
Michael J. Foord
Christian Muirhead
FOREWORD BY JIM HUGUNIN

M A N N I N G

IN ACTION
IronPytho

IronPython in Action

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

IronPython
 in Action

MICHAEL J. FOORD
CHRISTIAN MUIRHEAD

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Jeff Bleil
Manning Publications Co. Copyeditors: Andrea Kaucher, Linda Recktenwald
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-33-7
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning.com

This book is dedicated to the littlest gangster and the mushroom,
 who endured much throughout its creation.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

brief contents
PART 1 GETTING STARTED WITH IRONPYTHON................................... 1

1 ■ A new language for .NET 3

2 ■ Introduction to Python 29

3 ■ .NET objects and IronPython 62

PART 2 CORE DEVELOPMENT TECHNIQUES 79

4 ■ Writing an application and design patterns with
IronPython 81

5 ■ First-class functions in action with XML 110

6 ■ Properties, dialogs, and Visual Studio 133

7 ■ Agile testing: where dynamic typing shines 157

8 ■ Metaprogramming, protocols, and more 183

PART 3 IRONPYTHON AND ADVANCED .NET.................................. 215

9 ■ WPF and IronPython 217

10 ■ Windows system administration with IronPython 244

11 ■ IronPython and ASP.NET 273
vii

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

BRIEF CONTENTSviii
12 ■ Databases and web services 299

13 ■ Silverlight: IronPython in the browser 329

PART 4 REACHING OUT WITH IRONPYTHON................................... 357

14 ■ Extending IronPython with C#/VB.NET 359

15 ■ Embedding the IronPython engine 386

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

contents
foreword xvii
preface xx
acknowledgments xxii
about this book xxiii

PART 1 GETTING STARTED WITH IRONPYTHON 1

1 A new language for .NET 3
1.1 An introduction to IronPython 5

What is IronPython? 6 ■ A brief history of IronPython 9
IronPython for Python programmers 11 ■ IronPython for .NET
programmers 13

1.2 Python on the CLR 15
Dynamic languages on .NET and the DLR 15 ■ Silverlight: a new
CLR 18 ■ The Python programming language 20 ■ Multiple
programming paradigms 22

1.3 Live objects on the console: the interactive interpreter 23
Using the interactive interpreter 23 ■ The .NET framework:
assemblies, namespaces, and references 25 ■ Live objects and the
interactive interpreter 25 ■ Object introspection with dir and help 27

1.4 Summary 28
ix

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

CONTENTSx
2 Introduction to Python 29
2.1 An overview of Python 31

Python datatypes 32 ■ Names, objects, and references 40 ■ Mutable
and immutable objects 41

2.2 Python: basic constructs 41
Statements and expressions 42 ■ Conditionals and loops 43
Functions 44 ■ Built-in functions 45 ■ Classes 47

2.3 Additional Python features 50
Exception handling 50 ■ Closures and scoping rules 52 ■ List
comprehensions 54 ■ Modules, packages, and importing 55
Docstrings 58 ■ The Python standard library 58

2.4 Summary 61

3 .NET objects and IronPython 62
3.1 Introducing .NET 63

Translating MSDN documentation into IronPython 63 ■ The Form
class 65

3.2 Structures, enumerations, and collections: .NET types 67
Methods and properties inherited from Control 67 ■ Adding a Label
to the Form: ControlCollection 68 ■ Configuring the Label: the Color
structure 70 ■ The FormBorderStyle enumeration 71 ■ Hello World
with Form and Label 72

3.3 Handling events 73
Delegates and the MouseMove event 74 ■ Event handlers in
IronPython 75

3.4 Subclassing .NET types 77
3.5 Summary 78

PART 2 CORE DEVELOPMENT TECHNIQUES........................ 79

4 Writing an application and design patterns with IronPython 81
4.1 Data modeling and duck typing 82

Python and protocols 82 ■ Duck typing in action 83

4.2 Model-View-Controller in IronPython 84
Introducing the running example 85 ■ The view layer: creating a
user interface 86 ■ A data model 88 ■ A controller class 89
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

CONTENTS xi
4.3 The command pattern 91
The SaveFileDialog 92 ■ Writing files: the .NET and Python ways 93
Handling exceptions and the system message box 95 ■ The
SaveCommand 98 ■ The SaveAsCommand 100

4.4 Integrating commands with our running example 100
Menu classes and lambda 101 ■ .NET classes: ToolBar and images 103
Bringing the GUI to life 105

4.5 Summary 108

5 First-class functions in action with XML 110
5.1 First-class functions 111

Higher order functions 111 ■ Python decorators 113 ■ A null-
argument-checking decorator 113

5.2 Representing documents with XML 114
The .NET XmlWriter 116 ■ A DocumentWriter Class 118 ■ An
alternative with an inner function 120

5.3 Reading XML 121
XMLReader 121 ■ An IronPython XmlDocumentReader 123

5.4 Handler functions for MultiDoc XML 126
5.5 The Open command 129
5.6 Summary 132

6 Properties, dialogs, and Visual Studio 133
6.1 Document observers 134

Python properties 134 ■ Adding the OpenCommand 138

6.2 More with TabPages: dialogs and Visual Studio 139
Remove pages: OK and Cancel dialog box 139 ■ Rename pages: a
modal dialog 143 ■ Visual Studio Express and IronPython 148
Adding pages: code reuse in action 151 ■ Wiring the commands to
the view 152

6.3 Object serializing with BinaryFormatter 154
6.4 Summary 156

7 Agile testing: where dynamic typing shines 157
7.1 The unittest module 158

Creating a TestCase 159 ■ setUp and tearDown 162 ■ Test suites
with multiple modules 163
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

CONTENTSxii
7.2 Testing with mocks 166
Mock objects 166 ■ Modifying live objects: the art of the monkey patch 169
Mocks and dependency injection 173

7.3 Functional testing 175
Interacting with the GUI thread 176 ■ An AsyncExecutor for
asynchronous interactions 178 ■ The functional test: making
MultiDoc dance 179

7.4 Summary 182

8 Metaprogramming, protocols, and more 183
8.1 Protocols instead of interfaces 184

A myriad of magic methods 184 ■ Operator overloading 187
Iteration 191 ■ Generators 192 ■ Equality and inequality 193

8.2 Dynamic attribute access 195
Attribute access with built-in functions 196 ■ Attribute access
through magic methods 197 ■ Proxying attribute access 198

8.3 Metaprogramming 199
Introduction to metaclasses 200 ■ Uses of metaclasses 201 ■ A
profiling metaclass 202

8.4 IronPython and the CLR 205
.NET arrays 205 ■ Overloaded methods 208 ■ out, ref, params,
and pointer parameters 208 ■ Value types 210 ■ Interfaces 211
Attributes 212 ■ Static compilation of IronPython code 213

8.5 Summary 214

PART 3 IRONPYTHON AND ADVANCED .NET................... 215

9 WPF and IronPython 217
9.1 Hello World with WPF and IronPython 220

WPF from code 221 ■ Hello World from XAML 223

9.2 WPF in action 226
Layout with the Grid 227 ■ The WPF ComboBox and CheckBox 229
The Image control 231 ■ The Expander 232 ■ The ScrollViewer 233
The TextBlock: a lightweight document control 234 ■ The XamlWriter 236

9.3 XPS documents and flow content 236
FlowDocument viewer classes 238 ■ Flow document markup 239
Document XAML and object tree processing 240

9.4 Summary 243
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

CONTENTS xiii
10 Windows system administration with IronPython 244
10.1 System administration with Python 245

Simple scripts 245 ■ Shell scripting with IronPython 246

10.2 WMI and the System.Management assembly 251
System.Management 251 ■ Connecting to remote computers 255

10.3 PowerShell and IronPython 260
Using PowerShell from IronPython 260 ■ Using IronPython from
PowerShell 264

10.4 Summary 271

11 IronPython and ASP.NET 273
11.1 Introducing ASP.NET 274

Web controls 274 ■ Pages and user controls 275 ■ Rendering, server
code, and the page lifecycle 275

11.2 Adding IronPython to ASP.NET 276
Writing a first application 277 ■ Handling an event 279

11.3 ASP.NET infrastructure 280
The App_Script folder 280 ■ The Global.py file 281 ■ The
Web.config file 282

11.4 A web-based MultiDoc Viewer 282
Page structure 283 ■ Code-behind 285

11.5 Editing MultiDocs 287
Swapping controls 288 ■ Handling view state 289 ■ Additional events 292

11.6 Converting the Editor into a user control 294
View state again 295 ■ Adding parameters 296

11.7 Summary 298

12 Databases and web services 299
12.1 Relational databases and ADO.NET 300

Trying it out using PostgreSQL 301 ■ Connecting to the database 303
Executing commands 304 ■ Setting parameters 305 ■ Querying the
database 306 ■ Reading multirow results 307 ■ Using transactions 309
DataAdapters and DataSets 311

12.2 Web services 313
Using a simple web service 314 ■ Using SOAP services from
IronPython 317 ■ REST services in IronPython 319

12.3 Summary 328
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

CONTENTSxiv
13 Silverlight: IronPython in the browser 329
13.1 Introduction to Silverlight 330

Dynamic Silverlight 332 ■ Your Python application 334
Silverlight controls 335 ■ Packaging a Silverlight application 339

13.2 A Silverlight Twitter client 341
Cross-domain policies 341 ■ Debugging Silverlight applications 343
The user interface 344 ■ Accessing network resources 346 ■ Threads
and dispatching onto the UI thread 349 ■ IsolatedStorage in the
browser 351

13.3 Videos and the browser DOM 353
The MediaElement video player 353 ■ Accessing the browser DOM 354

13.4 Summary 356

PART 4 REACHING OUT WITH IRONPYTHON 357

14 Extending IronPython with C#/VB.NET 359
14.1 Writing a class library for IronPython 360

Working with Visual Studio or MonoDevelop 361 ■ Python objects from
class libraries 362 ■ Calling unmanaged code with the P/Invoke
attribute 366 ■ Methods with attributes through subclassing 370

14.2 Creating dynamic (and Pythonic) objects from
C#/VB.NET 374

Providing dynamic attribute access 374 ■ Python magic methods 378
APIs with keyword and multiple arguments 378

14.3 Compiling and using assemblies at runtime 382
14.4 Summary 385

15 Embedding the IronPython engine 386
15.1 Creating a custom executable 387

The IronPython engine 387 ■ Executing a Python file 389

15.2 IronPython as a scripting engine 393
Setting and fetching variables from a scope 394 ■ Providing modules
and assemblies for the engine 398 ■ Python code as an embedded
resource 400

15.3 Python plugins for .NET applications 402
A plugin class and registry 403 ■ Autodiscovery of user plugins 404
Diverting standard output 406 ■ Calling the user plugins 407
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

CONTENTS xv
15.4 Using DLR objects from other .NET languages 409
Expressions, functions, and Python types 409 ■ Dynamic operations
with ObjectOperations 412 ■ The built-in Python functions and
modules 414 ■ The future of interacting with dynamic objects 417

15.5 Summary 418

appendix A A whirlwind tour of C# 419
appendix B Python magic methods 433
appendix C For more information 445

index 449

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

foreword
IronPython brings together two of my favorite things: the elegant Python program-
ming language and the powerful .NET platform.

 I’ve been a fan of the Python language for almost 15 years, ever since it was recom-
mended to me by a fellow juggler while we passed clubs in a park. From the start I
found Python to be a simple and elegant language that made it easy to express my
ideas in code. I’m amazed by Python’s ability to appeal to a broad range of developers,
from hard-core hackers to amateur programmers, including scientists, doctors, and
animators. I’ve been teaching my ten-year-old son to program, and even he tells me
that “Python is a great language to learn with.” Beyond teaching my son, I’ve tried to
contribute to the Python community that gave me this great language and continues
to drive it forward. Prior to IronPython, I started the Numeric Python and Jython
open source projects.

 It took a bit longer for me to become a fan of Microsoft’s .NET platform and the
Common Language Runtime (CLR) that forms its core execution engine. I first
learned about the CLR by reading countless reports on the web that said it was a terri-
ble platform for dynamic languages in general and for Python in particular. IronPy-
thon started life as a series of quick prototypes to help me understand how this
platform could be so bad. My plan was to prototype for a couple of weeks and then
write a pithy paper titled, “Why the CLR is a terrible platform for dynamic languages.”
This plan was turned upside down when the prototypes turned out to run very
well—generally quite a bit faster than the standard C-based Python implementation.
xvii

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

FOREWORDxviii
 After getting over my initial skepticism, I’ve grown to love the CLR and .NET as
much as Python. While no platform is perfect, this is the closest we’ve ever come to a
universal runtime that can cleanly support a variety of different programming lan-
guages. Even more exciting to me is that the team is committed to the multi-language
story and we’ve got great projects like the DLR, IronRuby, and F# to keep extending
the range of languages that can coexist on this platform. I’ve even grown to like C# as
the most enjoyable and versatile statically typed programming language I’ve used.

 As the architect for IronPython, I like to believe that it’s such a simple and elegant
combination of the Python language and the .NET platform that it needs no docu-
mentation. After all, who could possibly not know that they should use clr.Reference
to pass an out parameter to a .NET method? I guess that it’s assumptions like that one
that would make me a poor choice for writing a book teaching people about Iron-
Python. The best choice for writing a book like this would be a long-term user who’s
deeply engaged with the community and who has been trying to understand and
explain the system to others for years. Now, if only we could find such a person…

 I first met Michael Foord in July of 2006. I was preparing an IronPython talk for
the OSCON conference in Portland, Oregon. This was going to be an exciting talk
where I’d announce that the final release of IronPython 1.0 was weeks away. This was a
terrible time to be preparing a talk since my mind and time were occupied with all the
details of the actual release. To further complicate things, this was the Open Source
Convention, and I knew that I needed to show IronPython running on Linux in order
to have credibility with this audience. Unfortunately, I didn’t have the time to set up a
Linux box and get some useful demos running. Oddly enough, my coworkers (at
Microsoft) didn’t have any spare Linux boxes running in their offices that I could bor-
row for a few screen shots.

 I did a desperate internet search for “IronPython Linux” and one of the places that
led me to was a blog called voidspace. There I found a tutorial on how to use Windows
Forms with IronPython. The reason this tutorial showed up was that it included screen
caps of the samples running under both Windows and Linux. This was just what I was
looking for! By stealing these pictures for my talk I could show people IronPython
running on Linux and also point them to an excellent online tutorial to help them
learn more about using IronPython than I could cover in a 45-minute talk.

 I had a few hesitations about including this reference in my talk. I didn’t know any-
thing about the author except that his screen name was Fuzzyman and that he had a
personal blog that was subtitled, “the strange and deluded ramblings of a rather odd
person.” However, I really liked the simple tutorial and I was incredibly happy to have
some nice Linux samples to show the OSCON crowd. I was most grateful at the time to
this person that I’d never met for helping me out of this jam.

 Fuzzyman turned out to be Michael Foord and one of the authors of the book you
have in your hands now. Since that first online tutorial, Michael has been helping peo-
ple to use IronPython through more online samples, presentations at conferences,
and through active contributions to the IronPython users mailing list. I couldn’t think
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

FOREWORD xix
of a better way for you to learn how to get started and how to get the most out of Iron-
Python than by following along with Michael and Christian in IronPython in Action.

 I’ve spent my career building programming languages and libraries targeted at
other developers. This means that the software I write is used directly by a small num-
ber of people and it’s hard for me to explain to non-developers what I do. The only
reason this kind of stuff has value is because of the useful or fun programs that other
developers build using it. This book should give you everything you need to get
started with IronPython. It will make your development more fun—and more produc-
tive. Now go out and build something cool!

 JIM HUGUNIN

 SOFTWARE ARCHITECT

 FOR THE .NET FRAMEWORK TEAM

 AND CREATOR OF IRONPYTHON
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

preface
A programming language is a medium of expression.

 —Paul Graham

Neither of us intended to develop with IronPython, least of all write a book on it. It
sort of happened by accident. In 2005 a startup called Resolver Systems1 set up shop in
London. They were creating a spreadsheet platform to tackle the myriad problems
caused in business by the phenomenal success of spreadsheets. The goal was to bring
the proven programming principles of modularity, testability, and maintainability to
the spreadsheet world—and having an interpreted language embedded in Resolver
One was a core part of this. As Resolver One was to be a desktop application used by
financial organizations, it needed to be built on established and accepted technolo-
gies, which for the desktop meant .NET.

 At the time the choice of interpreted language engines for .NET was limited; even
IronPython was only at version 0.7. The two developers who comprised Resolver Sys-
tems2 evaluated IronPython and discovered three important facts:

■ Although neither of them was familiar with Python, it was an elegant and
expressive language that was easy to learn.

■ The .NET integration of IronPython was superb. In fact it seemed that every-
thing they needed to develop Resolver One was accessible from IronPython.

■ As a dynamic language, Python was orders of magnitude easier to test than lan-
guages they had worked with previously. This particularly suited the test-driven
approach they were using.

1 See http://www.resolversystems.com/ .
2 Giles Thomas, who is CEO and CTO, and William Reade, a hacker with a great mind for complex systems.
xx

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.resolversystems.com/

PREFACE xxi
They decided to prototype Resolver One with IronPython, expecting to have to
rewrite at least portions of the application in C# at some point in the future. Three
years later, Resolver One is in use in financial institutions in London, New York, and
Paris; and consists of 40,000 lines of IronPython code3 with a further 150,000 in the
test framework. Resolver One has been optimized for performance several times, and
this has always meant fine tuning our algorithms in Python. It hasn’t (yet) required
even parts of Resolver One to be rewritten in C#.

 We are experienced Python developers but neither of us had used IronPython
before. We joined Resolver Systems in 2006 and 2007, and were both immediately
impressed by the combination of the elegance of Python with the power and breadth
of the .NET framework.

 Programming is a creative art. Above all Python strives to empower the program-
mer. It emphasizes programmer productivity and readability, instead of optimizing the
language for the compiler. We’re passionate about programming, and about Python.
In 2007 one of us (Michael) set up the IronPython Cookbook4 to provide concrete
examples for the newly converging IronPython community. Shortly afterwards the two
of us decided to write a book that would help both Python and .NET programmers
take advantage of all that IronPython has to offer.

3 With perhaps as many as three hundred lines of C# in total.
4 At http://www.ironpython.info/ and still an excellent resource!
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

acknowledgments
Writing this book has been a labor of love for the past two years. One thing that has
astonished us is the sheer number of people who are involved in such an endeavor, and
how many individuals have helped us. Our thanks for support and assistance go out to
our colleagues at Resolver Systems, the team at Manning, our reviewers, virtually the
whole IronPython team who gave their advice and support at various times, and all
those who bought the Early Access edition and gave feedback and pointed out typos.

 These reviewers took time out of their busy schedules to read the manuscript at
various times in its development and to send us their input. It is a much better book as
a result. Thanks to Leon Bambrick, Max Bolingbroke, Dave Brueck, Andrew Cohen,
Dr. Tim Couper, Keith Farmer, Noah Gift, Clint Howarth, Denis Kurilenko, Alex Mar-
telli, Massimo Perga, and Robi Sen.

 Without the help of these people, and more, this book wouldn’t have been possi-
ble. At Manning Publications, Michael Stephens gave us the opportunity, Jeff Bleiel
was our tireless editor, Andrea Kaucher and Linda Recktenwald transformed the book
through their copyediting, and Katie Tennant did the final proofread. Dino Viehland
was our technical editor, and did great work. We also had help from Jimmy Schementi
reviewing the Silverlight chapter and from Srivatsn Narayanan on chapter 14.

 Special thanks to Jonathan Hartley, a fellow Resolver One hacker, who did a won-
derful job producing the figures for IronPython in Action and to Jim Hugunin, the cre-
ator of IronPython, for writing the foreword.

 Michael Foord would also like to express his gratitude to Andrew Lantsbery, for his
friendship and technical expertise that proved invaluable.
xxii

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

about this book
IronPython is a radical project for Microsoft. It is the first project to be released under
their Ms-PL (Microsoft Public License) open source license. It is also a radically differ-
ent language from the ones that Microsoft has traditionally promoted for the .NET
framework. IronPython is an implementation of the popular programming language
Python for .NET. Python is an open source, object-oriented, dynamically typed lan-
guage in use by organizations like Google, NASA and Pixar. Python is a multi-paradigm
language, and brings new possibilities to .NET programmers: not just the added flexi-
bility of dynamic typing, but programming styles such as functional programming and
metaprogramming. For Python programmers the powerful runtime, with its JIT com-
piler and huge range of .NET libraries, also presents new opportunities.

 The goal of IronPython in Action is not just to teach the mechanics of using IronPy-
thon, but to demonstrate the power and effectiveness of object-oriented programming
in the Python language. To this end we cover best practices in API design, testing, and
the use of design patterns in structured application development. In part this is to dis-
pel the myth that dynamic languages are merely scripting languages; but mostly it is to
help you make the best of the language and the platform on which it runs.

 The addition of Python to the range of languages available as first-class citizens in
.NET reflects the changes happening in the wider world of programming. No one says
it better than Anders Hejlsberg, the architect of C#, when asked by Computer World5

what advice he had for up-and-coming programmers:

5 See http://www.computerworld.com.au/index.php/id;1149786074;pp;8.
xxiii

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.computerworld.com.au/index.php/id;1149786074;pp;8

ABOUT THIS BOOKxxiv
Go look at dynamic languages and meta-programming: those are really
interesting concepts. Once you get an understanding of these different kinds
of programming and the philosophies that underlie them, you can get a
much more coherent picture of what’s going on and the different styles of
programming that might be more appropriate for you with what you’re
doing right now.

Anyone programming today should check out functional programming and
meta-programming as they are very important trends going forward.

Who should read this book?
IronPython in Action is particularly aimed at two types of programmers: Python pro-
grammers looking to take advantage of the power of the .NET framework or Mono for
their applications, and .NET programmers interested in the flexibility of dynamic lan-
guages. It assumes no experience of either Python or .NET, but does assume some pre-
vious programming experience. If you have some programming experience, but have
never used either of these systems, you should find IronPython in Action an accessible
introduction to both Python and .NET.

 Just as Python is suited to an enormous range of problem domains, so is IronPython.
The book covers a range of different uses of IronPython: from web development to
application development, one-off scripting to system administration, and embedding
into .NET applications for extensible architectures or providing user scripting.

Roadmap
This book contains 15 chapters organized into four parts.

 Part 1 Getting started with IronPython —The first part of the book introduces the fun-
damental concepts behind developing with IronPython and the .NET framework. Chap-
ter 1 introduces IronPython along with key points of interest for both Python and .NET
programmers. It finishes by diving into IronPython through the interactive interpreter;
a powerful tool for both Python and IronPython. Chapter 2 is a Python tutorial, includ-
ing areas where IronPython is different from the standard distribution of Python known
as CPython. Where chapter 2 is particularly valuable to programmers who haven’t used
Python before, chapter 3 is an introduction to the .NET framework. As well as covering
the basic .NET types (classes, enumerations, delegates, and the like), this chapter shows
how to use them from IronPython, ending with a more fully featured “Hello World” pro-
gram than created in chapter 1.

 Part 2 Core development techniques —The next part extends your knowledge of the
Python language and the classes available in the .NET framework. It does this by dem-
onstrating a structured approach to Python programming by developing the Multi-
Doc application using several common design patterns. Figure 1 shows MultiDoc as it
looks by the end of chapter 6. Along the way we’ll work with Windows Forms, lamb-
das, properties, decorators, XML, first-class functions, and using C# class libraries cre-
ated in Visual Studio.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

ABOUT THIS BOOK xxv
 This part finishes by covering testing tech-
niques, to which dynamic languages are espe-
cially suited, and some more advanced Python
programming techniques such as metaprogram-
ming. The end of chapter 8 contains valuable
information about how IronPython interacts with
aspects of the Common Language Runtime,
information that neither experience with Python
nor another .NET framework language alone will
furnish you with.

 Part 3 IronPython and advanced .NET—The
third part takes IronPython into practical and
interesting corners of .NET. Each chapter in this
part takes an area of .NET programming and
shows how best to use it from IronPython.

Chapter 9—Writing desktop applications using the Windows Presentation
Foundation user interface library

Chapter 10—System administration, including shell scripting, WMI, and Power-
Shell

Chapter 11—Web development with ASP.NET

Chapter 12—Databases and web services

Chapter 13—Silverlight

Part 4 Reaching out with IronPython —The final part of this book takes IronPython out
into the wilds of a polyglot programming environment. Chapter 14 shows how to cre-
ate classes in C# and VB.NET for use from IronPython. Of special importance here is
creating APIs that feel natural when used from Python, or even giving your objects
dynamic behavior. Chapter 15 reverses the situation and embeds IronPython into
.NET applications. It tackles the interesting and challenging problem of using
dynamic objects from statically typed languages like C# and VB.NET. For many .NET
programmers, being able to embed IronPython into applications, to provide a ready-
made scripting solution, is the main use case for IronPython.

 There are also three appendixes. Appendix A covers the basics of C# and explains
the core concepts of the language. Appendix B shows how to create your own objects
in Python by implementing its protocol methods. Appendix C has a list of online
resources with more information about IronPython and dynamic languages on the
.NET framework.

Code conventions and downloads
This book includes copious numbers of examples in Python, C#, and VB.NET. Source
code in listings, or in text, is in a fixed-width font to separate it from ordinary text.
Additionally, method names in text are also presented using fixed-width font.

Figure 1 The MultiDoc application as it
appears in part 2
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

ABOUT THIS BOOKxxvi
 C# and VB.NET can be quite verbose, but even Python is not immune to the occa-
sional long line. In many cases, the original source code (available online) has been
reformatted, adding line breaks to accommodate the available page space in the book.
In rare cases, even this was not enough, and listings will include line continuation mark-
ers. Additionally, comments in the source code have been removed from the listings.

 Code annotations accompany many of the source code listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 IronPython is an open source project, released under the very liberal Ms-PL soft-
ware license. IronPython is available for download, in source or binary form, from the
IronPython home page: www.codeplex.com/IronPython.

 The source code for all examples in this book is available from Manning’s web
site: www.manning.com/foord. It is also available for download from the book’s
website: www.ironpythoninaction.com/.

Author Online
The purchase of IronPython in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/ironpythoninaction.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!
The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s web site as long as the book is in print.

About the authors
Michael Foord and Christian Muirhead both work full time with IronPython for
Resolver Systems, creating a highly programmable spreadsheet called Resolver One.
They have been using IronPython since before version 1.0 was released.

 Michael Foord has been developing with Python since 2002. He blogs and writes
about Python and IronPython far more than is healthy for one individual and in 2008
was made the first Microsoft MVP for dynamic languages. As the Resolver Systems com-
munity champion he speaks internationally on Python and IronPython. He maintains
the IronPython Cookbook6 and IronPython-URLs7 websites, and can also be found
online at http://www.voidspace.org.uk/python/weblog/. In the real world he lives in
Northampton, UK, with his wife Delia.

6 See http://www.ironpython.info/.
7 See http://ironpython-urls.blogspot.com/.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.codeplex.com/IronPython
http://www.manning.com/foord
http://www.ironpythoninaction.com/
http://www.manning.com/ironpythoninaction
http://www.voidspace.org.uk/python/weblog/
http://www.ironpython.info/
http://ironpython-urls.blogspot.com/

ABOUT THIS BOOK xxvii
 Christian Muirhead began his career in a high-volume database environment, and
for the last eight years has been building database-driven websites. He has five years of
experience working with C#, the .NET framework, and ASP.NET. He has been using
Python in most of his projects since discovering it in 1999, including building web
applications for the BBC using Django. Christian is a New Zealander currently exiled
in London with his wife Alice.

About the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learn-
ing to become permanent it must pass through stages of exploration, play, and, inter-
estingly, re-telling of what is being learned. People understand and remember new
things, which is to say they master them, only after actively exploring them. Humans
learn in action. An essential part of an In Action guide is that it is example-driven. It
encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it. They
need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration
The caption of the figure on the cover of IronPython in Action reads “An Ironworker.”
The illustration is taken from a French book of dress customs, Encyclopedie des Voyages
by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenom-
enon at the time and illustrated guides such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other regions of
the world, as well as to the regional costumes and uniforms of French soldiers, civil
servants, tradesmen, merchants, and peasants.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago. This
was a time when the dress codes of two regions separated by a few dozen miles identified
people uniquely as belonging to one or the other, and when members of a social class
or a trade or a profession could be easily distinguished by what they were wearing.

 Dress codes have changed since then and the diversity by region and social status,
so rich at the time, has faded away. It is now often hard to tell the inhabitant of one con-
tinent from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interesting
intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago brought back to life by the pictures from this travel guide.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Part 1

Getting started
 with IronPython

Like all good books, and possibly a few bad ones, this one starts with an
introduction. In this section, we cover what IronPython is, how it came into
being, and why a language like Python is a big deal for .NET. You’ll also get to use
the IronPython interactive interpreter, which is both a powerful tool and a great
way of showing off some of the features of Python. Chapter 2 is a swift tutorial for
the Python language. It won’t make you a Python master, but it will prepare you
for the examples used throughout this book, and serve as a useful reference well
beyond. Chapter 3 briefly introduces .NET and then wades into programming
with IronPython, taking Windows Forms as the example. While gaining an
understanding of concepts essential to any real work with IronPython, you’ll be
getting your hands dirty with some real code. First, though, let’s discuss how
IronPython fits in with .NET.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

A new
 language for .NET
The .NET framework was launched in 2000 and has since become a popular plat-
form for object-oriented programming. Its heart and soul is the Common Lan-
guage Runtime (CLR), which is a powerful system including a just-in-time
compiler, built-in memory management, and security features. Fortunately, you
can write .NET programs that take advantage of many of these features without
having to understand them, or even be aware of them. Along with the runtime
comes a vast array of libraries and classes, collectively known as the framework
classes. Libraries available in the .NET framework include the Windows Forms and
Windows Presentation Foundation (WPF)1 graphical user interfaces, as well as

This chapter covers
■ An introduction to IronPython
■ Python and dynamic languages on .NET
■ The IronPython interactive interpreter
■ Live object introspection with help and dir

1 Microsoft’s next generation user interface framework.
3

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

4 CHAPTER 1 A new language for .NET
libraries for communicating across networks, working with databases, creating web
applications, and a great deal more.

 The traditional languages for writing .NET programs are Visual Basic.NET, C#, and
C++.2 IronPython is a .NET compiler for a programming language called Python, mak-
ing IronPython a first-class .NET programming language. If you’re a .NET developer,
you can use Python for tasks from web development to creating simple administration
scripts, and just about everything in between. If you’re a Python programmer, you can
use your favorite language to take advantage of the .NET framework.

 IronPython isn’t cast in the same mold as traditional .NET languages, although
there are similarities. It’s a dynamically typed language, which means a lot of things
are done differently and you can do things that are either impossible or more difficult
with alternative languages. Python is also a multi-paradigm language. It supports such
diverse styles of programming as procedural and functional programming, object-
oriented programming, metaprogramming, and more.

 Microsoft has gone to a great deal of trouble to integrate IronPython with the vari-
ous tools and frameworks that are part of the .NET family. They’ve built specific sup-
port for IronPython into the following projects:

■ Visual Studio —The integrated development environment
■ ASP.NET—The web application framework
■ Silverlight —A browser plugin for client-side web application programming
■ XNA3—The game programming system
■ Microsoft Robotics Kit —An environment for robot control and simulation
■ Volta —An experimental recompiler from Intermediate Language bytecode (IL)

to JavaScript4

■ C# 4.0 —The next version of C# and the CLR that will include dynamic features
using the Dynamic Language Runtime (DLR)

IronPython is already being used in commercial systems, both to provide a scripting
environment for programs written in other .NET languages and to create full applica-
tions. One great example called Resolver One,5 a spreadsheet development environ-
ment, is how I (Michael) got involved with IronPython. You can see a screenshot of
Resolver One in figure 1.1. At last count, there were over 40,000 lines of IronPython
code in Resolver One, plus around 150,000 more in the test framework developed
alongside it.

 By the end of IronPython in Action, we hope you’ll have learned everything you need
to tackle creating full applications with IronPython, integrating IronPython as part of
another application, or just using it as another tool in your toolkit. You’ll also have

2 In the C++/CLI flavor, which is sometimes still referred to by the name of its predecessor, Managed C++. Use
of C# and VB.NET is more widespread for .NET programming.

3 XNA is a recursive acronym standing for XNA’s Not Acronymed.
4 Allowing you to write client-side code for web applications in Python and have it recompiled to JavaScript for you.
5 See http://www.resolversystems.com.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.resolversystems.com

5An introduction to IronPython
explored some of these alternative programming techniques and used a variety of dif-
ferent aspects of the .NET framework. This exploration will enable you to make the
best use of the Python language and the wealth of classes made available by .NET.

 Before we can achieve any of this, an introduction is in order. This chapter intro-
duces IronPython and the Python programming language. It explains why Python is a
good fit for the .NET framework and will give you a tantalizing taste of what is possible
with IronPython, via the interactive interpreter.

1.1 An introduction to IronPython
Python is a dynamic language that has been
around since 1990 and has a thriving user
community. Dynamic languages don’t require
you to declare the type of your objects, and
they allow you greater freedom to create new
objects and modify existing ones at runtime.
On top of this, the Python philosophy places
great importance on readability, clarity, and
expressiveness. Figure 1.2 is a slide from a

Figure 1.1 Resolver One: A full application written in IronPython

Figure 1.2 A slide from a presentation,
emphasizing a guiding philosophy of Python
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

6 CHAPTER 1 A new language for .NET
presentation6 by Guido van Rossum, the creator of Python; it explains why readability
is so important in Python.

 IronPython is an open source implementation of Python for .NET. It has been
developed by Microsoft as part of making the CLR a better platform for dynamic lan-
guages. In the process, they’ve created a fantastic language and programming envi-
ronment. But what exactly is IronPython?

1.1.1 What is IronPython?

IronPython primarily consists of the IronPython engine, along with a few other tools
to make it convenient to use. The IronPython engine compiles Python code into IL,
which runs on the CLR. Optionally IronPython can compile to assemblies, which can
be saved to disk and used to make binary-only distributions of applications.7

You can see how Python code is compiled and run by the IronPython engine in figure 1.3.

6 See http://www.python.org/doc/essays/ppt/hp-training/index.htm.
7 .NET does provide ways to access unmanaged code contained in traditional compiled dlls.

Assemblies
Assemblies are .NET libraries or executables. .NET consists of a great deal of these
assemblies, in which the framework classes live, in the form of dlls.

Because of the memory management and security features that .NET provides, code
in .NET assemblies is called managed code.7

Assemblies contain code compiled from .NET languages into Intermediate Language
(IL) bytecode. IL is run with the just-in-time (JIT) compiler for fast execution.

Python Code

IronPython
Engine

.NET
Framework

Classes

Python
Libraries

The .NET
Runtime

Compiled by

IL Bytecode

Executed by

Calls Calls

CallsProduces

IronPython
Engine

IronPython
Engine

Figure 1.3 How Python code and the
IronPython engine fit into the .NET world
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.python.org/doc/essays/ppt/hp-training/index.htm

7An introduction to IronPython
Figure 1.3 shows the state of IronPython version 1.8 In April 2007, the IronPython
team released an early version of IronPython 2, which introduces a radical new devel-
opment, the Dynamic Language Runtime (DLR). The DLR is a hosting platform and
dynamic type system taken out of IronPython 1 and turned into a system capable of
running many different dynamic languages. You’ll be hearing more about the DLR in
a short while.

 Because Python is a highly dynamic language, the generated assemblies remain
dependent on the IronPython dlls. Despite this, they’re still only compiled .NET code,
so you can use classes from the .NET framework directly within your code without
needing to do any type conversions yourself.

 Accessing the .NET framework from IronPython code is extremely easy. As well as
being a programming language in its own right, IronPython can be used for all the
typical tasks you might approach with .NET, such as web development with ASP.NET

(Active Server Pages, the .NET web application framework) or creating smart client
applications with Windows Forms or WPF. As an added bonus, IronPython also runs
on the version of the CLR shipped with Silverlight 2. You can use IronPython for writ-
ing client-side applications that run in a web browser, something that Python pro-
grammers have wanted for years!

 IronPython itself is written in C# and is a full implementation of Python. Iron-
Python 1 is Python version 2.4, whereas IronPython 2 is Python 2.5. If you’ve used
Python before, IronPython is Python with none of the core language features missing
or changed. Let’s make this clear: IronPython is Python.

 Development cycles are typically fast with Python. With dynamically typed lan-
guages, tasks can be achieved with less code, making IronPython ideal for prototyping
applications or scripting system administration tasks that you can’t afford to spend a
lot of time on. Because of the readability and testability of well-written Python code, it
scales well to writing large applications. You are likely to find that your prototypes or
scripts can be refactored into full programs much more easily than writing from
scratch in an alternative language.

 If you’re already developing with .NET, you needn’t do without your favorite tools.
Microsoft has incorporated IronPython support into Visual Studio 2005 through the
Software Development Kit (SDK).9 You can use Visual Studio to create IronPython
projects with full access to the designer and debugger. Figure 1.4 shows Visual Studio
being used to create a Windows application with IronPython.

 Visual Studio 2008 integration exists in the form of IronPython Studio,10 which is
implemented through the Visual Studio Shell extensibility framework. IronPython

8 And as a simplified view, it’s true of IronPython 2 as well, except the IronPython engine is comprised of the
Dynamic Language Runtime and IronPython-specific assemblies.

9 The Visual Studio SDK is a Microsoft extension that includes IronPython support.
10 http://www.codeplex.com/IronPythonStudio
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.codeplex.com/IronPythonStudio

8 CHAPTER 1 A new language for .NET
Studio can either be run standalone (without requiring Visual Studio to be installed)
or integrated into Visual Studio. It includes Windows Forms and WPF designers and is
capable of producing binary executables from Python projects. Figure 1.5 shows Iron-
Python Studio running in integrated mode as part of Visual Studio 2008.

 An alternative version of .NET called Mono provides a C# compiler, runtime, and
a large proportion of the framework for platforms other than Windows. Iron-
Python runs fine on Mono, opening up the possibility of creating fully featured cross-
platform programs using IronPython. Windows Forms is available on Mono, so GUI
applications written with IronPython can run on any of the many platforms that Mono
works on.

 IronPython is a particularly interesting project for Microsoft to have under-
taken. Not only have they taken a strong existing language and ported it to .NET, but
they have chosen to release it with a sensible open source license. You have full
access to IronPython’s source code, which is a good example of compiler de-
sign, and you can create derivative works and release them under a commercial
license. This open approach is at least partly due to the man who initiated Iron-
Python, Jim Hugunin. Let’s explore his role in creating IronPython, along with a
brief history lesson.

Figure 1.4 Generated IronPython code in Visual Studio
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

9An introduction to IronPython
1.1.2 A brief history of IronPython

The standard version of Python is often referred to as CPython, usually in the context
of distinguishing it from other implementations; the C is because it’s written in C. CPy-
thon is overwhelmingly the most-used version of Python, and most Python code is
written to run on it. CPython isn’t Python, though. Python is a programming lan-
guage, and CPython is only one implementation (albeit an important one).11

 IronPython isn’t the first version of Python to target an alternative platform to the
usual Python runtime. The most famous alternative is Jython, Python for the Java Vir-
tual Machine (JVM). The original version of Jython (or JPython, as it was known then)
was created by a gentleman called Jim Hugunin.

 Over the last few years, dynamic languages have been rising in popularity. Their
emphasis on concise code and empowering the programmer have attracted a great
deal of developer interest. But back in 2003, the CLR was widely regarded as being a

11 Python has no formal specification. It’s defined by the language reference documentation and from CPython,
which is called a reference implementation.

Figure 1.5 Using the Windows Forms designer with IronPython Studio running in Visual Studio 2008
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

10 CHAPTER 1 A new language for .NET
bad platform for hosting dynamic languages.12 Jim decided to write an article examin-
ing why .NET was so bad for these languages.

 His experience with the JVM proved that it was certainly possible to create language
runtimes capable of hosting both static and dynamic languages, and he wondered
what Microsoft had gotten so wrong. Naturally he explored this by attempting a toy
implementation of Python. To his horror, he discovered that, contrary to popular
opinion, Python worked well on .NET. In fact, his initial attempt ran the basic Python
benchmark pystone 1.7 times faster than CPython.

 This outcome was unfortunate because a full language implementation is a major
undertaking, and Jim now felt honor bound to take his experiment further.

 After making his results public, Jim was invited to present them to Microsoft.
Microsoft was particularly interested in the challenges and difficulties that Jim had
encountered because they were keen to make the CLR a better platform for dynam-
ic languages.

