grouping. Recipe 2.10 explains backreferences. Recipe 2.12 ex-
plains repetition. Recipe 2.16 explains lookaround.

The source code snippet in this recipe uses the technique for iterating over regex
matches discussed in Recipe 3.11.

408 | Chapter6: Numbers

CHAPTER 7
Source Code and Log Files

As shown in Recipe 3.22, regular expressions are an excellent solution for tokenizing
input while constructing a parser for a custom file format or scripting language. This
chapter has many recipes for matching syntactic elements that are commonly used in
programming languages and other text-based file formats. You can combine the regular
expressions from these recipes into a larger regular expression to be used by a parser.
These regular expressions will also come in handy when manipulating source code in
a text editor and when searching through your code base with a grep tool.

The second part of this chapter shows how you can use regular expressions to extract
information from log files. The recipes mostly deal with web logs, as many of our readers
will have access to such log files and may even be familiar with their format. You can
easily adapt the techniques shown in these recipes to any other log formats you may
be dealing with.

7.1 Keywords

Problem

You are working with a file format for forms in a software application. The words “end,”
“in,” “inline,” “inherited,” “item,” and “object” are reserved keywords in this for-
mat.! You want a regular expression that matches any of these keywords.

Solution
The basic solution is very straightforward and works with all regex flavors in this book:

\b(?:end|in|inline|inherited|item|object)\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1. This recipe gets its inspiration from Delphi form files, which use these exact keywords, except for “in,”
which we added here to illustrate some pitfalls.

409

We can optimize the regular expression for regex flavors that support atomic grouping:

\b(?>end|in(?:1ine|herited)?|item|object)\b
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Discussion

Matching a word from a list of words is very easy with a regular expression. We simply
use alternation to match any one of the keywords. The word boundaries at the start
and the end of the regex make sure we only match entire words. The regex should
match inline rather than in when the file contains inline, and it should fail to match
when the file contains interesting. Because alternation has the lowest precedence of
all regex operators, we have to put the list of keywords inside a group. Here we used a
noncapturing group for efficiency. When using this regex as part of a larger regular
expression, you may want to use a capturing group instead, so you can determine
whether the regex matched a keyword or something else.

We can optimize this regular expression when using regular expression flavors that
support atomic grouping. When the first regex from the Solution section encounters
the word interesting, the <in» alternative will match. After that, the word boundary at
the end of the regex will fail to match. The regex engine will then backtrack, fruitlessly
attempting the remaining alternatives.

By putting the alternatives inside an atomic group, we prevent the regex from back-
tracking after the second \b> fails to match. This allows the regex to fail faster.

Because the regex won’t backtrack, we have to make sure no backtracking is required
to match any of our keywords. When the first regex encounters inline, it will first
match in. The second word boundary then fails. The regex engine backtracks to match
inline, at which point the word boundary, and thus the whole regex, can find their
match. Because this backtracking won’t work with the atomic group, we changed <in|
inline|inherited> from the first regex into <in(?:1line|herited)? in the second regex.
The first regex attempts to match in, inline, and inherited in that order, because
alternation is eager. The second regex matches inline or iniherited if it can because
the quantifier is greedy, and matches in otherwise. Only after inline, inherited, or
in has been matched will the second regex proceed with the word boundary. If the
word boundary cannot be matched, there is no point in trying any of the other alter-
natives, which we expressed with the atomic group.

Variations

Matching just the keywords may not be sufficient. The form file format won’t treat
these words as reserved keywords when they appear in single-quoted strings. If the
form contains a control that has a caption with the text “The end is near,” that will be
stored in the file this way:

410 | Chapter7: Source Code and Log Files

object Button1: TButton
Caption = 'The end is near’
end
In this snippet, the second occurrence of end is a keyword, but the first occurrence is
not. We need a more complex solution if we only want to treat the second occurrence
of end as a keyword.

There is no easy way to make our regex match keywords only when they appear outside
of strings. But we can easily make our regex match both keywords and strings.

\b(end|in|inline|inherited|item|object)\b| ' [~'\r\n]*(?: "' [~'\r\n]*)*"
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

When this regex encounters a single quote, it will match the whole string up to the next
single quote. The next match attempt then begins after the string. This way, the regex
does not separately match keywords when they appear inside strings. The whole string
will be matched instead. In the previous sample, this regular expression will first match
object, then 'The end is near', and finally end at the end of the sample.

To be able to determine whether the regex matched a keyword or a string, we’re now
using a capturing group rather than a noncapturing group for the list of keywords.
When the regex matches a keyword, it will be held by the first (and only) capturing
group. When the regex matches a string, the first capturing group will be blank, as it
didn’t participate in the match.

If you’ll be constructing a parser as explained in Recipe 3.22, then you will always
combine the keyword regex with the string regex and the regexes for all the other tokens
in the file format you’re dealing with. You will use the same technique as we used for
keywords and strings here. Your regex will simply have many more alternatives to cover
the whole syntax of your file format. That will automatically deal with keywords ap-
pearing inside of strings.

When matching keywords in other file formats or programming languages, the word
boundaries may not be sufficient. In many languages, $end is a variable, even when
end is a keyword. In that case, the word boundaries are not sufficient to make sure that
you’re not matching keywords that aren’t keywords. <\bend\b> matches end in $end.
The dollar sign is not a word character, but a letter is. <\b> matches between the dollar
sign and a letter.

You can solve this with lookaround. «(?<![$\w])(?:end|in|inline|inherited|item|
object)\b> uses negative lookbehind to make sure the keyword is not preceded by a
dollar sign. The negative lookbehind includes \\w>, and we still have word boundary
A\b> at the end to make sure the keyword is not part of a longer word.

7.1 Keywords | 411

See Also

Chapter 2 discusses the techniques used in the regular expressions in this recipe.
Recipe 2.6 explains word boundaries, and Recipe 2.8 explains alternation, which we
used to match the keywords. Recipe 2.14 explains the atomic group, and Recipe 2.12
explains the quantifier we used to optimize the regular expression. Recipe 2.16 explains
lookaround.

7.2 ldentifiers

Problem

You need a regular expression that matches any identifier in your source code. Your
programming language requires identifiers to start with an underscore or an ASCII
letter. The following characters can be underscores or ASCII letters or digits. Identifiers
can be between 1 and 32 characters long.

Solution

\b[a-z_][0-9a-z_]{0,31}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The character class <[a-z_]> matches the first character in the identifier. <[0-9a-z_]>
matches the second and following characters. We allow between 0 and 31 of those. We
use <[0-9a-z_]> rather than the shorthand (\w> so we don’t need to worry whether
Aw> includes non-ASCII characters or not. We don’t include the uppercase letters in
the character classes, because turning on the case insensitive option does the same and
usually requires fewer keystrokes. You can use <\b[a-zA-Z_][0-9a-zA-Z_]{0,31}\b> if
you want a regex that does not depend on the case insensitivity option.

The two word boundaries <\b> make sure that we do not match part of a sequence of
alphanumeric characters that is more than 32 characters long.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.

412 | Chapter7: Source Code and Log Files

7.3 Numeric Constants

Problem

You need a regular expression that matches a decimal integer without a leading zero,
an octal integer with a leading zero, a hexadecimal integer prefixed with 0x, or a binary
integer prefixed with ob. The integer may have the suffix L to denote it is a long rather
than an int.

The regular expression should have separate (named) capturing groups for decimal,
octal, hexadecimal, and binary numbers without any prefix or suffix, so the procedural
code that will use this regex can easily determine the base of the number and convert
the text into an actual number. The suffix L should also have its own capturing group,
so the type of the integer can be easily identified.

Solution
\b(?:(2<dec>[1-9][0-9]*)
| (?<oct>0[0-7]%*)
| ox(?<hex>[0-9A-F]+)
| ob(?<bin>[01]+)
)(2<L>L)?\b
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
\b(?:(?P<dec>[1-9][0-9]*)
| (?P<oct>0[0-7]%)
| ox(?P<hex>[0-9A-F]+)
| ob(?P<bin>[01]+)
)(?P<L>L)?\b
Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4, Perl 5.10, Python

\b(?:([1-9][0-91*)[(0[0-7]*) |ox([0-9A-F]+) [ob([01]+)) (L) ?\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

This regular expression is essentially the combination of the solutions presented in
Recipe 6.5 (decimal), Recipe 6.4 (octal), Recipe 6.2 (hexadecimal), and Recipe 6.3 (bi-
nary). The digit zero all by itself can be either a decimal or an octal number. This makes
no difference, as it is number zero either way. So we removed the alternative for the
number zero from the part of the regex that matches decimal numbers.

We used a noncapturing group around each of the four alternatives to make sure that
the word boundaries and the suffix L are applied to the regex as a whole, rather than
to just the first and last alternative. Named capturing groups make the regex easier to

7.3 Numeric Constants | 413

read and make it easier to convert the matched number from text into an actual number
in procedural code. JavaScript and Ruby 1.8 do not support named capture. For these
languages, you can use the alternative solution with five numbered capturing groups.

See Also

Chapter 6 has all the details on matching integer and floating-point numbers with
regular expressions. In addition to the techniques explained there, this recipe uses
named capture (Recipe 2.11) and free-spacing (Recipe 2.18).

1.4 Operators

Problem

You are developing a syntax coloring scheme for your favorite text editor. You need a
regular expression that matches any of the characters that can be used as operators in
the programming language for which you’re creating the scheme: -, +, *, /, =, <, >, %,
& %, |, !,~, and ?. The regex doesn’t need to check whether the combination of char-
acters forms a valid operator. That is not a job for a syntax coloring scheme; instead,
it should simply highlight all operator characters as such.

Solution

[-+%/=<>%8"| 1~?]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

If you read Recipe 2.3, the solution is obvious. You may wonder why we included this
as a separate recipe.

The focus of this chapter is on regular expressions that will be used in larger systems,
such as syntax coloring schemes. Such systems will often combine regular expressions
using alternation. That can lead to unexpected pitfalls that may not be obvious when
you see a regular expression in isolation.

One pitfall is that a system using this regular expression will likely have other regular
expressions that match the same characters. Many programming languages use / as the
division operator and // to start a comment. If you combine the regular expression
from this recipe with the one from Recipe 7.5 into «(?<operator>[-+*/=<>%&"| 1~?])| (2
<comment>//.*)>, then you will find that your system never matches any comments. All
forward slashes will be matched as operators.

The solution is to reverse the alternatives: «(?<comment>//.*)|(?<operator>[-+*/=<>
%8~ 1~2])>. This regex will always match two adjacent forward slashes as a single-line

414 | Chapter7: Source Code and Log Files

comment. It will not attempt to match any operators until the first half of the regex has
failed to match a single-line comment. If you have an application that combines mul-
tiple regular expressions, such as a text editor with regex-based syntax coloring, you
will need to know the order in which the application combines the regular expressions.

Another pitfall is that you may try to be clever and “optimize” your regex by adding a
quantifier after the character class: «[-+*/=<>%&"|1~?]+>. Because the syntax coloring
scheme needs to highlight all operator characters, it should be more efficient to high-
light all successive operator characters in one go. And it would be if highlighting oper-
ators were the scheme’s only task. But it will fail in some situations, even when the
regular expressions are combined in the order we determined to be correct in the pre-
vious paragraph: «(?<comment>//.*) | (?<operator> [-+*/=<>%&" | 1~?]+)>. This regex will
correctly highlight operators and single-line comments, unless the single-line comment
is immediately preceded by an operator. When the regex encounters !//bang, the
“comment” alternative will fail to match the *. The regex then tries the “operator”
alternative. This will match not just !; instead, it will match all of 1// because the <+
after the character class makes it match as many operator characters as it can. After this
match has been found, the regex will be attempted again on bang. The regex fails to
match because the characters that started the comment have already been consumed
by the previous match.

If we leave off the quantifier and use <(?<comment>//.*)|(?<operator>[-+*/=<>%&"|!
~?])», the operator part of the regex will only match ! when encountering !//bang. The
next match attempt will then see //bang, which will be matched by the “comment”
alternative in the regex.

7.5 Single-Line Comments

Problem

You want to match a comment that starts with // and runs until the end of the line.

Solution
/1.*
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The forward slash has no special meaning in regular expressions, so we can easily match
the start of the comment with <//>. Some programming languages use forward slashes
to delimit regular expressions. When you use this regular expression in your code, you
may need to escape the forward slashes as explained in Recipe 3.1.

7.5 Single-Line Comments | 415

«.* simply matches everything up to the end of the line. We don’t need to add anything
to the regular expression to make it stop at the end of a line. Just make sure the option
“dot matches line breaks” is turned off when using this regular expression.

See Also

Recipe 2.4 explains that the dot matches any character.

7.6 Multiline Comments

Problem

You want to match a comment that starts with /* and ends with */. Nested comments
are not permitted. Any /* between /* and */ is simply part of the comment. Comments
can span across lines.

Solution
I* RN/
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

IN¥[\s\S]*2*/
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The forward slash has no special meaning in regular expressions, but the asterisk does.
We need to escape the asterisk with a backslash. This gives </* and «<*/> to match /
* and */. Backslashes and/or forward slashes may get other special meanings when you
add literal regular expressions to your source code, so you may need to escape the
forward slashes as explained in Recipe 3.1.

We use <. *?> to match anything between the two delimiters of the comment. The option
“dot matches line breaks” that most regex engines have allows this to span multiple
lines. We need to use a lazy quantifier to make sure that the comment stops at the first
/ after the /, rather than at the last */ in the file.

JavaScript is the only regex flavor in this book that does not have an option to make
the dot match line breaks. If you’re using JavaScript without the XRegExp library, you
can use <[\s\S]> to accomplish the same. Although you could use «[\s\S]> with the
other regex flavors too, we do not recommend it, as regex engines generally have
optimized code to handle the dot, which is one of the most elementary features of
regular expressions.

416 | Chapter7: Source Code and Log Files

Variations

If the regex will be used in a system that needs to deal with source code files while
they’re being edited, you may want to make the closing delimiter optional. Then ev-
erything until the end of the file will be matched as a comment while it is being typed
in, until the closing */ has been typed in. Syntax coloring in text editors, for example,
usually works this way. Making the closing delimiter optional does not change how
this regex works on files that only have properly closed multiline comments. The quan-
tifier for the closing delimiter is greedy, so it will be matched if present. The quantifier
for the dot is lazy, so it will stop as soon as the closing delimiter can be matched.
I\EF2(2:*/)?
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

I\¥[\s\S]*2(2:*/)?
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also

Recipe 2.4 explains the dot, including the option to make it match line breaks, and the
workaround for JavaScript. Recipe 2.13 explains the difference between greedy and
lazy quantifiers.

7.7 All Comments

Problem

You want a regex that matches both single-line and multiline comments, as described
in the "Problem" sections of the preceding two recipes.

Solution
(2-5://.%) | (25:/* . *¥2*/)

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl
(2-m:// %) | (m: /* . F2*/)
Regex options: None
Regex flavors: Ruby
[T\ \nT* [/* 42\ */
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

7.7 All Comments | 417

11 X[I\F[\s\S]*2*/
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

You might think that you could just use alternation to combine the solutions from the
previous two recipes: //.*|/*.*?*/. That won’t work, because the first alternative
should have “dot matches line breaks” turned off, whereas the second alternative
should have it turned on. If you want to combine the two regular expressions using the
dot, you need to use mode modifiers to turn on the option “dot matches line breaks”
for the second half of the regular expression. The solutions shown here also explicitly
turn off the option for the first half of the regular expression. Strictly speaking, this isn’t
necessary, but it makes things more obvious and prevents mistakes with the “dot
matches line breaks” option if this regex were combined into an even longer regex.

Python and JavaScript (with or without XRegExp) do not support mode modifiers in
the middle of the regular expression. For Python and JavaScript with XRegExp, we can
use the negated character class <[*\r\n]*> to match everything up to the end of the line
for the single-line comment, and use <. *?> for the multiline comment with “dot matches
line breaks” turned on.

JavaScript without XRegExp does not have an option to make the dot match line breaks.
So we keep «.*® for the single-line comment, and we use <[\s\S]*?> for the multiline
comment.

See Also

Recipe 2.4 explains the dot, including the mode modifiers that affect it, and the work-
around for JavaScript. Recipe 2.8 explains alternation.

7.8 Strings

Problem

You need a regex that matches a string, which is a sequence of zero or more characters
enclosed by double quotes. A string with nothing between the quotes is an empty string.
Two sequential double quotes in a character string denote a single character, a double
quote. Strings cannot include line breaks. Backslashes or other characters have no spe-
cial meaning in strings.

Your regular expression should match any string, including empty strings, and it should
return a single match for strings that contain double quotes. For example, it should
return "before quote""after quote” as a single match, rather than matching "before
guote" and "after quote" separately.

418 | Chapter7: Source Code and Log Files

Solution
"[M\r\nJ*(2: " [~ \r\n])+

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Matching a string that cannot contain quotes or line breaks would be easy with <"[*\r
\n"]*". Double quotes are literal characters in regular expressions, and we can easily
match a sequence of characters that are not quotes or line breaks with a negated char-
acter class.

But our strings can contain quotes if they are specified as two consecutive quotes.
Matching these is not much more difficult if we handle the quotes separately. After the
opening quote, we use <[*\r\n"]* to match anything but quotes and line breaks. This
may be followed by zero or more pairs of double quotes. We could match those with
«(2:"")*, but after each pair of double quotes, the string can have more characters that
are not quotes or line breaks. So we match one pair of double quotes and following
nonquote, nonbreak characters with <""[*\r\n"]®, or all the pairs with «(?:""["\r
\n"]1*¥)*>. We end the regex with the double quote that closes the string.

The match returned by this regex will be the whole string, including enclosing quotes,
and pairs of quotes inside the string. To get only the contents of the string, the code
that processes the regex match needs to do some extra work. First, it should strip off
the quotes at the start and the end of the match. Then it should search for all pairs of
double quotes and replace them with individual double quotes.

You may wonder why we don’t simply use <"(?:[A"\r\n]|"")*"> to match our strings.
This regex matches a pair of quotes containing <(?:[*"\r\n]|"")*», which matches zero
or more occurrences of any combination of two alternatives. <[*"\r\n]> matches a
character that isn’t a double quote or a line break. <""» matches a pair of double quotes.
Put together, the overall regex matches a pair of double quotes containing zero or more
characters that aren’t quotes or line breaks or that are a pair of double quotes. This is
the definition of a string in the stated problem. This regex indeed correctly matches the
strings we want, but it is not very efficient. The regular expression engine has to enter
a group with two alternatives for each character in the string. With the regex from the
“Solution” section, the regex engine only enters a group for each pair of double quotes
in the string, which is a rare occurrence.

You could try to optimize the inefficient regex as <"(?:[*"\r\n]+|"")*">. The idea is
that this regex only enters the group for each pair of double quotes and for each se-
quence of characters without quotes or line breaks. That is true, as long as the regex
encounters only valid strings. But if this regex is ever used on a file that contains a string
without the closing quote, this will lead to catastrophic backtracking. When the closing
quote fails to match, the regex engine will try each and every permutation of the plus

7.8 Strings | 419

and the asterisk in the regex to match all the characters between the string’s opening
quote and the end of the line.

Table 7-1 shows how this regex attempts all different ways of matching "abcd. The cells
in the table show the text matched by <[*"\r\n]+>. At first, it matches abcd, but when
the closing quote fails to match, the <+ will backtrack, giving up part of its match.
When it does, the <*) will repeat the group, causing the next iteration of <[*"\r\n]+> to
match the remaining characters. Now we have two iterations that will backtrack. This
continues until each iteration of <[*"\r\n]+> matches a single character, and «*» has
repeated the group as many times as there are characters on the line.

Table 7-1. Line separators

Permutation 1<[*"\r\n]+ 2([~"\r\n]® 39[2"\r\n]+H 4" [r"\r\n]®»
1 abcd n/a n/a n/a

2 abc d n/a n/a

3 ab cd n/a n/a

4 ab c d n/a

5 a bed n/a n/a

6 a bc d n/a

7 a b cd n/a

8 a b < d

As you can see, the number of permutations grows exponentially? with the number of
characters after the opening double quote. For a file with short lines, this will result in
your application running slowly. For a file with very long lines, your application may
lock up or crash. If you use the variant <"(?:[*"]+|"")*"> to match multiline strings,
the permutations may run all the way to the end of the file if there are no further double
quotes in the file.

You could prevent that backtracking with an atomic group, as in <"(?>[*"\r\n]
+|"")*" or with possessive quantifiers, as in <"(?2:[A"\r\n]++|"")*+">, if your regex
flavor supports either of these features. But having to resort to special features defeats
the purpose of trying to come up with something simpler than the regex presented in
the “Solution” section.

Variations
Strings delimited with single quotes can be matched just as easily:

AN [A \n]F)*!

Regex options: None

2. If there are n characters between the double quote and the end of the string, the regex engine will
try 217 permutations of <(?2:[~"\r\n]+|"")%>.

420 | Chapter7: Source Code and Log Files

Download from Wow! eBook <www.wowebook.com>

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If your language supports both single-quoted and double-quoted strings, you’ll need
to handle those as separate alternatives:

TP AT [N2 [)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If strings can include line breaks, simply remove them from the negated character
classes:
II[AII]*(?:Illl[/\ll]*)*ll
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If the regex will be used in a system that needs to deal with source code files while
they’re being edited, you may want to make the closing quote optional. Then everything
until the end of the line will be matched as a string while it is being typed in, until the
closing quote has been typed in. Syntax coloring in text editors, for example, usually
works this way. Making the closing quote optional does not change how this regex
works on files that only have properly closed strings. The quantifier for the closing
quote is greedy, so the quote will be matched if present. The negated character classes
make sure that the regex does not incorrectly match closing quotes as part of the string.

"[AMNL\N]R(2: " [A"\r\n]*)*"?
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes, Recipe 2.9 explains grouping, and Recipe 2.12
explains repetition.

Recipes 2.15 and 2.14 explain catastrophic backtracking and how to avoid it with
atomic grouping and possessive quantifiers.

7.9 Strings with Escapes

Problem

You need a regex that matches a string, which is a sequence of zero or more characters
enclosed by double quotes. A string with nothing between the quotes is an empty string.
A double quote can be included in the string by escaping it with a backslash, and
backslashes can also be used to escape other characters in the string. Strings cannot
include line breaks, and line breaks cannot be escaped with backslashes.

7.9 Strings with Escapes | 421

Solution
*I VWA 2\ [\\r\n] %)

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

This regular expression has the same structure as the one in the preceding recipe. The
difference is that we now have two characters with a special meaning: the double quote
and the backslash. We exclude both from the characters matched by the two negated
character classes. We use <\\.> to separately match any escaped character. (\\\> matches
a single backslash, and <.» matches any character that is not a line break. Make sure
the option “dot matches line breaks” is turned off.

Variations
Strings delimited with single quotes can be matched just as easily:

TN\ TFC AN A\)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If your language supports both single-quoted and double-quoted strings, you’ll need
to handle those as separate alternatives:

"IN AN AN\ LA NN\ T2 AN [\ \n) !
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If strings can include line breaks escaped with a backslash, we can modify our original
regular expression to allow a line break to be matched after the backslash. We use
«(?:.]\r?2\n)> rather than just the dot with the “dot matches line breaks option” to
make sure that Windows-style line breaks are matched correctly. The dot would match
only the CR in a CR LF line break, and the regex would then fail to match the LF. (\r?
\n> handles both Windows-style and Unix-style line breaks.

"IANNNANTF (2N 2 Ne2An) [A"\\\r\n]*) "
Regex options: None (make sure “dot matches line breaks” is off)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If strings can include line breaks even when they are not escaped, remove them from
the negated character classes. Also make sure to allow the dot to match line breaks.
|l[/\l|\\]*(?:\\- [All\\]*)*ll
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

We need a separate solution for JavaScript without XRegExp, because it does not have
an option to make the dot match lines.

422 | Chapter7: Source Code and Log Files

n [All\\]*(?:\\[\s\s] [/\ll\\]*)*ll
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also

Recipe 7.8 explains the basic structure of the regular expression in this recipe’s solution.
Recipe 2.4 explains the dot, including the option to make it match line breaks, and the
workaround for JavaScript.

7.10 Regex Literals

Problem

You need a regular expression that matches regular expression literals in your source
code files so you can easily find them in your text editor or with a grep tool. Your
programming language uses forward slashes to delimit regular expressions. Forward
slashes in the regex must be escaped with a backslash.

Your regex only needs to match whatever looks like a regular expression literal. It
doesn’t need to verify that the text between a pair of forward slashes is actually a valid
regular expression.

Because you will be using just one regex rather than writing a full compiler, your regular
expression does need to be smart enough to know the difference between a forward
slash used as a division operator and one used to start a regex. In your source code,
literal regular expressions appear as part of assignments (after an equals sign), in equal-
ity or inequality tests (after an equals sign), possibly with a negation operator (excla-
mation point) before the regex, in literal object definitions (after a colon), and as a
parameter to a function (after an opening parenthesis or a comma). Whitespace be-
tween the regex and the character that precedes it needs to be ignored.

Solution
(2<=[=:(12:A\s*D 2\ /[A/AN\\\n ¥ (2 AN [A/\\\r\n]*)*/

Regex options: None
Regex flavors: . NET
[=:(G T2 \s* D) 2\sS\K/[A/\N\\e\nT*(2:\\L [/ \\\r\n]*)*/
Regex options: None
Regex flavors: PCRE 7.2, Perl 5.10

(2¢=[=:(,1(2:\s{0,10}+!)?\s{0,10}) /[*/\\\r\n]* (2 :\\. [*/\\\r\n]*)*/
Regex options: None
Regex flavors: .NET, Java

[=:GIANS*D)2\S* (/AN]*(2 AN [2/AN\r\n %) */)

7.10 Regex Literals | 423

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

All four solutions use </[*/\\\r\n]*(?:\\.[*/\\\r\n]*)*/> to match the regular ex-
pression. This is the same regular expression that was the Solution to Recipe 7.9, except
that it has forward slashes instead of quotes. A literal regular expression really is just a
string quoted with forward slashes that can contain forward slashes if escaped with a

backslash.

The difference between the four solutions is how they check whether the regex is pre-
ceded by an equals sign, a colon, an opening parenthesis, or a comma, possibly with
an exclamation point between that character and the regular expression. We could
easily do that with lookbehind if we didn’t also want to allow any amount of whitespace
between the regex and the preceding character. That complicates matters because the
regex flavors in this book vary widely in their support for lookbehind.

The .NET regex flavor is the only one in this book that allows infinite repetition inside
lookbehind. So for .NET we have a perfect solution: <(?2<=[=:(,](?:\s*!)?\s*)>. The
character class «[=:(,]> checks for the presence of any of the four characters. «(?:
\s*1)?> allows the character to be followed by an exclamation point, with any amount
of whitespace between the character and the exclamation point. The second <\s*» al-
lows any amount of whitespace before the forward slash that opens the regex.

Perl and PCRE do not allow repetition inside lookbehind. A solution using lookbehind
wouldn’t be flexible enough in Perl or PCRE. But Perl 5.10 and PCRE 7.2 added a new
regex token <\K> that we can use instead. We use <[=:(,](?:\s*!)?\s* to match any
of the four characters, optionally followed by any amount of whitespace and an excla-
mation point, and also optionally followed by any amount of whitespace. After the
regex has matched this, the \\K> tells the regex engine to keep what it has just matched.
The punctuation characters just matched by our regex will not be included in the overall
match result. The matching process will continue normally with «/[*/\\\r\n]*(2:\\.
[*/\\\r\n]*)*/> to match the regular expression.

Java does not allow infinite repetition in lookbehind, but does allow finite repetition.
So instead of using \s*» to check for absolutely any amount of whitespace, we use
A\s{0,10}> to check for up to 10 whitespace characters. The number 10 is arbitrary; we
just need something sufficiently large to make sure we don’t miss any regexes that are
deeply indented. We also need to keep the number reasonably small to make sure we
don’t needlessly slow down the regular expression. The greater the number of repeti-
tions we allow, the more characters Java will scan while looking for a match to what’s

inside the lookbehind.

The other regex flavors either don’t support repetition inside lookbehind or don’t sup-
port lookbehind or <\\K> at all. For these flavors, we simply use <[=:(,](?2:\s*!)2+\s®
to match the punctuation we want before the regex, and «(/[*/\\\r\n]*(2:\\. [*/\\\r

424 | Chapter7: Source Code and Log Files

\n]*)*/)> to match the regex itself and store it in a capturing group. The overall regex
match will include both the punctuation and the regex. The capturing group makes it
easier to retrieve just the regex. This solution will work only if the application with
which you’ll use this regex can work on the text matched by a capturing group rather
than the whole regex match.

See Also
Recipe 2.16 has all the details on lookbehind and <\K>.

7.11 Here Documents

Problem

You need a regex that matches here documents in source files for a scripting language
in which a here document can be started with << followed by a word. The word may
have single or double quotes around it. The here document ends when that word ap-
pears at the very start of a line, without any quotes, using the same case.

Solution

<«<([""12) ([A-Za-2]+)\b\1. %28\ 2\b
Regex options: Dot matches line breaks, ™ and $ match at line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

<«<([""12)([A-Za-z]+)\b\1[\s\S]*?"\2\b
Regex options: ™ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

This regex may look a bit cryptic, but it is very straightforward. «<<> simply matches
<<. «(([""]?)>, then matches an optional single or double quote. The parentheses form
a capturing group to store the quote, or the lack thereof. It is important that the quan-
tifier 2> is inside the group rather than outside of it, so that the group always partici-
pates in the match. If we made the group itself optional, the group would not participate
in the match when no quote can be matched, and a backreference to that group would
fail to match.

The capturing group with character class «([A-Za-z]+)> matches a word and stores it
into the second backreference. The word boundary <\b> makes sure we match the entire
word after «<<. If we were to omit the word boundary, the regex engine would back-
track. It would try to match the word partially if the backreference <\2> cannot be
matched. We do not need a word boundary before the word, because «<(["']?)> al-
ready makes sure there is a nonword character before the word.

7.11 Here Documents | 425

A\1» is a backreference to the first capturing group. This group will hold the quote if we
matched one; otherwise, the group holds the empty string. Thus <\\1> matches the same
quote matched by the capturing group. <\1> has no effect if the capturing group holds
the empty string.

<.*?» matches any amount of text. We turned on the option “dot matches line breaks”
to allow it to span multiple lines. JavaScript does not have that option, and so for
JavaScript we use <[\s\S]*?> to match the text. Either way, the question mark makes
the asterisk lazy, telling it to match as few characters as possible. The here document
should end at the first occurrence of the terminating word rather than the last occur-
rence. The file may have multiple here documents using the same terminating word,
and the lazy quantifier makes sure we match each here document separately.

«*» matches at the start of any line because we turned on the option to make the caret
and dollar match at line breaks. Ruby does not have this option. Because the caret and
dollar always match at line breaks in Ruby, this does not change our solution. There is
just one less option to set.

A\2> is a backreference to the second capturing group. This group holds the word we
matched at the start of the here document. Because the here document syntax of our
scripting language is case sensitive, our regex needs to be case sensitive too. That’s why
we used <[A-Za-z]+> to match the word rather than using <[a-z]+> or ¢[A-Z]+ and
turning on case insensitivity. Backreferences also become case insensitive when the case
insensitivity option is turned on.

Finally, another word boundary <\b> makes sure that the regex stops only if <\2> match-
ed the word on its own, rather than as part of a longer word. We do not need a word
boundary before <\b», as the caret has already made sure the word is at the start of the
line. Whenever <\2) or the final <\b> fail to match, the regex engine will backtrack and
let <.*?> match more characters.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.4 explains that the dot matches any
character. Recipe 2.5 explains anchors such as the caret. Recipe 2.6 explains word
boundaries. Recipe 2.9 explains capturing groups, and Recipe 2.10 explains backre-
ferences. Recipe 2.12 explains repetition, and Recipe 2.13 explains how to make them
match as few characters as needed.

7.12 Common Log Format

Problem

You need a regular expression that matches each line in the log files produced by a web
server that uses the Common Log Format.3 For example:

426 | Chapter7: Source Code and Log Files

127.0.0.1 - jg [27/Apr/2012:11:27:36 +0700] "GET /regexcookbook.html HTTP/1.1"
200 2326

The regular expression should have a capturing group for each field, to allow the ap-
plication using the regular expression to easily process the fields of each entry in the log.

Solution

~(2<client>\S+)e\S+e (2<userid>\S+)e\[(?<datetime>[*\]]+)\] <
o"(2<method>[A-Z]+)e®(?<request>["®"]+)?eHTTP/[0-9.]+" «
o (?2<status>[0-9]{3})®(?<size>[0-9]+|-)

Regex options: ~ and $ match at line breaks

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
A(?P<client>\S+)@\S+e (?P<userid>\S+)e\[(?P<datetime>[*\]]+)\]«
o"(?P<method>[A-Z]+)®(?P<request>[~®"]+)?®HTTP/[0-9.]+"«
o (?P<status>[0-9]{3})®(?P<size>[0-9]+|-)

Regex options: ™ and $ match at line breaks

Regex flavors: PCRE 4, Perl 5.10, Python
AAS+) e\S+e (\S+) e \[([M\]]+)\]"([A-Z]+) e ([""]+)2eHTTP/[0-9.]+" ¢
°([0-91{3})e([0-9]+[-)e"([*"]*¥)"e"([*"]*)"

Regex options: ~ and $ match at line breaks

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Creating a regular expressions to match any entry in a log file generally is very straight-
forward. It certainly is when the log format puts the same information in each entry,
just with different values. This is true for web servers that save access logs using the
Common Log Format, such as Apache. Each line in the log file is one log entry, and
each entry consists of seven fields, delimited with spaces:

1. IP address or hostname of the client that made the request.

2. RFC 1413 client ID. Rarely used. A hyphen indicates the client ID is not available.

3. The username when using HTTP authentication, and a hyphen when not using
HTTP authentication.

4. The time the request was received, between square brackets. Usually in the format
[day/month/year:hour:minute:second timezone] on a 24-hour clock.

5. The request, between double quotes, with three pieces of information, delimited
by spaces:
a. The request method,* such as GET, POST, or HEAD.

3. http://httpd.apache.org/docs/current/logs.html
4. http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

7.12 Common Log Format | 427

http://httpd.apache.org/docs/current/logs.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

b. The requested resource, which is the part of the URL after the hostname used
for the request.

c. The protocol version, which is either HTTP/1.0 or HTTP/1.1.

6. The status code,> which is a three-digit number such as 200 (meaning “OK”) or
404 (“not found”).

7. The size of the data returned to the client, excluding the headers. This can be a
hyphen or zero if no response was returned.

We don’t really need to know all these details to create a regular expression that suc-
cessfully matches each entry. We can assume that the web server will write only valid
information to the log. Our regular expression doesn’t need to filter the log by matching
only entries with certain values, because the application that uses the regular expression
will do that.

So we really only need to know how the entries and fields are delimited. Then we can
match each field separately into its own capturing group. Entries are delimited by line
breaks, and fields are delimited by spaces. But the date and request fields can contain
spaces, so we'll need to handle those two with a bit of extra care.

The first three fields cannot contain spaces. We can easily match them with the short-
hand character class <\\S+>, which matches one or more characters that are not spaces
or line breaks. Because the client ID is rarely used, we do not grab it with a capturing
group.

The date field is always surrounded by square brackets, which are metacharacters in a
regular expression. To match literal brackets, we escape them: (\[> and \]>. Strictly
speaking, the closing bracket does not need to be escaped outside of a character class.
But since we will put a character class between the literal brackets, escaping the closing
bracket makes the regex easier to read. The negated character class <[*\]]+> matches
one or more characters that are not closing brackets. In JavaScript, the closing bracket
must be escaped to include it as a literal in a character class. The other flavors do not
require the closing bracket to be escaped when it immediately follows the opening
bracket or negating caret, but we escape it anyway for clarity. We put the parentheses
around the negated character class, between the escaped literal brackets: \[([*\]]+)
\D>. This makes our regex capture the date without the brackets around it, so the ap-
plication that processes the regex matches does not have to strip off the brackets when
parsing the date.

Because the request actually contains three bits of information, we use three separate
capturing groups to match it. <[A-Z]+ matches any uppercase word, which covers all
possible request methods. The requested resource can be pretty much anything. <[~ "]
+ matches anything but spaces and quotes. <HTTP/[0-9.]+> matches the HT TP version,
allowing any combination of digits and dots for the version.

5. http://lwww.w3.org/Protocols/rfc2616/rfc2616-sec10.html

428 | Chapter7: Source Code and Log Files

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

The status code consists of three digits, which we easily match with <[0-9]{3}>. The
data size is a number or a hyphen, easily matched with <[0-9]+|->. The capturing group
takes care of grouping the two alternatives.

We put a caret at the start of the regular expression and turn on the option to make it
match after line breaks, to make sure that we start matching each log entry at the start
of the line. This will significantly improve the performance of the regular expression in
the off chance that the log file contains some invalid lines. The regex will attempt to
match such lines only once, at the start of the line, rather than at every position in the
line.

We did not put a dollar at the end of the line to force each log entry to end at the end
of aline. If a log entry has more information, the regex simply ignores this. This allows
our regular expression to work equally well on extended logs such as the Combined
Log Format, described in the next recipe.

Our final regular expression has eight capturing groups. To make it easy to keep track
of the groups, we use named capture for the flavors that support it. JavaScript (without
XRegExp) and Ruby 1.8 are the only two flavors in this book that do not support named
capture. For those flavors, we use numbered groups instead.

Variations

A(2<client>\S+)e\S+e (2<userid>\S+)e\[(?<day>[0-9]{2})/(?<month>«
[A-Za-z]+)/(2<year>[0-9]{4}): (?<hour>[0-9]{2}): (?<min>[0-9]{2}): «
(2<sec>[0-9]{2})®(?2<zone>[-+][0-9]{4})\]®" (2<method>[A-Z]+)®d
(2<file>[~t20"]+) (2<parameters>[#2][~®"]*)?2eHTTP/[0-9.]+" e«
(?<status>[0-9]{3})®(?<size>[0-9]+|-)

Regex options: © and $ match at line breaks

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

~(2P<client>\S+)@\S+e (?P<userid>\S+)e\[(?P<day>[0-9]{2})/(?P<month>
[A-Za-z]+)/(?P<year>[0-9]{4}): (?P<hour>[0-9]{2}): (?P<min>[0-9]{2}): ¢
(?P<sec>[0-9]{2})®(?P<zone>[-+][0-9]{4})\]®" (?P<method>[A-Z]+)e «
(?P<file>[Mt2e"]+) (?P<parameters>[#2][~®"]*)?2eHTTP/[0-9.]+"®d
(?P<status>[0-9]{3})®(?P<size>[0-9]+|-)

Regex options: ~ and $ match at line breaks

Regex flavors: PCRE 4, Perl 5.10, Python

MAS+) \S+ (\s+) \[([0-9]{2})/([A-Za-z]+)/([0-9]{4}): ([0-9]{2}): ¢
([0-91{2}): ([0-91{2}) ([\-+1[0-91{4})\] "([A-Z]+) ([*#? "]+)
([#2][~ "1*)? HTTP/[0-9.1+" ([0-9]1{3}) ([0-9]+|-)

Regex options: ~ and $ match at line breaks

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The regular expression presented as the solution in this recipe just matches all the fields,
leaving the processing to the application that uses the regex. Depending on what the
application needs to do with the log entries, it may be helpful to use a regular expression
that provides some more detail.

7.12 Common Log Format | 429

In this variation, we match all the elements in the timestamp separately, making it easier
for the application to convert the matched text into an actual date and time value. We
also split up the requested object in separate “file” and “parameters” parts. If the re-
quested object contains a ? or # character, the “file” group will capture the text before
the ? or #. The “parameters” group will capture the ? or # and anything that follows.
This will make it easier for the application to ignore parameters when calculating page
counts, for example.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors such as the caret.
Recipe 2.11 explains named capturing groups.

Chapter 3 has code snippets that you can use with this regular expression to process
log files in your application. If your application loads the whole log file into a string,
then Recipe 3.11 shows code to iterate over all the regex matches. If your application
reads the file line by line, follow Recipe 3.7 to get the regex match on each line. Either
way, Recipe 3.9 shows code to get the text matched by the capturing groups.

7.13 Combined Log Format

Problem

You need a regular expression that matches each line in the log files produced by a web
server that uses the Combined Log Format.¢ For example:

127.0.0.1 - jg [27/Apr/2012:11:27:36 +0700] "GET /regexcookbook.html HTTP/1.1"
200 2326 "http://www.regexcookbook.com/" "Mozilla/5.0 (compatible; MSIE 9.0;
Windows NT 6.1; Trident/5.0)"

Solution

A(2<client>\S+)e\S+e (2<userid>\S+)e\[(?<datetime>[*\]]+)\]«
o"(2<method>[A-Z]+)e(?<request>["®"]+)?®HTTP/[0-9.]+" «
o (?2<status>[0-9]{3})®(?<size>[0-9]+|-)®" (?<referrer>[""]*)"d
e"(2<useragent>[*"]*)"

Regex options: ™ and $ match at line breaks

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
A(?P<client>\S+)@\S+e (?P<userid>\S+)e\[(?P<datetime>[~\]]+)\]«
o"(?P<method>[A-Z]+)®(?P<request>[*®"]+)2eHTTP/[0-9.]+"«
o (?P<status>[0-9]{3})®(?P<size>[0-9]+|-) " (?P<referrer>[""]*)"d
o"(?P<useragent>[""]*)"

6. http://httpd.apache.org/docs/current/logs.html

430 | Chapter7: Source Code and Log Files

http://httpd.apache.org/docs/current/logs.html

Regex options: © and $ match at line breaks
Regex flavors: PCRE 4, Perl 5.10, Python
AAS+) e\S+e (\S+) e \[([M\]]+)\] " ([A-Z]+) e ([""]+)2eHTTP/[0-9.]+" ¢
°([0-91{3})e([0-9]+[-)e " ([*"T*¥)"e " ([*"T*)" e " ([*"]*)"e"([""]¥)"
Regex options: ~ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The Combined Log Format is the same as the Common Log Format, but with two extra
fields added at the end of each entry, and the first extra field is the referring URL. The
second extra field is the user agent. Both appear as double-quoted strings. We can easily
match those strings with <"[*"]*">. We put a capturing group around the [*"]*) so
that we can easily retrieve the referrer or user agent without the enclosing quotes.

See Also

The previous recipe explains how to match each entry in a Common Log Format web
server log.

7.14 Broken Links Reported in Web Logs

Problem

You have a log for your website in the Combined Log Format. You want to check the
log for any errors caused by broken links on your own website.

Solution

"(?:GET|POST)e® (2<file>[2"]+)(2: [#2][*®"]*)2®HTTP/[0-9.]+"®404® «
(?:[0-9]+|-)e" (?<referrer>http://www\.yoursite\.com[~"]*)"

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
"(2:GET|POST)® (?P<file>[2"]+) (2: [#2][~®"]*)2@HTTP/[0-9.]+" ®404 «
(2:[0-9]+|-)e" (?P<referrer>http://www\.yoursite\.com[~"]*)"

Regex options: None

Regex flavors: PCRE 4, Perl 5.10, Python
"(?:GET|POST)e([~20"]+) (?:[#2][~®"]*)?eHTTP/[0-9.]+"®4040 «
(2:[0-9]+|-)e"(http://www\.yoursite\.com[*"]*)"

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

7.14 Broken Links Reported in Web Logs | 431

Discussion

When a visitor clicks a link on your website that points to a file on your own site that
does not exist, the visitor gets a “page not found” error. Your web server will write an
entry in its log that contains the file that does not exist as the requested object, status
code 404, and the page that contains the broken link as the referrer. So you need to
extract the requested object and the referrer from log entries that have status code 404
and a referring URL on your own website.

One way to do this would be to use your favorite programming language to write a
script that implements Recipe 7.13. While iterating over all the matches, check whether
the “status” group captured 404 and whether the “referrer” group’s match begins with
http://www.yoursite.com. If it does, output the text matched by the “referrer” and “re-
quest” groups to indicate the broken link. This is a perfectly good solution. The benefit
is that you can expand the script to do any other checks you may want to perform.

The stated problem for this recipe, however, can be handled easily with just one regular
expression, without any procedural code. You could open the log file in the same text
editor you use to edit your website and use the regular expression presented as the
solution to find the 404 errors that indicate broken links on your own site. This regular
expression is derived from the regex shown in Recipe 7.13. We’ll explain the process
for the variant using .NET-style named capture. The variants using Python-style named
capture and numbered capture are the same, except for the syntax used for the cap-
turing groups.

We really only had to make the “status” group match only 404 errors and make the
“referrer” group check that the domain is on your own site:

A(2<client>\S+)e\S+e (2<userid>\S+)®\[(?<datetime>[*\]]+)\] <
o"(2<method>[A-Z]+)e®(?<request>["®"]+)?eHTTP/[0-9.]+"®(?<status>404) ¢
o(2<size>[0-9]+|-) " (2<referrer>http://www\.yoursite\.com[*"]*)"
o"(2<useragent>[*"]*)"

Regex options: ~ and $ match at line breaks

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

The regular expression just shown already solves the problem. But it is not as efficient
as it could be. It matches the entire log entry, but we only need the “request,” “status,”
and “referrer” groups. The “useragent” group does not affect the match at all, so we
can easily cut that off:

A(2<client>\S+)e\S+e (?2<userid>\S+)®\[(?<datetime>[*\]]+)\]<
o" (2<method>[A-Z]+)®(?<request>[*®"]+)?®HTTP/[0-9.]+"®(?<status>404)
o (2<size>[0-9]+|-)e" (?<referrer>http://www\.yoursite\.com[~"]*)"

Regex options: ™ and $ match at line breaks

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

We cannot cut off the groups “client” through “method” so easily. These groups anchor
the regex to the start of the line, making sure that the “request” through “referrer”

432 | Chapter7: Source Code and Log Files

groups match the right fields in the log. If we want to remove some of the groups at the
start of the regex, we need to make sure that the regex will still match only the fields
that we want. For our web logs, this is not a big issue. Most of the fields have unique
content, and our regular expression is sufficiently detailed. Our regular expression ex-
plicitly requires enclosing brackets and quotes for the entries that have them, allows
only numbers for numeric fields, matches fixed text such as “HTTP” exactly, and so
on. Had we been lazy and used <\S+> to match all of the fields, then we would not be
able to efficiently shorten the regex any further, as <\S+> matches pretty much anything.

We also need to make sure the regular expression remains efficient. The caret at the
start of the regex makes sure that the regex is attempted only at the start of each line.
If it fails to match a line, because the status code is not 404 or the referrer is on another
domain, the regex immediately skips ahead to the next line in the log. If we were to cut
off everything before the «(?<request>[*®"]+)?> group, our regex would begin with
«[~®"]+>. The regex engine would go through its matching process at every character
in the whole log file that is not a space or a double quote. That would make the regex
very slow on large log files.

A good point to trim this regex is before <"(?<method>[A-Z]+)>. To further enhance
efficiency, we also spell out the two request methods we’re interested in:

" (2<method>GET|POST) ® (?<request>["]+)2eHTTP/[0-9.]+"® (?<status>404) «
o(2<size>[0-9]+|-)e"(?<referrer>http://www\.yoursite\.com[~"]*)"

Regex options: ™ and $ match at line breaks

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

This regular expression begins with literal double quotes. Regular expressions that
begin with literal text tend to be very efficient because regular expression engines are
usually optimized for this case. Each entry in our log has six double-quote characters.
Thus the regular expression will be attempted only six times on each log entry that is
not a 404 error. Five times out of six, the attempt will fail almost immediately when
<«GET|POST> fails to match right after the double quote. Though six match attempts per
line may seem less efficient than one match attempt, immediately failing with «GET|
POST> is quicker than having to match «*(?<client>\S+)e\S+e(?<userid>\S+)e\[(?
<datetime>[*\]]+)\]®>.