 The upshot is that Jim joined the CLR team at Microsoft. A group of programmers
were brought together to work on IronPython and, in the process, help improve the
CLR. Importantly, Microsoft agreed to keep IronPython open source, with a straight-
forward license similar to the BSD13 license.

 Since the early releases, the Python community has been closely involved in the
development of IronPython. Releases were made often, and Python programmers have
been quick14 to point out bugs in IronPython, or differences between IronPython and

12 For example, see the InfoWorld article from 2004, “Does .Net have a dynamic-language deficiency?” at http:
//www.infoworld.com/article/04/02/27/09FEmsnetdynamic_1.html. Ironically, this was written by Jon
Udell, who now works for Microsoft.

13 The BSD license is a popular (and permissive) open source license that originated with the Berkeley Software
Distribution, a Unix-like operating system.

14 At least perhaps partly because of suspicions about Microsoft’s intentions for Python…

Python implementations
The most common Python implementation is called CPython. Other implementations
include the following:

IronPython —For .NET.

Jython —For the Java VM.

PyPy —An experimental interpreter compiler toolchain with a multitude of backends
(target platforms). It includes an implementation of Python in Python.

Stackless —An alternative to CPython that makes minimal use of the C stack and has
support for green threads.

tinypy —A minimal implementation of Python in 64KB of code. Useful for embedded
systems.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.infoworld.com/article/04/02/27/09FEmsnetdynamic_1.html
http://www.infoworld.com/article/04/02/27/09FEmsnetdynamic_1.html

11An introduction to IronPython
the way CPython behaves. The IronPython team was (and, in fact, still is) both fast and
scrupulous in fixing bugs and incompatibilities between CPython and IronPython.

 After many beta releases, IronPython 1.0 Production was released in Septem-
ber 2006. Meanwhile, other Microsoft teams were working to ensure that Iron-
Python fit into the different members of the .NET family, including a Community
Technology Preview (CTP) called IronPython for ASP.NET. IronPython for ASP.NET
enables IronPython to be used for .NET web development, and introduces a change
to the normal ASP model called no-compile pages.

 Then in spring 2007, Microsoft surprised just about everyone with two important
releases. The first was an alpha version of IronPython 2. IronPython 2 is built on top
of an important component called the Dynamic Language Runtime (DLR).

 The second surprise announcement, following hot on the heels of the DLR, was
the release of Silverlight. Silverlight is a plugin that runs inside the browser for anima-
tion, video streaming, or creating rich-client web applications. The biggest surprise
was that Silverlight 2 includes a cut-down version of .NET, called the CoreCLR, and the
DLR can run on top of it. Any of the languages that use the DLR can be used for client-
side web programming. The Python community in particular has long wanted a
secure version of Python that they could use for client-side web programming. The
last place they expected it to come from was Microsoft!

 We’re hoping that you’re already convinced that IronPython is a great program-
ming language; but, as a developer, why should you want to use IronPython? There
are two types of programmers for whom IronPython is particularly relevant. The first
is the large number of Python programmers who now have a new implementation of
Python running on a platform different than the one they’re used to. The second
type is .NET programmers, who might be interested in the possibilities of a dynamic
language or perhaps need to embed a scripting engine into an existing application.
We take a brief look at IronPython from both these perspectives, starting with
Python programmers.

1.1.3 IronPython for Python programmers

As we’ve mentioned before, IronPython is a full implementation of Python. If you’ve
already programmed with Python, there’s nothing to stop you from experimenting
with IronPython immediately.

 The important question is, why would a Python programmer be interested in using
IronPython? The answer is twofold: the platform and the platform. We know that, ini-
tially, that might not make much sense, but bear with us. We’re referring first to the
underlying platform that IronPython runs on—the CLR. Second, along with the run-
time comes the whole .NET framework, a huge library of classes a bit like the Python
standard library.

 The CLR is an interesting platform for several reasons. The CLR has had an enor-
mous amount of work to make it fast and efficient. Multithreaded programs can take
full advantage of multiple processors, something that CPython programs can’t do
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

12 CHAPTER 1 A new language for .NET
because of a tricky creature called the GIL.15 Because of the close integration of Iron-
Python with the CLR, extending IronPython through C# code is significantly easier
than extending CPython with C. There’s no C API to contend with; you can pass
objects back and forth across the boundary without hassles and without reference
counting16 to worry about. On top of all this, .NET has a concept called AppDomains.
AppDomains allow you to run code with reduced privileges, such as preventing it
from accessing the filesystem, a feature that has long been missing from CPython.

NOTE The ability to take advantage of multicore CPUs within a single process
and the no-hassles bridge to C# are two of the major reasons that a
Python programmer should be interested in IronPython. Chapter 14
shows how easy it is to extend IronPython from C#.

IronPython programs use .NET classes natively and seamlessly, and there are lots of
classes. Two of the gems in the collection are Windows Forms and WPF, which are
excellent libraries for building attractive and native-looking user interfaces. As a
Python programmer, you may be surprised by how straightforward the programmer’s
interface to these libraries feels. Whatever programming task you’re approaching, it’s
likely that there’s some .NET assembly available to tackle it. As well as the standard
libraries that come with the framework, there are also third-party libraries for sophisti-
cated GUI components, such as data grids, that don’t have counterparts in CPython.

 Table 1.1 shows a small selection of the libraries available to you in the .NET
framework.

15 The Global Interpreter Lock, which makes some aspects of programming with Python easier but has this sig-
nificant drawback.

16 CPython uses reference counting for garbage collection, which extension programmers have to take into
account.

Table 1.1 Common .NET assemblies and namespaces

Assembly/namespace name Purpose

System Contains the base .NET types, exceptions, garbage collection
classes, and much more.

System.Data Classes for working with databases, both high and low level.

System.Drawing Provides access to the GDI+ graphics system.

System.Management Provides access to Windows management information and events
(WMI), useful for system administration tasks.

System.Environment Allows you to access and manipulate the current environment, like
command-line arguments and environment variables.

System.Diagnostics Tracing, debugging, event logging, and interacting with processes.

System.XML For processing XML, including SOAP, XSL/T and more.

System.Web The ASP.NET web development framework.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

13An introduction to IronPython
As we go through the book, we use several of the common .NET assemblies, including
some of those new in .NET 3.0. More importantly, you’ll learn how to understand the
MSDN documentation so that you’re equipped to use any assembly from IronPython.
We also do some client-side web programming with Silverlight, scripting the browser
with Python, something impossible before IronPython and Silverlight.

 Most of the Python standard library works with IronPython; ensuring maximum
compatibility is something the Microsoft team has put a lot of work into. But
beware—not all of the standard library works; C extensions don’t work because Iron-
Python isn’t written in C. In some cases, alternative wrappers may be available,17 but
parts of the standard library and some common third-party extensions don’t work yet.
If you’re willing to swap out components with .NET equivalents or do some detective
work to uncover the problems, it’s usually possible to port existing projects.

 IronPython shines with new projects, particularly those that can leverage the
power of the .NET platform. To take full advantage of IronPython, you’ll need to know
about a few particular features. These include things that past experience with Python
alone hasn’t prepared you for. Before we turn to using IronPython, let’s first look at
how it fits in the world of the .NET framework.

1.1.4 IronPython for .NET programmers

IronPython is a completely new language available to .NET programmers. It opens up
new styles of programming and brings the power and flexibility of dynamic program-
ming languages to the .NET platform.

 Programming techniques such as functional programming and creating classes
and functions at runtime are possible with traditional .NET languages like VB.NET and

System.IO Contains classes for working with paths, files, and directories.
Includes classes to read and write to filesystems or data streams,
synchronously or asynchronously.

Microsoft.Win32 Classes that wrap Win32 common dialogs and components including
the registry.

System.Threading Classes needed for multithreaded application development.

System.Text Classes for working with strings (such as StringBuilder) and
the Encoding classes that can convert text to and from bytes.

System.Windows.Forms Provides a rich user interface for applications.

System.Windows The base namespace for WPF, the new GUI framework that’s part of
.NET 3.0.

System.ServiceModel Contains classes, enumerations, and interfaces to build Windows
Communication Foundation (WCF) service and client applications.

17 Several of these are provided by FePy, a community distribution of IronPython. See http://fepy.sourceforge.net/

Table 1.1 Common .NET assemblies and namespaces (continued)

Assembly/namespace name Purpose
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://fepy.sourceforge.net/

14 CHAPTER 1 A new language for .NET
C#, but they’re a lot easier with Python. You also get straightforward closures, duck
typing, metaprogramming, and much more thrown in for free. We explore some of
the features that make dynamic languages powerful later in the book.

 IronPython is a full .NET language. Every feature of the .NET platform can be
used, with the (current) exception of attributes for which you can use stub classes
written in C#. All your existing knowledge of the .NET framework is relevant for use
with IronPython.

 So why would you want to use IronPython? Well, we can suggest a few reasons.
 Without a compile phase, developing with IronPython can be a lot quicker than

with traditional .NET languages; it typically requires less code and results in more
readable code. A fast edit-run cycle makes IronPython ideal for prototyping and for
use as a scripting language. Classes can be rewritten in C# at a later date (if necessary)
with minimal changes to the programmer’s interface.

 IronPython may be a new language, but Python isn’t. Python is a mature and stable
language. The syntax and basic constructs have been worked out over years of program-
ming experience. Python has a clear philosophy of making things as easy as possible for
the programmer rather than for the compiler. Common concepts should be both simple
and elegant to express, and the programmer should be left as much freedom as possible.

 The best way to illustrate the difference between Python and a static language like
C# is to show you. Table 1.2 demonstrates a simple Hello World program written in both
C# and Python. A Hello class is created, and a SayHello method prints Hello World to
the console. Differences (and similarities) between the two languages are obvious.

Table 1.2 Hello World compared in C# and IronPython

A small Hello World app in C# Equivalent in Python

using System;

class Hello
{
 private string _msg;

 public Hello()
 {
 _msg = "Hello World";
 }

 public Hello(string msg)
 {
 _msg = msg;
 }

 public void SayHello()
 {
 Console.WriteLine(
 _msg);
 }

 public static void Main()
 {
 Hello app = new Hello();
 app.SayHello();
 }
}

class Hello(object):
 def __init__(self,
 msg='hello world'):
 self.msg = msg

 def SayHello(self):
 print self.msg

app = Hello ()
app.SayHello()
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

15Python on the CLR
You can see from this example how much extra code is required in C# for the sake of
the compiler. The curly braces, the semicolons, and the type declarations are all line
noise and don’t add to the functionality of the program. They do serve to make the
code harder to read.

 This example mainly illustrates that Python is syntactically more concise than C#. It’s
also semantically more concise, with language constructs that allow you to express com-
plex ideas with a minimum of code. Generator expressions, multiple return values,
tuple unpacking, decorators, and metaclasses are a few favorite language features that
enhance Python expressivity. We explore Python itself in more depth in next chapter.

 If you’re new to dynamic languages, the interactive interpreter will also be a pleas-
ant surprise. Far from being a toy, the interactive interpreter is a fantastic tool for
experimenting with classes and objects at the console. You can instantiate classes and
explore their properties live, using introspection and the built-in dir and help com-
mands to see what methods and attributes are available to you. As well as experiment-
ing with objects, you can also try out language features to see how they work, and the
interpreter makes a great calculator or alternative shell. You get a chance to play with
the interactive interpreter at the end of this chapter.

 If you’re looking to create a scripting API for an application, embedding Iron-
Python is a great and ready-made solution. You can provide your users with a powerful
and easy-to-learn scripting language that they may already know and that has an abun-
dance of resources for those who want to learn. The IronPython engine and its API
have been designed for embedding from the start, so it requires little work to inte-
grate it into applications.

 It’s time to take a closer look at Python the language and the different programming
techniques it makes possible. We even reveal the unusual source of Python’s name.

1.2 Python on the CLR
The core of the .NET framework is the CLR. As well as being at the heart of .NET and
Mono, it’s also now (in a slightly different form) part of the Silverlight runtime.

 The CLR runs programs that have been compiled from source code into bytecode.
Any language that can be compiled to IL can run on .NET. The predominant .NET lan-
guages, VB.NET and C#, are statically typed languages. Python is from a different class
of language—it’s dynamically typed.

 Let’s take a closer look at some of the things that dynamic languages have to offer
programmers, including some of the language features that make Python a particu-
larly interesting language to work with. We cover both Python the language and a new
platform for dynamic languages: Silverlight. We start with what it means for a lan-
guage to be dynamic.

1.2.1 Dynamic languages on .NET and the DLR

For a while, the CLR had the reputation of being a bad platform for dynamic lan-
guages. As Jim Hugunin proved with IronPython, this isn’t true. One of the reasons
that Microsoft took on the IronPython project was to push the development of the
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

16 CHAPTER 1 A new language for .NET
CLR to make it an even better platform for hosting multiple languages, particularly
dynamic languages. The DLR, which makes several dynamic languages available for
.NET, is the concrete result of this work.

 So, why all the fuss about dynamic languages?
 First, dynamic languages are trendy; all the alpha-geeks are using them! Clearly,

this isn’t enough of an explanation. Unfortunately, like many programming terms,
dynamic is hard to pin down and define precisely. Typically, it applies to languages
that are dynamically typed, that don’t need variable declarations, and where you can
change the type of object a variable refers to.

 More importantly, you can examine and modify objects at runtime. Concepts such
as introspection and reflection, although not exclusive to dynamic languages, are very
important and are simple to use. Classes, functions, and libraries (called modules in
Python), are first-class objects that can easily be created in one part of your code and
used elsewhere.

 In statically typed languages, method calls are normally bound to the corresponding
method at compile time. With Python, the methods are looked up (dynamically) at run-
time, so modifying runtime behavior is much simpler. This is called late binding.

 With static typing, you must declare the type of every object. Every path through
your code that an object can follow must respect that type. If you deviate from this, the
compiler will reject the program. In a situation where you may need to represent any
of several different pieces of information, you may need to implement a custom class or
provide alternative routes through your code that essentially duplicate the same logic.

 In dynamic languages, objects still have a type. Python is a strongly typed lan-
guage,18 and you can only perform operations that make sense for that type. For
example, you can’t add strings to numbers. The difference is that the Python inter-
preter doesn’t check types (or look up methods) until it needs to. Any name can refer-
ence an object of any type, and you can change the object that a variable points to.
This is dynamic typing. Objects can easily follow the same path; you only differentiate
on the type at the point where it’s relevant. One consequence of this is that container
types (lists, dictionaries and tuples, plus user-defined containers in Python) can auto-
matically be heterogeneous. They can hold objects of any type with no need for the
added complexity of generics.

 In many cases, the type doesn’t even matter, as long as the object supports the
operation being performed; this is called duck typing.19 Duck typing can remove the
need for type checking and formal interfaces. For example, to make an object index-
able as a dictionary-like container, you only need to implement a single method.20

 All this can make programmers who are used to static type checking nervous. In
statically typed languages, the compiler checks types at compile time, and will refuse
to compile programs with type errors. This kind of type checking is impossible with

18 Some dynamic languages are weakly typed and allow you to do some very odd things with objects of different
types.

19 If the object walks like a duck and quacks like a duck, let’s treat it like a duck...
20 That method is called __getitem__ and is used for both the mapping and sequence protocols in Python.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

17Python on the CLR
dynamic languages,21 so type errors can only be detected at runtime. Automated test-
ing is more important with dynamic languages—which is convenient because they’re
usually easier to test. Dynamic language programmers are often proponents of strong
testing rather than static checking.22

 Our experience is that type errors form the minority of programming errors and
are usually the easiest to catch. A good test framework will greatly improve the quality
of your code, whether you’re coding in Python or another language, and the benefits
of using a dynamic language outweigh the costs.

 Because types aren’t enforced at compile time the container types (in Python the
list, tuple, set, and dictionary) are heterogeneous—they can contain objects of differ-
ent types. This can make defining and using complex data structures trivially easy.

 These factors make dynamic languages compelling for many programmers; but,
before IronPython, they weren’t available for those using .NET. Microsoft has gone
much further than implementing a single dynamic language, though. With Iron-
Python, Jim and his team proved that .NET was a good environment for dynamic lan-
guages, and they created the entire infrastructure necessary for one specific language.
In the DLR, they abstracted out of IronPython a lot of this infrastructure so that other
languages could be implemented on top of it.

 With the DLR it should be much easier to implement new dynamic languages for
.NET, and even have those languages interoperate with other dynamic languages
because they share a common type system. To prove the worth of the DLR, Microsoft
has already created three languages that run on the DLR. The first of these is Iron-
Python 2, followed by IronRuby, and Managed JScript. Table 1.3 lists the (current) lan-
guages that run on the DLR.

21 Although not all statically typed languages require type declarations. Haskell is a statically typed language that
uses type inferencing instead of type declarations. ShedSkin is a Python to C++ compiler that also uses type
inferencing and compiles a static subset of the Python language into C++. C# 3.0 gained an extremely limited
form of type inferencing with the introduction of the var keyword.

22 A phrase borrowed from Bruce Eckel, a strong enthusiast of dynamic languages in general and Python in par-
ticular. See http://www.mindview.net/WebLog/log-0025.

Table 1.3 Languages that run on the DLR

Language Notes

IronPython 2 The latest version of IronPython. Built on top of the DLR.

IronRuby A port of the Ruby language to run on .NET. Implemented by John Lam and team.

Managed JScript An implementation of ECMA 3, otherwise known as JavaScript. Currently only
available for Silverlight.

ToyScripta

a. See http://www.iunknown.com/2007/06/getting_started.html.

A simple example language. Illustrates how to build languages with the DLR.

IronSchemeb

b. See http://www.codeplex.com/IronScheme.

An R6RS-compliant Scheme implementation based on the DLR.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.mindview.net/WebLog/log-0025
http://www.iunknown.com/2007/06/getting_started.html
http://www.codeplex.com/IronScheme

18 CHAPTER 1 A new language for .NET
Importantly, C# 4.0 will include dynamic features through the DLR.23 This brings late
binding and dynamic dispatch to C#, but will also make it easier to interact with
dynamic languages from C#.

 As an IronPython programmer, you needn’t even be aware of the DLR; it’s just an
implementation detail of how IronPython 2 works. It does become relevant when
you’re embedding IronPython into other applications.

 Another important consequence of the DLR has to do with Silverlight, Microsoft’s
new browser plugin.

1.2.2 Silverlight: a new CLR

At Mix 2007, a conference for web designers and developers, Microsoft surprised just
about everyone by announcing both the DLR and Silverlight.

 Silverlight is something of a breakthrough for Microsoft. Their usual pattern is to
release an early version of a project with an exciting-sounding name, and then the
final version with an anonymous and boring name.24 This time around they’ve broken
the mold; Silverlight was originally codenamed Windows Presentation Foundation
Everywhere, or WPF/E. WPF is the new user interface library that’s part of .NET 3.0,
and WPF/E takes it to the web.

 What Silverlight really is, is a cross-platform and cross-browser25 plugin for anima-
tion, video streaming, and rich web applications. The animation and video streaming
features are aimed at designers who would otherwise be using Flash. What’s more
exciting for developers is that Silverlight 2 comes with a version of the CLR called the
CoreCLR. The CoreCLR is a cut-down .NET runtime containing (as the name implies)
the core parts of the .NET framework. You can create web applications working with
.NET classes that you’re already familiar with. It all runs in a sandboxed environment
that’s safe for running in a browser.

 Although Silverlight doesn’t work on Linux, Microsoft is cooperating with the
Mono team to produce Moonlight,26 which is an implementation of Silverlight based
on Mono. It will initially run on Firefox on Linux, but eventually will support multiple
browsers everywhere that Mono runs.

 The best thing about Silverlight is that the DLR will run on it. So not only can you
program Silverlight applications with C#, but you can also use any of the DLR languages,
including IronPython. Silverlight is an exciting system. Rich interactive applications can
be run in the browser, powered by the language of your choice. All of chapter 13 is
devoted to Silverlight. As well as covering the basics of creating and packaging Silverlight
applications, we walk through building a Silverlight Twitter client as an example.

23 These features were debuted at the 2008 PDC conference by Anders Hejilsburg. See http://
channel9.msdn.com/pdc2008/TL16/.

24 Take Avalon, for example, which became WPF.
25 Although Microsoft’s idea of cross-platform is Mac OS X and Windows and their idea of cross-browser is Safari,

IE, and Firefox, they’ve said that Opera support is in the works.
26 See http://www.mono-project.com/Moonlight.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://channel9.msdn.com/pdc2008/TL16/
http://channel9.msdn.com/pdc2008/TL16/
http://www.mono-project.com/Moonlight

19Python on the CLR
Figure 1.6 shows one of the Silverlight samples27 to illustrate the dynamic power of
DLR languages running in Silverlight.

 This console allows you to execute code with live objects and see the results in the
canvas to the right. The console supports both IronRuby and IronPython, and you can
switch between them live!

 Three DLR languages currently available for use with Silverlight are IronPython,
IronRuby, and Managed JScript. Managed JScript is an ECMA 3–compatible implemen-
tation of JavaScript, created by Microsoft to make it easier to port AJAX applications
to run on Silverlight.

 Another way of using Silverlight is particularly interesting. The whole browser Doc-
ument Object Model (DOM)28 is accessible, so we can interact with and change the
HTML of web pages that host Silverlight. We can also interact with normal unmanaged
JavaScript: calling into Silverlight code from JavaScript and vice versa. It’s already pos-
sible to write a client-side web application with the presentation layer in JavaScript, using
any of the rich set of libraries available and the business logic written in IronPython.

27 The DLRConsole can be downloaded as one of the samples from the Silverlight Dynamic Languages SDK at
http://www.codeplex.com/sdlsdk.

28 A system that exposes a web page as a tree of objects.

Figure 1.6 The Silverlight DLRConsole sample with a Python and Ruby Console
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.codeplex.com/sdlsdk

20 CHAPTER 1 A new language for .NET
 It’s important to remember that, whether it runs in the browser or on the desktop,
IronPython code is Python code. To understand IronPython and the place it has in
the .NET world, you’ll need to understand Python. It’s time for an overview of the
Python language.

1.2.3 The Python programming language

Python is a mature language with a thriving user community. It has traditionally been
used mostly on Linux- and Unix-type platforms; but, with the predominance of Win-
dows on the desktop, Python has also drawn quite a following in the Windows world.
It’s fully open source; the source code is available from the main Python website and a
myriad of mirrors. Python runs on all the major platforms, plus many more, including
obscure ones such as embedded controllers, Windows Mobile, and the Symbian S60
platform used in Nokia.

NOTE Python is an open source, high-level, cross-platform, dynamically typed,
interpreted language.

Python was created by Guido van Rossum in 1990 while he worked for CWI in the
Netherlands. It came out of his experience of creating a language called ABC, which
had many features making it easy to use, but also some serious limitations. In creating
Python, Guido aimed to create a new language with the good features from ABC, but
without the limitations.

 Python is now maintained by a core of developers, with contributions from many
more individuals. Guido still leads the development and is known as the Benevolent
Dictator for Life (BDFL), a title first bestowed during the discussions of founding a
Python Software Association. Oh, and yes, Python was named after the Monty Python
comedy crew.

 Python itself is a combination of the runtime, called CPython, and a large collec-
tion of modules written in a combination of C and Python, collectively known as the
standard library. The breadth and quality of the standard library has earned Python
the reputation of being batteries included. The IronPython team has made an effort to
ensure that as much of the standard library as possible still works. IronPython is dou-
bly blessed with a full set of batteries from the .NET framework and a set of spares
from the standard library.

 One of the reasons for the rise in popularity of Python is the emphasis it places on
clean and readable code. The greatest compliment for a Python programmer isn’t that
his code is clever, but that it’s elegant. To get a quick overview of the guiding philosophy
of Python, type import this at a Python console!29 You can see the result in figure 1.7.

 Python is a multipurpose programming language used for all sorts of tasks. It’s pos-
sible you’ve already used applications or tools written in Python without even being
aware of it. If you’ve used YouTube, Yahoo Maps, or Google, then you’ve been using
tools built or supported behind the scenes with Python.

29 The console will need the Python standard library on its path.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

21Python on the CLR
Python gets used for web development with web frameworks such as Zope, Django,
and TurboGears. The BitTorrent application and SpamBayes (an Outlook plugin to
combat spam) are both written in Python. Yum, the Linux package manager; Mnet,
the distributed file store; Mailman, the GNU mailing list manager; and Trac, a popular
project management and bug-tracking tool, are all written in Python. It’s used by com-
panies including Google, NASA, Sony Imageworks, Seagate, and Industrial Light &
Magic. It’s also used a great deal by the scientific community, particularly in bioinfor-
matics and genomics.30

30 Particularly because of the simplicity and power of Python’s string handling, which is ideal for slicing and
splicing gene sequences.

Figure 1.7 The Zen of Python, as enshrined in the Python standard library

Python quotes
Python is fast enough for our site and allows us to produce maintainable features in
record times, with a minimum of developers.

 —Cuong Do,
 Software Architect at YouTube.com

We chose to use python because we wanted a well-supported scripting language that
could extend our core code. Indeed, we wrote much more code in python than we were
expecting, including all in-game screens and the main interface.

 —Soren Johnson,
 lead designer of Civilization IV
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

22 CHAPTER 1 A new language for .NET
 Because of the clarity of the syntax, Python is very easy to learn. Beginners can start
with simple procedural-style programming and move into object-oriented program-
ming as they understand the concepts, but other styles of programming are also sup-
ported by Python.

1.2.4 Multiple programming paradigms

Python is fundamentally an object-oriented31 programming language. Everything you
deal with is an object, but that doesn’t mean that you’re limited to the object-oriented
programming style of programming in Python.

 Procedural programming, the predecessor of object-oriented programming, is one
alternative. Python doesn’t force you to create classes if you don’t want to. With the
rich set of built-in datatypes and those available in the standard library, procedural
programming is often appropriate for simple tasks. Because many people have past
experience with procedural programming, it’s common for beginners to start here.
Few can avoid the allure of object-oriented programming for long, though.

 Functional programming is an important programming concept. Pure functional
programming allows functions to have no side effects; it can be hard to understand,
but the basic concepts are straightforward enough. In functional programming lan-
guages, Python included, functions are first-class objects. You can pass functions
around, and they can be used far from where they’re created.

 Because class and function creation is done at runtime rather than compile time,
it’s easy to have functions that create new functions or classes—that is, function and
class factories. These make heavy use of closures. Local variables used in the same
scope a function is defined in can be used from inside the function. They’re said to
have been captured by the function. This is known as lexical scoping.32

 You can have parts of your code returning functions that depend on the local val-
ues where they were created. These functions can be applied to data supplied in
another part of your code. Closures can also be used to populate some arguments of a
function, but not all of them. A function can be wrapped inside another function with
the populated arguments stored as local variables. The remaining arguments can be
passed in at the point you call the wrapper function. This technique is called currying.

 Metaprogramming is a style of programming that has been gaining popularity
recently through languages like Python and Ruby. It’s normally considered an
advanced topic, but it can be useful at times. Metaprogramming techniques allow
you to customize what happens at class-creation time or when attributes of objects
are accessed; you can customize all attribute access, not just individual attributes
(through properties).

 By now we’re sure you’re keen to use IronPython and see what it has to offer for
yourself. In the next section, we look at the interactive interpreter, and you get the

31 For a good introduction to object-oriented programming with Python, see http://www.voidspace.org.uk/
python/articles/OOP.shtml.

32 See http://en.wikipedia.org/wiki/Lexical_scoping.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.voidspace.org.uk/python/articles/OOP.shtml
http://www.voidspace.org.uk/python/articles/OOP.shtml
http://en.wikipedia.org/wiki/Lexical_scoping

23Live objects on the console: the interactive interpreter
chance to try some Python code that uses .NET classes. Some basic .NET terms are
explained as we go. It’s fairly straightforward, but we don’t give a blow-by-blow
account of all the examples; explanations will come soon.

1.3 Live objects on the console: the interactive interpreter
Traditional Python (boy, does that make me feel old) is an interpreted language. The
source code, in a high-level bytecode form, is evaluated and executed at runtime. Fea-
tures such as dynamic object lookup and creating and modifying objects at runtime fit
in well with this model. The CLR also runs bytecode, but its bytecode is optimized to
work with a powerful just-in-time compiler and so .NET languages tend to be called
compiled languages.

 Something else that fits in well with dynamically evaluated code is an interactive
interpreter, which allows you to enter and execute individual lines (and blocks) of
code. By now, you should have a good overview of what IronPython is; but, to really
get a feel for it, you need to use it. The interactive interpreter gives you a chance to try
some Python code. We use some .NET classes directly from Python code. This is both
an example of IronPython in action and a demonstration of the capabilities of the
interactive interpreter.

1.3.1 Using the interactive interpreter

When you download IronPython,33 you have two choices. You can download and install
the msi installer (IronPython 2 only), which includes the Python 2.5 standard library.
Alternately, you can download and unpack the binary distribution that comes as a zip
file. Whichever route you take, you’ll have two executables, ipy.exe and ipyw.exe, which
are the equivalents of the Python executables python.exe and pythonw.exe. Both are
used to launch Python scripts; ipy.exe launches them with a console window, and
ipyw.exe launches programs as Windows applications (without a console).

ipy.exe path_to\python_script.py

If you run ipy.exe on its own, it starts an interactive interpreter session. The Iron-
Python interpreter supports tab completion and coloring of the output, both of which
are useful. The command line options to enable these are

ipy -D -X:TabCompletion -X:ColorfulConsole

You should see something like figure 1.8.

33 From the IronPython website on CodePlex: http://www.codeplex.com/IronPython.

Figure 1.8 The IronPython interactive interpreter
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.codeplex.com/IronPython

24 CHAPTER 1 A new language for .NET
IronPython is dependent on the .NET framework 2.0.34 The interpreter, and any appli-
cations created with IronPython, will only run on computers with .NET 2.0 (or Mono)
installed. In recent days, Microsoft has been pushing .NET 2.0 out to Windows
machines via Windows update. A high proportion of Windows machines will already
have .NET 2.0 installed. Windows machine that aren’t .NET equipped will require at
least the redistributable dotnetfx.exe.35

 The interactive interpreter allows you to execute Python statements and see the
results. This is known as a ‘read-eval-print’ loop (REPL).36 It can be extremely useful for
exploring objects, trying out language features, or even performing quick one-
off operations.

 If you enter an expression, the resulting value will be printed to the console. The
result of the last expression, whether value or object, is available in the interpreter by
using the underscore (_).If you can’t find a calculator, then you can always turn to the
Python interpreter instead.

TIP Code examples to be typed into an interactive interpreter session start
each line that you enter with >>> or This is the interpreter prompt
and reflects the actual appearance of the session. It’s a common conven-
tion when presenting Python examples.

>>> 1.2 * (64 / 2.4) + 36 +2 ** 5
100.0
>>> _
100.0
>>> x = _
>>> print x
100.0

More importantly, blocks of code can be entered into the interpreter, using indenta-
tion in the normal Python manner.

>>> def CheckNumberType(someNumber):
... if type(someNumber) == int:
... print 'Yup, that was an integer'
... else:
... numType = type(someNumber)
... print 'Nope, not an integer: %s' % numType
...
>>> CheckNumberType(2.3)
Nope, not an integer: <type 'float'>
>>> type(CheckNumberType)
<type 'function'>

We’re not going to get very far in this book without building an understanding of
.NET terminology. Before demonstrating some more practical uses of the interpreter,
we’ll look at some basic .NET concepts.

34 IronPython 2 requires .NET 2.0 Service Pack 1.
35 From the memorable URL: http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-

4b0d-8edd-aab15c5e04f5&displaylang=en.
36 From the first appearance of an interactive interpreter with the Lisp language.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-aab15c5e04f5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-aab15c5e04f5&displaylang=en

25Live objects on the console: the interactive interpreter
1.3.2 The .NET framework: assemblies, namespaces, and references

Assemblies are compiled code (in the form of dlls or exe files)—the substance of a
.NET application. Assemblies contain the classes used throughout an application.

 The types in an assembly are contained in namespaces. If there are no explicitly
defined namespaces, they’re contained in the default namespace. Assemblies and
namespaces can be spread over multiple physical files, and an assembly can contain
multiple namespaces. Assemblies and namespaces are roughly the same as packages
and modules in Python, but aren’t directly equivalent.

 For a program to use a .NET assembly, it must have a reference to the assembly. This
must be explicitly added. To add references to .NET assemblies, you use the clr mod-
ule. In Python, the term module has a different meaning than the rarely used .NET
module. To use clr, you have to import it, and then you can call AddReference with
the name of the assembly you want to use.

 After adding a reference to the assembly, you’re then free to import names37 from
namespaces it contains into your IronPython program and use them.

>>> import clr
>>> clr.AddReference('System.Drawing')
>>> from System.Drawing import Color, Point
>>> Point(10, 30)
<System.Drawing.Point object at 0x0...2B [{X=10,Y=30}]>
>>> Color.Red
<System.Drawing.Color object at 0x0...2C [Color [Red]]>

There are a few exceptions. The IronPython engine already has a reference to the
assemblies it uses, such as System and mscorlib. There’s no need to add explicit refer-
ences to these.

 The clr module includes more goodies. It has different ways of adding references
to assemblies, including specifying precisely which version you require. We take a
more detailed look at some of these later in the book. For now, we demonstrate how
to use live objects from the interactive interpreter.

1.3.3 Live objects and the interactive interpreter

The interactive interpreter is shown off at its best when it’s used with live classes. To
illustrate this, here’s some example code using Windows Forms. It uses the System.
Windows.Forms and System.Drawing assemblies.

>>> import clr
>>> clr.AddReference('System.Windows.Forms')
>>> clr.AddReference('System.Drawing')
>>> from System.Windows.Forms import Application, Button, Form
>>> from System.Drawing import Point
>>> x = 0
>>> y = 0
>>> form = Form()
>>> form.Text = "Hello World"

37 The imported names are names that refer to objects. These will usually be classes when importing from a .NET
namespace. You’ll learn more about Python imports in chapter 2.

Imports
names

Instantiates form
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

26 CHAPTER 1 A new language for .NET
Figure 1.9 A Hello World
form, shown before the
event loop is started

So now you should’ve created a form with the title Hello
World. Because you haven’t yet started the application
loop, there’s no guarantee that it will be visible. Even if it is
visible, it will be unresponsive, as you can see in figure 1.9.

>>> button = Button(Text="Button Text")
>>> form.Controls.Add(button)
>>> def click(sender, event):
... global x, y
... button.Location = Point(x, y)
... x += 5
... y += 5
...
>>> button.Click += click
>>> Application.Run(form)

When the application event loop is started and the form is
shown, the form will look like figure 1.10. Every time you
click the button, it will move diagonally across the form.

 We cover all the details of what is going on here later;
the important thing to note is that the whole process was
done live.

 If you run this demonstration, you’ll notice that when
you execute the Application.Run(form) command, the
console loses control. Control doesn’t return to the con-
sole until you exit the form because starting the applica-
tion loop takes over the thread it happens on.

As well as enabling you to work with live objects, Python has powerful introspective
capabilities. A couple of convenience commands for using introspection are particu-
larly effective in the interpreter.

Adds button
to form

Defines click
handler function

Starts
application loop

The IronPython winforms sample
Various pieces of sample code are available for IronPython. One of these is a useful
piece of code called winforms.

If you run the IronPython console from the tutorial directory and import winforms,
then the console is set up on another thread, and commands you enter are invoked
back onto the GUI thread. You can create live GUI objects, even though the applica-
tion loop has started, and see the results immediately.

With winforms imported, you can display the form by calling form.Show(). The event
loop has already been started, so there’s no need to call Application.Run.

Figure 1.10 Active Hello
World form with a button
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

27Live objects on the console: the interactive interpreter
1.3.4 Object introspection with dir and help

It’s possible when programming to occasionally forget what properties and methods
are available on an object. The interpreter is a great place to try things out, and two
commands are particularly useful.

 dir(object) will give you a list of all the attributes available on an object. It
returns a list of strings, so you can filter it or do anything else you might do with a list.
The following code snippet looks for all the interfaces in the System.Collections
namespace by building a list and then printing all the members whose name begins
with I.

>>> import System.Collections
>>> interfaces = [entry for entry in dir(System.Collections)
... if entry.startswith('I')]
>>> for entry in interfaces:
... print entry
...
ICollection
IComparer
IDictionary
IDictionaryEnumerator
IEnumerable
IEnumerator
IEqualityComparer
IHashCodeProvider
IList
>>>

The next command is help. help is a built-in function for providing information on
objects and methods. It can tell you the arguments that methods take; for .NET meth-
ods, it can tell you what types of objects the arguments need to be. Sometimes the
result contains other useful information.

 As an example, let’s use help to look at the Push method of System.Collections.
Stack.

>>> from System.Collections import Stack
>>> help(Stack.Push)
Help on method-descriptor Push
 | Push(...)
 | Push(self, object obj)
 |
 | Inserts an object at the top of the
 | System.Collections.Stack.
 |
 | obj: The System.Object to push onto the
 | System.Collections.Stack. The value can be null.

help will also display docstrings defined on Python objects. Docstrings are strings that
appear inline with modules, functions, classes, and methods to explain the purpose of
the object. Many members of the Python standard library have useful docstrings
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

28 CHAPTER 1 A new language for .NET
defined. If you use help on the makedirs function from the os module, you get the
following:

>>> import os
>>> help(os.makedirs)
Help on function makedirs in module os
 | makedirs(name, mode)
 | makedirs(path [, mode=0777])
 |
 | Super-mkdir; create a leaf directory and all intermediate ones.
 | Works like mkdir, except that any intermediate path segment (not
 | just the rightmost) will be created if it does not exist. This is
 | recursive.
 |

The interactive interpreter is an extremely useful environment for exploring .NET
assemblies. You can import objects and construct them live to explore how they work.
It’s also useful for one-off jobs such as transforming data. You can pull the data in,
push it back out again, and walk away.38

1.4 Summary
You’ve seen that Python is a flexible and powerful language suitable to a range of
tasks. IronPython is a faithful implementation of Python for the .NET platform, which
itself is no slouch when it comes to power and features. Whether you’re interested in
writing full applications, tackling scripting tasks, or embedding a scripting language
into another application, IronPython has something to offer you.

 Through the course of this book, we demonstrate these different practical uses of
IronPython. There are also sections that provide reference matter for the hard work
of turning ideas into reality when it comes to real code.

 The interactive interpreter is important for experimentation. It’s a great tool for
trying things out, reminding you of syntax or language features, and for examining
the properties of objects. The dir and help commands illustrate the ease of introspec-
tion with Python, and we expect that, as you work through more complex examples,
they’ll be helpful companions on the journey.

 In the last section, you got your feet wet with Python; but, before you can do any-
thing useful with it, you’ll need to learn a bit more of the language. The next chapter
is a fast-paced tutorial that will lay the foundations for the examples built in the rest of
the book.

38 This is a quote from Python expert Tim Golden who does a lot of work with databases and Python, some of it
using only the interactive interpreter.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Introduction to Python
Programming is a craft. Knowing the rules of a programming language is the sci-
ence behind the art of creating well-structured and elegant programs. Your pro-
grams may be small and functional, or they may be vast cathedrals adorned with the
intricate masonry of recursive algorithms and data structures. The joy of program-
ming is found in the process of creation as much as in the final result.

 In the first chapter, you had a taste of Python, which is essential to program-
ming with IronPython; luckily, Python is easy to learn. This chapter is a fast-paced
Python tutorial that will give you a great foundation in Python the language, both
for following the examples in this book and for creating your own applications.

 This chapter does assume some experience in programming, but not in any par-
ticular language, so it should be easy to follow. Even if you’re already fluent in
Python, you should skim this chapter because there are interesting details that are

This chapter covers
■ The Python datatypes
■ Basic language constructs
■ Exception handling, list comprehensions, and closures
■ Python project structure: modules and packages
■ The Python standard library
29

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

30 CHAPTER 2 Introduction to Python
specific to IronPython.1 If you’re not already a fluent Python speaker, the goal of this
chapter is for you to learn enough Python so that you can confidently tackle creating a
well-structured IronPython application in the coming chapters.

 Learning a programming language is itself like a work of construction—say, build-
ing a house. The basic datatypes, like mortar, bind programs together, and they get
everywhere! Next come the larger elements—the bricks and blocks and supporting
beams; in Python, these are the functions, classes, and modules that give your pro-
gram shape and structure. You need to understand these things before moving on to
the wiring, the floorboards, and the thousand-and-one other details. (It’s no wonder
they call it software architecture!) This order is roughly the one that the tutorial will
follow. We won’t get to all the decorations and furnishings; we’ll leave you with plenty
more to learn.

 Before you dive in, it’s a good idea to have a good programmer’s editor on hand,
such as a text editor or an IDE that supports Python.

 A proper IDE will give you additional features such as autocomplete, source code
navigation, smart indent, project browsing, and a whole lot more. Some programmers
get by without these features and stick to using a text editor (my boss included), but I
(Michael) find that the tools provided by a good IDE are invaluable. My personal
favorite IDE for Python is a commercial one called Wing,2 shown in figure 2.1. The

1 We’ve highlighted particular differences between Python and IronPython in callouts and sidebars.
2 See http://www.wingware.com.

Figure 2.1 Wing IDE, with its built-in project browser and interactive interpreter, is a great IDE for
Python.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.wingware.com

31An overview of Python
autocomplete is the most accurate3 I’ve seen in a Python editor. Plenty of other good
Python IDEs, both free and commercial, are available.

2.1 An overview of Python
As we mentioned earlier, Python supports several different programming tech-
niques. For simple tasks, which there may be many of in a complex program, func-
tions can be more appropriate than making everything a class. Functional
programming can make it hard for others to follow your code if it’s overused, but it
can also be extremely powerful. With Python, you’re free to mix procedural, func-
tional, and object-oriented programming to your heart’s delight; and, because they
all have their place, you probably will. First things first, though—to do this, you need
to know the language.

 The core object model of Python is similar to imperative languages such as C#,
Java, and VB.NET.4 If you’ve used any of these languages before, even if aspects of the
syntax are unfamiliar, you’ll find learning Python easy. Python does differ from these
languages in how it delimits blocks of code. Instead of using curly braces, Python
uses indentation to mark blocks of code. Here’s a simple example using an if block:

if condition == True:
 do_something()

The statements to be executed if the condition is True are indented relative to the if
statement. You can use any indentation you want (tabs or two spaces or four spaces) as
long as you’re consistent (and never mix tabs and spaces in the same file). Because we
use a lot of Python code in this chapter, you’ll be seeing a lot more of Python’s inden-
tation rules.

NOTE Two simple things to know about Python: Python is case sensitive, and
the comment symbol is #.

In object-oriented programming languages, everything is an object. Every object has
a type, and the simplest (conceptually) of these are the ones built into Python, such
as strings and numbers. These are the basic datatypes; and, as the mortar of the
house we’re constructing, we look at them first. Different kinds of Python objects
are shown in figure 2.2 and are arranged in layers from the most simple to the
more complex.

 In terms of the basic datatypes, the creators of IronPython have gone to great
lengths to ensure that IronPython is a faithful implementation of Python. The struc-
ture you learn about here is just as true for IronPython as it is for the regular Python
distribution, CPython.

3 Python is a highly dynamic language and so the type of some objects can’t be inferred; the type is determined
only at runtime, making it hard for IDEs to always know what attributes are available. Several IDEs do an excel-
lent job, but Wing is the best of the ones I’ve tried.

4 Whereas languages like Ruby inherit more from Smalltalk in their core object model.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

32 CHAPTER 2 Introduction to Python
2.1.1 Python datatypes

Python boasts a rich set of built-in datatypes that you can use without importing any
modules. Most of these, with the exception of the set that we introduce shortly, have
syntax for including them within your code. To understand the examples in this book
or to write Python yourself, you’re going to need to recognize them. Table 2.1 con-
tains a guide to all the basic datatypes and their syntaxes.

Table 2.1 The built-in datatypes and their syntaxes

Datatype Type Syntax examples Notes

Byte
string

str 'hello world'

"also hello world"

"""A triple quoted
multiline string"""

'''Another triple
quoted multiline string'''

In IronPython, byte strings and
Unicode strings are the same
datatype.

Unicode
string

unicode u'A Unicode string'

u"Another Unicode string"

u"""Yet another Unicode
string."""

Integer int 3

-3

Long
integer

long 9L

9999999999999999999999L

Floating
point

float 0.0

-3.1

2e100

2.765e-10

Complex
numbers

complex 2 + 3j

8j

Figure 2.2 This Python object
pyramid shows some of the
Python types. The layers are
arranged in approximate order of
complexity (from top to bottom).
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

33An overview of Python
This table isn’t exhaustive. For example, it doesn’t include things like the slightly
exotic frozenset or the built-in exceptions.

 In addition to the information in the table, you need to know some additional
things about these datatypes.
STRINGS

You include Python string literals in your code with quotes. You can use single quotes
or double quotes—there’s no difference. If you want to include literals with newline
characters, you can use triple-quoted strings.

 You can also use normal Unix-type escape characters.5 For example, here’s
a string with a hard tab separating the two words and terminated with a newline
character:

'hello\tworld\n'

List list []

[1, 2, 3, 4]

[1, "a", 3.0]

An empty list.

A populated list.

A list containing members of
different types.

Tuple tuple ()

(1,)

(1, 2, 3, 4)

1, 2, 3, 4

An empty tuple.

Tuple with a single member.a

Although tuples are usually cre-
ated with parentheses, they’re
only needed to disambiguate in
situations where commas have
other significance (such as argu-
ment lists in function calls). It’s
the commas that are significant
in creating a tuple.

Dictionary dict {}

{'key': 'value',
'key2': 'value2'}

An empty dictionary.

A populated dictionary.

Set set set()

set([1, 2, 3, 4])

Creates an empty set.

Creates a set from a list.

None NoneType None Equivalent of NULL in other
languages.

Boolean bool True

False

a. That trailing comma is important! In the case of a tuple with only one member, it’s needed to disambiguate a tuple from
an ordinary expression surrounded by parentheses.

5 See this page for a full list of the escape characters: http://docs.python.org/ref/strings.html.

Table 2.1 The built-in datatypes and their syntaxes (continued)

Datatype Type Syntax examples Notes
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/ref/strings.html

34 CHAPTER 2 Introduction to Python
The standard string type is often referred to as the byte string; the contents are stored
internally as a sequence of bytes representing the characters. Byte strings can also be
used for storing binary data.

 Python has a second string type, the Unicode string. You create a Unicode string
literal by prefixing your string with a u.

u'This is a Unicode string'

NOTE Because IronPython is built on top of .NET, the Unicode and string
types are the same type. This is better than having two string types (and
is the position that Python will be in by Python 3.0), and you should
have less encoding-related problems with IronPython than you would
with CPython.

Both str and unicode strings have a common base class: basestring. If you want
to check if an object is a string and you don’t care which type of string, you can use
isinstance(someObject, basestring). This isn’t important for IronPython, but can
be useful for compatibility with CPython.

 You may stumble across a few other syntax permutations for strings. For example,
by prefixing a string with an r, you make it a raw string. Backslashes aren’t interpreted
as escape characters in raw strings.6 Raw strings are especially useful for regular
expressions where backslashes have syntactic meaning and having to continually
escape them makes regular expressions less readable.

 All the built-in types (except for None and tuples) have a large number of methods
that do useful things. Strings are no exception; they have methods for trimming
whitespace, joining strings, checking if they contain substrings, and much more. For a
list of the Python methods available on strings, visit http://docs.python.org/lib/
string-methods.html.

 If you’re a .NET developer, then you’ll already be familiar with the .NET methods
available on strings.
THE CLR MODULE AND IRONPYTHON TYPES

One thing that makes working with IronPython so straightforward is that the basic
datatypes are both Python objects and .NET objects. An IronPython string is also a
.NET string—which is clever magic. By default the .NET methods aren’t available on
the basic types such as strings.

>>> string = 'Hello World'
>>> string.ToUpper()
Traceback (most recent call last):
AttributeError: 'str' object has no attribute 'ToUpper'

The IronPython developers made this decision after much debate; in the end, they
felt that leaving extra attributes on Python objects wouldn’t be a faithful implementa-
tion of Python. You can enable the .NET methods by importing the clr module.

6 With the odd exception that a raw string can’t end in an odd number of backslashes; otherwise, the last back-
slash escapes the closing quote.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/string-methods.html
http://docs.python.org/lib/string-methods.html

35An overview of Python
>>> import clr
>>> string.ToUpper()
'HELLO WORLD'

NOTE The clr module provides functions for interacting with the underlying
.NET runtime. It’s the basic entry point for .NET/IronPython interopera-
tion, and we use it a great deal throughout the book.

You can easily determine that IronPython strings are also .NET strings. If you compare
the Python str type with the .NET System.String type, you’ll see that they are, in fact,
the same object.

>>> import System
>>> System.String
<type 'str'>
>>> System.String is str
True

When using the basic types, you can choose whether to use .NET patterns or Python
patterns of programming from within IronPython code. As we go through the book,
you’ll find that we also have this choice when dealing with higher level concepts such
as working with files or threading.

 We’ve looked at strings; now let’s look at the next most common objects—numbers.
NUMBERS

Python has four types for representing numbers: integers, long integers, floating
point numbers, and complex numbers.

 Integers are for representing whole numbers, positive or negative, up to sys.
maxint,7 which is a value that depends on the underlying platform. Long integers are
used to represent integers that are greater than this number. Internally, Python pro-
motes large numbers into longs automatically; in practice, you’ll rarely care whether a
number is an int or a long. With Python long integers, the maximum number you can
represent is only limited by the amount of memory you have. That’s likely to be quite
a big number.

 You can mix operations involving integers and floats; the result will always be a float.
 If you divide two integers, you’ll get an integer back. This can be surprising if you

aren’t expecting it. If you need to get the real value of a division back, then make sure
that one of the values is a float.

>>> 9/2
4
>>> 9/2.0
4.5

Python also has syntax for complex numbers, which are unusual, but handy for cer-
tain kinds of math. Having said that, I don’t think I’ve ever needed to use them.

7 Typically on a 32-bit operating system, this will be the largest number that can be stored in a 32-bit signed
integer: 2147483647.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

36 CHAPTER 2 Introduction to Python
Numbers and strings are fine for representing individual values, but often you need to
store more complicated information, which can involve creating nested data struc-
tures. To do this, you need datatypes capable of containing values—the container
datatypes. The first of these is the list.
LISTS

The list is a very flexible datatype. You can store objects of any type in lists, and they
grow themselves in memory—you don’t need to specify a size for them. You can use
them with the minimum of boilerplate code.

NOTE As the name implies, lists are used for storing multiple objects. The
objects are stored in a sequence, one after another, and you access them
by their positions in the list. In Python terminology, the objects con-
tained in a list (or other containers) are usually referred to as members.
This is slightly different than the way .NET terminology uses member,
which corresponds more closely to the Python term attribute.

The list is the archetypal sequence type in Python. You access the members of a list by
position, a process called indexing; the first member is at position zero. You can also
access members starting from the end, by using negative numbers.

>>> a = [1, 2, 3, 4]
>>> a[0]
1
>>> a[-1]
4

Attempting to access a member outside the bounds of the list will raise an IndexError.

>>> a = [0, 1, 2, 3]
>>> a[4]
Traceback (most recent call last):
IndexError: index out of range: 4
>>> a[-5]
Traceback (most recent call last):
IndexError: index out of range: -5

Integer division
Dividing two integers in Python returns an integer. You can change this by enabling
true division, which will be the default behavior in Python 3.0. True division is a
__future__ option; you enable it by having the following import as the first state-
ment in a Python file:

from __future__ import division

Because __future__ is a standard library module, it depends on having the Python
standard library on your path.

If you want truncating division, you should use the // floor division operator, which
behaves the same whether or not true division is enabled. (If one of the operands is
a float, then the result will still be a float, but truncated down to the integer value.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

37An overview of Python
Assigning to members of a list uses the same syntax.

>>> a = [1, 2, 3, 4]
>>> a[0] = 'a'
>>> a
['a', 2, 3, 4]
>>> a[-1] = 'b'
>>> a
['a', 2, 3, 'b']

Deleting members uses the del keyword.

>>> del a[0]

Because you can modify a list by changing members or adding and removing
members, it is a mutable datatype. The list has a close cousin that’s immutable: the
tuple.
TUPLES

The tuple is a container object similar to a list. Tuples can be indexed in the same
way as lists; but, because they’re immutable, you can’t assign to members. Once a
tuple has been created, you can’t add or remove members. Because of this restric-
tion, tuples are more efficient (both in memory use and speed) than lists. The fact
that they’re immutable also means that they can be used as dictionary keys—which
is handy.

 By convention in Python, tuples are used when the elements are heterogeneous
(different types of objects); lists are used for homogeneous collections. This is a dis-
tinction observed more in theory than in practice.

 Tuples often appear implicitly in Python. For example, when a function returns
multiple values, they’re returned as a tuple.

 Both tuples and lists are container types that provide access to their members by
position (sequences). To check to see if a sequence contains a particular member, the
interpreter has to search it. If the sequence doesn’t contain the object you’re looking
for, every member will have to be checked, a very inefficient way of searching. Other
container types provide a more efficient way of checking membership. One of these is
the dictionary, which stores values associated with a key.

Sequences and iterables
Sequences are examples of a type of object that you can iterate over. You can also
create other types of objects that can be iterated over: iterators and generators.

A key fact about sequences is that you can index them, or ask them for their nth mem-
ber. Because iterators and generators produce their members dynamically, you can’t
index into them.

In many places, it won’t matter whether you pass in a sequence or an iterator. In that
case, a function or method may just specify that it needs an iterable.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

38 CHAPTER 2 Introduction to Python
DICTIONARIES

The dictionary is the archetypal mapping type in Python. (The actual type is dict.)
Dictionaries store values mapped to keys, which can be any immutable value.8 Diction-
aries with strings as keys map names to objects; much of Python is implemented on
top of dictionaries.

 Fetching a value from a dictionary is done using the same syntax as indexing a list,
but using the key rather than an index position.

>>> x = {'Key 1': 'Value number 1',
... 'Key 2': 'Value number 2'}
>>> x['Key 1']
'Value number 1'
>>> x['Key 2']
'Value number 2'

If you attempt to access a dictionary with a key that doesn’t exist, then a KeyError will
be raised.

>>> x = {'Key 1': 'Value number 1',
... 'Key 2': 'Value number 2'}
>>> x['Key 3']
Traceback (most recent call last):
KeyError: 'Key 3'

Adding new members to a dictionary, changing existing ones, or deleting entries is
trivially easy.

>>> a = {}
>>> a[(0, 1)] = 'Get the point?'
>>> a
{(0, 1): 'Get the point?'}
>>> a[(0, 1)] = 'something else'
>>> a
{(0, 1): 'something else'}
>>> del a[(0, 1)]
>>> a
{}

You probably won’t be astonished to learn that dictionaries have a host of useful meth-
ods. You can find a list of them at http://docs.python.org/lib/typesmapping.html.

 If you need to store groups of data where you know each member will be unique,
sets can be more appropriate than a dictionary. Sets don’t require you to create a key
for the objects stored inside them.
SETS

Unlike the other types we’ve looked at so far, there’s no built-in syntax for creating sets.
Instead you call the set constructor, passing in an iterable like a list or a tuple. Sets are
used for containing members, where each member is unique. Checking to see if a mem-
ber is contained in a set is much faster than checking for membership of a list.

8 Well, technically any hashable value. This allows you to implement custom objects and control how or whether
they behave as dictionary keys. This is a subject for another page, though.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/typesmapping.html

39An overview of Python
>>> x = set([1, 2, 3, 4])
>>> 5 in x
False
>>> 2 in x
True

Sets are iterable, but they’re inherently unordered; even if the order of iteration
appears to be consistent, you shouldn’t rely on it in your code. Sets have methods for
adding members; calculating the union, intersection, and difference between sets;
and much more. See http://docs.python.org/lib/set-objects.html.

 You’ve now met all the basic datatypes that carry values. Two more types, which
you’ll use to represent values or information in your programs, have fixed values.
These types are None and the Booleans.9

NONE AND THE BOOLEANS

None, True, and False are useful values that turn up all the time.
 None represents null values and, like tuples, sometimes turns up implicitly in

Python. If a function has no explicit return value, then None is returned.
 True and False are the Boolean values, and are returned by comparison operations.

>>> 1 == 2
False
>>> 3 < 4
True

In Boolean terms, the following objects are considered to be False:

■ False and None
■ 0 (integer, long, or float)
■ An empty string (byte-string or Unicode)
■ An empty list, tuple, set, or dictionary

Everything else is considered True.

>>> x = {}
>>> if not x:
... print 'Not this one'
...
Not this one
>>> y = [1]
>>> if y:
... print 'This one'
...
This one

We’ve now covered the fundamental built-in types. You should be able to recognize
these when they appear in Python source code and understand operations performed
on them. You also know how to include these types in your own programs.

 To be able to use them effectively, you need to understand how Python treats vari-
ables, the names you use to refer to your objects.

9 Which sounds like a great name for a band…
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/set-objects.html

40 CHAPTER 2 Introduction to Python
2.1.2 Names, objects, and references

Although Python supports several different programming paradigms, it’s built on
solid object-oriented principles. A natural consequence of this is that everything in
Python is an object.

NOTE All the built-in types inherit from the Python class object. All IronPython
objects inherit from the .NET System.Object.

If you’ve programmed in C#, you’ll be used to the difference between value types and
reference types. When you pass a value type, you’re passing the value (the data) itself.
When you pass a reference type, you’re passing a reference to the object rather than
the object itself. From this reference, you can access the properties of the object, call
its methods, and so on.

 With Python, there are only reference types. This rule is straightforward, but it does
have some consequences that can be surprising for programmers new to Python.

 Python draws an important distinction between objects and the names you use to
refer to them. When you assign a value to a variable, you’re creating a name bound to
an object. If you later assign a new value to the variable, you’re removing the refer-
ence to the original object and rebinding the name to a new object.

>>> a = 3
>>> b = a
>>> a = 6
>>> b
3

This is illustrated in figure 2.3.
 The effect of C, shown in E, can confuse new

programmers. The name b is bound to the object
pointed to by the name a C (which is an integer
with the value of three B). New programmers
might expect the line b = a to cause the variable b to
have the same value as the variable a, so that when a
is changed, b ought to change as well. Instead, when
a = 6 is executed, the name a is rebound to point to
a different object D, whereas the name b remains
bound to the original one E.

 A more succinct way of saying this is that Python
doesn’t really have variables. Python has objects and
names that reference objects. Understanding this is
central to understanding Python. If you already understand the difference between
reference and value types, then this is probably pretty intuitive to you. If you don’t feel
you understand it yet, don’t worry about it for now; it should become clearer as you
use Python more.

 Although Python doesn’t have the reference type/value type distinction, it does
draw a distinction between mutable and immutable datatypes.

B
C

D
E

Figure 2.3 Names bound to objects
by assignment statements
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

41Python: basic constructs
2.1.3 Mutable and immutable objects

You’ve already seen that reassigning a name points it to a new object. Often you want
to change or update the value a name points at; this might be incrementally building
a string, adding members to a list, or updating a counter.

 Some objects can be changed in place without having to create a new object. These
are mutable objects. Others can’t be changed once they’ve been created. These are
immutable objects.

 As you might expect, the container types list and dict (dictionaries) are muta-
ble. Adding new members doesn’t create a new object, but modifies the object in
place. Tuples are immutable. Attempting to change or delete members, or add new
ones, will raise an exception; but, tuples can contain mutable objects.

 Strings and the number types are also immutable. Operations that change values
don’t change the underlying object but create new ones.

>>> a = b = 'a string'
>>> a += ' which is getting bigger'
>>> a
'a string which is getting bigger'
>>> b
'a string'

Here the in-place operator += is merely syntactic sugar10 for a = a + 'which is
getting bigger'. The name a is re-bound to a new string which is formed by add-
ing 'a string' to 'which is getting bigger'. The name b remains bound to the
string 'a string'.

 The last two sections might seem confusing at first; but, once you’ve grasped this,
you’ve understood a lot about Python. Here’s a simple test:

>>> a = []
>>> b = [a]
>>> a.append(1)

Can you predict what the object pointed to by the name b contains?11

 At last you’ve reached the end of the section devoted to the basic datatypes. It’s
time to move from the mortar to the bricks. Functions and classes contain code, which
uses the basic types. This code will be comprised of statements and expressions, so the
first part of the section on basic constructs will cover these.

2.2 Python: basic constructs
We’ve now covered the basic datatypes and the way that Python handles names and
objects. These things are important, but objects alone do not a program make. You
also need to be able to do things with these objects. Constructs common to many pro-
gramming languages, such as functions and classes and loops and conditionals, are

10 Syntactic sugar means providing a nicer syntax for something that’s possible another way.
11 The answer is [[1]]. This list pointed to by the name b contains the list pointed to by the name a, which now

has a member.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

42 CHAPTER 2 Introduction to Python
needed to form the substance of programs. This section is about the different con-
structs available to you in Python.

 The lowest level of constructs consists of statements and expressions. Every line of
Python code will have at least one statement or expression. Statements and expres-
sions are the raw ingredients out of which you create conditionals and loops. Stepping
up a level, from these you’ll craft functions and classes and, up the final step to full
applications, organize functions and classes into modules and packages.

2.2.1 Statements and expressions

Python draws a distinction between statements and expressions. This wouldn’t be true
in a purely functional programming language where everything is an expression.

NOTE A statement does something, performs an action, whereas an expression
returns a value.

Statements are actions such as printing, assigning a value, or raising an exception. A
statement doesn’t return a value, so you can’t get away with the following:

>>> x = print 3
Traceback (most recent call last):
SyntaxError: unexpected token print (<stdin>, line 1)

Statements can’t be compounded together. You can do multiple assignments as a sin-
gle statement.

>>> x = y = 10

Statements other than assignment use a Python keyword. These keywords are reserved
words, and you can’t use them as variable names. You can see the full list of reserved key-
words (not all of which form statements) at http://docs.python.org/ref/keywords.html.

 Python follows the normal BODMAS12 precedence rules for operators in expres-
sions. The best reference I could find on Python operators is from A Byte of Python
by CH Swaroop at http://www.swaroopch.com/notes/Python_en:Operators_and_
Expressions#Operator_Precedence.

 Parentheses not only group parts of an expression together, but also allow you to
break unwieldy expressions over multiple lines.

 >>> (1 + 2 + 3 + 4 + 5 + 6 + 7 +
 ... 8 + 9 + 10)
 55

Python uses keywords and syntax for its most basic elements that will be familiar to
most programmers, and are easy to understand even if they aren’t familiar. The most
fundamental of these are conditionals and loops.

12 Brackets, Orders, Division and Multiplication, Addition and Subtraction. See http://www.mathsisfun.com/
operation-order-bodmas.html.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/ref/keywords.html
http://www.swaroopch.com/notes/Python_en:Operators_and_Expressions#Operator_Precedence
http://www.swaroopch.com/notes/Python_en:Operators_and_Expressions#Operator_Precedence
http://www.mathsisfun.com/operation-order-bodmas.html
http://www.mathsisfun.com/operation-order-bodmas.html

43Python: basic constructs
2.2.2 Conditionals and loops

Very often through the course of a program you’ll need it to take different actions de-
pending on some condition—maybe finding the terminating condition of an algorithm,
or responding to user input. The conditional statement in Python uses the if keyword.

 Every statement that starts a new block of code must be terminated with a colon.
Indented code following the if statement will only be executed if the condition evalu-
ates to True. As soon as your code is dedented, execution continues normally. if
allows you to provide multiple branches for different conditions; a final branch will be
executed if none of the other conditions have been met. elif is used for multiple
branches, and else for the final branch.

>>> x = -9
>>> if x == 0:
... print 'x equals zero'
... elif x > 0:
... print 'x is positive'
... else:
... print 'x is negative'
...
'x is negative'

Another conditional in Python is while, which is also a loop. The while loop repeats a
block of code until a condition is met, or until you explicitly break out of the loop.

>>> a = 0
>>> while a < 2:
... print a
... a += 1
...
0
1

If you want to terminate the loop early, you can use the break statement. With an
optional else clause, you can tell whether a loop completed normally.

>>> a = 0
>>> while a < 6:
... print a
... if a >= 2:
... break
... else:
... print 'Loop terminated normally'
0
1
2

The second kind of loop in Python is the for loop. It’s used to iterate over a sequence
(or any iterable), and allows you to perform an operation on every member.

>>> sequence = [1, 2, 3]
>>> for entry in sequence:
... print entry
...
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

44 CHAPTER 2 Introduction to Python
1
2
3

Although it’s theoretically possible to write a program using only the constructs we’ve
examined so far, it would be an extremely ugly program. To reuse blocks of code (and
write well-structured, modular programs), you need functions and classes.

2.2.3 Functions

Functions allow you to break code down into smaller units and make programs more
readable. Functions take values as arguments and return values, but they may also be
used for their side effects, such as writing to the filesystem or a database.

 Like other aspects of Python, the syntax for functions is straightforward. It’s shown
in figure 2.4.

 A function is created using the def keyword, followed by the function name and
an argument list (which can be empty if the function receives no arguments).
Because they introduce a new block of code, function definitions are terminated
with a colon.

 The function body is the indented block which follows the def. If the interpreter
hits a return statement, then it leaves the function and returns the specified value (or
None if no value is supplied). If the interpreter reaches the end of the function body
without hitting a return statement at all, then None is also returned.

 If the function needs to receive arguments, then a comma-separated list of names
is placed between the parentheses that follow the function name. When the function
is called, a value must be supplied for every name in the argument list.

 Python also allows you to define function arguments that have a default value. If the
argument isn’t supplied when the function is called, the default value is used instead.
This is done by assigning a value to the argument inside the function definition.

>>> def PrintArgs(arg1, arg2=3):
... print arg1, arg2
...
>>> PrintArgs(3)
3 3
>>> PrintArgs(3, 2)
3 2

def DoSomething ():

value = 1

return value

Figure 2.4 Function definition, body, and return
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

45Python: basic constructs
As you can see, when you don’t pass in an explicit second value, arg2 takes on the
default value specified in the function definition. If you do pass in a second value, it’s
used instead of the default one. Arguments with default values are known as keyword
arguments. Note that you can also pass in keyword arguments by position; this is shown
in the last line of the following example.

>>> def ShowingOffKeywords(a=None, b=None):
... if a is not None:
... print 'a =', a
... if b is not None:
... print 'b =', b
...
>>> ShowingOffKeywords(a=3)
a = 3
>>> ShowingOffKeywords(b='a string')
b = a string
>>> ShowingOffKeywords(2.0, 3)
a = 2.0
b = 3

If used sparingly, keyword arguments can greatly improve an API by removing the
need to pass in values that rarely differ from the defaults. If you overuse them, you can
create a complex API that no one will remember how to use. Keyword arguments also
provide a convenient mechanism for configuring .NET classes—the ultimate goal of
this tutorial.

NOTE Callable objects can be called with arguments and return values. Func-
tions are callable objects, but they’re not the only things that are callable.
This is why you might see the term callable used instead of function in
places through this book.

Functions are great for simple and self-contained operations where the overhead of
writing a class isn’t needed. Many simple operations end up being needed in program
after program. Instead of having to re-implement your own functions over and over
again, Python has a selection of built-in functions.

2.2.4 Built-in functions

There are many operations that you need to perform often or that can be awkward to
do cleanly. For a lot of these, Python provides built-in functions that are always avail-
able. Unlike the reserved keywords, you can create names (variables or functions) that
shadow these names. Needless to say, shadowing built-ins is bad practice.

 Table 2.2 shows some of the most useful built-in functions, along with a brief
explanation.

 Many of these functions have optional arguments or alternative usage patterns. For
details, refer to the Python documentation, which provides a list of all the built-in
functions at http://docs.python.org/lib/built-in-funcs.html.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/built-in-funcs.html

46 CHAPTER 2 Introduction to Python
Table 2.2 Some commonly used built-in functions

Name Example Purpose

abs abs(-3) Returns the absolute value (positive) of a
number passed in.

enumerate enumerate(['a',
'b', 'c'])

Returns an iterable (an enumerate object). Iterat-
ing over this returns a sequence of tuples: (index,
element). Index is the position of the element in
the sequence or iterable you pass in.

len len([1, 2, 3]) Returns the length (number of elements) of an
object passed in (sequence, iterable, set, or
dictionary and friends).

isinstance isinstance(myObject,
SomeType)

Tells you if an object is an instance of a specified
type, or one of its subclasses.

max max(6, 10, 12, 8) Returns the largest of all the arguments you pass in,
or the largest member of a sequence or iterable.

max([1, 2, 3, 4])

min min(6, 10, 12, 8) Like max, except it returns the smallest instead of
the largest.

min([1, 2, 3, 4])

open open(filename, mode) Opens the specified file with the specified mode.a

range range(10) Returns a list with elements from 0 up to (but not
including) the number you pass in.

range(5, 10) Returns a list with elements from the first value you
pass in, up to (but not including) the second value
you pass in.

reversed reversed(sequence) Returns a sequence, which is a reversed version of
the one you pass in. (It does not alter the sequence
that you pass in.)

sorted sorted(iterable) Returns a new list, which is a sorted version of the
sequence or iterable that you pass in.

sum sum(iterable) Returns the sum of all the members of the
sequence or iterable you pass in.

zip zip(iterable1,
iterable2...)

Returns a list of tuples, with corresponding mem-
bers from each of the sequences or iterables that
you pass in. The first tuple will have the first mem-
ber from each argument, the second tuple will have
the second member, and so on. The list returned is
only as long as the shortest one that you pass in.

a. The filename can be a path relative to the current directory or an absolute path. The mode should be a string. See the
docs for all the options. open returns an open file object.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

47Python: basic constructs
It’s worth familiarizing yourself with these functions. We use a few of them through
the book, and they can be extremely useful.

 This list of built-in functions includes the type objects of the datatypes we’ve
already looked at. These create new objects of their type. For example, int takes num-
bers or strings as input and returns a new integer.

>>> int(3.2)
3
>>> int('3')
3

The other constructors do a similar job, creating new objects from input you provide.
 Functions are the bread and butter of procedural and functional programming. In

recent years,13 a paradigm called object-oriented programming has arisen, building
on the principles of procedural programming. Object-oriented programming allows
you to combine data with functions (called methods) for working on the data. The
basic element in object-oriented programming is a programming construct called the
class, which we turn to now.

2.2.5 Classes

At the start of this chapter, we looked at the built-in datatypes. These are relatively sim-
ple objects, such as strings or integers, which represent a value. As well as their value,
most14 of the built-in types also have methods associated with them.

 You use these methods for performing common operations; they’re a bit like the
built-in functions. For example, strings have methods to return a copy of themselves
in lowercase or to remove whitespace from the start and end. The key thing is that the
built-in types only have methods that are relevant to their type. Numbers don’t have a
lower or a strip method.

 The selection of available methods is determined by the type of the object and its
class. You can define your own classes to create new kinds of objects.15

NOTE Classes are the blueprints for creating new kinds of objects. Once you’ve
defined a class, you can create as many individual objects from the blue-
print as you want.

New classes are not only for representing data but also for structuring programs and
providing a framework. Well-written classes will make your program easier to under-
stand; but, more importantly, they’re a thing of beauty and elegance!

 Methods are attributes of objects that you call like functions—they can take argu-
ments and return values. All object attributes are accessed using the dot syntax.

13 Well, Simula from the 1960s is widely regarded as the first object-oriented language although the term was
first applied to Smalltalk. By the mid 1990s, OOP had become the dominant programming methodology,
largely credited to the success of C++.

14 Not surprisingly, the NoneType doesn’t have many useful methods on it…
15 For a longer introduction to objects and classes, visit my (Michael’s)article “Object-Oriented Programming

with Python” at http://www.voidspace.org.uk/python/articles/OOP.shtml.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.voidspace.org.uk/python/articles/OOP.shtml

48 CHAPTER 2 Introduction to Python
 The following example uses the string method startswith. This method takes an
argument and returns True if the string starts with the argument you supplied.

>>> string = 'Hello world'
>>> string.startswith('Hello')
True

Not all attributes are methods. Attributes can also be values, properties, or any other
object. The normal way to access attributes though, whatever they may be, is with the
dot syntax.

 So how do you create your own classes? The answer is the class statement. We talk
about classes being declared. A typical line that commences a class declaration is shown
in figure 2.5.

 Between the parentheses following the class name is a list of classes that your class
inherits from. If your class inherits from another class, then it automatically gains the
attributes and methods of that class. If you need several classes that do similar things,
then you may be able to put the common parts into a single class and then have your
other classes inherit from it. Classes that
you inherit from are called base classes.
Classes can have more than one base
class—Python supports multiple inheri-
tance—but this can be a recipe for confu-
sion; it’s usually best avoided if possible.16

Indented inside the class statement are your methods and any class attributes. To write
methods, you need to know about two things first: self and __init__.

 Every method you write needs to take an extra argument. The individual objects
created from classes are called instances. Individual strings are instances of the str or
unicode class. For the code inside your methods to access the instance it belongs to, it
needs a reference to the instance. This is passed in as the first argument to methods;

16 At least don’t inherit directly. Old-style classes are instances of the ClassType metaclass.

Old-style classes
Classes which inherit from object (directly or by inheriting from another class that
inherits from object) are called new-style classes. This name comes from the revo-
lution to the Python type system that happened in Python 2.2.

You can create classes that don’t inherit from object;16 these are called old-style
classes, and they don’t have the parentheses after the class name.

class OldStyleClass:

You can’t use properties in old-style classes (something we’ll come to later), and
they’re considered obsolete, disappearing completely in Python 3.0.

Figure 2.5 A class declaration
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

49Python: basic constructs
the Python convention is to call this argument self. self is the equivalent of this in
C#, except that you need to explicitly declare it in the method signature.

 You also need to know that constructor methods are declared in Python with the
name __init__. __init__ is entirely optional; you don’t need to write a constructor if
your class doesn’t require one.

NOTE The constructor of a class is a method called when new objects are cre-
ated from the class. New instances are created (or instantiated) by calling
the class, and passing in any arguments required by the constructor.

Method names that begin and end with a double underscore (spoken
as dunder, which is much quicker to say) often have a special purpose in
Python; they’re called on your objects by the interpreter. You’ll encoun-
ter several of these magic methods as we progress.

When you create a new instance by calling the class, the constructor is called and the
new instance returned.

>>> class MyObject(object):
... def __init__(self, value):
... self.value = value
...
>>> myObject = MyObject(10)
>>> print myObject.value
10

When the instance is created, __init__ is called with a reference to the new instance
(self) and the argument passed in. __init__ then sets the value attribute on the
instance to 10.

 Classes can have attributes too; this is useful because class attributes are shared
between all instances.

>>> class SimpleObject(object):
... classAttribute = object()
...
>>> instance1 = SimpleObject()
>>> instance2 = SimpleObject()
>>> instance1.classAttribute is instance2.classAttribute
True

Note that in this example a constructor isn’t defined, so you inherit the default one
from object, which does nothing.

 Python doesn’t have true private or protected attributes. By convention, any method
or attribute name that starts with a single or a double underscore isn’t part of the pub-
lic API. Exceptions are the magic methods, whose names start and end with double
underscores. You don’t often call these directly anyway, except perhaps in subclasses
calling up to their parent classes. Attribute or method names that have a leading dou-
ble underscore are treated specially by the interpreter. The names are mangled17 to

17 They’re mangled by adding an underscore followed by the class name to the start of the name.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

50 CHAPTER 2 Introduction to Python
make it harder to access them from outside the class. From inside the class, the names
can be used normally; from outside, they can only be accessed via the mangled name.

 We’ve now covered the basic constructs in Python, the mortar and the bricks of the
language. Functions and classes are the most essential building components of any
Python program. By now, you should be starting to get an overview of Python and how
it works; for example, methods are really just special cases of functions. One conse-
quence of this is that you can replace methods on classes with alternative functions at
runtime, something useful for testing. The more of an overview you have, the easier it
is to understand the details of what’s going on.

 The goal of this chapter is to allow you to create an IronPython program that takes
full advantage of the .NET platform. Many aspects of the .NET framework are similar
to Python, such as the basic class structure with methods and attributes. To create
Python programs, you need to understand the objects and patterns you’ll encounter
from a Python point of view. You also need to know enough Python to be able to cre-
ate applications. Before we can dive into .NET, you need a few more raw materials;
think of these as the timbers, ties, and plastics of the house that is the Python lan-
guage. In the next section, we look at a few further aspects of Python necessary to our
construction work.

2.3 Additional Python features
If you’ve used languages like VB or C# before, then most of the syntax covered so far
should be at least familiar. The core language features of Python aren’t large; Python
is small enough to fit your brain. This section will look at a few more features of Python,
the semantics of dividing programs into modules and importing from them, scoping
rules, decorators, and so on. We look at exception handling first.

2.3.1 Exception handling

Exceptions indicate that some kind of error has happened. They can be raised by the
operating system when you try something like accessing a file that doesn’t exist, or by
the Python runtime when you do something daft like adding strings to numbers.

 You can also raise exceptions yourself, to indicate that an error condition has been
reached.

 If you don’t handle exceptions, then your program will literally stop with a crash.
Catching exceptions in Python is done with the try: … except: block.

>>> 'a string' + 3
Traceback (most recent call last):
TypeError: Cannot convert int(3) to String
>>> try:
... 'a string' + 3
... except:
... pass
...

When used like this, the except clause catches all exceptions. This is bad practice; you
should only catch the specific types of exceptions that you’re expecting. Catching and
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

51Additional Python features
silencing exceptions you aren’t expecting can allow bugs in your code to pass unno-
ticed, and cause problems that are very difficult to debug.

 In Python, you can specify which types of exceptions you want to catch after the
except. You specify either a single exception type or a tuple of exceptions. You can
also chain multiple except clauses to provide different blocks of code to handle differ-
ent types of exceptions. You can also provide a block of code to be executed only if no
exceptions occur, by ending your except clauses with an optional else clause.18

>>> try:
... do_something()
... except (OSError, IOError):
... print 'Looks like the path was invalid'
... except TypeError:
... print 'Why did this happen'
... else:
... print 'It all worked out fine'
...

Sometimes you need to keep hold of the exception instance to check attributes or the
message. The string representation of exception instances is the error message. You can
bind the exception to a name within the except clause; this can be useful for logging.

>>> try:
... 'a string' + 3
... except TypeError, e:
... print e
...
Cannot convert int(3) to String

In some circumstances you may wish to catch the error and then re-raise it. If you use
the raise statement on its own, it re-raises the last exception that occurred.

 For a slightly different use case, try: … except: has a companion—the try: …
finally: block. You use finally rather than except when you need to guarantee that
some code runs, whether or not the preceding block was successful. For example, you
might want to use finally when closing a database connection or an open file. If an
exception is raised, the finally block is executed, and then the exception is re-raised.

 The next example illustrates the finally block, and also the other side of catching
exceptions—raising exceptions.

>>> try:
... raise Exception("Something went wrong")
... finally:
... print 'This will be executed'
... print 'whether an exception is raised'
... print 'or not'
...
This will be executed
whether an exception is raised
or not
Traceback (most recent call last):
Exception: Something went wrong

18 OSError and IOError are built-in Python exception types.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

52 CHAPTER 2 Introduction to Python
The raise statement raises exceptions. There are several different variations of raise,
but the only one you really need to know is the form used in the example.19

raise ExceptionType(arguments)

The base exception class in Python is Exception.

That finishes it off for exceptions, at least for the moment. We’ve already talked at
length about how Python can take advantage of programming styles like functional
programming. Understanding the scoping rules is important for any programming,
but it’s particularly vital to functional programming.

2.3.2 Closures and scoping rules

Scoping rules are the way that a language looks up names that you use within a pro-
gram. Python uses lexical scoping.20 Your code can access names defined in any enclos-
ing scopes, as well as all global values.

19 Unless you enable Python 2.5 compatibility.
20 The Python exception to full lexical scoping is that you can’t rebind names in an enclosing scope.

finally, except, and the with statement
In Python 2.4 (IronPython 1),19 you can’t have an except clause and a finally
clause in the same block.

In Python 2.5 (IronPython 2), you can have both except clauses and a finally
clause in the same block. If an exception is caught by an except clause, the code in
the finally clause is still executed.

Another common pattern used in Python 2.5, which can often replace use of finally,
is to use the with statement. This is similar to the using statement in C#, and allows
you to use a resource with its cleanup guaranteed even if an exception is raised.

IronPython exceptions
When a .NET exception percolates through to IronPython, it’s wrapped as a Python
exception. You can catch a lot of .NET exceptions using the equivalent Python ex-
ceptions. For example the .NET MissingMemberException equates to the Python
AttributeError.

You can see a full list of Python exceptions at http://docs.python.org/lib/module-ex-
ceptions.html.

You can find a mapping of .NET exceptions to Python exceptions at http://www.code-
plex.com/IronPython/Wiki/View.aspx?title=Exception%20Model. When catching ex-
ceptions, you can use either type, and you’ll get the corresponding Python or .NET
exception.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/module-exceptions.html
http://docs.python.org/lib/module-exceptions.html
http://www.codeplex.com/IronPython/Wiki/View.aspx?title=Exception%20Model
http://www.codeplex.com/IronPython/Wiki/View.aspx?title=Exception%20Model

53Additional Python features
 But first, we probably need to explain what a scope is. Let’s look at global and local
scopes .