The last optimization is to eliminate the capturing groups that we do not use. Some
can be removed completely. The ones containing an alternation operator can be re-
placed with noncapturing groups. This gives us the regular expression presented in the
“Solution” section.

We left the “file” and “referrer” capturing groups in the final regular expression. When
using this regular expression in a text editor or grep tool that can collect the text
matched by capturing groups in a regular expression, you can set your tool to collect
just the text matched by the “file” and “referrer” groups. That will give you a list of
broken links and the pages on which they occur, without any unnecessary information.

7.14 Broken Links Reported in Web Logs | 433

See Also

Recipe 7.12 explains how to match web log entries with a regular expression. It also
has references to Chapter 2 where you can find explanations of the regex syntax used
in this recipe.

434 | Chapter7: Source Code and Log Files

CHAPTER 8
URLs, Paths, and Internet Addresses

Along with numbers, which were the subject of the previous chapter, another major
subject that concerns a wide range of programs is the various paths and locators for
finding data:

* URLs, URNS, and related strings

* Domain names

e TP addresses

* Microsoft Windows file and folder names
The URL format in particular has proven so flexible and useful that it has been adopted
for a wide range of resources that have nothing to do with the World Wide Web. The

toolbox of parsing regular expressions in this chapter will thus prove valuable in a
surprising variety of situations.

8.1 Validating URLs

Problem

You want to check whether a given piece of text is a URL that is valid for your purposes.

Solution
Allow almost any URL:

~(https?|ftp|file)://.+$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
\A(https?|ftp|file)://.+\Z

Regex options: Case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Require a domain name, and don’t allow a username or password:

435

\A # Anchor

(https?|ftp):// # Scheme
[a-20-9-]+(\.[a-z0-9-]+)+ # Domain
([/21.%)? # Path and/or parameters
\Z # Anchor

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
~(https?|ftp)://[a-20-9-1+(\.[a-20-9-]+)+4
([/21.+)?%

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Require a domain name, and don’t allow a username or password. Allow the scheme
(http or ftp) to be omitted if it can be inferred from the subdomain (www or ftp):

\A # Anchor
((https?|ftp)://| (www|ftp)\.) # Scheme or subdomain
[a-20-9-]+(\.[a-20-9-]+)+ # Domain

([/21.%)? # Path and/or parameters
\Z # Anchor

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
~((https?|ftp)://| (www|ftp)\.)[a-20-9-1+(\.[a-20-9-1+)+([/?].%)?$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Require a domain name and a path that points to an image file. Don’t allow a username,
password, or parameters:

\A # Anchor
(https?|ftp):// # Scheme
[a-20-9-]+(\.[a-20-9-]+)+ # Domain
(/[\w-1+)* # Path
/T\w-1+\. (gif|png| jpg) # File
\Z # Anchor

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
M(https?|ftp)://[a-20-9-]1+(\.[a-20-9-]+)+(/[\w-]+)*/[\w-]+\. (gif |png|jpg)$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion

You cannot create a regular expression that matches every valid URL without matching
any invalid URLs. The reason is that pretty much anything could be a valid URL in
some as of yet uninvented scheme.

436 | Chapter8: URLs, Paths, and Internet Addresses

Validating URLSs becomes useful only when we know the context in which those URLs
have to be valid. We then can limit the URLs we accept to schemes supported by the
software we’re using. All the regular expressions for this recipe are for URLs used by
web browsers. Such URLs use the form:

scheme://user:password@domain.name:80/path/file.ext?param=value¶m2«
=value2#fragment

All these parts are in fact optional. A file: URL has only a path. http: URLs only need
a domain name.

The solutions presented in this recipe work with the generally accepted rules for valid
URLs that are used by most web browsers and other applications. They do not attempt
to implement RFC 3986, which is the official standard for URLs. Follow Recipe 8.7
instead of this recipe if you want a solution compliant with RFC 3986.

The first regular expression in the solution checks whether the URL begins with one
of the common schemes used by web browsers: http, https, ftp, and file. The caret
anchors the regex to the start of the string (Recipe 2.5). Alternation (Recipe 2.8) is used
to spell out the list of schemes. <https?» is a clever way of saying <http|https>.

Because the first regex allows for rather different schemes, such as http and file, it
doesn’t try to validate the text after the scheme. <.+$> simply grabs everything until the
end of the string, as long as the string doesn’t contain any line break characters.

By default, the dot (Recipe 2.4) matches all characters except line break characters, and
the dollar (Recipe 2.5) does not match at embedded line breaks. Ruby is the exception
here. In Ruby, caret and dollar always match at embedded line breaks, and so we have
to use \\A and <\2» instead (Recipe 2.5). Strictly speaking, you’d have to make the same
change for Ruby for all the other regular expressions shown in this recipe. You should...
if your input could consist of multiple lines and you want to avoid matching a URL
that takes up one line in several lines of text.

The next two regular expressions are the free-spacing (Recipe 2.18) and regular versions
of the same regex. The free-spacing regex is easier to read, whereas the regular version
is faster to type. JavaScript does not support free-spacing regular expressions.

These two regexes accept only web and FTP URLs, and require the HTTP or FTP
scheme to be followed by something that looks like a valid domain name. The domain
name must be in ASCII. Internationalized domains (IDNs) are not accepted. The do-
main can be followed by a path or a list of parameters, separated from the domain with
a forward slash or a question mark. Since the question mark is inside a character class
(Recipe 2.3), we don’t need to escape it. The question mark is an ordinary character in
character classes, and the forward slash is an ordinary character anywhere in a regular
expression. (If you see it escaped in source code, that’s because Perl and several other
programming languages use forward slashes to delimit literal regular expressions.)

No attempt is made to validate the path or the parameters. <. *> simply matches anything
that doesn’t include line breaks. Since the path and parameters are both optional,

8.1 Validating URLs | 437

<«[/?].® is placed inside a group that is made optional with a question mark
(Recipe 2.12).

These regular expressions, and the ones that follow, don’t allow a username or pass-
word to be specified as part of the URL. Putting user information in a URL is considered
bad practice for security reasons.

Most web browsers accept URLs that don’t specify the scheme, and correctly infer the
scheme from the domain name. For example, www.regexbuddy.com is short for http://
www . regexbuddy . com. To allow such URLs, we simply expand the list of schemes allowed
by the regular expression to include the subdomains www. and ftp..

«(https?|ftp)://| (www|ftp)\.> does this nicely. This list has two alternatives, each of
which starts with two alternatives. The first alternative allows <https?> and «ftp>, which
must be followed by <://>. The second alternative allows «www> and «ftp>, which must
be followed by a dot. You can easily edit both lists to change the schemes and subdo-
mains the regex should accept.

The last two regular expressions require a scheme, an ASCII domain name, a path, and
a filename to a GIF, PNG, or JPEG image file. The path and filename allow all letters
and digits in any script, as well as underscores and hyphens. The shorthand character
class \w> includes all that, except the hyphens (Recipe 2.3).

Which of these regular expressions should you use? That really depends on what you’re
trying to do. In many situations, the answer may be to not use any regular expression
at all. Simply try to resolve the URL. If it returns valid content, accept it. If you get a
404 or other error, reject it. Ultimately, that’s the only real test to see whether a URL
is valid.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.8 explains alternation. Recipe 2.9 ex-
plains grouping. Recipe 2.12 explains repetition.

Recipe 8.7 provides a solution that follows RFC 3986.

8.2 Finding URLs Within Full Text

Problem

You want to find URLs in a larger body of text. URLs may or may not be enclosed in
punctuation, such as parentheses, that are not part of the URL.

Solution

URL without spaces:

438 | Chapter8: URLs, Paths, and Internet Addresses

\b(https?|ftp|file)://\S+
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

URL without spaces or final punctuation:
\b(https?|ftp|file)://[-A-Z0-9+8@#/%2="_|$!:,.;]*«
[A-20-9+8@#/%="_|$]

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

URL without spaces or final punctuation. URLs that start with the www or ftp subdomain
can omit the scheme:
\b((https?|ftp|file)://| (www|Fftp)\.)[-A-Z0-9+8@#/%2="_[$!:,.;]*d
[A-Z0-9+8@#/%="_|$]
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Given the text:

Visit http://www.somesite.com/page, where you will find more information.
what is the URL?

Before you say http://www.somesite.com/page, think about this: punctuation and
spaces are valid characters in URLs. Though RFC 3986 (see Recipe 8.7) does not allow
literal spaces in URLs, all major browsers accept URLs with literal spaces just fine.
Some WYSIWYG web authoring tools even make it easy for the user to put spaces in
file and folder names, and include those spaces literally in links to those files.

That means that if we use a regular expression that allows all valid URLs, it will find
this URL in the preceding text:

http://www.somesite.com/page, where you will find more information.

The odds are small that the person who typed in this sentence intended the spaces to
be part of the URL. The first regular expression in the solution excludes them using the
shorthand character class <\S», which includes all characters that are not whitespace.
Though the regex specifies the “case insensitive” option, the S must be uppercase,
because (\S» is not the same as <\s>. In fact, they’re exactly the opposite. Recipe 2.3 has
all the details.

The first regular expression is still quite crude. It will include the comma in the example
text into the URL. Though it’s not uncommon for URLs to include commas and other
punctuation, punctuation rarely occurs at the end of the URL.

The next regular expression uses two character classes instead of the single shorthand
«\S>. The first character class includes more punctuation than the second. The second

8.2 Finding URLs Within Full Text | 439

class excludes those characters that are likely to appear as English language punctuation
right after a URL when the URL is placed into an English sentence. The first character
class has the asterisk quantifier (Recipe 2.12), to allow URLs of any length. The second
character class has no quantifier, requiring the URL to end with one character from
that class. The character classes don’t include the lowercase letters; the “case
insensitive” option takes care of those. See Recipe 3.4 to learn how to set such options
in your programming language.

The second regex will work incorrectly with certain URLs that use odd punctuation,
matching those URLs only partially. But this regex does solve the very common problem
of a comma or full stop right after a URL, while still allowing commas and dots within
the URL.

Most web browsers accept URLs that don’t specify the scheme, and correctly infer the
scheme from the domain name. For example, www.regexbuddy.com is short for http://
www . regexbuddy.com. To allow such URLs, the final regex expands the list of allowed
schemes to include the subdomains www. and ftp..

«(https?|ftp)://| (www|ftp)\.> does this nicely. This list has two alternatives, each of
which starts with two alternatives. The first alternative allows <https?> and «ftp>, which
must be followed by <://>. The second alternative allows «www> and «ftp>, which must
be followed by a dot. You can easily edit both lists to change the schemes and
subdomains the regex should accept.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.8 explains alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains
repetition.

Recipe 8.5 gives a replacement text that you can use in combination with this regular
expression to create a search-and-replace that converts URLs into HTML anchors.

8.3 Finding Quoted URLs in Full Text

Problem

You want to find URLs in a larger body of text. URLs may or may not be enclosed in
punctuation that is part of the larger body of text rather than part of the URL. You want
to give users the option to place URLs between quotation marks, so they can explicitly
indicate whether punctuation, or even spaces, should be part of the URL.

Solution

\b(?:(?:https?|ftp|file)://| (www|Fftp)\.)[-A-Z0-9+8@#/%2="_|$!:,.;]*
[-A-20-9+8@#/%=~_[$]

440 | Chapter8: URLs, Paths, and Internet Addresses

Download from Wow! eBook <www.wowebook.com>

["(?:(2:https?|ftp|file)://| (www|Ftp)\.)[*"\r\n]+"
|"(2:(2:https?|ftp|file)://| (www|Ftp)\.)[*"\r\n]+'
Regex options: Free-spacing, case insensitive, dot matches line breaks, anchors
match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The previous recipe explains the issue of mixing URLs with English text, and how to
differentiate between English punctuation and URL characters. Though the solution
to the previous recipe is a very useful one that gets it right most of the time, no regex
will get it right all of the time.

If your regex will be used on text to be written in the future, you can provide a way for
your users to quote their URLs. The solution we present allows a pair of single quotes
or a pair of double quotes to be placed around the URL. When a URL is quoted, it must
start with one of several schemes: <https?|ftp|file> or one of two subdomains «www |
ftp>. After the scheme or subdomain, the regex allows the URL to include any character,
except for line breaks, and the delimiting quote.

The regular expression as a whole is split into three alternatives. The first alternative is
the regex from the previous recipe, which matches an unquoted URL, trying to differ-
entiate between English punctuation and URL characters. The second alternative
matches a double-quoted URL. The third alternative matches a single-quoted URL. We
use two alternatives rather than a single alternative with a capturing group around the
opening quote and a backreference for the closing quote, because we cannot use a
backreference inside the negated character class that excludes the quote character from
the URL.

We chose to use single and double quotes because that’s how URLs commonly appear
in HTML and XHTML files. Quoting URLs this way is natural to people who work on
the Web, but you can easily edit the regex to allow different pairs of characters to delimit
URLs.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.2 explains how to match nonprinting characters. Recipe 2.3 explains character
classes. Recipe 2.6 explains word boundaries. Recipe 2.8 explains alternation.
Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

8.3 Finding Quoted URLs in Full Text | 441

8.4 Finding URLs with Parentheses in Full Text

Problem

You want to find URLs in a larger body of text. URLs may or may not be enclosed in
punctuation that is part of the larger body of text rather than part of the URL. You want
to correctly match URLs that include pairs of parentheses as part of the URL, without
matching parentheses placed around the entire URL.

Solution
\b(?:(2:https?|ftp|file)://|www\.|ftp\.)
(2:\([-A-Z0-9+8@#t/%="_|$2!:,.1*\) | [-A-Z0-9+8@#/%="_|$?!:,.]1)*
(2:\([-A-Z0-9+8@#t/%="_|$2!:,.1*\) | [A-Z0-9+8@#/%="_|$])
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
\b(?:(2:https?|ftp|file)://|www\. |Fftp\.)(?:\([-A-Z0-9+8@#/%="_|$2!:,.]*\)<
| [-A-Z0-9+8@#/%="_|$21:,.1)*(2:\([-A-Z0-9+8@#/%="_|$2!:,.]*\) |«
[A-Z0-9+8@#/%="_|$])
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Pretty much any character is valid in URLs, including parentheses. Parentheses are very
rare in URLs, however, and that’s why we don’t include them in any of the regular
expressions in the previous recipes. But certain important websites have started using
them:

http://en.wikipedia.org/wiki/PC Tools (Central Point Software)
http://msdn.microsoft.com/en-us/library/aa752574(VS.85).aspx

One solution is to require your users to quote such URLs. The other is to enhance your
regex to accept such URLs. The hard part is how to determine whether a closing pa-
renthesis is part of the URL or is used as punctuation around the URL, as in this
example:

RegexBuddy's website (at http://www.regexbuddy.com) is really cool.

Since it’s possible for one of the parentheses to be adjacent to the URL while the other
one isn’t, we can’t use the technique for quoting regexes from the previous recipe. The
most straightforward solution is to allow parentheses in URLs only when they occur
in unnested pairs of opening and closing parentheses. The Wikipedia and Microsoft
URLs meet that requirement.

The two regular expressions in the solution are the same. The first uses free-spacing
mode to make it a bit more readable.

442 | Chapter8: URLs, Paths, and Internet Addresses

These regular expressions are essentially the same as the last regex in the solution to
Recipe 8.2. There are three parts to all these regexes: the list of schemes, followed by
the body of the URL that uses the asterisk quantifier to allow URLs of any length, and
the end of the URL, which has no quantifier (i.e., it must occur once). In the original
regex in Recipe 8.2, both the body of the URL and the end of the URL consisted of just
one character class.

The solutions to this recipe replace the two character classes with more elaborate things.
The middle character class:

[-A-Z0-9+8@#/%="_|$2!:,.]
has become:

\([-A-Z0-9+8@#/%="_|$?1:,.1*\) | [-A-Z0-9+8@#/%="_|$?!:,.]
The final character class:

[A-Z0-9+8@#/%="_|$]
has become:

\([-A-Z0-9+8@#/%="_[$21:,.1*\) | [A-Z0-9+8@#/%="_|$]

Both character classes were replaced with something involving alternation
(Recipe 2.8). Because alternation has the lowest precedence of all regex operators, we
use noncapturing groups (Recipe 2.9) to keep the two alternatives together.

For both character classes, we’ve added the alternative <\([-A-Z0-9+8@#/%="_|$2!:,.]*
\)> while leaving the original character class as the other alternative. The new alternative
matches a pair of parentheses, with any number of any of the characters we allow in
the URL in between.

The final character class was given the same alternative, allowing the URL to end with
text between parentheses or with a single character that is not likely to be English-
language punctuation.

Combined, this results in a regex that matches URLs with any number of parentheses,
including URLs without parentheses and even URLs that consist of nothing but paren-
theses, and as long as those parentheses occur in pairs.

For the body of the URL, we put the asterisk quantifier around the whole noncapturing
group. This allows any number of pairs of parentheses to occur in the URL. Because
we have the asterisk around the noncapturing group, we no longer need an asterisk
directly on the original character class. In fact, we must make sure not to include the
asterisk.

The regex in the solution has the form <(ab*c|d)*> in the middle, where <a> and «c> are
the literal parentheses, and b and «d> are character classes. Writing this as «(ab*c|
d*)* would be a mistake. It might seem logical at first, because we allow any number
of the characters from «d>, but the outer <* already repeats «d> just fine. If we add an
inner asterisk directly on «d, the complexity of the regular expression becomes

8.4 Finding URLs with Parentheses in Full Text | 443

exponential. <(d*)*» can match dddd in many ways. For example, the outer asterisk
could repeat four times, repeating the inner asterisk once each time. The outer asterisk
could repeat three times, with the inner asterisk doing 2-1-1, 1-2-1, or 1-1-2. The outer
asterisk could repeat twice, with the inner asterisk doing 2-2, 1-3, or 3-1. You can
imagine that as the length of the string grows, the number of combinations quickly
explodes. We call this catastrophic backtracking, a term introduced in Recipe 2.15.
This problem will arise when the regular expression cannot find a valid match (e.g.,
because you’ve appended something to the regex to find URLs that end with or contain
something specific to your requirements).

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.6 explains word boundaries. Recipe 2.8 explains alternation.
Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

Recipe 8.5 gives a replacement text that you can use in combination with this regular
expression to create a search-and-replace that converts URLs into HTML anchors.

8.5 Turn URLs into Links

Problem

You have a body of text that may contain one or more URLs. You want to convert the
URLs that it contains into links by placing HTML anchor tags around the URLs. The
URL itself will be both the destination for the link and the text being linked.

Solution

To find the URLs in the text, use one of the regular expressions from Recipes 8.2 or
8.4. As the replacement text, use:
<a®href="$&">$8
Replacement text flavors: .NET, JavaScript, Perl
<aehref="$0">$0
Replacement text flavors: .NET, Java, XRegExp, PHP
<aehref="\0">\o0
Replacement text flavors: PHP, Ruby
<aehref="\&">\8
Replacement text flavor: Ruby
<aehref="\g<0>">\g<0>
Replacement text flavor: Python

444 | Chapter8: URLs, Paths, and Internet Addresses

When programming, you can implement this search-and-replace as explained in
Recipe 3.15.

Discussion

The solution to this problem is very straightforward. We use a regular expression to
match a URL, and then replace it with «<a®href="URL">URL», where URL represents
the URL that we matched. Different programming languages use different syntax for
the replacement text, hence the long list of solutions to this problem. But they all do
exactly the same thing. Recipe 2.20 explains the replacement text syntax.

See Also

Recipes 8.2 or 8.4 explain the regular expressions to be used along with these replace-
ment texts.

Techniques used in the replacement text in this recipe are discussed in Chapter 2.
Recipe 2.21 explains how to insert text matched by capturing groups into the replace-
ment text.

When programming, you can implement this search-and-replace as explained in
Recipe 3.15.

8.6 Validating URNs

Problem

You want to check whether a string represents a valid Uniform Resource Name (URN),
as specified in RFC 2141, or find URNs in a larger body of text.

Solution

Check whether a string consists entirely of a valid URN:

\Aurn:
Namespace Identifier
[a-z0-9][a-20-9-]{0,31}:
Namespace Specific String
[a-20-9()+,\-.:=@;$!*'%/?#]+
\Z
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

rurn:[a-z0-9][a-z0-9-]{0,31}:[a-20-9()+,\-.:=@;$ _!*'%/?#]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find a URN in a larger body of text:

8.6 Validating URNs | 445

\burn:
Namespace Identifier
[a-z0-9][a-2z0-9-]{0,31}:
Namespace Specific String
[a-20-9()+,\-.:=@;% !*'%/?#]+
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\burn:[a-z0-9][a-20-9-]{0,31}:[a-20-9()+,\-.:=@;$_!*'%/?#]+
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a URN in a larger body of text, assuming that punctuation at the end of the URN
is part of the (English) text in which the URN is quoted rather than part of the URN
itself:

\burn:
Namespace Identifier
[a-z0-9][a-20-9-]{0,31}:
Namespace Specific String
[a-20-9()+,\-.:=@;% !*'%/?#]*[a-20-9+=03$/]
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\burn:[a-z0-9][a-20-9-]{0,31}:[a-20-9()+,\-.:=@;$_!*'%/2#]*[a-20-9+=0%/]
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

A URN consists of three parts. The first part is the four characters urn:, which we can
add literally to the regular expression.

The second part is the Namespace Identifier (NID). It is between 1 and 32 characters
long. The first character must be a letter or a digit. The remaining characters can be
letters, digits, and hyphens. We match this using two character classes (Recipe 2.3):
the first one matches a letter or a digit, and the second one matches between 0 and 31
letters, digits, and hyphens. The NID must be delimited with a colon, which we again
add literally to the regex.

The third part of the URN is the Namespace Specific String (NSS). It can be of any
length, and can include a bunch of punctuation characters in addition to letters and
digits. We easily match this with another character class. The plus after the character
class repeats it one or more times (Recipe 2.12).

If you want to check whether a string represents a valid URN, all that remains is to add
anchors to the start and the end of the regex that match at the start and the end of the
string. We can do this with «* and «$ in all flavors except Ruby, and with <\A> and
A\2> in all flavors except JavaScript. Recipe 2.5 has all the details on these anchors.

446 | Chapter8: URLs, Paths, and Internet Addresses

Things are a little trickier if you want to find URNs in a larger body of text. The punc-
tuation issue with URLs discussed in Recipe 8.2 also exists for URNs. Suppose you
have the text:

The URN is urn:nid:nss, isn't it?

The issue is whether the comma is part of the URN. URNs that end with commas are
syntactically valid, but any human reading this English-language sentence would see
the comma as English punctuation, not as part of the URN. The last regular expression
in the “Solution” section solves this issue by being a little more strict than RFC 2141.
It restricts the last character of the URN to be a character that is valid for the NSS part,
and is not likely to appear as English punctuation in a sentence mentioning a URN.

This is easily done by replacing the plus quantifier (one or more) with an asterisk (zero
or more), and adding a second character class for the final character. If we added the
character class without changing the quantifier, we’d require the NSS to be at least two
characters long, which isn’t what we want.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.12 explains
repetition. Recipe 2.18 explains how to add comments.

8.7 Validating Generic URLs

Problem

You want to check whether a given piece of text is a valid URL according to RFC 3986.

Solution

\A

(# Scheme
[a-z][a-z0-9+\-.]*:
(# Authority & path

//

([a-z0-9\-. ~%!$&"' ()*+,;=]+@)? # User
([a-z0-9\-. ~%]+ # Named host
[\[[a-f0-9:.]+\] # IPv6 host
[\[v[a-f0-9][a-z0-9\-. ~%!$&"' ()*+,;=:1+\]) # IPvFuture host
(:[0-9]+)? # Port
(/[a-z0-9\-. ~%!1$&" ()*+,;=:0]+)*/? # Path

|# Path without authority
(/?[a-z0-9\-. ~%'$8&" ()*+,;=:@]+(/[a-20-9\-. ~%I1$&" ()*+,;=:@]+)*/?)?
)

|# Relative URL (no scheme or authority)

8.7 Validating GenericURLs | 447

(# Relative path

[a-20-9\-. ~%!$&" ()*+,;=0]+(/[a-20-9\-. ~%!$&" ()*+,;=:@]+)*/?
[# Absolute path

(/[a-z0-9\-. ~%!$8&" ()*+,;=:@]+)+/?

)
Query

(\?[a-20-9\-. ~%!1$&' ()*+,;=:0/2]*)?
Fragment
(\Mt[a-z0-9\-. ~%!1$&' ()*+,;=:0/2]*)?
\Z
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\A

(# Scheme
(?2<scheme>[a-z][a-z0-9+\-.]*):
(# Authority & path

/!

(?<user>[a-z0-9\-. ~%!$8"' ()*+,;=]+@)? # User
(?<host>[a-z0-9\-. ~%]+ # Named host

| \[[a-f0-9:.]+\] # IPv6 host

| \[v[a-f0-9][a-z0-9\-. ~%!$&"' ()*+,;=:1+\]) # IPvFuture host
(?<port>:[0-9]+)? # Port
(?2<path>(/[a-20-9\-. ~%!$&" ()*+,;=:0]+)*/?) # Path

|# Path without authority
(?<path>/?[a-z0-9\-. ~%!$&"' ()*+,;=:@]+
(/[a-20-9\-._~%!1$8" ()*+,;=:0]+)*/?)?
)

|# Relative URL (no scheme or authority)
(?2<path>
Relative path
[a-20-9\-. ~%!$&" ()*+,;=0]+(/[a-20-9\-. ~%!$&" ()*+,;=:@]+)*/?
|[# Absolute path
(/[a-z0-9\-. ~%!$8&" ()*+,;=:@]+)+/?
)
)
Query
(?<query>\?[a-z0-9\-. ~%!1$8"' ()*+,;=:0/?]*)?
Fragment
(?<fragment>\#[a-z0-9\-. ~%!1$&"' ()*+,;=:@/?]*)?
\Z
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Perl 5.10, Ruby 1.9

\A

(# Scheme
(?2<scheme>[a-z][a-z0-9+\-.]*):
(# Authority & path

448 | Chapter8: URLs, Paths, and Internet Addresses

/1

(?<user>[a-z0-9\-. ~%!$&"' ()*+,;=]+@)? # User
(?<host>[a-z0-9\-. ~%]+ # Named host

| \[[a-f0-9:.]+\] # IPv6 host

| \[v[a-f0-9][a-z0-9\-. ~%!$&" ()*+,;=:1+\]) # IPvFuture host
(?2<port>:[0-9]+)? # Port

(?<hostpath>(/[a-z0-9\-. ~%!1$&" ()*+,;=:@]+)*/?) # Path

|# Path without authority

(?<schemepath>/?[a-z0-9\-. ~%!$&"' ()*+,;=:@]+
(/[a-z0-9\-. ~%!1$8" ()*+,;=:@]+)*/?)?

|# Relative URL (no scheme or authority)

(?<relpath>

Relative path

[a-20-9\-. ~%!$&" ()*+,;=0]+(/[a-20-9\-. ~%!$&" ()*+,;=:@]+)*/?
|# Absolute path

(/Ta-z0-9\-. ~%1$&" ()*+,;=:0]+)+/?

)
Query

(?2<query>\?[a-z0-9\-. ~%!$&" ()*+,;=:@/?]*)?
Fragment
(?2<fragment>\#f[a-20-9\-. ~%!$&" ()*+,;=:@/?]*)?
\Z
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java 7, PCRE 7, Perl 5.10, Ruby 1.9

\A

(# Scheme
(?P<scheme>[a-z][a-z0-9+\-.]*):
(# Authority & path

//

(?P<user>[a-z0-9\-. ~%!$8' ()*+,;=]+@)? # User
(?P<host>[a-z0-9\-. ~%]+ # Named host

| \[[a-f0-9:.]+\] # IPv6 host

| \[v[a-f0-9][a-z0-9\-. ~%!$&" ()*+,;=:1+\]) # IPvFuture host
(?P<port>:[0-9]+)? # Port

(?P<hostpath>(/[a-z0-9\-. ~%!1$&" ()*+,;=:0]+)*/?) # Path
|# Path without authority
(?P<schemepath>/?[a-z0-9\-. ~%!1$&"' ()*+,;=:@]+
(/[a-z0-9\-. ~%!$&"' ()*+,;=:@]+)*/?)?
)

|# Relative URL (no scheme or authority)

(?P<relpath>

Relative path

[a-20-9\-._~%!1$8&" ()*+,;=0]+(/[a-20-9\-. _~%1$8&" ()*+,;=:0]+)*/?
|# Absolute path

(/Ta-z0-9\-. ~%1$&" ()*+,;=:0]+)+/?

8.7 Validating GenericURLs | 449

)

)
Query

(?P<query>\?[a-z0-9\-. ~%!1$&"' ()*+,;=:@/2]*)?
Fragment
(?P<fragment>\#[a-z0-9\-. ~%!1$&" ()*+,;=:0/2]*)?
\Z
Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4 and later, Perl 5.10, Python
r([a-z][a-z0-9+\-. T*: (\/\/([a-20-9\-. ~%!$&"' ()*+,;=1+@)?([a-20-9\-. ~%]+|«
\[[a-f0-9:.]1+\]|\[v[a-f0-9][a-Z20-9\-. ~%!$&" ()*+,;=:1+\]1)(:[0-9]+)?24
(\/[a-20-9\-. ~%1$8&" ()*+,;=:0]+)*\/2| (\/2[a-20-9\-. ~%!$&" ()*+,;=:@]+
(\/[a-z0-9\-._~4!$8" ()*+,;=:@]+)*\/?)?) | ([a-20-9\-._~%!$8" ()*+,;=0]+¢
(\/[a-20-9\-._~%!$&" ()*+,;=:@]+)*\/?2| (\/[a-20-9\-._~%!$&" ()*+,;=:@]+) ¢
+\/?))
(\?[a-20-9\-._~%!$&"' ()*+,;=:0\/?]%)?(#[a-20-9\-. _~%!$&"' ()*+,;=:0\/?]*)?%
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion

Most of the preceding recipes in this chapter deal with URLs, and the regular expres-
sions in those recipes deal with specific kinds of URLs. Some of the regexes are adapted
to specific purposes, such as determining whether punctuation is part of the URL or
the text that quotes the URL.

The regular expressions in this recipe deal with generic URLs. They’re not intended for
searching for URLs in larger text, but for validating strings that are supposed to hold
URLs, and for splitting URLs into their various parts. They accomplish these tasks for
any kind of URL, but in practice, you’ll likely want to make the regexes more specific.
The recipes after this one show examples of more specific regexes.

RFC 3986 describes what a valid URL should look like. It covers every possible URL,
including relative URLs and URLSs for schemes that haven’t even been invented yet. As
a result, RFC 3986 is very broad, and a regular expression that implements it is quite
long. The regular expressions in this recipe only implement the basics. They’re enough
to reliably split the URL into its various parts, but not to validate each of those parts.
Validating all the parts would require specific knowledge of each URL scheme anyway.

RFC 3986 does not cover all URLs that you may encounter in the wild. For example,
many browsers and web servers accept URLs with literal spaces in them, but RFC 3986
requires spaces to be escaped as %20.

An absolute URL must begin with a scheme, such as http: or ftp:. The first character
of the scheme must be a letter. The following characters may be letters, digits, and a
few specific punctuation characters. We can easily match that with two character
classes: <[a-z][a-Z0-9+\-.]*.

450 | Chapter8: URLs, Paths, and Internet Addresses

Many URL schemes require what RFC 3986 calls an “authority.” The authority is the
domain name or IP address of the server, optionally preceded by a username, and op-
tionally followed by a port number.

The username can consist of letters, digits, and a bunch of punctuation. It must be
delimited from the domain name or IP address with an @ sign. <[a-z0-9\-. _~%!$&" ()*
+, ;=]+® matches the username and delimiter.

RFC 3986 is quite liberal in what it allows for the domain name. Recipe 8.15 explains
what is commonly allowed for domains: letters, digits, hyphens, and dots. RFC 3986
also allows tildes, and any other character via the percentage notation. The domain
name must be converted to UTF-8, and any byte that is not a letter, digit, hyphen, or
tilde must be encoded as %FF, where FF is the hexadecimal representation of the byte.

To keep our regular expression simple, we don’t check if each percentage sign is fol-
lowed by exactly two hexadecimal digits. It is better to do such validation after the
various parts of the URL have been separated. So we match the hostname with just
<[a-z0-9\-._~%]+>, which also matches [Pv4 addresses (allowed under RFC 3986).

Instead of a domain name or IPv4 address, the host also can be specified as an [Pv6
address between square brackets, or even a future version of IP addresses. We match
the IPv6 addresses with <\[[a-f0-9:.]+\]> and the future addresses with «\[v[a-f0-9]
[a-z0-9\-. ~%!$&' ()*+,;=:]+\]. Although we can’t validate IP addresses using a ver-
sion of IP that hasn’t been defined yet, we could be more strict about the IPv6 addresses.
But this is again better left for a second regex, after extracting the address from the
URL. Recipe 8.17 shows that validating IPv6 addresses is far from trivial.

The port number, if specified, is simply a decimal number separated from the hostname
with a colon. «<:[0-9]+> is all we need.

If an authority is specified, it must be followed by either an absolute path or no path
at all. An absolute path starts with a forward slash, followed by one or more segments
delimited by forward slashes. A segment consists of one or more letters, digits, or
punctuation characters. There can be no consecutive forward slashes. The path may
end with a forward slash. «(/[a-z0-9\-. ~%!$&"' ()*+,;=:@]+)*/?> matches such paths.

If the URL does not specify an authority, the path can be absolute, relative, or omitted.
Absolute paths start with a forward slash, whereas relative paths don’t. Because the
leading forward slash is now optional, we need a slightly longer regex to match both
absolute and relative paths: </?[a-z0-9\-. ~%!$&"' ()*+,;=:@]+(/[a-20-9\-. ~%!$&' ()*
+55=:0]4)*/D.

Relative URLs do not specify a scheme, and therefore no authority. The path becomes
mandatory, and it can be absolute or relative. Since the URL does not specify a scheme,
the first segment of a relative path cannot contain any colons. Otherwise, that colon
would be seen as the delimiter of the scheme. So we need two regular expressions to
match the path of a relative URL. We match relative paths with <[a-z0-9\-. ~%!$&" ()*
+,;=0]+(/[a-20-9\-. ~%!$&" ()*+,;=:@]+)*/?>. Thisisvery similar to the regex for paths

8.7 Validating GenericURLs | 451

with a scheme but no authority. The only differences are the optional forward slash at
the start, which is missing, and the first character class, which does not include the
colon. We match absolute paths with <(/[a-z0-9\-. ~%!$&"' ()*+,;=:@]+)+/?>. This is
the same regex as the one for paths in URLs that specify a scheme and an authority,
except that the asterisk that repeats the segments of the path has become a plus. Relative
URLSs require at least one path segment.

The query part of the URL is optional. If present, it must start with a question mark.
The query runs until the first hash sign in the URL or until the end of the URL. Since
the hash sign is not among valid punctuation characters for the query part of the URL,
we can easily match this with <\\?[a-z0-9\-. ~%!$&" ()*+,;=:@/?]%. Both of the ques-
tion marks in this regex are literal characters. The first one is outside a character class,
and must be escaped. The second one is inside a character class, where it is always a
literal character.

The final part of a URL is the fragment, which is also optional. It begins with a hash
sign and runs until the end of the URL. \#[a-z0-9\-. ~%!$&"' ()*+,;=:@/?]* matches
this.

To make it easier to work with the various parts of the URL, we use named capturing
groups. Recipe 2.11 explains how named capture works in the different regex flavors
discussed in this book. Perl 5.10, Ruby 1.9, and .NET allow multiple named capturing
groups to share the same name. This is very handy in this situation, because our regex
has multiple ways of matching the URL’s path, depending on whether the scheme and/
or the authority are specified. If we give these three groups the same name, we can
simply query the “path” group to get the path, regardless of whether the URL has a
scheme and/or an authority.

The other flavors don’t support this behavior for named capture, even though most
support the same syntax for named capture. For the other flavors, the three capturing
groups for the path all have different names. Only one of them will actually hold the
URL’s path when a match is found. The other two won’t have participated in the match.

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex. Use this to get the parts of the URL you want.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition. Recipe 2.18 explains how to add comments.

Recipe 8.1 provides a simpler solution that follows more liberal rules for valid URLs
used by the major web browsers, rather than strictly adhering to RFC 3986.

452 | Chapter8: URLs, Paths, and Internet Addresses

8.8 Extracting the Scheme from a URL

Problem

You want to extract the URL scheme from a string that holds a URL. For example, you
want to extract http from http://www.regexcookbook.com.

Solution

Extract the scheme from a URL known to be valid

~([a-z][a-z0-9+\-.]*):
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the scheme while validating the URL
\A
([a-z][a-z0-9+\-.]*):
(# Authority & path

//

([a-z0-9\-. ~%!$&' ()*+,;=]+@)? # User
([a-z0-9\-. ~%]+ # Named host
[\[[a-f0-9:.]+\] # IPv6 host
[\[v[a-f0-9][a-z0-9\-. ~%!$&" ()*+,;=:]+\]) # IPvFuture host
(:[0-9]+)? # Port
(/[a-20-9\-. ~%1$&"' ()*+,;=:@]+)*/? # Path

|# Path without authority
(/?[a-z0-9\-. ~%!$&"' ()*+,;=:@]+(/[a-20-9\-. ~%!1$&" ()*+,;=:0]+)*/?)?
)

Query

(\?[a-z0-9\-._~%!1$&" ()*+,;=:0/2]*)?
Fragment
(\#[a-z0-9\-. ~%!$&"' ()*+,;=:0/2]*)?
\Z

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

([a-z][a-z0-9+\-.1): (//([a-2z0-9\-. ~%!$&" ()*+,;=]+@)?([a-20-9\-. ~%]+| <
\[[a-f0-9:.]+\]|\[v[a-f0-9][a-20-9\-. ~%!$&" ()*+,;=:]1+\])(:[0-9]+)?«
(/Ta-z0-9\-. ~%I1$&" ()*+,;=:@0]+)*/?|(/?[a-20-9\-. ~%!$&"' ()*+,;=:@]+«
(/[a-z0-9\-. ~%!$&" ()*+,;=:@]+)*/2)2)(\?[a-20-9\-. ~%!$&"' ()*+,;=:@/2]*)?«
(#[a-20-9\-. ~%1$&" ()*+,;=:0/2]%)7%

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

8.8 Extracting the Scheme froma URL | 453

Discussion

Extracting the scheme from a URL is easy if you already know that your subject text is
a valid URL. A URL’s scheme always occurs at the very start of the URL. The caret
(Recipe 2.5) specifies that requirement in the regex. The scheme begins with a letter,
which can be followed by additional letters, digits, plus signs, hyphens, and dots. We
match this with the two character classes <[a-z][a-z0-9+\-.]* (Recipe 2.3).

The scheme is delimited from the rest of the URL with a colon. We add this colon to
the regex to make sure we match the scheme only if the URL actually starts with a
scheme. Relative URLs do not start with a scheme. The URL syntax specified in RFC
3986 makes sure that relative URLs don’t contain any colons, unless those colons are
preceded by characters that aren’t allowed in schemes. That’s why we had to exclude
the colon from one of the character classes for matching the path in Recipe 8.7. If you
use the regexes in this recipe on a valid but relative URL, they won’t find a match at all.

Since the regex matches more than just the scheme itself (it includes the colon), we’ve
added a capturing group to the regular expression. When the regex finds a match, you
can retrieve the text matched by the first (and only) capturing group to get the scheme
without the colon. Recipe 2.9 tells you all about capturing groups. See Recipe 3.9 to
learn how to retrieve text matched by capturing groups in your favorite programming
language.

If you don’t already know that your subject text is a valid URL, you can use a simplified
version of the regex from Recipe 8.7. Since we want to extract the scheme, we can
exclude relative URLs, which don’t specify a scheme. That makes the regular expression
slightly simpler.

Since this regex matches the whole URL, we added an extra capturing group around
the part of the regex that matches the scheme. Retrieve the text matched by capturing
group number 1 to get the URL’s scheme.

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex. Use this to get the URL scheme.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition. Recipe 2.18 explains how to add comments.

454 | Chapter8: URLs, Paths, and Internet Addresses

8.9 Extracting the User from a URL

Problem

You want to extract the user from a string that holds a URL. For example, you want to
extract jan from ftp://jan@www.regexcookbook. com.

Solution

Extract the user from a URL known to be valid

Ma-z0-9+\-.1+://([a-20-9\-. _~%!1$8' ()*+,;=]+)@
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the user while validating the URL

\A

[a-z][a-z0-9+\-.]*://
([a-z0-9\-. ~%!1$&"' ()*+,;=]+)@
([a-z0-9\-. ~%]+ Named host
[\[[a-f0-9:.]+\] IPv6 host

Scheme
#
#
#
[\[v[a-fo-9][a-z0-9\-. ~%!$&" ()*+,;=:1+\]) # IPvFuture host
#
#
#
#

User

(:[0-9]+)? Port
(/[a-z0-9\-. ~%!$8&" ()*+,;=:@]+)*/? Path
(\?[a-20-9\-. ~%I1$&"' ()*+,;=:@/2]%)? Query
(\#[a-z0-9\-. ~%!$&" ()*+,;=:0/2]*)? Fragment
\Z

Regex options: Case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
ra-z][a-z0-9+\-.1*://([a-20-9\-. ~%!$&"' ()*+,;=]1+)@([a-20-9\-. ~%]+|<
\[[a-f0-9:.]1+\]|\[v[a-f0-9][a-20-9\-. ~%!$&" ()*+,;=:1+\])(:[0-9]+)2«
(/[a-20-9\-. ~%!$&" ()*+,;=:@]+)*/2(\?[a-20-9\-. ~%!$&" ()*+,;=:@0/?]*)?4
(#[a-20-9\-. ~%!1$&" ()*+,;=:@/2]*)?%

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion

Extracting the user from a URL is easy if you already know that your subject text is a
valid URL. The username, if present in the URL, occurs right after the scheme and the
two forward slashes that begin the “authority” part of the URL. The username is sep-
arated from the hostname that follows it with an @ sign. Since @ signs are not valid
in hostnames, we can be sure that we’re extracting the username portion of a URL if
we find an @ sign after the two forward slashes and before the next forward slash in

8.9 Extracting the Userfroma URL | 455

the URL. Forward slashes are not valid in usernames, so we don’t need to do any special
checking for them.

All these rules mean we can very easily extract the username if we know the URL to be
valid. We just skip over the scheme with <[a-z0-9+\-.]+> and the ://. Then, we grab
the username that follows. If we can match the @ sign, we know that the characters
before it are the username. The character class <[a-z0-9\-. ~%!$&"' ()*+, ;=] lists all the
characters that are valid in usernames.

This regex will find a match only if the URL actually specifies a user. When it does, the
regex will match both the scheme and the user parts of the URL. Therefore, we’ve added
a capturing group to the regular expression. When the regex finds a match, you can
retrieve the text matched by the first (and only) capturing group to get the username
without any delimiters or other URL parts. Recipe 2.9 tells you all about capturing
groups. See Recipe 3.9 to learn how to retrieve text matched by capturing groups in
your favorite programming language.

If you don’t already know that your subject text is a valid URL, you can use a simplified
version of the regex from Recipe 8.7. Since we want to extract the user, we can exclude
URLs that don’t specify an authority. The regex in the solution actually matches only
URLs that specify an authority that includes a username. Requiring the authority part
of the URL makes the regular expression quite a bit simpler. It’s even simpler than the
one we used in Recipe 8.8.

Since this regex matches the whole URL, we added an extra capturing group around
the part of the regex that matches the user. Retrieve the text matched by capturing
group number 1 to get the URL’s user.

If you want a regex that matches any valid URL, including those that don’t specify the
user, you can use one of the regexes from Recipe 8.7. The first regex in that recipe
captures the user, if present, in the third capturing group. The capturing group will
include the @ symbol. You can add an extra capturing group to the regex if you want
to capture the username without the @ symbol.

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex. Use this to get the user name.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition. Recipe 2.18 explains how to add comments.

456 | Chapter8: URLs, Paths, and Internet Addresses

8.10 Extracting the Host from a URL

Problem

You want to extract the host from a string that holds a URL. For example, you want
to extract www.regexcookbook . com from http://www.regexcookbook.com/.

Solution

Extract the host from a URL known to be valid

\A

[a-z][a-z0-9+\-.]*:// # Scheme

([a-z0-9\-. ~%!1$&"' ()*+,;=]+@)? # User

([a-z0-9\-. ~%]+ # Named or IPv4 host

[\[[a-20-9\-. ~%!$&"' ()*+,;=:]1+\]) # IPv6+ host

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
a-z][a-z0-9+\-.]://([a-20-9\-. ~%!$&"' ()*+,;=]1+@)?([a-20-9\-. ~%]+|<
\[[a-20-9\-._~%1$8" ()*+,;=:]+\])

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the host while validating the URL
\A

[a-z][a-z0-9+\-.]*:// # Scheme
([a-z0-9\-. ~%!1$&"' ()*+,;=]+@)? # User
([a-z0-9\-. ~%]+ # Named host
[\[[a-f0-9:.]+\] # IPv6 host
[\[v[a-fo-9][a-z0-9\-. ~%!$&"' ()*+,;=:]+\]) # IPvFuture host
(:[0-9]+)? # Port
(/[a-z0-9\-. ~%!$8&" ()*+,;=:@]+)*/? # Path
(\?[a-z0-9\-. ~%!1$&"' ()*+,;=:@/2]%)? # Query
(\#[a-z0-9\-. ~%I1$&"' ()*+,;=:@/2]%)? # Fragment

\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

ra-z][a-z0-9+\-.]*://([a-20-9\-. ~%!1$&"' ()*+,;=]1+@)?([a-20-9\-. ~%]+| <
\[[a-f0-9:.]+\]|\[v[a-f0-9][a-20-9\-. ~%!$&" ()*+,;=:]1+\]1)(:[0-9]+)?«
(/Ta-z0-9\-. ~%1$&" ()*+,;=:0]+)*/2(\?[a-20-9\-. ~%!$&" ()*+,;=:@/2]*)?4
(#[a-z0-9\-. ~%!$&' ()*+,;=:0/2]%)?%

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

8.10 Extracting the Host froma URL | 457

Discussion

Extracting the host from a URL is easy if you already know that your subject text is a
valid URL. We use <\\A> or < to anchor the match to the start of the string. <[a-z][a-
z0-9+\-.]*://> skips over the scheme, and <([a-z0-9\-. ~%!$&" ()*+,;=]+@)?> skips
over the optional user. The hostname follows right after that.

RFC 3986 allows two different notations for the host. Domain names and IPv4 ad-
dresses are specified without square brackets, whereas IPv6 and future IP addresses are
specified with square brackets. We need to handle those separately because the nota-
tion with square brackets allows more punctuation than the notation without. In par-
ticular, the colon is allowed between square brackets, but not in domain names or IPv4
addresses. The colon is also used to delimit the hostname (with or without square
brackets) from the port number.

«[a-z0-9\-._~%]+> matches domain names and IPv4 addresses. <\[[a-z0-9\-. ~%!
$&' ()*+,;=:1+\] handles IP version 6 and later. We combine these two using alterna-
tion (Recipe 2.8) in a group. The capturing group also allows us to extract the hostname.

This regex will find a match only if the URL actually specifies a host. When it does, the
regex will match the scheme, user, and host parts of the URL. When the regex finds a
match, you can retrieve the text matched by the second capturing group to get the
hostname without any delimiters or other URL parts. The capturing group will include
the square brackets for IPv6 addresses. Recipe 2.9 tells you all about capturing groups.
See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

If you don’t already know that your subject text is a valid URL, you can use a simplified
version of the regex from Recipe 8.7. Since we want to extract the host, we can exclude
URLs that don’t specify an authority. This makes the regular expression quite a bit
simpler. It’s very similar to the one we used in Recipe 8.9. The only difference is that
now the user part of the authority is optional again, as it was in Recipe 8.7.

This regex also uses alternation for the various notations for the host, which is kept
together by a capturing group. Retrieve the text matched by capturing group number
2 to get the URL’s host.

If you want a regex that matches any valid URL, including those that don’t specify the
host, you can use one of the regexes from Recipe 8.7. The first regex in that recipe
captures the host, if present, in the fourth capturing group.

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex. Use this to get the host address.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains

458 | Chapter8: URLs, Paths, and Internet Addresses

alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition. Recipe 2.18 explains how to add comments.

8.11 Extracting the Port from a URL

Problem

You want to extract the port number from a string that holds a URL. For example, you
want to extract 80 from http://www.regexcookbook.com:80/.

Solution

Extract the port from a URL known to be valid

\A

[a-z][a-z0-9+\-.]*:// # Scheme

([a-z0-9\-. ~%!$&' ()*+,;=]+@)? # User

([a-z0-9\-. ~%]+ # Named or IPv4 host
[\[[a-20-9\-. ~%!$&" ()*+,;=:]+\]) # IPv6+ host
:(2<port>[0-9]+) # Port number

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java 7, PCRE 7, Perl 5.10, Ruby 1.9

\A

[a-z][a-z0-9+\-.]*:// # Scheme

([a-z0-9\-. ~%!$&"' ()*+,;=]+@)? # User

([a-z0-9\-. ~%]+ # Named or IPv4 host
[\[[a-z0-9\-. ~%!$&"' ()*+,;=:]+\]) # IPv6+ host

1 (?P<port>[0-9]+) # Port number

Regex options: Free-spacing, case insensitive

Regex flavors: PCRE, Perl 5.10, Python
a-z][a-z0-9+\-.]://([a-20-9\-. ~%!$&"' ()*+,;=]+@)2«
([a-20-9\-._~%]+|\[[a-20-9\-._~%!$8" ()*+,;=:]+\]): ([0-9]+)

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the port while validating the URL
\A

[a-z][a-z0-9+\-.]*:// # Scheme
([a-z0-9\-. ~%!$&"' ()*+,;=]+@)? # User
([a-z0-9\-. ~%]+ # Named host
[\[[a-f0-9:.]+\] # IPv6 host
[\[v[a-f0-9][a-z0-9\-. ~%!$&" ()*+,;=:1+\]) # IPvFuture host
:([0-9]+) # Port
(/[a-z0-9\-. ~%!$8&" ()*+,;=:@]+)*/? # Path

8.11 Extracting the Portfroma URL | 459

(\?[a-20-9\-. ~%!1$&"' ()*+,;=:@/2]%)? # Query
(\#[a-20-9\-. ~%!1$&"' ()*+,;=:@/2]%)? # Fragment
\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
ra-z][a-z0-9+\-.]*:\/\/([a-20-9\-. ~%!$&" ()*+,;=]+@) 2«
([a-z0-9\-. ~%]+|\[[a-f0-9:.]1+\]|\[v[a-f0-9][a-20-9\-. ~%I$&' ()*+,;=:]d
\]1):([0-9]+) (\/[a-20-9\-. ~%!$8&" ()*+,;=:0]+)*\/2¢
(\?[a-z0-9\-. ~%!$&"' ()*+,;=:@\/?]*)?(#[a-20-9\-. ~%I$&" ()*+,;=:@\/?]*)?$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion

Extracting the port number from a URL is easy if you already know that your subject
text is a valid URL. We use <\l or ¢*» to anchor the match to the start of the string.
[a-z][a-z0-9+\-.]*://> skips over the scheme, and «([a-z0-9\-. ~%!$&' ()*+,;=]
+@) 2> skips over the optional user. «([a-z0-9\-. ~%]+|\[[a-20-9\-. ~%!$&" ()*+,;=:]+
\1)> skips over the hostname.

The port number is separated from the hostname with a colon, which we add as a literal
character to the regular expression. The port number itself is simply a string of digits,
easily matched with «[0-9]+.

This regex will find a match only if the URL actually specifies a port number. When it
does, the regex will match the scheme, user, host, and port number parts of the URL.
When the regex finds a match, you can retrieve the text matched by the third capturing
group to get the port number without any delimiters or other URL parts.

The other two groups are used to make the username optional, and to keep the two
alternatives for the hostname together. Recipe 2.9 tells you all about capturing groups.
See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

If you don’t already know that your subject text is a valid URL, you can use a simplified
version of the regex from Recipe 8.7. Since we want to extract the port number, we can
exclude URLs that don’t specify a port number. This makes the regular expression quite
a bit simpler. It’s very similar to the one we used in Recipe 8.10.

The only difference is that this time the port number isn’t optional, and we moved the
port number’s capturing group to exclude the colon that separates the port number
from the hostname. The capturing group’s number is 3.

If you want a regex that matches any valid URL, including those that don’t specify the
port, you can use one of the regexes from Recipe 8.7. The first regex in that recipe
captures the port, if present, in the fifth capturing group.

460 | Chapter8: URLs, Paths, and Internet Addresses

Download from Wow! eBook <www.wowebook.com>

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex. Use this to get the port number.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition. Recipe 2.18 explains how to add comments.

8.12 Extracting the Path from a URL

Problem

You want to extract the path from a string that holds a URL. For example, you
want to extract /index.html from http://www.regexcookbook.com/index.html or
from /index.html#fragment.

Solution

Extract the path from a string known to hold a valid URL. The following finds a match
for all URLs, even for URLs that have no path:

\A
Skip over scheme and authority, if any
([a-z][a-20-9+\-. 1*: (//[*/?#]+)?)?
Path
([a-20-9\-._~%!$8" ()*+,;=:@/]*)
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Mla-z][a-z0-9+\-. T*: (//[~/?#]+)?2)2([a-20-9\-. ~%!$&" ()*+,;=:@/]*)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the path from a string known to hold a valid URL. Only match URLs that
actually have a path:

\A
Skip over scheme and authority, if any
([a-z][a-z0-9+\-.]*: (//["/?#]+)2)?
Path
(/?[a-20-9\-. ~%!1$&"' ()*+,;=@]+(/[a-20-9\-. ~%!$8"' ()*+,;=:@]+)*/?|/)
Query, fragment, or end of URL
([#2]1\2)
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

8.12 Extracting the PathfromaURL | 461

~([a-z][a-z0-9+\-.]*: (//[~/2#]+)?)2(/?[a-20-9\-._~%!1$8" ()*+,;=@]+<
(/[a-20-9\-. ~%!$&" ()*+,;=:@]+)*/?|/) ([#2]]$)

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the path from a string known to hold a valid URL. Use atomic grouping to
match only those URLs that actually have a path:
\A
Skip over scheme and authority, if any
(>([a-z][a-z0-9+\-.1*: (//[*/?#]+)?)?)
Path
([a-z0-9\-. ~%!1$&" ()*+,;=:0/]+)
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Ruby

Discussion

You can use a much simpler regular expression to extract the path if you already know
that your subject text is a valid URL. While the generic regex in Recipe 8.7 has three
different ways to match the path, depending on whether the URL specifies a scheme
and/or authority, the specific regex for extracting the path from a URL known to be
valid needs to match the path only once.

We start with (\A> or < to anchor the match to the start of the string. <[a-z][a-z0-9+
\-.1*> skips over the scheme, and <//[*/?#]+> skips over the authority. We can use
this very simple regex for the authority because we already know it to be valid,
and we’re not interested in extracting the user, host, or port from the authority.
The authority starts with two forward slashes, and runs until the start of the path
(forward slash), query (question mark), or fragment (hash). The negated character class
matches everything up to the first forward slash, question mark, or hash (Recipe 2.3).

Because the authority is optional, we put it into a group followed by the question mark
quantifier: <(//[*/?#]+)?>. The scheme is also optional. If the scheme is omitted, the
authority must be omitted, too. To match this, we place the parts of the regex for the
scheme and the optional authority in another group, also made optional with a question
mark.

Since we know the URL to be valid, we can easily match the path with a single character
class <[a-z0-9\-. ~%!$&" ()*+,;=:@/]* that includes the forward slash. We don’t need
to check for consecutive forward slashes, which aren’t allowed in paths in URLs.

We indeed use an asterisk rather than a plus as the quantifier on the character class for
the path. It may seem strange to make the path optional in a regex that only exists to
extract the path from a URL. Actually, making the path optional is essential because
of the shortcuts we took in skipping over the scheme and the authority.

462 | Chapter8: URLs, Paths, and Internet Addresses

In the generic regex for URLs in Recipe 8.7, we have three different ways of matching
the path, depending on whether the scheme and/or authority are present in the URL.
This makes sure the scheme isn’t accidentally matched as the path.

Now we’re trying to keep things simple by using only one character class for the path.
Consider the URL http: //www.regexcookbook.com, which has a scheme and an authority
but no path. The first part of our regex will happily match the scheme and the authority.
The regex engine then tries to match the character class for the path, but there are no
characters left. If the path is optional (using the asterisk quantifier), the regex engine
is perfectly happy not to match any characters for the path. It reaches the end of the
regex and declares that an overall match has been found.

But if the character class for the path is not optional, the regex engine backtracks. (See
Recipe 2.13 if you’re not familiar with backtracking.) It remembered that the authority
and scheme parts of our regex are optional, so the engine says: let’s try this again,
without allowing «(//[*/?#]+)?> to match anything. <[a-z0-9\-. ~%!$&"' ()*+,;=:0/]
+ would then match //www.regexcookbook. com for the path, clearly not what we want.
If we used a more accurate regex for the path to disallow the double forward slashes,
the regex engine would simply backtrack again, and pretend the URL has no scheme.
With an accurate regex for the path, it would match http as the path. To prevent that
as well, we would have to add an extra check to make sure the path is followed by the
query, fragment, or nothing at all. If we do all that, we end up with the regular expres-
sions indicated as “only match URLs that actually have a path” in this recipe’s “Solu-
tion” section. These are quite a bit more complicated than the first two, all just to make
the regex not match URLs without a path.

If your regex flavor supports atomic grouping, there’s an easier way. All flavors dis-
cussed in this book, except JavaScript and Python, support atomic grouping (see
Recipe 2.14). Essentially, an atomic group tells the regex engine not to backtrack. If we
place the scheme and authority parts of our regex inside an atomic group, the regex
engine will be forced to keep the matches of the scheme and authority parts once they’ve
been matched, even if that allows no room for the character class for the path to match.
This solution is just as efficient as making the path optional.

Regardless of which regular expression you choose from this recipe, the third capturing
group will hold the path. The third capturing group may return the empty string, or
null in JavaScript, if you use one of the first two regexes that allow the path to be
optional.

If you don’t already know that your subject text is a valid URL, you can use the regex
from Recipe 8.7. If you’re using .NET, you can use the .NET-specific regex thatincludes
three groups named “path” to capture the three parts of the regex that could match the
URL’s path. If you use another flavor that supports named capture, one of three groups
will have captured it: “hostpath,” “schemepath,” or “relpath.” Since only one of the
three groups will actually capture anything, a simple trick to get the path is to

8.12 Extracting the Path froma URL | 463

concatenate the strings returned by the three groups. Two of them will return the empty
string, so no actual concatenation is done.

If your flavor does not support named capture, you can use the first regex in
Recipe 8.7. It captures the path in group 6, 7, or 8. You can use the same trick to
concatenate the text captured by these three groups, as two of them will return the
empty string. In JavaScript, however, this won’t work. JavaScript returns undefined for
groups that don’t participate.

Recipe 3.9 has more information on retrieving the text matched by named and num-
bered capturing groups in your favorite programming language.

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex. Use this to get the path.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition. Recipe 2.18 explains how to add comments.

8.13 Extracting the Query from a URL

Problem

You want to extract the query from a string that holds a URL. For example, you
want to extract param=value from http://www.regexcookbook.com?param=value or
from /index.html?param=value.

Solution
S[1A2([]9)

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Extracting the query from a URL is trivial if you know that your subject text is a valid
URL. The query is delimited from the part of the URL before it with a question mark.
That is the first question mark allowed anywhere in URLs. Thus, we can easily skip
ahead to the first question mark with <*[*?#]+\?>. The question mark is a metacharacter
only outside character classes, but not inside, so we escape the literal question mark
outside the character class. The first <*> is an anchor (Recipe 2.5), whereas the second
<™ negates the character class (Recipe 2.3).

464 | Chapter8: URLs, Paths, and Internet Addresses

Question marks can appear in URLs as part of the (optional) fragment after the query.
So we do need to use <*[*?#]+\?>, rather than just <\?>, to make sure we have the first
question mark in the URL, and make sure that it isn’t part of the fragment in a URL
without a query.

The query runs until the start of the fragment, or the end of the URL if there is no
fragment. The fragment is delimited from the rest of the URL with a hash sign. Since
hash signs are not permitted anywhere except in the fragment, <[*#]+> is all we need to
match the query. The negated character class matches everything up to the first hash
sign, or everything until the end of the subject if it doesn’t contain any hash signs.

This regular expression will find a match only for URLs that actually contain a query.
When it matches a URL, the match includes everything from the start of the URL, so
we put the [*#]+> part of the regex that matches the query inside a capturing group.
When the regex finds a match, you can retrieve the text matched by the first (and only)
capturing group to get the query without any delimiters or other URL parts.
Recipe 2.9 tells you all about capturing groups. See Recipe 3.9 to learn how to retrieve
text matched by capturing groups in your favorite programming language.

If you don’t already know that your subject text is a valid URL, you can use one of the
regexes from Recipe 8.7. The first regex in that recipe captures the query, if one is
present in the URL, into capturing group number 12.

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex. Use this to get the query.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition. Recipe 2.18 explains how to add comments.

8.14 Extracting the Fragment from a URL

Problem

You want to extract the fragment from a string that holds a URL. For example, you
want to extract top from http://www.regexcookbook.com#top or from /index.html#top.

Solution
#(.+)

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

8.14 Extracting the Fragment froma URL | 465

Discussion

Extracting the fragment from a URL is trivial if you know that your subject text is a
valid URL. The fragment is delimited from the part of the URL before it with a hash
sign. The fragment is the only part of URLs in which hash signs are allowed, and the
fragment is always the last part of the URL. Thus, we can easily extract the fragment
by finding the first hash sign and grabbing everything until the end of the string. <.
+> does that nicely. Make sure to turn off free-spacing mode; otherwise, you need to
escape the literal hash sign with a backslash.

This regular expression will find a match only for URLs that actually contain a fragment.
The match consists of just the fragment, but includes the hash sign that delimits the
fragment from the rest of the URL. The solution has an extra capturing group to retrieve
just the fragment, without the delimiting #.

If you don’t already know that your subject text is a valid URL, you can use one of the
regexes from Recipe 8.7. The first regex in that recipe captures the fragment, if one is
present in the URL, into capturing group number 13.

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex. Use this to get the fragment.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition. Recipe 2.18 explains how to add comments.

8.15 Validating Domain Names

Problem

You want to check whether a string looks like it may be a valid, fully qualified domain
name, or find such domain names in longer text.

Solution
Check whether a string looks like a valid domain name:

~([a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,}$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
\A([a-20-9]+(-[a-z0-9]+)*\.)+[a-2]{2,}\Z

Regex options: Case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

466 | Chapter8: URLs, Paths, and Internet Addresses

Find valid domain names in longer text:
\b([a-20-9]+(-[a-20-9]+)*\.)+[a-z]{2,}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether each part of the domain is not longer than 63 characters:

\b((?=[a-z0-9-1{1,63}\.)[a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,63}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Allow internationalized domain names using the punycode notation:
\b((xn--)?[a-20-9]+(-[a-20-9]+)*\.)+[a-z]{2, }\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether each part of the domain is not longer than 63 characters, and allow
internationalized domain names using the punycode notation:

\b((?=[a-z0-9-1{1,63}\.)(xn--)?[a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,63}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

A domain name has the form of domain.tld, or subdomain.domain.tld, or any number
of additional subdomains. The top-level domain (t1d) consists of two or more letters.
That’s the easiest part of the regex: ([a-z]{2, }b.

The domain, and any subdomains, consist of letters, digits, and hyphens. Hyphens
cannot appear in pairs, and cannot appear as the first or last character in the domain.
We handle this with the regular expression «[a-z0-9]+(-[a-z0-9]+)*. This regex allows
any number of letters and digits, optionally followed by any number of groups that
consist of a hyphen followed by another sequence of letters and digits. Remember that
the hyphen is a metacharacter inside character classes (Recipe 2.3) but an ordinary
character outside of character classes, so we don’t need to escape any hyphens in this
regex.

The domain and the subdomains are delimited with a literal dot, which we match with
<\.» in a regular expression. Since we can have any number of subdomains in addition
to the domain, we place the domain name part of the regex and the literal dot in a group
that we repeat: «([a-z0-9]+(-[a-z0-9]+)*\.)+. Since the subdomains follow the same
syntax as the domain, this one group handles both.

If you want to check whether a string represents a valid domain name, all that remains
is to add anchors to the start and the end of the regex that match at the start and the
end of the string. We can do this with ¢ and «$» in all flavors except Ruby, and with
AA> and \2> in all flavors except JavaScript. Recipe 2.5 has all the details.

8.15 Validating Domain Names | 467

If you want to find domain names in a larger body of text, you can add word boundaries
(\\b>; see Recipe 2.6).

Our first set of regular expressions doesn’t check whether each part of the domain is
no longer than 63 characters. We can’t easily do this, because our regex for each domain
part, <[a-z0-9]+(-[a-z0-9]+)*), has three quantifiers in it. There’s no way to tell the
regex engine to make these add up to 63.

We could use ¢[-a-z0-9]{1,63}> to match a domain part thatis 1 to 63 characters long,
or \\b([-a-z0-9]{1,63}\.)+[a-z]{2,63}> for the whole domain name. But then we’re
no longer excluding domains with hyphens in the wrong places.

What we can do is to use lookahead to match the same text twice. Review
Recipe 2.16 first if you’re not familiar with lookahead. We use the same regex «[a-
20-9]+(-[a-z0-9]+)*\.> to match a domain name with valid hyphens, and add «[-a-
z0-9]{1,63}\.> inside a lookahead to check that its length is also 63 characters or less.
The result is <(?=[-a-2z0-9]{1,63}\.)[a-20-9]+(-[a-z0-9]+)*\.>.

The lookahead «(?=[-a-2z0-9]{1,63}\.)> first checks that there are 1 to 63 letters, digits,
and hyphens until the next dot. It’s important to include the dot in the lookahead.
Without it, domains longer than 63 characters would still satisfy the lookahead’s re-
quirement for 63 characters. Only by putting the literal dot inside the lookahead do we
enforce the requirement that we want at most 63 characters.

The lookahead does not consume the text that it matched. Thus, if the lookahead
succeeds, «[a-z0-9]+(-[a-2z0-9]+)*\.> is applied to the same text already matched by
the lookahead. We’ve confirmed there are no more than 63 characters, and now we
test that they’re the right combination of hyphens and nonhyphens.

Internationalized domain names (IDNs) theoretically can contain pretty much any
character. The actual list of characters depends on the registry that manages the top-
level domain. For example, .es allows domain names with Spanish characters.

In practice, internationalized domain names are often encoded using a scheme called
punycode. Although the punycode algorithm is quite complicated, what matters here
is that it results in domain names that are a combination of letters, digits, and hyphens,
following the rules we’re already handling with our regular expression for domain
names. The only difference is that the domain name produced by punycode is prefixed
with xn--. To add support for such domains to our regular expression, we only need
to add <(xn--)?> to the group in our regular expression that matches the domain name
parts.

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains word boundaries.

468 | Chapter8: URLs, Paths, and Internet Addresses

Recipe 2.9 explains grouping. Recipe 2.12 explains repetition. Recipe 2.16 explains
lookaround.

8.16 Matching IPv4 Addresses

Problem

You want to check whether a certain string represents a valid IPv4 address in
255.255.255.255 notation. Optionally, you want to convert this address into a 32-bit
integer.

Solution

Regular expression

Simple regex to check for an IP address:

~(?2:[0-9]{1,3}\.){3}[0-9]{1,3}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Accurate regex to check for an IP address, allowing leading zeros:
~(?:(?:25[0-5]]2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3} ¢
(?:25[0-5]|2[0-4][0-9]|[021]?[0-9][0-9]?)%

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Accurate regex to check for an IP address, disallowing leading zeros:
A(2:(2:25[0-5]]2[0-4][0-9]|1[0-9][0-9]|[1-9]12[0-9])\.){3}«
(?:25[0-5]|2[0-4][0-9][1[0-9][0-9]|[1-9]?[0-9])$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Simple regex to extract IP addresses from longer text:

\b(?:[0-91{1,3}\.){3}[0-9]{1,3}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Accurate regex to extract IP addresses from longer text, allowing leading zeros:
\b(?:(?:25[0-5]|2[0-4][0-9]|[01]2[0-9][0-9]?)\.){3}«
(?:25[0-5]|2[0-4][0-9][[01]?[0-9][0-9]?)\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Accurate regex to extract [P addresses from longer text, dis25[0-5]|2[0-4][0-9]|1[0-9]
[0-9]][1-9]?[0-9]allowing leading zeros:

8.16 Matching IPv4 Addresses | 469

\b(?:(?:25[0-5]|2[0-4][0-9]|1[0-9]
(?:25[0-5]]|2[0-4][0-9]|1[0-9][0-9]
Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

[0-9]|[1-9]?[0-9])\.){3} ¢
|[1-912[0-9])\b

Simple regex that captures the four parts of the IP address:

M([0-91{1,3P)\. ([0-91{1,3})\. ([0-9]{1,3})\. ([0-9]{1,3})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Accurate regex that captures the four parts of the IP address, allowing leading zeros:

~(25[0-5]|2[0-4][0-9]| [0 [0-9]2)\.«
(25[0-5]|2[0-4][0-]|[01]7[0 9 [0 9I)\. ¢
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.«
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Accurate regex that captures the four parts of the IP address, disallowing leading zeros:
~(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])\. «

(25[0-5]|2[0-4][0-9] |1[0-9][0-9]|[1-9]?[0-9])\.«
(25[0-5]|2[0-4][0-9] |1[0-9][0-9]|[1-9]?[0-9])\.«
(25[0-5]|2[0-4][0-9]|1[0-9][0-9][[1-9]?[0-9])$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Perl
if ($subject =~ m/~([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})/)
{

$ip = $1 << 24 | $2 << 16 | $3 << 8 | $4;
}

Discussion

A version 4 IP address is usually written in the form 255.255.255.255, where each of
the four numbers must be between 0 and 255. Matching such IP addresses with a regular
expression is very straightforward.

In the solution, we present four regular expressions. Two of them are billed as “simple,”
while the other two are marked “accurate.”

The simple regexes use <[0-9]{1,3}> to match each of the four blocks of digits in the IP
address. These actually allow numbers from 0 to 999 rather than 0 to 255. The simple
regexes are more efficient when you already know your input will contain only valid TP
addresses, and you only need to separate the IP addresses from the other stuff.

470 | Chapter8: URLs, Paths, and Internet Addresses

Download from Wow! eBook <www.wowebook.com>

The accurate regexes use «25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?> to match each of
the four numbers in the IP address. This regex accurately matches a number in the
range 0 to 255, with one optional leading zero for numbers between 10 and 99, and
two optional leading zeros for numbers between 0 and 9. «25[0-5]> matches 250
through 255, «<2[0-4][0-9]> matches 200 to 249, and <[01]?[0-9][0-9]?> takes care of
0 to 199, including the optional leading zeros. Recipe 6.7 explains in detail how to
match numeric ranges with a regular expression.

While many applications accept IP addresses with leading zeros, strictly speaking lead-
ing zeros are not allowed in IPv4 addresses. We can enhance the regexes to use <25[0-5] |
2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9]> to match a number in the range 0 to 255,
without leading zeros. The numbers 200 to 255 are matched in the same way. Instead
of using just <[01]?[0-9][0-9]?> to match the range 0 to 99, we now use «1[0-9][0-9] |
[1-9]?[0-9]> with two separate alternatives. <1[0-9][0-9]> matches the range 100 to
199. <[1-9]?[0-9]> matches the range 0 to 99. By making the leading digit optional, we
can use a single alternative to match both the single digit and double digit ranges.

If you want to check whether a string is a valid IP address in its entirety, use one of the
regexes that begin with a caret and end with a dollar. These are the start-of-string and
end-of-string anchors, explained in Recipe 2.5. If you want to find IP addresses within
longer text, use one of the regexes that begin and end with the word boundaries
Ab> (Recipe 2.6).

The first four regular expressions use the form «(? :number\.){3}number>. The first three
numbers in the IP address are matched by a noncapturing group (Recipe 2.9) that is
repeated three times (Recipe 2.12). The group matches a number and a literal dot, of
which there are three in an IP address. The last part of the regex matches the final
number in the IP address. Using the noncapturing group and repeating it three times
makes our regular expression shorter and more efficient.

To convert the textual representation of the IP address into an integer, we need to
capture the four numbers separately. The last two regexes in the solution do this. In-
stead of using the trick of repeating a group three times, they have four capturing
groups, one for each number. Spelling things out this way is the only way we can
separately capture all four numbers in the IP address.

Once we’ve captured the number, combining them into a 32-bit number is easy. In
Perl, the special variables $1, $2, $3, and $4 hold the text matched by the four capturing
groups in the regular expression. Recipe 3.9 explains how to retrieve capturing groups
in other programming languages. In Perl, the string variables for the capturing groups
are automatically coerced into numbers when we apply the bitwise left shift operator
(<) to them. In other languages, you may have to call String.toInteger() or something
similar before you can shift the numbers and combine them with a bitwise or.

8.16 Matching IPv4 Addresses | 471

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains word boundaries.
Recipe 2.9 explains grouping. Recipe 2.8 explains alternation. Recipe 2.12 explains
repetition.

8.17 Matching IPv6 Addresses

Problem

You want to check whether a string represents a valid IPv6 address using the standard,
compact, and/or mixed notations.

Solution

Standard notation

Match an IPv6 address in standard notation, which consists of eight 16-bit words using
hexadecimal notation, delimited by colons (e.g.: 1762:0:0:0:0:B03:1:AF18). Leading
zeros are optional.

Check whether the whole subject text is an IPv6 address using standard notation:

A(?2:[A-Fo-9]{1,4}:){7}[A-F0-9]{1,4}$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A(?:[A-F0-91{1,4}:){7}[A-F0-91{1,4}\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Find an IPv6 address using standard notation within a larger collection of text:

(<12 \w]) (?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}(?![:.\w])
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 don’t support lookbehind. We have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. A word boundary performs part of the test:

\b(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

472 | Chapter8: URLs, Paths, and Internet Addresses

Mixed notation

Match an IPv6 address in mixed notation, which consists of six 16-bit words using
hexadecimal notation, followed by four bytes using decimal notation. The words are
delimited with colons, and the bytes with dots. A colon separates the words from the
bytes. Leading zeros are optional for both the hexadecimal words and the decimal bytes.
This notation is used in situations where IPv4 and IPv6 are mixed, and the IPv6 ad-
dresses are extensions of the [Pv4 addresses. 1762:0:0:0:0:B03:127.32.67.15 is an ex-
ample of an IPv6 address in mixed notation.

Check whether the whole subject text is an IPv6 address using mixed notation:
~(?:[A-F0-9]{1,4}:){6}(?2:(2:25[0-5]]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])«
\.){3}(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])$%

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find IPv6 address using mixed notation within a larger collection of text:
(2<1[: . \w]) (2: [A-FO-9]{1,4}:){6} ¢
(2:(2:25[0-5]|2[0-4][0-9]]1[0-9][0-9]|[1-9]?[0-9])\.){3} ¢
(?:25[0-5]|2[0-4][0-9][1[0-9][0-9]|[1-9]?[0-9]) (?![:.\w])

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

JavaScript and Ruby 1.8 don’t support lookbehind. We have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. A word boundary performs part of the test:
\b(?:[A-F0-9]{1,4}:){6}(?:(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])«
\.){3}(?:25[0-5][2[0-4][0-9][1[0-9][0-9][[1-9]?[0-9])\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Standard or mixed notation
Match an IPv6 address using standard or mixed notation.

Check whether the whole subject text is an IPv6 address using standard or mixed
notation:

\A # Start of string
(?:[A-F0-9]{1,4}:){6} # 6 words
(?:[A-F0-9]{1,4}:[A-F0-9]{1,4} # 2 words

| (?:(?:25[0-5]|2[0-4][0-9]|2[0-9][0-9]|[1-9]?[0-9])\.){3} # or 4 bytes
(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9
)\Z # End of string
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

8.17 Matching IPv6 Addresses | 473

N(2:[A-F0-9]{1,4}:){6}(?:[A-F0-9]{1,4}:[A-F0-9]{1,4} |«
(?:(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])\.){3} ¢
(?:25[0-5]]2[0-4][0-9]1[0-9][0-9]|[1-9]?[0-9]))$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find IPv6 address using standard or mixed notation within a larger collection of text:

(<1 \w]) # Anchor address
(?:[A-F0-9]{1,4}:){6} # 6 words
(?:[A-F0-9]{1,4}:[A-F0-9]{1,4} # 2 words

| (?:(2:25[0-5]|2[0-4][0-9]|1[0-9][0-
(?:25[0-5]]2[0-4][0-9] |1[0-9][0-9]| ?
Y2 \w]) # Anchor address
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

0-9]][1-9]2[0-91)\.){3} # or 4 bytes
11{1-9]2[o-])

JavaScript and Ruby 1.8 don’t support lookbehind. We have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. A word boundary performs part of the test:

\b # Word boundary
(?:[A-Fo-9]{1,4}:){6} # 6 words
(?:[A-Fo-9]{1,4}:[A-F0-9]{1,4} # 2 words

| (2:(2:25[0-5]|2[0-4][0-9]|1[0-9][0-9][[1-9]?[0-9])\.){3} # or 4 bytes
(?:25[0-5]]2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])
)\b # Word boundary
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\b(?:[A-F0-9]{1,4}:){6}(?:[A-F0-9]{1,4}:[A-F0-9]{1,4}]| «
(?:(2:25[0-5]|2[0-4][0-9]|1[0-9][0-9] | [1-9]?[0-9])\.){3} ¢
(?:25[0-5]]2[0-4][0-9]|1[0-9][0-9] |[1-9]?[0-9]))\b

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Compressed notation

Match an IPv6 address using compressed notation. Compressed notation is the same
as standard notation, except that one sequence of one or more words that are zero may
be omitted, leaving only the colons before and after the omitted zeros. Addresses using
compressed notation can be recognized by the occurrence of two adjacent colons in
the address. Only one sequence of zeros may be omitted; otherwise, it would be
impossible to determine how many words have been omitted in each sequence. If the
omitted sequence of zeros is at the start or the end of the IP address, it will begin or
end with two colons. If all numbers are zero, the compressed IPv6 address consists of
just two colons, without any digits.

474 | Chapter8: URLs, Paths, and Internet Addresses

For example, 1762::B03:1:AF18 is the compressed form of 1762:0:0:0:0:B03:1:AF18.
The regular expressions in this section will match both the compressed and the standard
form of the IPv6 address. Check whether the whole subject text is an IPv6 address using
standard or compressed notation:
\A(?:
Standard
(?:[A-Fo-9]{1,4}:){7}[A-F0-9]{1,4}
Compressed with at most 7 colons
| (?=(2:[A-Fo0-9]{0,4}:){0,7}[A-F0-9]{0,4}
\Z) # and anchored
and at most 1 double colon
(([0-9A-F1{1,4}:){1,7}]:)((:[0-9A-F]{1,4}){1,7}]:)
Compressed with 8 colons
| (?:[A-F0-91{1,4}:){7}:|: (: [A-F0-9]{1,4}){7}
Nz
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

A(2:(2:[A-F0-91{1,4}:){7}[A-F0-9]{1,4}| (?=(?:[A-F0-9]{0,4}:){0, 7}«
[A-F0-9]{0,4}$) (([0-9A-F]{1,4}:){1,7}]:)((:[0-9A-F]{1,4}){1,7}]:)«
| (?:[A-FO-91{1,4}:){7}:]|:(:[A-F0-91{1,4}){7})$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find IPv6 address using standard or compressed notation within a larger collection of
text:

< \w]) (2

Standard

(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
Compressed with at most 7 colons
[(?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}
(?![:.\w])) # and anchored
and at most 1 double colon
(([0-9A-F]{1,4}:){1,7}]:)((: [0-9A-F]{1,4}){1,7}:)
Compressed with 8 colons
| (2:[A-F0-9]{1,4}:){7}:|: (:[A-F0-9]{1,4}){7}
Y2 \w])
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 don’t support lookbehind, so we have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. We cannot use a word boundary, because the address
may start with a colon, which is not a word character:
(2:
Standard
(?:[A-F0-91{1,4}:){7}[A-F0-9]{1,4}

8.17 Matching IPv6 Addresses | 475

Compressed with at most 7 colons
[(?=(?:[A-Fo-9]{0,4}:){0,7}[A-F0-9]{0,4}
(?'[:.\w])) # and anchored
and at most 1 double colon
(([0-9A-F1{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:)
Compressed with 8 colons
[(?:[A-FO-91{1,4}:){7}:|:(:[A-F0-9]{1,4}){7}
Y= \w])
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

(?2:(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}| (?=(?:[A-F0-9]{0,4}:){0,7}«
[A-F0-91{0,4}(?![:.\w])) (([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}]:) ¢
| (2:[A-F0-9]{1,4}:){7}:|: (:[A-F0-9]{1,4}){7}) (2! [:.\w])

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Compressed mixed notation

Match an IPv6 address using compressed mixed notation. Compressed mixed notation
is the same as mixed notation, except that one sequence of one or more words that are
zero may be omitted, leaving only the colons before and after the omitted zeros. The
four decimal bytes must all be specified, even if they are zero. Addresses using com-
pressed mixed notation can be recognized by the occurrence of two adjacent colons in
the first part of the address and the three dots in the second part. Only one sequence
of zeros may be omitted; otherwise, it would be impossible to determine how many
words have been omitted in each sequence. If the omitted sequence of zeros is at the
start of the IP address, it will begin with two colons rather than with a digit.

For example, the IPv6 address 1762::B03:127.32.67.15 is the compressed form of
1762:0:0:0:0:B03:127.32.67.15. The regular expressions in this section will match
both compressed and noncompressed IPv6 address using mixed notation.

Check whether the whole subject text is an IPv6 address using compressed or non-
compressed mixed notation:

\A
(2:
Non- compressed
(?:[A-Fo-9]{1,4}:){6}
Compressed with at most 6 colons
| (?=(?:[A-Fo-9]{0,4}:){0,6}
(?:[0-91{1,3}\.){3}[0-9]{1,3} # and 4 bytes
\Z) # and anchored
and at most 1 double colon
(([0-9A-F1{1,4}:){0,5}| :) ((:[0-9A-F]{1,4}){1,5}:]:)
Compressed with 7 colons and 5 numbers

;::(?:[A-Fo-9]{1,4}!){5}

476 | Chapter8: URLs, Paths, and Internet Addresses

255.255.255.
(?:(2:25[0-5]|2[0-4][0-9]]1[0-9][0-9]|[1-9]?[0-9])\.){3}
255
(?2:25[0-5]|2[0-4][0-9]]|1[0-9][0-9]|[1-9]?[0-9])
\Z

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

A(2:(2:[A-F0-9]{1,4}:){6}| (?=(?:[A-F0-9]{0,4}:){0,6}(?:[0-9]1{1,3}\.) «
{3}[0-9]{1,3}$) (([0-9A-F]{1,4}:){0,5}|:) ((:[0-9A-F]{1,4}){1,5}:]:)«
|::(2:[A-F0-91{1,4}:){5})(?:(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]] «
[1-9]?[0-9])\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]2)$%

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find IPv6 address using compressed or noncompressed mixed notation within a larger
collection of text:

(<! \w])

(2:

Non-compressed

(?:[A-Fo-9]{1,4}:){6}

Compressed with at most 6 colons

[(?=(?:[A-F0-9]{0,4}:){0,6}
(?:[0-91{1,3}\.){3}[0-9]{1,3} # and 4 bytes
:A\w])) # and anchored

and at most 1 double colon

(([0-9A-F]{1,4}:){0,5}|:) ((:[0-9A-F]{1,4}){1,5}:]:)

Compressed with 7 colons and 5 numbers

;::(?:[A—Fo—9]{1,4}:){5}

255.255.255.
(?2:(?:25[0-5]|2[0-4][0-9][1[0-9][0-9][[1-9]?[0-9])\.){3}
255
(?2:25[0-5]]2[0-4][0-9]|1[0-9][0-9][[1-9]?[0-9])
(2!1]:.\w])

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 don’t support lookbehind, so we have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. We cannot use a word boundary, because the address
may start with a colon, which is not a word character.

(2:

Non-compressed

(?:[A-F0-9]{1,4}:){6}

Compressed with at most 6 colons

| (?=(?:[A-F0-9]{0,4}:){0,6}

(?:[0-91{1,3}\.){3}[0-9]{1,3} # and 4 bytes

8.17 Matching IPv6 Addresses | 477

:\w)) # and anchored

and at most 1 double colon
(([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:]:)
Compressed with 7 colons and 5 numbers
;::(?:[A—FO—9]{1,4}:){5}
255.255.255.
(?:(2:25[0-5]|2[0-4][0-9] |1[0-9][0-9]|[1-9]?[0-9])\.){3}
255
(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])
(217:.\w])

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

(2:(?:[A-FO-9]{1,4}:){6}]| (?=(?2:[A-F0-9]{0,4}:){0,6}(?:[0-9]{1,3}\.){3}<
[0-91{1,3}(?![:.\w])) (([0-9A-F]{1,4}:){0,5}|:) ((:[0-9A-F]{1,4}){1,5}:]:) <
|::(?:[A-F0-9]{1,4}:){5})(?:(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9][1-9]?
[0-91)\.){3}(?:25[0-5]|2[0-4][0-9][1[0-9][0-9][[1-9]?[0-9]) (?![:.\w])
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Standard, mixed, or compressed notation

Match an IPv6 address using any of the notations explained earlier: standard, mixed,
compressed, and compressed mixed.

Check whether the whole subject text is an IPv6 address:

\A(?:
Mixed
(2:
Non-compressed
(?:[A-Fo-9]{1,4}:){6}
Compressed with at most 6 colons
[(?=(?:[A-Fo0-9]{0,4}:){0,6}
(?:[0-91{1,3}\.){3}[0-9]{1,3} # and 4 bytes
\Z) # and anchored
and at most 1 double colon
(([0-9A-F1{1,4}:){0,5}| :) ((:[0-9A-F]{1,4}){1,5}:]:)
Compressed with 7 colons and 5 numbers
;::(?:[A—Fo-9]{1,4}:){5}
255.255.255.
(?:(2:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]2[0-9])\.){3}
255
(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])
|# Standard
(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
|# Compressed with at most 7 colons

478 | Chapter8: URLs, Paths, and Internet Addresses

(?=(?:[A-Fo-9]{0,4}:){0,7}[A-F0-9]{0,4}
\Z) # and anchored

and at most 1 double colon
(([0-9A-F1{1,4}:){1,7}]:)((:[0-9A-F]{1,4}){1,7}]:)
Compressed with 8 colons
;&?:[A-FO—9]{1,4}:){7}:|:(:[A—FO—9]{1,4}){7}

VA

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

A(2:(2:(2:[A-FO-9]{1,4}:){6}| (?=(?:[A-F0-9]{0,4}:){0,6}(?:[0-9]{1,3}«
\.){3}[0-91{1,3}$) (([0-9A-F]{1,4}:){0,5}|:) ((:[0-9A-F]{1,4}){1,5}:]:)«
|::(?:[A-F0-9]{1,4}:){5})(?:(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9] | «
[1-9]2[0-9])\.){3}(?:25[0-5]|2[0-4][0-9][1[0-9][0-9][[1-9]?[0-9])]«
(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}| (?=(?:[A-F0-9]{0,4}:){0,7} ¢
[A-F0-9]{0,4}$) (([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:)]«
(2:[A-F0-91{1,4}:){7}:|: (: [A-F0-91{1,4}){7})$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find an IPv6 address using standard or mixed notation within a larger collection of text:

< \w]) (2
Mixed
(2:
Non-compressed
(?:[A-Fo-9]{1,4}:){6}
Compressed with at most 6 colons
[(?=(?:[A-Fo-9]{0,4}:){0,6}
(?:[0-91{1,3}\.){3}[0-91{1,3} # and 4 bytes
(2. \w])) # and anchored
and at most 1 double colon
(([0-9A-F]{1,4}:){0,5}]:)((: [0-9A-F]{1,4}){1,5}:]:)
Compressed with 7 colons and 5 numbers
;::(?:[A—Fo-9]{1,4}:){5}
255.255.255.
(?2:(?:25[0-5]|2[0-4][0-9][1[0-9][0-9][[1-9]?[0-9])\.){3}
255
(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])
|# Standard
(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
|[# Compressed with at most 7 colons
(?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}
(?!'[:.\w])) # and anchored
and at most 1 double colon
(([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}]:)

Compressed with 8 colons

8.17 Matching IPv6 Addresses | 479

| (2 A Fo-9]{1,4}:){7}:|: (:[A-F0o-9]{1,4}){7}
)21 Aw])
Regexopﬁons:Free-spacing,caseinsensidve
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 don’t support lookbehind, so we have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. We cannot use a word boundary, because the address
may start with a colon, which is not a word character.

(2:
Mixed
(2:
Non-compressed
(?:[A-F0-9]{1,4}:){6}
Compressed with at most 6 colons
[(?=(?:[A-Fo-9]{0,4}:){0,6}
(?:10-91{1,31\.){3}[0-9]{1,3} # and 4 bytes
' \w])) # and anchored
and at most 1 double colon
(([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:]:)
Compressed with 7 colons and 5 numbers
;::(?:[A—F0—9]{1,4}:){5}
255.255.255.
(?:(2:25[0-5]|2[0-4][0-9][1[0-9][0-9]|[1-9]?[0-9])\.){3}
255
(?:25[0-5]]2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])
|# Standard
(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
|# Compressed with at most 7 colons
(?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}
(?![:.\w])) # and anchored
and at most 1 double colon
(([0-9A-F]{1,4}:){1,7}|:) ((:[0-9A-F]{1,4}){1,7}|:)
Compressed with 8 colons
| (?:[A-F0-91{1,4}:){7}:|: (: [A-F0-9]{1,4}){7}
)21 \w])
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

(2:(2:(2:[A-Fo-9]1{1,4}:){6}| (?=(?:[A-F0-9]{0,4}:){0,6}(?:[0-9]{1,3}\.){3} <
[0-9]{1,3}(?![:.\w]))(([0-9A-F]{1,4}:){o,s}l:)((:[0-9A-F]{1,4}){1,5}:I:)A
|::(?:[A-F0-9]{1,4}:){5})(?:(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]]«
[1-9]2[0-9])\.){3}(?:25[0-5]|2[0-4][0-9] | [01]?[0-9][0-9]?)]|«
(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}| (?=(?:[A-Fo- 9]{0 4}:){0,7}<
[A-F0-91{0,4}(?![:.\w])) (([0-9A-F1{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}
[:)[(?:[A-F0-9]{1,4}:){7}:|: (:[A-FO-91{1,4){7}) (?![:.\w])

Regex options: Case insensitive

480 | Chapter8: URLs, Paths, and Internet Addresses

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Because of the different notations, matching an IPv6 address isn’t nearly as simple as
matching an IPv4 address. Which notations you want to accept will greatly impact the
complexity of your regular expression. Basically, there are two notations: standard and
mixed. You can decide to allow only one of the two notations, or both. That gives us
three sets of regular expressions.

Both the standard and mixed notations have a compressed form that omits zeros. Al-
lowing compressed notation gives us another three sets of regular expressions.

You’ll need slightly different regexes depending on whether you want to check if a given
string is a valid IPv6 address, or whether you want to find IP addresses in a larger body
of text. To validate the IP address, we use anchors, as Recipe 2.5 explains. JavaScript
uses the «¢» and «$» anchors, whereas Ruby uses (\A> and <\2>. All other flavors support
both. Ruby also supports <*» and «$», but allows them to match at embedded line breaks
in the string as well. You should use the caret and dollar in Ruby only if you know your
string doesn’t have any embedded line breaks.

To find IPv6 addresses within larger text, we use negative lookbehind «(2<![:.\w])>
and negative lookahead «(?![:.\w])> to make sure the address isn’t preceded or fol-
lowed by a word character (letter, digit, or underscore) or by a dot or colon. This makes
sure we don’t match parts of longer sequences of digits and colons. Recipe 2.16 explains
how lookbehind and lookahead work. If lookaround isn’t available, word boundaries
can check that the address isn’t preceded or followed by a word character, but only if
the first and last character in the address are sure to be (hexadecimal) digits. Com-
pressed notation allows addresses that start and end with a colon. If we were to put a
word boundary before or after a colon, it would require an adjacent letter or digit, which
isn’t what we want. Recipe 2.6 explains everything about word boundaries.

Standard notation

Standard IPv6 notation is very straightforward to handle with a regular expression. We
need to match eight words in hexadecimal notation, delimited by seven colons.
<[A-F0-9]{1,4}> matches 1 to 4 hexadecimal characters, which is what we need for a
16-bit word with optional leading zeros. The character class (Recipe 2.3) lists only the
uppercase letters. The case-insensitive matching mode takes care of the lowercase let-
ters. See Recipe 3.4 to learn how to set matching modes in your programming language.

The noncapturing group «(?:[A-F0-9]{1,4}:){7}> matches a hexadecimal word fol-
lowed by a literal colon. The quantifier repeats the group seven times. The first colon
in this regex is part of the regex syntax for noncapturing groups, as Recipe 2.9 explains,
and the second is a literal colon. The colon is not a metacharacter in regular expressions,
except in a few very specific situations as part of a larger regex token. Therefore, we

8.17 Matching IPv6 Addresses | 481

don’t need to use backslashes to escape literal colons in our regular expressions. We
could escape them, but it would only make the regex harder to read.

Mixed notation

The regex for the mixed IPv6 notation consists of two parts. <(?:[A-F0-9]{1,4}:){6}
matches six hexadecimal words, each followed by a literal colon, just like we have a
sequence of seven such words in the regex for the standard IPv6 notation.

Instead of having two more hexadecimal words at the end, we now have a full [Pv4
address at the end. We match this using the “accurate” regex that disallows leading
zeros shown in Recipe 8.16.

Standard or mixed notation

Allowing both standard and mixed notation requires a slightly longer regular expres-
sion. The two notations differ only in their representation of the last 32 bits of the IPv6
address. Standard notation uses two 16-bit words, whereas mixed notation uses 4 dec-
imal bytes, as with IPv4.

The first part of the regex matches six hexadecimal words, as in the regex that supports
mixed notation only. The second part of the regex is now a noncapturing group with
the two alternatives for the last 32 bits. As Recipe 2.8 explains, the alternation operator
(vertical bar) has the lowest precedence of all regex operators. Thus, we need the non-
capturing group to exclude the six words from the alternation.

The first alternative, located to the left of the vertical bar, matches two hexadecimal
words with a literal colon in between. The second alternative matches an IPv4 address.

Compressed notation

Things get quite a bit more complicated when we allow compressed notation. The
reason is that compressed notation allows a variable number of zeros to be omitted.
1:0:0:0:0:6:0:0,1::6:0:0, and 1:0:0:0:0:6: : are three ways of writing the same IPv6
address. The address may have at most eight words, but it needn’t have any. If it has
less than eight, it must have one double-colon sequence that represents the omitted
Z€r08.

Variable repetition is easy with regular expressions. If an IPv6 address has a double
colon, there can be at most seven words before and after the double colon. We could
easily write this as:

([0-9A-F1{1,4}:){1,7} # 1 to 7 words to the left
| : # or a double colon at the start
)

(
(:[0-9A-F]{1,4}){1,7} # 1 to 7 words to the right

482 | Chapter8: URLs, Paths, and Internet Addresses

| : # or a double colon at the end

)

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\

W

This regular expression and the ones that follow in this discussion also
work with JavaScript if you eliminate the comments and extra white-
Wls space. JavaScript supports all the features used in these regexes, except
" free-spacing, which we use here to make these regexes easier to
understand. Or, you can use the XRegExp library which enables free-
spacing regular expressions in JavaScript, among other regex syntax
enhancements.