>>> x = 3
>>> def function1():
... print x
...
>>> def function2():
... x = 6
... print x
...
>>> function1()
3
>>> function2()
6

This code segment defines the name x. Because it isn’t inside a function or method
body, x is defined in the global scope B. function1 uses the name x C, which isn’t
defined inside it. When Python encounters the name and can’t find it locally, it looks
it up in the global scope.

 Inside function2 the name x is also defined locally D. When you call function2
and the Python interpreter encounters the name x, the first place it looks is the local
scope. The local name x shadows the global variable.

 Things get interesting when you introduce another scope. If a function has a func-
tion defined inside it, the outer function is said to enclose the inner function. When
the inner function uses a name, the name is first looked for in the scope of the inner
function, its local scope. If it isn’t found, then Python will check the enclosing scope.
This applies to as many levels of nesting as you want; the outer scopes will be searched
all the way up to the global scope. If the name isn’t found anywhere, then a NameError
exception is raised.

>>> x = 7
>>> y = 4
>>> def outerFunction():
... x = 5
... def innerFunction():
... print x, y
... innerFunction()
...
>>> outerFunction()
5 4

When you call outerFunction, it defines the function innerFunction. This function
exists in the local scope of outerFunction. (Try calling innerFunction from the
global scope.) outerFunction calls innerFunction; this prints the values x and y. Nei-
ther of these is local to innerFunction. x is defined inside outerFunction, shadowing
the global x. y is only defined in the global scope.

 When you call a function, the names inside it are looked up from the enclosing
scope where the function was defined, not from where it’s used. Your outer functions
can return a reference to an inner function that can then be used far from where it

B

C

D

Defines function inside
outerFunction

Calls new function
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

54 CHAPTER 2 Introduction to Python
was created. It will still use names from the scope(s) that enclosed it when it was
defined. To illustrate this, let’s use a classic example and create an adder function.

>>> def makeAdder(value):
... def newAdder(newValue):
... return value + newValue
... return newAdder
...
>>> adder = makeAdder(7)
>>> adder(3)
10
>>> adder(-4)
3

You pass in a value to the makeAdder function, and it returns a newAdder function B
that adds numbers to the original value that you passed in C. When you call make-
Adder with an argument D, the argument is bound to the name value, which is local
to the scope of makeAdder. You can reuse makeAdder to create as many adder functions
as you like. Every time you call it a new scope is created.

 Several parts of Python show the influence of functional programming. One favor-
ite of mine is the list comprehension, which is a particularly elegant construct. List
comprehensions also get used a lot in Python, so it would be impossible to have a tuto-
rial that doesn’t mention them.

2.3.3 List comprehensions

List comprehensions allow you to express several lines of code in a single readable
line. This is a concept borrowed from the language Haskell, that allows you to com-
bine a for loop and an optional filter in a single construct. If you’re brave, you can
combine several loops into a single list comprehension, but this tends to be a bit tax-
ing on the brain.

 List comprehensions are so named because they create lists. Consider the follow-
ing simple segment of code:

>>> result = []
>>> input = [1, 2, 3, 4, 5]
>>> for value in input:
... result.append(value * 3)
...
>>> result
[3, 6, 9, 12, 15]

This constructs a list (called result) from all the members of input, multiplying each
value by three.

 This segment of code can be written in a much more concise way using a list com-
prehension.

>>> input = [1, 2, 3, 4, 5]
>>> result = [value * 3 for value in input]
>>> result
[3, 6, 9, 12, 15]

B
C

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

55Additional Python features
The expression value * 3 is calculated for each member of input, and the result list
is built. The two forms of this code, using a loop and using a list comprehension, are
functionally identical.

 List comprehensions also allow you to include filters. Suppose you only wanted to
use the values from the input that are greater than two; you can put this condition
into the body of the list comprehension.

>>> input = [1, 2, 3, 4, 5]
>>> result = [value * 3 for value in input if value > 2]
>>> result
[9, 12, 15]

A list comprehension is itself an expression, and so you can use one anywhere an
expression can be used.

 We haven’t covered every possible variant of Python syntax, but you should have
learned enough to give you a good grounding to be able to start exploring. The final
sections in this chapter are about organizing programs into libraries called modules
and packages. The mechanisms for working with modules and packages are useful for
organizing your own programs, but they’re also the same mechanisms by which you
access the .NET libraries.

2.3.4 Modules, packages, and importing

The last thing you want when programming is to have all your code contained in a sin-
gle monolithic file. This makes it almost impossible to find anything. Ideally, you want
to break your program down into small files containing only closely related classes or
functionality. In Python, these are called modules.

NOTE A module is a Python source file (a text file) whose name ends with .py.
Objects (names) defined in a module can be imported and used else-
where. They’re very different from .NET modules, which are partitions
of assemblies.

The import statement has several different forms.

import module21

from module import name1, name2
from module import name as anotherName
from module import *

Importing a module executes the code it contains and creates a module object. The
names you’ve specified are then available from where you imported them.

 If you use the first form, you receive a reference to the module object. Needless to
say, these are first-class objects that you can pass around and access attributes on
(including setting and deleting attributes). If a module defines a class SomeClass,
then you can access it using module.SomeClass.

21 This can also be written using the third form import module as SomethingElse.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

56 CHAPTER 2 Introduction to Python
 If you need access to only a few objects from the module, you can use the second
form. It imports only the names you’ve specified from the module.

 If a name you wish to import would clash with a name in your current namespace,
you can use the third form. This imports the object you specify, but binds it to an alter-
native name.

 The fourth form is the closest to the C# using directive. It imports all the names
(except ones that start with an underscore) from the module into your namespace. In
Python, this is generally frowned on. You may import names that clash with other
names you’re using without realizing it; when reading your code, it’s not possible to
see where names are defined.

 Python allows you to group related modules together as a package. The structure of
a Python package, with subpackages, is shown in figure 2.6.

NOTE A package is a directory containing Python files and
a file called __init__.py. A package can contain sub-
packages (directories), which also have an
__init__.py. Directories and subdirectories must
have names that are valid Python identifiers.

A package is a directory on the Python search path.
Importing anything from the package will execute
__init__.py and insert the resulting module into sys.mod-
ules under the package name. You can use __init__.py to
customize what importing the package does, but it’s also
common to leave it as an empty file and expose the pack-
age functionality via the modules in the package.

 You import a module from a package using dot syntax.

import package.module
from package import module

Packages themselves may contain packages; these are sub-
packages. To access subpackages, you just need to use a few
more dots.

import package.subpackage.module
from package.subpackage import module

Python also contains several built-in modules. You still need to import these to have
access to them, but no code is executed when you do the import. We mention these be-
cause one of them is very important to understanding imports. This is the sys module.22

 When you import a module, the first thing that Python does is look inside
sys.modules to see if the module has already been imported. sys.modules is a

22 You can find a reference to the sys module at http://docs.python.org/lib/module-sys.html. This module
exposes some CPython implementation details, such as access to Python stack frames, which don’t exist in
IronPython. Most of the sys module is available, though.

Figure 2.6 The structure
of a Python package on the
filesystem
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/module-sys.html

57Additional Python features
dictionary, keyed by module name, containing the module objects. If the module is
already in sys.modules, then it will be fetched from there rather than re-executed.
Importing a module (or name) from different places will always give you a reference
to the same object.

 If the module hasn’t been imported yet, Python searches its path to look for a file
named module.py.23 If it finds a Python file corresponding to the import, Python exe-
cutes the file and creates the module object. If the module isn’t found, then an
ImportError is raised.

 The list of paths that Python searches is stored in sys.path. This is a list of strings
that always includes the directory of the main script that’s running. You can add (or
remove) paths from this list if you want.

 Some Python files can be used both as libraries, to be imported from, and as scripts
that provide functionality when they’re executed directly. For example, consider a
library that provides routines for converting files from one format to another. Pro-
grams may wish to import these functions and classes for use within an application,
but the library itself might be capable of acting as a command-line utility for convert-
ing files.

 In this case, the code needs to know whether it’s running as the main script or has
been imported from somewhere else. You can do this by checking the value of the
variable __name__. This is normally set to the current module name unless the script is
running as the main script, in which case its name will be __main__.24

def main():
 # code to execute functionality
 # when run as a script

if __name__ == '__main__':
 main()

This segment of code will only call the function main if run as the main script and not
if imported.

 When you re-import a module, you get a new reference to the already-created
module object. This can be a pain when you’re actively developing a module and want
to play with it from the interactive interpreter. If you want to force the interpreter to
use the latest version, you can use the reload function and then re-import it.

>>> import MyModule
>>> reload(MyModule)
<module 'MyModule' from 'MyModule.py'>
>>> import MyModule

Calling reload doesn’t rebind names that point to objects from the old module. You
have to do this yourself after reloading—hence, the need to import again.

23 As well as searching for a corresponding Python file, IronPython looks for a package directory, a built-in mod-
ule, or .NET classes. You can even add import hooks to further customize the way imports work.

24 You can access the namespace of the main script by doing import __main__.

Call when module changes

Re-imports module
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

58 CHAPTER 2 Introduction to Python
 Another useful feature of modules shared with several types of objects is the
docstring.

2.3.5 Docstrings

If you cast your mind back to the end of the first chapter, you’ll recall the useful built-
in function help. This is for working with the interactive interpreter; it prints some
useful information about an object to the console. For Python modules, functions,
classes, and methods, it will include any docstring that you’ve defined. So what is this
esoteric creature, the docstring?

 A docstring is a string written inline with an object and that isn’t assigned a name.
This is then available to the help function, and lives attached to the object as the
__doc__ attribute. The following segment illustrates this a bit more clearly, using a
function as an example:

>>> def adder(val1, val2):
... "This function takes two values and adds them together."
... return val1 + val2
...
>>> help(adder)
Help on function adder in module __main__

 | adder(val1, val2)
 | This function takes two values and adds them together.
>>> adder.__doc__
'This function takes two values and adds them together.'
>>>

If you want docstrings that contain multiple lines, you can use triple-quoted strings.
 Docstrings aren’t just useful for interactive help; they’re guides for anyone reading

your source code and are also used by automatic documentation tools25 for creating
API documentation from source code.

 At last, you know enough to create large and well-structured IronPython pro-
grams, as long as you don’t need to access much .NET functionality. Before you rush
off to try this, we’d like to save you some time. CPython comes with a large standard
library of packages and modules for common programming tasks. Before you start
coding, it’s well worth checking to see if at least part of your task is already writ-
ten for you. The next section talks about the standard library, introduces you to
a few of the more commonly used modules, and explains how to use the library
with IronPython.

2.3.6 The Python standard library

Python comes with batteries included. This statement refers to the standard library that
accompanies CPython. Many of the modules it provides are pure-Python modules, but
some of them are extension modules written in C.

25 Like Epydoc: http://epydoc.sourceforge.net.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://epydoc.sourceforge.net

59Additional Python features
NOTE An open source project called Ironclad,26 created by Resolver Systems, re-
implements the Python C-API in C# with the goal of allowing you to
import and use Python C extensions from IronPython.

Unfortunately, extension modules written in C won’t work directly in IronPython.
Other modules, even in the standard library, rely on implementation details or undoc-
umented features of Python. Some of these incompatibilities between Python and
IronPython have already been fixed, but some are very difficult cases.

 That’s the bad news. The good news is that a large proportion of the standard
library works fine. The IronPython team, along with the Python community, has put a
lot of effort into ensuring that as much of the standard library as possible works with
IronPython; in some cases, alternatives to C extension modules have been created.
Existing code that uses the standard library stands a better chance of working, and
these modules are available to use within your code.

NOTE The standard library is subject to the liberal Python License.27 You are
free to distribute it (or parts of it) along with your application as long as
you include the copyright notice.

The first step in using the standard library is obtaining it. The IronPython 2 msi
installer comes with the Python 2.5 standard library, and makes it automatically avail-
able for import.28

 An alternative way of getting hold of the standard library is downloading and
installing CPython. Go to www.python.org/download/ and download the latest ver-
sion of Python 2.5.29

 On Windows, the default install location is C:\Python25. The standard library itself
will be located in C:\Python25\Lib.

 You then need to expose the library to IronPython. There are three convenient
ways of doing this. The first is best for use on a single machine, the second for distrib-
uting applications, and the third for quick one-off experimentation.

■ Set an environment variable IRONPYTHONPATH to the location of the standard
library directory.

■ Copy the whole standard library into a directory accessible by your application.
You’ll need to add this directory to sys.path at runtime.

■ Start IronPython while the current directory is C:\Python25\Lib.

You can manually add the standard directory library at the interactive interpreter with
the following steps:

>>> import sys
>>> sys.path.append(r'C:\Python25\Lib')

26 See http://code.google.com/p/ironclad.
27 See http://www.python.org/download/releases/2.5.2/license/.
28 IronPython automatically adds the directory sys.exec_prefix + 'Lib' to sys.path.
29 Version 2.5.2 at the time of writing.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://code.google.com/p/ironclad
http://www.python.org/download/releases/2.5.2/license/

60 CHAPTER 2 Introduction to Python
Notice that you use a raw string to add the path; otherwise, the backslashes will be
interpreted as escape characters.

There are many modules and packages in the Python standard library. We’ve listed
some of the commonly used ones in table 2.3. Some of these modules, such as re and
cStringIO, are implemented in C for CPython. Many of them30 have been imple-
mented by the IronPython team as built-in modules (written in C#) so that these mod-
ules are available to IronPython. You can find a list of all of them at http://
docs.python.org/modindex.html.

 Python isn’t a big language, nor is it difficult to learn, but we’ve still covered a lot
of material in this chapter. The best way of getting it ingrained, of course, is to use it.
In the next chapter, you’ll be putting what you’ve learned here to practical use; you’ll
also learn about the .NET framework, which comes with its own standard library.

Table 2.3 Useful standard library modules

Module Purpose

sys Provides system-specific settings like the path, executable name, and
command-line arguments.

os Provides functions for interacting with the operating system, including
launching processes.

os.path Provides functions for working with files, directories, and paths.

re Regular expression library.

math Floating point math routines.

random Generates random numbers and for making random selections.

time For working with times and formatting date strings.

unittest An extensible unit test framework.

optparse A library for parsing command-line arguments.

cPickle Provides object persistence. Serialize Python or .NET objects as text or binary.

decimal Provides support for decimal floating point arithmetic.

cStringIO Implements a file-like class (StringIO) that reads and writes a string buffer.

collections High-performance container datatype, the deque.

itertools A number of iterator building blocks.

types Provides access to type objects for components such as classes, functions,
and methods.

30 All the modules listed in table 2.3 work with IronPython, but not every C extension in the standard library has
been ported.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/modindex.html
http://docs.python.org/modindex.html

61Summary
2.4 Summary
There’s a great deal to Python that we haven’t looked at; but, if we’ve been doing our
job, then what you’ve learned will give you a good foundation. Python emphasizes a
readable style of programming with the use of English keywords wherever possible.
You now know the bare bones of the Python programming language—the frame of
the house without the furnishings that make a house a home. We completed the chap-
ter by looking at how to use the Python standard library with IronPython. The stan-
dard library provides a large set of Python modules for you to use with your code to
supplement what’s available through .NET.

 Any program you write will use classes that you create yourself, along with ones
from the Python standard library and the .NET framework. Although we’ve covered
the syntax needed to write classes, writing ones that make the best use of Python takes
practice—you need to write some.

 More importantly, we haven’t covered the use of the classes from the .NET frame-
work; this, after all, is the reason to be using IronPython. In the next chapter, you’ll be
able to use the knowledge gained in this chapter, and put it to work with the power of
.NET. In the process, you’ll be getting some practice at writing your own Python classes.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

.NET objects
 and IronPython
.NET is a large platform and has a great deal to offer programmers. The framework
is extremely broad; the classes it provides cover almost every aspect of program-
ming that you can imagine. The IronPython .NET integration makes it easy to use
these classes directly from IronPython code; you’ll rarely do type conversion
between Python types and .NET ones. Not only are the .NET objects straightforward
to use and configure from within IronPython, but they’re also integrated into the
Python infrastructure so that you can use Python idioms to work with them.

 To understand how to use the .NET types available in the framework, you’ll need
to be able to read the .NET documentation. In this chapter, you’ll create some basic
applications using Windows Forms and translate the Microsoft documentation into

This chapter covers
■ Reading the MSDN documentation
■ .NET types: Classes, structures, enumerations,

and collections
■ Delegates and event handlers in IronPython
■ Subclassing .NET classes
62

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

63Introducing .NET
IronPython along the way. Windows Forms is a mature library for building user inter-
faces for desktop applications. We could have picked almost any of the different librar-
ies provided by .NET, but Windows Forms is a great library to work with, and it also
makes for some very visual examples!

3.1 Introducing .NET
The .NET framework consists of 112 assemblies and 935 namespaces.1 .NET 3.0, which
introduces several important new libraries including the Windows Presentation Foun-
dation, builds on .NET 2.0 rather than replacing it. Namespaces are the libraries that
provide classes and other .NET types such as enumerations and structures. With these,
you create applications,2 work with XML and databases, communicate with the com-
puter system, or access external applications such as Word and Excel.

 The most fundamental libraries of the
framework are known as the Base Class
Libraries (BCL).3 The BCL includes name-
spaces like System, System.Collections,
and System.IO. Higher level libraries, such
as Windows Forms, are built on top of the
base class libraries. Figure 3.1 shows this
structure—from the operating system on
which the CLR runs, through the base class
library, and up to the intermediate and
higher level libraries.

 We’re going to start exploring the .NET
framework with a handful of classes from the
Windows Forms namespace.

3.1.1 Translating MSDN documentation into IronPython

We’ve done enough talking about using .NET classes; it’s time to put what you’ve
learned into action. Let’s start by creating a simple Windows Forms application, using
classes from the System.Windows.Forms assembly.

 Windows Forms is a rich and mature GUI framework. It contains an extraordinary
number of different components for building applications, including sophisticated
data-bound controls.4 You can see a small selection of the components available in
figure 3.2.

 Windows Forms controls include standard components such as labels, text boxes,
radio buttons, and check boxes. It also has many more complex controls such as rich
text boxes (as shown in the figure with the C.S. Lewis text), calendars, and data tables.

1 As of .NET 3.5 SP1. Source: http://blogs.msdn.com/brada/archive/2008/08/18/what-changed-in-net-
framework-3-5-sp1.aspx.

2 Command-line applications, Windows applications, and web applications or services.
3 See http://msdn2.microsoft.com/en-us/netframework/aa569603.aspx.
4 Control is the .NET word for a GUI element. In other GUI libraries, they’re often referred to as widgets.

Figure 3.1 An outline of the structure of the
.NET framework
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://blogs.msdn.com/brada/archive/2008/08/18/what-changed-in-net-framework-3-5-sp1.aspx
http://blogs.msdn.com/brada/archive/2008/08/18/what-changed-in-net-framework-3-5-sp1.aspx
http://msdn2.microsoft.com/en-us/netframework/aa569603.aspx

64 CHAPTER 3 .NET objects and IronPython
Recently, a new user-interface library has been added to the .NET framework: WPF.
This has a more sophisticated appearance5 and some interesting integration with
XAML and vector graphics, but has fewer controls and is less mature than Windows
Forms. Windows Forms is still the standard for building business applications.

 To build a Windows Forms application, the first two components we need are the
Application and Form classes. To configure and use these classes, you should first
look up their attributes in the documentation.

 The documentation for the framework libraries is in the Microsoft Developer Net-
work (MSDN) library. It contains references for C#, the .NET framework, and other
Microsoft programming resources.

 The documentation for the Application class is located at the following URL:

http://msdn2.microsoft.com/en-us/library/system.windows.forms.application.aspx

Here you’ll find general information about the class and some code examples. More
useful is the Application Members page, which lists all the attributes of the Applica-
tion class. Every framework class has a page like this, listing all its members with a
brief description.

 The top of the Application Members page tells you that the Application class pro-
vides static methods. Static methods are called on the class rather than on an instance.
Here you’ll find the method Run, which is the one we need. If you click this link, it will
take you to the documentation for the static method Run.

5 It’s also easier to skin controls to customize their appearances.

Figure 3.2 Example
applications showing
off a few Windows
Forms controls
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.windows.forms.application.aspx

65Introducing .NET
 This page shows that Application.Run can be called in three different ways.
.NET allows classes to have multiple versions of methods, including constructors.
Multiple methods and constructors are called overloads; the type of objects you pass
in determines which overload is called. The three different call signatures of Run are
as follow:

■ Application.Run()
■ Application.Run(ApplicationContext)

■ Application.Run(Form)

Because we don’t want to mess around with application contexts right now, and we do
want to display a form, we use the third overload. This overload requires an instance
of the Form class.

3.1.2 The Form class

The Form documentation is located at the following URL:

http://msdn2.microsoft.com/en-us/library/system.windows.forms.form.aspx

If you browse over to the Form Members page, you’ll find the link the same way you
found the link to Application Members. You’ll be configuring the Form instance
through the public properties, which are all listed on this page; you’ve already used a
couple of them in the interactive interpreter example. At the top of the page, you can
see a link to the Form Constructor.

public Form()

This bit of code tells you that the constructor is public (which is great news because
you want to use it) and takes no arguments.

 Now you know how to start the application loop and create a form, which is the
most trivial Windows Forms application possible. Let’s put this into practice.

 To make it a bit more interesting, first set a title on the form. Turn back to the
Form Members page of the MSDN document and look at the properties. There you’ll
see a property named Text. This is yet another link; clicking it takes you to a page with
information about the Text property.

 The code examples there tell you what
you need to know about this property.

 From the C #and the Visual Basic
examples (shown in figure 3.3), you can
tell that this property takes a string and
that it can be both set and retrieved.
Some properties are read-only, but not
this one (and there are a few that are
write-only—which is pretty weird and also
pretty rare).

Figure 3.3 The C# / VB.NET examples for the
Form.Text property
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.windows.forms.form.aspx

66 CHAPTER 3 .NET objects and IronPython
NOTE When we refer to the current versions of IronPython, we mean the ver-
sions at the time of writing: IronPython 1.1.2 and 2.0. All the IronPython
code in this book should work with both versions of IronPython; the dif-
ferences between IronPython 1 and 2 will be shown in the examples. If
there are limitations, we’ve tried to refer to specific versions.

Execute the following lines of IronPython code at the interactive interpreter:

>>> import clr
>>> clr.AddReference('System.Windows.Forms')
>>> from System.Windows.Forms import Application, Form
>>> form = Form()
>>> form.Text = 'Hello World'
>>> Application.Run(form)

If you’ve entered it correctly, you should see a plain
form with the title set to Hello World, looking similar
to figure 3.4.

 An important thing to note from this example is that,
when you set the Text on the form, you used a string lit-
eral from IronPython. Strings created in IronPython are
Python strings; they have all the usual Python string
methods, but they’re also .NET strings.6

IronPython strings, numbers, and Booleans aren’t just similar to their .NET equiva-
lents; they are .NET types.

NOTE You’ve already met the Python built-in types. Strings, numbers, and Bool-
eans are examples of the .NET built-ins.7

This example may seem like a trivial one, but that’s only because it is! You haven’t
done anything that you didn’t do in the interactive interpreter example at the end of
chapter one. The important thing to take away is how to navigate the MSDN documen-
tation. In this book, we can cover only a tiny proportion of the available classes, but
the technique for finding out the information you need is identical.

6 Pythonic is a subjective word used to describe whether or not a piece of code holds with recommended Python
idioms.

7 See http://msdn2.microsoft.com/en-us/library/ya5y69ds.aspx for a reference to all the C# built-in types.

Another way to set properties
You can also set properties by using the constructor of the control. The alternate form
of the previous example looks like the following:

form = Form(Text='Hello World')

This uses keyword arguments and looks a bit more Pythonic.6

Figure 3.4 A Form with the title
(Text property) set
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/ya5y69ds.aspx

67Structures, enumerations, and collections: .NET types
 After running the example, you’ll see the form appear. Starting the application
loop shows the form you pass in. A form on its own is a bit dull, though; let’s add some
more controls to the form. Along the way, you’ll meet some more of the .NET types.

3.2 Structures, enumerations, and collections: .NET types
The .NET framework is a different programming environment than Python, and it uses
types that aren’t native to the Python world. These include structures, enumerations,
and different container types. Because of the deep level of integration between Iron-
Python and .NET, you can use these types directly in IronPython. In this section, you’ll
use several of these types in the context of working with Windows Forms controls.

3.2.1 Methods and properties inherited from Control

Adding new GUI elements to a form is done in the same way regardless of the element
you want to add. A wide range of these elements are available, each of which is repre-
sented by a different class in the System.Windows.Forms namespace.

 It’s possible to create forms and then add and configure components, using
the Visual Studio designer.8 You can see in figure 3.5 that Visual Studio will generate

8 Generating IronPython from Visual Studio 2005 requires the full version of Visual Studio and the SDK; it
can’t be done with Visual Studio Express. Instead, you can use IronPython Studio, which is based on Visual
Studio 2008 and works as a standalone application or integrated into Visual Studio.

Figure 3.5 Visual Studio in designer mode, with an IronPython project. IronPython code is on the
left, and control properties are on the right.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

68 CHAPTER 3 .NET objects and IronPython
IronPython code for you, and let you configure the control properties. Whether
you’re using the designer or building your user interfaces by hand, you still need to
understand the components to configure them.

 Let’s start with a nice simple component: the Label class. It’s used for adding text
labels to forms; it doesn’t do a great deal, but you can configure it in a lot of ways. You
can set the position and size of the label; you can also configure the color of text on
the label and the background color. This configuration is done using properties com-
mon to other classes within the System.Windows.Forms namespace. The Windows
Forms’ term for GUI components, such as forms, buttons, and labels, is controls. A label
is a control, and so are buttons and text boxes.

 These classes all inherit from the Control class. Different categories of controls
inherit from various other intermediate classes such as ScrollableControl or
ContainerControl, but all the GUI elements inherit directly or indirectly from
Control.

 If you look at the Label Members page9 on MSDN, you’ll see that many of the mem-
bers have (Inherited from Control) by them. Why is this interesting? A lot of the proper-
ties and events you’ll use in the coming sections are like this. Once you’ve learned
how to use them on a specific control, you’ve learned to use them on other controls as
well. Some controls may override the inherited member, but the usage will still be sim-
ilar or related to the standard behavior.

 Properties that come into this category include the following:
■ Text
■ BackColor
■ ForeColor
■ Font
■ Size
■ Location
■ Height
■ Width

But just as a bare form is pretty pointless, so is a lonely label. Individual controls only
have a point when part of a GUI. You need to know how to add controls to a parent
control, and that means working with a collection.

3.2.2 Adding a Label to the Form: ControlCollection

One of the properties inherited from Control not mentioned in the last section is
Controls. Control.Controls is a special type of collection, specifically a Control-
Collection. Collections are .NET container classes, similar to Python lists and
dictionaries.

 The ControlCollection keeps track of the child controls on a parent and keeps
them in order. When the parent is displayed, all the child controls are also displayed.
You can add, remove, or reorder the controls in the collection by calling methods on

9 http://msdn2.microsoft.com/en-us/library/system.windows.forms.label_members.aspx
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.windows.forms.label_members.aspx

69Structures, enumerations, and collections: .NET types
it. You may remember the simplest of these from the interactive interpreter example
at the end of chapter one. To add a control to a Form, or any other parent control, use
the Add method of the Controls property.

>>> form = Form()
>>> label = Label()
>>> form.Controls.Add(label)

You can see a list of all the methods available on the Controls property at the Control-
Collection members page.10 The most useful methods include the following:

■ Clear—Removes all controls from the collection
■ Remove—Removes the specified control from the control collection
■ RemoveAt—Removes a control from the control collection at the specified index

You can see from the RemoveAt method that the control collection keeps controls by
index. It uses the standard .NET indexing mechanism by implementing the IList
interface. In Python terms, this means that you can index it like a list (using positive
indexes only).

>>> label is form.Controls[0]
True

You can also iterate over the controls in the collection—not because ControlCollec-
tion implements IList, but because it implements the IEnumerable .NET interface.
IronPython ensures that enumberable objects from other .NET languages are iterable
in IronPython.

 ControlCollection has two more useful attributes, the property Count and the
method Contains. You don’t need to use these directly in order to take advantage of
them.

 .NET objects that contain other objects often have a Length or a Count property,
which tells you how many members they contain. In Python, you get the length of a
container using the built-in function len.

>>> len(form.Controls)
1

The Contains method checks whether a collection contains a specified member. In
Python, you check for membership in a container using the in operator, and this is
available on .NET collections.

>>> label in form.Controls
True
>>> newLabel = Label()
>>> newLabel in form.Controls
False

Before leaving this subject, we’d like to look at one more ControlCollection
method, one you probably won’t use very often from IronPython. AddRange allows you

10 http://msdn2.microsoft.com/en-us/library/system.windows.forms.control.controlcollection_members.aspx
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.windows.forms.control.controlcollection_members.aspx

70 CHAPTER 3 .NET objects and IronPython
to extend the collection by adding an array of controls. Normally, you’ll add controls
to the collection individually, but we want to use this method to demonstrate that
Python objects aren’t always the direct equivalent of similar .NET objects.

 .NET arrays are similar to Python lists—except that, because the languages they’re
used from are statically typed, arrays carry information about the type of objects they
contain. An array can only contain objects of a single type. Calling a .NET method,
which expects an array, and giving it a list will fail.

>>> form.Controls.AddRange([label])
Traceback (most recent call last):
TypeError: expected Array, got list

Although Python lists are similar to .NET arrays, they aren’t directly equivalent; you’ll
need to convert your list into an array if you want to use the AddRange method.

 We’ve been looking at the ControlCollection available on Windows Forms con-
trols as the Controls property. The integration of .NET with IronPython doesn’t
extend only to instantiating and configuring classes. Whenever you come across.NET
collections, there are various ways in which you can treat them in the same way as
Python containers, but there are some differences.

 We started this section by looking at how you add controls to a form. Adding to the
Controls collection is one way, but another way has exactly the same effect. You can
assign the parent control to the Parent property of the child control. Under the
hood, the child control will be added to the parent’s collection.

>>> form = Form()
>>> label = Label()
>>> label.Parent = form
>>> len(form.Controls)
1

We’ve thoroughly covered how to add a new label to a form, so let’s look at some more
ways to configure a label. In the process, you’ll meet a new .NET type: the structure.

3.2.3 Configuring the Label: the Color structure

Our form, with a single label, is still going to look pretty dull. In this section, you’ll
add some color, literally.

 All controls have two properties particularly related to color, ForeColor and Back-
Color. BackColor sets the background color of the control. The ForeColor affects ele-
ments of the control, such as the text of a label.

 You specify the color using the Color structure from the System.Drawing
namespace. System.Drawing lives in its own assembly; to use it, you need to add a ref-
erence to its assembly.

>>> clr.AddReference('System.Drawing')
>>> from System.Drawing import Color

NOTE The struct type is suitable for representing lightweight objects. Although
it’s always possible to represent these using classes, structs use less memory.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

71Structures, enumerations, and collections: .NET types
Structures carry small but related amounts of information when using a class isn’t jus-
tified. Structures typically have named fields, but they can also have constructors and
members, and even implement interfaces. In Python, you’d probably use a class or
create a data structure using the built-in types; when you use structures from Iron-
Python, it’s likely to be making use of ones from .NET.

 The Color structure has a multitude of fields, representing the .NET selection of
predefined colors with weird and wonderful names.11 To use a specific color, specify it
by name.

>>> label.BackColor = Color.AliceBlue
>>> label.ForeColor = Color.Crimson

Individual colors are defined by four eight-bit values—the Red, Green, Blue, and
Alpha channels—for each specified color. You can access these values on the named
members of the Color structure.

>>> Color.Red.R, Color.Red.G, Color.Red.B
(255, 0, 0)
>>> Color.Red.A
255

If you can’t find the color you need from the fantastic selection of named colors that
the .NET framework offers, you can create new ones with the FromArgb method, which
has several overloads. The most common way of using it is to pass in three integers
representing the red, green, and blue components.

>>> newColor = Color.FromArgb(27, 94, 127)

In the exploration of control properties, you’ve now encountered several .NET types.
One you haven’t yet seen is the enumeration. In the next section, you’ll use the Form-
BorderStyle property, which takes an enumeration.

3.2.4 The FormBorderStyle enumeration

So far, you’ve been configuring the humble label. The label has another property
inherited from Control: the BorderStyle. It isn’t normal to configure a border on a
label. It makes more sense to configure this on a Form, using the FormBorderStyle
property instead.

 Unsurprisingly, BorderStyle and FormBorderStyle configure the style of border
that Windows Forms draws controls with. You might want to change the border style
on a panel (containing a group of controls) to make it stand out within a user inter-
face, or you might want to make a form look more like a dialog box.

 You have three different border styles to choose from; you specify the one you want
using a .NET type called an enumeration.
The FormBorderStyle enumeration belongs in the System.Windows.Forms

namespace. It has the following three members:12

11 As usual, you can see them all on the Color Members page.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

72 CHAPTER 3 .NET objects and IronPython
■ Fixed3D—A three-dimensional border
■ FixedSingle—A single-line border
■ None13—No border

To change the border style of a form, you set the FormBorderStyle property to a
member of the BorderStyle enumeration.

>>> form = Form()
>>> form.FormBorderStyle = FormBorderStyle.Fixed3D

This pattern is used quite a bit in Windows Forms. You’ll often configure controls by
setting a property, using an enumeration with the same (or similar) name as the prop-
erty. Now it’s time to put together everything you’ve learned so far and see the results.

3.2.5 Hello World with Form and Label

We’ve now covered quite a lot of theory. Let’s put it into practice and display a form
with a configured label. You’ll use a few .NET types that you haven’t yet seen, but
it should be obvious what they’re doing. Listing 3.1 creates a form that shows a
label. The font, color, and position of the label are configured using the types we’ve
been discussing.

import clr
clr.AddReference('System.Windows.Forms')
clr.AddReference('System.Drawing')
from System.Windows.Forms import (
 Application, Form,
 FormBorderStyle, Label
)
from System.Drawing import (
Color, Font, FontStyle, Point

12 Not everything that looks like an enumeration is one. The use of predefined colors, such as Color.Red,
makes Color look like an enumeration—it’s a struct.

13 Normally an object member named None would be invalid syntax in Python. This is a limitation of the CPy-
thon parser and would be inconvenient when working with .NET, which has several enumerations with mem-
bers named None.

Listing 3.1 Showing a Form with a Label

Enumeration
An enumeration provides named members.12 The underlying values of the members
are constants, but the use of enumerations makes code more readable. Usually, but
not always, the underlying values are 32-bit signed integers.

If it makes sense for more than one member of an enumeration to be used simulta-
neously, then members of the enumeration can be combined in a bitwise or opera-
tion. These are called flag enumerations.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

73Handling events
)

form = Form()
form.Text = "Hello World"
form.FormBorderStyle = FormBorderStyle.Fixed3D
form.Height = 150

newFont = Font("Verdana", 16,
 FontStyle.Bold | FontStyle.Italic)

label = Label()
label.AutoSize = True
label.Text = "My Hello World Label"
label.Location = Point(10, 50)
label.BackColor = Color.Aquamarine
label.ForeColor = Color.DarkMagenta
label.Font = newFont

form.Controls.Add(label)

Application.Run(form)

In figure 3.6, you can see the result, showing a form with a configured label. The only
really new part of the code in this listing is setting the
font on the label.

 Fonts are created using the Font class from the
System.Drawing namespace. You can create fonts in
several ways; Font has fourteen different ways of call-
ing its constructor! This example uses a string to
specify the font family, an integer for the size, and
the FontStyle enumeration for the style. To make
the font bold and italic, the style is specified with a
bitwise OR of the two different FontStyle members.

FontStyle.Bold | FontStyle.Italic

This form is still pretty dull, though; it doesn’t do a great deal. Once Application.Run
has been called the event loop is in charge of the application. To make things happen,
the application has to be able to respond to events.

3.3 Handling events
In the form you’ve created, you haven’t set up any event handlers. When program-
ming with a GUI toolkit, the usual model is event-based programming; this is the case for
Windows Forms.

 Instead of following a linear path through a program, you put in place event han-
dlers to respond to certain events. The message loop (sometimes called the applica-
tion loop or the message pump) manages these events and calls your event handlers
when an event they’re listening for occurs.

 These events can be a great deal of things—key presses, mouse clicks, or a control
receiving focus, for example. You usually have the chance to respond to events at several

Creates font object

Adds label to form

Launches application

Figure 3.6 The result of showing a
Form with configured Label
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

74 CHAPTER 3 .NET objects and IronPython
different levels. You could put an event handler to respond to any mouse clicks (and
possibly cancel the event); or, if the click happens over a button, you could listen to the
click event on the button instead.

 Events are also used throughout the .NET framework for working with networks,
timers, threads, and more. Handling events from IronPython is very easy; let’s explore
them using the MouseMove event.

3.3.1 Delegates and the MouseMove event

In the pages of control members that we’ve looked at so far, you might have noticed
the parts of the pages headed Public Events, Protected Events, and Private Events. These
are all the different events that these controls can raise. To have your code respond to
these events, you create event handlers and add them to the event.

 If you (again) browse over to the Form Members page and look in the Public
Events section, you’ll see an event called MouseMove. This event allows a control to
respond to mouse moves while the mouse is over the control. You could use this event
to draw a rectangle on the form as the user moves the mouse—say, to highlight an
area of an image.

 The page you reach by following the MouseMove link from the Form Members
page tells you about the event. Most straightforwardly, it tells you that this event Occurs
when the mouse pointer is moved over the control.

 More importantly, it also shows you how to use the event, but you have to dig into
the C# example. In the long code example, which illustrates using various mouse
events, is the following line:

this.panel1.MouseMove += new
System.Windows.Forms.MouseEventHandler(this.panel1_MouseMove);

MouseMove is an event on a panel. The event handler is added to the event using +=
(add-in-place). Event handlers in C# must be delegates; for mouse events, the dele-
gate needs to be a MouseEventHandler, which is defined in System.Windows.Forms.
In C#, delegates are classes that wrap methods so that they can be called like func-
tions. Here the delegate wraps the panel1_MouseMove method, which is to be called
when the MouseMove event occurs. Luckily, it’s easier to use events from IronPython
than it is from C#.

 You need to know how to write your event handler, and the only important detail is
what arguments the handler will receive. In the C# example, the panel1_MouseMove
method is declared as

private void panel1_MouseMove(object sender,
System.Windows.Forms.MouseEventArgs e)

{ ... }

The event handler receives two arguments: sender, which is declared as being an
object (very informative); and event, which is an instance of MouseEventArgs. This
pattern is the same for all Windows Forms event handlers; they receive the sender and
an event. The sender is the control that raises the event.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

75Handling events
 Not all events have particularly useful information on them; sometimes it’s enough
to know that the event occurred, and you can ignore the event passed into the han-
dler. For the MouseMove event, the event can tell you the location of the mouse.

 Now you need to know how to create the required event handler in IronPython.

3.3.2 Event handlers in IronPython

Python has a native function type, so the IronPython engine does some behind-the-
scenes magic for you, allowing you to use functions as event handler delegates.

 Creating and adding simple event handler looks like the following:

form = Form()
def onMouseMove(sender, event):
 print event.X, event.Y

form.MouseMove += onMouseMove

We turn this into something more interesting by building on our example with a label.
When the mouse moves over the label, the color of the label text and background will
change. You’ll make the color random by using the Random class from the System
namespace and the FromArgb method of the Color structure (listing 3.2).

import clr
clr.AddReference('System.Windows.Forms')
clr.AddReference('System.Drawing')
from System.Windows.Forms import (
 Application, Form,
 FormBorderStyle, Label
)
from System.Drawing import (
 Color, Font, FontStyle, Point
)
from System import Random

random = Random()

form = Form()
form.Text = "Hello World"
form.FormBorderStyle = FormBorderStyle.Fixed3D
form.Height = 150

newFont = Font("Verdana", 16,
 FontStyle.Bold | FontStyle.Italic)

label = Label()
label.AutoSize = True
label.Text = "My Hello World Label"
label.Font = newFont
label.BackColor = Color.Aquamarine
label.ForeColor = Color.DarkMagenta
label.Location = Point(10, 50)

form.Controls.Add(label)

Listing 3.2 Wiring up the MouseMove event on a Label control
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

76 CHAPTER 3 .NET objects and IronPython
def GetNewColor():
 red = random.Next(256)
 green = random.Next(256)
 blue = random.Next(256)
 return Color.FromArgb(red, green, blue)

def ChangeColor(sender, event):
 print 'X:', event.X, 'Y:', event.Y
 sender.BackColor = GetNewColor()
 sender.ForeColor = GetNewColor()

label.MouseMove += ChangeColor

Application.Run(form)

Figure 3.7 gives you an idea of what
to expect when you run this code.
You should see a form and label look-
ing similar to the previous example
that introduced the Label class.
When you move the mouse over the
label, the MouseMove event is raised,
and the handler is called. The label
text and background colors should
change to random colors, and the
mouse location is printed.

 You might have noticed that the values for X and Y, the mouse coordinates, are low.
The coordinates are the position of the mouse within the label, called the client area of
the label. The top left of the label is position 0,0. Controls have methods to convert
locations within their client area to screen coordinates14 (and vice versa); but, when
specifying locations within a control, you always use client coordinates. When you
position controls within a container, you don’t need to know where they are on the
screen or their parent controls.

 You also use a new class, Random, from the System namespace. The IronPython
engine already has a reference to the System assembly, so you don’t need to explicitly
add one. The Random class is an easy-to-use, pseudo-random number generator. You
create an instance of Random at the module level; the GetNewColor function uses it to
fetch three integers from 0–255 and return a new color.

 We’ve gone through the techniques to look up classes in the MSDN documentation
(almost in excruciating detail for the early examples). If you want to know more about
the Random class, we’ll leave it as an exercise for you to find the documentation, both
for the class and the Next method.

 The examples so far have passed form instances directly to Application.Run. A
much better way of organizing your code is to create a subclass of Form and do your
setup in the constructor. This also makes a great example of subclassing a .NET class
in IronPython.

14 PointToScreen and PointToClient methods.

GetNewColor returns
random color

Defines event
handler function

Changes label colors

Figure 3.7 Hello World form with a label responding
to MouseMove events
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

77Subclassing .NET types
3.4 Subclassing .NET types
Creating IronPython classes that inherit from .NET types works fine. In listing 3.3, you
inherit from Form to better organize the code.

import clr
clr.AddReference('System.Windows.Forms')
clr.AddReference('System.Drawing')
from System.Windows.Forms import (
 Application, Form,
 FormBorderStyle, Label
)
from System.Drawing import (
 Color, Font, FontStyle, Point
)

class MainForm(Form):

 def __init__(self):
 self.Text = "Hello World"
 self.FormBorderStyle = FormBorderStyle.Fixed3D
 self.Height = 150

 newFont = Font("Verdana", 16,
 FontStyle.Bold | FontStyle.Italic)

 label = Label()
 label.AutoSize = True
 label.Text = "My Hello World Label"
 label.Font = newFont
 label.BackColor = Color.Aquamarine
 label.ForeColor = Color.DarkMagenta
 label.Location = Point(10, 50)

 self.Controls.Add(label)

mainForm = MainForm()
Application.Run(mainForm)

This code has exactly the same result as the first Hello World example with the label.
The only difference is that the form is configured inside the __init__ method (the
constructor). __init__ is called when a new instance of MainForm is created; inside
the body of this method, the variable self refers to the new instance. Because Main-
Form is a subclass of Form, it has all the same properties and is configured in the same
way you saw earlier.

 By now, you can see how easy it is to work with the .NET framework from Iron-
Python. If you’re a Python programmer, you should note that the different .NET types
merely behave as objects with attributes and methods, and you have a (large) new set
of libraries to work with. If you’re a .NET programmer, then all your knowledge of
.NET is relevant to IronPython. Now that we’ve covered the basic principles, it’s time
to start on the meat!

Listing 3.3 A form configured in the constructor of a Form subclass

Class declaration
inheriting from
Form

Properties are
configured on self
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

78 CHAPTER 3 .NET objects and IronPython
3.5 Summary
.NET objects come in various types, which are part of a type system called the Common
Type System.15 Most of the types in this system fall into one of the following categories:

■ Built-in types
■ Pointers
■ Classes
■ Structures
■ Interfaces
■ Enumerations
■ Delegates

We’ve encountered or discussed all of these types, except for pointers (and we need to
discuss interfaces a bit more deeply). Pointers16 are mainly used for interacting with
unmanaged resources, and don’t turn up in most applications. You’ve also seen how
easy it is to use .NET objects from within IronPython; it can be simpler and require less
lines of code than using them with a language like C#!

 In the next couple of chapters, you’ll build an IronPython application that takes
advantage of a wider selection of the huge number of framework classes available to
you. As the application gets larger, a good structure will be essential for keeping the
code readable and easy to maintain and extend. We’ll be exploring good Python prac-
tice, and growing your understanding of IronPython and .NET, by using some com-
mon design patterns.

15 See http://msdn2.microsoft.com/en-us/library/2hf02550.aspx.
16 You can find a good reference on pointers at http://www.codeproject.com/KB/dotnet/pointers.aspx.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/2hf02550.aspx
http://www.codeproject.com/KB/dotnet/pointers.aspx

Part 2

Core development techniques

In part 1, we went over the basics of Python and interacting with the .NET
framework from IronPython. In this part, we explore the core development
techniques needed for writing applications with IronPython.

 Essential to writing large programs for any platform is well-structured code.
Without clear structure, it becomes impossible to keep an overview of what parts
of the program perform which functions. More importantly, a well-structured
program will be much easier to extend and more easily understood by others
reading the code.

 At the heart of the high-level techniques we use are design patterns. The
term design patterns was popularized by a book of the same name, written
in 1995 by four authors now immortalized as the Gang of Four. Design patterns
formulate common tasks in programming and provide extensible object-ori-
ented solutions. By recognizing places in your programs that are well suited to
the use of these patterns, you can take advantage of well-tried approaches that
provide a blueprint for aspects of your program structure. In the following chap-
ters, we look at how to apply a few design patterns in IronPython and dive fur-
ther into both Python and the .NET framework.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Writing an
 application and design

 patterns with IronPython
Python as a language goes out of its way to encourage a good clear programming
style. It certainly doesn’t enforce it, though; you’re just as free to write obscure and
unmaintainable code with Python as you are with any other programming lan-
guage. When talking to programmers who haven’t used Python, I’m sometimes sur-
prised by their perception that it’s harder to write well-structured programs with
Python because it’s a dynamically typed language. In fact, by making it easy to
express your intentions and reducing the amount of code you need to write,
Python makes large projects more maintainable.

This chapter covers
■ Duck typing in Python
■ The Model-View-Controller pattern
■ The Command pattern
■ Integrating new commands into MultiDoc
81

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

82 CHAPTER 4 Writing an application and design patterns with IronPython
 In this chapter, as well as learning more about IronPython, you’ll also explore
some Python programming best practices. This exploration includes getting deeper
inside Python by using some of Python’s magic methods. You’ll also create a small
application to tackle some common programming tasks, using several .NET
namespaces that you haven’t yet seen.

 We start with a look at data modeling in Python.

4.1 Data modeling and duck typing
Computer science has many difficult problems, but one problem central to many
applications is data modeling. Data modeling means structuring and organizing data,
both for a computer to be able to work with the data and to make it possible to coher-
ently present the data to humans. This means finding the right way of representing
the data. The structures you choose must be a good fit, and you must provide the right
API for accessing and modifying the data.

 The built-in datatypes, such as the list and the dictionary, provide straightforward
ways of accessing data. They even have syntax built into the language for doing so.
Data modeling in Python is often done by creating structures that reuse the same way
of accessing the underlying information. In .NET languages, you might provide data
access by implementing interfaces; Python achieves the same thing using protocols.

4.1.1 Python and protocols

The traditional .NET languages are all statically typed. To call methods on an object,
the compiler needs to know what type it is and that the type has the required method.
Certain properties of objects, such as being able to iterate over them and index them,
are supported in .NET through interfaces. If a class implements an interface, then the
compiler knows that it supports certain types of operations. The .NET interfaces that
allow indexing by position or by key are IList and IDictionary.

 Instead of interfaces, Python uses protocols. The Python equivalent of IList is the
sequence protocol; the equivalent of IDictionary is the mapping protocol. An object
can support either of these protocols by implementing the __getitem__ and/or the
__setitem__ and __delitem__ methods (table 4.1). Python uses the same methods
for both protocols.

 This table shows how using indexing to set/fetch or delete an item translates
to Python method calls. Instead of being called directly, Python calls the indexing

Table 4.1 The Python sequence and mapping protocol magic methods

Python syntax Translates to Operation

x = something[key] x = something.__getitem__(key) Fetching an item by key or index

something[key] = x something.__setitem__(key, x) Setting an item by key or index

del something[key] something.__delitem__(key) Deleting an item
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

83Data modeling and duck typing
methods for you when it encounters an indexing operation. These method names
start and end with double underscores—which marks them as magic methods. There
are many more protocols for other operations such as comparison, numerical opera-
tions, and iteration. These operations also have corresponding magic methods (and
many have equivalent .NET interfaces).

 Let’s look at how protocols work in practice with the sequence and mapping
protocols.

4.1.2 Duck typing in action

These protocols are duck typing in action. An indexing operation will succeed if the
indexed object supports the appropriate magic method, irrespective of what type it is.

Duck typing can be extremely useful. If you have an API that takes a mapping type
object and sets or fetches entries from the object, you can pass in any object that
implements the mapping protocol. Protocols are a dynamically typed versions of inter-
faces. They allow you to create data structures as classes, implementing custom behav-
ior when data is set or fetched. You can also provide additional methods to access or
modify the data beyond simple access.1

 Listing 4.1 is an example class that prints to the console whenever you fetch, set, or
delete entries. It uses a dictionary as the underlying data store. In practical terms, you
may want to do something more useful than printing, but this is only an example!

lass ExampleMappingType(object):
 def __init__(self):
 self._dataStore = {}

 def __getitem__(self, key):
 value = self._dataStore[key]
 print 'Fetching: %s, Value is: %s' % (key, value)

1 See http://en.wikipedia.org/wiki/Duck_Typing.

Listing 4.1 A custom mapping type

Duck typing: a short history
The term duck typing gets its name from the duck test (attributed to James Whitcomb
Riley):

When I see a bird that walks like a duck and swims like a duck and quacks like
a duck, I call that bird a duck.

Wikipedia attributes the first known use of the term duck typing to Alex Martelli in a
usenet post to the comp.lang.python newsgroup in 2000.1

The essence of this concept is that valid uses of an object should be determined by
what operations it supports rather than what type it is.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://en.wikipedia.org/wiki/Duck_Typing

84 CHAPTER 4 Writing an application and design patterns with IronPython
 return value

 def __setitem__(self, key, value):
 print 'Setting: %s to %s' % (key, value)
 self._dataStore[key] = value

 def __delitem__(self, key):
 print 'Deleting:', key
 del self._dataStore[key]

>>> mapping = ExampleMappingType()
>>> mapping['key1'] = 'value1'
Setting: key1 to value1
>>> x = mapping['key1']
Fetching: key1, Value is: value1
>>> print x
value1
>>> del mapping['key1']
Deleting: key1

Any Python code that expects a Python dictionary, but only performs indexing opera-
tions on it, can use ExampleMappingType. If the code does more than indexing opera-
tions—for example, calling dictionary methods such as keys or items—you could
implement these as well. If you had wanted to implement a sequence type instead of a
mapping type, then the magic methods implemented here would have worked with
numbers instead of keys for the index.

 We’ve completed our look at data modeling and protocols. So far it has been quite
abstract. Let’s see if we can put this knowledge, along with everything else you’ve learned
about Python, into use with some more substantial design patterns. The first one is the
Model-View-Controller pattern, and it will form the basis of our running example.

4.2 Model-View-Controller in IronPython
A good structure for applications with a user
interface and an underlying data model is
the Model-View-Controller pattern, often
referred to as MVC. The basic structure is
shown in figure 4.1.

 The layer of your application that inter-
acts with the user is the view. In a desktop
application, this is the GUI code.

 The model is an object-oriented repre-
sentation of your data. Its structure depends
on what kind of data your application is deal-
ing with. Although the view may query the
model, the model knows nothing about the
view. Changes to the model are made
through the controller. The advantage of this structure is that your data model is then
entirely independent of the view layer, keeping a good separation of code. Additionally,

Figure 4.1 The basic structure of Model-View-
Controller. The Controller mediates between
the View and the Data Model, which remain
separated.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

85Model-View-Controller in IronPython
if you turn your program into a web application or rewrite with a different type of user
interface, then the data model can remain unchanged.

 The controller mediates between the view and the model. It uses the public API of
the model to change data in response to user input. It also supplies the view with the
data to be presented to the user.

 The view may subscribe to events on the model to be kept aware of internal state
changes; it may also directly query the model, but changes go through the controller.

 Model-View-Controller will be the core pattern in our running example.

4.2.1 Introducing the running example

In the next few chapters, you’ll build an IronPython application. Our running exam-
ple, called MultiDoc, is a Windows Forms desktop application for editing multipage
documents and saving them as a single file. Using Windows Forms not only makes for
good visual examples, but it should also be possible to refactor the application to use
an alternative user interface if you build the application carefully.

As we develop MultiDoc, you’ll learn some further aspects of Python and use a wider
range of .NET components. More importantly, we focus on good design practice and
effective use of common Python idioms. Our editor should perform the follow-
ing tasks:2

■ Allow the user to edit and create text documents
■ Divide each document into multiple pages, which are edited in a separate tab of

a multitabbed control
■ Allow the user to add or delete pages
■ Allow the document to be saved as a single file and then reloaded

More features may be a natural fit for MultiDoc, but this is the initial specification;
let’s see where it goes.

 You can initially provide a simple GUI and then gradually (incrementally) add
more features. The advantage of this approach is that, once you’ve created the first
simple version, you can maintain a working application at every stage. New features

2 See http://www.ironpythoninaction.com.

Code examples
As we build on the running example, or show other code samples through the book,
only the new or changed portions of code will be shown. This keeps the listings short-
er and means we can fit more examples in the book!

To make the examples runnable, you’ll sometimes need to add imports or parts of
the code that we’ve already covered. All the examples are available for download in
full from the IronPython in Action website.2
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.ironpythoninaction.com

86 CHAPTER 4 Writing an application and design patterns with IronPython
can be added and tested; if necessary, you can refactor the structure as the program
grows. To continue with the construction analogy: you’ll first build a small shed; then
you’ll refactor it into a bungalow, adding a new floor and some modern conveniences;
and finally you’ll have a three-bedroom house. I’m not sure we’ll have time to get to
the mansion stage, but you ought to end up with an attractive little piece of real estate
(and fortunately, refactoring code is less work than remodeling houses).

 The user interface is the view layer in the Model-View-Controller pattern, and this
is where we start creating MultiDoc.

4.2.2 The view layer: creating a user interface

The specification says that the user edits documents using an interface with multiple
tabs, one tab per page. The Windows Forms control for presenting a multitabbed
interface is the TabControl, a container control. Individual pages within the Tab-
Control are represented with TabPage controls. Let’s create a form with a TabControl
in it to establish the base of the view layer of the application; you’ll build on this as you
add new features.

 The TabControl will form the main component in the MultiDoc user interface.
Windows Forms handles drawing the tabs and switching between the pages; but, if you
need to, you can implement custom behavior when the user selects a new tab. In this
first prototype of MultiDoc, you’ll add a method to create a new TabPage, which can
contain the TextBox—the basic Windows Forms text editing control. To keep things
simple, you’ll start with a single TabPage (listing 4.2).

import clr
clr.AddReference('System.Windows.Forms')
clr.AddReference('System.Drawing')

from System.Drawing import Size
from System.Windows.Forms import (
 Application, DockStyle, Form, ScrollBars,
 TabAlignment, TabControl, TabPage, TextBox
)

class MainForm(Form):
 def __init__(self):
 self.Text = 'MultiDoc Editor'
 self.MinimumSize = Size(150, 150)

 self.tabControl = TabControl()
 self.tabControl.Dock = DockStyle.Fill
 self.tabControl.Alignment = (
 TabAlignment.Bottom)
 self.Controls.Add(self.tabControl)

 self.addTabPage("New Page", '')

 def addTabPage(self, label, text):
 tabPage = TabPage()
 tabPage.Text = label

 textBox = TextBox()

Listing 4.2 TabControl with single TabPage and multiline TextBox

Fills form with
tab control

Puts tabs
at bottom
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

87Model-View-Controller in IronPython
 textBox.Multiline = True
 textBox.Dock = DockStyle.Fill
 textBox.ScrollBars = ScrollBars.Vertical
 textBox.AcceptsReturn = True
 textBox.AcceptsTab = True
 textBox.WordWrap = True
 textBox.Text = text

 tabPage.Controls.Add(textBox)

 self.tabControl.TabPages.Add(tabPage)

Application.EnableVisualStyles()
Application.Run(MainForm())

The code in this listing creates the embryonic
MultiDoc editor. Although it uses controls that
you haven’t specifically seen yet, they’re config-
ured in exactly the same way as the ones that
you’ve already worked with. If you run this code,
you should get a form with a tab control, contain-
ing a single tab page filled with a text box, as
shown in figure 4.2.

NOTE You can set two properties on a control to
specify the way the control is laid out in the
parent control: Dock and Anchor. Both are
configured by setting an enumeration
(DockStyle and AnchorStyles), and con-
trol the way that the child control is resized
when the parent is resized.

Figure 4.3 shows the same code running under
Mono on Mac OS X (Mono 1.9,3 IronPython 1.1,
and Mac OS X 10.5.2 if you need to know these
things). All the code in the running example
should run fine on Mono with little to no changes.

 There’s almost no logic in listing 4.2; most of
the code is concerned with configuring the con-
trols you use. (And you could do a lot more con-
figuration.) One new thing in this listing is the
setting of the MinimumSize property to specify a
minimum size for the main form. By default, you
can resize a form down to almost nothing—which
looks a bit odd; this setting solves this problem.
MinimumSize takes a Size structure, which is con-
structed from two integers.

3 Later versions of Mono, 2.0 onwards, have several important bugs fixed for the Mac, so it is worth using the
latest version if possible.

Enables vertical
scrollbars

Enables XP themes

Figure 4.2 The first cut of the
MultiDoc editor: a single tab
page with a multiline text box

Figure 4.3 MultiDoc running
under Mono on the Apple Mac
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

88 CHAPTER 4 Writing an application and design patterns with IronPython
 Before starting the event loop, you also call Application.EnableVisualStyles.
This enables styles so that the application will use any theme that the user may have
set under Windows.

 The TabControl is positioned within the form, using the Dock property and the
DockStyle enumeration. DockStyle.Fill is used to tell the form to fill all the avail-
able space with the TabControl. You do the same thing with the TextBox. As you add
more features to the GUI, you’ll be using different values for DockStyle. For example,
you’ll probably position a menu or toolbar using DockStyle.Top.

 The new tab page is created by the addTabPage method, called from the construc-
tor. addTabPage has to do a lot of configuration of the text box to make it usable as a
minimal editor. You want to be able to use the tab key to enter tabs rather than mov-
ing the focus; you’d like vertical scrollbars if there’s more text in the text box than fits
in the available space; and so on. This is all fairly straightforward.

 The code written so far is the skeleton of a user interface. It doesn’t deal at all with
how you’ll represent the user data or how the user interface will interact with the data;
for this you need to create a data model.

4.2.3 A data model

To keep MultiDoc easy to maintain, you should define standard ways of accessing and
changing the document. This will be useful for saving documents, loading new docu-
ments, switching between individual pages in the document, and so on.

 The documents in our example are intended to contain multiple pages; a logical
data model would be a document containing pages, with both the document and the
pages represented in classes. Pages are stored sequentially, so it makes sense to make
the document a sequence-type container for pages.

 Pages need to store the text in them; plus, they have a title displayed on the tab. As
this is the only attribute they have (for the moment), you can represent them with a
simple class (see listing 4.3).

class Document(object):
 def __init__(self, fileName=None):
 self.fileName = fileName
 self.pages = []
 self.addPage()

 def addPage(self, title='New Page'):
 page = Page(title)
 self.pages.append(page)

 def __getitem__(self, index):
 return self.pages[index]

 def __setitem__(self, index, page):
 self.pages[index] = page

 def __delitem__(self, index):

Listing 4.3 Data model with Document and Page classes

Creates one
empty page

Creates new page
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

89Model-View-Controller in IronPython
 del self.pages[index]

class Page(object):
 def __init__(self, title):
 self.title = title
 self.text = ''

This listing shows the code to implement a simple data model with Document and Page
classes. For the moment, all the code will be kept in a single source file, but the listing
only shows the additional code for the Document and Page classes. By default, the Doc-
ument class creates one empty page when it’s instantiated. Thanks to the compactness
of Python, there’s very little boilerplate, and every line does something of note. We’ve
left it up to you to deduce the meaning of most of the code.

 To hook this into the presentation layer (the view) that you’ve already created, you
need a controller.

4.2.4 A controller class

The main element in the MultiDoc user interface is the TabControl. It has TabPages,
which map to the pages that the document holds.

 The controller is responsible for setting the data on the model, and for keeping
the view and the model synchronized. In this way, the code is neatly separated
between the view, which manages the GUI layout, and the controller, which responds
to the user input.

 As the application grows, it may need several controller classes for the major GUI ele-
ments; the first will be a TabController. Because this will be responsible for adding new
pages, the addTabPage method can be moved into the controller. To do this, you’ll need
a reference to both the TabControl instance on the MainForm, and the current docu-
ment. When MainForm is instantiated, it should create a document and then instantiate
the TabController, passing in both the TabControl and the new document.

 The TabController can then iterate over all the pages in the document and create
a TabPage for each one. When you come to loading documents with multiple pages
already in them, creating the appropriate TabPages in the view will then happen auto-
matically (listing 4.4).

class TabController(object):
 def __init__(self, tabControl, document):
 self.tabControl = tabControl
 self.document = document

 for page in document:
 self.addTabPage(page.title, page.text)

 self.index = self.tabControl.SelectedIndex
 if self.index == -1:
 self.index = self.tabControl.SelectedIndex = 0
 self.tabControl.SelectedIndexChanged += self.maintainIndex

Listing 4.4 TabController with changed MainForm class

Class that
represents pages

Creates
tab page for
each page

Selects
first tab if
necessary

Maintains
index
when tab
changes
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

90 CHAPTER 4 Writing an application and design patterns with IronPython
 def addTabPage(self, label, text):
 tabPage = TabPage()
 tabPage.Text = label

 textBox = TextBox()
 textBox.Multiline = True
 textBox.Dock = DockStyle.Fill
 textBox.ScrollBars = ScrollBars.Vertical
 textBox.AcceptsReturn = True
 textBox.AcceptsTab = True
 textBox.WordWrap = True
 textBox.Text = text

 tabPage.Controls.Add(textBox)

 self.tabControl.TabPages.Add(tabPage)

 def maintainIndex(self, sender, event):
 self.updateDocument()
 self.index = self.tabControl.SelectedIndex

 def updateDocument(self):
 index = self.index
 tabPage = self.tabControl.TabPages[index]
 textBox = tabPage.Controls[0]
 self.document[index].text = textBox.Text

class MainForm(Form):
 def __init__(self):
 Form.__init__(self)
 self.Text = 'MultiDoc Editor'
 self.MinimumSize = Size(150, 150)

 self.tabControl = TabControl()
 self.tabControl.Dock = DockStyle.Fill
 self.tabControl.Alignment = TabAlignment.Bottom
 self.Controls.Add(self.tabControl)

 self.document = Document()
 self.tabController = TabController(self.tabControl, self.document)

Application.EnableVisualStyles()
Application.Run(MainForm())

This listing shows the new MainForm creating a document and initializing the tab con-
troller. The document creates one page by default, and the tab controller then auto-
matically creates a tab page.

NOTE The tab controller creates a tab page for each page in the document by
iterating over them. You haven’t specifically implemented the protocol
methods for iteration (__iter__ and next), but you get a default imple-
mentation for free along with the sequence protocol method
__getitem__.

The tab controller has the updateDocument method for keeping the document
updated with changes from the user interface. This method needs to be called before
saving the document, or every time the active tab is changed.

Moved from
MainForm

Updates model
with current text

Text box from
current tab page
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

91The command pattern
 Keeping the document updated means you need to keep track of the currently
selected page—which is done with the self.index instance variable. At the end of the
TabController constructor, you set the index to the currently selected tab and regis-
ter the maintainIndex method to be called whenever the selected tab changes. When-
ever the selected tab changes, the SelectedIndexChanged event fires.

 When maintainIndex is called, the selected index has already changed. It calls
updateDocument, which fetches the text from the tab that was previously selected (by
using the index variable). It puts this text into the equivalent page on the document;
each tab has a corresponding page in the document, so the index of the tab also acts
as the index of the page on the document. After updating the model, maintainIndex
then stores the index of the newly selected tab; the next time the user switches tabs,
this one will be synced to the model. The point of all this is so that, when you need to
save the document, you know that you only need to sync the currently selected page,
and then you can save the document.

 There’s a problem, though. When the form hasn’t yet been shown, the Selected-
Index will be -1. When the form is shown, the selected index will then be set, but the
SelectedIndexChanged event is not fired. Adding some extra code in the constructor
allows you to get around this; if SelectedIndex returns -1, then you explicitly select
the first tab.

 You’ve now created the core structure for the application; but, if you run this new
version of MultiDoc, it looks identical to the previous version. So far you’ve refactored
the code to provide a better structure. You’ve also learned a bit more about Python
and dived into using design patterns. In the coming sections we continue developing
MultiDoc, but use more .NET classes that you haven’t seen yet.

 The next step in our exploration is extending MultiDoc using the command
pattern.

4.3 The command pattern
A command pattern is where a request is encapsulated as an object.4 In practice, this means
that you represent each new command as a class, and provide a common interface for
command classes to perform actions. The command pattern makes it extremely easy
to add new commands.

 We want to add the capability to MultiDoc to save documents that are being edited
(currently only a single page). Traditionally, applications offer the following two types
of save commands:

■ A Save command, which uses the current filename without prompting for one
if the document has been saved before

■ A Save As command, which always prompts for a filename

Let’s start with the Save command. If we’re careful, it should be easy to reuse most of
the code from the Save command in the Save As command.

4 Duncan Booth, Patterns in Python, http://www.suttoncourtenay.org.uk/duncan/accu/pythonpatterns.html.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.suttoncourtenay.org.uk/duncan/accu/pythonpatterns.html

92 CHAPTER 4 Writing an application and design patterns with IronPython
 To save files, the SaveFileDialog class will be an integral part. This class is the
standard file dialog box used by almost every Windows application.

4.3.1 The SaveFileDialog

The SaveFileDialog presents the user with an explorer window so that a filename
can be selected to save a file with. The dialog box is shown modally—it blocks the
application until the user has selected a file.

 To use this dialog box, you need to configure the filter, which determines which
file types are shown in the explorer, and the title. You may also want to configure
which directory the browser opens in and if any initial filename is to appear there. As
with other controls you’ve used, this is all done by setting simple properties.

 The dialog box is displayed by calling the ShowDialog method. This method blocks
until the user has selected a filename or hit the cancel button, but you need some way
of telling which of these two actions the user has performed. ShowDialog returns
either DialogResult.OK or DialogResult.Cancel, depending on whether the user
selects a file or cancels. DialogResult is an enumeration, which .NET is so fond of. If
this were a native Python GUI toolkit, then calling ShowDialog would probably return
only True or False!

Listing 4.5 shows an interactive interpreter session which creates and configures a
Save File dialog box and displays the result. It takes an existing file path and uses the
Path class from System.IO5 to extract the file and directory name from the path.

>>> import clr
>>> clr.AddReference('System.Windows.Forms')
>>> from System.Windows.Forms import SaveFileDialog, DialogResult
>>> from System.IO import Path

Listing 4.5 Configuring and displaying SaveFileDialog

5 IO is a namespace in the System assembly. You don’t need to explicitly add a reference to the System assem-
bly because the IronPython engine uses it.

Path or os.path
Manipulating file paths is such a common operation that both the .NET framework
and the Python standard library provide functions for working with them.

In MultiDoc, we use static methods on the .NET class System.IO.Path for obtaining
the filename and directory name from a path.

The Python module os.path provides similar functionality. os.path.split takes a
path and splits it into the following two parts:

import os
directory, filename = os.path.split(filePath)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

93The command pattern
>>> filepath = r'C:\filename.txt'
>>> filter = 'Text files (*.txt)|*.txt|All files (*.*)|*.*'
>>> directory = Path.GetDirectoryName(filepath)
>>> name = Path.GetFileName(filepath)
>>> dialog = SaveFileDialog()
>>> dialog.FileName = name
>>> dialog.InitialDirectory = directory
>>> dialog.Filter = filter
>>> dialog.Title = 'Just an example'
>>> result = dialog.ShowDialog()
>>> result == DialogResult.OK
True
>>> dialog.FileName
'C:\\Some Path\\Some File.txt'

Figure 4.4 shows the result of running the code from this listing; a Save File dialog box
is displayed with all the properties that you’ve set. If you select a file with the dialog
box, then DialogResult.OK will be returned, and the FileName attribute set appropri-
ately. If you hit the cancel button instead, then DialogResult.Cancel is returned.

You’re one step closer toward being able to create the Save command. Now that
you’ve ascertained that the user wants to save the file, you need to write out the file
with the chosen filename.

4.3.2 Writing files: the .NET and Python ways

Initially, you’re going to write out the contents of the text box, from the Text prop-
erty, as a text file. Strings on .NET are stored using Unicode, and IronPython strings
are no exception. Unicode is an abstract representation of text; when you write the
text to the filesystem, an encoding must be used. The encoding is a concrete way of
representing text by assigning digits to each character. .NET can choose a default
encoding for you, but you need to be aware that this is happening.

Creates new dialog box

Displays dialog box

Figure 4.4
A SaveFileDialog configured
from the interactive interpreter
and displayed with ShowDialog
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

94 CHAPTER 4 Writing an application and design patterns with IronPython
.NET provides several different ways of writing text files, built on top of the
FileStream class. FileStreams read or write, with either text or binary data, to files on
the filesystem. .NET also provides the StreamWriter class, an abstraction layer on top
of the FileStream for the easy writing of text files. The corresponding class for read-
ing text files is the StreamReader.6

 To initialize a StreamWriter, you can either pass in a filename (as a string), or a
ready-created FileStream instance. You can also specify an encoding; but, if you omit
this, then the default encoding will be used. When developing with Python, the
default encoding is ASCII; when using .NET framework classes, the default encoding
will usually be UTF-8. Using UTF-8 is likely to result in many less Unicode headaches.

 The following segment of code creates a StreamWriter and writes a string to a file:

>>> from System.IO import StreamWriter
>>> writer = StreamWriter('filename.txt')
>>> writer.Write('some text')
>>> writer.Close()

TIP The class System.IO.File also has some convenient static methods for
reading and writing files. File.ReadAllText and File.WriteAllText
(and the corresponding methods for reading and writing bytes) mean
that reading or writing files can be a one-liner. They don’t give as fine a
degree of control, but are often all that you need.

If you want to open the file in any mode other than write (for example, to append to a
file), you’ll need to create the FileStream and specify a FileAccess mode. Python
also provides standard ways of working with files. It uses a single built-in function,
open, for both reading and writing files. You specify the mode with one of the follow-
ing strings:

■ r —For reading text files
■ w —For writing text files

6 It uses System.Text.Encoding.Default, which depends on the user’s regional and language settings. On
a UK English Windows machine, it’s likely to be ISO 8859-1.

Encodings
Hundreds of different encodings are in use across the world, and reading text without
knowing the encoding can cause characters to be read incorrectly. Luckily, .NET han-
dles this most of the time.6

The most common encoding, and also one of the most limited, is ASCII, which
uses 7 bits to represent all the characters in the English alphabet.

A common alternative to ASCII is UTF-8, which uses the same numbers as the ASCII
characters but can also use extra bytes to represent every character in the Unicode
standard.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

95The command pattern
■ rb —For reading binary files
■ wb —For writing binary files

In Python, the string class is used for representing both text and binary data, so file
handles (returned by open) have read and write methods that always take or return
strings.

>>> handle = open('filename.txt', 'w')
>>> handle.write('some text')
>>> handle.close()
>>> handle = open('filename.txt', 'r')
>>> text = handle.read()
>>> handle.close()
>>> print text
some text

If your code is making heavy use of .NET classes, then it may make sense to use the
.NET way. If you want your code to run on both CPython and IronPython, then you
should use the Python patterns for working with files.

 The code segments shown so far for writing files will work fine, as long as nothing
goes wrong. Unfortunately, many things can go wrong when writing to external
devices; the device may be read-only, or the drive may be full. If this happens, you have
to be able to handle it and report it to the user.

4.3.3 Handling exceptions and the system message box

We’ve already covered handling exceptions in Python; now you get a chance to use it.
If saving a file fails, for whatever reason, you want to catch the exception and inform
the user of the problem.

 This is a good example of where the creators of IronPython have done an excel-
lent job of making the boundary between the .NET and the Python world seamless.
The exception raised by .NET for this kind of error is an IOException. IronPython con-
verts this into a Python exception. The corresponding Python exception type is called
IOError. In these examples, we’re going to use features from both the .NET platform
and the Python language. As you saw in the previous section, this can be done using stan-
dard Python patterns or with the .NET classes, a technique that should feel familiar to
.NET programmers. This is the essence of IronPython at work: the flexibility of Python
combined with the power and breadth of .NET. Using IronPython from the interactive
interpreter, as you’ve been doing, illustrates how useful IronPython can be for experi-
menting with .NET classes, even if you’re coding in straight C#. Table 4.2 shows a map-
ping of some common Python exceptions to their .NET equivalents. Not all Python
exceptions have .NET equivalents; for these cases, custom exceptions are defined inside
IronPython7 (such as RuntimeError, NameError, SyntaxError, and ImportError).

7 A reference and discussion of custom exceptions in IronPython 1 can be found at http://www.codeplex.com/
IronPython/Wiki/View.aspx?title=Exception%20Model.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.codeplex.com/IronPython/Wiki/View.aspx?title=Exception%20Model
http://www.codeplex.com/IronPython/Wiki/View.aspx?title=Exception%20Model

96 CHAPTER 4 Writing an application and design patterns with IronPython
When you catch the exception, the instance of IOError raised will carry a message tell-
ing you what went wrong. You can turn the exception instance into a string by using
the built in str function. The following code segment tries to save a file with a bogus
filename—unless you have this file on drive z, that is! It catches the ensuing error and
reports it by printing the error message:

>>> from System.IO import StreamWriter
>>> filename = 'z:\\NonExistentFile.txt'
>>> try:
... writer = StreamWriter(filename)
... except IOError, e:
... print 'Something went wrong.'
... print 'The error was:\r\n%s' % str(e)
...
Something went wrong.
The error was:
Could not find a part of the path 'z:\NonExistentFile.txt'

Table 4.2 Python exceptions mapping to .NET exceptions

Python exception .NET exception

Exception System.Exception

StandardError SystemException

IOError IOException

UnicodeEncodeError EncoderFallbackException

UnicodeDecodeError DecoderFallbackException

MemoryError OutOfMemoryException

Warning WarningException

StopIteration InvalidOperationException subtype

WindowsError Win32Exception

EOFError EndOfStreamException

NotImplementedError NotImplementedException

AttributeError MissingMemberException

IndexError IndexOutOfRangeException

KeyError System.Collections.Generic.KeyNotFoundException

ArithmeticError ArithmeticException

OverflowError OverflowException

ZeroDivisionError DivideByZeroException

TypeError ArgumentTypeException
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

97The command pattern
But MultiDoc is a GUI application, and you don’t want to rely on the console for
reporting problems. The standard way for informing the user of this sort of problem is
using the system message box.

 As with the other GUI elements we’ve been working with, you can get access to the
system message box through the Windows Forms namespace. Instead of instantiating
a message box, you call the static method Show on the MessageBox class.

 The Show method has a plethora of different overloads to control the way you dis-
play the message box. You can configure the message, the title, choose an icon, and
specify the number and type of buttons on the message box. The following code seg-
ment displays a message box with a title and message, with an icon and an OK button.
You use a couple of enumerations to specify the buttons and the icon.

>>> from System.Windows.Forms import MessageBox, MessageBoxButtons,
MessageBoxIcon

>>> message = 'Hello from a MessageBox'
>>> title = 'A MessageBox'
>>> MessageBox.Show(message, title,
... MessageBoxButtons.OK, MessageBoxIcon.Asterisk)
<System.Windows.Forms.DialogResult object at 0x… [OK]>
>>>

If you enter the code from this segment into an interac-
tive interpreter session, then you should see the message
box shown in figure 4.5.

 The i in a bubble is the icon specified with Message-
BoxIcon.Asterisk. You can pick from a veritable smor-
gasbord of icons with this enumeration. You can also use
Yes, No, and Cancel buttons instead of the OK button
(or various other button combinations) by changing the
value from the MessageBoxButtons enumeration. The
call to Show returns a DialogResult, depending on the button used to exit the
message box. You can find all the possible values for these enumerations in the
MSDN documentation.

String interpolation
This segment of code uses string interpolation to format the error message. The
placeholder %s is used inside the string, and then the % operator (the modulo oper-
ator) is used to interpolate values into the string.

To interpolate multiple values, follow the % operator with a tuple. There are quite a
few different placeholders: %d for decimal numbers, %f for floating point numbers
(with a variety of options for how they’re formatted), and so on.

For example:

myString = 'my name is %s, my age is %d. I am holding %r' % ('Michael', 32, SomeObject)

Figure 4.5 A system message
box created from an interactive
interpreter session
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

98 CHAPTER 4 Writing an application and design patterns with IronPython
 You’re now ready to implement the Save command. You know how to ask the user
to choose a filename, how to write out the file, and how to handle and report any
problems that occur. Let’s put all this together.

4.3.4 The SaveCommand

We intend to implement two save-like commands, the
Save command and the Save As command. Save As will
be similar to the Save command, so let’s ensure that as
much of the code as possible from the Save command
can be reused. Figure 4.6 shows the sequence of
actions for the Save command.

 The Save As command will be very similar to the
sequence shown in this figure, except that it will still
present the file dialog box to the user even if the
document already has a filename associated with it.

 The command will need access to the text from the
document, which will need to be updated. The easiest
way for the command to update the document is to
give it a reference to the tab controller (listing 4.6).

from System.IO import Directory, Path, StreamWriter
filter = 'Text files (*.txt)|*.txt|All files (*.*)|*.*'

class SaveCommand(object):

 title = "Save Document"

 def __init__(self, document, tabController):
 self.document = document
 self.tabController = tabController
 self.saveDialog = SaveFileDialog()
 self.saveDialog.Filter = filter
 self.saveDialog.Title = self.title

 def execute(self):
 fileName = self.document.fileName
 text = self.getText()

 directory = Path.GetDirectoryName(fileName)
 directoryExists = Directory.Exists(directory)
 if fileName is None or not directoryExists:
 self.promptAndSave(text)
 else:
 self.saveFile(fileName, text)

 def getText(self):
 self.tabController.updateDocument()
 return self.document[0].text

 def promptAndSave(self, text):

Listing 4.6 SaveCommand, which handles necessary user actions and writes file to disk

B

C

D

Y
N

OK

Figure 4.6 A flow chart for the
actions of the Save command
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

99The command pattern
 saveDialog = self.saveDialog
 if saveDialog.ShowDialog() == DialogResult.OK:
 fileName = saveDialog.FileName
 if self.saveFile(fileName, text):
 self.document.fileName = filename

 def saveFile(self, fileName, text):
 try:
 writer = StreamWriter(fileName)
 writer.Write(text)
 writer.Close()
 return True
 except IOError, e:
 name = Path.GetFileName(fileName)
 MessageBox.Show(
 'Could not write file "%s"\r\nThe error was:\r\n%s' %
 (name, e),
 "Error Saving File",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error
)
 return False

This listing shows the full code for the SaveCommand. The constructor creates and
configures a SaveFileDialog B. It saves this, along with a reference to the document
and the tab controller, as instance attributes for use whenever the command
is launched.

 The execute method is simple C. It fetches the text from the document, using the
getText method, which also synchronizes the document by calling updateDocument
on the tab controller.

 It then checks to see if the document already has a filename set on it. If it does,
then the code can jump straight to saveFile; otherwise, you need to prompt the user
for a filename—which is done from promptAndSave. As well as checking whether a
filename is set, it also checks that the directory specified still exists D; the file could
have been on a USB key that has since been removed, meaning that the save will fail.

 A lot of .NET methods allow calls with null values. You can pass None (the Python
equivalent of null) to Path.GetDirectoryName(fileName), and it returns None to you.
When you then call Directory.Exists(directory), where directory might now be
None, Exists returns False. The code is a bit easier to read than making the condi-
tional more complex.

 saveFile attempts to save the file E, displaying the message box if anything goes
wrong F. It returns True or False depending on whether or not it’s successful. You
can call it from promptAndSave (assuming the user doesn’t cancel out of the file
dialog box). If the Save File operation is successful, then you can set the filename on
the document.