This regular expression matches all compressed IPv6 addresses, but it doesn’t match
any addresses that use noncompressed standard notation.

This regex is quite simple. The first part matches 1 to 7 words followed by a colon, or
just the colon for addresses that don’t have any words to the left of the double colon.
The second part matches 1 to 7 words preceded by a colon, or just the colon for ad-
dresses that don’t have any words to the right of the double colon. Put together, valid
matches are a double colon by itself, a double colon with 1 to 7 words at the left only,
a double colon with 1 to 7 words at the right only, and a double colon with 1 to 7 words
at both the left and the right.

It’s the last part that is troublesome. The regex allows 1 to 7 words at both the left and
the right, as it should, but it doesn’t specify that the total number of words at the left
and right must be 7 or less. An IPv6 address has 8 words. The double colon indicates
we’re omitting at least one word, so at most 7 remain.

Regular expressions don’t do math. They can count if something occurs between 1 and
7 times. But they cannot count if two things occur for a total of 7 times, splitting those
7 times between the two things in any combination.

To understand this problem better, let’s examine a simple analog. Say we want to match
something in the form of aaaaxbbb. The string must be between 1 and 8 characters long
and consist of 0 to 7 times a, exactly one x, and 0 to 7 times b.

There are two ways to solve this problem with a regular expression. One way is to spell
out all the alternatives. The next section discussing compressed mixed notation uses
this. It can result in a long-winded regex, but it will be easy to understand.

\A(?:a{7}x

| a{6}xb?
| a{5}xb{o,2}
| a{4}xb{o,3}
| a{3}xb{o,4}
| a{2}xb{o,5}
| axb{o,6}

8.17 Matching IPv6 Addresses | 483

| xb{o,7}
\Z
Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This regular expression has one alternative for each of the possible number of letters
a. Each alternative spells out how many letters b are allowed after the given number of
letters a and the x have been matched.

The other solution is to use lookahead. This is the method used for the regex within
the “Solution” section that matches an IPv6 address using compressed notation. If
you’re not familiar with lookahead, see Recipe 2.16 first. Using lookahead, we can
essentially match the same text twice, checking it for two conditions.

\A
(?=[abx]{1,8}\2)
a{0,7}xb{o,7}
\Z
Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The <\A> at the start of the regex anchors it to the start of the subject text. Then the
positive lookahead kicks in. It checks whether a series of 1 to 8 letters <a», , and/or
> can be matched, and that the end of the string is reached when those 1 to 8 letters
have been matched. The (\2) inside the lookahead is crucial. In order to limit the regex
to strings of eight characters or less, the lookahead must test that there aren’tany further
characters after those that it matched.

In a different scenario, you might use another kind of delimiter instead of <\A> and
A\2>. If you wanted to do a “whole words only” search for aaaaxbbb and friends, you
would use word boundaries. But to restrict the regex match to the right length, you
have to use some kind of delimiter, and you have to put the delimiter that matches the
end of the string both inside the lookahead and at the end of the regular expression. If
you don’t, the regular expression will partly match a string that has too many
characters.

When the lookahead has satisfied its requirement, it gives up the characters that it has
matched. Thus, when the regex engine attempts <a{0,7}, it is back at the start of the
string. The fact that the lookahead doesn’t consume the text that it matched is the key
difference between a lookahead and a noncapturing group, and is what allows us to
apply two patterns to a single piece of text.

Although <a{0,7}xb{0,7}> on its own could match up to 15 letters, in this case it can
match only 8, because the lookahead already made sure there are only 8 letters. All
«a{0,7}xb{0,7}> has to do is to check that they appear in the right order. In fact,
@*xb*» would have the exact same effect as <a{0,7}xb{0,7}> in this regular expression.

The second (\Z> at the end of the regex is also essential. Just like the lookahead needs
to make sure there aren’t too many letters, the second test after the lookahead needs

484 | Chapter8: URLs, Paths, and Internet Addresses

to make sure that all the letters are in the right order. This makes sure we don’t match
something like axba, even though it satisfies the lookahead by being between 1 and 8
characters long.

Compressed mixed notation

Mixed notation can be compressed just like standard notation. Although the four bytes
at the end must always be specified, even when they are zero, the number of hexadec-
imal words before them again becomes variable. If all the hexadecimal words are zero,
the IPv6 address could end up looking like an IPv4 address with two colons before it.

Creating a regex for compressed mixed notation involves solving the same issues as for
compressed standard notation. The previous section explains all this.

The main difference between the regex for compressed mixed notation and the regex
for compressed (standard) notation is that the one for compressed mixed notation
needs to check for the IPv4 address after the six hexadecimal words. We do this check
at the end of the regex, using the same regex for accurate IPv4 addresses from
Recipe 8.16 that we used in this recipe for noncompressed mixed notation.

We have to match the IPv4 part of the address at the end of the regex, but we also have
to check for it inside the lookahead that makes sure we have no more than six colons
or six hexadecimal words in the IPv6 address. Since we’re already doing an accurate
test at the end of the regex, the lookahead can suffice with a simple IPv4 check. The
lookahead doesn’t need to validate the IPv4 part, as the main regex already does that.
But it does have to match the IPv4 part, so that the end-of-string anchor at the end of
the lookahead can do its job.

Standard, mixed, or compressed notation

The final set of regular expressions puts it all together. These match an IPv6 address in
any notation: standard or mixed, compressed or not.

These regular expressions are formed by alternating the ones for compressed mixed
notation and compressed (standard) notation. These regexes already use alternation to
match both the compressed and noncompressed variety of the IPv6 notation they
support.

The result is a regular expression with three top-level alternatives, with the first alter-
native consisting of two alternatives of its own. The first alternative matches an IPv6
address using mixed notation, either noncompressed or compressed. The second al-
ternative matches an IPv6 address using standard notation. The third alternative covers
the compressed (standard) notation.

We have three top-level alternatives instead of two alternatives that each contain their
own two alternatives because there’s no particular reason to group the alternatives for
standard and compressed notation. For mixed notation, we do keep the compressed

8.17 Matching IPv6 Addresses | 485

and noncompressed alternatives together, because it saves us having to spell out the
[Pv4 part twice.

Essentially, we combined this regex:
~(6words | compressedéwords)ip4$
and this regex:
~(8words | compressed8words)$
into:
~((6words | compressedéwords)ip4|8words | compressed8words)$
rather than:

~((bwords | compressedéwords)ip4 | (8words | compressed8words))$

See Also

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains word boundaries.
Recipe 2.9 explains grouping. Recipe 2.8 explains alternation. Recipe 2.12 explains
repetition. Recipe 2.16 explains lookaround. Recipe 2.18 explains how to add
comments.

8.18 Validate Windows Paths

Problem

You want to check whether a string looks like a valid path to a folder or file on the
Microsoft Windows operating system.

Solution

Drive letter paths

\A

[a-z]:\\ # Drive
(2:[M\\/:*2"<> [\r\n]+\\)* # Folder
[M\\/:*2"<> [\r\n]* # File
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

SR FANY Y EANVALFAR S AVAV I FANY kol EANVALFAR ST AV AV Y bt
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

486 | Chapter8: URLs, Paths, and Internet Addresses

Download from Wow! eBook <www.wowebook.com>

Drive letter and UNC paths

\A

(?:[a-z]:]\\\\[a-20-9_.$\®-]+\\[a-z0-9 .$\e-]+)\\ # Drive
(2[R \r\n]+\\) * # Folder
[P/ :*2"< [\r\n]* # File
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

A(2:[a-z]: [\\\\[a-20-9_.$o-]+\\[a-20-9_.$o-T)\\(2:[M\\/:*2"<> | \r\n]+\\) *«
[M\\/:*¥2"<>|\r\n]*$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Drive letter, UNC, and relative paths

\A

(2:(2:[a-z]:|\\\\[a-z0-9_.$\e-]+\\[a-z0-9 .$\e-]+)\\| # Drive
A2V c*2"< [\r\n]+\\?) # Relative path

[NV x|\ r\n]+\\)* # Folder

[M\\/:*2"<> | \r\n]* # File

\z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

A(2:(2:[a-z]: [\\\\[a-20-9_.$e-]+\\[a-20-9_.$e-J+)\\[\\?2[~\\/:*¥2"<> | <
AP\NTRN2) (22 [N/ 22 \r\n TR\) ¥ [AN/ ¥2" < [\r\n]*$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion

Drive letter paths

Matching a full path to a file or folder on a drive that has a drive letter is very straight-
forward. The drive is indicated with a single letter, followed by a colon and a backslash.
We easily match this with <[a-z]:\\». The backslash is a metacharacter in regular ex-
pressions, and so we need to escape it with another backslash to match it literally.

Folder and filenames on Windows can contain all characters, except these:
\/:*?"<>|. Line breaks aren’t allowed either. We can easily match a sequence of all
characters except these with the negated character class [*\\/:*?"<>|\r\n]+>. The
backslash is a metacharacter in character classes too, so we escape it. <\r> and <\n> are
the two line break characters. See Recipe 2.3 to learn more about (negated) character
classes. The plus quantifier (Recipe 2.12) specifies we want one or more such
characters.

8.18 Validate Windows Paths | 487

Folders are delimited with backslashes. We can match a sequence of zero or more
folders with «(2:[*\\/:*2"<>[\r\n]+\\)*®, which puts the regex for the folder name
and a literal backslash inside a noncapturing group (Recipe 2.9) that is repeated zero
or more times with the asterisk (Recipe 2.12).

To match the filename, we use <[*\\/:*?"<>|\r\n]*>. The asterisk makes the filename
optional, to allow paths that end with a backslash. If you don’t want to allow paths
that end with a backslash, change the last <* in the regex into a <.

Drive letter and UNC paths

Paths to files on network drives that aren’t mapped to drive letters can be accessed
using Universal Naming Convention (UNC) paths. UNC paths have the form \\server
\share\folder\file.

We can easily adapt the regex for drive letter paths to support UNC paths as well. All
we have to do is to replace the <[a-z] :» part that matches the drive letter with something
that matches a drive letter or server name.

«(?:[a-z]:|\\\\[a-z0-9_.$e-]+\\[a-2z0-9_.$e-]+)> does that. The vertical bar is the
alternation operator (Recipe 2.8). It gives the choice between a drive letter matched
with <[a-z]:> or a server and share name matched with \\\\[a-z0-9_.$e-]+\\[a-
20-9_.$e-]+. Thealternation operator has the lowest precedence of all regex operators.
To group the two alternatives together, we use a noncapturing group. As Recipe 2.9
explains, the characters <(?:> form the somewhat complicated opening bracket of a
noncapturing group. The question mark does not have its usual meaning after a
parenthesis.

The rest of the regular expression can remain the same. The name of the share in UNC
paths will be matched by the part of the regex that matches folder names.

Drive letter, UNC, and relative paths

A relative path is one that begins with a folder name (perhaps the special folder .. to
select the parent folder) or consists of just a filename. To support relative paths, we
add a third alternative to the “drive” portion of our regex. This alternative matches the
start of a relative path rather than a drive letter or server name.

AN?[M\N/ %2> [\r\n]+\\?> matches the start of the relative path. The path can begin
with a backslash, but it doesn’t have to. \\\?> matches the backslash if present, or
nothing otherwise. <[*\\/:*?"<>|\r\n]+> matches a folder or filename. If the relative
path consists of just a filename, the final <\\\?> won’t match anything, and neither will
the “folder” and “file” parts of the regex, which are both optional. If the relative path
specifies a folder, the final <\\\?> will match the backslash that delimits the first folder
in the relative path from the rest of the path. The “folder” part then matches the re-
maining folders in the path, if any, and the “file” part matches the filename.

488 | Chapter8: URLs, Paths, and Internet Addresses

The regular expression for matching relative paths no longer neatly uses distinct parts
of the regex to match distinct parts of the subject text. The regex part labeled “relative
path” will actually match a folder or filename if the path is relative. If the relative path
specifies one or more folders, the “relative path” part matches the first folder, and the
“folder” and “file” paths match what’s left. If the relative path is just a filename, it will
be matched by the “relative path” part, leaving nothing for the “folder” and “file” parts.
Since we’re only interested in validating the path, this doesn’t matter. The comments
in the regex are just labels to help us understand it.

If we wanted to extract parts of the path into capturing groups, we’d have to be more
careful to match the drive, folder, and filename separately. The next recipe handles that
problem.

See Also

Recipe 8.19 also validates a Windows path but adds capturing groups for the drive,
folder, and file, allowing you to extract those separately.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.2 explains
how to match nonprinting characters. Recipe 2.3 explains character classes.
Recipe 2.5 explains anchors. Recipe 2.8 explains alternation. Recipe 2.9 explains
grouping. Recipe 2.12 explains repetition. Recipe 2.18 explains how to add comments.

8.19 Split Windows Paths into Their Parts

Problem

You want to check whether a string looks like a valid path to a folder or file on the
Microsoft Windows operating system. If the string turns out to hold a valid Windows
path, then you also want to extract the drive, folder, and filename parts of the path
separately.

Solution

Drive letter paths

\A
(2<drive>[a-z]:)\\
(2<folder>(2:[M\\/:*2"<> | \r\n]+\\)*)
(2<File>[M\\/:¥2"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java 7, PCRE 7, Perl 5.10, Ruby 1.9

8.19 Split Windows Paths into Their Parts | 489

\A
(?P<drive>[a-z]:)\\
(?P<folder>(2:[~\\/:*2"<> | \r\n]+\\)*)
(?P<file>[M\\/:*¥2"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive

Regex flavors: PCRE 4 and later, Perl 5.10, Python

\A
([a-z]:)\\
((2:["\\/:*2"<> \r\n]+\\)*)
([M\\/:*2" <> [\r\n]*)
\Z
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Mla-z])N [N/ 2" I\ e\n T#\\)F) ([M\N/¥2< [\r\n]*) $
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Drive letter and UNC paths

\A
(?<drive>[a-z]:|\\\\[a-z0-9_.$e-]+\\[a-z0-9 _.$e-]+)\\
(2<folder>(2:[M\\/:*2"<> | \r\n]+\\)*)
(2<File>[M\\/:*2"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java 7, PCRE 7, Perl 5.10, Ruby 1.9

\A
(?P<drive>[a-z]:|\\\\[a-z0-9 .$®-]1+\\[a-20-9 .$e-]+)\\
(?P<folder>(2:[*\\/:*2"<> | \r\n]+\\)*)
(?P<File>[M\\/:*¥2"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive

Regex flavors: PCRE 4 and later, Perl 5.10, Python

\A
([a-z]: |[\\\\[a-z0-9_.$e-]+\\[a-20-9_.$e-]+)\\
((2:[MN\\/*2 < \r\n]+\\)*)
(IM\\V/:*2"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby
A(la-z1:1\\\\[a-20-9_.$e-1+\\[a-2z0-9_.$o-1--)\\((Z: ["\\/:*2"<> [\r\n]+\\)*) ¢
([M\\V/:*2"<> |\r\n]*)$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

490 | Chapter8: URLs, Paths, and Internet Addresses

Drive letter, UNC, and relative paths

These regular expressions can match the empty string. See the “Discus-
sion” section for more details and an alternative solution.

\A
(?<drive>[a-z]:\\|\\\\[a-z0-9_.$e-]+\\[a-20-9 .$o-]+\\|\\?)
(2<folder>(2:[M\\/:*2"<> | \r\n]+\\)*)
(2<File>[M\\/:*2"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java 7, PCRE 7, Perl 5.10, Ruby 1.9

\A
(?P<drive>[a-z]:\\|\\\\[a-20-9 .$®-]+\\[a-20-9 .$e-]+\\|\\?)
(?P<folder>(2:[*\\/:*¥2"<> | \r\n]+\\)*)
(?P<File>[M\\/:*¥2"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive

Regex flavors: PCRE 4 and later, Perl 5.10, Python

\A
([a-z]:\\|\\\\[a-20-9_.$-]+\\[a-z0-9_.$-]+\\|\\?)
((2:[MN\\V/*2 < \r\n]+\\)*)
(IM\\V/:*2"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

M([a-z]:\\[\\\\[a-2z0-9_.$e-]+\\[a-20-9_.$e-]+\\[\\?)«
(2NN x2S I\ TN F) ([N %2 | \r\n]*) $

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion

The regular expressions in this recipe are very similar to the ones in the previous recipe.
This discussion assumes you’ve already read and understood the discussion of the pre-
vious recipe.

Drive letter paths

We’ve made only one change to the regular expressions for drive letter paths, compared
to the ones in the previous recipe. We’ve added three capturing groups that you can
use to retrieve the various parts of the path: «drive), «folder>, and «file>. You can use
these names if your regex flavor supports named capture (Recipe 2.11). If not, you’ll
have to reference the capturing groups by their numbers: 1, 2, and 3. See Recipe 3.9 to

8.19 Split Windows Paths into Their Parts | 491

learn how to get the text matched by named and/or numbered groups in your favorite
programming language.

Drive letter and UNC paths

We've added the same three capturing groups to the regexes for UNC paths.

Drive letter, UNC, and relative paths

Things get a bit more complicated if we also want to allow relative paths. In the previous
recipe, we could just add a third alternative to the drive part of the regex to match the
start of the relative path. We can’t do that here. In case of a relative path, the capturing
group for the drive should remain empty.

Instead, the literal backslash that was after the capturing group for the drives in the
regex in the “drive letter and UNC paths” section is now moved into that capturing
group. We add it to the end of the alternatives for the drive letter and the network share.
We add a third alternative with an optional backslash for relative paths that may or
may not begin with a backslash. Because the third alternative is optional, the whole
group for the drive is essentially optional.

The resulting regular expression correctly matches all Windows paths. The problem is
that by making the drive part optional, we now have a regex in which everything is
optional. The folder and file parts were already optional in the regexes that support
absolute paths only. In other words: our regular expression will match the empty string.

If we want to make sure the regex doesn’t match empty strings, we’d have to add
additional alternatives to deal with relative paths that specify a folder (in which case
the filename is optional), and relative paths that don’t specify a folder (in which case
the filename is mandatory):

\A
(2:
(?<drive>[a-z]:[\\\\[a-20-9_.$e-]+\\[a-2z0-9 .$e-]+)\\
(?2<folder> (2:[*\\/:*¥2"<> | \r\n]+\\)*)
(2<file>[M\\/:*2"<>|\r\n]*)
| (?<relativefolder>\\?(2:["\\/:*?"<>|\r\n]+\\)+)
(2<file2>[M\\/:*2"<>|\r\n]*)
| (?<relativefile>["\\/:*?"<>|\r\n]+)
)
\Z
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java 7, PCRE 7, Perl 5.10, Ruby 1.9

\A

(2:
(?P<drive>[a-z]:|\\\\[a-20-9 _.$e-]+\\[a-2z0-9 .$e-]+)\\
(?P<folder>(?:[*\\/:*2"<>|\r\n]+\\)*)
(2P<File>[M\\/:*2"<>|\r\n]*)

492 | Chapter8: URLs, Paths, and Internet Addresses

| (?P<relativefolder>\\?(2:[M\\/:*?"<>|\r\n]+\\)+)
(7P<file2>[M\\/:*2"<>|\r\n]*)
| (?P<relativefile>[*\\/:*?"<>|\r\n]+)
¢
Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4 and later, Perl 5.10, Python

\A

(2:
([a-z]:|\\\\[a-2z0-9_.$e-]+\\[a-z0-9_.$e-]+)\\
(2 [\ x> [\r\n]+\\)*)
(IM\\/:*2"<> | \r\n]*)

| (\\2(2: [P\ %2 [\r\n]+\\)+)
([M\\/:*2"<> | \r\n]*)

| ([M\\V/:*2"<> | \r\n]+)

\z
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

A(2:([a-z]:|\\\\[a-20-9_.$e-]+\\[a-20-9_.$e-]+)\\«
(2NN 22 S AN TN F) ([N 22)\ \n) | (\\ 2 (2: [M\ /% 2"<> | «
AP\NTRN)+) (AN 2227 [\e\n %) | ([M\N/:*¥2"<> | \r\n]+))$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

The price we pay for excluding zero-length strings is that we now have six capturing
groups to capture the three different parts of the path. You’ll have to look at the scenario
in which you want to use these regular expressions to determine whether it’s easier to
do an extra check for empty strings before using the regex or to spend more effort in
dealing with multiple capturing groups after a match has been found.

When using Perl 5.10, Ruby 1.9, or .NET, we can give multiple named groups the same
name. See the section “Groups with the same name” on page 71 in Recipe 2.11 for
details. This way we can simply get the match of the folder or file group, without wor-
rying about which of the two folder groups or three file groups actually participated in
the regex match:

\A

(2:
(?<drive>[a-z]:[\\\\[a-20-9_.$e-]+\\[a-2z0-9 .$e-]+)\\
(2<folder>(2:[*\\/:*¥2"<> | \r\n]+\\)*)
(2<file>[M\\/:*2"<> | \r\n]*)

| (2<folder>\\?(2:["\\/:¥2"<>|\r\n]+\\)+)
(2<file>[M\\/:%2"<>|\r\n]*)

| (2<Ffile>[M\\/:*¥2"<>|\r\n]+)

8.19 Split Windows Paths into Their Parts | 493

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Perl 5.10, Ruby 1.9

See Also

Recipe 8.18 validates a Windows path using simpler regular expressions without sep-
arate capturing groups for the drive, folder, and file.

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex. Use this to get the parts of the path you’re interested in.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.2 explains
how to match nonprinting characters. Recipe 2.3 explains character classes.
Recipe 2.5 explains anchors. Recipe 2.8 explains alternation. Recipe 2.9 explains
grouping. Recipe 2.11 explains named capturing groups. Recipe 2.12 explains
repetition.

8.20 Extract the Drive Letter from a Windows Path

Problem

You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network. You want to extract the drive letter, if any, from the path. For example,
you want to extract ¢ from c:\folder\file.ext.

Solution
~([a-z]):

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Extracting the drive letter from a string known to hold a valid path is trivial, even if you
don’t know whether the path actually starts with a drive letter. The path could be a
relative path or a UNC path.

Colons are invalid characters in Windows paths, except to delimit the drive letter. Thus,
if we have a letter followed by a colon at the start of the string, we know the letter is
the drive letter.

The anchor ¢*» matches at the start of the string (Recipe 2.5). The fact that the caret
also matches at embedded line breaks in Ruby doesn’t matter, because valid Windows
paths don’t include line breaks. The character class <[a-z]> matches a single letter
(Recipe 2.3). We place the character class between a pair of parentheses (which form
a capturing group) so you can get the drive letter without the literal colon that is also

494 | Chapter8: URLs, Paths, and Internet Addresses

matched by the regular expression. We add the colon to the regular expression to make
sure we're extracting the drive letter, rather than the first letter in a relative path.

See Also
Recipe 2.9 tells you all about capturing groups.

See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

Follow Recipe 8.19 if you don’t know in advance that your string holds a valid Windows
path.

8.21 Extract the Server and Share from a UNC Path

Problem

You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network. If the path is a UNC path, then you want to extract the name of the
network server and the share on the server that the path points to. For example, you
want to extract server and share from \\server\share\folder\file.ext.

Solution
M\\\\([a-2z0-9_.$e-1+)\\([a-z0-9 .%e-]+)

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Extracting the network server and share from a string known to hold a valid path is
easy, even if you don’t know whether the path is a UNC path. The path could be a
relative path or use a drive letter.

UNC paths begin with two backslashes. Two consecutive backslashes are not allowed
in Windows paths, except to begin a UNC path. Thus, if a known valid path begins
with two backslashes, we know that the server and share name must follow.

The anchor ¢*» matches at the start of the string (Recipe 2.5). The fact that the caret
also matches at embedded line breaks in Ruby doesn’t matter, because valid Windows
paths don’t include line breaks. \\\\\» matches two literal backslashes. Since the back-
slash is a metacharacter in regular expressions, we have to escape a backslash with
another backslash if we want to match it as a literal character. The first character class,
<[a-20-9_.$e-]+, matches the name of the network server. The second one, after an-
other literal backslash, matches the name of the share. We place both character classes
between a pair of parentheses, which form a capturing group. That way you can get

8.21 Extract the Server and Share froma UNCPath | 495

the server name alone from the first capturing group, and the share name alone from
the second capturing group. The overall regex match will be \\server\share.

See Also
Recipe 2.9 tells you all about capturing groups.

See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

Follow Recipe 8.19 if you don’t know in advance that your string holds a valid Windows
path.

8.22 Extract the Folder from a Windows Path

Problem

You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network, and you want to extract the folder from the path. For example, you
want to extract \folder\subfolder\ from c:\folder\subfolder\file.ext or \\server
\share\folder\subfolder\file.ext.

Solution
M(la-z]: [\\\\[a-20-9_.$°-1+\\[a-20-9_.$e-1+)2((2:\\|*) ¢
(2:[M\\/ 2" \r\n]+\\)+)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Extracting the folder from a Windows path is a bit tricky if we want to support UNC
paths, because we can’t just grab the part of the path between backslashes. If we did,
we’d be grabbing the server and share from UNC paths too.

The first part of the regex, *([a-z]:|\\\\[a-20-9_.$e-]+\\[a-20-9 .$e-]+)?>, skips
over the drive letter or the network server and network share names at the start of the
path. This piece of the regex consists of a capturing group with two alternatives. The
first alternative matches the drive letter, as in Recipe 8.20, and the second alternative
matches the server and share in UNC paths, as in Recipe 8.21. Recipe 2.8 explains the
alternation operator.

The question mark after the group makes it optional. This allows us to support relative
paths, which don’t have a drive letter or network share.

The folders are easily matched with «(2:[*\\/:*¥2"<>|\r\n]+\\)+>. The character class
matches a folder name. The noncapturing group matches a folder name followed by a
literal backslash that delimits the folders from each other and from the filename. We

496 | Chapter8: URLs, Paths, and Internet Addresses

repeat this group one or more times. This means our regular expression will match only
those paths that actually specify a folder. Paths that specify only a filename, drive, or
network share won’t be matched.

If the path begins with a drive letter or network share, that must be followed by a
backslash. A relative path may or may not begin with a backslash. Thus, we need to
add an optional backslash to the start of the group that matches the folder part of the
path. Since we will only use our regex on paths known to be valid, we don’t have to be
strict about requiring the backslash in case of a drive letter or network share. We only
have to allow for it.

Because we require the regex to match at least one folder, we have to make sure that
our regex doesn’t match e\ as the folder in \\server\share\. That’s why we use
<(\\|*)> rather than <\\?> to add the optional backslash at the start of the capturing
group for the folder.

If you’re wondering why \\server\shar might be matched as the drive and e\ as the
folder, review Recipe 2.13. Regular expression engines backtrack. Imagine this regex:

~([a-z]: |[\\\\[a-2z0-9_.$®-]+\\[a-20-9_.$e-]+)?«
(AN [NV F2" o \r\n]+\\)+)

This regex, just like the regex in the solution, requires at least one nonbackslash char-
acter and one backslash for the path. If the regex has matched \\server\share for the
drive in \\server\share and then fails to match the folder group, it doesn’t just give up;
it tries different permutations of the regex.

In this case, the engine has remembered that the character class [a-z0-9_.$e-]+,
which matches the network share, doesn’t have to match all available characters. One
character is enough to satisfy the «+. The engine backtracks by forcing the character
class to give up one character, and then it tries to continue.

When the engine continues, it has two remaining characters in the subject string to
match the folder: e\. These two characters are enough to satisfy «(?: [*\\/:*¥2"<>|\r\n]
+\\)+, and we have an overall match for the regex. But it’s not the match we wanted.

Using <(\\|*)> instead of <\\?> solves this. It still allows for an optional backslash, but
when the backslash is missing, it requires the folder to begin at the start of the string.
This means that if a drive has been matched, and thus the regex engine has proceeded
beyond the start of the string, the backslash is required. The regex engine will still try
to backtrack if it can’t match any folders, but it will do so in vain because
<«(\\|*)> will fail to match. The regex engine will backtrack until it is back at the start
of the string. The capturing group for the drive letter and network share is optional, so
the regex engine is welcome to try to match the folder at the start of the string.
Although <(\\|*)> will match there, the rest of the regex will not, because «(?:["\
\/:*¥2"<>|[\r\n]+\\)+> does not allow the colon that follows the drive letter or the double
backslash of the network share.

8.22 Extract the Folder from a Windows Path | 497

If you’re wondering why we don’t use this technique in Recipes Recipe 8.18 and
Recipe 8.19, that’s because those regular expressions don’t require a folder. Since ev-
erything after the part that matches the drive in those regexes is optional, the regex
engine never does any backtracking. Of course, making things optional can lead to
different problems, as discussed in Recipe 8.19.

When this regular expression finds a match, the first capturing group will hold the drive
letter or network share, and the second capturing group will hold the folder. The first
capturing group will be empty in case of a relative path. The second capturing group
will always contain at least one folder. If you use this regex on a path that doesn’t specify
a folder, the regex won’t find a match at all.

See Also
Recipe 2.9 tells you all about capturing groups.

See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

Follow Recipe 8.19 if you don’t know in advance that your string holds a valid Windows
path.

8.23 Extract the Filename from a Windows Path

Problem

You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network, and you want to extract the filename, if any, from the path. For example,
you want to extract file.ext from c:\folder\file.ext.

Solution
[M\\/:*¥2"<> | \r\n]+$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Extracting the filename from a string known to hold a valid path is trivial, even if you
don’t know whether the path actually ends with a filename.

The filename always occurs at the end of the string. It can’t contain any colons or
backslashes, so it cannot be confused with folders, drive letters, or network shares,
which all use backslashes and/or colons.

The anchor «$> matches at the end of the string (Recipe 2.5). The fact that the
dollar also matches at embedded line breaks in Ruby doesn’t matter, because valid
Windows paths don’t include line breaks. The negated character class <[*\\/:*?"<>|

498 | Chapter8: URLs, Paths, and Internet Addresses

\r\n]+ (Recipe 2.3) matches the characters that can occur in filenames. Though the
regex engine scans the string from left to right, the anchor at the end of the regex makes
sure that only the last run of filename characters in the string will be matched, giving
us our filename.

If the string ends with a backslash, as it will for paths that don’t specify a filename, the
regex won’t match at all. When it does match, it will match only the filename, so we
don’t need to use any capturing groups to separate the filename from the rest of the path.

See Also

See Recipe 3.7 to learn how to retrieve text matched by the regular expression in your
favorite programming language.

Follow Recipe 8.19if you don’t know in advance that your string holds a valid Windows
path.

8.24 Extract the File Extension from a Windows Path

Problem

You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network, and you want to extract the file extension, if any, from the path. For
example, you want to extract .ext from c:\folder\file.ext.

Solution
\.[AAV/ %2 | \r\n]+$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

We can use the same technique for extracting the file extension as we used for extracting
the whole filename in Recipe 8.23.

The only difference is in how we handle dots. The regex in Recipe 8.23 does not include
any dots. The negated character class in that regex will simply match any dots that
happen to be in the filename.

A file extension must begin with a dot. Thus, we add <\.» to match a literal dot at the
start of the regex.

Filenames such as Version 2.0.txt may contain multiple dots. The last dot is the one
that delimits the extension from the filename. The extension itself should not contain
any dots. We specify this in the regex by putting a dot inside the character class. The
dot is simply a literal character inside character classes, so we don’t need to escape it.
The ¢$» anchor at the end of the regex makes sure we match .txt instead of .0.

8.24 Extract the File Extension from a Windows Path | 499

Download from Wow! eBook <www.wowebook.com>

If the string ends with a backslash, or with a filename that doesn’t include any dots,
the regex won’t match at all. When it does match, it will match the extension, including
the dot that delimits the extension and the filename.

See Also

Follow Recipe 8.19 if you don’t know in advance that your string holds a valid Windows
path.

8.25 Strip Invalid Characters from Filenames

Problem

You want to strip a string of characters that aren’t valid in Windows filenames. For
example, you have a string with the title of a document that you want to use as the
default filename when the user clicks the Save button the first time.

Solution

Regular expression
\\/:"*2¢> |]+
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement
Leave the replacement text blank.

Replacement text flavors: .NET, Java, JavaScript, PHP, Perl, Python, Ruby

Discussion

The characters \/:"*?<>| are not valid in Windows filenames. These characters are
used to delimit drives and folders, to quote paths, or to specify wildcards and redirec-
tion on the command line.

We can easily match those characters with the character class <[\\/:"*2<>|]>. The
backslash is a metacharacter inside character classes, so we need to escape it with
another backslash. All the other characters are always literal characters inside character
classes.

We repeat the character class with a < for efficiency. This way, if the string contains
asequence of invalid characters, the whole sequence will be deleted at once, rather than
character by character. You won’t notice the performance difference when dealing with
very short strings, such as filenames, but it is a good technique to keep in mind when

500 | Chapter8: URLs, Paths, and Internet Addresses

you’re dealing with larger sets of data that are more likely to have longer runs of char-
acters that you want to delete.

Since we just want to delete the offending characters, we run a search-and-replace with
the empty string as the replacement text.

See Also

Recipe 3.14 explains how to run a search-and-replace with a fixed replacement text in
your favorite programming language.

8.25 Strip Invalid Characters from Filenames | 501

CHAPTER 9
Markup and Data Formats

Processing Markup and Data Formats with Regular Expressions

This final chapter focuses on common tasks that come up when working with an as-
sortment of common markup languages and data formats: HTML, XHTML, XML,
CSV, and INI. Although we’ll assume at least basic familiarity with these technologies,
a brief description of each is included next to make sure we’re on the same page before
digging in. The descriptions concentrate on the basic syntax rules needed to correctly
search through the data structures of each format. Other details will be introduced as
we encounter relevant issues.

Although it’s not always apparent on the surface, some of these formats can be sur-
prisingly complex to process and manipulate accurately, at least using regular expres-
sions. When programming, it’s usually best to use dedicated parsers and APIs instead
of regular expressions when performing many of the tasks in this chapter, especially if
accuracy is paramount (e.g., if your processing might have security implications).
However, we don’t ascribe to a dogmatic view that XML-style markup should never
be processed with regular expressions. There are cases when regular expressions are a
great tool for the job, such as when making one-time edits in a text editor, scraping
data from a limited set of HTML files, fixing broken XML files, or dealing with file
formats that look like but aren’t quite XML. There are some issues to be aware of, but
reading through this chapter will ensure that you don’t stumble into them blindly.

For help with implementing parsers that use regular expressions to tokenize custom
data formats, see Recipe 3.22.

Basic Rules for Formats Covered in This Chapter

Following are the basic syntax rules for HTML, XHTML, XML, CSV, and INI files.
Keep in mind that some of the difficulties we’ll encounter throughout this chapter
involve how we should handle cases that deviate from the following rules in expected
or unexpected ways.

503

Hypertext Markup Language (HTML)

HTML is used to describe the structure, semantics, and appearance of billions of
web pages and other documents. Although processing HTML using regular ex-
pressions is a popular task, you should know up front that the language is poorly
suited to the rigidity and precision of regular expressions. This is especially true of
the bastardized HTML that is common on many web pages, thanks in part to the
extreme tolerance for poorly constructed HTML that web browsers are known for.
In this chapter we’ll concentrate on the rules needed to process the key components
of well-formed HTML: elements (and the attributes they contain), character ref-
erences, comments, and document type declarations. This book covers HTML
4.01 (finalized in 1999) and the latest HTMLS5 draft as of mid 2012.

The basic HTML building blocks are called elements. Elements are written using
tags, which are surrounded by angle brackets. Elements usually have both a start
tag (e.g., <html>) and end tag (</html>). An element’s start tag may contain at-
tributes, which are described later. Between the tags is the element’s content, which
can be composed of text and other elements or left empty. Elements may
be nested, but cannot overlap (e.g., <div><div></div></div> is OK, but not
<div></div>). For some elements (such as <p>, which marks a para-
graph), the end tag is optional. A few elements (including
, which terminates
a line) cannot contain content, and never use an end tag. However, an empty ele-
ment may still contain attributes. Empty elements may optionally end with />, as
in
,. HTML element names start with a letter from A—Z. All valid elements
use only letters and numbers in their names. Element names are case-insensitive.

<script> and <style> elements warrant special consideration because they let you
embed scripting language code and stylesheets in your document. These elements
end after the first occurrence of </style> or </script>, even if it appears within a
comment or string inside the style or scripting language.

Attributes appear within an element’s start tag after the element name, and are
separated by one or more whitespace characters. Most attributes are written as
name-value pairs. The following example shows an <a> (anchor) element with two
attributes and the content “Click me!”:

<a href="http://www.regexcookbook.com"
title = 'Regex Cookbook'>Click me!

As shown here, an attribute’s name and value are separated by an equals sign and
optional whitespace. The value is enclosed with single or double quotes. To use
the enclosing quote type within the value, you must use a character reference (de-
scribed next). The enclosing quote characters are not required if the value does not
contain any of the characters double quote, single quote, grave accent, equals, less
than, greater than, or whitespace (written in regex, that’s <*[*" ' =<>\s]+$>). A few
attributes (such as the selected and checked attributes used with some form ele-
ments) affect the element that contains them simply by their presence, and do not
require a value. In these cases, the equals sign that separates an attribute’s name

504 | Chapter9: Markup and Data Formats

and value is also omitted. Alternatively, these “minimized” attributes may reuse
their name as their value (e.g., selected="selected"). Attribute names start with a
letter from A—Z. All valid attributes use only letters, hyphens, and colons in their
names. Attributes may appear in any order, and their names are case-insensitive.

HTMLS5 defines more than 2,000 named character references! and more than a
million numeric character references (collectively, we’ll call these character refer-
ences). Numeric character references refer to a character by its Unicode code point,
and use the format &#nnnn; or &txhhhh;, where nnnn is one or more decimal digits
from 0-9 and hhhh is one or more hexadecimal digits 0-9 and A-F
(case-insensitive). Named character references are written as 8entityname; (case-
sensitive, unlike most other aspects of HTML), and are especially helpful when
entering literal characters that are sensitive in some contexts, such as angle brackets
(81t; and 8gt;), double quotes (8quot;), and ampersands (&).

Also common is the 8nbsp; entity (no-break space, position 0xA0), which is par-
ticularly useful since all occurrences of this character are rendered, even when they
appear in sequence. Spaces, tabs, and line breaks are all normally rendered as a
single space character, even if many of them are entered in a row. The ampersand
character (&) cannot be used outside of character references.

HTML comments have the following syntax:

<l-- this is a comment -->
<l-- so is this, but this comment
spans more than one line -->

Content within comments has no special meaning, and is hidden from view by
most user agents. For compatibility with ancient (pre-1995) browsers, some people
surround the content of <script> and <style> elements with an HTML comment.
Modern browsers ignore these comments and process the script or style content
normally.

HTML documents often start with a document type declaration (informally, a
DOCTYPE), which identifies the permitted and prohibited content for the docu-
ment. The DOCTYPE looks a bit similar to an HTML element, as shown in the
following line used with documents wishing to conform to the HTML 4.01 strict
definition:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

Here is the standard HTML5 DOCTYPE:
<IDOCTYPE html>

. Many characters have more than one corresponding named character reference in HTMLS. For instance,
the symbol = has six: ≈, ≈, ≈, ≈, ≈, and ≈.

Processing Markup and Data Formats with Regular Expressions | 505

Finally, HTMLS5 allows CDATA sections, but only within embedded MathML and
SVG content. CDATA sections were brought over from XML, and are used to
escape blocks of text. They begin with the string <! [CDATA[and end with the first
occurrence of]]>.

So that’s the physical structure of an HTML document in a nutshell.2 Be aware
that real-world HTML is often rife with deviations from these rules, and that most
browsers are happy to accommodate the deviations. Beyond these basics, each
element has restrictions on the content and attributes that may appear within it in
order for an HTML document to be considered valid. Such content rules are be-
yond the scope of this book, but O’Reilly’s HTML & XHTML: The Definitive
Guide by Chuck Musciano and Bill Kennedy is a good source if you need more
information.

W

Because the syntax of HTML is very similar to XHTML and XML
(both described next), many regular expressions in this chapter are
98¢ written to support all three markup languages.

Extensible Hypertext Markup Language (XHTML)

XHTML was designed as the successor to HTML 4.01, and migrated HTML from
its SGML heritage to an XML foundation. However, development of HTML con-
tinued separately. XHTMLS is now being developed as part of the HTMLS5 speci-
fication, and will be the XML serialization of HTMLS5 rather than introducing new
features of its own. This book covers XHTML 1.0, 1.1, and 5.3 Although XHTML
syntax is largely backward-compatible with HTML, there are a few key differences
from the HTML structure we’ve just described:

* XHTML documents may start with an XML declaration such as <?xml ver
sion="1.0" encoding="UTF-8"?>.

* Nonempty elements must have a closing tag. Empty elements must either use
a closing tag or end with />.

¢ Element and attribute names are case-sensitive and use lowercase.

* Due to the use of XML namespace prefixes, both element and attribute names
may include a colon, in addition to the characters found in HTML names.

2. HTML 4.01 defines some esoteric SGML features, including processing instructions (using a different
syntax than XML) and shorthand markup, but recommends against their use. In this chapter, we act as
if these features don’t exist, because browsers do the same don’t support them. If you wish, you can read
about their syntax in Appendix B of the HTML 4.01 specification, in sections B.3.5-7. HTMLS5 explicitly
removes support for these features, which browsers don’t use anyway.

3. If you’re wondering about the missing version numbers, XHTML 2.0 was in development by the W3C
for several years before being scrapped in favor of a refocus on HTMLS. XHTML version numbers 3—4
were skipped outright.

506 | Chapter9: Markup and Data Formats

http://oreilly.com/catalog/9780596527327
http://oreilly.com/catalog/9780596527327
http://www.w3.org/TR/html401/appendix/notes.html#h-B.3.5

* Unquoted attribute values are not allowed. Attribute values must be enclosed
in single or double quotes.

* Attributes must have an accompanying value.

There are a number of other differences between HTML and XHTML that mostly
affect edge cases and error handling, but generally they do not affect the regexes
in this chapter. For more on the differences between HTML and XHTML,
see http://lwww.w3.org/TR/xhtml1/#diffs and http://wiki.whatwg.org/wiki/HTML
_vs. XHTML.

W
o Because the syntax of XHTML is a subset of HTML (as of HTML5)
and is formed from XML, many regular expressions in this chapter
Qs are written to support all three of these markup languages. Recipes
" thatrefer to “(X)HTML” handle HTML and XHTML equally. You
usually cannot depend on a document using only HTML or
XHTML conventions, since mix-ups are common and web brows-

ers generally don’t mind.

Extensible Markup Language (XML)
XML is a general-purpose language designed primarily for sharing structured data.
It is used as the foundation to create a wide array of markup languages, including
XHTML, which we’ve just discussed. This book covers XML versions 1.0 and 1.1.
A full description of XML features and grammar is beyond the scope of this book,
but for our purposes, there are only a few key differences from the HTML syntax
we've already described:

* XML documents may start with an XML declaration such as <?xml ver
sion="1.0" encoding="UTF-8"?>, and may contain other, similarly formatted
processing instructions. For example, <?xml-stylesheet type="text/xsl"
href="transform.xs1t"?> specifies that the XSL transformation file
transform.xslt should be applied to the document.

* The DOCTYPE may include internal markup declarations within square
brackets. For example:

<IDOCTYPE example [
<IENTITY copy "©">
<IENTITY copyright-notice "Copyright © 2012, 0'Reilly">
1>
* Nonempty elements must have a closing tag. Empty elements must either use
a closing tag or end with />.

* XML names (which govern the rules for element, attribute, and character ref-
erence names) are case-sensitive, and may use a large group of Unicode char-
acters. The allowed characters include A—Z, a—z, colon, and underscore, as
well as 0-9, hyphen, and period after the first character. See Recipe 9.4 for
more details.

Processing Markup and Data Formats with Regular Expressions | 507

http://www.w3.org/TR/xhtml1/#diffs
http://wiki.whatwg.org/wiki/HTML_vs._XHTML
http://wiki.whatwg.org/wiki/HTML_vs._XHTML

* Unquoted attribute values are not allowed. Attribute values must be enclosed
in single or double quotes.

* Attributes must have an accompanying value.

There are many other rules that must be adhered to when authoring well-formed
XML documents, or if you want to write your own conforming XML parser. How-
ever, the rules we’ve just described (appended to the structure we’ve already out-
lined for HTML documents) are generally enough for simple regex searches.

W
o Because the syntax of XML is very similar to HTML and forms the
"‘:‘ basis of XHTML, many regular expressions in this chapter are
T Q8 written to support all three markup languages. Recipes that refer
* to “XML-style” markup handle XML, XHTML, and HTML
equally.

Comma-Separated Values (CSV)

CSVis an old but still very common file format used for spreadsheet-like data. The
CSV format is supported by most spreadsheets and database management systems,
and is especially popular for exchanging data between applications. Although there
is no official CSV specification, an attempt at a common definition was published
in October 2005 as RFC 4180 and registered with IANA as MIME type “text/csv.”
Before this RFC was published, the CSV conventions used by Microsoft Excel had
been established as more or less a de facto standard. Because the RFC specifies
rules that are very similar to those used by Excel, this doesn’t present much of a
problem. This chapter covers the CSV formats specified by RFC 4180 and used by
Microsoft Excel 2003 and later.

As the name suggests, CSV files contain a list of values, known as record items or
fields, that are separated by commas. Each row, or record, starts on a new line. The
last field in a record is not followed by a comma. The last record in a file may or
may not be followed by a line break. Throughout the entire file, each record should
have the same number of fields.

The value of each CSV field may be unadorned or enclosed with double quotes.
Fields may also be entirely empty. Any field that contains commas, double quotes,
or line breaks must be enclosed in double quotes. A double quote appearing inside
a field is escaped by preceding it with another double quote.

The first record in a CSV file is sometimes used as a header with the names of each
column. This cannot be programmatically determined from the content of a CSV
file alone, so some applications prompt the user to decide how the first row should

be handled.

RFC 4180 specifies that leading and trailing spaces in a field are part of the value.
Some older versions of Excel ignored these spaces, but Excel 2003 and later follow
the RFC on this point. The RFC does not specify error handling for unescaped
double quotes or pretty much anything else. Excel’s handling can be a bit

508 | Chapter9: Markup and Data Formats

unpredictable in edge cases, so it’s important to ensure that double quotes are
escaped, fields containing double quotes are themselves enclosed with double
quotes, and quoted fields do not contain leading or trailing spaces outside of the
quotes.

The following CSV example demonstrates many of the rules we’ve just discussed.
It contains two records with three fields each:

aaa,b b,"""c"" cc
1,,"333, three,
still more threes"

Table 9-1 shows how the CSV content just shown would be displayed in a table.

Table 9-1. Example CSV output

aaa b b "c" cc

1 (empty) 333, three,
still more threes

Although we’ve described the CSV rules observed by the recipes in this chapter,
there is a fair amount of variation in how different programs read and write CSV
files. Many applications even allow files with the .csv extension to use any delimiter,
not just commas. Other common variations include how commas (or other field
delimiters), double quotes, and line breaks are embedded within fields, and wheth-
er leading and trailing whitespace in unquoted fields is ignored or treated as literal
text.
Initialization files (INI)

The lightweight INI file format is commonly used for configuration files. It is poorly
defined, and as a result, there is plenty of variation in how different programs and
systems interpret the format. The regexes in this chapter adhere to the most com-
mon INI file conventions, which we’ll describe here.

INI file parameters are name-value pairs, separated by an equals sign and optional
spaces or tabs. Values may be enclosed in single or double quotes, which allows
them to contain leading and trailing whitespace and other special characters.

Parameters may be grouped into sections, which start with the section’s name en-
closed in square brackets on its own line. Sections continue until either the next
section declaration or the end of the file. Sections cannot be nested.

A semicolon marks the start of a comment, which continues until the end of the
line. A comment may appear on the same line as a parameter or section declaration.
Content within comments has no special meaning.

Following is an example INI file with an introductory comment (noting when the
file was last modified), two sections (“user” and “post”), and a total of three pa-
rameters (“name,” “title,” and “content”):

Processing Markup and Data Formats with Regular Expressions | 509

; last modified 2012-02-14

[user]
name=J. Random Hacker

[post]
title = How do I love thee, regular expressions?

content = "Let me count the ways..."

9.1 Find XML-Style Tags

Problem

You want to match any HTML, XHTML, or XML tags in a string, in order to remove,
modify, count, or otherwise deal with them.

Solution

The most appropriate solution depends on several factors, including the level of accu-
racy, efficiency, and tolerance for erroneous markup that is acceptable to you. Once
you’ve determined the approach that works for your needs, there are any number of
things you might want to do with the results. But whether you want to remove the tags,
search within them, add or remove attributes, or replace them with alternative markup,
the first step is to find them.

Be forewarned that this will be a long recipe, fraught with subtleties, exceptions, and
variations. If you’re looking for a quick fix and are not willing to put in the effort to
determine the best solution for your needs, you might want to jump to the “(X)HTML
tags (loose)” section of this recipe, which offers a decent mix of tolerance versus
precaution.

Quick and dirty

This first solution is simple and more commonly used than you might expect, but it’s
included here mostly for comparison and for an examination of its flaws. It may be
good enough when you know exactly what type of content you’re dealing with and are
not overly concerned about the consequences of incorrect handling. This regex matches
a < symbol, then simply continues until the first > occurs:
<[]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Allow > in attribute values

This next regex is again rather simplistic and does not handle all cases correctly. How-
ever, it might work well for your needs if it will be used to process only snippets of valid

510 | Chapter9: Markup and Data Formats

(X)HTML. It’s advantage over the previous regex is that it correctly passes over > char-
acters that appear within attribute values:
<(?:[/\>lll] |I|[/\ll]*ll| l[/\l]*l)*>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here is the same regex, with added whitespace and comments for readability:

<
(?2: [*»"'] # Non-quoted character
| "[~"]*" # Double-quoted attribute value
| "[~']*" # Single-quoted attribute value
)*
>
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

The two regexes just shown work identically, so you can use whichever you prefer.
JavaScripters are stuck with the first option unless using the XRegExp library, since
standard JavaScript lacks a free-spacing option.

(X)HTML tags (loose)

In addition to supporting > characters embedded in attribute values, this next regex
emulates the lenient rules for (XYHTML tags that browsers actually implement. This
both improves accuracy with poorly formed markup and lets the regex avoid content
that does not look like a tag, including comments, DOCTYPEs, and unencoded < char-
acters in text. To get these improvements, two main changes are made. First, there is
extra handling that helps determine where attribute values start and end in edge cases,
such as when tags contain stray quote marks as part of an unquoted attribute value or
separate from any legit attribute. Second, special handling is added for the tag name,
including requiring the name to begin with a letter A~Z. The tag name is captured to
backreference 1 in case you need to refer back to it:
SAIA2a-2] [N /1) (3\S* (2 T 1] [T4 [\ 19 [1)*(2501)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

And in free-spacing mode:

<
/? # Permit closing tags
([A-Za-z][*\s>/]*) # Capture the tag name to backreference 1
(2: # Attribute value branch:
= \s* # Signals the start of an attribute value
(20 "~ # Double-quoted attribute value
| ‘[~] # Single-quoted attribute value
| [M\s>]+ # Unquoted attribute value
)

9.1 Find XML-StyleTags | 511

| # Non-attribute-value branch:

[*>] # Character outside of an attribute value
)*
(2:>]9) # End of the tag or string

Regex options: Free-spacing

Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

The last two regexes work identically, although the latter cannot be used in JavaScript
(without XRegExp), since it lacks a free-spacing option.

(X)HTML tags (strict)

This regex is more complicated than those we’ve already seen in this recipe, because it
actually follows the rules for (X)HTML tags explained in the introductory section of
this chapter. This is not always desirable, since browsers don’t strictly adhere to these
rules. In other words, this regex will avoid matching content that does not look like a
valid (X)HTML tag, at the cost of possibly not matching some content that browsers
would in factinterpret as a tag (e.g., if your markup uses an attribute name that includes
characters not accounted for here, or if attributes are included in a closing tag). Both
HTML and XHTML tag rules are handled together since it is common for their con-
ventions to be mixed. The tag name is captured to backreference 1 or 2 (depending on
whether it is an opening or closing tag), in case you need to refer back to it:
<(?:([A-Z][-:A-Z0-97*) (2:\s+[A-Z][-:A-Z0-9]*(?:\s*=\s*(2:"[A"]*"| «
TR =ONsTH)))M\ s* /2 |/ ([A-Z][-:A-Z0-9]*)\s*)>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

To make it a little less cryptic, here is the same regex in free-spacing mode with
comments:

<
(2: # Branch for opening tags:
([A-Z][-:A-Z0-9]*) # Capture the opening tag name to backreference 1
(2: # This group permits zero or more attributes
\s+ # MWhitespace to separate attributes
[A-Z][-:A-Z0-9]* # Attribute name
(?: \s*=\s* # Attribute name-value delimiter
(2: "[A]E" # Double-quoted attribute value
| [~]E # Single-quoted attribute value
| [*"""=<>\s]+ # Unquoted attribute value (HTML)
)? # Permit attributes without a value (HTML)
)*
\s* # Permit trailing whitespace
/? # Permit self-closed tags
| # Branch for closing tags:
/

([A-Z][-:A-Z0-9]*) # Capture the closing tag name to backreference 2

512 | Chapter9: Markup and Data Formats

\s* # Permit trailing whitespace

)

>
Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

XML tags (strict)

XML is a precisely specified language, and requires that user agents strictly adhere to
and enforce its rules. This is a stark change from HTML and the longsuffering browsers
that process it. We’ve therefore included only a “strict” version for XML:
<2 ([aA-Z][- o \w]*) (2 \s+[_tA-Z][- \w]R\sk=\g* (2 [~]| T[A]F)) *K\s*a
21/ ([_A-Z][- . \w]*)\s*)>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Once again, here is the same regex in free-spacing mode with added comments:

<
(?: # Branch for opening tags:
([_:A-Z][-.:\w]*) # Capture the opening tag name to backreference 1
(2: # This group permits zero or more attributes
\s+ # Whitespace to separate attributes
[:A-Z][-.:\w]* # Attribute name
\s*=\s* # Attribute name-value delimiter
(20 "[At]E" # Double-quoted attribute value
| [~ # Single-quoted attribute value
)
)*
\s* # Permit trailing whitespace
/? # Permit self-closed tags
| # Branch for closing tags:

/
([_:A-Z][-.:\w]*) # Capture the closing tag name to backreference 2
\s* Permit trailing whitespace

)

>
Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

++

Like the previous solution for (XYHTML tags, these regexes capture the tag name to
backreference 1 or 2, depending on whether an opening or closing tag is matched. The
XML tag regex is a little shorter than the (XYHTML version since it doesn’t have to deal
with HTML-only syntax (minimized attributes and unquoted values). It also allows a
wider range of characters to be used for element and attribute names.

9.1 Find XML-StyleTags | 513

Discussion

A few words of caution

Although it’s common to want to match XML-style tags using regular expressions,
doing it safely requires balancing trade-offs and thinking carefully about the data you’re
working with. Because of these difficulties, some people choose to forgo the use of
regular expressions for any sort of XML or (X)HTML processing in favor of specialized
parsers and APIs. That’s an approach you should seriously consider, since such tools
are sometimes easier to use and typically include robust detection or handling for in-
correct markup. In browser-land, for example, it’s usually best to take advantage of the
tree-based Document Object Model (DOM) for your HTML search and manipulation
needs. Elsewhere, you might be well-served by a SAX parser or XPath. However, you
may occasionally find places where regex-based solutions make a lot of sense and work
perfectly fine.

B
o)

If you want to sterilize HTML from untrusted sources because you’re
worried about specially-crafted malicious HTML and cross-site script-
ing (XSS) attacks, your safest bet is to first convert all <, >, and & char-
acters to their corresponding named character references (&1t;, >,
and &), then bring back tags that are known to be safe (as long as
they contain no attributes or only use those within a select list of ap-
proved attributes). For example, to bring back <p>, , and
tags with no attributes after replacing <, >, and & with character refer-
ences, search case-insensitively using the regex <<(/?)(p|em|
strong)8gt;> and replace matches with «<$1$2>» (or in Python and Ru-
by, «<\1\2>»). If necessary, you can then safely search your modified
string for HTML tags using the regexes in this recipe.

Bor

With those disclaimers out of the way, let’s examine the regexes we’ve already seen in
this recipe. The first two solutions are overly simplistic for most cases, but handle XML-
style markup languages equally. The latter three follow stricter rules and are tailored
to their respective markup languages. Even in the latter solutions, however, HTML and
XHTML tag conventions are handled together since it’s common for them to be mixed,
often inadvertently. For example, an author may use an XHTML-style self-closing

 tag in an HTML4 document, or incorrectly use an uppercase element name in
adocument withan XHTML DOCTYPE. HTMLS further blurs the distinction between
HTML and XHTML syntax.

Quick and dirty

The advantage of this solution is its simplicity, which makes it easy to remember and
type, and also fast to run. The trade-off is that it incorrectly handles certain valid and
invalid XML and (X)HTML constructs. If you’re working with markup you wrote

514 | Chapter9: Markup and Data Formats

yourself and know that such cases will never appear in your subject text, or if you are
not concerned about the consequences if they do, this trade-off might be OK. Another
example of where this solution might be good enough is when you’re working with a
text editor that lets you preview regex matches.

The regex starts off by finding a literal «<> character (the start of a tag). It then uses a
negated character class and greedy asterisk quantifier <[*>]*> to match zero or more
following characters that are not >. This takes care of matching the name of the tag,
attributes, and a leading or trailing /. We could use a lazy quantifier (<[*>]*?>) instead,
but that wouldn’t change anything other than making the regex a tiny bit slower since
it would cause more backtracking (Recipe 2.13 explains why). To end the tag, the regex
then matches a literal <.

If you prefer to use a dot instead of the negated character class <[*>]», go for it. A dot
will work fine as long as you also use a lazy asterisk along with it (¢.*?>) and make sure
to enable the “dot matches line breaks” option (in JavaScript, you could use <[\s
\S]*?> instead). A dot with a greedy asterisk (making the full pattern «.*>)) would
change the regex’s meaning, causing it to incorrectly match from the first < until the
very last > in the subject string, even if the regex has to swallow multiple tags along the
way in order to do so.

It’s time for a few examples. The “Quick and dirty” regex matches each of the following
lines in full:

o <div>
o </div>

* <div class="box">

¢ <div id="pandoras-box" class="box" />

e <l-- comment -->
* <IDOCTYPE html>
® << < woot! >

° >

Notice that the pattern matches more than just tags. Worse, it will not correctly match
the entire tags in the subject strings <input type="button" value=">>"> or <input
type="button" onclick="alert(2>1)">. Instead, it will only match until the first > that
appears within the attribute values. It will have similar problems with comments, XML
CDATA sections, DOCTYPEs, code within <script> elements, and anything else that
contains embedded > symbols.

If you’re processing anything more than the most basic markup, especially if the subject
text is coming from mixed or unknown sources, you will be better served by one of the
more robust solutions further along in this recipe.

9.1 Find XML-StyleTags | 515

Download from Wow! eBook <www.wowebook.com>

Allow > in attribute values

Like the quick and dirty regex we’ve just described, this next one is included primarily
to contrast it with the later, more robust solutions. Nevertheless, it covers the basics
needed to match XML-style tags, and thus it might work well for your needs if it will
be used to process snippets of valid markup that include only elements and text. The
difference from the last regex is that it passes over > characters that appear within
attribute values. For example, it will correctly match the entire <input> tags in the
example subject strings we’ve previously shown: <input type="button" value=">>">
and <input type="button" onclick="alert(2>1)">.

As before, the regex uses literal angle bracket characters at the edges of the regex to
match the start and end of a tag. In between, it repeats a noncapturing group containing
three alternatives, each separated by the <|» alternation metacharacter.

The first alternative is the negated character class <[*>"']>, which matches any single
character other than a right angle bracket (which closes the tag), double quote, or single
quote (both quote marks indicate the start of an attribute value). This first alternative
is responsible for matching the tag and attribute names as well as any other characters
outside of quoted values. The order of the alternatives is intentional, and written with
performance in mind. Regular expression engines attempt alternative paths through a
regex from left to right, and attempts at matching this first option will most likely
succeed more often than the alternatives for quoted values (especially since it matches
only one character at a time).

Next come the alternatives for matching double and single quoted attribute values
"[~"]*"> and <'[*"]*")). Their use of negated character classes allows them to con-
tinue matching past any included > characters, line breaks, and anything else that isn’t
a closing quote mark.

Note that this solution has no special handling that allows it to exclude or properly
match comments and other special nodes in your documents. Make sure you’re familiar
with the kind of content you’re working with before putting this regex to use.

A (Safe) Efficiency Optimization

After reading the “Allow > in attribute values” section, you might think you could make
the regex a bit faster by adding a ¢*» or ¢+ quantifier after the leading negated character
class (<[*>""']>). At positions within the subject string where the regex finds matches,
you’d be right. By matching more than one character at a time, you’d let the regex
engine skip a lot of unnecessary steps on the way to a successful match.

What might not be as readily apparent is the negative consequence such a change could
lead to in places where the regex engine finds only a partial match. When the regex
matches an opening < character but there is no following > that would allow the match
attempt to complete successfully, you’ll run into the “catastrophic backtracking” prob-
lem described in Recipe 2.15. This is because of the huge number of ways the new,
inner quantifier could be combined with the outer quantifier (following the

516 | Chapter9: Markup and Data Formats

noncapturing group) to match the text that follows <, all of which the engine must try
before giving up on the match attempt. Watch out!

With regex flavors that support possessive quantifiers or atomic groups (JavaScript and
Python have neither), it’s possible to avoid this problem while still gaining the perfor-
mance advantage of matching more than one nonquoted character at a time. In fact,
we can go further and reduce potential backtracking elsewhere in the regex as well. If
the regex flavor you’re using supports both features, possessive quantifiers (shown here
in the second regex) are the better option since they keep the regex shorter and more
readable.

With atomic groups:
D@D IO [T)9)>
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby
With possessive quantifiers:

<(?:[,\>u|]++|u[,\n]*u| I[AI]*I)*+>
Regex options: None
Regex flavors: Java, PCRE, Perl 5.10, Ruby 1.9

(X)HTML tags (loose)

Via a couple main changes, this regex gets a lot closer to emulating the easygoing rules
that web browsers use to identify (X)yHTML tags in source code. That makes it a good
solution in cases where you’re trying to copy browser behavior or the HTMLS parsing
algorithm and don’t care whether the tags you match actually follow all the rules for
valid markup. Keep in mind that it’s still possible to create horrifically invalid HTML
that this regex will not handle in the same way as one or more browsers, since browsers
parse some edge cases of erroneous markup in their own, unique ways.

This regex’s most significant difference from the previous solution is that it requires
the character following the opening left angle bracket (<) to be a letter A—Z or a—z,
optionally preceded by / (for closing tags). This constraint rules out matching stray,
unencoded < characters in text, as well as comments, DOCTYPEs, XML declarations
and processing instructions, CDATA sections, and so on. That doesn’t protect it from
matching something that looks like a tag but is actually within a comment, scripting
language code, the content of a <textarea> element, or other similar situation where
text is treated literally. The upcoming section, “Skip Tricky (X)YHTML and XML Sec-
tions” on page 523, shows a workaround for this issue. But first, let’s look at how
this regex works.

<< starts off the match with a literal left angle bracket. The ¢/?> that follows allows an
optional forward slash, for closing tags. Next comes the capturing group «([A-Za-z][*
\s>/]*)>, which matches the tag’s name and remembers it as backreference 1. If you
don’t need to refer back to the tag name (e.g., if you’re simply removing all tags), you

9.1 Find XML-Style Tags | 517

can remove the capturing parentheses (just don’t get rid of the pattern within them).
Within the group are two character classes. The first class, <[A-Za-z]>, matches the first
character of the tag’s name. The second class, «[*\s>/]>, allows nearly any characters
to follow as part of the name. The only exceptions are whitespace (<\s>, which separates
the tag name from any following attributes), > (which ends the tag), and / (used before
the closing > for XHTML-style singleton tags). Any other characters (even including
quote marks and the equals sign) are treated as part of the tag’s name. That might seem
a bit overly permissive, but it’s how most browsers operate. Bogus tags might not have
any effect on the way a page is rendered, but they nevertheless become accessible via
the DOM tree and are not rendered as text, although any content within them will show
up.
After the tag name comes the attribute handling, which is significantly changed from
the previous solution in order to more accurately emulate browser-style parsing of edge
cases with poorly formed markup. Since unencoded > symbols end a tag unless they
are within attribute values, it’s important to accurately determine where attribute val-
ues start and end. This is a bit tricky since it’s possible for stray quote marks and equals
signs to appear within a tag but separate from any attribute value, or even as part of an
unquoted attribute value.
Consider a few examples. This regex matches each of the following lines in their
entirety:

e <em title=">">

e <em !=">">

e </em// em

e <em title=">"">

e <em title=""em">

e <em" title=">">
The regex matches only the underlined portions of the following lines:
* <em ">">
+ <em=">">
e <em title==">">5
e <em title=em=">">
e <em title= =">">

Keep in mind that the handling for these examples is specifically designed to match
common browser behavior.

4. The title attribute’s value is the empty string, not em.

5. The title attribute’s value is =", not >. The second equals sign triggers the start of an unquoted value.

518 | Chapter9: Markup and Data Formats

Getting back to the attribute handling, we come to the noncapturing group «(?:=
Ak [ATE [T* [[M\s>]+) [[*>])*®. There are two outermost alternatives here,
separated by <|>.

The first alternative, <=\s*(?:"[~"]*"|'[~']*' |[*\s>]+), is for matching attribute val-
ues; the equals sign at the start signals their onset. After the equals sign and optional
whitespace (<\s*®), there is a nested noncapturing group that includes three options:
<"[~"]*"> for double quoted values, <'[*']*"> for single quoted values, and <[*\s>]+
for unquoted values. The pattern for unquoted values notably allows anything except
whitespace or >, even matching quote marks and equals signs. This is more permissive
than is officially allowed for valid HTML, but follows browser behavior. Note that
because the pattern for unquoted values matches quote marks, it must appear last in
the list of options or the other two alternatives (for matching quoted values) would
never have a chance to match.

The second alternative in the outer group is simply <[*>]>. This is used to match (one
character at a time) attribute names, the whitespace separating attributes, the trail-
ing / symbol for self-closed tags, and any other stray characters within the tag’s bound-
aries. Because this character class matches equals signs (in addition to almost everything
else), it must be the latter option in its containing group or else the alternative that
matches attribute values would never have a chance to participate.

Finally, we close out the regex with «(?:>|$)>. This matches either the end of the tag
or, if it’s reached first, the end of the string.

By letting the match end successfully if the end of the string is reached without finding
the end of the tag, we’re emulating most browsers’ behavior, but we’re also doing it to
avoid potential runaway backtracking (see Recipe 2.15). If we forced the regex to back-
track (and ultimately fail to match) when there is no tag-ending > to be found, the
amount of backtracking that might be needed to try every possible permutation of this
regex’s medley of overlapping patterns and nested repeating groups could create per-
formance problems. However, the regex as it’s written sidesteps this issue, and should
always perform efficiently.

The following regexes show how this pattern can be tweaked to match opening and

singleton (self-closing) or closing tags only:

Opening and singleton tags only
<([A-Za-z][M\s>/1¥) (2:=\s* (22" [T []* [[M\s>]+) [[*>])*(2:>($)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
This version removes the </?> that appeared after the opening «<.
Closing tags only
<([A-Za-z][MN\s>/1¥) (2:=\s* Q" []F[[V 1F [[N]0) [[*(2:[$)

Regex options: None

9.1 Find XML-Style Tags | 519

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The forward slash after the opening «<> has been made a required part of the match
here. Note that we are intentionally allowing attributes inside closing tags, since
this is based on the “loose” solution. Although browsers don’t use attributes that
occur in closing tags, they don’t mind if such attributes exist.

What About Backtracking Controls?

The sidebar “A (Safe) Efficiency Optimization” on page 516 showed how to improve
performance when matching tags through the use of atomic groups or possessive quan-
tifiers. This time around, the potential performance improvement is much greater since
the parts of a match that can be found by the patterns <[*\s>/]*), <[*\s>]+), and
«[*>]> all overlap with each other and other parts of the regex, thereby providing a
potentially crushing amount of pattern combinations to try before the regex engine can
give up on a partial match.

Actually, as previously mentioned, we completely sidestepped this problem by allowing
partial matches to end at the end of the subject string. However, if atomic groups or
possessive quantifiers are available in the regex flavor you’re using, it might make sense
to add them anyway. There are two reasons for this. First, with backtracking controls
in place, it’s safe to require all matches to end with > if you want to. In other words,
you could replace the <(?:>]$)> at the end of the regex with <>, without worrying about
runaway backtracking. Second, it will make the regex more resilient when modified.
As it stands, even minor changes to the regex risk the introduction of backtracking
related problems, and must be carefully considered and tested.

So let’s get some backtracking controls in here! The following changes can also be
transferred to the opening/singleton and closing tag specific regexes just shown.

With atomic groups:

</2([A-Za-z] (2>[M\s>/T%)) (>=\s* (2" [~ T*" | [~ TF [[M\s>]+) [[*>1)*(2:>[9)
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

With possessive quantifiers:

</2([A-Za-z][M\s>/T*+) (2e=\s* (2" [A" X" [[A]X [[M\s>]+) [[>])*+(2:>($)
Regex options: None
Regex flavors: Java, PCRE, Perl 5.10, Ruby 1.9

JavaScript and Python don’t support atomic groups or possessive quantifiers, but we
can accomplish the same thing by emulating atomic groups using backreferences to
matches captured within lookahead (see “Lookaround is atomic” on page 87 for an
explanation of why this works).

With emulated atomic groups:

¢/2([A-2a-2] (2=([\&>/ T\ Q=((2:* (22 [14| []9 [Ne>]) |
[>1)9N3C:>3)

Regex options: None

520 | Chapter9: Markup and Data Formats

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

(X)HTML tags (strict)

By saying that this solution is strict, we mean that it attempts to follow the HTML and
XHTML syntax rules explained in the introductory section of this chapter, rather than
emulating the rules browsers actually use when parsing the source code of a document.
This strictness adds the following rules compared to the previous regexes:

* Both tag and attribute names must start with a letter A—Z or a—z, and their names
may only use the characters A—Z, a—z, 0-9, hyphen, and colon. In regex, that’s
[A-Za-z][-:A-Za-z0-9]$>.

* Inappropriate, stray characters are not allowed after the tag name. Only white-
space, attributes (with or without an accompanying value), and optionally a trailing
forward slash (/) may appear after the tag name.

* Unquoted attribute values may not use the characters ", *, *, =, <, >, and whitespace.
In regex, (\[A"' " =<>\s]+$.

* Closing tags cannot include attributes.

Since the pattern is split into two branches using alternation, the tag name is captured
to either backreference 1 or 2, depending on what type of tag is matched. The first
branch is for opening and singleton tags, and the second branch is for closing tags. Both
sets of capturing parentheses may be removed if you have no need to refer back to the
tag names.

The two branches of the pattern are separated into their own regexes in the following
modified versions. Both capture the tag name to backreference 1:

Opening and singleton tags only

<([A-Z][-:A-Z0-91*) (?:\s+[A-Z][-:A-Z0-9]*(?:\s*=\s*«
[T T AT =ONs]4)) 1)\ s*/ 2>

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The </?> that appears just before the closing «<>> is what allows this regex to match
both opening and singleton tags. Remove it to match opening tags only. Remove
just the question mark quantifier (making the ¢</» required), and it will match sin-
gleton tags only.

Closing tags only
</([A-Z][-:A-Z0-9]*)\s*>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In the last couple of sections, we’ve shown how to get a potential performance boost
by adding atomic groups or possessive quantifiers. The strictly defined paths through

9.1 Find XML-StyleTags | 521

this regex (and the adapted versions just shown) result in there being no potential to
match the same strings more than one way, and therefore having less potential back-
tracking to worry about. These regexes don’t actually rely on backtracking, so if you
wanted to, you could make every last one of their <*), <+, and «?> quantifiers possessive
(or achieve the same effect using atomic groups) and they would continue matching or
failing to match the exactly same strings with only slightly less backtracking along the
way. We're therefore going to skip such variations for this (and the next) regex, to try
to keep the number of options in this recipe under control.

See “Skip Tricky (X)HTML and XML Sections” on page 523 for a way to avoid
matching tags within comments, <script> tags, and so on.

XML tags (strict)

XML precludes the need for a “loose” solution through its precise specification and
requirement that conforming parsers do not process markup that is not well-formed.
Although you could use one of the preceding regexes when processing XML docu-
ments, their simplicity won’t give you the advantage of actually providing a more reli-
able search, since there is no loose XML user agent behavior to emulate.

This regex is basically a simpler version of the “(X)HTML tags (strict)” regex, since
we’re able to remove support for two HTML features that are not allowed in XML:
unquoted attribute values and minimized attributes (attributes without an accompa-
nying value). The only other difference is the characters that are allowed as part of the
tag and attribute names. In fact, the rules for XML names (which govern the require-
ments for both tag and attribute names) are more permissive than shown here, allowing
hundreds of thousands of additional Unicode characters. If you need to allow these
characters in your search, you can replace the three occurrences of <[:A-Z][-.:\w]®
with one of the patterns found in Recipe 9.4. Note that the list of characters allowed
differs depending on the version of XML in use.

As with the X)HTML regexes, the tag name is captured to backreference 1 or 2, de-
pending on whether an opening/singleton or closing tag is matched. And once again,
you can remove the capturing parentheses if you don’t need to refer back to the tag
names.

The two branches of the pattern are separated in the following modified regexes. As a
result, both regexes capture the tag name to backreference 1:

Opening and singleton tags only
S([LA-Z][-o\w]*) (2:\s+[_:A-Z][-. :\w]*\s*=\s*d
(?:II[AII]*II | 1 [,\l]*I))*\S*/?>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

522 | Chapter9: Markup and Data Formats

The ¢/?> that appears just before the closing > is what allows this regex to match
both opening and singleton tags. Remove it to match only opening tags. Remove
just the question mark quantifier, and it will match only singleton tags.

Closing tags only
< ([_A-ZI[-. :\w]*)\s*>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See the next section, “Skip Tricky (X)HTML and XML Sections”, for a way to avoid
matching tags within comments, CDATA sections, and DOCTYPEs.

Skip Tricky (X)HTML and XML Sections

When trying to match XML-style tags within a source file or string, much of the battle
is avoiding content that looks like a tag, even though its placement or other context
precludes it from being interpreted as a tag. The (X)HTML- and XML-specific regexes
we’ve shown in this recipe avoid some problematic content by restricting the initial
character of an element’s name. Some went even further, requiring tags to fulfill the
(X)HTML or XML syntax rules. Still, a robust solution requires that we also avoid any
content that appears within comments, scripting language code (which may use
greater-than and less-than symbols for mathematical operations), XML CDATA sec-
tions, and various other constructs. We can solve this issue by first searching for these
problematic sections, and then searching for tags only in the content outside of those
matches.

Recipe 3.18 shows the code for searching between matches of another regex. It takes
two patterns: an inner regex and outer regex. Any of the tag-matching regexes in this
recipe can serve as the inner regex. The outer regex is shown next, with separate patterns
for X)HTML and XML. This approach hides the problematic sections from the inner
regex’s view, and thereby lets us keep things relatively simple.

Instead of searching between matches of the outer regex, it might be

easier to simply remove all matches of the outer regex (i.e., replace

* 9lsy matches with an empty string). You can then search for XML or

© (X)HTML tags without worrying about skipping over tricky sections
like CDATA blocks and <script> tags, since they’ve already been
removed.

9.1 Find XML-StyleTags | 523

Outer regex for (X)HTML

The following regex matches comments, CDATA sections, and a number of special
elements. Of the special elements, <script>, <style>, <textarea>, <title>, and <xmp>6
tags are matched together with their entire contents and end tags. The <plaintext>”
element is also matched, and when found, the match continues until the end of the
string:
<1--*2--> | <I\[CDATA\[.*?]]>|<(script|style|textarea|title|xmp) <
\b(2: [T IATE A TF)R> ¥ 2</\1\s*> [<plaintext
ALTGEY R I o ol B K oD ke Pl
Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

In case that’s not the most readable line of code you’ve ever read, here is the regex again
in free-spacing mode, with a few comments added:

Comment

<l-- ¥ -

I

CDATA section

<I\[CDATA\[.*?]]>

I

Special element and its content

<(script | style | textarea | title | xmp)\b
(?:[A>Ill]|ll[/\ll]*ll| I[AI]*I)*

> K7 </\1\s*>

|

<plaintext/> continues until the end of the string

<plaintext\b

> 17T L 1)
> X

Regex options: Case insensitive, dot matches line breaks, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Neither of the above regexes work correctly in JavaScript without XRegExp, since
standard JavaScript lacks both the “dot matches line breaks” and “free-spacing” op-
tions. The following regex reverts to being unreadable and replaces the dots with <[\s
\S]> so it can be used in standard JavaScript:

6. <xmp> is a little-known but widely supported element similar to <pre>. Like <pre>, it preserves all
whitespace and uses a fixed-width font by default, but it goes one step further and displays all of its
contents (including HTML tags) as plain text. <xmp> was deprecated in HTML 3.2, and removed entirely
from HTML 4.0.

7. <plaintext> is like <xmp> except that it cannot be turned off by an end tag and runs until the very end of
the document. Also like <xmp>, it was obsoleted in HTML 4.0 but remains widely supported.

524 | Chapter9: Markup and Data Formats

<1--[\s\S]*?-->| <I\[CDATA\[[\s\S]*?]]>|<(script|style|textarea|title|xmp) <
b2 [A>™ T [A" T [TR) [\s\S]*2</\1\s*> | <plaintext ¢
\b [>T [* T)*>[\s\ST*

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

These regexes present a bit of a dilemma: because they match <script>, <style>,
<textarea>, <title>, <xmp>, and <plaintext> tags, those tags are never matched by the
second (inner) regex, even though we’re supposedly searching for all tags. However, it
should just be a matter of adding a bit of extra procedural code to handle those tags
specially, when they are matched by the outer regex.

Outer regex for XML

This regex matches comments, CDATA sections, and DOCTYPEs. Each of these cases
are matched using a discrete pattern. The patterns are combined into one regex using
the <|» alternation metacharacter:

<l-= . %2--\s*>| <I\[CDATA\[.*?]]>| <!DOCTYPE\s (?: [~<>" "]| "[~"]*" |
[[Al]*l |<!(?:[A>u|] |"[/\“]*“| I[AI]*I)*>)*>
Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby
Here it is again in free-spacing mode:
Comment
<l-- 2 —-\g®>
|
CDATA section
<IN[CDATA\[.*? 1>
|

Document type declaration
<IDOCTYPE\s
(?: [*<>""] # Non-special character
| "[~"]*" # Double-quoted value
| '[~"]*" # Single-quoted value
| <P T IA" T [~ TR)*> # Markup declaration
)*
>
Regex options: Case insensitive, dot matches line breaks, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

And here is a version that works in standard JavaScript (which lacks the “dot matches
line breaks” and “free-spacing” options):
<1--T[\s\ST*?--\s*>| <I\[CDATA\[[\s\S]*?]]>|<!DOCTYPE\s (2:[~<>""]|"[~"]*"| ¢
O A E S I ST N C A SN
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

9.1 Find XML-Style Tags | 525

W

\
A)
.

The regexes just shown allow whitespace via (\s*» between the closing
"‘.“ L and > of XML comments. This differs from the “Outer regex for
T 9 XHTML” version shown earlier, because HTMLS5 and web browsers
" differ from XML on this point. See “Find valid HTML com-
ments” on page 557 for a discussion of the differences between valid
XML and HTML comments.

See Also

Matching any and all tags can be useful, butit’s also common to want to match a specific
one or a few out of the bunch; Recipe 9.2 shows how to pull off these tasks.
Recipe 9.3 describes how to match all except a select list of tags.

Recipe 9.4 details the characters that can be used in valid XML element and attribute
names.

Recipe 9.7 shows how to find tags that contain a specific attribute. Recipe 9.8 finds
tags that do not contain a specific attribute.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains alternation.
Recipe 2.9 explains grouping. Recipe 2.10 explains backreferences. Recipe 2.12 ex-
plains repetition. Recipe 2.13 explains how greedy and lazy quantifiers backtrack.
Recipe 2.14 explains possessive quantifiers and atomic groups. Recipe 2.16 explains
lookaround.

9.2 Replace Tags with

Problem

You want to replace all opening and closing tags in a string with corresponding
 tags, while preserving any existing attributes.

Solution
This regex matches opening and closing tags, with or without attributes:

<(/)\b(2:[>" T[T [N TE)*)>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In free-spacing mode:

<

(/?) # Capture the optional leading slash to backreference 1
b \b # Tag name, with word boundary

(# Capture any attributes, etc. to backreference 2

526 | Chapter9: Markup and Data Formats

(?: [*»""] # Any character except >, ", or '
| "[~"]*" # Double-quoted attribute value
| '[~"]*" # Single-quoted attribute value
)*
)
>
Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

To preserve all attributes while changing the tag name, use the following replacement
text:

<$1strong$2>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<\1strong\2>
Replacement text flavors: Python, Ruby

If you want to discard any attributes in the same process, omit backreference 2 in the
replacement string:

<$1strong>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<\1strong>
Replacement text flavors: Python, Ruby

Recipe 3.15 shows the code needed to implement these replacements.

Discussion

The previous recipe (9.1) included a detailed discussion of many ways to match any
XML-style tag. That frees this recipe to focus on a straightforward approach to search
for a specific type of tag. and its replacement are offered as examples, but
you can substitute those tag names with any two others.

The regex starts by matching a literal «<>—the first character of any tag. It then op-
tionally matches the forward slash found in closing tags using </?>, within capturing
parentheses. Capturing the result of this pattern (which will be either an empty string
or a forward slash) allows you to easily restore the forward slash in the replacement
string, without any conditional logic.

Next, we match the tag name itself, . You could use any other tag name instead if
you wanted to. Use the case-insensitive option to make sure that you also match an
uppercase B.

The word boundary (\\b») that follows the tag name is easy to forget, but it’s one of the
most important pieces of this regex. The word boundary lets us match only tags,
and not
, <body>, <blockquote>, or any other tags that merely start with the letter
“b.” We could alternatively match a whitespace token (<\s>) after the name as a safe-
guard against this same problem, but that wouldn’t work for tags that have no attributes

9.2 Replace Tags with | 527

and thus might not have any whitespace following their tag name. The word boundary
solves this problem simply and elegantly.

W

When working with XML and XHTML, be aware that the colon used
for namespaces, as well as hyphens and some other characters allowed
s as part of XML names, create a word boundary. For example, the regex
" could end up matching something like <b-sharp>. If you’re worried
about this, you might want to use the lookahead «(?=[\s/>])> instead
of a word boundary. It achieves the same result of ensuring that we do
not match partial tag names, and does so more reliably.

After the tag name, the pattern «((2:[*>""T|"[*"]*"|'[*"]*')*)> is used to match any-
thing remaining within the tag up until the closing right angle bracket. Wrapping this
pattern in a capturing group as we’ve done here lets us easily bring back any attributes
and other characters (such as the trailing slash for singleton tags) in our replacement
string. Within the capturing parentheses, the pattern repeats a noncapturing group
with three alternatives. The first, <[*>""']>, matches any single character except >, ", or
'. The remaining two alternatives match an entire double- or single-quoted string,
which lets you match attribute values that contain right angle brackets without having
the regex think it has found the end of the tag.

Variations

Replace a list of tags

If you want to match any tag from a list of tag names, a simple change is needed. Place
all of the desired tag names within a group, and alternate between them.

The following regex matches opening and closing , <i>, , and <big> tags. The
replacement text shown later replaces all of them with a corresponding or
 tag, while preserving any attributes:

<(/2)([bi]lem|big)\b((2:[*>""T["[~"T*"['[*"]*")*)>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here’s the same regex in free-spacing mode:

<
(/?) # Capture the optional leading slash to backreference 1
([bi]|em|big) \b # Capture the tag name to backreference 2
Capture any attributes, etc. to backreference 3
(2: [™»"'] # Any character except >, ", or '
| "[~"]*" # Double-quoted attribute value

) | '[~"]*" # Single-quoted attribute value
*

528 | Chapter9: Markup and Data Formats

)

>
Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

We’ve used the character class <[bi]> to match both and <i> tags, rather than sep-
arating them with the alternation metacharacter <|> as we’ve done for and <big>.
Character classes are faster than alternation because they are implemented using bit
vectors (or other fast implementations) rather than backtracking. When the difference
between two options is a single character, use a character class.

We've also added a capturing group for the tag name, which shifted the group that
matches attributes, etc. to store its match as backreference 3. Although there’s no need
to refer back to the tag name if you’re just going to replace all matches with
tags, storing the tag name in its own backreference can help you check what type of tag
was matched, when needed.

To preserve all attributes while replacing the tag name, use the following replacement
text:

<$1strong$3>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<\1strong\3>
Replacement text flavors: Python, Ruby

Omit backreference 3 in the replacement string if you want to discard attributes for
matched tags as part of the same process:

<$1strong>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<\1strong>
Replacement text flavors: Python, Ruby

See Also

Recipe 9.1 shows how to match all XML-style tags while balancing trade-offs including
tolerance for invalid markup.

Recipe 9.3 is the opposite of this recipe, and shows how to match all except a select list
of tags.

Techniques used in the regular expressions and replacement text in this recipe are
discussed in Chapter 2. Recipe 2.3 explains character classes. Recipe 2.6 explains word
boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround. Recipe 2.21 explains
how to insert text matched by capturing groups into the replacement text.

9.2 Replace Tags with | 529

9.3 Remove All XML-Style Tags Except and

Problem
You want to remove all tags in a string except and .

In a separate case, you not only want to remove all tags other than and ,
you also want to remove and tags that contain attributes.

Solution

This is a perfect setting to put negative lookahead (explained in Recipe 2.16) to use.
Applied to this problem, negative lookahead lets you match what looks like a tag,
except when certain words come immediately after the opening < or </. If you then
replace all matches with an empty string (following the code in Recipe 3.14), only the
approved tags are left behind.

Solution 1: Match tags except and

</?2(21(2:em|strong)\b)[a-z](2:[~>""]|"[~"T*"|'[~"]*")*>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In free-spacing mode:

< /? # Permit closing tags
(2!
(?: em | strong) # List of tags to avoid matching
\b # Word boundary avoids partial word matches
)
[a-Z] # Tag name initial character must be a-z
(72: [»>"'] # Any character except >, ", or '
| "[AT]E" # Double-quoted attribute value
| [~]F # Single-quoted attribute value
)*
>

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Solution 2: Match tags except and , and any tags that contain attributes
With one change (replacing the <\b> with <\s*>), you can make the regex also match
any and tags that contain attributes:

</?2(21(2:em|strong)\s*>) [a-z] (2:[~>" "]| [~]*" [~]E) R
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Once again, the same regex in free-spacing mode:

530 | Chapter9: Markup and Data Formats

< /? # Permit closing tags

(2!
(?: em | strong) # List of tags to avoid matching
\s* > # Only avoid tags if they contain no attributes
)
a-z ag name initial character must be a-z
Tag initial charact t b
(2: [»>"'] # Any character except >, ", or '
| "[AT]E" # Double-quoted attribute value
(A # Single-quoted attribute value
)*
>

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Discussion

This recipe’s regular expressions have a lot in common with those we’ve included earlier
in this chapter for matching XML-style tags. Apart from the negative lookahead added
to prevent some tags from being matched, these regexes are nearly equivalent to the
“X)HTML tags (loose)” regex from Recipe 9.1. The other main difference here is that
we’re not capturing the tag name to backreference 1.

So let’s look more closely at what’s new in this recipe. Solution 1 never matches
or tags, regardless of whether they have any attributes, but matches all other
tags. Solution 2 matches all the same tags as Solution 1, and additionally matches
 and tags that contain one or more attributes. Table 9-2 shows a few
example subject strings that illustrate this.

Table 9-2. A few example subject strings

Subject string Solution1 Solution 2
<i> Match Match
</i> Match Match

<i style="font-size:500%; color:red;"> Match Match
 Nomatch ~ Nomatch
 Nomatch ~ Nomatch

<em style="font-size:500%; color:red;"> Nomatch Match

Since the point of these regexes is to replace matches with empty strings (in other words,
remove the tags), Solution 2 is less prone to abuse of the allowed and
tags to provide unexpected formatting or other shenanigans.

9.3 Remove All XML-Style Tags Except and | 531

This recipe has (until now) intentionally avoided the word “whitelist”
when describing how only a few tags are left in place, since that word
has security connotations. There are a variety of ways to work around
this pattern’s constraints using specially crafted, malicious HTML
strings. If you’re worried about malicious HTML and cross-site scripting
(XSS) attacks, your safest bet is to convert all <, >, and & characters to
their corresponding named character references (81t;, 8gt;, and
amp;), then bring back tags that are known to be safe (as long as they
contain no attributes or only use those within a select list of approved
attributes). style is an example of an attribute that is not safe, since
some browsers let you embed scripting language code in your CSS. To
bring back and tags with no attributes after replacing <,
>, and & with character references, search case-insensitively using the
regex «81t; (/?)(em|strong)>> and replace matches with «<$1$2>» (or
in Python and Ruby, «<\1\2>»).

"

Variations

Whitelist specific attributes

Consider these new requirements: you need to match all tags except <a>, , and
, with two exceptions. Any <a> tags that have attributes other than href or
title should be matched, and if or tags have any attributes at all, match
them too. All matched strings will be removed.

In other words, you want to remove all tags except those on your whitelist (<a>, ,
and). The only whitelisted attributes are href and title, and they are allowed
only within <a> tags. If a nonwhitelisted attribute appears in any tag, the entire tag
should be removed.

Here’s a regex that can get the job done:

<(?21(2:em|strong|a(?:\s+(?:href|title)\s*=\s*(2:"[A"]*¥"|"[*']*"))*)\s*>)d
[a-z] [>T [X) *>

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

With free-spacing:

< /? # Permit closing tags
(2!
(?: em # Dont match
| strong # or
| a # or <a>
(?: # Only avoid matching <a> tags that use only

\s+ # href and/or title attributes
(?:href|title)

\s*=\s*

A1 [~]*Y) # Quoted attribute value

532 | Chapter9: Markup and Data Formats

)*
)

\s* > # Only avoid matching these tags when they're

) # limited to any attributes permitted above
a-z ag name initial character must be a-z
Tag initial charact tb

(2: [»>"] # Any character except >, ", or '

| "[*"]*" # Double-quoted attribute value

| "[~"]*" # Single-quoted attribute value
)*
>

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

This pushes the boundary of where it makes sense to use such a complicated regex. If
your rules get any more complex than this, it would probably be better to write some
code based on Recipe 3.11 or 3.16 that checks the value of each matched tag to deter-
mine how to process it (based on the tag name, included attributes, or whatever else is

needed).

See Also

Recipe 9.1 shows how to match all XML-style tags while balancing trade-offs including
tolerance for invalid markup.

Recipe 9.2 is the opposite of this recipe, and shows how to match a select list of tags,
rather than all except a few.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.8 explains alternation. Recipe 2.9 ex-
plains grouping. Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround.

9.4 Match XML Names

Problem

You want to check whether a string is a legitimate XML name (a common syntactic
construct). XML provides precise rules for the characters that can occur in a name, and
reuses those rules for element, attribute, and entity names, processing instruction tar-
gets, and more. Names must be composed of a letter, underscore, or colon as the first
character, followed by any combination of letters, digits, underscores, colons, hyphens,
and periods. That’s actually an approximate description, but it’s pretty close. The exact
list of permitted characters depends on the version of XML in use.

Alternatively, you might want to splice a pattern for matching valid names into other
XML-handling regexes, when the extra precision warrants the added complexity.

Following are some examples of valid names:

9.4 Match XML Names | 533

¢ thing

e thing 2

* :Poccuickue-Beub
¢ fantastic4:the.thing
s BEOY

Note that letters from non-Latin scripts are allowed, even including the ideographic
characters in the last example. Likewise, any Unicode digit is allowed after the first
character, not just the Arabic numerals 0-9.

For comparison, here are several examples of invalid names that should not be matched
by the regex:

¢ thing!

¢ thing with spaces

e .thing.with.a.dot.in.front
¢ -thingamajig

¢ 2nd_thing

Solution

Like identifiers in many programming languages, there is a set of characters that can
occur in an XML name, and a subset that can be used as the first character. Those
character lists are dramatically different for XML 1.0 Fourth Edition (and earlier) and
XML 1.1 and 1.0 Fifth Edition. Essentially, XML 1.1 names can use all the characters
permitted by 1.0 Fourth Edition, plus almost a million more. However, the majority of
the additional characters are nothing more than positions in the Unicode table. Most
don’t have a character assigned to them yet, but are allowed for future compatibility
as the Unicode character database expands.

For brevity’s sake, references to XML 1.0 in this recipe describe the first through fourth
editions of XML 1.0. When we talk about XML 1.1 names, we’re also describing the
XML 1.0 Fifth Edition rules. The fifth edition only became an official W3C Recom-
mendation at the end of November 2008, nearly five years after XML 1.1.

W
w5 Regexes in this recipe are shown with start and end of string anchors
.“:‘ («*++-$>) that cause your subject string to be matched in its entirety or
T W notat all. If you want to embed any of these patterns in a longer regular
" expression that deals with matching, say, XML elements, make sure to
remove the anchors at the beginning and end of the patterns displayed
here. Anchors are explained in Recipe 2.5.

XML 1.0 names (approximate)
A _\p{LIAp{Lu\p{Lt ’\p{LoN\p{NL1}][: _\- . \p{L}\p{M}\p{Nd}\p{N1}]*$

534 | Chapter9: Markup and Data Formats

Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support for the Unicode properties (\p{*'}>) to
work. In PHP, turn on UTF-8 support with the /u pattern modifier.

Unicode properties are not supported by JavaScript (without XRegExp), Python, or
Ruby 1.8. The XML 1.1 names regex that comes next doesn’t rely on Unicode properties
and therefore might be a good alternative if you’re using one of these programming
languages. See the “Discussion” section of this recipe for details on why you might be
better off using the XML 1.1-based solution anyway, even if your regex flavor supports
Unicode properties.

XML 1.1 names (exact)

Following are two versions of the same regular expression, due to flavor differences.
The second version uses <\x{***}> instead of \\u***> to specify Unicode code points.

~[:_A-Za-z\u00C0-\uooD6\u0o0D8-\uoOF6\u0OF8-\u02FF\u0370-\u037D\u037F- <
\u1FFF\u200C\u200D\u2070-\u218F\u2C00- \u2FEF\u3001-\uD7FF\uF900-\uFDCF «
\uFDFO-\uFFFD][: \-.A-Za-z0-9\u00B7\u00CO-\u00D6\u00D8-\u0OF6\uOOF8- «
\u036F\u0370-\u037D\u037F-\u1FFF\u200C\u200D\u203F\u2040\u2070-\u218F 4
\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDFO-\uFFFD]*$

Regex options: None (“” and $ match at line breaks” must not be set)

Regex flavors: .NET, Java, JavaScript, Python, Ruby 1.9
At A-Za-z\x{CO}-\x{D6 }\x{D8}-\x{F6 }\x{F8}-\x{2FF}\x{370}-\x{37D}\x{37F}- «
\x{1FFF}\x{200C}\x{200D}\x{2070}-\x{218F }\x{2C00}-\x{2FEF }\x{3001}- «
\x{D7FF}\x{F900}-\x{FDCF}\x{FDFO}-\x{FFFD}][: \-.A-Za-z0-9\x{B7}\x{C0}-+«
\x{D6}\x{D8}-\x{F6}\x{F8}-\x{36F }\x{370}-\x{37D}\x{37F } - \x{1FFF }\x{200C} ¢
\x{200D}\x{203F }\x{2040}\x{2070}-\x{218F }\x{2C00}-\x{2FEF }\x{3001}- ¢
\x{D7FF}\x{F900}-\x{FDCF }\x{FDF0}-\x{FFFD}]*$

Regex options: None (“” and $ match at line breaks” must not be set)

Regex flavors: Java 7, PCRE, Perl

PCRE must be compiled with UTF-8 support for the <\x{"*'}> metasequences to work
with values greater than FF hexadecimal. In PHP, turn on UTF-8 support with the /u
pattern modifier.