 Because you’ve already written the SaveCommand, it ought to be easy to now build a
SaveAsCommand.

E

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

100 CHAPTER 4 Writing an application and design patterns with IronPython
4.3.5 The SaveAsCommand

The SaveAsCommand is going to share a lot of functionality with the SaveCommand. The
main difference is that when the command is launched, it should always prompt the
user to choose a filename. But, if the document does have a filename associated with
it, the dialog box should start in the right directory and be prepopulated with this
name. This is all done in listing 4.7.

class SaveAsCommand(SaveCommand):

 title = "Save Document As"

 def execute(self):
 fileName = self.document.fileName
 text = self.getText()
 if fileName is not None:
 name = Path.GetFileName(fileName)
 directory = Path.GetDirectoryName(fileName)
 self.saveDialog.FileName = name
 if Directory.Exists(directory):
 self.saveDialog.InitialDirectory = directory
 self.promptAndSave(text)

Thanks to splitting out a lot of the functionality of the Save command into separate
methods, the Save As command is very little code! The change in functionality is all han-
dled by overriding the title and the execute method. execute now sets initial state on
the Save dialog box (if a filename already exists) and then always calls promptAndSave.

 Let’s pause and consider what you’ve achieved. The command pattern acts as a
blueprint for creating new commands, so less thinking is required when you have to
create, or wire up a new one! When you come to create a new command, you know
what shape it should be and what interface you need to provide. You can also easily
share functionality between similar commands.

 Now that you’ve created the two commands Save and Save As, you need to hook
them into the user interface so that the user has access to them.

4.4 Integrating commands with our running example
One way of providing access to the commands would be with a shortcut key. This is a
useful feature (I’m a keyboard guy whenever possible), but users these days expect
fancy GUI features. The standard way of providing access to commands like Save is
through menus and toolbars. Fortunately, the .NET menu classes provide a way of set-
ting shortcut keys on menu items, so you can have the best of both worlds.

 So far, you’ve created a Model-View-Controller structure for our fledgling applica-
tion. The view contains the GUI layout code. The model stores the underlying data,
and the controllers (so far you only need one, for the tab control) mediates between
the view and the model, implementing the logic required to keep them synchronized.
Although the controllers hold a reference to the model, the model knows nothing
about the view or the controllers and is completely independent.

Listing 4.7 SaveAsCommand, which needs to override dialog title and execute method

Inherits from SaveCommand

Overrides title on
SaveCommand

Configures dialog
initial paths

Calls SaveAs
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

101Integrating commands with our running example
 User actions are represented by command classes, wrapping all the functionality
into an object. Our commands have access to the tab controller and the model. They
need to respond to the user interface and access the data model. In our case, you
need to be able to ask the controller to update the document from the user interface.

 For a small application like MultiDoc, this may feel like over-engineering. We’ve
abstracted the application out into several classes, most of which are very small. But
you’ve already seen, in the case of the Save As command, how this approach can be help-
ful; as you add new features, we can promise you’ll appreciate this structure even more.

 There’s still one vital step missing: the commands aren’t yet used. In this section,
you’ll extend the view by adding new ways for the user to interact with MultiDoc by
launching the commands. Two obvious ways of doing this are through menus and a
toolbar; we start with a menu.

4.4.1 Menu classes and lambda

Creating menus with Windows Forms is easy. You need to use different classes for the
top-level menu strip and the individual menu item. .NET menus are controls like any
of the other GUI elements used so far. You could put them anywhere in the MultiDoc
form. The traditional place for menus, and the place where the user will expect them,
is at the top of the form. You achieve this with the Dock property and DockStyle.Top.

 The class we use for the top-level menu strip is MenuStrip. For the menu items, we
use ToolStripMenuItem. As well as creating the menu hierarchy, this class allows you
to specify shortcut keys to launch the individual items. The
hierarchy we want to create, initially at least, is simple and
looks like figure 4.7.

 Let’s work from the bottom up, and start with the
Save… and Save As... items. As with other controls, you set
the displayed text of the item using the Text property.

>>> saveItem = ToolStripMenuItem()
>>> saveItem.Text = '&Save...'

Menu items have two types of keyboard shortcuts. The first type allows menus to be
operated from the keyboard. Pressing Alt in a form displays the menu, which you can
then navigate with the cursor keys. Items with an underlined letter can be launched
with that key. You configure this shortcut by putting an ampersand (&) in front of a
letter in the Text property.

 The second key shortcut allows a menu item to be launched without the menu
being open. The standard key combination for a save operation is Ctrl-S; you set this
using the Windows Forms Keys enumeration. You combine the S key with the Ctrl key
using a bitwise or the following:

>>> saveItem.ShortcutKeys = Keys.S | Keys.Control

The last thing you need to do for this menu item is to configure the action when
it’s launched, either by selection through the menu or by the keyboard shortcut.
Here, we come back to our old friend the Click event, to which you need to add an
event handler.

Figure 4.7 Menus created
with MenuStrip and
ToolStripMenuItem
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

102 CHAPTER 4 Writing an application and design patterns with IronPython
 Obviously, we’d like our SaveCommand to be triggered, specifically the execute
method. Unfortunately, there’s a problem. Windows Forms event handlers receive two
arguments when they’re called, sender and event, but our execute method doesn’t
take any arguments. You can either rewrite execute to take two arguments, which it
doesn’t need, or you can wrap the call with another function which absorbs them.

 Python has an easy way of creating functions in a single line: lambda functions.

NOTE Lambda functions are sometimes known as anonymous functions because,
unlike the usual syntax for declaring functions, you don’t need to give
them a name. They can take arguments, but the body can only contain an
expression and not statements. The expression is evaluated, and the result
returned. Lambdas can be used anywhere that an expression is expected.

Lambda functions can be declared
inline. The syntax is shown in fig-
ure 4.8.

 You could hook up your com-
mands by wrapping the call in a func-
tion like this:

>>> def handler(sender, event):
... command.execute()
>>> item.Click += handler

Instead, use a lambda, which is identical (except shorter) to using a function:

>>> item.Click += lambda sender, event : command.execute()

Using a lambda here is appropriate because the function is only a convenience wrap-
per. You don’t need to use it later, so it doesn’t need a name.

 You’ve now created and configured a menu item, but it still needs to be placed in
its parent menu. For the Save item, the parent is the File menu. File is also a Tool-
StripMenuItem, with a Text property; its children (the submenu items) live in the
DropDownItems collection.

>>> fileMenu = ToolStripMenuItem()
>>> fileMenu.Text = '&File'
>>> fileMenu.DropDownItems.Add(saveItem)

We’re sure it won’t surprise you to learn that the menu items will appear in the order
that they’re added. This isn’t quite the end of the story; you still need to create a top-
level menu and add the submenu to it. The top-level menu uses the MenuStrip class,
and the submenus are added to its Items collection.

>>> menuStrip = MenuStrip()
>>> menuStrip.Items.Add(fileMenu)

Commonly used options are often exposed via a toolbar as well as menus. In .NET, you
use the ToolStrip class.

Figure 4.8 The syntax for the lambda function
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

103Integrating commands with our running example
4.4.2 .NET classes: ToolBar and images

Windows Forms contains a class called ToolBar.
This is an abomination from .NET 1, and shouldn’t
be used under any circumstances! The right class
for creating toolbars is the ToolStrip.

 A toolbar has a series of icons that launch com-
mands. Figure 4.9 shows the Resolver One toolbar.

 A minor prerequisite for creating a toolbar is having some icons to use. My per-
sonal favorites are the free toolbar icons from glyFX.8 After a great deal of scouring
the internet, these are the best icons that I’ve found that you’re free to use in applica-
tions. The usual condition for distributing these icons with your application is that
you should use them as a compiled resource. You can do this by compiling the icons
into your executable or by serializing the .NET image objects. We explore both of
these techniques later in the book; but, for this example, glyFX has given us permis-
sion to use the icons without compiling them.9

 Toolbars are another easy-to-use component. The toolbar itself is an instance of
the ToolStrip class. The individual buttons are instances of ToolStripButton.

 To associate an image with a button, you set the Image property with an instance of
the Bitmap class, and set the DisplayStyle property to ToolStripItemDisplay-
Style.Image. Bitmap comes from the System.Drawing assembly, and can be con-
structed from the path to the image file as a string.

The icon for Save is a 16x16 pixel icon called save_16.ico, which is stored in a folder
called icons. The path to the icon, relative to our application file, is icons/save_16.ico.

8 See http://www.glyfx.com/products/free.html.
9 They’re included in the downloads available from the IronPython in Action website at http://www.ironpy-

thoninaction.com.

The Bitmap class
The .NET Bitmap class is a useful class. You can use it for displaying images in ap-
plications, in conjunction with the Windows Forms PictureBox class.

You can save images, in any of the multitude of formats that .NET supports, using
the Save method. You can pass in a filename and a value from the ImageFormat enu-
meration to specify the format.

You can examine the contents of the image with the GetPixel method, which takes
X and Y coordinates and returns a color.

Conversely, you can create a new bitmap by constructing with two integers represent-
ing the X and Y dimensions of the image. You can then create the image program-
matically by passing in coordinates and a color to the SetPixel method.

Figure 4.9 The Resolver
One application toolbar
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.glyfx.com/products/free.html
http://www.ironpythoninaction.com
http://www.ironpythoninaction.com

104 CHAPTER 4 Writing an application and design patterns with IronPython
At runtime, you have no idea what the current directory is; you can’t assume that it
will be the application directory.

 If you were running with a custom executable, you could extract the directory
from the full path to the executable.

>>> from System.Windows.Forms import Application
>>> from System.IO import Path
>>> executablePath = Application.ExecutablePath
>>> directory = Path.GetDirectoryName(executablePath)

If your script is being run by ipy.exe, then this approach will return the directory con-
taining ipy.exe. When run in this way, a magic name called __file__ is available with
the full path of the file currently being executed. In that case, you can replace exe-
cutablePath with __file__.

 The following code segment should work in either case:

executablePath = __file__
if executablePath is None:
 executablePath = Application.ExecutablePath
directory = Path.GetDirectoryName(executablePath)

Now that you can reliably work out the path to the icon, you can create the toolbar
button.

>>> from System.Drawing import Bitmap, Color
>>> from System.Windows.Forms import ToolStripButton, ToolStripItemDisplayStyle
>>> iconPath = Path.Combine(directory, r'icons\icon.bmp')
>>> image = Bitmap(iconPath)
>>> button = ToolStripButton()
>>> button.DisplayStyle = ToolStripItemDisplayStyle.Image
>>> button.Image = image

Toolbar icons are usually intended to be displayed with one color nonvisible; this is a
cheap way of gaining a transparency layer. The convention is that Color.Magenta is
used as the transparent color. This is an odd convention, but must be because
magenta is such a ghastly10 color that it would be rare to want to see it…

>>> button.TransparentColor = Color.Magenta

As well as setting the image on the toolbar button, you can set the text that will be dis-
played when the mouse hovers over the button, known as the tooltip text:

>>> button.ToolTipText = 'Save'

You set the command on the button in exactly the same way as you did for the menu.

>>> button.Click += lambda sender, event: command.execute()

The toolbar buttons are added to the Items collection of the ToolStrip. Again we
want the toolbar to appear at the top of the form, just below the menu strip. To do

10 Which is perhaps unfair for a color that has such a noble history. It was one of the few colors my first computer
could display. The name magenta also has a history both more noble and ghastly than you might realize. It
was named after the Battle of Magenta in Italy in 1859.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

105Integrating commands with our running example
this, you still use DockStyle.Top, but you have to add the toolbar to the form after the
menu. The toolbar will then be docked to the bottom of the menu.

>>> toolbar = ToolStrip()
>>> toolbar.Items.Add(button)
>>> toolbar.Dock = DockStyle.Top

By default, the toolbar comes with a gripper, which can be used to move it around. But,
also by default, you can’t move the toolbar around, so it makes sense to hide it. You do
this with another wonderful Windows Forms enumeration: the ToolStripGripStyle.

>>> toolbar.GripStyle = ToolStripGripStyle.Hidden

Now you know enough to use both toolbars and menus in MultiDoc.

4.4.3 Bringing the GUI to life

You’ve now written your commands, and learned all you need to know to wire them
into the MultiDoc user interface. You need to make some changes in the presentation
layer and our MainForm class, as well as some additions to the imports to support the
new code.

 Listing 4.8 shows the expanded import code for the new and improved MultiDoc
(hey, we’re getting there!). It includes the code that determines the path to the proj-
ect directory, so that you can load the icon.

 Providing a menu and toolbar means using lots of extra names from the Windows
Forms namespace, a lot of which are enumerations for configuration. You could replace
the long list of names with from System.Windows.Forms import *. This wouldn’t show
you explicitly which names you’re using (and would pollute the namespace with a lot
more names that you’re not using); personally, I think it’s bad practice. Jim Hugunin dis-
agrees with me, so you’ll have to decide whom you trust more!11

import clr
clr.AddReference('System.Drawing')
clr.AddReference('System.Windows.Forms')

from System.Drawing import Bitmap, Color, Size
from System.IO import Directory, Path, StreamWriter
from System.Windows.Forms import (
 Application, DialogResult, DockStyle, Form,
 Keys, MenuStrip, MessageBox, MessageBoxButtons,
 MessageBoxDefaultButton, MessageBoxIcon,
 ScrollBars, SaveFileDialog, TabAlignment,
 TabControl, TabPage, TextBox,
 ToolStripItemDisplayStyle, ToolStrip,

Listing 4.8 Full import code for expanded MainForm

11 In fact, Jim is virtually alone amongst experienced Pythonistas in advocating from module import *, but he
does have an interesting point. He argues that, instead of polluting the current namespace, it should add the
namespace of the imported module to those searched when names are looked up, behavior which matches
the semantics of other languages such as VB.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

106 CHAPTER 4 Writing an application and design patterns with IronPython
Figure 4.10 The MultiDoc Editor with
Save and Save As commands, using a
menu and a toolbar

 ToolStripButton, ToolStripGripStyle,
 ToolStripMenuItem
)

executablePath = __file__
if executablePath is None:
 executablePath = Application.ExecutablePath
executableDirectory = Path.GetDirectoryName(executablePath)

You’ve accumulated all the knowledge you need to integrate the commands into
MainForm, a process that will change it almost out of recognition. Previously, it was a
simple class, only twenty-four lines of code initializing a couple of components, barely
deserving of its own class. Here, the view comes into its own, and the new additions to
MainForm swell it substantially. We’ve split the changes into several segments to make
them easier to digest. Once you’ve pieced all these changes together, not forgetting
the commands and model classes, running MultiDoc should result in something that
looks remarkably like figure 4.10. Clicking the
toolbar icon, or using the menu options, should
bring up the Save File dialog box.

 Listing 4.9 shows the new MainForm construc-
tor. You need to add the calls to new methods to
initialize the commands, menus, and toolbar.
Both the toolbar and top-level menu are posi-
tioned using DockStyle.Top. To get the desired
layout (menu at the top of the form, followed by
the toolbar), the toolbar must be initialized before
the menu.

 The initializeCommands method is trivially
simple, so we’ve included it here. We’ll go
through the next two methods individually.

class MainForm(Form):
 def __init__(self):
 Form.__init__(self)
 self.Text = 'MultiDoc Editor'
 self.MinimumSize = Size(150, 150)

 tab = self.tabControl = TabControl()
 self.tabControl.Dock = DockStyle.Fill
 self.tabControl.Alignment = TabAlignment.Bottom
 self.Controls.Add(self.tabControl)

 doc = self.document = Document()
 self.tabController = TabController(tab, doc)

 self.initializeCommands()
 self.initializeToolbar()
 self.initializeMenus()

Listing 4.9 New MainForm constructor and initializeCommands

Determines project directory
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

107Integrating commands with our running example
 def initializeCommands(self):
 tabC = self.tabController
 doc = self.document
 self.saveCommand = SaveCommand(doc, tabC)
 self.saveAsCommand = SaveAsCommand(doc, tabC)

The code for creating new menu items and new toolbar buttons is simple, but a bit
verbose. It would be tedious to have to type all the code for each new menu item and
toolbar icon. Both initializeToolbar and initializeMenus follow the same pat-
tern; a top-level method creates the main control, which calls into a submethod for
creating each of the items. The two methods for creating the toolbar are shown in list-
ing 4.10.

 Here the submethod is called addToolbarItem. The top-level control is the Tool-
Strip, which is configured and added to the form’s collection of controls. The tool-
bar icon needs some text to display as the tooltip, a function to call for the click
handler, and a path to the icon file. These three things are the arguments that
addToolbarItem takes.

 def initializeToolbar(self):
 self.iconPath = Path.Combine(executableDirectory, 'icons')
 self.toolBar = ToolStrip()
 self.toolBar.Dock = DockStyle.Top
 self.toolBar.GripStyle = ToolStripGripStyle.Hidden

 self.addToolbarItem('Save',
 lambda sender, event: self.saveCommand.execute(),

➥ 'save_16.ico')
 self.Controls.Add(self.toolBar)

 def addToolbarItem(self, name, clickHandler, iconFile):
 button = ToolStripButton()
 button.Image = Bitmap(Path.Combine(self.iconPath, iconFile))
 button.ImageTransparentColor = Color.Magenta
 button.ToolTipText = name
 button.DisplayStyle = ToolStripItemDisplayStyle.Image
 button.Click += clickHandler

 self.toolBar.Items.Add(button)

Creating the menu is similar; the method createMenuItem is responsible for creating
the individual menu items. There’s a slight complication—the class used to represent
the individual items is also used to represent the container menus like File. Sometimes
ToolStripMenuItem needs to be configured with a click handler, and sometimes with-
out. To get around this, the handler and keys (for the shortcut key) arguments to
createMenuItem are optional. Listing 4.11 shows the full code for creating the menus.

 def initializeMenus(self):
 menuStrip = MenuStrip()

Listing 4.10 Methods to create main toolbar and Save button

Listing 4.11 Methods to create menu strip and submenus

Sets up commands

Adds Save
button

Adds toolbar
to form

Main menu strip
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

108 CHAPTER 4 Writing an application and design patterns with IronPython
 menuStrip.Dock = DockStyle.Top

 fileMenu = self.createMenuItem('&File')

 saveKeys = Keys.Control | Keys.S
 saveMenuItem = self.createMenuItem(
 '&Save...',
 handler = lambda sender, event: self.saveCommand.execute(),
 keys=saveKeys
)

 saveAsKeys = Keys.Control | Keys.Shift | Keys.S
 saveAsMenuItem = self.createMenuItem(
 'S&ave As...',
 lambda sender, event: self.saveAsCommand.execute(),
 keys=saveAsKeys
)

 fileMenu.DropDownItems.Add(saveMenuItem)
 fileMenu.DropDownItems.Add(saveAsMenuItem)

 menuStrip.Items.Add(fileMenu)
 self.Controls.Add(menuStrip)

 def createMenuItem(self, text, handler=None, keys=None):
 menuItem = ToolStripMenuItem()
 menuItem.Text = text

 if keys:
 menuItem.ShortcutKeys = keys
 if handler:
 menuItem.Click += handler
 return menuItem

As you can see, even with adding just this basic functionality, MainForm has grown
quite a bit. It’s now recognizable as an application, and it actually does something! To
get this far, you’ve used .NET classes from several different namespaces, and you have
the structure in place to make adding more features easy.

4.5 Summary
In this chapter, you’ve created the beginnings of the MultiDoc application. Along the
way, you’ve learned new things about Python, such as the use of lambda functions, and
used .NET classes such as Path and StreamWriter. Through the use of design patterns,
you’ve provided infrastructure for adding menus and toolbar items, keeping the data
model and the view in sync, and for saving the text from a single page.

 MultiDoc still doesn’t fulfill the specification, though. You still need to add the fol-
lowing features:

■ The ability to add and remove tab pages
■ Saving of multipage documents
■ Loading of documents

You could add many more features, just to provide what people think of as essential
requirements in such a basic program. Writing an application is a big task. Even so,

Creates File menu

Creates Save menu item

Creates Save As menu item

Adds items to File
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

109Summary
thanks to the succinctness of Python, MultiDoc currently stands at less than 250 lines
of code including blank lines.

 To add extra tabs without losing functionality, you’ll need to be able to save multi-
page documents. Our basic text format won’t quite cut it, so we start the next chap-
ter with a writer that can handle multiple pages. On top of this, you’ll add a docu-
ment loader, which will require the use of another design pattern, and a command to
open documents.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

First-class functions
 in action with XML
In the previous chapter, we started creating a multipage document editor called
MultiDoc. The aim is to create a desktop application that can load and save multi-
page documents stored in a single file. In this chapter, we show the implementation
of a core part of this specification: the ability to save and load multipage documents
stored as XML. You’ll add new load and save commands to MultiDoc, using classes
in the System.Xml assembly. In the process, we’ll explore an extensible approach to
reading XML with IronPython.

 One of the big differences between Python and traditional .NET languages is its
support for first-class functions. We start this chapter by looking at what first-class
functions are and how they can help you write shorter and more beautiful code.

This chapter covers
■ First-class and higher order functions
■ Python decorators
■ Reading and writing XML
■ An XML file format for MultiDoc
110

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

111First-class functions
Next, we turn our attention to working with the .NET XML classes and putting what
you’ve learned about functions to work.

 First, on with the first-class functions.

5.1 First-class functions
In a programming language, functions are first class if they’re just another kind of
object—you can create them at runtime and pass them around your code, including
using them as arguments to functions or return values from functions.

 First-class functions are a core part of the functional-programming style of pro-
gramming. Functional programming breaks problems into a set of functions. Prefera-
bly, these functions should only have inputs and outputs, neither storing internal state
nor having side effects.

 To programmers used to working with object-oriented languages, this seems an
odd set of constraints—almost a step backwards. But there are some advantages to this
style. Along with encouraging modularity, elegance and expressiveness are the biggest
advantages. It’s also theoretically possible to construct formal proofs of purely func-
tional programs—which has attracted a lot of interest in academic circles.

 One aspect of first-class functions that you met in the Python tutorial is inner
functions. These are functions defined inside the body of another function or
method. If you have code repeated inside a function, it’s often tidier to factor this out
into another function. If the code uses several local variables, then it may require too
many arguments if turned into a separate method. In this case, it can make sense for
it to be an inner function that has access to any of the variables in the scope in which
it’s defined.

 There’s another class of functions commonly used in functional programming:
higher order functions.

5.1.1 Higher order functions

Functions that take functions as arguments or return functions are called higher order
functions. Functions that work with functions can be extremely useful. They allow you
to separate out parts of a program more easily; for example, a higher order function
might provide a traversal of a data structure, where the function you pass in decides
what to do for each item.

 This technique is highly reminiscent of the strategy pattern from Design Patterns:
Elements of Reusable Object-Oriented Software :1

Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients
that use it.

You can implement this pattern very simply with higher order functions. Imagine
you’re writing a banking application that handles many different transactions. You

1 The strategy pattern is the last pattern described in this 1995 book.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

112 CHAPTER 5 First-class functions in action with XML
need to apply these transactions to accounts, rolling back the transactions in the event
of an error (such as insufficient funds in one of the accounts). Transactions of many
different types can be created, but the code that consumes the transactions should be
able to apply them without knowing anything about how they’re implemented.

 A function to create a transaction may look something like this:

def get_transfer(account1, account2, amount):
 def do_transfer():
 account1.withdraw(amount)
 account2.deposit(amount)

 return do_transfer

The do_transfer function is for transactions that transfer money from one account
to another. do_transfer closes over the parameters to get_transfer and encapsu-
lates them. The parameters will be used when do_transfer is applied.

The transaction is applied by apply_transaction.

def apply_transaction(transaction, connection):
 connection.begin_transaction()
 try:
 transaction()
 except TransactionError:
 connection.abort_transaction()
 return False
 else:
 connection.commit_transaction()
 return True

apply_transaction can apply any transaction. It handles errors, aborting the transac-
tion in case of error. It returns True or False depending on whether the transaction
succeeds or not. The advantage of this kind of structure is that you can change how
the transactions are applied in a single place, and individual transactions can be mod-
ified without affecting how they’re used.

 Another place where higher order functions commonly turn up in Python is in the
form of decorators.

Functions and the __call__ method
Functions are only one example of callable objects in Python. You can create your own
callable objects, which behave like functions, by implementing the __call__ method.

class Callable(object):
 def __call__(self, x):
 print x

Instances of the Callable class are callable like functions.

>>> instance = Callable()
>>> instance('hello')
hello
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

113First-class functions
5.1.2 Python decorators

It turns out that writing a function that takes a function, and then wraps it, is a common
idiom in Python. Python has syntax to make this easier, syntactic sugar called decorators.

 First, we show you an example that doesn’t use the decorator syntax. We wrap a
function so that it prints whenever it is called. In practice, you might put logging or
timing code inside the wrapper function.

>>> def somefunction():
... return "From somefunction"
...
>>> def wrapper(function):
... def inner():
... print "From the wrapper"
... return function()
... return inner
...
>>> wrapped = wrapper(somefunction)
>>> print wrapped()
From the wrapper
From somefunction

The decorator syntax allows a nicer way of expressing the line wrapped = wrapper
(somefunction). You’ll especially appreciate it if you want to decorate all the methods
in a class. Decorators use the @ symbol, along with the name of the decorator function,
above the function definition.

>>> @wrapper
>>> def somefunction():
... print "I've been called"
...
>>> somefunction()
From the wrapper
I've been called

When you decorate a function, the function name is automatically rebound to the
wrapped function rather than the original one. So is this actually useful? Let’s look at
how you can use this to automate a repetitive task like checking method arguments
for null values.

5.1.3 A null-argument-checking decorator

Even with static typing, method parameters can still be None (or null, using .NET
speak) in .NET languages such as C#. If your code requires that the argument is valid
and can’t be null, then it’s common to have code like the following:

void Present(Region present, Region selection)
{
 if (present == null)
 { throw new ArgumentNullException("present"); }
 if (selection == null)
 { throw new ArgumentNullException("selection"); }

 // Actual code that we care about
}

Inner function

Calls wrapped function

Wraps somefunction

Marks somefunction as decorated
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

114 CHAPTER 5 First-class functions in action with XML
In Python, you can write a decorator that checks function arguments and raises a
TypeError if any of them are None. Any methods that you want to check in this way
can then be decorated.

 To do this, you need a decorator that returns a wrapped function. The wrapper
should check all the arguments before calling the function or method that’s wrap-
ping. The wrapper function will need to call the wrappee with the same arguments it’s
called with, and return the value that the wrapped function returns. This should do
the trick:

def checkarguments(function):
 def decorated(*args):
 if None in args:
 raise TypeError("Invalid Argument")
 return function(*args)
 return decorated

Any arguments a wrapped function is called with are collected as a tuple (args). If any
of these arguments are None (if None is in args), then a TypeError is raised. You use it
like this:

class MyClass(object):

 @checkarguments
 def method(self, arg1, arg2):
 return arg1 + arg2
>>> instance = MyClass()
>>> instance.method(1, 2)
3
>>> instance.method(2, None)
Traceback (most recent call last):
TypeError: Invalid Argument

You should pass the parameter name when you raise the exception. You could do this
by using introspection on the function object, but that’s another subject altogether.

 OK, we’ve had some fun with functions in Python. Now it’s time to put what you’ve
learned to practical use in working with XML.

5.2 Representing documents with XML
XML is a text-based format that uses tags to structure data. XML is certainly no silver bul-
let when it comes to persisting data; it’s generally verbose and, for complex data struc-
tures, inefficient. On the other hand, XML is a text-based format. If something goes
wrong with your program, it’s easier to see what’s going wrong than with a binary format.

 An XML document will look something like the following segment:

<?xml version="1.0" encoding="utf-8"?>
<rootelement>
 <childelement1 attribute="An attribute value.">An element value, with parsed

character data.</childelement1>
 <childelement2><![CDATA [An element value, with unparsed character data.

]]></childelement2>
</rootelement>
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

115Representing documents with XML
The encoding declaration at the start is optional, but useful if the document is in an
encoding other than ASCII or UTF-8. XML is a hierarchical format, so it must contain a
root element, which contains the rest of the document. The root element can contain
child elements, which themselves can contain child elements nested to whatever
degree of horrific complexity you desire.

 XML elements are simple, but wrap together several concepts. Figure 5.1 shows all
the components of an element.

 The text content contained between an element start tag and the end tag is
restricted. Angle brackets in the text could be confused for the start of a new tag,
unless they’re escaped. The XML spec stipulates five characters that should be escaped
with entity references. Table 5.1 shows the characters that need to be escaped and
their corresponding entity references.

Good XML writing and parsing libraries will handle the escaping and un-escaping for
you; but, if your text contains a lot of these characters, it can make the resulting XML
much less human-readable. Plain text content, which needs escaping and un-escap-
ing, is called parsed data. An alternative is to include the text content in unparsed
character data blocks, like the one from the previous XML document:

<![CDATA[An element value, with unparsed character data.]]>

But there’s a disadvantage to CDATA blocks. They must not contain]]> inside the text,
and there’s no way of escaping them if they do occur. If you need to include arbitrary
text—sourced from a user, for example—then CDATA blocks may not be suitable.

Table 5.1 XML escaped characters and their corresponding entity references

Character Entity reference Name

< < less than

> > greater than

& & ampersand

' ' apostrophe (quoting only mandatory in attribute values)

" " quotation mark (quoting only mandatory in attribute values)

Figure 5.1 An XML element in all its glory
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

116 CHAPTER 5 First-class functions in action with XML
Back to the subject at hand: representing documents with XML. document will make
an excellent root level element. You also need an element to represent pages. Each
page has a title and contents. It seems logical that the title should be an attribute of
the page start tag, and that the page contents should be the text content between the
start and end elements. This will leave you with documents that look like the follow-
ing segment:

<?xml version="1.0" encoding="utf-8"?>
<document>
 <page title="The page title">This is the contents of the first page.</page>
 <page title="Page Two">This is another page, as beautiful as the first.</

page>
</document>

Now that the structure for representing documents is decided, you need to write the
code to turn the model objects into XML.

5.2.1 The .NET XmlWriter

The .NET XML support is enshrined in the System.Xml assembly. The System.Xml
namespace has classes for reading and writing XML. There are further namespaces for
working with XML schema, XSLT transformations, and XPath queries. Table 5.2 shows
the major XML namespaces in .NET 2.0.

The basic classes for reading and writing XML documents are the XmlReader and Xml-
Writer. Because you’ll be modifying the SaveCommand, we start with the XmlWriter.

 XmlWriter is designed for creating conformant documents. The documents it cre-
ates will be valid XML, capable of being read by any standards-based reader. Along
with the XmlWriter class, you use XmlWriterSettings. This is a class used for config-
uring an XmlWriter instance; you set attributes on the XmlWriterSettings instance to
configure how the XML is written out.

 Table 5.3 shows the different settings (properties) on XmlWriterSettings. The
defaults are largely sensible, but we do like to change a couple. We like the XML tags

Table 5.2 The .NET XML namespaces

Namespace Purpose

System.Xml Provides support for standards-based XML support. Includes
the XmlReader and XmlWriter classes.

System.Xml.Schema Support for XML Schemas in the form of schema definition
language (XSD) schemas.

System.Xml.Serialization Classes to serialize objects in XML form.

System.Xml.XPath Classes to work with the XQuery 1.0 and XPath 2.0 Data Model.

System.Xml.Xsl Support for Extensible Stylesheet Language Transformation
(XSLT) transforms.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

117Representing documents with XML
to be indented with each level of nesting. This gives you a visual indication of the
structure of the document (and we all know that indentation to indicate structure is a
brilliant idea). The following segment creates an XmlWriterSettings instance, and
sets the two properties required for indentation with four spaces. Because you haven’t
yet used the System.Xml assembly, you first need to add a reference to it.

>>> import clr
>>> clr.AddReference('System.Xml')
>>> from System.Xml import XmlWriter, XmlWriterSettings
>>> settings = XmlWriterSettings()
>>> settings.Indent = True
>>> settings.IndentChars = ' ' # four spaces

You don’t instantiate a new XmlWriter instance directly; instead, you call the static
method Create, which returns a new instance of the correct type of writer for the set-
tings passed in. There are various call signatures for Create; for example, you could
pass in a filename and your settings object, and the writer would create the file for
you. If you don’t want the writer to be responsible for creating the file, you can pass in
an opened FileStream instead. In the segments that follow, you’ll pass in a String-
Builder instance. StringBuilder is in the System.Text namespace, and is a mutable
string type—it allows strings to be built up incrementally.

 An odd side effect of passing a StringBuilder to the XmlWriter is that it will
refuse to write any encoding in the XML declaration other than UTF-16.2 Because

Table 5.3 The properties of XmlWriterSettings and the default values

Property Initial value

CheckCharacters True

CloseOutput False

ConformanceLevel Document

Encoding Encoding.UTF8 (Encoding lives in the
System.Text namespace, and is a useful class.)

Indent False

IndentChars Two spaces

NewLineChars \r\n (carriage return, new line)

NewLineHandling Replace

NewLineOnAttributes False

OmitXmlDeclaration False

2 Because the writer is writing into a string, which is still Unicode and has no encoding yet, it’s no wonder that
it gets confused. The logic is possibly that the Windows internal UCS2 Unicode representation is most like
UTF-16. Still, ignoring the explicit encoding on the XmlWriterSettings is a dubious practice.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

118 CHAPTER 5 First-class functions in action with XML
you’re likely to be happy with the default encoding of UTF-8, you set OmitXmlDeclara-
tion to True.

>>> settings.OmitXmlDeclaration = True
>>> from System.Text import StringBuilder
>>> document = StringBuilder()
>>> writer = XmlWriter.Create(document, settings)
>>> writer.WriteStartDocument()
>>> writer.WriteStartElement("document")
>>> writer.WriteStartElement("page")
>>> writer.WriteAttributeString("title", "A page title")
>>> writer.WriteString("This is a page contents")
>>> writer.WriteEndElement()
>>> writer.WriteEndElement()
>>> writer.WriteEndDocument()
>>> writer.Flush()
>>> writer.Close()
>>> print document.ToString()
 <document>
 <page title="A page title">This is a page contents</page>
 </document>

This is great because (by happy coincidence) it’s exactly the kind of structure that we
want for our documents. Having to remember to close all the elements in the right
order is a nuisance, though. This is what happens if you get it wrong:

>>> document = StringBuilder()
>>> writer = XmlWriter.Create(document, settings)
>>> writer.WriteEndElement()
Traceback (most recent call last):
 File System.Xml, line unknown, in WriteEndElement
 File System.Xml, line unknown, in AdvanceState
 File System.Xml, line unknown, in ThrowInvalidStateTransition
SystemError: Token EndElement in state Start would result in an invalid XML document.
Make sure that the ConformanceLevel setting is set to ConformanceLevel.Fragment or
ConformanceLevel.Auto if you want to write an XML fragment.

Oops. A sensible way to avoid this is to make sure that your XML document structure
and your program structure are as similar as possible. Ideally, a top-level method
should create (and close) the root node, calling down to submethods to write out its
child elements. Each method should only be responsible for creating and closing a
single element, again calling submethods for their child elements. This way you know
that, as long as the code runs to completion, every element will be closed and the
result will be valid XML. A nice side effect is that this is also a good way to write modu-
lar and readable code—which is important because you’re writing Python. In the next
section, we apply this strategy to MultiDoc.

5.2.2 A DocumentWriter Class

Writing out XML from a MultiDoc document is an important enough job that we can
encapsulate it in its own class. This keeps the logic separate from the other machina-
tions of the save commands, and easier to understand.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

119Representing documents with XML
NOTE By the end of chapter 4, we were still keeping the MultiDoc project as a
single file, which was getting large and unwieldy. To make it easier to
work with and provide a better application structure, you can break Mul-
tiDoc down into several modules containing the core classes. You can see
this structure if you download the source code that accompanies this
book. All the code from here on contains the appropriate imports to use
our classes from the correct modules.

Listing 5.1 shows the DocumentWriter for MultiDoc; it uses XmlWriter and is instanti-
ated with a filename. To write out the document, you must call write, passing in an
instance of a MultiDoc document. The write method is responsible for creating the
XmlWriter instance and opening and closing the root element of the XML. It calls
down to writePage for each page in the document, creating the page element with
title attribute.

from System.Xml import XmlWriter, XmlWriterSettings

class DocumentWriter(object):

 def __init__(self, fileName):
 self.fileName = fileName

 def write(self, document):
 settings = XmlWriterSettings()
 settings.Indent = True
 settings.IndentChars = ' '
 settings.OmitXmlDeclaration = True
 self.writer = XmlWriter.Create(self.fileName, settings)

 self.writer.WriteStartDocument()
 self.writer.WriteStartElement("document")

 for page in document:
 self.writePage(page)

 self.writer.WriteEndElement()
 self.writer.WriteEndDocument()
 self.writer.Close()

 def writePage(self, page):
 self.writer.WriteStartElement("page")
 self.writer.WriteAttributeString("title", page.title)
 self.writer.WriteString(page.text)
 self.writer.WriteEndElement()

This class needs to be saved as the file documentwriter.py. To plug this into MultiDoc,
you need to modify the commands to use it. First, DocumentWriter needs to be
imported inside the savecommands module.

from documentwriter import DocumentWriter

The SaveAsCommand inherits from SaveCommand, and the file writing is done in the
saveFile method. You can get most of the way toward the changes you want by modi-
fying saveFile as follows:

Listing 5.1 A DocumentWriter class that writes out MultiDoc documents as XML

Configures
XML settings

Creates
writer
object

Writes each page
in document
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

120 CHAPTER 5 First-class functions in action with XML
 def saveFile(self, fileName, document):
 try:
 writer = DocumentWriter(fileName)
 writer.write(document)
 return True
 except IOError, e:
 ...

Previously the execute and promptAndSave methods of the commands only needed to
pass some text to saveFile; now they need to pass the document instead. The document
still needs to be updated before saving, so getText becomes getUpdatedDocument.

 def getUpdatedDocument(self):
 self.tabController.updateDocument()
 return self.document

The execute method of both SaveCommand and SaveAsCommand must be modified to
call getUpdatedDocument, and to pass the document through to saveFile and save-
AndPrompt. These changes are simple; and, rather than using space here we leave you
to figure them out. If you want to see the changes, they’re in the 5.3 folder of the
sources that go with this book.

 The DocumentWriter you’ve created follows the structure we suggested earlier,
with a top-level method that writes out the top-level node (write). This calls down to
writePage to write out the child page nodes. To do this, the XmlWriter has to be
stored as state on the DocumentWriter, as the self.writer instance variable. Because
you only have one root node, the structure is simple. You could avoid having to store
state by refactoring to use an inner function.

5.2.3 An alternative with an inner function

The writePage method is simple. You can refactor this into an inner function that
takes a page as its argument. It needs access to the writer, which can be a local variable
in its enclosing scope, which is the body of the write method.

 The refactored write method looks like listing 5.2.

def write(self, document):
 settings = XmlWriterSettings()
 settings.Indent = True
 settings.IndentChars = ' '
 settings.OmitXmlDeclaration = True
 writer = XmlWriter.Create(self.fileName, settings)

 writer.WriteStartDocument()
 writer.WriteStartElement("document")

 def WritePage(page):
 writer.WriteStartElement("page")
 writer.WriteAttributeString("title", page.title)
 writer.WriteString(page.text)
 writer.WriteEndElement()

Listing 5.2 Implementation of DocumentWriter.write using an inner function
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

121Reading XML
 for page in document:
 WritePage(page)

 writer.WriteEndElement()
 writer.WriteEndDocument()
 writer.Flush()
 writer.Close()

This version of write is still an acceptable length, and the number of occurrences of
self have been dramatically reduced, making the code more readable!

TIP There’s a performance implication when defining inner functions. The
def statement is executed every time the method containing it is executed.
It isn’t a high cost, but may become significant if it’s in a performance-
sensitive part of your code. Inner functions close over the variables in their
containing scope. They’re most useful when you need a new closure for
each execution.

Now that we’ve created a way of writing MultiDoc documents in XML formats, we
ought to provide a way of reading them back in again.

5.3 Reading XML
The counterpart to XmlWriter is XmlReader. Although logically it’s the inverse of
XmlWriter, XmlReader is slightly more complex; it has almost twice as many public
properties and methods. A lot of these are to allow you to read typed data from an
XML file.

5.3.1 XMLReader

XmlReader is usually instantiated in the same way as XmlWriter—through the static
Create method. There’s a plethora of different overloads for creating new instances;
you can supply a stream, TextReader, or a resource locator as a string. You can also
optionally pass in XmlReaderSettings and an XmlParserContext, and just about any
combination of these items.