Ruby 1.8 does not support Unicode regular expressions at all, but see the “Varia-
tions” section of this recipe for a possible alternative solution that is less precise.

Although we’ve claimed these regular expressions follow the XML 1.1 name rules ex-
actly, that’s actually only true for characters up to 16 bits wide (positions 0x0000
through OXFFFF, which composes Unicode’s plane 0 or Basic Multilingual Plane). XML
1.1 additionally allows the 917,503 code points between positions 0x10000 and
OxEFFFF (Unicode planes 1-14) to occur after the initial name character. However,
only PCRE, Perl, Python, and Ruby 1.9 are even capable of referencing code points
beyond OxFFFF, and you are unlikely to encounter any in real-world XML names (for

9.4 Match XML Names | 535

Download from Wow! eBook <www.wowebook.com>

one thing, most of the positions in this range have not been assigned an actual char-
acter). If you need to add support for these extra code points, add one of the following
ranges at the end of the second character class:

Java 7, PCRE, Perl
\x{10000}-\x{EFFFF}»

Python
<\U00010000- \UOOOEFFFF>

Ruby 1.9
<\u{120000}-\u{EFFFF}»

Even without adding this massive range at the end, the XML 1.1 name character list
we’ve just shown is much more permissive than XML 1.0.

Python’s support for the syntax with \\U> followed by eight hexadecimal digits comes
from its syntax for literal strings. See Recipe 2.7 for important details about this.

Discussion

Since many of the regular expressions in this chapter deal with matching XML elements,
this recipe largely serves to provide a fuller discussion of the patterns that can be used
when you want to get very specific about how tag and attribute names are matched.
Elsewhere, we mostly stick to simpler patterns that are less precise, in the interest of
readability and efficiency.

So let’s dig a little deeper into the rules behind these patterns.

XML 1.0 names

The XML 1.0 specification uses a whitelist approach for its name rules, and explicitly
lists all the characters that are allowed. The first character in a name can be a colon
(3), underscore (), or approximately any character in the following Unicode categories:

* Lowercase Letter (LI)

* Uppercase Letter (Lu)

* Titlecase Letter (Lt)

e Other Letter (Lo)

e Letter Number (N])

After the initial character, hyphen (-), period (.), and any character in the following
categories are allowed in addition to the characters already mentioned:

* Mark (M), which combines the subcategories Nonspacing Mark (Mn), Spacing
Mark (Mc), and Enclosing Mark (Me)

e Modifier Letter (Lm)

¢ Decimal Number (Nd)

536 | Chapter9: Markup and Data Formats

These rules lead us to the regular expression shown in the “Solution” section of this
recipe. Here it is again, this time in free-spacing mode:

A # Start of string
[: \p{L1}\p{Lu}\p{Lt}\p{Lo}\p{N1}] # Initial name character
[\-A\p{LY\p{M}\p{Nd}\p{N1}]* # Subsequent name characters (optional)
$ # End of string
Regex options: Free-spacing (“” and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

Again, PCRE must be compiled with UTF-8 support. In PHP, turn on UTF-8 support
with the /u pattern modifier.

[LWAN

Notice that in the second character class, all of the Letter subcategories (LI, Lu, Lt, Lo,
and Lm) have been combined into their base category using <\p{L}>.

Earlier, we noted that the rules described here are approximate. There are a couple of
reasons for that. First, the XML 1.0 specification (remember that we’re not talking
about the fifth edition and later here) lists a number of exceptions to these allowed
characters. Second, the XML 1.0 character lists were explicitly derived from Unicode
2.0, which was released back in 1996. Later versions of the Unicode standard have
added support for an assortment of new scripts whose characters are not permitted by
the XML 1.0 rules.

Decoupling the regex from whatever Unicode version your regex engine uses so you
can restrict matches to Unicode 2.0 characters would turn this pattern into a page-long
monstrosity filled with hundreds of ranges and code points. If you really want to create
this monster, refer to XML 1.0, Fourth Edition (http://www.w3.0rg/TR/2006/REC-xml
-20060816/) section 2.3, “Common Syntactic Constructs,” and Appendix B, “Charac-
ter Classes.”

Following are several flavor-specific ways to shorten the regex we’ve already seen.

Perl and PCRE let you combine the Lowercase Letter (L1), Uppercase Letter (Lu), and
Titlecase Letter (Lt) subcategories into the special Cased Letter (L&) category. These
regex flavors also let you omit the curly brackets in the <\p{--}> escape sequence if only
one letter is used within. We’ve taken advantage of this in the following regex by using
\pL\pM> instead of \p{L}\p{M}>:

A \p{L&H\p{LoF\p{N1}][:_\-.\pL\pM\p{Nd}\p{N1}]*$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavors: PCRE, Perl

NET supports character class subtraction, which is used in the first character class here
to subtract the Lm subcategory from L, rather than explicitly listing all the other Letter
subcategories:

A _\p{LAP{NI}-[\p{tm}]][:_\- . \p{L}\p{MF\p{Nd}\p{N1}]*$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavor: .NET

9.4 Match XML Names | 537

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/

Java, like PCRE and Perl, lets you omit the curly brackets around one-letter Unicode
categories. The following regex also takes advantage of Java’s more complicated version
of character class subtraction (implemented via intersection with a negated class) to
subtract the Lm subcategory from L:

AL:_\pL\p{N1}8&[“\p{Lm}]][:_\-.\pL\pM\p{Nd}\p{N1}]*$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavor: Java

JavaScript (without XRegExp), Python, and Ruby 1.8 don’t support Unicode categories
at all. XRegExp and Ruby 1.9 don’t have the fancy features just described, but they do
support the more portable version of this regex shown in the “Solution” section of this
recipe.

XML 1.1 names

XML 1.0 made the mistake of explicitly tying itself to Unicode 2.0. Later versions of
the Unicode standard have added support for many more characters, some of which
are from scripts that weren’t previously accounted for at all (e.g., Cherokee, Ethiopic,
and Mongolian). Since XML wants to be regarded as a universal format, it has tried to
fix this problem with XML 1.1 and 1.0 Fifth Edition. These later versions switch from
a whitelist to a blacklist approach for name characters in order to support not only the
characters added since Unicode 2.0, but also those that may be added in the future.

This new strategy of allowing anything that isn’t explicitly forbidden improves future
compatibility, and it also makes it easier and less verbose to precisely follow the rules.
That’s why the XML 1.1 name regexes are labeled as being exact, whereas the XML 1.0
regex is approximate.

Variations

In some of this chapter’s recipes (e.g., Recipe 9.1), the pattern segments that deal with
XML names employ next to no restrictions or disallow foreign scripts and other char-
acters that are in fact perfectly valid. This is done to keep things simple. However, if
you want to allow foreign scripts while still providing a base level of restrictions (and
you don’t need the more precise name validation of earlier regexes in this recipe), these
next regexes might do the trick.

W
. We’ve left the start- and end-of-string anchors off of these regexes since
t‘s‘.‘ they’re not meant to be used on their own, but rather as parts of longer
T Gl patterns.

(N

This first regex simply avoids matching the characters used as separators and delimiters
within XML tags, and additionally prevents matching a digit as the first character:

[M\d\s""' /<=>]["\s""/<=>]*

538 | Chapter9: Markup and Data Formats

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Following is another, even shorter way to accomplish the same thing. Instead of using
two separate character classes, it uses negative lookahead to forbid a digit as the initial
character. This ban applies to the first matched character only, even though the <>
quantifier after the character class lets the regex match an unlimited number of
characters:

(PINd)[M\s" " /<=>]+
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also

John Cowan, one of the editors of the XML 1.1 specification, explains which characters
are forbidden in XML 1.1 names and why in a blog post at http://recycledknowledge
.blogspot.com/2008/02/which-characters-are-excluded-in-xml.html.

The document “Background to Changes in XML 1.0, 5th Edition” at http://www.w3
.0rg/XML/2008/02/xml10_5th_edition_background.html discusses the rationale for
backporting XML 1.1’s name rules to XML 1.0, Fifth Edition.

Recipe 9.1 shows how to match XML-style tags while balancing trade-offs including
tolerance for invalid markup.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.7 explains
how to match Unicode characters. Recipe 2.12 explains repetition.

9.5 Convert Plain Text to HTML by Adding <p> and
 Tags

Problem

Given a plain text string, such as a multiline value submitted via a form, you want to
convert it to an HTML fragment to display within a web page. Paragraphs, separated
by two line breaks in a row, should be surrounded with <p>---</p>. Additional line
breaks should be replaced with
 tags.

Solution

This problem can be solved in four simple steps. In most programming languages, only
the middle two steps benefit from regular expressions.

9.5 Convert Plain Text to HTML by Adding <p> and
Tags | 539

http://recycledknowledge.blogspot.com/2008/02/which-characters-are-excluded-in-xml.html
http://recycledknowledge.blogspot.com/2008/02/which-characters-are-excluded-in-xml.html
http://www.w3.org/XML/2008/02/xml10_5th_edition_background.html
http://www.w3.org/XML/2008/02/xml10_5th_edition_background.html

Step 1: Replace HTML special characters with named character references

As we’re converting plain text to HTML, the first step is to convert the three special
HTML characters &, <, and > to named character references (see Table 9-3). Otherwise,
the resulting markup could lead to unintended results when displayed in a web browser.

Table 9-3. HTML special character substitutions

Search for Replace with
@& «&»
«< «<»

> «8gt;»

Ampersands (&) must be replaced first, since you’ll be adding more ampersands to the
subject string as part of the named character references.

Step 2: Replace all line breaks with

Search for:

\r\n?|\n
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

\R
Regex options: None
Regex flavors: PCRE 7, Perl 5.10

Replace with:

Replacement text flavors: .NET, Java, JavaScript, Perl, PHP, Python, Ruby

Step 3: Replace double
 tags with </p><p>
Search for:

\s*

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replace with:
</p><p>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP, Python, Ruby
Step 4: Wrap the entire string with <p>---</p>

This step is a simple string concatenation, and doesn’t require regular expressions.

540 | Chapter9: Markup and Data Formats

Example JavaScript solution

Tying all four steps together, we’ll create a JavaScript function called htmlFromPlain
Text(). This function accepts a string, processes it using the steps we’ve just described,
then returns the new HTML string:

function htmlFromPlainText(subject) {
// Step 1 (plain text searches)
subject = subject.replace(/&/g, "&").
replace(/</g, "&1t;").
replace(/>/g, "8gt;");

// Step 2

subject = subject.replace(/\r\n?|\n/g, "
");

/] Step 3

subject = subject.replace(/
\s*
/g, "</p><p>");

// Step 4

subject = "<p>" + subject + "</p>";

return subject;
}
// Run some tests...
htmlFromPlainText("Test."); /] -> "<p>Test.</p>"
htmlFromPlainText("Test.\n"); /] -> "<p>Test.
</p>"
htmlFromPlainText("Test.\n\n"); /] => "<p>Test.</p><p></p>"

htmlFromPlainText("Test1.\nTest2."); // -> "<p>Testi.
Test2.</p>"
htmlFromPlainText("Test1.\n\nTest2."); // -> "<p>Test1.</p><p>Test2.</p>"
htmlFromPlainText("< AT&T >"); [/ -> "<p>&1t; AT&T ></p>"

Several examples are included at the end of the code snippet that show the output when
this function is applied to various subject strings. If JavaScript is foreign to you, note
that the /g modifier appended to each of the regex literals causes the replace() method
to replace all occurrences of the pattern, rather than just the first. The \n metasequence
in the example subject strings inserts a line feed character (ASCII position 0x0A) in a
JavaScript string literal.

Discussion

Step 1: Replace HTML special characters with named character references

The easiest way to complete this step is to use three discrete search-and-replace
operations (see Table 9-3, shown earlier, for the list of replacements). JavaScript always
uses regular expressions for global search-and-replace operations, but in other pro-
gramming languages you will typically get better performance from simple plain-text
substitutions.

9.5 Convert Plain Text to HTML by Adding <p> and
Tags | 541

Step 2: Replace all line breaks with

In this step, we use the regular expression (\r\n?|\n> to find line breaks that follow the
Windows/MS-DOS (CRLF), Unix/Linux/BSD/OS X (LF), and legacy Mac OS (CR)
conventions. Perl 5.10 and PCRE 7 users can use the dedicated <\R> token (note the
uppercase R) instead for matching those and other line break sequences.

Replacing all line breaks with
 before adding paragraph tags in the next step keeps
things simpler overall. It also makes it easy to add whitespace between your
</p><p> tags in later substitutions, if you want to keep your HTML code readable.

If you prefer to use XHTML-style singleton tags, use «<bre/>» instead of «
» as
your replacement string. You’ll also need to alter the regular expression in Step 3 to
match this change.

Step 3: Replace double
 tags with </p><p>

Two line breaks in a row indicate the end of one paragraph and the start of another, so
our replacement text for this step is a closing </p> tag followed by an opening <p>. If
the subject text contains only one paragraph (i.e., two line breaks never appear in a
row), no substitutions will be made. Step 2 already replaced any of several line break
types (leaving behind only
 tags), so this step could be handled with a plain text
substitution. However, using a regex here makes it easy to take things one step further
and ignore whitespace that appears between line breaks. Any extra space characters
won’t be rendered in an HTML document anyway.

If you’re generating XHTML and therefore replaced line breaks with «<bre/>» instead
of «
», you’ll need to adjust the regex for this step to «<bre/>\s*<bre/>.

Step 4: Wrap the entire string with <p>---</p>

Step 3 merely added markup between paragraphs. Now you need to add a <p> tag at
the very beginning of the subject string, and a closing </p> at the very end. That com-
pletes the process, whether there were 1 or 100 paragraphs in the text.

See Also

Recipe 4.10 includes more information about Perl and PCRE’s <\\R> token, and shows
how to manually match the additional, esoteric line separators that are supported by
A\R>.

Recipe 9.6 demonstrates how to decode XML-style named and numbered character
references.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.2 explains how to match nonprinting characters. Recipe 2.3 explains character
classes. Recipe 2.8 explains alternation. Recipe 2.12 explains repetition.

542 | Chapter9: Markup and Data Formats

9.6 Decode XML Entities

Problem

You want to convert all character entities defined by the XML standard to their corre-
sponding literal characters. The conversion should handle named character references
(such as &, &1t;, and ") as well as numeric character references (be they in
decimal notation as Σ or Σ, or in hexadecimal notation as Σ,
Σ, or Σ).

Solution

Regular expression
&(2:#([0-9]+) [#x([0-9a-fA-F]+) | ([0-9a-zA-Z]+));
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This regular expression includes three capturing groups. Only one of the groups par-
ticipate in any particular match and capture a value. Using three groups like this allows
you to easily check which type of entity was matched.

Replace matches with their corresponding literal characters

Use the regular expression just shown, together with the code in Recipe 3.16. The code
examples listed there show how to perform a search-and-replace with replacement text
generated in code.

When writing your replacement callback function, use backreferences to determine the
appropriate replacement character. If group 1 captured a value, backreference 1 holds
anumeric character reference in decimal notation, possibly with leading zeros. If group
2 captured a value, backreference 2 holds a numeric character reference in hexadecimal
notation, possibly with leading zeros. If group 3 captured a value, backreference 3 holds
an entity name. Use a lookup object, dictionary, hash, or whatever data structure is
most convenient to map entity names to their corresponding characters by value or
character code. You can then quickly identify which character to use as your replace-
ment text.

The next section uses JavaScript to demonstrate how this all ties together.

Example JavaScript solution

// Accepts the match ($0) and backreferences; returns replacement text
function callback($0, $1, $2, $3) {
var charCode;

// Name lookup object that maps to decimal character codes

9.6 Decode XML Entities | 543

// Equivalent hexadecimal numbers are listed in comments
var names = {

quot: 34, // 0x22

amp: 38, // 0x26

apos: 39, // ox27

1t: 60, // 0x3C

gt: 62 // Ox3E
b

// Decimal character reference
if ($1) {
charCode = parseInt($1, 10);
// Hexadecimal character reference
} else if ($2) {
charCode = parseInt($2, 16);
// Named entity with a lookup mapping
} else if ($3 && ($3 in names)) {
charCode = names[$3];
// Invalid or unknown entity name
} else {
return $0; // Return the match unaltered
}

// Return a literal character
return String.fromCharCode(charCode);

}

// Replace all entities with literal text

subject = subject.replace(
/&(?:#([0-9]+) | #x([0-9a-fA-F]+) | ([0-9a-zA-Z]+)); /g,
callback);

Discussion

The regular expression and example code we’ve shown in this recipe are intended for
decoding snippets of XML-style text, rather than entire XML documents. The regex
here can be useful when converting XML or (XYHTML content to plain text, but keep
in mind that no restrictions are placed on where named or numbered entities can occur
within the subject text. For instance, there is no special handling for skipping entities
in XML CDATA blocks or HTML script blocks.

The JavaScript example code converts both decimal and hexadecimal numeric refer-
ences to their corresponding literal characters, and additionally converts the five named
entities that are defined in the XML standard: " (), & (&), ' (), &1t; (<),
and > (>). HTML includes many more named entities that aren’t covered here.8 If

8. HTML 4.01 defines 252 named entities. HTMLS5 has more than 2,000.

544 | Chapter9: Markup and Data Formats

you follow the approach used in the example code, however, it should be straightfor-
ward to add as many more entity names as you need.
The JavaScript example code converts the following subject string:

"81t; &bogus; dec &i#65;A damp;lt; hex &i#x41;8#x041; >"
To this:

"< 8&bogus; dec AA < hex AA >"
JavaScript doesn’t support Unicode code points beyond U+FFFEF, so the provided code
(or more specifically, the String.fromCharCode() method used within it) works cor-
rectly only with numeric character references up to 8#xFFFF; hexadecimal and
8#65535; decimal. This shouldn’t be a problem in most cases, since characters beyond

this range are rare. Numeric character references with numbers above this range are
invalid in the first edition of the XML 1.0 standard.

W

Some programming languages and XML APIs have built-in functions to

perform XML or HTML entity decoding. For instance, in PHP 4.3 and

% later you can use the function html_entity decode(). It might still be

" helpful to implement your own method since such functions vary in
which entity names they recognize. In some cases, such as with Ruby’s
CGI::unescapeHTML(), even fewer than the standard five XML named
entities are recognized.

See Also

Recipe 9.5 explains how to convert plain text to HTML by adding <p> and
 tags.
The first step in the process is HTML-encoding &, <, and > characters using named
entities.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.9 explains grouping. Recipe 2.12 ex-
plains repetition.

9.7 Find a Specific Attribute in XML-Style Tags

Problem

Within an (X)HTML or XML file, you want to find tags that contain a specific attribute,
such as id.

This recipe covers several variations on the same problem. Suppose that you want to
match each of the following types of strings using separate regular expressions:

* Tags that contain an id attribute.

* <div> tags that contain an id attribute.

9.7 Find a Speific Attribute in XML-Style Tags | 545

* Tags that contain an id attribute with the value my-id.

* Tags that contain my-class within their class attribute value (even if there are
multiple classes separated by whitespace).

Solution

Tags that contain an id attribute (quick and dirty)
If you want to do a quick search in a text editor that lets you preview your results, the
following (overly simplistic) regex might do the trick:

<[*>]+\sid\b[*>]*>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here’s a breakdown of the regex in free-spacing mode:

< # Start of the tag

[*>]+ # Tag name, attributes, etc.

\s id \b # The target attribute name, as a whole word

[*>]* # The remainder of the tag, including the id attribute's value
> # End of the tag

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Tags that contain an id attribute (more reliable)

Unlike the regex just shown, this next take on the same problem supports quoted
attribute values that contain literal > characters, and it doesn’t match tags that merely
contain the word id within one of their attributes’ values:
RS TIMTANTE] LA TR)2\ sid\ sk \s* (AT A)R <
(€1 K | B K o I O Ll
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In free-spacing mode:

<
(2: [»>"] # Tag and attribute names, etc.
| [~ # and quoted attribute values
| [T
)+?
\s id # The target attribute name, as a whole word
\s* = \s* # Attribute name-value delimiter
¢ "[A"T7F"] "[~']*) # Capture the attribute value to backreference 1
(2: [»>"'] # Any remaining characters
| [~ # and quoted attribute values
| AT

546 | Chapter9: Markup and Data Formats

)*
>
Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

This regex captures the id attribute’s value and surrounding quote marks to backre-
ference 1. This allows you to use the value in code outside of the regex or in a replace-
ment string. If you don’t need to reuse the value, you can switch to a noncapturing
group or replace the entire <\s*=\s*("[*"]*"|'[~']*')> sequence with (\b>. The re-
mainder of the regex will pick up the slack and match the id attribute’s value.

<div> tags that contain an id attribute

To search for a specific tag type, you need to add its name to the beginning of the regex
and make a couple of other minor changes. In the following regex, we’ve added «div
\s> after the opening «<>. The <\s> (whitespace) token ensures that we don’t match tags
whose names merely start with the letters “div.” We know there will be a whitespace
character following the tag name because the tags we’re searching for have at least one
attribute (id). Additionally, the <+?\sid> sequence has been changed to ¢*?\bid>, so that
the regex works when id is the first attribute within the tag and there are no additional
separating characters (beyond the initial space) after the tag name:
CAiAS(2: [][] [T+ ¥2\bid\sF=\s* ([] []#) o
SRR NN
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here is the same thing in free-spacing mode:

<div \s # Tag name and following whitespace character
(2: [»>"'] # Tag and attribute names, etc.

| [~ # and quoted attribute values

| [T
)*?
\b id # The target attribute name, as a whole word
\s* = \s* # Attribute name-value delimiter
("[A"T7F" | "[~']*) # Capture the attribute value to backreference 1
(2: [™»>"'] # Any remaining characters

| "[AT]E" # and quoted attribute values

| AT
)*
>

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

9.7 Find a Specific Attribute in XML-Style Tags | 547

Tags that contain an id attribute with the value “my-id”

Compared to the regex titled “Tags that contain an id attribute (more relia-
ble)” on page 546, this time we’ll remove the capturing group around the id attribute’s
value since we know the value in advance. Specifically, the subpattern
«("[A"TE"] [~ 1*')> has been replaced with «(?:"my-id" | 'my-id")>:
Re[MMUTIATTE LA 1R) +2\sid\s*=\s* (2 "my-id" | ‘my-id"') <
5D 1T [1R
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

And the free-spacing version:

<
(?2: [»>"'] # Tag and attribute names, etc.
| "~ # and quoted attribute values
| l[/\l]*l
)+?
\s id # The target attribute name, as a whole word
\s* = \s* # Attribute name-value delimiter

(?: "my-id" # The target attribute value
| 'my-id") # surrounded by single or double quotes

(2: [™»>"] # Any remaining characters
| "~ # and quoted attribute values
| [T

)*

>

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Going back to the «(?:"my-id"|'my-id')> subpattern for a second, you could alterna-
tively avoid repeating “my-id” (at the cost of some efficiency) by using «(["'])my-id
\1>. That uses a capturing group and backreference to ensure that the value starts and
ends with the same type of quote mark.

Tags that contain “my-class” within their class attribute value

If the previous regular expressions haven’t already passed this threshold, this is where
it becomes obvious that we’re pushing the boundary of what can sensibly be accom-
plished using a single regex. Splitting up the process using multiple regexes helps, so
we’ll split this search into three parts. The first regex will match tags, the next will find
the class attribute within it (and store its value within a backreference), and finally
we’ll search within the value for my-class.

Find tags:
QTR T TR)0
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

548 | Chapter9: Markup and Data Formats

Download from Wow! eBook <www.wowebook.com>

Recipe 9.1 is dedicated to matching XML-style tags. It explains how the
regex just shown works, and provides a number of alternatives with
98 varying degrees of complexity and accuracy.

Next, follow the code in Recipe 3.13 to search within each match for a class attribute
using the following regex:
B(: [T [T e\ sclass\s e\ ([] []
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This captures the entire class value and its surrounding quote marks to backreference
1. Everything before the class attribute is matched using <*(2: [A>" ']| "[*"]*" | "[*']*")
+2>, which matches quoted values in single steps to avoid finding the word “class” inside
another attribute’s value. On the right side of the pattern, the match ends as soon as
we reach the end of the class attribute’s value. Nothing after that is relevant to our
search, so there’s no reason to match all the way to the end of the tag within which
we’re searching.

The caret at the beginning of the regex anchors it to the start of the subject string. This
doesn’t change what is matched, but it’s there so that if the regex engine can’t find a
match starting at the beginning of the string, it doesn’t try again (and inevitably fail) at
each subsequent character position.

Finally, if both of the previous regexes found matches, use the following pattern to
search within backreference 1 of each match found by the second regex:

[""\s]my-class["'\s]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Since classes are separated by whitespace, my-class must be bordered on both ends by
either whitespace or a quote mark. If it weren’t for the fact that class names can include
hyphens, you could use word boundary tokens instead of the two character classes
here. However, hyphens create word boundaries, and thus <\bmy-class\b> would match
within not-my-class.

Discussion

The “Solution” section of this recipe already covers the details of how these regular
expressions work, so we’ll avoid rehashing it all here. Remember that regular expres-
sions are often not the ideal solution for markup searches, especially those that reach
the complexity described in this recipe. Before using these regular expressions, consider
whether you’d be better served by an alternative solution, such as XPath, a SAX parser,
or a DOM. We’ve included these regexes since it’s not uncommon for people to try to
pull off this kind of thing, but don’t say you weren’t warned. Hopefully this has at least

9.7 Find a Specific Attribute in XML-Style Tags | 549

helped to show some of the issues involved in markup searches, and helped you avoid
even more naive solutions.

W

- The regular expressions in this recipe are written with the expectation
"‘:\ that attribute values are always enclosed in single or double quotes.
T 98 Unquoted attribute values are not supported.

N

See Also

Recipe 9.8 is the conceptual inverse of this recipe, and finds tags that do not contain a
specific attribute.

Recipe 9.1 shows how to match all XML-style tags while balancing trade-offs including
tolerance for invalid markup.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.10 explains backreferences. Recipe 2.12 explains repetition.

9.8 Add a cellspacing Attribute to <table> Tags That Do Not
Already Include It

Problem

You want to search through an (X)YHTML file and add cellspacing="0" to all tables
that do not already include a cellspacing attribute.

This recipe serves as an example of adding an attribute to XML-style tags that do not
already include it. You can modify the regexes and replacement strings in this recipe
to use whatever tag and attribute names and values you prefer.

Solution

Solution 1, simplistic
You can use negative lookahead to match <table> tags that do not contain the word

cellspacing, as follows:

<table\b(?![*>]*?\scellspacing\b) ([*>]*)>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here’s the regex again in free-spacing mode:

550 | Chapter9: Markup and Data Formats

<table \b # Match "<table", as a complete word
(2! # Not followed by:

[~>]*? # Any attributes, etc.

\s cellspacing \b # "cellspacing", as a complete word

)
([*>71%) # Capture attributes, etc. to backreference 1
>

Regex options: Case insensitive
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Solution 2, more reliable

The following regex works exactly the same as Solution 1, except that both instances
of the negated character class <[*>]> are replaced with «(2:[*>" " T|"[~"]*"|'[*"]*').
This longer pattern passes over double- and single-quoted attribute values in one step:
<table\b(2!(2:[~>" 1" [~"]*"| "[~']*")*?\scellspacing\b) «
(@[T TV)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

And here it is in free-spacing mode:

<table \b # Match "<table", as a complete word
(2! # Not followed by: Any attributes, etc., then "cellspacing"

(2")] |)
\s cellspacing \b

)

(# Capture attributes, etc. to backreference 1
(?:[A>lll]|ll[/\ll]*ll|l[/\l]*l)*

)

>

Regex options: Case insensitive
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Insert the new attribute

The regexes shown as Solution 1 and Solution 2 can use the same replacement string,
since they both capture attributes (if any) within the matched <table> tags to backre-
ference 1. This lets you bring back those attributes as part of your replacement value,
while adding the new cellspacing attribute. Here are the necessary replacement strings:

<tableecellspacing="0"$1>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<tableecellspacing="0"\1>
Replacement text flavors: Python, Ruby

Recipe 3.15 shows the code for performing substitutions that use a backreference in
the replacement string.

9.8 Add a cellspacing Attribute to <table> Tags That Do Not Already Include It | 551

Discussion

In order to examine how these regexes work, we’ll first break down the simplistic Sol-
ution 1. As you’ll see, it has four logical parts.

The first part, «<table\b>, matches the literal characters <table, followed by a word
boundary (\\b>). The word boundary prevents matching tag names that merely start
with “table.” Although that might seem unnecessary here when working with
(X)HTML (since there are no valid elements named “tablet,” “tableau,” or “table-
spoon,” for example), it’s good practice nonetheless, and can help you avoid bugs when
adapting this regex to search for other tags.

The second part of the regex, «(?![*>]*?\scellspacing\b)>, is a negative lookahead. It
doesn’t consume any text as part of the match, but it asserts that the match attempt
should fail if the word cellspacing occurs anywhere within the opening tag. Since we’re
going to add the cellspacing attribute to all matches, we don’t want to match tags that
already contain it.

Because the lookahead peeks forward from the current position in the match attempt,
it uses the leading <[*>]*?> to let it search as far forward as it needs to, up until what is
assumed to be the end of the tag (the first occurrence of >). The remainder of the
lookahead subpattern (<\scellspacing\b>) simply matches the literal characters “cell-
spacing” as a complete word. We match a leading whitespace character (<\s>) since
whitespace must always separate an attribute name from the tag name or preceding
attributes. We match a trailing word boundary instead of another whitespace character
since a word boundary fulfills the need to match cellspacing as a complete word, yet
works even if the attribute has no value or if the attribute name is immediately followed
by an equals sign.

The way this is set up, if the regex finds cellspacing before >, the match fails. If the
lookahead does not find cellspacing before it runsinto a >, the rest of the match attempt
can continue.

Moving along, we get to the third piece of the regex: «([*>]*)>. This is a negated char-
acter class and a following “zero or more” quantifier, wrapped in a capturing group.
Capturing this part of the match allows you to easily bring back the attributes that each
matched tag contained as part of the replacement string. And unlike the negative look-
ahead, this part actually adds the attributes within the tag to the string matched by the
regex.

Finally, the regex matches the literal character <> to end the tag.

Solution 2, the more reliable version, replaces both instances of the negated character
class «[*>]> from the simplistic solution with «(2:[*>"']|"[~"]*"|'[~']*')>. This im-
proves the regular expression’s reliability in two ways. First, it adds support for quoted
attribute values that contain literal > characters. Second, it ensures that we don’t pre-
clude matching tags that merely contain the word “cellspacing” within an attribute’s
value.

552 | Chapter9: Markup and Data Formats

As for the replacement strings, they work with both regexes, replacing each matched
<table> tag with a new tag that includes cellspacing="0" as the first attribute, followed
by whatever attributes occurred within the original tag (backreference 1).

See Also

Recipe 9.7 is the conceptual inverse of this recipe, and finds tags that contain a specific
attribute.

Recipe 9.1 shows how to match all XML-style tags while balancing trade-offs including
tolerance for invalid markup.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.6 explains word boundaries.
Recipe 2.8 explains alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains
repetition. Recipe 2.16 explains lookaround.

9.9 Remove XML-Style Comments

Problem

You want to remove comments from an (X)HTML or XML document. For example,
you want to remove development comments from a web page before it is served to web
browsers, or you want to perform subsequent searches without finding any matches
within comments.

Solution

Finding comments is not a difficult task, thanks to the availability of lazy quantifiers.
Here is the regular expression for the job:
<I--*2-->
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

That’s pretty straightforward. As usual, though, JavaScript’s lack of a “dot matches line
breaks” option (unless you use the XRegExp library) means that you’ll need to replace
the dot with an all-inclusive character class in order for the regular expression to match
comments that span more than one line. Following is a version that works with standard
JavaScript:

<I--[\s\S]*?-->
Regex options: None
Regex flavor: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

To remove the comments, replace all matches with the empty string (i.e., nothing).
Recipe 3.14 lists code to replace all matches of a regex.

9.9 Remove XML-Style Comments | 553

Discussion

How it works

At the beginning and end of this regular expression are the literal character sequences
«!--> and ¢-->. Since none of those characters are special in regex syntax (except
within character classes, where hyphens create ranges), they don’t need to be escaped.
That just leaves the <.*?> or <([\s\S]*?> in the middle of the regex to examine further.

Thanks to the “dot matches line breaks” option, the dot in the regex shown first
matches any single character. In the JavaScript version, the character class [\s\S]>
takes its place. However, the two regexes are exactly equivalent. <\s> matches any
whitespace character, and «\S> matches everything else. Combined, they match any
character.

The lazy ¢*?) quantifier repeats its preceding “any character” element zero or more
times, as few times as possible. Thus, the preceding token is repeated only until the
first occurrence of -->, rather than matching all the way to the end of the subject string,
and then backtracking until the last -->. (See Recipe 2.13 for more on how backtracking
works with lazy and greedy quantifiers.) This simple strategy works well since XML-
style comments cannot be nested within each other. In other words, they always end
at the first (leftmost) occurrence of -->.

When comments can’t be removed

Most web developers are familiar with using HTML comments within <script> and
<style> elements for backward compatibility with ancient browsers. These days, it’s
just a meaningless incantation, but its use lives on in part because of copy-and-paste
coding. We're going to assume that when you remove comments from an (XYyHTML
document, you don’t want to strip out embedded JavaScript and CSS. You probably
also want to leave the contents of <textarea> elements, CDATA sections, and the values
of attributes within tags alone.

Earlier, we said removing comments wasn’t a difficult task. As it turns out, that was
only true if you ignore some of the tricky areas of (XYHTML or XML where the syntax
rules change. In other words, if you ignore the hard parts of the problem, it’s easy.

Of course, in some cases you might evaluate the markup you’re dealing with and decide
it’s OK to ignore these problem cases, maybe because you wrote the markup yourself
and know what to expect. It might also be OK if you’re doing a search-and-replace in
a text editor and are able to manually inspect each match before removing it.

But getting back to how to work around these issues, in “Skip Tricky (XYHTML and
XML Sections” on page 523 we discussed some of these same problems in the context
of matching XML-style tags. We can use a similar line of attack when searching for
comments. Use the code in Recipe 3.18 to first search for tricky sections using the

554 | Chapter9: Markup and Data Formats

regular expression shown next, and then replace comments found between matches
with the empty string (in other words, remove the comments):
<(script|style|textarea|title|xmp)\b(2:[*>""]|"[~"]*"|'[~']*")*>«
J2¢/\1\s*> [<plaintext\b(2: [A>" " T|"[A"]*¥"| [~]F) > ¥ <
<Ta-z] 2 [S" T IA"TE" [~ TR) *> | <P\ [CDATA\[.*?]]>
Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Adding some whitespace and a few comments to the regex in free-spacing mode makes
this a lot easier to follow:

Special element: tag and its content

<(script | style | textarea | title | xmp)\b
(?:[,\>|||]|n[,\u]*|l| l[/\l]*l)*

> K7 </\1\s*>

<plaintext/> continues until the end of the string
<plaintext\b

(?:[A>u|]|n[Au]*n|I[Al]*l)*
> K

Standard element: tag only

<[a-z] # Tag name initial character
(?:[,\>|||]|n[,\u]*|l| l[/\l]*l)*

>

I
CDATA section

<I\[CDATA\[.*?]]>
Regex options: Case insensitive, dot matches line breaks, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Here’s an equivalent version for standard JavaScript, which lacks both “dot matches
line breaks” and “free-spacing” options:

<(script|style|textarea|title|xmp)\b(2:[">""]|"[~"]*"|'[~']*")*>«
[\s\S]*2</\1\s*> | <plaintext\b(2: [~>""J|"[~"]*" | '[~' %")*>[\s\S]*]| «
<a-z] Q[T"[A T TR)*> [<IN[COATAN[[\s\s]*?]]>

Regex options: Case insensitive

Regex flavor: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Variations

Find valid XML comments

There are in fact a few syntax rules for XML comments that go beyond simply starting
with <!-- and ending with -->. Specifically:

* Two hyphens cannot appear in a row within a comment. For example, <!--
com--ment --> is invalid because of the two hyphens in the middle.

9.9 Remove XML-Style Comments | 555

Download from Wow! eBook <www.wowebook.com>

* The closing delimiter cannot be preceded by a hyphen that is part of the
comment. For example, <!-- comment ---> is invalid, but the completely empty
comment <!----> is allowed.

* Whitespace may occur between the closing -- and >. For example, <!-- comment
-- >isavalid, complete comment.

It’s not hard to work these rules into a regex:
<I--[A-1*(2:-[-1#)*--\s*>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Notice that everything between the opening and closing comment delimiters is still
optional, so it matches the completely empty comment <!---->. However, if a hyphen
occurs between the delimiters, it must be followed by at least one nonhyphen character.
And since the inner portion of the regex can no longer match two hyphens in a row,
the lazy quantifier from the regexes at the beginning of this recipe has been replaced
with greedy quantifiers. Lazy quantifiers would still work fine, but sticking with them
here would result in unnecessary backtracking (see Recipe 2.13).

Some readers might look at this new regex and wonder why the <[*-]> negated character
class is used twice, rather than just making the hyphen inside the noncapturing group
optional (i.e., «<!--(?:-2[*-]+)*--\s*>). There’s a good reason, which brings us back
to the discussion of “catastrophic backtracking” from Recipe 2.15.

So-called nested quantifiers always warrant extra attention and care in order to ensure
that you’re not creating the potential for catastrophic backtracking. A quantifier is
nested when it occurs within a grouping that is itself repeated by a quantifier. For
example, the pattern «(?:-2["-]+)* contains two nested quantifiers: the question mark
following the hyphen and the plus sign following the negated character class.

However, nesting quantifiers is not really what makes this dangerous, performance-
wise. Rather, it’s that there are a potentially massive number of ways that the outer
¢* quantifier can be combined with the inner quantifiers while attempting to match a
string. If the regex engine fails to find --> at the end of a partial match (as is required
when you plug this pattern segment into the comment-matching regex), the engine
must try all possible repetition combinations before failing the match attempt and
moving on. This number of options expands extremely rapidly with each additional
character that the engine must try to match. However, there is nothing dangerous about
the nested quantifiers if this situation is avoided. For example, the pattern «(?:-[*-]
+)% does not pose a risk even though it contains a nested «+» quantifier, because now
that exactly one hyphen must be matched per repetition of the group, the potential
number of backtracking points increases linearly with the length of the subject string.

Another way to avoid the potential backtracking problem we’ve just described is to use
an atomic group. The following is equivalent to the first regex shown in this section,
but it’s a few characters shorter and isn’t supported by JavaScript or Python:

556 | Chapter9: Markup and Data Formats

<L==(2>-2[~-]#)*--\s*>
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

See Recipe 2.14 for the details about how atomic groups (and their counterpart, pos-
sessive quantifiers) work.

Find valid HTML comments

HTML 4.01 officially used the XML comment rules we described earlier, but web
browsers never paid much attention to the finer points. HTML5 comment syntax has
two differences from XML, which brings it closer to what web browsers actually im-
plement. First, whitespace is not allowed between the closing -- and >. Second, the text
within comments is not allowed to start with > or -> (in web browsers, that ends the
comment early).

Here are the HTML5 comment rules translated into regex:
<T==(1=-2)[*-T*(2:-[*-]+)*-->
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Compared to the earlier regex for matching valid XML comments, this one doesn’t
include <\s*> before the trailing <»>, and adds the negative lookahead «(?!-2>)> just after
the opening «!-->.

N
- The reality of what web browsers treat as comments is more permissive
:‘:\ than the official HTML rules. It’s therefore typically preferable to use
N « . 1« . »
o3, the simple «!--.*?-->) (with “dot matches line breaks”) or «!--[\s
\S]*?-->> regexes shown in this recipe’s main “Solution” section.
See Also

Recipe 9.10 shows how to find specific words when they occur within XML-style
comments.

Recipes 7.5, 7.6, and 7.7 explain how to match various styles of single- and multiline
programming language comments in source code.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.4 explains that the dot matches any character. Recipe 2.6
explains word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains group-
ing. Recipe 2.10 explains backreferences. Recipe 2.12 explains repetition.
Recipe 2.13 explains how greedy and lazy quantifiers backtrack. Recipe 2.16 explains
lookaround.

9.9 Remove XML-Style Comments | 557

9.10 Find Words Within XML-Style Comments

Problem

You want to find all occurrences of the word T0DO within (X)yHTML or XML comments.
For example, you want to match only the underlined text within the following string:

This "TODO" is not within a comment, but the next one is. <!--
T0DO
1 d

Come up with a cooler comment for this example. -->

Solution

There are at least two approaches to this problem, and both have their advantages. The
first tactic, which we’ll call the “two-step approach,” is to find comments with an outer
regex, and then search within each match using a separate regex or even a plain text
search. That works best if you’re writing code to do the job, since separating the task
into two steps keeps things simple and fast. However, if you’re searching through files
using a text editor or grep tool, splitting the task in two won’t work unless your tool
of choice offers a special option to search within matches found by another regex.?

When you need to find words within comments using a single regex, you can accom-
plish this with the help of lookaround. This second method is shown in the upcoming
section “Single-step approach”.

Two-step approach

When it’s a workable option, the better solution is to split the task in two: search for
comments, and then search within those comments for T0DO.

Here’s how you can find comments:
<l--*2-->
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Standard JavaScript doesn’t have a “dot matches line breaks” option, but you can use
an all-inclusive character class in place of the dot, as follows:
<I--[\s\S]*?-->
Regex options: None
Regex flavor: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

For each comment you find using one of the regexes just shown, you can then search
within the matched text for the literal characters <TODO. If you prefer, you can make it

9. PowerGREP—described in “Tools for Working with Regular Expressions” in Chapter 1—is one tool
that’s able to search within matches.

558 | Chapter9: Markup and Data Formats

a case-insensitive regex with word boundaries on each end to make sure that only the
complete word TODO is matched, like so:

\bTODO\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Follow the code in Recipe 3.13 to search within matches of an outer regex.

Single-step approach

Lookahead (described in Recipe 2.16) lets you solve this problem with a single regex,
albeit less efficiently. In the following regex, positive lookahead is used to make sure
that the word TODO is followed by the closing comment delimiter -->. On its own, that
doesn’t tell whether the word appears within a comment or is simply followed by a
comment, so a nested negative lookahead is used to ensure that the opening comment
delimiter <!-- does not appear before the -->:

\bTODO\b(?=(2:(2!<!--).)*?-->)
Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Since standard JavaScript doesn’t have a “dot matches line breaks” option, use <[\s
\S]> in place of the dot:

\bTODO\b(?=(2:(?2!<!--)[\s\S])*?-->)
Regex options: Case insensitive
Regex flavor: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Two-step approach

Recipe 3.13 shows the code you need to search within matches of another regex. It
takes an inner and outer regex. The comment regex serves as the outer regex, and
<\bTODO\b> as the inner regex. The main thing to note here is the lazy ¢*?> quantifier that
follows the dot or character class in the comment regex. As explained in Recipe 2.13,
that lets you match up to the first --> (the one that ends the comment), rather than the
very last occurrence of --> in your subject string.

Single-step approach

This solution is more complex, and slower. On the plus side, it combines the two steps
of the previous approach into one regex. Thus, it can be used when working with a text
editor, IDE, or other tool that doesn’t allow searching within matches of another regex.

Let’s break this regex down in free-spacing mode, and take a closer look at each part:

\b TODO \b # Match the characters "TODO", as a complete word
(2= # Followed by:

9.10 Find Words Within XML-Style Comments | 559

(2: # Group but don't capture:

2V <l--) # Not followed by: "<!--"

. # Match any single character
)*? # Repeat zero or more times, as few as possible (lazy)
--> # Match the characters "-->"

)

Regex options: Dot matches line breaks, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

This commented version of the regex doesn’t work in JavaScript unless you use the
XRegExp library, since standard JavaScript lacks both “free-spacing” and “dot matches
line breaks” modes.

Notice that the regex contains a negative lookahead nested within an outer, positive
lookahead. That lets you require that any match of TODO is followed by --> and that
<!-- does not occur in between.

If it’s clear to you how all of this works together, great: you can skip the rest of this
section. Butin case it’s still a little hazy, let’s take another step back and build the outer,
positive lookahead in this regex step by step.

Let’s say for a moment that we simply want to match occurrences of the word TODO that
are followed at some point in the string by -->. That gives us the regex <\bTODO\b(?
=.%?-->)> (with “dot matches line breaks” enabled), which matches the underlined text
in <!--TODO--> just fine. We need the <.*?> at the beginning of the lookahead, because
otherwise the regex would match only when TODO is immediately followed by -->, with
no characters in between. The <*?» quantifier repeats the dot zero or more times, as few
times as possible, which is great since we only want to match until the first following
.

As an aside, the regex so far could be rewritten as <\bTODO(?=.*?-->)\b>—with the
second <\b> moved after the lookahead—without any affect on the text that is matched.
That’s because both the word boundary and the lookahead are zero-length assertions
(see “Lookaround” on page 84). However, it’s better to place the word boundary first
for readability and efficiency. In the middle of a partial match, the regex engine can
more quickly test a word boundary, fail, and move forward to try the regex again at the
next character in the string without having to spend time testing the lookahead when
it isn’t necessary.

OK, so the regex <\bTODO\b(?=.*?-->)> seems to work fine so far, but what about when
it’s applied to the subject string TODO <!--separate comment-->? The regex still matches
TODO since it’s followed by -->, even though TODO is not within a comment this time.
We therefore need to change the dot within the lookahead from matching any character
to matching any character that is not part of the string <!--, since that would indicate
the start of a new comment. We can’t use a negated character class such as «[*<!-],
because we want to allow <, !, and - characters that are not grouped into the exact
sequence <!--.

560 | Chapter9: Markup and Data Formats

That’s where the nested negative lookahead comes in. «(?!<!--).> matches any single
character that is not part of an opening comment delimiter. Placing that pattern within
a noncapturing group as «(?:(?!1<!--).)» allows us to repeat the whole sequence with
the lazy <*?> quantifier we’d previously applied to just the dot.

Putting it all together, we get the final regex that was listed as the solution for
this problem: (\bTODO\b(?=(?:(?!<!--).)*?-->)>. In JavaScript, which lacks the nec-
essary “dot matches line breaks” option, <\bTODO\b(?=(?:(?!<!--)[\s\S])*?-->)> is
equivalent.

Variations

Although the “single-step approach” regex ensures that any match of T0DO is followed
by --> without <!-- occurring in between, it doesn’t check the reverse: that the target
word is also preceded by <!-- without --> in between. There are several reasons we left
that rule out:

* You can usually get away with not doing this double-check, especially since the
single-step regex is meant to be used with text editors and the like, where you can
visually verify your results.

* Having less to verify means less time spent performing the verification. In other
words, the regex is faster when the extra check is left out.

* Most importantly, since you don’t know how far back the comment may have
started, looking backward like this requires infinite-length lookbehind, which is
supported by the .NET regex flavor only.

If you’re working with .NET and want to include this added check, use the following
regex:
(2¢=<1--(2:(21-->) .)*2)\bTODO\b (?=(2: (21 <!--).)*2-->)
Regex options: Case insensitive, dot matches line breaks
Regex flavor: .NET

This stricter, .NET-only regex adds a positive lookbehind at the front, which works
just like the lookahead at the end but in reverse. Because the lookbehind works forward
from the position where it finds <!--, the lookbehind contains a nested negative look-
ahead that lets it match any characters that are not part of the sequence -->.

Since the leading lookahead and trailing lookbehind are both zero-length assertions,
the final match is just the word TODO. The strings matched within the lookarounds do
not become a part of the final matched text.

See Also
Recipe 9.9 includes a detailed discussion of how to match XML-style comments.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.4 explains that the dot matches any

9.10 Find Words Within XML-Style Comments | 561

character. Recipe 2.6 explains word boundaries. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition. Recipe 2.13 explains how greedy and lazy quantifiers
backtrack. Recipe 2.16 explains lookaround.

9.11 Change the Delimiter Used in CSV Files

Problem

You want to change all field-delimiting commas in a CSV file to tabs. Commas that
occur within double-quoted values should be left alone.

Solution

The following regular expression matches an individual CSV field along with its pre-
ceding delimiter, if any. The preceding delimiter is usually a comma, but can also be
an empty string (i.e., nothing) when matching the first field of the first record, or a line
break when matching the first field of any subsequent record. Every time a match is
found, the field itself, including the double quotes that may surround it, is captured to
backreference 2, and its preceding delimiter is captured to backreference 1.

W

g The regular expressions in this recipe are designed to work correctly
with valid CSV files only, according to the format rules discussed in
5+ Comma-Separated Values (CSV) on page 508.

G INeAR A ([N\]+ " (2: [T ") *") 2
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here is the same regular expression again in free-spacing mode:

(, | \r?2\n | ~) # Capture the leading field delimiter to backref 1
Capture a single field to backref 2:

[~ \r\n]+ # Unquoted field
Or:
"2 [AMIMM)* " # Quoted field (may contain escaped double quotes)
)? # The group is optional because fields may be empty

Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Using this regex and the code in Recipe 3.11, you can iterate over your CSV file and
check the value of backreference 1 after each match. The necessary replacement string
for each match depends on the value of this backreference. If it’s a comma, replace it
with a tab character. If the backreference is empty or contains a line break, leave the
value in place (i.e., do nothing, or put it back as part of a replacement string). Since
CSV fields are captured to backreference 2 as part of each match, you’ll also have to

562 | Chapter9: Markup and Data Formats

put that back as part of each replacement string. The only things you’re actually re-
placing are the commas that are captured to backreference 1.

Example web page with JavaScript

The following code is a complete web page that includes two multiline text input fields,
with a button labeled Replace between them. Clicking the button takes whatever string
you put into the first text box (labeled Input), converts any comma delimiters to tabs
with the help of the regular expression just shown, then puts the new string into the
second text box (labeled Output). If you use valid CSV content as your input, it should
show up in the second text box with all comma delimiters replaced with tabs. To test
it, save this code into a file with the .html extension and open it in your favorite web
browser:

<html>
<head>
<title>Change CSV delimiters from commas to tabs</title>
</head>

<body>
<p>Input:</p>
<textarea id="input" rows="5" cols="75"></textarea>

<p><input type="button" value="Replace" onclick="commasToTabs()"></p>

<p>Output:</p>
<textarea id="output" rows="5" cols="75"></textarea>

<script>
function commasToTabs() {
var input = document.getElementById("input"),
output = document.getElementById("output"),

regex = /(, [\e2\n[")([*",\r\n]+["(2:[*"]]"")*")?/g,
result = "",
match;

while (match = regex.exec(input.value)) {

// Check the value of backreference 1

if (match[1] == ",") {
// Add a tab (in place of the matched comma) and backreference
// 2 to the result. If backreference 2 is undefined (because
// the optional, second capturing group did not participate in
// the match), use an empty string instead.
result += "\t" + (match[2] || "");

} else {
// Add the entire match to the result
result += match[o0];

9.11 Change the Delimiter Used in CSV Files | 563

// If there is an empty match, prevent some browsers from getting
// stuck in an infinite loop
if (match.index == regex.lastIndex) {
regex.lastIndex++;
}

}

output.value = result;

}

</script>
</body>
</html>

Discussion

The approach prescribed by this recipe allows you to pass over each complete CSV field
(including any embedded line breaks, escaped double quotes, and commas) one at a
time. Each match then starts just before the next field delimiter.

The first capturing group in the regex, <(, |\r?\n|*)>, matches a comma, line break, or
the position at the beginning of the subject string. Since the regex engine will attempt
alternatives from left to right, these options are listed in the order in which they will
most frequently occur in the average CSV file. This capturing group is the only part of
the regex that is required to match. Therefore, it’s possible for the complete regex to
match an empty string since the «*» anchor can match once. The value matched by this
first capturing group must be checked in the code outside of the regex that replaces
commas with your substitute delimiters (in this case, tabs).

We haven’t yet gotten through the entire regex, but the approach described so far is
already somewhat convoluted. You might be wondering why the regex is not written
to match only the commas that should be replaced with tabs. If you could do that, a
simple substitution of all matched text would avoid the need for code outside of the
regex to check whether capturing group 1 matched a comma or some other string. After
all, it should be possible to use lookahead and lookbehind to determine whether a
comma is inside or outside a quoted CSV field, right?

Unfortunately, in order for such an approach to accurately determine which commas
are outside of double-quoted fields, you’d need infinite-length lookbehind,
which is available in the .NET regex flavor only (see “Different levels of lookbe-
hind” on page 85 for a discussion of the varying lookbehind limitations). Even .NET
developers should avoid a lookaround-based approach since it would add significant
complexity and also make the regex slower.

Getting back to how the regex works, most of the pattern appears within the next set
of parentheses: capturing group 2. This second group matches a single CSV field, in-
cluding any surrounding double quotes. Unlike the previous capturing group, this one
is optional in order to allow matching empty fields.

564 | Chapter9: Markup and Data Formats

Note that group 2 within the regex contains two alternative patterns separated by the
<|> metacharacter. The first alternative, <[*",\r\n]+), is a negated character class fol-
lowed by a one-or-more quantifier (¢+) that, together, match an entire unquoted field.
For this to match, the field cannot contain any double quotes, commas, or line breaks.

The second alternative within group 2, <"(?:[*"]]|"")*", matches a field surrounded
by double quotes. More precisely, it matches a double quote character, followed by
zero or more non-double-quote characters or repeated (escaped) double quotes, fol-
lowed by a closing double quote. The ¢ quantifier at the end of the noncapturing
group continues repeating the two options within the group until it reaches a double
quote that is not repeated and therefore ends the field.

Assuming you’re working with a valid CSV file, the first match found by this regex
should occur at the beginning of the subject string, and each subsequent match should
occur immediately after the end of the last match.

See Also

Recipe 9.12 describes how to reuse the regex in this recipe to extract CSV fields from
a specific column.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.2 explains how to match nonprinting characters. Recipe 2.3 explains character
classes. Recipe 2.5 explains anchors. Recipe 2.8 explains alternation. Recipe 2.9 ex-
plains grouping. Recipe 2.12 explains repetition.

9.12 Extract CSV Fields from a Specific Column

Problem

You want to extract every field (record item) from the third column of a CSV file.

Solution

The regular expressions from Recipe 9.11 can be reused here to iterate over each field
in a CSV subject string. With a bit of extra code, you can count the number of fields
from left to right in each row, or record, and extract the fields at the position you’re
interested in.

The following regular expression (shown with and without the free-spacing option)
matches a single CSV field and its preceding delimiter in two separate capturing groups.
Since line breaks can appear within double-quoted fields, it would not be accurate to
simply search from the beginning of each line in your CSV string. By matching and
stepping past fields one by one, you can easily determine which line breaks appear
outside of double-quoted fields and therefore start a new record.

9.12 Extract CSV Fields from a Specific Column | 565

W

S The regular expressions in this recipe are designed to work correctly
"‘:‘ with valid CSV files only, according to the format rules discussed in
T 98y Comma-Separated Values (CSV) on page 508.

N

G INeAR) ([N\]+ " (2: [T ") *") 2
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

(, | \r?2\n | ~) # Capture the leading field delimiter to backref 1
Capture a single field to backref 2:

[~ \r\n]+ # Unquoted field
| # Or:

"2 [AMIMM)* " # Quoted field (may contain escaped double quotes)
)? # The group is optional because fields may be empty

Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

These regular expressions are exactly the same as in Recipe 9.11, and they can be re-
purposed for plenty of other CSV processing tasks as well. The following example code
demonstrates how you can use the version without the free-spacing option to help you
extract a CSV column.

Example web page with JavaScript

The following code is a complete web page that includes two multiline text input fields
and a button between them labeled Extract Column 3. Clicking the button takes what-
ever string you put into the Input text box, extracts the value of the third field in each
record with the help of the regular expression just shown, then puts the entire column
(with each value separated by a line break) into the Output field. To test it, save this
code into a file with the .html extension and open it in your favorite web browser:

<html>
<head>
<title>Extract the third column from a CSV string</title>
</head>

<body>
<p>Input:</p>
<textarea id="input" rows="5" cols="75"></textarea>

<p><input type="button" value="Extract Column 3"
onclick="displayCsvColumn(2)"></p>

<p>Output:</p>
<textarea id="output" rows="5" cols="75"></textarea>

<script>

566 | Chapter9: Markup and Data Formats

Download from Wow! eBook <www.wowebook.com>

function displayCsvColumn(index) {
var input = document.getElementById("input"),
output = document.getElementById("output"),
columnFields = getCsvColumn(input.value, index);

if (columnFields.length > 0) {
// Show each record on its own line, separated by a line feed (\n)
output.value = columnFields.join("\n");

} else {
output.value = "[No data found to extract]";

}

}

// Return an array of CSV fields at the provided, zero-based index
function getCsvColumn(csv, index) {

var regex = /(,|\r2\n|*)([A",\r\n]+|"(2:[*"]]"")*")2/g,

result = [],
columnIndex = 0,
match;

while (match = regex.exec(csv)) {
// Check the value of backreference 1. If it's a comma,
// increment columnIndex. Otherwise, reset it to zero.
if (match[1] == ",") {
columnIndex++;
} else {
columnIndex = 0;

if (columnIndex == index) {
// Add the field (backref 2) at the end of the result array
result.push(match[2]);

}

// If there is an empty match, prevent some browsers from getting
// stuck in an infinite loop
if (match.index == regex.lastIndex) {
regex.lastIndex++;
}

}

return result;
}
</script>
</body>
</html>

9.12 Extract CSV Fields from a Specific Column | 567

Discussion

Since the regular expressions here are repurposed from Recipe 9.11, we won’t repeat
the detailed explanation of how they work. However, this recipe includes new
JavaScript example code that uses the regex to extract fields at a specific index from
each record in the CSV subject string.

In the provided code, the getCsvColumn() function works by iterating over the subject
string one match at a time. After each match, backreference 1 is examined to check
whether it contains a comma. If so, you’ve matched something other than the first field
in a row, so the columnIndex variable is incremented to keep track of which column
you’re at. If backreference 1 is anything other than a comma (i.e., an empty string or a
line break), you’ve matched the first field in a new row and columnIndex is reset to zero.

The next step in the code is to check whether the columnIndex counter has reached the
index you’re looking to extract. Every time it does, the value of backreference 2 (ev-
erything after the leading delimiter) is pushed to the result array. After you’ve iterated
over the entire subject string, the getCsvColumn() function returns an array containing
values for the entire specified column (in this example, the third column). The list of
matches is then dumped into the second text box on the page, with each value separated
by a line feed character (\n).

A simple improvement would be to let the user specify which column index should be
extracted, via a prompt or additional text field. The getCsvColumn() function we’ve been
discussing is already written with this feature in mind, and lets you specify the desired
column as an integer (counting from zero) via its second parameter (index).

Variations

Although using code to iterate over a string one CSV field at a time allows for extra
flexibility, if you’re using a text editor to get the job done, you may be limited to just
search-and-replace. In this situation, you can achieve a similar result by matching each
complete record and replacing it with the value of the field at the column index you’re
searching for (using a backreference). The following regexes illustrate this technique
for particular column indexes, replacing each record with the field in a specific column.

With all of these regexes, if any record does not contain at least as many fields as the
column index you’re searching for, that record will not be matched and will be left in
place.

Match a CSV record and capture the field in column 1 to backreference 1
AL AT (21205, (3 \r\nTe " (221217 *) 2)*

Regex options: ™ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

568 | Chapter9: Markup and Data Formats

Match a CSV record and capture the field in column 2 to backreference 1
/\(?:[/\ll,\r\n]+| |l(?:[/\ll] | |l|l)*ll)?,([/\ll,\r\n]+| ll(?: [/\Il] | llll)*ll)?(J
G 2N\]+ [(R[])*) 2)*
Regex options: ~ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Match a CSV record and capture the field in column 3 or higher to backreference 1
AN *) 22, e[\ T [(2 [T M)) 2) {1}, ¢
(AT [T 7)) 22, (2 [V \a\n 7 (2: [T)+ 2)%

Regex options: ~ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Increment the number within the «{1}> quantifier to make this last regex work for any-
thing higher than column 3. For example, change it to «{2}> to capture fields from
column 4, ({3} for column 5, and so on. If you’re working with column 3, you can
simply remove the ({1} if you prefer, since it has no effect here.

Replacement string

The same replacement string (backreference 1) is used with all of these regexes. Re-
placing each match with backreference 1 should leave you with just the fields you’re
searching for.

$1
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\1
Replacement text flavors: Python, Ruby

See Also

Recipe 9.11 shows how to use the regex in this recipe to change the delimiters in a CSV
file from commas to tabs.

Techniques used in the regular expressions and replacement text in this recipe are
discussed in Chapter 2. Recipe 2.2 explains how to match nonprinting characters.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.
Recipe 2.21 explains how to insert text matched by capturing groups into the replace-
ment text.

9.13 Match INI Section Headers

Problem

You want to match all section headers in an INI file.

9.13 Match INI Section Headers | 569

Solution

INI section headers appear at the beginning of a line, and are designated by placing a
name within square brackets (e.g., [Section1]). Those rules are simple to translate into
a regex:

MIIMNINr\n]+]
Regex options: ™ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
There aren’t many parts to this regex, so it’s easy to break down:

* The leading «*> matches the position at the beginning of a line, since the “* and $
match at line breaks” option is enabled.

e \[» matches a literal [character. It’s escaped with a backslash to prevent [from
starting a character class.

e (["\]\r\n]> is a negated character class that matches any character except], a
carriage return (\r), or a line feed (\n). The immediately following «+> quantifier
lets the class match one or more characters, which brings us to....

* The trailing <]> matches a literal] character to end the section header. There’s no
need to escape this character with a backslash because it does not occur within a
character class.

Variations

If you only want to find a specific section header, that’s even easier. The following regex
matches the header for a section called Sectioni:

"\[Section1]
Regex options: and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

»

In this case, the only difference from a plain-text search for “[Section1]” is that the
match must occur at the beginning of a line. This prevents matching commented-out
section headers (preceded by a semicolon) or what looks like a header but is actually
part of a parameter’s value (e.g., Itemi=[Value1]).

See Also

Recipe 9.14 describes how to match INI section blocks. Recipe 9.15 does the same for
INI name-value pairs.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.2 explains
how to match nonprinting characters. Recipe 2.3 explains character classes.
Recipe 2.5 explains anchors. Recipe 2.12 explains repetition.

570 | Chapter9: Markup and Data Formats

9.14 Match INI Section Blocks

Problem

You need to match each complete INT section block (in other words, a section header
and all of the section’s parameter-value pairs), in order to split up an INI file or process
each block separately.

Solution

Recipe 9.13 showed how to match an INI section header. To match an entire section,
we’ll start with the same pattern from that recipe, but continue matching until we reach
the end of the string or a [character that occurs at the beginning of a line (since that
indicates the start of a new section):
MINN\N T+ (2 \r2An(2: [A[\r\n]. *) 2)*

Regex options: © and $ match at line breaks (“dot matches line breaks” must not

be set)

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Or in free-spacing mode:
AN[["\]\r\n]+] # Match a section header

(2: # Followed by the rest of the section:
\r?\n # Match a line break character sequence
(?: # After each line starts, match:
[*[\r\n] # Any character except "[" or a line break character
K # Match the rest of the line
)? # The group is optional to allow matching empty lines
)* # Continue until the end of the section

Regexoptions: ~ and $ match atline breaks, free-spacing (“dot matches line breaks”
must not be set)
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Discussion

This regular expression starts by matching an INI section header with the pattern «*\
[[*\]\r\n]+]>, and continues matching one line at a time as long as the lines do not
start with [. Consider the following subject text:

[Section1]
Itemi=Valuel
Item2=[Value2]

; [SectionA]
; The SectionA header has been commented out

ItemA=ValueA ; ItemA is not commented out, and is part of Sectioni

9.14 Match INI Section Blocks | 571

[Section2]
Item3=Value3
Item4 = Valuesd

Given the string just shown, this regex finds two matches. The first match extends from
the beginning of the string up to and including the empty line before [Section2]. The
second match extends from the start of the Section2 header until the end of the string.

See Also

Recipe 9.13 shows how to match INI section headers. Recipe 9.15 does the same for
INT name-value pairs.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.2 explains
how to match nonprinting characters. Recipe 2.3 explains character classes.
Recipe 2.5 explains anchors. Recipe 2.9 explains grouping. Recipe 2.12 explains
repetition.

9.15 Match INI Name-Value Pairs

Problem

You want to match INI parameter name-value pairs (e.g., Itemi=Valuel), separating
each match into two parts using capturing groups. Backreference 1 should contain the
parameter name (Item1), and backreference 2 should contain the value (vValuel).

Solution
Here’s the regular expression to get the job done:
M[M=3\r\n]+)=(["5\r\n]*)
Regex options: ™ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Or with free-spacing mode turned on:

A # Start of a line

([*=;\r\n]+) # Capture the name to backreference 1

= # Name-value delimiter

([*;\r\n]*) # Capture the value to backreference 2
Regex options: ~ and $ match at line breaks, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

572 | Chapter9: Markup and Data Formats

Discussion

Like the other INT recipes in this chapter, we’re working with pretty straightforward
regex ingredients here. The pattern starts with <*», to match the position at the start of
a line (make sure the “* and $ match at line breaks” option is enabled). This is im-
portant because without the assurance that matches start at the beginning of a line, you
could match part of a commented-out line.

Next, the regex uses a capturing group that contains the negated character class «[*=;
\r\n]> followed by the «+> one-or-more quantifier to match the name of the parameter
and remember it as backreference 1. The negated class matches any character except
the following four: equals sign, semicolon, carriage return (<\r»), and line feed (<\n>).
The carriage return and line feed characters are both used to end an INI parameter, a
semicolon marks the start of a comment, and an equals sign separates a parameter’s
name and value.

After matching the parameter name, the regex matches a literal equals sign (the name-
value delimiter), and then the parameter value. The value is matched using a second
capturing group that is similar to the pattern used to match the parameter name but
has two fewer restrictions. First, this second subpattern allows matching equals signs
as part of the value (i.e., there is one less negated character in the character class).
Second, it uses a ¢*» quantifier to remove the need to match at least one character since
parameter values may be empty.

And we’re done.

See Also

Recipe 9.13 explains how to match INI section headers. Recipe 9.14 covers how to
match INT section blocks.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.2 explains how to match nonprinting characters. Recipe 2.3 explains character
classes. Recipe 2.5 explains anchors. Recipe 2.9 explains grouping. Recipe 2.12 explains
repetition.

9.15 Match INI Name-Value Pairs | 573

Symbols
|~ operator, 139
character
escaping, 374
for comments, 94, 95
$ token, 276, 279
as anchor, 41-44, 363, 366, 377, 381, 498
for multiple lines, 43, 363
in JavaScript, 286
in Perl, 286
in Ruby, 43, 44, 366
vs. \Z token, 247, 285, 286
$& variable, 99, 147, 150, 202, 374
$' token, 103, 211
$10 and higher groups, 100101
$_ token, 103, 138, 187, 190, 217, 218
$* (dollar backtick) token, 103, 211
$~ variable, 150, 153, 155, 161, 163, 203
%+ hash (Perl), 163, 196
%t prefix (Ruby), 116
(?!) for empty negative lookahead, 91, 352

(?#...), 95

(?&name) for subroutines, 350

(?(if)then|else) for conditionals (see
conditionals)

(?-flags) for mode modifier, 30, 44, 65, 66

(?:...) for noncapturing groups (see
noncapturing groups)

(?<!...) for negative lookbehind (see
lookbehinds)

(?<=...) for positive lookbehind (see
lookbehinds)

Index

(?<name>...) for named capture (see named
capturing groups)
(?=...) for positive lookahead (see lookaheads)
(?>...) for atomic groups (see atomic groups)
(?1) mode modifier, 29, 30, 36, 65, 128
(?m) mode modifier, 5, 40, 44, 46
(?n) mode modifier, 130
(?P=name) for named backreferences, 71
(?s) mode modifier, 5, 40
(?x) mode modifier, 95
* quantifier, 77, 247, 339, 414, 443, 516, 565
*+ quantifier, 79
*? quantifier, 77, 368, 554, 559561
+ quantifier, 247, 276, 341, 360, 370, 573
and backtracking, 420
greedy vs. lazy use, 307
in lookbehind, 404
making possessive, 522
++ quantifier, 79
+? quantifier, 307
- character, 34, 467
. (dot) metacharacter, 3840, 314, 422
abuse of, 39
matching any character with, 38—40
except line breaks, 38-39
including line breaks, 38-39
/aflag, 35, 47, 132
/d flag, 35, 47, 132
/e flag, 133, 202
/e flag, 26, 131, 166, 191, 336, 541
/iflag, 26, 36, 128, 130, 133
/l flag, 35, 47, 132
/m flag, 128, 130, 133, 143, 377, 381
/n flag, 133
/o flag, 132

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

575

/r flag, 130
/s flag, 133
/u flag, 35, 47, 131, 277, 535
/U flag, 131, 132
/x flag, 26, 94, 129, 133
7-bit character set, 3233
<< operator, 471
, replacing with , 526-529
, replacing with, 526-529
=~ operator, 109, 144, 155, 190
? quantifier, 289, 338, 414, 430, 522
?+ quantifier, 79
@ character, 115, 243, 244
[character, 28, 34, 373, 570, 571
[\s\S], 309, 314, 367, 416, 524, 554
[] token for empty character class, 34
\ (escape character), 28, 34
\ for escape sequences, 31
\& token, 99, 103, 374
\' token, 103
\a token, 31
\A token, 41, 42, 44, 130, 142, 286, 366, 381
zero-length matches, 153
\btoken, 36,45,47,79,153,252,321,412, 426,
468, 471, 560
and special characters, 356
and U flag, 332
in Java, 282
in lookbehind, 346
vs. \B token, 46
\B token, 46, 47
\cH token, 32
\d token, 35, 77, 132, 251, 375
\D token, 35, 320
\E token, 29, 374
\e token, 31
\f token, 31, 287
\h token, 356, 370
\K token, 88, 89, 347, 348, 424, 425
\n token, xii, 31, 94, 131, 227, 276, 487, 541
in C#, 113
in Java, 114
in Python, 116
\p token, 37, 49, 52, 59, 60
\P token, 52, 59, 60
\p{Ll} token, 52
\P{Lu} token, 52
\p{L} token, 35, 52, 310, 356, 357, 537
\P{L} token, 52

\P{N} token, 37
\p{N} token, 37, 87
\p{Z} token, 281
\Q token, 29
\r token, xii, 31, 276, 285, 287, 487
\R token, 542
\r\n, 227, 422
\r\n, xii, 94, 227, 285, 287
\s token, 35, 36, 370
in Python, 132
regex flavor differences, 281, 367
using with \S token, 554
vs. \S token, 39
\S token, 35, 246, 368, 439
using with \s token, 554
vs. \s token, 39
\t token, 31, 94
\u token, 50, 60
\U token, 50, 536
\v token, 31, 287
\w token, 35, 47, 349, 411, 438
and U flag, 332
in .NET, 130
in Python, 132
\W token, 35, 46, 278, 315, 349
\x token, 32, 60
\X token, 40, 59
\z token, 41, 42, 90, 284-286
\Z token, 42, 44, 142
in JavaScript, 247, 377, 381
in Ruby, 130, 437, 481
vs. $ token, 285
\" token, 103
~ token, 41, 247, 279, 426, 573
and lookahead, 280
in Ruby, 42—44, 248, 446, 467
multiple uses of, 464
regex flavor differences, 285
regex options for, 360, 363
{ character, 28, 373

| token, 62-63, 289, 335, 519, 529, 565

A

a++ (Ruby), 5
ActionScript, 4, 108
Adobe ActionScript, 4, 108

affirmative responses, validating, 288—-289

alphanumeric characters
escaping, 28

576 | Index

limiting to, 275-278
ASCII characters, 276
ASCII non-control characters and line
breaks, 276
in any language, 277-278
in Ruby, 276
shared ISO-8859-1, 277
Windows-1252 characters, 277
alternation
defined, 62
finding multiple words using, 334, 335
keeping alternatives together using
noncapturing groups, 443
matching using, 62-63
performance of, 529
vs. character classes, 529
anchors
defined, 41, 250
for matching, 4041
any character, matching, 38—40
abuse of, 39
except line breaks, 38-39
including line breaks, 38-39
ArgumentException, 121, 137, 148, 188, 215
ArgumentNullException, 137, 148, 165, 188,
214
ArgumentOutOfRangeException, 138, 148,
149, 166, 188, 215
ASCII characters, limiting to, 133, 276
assertion, defined, 250
atomic groups, 59, 79-80, 285
benefits of, 517
defined, 79
emulating using backreferences, 520
in matching words from list example, 410
lookaround groups are, 87-88
not backtracking with, 463
attributes in XML-style tags
adding, 550-553
allowing > in, 510-511, 516-517
finding class attribute, 548-549
finding id attribute, 546
audience, for this book, x

B

backref property, 184
backreferences, 67—-68
defined, 67, 69
emulating atomic groups using, 520

exploiting empty, 352-353
in finding repeated words example, 355
named backreferences, 71
overview, 66—68
backslashes
escaping characters in replace text, 96-97
including as literal characters, 34
backtick (*) character, 103, 314, 521
backtracking, 463
and + quantifier, 420
avoiding using possessive quantifiers, 517
defined, 76
needless, avoiding, 78-81
not backtracking with atomic groups, 463
begin() method (Ruby), 155
bell character, 31
binary numbers, 381-382
bitwise left shift operator, 471
block escape, 29
block, Unicode, 49, 52-57, 60
broken links, reported in web logs, 431-434

C

C language, 108
C#, 106
(see also .NET Framework)
matches in
finding within another match, 179-184
replacing all between matches of another
regex, 206-211
replacing all using parts of match text,
195
replacing all with replacements
generated in code, 199-200
replacing all within matches of another
regex, 203-205
retrieving part of string, 161
testing entire string, 142
testing in string, 137
validating in procedural code, 176-179
parsing string for import into application,
228-242
regular expression library for, 118
regular expression objects in, compiling to
CIL, 125
searching line by line in, 224
strings in
for regex, 113
splitting, 214-216

Index | 577

validating dates in, 260-261, 264
\n token in, 113
C++, 108
CacheSize property (NET), 122
Canadian postal codes, 301-302
capturing groups, 158-161, 247,274,307, 350,
353-356, 385-386, 413-414
capturing previous text with, 67-68
conditionals and, 91-93
repeating, 7475
using same name with, 452, 463
carriage return, 31
case-insensitivity
in character classes, 36
matching using, 29-30
using Java, 128
catastrophic backtracking, 4, 81-83, 419, 444
category, in Unicode, 49, 51-52
character classes, 33—-38
case-insensitivity in, 36
for hexadecimal character, 33-34
for nonhexadecimal character, 33-34
handling misspellings with, 33-34
in Unicode, 60
intersection of (Java), 37
negated, 338, 341
nested (Java), 37
performance of, 529
shorthand character classes, 35-36
subtraction of
in .NET, 36-37
in Java, 37
union of (Java), 37
vs. alternation, 529
vs. | token, 289
CharSequence, 142
chomp function, 43
ChrW function, 210
CIL (Common Intermediate Language),
compiling to, 125
class attributes, finding in XML-style tags, 548—
549
closing tags, matching, 519
code point, in Unicode, 48-51
.com TLD (top level domain), 245-256
Combined Log Format, 430—431
comma-separated value files (see CSV (comma-
separated value) files)
comments, 93-95

free-spacing mode for, 94
and Java, 94
in XML-style tags
finding words in, 558-562
removing, 553-557
validating, 555-557
overview, 94
source code extraction
all, 417-418
multiline, 416417
single-line, 415-416
Common Intermediate Language (CIL),
compiling to, 125
Common Log Format, 426430
compile() function (Python), 124
compile() function (Ruby), 125
compile() method (Java), 113, 122, 123, 189,
216
compile() method (Python), 139, 168, 174, 191,
218
compressed mixed notation for IPv6 addresses,
476-477, 485
compressed notation for IPv6 addresses, 474—
475, 478-480, 482-486
conditionals
defined, 91
finding words near using, 349-352
consumes, defined, 85
context
defined, 103
of match, in replacement text, 103-104
control characters, matching, 31-32
Count property (.NET), 159
Create panel, RegexBuddy, 9
credit card numbers
validating, 317-323
stripping spaces and hyphens, 317-318,
320
using in web page, 319-322
validating number, 318-319, 321
with Luhn algorithm, 322-323
CSV (comma-separated value) files
changing delimiter in, 562-565
extracting fields from column, 565-569
overview, 503-509

D
dates, 256-260
excluding invalid dates

578 | Index

as pure regular expression, 262-265
in C#, 260-261, 264
in Perl, 261
overview, 260-266
validating, ISO 8601, 269272
“magical”, 66, 69
DateTime class, 264
debugging in RegexBuddy, 10
decimal numbers, 384-385, 407
delimiter, in CSV files, 562-565
Delphi, 108-109
Delphi Prism, 109
denial of service attacks, 4
Design Mode, Expresso, 19
DFA (deterministic finite automaton), 2
Document Object Model (DOM), 514
documents, finding items in
ISBNs, 298-299
phone numbers, 252-253
Social Security numbers, 291
dollar backtick ($), 103
DOM (Document Object Model), 514
domain names, validating, 466—469
dot metacharacter (see . (dot) metacharacter)
dots, in email addresses, 244
double negatives, 278
double-quoted strings, 113-115
drive letter paths
splitting into parts, 491-493
validating, 487-489
duplicate lines, removing, 358-362
keeping first occurrence in unsorted file,
359-362
keeping last occurrence in unsorted file,
359, 361
sorting and removing adjacent duplicates,
358-361
duplicated words, 355-358

E

eager, defined, 63, 390
ECMAScript (see JavaScript)
ed text editor, 22
email addresses, 243-248
no leading, trailing, or consecutive dots,
244
overview, 245-248
simple, 243
with all valid local part characters, 244

with restrictions on characters, 244
empty negative lookahead, 91
encode() method (Python), 211
end of line/subject, matching, 40-43
end() method (Java), 154, 159, 162
end() method (Python), 155
end() method (Ruby), 155
engine, defined, 62
EPP (Extensible Provisioning Protocol), 255—
256
ereg functions, 107, 114
ereg_replace function, 7
.es TLD (top level domain), 468
escape character (\), 31
escaping
- character, 467
alphanumeric characters, 28
block escape, 29
defined, 28
in C#, 113
in replacement text, 96-97
metacharacters, 34, 371-374
built-in solutions, 371
in JavaScript, 372
using regular expression, 371-372
nonalphanumeric characters, 28
esoteric line separators, 286-287
EUC encoding for Far East languages, 133
Evdokimov, Sergey, 18
exec() method (JavaScript), 154, 159, 160, 172,
173
Expression Library, Expresso, 20
Expresso, 19-20
Extensible Provisioning Protocol (EPP), 255—
256

F

file extensions, extracting from Windows
paths, 499-500
filenames
extracting file extension from, 499-500
extracting from Windows paths, 498-499
stripping invalid characters from, 500-501
find() method (Java), 19, 138, 149, 154, 166,
172,201
findall() method (Python), 168
finditer() method (Python), 174
first names
formatting, 305-308

Index | 579

in JavaScript, 306
listing surname particles at beginning of
name, 308
fixed repetition quantifiers, 73
flavors
in this book, ix—x
of regular expressions, 2—5
of search-and-replace functions, 6-8
\s token differences, 281, 367
~ token differences, 285
floating point numbers, 396-399
folders, extracting from Windows paths, 496—
498
form feed (\f), 31
formatting
first and last names, 305-308
in JavaScript, 306
listing surname particles at beginning of
name, 308
phone numbers, North American, 249-254
forums, for RegexBuddy, 10
fragments, extracting from URLs, 465-466
free-spacing mode, 94
for comments, 94
and Java, 94
Friedl, Jeffrey, 2

G

g/re/p command, 22
Goyvaerts, Jan, 4, 8, 11, 44
graphemes, 50

defined, 50

in Unicode, matching, 50, 58-59
greedy quantifiers, 75-78, 307, 368
greedy, defined, 75
grep, 22-26, 110

defined, 22

PowerGREP, 23

Windows Grep, 25
GREP panel, RegexBuddy, 10
Groovy, 109-110
Group property (.NET), 159, 161, 162, 171
group() method (Java), 159, 162
group() method (Python), 160, 161, 163
group, defined, 64
groupdict() method (Python), 161
grouping, 63—66

mode modifiers for, 65-66

named capture, 69-70

using in replacement text, 102
with same name, 71-72
noncapturing groups, 65
quantifiers for, 74-75
using in replacement text, 99-103
$10 and higher, 100-101
references to nonexistent groups, 101
gsub!() method (Ruby), 191
gsub() method (Ruby), 191, 194, 195, 203

H
Hazel, Philip, 4
hexadecimal characters
character classes for, 33-34
codes for, 30-31
numbers, 379-381
numbers within range, 392-394
horizontal tab, 31
horizontal whitespace characters, replacing
with single space, 370
host
extracting from URLs, 457-459
from valid URL, 457—458
while validating URL, 457-458
HTML (Hypertext Markup Language) tags
attributes in
adding, 550-553
allowing > in, 510-511, 516-517
finding class attribute, 548-549
finding id attribute, 546
caution with, 514
comments in
finding words in, 558-562
removing, 553-557
validating, 557
converting plain text to, 539-542
in JavaScript, 541
replacing line breaks, 540, 542
replacing special characters, 540, 541
wrapping entire string, 540, 542
loose, 511-512, 517-520
overview, 503-509
removing all except and ,
530-533
replacing with , 526-529
simple regex for, 510, 514-515
skipping certain sections of, 524-525
strict, 512, 521-522
hyphens, stripping, 317-318, 320

580 | Index

Download from Wow! eBook <www.wowebook.com>

id attribute, finding in XML-style tags, 546
identifiers, source code extraction of, 412
Illegal ArgumentException, 162, 189, 201
IllegalStateException, 149, 154
Imports statement, 118
Index property (NET), 153, 159, 171
index property (JavaScript), 154
IndexError exception, 155
IndexOutOfBoundsException, 149, 159, 189,
201
IndexOutOfRangeException, 149
infinite lookbehind, 404
infinite repetition, 74
.info TLD (top level domain), 256
INI (initialization) files
name-value pairs in, 572-573
overview, 503-509
section blocks in, 571-572
section headers in, 569-570
integers, 375-378, 395-396
International Standard Book Numbers (see
ISBNs (International Standard Book
Numbers))
international text, 332
intersection of character classes (Java), 37
IPv4 addresses, 469—472
in Perl, 470
IPv6 addresses, 472—486
compressed mixed notation, 476-477, 485
compressed notation, 478-480, 485-486
mixed notation, 473-474, 482, 485-486
standard notation, 473-474, 481-482, 485~
486
ISBNs (International Standard Book Numbers)
validating, 292-300
eliminating incorrect ISBN identifiers,
299
finding in documents, 298-299
in JavaScript, 293-296
in Python, 293-296
ISBN-10 checksum, 297-298
ISBN-13 checksum, 298
IsMatch() method (.NET), 135, 137, 138, 148,
166
ISO 8601 dates and times
validating, 269-275
dates, 269-270
times, 271-272

weeks, 270

XML Schema dates and times, 272273
1SO-8859-1 characters, limiting to, 277
ITU-T Recommendation E.123, 115

J

Japanese “Shift-JIS” encoding, 133
Java, 106
and free-spacing mode for comments, 94
character classes in
intersection of, 37
subtraction of, 37
union of, 37
escaping characters in replacement text, 96
matches in
finding within another match, 180-184
iterating through, 172-175
length of, 154
position of, 154
replacing all, 189
replacing all between matches of another
regex, 206-211
replacing all using parts of match text,
194, 195-196
replacing all with replacements
generated in code, 201
replacing all within matches of another
regex, 203-205
retrieving entire string, 149
retrieving list of, 166
retrieving part of string, 159, 162
testing entire string, 142—-143
testing in string, 138
validating in procedural code, 177-179
parsing string for import into application,
228-242
regular expression library for, 118
regular expression objects in, 122-123
search-and-replace functions, 6
searching line by line in, 225
setting options in, 128, 131
strings in
for regex, 113-114
splitting, 216
splitting and keeping regex matches,
222
support for regular expressions, 4
\b token in, 282
\n token in, 114

Index | 581

java.util.regex package, 4, 6, 18, 79, 106, 109,
110, 118
JavaScript, 106
$ token in, 286
and backreferences, 68, 353
as used in book, 4
escaping characters in replacement text, 96
escaping metacharacters in, 372
finding multiple words in, 334-336
finding words near using, 353-354
formatting names in, 306
matches in
finding within another match, 180-184
iterating through, 172-175
length of, 154
position of, 154
replacing all, 189
replacing all between matches of another
regex, 206-211
replacing all using parts of match text,
194
replacing all with replacements
generated in code, 201-202
replacing all within matches of another
regex, 203-205
retrieving entire string, 149-150
retrieving list of, 166
retrieving part of string, 159-160
testing entire string, 143
testing in string, 138
validating in procedural code, 177-179
parsing string for import into application,
228-242
password complexity in
basic, 311
overview, 315
with password security ranking, 312—
313
with x out of y validation, 311-312
regular expression library for, 118
regular expression objects in, 123
searching line by line in, 225
setting options in, 128, 131
strings in
for regex, 114
splitting, 216-217
splitting and keeping regex matches,
222
use of term, 7

validating affirmative responses in, 288
validating ISBNs in, 293-296

K

keywords, source code extraction of, 409-412
ksort() method, 190

L

last names, formatting, 305-308
in JavaScript, 306
listing surname particles at beginning of
name, 308
lastIndex property (JavaScript), 154, 172, 173
lazy quantifiers, 75-78, 307, 368
lazy, defined, 77
leading whitespace, trimming, 365-369
leftmost, defined, 63
length of text
limiting, 278-283
for arbitrary pattern, 280
in Perl, 279
number of words, 281-283
using lookahead, 280281
Length property (NET), 153, 159, 171
length property (JavaScript), 154, 166, 278
length() method (Ruby), 156
Letter category, 243
Levithan, Steven, 4, 8, 10, 106, 217
Library panel, RegexBuddy, 10
line breaks
converting plain text to HTML tags, 540,
542
matching any character except, 38-39
matching any character including, 38-39
line feed (newline), 31
lines
finding that contain word, 362-364
finding that do not contain word, 364-365
limiting, 283-288
in PHP, 284
with esoteric line separators, 286—287
parsing by, 224-226
removing duplicate, 358-362
keeping first occurrence in unsorted file,
359-362
keeping last occurrence in unsorted file,
359, 361

582 | Index

sorting and removing adjacent
duplicates, 358-361
links, creating from URLs, 444—445
literal text
including backslashes as, 34
matching, 28-30
block escape in, 29
case-insensitive matching, 29-30
log files
broken links reported in web logs, 431—
434
Combined Log Format, 430-431
Common Log Format, 426430
lookaheads, 46, 316-317, 357, 361
(see also lookarounds)
(see also lookbehinds)
and ” token, 280
defined, 85
limiting length of text using, 280-281
matching same text twice using, 468
negative, 341-343, 365
using to solve math limitations, 484
using with international text, 332

using word boundaries if not available, 481

lookarounds, 84-91
(see also lookaheads)
(see also lookbehinds)
alternative to lookbehind, 88-89
are atomic, 87—88
defined, 84
matching same text twice using, 86—87
negative, 85
overview, 84—85
solution without, 89-90

using word boundaries if not available, 481

lookbehinds, 46, 344-345, 357
(see also lookaheads)
(see also lookarounds)
+ quantifier in, 404
adding thousand separators to numbers
using, 402—405
alternative to, 88—89
defined, 84

finding any word not preceded by specific

using, 344-346
infinite and finite repetition in, 424
infinite lookbehind, 404
levels of, 85-86
simulating, 345-347

support for, 472
using with international text, 332
using word boundaries if not available, 481
\b token in, 346
Lovitt, Michael, 17
lowercase letters and password complexity,
310
Luhn algorithm, 322-323

M
m// operator, 107, 138, 150, 160, 202
“magical” dates, 66, 69
Marcuse, Andrew, 13
Mark category, 329
markup formats
HTML tags
adding attribute to, 550-553
allowing > in attribute values, 510-511,
516-517
caution with, 514
converting plain text to, 539-542
finding class attribute, 548-549
finding comments with words, 558-562
finding id attribute, 546
loose, 511-512, 517-520
removing all except and ,
530-533
removing comments from, 553-557
replacing with , 526-529
simple regex for, 510, 514-515
skipping certain sections of, 524-525
strict, 512, 521-522
validating comments in, 557
overview, 503-509
XHTML tags
adding attribute to, 550-553
allowing > in attribute values, 510-511,
516-517
caution with, 514
finding class attribute, 548-549
finding comments with words, 558-562
finding id attribute, 546
loose, 511-512, 517-520
removing all except and ,
530-533
removing comments from, 553-557
replacing with , 526-529
simple regex for, 510, 514-515
skipping certain sections of, 524-525

Index | 583

strict, 512, 521-522
XML tags
adding attribute to, 550-553

allowing > in attribute values, 510-511,

516-517
caution with, 514
decoding, 543-545
finding class attribute, 548-549

finding comments with words, 558—-562

finding id attribute, 546

removing all except and ,

530-533
removing comments from, 553-557
simple regex for, 510, 514-515
skipping certain sections of, 525-526
strict, 513, 522-523
validating comments in, 555-557
XML 1.0 names, 535-538
XML 1.1 names, 535-536, 538
Match class (NET), 148, 159, 171, 172
-match operator, 110
Match() method (.NET), 148, 149, 153, 159,
171,172,188, 215
match() method (JavaScript), 149, 150, 166,
173
match() method (Python), 144
match() method (Ruby), 155
MatchAgain() method (.NET), 172
matchChain() method (XRegExp), 181, 184
MatchData class (Ruby), 155, 156, 161, 163

Matcher class (Java), 120, 122, 123, 138, 159,

162,172,186, 189, 193, 196, 201,
216
Matches() method (.NET), 165, 166
matches() method (Java), 19, 138, 142, 143
matching
alternatives, 62—63
anchors for, 40-41
any character, 38—40
abuse of, 39
except line breaks, 38-39
including line breaks, 38-39
backreferences in
named backreferences, 71
overview, 66—68
backtracking in, avoiding needless, 78-81
catastrophic backtracking, 81-83
character classes, 33—38
case-insensitivity in, 36

for hexadecimal character, 33-34
for nonhexadecimal character, 33-34
handling misspellings with, 33-34
intersection of, 37
shorthand character classes, 35-36
subtraction of, 36-37
union of, 37
closing tags, 519
conditionals for, 91-93
end of line, 40-43
end of subject, 40-43
finding within another match, 179-184
greedy, 75-78
grouping in, 63—66
mode modifiers for, 65-66
named capture, 69-72
noncapturing groups, 65
iterating through, 171-175
lazy, 75-78
length of, 153-156
literal text, 28-30
block escape in, 29
case-insensitive matching, 29-30
nonprintable characters, 30-33
using 7-bit character set, 32-33
using control characters, 31-32
opening tags, 519
position of, 153-156
preventing runaway repetition, 81-83
quantifiers, 7275
fixed repetition, 73
for groups, 74-75
infinite repetition, 74
optional matches with, 74
variable repetition, 7374
replacing all, 187-191
replacing all between matches of another
regex, 206-211
replacing all using parts of match text, 194—
196
replacing all with replacements generated in
code, 199-203
replacing all within matches of another
regex, 203-205
retrieving entire string, 148—150
retrieving list of, 165-168
retrieving part of string, 159-163
singleton tags, 519
start of line, 40—43

584 | Index

start of subject, 40—42
testing entire string, 142-144
testing in string, 137-139
Unicode, 48-61
block, 49, 52-57
by listing all characters, 60-61
category, 49, 51-52
code point, 48-51
grapheme, 50, 58-59
in character classes, 60
negated variant for, 59
script, 49, 57-58
using lookaround groups, 84-91
alternative to lookbehind, 88-89
is atomic, 8788
levels of lookbehind, 85-86
matching same text twice, 86—87
negative lookaround, 85
overview, 84—85
solution without, 89-90
validating in procedural code, 176-179
whole words, 45-48
nonboundaries, 46—47
word boundaries, 45-46
word characters, 47
zero-length matches, 43—44
MatchObject class (Ruby), 155
math, 483
mb_ereg functions, 107, 114
metacharacters, 28
defined, 28
escaping, 34, 371-374
built-in solutions, 371
in JavaScript, 372
using regular expression, 371-372
Microsoft .NET Framework (see .NET
Framework)
Microsoft VBScript, 4
misspellings
matching, 33
with character classes, 33-34
mixed notation for IPv6 addresses, 473-474,
478-480, 482, 485-486
mode modifiers for grouping, 65-66
MSIL (see CIL (Common Intermediate
Language))
multiline comments, source code extraction of,
416417
multiline mode, 43

multiple lines, $ token for, 43, 363
multiple words
finding, 334-336
in JavaScript, 334-336
using alternation, 334, 335
myregexp.com, 18-19

N

name-value pairs, in INI files, 572-573
named backreferences, 71
named capturing groups, 69—70
not mixing with numbered groups, 71
using in replacement text, 102
using same name with, 452, 463
with same name, 71-72
names, formatting, 305-308
in JavaScript, 306
listing surname particles at beginning of
name, 308
Namespace Identifier (NID), 446
Namespace Specific String (NSS), 446
NANP (North American Numbering Plan),
254
negated variant, for Unicode, 59
negative lookaround, 85
nested classes, 37
NET Framework, 3
(see also C#)
(see also VB.NET)
character classes in, 36-37
escaping characters, 96
matches in
iterating through, 171-175
length of, 153
position of, 153
replacing all, 187-188
replacing all using parts of match text,
194
retrieving entire string, 148-149
retrieving list of, 165-166
retrieving part of string, 159
overview, 3
RegexOptions.RightToLeft option, 86
regular expression objects in, 121-122
replacement text flavor, 6
setting options in, 127, 130
strings in, splitting and keeping regex
matches, 221-222
\w token in, 130

Index | 585

.net TLD (top level domain), 256
newline (line feed), 31
NextMatch() method ((NET), 171, 172
NFA (nondeterministic finite automaton), 2
NID (Namespace Identifier), 446
Node.js, 117, 119
nonalphanumeric characters, escaping, 28
nonboundaries, 46—47
noncapturing groups, 65, 247, 253, 258, 413,
443,488
nondeterministic finite automaton (NFA), 2
nonexistent groups, references to, 101
nonhexadecimal character, character classes
for, 33-34
nonprintable characters
matching, 30-33
using 7-bit character set, 32-33
using control characters, 31-32
North American Numbering Plan (NANP),
254
Nregex, 16-17
NSS (Namespace Specific String), 446
numbered capturing groups, 69
numbered groups, not mixing with named
groups, 71
numbers
adding thousand separators to, 401-406
using infinite lookbehind, 404
using lookbehind, 402, 403
without lookbehind, 404-405
binary, 381-382
decimal, 384-385
floating point, 396-399
hexadecimal, 379-381, 392-394
integers, 375-378, 395-396
matching range of, with RegexMagic, 12
octal, 383-384
password complexity, 310
Roman numerals, 406408
stripping leading zeros, 385-386
with thousand separators, 399—400
within range, 386-392
numeric constants, source code extraction of,
413-414