NOTE There are two common approaches to parsing XML. The first, perhaps
more intuitive, is to read the whole document and access the Document
Object Model in memory. This is known as DOM parsing, and it turns out
to be very cumbersome in practice. This chapter uses event-driven pars-
ing, which fires events as elements of the document are read in.

The resource locator doesn’t need to be a filename; it can also be a URI3 so that the
XML document can be fetched from the internet. The default XmlResolver used by
XmlReader is an XmlUrlResolver, which supports URIs that use the http:// and file://
protocols. You can supply authentication credentials, or use a different resolver by set-
ting it on the instance of XmlReaderSettings that you use to Create your XmlReader.

3 Uniform Resource Indicator—a term often used interchangeably with URL (Uniform Resource Locator), but
supposedly more general.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

122 CHAPTER 5 First-class functions in action with XML
 The most convenient way, especially for this use case, is to supply a filename and an
XmlReaderSettings instance. Table 5.4 shows the configurable properties on Xml-
ReaderSettings, along with their default values. If you were reading only a fragment
of XML, you might want to set ConformanceLevel to ConformanceLevel.Fragment. If
the XML could have processing instructions that you don’t want to handle, then you
can set IgnoreProcessingInstructions to True.

Curiously, the default is for the XmlReader to not ignore insignificant whitespace (for
example, whitespace that indents elements rather than being part of an attribute
value or element content). Because you probably won’t want to handle insignificant
whitespace, the following code segment shows the pattern you’ll be using for creating
and configuring an XmlReader:

from System.Xml import XmlReader, XmlReaderSettings
settings = XmlReaderSettings()
settings.IgnoreWhitespace = True
reader = XmlReader.Create(filename, settings)

Once you’ve opened the XML file with XmlReader, the most straightforward way to use
your instance is to repeatedly call the Read method. This consumes the document,
one node at a time, exposing information about each node.

 On completion, you should call reader.Close(), which frees the file. Forgetting
to do this will cause the file to be held open until the reader is garbage-collected.

Table 5.4 The properties of XmlReaderSettings and the default values

Property Initial value

CheckCharacters True

ConformanceLevel ConformanceLevel.Document

IgnoreComments False

IgnoreProcessingInstructions False

IgnoreWhitespace False

LineNumberOffset 0

LinePositionOffset 0

NameTable None

ProhibitDtd True

Schemas An empty XmlSchemaSet object

ValidationFlags ProcessIdentityConstraints enabled

ValidationType ValidationType.None

XmlResolver A new XmlUrlResolver object
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

123Reading XML
 If you take the straightforward approach to reading MultiDoc files, the code would
be simple, but also tedious and trivial. To make this section more interesting (and pos-
sibly even useful), we look at a more general approach to reading XML documents.

5.3.2 An IronPython XmlDocumentReader

A useful pattern for implementing a Read loop is to establish handlers for the types of
node that you expect. Read can be called in a simple loop, delegating to the handlers
for each node you encounter.

 Our documents have elements, with or without attributes and with or without con-
tents. This doesn’t use the whole XML spec, not by a long stretch of the imagination.
XML has many additional aspects to it, such as CDATA, namespaces, and processing
instructions. You could write more handlers for these components we haven’t yet dealt
with, but a significant proportion of XML documents are made up of nothing more
than elements, attributes, and text.

 The following code is a general XmlDocumentReader class. It’s adapted from a simi-
lar class used in Resolver One; many thanks to the kind Resolver Systems folk for let-
ting us use and abuse the code. We’ve mangled it quite a bit from the original, so any
bugs are entirely of our own devising. As well as being a general (and easily extensi-
ble) XML reading class, it’s another example of using Python functions as first-class
objects. The node handlers are packaged as a dictionary of node types mapping to
functions (or methods) that know how to process them.

 Listing 5.3 shows the imports and the constructor for XmlDocumentReader. It’s instan-
tiated with the node handling functions. These will be explained when we get to using
them, and we’ll put together a concrete example for reading MultiDoc documents.

import clr
clr.AddReference('System.Xml')

from System.Xml import (
 XmlException, XmlNodeType,
 XmlReader, XmlReaderSettings
)

MISSING_HANDLERS = (None, None, None)

class XmlDocumentReader(object):
 def __init__(self, elementHandlers):
 self._elementHandlers = elementHandlers

Listing 5.4 is the read method of XmlDocumentReader. The element handlers passed
into the constructor will be called when the reader encounters different elements in
the document. This happens within the onStartElement method, which is called
whenever an element start tag is encountered. Because you’re just handling elements,
attributes, and contents, you need only three general node handlers: element start
tags, element end tags, and the text contents of elements. Element attributes will be
dealt with inside the element start tag node handler (listing 5.4).

Listing 5.3 Importing code and constructor for XmlDocumentReader

Deals with
unrecognized
elements

Dictionary mapping
handlers to element types
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

124 CHAPTER 5 First-class functions in action with XML
def read(self, filename):
 settings = XmlReaderSettings()
 settings.IgnoreWhitespace = True
 reader = XmlReader.Create(filename, settings)

 self._currentElement = None

 nodeTypeHandlers = {
 XmlNodeType.Element : self.onStartElement,
 XmlNodeType.EndElement : self.onEndElement,
 XmlNodeType.Text : self.onText
 }

 try:
 while reader.Read():
 nodeType = reader.NodeType
 handler = nodeTypeHandlers.get(nodeType)
 if handler:
 handler(reader)
 else:
 raise XmlException(
 "invalid data at line %d" %
 reader.LineNumber)
 finally:
 reader.Close()

nodeTypeHandlers is a dictionary mapping the different XmlNodeTypes to handler
functions. The call to reader.Read() advances the reader to the next node. It returns
True if the reader finds a node, or False when the end of the document is
read—which ends the reading loop.

 nodeTypeHandlers.get(reader.NodeType) looks up the current node in the dic-
tionary of handlers. If the node type isn’t recognized, then get returns None and an
XmlException4 is raised. If the node type is recognized, then the handler is called and
the reader passed in. Figure 5.2 shows how the read loop maps XML components it
encounters into the handler method calls.

 The finally block around the read loop ensures that the reader is closed, what-
ever error might occur.

Listing 5.4 XmlDocumentReader read method

4 From the System.Xml namespace.

Tracks which
element you’re in

Maps node types
to handlers

Loops through
document

Calls relevant node handler

Figure 5.2 The mapping of an XML document to node handler calls
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

125Reading XML
The first node handler is onStartElement. This will be called when the reader
encounters a start element tag such as <document> or <page title="Page title">.
onStartElement is shown in listing 5.5.

def onStartElement(self, reader):
 name = reader.Name
 self._currentElement = name

 attributes = {}
 while reader.MoveToNextAttribute()
 attributes[reader.Name] = reader.Value

 startHandler = self._elementHandlers.get(name,
 MISSING_HANDLERS)[0]
 if startHandler:
 startHandler(reader.LineNumber, attributes)
 else:
 raise XmlException("invalid data at line %d" %
 reader.LineNumber)

onStartElement needs to extract the attributes from the element. These are collected
in the attributes dictionary in another loop that calls reader.MoveToNextAttrib-
ute(). Next you check in the _elementHandlers to see if you have a handler for this
type of element. If you do, the handler is called with the line number and attributes as
arguments. Otherwise, an XmlException is raised.

 _elementHandlers is a dictionary, and get returns a default value if the key (the
element name) is missing. You use MISSING_HANDLERS as the default value (as defined
in listing 5.1). Every element needs a handler for the start tag, end tag, and contents.

 Element handlers are passed into the constructor as a dictionary that maps element
names to the three handler functions. Elements can be self-closing (like <element />),
which means that they won’t have any contents or a separate end tag. The only required
handler is the start tag.5 The three handlers for each element type should be provided
in a tuple (which will become clearer later when you use XmlDocumentReader to read
MultiDoc documents). For handling the page element, you have these handlers:

elementHandlers = {
 'page': (handleStartPage, handlePageText, handleEndPage)
}

If you have elements that don’t have text contents or don’t need their end tag han-
dling, then you can replace these handlers with None.

elementHandlers = {
 'someElement': (handleStartPage, None, None)
}

MISSING_HANDLERS is a tuple of three Nones. self._elementHandlers.get(name,
MISSING_HANDLERS) will always return a tuple of three values. The start tag handler is

Listing 5.5 Node handler for start element tags

5 In fact, for self-closing elements, the XmlReader doesn’t call the end tag handler.

Current element name

Reads all attributes
from element

Finds right
element handler
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

126 CHAPTER 5 First-class functions in action with XML
the first value; if the element isn’t contained in the elementHandlers dictionary, then
this value will be None and an exception will be raised.

 The middle handler in the tuple, index position one, is the handler for the text
contents of elements. Listing 5.6 shows the code for the onText method. It’s similar to
onStartElement, but simpler, because it doesn’t need to collect attributes. Because
the text handler is optional, it doesn’t throw an exception if the text handler is None.
The text handler gets called with the same arguments as the start tag handler.

def onText(self, reader):
 element = self._currentElement
 textHandler = self.__elementHandlers.get(element,
 MISSING_HANDLERS)[1]
 if textHandler:
 textHandler(reader.LineNumber, reader.Value)

Tuples of element handlers have three members. The third member is the handler for
end element tags. Listing 5.7 shows onEndElement.

def onEndElement(self, reader):
 endHandler = self._elementHandlers.get(reader.Name,
 MISSING_HANDLERS)[2]
 if endHandler:
 endHandler(reader.LineNumber)

The end tag handler is called with the line number.
 In the first part of the chapter, we looked at first-class functions in Python. In this

part, we’ve put together a general-purpose XML reader class that uses handler func-
tions stored in a dictionary to process different nodes. As long as the handler func-
tions all have the same signature (by taking the same arguments), you’re free to
implement your handler functions how you want.

 To illustrate our general purpose reader at work, let’s implement the handler func-
tions needed for the MultiDoc XML save format.

5.4 Handler functions for MultiDoc XML

MultiDoc documents are represented
programmatically by the classes Docu-
ment and Page. To read them in, you
can use XmlDocumentReader to read the
XML and re-inflate the model classes.

 The stages of reading a saved docu-
ment are shown in figure 5.3.

 Steps 2 through 4 will obviously be
repeated for every page in the document.

Listing 5.6 Node handler for element text values

Listing 5.7 Node handler for end element tags

Fetches handler

Calls handler

Figure 5.3 Turning a MultiDoc XML document into
model class instances
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

127Handler functions for MultiDoc XML
To use XmlDocumentReader, you need to provide handler functions for these steps; the
handlers map to the steps as follows:

1 Document start element handler
2 Page start element hander
3 Page text handler
4 Page end element handler
5 Document end element handler

Before reading the file, you need to set up some state that will be used in the reading
process. You need to store the document when it’s first created, a list to read pages
into, and the filename to read. You also need to keep track of the current page so that
the text handler can attach the text to it.

 The document reader needs access to the model classes and the XmlDocument-
Reader. It will also do some verifying of the document structure, so you should import
XmlException. DocumentReader sounds like a reasonable name for a document
reader class. Listing 5.8 shows the imports and constructor for DocumentReader.

from model import Document, Page
from xmldocumentreader import XmlDocumentReader, XmlException

class DocumentReader(object):
 def __init__(self, fileName):
 self.fileName = fileName
 self.document = None
 self.currentPage = None
 self.pages = []

Because we spent some time creating and discussing XmlDocumentReader, it ought to
be easy to use. Listing 5.9 demonstrates just how easy.

def read(self):
 handlers = {
 'document': (self.onStartDocument,
 None,
 self.onEndDocument),
 'page': (self.onStartPage,
 self.onPageText,
 self.onEndPage)
 }
 self.reader = XmlDocumentReader(handlers)
 self.reader.read(self.fileName)
 return self.document

We’ve identified five handlers you need to pass in. Each element needs a tuple of
three handlers: start tag handler, text handler, and end tag handler. MultiDoc docu-
ments have a humble two tags: document and page. The document element has child

Listing 5.8 Initializing the DocumentReader

Listing 5.9 Setting up the handlers and calling XmlDocumentReader

Element handlers
for MultiDoc

Initializes
XmlDocumentReader
with handlers

Returns freshly created document
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

128 CHAPTER 5 First-class functions in action with XML
page tags, but no content; it doesn’t need a text handler, and the middle element can
be None. The read method of DocumentReader sets up these handlers, using yet-to-be-
defined methods. When XmlDocumentReader works its magic, the handlers are
called—which builds the document.

 The important pieces of the jigsaw puzzle are the handlers themselves. Listing 5.10
contains the document start and end tag handlers.

def onStartDocument(self, lineNumber, attributes):
 self.document = Document(self.fileName)

def onEndDocument(self, lineNumber):
 self.document.pages = self.pages

Both handles are simple. When you start reading the document (or, encounter the
document start tag), you create a new document with the right filename. By the time
you encounter the document end tag, you should have read all the pages, and onEnd-
Document should attach the pages to the document. XmlDocumentReader can then
complete and read return the document.

 Reading pages requires three handlers; the code for these is in listing 5.11.

def onStartPage(self, lineNumber, attributes):
 title = attributes.get('title')
 if title is None:
 raise XmlException('Invalid data at line %d' %
 lineNumber)
 self.currentPage = Page(title)

def onPageText(self, lineNumber, value):
 self.currentPage.text = value.replace('\n', '\r\n')

def onEndPage(self, lineNumber):
 self.pages.append(self.currentPage)

Pages need a title, which is extracted from the attributes in onStartPage. If the title is
missing, then the document is invalid, and an exception is raised. If a title is present,
then a new page is created and set as the current page.

 When the page contents are read in, the page is set as the current page in onPage-
Text. XmlDocumentReader reads in files using an XmlReader returned by XmlReader.
Create. XmlReader.Create returns an instance of XmlTextReader, which unsurpris-
ingly opens files for reading in text mode. Python tries to do you a favor by converting
\r\n line-endings into \n when you read files in text mode, which normally enables
you to ignore cross-platform differences when dealing with line endings. Unfortu-
nately, this favor backfires when you need to set the text on a Windows Forms control,
which doesn’t recognize \n as a line ending. To avoid this problem, onPageText con-
verts \n into \r\n in the value passed to it.

Listing 5.10 Handlers for the document element

Listing 5.11 Handlers for the page element
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

129The Open command
 When you reach the end page element, onEndPage adds the current page to the
page list.

 It may seem like there isn’t a lot of checking to ensure that the document is valid,
beyond a cursory check that the title is present. In fact, there’s quite a lot of checking
being done for you. Any unrecognized nodes or elements would cause an XmlExcep-
tion to be raised from inside XmlDocumentReader. If the XML document itself is
invalid (due to missing or misplaced tags, for example), then the .NET XmlReader will
raise an error. It will be important for you to catch these potential errors and alert the
user when you read in documents.

 DocumentReader is a concrete example of using XmlDocumentReader. Document-
Reader is a simple class, only 44 lines of Python code, but extending it to read more
complex documents and construct more intricate objects from them should be easy.

 Now that you’ve created these classes to form MultiDoc document objects from
saved files, you need to plug them into the user interface. To do this, you need an
open command.

5.5 The Open command
The OpenCommand is going to provide the mirror functionality to the SaveCommand and
will look similar.6 Instead of the SaveFileDialog, it will use its close (but equally famil-
iar) cousin, the OpenFileDialog (figure 5.4), so that the user can choose a file to open.
The open command is very similar to the save commands. The similarity even extends
to the imports—except that, obviously, OpenFileDialog is imported instead of
SaveFileDialog. OpenCommand also needs access to the DocumentReader class and

6 But, annoyingly, it’s different enough that little code that can be shared.

Figure 5.4
The OpenFileDialog
in action
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

130 CHAPTER 5 First-class functions in action with XML
Xml-Exception. If any errors are raised while reading a file, an XmlException will be
raised. To catch these errors, you need to import XmlException.

 Listing 5.12 is the imports and initialize for OpenCommand. Like SaveCommand, you
have a title and a filter for use on the dialog control.

from System.IO import Directory, Path
from System.Windows.Forms import (
 DialogResult, MessageBox,
 MessageBoxButtons, MessageBoxIcon,
 OpenFileDialog
)

from documentreader import DocumentReader, XmlException
from savecommands import filter

class OpenCommand(object):

 title = "Open Document"

 def __init__(self, mainForm):
 self.openFileDialog = OpenFileDialog()
 self.mainForm = mainForm

 self.openFileDialog.Filter = filter
 self.openFileDialog.Title = self.title

There are two things of note in this otherwise unremarkable code. The first is the
reuse of the filter from the save commands. When you switched to an XML file format,
you could have switched the save file extension too; personally, I (Michael) like .txt
because it makes the files easier to open with a text editor. The second thing is that
the OpenCommand constructor needs the MainForm passed in. When a new document is
created, it needs to be set back on MainForm.

 These commands need to implement an execute method. For OpenCommand, this is
the method that asks the user to choose a file and attempts to open it as a MultiDoc
file. You do the same manipulation with the filename (and directory) as you did for
the save commands. If the current document already has a filename, then you set the
initial directory and filename on the dialog box (listing 5.13).

def execute(self):
 fileName = self.mainForm.document.fileName
 directory = Path.GetDirectoryName(fileName)
 directoryExists = Directory.Exists(directory)
 openFileDialog = self.openFileDialog

 if fileName is not None and directoryExists:
 openFileDialog.InitialDirectory = directory
 openFileDialog.FileName = fileName

 if openFileDialog.ShowDialog() == DialogResult.OK:
 document = self.getDocument(openFileDialog.FileName)

Listing 5.12 Initializing the OpenCommand

Listing 5.13 execute method of OpenCommand

Asks
user for
filename

Attempts
to load
document
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

131The Open command
 if document:
 self.mainForm.document = document

If the call to openFileDialog.ShowDialog() returns DialogResult.OK, then the user
has selected a file, and self.getDocument is called with the filename. Reading the doc-
ument could result in an exception being thrown if the document is invalid. If an excep-
tion is raised, it’s trapped inside getDocument, and a MessageBox is displayed to the user
before None is returned. If a real document is returned, then it’s set on the MainForm.

 Listing 5.14 shows the implementation of getDocument.

def getDocument(self, fileName):
 try:
 reader = DocumentReader(fileName)
 return reader.read()
 except (IOError, XmlException), e:
 name = Path.GetFileName(fileName)
 MessageBox.Show(
 'Could not read file "%s"\r\nThe error was:\r\n%s' %
 (name, str(e)),
 "Error Saving File",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error
)
 return None

getDocument is almost identical to the saveFile method of SaveCommand, except for
the following three differences:

■ It uses DocumentReader instead of DocumentWriter.
■ It returns a new document object or None, instead of True or False.
■ It traps for a tuple of exceptions (IOError, XmlException).

Two possible errors can occur. The first is that you fail to read the file from disk, per-
haps due to a hard drive failure or the user whipping out a USB stick in between select-
ing the file with the dialog box and you actually managing to read it. This would cause
an IOError. Alternatively, the document could be badly structured, resulting in an
XmlException. If either situation happens, then you trap the error and alert the user
with a message box.

 At this point, we’d love to say that our work is done. Unfortunately, there’s a prob-
lem with this implementation of OpenCommand.

 When the new document is returned from getDocument, it’s set on the Main-
Form. It is not just the MainForm that holds a reference to the current document, but
also the TabController and the save commands. The TabController also needs to
take action when a new document is loaded—it needs to update the tabs to reflect
the new document.

 To solve this problem, chapter 6 will set up a document observer system. But
before we get to that, let’s review what we’ve done in this chapter.

Listing 5.14 The getDocument method of OpenCommand

Sets document on form
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

132 CHAPTER 5 First-class functions in action with XML
5.6 Summary
We started the chapter by looking at first-class functions in Python. Being able to treat
functions (or other callable objects) as ordinary objects enables some useful patterns.
There’s a lot more to functional programming than we’ve covered here. Functional
programming languages have been used mainly in academia, but they’ve been enjoy-
ing something of a renaissance recently. Languages like Haskell and Erlang are start-
ing to gain popularity, but they’re still seen as harder to learn than imperative
languages. Python supports functional programming, without limiting you to one par-
ticular style.

 The rest of the chapter was concerned with XML reading and writing for MultiDoc.
The approach we showed for reading should handle enough of the XML components
for reading complex documents. It should also be easily extensible (simply add more
node type handlers) for supporting parts of the XML spec that we haven’t covered.
The XmlDocumentReader class demonstrates the power of IronPython. The .NET
framework provides powerful and effective ways of dealing with XML that can be used
from IronPython with much less code (which means more readable code) than from
other .NET languages.

 We did a small refactoring of the SaveCommand to use the XML writing capabili-
ties, but we haven’t yet extended the MultiDoc user interface to incorporate the new
OpenCommand.

 The next chapter creates the additional features that MultiDoc is still missing, and
integrates them into the user interface. This is the exciting part; you get to transform
MultiDoc from the bare shell it is now (with exposed wires and plumbing—to return
to our building analogy) into a functioning application. But you’ll need to get a little
assistance from Visual Studio.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Properties, dialogs,
 and Visual Studio
In the last chapter, you added to the MultiDoc codebase the ability to load and save
multiple pages with XML. Alas, we didn’t have the chance to give the user access to
your work. In this chapter, we bring life to the skeleton of the MultiDoc framework
by clothing it with the flesh of additional features and functionality. Some of these
features will require the refactoring of classes you’ve already written. In the process,
you’ll learn more about Python and get to use Visual Studio with IronPython plus
some .NET classes that you haven’t seen yet.

 Although you’ve extended MultiDoc to read and write XML files, you still don’t
have a way of updating all the parts of the code that need access to documents. It’s
the responsibility of the tab controller to keep the view and the model synchronized;

This chapter covers
■ Properties in Python
■ The observer pattern
■ Windows Forms dialogs
■ Using Visual Studio with IronPython
■ Object serialization
133

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

134 CHAPTER 6 Properties, dialogs, and Visual Studio
it needs a way of updating the view when the model is changed. The save commands
also need a reference to the current document. You can provide this by making some
classes document observers.

6.1 Document observers
The model classes should remain loosely coupled to the view and controllers (a sub-
stantial part of the Model-View-Controller pattern), so you can’t give the document
the responsibility for telling the tab controller to update the view.

 Now that OpenCommand can create new documents, we want the following to happen:

1 OpenCommand to load and set the document on the main form
2 The save commands to update with the new document
3 The tab controller to update with the new document
4 The tab controller to update the view appropriately

We implement all these steps in this section.
 For the main form to know which objects to update, it needs a list of objects inter-

ested in the document—these are the document observers. Implementing a list of
objects that need to keep track of the document will get you half way toward a pattern
known as the observer pattern.1 The observer pattern is a common pattern to use along
with Model-View-Controller.

 The full observer pattern involves providing a mechanism (usually an event mech-
anism) for model classes to inform controllers that a change has occurred. You don’t
yet need this part of the pattern, but the first step of the pattern is to have a central
mechanism for keeping all observers updated with the current model classes. In our
case, the relevant model class is the document.

 In the tail end of the last chapter, you implemented code in the OpenCommand that
sets the document attribute on the main form. When this happens, you need the
aforementioned behavior to be triggered. Attributes that trigger behavior when
they’re set are known as properties. Python also has properties, so this seems like an
appropriate place to introduce them.

6.1.1 Python properties

Properties, which are common in other languages including C#, are a mechanism for
giving you control over what happens when an attribute is accessed, set, or deleted.
We’ve already used them a great deal when configuring and using .NET classes.

 They’re an alternative to providing get/set/delete methods. They don’t do any-
thing that you couldn’t achieve with getter and setter methods, but they allow the
external API of an object to be more elegant and natural to use. They also allow you to
seamlessly migrate a Python API from using normal attributes to providing custom
behavior. This is the process we’re going through now with the document.

1 See http://en.wikipedia.org/wiki/Observer_pattern.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://en.wikipedia.org/wiki/Observer_pattern

135Document observers
Python properties are created using the built-in type property. It behaves like a func-
tion, but is used inside a class namespace to bind methods that you want to be called
when an attribute is accessed.2

 The full signature of property is as follows:

name = property(fget=None, fset=None, fdel=None, doc=None)

■ fget—A method to be called when the attribute is fetched
■ fset—A method to be called when the attribute is set
■ fdel—A method to be called when the attribute is deleted
■ doc—A docstring for the property

All four arguments are optional (and can be passed in as keyword arguments if you
want), so you only need to provide the methods that you need. (It’s relatively unusual
to provide a docstring for properties, unless you’re using an automated documenta-
tion generating tool.)

 Listing 6.1 is an example of a class with a property x, with custom behavior when
the property is fetched, set, or deleted. The underlying value for x is stored in an attri-
bute called _x.

class PropertyExample(object):
 def __init__(self, x):
 self._x = x

 def _getX(self):
 print "getting x"
 return self._x

 def _setX(self, value):
 print "setting x"
 self._x = value

 def _delX(self):
 print "Attempting to delete x"

 x = property(_getX, _setX, _delX)

2 See http://users.rcn.com/python/download/Descriptor.htm.

Listing 6.1 An example of a property with methods for fetching, setting, and deleting it

Attribute access and descriptors
In Python you can completely control the way attributes are accessed through the de-
scriptor protocol.2 Under the hood, descriptors are how bound methods on instances
get called with self, and lots more.

Properties are one convenient use of the descriptor protocol. Fortunately, you don’t
need to understand descriptors in order to use properties.

Initializes an instance
with a value

Creates property
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://users.rcn.com/python/download/Descriptor.htm

136 CHAPTER 6 Properties, dialogs, and Visual Studio
The following interactive interpreter session demonstrates it in use:

>>> example = PropertyExample(3)
>>> example.x
getting x
3
>>> example.x = 6
setting x
>>> del example.x
Attempting to delete x
>>> example.x
getting x
6

Even after attempting to delete it, the x attribute is still available. You could have simi-
lar behavior just by omitting the fdel argument (the third argument) to property;
attempting to delete x would then raise the exception AttributeError: undeletable
attribute. Similarly, omitting the fset argument (the second argument) would cre-
ate a read-only property that can’t be set.

 So how do you use properties to implement document observers on the MainForm?
DOCUMENT OBSERVERS ON THE MAINFORM

Now that you understand properties, you can make the document a property on Main-
Form. We’ve already outlined what we want to achieve. Setting the document on Main-
Form should update all the observers and cause the tab controller to update the view.

 You can do this in the following three steps:

1 Make document a property on MainForm and have it maintain a list of docu-
ment observers.

2 Make document a property on the tab controller, and have it update the view
when a new document is set.

3 Add the open command to the menu and toolbar.

MAKING DOCUMENT A PROPERTY

The objects that need to keep track of the current document are the two save com-
mands and the tab controller. Listing 6.2 creates a list of the observers and makes
document a property.

def initializeObservers(self):
 self.observers = [
 self.saveCommand,
 self.saveAsCommand,
 self.tabController
]

def _setDocument(self, document):
 self._document = document
 for observer in self.observers:
 observer.document = document

document = property(lambda self: self._document, _setDocument)

Listing 6.2 Creating a document property on MainForm
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

137Document observers
The first argument to property is the getter method. This is a lambda that returns
_document, the underlying instance variable used to store the real document.
_setDocument is the setter method. When a new document is set, it iterates over all
the observers and sets the document on them. Note that even when you add the Open-
Command to MainForm, it won’t need to be added to the list of observers.3

 You also need to change the __init__ method of MainForm to use the new
observer system. You remove the line doc = self.document = Document() and change
the last part of __init__ to

self.tabController = TabController(tab)

self.initializeCommands()
self.initializeToolbar()
self.initializeMenus()
self.initializeObservers()
self.document = Document()

This creates the tab controller without passing the document, and then it initializes
the list of observers and sets a default, empty document. Setting the document trig-
gers the property to set the document on all the observers. (The document should
also no longer be passed into the save commands in initializeCommands.)4

 The next thing to do is to refactor the tab controller to also use a document property.
REFACTORING THE TABCONTROLLER

Currently the TabController is initialized with a document and creates a tab for every
page. It no longer needs to be given the document when it’s initialized, but it needs to
create the tabs whenever a document is set. If a document is already open, then the
existing tabs need to be removed first.

 Luckily, this is easy to achieve by moving the code that creates the tab pages from
the TabController constructor and into the setter method for the document property.
You also need another small piece of magic; all the changes necessary are shown in
listing 6.3.

class TabController(object):

 def __init__(self, tabControl):
 self.tabControl = tabControl
 self._document = None

 def _setDocument(self, document):
 if self._document is not None:
 self.tabControl.SelectedIndexChanged -= self.maintainIndex

 self._document = document
 self.tabControl.TabPages.Clear()

3 It only uses the document to check if it has a filename, and it can get this via the reference to MainForm that
it keeps.

4 This Herculean task we leave to you—alternatively, you can download the source code.

Listing 6.3 Changing TabController to have document property

Changed to not
take document

Removes
SelectedIndexChanged

event handler

Clears all tab pages
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

138 CHAPTER 6 Properties, dialogs, and Visual Studio
 for page in document.pages:
 self.addTabPage(page.title, page.text)

 self.index = self.tabControl.SelectedIndex
 if self.index == -1:
 self.index = self.tabControl.SelectedIndex = 0
 self.tabControl.SelectedIndexChanged += self.maintainIndex

 document = property(lambda self: self._document, _setDocument)

When a new document is set on the tab controller, any current tab pages are cleared with
a call to tabControl.TabPages.Clear(). Clearing the tabs can cause the Selected-
IndexChanged event to be raised several times. To avoid this, if you already have a doc-
ument set, you first remove the event handler. After creating new tab pages for the
document, you wire up the event again.

 The last step in finally getting the open command to work is adding a menu item
and toolbar button to the view that launches it.

6.1.2 Adding the OpenCommand

The pattern for creating new menu items and
new toolbar buttons is well established in Main-
Form. Adding a new Open item, to both menu
and toolbar, can be achieved with a little copy-
and-paste magic and another icon from those
wonderful folk at glyFx. When we eventually get
the OpenCommand wired in, it will look like fig-
ure 6.1.

 The first change is to add the OpenCommand to
the initializeCommands method. The Open-

Command is initialized with a reference to the
MainForm instance. Because this method is being
called by the MainForm, you pass in self to the
OpenCommand constructor.

def initializeCommands(self):
 tabC = self.tabController
 self.saveCommand = SaveCommand(tabC)
 self.saveAsCommand = SaveAsCommand(tabC)
 self.openCommand = OpenCommand(self)

As you can see from this segment, the save commands only receive the tab controller
and not the document.

 Once you’ve put this code in place, MultiDoc will be capable of loading the new
documents saved in XML format. This still doesn’t meet our original specification
because you have no way of creating new pages.

 The next section will address this; along the way you’ll learn about dialogs and
using Visual Studio Express with IronPython.

Adds
event
handler
again

Figure 6.1 MultiDoc Editor with the
OpenCommand in place
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

139More with TabPages: dialogs and Visual Studio
6.2 More with TabPages: dialogs and Visual Studio
In our exploration of creating an application with IronPython, we’ve managed to
work our way through about three-quarters of our original specification in only 520
lines of pure-Python code. We’ve divided MultiDoc into eight modules, and it’s prov-
ing easy to refactor and extend. Importantly, the code is also readable.

 The last piece of functionality to make MultiDoc useful is the ability to add new tab
pages. Because our tab pages have names, you also need to be able to specify the name
when you create tab pages, and preferably rename them later. While we’re at it, it
would be nice to be able to delete pages as well. This is the easiest code to write and
prepares the way nicely for learning about creating dialogs.

6.2.1 Remove pages: OK and Cancel dialog box

When the user asks to perform an irreversible action, such as removing a tab page, it’s
normal to ask for confirmation of the action. You’re undoubtedly familiar with the
standard Windows OK/Cancel dialog box, which gives the user the choice of whether
to continue with the action or to abort.

 This is actually our old friend the system message box.
 In case you’ve forgotten, the most useful overload of Show is as follows:

MessageBox.Show(String, String,
 MessageBoxButtons, MessageBoxIcon)

The two strings are the text and caption (body and title) of the message box.
 When you used the message box to alert the user of errors loading or saving a file,

you only had an OK button. You specified this by passing in MessageBoxButtons.OK.
 You can create a message box with different buttons by providing a different mem-

ber of the MessageBoxButtons enumeration in the call to Show. The possible options
are listed in table 6.1.

Table 6.1 Members of the MessageBoxButtons enumeration for specifying the buttons on
 the system message

MessageBoxButtons
enumeration member

Effect

AbortRetryIgnore The message box contains Abort, Retry, and Ignore buttons.

OK The message box contains an OK button.

OKCancel The message box contains OK and Cancel buttons.

RetryCancel The message box contains Retry and Cancel buttons.

YesNo The message box contains Yes and No buttons.

YesNoCancel The message box contains Yes, No, and Cancel buttons.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

140 CHAPTER 6 Properties, dialogs, and Visual Studio
You can tell which button the user selected by the return value of Show, which will be a
member of the DialogResult enumeration. Every possible button has a correspond-
ing member on DialogResult. Table 6.2 lists all the members.

For our use case, MessageBoxButtons.OkCancel seems like the right choice. Only
MessageBoxIcon is left to choose; the options are displayed in table 6.3.

Table 6.2 Members of the DialogResult enumeration for interpreting the return value of a dialog
 or message box

DialogResult
enumeration member

Meaning

Abort The dialog box return value is Abort (usually sent from a button labeled Abort).

Cancel The dialog box return value is Cancel (usually sent from a button labeled Cancel).

Ignore The dialog box return value is Ignore (usually sent from a button labeled Ignore).

No The dialog box return value is No (usually sent from a button labeled No).

None Nothing is returned from the dialog box. This means that the modal dialog box
continues running.

OK The dialog box return value is OK (usually sent from a button labeled OK).

Retry The dialog box return value is Retry (usually sent from a button labeled Retry).

Yes The dialog box return value is Yes (usually sent from a button labeled Yes).

Table 6.3 Members of the MessageBoxIcon enumeration for specifying the icon in a message box

MessageBoxIcon
enumeration member

Icon description

Asterisk The message box contains a symbol consisting of a lowercase letter i in a circle.

Error The message box contains a symbol consisting of a white X in a circle with a
red background.

Exclamation The message box contains a symbol consisting of an exclamation point in a
triangle with a yellow background.

Hand The message box contains a symbol consisting of a white X in a circle with a
red background.

Information The message box contains a symbol consisting of a lowercase letter i in a circle.

None The message box contain no symbols.

Question The message box contains a symbol consisting of a question mark in a circle.

Stop The message box contains a symbol consisting of a white X in a circle with a
red background.

Warning The message box contains a symbol consisting of an exclamation point in a tri-
angle with a yellow background.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

141More with TabPages: dialogs and Visual Studio
Because we’re asking a question, MessageBox.Question seems appropriate. Now that
that’s settled, you’re ready to write RemoveCommand. Because you’ll have several com-
mands for working with tab pages and they’ll all be short, let’s put them in a module
called tabcommands.py.

 The full call to MessageBox.Show looks like the following:

result = MessageBox.Show("Are you sure?", "Delete Page"
 MessageBoxButtons.OKCancel, MessageBoxIcon.Question)

result will then either be DialogResult.OK or DialogResult.Cancel. Now that you
know how to use the message box, you need to build the infrastructure that can act on
the user’s choice.
THE CODE BEHIND

To fully implement a RemovePage command, there are three distinct steps:

1 Ask the user for confirmation.
2 Remove the currently visible tab.
3 Delete the corresponding page from the model.

Because the first step triggers the following two, you should implement those first. But
before that, we need to avoid a potential bug.

 There’s always the possibility that the user will try and activate the command after
there are no pages left. You need to ensure that this situation doesn’t cause MultiDoc
to crash. It’s the controller’s job to synchronize the model and the view, so the right
place to implement this is in the tab controller.

 It would be good to check whether there’s at least one tab page before displaying
the message box. You can tell whether a tab control has any pages in a couple of ways;
the number of pages will be 0, and the SelectedIndex property will return -1. To
check whether there are any pages, you can add a property hasPages to the tab con-
troller. This wraps a simple function (a lambda) that checks SelectedIndex. It needs
to return False if the result is -1; otherwise, True.

hasPages = property(lambda self: self.tabControl.SelectedIndex != -1)

To delete the current page, you need to delete the currently selected index from the
document’s list of pages. You also need to remove the current visible tab page from
the TabPages collection.

 Listing 6.4 shows the implementation of deletePage. Even though you intend to
check hasPages before asking the user to confirm page deletion, you should still check
inside this method. This method is now part of the public API of the TabController
and should be safe against being called when there are no pages.

def deletePage(self):
 if not self.hasPages:
 return
 index = self.tabControl.SelectedIndex

Listing 6.4 Method on TabController to delete pages on the view and the model
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

142 CHAPTER 6 Properties, dialogs, and Visual Studio
 del self.document[index]
 tabPage = self.tabControl.SelectedTab
 self.tabControl.TabPages.Remove(tabPage)

You need to make the same change to the updateDocument and maintainIndex meth-
ods, a process which raises another issue. Deleting a page causes the SelectedIndex
to change, so maintainIndex will be called. This isn’t generally a problem; the extra
call to updateDocument won’t usually do any harm. It is a problem when the deleted
page is the last tab page. The index of the deleted page (stored as self.index) will no
longer be a valid index for the tab pages at all, and updateDocument will blow up.
maintainIndex still needs to update the index tracking variable, but you should make
the call to updateDocument conditional on the stored index being valid. Listing 6.5
shows the new maintainIndex.

def maintainIndex(self, sender, event):
 if not self.hasPages:
 return
 if self.index < len(self.tabControl.TabPages):
 self.updateDocument()
 self.index = self.tabControl.SelectedIndex

Now on to the RemoveCommand itself. It needs to be initialized with a reference to the tab
controller. In the execute method, it should check whether there are any tab pages. If
there are, then it should ask the user to confirm, calling deletePage if the user hits OK.

 This is a rather short piece of code, as shown in listing 6.6.

from System.Windows.Forms import (
 DialogResult, MessageBox,
 MessageBoxButtons, MessageBoxIcon
)
class RemoveCommand(object):

 def __init__(self, tabController):
 self.tabController = tabController

 def execute(self):
 if not self.tabController.hasPages:
 return
 result = MessageBox.Show("Are you sure?",
 "Delete Page",
 MessageBoxButtons.OKCancel,
 MessageBoxIcon.Question)
 if result == DialogResult.OK:
 self.tabController.deletePage()

The result of activating this command, with at least one
page present, is the message box in figure 6.2. At this
point, you’ve successfully completed creating the Delete
Page functionality.

Listing 6.5 Keeping the model updated from user input in the view

Listing 6.6 Asking for confirmation before calling deletePage on TabController

Figure 6.2 The Delete Page
message box with OK and
Cancel buttons
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

143More with TabPages: dialogs and Visual Studio
 Frequently, presenting the user with an OK/Cancel choice isn’t enough. In the
next section, we look at creating custom dialogs.

6.2.2 Rename pages: a modal dialog

For the user to provide a new name to rename a page, you need to present some kind
of dialog. The right control to enter the new name in is the TextBox. By default, the
old name should appear in the text box so that the user can edit it rather than having
to type the name in full.

 Again, you’ll need some support for this in the tab controller, both to fetch the
current page title and to set the new one. Because you need to fetch and set the cur-
rent page title, you can make it a property on the tab controller, as in listing 6.7.

def _getCurrentPageTitle(self):
 if not self.hasPages:
 return None
 index = self.tabControl.SelectedIndex
 return self.document.pages[index].title

def _setCurrentPageTitle(self, title):
 if not self.hasPages:
 return
 index = self.tabControl.SelectedIndex
 page = self.document.pages[index]
 page.title = title
 self.tabControl.SelectedTab.Text = title

currentPageTitle = property(_getCurrentPageTitle, _setCurrentPageTitle)

Dialogs are displayed modally, blocking the GUI until the user completes the action by
selecting OK or Cancel (or whatever buttons you provide).

 Creating dialogs is simple; they’re simply forms that you display with a call to Show-
Dialog instead of Show. They can contain any controls you like. There are several
other subtleties to making a form into something that looks and feels like a dialog.
We’ll go through these as we create RenameTabDialog.

 This dialog will be very simple. All it needs is a text box to edit/enter the name,
and an OK and a Cancel button. Because we’ll shortly be creating a command for add-
ing tab pages, which will include choosing a name, it makes sense if the dialog is flexi-
ble enough for both jobs.

 Listing 6.8 is the initialization for the new command.5

class RenameTabDialog(Form):

 def __init__(self, name, rename):
 title = "Name Tab"

Listing 6.7 Providing a currentPageTitle for fetching and setting title

Listing 6.8 The constructor for RenameTabDialog

5 As with all our examples, see the full version in the downloadable examples for all the imports that go with
this code.