0

octal numbers, 383-384
offset() method (Ruby), 155
Oniguruma library, 5

online regex testers, 13
myregexp.com, 18-19
Nregex, 16-17
regex.larsolavtorvik.com, 13—15
RegexPal, 10-11
RegexPlanet, 13
Rubular, 17-18
opening tags, matching, 519
operators, source code extraction of, 414-415
optional matches, with quantifiers, 74
options
for ~ token, 360, 363
in .NET, 127, 130
in Java, 128, 131
in JavaScript, 128, 131
in Perl, 129, 132
in PHP, 129, 131-132
in Python, 129, 132
in Ruby, 130, 132-133
in XRegExp, 128, 131
.org TLD (top level domain), 256

P

parentheses, 64—65
parsing input, 182
parsing string for import into application, 228—
242
password complexity, 308-317
ASCII visible and space characters only,
309
disallowing three or more sequential
identical characters, 310
in JavaScript
basic, 311
overview, 315
with password security ranking, 312—
313
with x out of y validation, 311-312
length between 8 and 32 characters, 309
multiple password rules with single regex,
316-317
one or more lowercase letters, 310
one or more numbers, 310
one or more special characters, 310
one or more uppercase letters, 309-310
paths, extracting from
UNC path server, 495-496
URLs, 461-464
Windows paths

586 | Index

Download from Wow! eBook <www.wowebook.com>

drive letter, 494—495
file extension, 499-500
filename, 498-499
folder, 496498
splitting into parts, 489—494
validating of, 486—489
Pattern class (Java), 122, 123, 142, 213
Pattern. CANON_EQ flag, 131
Pattern. COMMENTS flag, 94, 114
Pattern. UNICODE_CHARACTER_CLASS
flag, 131
Pattern. UNIX_LINES flag, 131
PatternSyntaxException, 122, 143, 189
PCRE (Perl-Compatible Regular Expressions),
4-23,6
PCRE_BSR_UNICODE option, 286
Perl, 2, 107
$ token in, 286
%+ in, 163, 196
@ character in, 115
and linebreaks, 39
escaping characters in replacement text, 97
IPv4 addresses in, 470
limiting length of text in, 279
matches in
finding within another match, 182-184
iterating through, 174-175
length of, 155
position of, 155
replacing all, 190-191
replacing all between matches of another
regex, 206-211
replacing all using parts of match text,
194, 196
replacing all with replacements
generated in code, 202
replacing all within matches of another
regex, 203-205
retrieving entire string, 150
retrieving list of, 167
retrieving part of string, 160, 163
testing entire string, 143
testing in string, 138—139
validating in procedural code, 177-179
parsing string for import into application,
228-242
regular expression library for, 119
regular expression objects in, 124
replacement text flavor, 7

searching line by line in, 226
setting options in, 129, 132
strings in
for regex, 115
splitting, 218
splitting and keeping regex matches,
223
stripping leading zeros in, 385-386
support for regular expressions, 5
validating dates in, 261
Perl-Compatible Regular Expressions (PCRE),
4-23,6
phone numbers
international
in EPP format, 255-256
overview, 254-256
North American
allowing leading “1”, 253
allowing seven-digit, 253
eliminating invalid, 252
finding in documents, 252-253
overview, 249-254
PHP, 107
escaping characters in replacement text, 97
limiting lines of text in, 284
matches in
finding within another match, 181-184
iterating through, 174-175
length of, 154
position of, 154
replacing all, 189-190
replacing all between matches of another
regex, 206-211
replacing all using parts of match text,
194, 196
replacing all with replacements
generated in code, 202
replacing all within matches of another
regex, 203-205
retrieving entire string, 150
retrieving list of, 166-167
retrieving part of string, 160, 163
testing entire string, 143
testing in string, 138
validating in procedural code, 177-179
parsing string for import into application,
228-242
regular expression library for, 119
regular expression objects in, 124

Index | 587

replacement text flavor, 7
searching line by line in, 225
setting options in, 129, 131-132
strings in
for regex, 114-115
splitting, 217
splitting and keeping regex matches,
222-223
stripping leading zeros in, 385-386
plain text
converting to HTML tags, 539-542
in JavaScript, 541
replacing line breaks, 540, 542
replacing special characters, 540, 541
wrapping entire string, 540, 542
port, extracting from URLs, 459-461
from valid URL, 459-460
while validating URL, 459—460
POSIX ERE (regular expression flavor), 7, 25
possessive quantifiers, 79—80
and + quantifier, 522
avoiding backtracking using, 517
benefits of, 517
Post Office boxes, 303-305
PowerGREP, 23
PowerShell, 110, 358
preg functions, 107, 114, 119, 124, 129, 196,
277
preg_match() function, 138, 143, 150, 154,
160, 166, 167, 174, 196
preg_matches() function, 167
preg_match_all() function, 166, 174, 196
preg_replace() function, 7, 107, 189, 190,
194, 196, 202
preg_replace_callback() function, 202
preg_split() function, 217, 222
PREG_OFFSET_CAPTURE constant, 154,
160, 167
PREG_PATTERN_ORDER constant, 167
PREG_SET_ORDER constant, 167
PREG_SPLIT_DELIM_CAPTURE constant,
222
PREG_SPLIT_NO_EMPTY constant, 217,
222
punctuation, stripping, 324-326
punycode algorithm, 468
Python, 107
escaping characters in replacement text, 97
matches in

finding within another match, 182-184
iterating through, 174-175
length of, 155
position of, 155
replacing all, 191
replacing all between matches of another
regex, 206-211
replacing all using parts of match text,
194, 196
replacing all with replacements
generated in code, 202-203
replacing all within matches of another
regex, 203-205
retrieving entire string, 150
retrieving list of, 168
retrieving part of string, 160-161, 163
testing entire string, 144
testing in string, 139
validating in procedural code, 177-179
parsing string for import into application,
228-242
regular expression library for, 119
regular expression objects in, 124
replacement text flavor, 7
searching line by line in, 226
setting options in, 129, 132
strings in
for regex, 115-116
splitting, 218-219
splitting and keeping regex matches,
223
support for regular expressions, 5
validating ISBNs in, 293-296
validating Social Security numbers in, 290
\n token in, 116
\s token in, 132
\w token in, 132

Q

qr// operator, 124
quantifiers, 7275
fixed repetition, 73
for groups, 74-75
infinite repetition, 74
optional matches with, 74
variable repetition, 73-74
query, extracting from URLs, 464—465
“quote regex” operator (Perl), 124

588 | Index

R
R Project, 110
range of numbers, matching with RegexMagic,
12
ranges
hexadecimal numbers within, 392-394
numbers within, 386-392
raw strings (Python), 116
re module, 5, 107, 124, 129, 168, 191
re. DOTALL, 130
re. IGNORECASE, 130
re.L, 132
re. LOCALE, 132
re. MULTILINE, 130
re.U, 132
re. UNICODE, 132
re.VERBOSE, 94, 116, 130
REALDbasic, 110
Regex Analyzer panel, The Regulator, 21
RegEx class, 110
Regex class (NET), 3, 6, 106, 109, 148, 161,
165,171, 185, 186
Regex classes, 3
regex property, 184
Regex() constructor (C#), 118
Regex() constructor (VB.NET), 118
regex-directed engine, 62
regex.larsolavtorvik.com, 13-15
RegexBuddy, 8-10
RegexMagic, 11-13
RegexOptions. ECMAScript option, 130
RegexOptions.ExplicitCapture option, 130
RegexOptions.IgnorePatternWhitespace
option, 94, 113
RegexOptions.RightToLeft option, 86
Regexp class (Ruby), 144
RegExp() constructor (JavaScript), 123
Regexp::MULTILINE (Ruby), 130
RegexPal, 10-11
RegexPlanet, 13
regexpr function, 110
RegexRenamer, 25-26
regex_match() method, 108
regex_replace() method, 108
regex_search() method, 108
regular expression
engines for, 6
history of term, 2
regular expression libraries, 118-119

regular expression objects
compiling to CIL, 125
creating, 121-125
regular expressions
defined, 1-5
flavors of, 2-5
relative paths
splitting into parts, 492493
validating, 488—489
removing
comments, in XML-style tags, 553-557
duplicate lines, 358-362
keeping first occurrence in unsorted file,
359-362
keeping last occurrence in unsorted file,
359, 361
sorting and removing adjacent
duplicates, 358-361
repeated words, 355-358
-replace operator, 110
Replace() method (.NET), 187, 188, 194, 199,
200
replace() method (Java), 7, 97, 189
replace() method (JavaScript), 173, 194, 201
replaceAll() method (Java), 19, 189, 192, 194,
196
replaceFirst() method (Java), 189, 194
replacement text, 95-98
entering in RegexBuddy, 9
escaping characters in, 96-97
using match context in, 103-104
using match in
complete match, 98-99
with capturing groups, 99-103
with named capture groups, 102
reset() method (Java), 123
RFC 2141 (URNs), 445
RFC 3986 (URLs), 437, 447, 450, 451, 458
RFC 4180 (CSV), 508
RFC 5322, 244, 245, 248
RFC 5733 (EPP), 256
Roman numerals, 406—408
Rubular, 17-18

Ruby, 107
$ token in, 43, 44, 366
%r in, 116
=~ operator in, 155
a++in, 5

and (?m) mode modifier, 5

Index | 589

and (?s) mode modifier, 5 in Unicode, matching, 49, 57-58

escaping characters in replacement text, 97 listing characters in, 60
limiting to alphanumeric characters in, 276~ SDL Regex Fuzzer, 21-22
matches in search() method (Python), 139, 150, 202
finding within another match, 182-184 search-and-replace functions, 6-8
iterating through, 175 section blocks and headers in INI files, 569—
length of, 155-156 572
position of, 155-156 separators
replacing all, 191 integers with, 395-396
replacing all between matches of another thousand
regex, 206211 adding to numbers, 401-406
replacing all using parts of match text, numbers with, 399-400
191, 194-195 Seruyange, David, 16
replacing all with replacements server, extracting from UNC path, 495-496
generated in code, 203 shorthand character classes, 35-36
replacing all within matches of another ~ similar words, finding, 336-340
regex, 203-205 single line mode, 43
retrieving entire string, 150 single-line comments, source code extraction
retrieving list of, 168 of, 415-416
retrieving part of string, 161, 163 singleton tags, matching, 519
testing entire string, 144 size() method (Ruby), 156
testing in string, 139 Social Security numbers, validating, 289-291
validating in procedural code, 177-179 source code extraction
parsing string for import into application, comments
228-242 all, 417-418
regular expression library for, 119 multiline, 416417
regular expression objects in, 124-125 single-line, 415-416
replacement text flavor, 7-8 here documents example, 425-426
searching line by line in, 226 identifiers, 412
setting options in, 130, 132-133 keywords, 409-412
strings in numeric constants, 413—414
for regex, 116-117 operators, 414—415
splitting, 219 regex literals, 423-425
splitting and keeping regex matches, strings, 418—421
223 with escapes, 421-423
support for regular expressions, 5 source code templates, in RegexBuddy, 10
\A token in, 437, 481 spaces, stripping, 317-318, 320
\Z token in, 130, 437, 481 span() method (Python), 155
~ token in, 42, 43, 44, 248, 446, 467 special characters
runaway repetition, 81-83 password complexity, 310
\b token, 356
S Split() method (NET), 213, 214, 215, 221,
222
s/// operator, 7, 107, 190, 191, 202 split() method (Java), 19, 216, 222
Scala, 110 split) method (JavaScript), 216, 217, 222
scala.util.matching package, 110 split() method (Perl), 218, 223
scan() method (Ruby), 168, 175 split) method (Python), 218, 223
scheme, extracting from URLs, 453-454 splitQ method (Ruby), 219, 223
Scripts split() method (XRegExp), 217, 222
defined, 58

590 | Index

splitting
Windows paths into parts, 489-494
drive letter paths, 491-493
relative paths, 492-493
UNC paths, 492-493
standard notation for IPv6 addresses, 473-474,
481-482, 485-486
start of line, matching, 40-43
start of subject, matching, 40—42
start() method (Java), 154, 159, 162
start() method (Python), 155
straight quote ('), 103
String class (Java), 122, 142
String class (Ruby), 168, 175, 191, 203
strings
for regexes, 113-117
source code extraction, 418—421
splitting, 214-219, 221-223
stripping
invalid characters from filenames, 500-501
leading zeros, 385-386
spaces and hyphens, 317-318, 320
strlen() function (PHP), 154
sub() method (Python), 7, 110, 191, 194, 202
Success property (.NET), 153, 159, 171
surname particles, listing at beginning of name,

308

T

templates, source code, in RegexBuddy, 10
Test Mode, Expresso, 19
testers (see tools)
text editors, 26
text-directed engine, 62
defined, 62
TextConverter class, 110
The Regulator, 20-21
thousand separators
adding to numbers, 401-406
using infinite lookbehind, 404
using lookbehind, 402, 403
without lookbehind, 404—405
numbers with, 399—400
times, validating, 266-268, 271-272
TJclRegEx class, 109
tokenizing input, 182, 239
tokenizing, defined, 239
tokens
defined, 239

splitting subjects into, in RegexBuddy, 9
tools, 8-26
Expresso, 19-20
grep, 22-26
PowerGREP, 23
Windows Grep, 25
online regex testers, 13
myregexp.com, 18-19
Nregex, 16-17
regex.larsolavtorvik.com, 13-15
RegexPal, 10-11
RegexPlanet, 13
Rubular, 17-18
RegexBuddy, 8-10
RegexMagic, 11-13
RegexRenamer, 25-26
SDL Regex Fuzzer, 21-22
text editors, 26
The Regulator, 20-21
top-level domain in email addresses, validating,
245
Torvik, Lars Olav, 13
TPerlRegEx class, 109
trailing whitespace, trimming, 365-369

U

U flag, 278, 281, 332
U.K. postcodes, 302-303
.uk TLD (top level domain), 245
UNC (Universal Naming Convention) paths
splitting into parts, 492-493
validating, 488—489
Unicode
blocks, 49, 52-57
categories
listing all characters in, 60-61
matching, 49, 51-52
character classes matching, 60
code points, 48—49, 50-51
graphemes, 50, 58-59
negated variant for, 59
scripts, 49, 57-58
Unicode Consortium, 61
UNICODE flag, 278, 281, 332
unicode-base.js file, 118
unicode-blocks.js file, 118
unicode-categories.js file, 118
unicode-scripts.js file, 118

Index | 591

UNICODE_CHARACTER_CLASS flag, 281,
282
Uniform Resource Locators (see URLs
(Uniform Resource Locators))
union of character classes (Java), 37
Universal Naming Convention paths (see UNC
(Universal Naming Convention)
paths, validating)
uppercase letters and password complexity,
309-310
URLs (Uniform Resource Locators)
creating links from, 444—445
extracting fragment from, 465-466
extracting host from, 457-459
extracting path from, 461-464
extracting port from, 459-461
extracting query from, 464—465
extracting scheme from, 453—454
extracting user from, 455-456
finding in text, 438—444
validating, 435-438, 447-452
validating domain names, 466—469
URNSs (Uniform Resource Names), validating,
445-447
.us TLD (top level domain), 245, 256
Use panel, RegexBuddy, 10
user forums, for RegexBuddy, 10
user, extracting from URLs, 455-456
uses clause, 109
using statement, 118
UTE-8, 49, 133, 281

)

validating
affirmative responses, 288—-289
Canadian postal codes, 301-302
comments, in XML-style tags, 555-557
credit card numbers, 317-323
stripping spaces and hyphens, 317-318,
320
using in web page, 319-322
validating number, 318-319, 321
with Luhn algorithm, 322-323
dates, 256266
domain names, 466—469
email addresses, 243-248
no leading, trailing, or consecutive dots,
244
overview, 245-248

simple, 243
top-level domain has two to six letters,
245
with all valid local part characters, 244
with restrictions on characters, 244
finding addresses with Post Office boxes,
303-305
ISBNs, 292-300
eliminating incorrect ISBN identifiers,
299
finding in documents, 298-299
in JavaScript, 293-296
in Python, 293-296
ISBN-10 checksum, 297-298
ISBN-13 checksum, 298
1ISO 8601 dates and times, 269-275
date and time, 271-272
dates, 269-270
times, 271
weeks, 270
XML Schema dates and times, 272273
limiting length of text, 278-283
for arbitrary pattern, 280
in Perl, 279
number of words, 281-283
using lookahead, 280281
limiting number of lines in text, 283-288
in PHP, 284
with esoteric line separators, 286—287
limiting to alphanumeric characters, 275—
278
ASCII characters, 276
ASCII non-control characters and line
breaks, 276
in any language, 277-278
in Ruby, 276
shared ISO-8859-1 and Windows-1252
characters, 277
password complexity, 308-317
ASCII visible and space characters only,
309
disallowing three or more sequential
identical characters, 310
in JavaScript, 311-315
length between 8 and 32 characters,
309
multiple password rules with single
regex, 316-317
one or more lowercase letters, 310

592 | Index

one or more numbers, 310
one or more special characters, 310
one or more uppercase letters, 309-310
phone numbers
international, 254-256
North American, 249-254
Social Security numbers, 289-291
finding in documents, 291
in Python, 290
times, 266—268
U.K. postcodes, 302-303
URLs, 435-438, 447-452
while extracting host, 457-458
while extracting port, 459-460
while extracting scheme, 453—-454
while extracting user, 455-456
URNS, 445-447
VAT numbers, 323-329
Windows paths, 486—489
drive letter paths, 487-489
relative paths, 488—489
UNC paths, 488-489
ZIP codes, 300-301
Value property (NET), 148, 159, 171, 200,
201
variable repetition, quantifiers for, 73-74
VAT numbers, validating, 323-329
stripping whitespace and punctuation, 324—
326
validating number, 324-327
VB.NET, 106
(see also .NET Framework)
matches in
finding within another match, 179-184
replacing all between matches of another
regex, 206-211
replacing all using parts of match text,
195
replacing all with replacements
generated in code, 200-201
replacing all within matches of another
regex, 203-205
retrieving part of string, 161-162
testing entire string, 142
testing in string, 137
validating in procedural code, 176-179
parsing string for import into application,
228-242
regular expression library for, 118

regular expression objects in, compiling to
CIL, 125
searching line by line in, 224
strings in, for regex, 113
validating ZIP codes in, 300
VBScript, 4
verbatim strings, in C#, 113
versions (see flavors)
Visual Basic 6, 110-111
Visual Studio (VS), 3

W

Wall, Larry, 39
web logs, broken links reported in, 431-434
web pages, validating credit card numbers in,
319-322
weeks, validating, 270
while loop, 166
whitespace
replacing repeated with single space, 369—
370
replacing with single space, 370
stripping, 324-326
trimming leading and trailing, 365-369
whole words, matching, 45-48
nonboundaries, 4647
word boundaries, 45-46
word characters, 47
Windows Grep, 25
Windows paths
extracting drive letter from, 494—495
extracting file extension from, 499-500
extracting filename from, 498-499
extracting folder from, 496-498
extracting server from UNC path, 495-496
splitting into parts, 489—494
validating, 486—489
Windows-1252 characters, limiting to, 277
word boundaries, 45-46, 332, 335, 342, 377—
378,381,411-412
and subject that may start with colon, 477
finding similar words using, 337
searching in larger bodies of text with, 468
words, 47
finding all except, 340-342
finding any not followed by specific, 342—
344
finding any not preceded by specific, 344—
348

Index | 593

simulating lookbehind, 345-347
using lookbehind, 344-346
“cat” example, 344
finding any of multiple, 334-336
in JavaScript, 334-336
using alternation, 334, 335
finding lines that contain, 362-364
finding lines that do not contain, 364-365
finding near, 348-355
and JavaScript, 353-354
any distance from each other, 354
exploiting empty backreferences, 352—
353
for more than 3 words, 350-351
using conditionals, 349-352
finding repeated, 355-358
finding similar, 336-340
finding specific, 331-334
limiting number of, 281-283

X
XHTML (Extensible Hypertext Markup
Language) tags
allowing > in attribute values, 510-511,
516-517
attributes in
adding, 550-553
finding class attribute, 548-549
finding id attribute, 546
caution with, 514
comments in
finding words in, 558-562
removing, 553-557
loose, 511-512, 517-520
overview, 503-509
removing all except and ,
530-533
replacing with , 526-529
simple regex for, 510, 514-515
skipping certain sections of, 524-525
strict, 512, 521-522
XML (Extensible Markup Language) tags
attributes in
adding, 550-553
allowing > in, 510-511, 516-517
finding class attribute, 548-549
finding id attribute, 546
comments in
finding words in, 558-562

removing, 553-557
validating, 555-557
decoding, 543-545
overview, 503-509
removing all except and ,
530-533
simple regex for, 510, 514-515
skipping certain sections of, 525-526
strict, 513, 522-523
XML 1.0 names, 535-538
XML 1.1 names, 535-538
XML Schema dates and times,validating, 272—
273
XRegExp
constructor, 94, 123
loading library for, 118-119
matches in
finding within another match, 181-184
iterating through, 173-175
replacing all using parts of match text,
196
retrieving part of string, 162
validating in procedural code, 177-179
parsing string for import into application,
228-242
regular expression objects in, 123
setting options in, 128, 131
strings in
for regex, 114
splitting, 217
splitting and keeping regex matches,
222
XRegExp library, 4, 7, 106
xregexp-all-min.js file, 118
xregexp-all js file, 4
xregexp-min.js file, 118
XRegExp.cache() method, 123
XRegExp.exec() method, 162, 174
XRegExp.forEach() method, 170, 173, 181
XRegExp.replace() method, 196

z

zero-length matches, 43—44
zeros, stripping leading, 385-386
ZIP codes

validating, 300-301

594 | Index

Download from Wow! eBook <www.wowebook.com>

About the Authors

Jan Goyvaerts runs Just Great Software, where he designs and develops some of the
most popular regular expression software. His products include RegexBuddy, the
world’s only regular expression editor that emulates the peculiarities of 15 regular ex-
pression flavors, and PowerGREP, the most feature-rich grep tool for Microsoft
Windows.

Steven Levithan works at Facebook as a JavaScript engineer. He has enjoyed pro-
gramming for nearly 15 years, working in Tokyo, Washington, D.C., Baghdad, and
Silicon Valley. Steven is a leading JavaScript regular expression expert, and has created
a variety of open source regular expression tools including RegexPal and the XRegExp
library.

Colophon

The image on the cover of Regular Expressions Cookbook is a musk shrew (genus
Crocidura, family Soricidae). Several types of musk shrews exist, including white- and
red-toothed shrews, gray musk shrews, and red musk shrews. The shrew is native to
South Africa and India.

While several physical characteristics distinguish one type of shrew from another, all
shrews share certain commonalities. For instance, shrews are thought to be the smallest
insectivores in the world, and all have stubby legs, five claws on each foot, and an
elongated snout with tactile hairs. Differences include color variations among their
teeth (most noticeably in the aptly named white- and red-toothed shrews) and in the
color of their fur, which ranges from red to brown to gray.

Though the shrew usually forages for insects, it will also help farmers keep vermin in
check by eating mice or other small rodents in their fields.

Many musk shrews give off a strong, musky odor (hence their common name), which
they use to mark their territory. At one time it was rumored that the musk shrew’s scent
was so strong that it would permeate any wine or beer bottles that the shrew happened
to pass by, thus giving the liquor a musky taint, but the rumor has since proved to be
false.

The cover image is from Lydekker’s Royal Natural History. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Caught in the Snarls of Different Versions
	Intended Audience
	Technology Covered
	Organization of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Regular Expressions
	Regular Expressions Defined
	Many Flavors of Regular Expressions
	Regex Flavors Covered by This Book

	Search and Replace with Regular Expressions
	Many Flavors of Replacement Text

	Tools for Working with Regular Expressions
	RegexBuddy
	RegexPal
	RegexMagic
	More Online Regex Testers
	RegexPlanet
	regex.larsolavtorvik.com
	Nregex
	Rubular
	myregexp.com

	More Desktop Regular Expression Testers
	Expresso
	The Regulator
	SDL Regex Fuzzer

	grep
	PowerGREP
	Windows Grep
	RegexRenamer

	Popular Text Editors

	Chapter 2. Basic Regular Expression Skills
	2.1 Match Literal Text
	Problem
	Solution
	Discussion
	Variations
	Block escape
	Case-insensitive matching

	See Also

	2.2 Match Nonprintable Characters
	Problem
	Solution
	Discussion
	Variations on Representations of Nonprinting Characters
	The 26 control characters
	The 7-bit character set

	See Also

	2.3 Match One of Many Characters
	Problem
	Solution
	Calendar with misspellings
	Hexadecimal character
	Nonhexadecimal character

	Discussion
	Variations
	Shorthands
	Case insensitivity

	Flavor-Specific Features
	.NET character class subtraction
	Java character class union, intersection, and subtraction

	See Also

	2.4 Match Any Character
	Problem
	Solution
	Any character except line breaks
	Any character including line breaks

	Discussion
	Any character except line breaks
	Any character including line breaks
	Dot abuse

	Variations
	See Also

	2.5 Match Something at the Start and/or the End of a Line
	Problem
	Solution
	Start of the subject
	End of the subject
	Start of a line
	End of a line

	Discussion
	Anchors and lines
	Start of the subject
	End of the subject
	Start of a line
	End of a line
	Zero-length matches

	Variations
	See Also

	2.6 Match Whole Words
	Problem
	Solution
	Word boundaries
	Nonboundaries

	Discussion
	Word boundaries
	Nonboundaries

	Word Characters
	See Also

	2.7 Unicode Code Points, Categories, Blocks, and Scripts
	Problem
	Solution
	Unicode code point
	Unicode category
	Unicode block
	Unicode script
	Unicode grapheme

	Discussion
	Unicode code point
	Unicode category
	Unicode block
	Unicode script
	Unicode grapheme

	Variations
	Negated variant
	Character classes
	Listing all characters

	See Also

	2.8 Match One of Several Alternatives
	Problem
	Solution
	Discussion
	See Also

	2.9 Group and Capture Parts of the Match
	Problem
	Solution
	Discussion
	Variations
	Noncapturing groups
	Group with mode modifiers

	See Also

	2.10 Match Previously Matched Text Again
	Problem
	Solution
	Discussion
	See Also

	2.11 Capture and Name Parts of the Match
	Problem
	Solution
	Named capture
	Named backreferences

	Discussion
	Named capture
	Named backreferences
	Groups with the same name

	See Also

	2.12 Repeat Part of the Regex a Certain Number of Times
	Problem
	Solution
	Googol
	Hexadecimal number
	Hexadecimal number with optional suffix
	Floating-point number

	Discussion
	Fixed repetition
	Variable repetition
	Infinite repetition
	Making something optional
	Repeating groups

	See Also

	2.13 Choose Minimal or Maximal Repetition
	Problem
	Solution
	Discussion
	See Also

	2.14 Eliminate Needless Backtracking
	Problem
	Solution
	Discussion
	See Also

	2.15 Prevent Runaway Repetition
	Problem
	Solution
	Discussion
	Variations
	See Also

	2.16 Test for a Match Without Adding It to the Overall Match
	Problem
	Solution
	Discussion
	Lookaround
	Negative lookaround
	Different levels of lookbehind
	Matching the same text twice
	Lookaround is atomic

	Alternative to Lookbehind
	Solution Without Lookbehind
	See Also

	2.17 Match One of Two Alternatives Based on a Condition
	Problem
	Solution
	Discussion
	See Also

	2.18 Add Comments to a Regular Expression
	Problem
	Solution
	Discussion
	Free-spacing mode
	Java has free-spacing character classes

	Variations

	2.19 Insert Literal Text into the Replacement Text
	Problem
	Solution
	Discussion
	When and how to escape characters in replacement text
	.NET and JavaScript
	Java
	PHP
	Perl
	Python and Ruby
	More escape rules for string literals

	See Also

	2.20 Insert the Regex Match into the Replacement Text
	Problem
	Solution
	Regular expression
	Replacement

	Discussion
	See Also

	2.21 Insert Part of the Regex Match into the Replacement Text
	Problem
	Solution
	Regular expression
	Replacement

	Discussion
	Replacements using capturing groups
	$10 and higher
	References to nonexistent groups

	Solution Using Named Capture
	Regular expression
	Replacement
	Flavors that support named capture

	See Also

	2.22 Insert Match Context into the Replacement Text
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Programming with Regular Expressions
	Programming Languages and Regex Flavors
	Languages Covered in This Chapter
	More Programming Languages

	3.1 Literal Regular Expressions in Source Code
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	Discussion
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	See Also

	3.2 Import the Regular Expression Library
	Problem
	Solution
	C#
	VB.NET
	XRegExp
	Java
	Python

	Discussion
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	3.3 Create Regular Expression Objects
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	Compiling a Regular Expression Down to CIL
	C#
	VB.NET

	Discussion
	See Also

	3.4 Set Regular Expression Options
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	Additional Language-Specific Options
	.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	See Also

	3.5 Test If a Match Can Be Found Within a Subject String
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	C# and VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.6 Test Whether a Regex Matches the Subject String Entirely
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	C# and VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.7 Retrieve the Matched Text
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.8 Determine the Position and Length of the Match
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.9 Retrieve Part of the Matched Text
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Named Capture
	C#
	VB.NET
	Java
	XRegExp
	PHP
	Perl
	Python
	Ruby

	See Also

	3.10 Retrieve a List of All Matches
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.11 Iterate over All Matches
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	See Also

	3.12 Validate Matches in Procedural Code
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	Discussion
	See Also

	3.13 Find a Match Within Another Match
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	Discussion
	See Also

	3.14 Replace All Matches
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.15 Replace Matches Reusing Parts of the Match
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Named Capture
	C#
	VB.NET
	Java 7
	XRegExp
	PHP
	Perl
	Python
	Ruby

	See Also

	3.16 Replace Matches with Replacements Generated in Code
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.17 Replace All Matches Within the Matches of Another Regex
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	See Also

	3.18 Replace All Matches Between the Matches of Another Regex
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	Perl and Ruby
	Python

	See Also

	3.19 Split a String
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	Discussion
	C# and VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	See Also

	3.20 Split a String, Keeping the Regex Matches
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	XRegExp
	PHP
	Perl
	Python
	Ruby

	See Also

	3.21 Search Line by Line
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	See Also

	3.22 Construct a Parser
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	XRegExp
	Perl
	Python
	PHP
	Ruby

	Discussion
	See Also

	Chapter 4. Validation and Formatting
	4.1 Validate Email Addresses
	Problem
	Solution
	Simple
	Simple, with restrictions on characters
	Simple, with all valid local part characters
	No leading, trailing, or consecutive dots
	Top-level domain has two to six letters

	Discussion
	About email addresses
	Regular expression syntax
	Building a regex step-by-step

	Variations
	See Also

	4.2 Validate and Format North American Phone Numbers
	Problem
	Solution
	Regular expression
	Replacement
	C# example
	JavaScript example
	Other programming languages

	Discussion
	Variations
	Eliminate invalid phone numbers
	Find phone numbers in documents
	Allow a leading “1”
	Allow seven-digit phone numbers

	See Also

	4.3 Validate International Phone Numbers
	Problem
	Solution
	Regular expression
	JavaScript example

	Discussion
	Variations
	Validate international phone numbers in EPP format

	See Also

	4.4 Validate Traditional Date Formats
	Problem
	Solution
	Discussion
	Variations
	See Also

	4.5 Validate Traditional Date Formats, Excluding Invalid Dates
	Problem
	Solution
	C#
	Perl
	Pure regular expression

	Discussion
	Regex with procedural code
	Pure regular expression

	Variations
	See Also

	4.6 Validate Traditional Time Formats
	Problem
	Solution
	Discussion
	Variations
	See Also

	4.7 Validate ISO 8601 Dates and Times
	Problem
	Solution
	Dates
	Weeks
	Times
	Date and time
	XML Schema dates and times

	Discussion
	See Also

	4.8 Limit Input to Alphanumeric Characters
	Problem
	Solution
	Regular expression
	Ruby example

	Discussion
	Variations
	Limit input to ASCII characters
	Limit input to ASCII noncontrol characters and line breaks
	Limit input to shared ISO-8859-1 and Windows-1252 characters
	Limit input to alphanumeric characters in any language

	See Also

	4.9 Limit the Length of Text
	Problem
	Solution
	Regular expression
	Perl example

	Discussion
	Variations
	Limit the length of an arbitrary pattern
	Limit the number of nonwhitespace characters
	Limit the number of words

	See Also

	4.10 Limit the Number of Lines in Text
	Problem
	Solution
	Regular expression
	PHP (PCRE) example

	Discussion
	Variations
	Working with esoteric line separators

	See Also

	4.11 Validate Affirmative Responses
	Problem
	Solution
	Regular expression
	JavaScript example

	Discussion
	See Also

	4.12 Validate Social Security Numbers
	Problem
	Solution
	Regular expression
	Python example

	Discussion
	Variations
	Find Social Security numbers in documents

	See Also

	4.13 Validate ISBNs
	Problem
	Solution
	Regular expressions
	JavaScript example, with checksum validation
	Python example, with checksum validation

	Discussion
	ISBN-10 checksum
	ISBN-13 checksum

	Variations
	Find ISBNs in documents
	Eliminate incorrect ISBN identifiers

	See Also

	4.14 Validate ZIP Codes
	Problem
	Solution
	Regular expression
	VB.NET example

	Discussion
	See Also

	4.15 Validate Canadian Postal Codes
	Problem
	Solution
	Discussion
	See Also

	4.16 Validate U.K. Postcodes
	Problem
	Solution
	Discussion
	See Also

	4.17 Find Addresses with Post Office Boxes
	Problem
	Solution
	Regular expression
	C# example

	Discussion
	See Also

	4.18 Reformat Names From “FirstName LastName” to “LastName, FirstName”
	Problem
	Solution
	Regular expression
	Replacement
	JavaScript example

	Discussion
	Variations
	List surname particles at the beginning of the name

	See Also

	4.19 Validate Password Complexity
	Problem
	Solution
	Length between 8 and 32 characters
	ASCII visible and space characters only
	One or more uppercase letters
	One or more lowercase letters
	One or more numbers
	One or more special characters
	Disallow three or more sequential identical characters
	Example JavaScript solution, basic
	Example JavaScript solution, with x out of y validation
	Example JavaScript solution, with password security ranking

	Discussion
	Example JavaScript solutions

	Variations
	Validate multiple password rules with a single regex

	See Also

	4.20 Validate Credit Card Numbers
	Problem
	Solution
	Strip spaces and hyphens
	Validate the number
	Example web page with JavaScript

	Discussion
	Strip spaces and hyphens
	Validate the number
	Incorporating the solution into a web page

	Extra Validation with the Luhn Algorithm
	See Also

	4.21 European VAT Numbers
	Problem
	Solution
	Strip whitespace and punctuation
	Validate the number

	Discussion
	Strip whitespace and punctuation
	Validate the number

	Variations
	See Also

	Chapter 5. Words, Lines, and Special Characters
	5.1 Find a Specific Word
	Problem
	Solution
	Discussion
	See Also

	5.2 Find Any of Multiple Words
	Problem
	Solution
	Using alternation
	Example JavaScript solution

	Discussion
	Using alternation
	Example JavaScript solution

	See Also

	5.3 Find Similar Words
	Problem
	Solution
	Color or colour
	Bat, cat, or rat
	Words ending with “phobia”
	Steve, Steven, or Stephen
	Variations of “regular expression”

	Discussion
	Use word boundaries to match complete words
	Color or colour
	Bat, cat, or rat
	Words ending with “phobia”
	Steve, Steven, or Stephen
	Variations of “regular expression”

	See Also

	5.4 Find All Except a Specific Word
	Problem
	Solution
	Discussion
	Variations
	Find words that don’t contain another word

	See Also

	5.5 Find Any Word Not Followed by a Specific Word
	Problem
	Solution
	Discussion
	Variations
	See Also

	5.6 Find Any Word Not Preceded by a Specific Word
	Problem
	Solution
	Lookbehind you
	Words not preceded by “cat”
	Simulate lookbehind

	Discussion
	Fixed, finite, and infinite length lookbehind
	Simulate lookbehind

	Variations
	See Also

	5.7 Find Words Near Each Other
	Problem
	Solution
	Discussion
	Variations
	Using a conditional
	Match three or more words near each other
	Exponentially increasing permutations
	The ugly solution
	Exploiting empty backreferences
	JavaScript backreferences by its own rules

	Multiple words, any distance from each other

	See Also

	5.8 Find Repeated Words
	Problem
	Solution
	Discussion
	Variations
	See Also

	5.9 Remove Duplicate Lines
	Problem
	Solution
	Option 1: Sort lines and remove adjacent duplicates
	Option 2: Keep the last occurrence of each duplicate line in an unsorted file
	Option 3: Keep the first occurrence of each duplicate line in an unsorted file

	Discussion
	Option 1: Sort lines and remove adjacent duplicates
	Option 2: Keep the last occurrence of each duplicate line in an unsorted file
	Option 3: Keep the first occurrence of each duplicate line in an unsorted file

	See Also

	5.10 Match Complete Lines That Contain a Word
	Problem
	Solution
	Discussion
	Variations
	See Also

	5.11 Match Complete Lines That Do Not Contain a Word
	Problem
	Solution
	Discussion
	See Also

	5.12 Trim Leading and Trailing Whitespace
	Problem
	Solution
	Discussion
	Variations
	See Also

	5.13 Replace Repeated Whitespace with a Single Space
	Problem
	Solution
	Clean any whitespace characters
	Clean horizontal whitespace characters

	Discussion
	Clean any whitespace characters
	Clean horizontal whitespace characters

	See Also

	5.14 Escape Regular Expression Metacharacters
	Problem
	Solution
	Built-in solutions
	Regular expression
	Replacement
	Example JavaScript function

	Discussion
	Variations
	See Also

	Chapter 6. Numbers
	6.1 Integer Numbers
	Problem
	Solution
	Discussion
	See Also

	6.2 Hexadecimal Numbers
	Problem
	Solution
	Discussion
	See Also

	6.3 Binary Numbers
	Problem
	Solution
	Discussion
	See Also

	6.4 Octal Numbers
	Problem
	Solution
	Discussion
	See Also

	6.5 Decimal Numbers
	Problem
	Solution
	Discussion
	See Also

	6.6 Strip Leading Zeros
	Problem
	Solution
	Regular expression
	Replacement
	Getting the numbers in Perl
	Stripping leading zeros in PHP

	Discussion
	See Also

	6.7 Numbers Within a Certain Range
	Problem
	Solution
	Discussion
	See Also

	6.8 Hexadecimal Numbers Within a Certain Range
	Problem
	Solution
	Discussion
	See Also

	6.9 Integer Numbers with Separators
	Problem
	Solution
	Discussion
	See Also

	6.10 Floating-Point Numbers
	Problem
	Solution
	Discussion
	See Also

	6.11 Numbers with Thousand Separators
	Problem
	Solution
	Discussion
	See Also

	6.12 Add Thousand Separators to Numbers
	Problem
	Solution
	Basic solution
	Match separator positions only, using lookbehind

	Discussion
	Introduction
	Basic solution
	Match separator positions only, using lookbehind

	Variations
	Don’t add commas after a decimal point
	Use infinite lookbehind
	Search-and-replace within matched numbers

	See Also

	6.13 Roman Numerals
	Problem
	Solution
	Discussion
	Convert Roman Numerals to Decimal
	See Also

	Chapter 7. Source Code and Log Files
	7.1 Keywords
	Problem
	Solution
	Discussion
	Variations
	See Also

	7.2 Identifiers
	Problem
	Solution
	Discussion
	See Also

	7.3 Numeric Constants
	Problem
	Solution
	Discussion
	See Also

	7.4 Operators
	Problem
	Solution
	Discussion

	7.5 Single-Line Comments
	Problem
	Solution
	Discussion
	See Also

	7.6 Multiline Comments
	Problem
	Solution
	Discussion
	Variations
	See Also

	7.7 All Comments
	Problem
	Solution
	Discussion
	See Also

	7.8 Strings
	Problem
	Solution
	Discussion
	Variations
	See Also

	7.9 Strings with Escapes
	Problem
	Solution
	Discussion
	Variations
	See Also

	7.10 Regex Literals
	Problem
	Solution
	Discussion
	See Also

	7.11 Here Documents
	Problem
	Solution
	Discussion
	See Also

	7.12 Common Log Format
	Problem
	Solution
	Discussion
	Variations
	See Also

	7.13 Combined Log Format
	Problem
	Solution
	Discussion
	See Also

	7.14 Broken Links Reported in Web Logs
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. URLs, Paths, and Internet Addresses
	8.1 Validating URLs
	Problem
	Solution
	Discussion
	See Also

	8.2 Finding URLs Within Full Text
	Problem
	Solution
	Discussion
	See Also

	8.3 Finding Quoted URLs in Full Text
	Problem
	Solution
	Discussion
	See Also

	8.4 Finding URLs with Parentheses in Full Text
	Problem
	Solution
	Discussion
	See Also

	8.5 Turn URLs into Links
	Problem
	Solution
	Discussion
	See Also

	8.6 Validating URNs
	Problem
	Solution
	Discussion
	See Also

	8.7 Validating Generic URLs
	Problem
	Solution
	Discussion
	See Also

	8.8 Extracting the Scheme from a URL
	Problem
	Solution
	Extract the scheme from a URL known to be valid
	Extract the scheme while validating the URL

	Discussion
	See Also

	8.9 Extracting the User from a URL
	Problem
	Solution
	Extract the user from a URL known to be valid
	Extract the user while validating the URL

	Discussion
	See Also

	8.10 Extracting the Host from a URL
	Problem
	Solution
	Extract the host from a URL known to be valid
	Extract the host while validating the URL

	Discussion
	See Also

	8.11 Extracting the Port from a URL
	Problem
	Solution
	Extract the port from a URL known to be valid
	Extract the port while validating the URL

	Discussion
	See Also

	8.12 Extracting the Path from a URL
	Problem
	Solution
	Discussion
	See Also

	8.13 Extracting the Query from a URL
	Problem
	Solution
	Discussion
	See Also

	8.14 Extracting the Fragment from a URL
	Problem
	Solution
	Discussion
	See Also

	8.15 Validating Domain Names
	Problem
	Solution
	Discussion
	See Also

	8.16 Matching IPv4 Addresses
	Problem
	Solution
	Regular expression
	Perl

	Discussion
	See Also

	8.17 Matching IPv6 Addresses
	Problem
	Solution
	Standard notation
	Mixed notation
	Standard or mixed notation
	Compressed notation
	Compressed mixed notation
	Standard, mixed, or compressed notation

	Discussion
	Standard notation
	Mixed notation
	Standard or mixed notation
	Compressed notation
	Compressed mixed notation
	Standard, mixed, or compressed notation

	See Also

	8.18 Validate Windows Paths
	Problem
	Solution
	Drive letter paths
	Drive letter and UNC paths
	Drive letter, UNC, and relative paths

	Discussion
	Drive letter paths
	Drive letter and UNC paths
	Drive letter, UNC, and relative paths

	See Also

	8.19 Split Windows Paths into Their Parts
	Problem
	Solution
	Drive letter paths
	Drive letter and UNC paths
	Drive letter, UNC, and relative paths

	Discussion
	Drive letter paths
	Drive letter and UNC paths
	Drive letter, UNC, and relative paths

	See Also

	8.20 Extract the Drive Letter from a Windows Path
	Problem
	Solution
	Discussion
	See Also

	8.21 Extract the Server and Share from a UNC Path
	Problem
	Solution
	Discussion
	See Also

	8.22 Extract the Folder from a Windows Path
	Problem
	Solution
	Discussion
	See Also

	8.23 Extract the Filename from a Windows Path
	Problem
	Solution
	Discussion
	See Also

	8.24 Extract the File Extension from a Windows Path
	Problem
	Solution
	Discussion
	See Also

	8.25 Strip Invalid Characters from Filenames
	Problem
	Solution
	Regular expression
	Replacement

	Discussion
	See Also

	Chapter 9. Markup and Data Formats
	Processing Markup and Data Formats with Regular Expressions
	Basic Rules for Formats Covered in This Chapter

	9.1 Find XML-Style Tags
	Problem
	Solution
	Quick and dirty
	Allow > in attribute values
	(X)HTML tags (loose)
	(X)HTML tags (strict)
	XML tags (strict)

	Discussion
	A few words of caution
	Quick and dirty
	Allow > in attribute values
	(X)HTML tags (loose)
	(X)HTML tags (strict)
	XML tags (strict)

	Skip Tricky (X)HTML and XML Sections
	Outer regex for (X)HTML
	Outer regex for XML

	See Also

	9.2 Replace Tags with
	Problem
	Solution
	Discussion
	Variations
	Replace a list of tags

	See Also

	9.3 Remove All XML-Style Tags Except and
	Problem
	Solution
	Solution 1: Match tags except and
	Solution 2: Match tags except and , and any tags that contain attributes

	Discussion
	Variations
	Whitelist specific attributes

	See Also

	9.4 Match XML Names
	Problem
	Solution
	XML 1.0 names (approximate)
	XML 1.1 names (exact)

	Discussion
	XML 1.0 names
	XML 1.1 names

	Variations
	See Also

	9.5 Convert Plain Text to HTML by Adding <p> and
 Tags
	Problem
	Solution
	Step 1: Replace HTML special characters with named character references
	Step 2: Replace all line breaks with

	Step 3: Replace double
 tags with </p><p>
	Step 4: Wrap the entire string with <p>⋯</p>
	Example JavaScript solution

	Discussion
	Step 1: Replace HTML special characters with named character references
	Step 2: Replace all line breaks with

	Step 3: Replace double
 tags with </p><p>
	Step 4: Wrap the entire string with <p>⋯</p>

	See Also

	9.6 Decode XML Entities
	Problem
	Solution
	Regular expression
	Replace matches with their corresponding literal characters
	Example JavaScript solution

	Discussion
	See Also

	9.7 Find a Specific Attribute in XML-Style Tags
	Problem
	Solution
	Tags that contain an id attribute (quick and dirty)
	Tags that contain an id attribute (more reliable)
	<div> tags that contain an id attribute
	Tags that contain an id attribute with the value “my-id”
	Tags that contain “my-class” within their class attribute value

	Discussion
	See Also

	9.8 Add a cellspacing Attribute to <table> Tags That Do Not Already Include It
	Problem
	Solution
	Solution 1, simplistic
	Solution 2, more reliable
	Insert the new attribute

	Discussion
	See Also

	9.9 Remove XML-Style Comments
	Problem
	Solution
	Discussion
	How it works
	When comments can’t be removed

	Variations
	Find valid XML comments
	Find valid HTML comments

	See Also

	9.10 Find Words Within XML-Style Comments
	Problem
	Solution
	Two-step approach
	Single-step approach

	Discussion
	Two-step approach
	Single-step approach

	Variations
	See Also

	9.11 Change the Delimiter Used in CSV Files
	Problem
	Solution
	Example web page with JavaScript

	Discussion
	See Also

	9.12 Extract CSV Fields from a Specific Column
	Problem
	Solution
	Example web page with JavaScript

	Discussion
	Variations
	Match a CSV record and capture the field in column 1 to backreference 1
	Match a CSV record and capture the field in column 2 to backreference 1
	Match a CSV record and capture the field in column 3 or higher to backreference 1
	Replacement string

	See Also

	9.13 Match INI Section Headers
	Problem
	Solution
	Discussion
	Variations
	See Also

	9.14 Match INI Section Blocks
	Problem
	Solution
	Discussion
	See Also

	9.15 Match INI Name-Value Pairs
	Problem
	Solution
	Discussion
	See Also

	Index