Dialog title for
new pages
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

144 CHAPTER 6 Properties, dialogs, and Visual Studio
 if rename:
 title = "Rename Tab"
 self.Text = title
 self.Size = Size(170, 85)
 self.FormBorderStyle = FormBorderStyle.FixedDialog
 self.ShowInTaskbar = False
 self.Padding = Padding(5)

 self.initializeTextBox(name)
 self.initializeButtons()

As with MainForm, the dialog is a subclass of Form. It takes two arguments in the con-
structor: a string name (the current name of the tab) and a Boolean rename (whether
you’re renaming a page or creating a new one). The title of the dialog is set differently
depending on which of these two actions is taken—which, in fact, is the only differ-
ence between the two uses.

 This dialog isn’t resizable, so you can use FormBorderStyle.FixedDialog as the
border style. This makes the form non-resizable, and also gives the form an appear-
ance in keeping with a dialog. You set the form to a fixed size, using the Size structure
from System.Drawing. A form with only these options set would look like figure 6.3.

 By default, all active forms have an icon in the taskbar. This isn’t normal for dialogs,
and setting the border style doesn’t; this is why the dialog sets the ShowInTaskbar prop-
erty to False. The code after this sets the padding
on the form. (Padding is a structure in System.
Windows.Forms.) The padding affects the layout of
controls that don’t have an absolute location spec-
ified; this is normally for controls laid out using
Dock. The layout is done in two methods not yet
written: initializeTextBox, which needs to know
the initial name, and initializeButtons.
FILLING IN THE DIALOG

Positioning the text box in the dialog is easy. We want it to be at the top of the dialog
(above the buttons), and nearly as wide as the dialog. To position the dialog in the
form, you set Dock = DockStyle.Top. This will create a text box of default width,
which isn’t wide enough, so you need to explicitly set the width. You also set the name
passed into the constructor as the text in the textbox; you can see this in listing 6.9.

def initializeTextBox(self, name):
 self.textBox = TextBox()
 self.textBox.Text = name
 self.textBox.Width = 160
 self.Dock = DockStyle.Top

 self.Controls.Add(self.textBox)

The next method is to lay out the buttons for the dialog. Unfortunately, getting these
positioned correctly is a bit more intricate. The code for this is shown in listing 6.10.

Listing 6.9 Creating and laying out text box for RenameTabDialog

Dialog title for
renaming pages

Makes dialog invisible
in the taskbar

Figure 6.3 A form
with a fixed size and border style set to
FormBorderStyle.FixedDialog
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

145More with TabPages: dialogs and Visual Studio
def initializeButtons(self):
 buttonPanel = Panel()
 buttonPanel.Height = 23
 buttonPanel.Dock = DockStyle.Bottom
 buttonPanel.Width = 170

 acceptButton = Button()
 acceptButton.Text = "OK"
 acceptButton.Click += self.onAccept
 acceptButton.Width = 75
 acceptButton.Dock = DockStyle.Left
 acceptButton.DialogResult = DialogResult.OK
 self.AcceptButton = acceptButton
 buttonPanel.Controls.Add(acceptButton)

 cancelButton = Button()
 cancelButton.Text = "Cancel"
 cancelButton.Width = 75
 cancelButton.Dock = DockStyle.Right
 cancelButton.DialogResult = DialogResult.Cancel
 self.CancelButton = cancelButton
 buttonPanel.Controls.Add(cancelButton)

 self.Controls.Add(buttonPanel)

The buttons are contained in a panel, which is laid out in the form using Dock-
Style.Bottom. Its width is set to be the same width as the form. Its height is set to 23
pixels, which is the default height of a button. Because we’re using DockStyle.Left
and DockStyle.Right to position the buttons in the panel, you need to set an explicit
height on the panel, or the buttons will look very odd. You also need to set a width on
the buttons, 75 pixels being the default width of a button. Any other combination of
settings6 causes one of these parameters to be overridden.

 initializeButtons also does some magic which is relevant to creating dialogs.
Two default actions are common to most dialogs: accepting and canceling them.
These can be triggered by pressing the Esc key (to cancel), or Enter key (to accept).
You can tell the form which buttons to treat as accept and cancel buttons with the fol-
lowing two steps:

■ Setting the AcceptButton and CancelButton properties on the form
■ Hooking up the appropriate DialogResult to the buttons

The accept and cancel actions will be triggered by clicking the buttons or by pressing
the Enter or Escape keys while the dialog box has focus. The acceptButton has
an explicit handler, but the default action for the cancel button is fine (returning
DialogResult.Cancel).

 Because we want to just display the dialog and return a result, you can wrap it in a
function. With a form displayed as a dialog, accepting or canceling the dialog (even
with the close button) doesn’t close it; it’s merely hidden. You could reuse the dialog;

Listing 6.10 Creating, configuring, and laying out buttons for RenameTabDialog

6 At least all the other myriad combinations we’ve tried.

Panel to contain buttons

Sets OK as AcceptButton

Sets Cancel as CancelButton
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

146 CHAPTER 6 Properties, dialogs, and Visual Studio
but, in this case, it’s more convenient to close it so that you don’t need to keep track of
it and its resources can be freed up. This is exactly what listing 6.11 does.

def ShowDialog(name, rename):
 dialog = RenameTabDialog(name, rename)
 result = dialog.ShowDialog()
 dialog.Close()
 if result == DialogResult.OK:
 return dialog.textBox.Text
 return None

When ShowDialog is called, it displays the dialog. The elegant
result can be seen in figure 6.4—note the padding around
the buttons! If the user selects OK (or hits the Enter key),
then the function returns the text from the text box; other-
wise, it returns None.

 Inspecting the controls after the dialog has returned is
one way of retrieving the values the user has selected on the
dialog. An alternative approach would be to define (and wire up to the buttons)
onAccept and onClose methods, which can set attributes or data structures on the dia-
log representing the user choices.
THE RENAMECOMMAND

With the dialog in place, you need a command to use it. This command can go in tab-
commands.py, and is also very simple—as you can see in listing 6.12. It uses the current-
PageTitle property you added to the tab controller and the ShowDialog function.

from renamedialog import ShowDialog

class RenameCommand(object):
 def __init__(self, tabController):
 self.tabController = tabController

 def execute(self):
 if not self.tabController.hasPages:
 return
 currentTitle = self.tabController.currentPageTitle

 newTitle = ShowDialog(currentTitle, True)
 if newTitle is not None:
 self.tabController.currentPageTitle = newTitle

Getting even this simple dialog to look right is much harder than it should be. GUI lay-
out can be very fiddly, and finding the right combination of controls and layout
options takes a lot of experimentation.

 One thing that helps is making the renamedialog module executable—calling the
ShowDialog function when it’s run directly with IronPython. If you remember from
the Python tutorial, you can do this with a conditional block that checks the magic

Listing 6.11 ShowDialog function displaying RenameTabDialog and returning result

Listing 6.12 RenameCommand: using the dialog

Takes same
arguments as dialog

Sets Return

Figure 6.4
The RenameTabDialog
called from ShowDialog
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

147More with TabPages: dialogs and Visual Studio
variable __name__. Listing 6.13 shows the conditional block at the start of the import
code and then the class and function definitions.

if __name__ == '__main__':
 import clr
 clr.AddReference("System.Windows.Forms")
 clr.AddReference("System.Drawing")

from System.Drawing import Size
from System.Windows.Forms import (
 Button, DialogResult,
 DockStyle, Panel, Form,
 FormBorderStyle, Padding, TextBox
)

[RenameTabDialog and ShowDialog...]

if __name__ == '__main__':
 print ShowDialog("Something", False)
 print ShowDialog("Something Else", True)

If the script is run as the main script, then ShowDialog is called twice, printing the
return value. It’s called once as a Name dialog and once as a Rename dialog. If the
dialog is imported rather than being run, then this code has no effect.

 Being able to make minor modifications to a single element of an application and
then immediately rerun the script7 with no compile phase is one of the advantages of
working with IronPython. This kind of manual testing is no replacement for an auto-
mated test suite, but unfortunately test suites aren’t (yet) clever enough to make aes-
thetic judgments about the appearance of GUIs.

 By now .NET developers are probably jumping up and down and crying that
there’s a much easier way of resolving GUI layout issues. They’d be right; that easier
way is Visual Studio. Visual Studio contains a built-in forms designer that lets you do
GUI layout with drag-and-drop actions.

 So if we have this amazing tool available, why have we put so much effort into man-
ual layout? Visual Studio is ideal for creating fixed-size dialog; for forms that need to
cope with resizing, we tend to prefer hand-coded solutions. Obviously, if you don’t
understand how to lay out forms in code, this won’t seem like an option for you. But
even with Visual Studio, you have to set properties to the appropriate values, so you
need to know what they are and what they mean. More importantly, if something goes
wrong or doesn’t look right, the only way you’ll be able to fix it (or even understand
the problem) is by knowing what the designer is doing when you lay out controls.8

 You now have a working implementation of a manually created Rename Page dia-
log. This nearly completes the functionality we aimed to add to MultiDoc at the start
of the chapter. Having wrestled with manual layout (or at least seen the result of our

Listing 6.13 Importing code and function calls for module as script

7 Here we’re running a class library as an executable, for testing purposes.
8 For a better explanation of this, read Joel Spolsky’s The Law of Leaky Abstractions at http://www.joelonsoft-

ware.com/articles/LeakyAbstractions.html.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html

148 CHAPTER 6 Properties, dialogs, and Visual Studio
wrestlings), you now get to use Visual Studio. This works well with IronPython; we’re
sure this will come as a relief if you’re a .NET developer, and perhaps something of a
pleasant surprise if you’re a Python developer.

6.2.3 Visual Studio Express and IronPython

For this example, we use the free version of Visual Studio, Visual Studio Express.
Visual Studio Express doesn’t have IronPython integration, so we have to find another
way to work with it to create our dialog.

 Depending on which version you download,9 it can generate Visual Basic, C#, C++,
or Visual J#. Because they all compile to .NET assemblies and we won’t be directly writ-
ing code in this example, it doesn’t really matter which one you choose. Having gener-
ated code in another language can be an advantage; it means there’s less temptation
to fiddle with it!

 You can create the dialog layout in Visual Studio, subclass it in IronPython, and
program all the behavior in the subclass. You need to create an assembly containing a
suitable base class for our dialog.

 Our base class dialog will be a class library, so open Visual Studio Express and cre-
ate a new class library. You’ll be presented with the interface in figure 6.5.

9 See http://msdn.microsoft.com/vstudio/express/. Note that you can install multiple versions side by side.

Figure 6.5 Creating a RenameTabDialog class library in Visual Studio Express
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/vstudio/express/

149More with TabPages: dialogs and Visual Studio
After creating the class library, preferably
with a sensible name, you need to add a
form to it. If you right-click the project in
the Solution Explorer, you should see the
menus shown in figure 6.6, and be able to
add a form.

 This will add the form to the project,
and Visual Studio will whirr away for a few
seconds while it adds references to rele-
vant assemblies such as System.Windows.
Forms. You can then resize the form and
drag controls from the toolbox onto it.
You’ll also need to open the Properties
pane by right-clicking the form and
selecting Properties. You want to end up
with an interface looking like figure 6.7.

 By clicking each element (the form, the buttons, and the text box), you can config-
ure the different properties for each control. For our dialog, you need to complete
the following steps:

Figure 6.7 Designing the RenameTabDialog with the Visual Studio forms designer

Figure 6.6 Adding a form to the new class library
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

150 CHAPTER 6 Properties, dialogs, and Visual Studio
1 Name the buttons and set their text.
2 Set the DialogResult properties on the buttons.
3 Make sure you name the TextBox textBox and set the modifier to Public rath-

er than Private. You’ll be able to access the property from the ShowDialog
function.

4 Set the form border to FixedDialog.
5 Set the form name to RenameTabDialogBase.
6 Set the form ShowInTaskbar property to False.
7 Set the AcceptButton and CancelButton properties on the form to okButton

and cancelButton.

Creating the dialog with Visual Studio takes considerably less time than trying to
tweak the GUI by hand, but the results are almost identical.

NOTE In IronPython 1, you can access protected .NET members as if they were
public.10 The IronPython 2 rules about accessing .NET members are
closer to C#.11 You’ll subclass the dialog we’re creating, so protected sta-
tus would allow you access from inside the subclass—but you also need
external access so the text box must be public.

Pressing F6 in Visual Studio (or selecting the Build > Build Solution menu item) com-
piles our project into an assembly. The compiled assembly will then be available in the
bin\Release folder of the project as RenameTabDialog.dll (assuming you named your
project RenameTabDialog).

 For you to use this assembly from IronPython, it needs to be somewhere on
sys.path. The simplest solution is to put it in the same directory as the IronPython file
using it. We can then add a reference to RenameTabDialog and import RenameTab-
DialogBase from the RenameTabDialog namespace. You’ll need to tweak these names
to match the ones you’ve used in the Visual Studio project.

 Having done the layout and configuring in the Visual Studio project, we can
reduce the amount of code in the dialog. Instead of subclassing Form, you can now
create a subclass of RenameTabDialogBase. You still need to set the title and the initial
text in the text box. The full code for the dialog is shown in listing 6.14.

if __name__ == '__main__':
 import clr
 clr.AddReference('RenameTabDialog')
 clr.AddReference('System.Windows.Forms')

from RenameTabDialog import RenameTabDialogBase

10 IronPython uses reflection to discover members. Marking them as protected or private only makes them less
convenient to access; it doesn’t truly hide them from the determined programmer.

11 If you subclass a .NET class, protected members are public, so you can still access them from outside the class.
You can’t access protected members on a non-Python subclass.

Listing 6.14 Using the dialog created in Visual Studio with IronPython
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

151More with TabPages: dialogs and Visual Studio
from System.Windows.Forms import DialogResult

class RenameTabDialog(RenameTabDialogBase):
 def __init__(self, name, rename):
 RenameTabDialogBase.__init__(self)

 title = "Name Tab"
 if rename:
 title = "Rename Tab"
 self.Text = title

 self.textBox.Text = name

As the external API is the same as the hand-coded dialog, the ShowDialog function can
remain unchanged.

 Although this example of using Visual Studio used a dialog created with the forms
designer, you’ve actually created a class library and imported it into IronPython. This
is how easy it is to extend IronPython from other .NET languages, a subject we look
into in more detail later in the book.

 We’ve just about made it through our three new commands. You’ve created com-
mands that can remove pages and rename pages, and written the infrastructure code
to support them. In this section, you created a dialog for naming and renaming tab
pages, using the forms designer from Visual Studio. In the next section, which intro-
duces a command to add new pages, you get to reuse this dialog.

6.2.4 Adding pages: code reuse in action

When we wrote the dialog to rename pages, we had in mind that you’d also use it to
ask the user for a name when creating new pages. If ShowDialog is called with False as
the second argument, then the dialog is shown with an appropriate title for naming a
new page.

 You already have a method on the tab controller for creating a new tab page: add-
TabPage. This only deals with the view, though; it adds a tab page to the tab control,
but it doesn’t create a new page on the document. addTabPage is called when you load
new documents, which already have pages. You need a new method that will handle
both the model and the view for you, calling down to addTabPage for the view. This is
the newPage method, shown in listing 6.15. The second argument to addTabPage is an
empty string because the freshly created page has no text in it yet.

def newPage(self, title):
 page = Page(title)
 self.document.pages.append(page)
 self.addTabPage(title, "")
 newPageIndex = len(self.tabControl.TabPages) - 1
 self.tabControl.SelectedIndex = newPageIndex

Merely creating a new tab page doesn’t select it, so newPage finds the index of the new
tab page (which is the last one), by asking for the length of the TabPages collection.

Listing 6.15 Creating a new page in model and adding corresponding tab page
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

152 CHAPTER 6 Properties, dialogs, and Visual Studio
You have to subtract one from the index because the tab control is zero-indexed, and
then you select the new tab page by setting the SelectedIndex on the tab control.

 With the support for adding tab pages in the tab controller, you need a corre-
sponding command that uses it. This is where the code reuse comes in. The command
needs to ask the user for a name, and call newPage if the user doesn’t cancel out of the
dialog. You need to make another call to ShowDialog, but pass False as the second
argument. NewPageCommand is shown in listing 6.16.

class NewPageCommand(object):
 def __init__(self, tabController):
 self.tabController = tabController

 def execute(self):
 title = ShowDialog("New Page", False)
 if title is not None:
 self.tabController.newPage(title)

The three tab commands are now complete; but, as usual, they aren’t available to the
user until they’re wired into the view. This small but vital step is the subject of the next
section.

6.2.5 Wiring the commands to the view

You’ve done this before, and these commands are just as easy to wire up as the previ-
ous ones. The nice bonus is that adding these commands to the user interface will
make MultiDoc actually usable. To spice up this section, we add a couple of new fea-
tures: an application icon and a new document command.

 The first is purely cosmetic, but no Windows Forms application would be complete
without an application icon to replace the default one! When a form is displayed, an
icon is displayed in the upper-left corner of the form, and the same icon is displayed
in the taskbar. The default icon is the bizarre three-colored boxes, not unattractive,
but also instantly recognizable as the generic Windows Forms icon. Changing this is
trivially easy using the Icon property on the form and the Icon class from the System.
Drawing namespace.

 MultiDoc is a document editor for multiple pages, so an icon showing pages of text
is appropriate—and is exactly what the glyFx copy icon looks like. The following code
segment should be added to the MainForm constructor:

iconPath = 'icons\\copy_clipboard_16.ico'
self.Icon = Icon(Path.Combine(executableDirectory, iconPath))

The second feature is another that you would consider standard in a document edi-
tor: a new document command. With the infrastructure we’ve provided, this is also
easy—but maybe not quite as easy as changing the application icon. Because creating
a new document will destroy anything in the current document, you should ask the
user for confirmation. (Even better would be to maintain a modified flag so that you

Listing 6.16 Displaying dialog, checking return value, and creating new page

Default title for
a new page
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

153More with TabPages: dialogs and Visual Studio
only ask the user for confirmation if the current document has local modifications.
We leave this implementation as an exercise for you!)

 The NewDocumentCommand is almost identical to the RemoveCommand—except that,
instead of deleting a page, it sets a new document on the tab controller. Listing 6.17 is
the NewDocumentCommand.

from System.Windows.Forms import (
 DialogResult, MessageBox,
 MessageBoxButtons, MessageBoxIcon
)

from model import Document

class NewDocumentCommand(object):
 def __init__(self, tabController):
 self.tabController = tabController

 def execute(self):
 result = MessageBox.Show("Are you sure?",
 "New Document",
 MessageBoxButtons.OKCancel,
 MessageBoxIcon.Question)
 if result == DialogResult.OK:
 self.tabController.document = Document()

Setting a document on the tab controller triggers the property behavior created ear-
lier, clears the current document, and creates a new one.

 The other changes follow the same pattern for wiring the previous commands.
The new commands need to be added to initializeCommands and then wired up by
adding menu and toolbar items. This is just a copy and paste job from the earlier
code, slightly modified to use the new com-
mands. The new menu items should appear
under a new top-level menu item, Edit.

 There’s a nice icon for a new document in
the glyFx set, but nothing suitable for adding a
new page. Justin Fleming of Fuchsia Shock
Design12 came to the rescue and created a plus
icon. We haven’t shown the menu and tool-
bar code changes here; they should be easy for
you to work out, and the source code is available
for download.

 With these changes in place, MultiDoc looks
like figure 6.8.

 MultiDoc now has all the features from the
original specification. To distribute MultiDoc,

Listing 6.17 NewDocumentCommand

12 http://www.fuchsiashock.co.uk

Figure 6.8 The completed MultiDoc
with all the new commands added to
the user interface
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.fuchsiashock.co.uk

154 CHAPTER 6 Properties, dialogs, and Visual Studio
you currently need to distribute the icons in their original format. This is (normally!)
against the glyFx terms of use, so we should find a way of solving this problem.

6.3 Object serializing with BinaryFormatter
One way you can avoid distributing the icons in their original form is to convert them
to a convenient binary format. Object persistence, sometimes called serialization, is a
common programming need. Serializing takes an object and converts it into binary
(or possibly text) data for storing in a file or database. This representation can be
turned back into an object again later.

You can store the icons as serialized objects; and, instead of constructing Bitmap or
Icon instances inside MultiDoc, you can deserialize them. In the .NET world, the
most compact serialization is done with the BinaryFormatter class, which lives in the
System.Runtime.Serialization.Formatters.Binary namespace.

 The BinaryFormatter is easy to use; you instantiate it and call formatter.Serial-
ize with a filestream and the object to persist.

>>> import clr
>>> clr.AddReference('System.Drawing')
>>> from System.Drawing import Bitmap
>>> from System.Runtime.Serialization.Formatters.Binary import BinaryFormatter
>>> from System.IO import FileMode, FileStream
>>> bitmap = Bitmap('icons\\save_16.ico')
>>> stream = FileStream('save.dat', FileMode.Create)
>>> formatter = BinaryFormatter()
>>> formatter.Serialize(stream, bitmap)
>>> stream.Close()

Re-inflating persisted objects is just as easy.

>>> stream = FileStream("save.dat", FileMode.Open)
>>> bitmap = formatter.Deserialize(stream)
>>> stream.Close()
>>> type(bitmap)
<type 'Bitmap'>

You can write a simple script that iterates over all the files in the icon directory and
converts them into persisted bitmaps (with the exception of the application icon,

Python persistence with pickle
Python provides standard-library support for object persistence in the form of the
pickle and cPickle modules. Both modules have the same interface.

Under cPython, cPickle is a C extension that’s faster than pickle (a pure Python
module). cPickle has been implemented for IronPython as a built-in module.

As of IronPython 2, pickle and cPickle know how to serialize and deserialize .NET
objects that support serialization.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

155Object serializing with BinaryFormatter
which needs to be an Icon instead). Python excels at this sort of scripting task; and,
with the full range of .NET framework classes available to you, IronPython excels even
more. The lack of boilerplate means that you can rapidly write scripts for file manipu-
lation and similar administration jobs.

 Directory.GetFiles (the equivalent of os.listdir from the Python standard
library) returns a list of all the files in a directory, so the script shown in listing 6.18
should do the job.

import clr
clr.AddReference('System.Drawing')

from System.Drawing import Bitmap, Icon
from System.IO import Directory, File, Path
from System.Runtime.Serialization.Formatters.Binary import BinaryFormatter

formatter = BinaryFormatter()
iconDirectory = Path.Combine(Directory.GetCurrentDirectory(), 'icons')

exception = 'copy_clipboard_16.ico'
for filePath in Directory.GetFiles(iconDirectory):
 if not (filePath.endswith('.ico') or filePath.endswith('.gif')):
 continue

 filename = Path.GetFileName(filePath)
 namePart = Path.GetFileNameWithoutExtension(filename)
 outPath = Path.Combine(iconDirectory, namePart + '.dat')

 if filename == exception:
 image = Icon(filePath)
 else:
 image = Bitmap(filePath)

 stream = File.Create(outPath)
 formatter.Serialize(stream, image)
 stream.Close()

Running this script will save a binary version of all our icons. (Because it skips non-
image files, you can run it more than once without it crashing.) You also need to pro-
vide a MainForm method to deserialize the data files rather than load the images, as
shown in listing 6.19.

def loadImage(self, filename):
 path = Path.Combine(self.iconPath, filename)
 stream = File.OpenRead(path)
 image = BinaryFormatter().Deserialize(stream)
 stream.Close()
 return image

But creating a new BinaryFormatter for every image could be inefficient. You
shouldn’t try to optimize first unless performance proves to be an issue—premature

Listing 6.18 Script to serialize all the image files using a BinaryFormatter

Listing 6.19 Image deserializing method for MainForm

Skips non-
image files

Iterates over the
image files

Convenient way
to open files

Serializes image
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

156 CHAPTER 6 Properties, dialogs, and Visual Studio
optimization is the root of many kinds of evil.13 Because setting the images is done
when MultiDoc loads, you could look at performance tuning if startup time is too
long. (And you’d profile how long this delays startup before making the change.) In
practice, it doesn’t seem to be an issue.

6.4 Summary
We’ve added five new commands to MultiDoc; now it can be used for the purposes for
which it was created: reading, saving, and creating multipage documents. There are
other features that might be nice, but none of them should be too difficult to add. The
point of the structure we chose for MultiDoc is that it should be relatively easy to work
out where in the code any changes should go. For example, if you want to save the cur-
rently selected tab in the document, you need to add something to the model to rep-
resent it. You also need to update the selection on the model when it changes in the
view (the job of the tab controller) and so on. Correspondingly, when you’re tracking
down bugs or problems, you should have a good idea of where to start looking.

 We hope that, through MultiDoc, you’ve seen how easy it is to refactor well-structured
Python code to include new features. Particularly useful is the ability to experiment with
.NET classes using the interactive interpreter. You can also make minor speculative
changes to your code and run it immediately with no need for a compile phase.

 Python is no silver bullet—you saw the value of the form designer from Visual Stu-
dio—but integrating .NET class libraries with IronPython applications is absurdly easy.
Extending your IronPython application with third-party libraries or GUI components
is just as simple, or you may want to move performance-sensitive algorithms into C#.
IronPython makes it simple to create prototypes, and prove that a particular approach
works, before moving code into another .NET language. (In fact, this is how Iron-
Python itself was developed.)

 We’ve now completed MultiDoc as specified. In the process of writing it, I (Michael)
discovered several bugs that cost me time to go back and fix. This process would have
been a lot less painful if I had a good test suite. One of the advantages of dynamic lan-
guages in general, and Python in particular, is that they’re easy to test. The ability to
modify live objects at runtime comes in particularly useful. In the next chapter, we look
at testing practices using the Python standard library module unittest.

13 At least in terms of programming...
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Agile testing: where
 dynamic typing shines
Testing is an increasingly important part of software development. Automated test
suites allow you to easily include testing as part of your development process,
rather than as a separate, time-consuming, and expensive manual process. The
alternative is letting your customers find the bugs for you. Testing isn’t only about
finding bugs early, though; writing code in a testable way encourages the writing of
modular and loosely coupled code—which means better code. Additionally, when
adding new features or refactoring, your tests can warn you about what other parts
of your code you’ve broken. Fortunately, testing is an area where dynamic lan-
guages particularly shine.

This chapter covers
■ The Python unittest module
■ Creating a test framework
■ Mock objects
■ Testing techniques: monkey patching and

dependency injection
■ Functional testing
157

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

158 CHAPTER 7 Agile testing: where dynamic typing shines
 There are many different ways of categorizing tests, and many names for subtly dif-
ferent styles of testing. Broadly speaking, the three categories of tests are as follow:

■ Unit tests
■ Functional tests1

■ Regression tests

Unit tests are for testing components of your code, usually individual classes or func-
tions. The elements under test should be testable in isolation from other parts; this
isn’t always possible, but you have ways of handling these unavoidable dependencies
within your tests. Dependencies that need to be managed include cases where your
tests need to access external resources like databases or the filesystem.

 Functional tests are higher-level tests that drive your application from the outside.
They can be done with automation tools, by your test framework, or by providing
functional hooks within your application. Functional tests mimic user actions and test
that specific input produces the right output. As well as testing the individual units of
code that the tests exercise, they also check that all the parts are wired together cor-
rectly—something that unit testing alone doesn’t achieve.

 Regression testing checks that bugs you’ve fixed don’t recur. Regression tests are
basically unit tests, but your reason for writing them is different. Once you’ve identi-
fied and fixed a bug, the regression test guarantees that it doesn’t come back.

 The easiest way to start with testing in IronPython is to use the Python standard
library module unittest.

7.1 The unittest module
Setting up a test framework with the unittest module is easy; simple tests can be set
up and run within a matter of minutes. unittest, sometimes referred to as pyunit,
owes its heritage to the Java test framework JUnit.23

1 Also known as acceptance, integration, or black-box tests.
2 See http://www.junit.org.
3 For a much more complete reference on a bewildering array of Python testing tools, see http://pycheese-

cake.org/wiki/PythonTestingToolsTaxonomy.

Python testing tools
Testing is a popular pastime among the Python community, and the following tools
have approaches to testing that are slightly different from unittest:3

doctest is included in the Python standard library. Unfortunately it doesn’t yet work
with IronPython because sys.settrace isn’t implemented. I (Michael) haven’t tried
the others with IronPython because unittest neatly fits the test-first pattern I prefer
for development. It may be worth exploring some of these possibilities to see if you
prefer them.

■ nose ■ py.test
■ doctest ■ PyFIT
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.junit.org
http://pycheesecake.org/wiki/PythonTestingToolsTaxonomy
http://pycheesecake.org/wiki/PythonTestingToolsTaxonomy

159The unittest module
The basis of using unittest is creating test classes, which inherit from unittest.
TestCase. You pass these to a test runner, which executes all the test methods. Inside
the test methods, you create objects, call the functions and methods you’re testing,
and make assertions about the results.

 The test runner runs all your tests and outputs a nicely formatted display of the
results. Let’s take a closer look at how to use it.

7.1.1 Creating a TestCase

The test runner recognizes any method whose name starts with test as a test meth-
od. The test runner will call these methods and collect the results.

Assertions are made by calling assert methods inherited from the TestCase class.
 You need something to test; and, in order to test it, you need to know what it’s sup-

posed to do. Let’s create a simple Value class for performing operations on numbers.
This class should meet the following specifications:

■ It should be initialized with a number and store it as a value attribute.
■ It should have an add method, which takes a number and returns the stored

value plus the number.
■ It should have an isEven method, which returns True for even numbers and

False for odd numbers.

From this specification, you can write the tests. Writing the tests first is a process called
test-driven development.4 With appropriately named tests that record the specification
(and clearly written tests as well, of course), tests can act as a specification for the code.

 Listing 7.1 shows a TestCase, called ValueTest, which tests the specification just
listed.

import unittest
class ValueTest(unittest.TestCase):

4 Often abbreviated to TDD. See http://en.wikipedia.org/wiki/Test-driven_development.

Listing 7.1 A TestCase class for Value, which tests the specification

AssertionError and assert
Unit tests are based on the assert statement.

assert 2 == 3, "Two is not equal to three"

If the expression following the assert statement evaluates to True, then execution
continues normally. If the expression evaluates to False, then an AssertionError
is raised with the (optional) message supplied following the expression.

When unittest runs tests, it catches any AssertionErrors and marks the test as
a failure.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://en.wikipedia.org/wiki/Test-driven_development

160 CHAPTER 7 Agile testing: where dynamic typing shines
 def testConstructorShouldStoreValue(self):
 value = Value(6)
 self.assertEquals(value.value, 6,
 "value attribute not set correctly")

 def testAddShouldReturnArgumentAddedToValue(self):
 value = Value(6)
 self.assertEquals(value.add(3), 9,
 "add returned the wrong answer")

 def testIsEvenShouldReturnTrueForEvenNumbers(self):
 value = Value(6)
 self.assertTrue(value.isEven(),
 "Wrong answer for isEven with an even number")

 def testIsEvenShouldReturnFalseForOddNumbers(self):
 value = Value(7)
 self.assertFalse(value.isEven(),
 "Wrong answer for isEven with an odd number")

if __name__ == '__main__':
 unittest.main()

The test methods all create an instance of
our Value class and then test its state or the
result of calling methods. The calls to the
assert methods do the actual testing, and
they all follow a pattern similar to the one in
figure 7.1.

 Several assert methods are available on
TestCase. In creating a test framework cus-
tomized for your application, you’ll build
higher-level tests on these primitive assert methods, or possibly directly with the
assert statement. Table 7.1 shows the standard assert methods.

Table 7.1 The assert methods available on TestCase subclasses. Where relevant, the failure
 message is always optional.

Method Usage Description

assertEquals self.assertEquals(arg1, arg2,
msg=None)

Asserts that arg1 and
arg2 are equal.

assertAlmostEqual self.assertAlmostEqual(arg1,
arg2, places=7, msg=None)

Asserts that arg1 and
arg2 are almost equal, to
the specified number of
decimal places. arg1 and
arg2 should be numeric.
Useful for comparing float-
ing point numbers.

assertTrue self.assertTrue(arg, msg=None) Asserts that arg evalu-
ates to True.

self assertEquals. (
value.value, 6,
“Some message”)

Test methods called
on the test class The test

The two values
that must be

equal for a pass
Message to show if

the test falls

Figure 7.1 The anatomy of an assert method
on TestCase
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

161The unittest module
So what happens when you run the test we’ve just created? Take a look at figure 7.2.
 All the tests error out with a NameError because we haven’t yet written the Value

class. This is the TDD approach—to write the tests before the implementation. You’ll
know when we have a complete implementation; all the tests will pass.

 unittest formats the results of running the tests in the output. The first line of the
output is a line of characters, with one character representing the result of each test.

 The three possible results of calling a test method are as follow:

Method Usage Description

assertFalse self.assertFalse(arg, msg=None) Asserts that arg evalu-
ates to False.

assertRaises self.assertRaises(exception,
callable, *args)

Asserts that a specified
exception type (the first
argument) is raised when
callable is called. Addi-
tional arguments are
passed as arguments to
callable. If no excep-
tion, or the wrong excep-
tion, is raised, then the
test fails.

Table 7.1 The assert methods available on TestCase subclasses. Where relevant, the failure
 message is always optional. (continued)

Figure 7.2 The unit tests for Value, run without the Value class in place
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

162 CHAPTER 7 Agile testing: where dynamic typing shines
■ Everything goes fine, and the test passes. Passing tests are represented by a dot (.).
■ The test fails. Failing tests are represented by an ‘F’.
■ An exception is raised while trying to run the test. Tests that fail because of an

unhandled exception are represented by an ‘E’.

The last line of the output is the summary of the test run; here all four tests have failed
with the same error. Obviously, the missing component is the Value class. If we were
following strict TDD, you’d implement one method at a time, running the tests in
between each method. To save space, listing 7.2 is a full implementation of our enor-
mously complex Value class.

class Value(object):
 def __init__(self, value):
 self.value = value

 def add(self, number):
 return self.value + number

 def isEven(self):
 return (self.value % 2) == 0

When you run the tests now, the output should be much improved (figure 7.3).

The ‘EEEE’ from the first run has been replaced with four dots (....), and the summary
says OK. Great.

 Four out of our five tests start with the same line: value = Value(6). Code duplica-
tion is always bad, right? The next section looks at how you can reduce boilerplate in
unit tests using setUp and tearDown.

7.1.2 setUp and tearDown

Some classes can’t be tested in isolation; they need either support classes configuring
or state initializing before they can be tested. If this initialization includes creating test
files or opening external connections, then you may need to both set up tests and
clean up after them.

 unittest makes this possible through the setUp and tearDown methods on Test-
Case. As you might surmise, setUp is run before each test method and tearDown is run
afterward. Any exceptions raised in setUp and tearDown will count as a test failure.

Listing 7.2 An implementation of Value class, which should pass your tests

Figure 7.3 The unit tests for Value, run with the Value class in place
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

163The unittest module
 Listing 7.3 demonstrates how you can use the setUp and tearDown methods with
our simple tests.

class ValueTest(unittest.TestCase):
 def setUp(self):
 unittest.TestCase.setUp(self)
 self.value = Value(6)

 def tearDown(self):
 unittest.TestCase.tearDown(self)

 def testConstructorShouldStoreValue(self):
 self.assertEquals(self.value.value, 6,
 "value attribute not set correctly")
...

The tearDown shown in this listing isn’t strictly necessary, but we wanted to demon-
strate how it works. Both setUp and tearDown call up to the base class methods. When
creating a test framework for a project, it’s common to create a hierarchy of test case
classes for different types of tests. Forgetting to call up to the base class setUp is an
easy (and sometimes hard to diagnose) mistake to make.

 The approach to unittest we’ve used so far is fine when you have all your tests in
a single module. The next section will look at how to create test suites from multiple
test files.

7.1.3 Test suites with multiple modules

When writing tests for a project, you’ll want to create different test files for different
classes and modules in your project. We’ve been running tests using the unittest.
main function. This runs all the tests in whatever is running as the main script. This
approach is fine for running each test file separately, but you’ll usually want to run all
your tests in one go and collect the results.

 unittest supports running many tests by allowing you to create test suites from
multiple test classes, and passing them to a test runner. (This is what main does under
the hood.) Figure 7.4 illustrates the different classes available in unittest to help
automate your test running.

Listing 7.3 The unit tests for Value rewritten to use setUp and tearDown

Uses self.value
created in setUp

failures

Figure 7.4 Collecting
TestCases together
in a TestSuite and
running them with the
TextTestRunner
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

164 CHAPTER 7 Agile testing: where dynamic typing shines
Using the following components, it’s easy to collect our tests and run them all together:

■ TestCase—The test classes.
■ TestSuite—Can hold multiple test classes to be executed together.
■ TextTestRunner—Executes test suites, outputting the results as text. You can

control how much information this outputs through the verbosity keyword
argument.

■ TestResult—Is returned by the runner and holds information about errors
and failures.

To test a large project, you want to be able to collect all the tests together and run
them in one go. Using the __name__ == '__main__' pattern, it will still be possible to
run tests contained in individual modules while developing. Using introspection, you
can import the test modules and automatically add all the test classes they contain to a
suite. You can then pass the suite to a runner and check the results. Let’s create a set
of utility functions and keep them in a module called testutils (listing 7.4), which
we’ll be using shortly to test MultiDoc.

import unittest
from types import ModuleType

def IsTestCase(test):
 if type(test) == type and issubclass(test, unittest.TestCase):
 return True
 return False

def AddTests(suite, test):
 if isinstance(test, ModuleType):
 for entry in test.__dict__.values():
 if IsTestCase(entry):
 suite.addTests(unittest.makeSuite(entry))
 elif IsTestCase(test):
 suite.addTests(unittest.makeSuite(test))

def MakeSuite(*tests):
 suite = unittest.TestSuite()
 for test in tests:
 AddTests(suite, test)
 return suite

def RunTests(suite, **keywargs):
 return unittest.TextTestRunner(**keywargs).run(suite)

The easiest way of explaining these functions is to work from the bottom up.
 RunTests G runs a test suite and returns the results. It accepts keyword arguments

that are passed through to the TextTestRunner. MakeSuite creates a test suite E, and
initializes it with any test classes or modules that you pass in F. AddTests adds tests to
a suite D. If you pass in a module (recognized because its type is ModuleType), then you
check every object it contains by iterating over its __dict__ dictionary C, as follows:

for entry in test.__dict__.values()

Listing 7.4 testutils: module to support test running

B

C

D

E
F

G

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

165The unittest module
Objects are checked to see if they’re tests by calling IsTestCase, which checks to see if
an object is a test class or not B. type(test) == type is only true for classes. You can
tell if a class is a test class by checking if it’s a subclass of TestCase, as follows:

issubclass(test, unittest.TestCase)

Listing 7.5 is an example of using these functions to run the unit tests for the Value
class that you created in the previous sections. It assumes you’ve put these tests in a
module called ValueTestModule that you can import into our test runner code.

import sys
from testutils import MakeSuite, RunTests

import ValueTestModule

suite = MakeSuite(ValueTestModule)
results = RunTests(suite, verbosity=2)

if results.failures or results.errors:
 sys.exit(1)

This listing imports the module containing our tests B and creates the test suite. If
you have several test modules, then you can use something like this code segment:

import testmodule1
import testmodule2
import testmodule3

suite = MakeSuite(testmodule1, testmodule2, testmodule3)

MakeSuite adds all the modules you pass it to the suite. After creating the suite, you
run the tests C. Listing 7.5 passes in the optional keyword argument verbosity=2.
This increases the amount of information output while tests are running—which is
useful for keeping track of tests as they run. Figure 7.5 shows the output of running
tests with a higher verbosity level.

Listing 7.5 Running tests for Value class with help from functions in testutils

B

C

D

Figure 7.5 Running tests with verbosity level set to 2
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

166 CHAPTER 7 Agile testing: where dynamic typing shines
Listing 7.5 checks the results of these tests; if there are any errors or failures, it exits
with an exit code of 1 D. A correct exit code allows you to integrate running your tests
into your build process (for example using msbuild)5 and stop the build if tests fail.

 So far, we’ve concentrated on getting familiar with the basics of the unittest
framework. This is background to the really interesting part—exploring different test-
ing techniques with IronPython. Many of these techniques make great use of the
dynamic nature of Python. To demonstrate this, we write tests for MultiDoc.

7.2 Testing with mocks
The point of unit testing is to test as many aspects of your code as possible in isolation
from the other parts; it’s easier to tightly specify the behavior of your code and makes
the tests run faster. In practice, life is never quite so neat. Your objects need to interact
with other objects, and you need to test that interaction. Several different approaches
can minimize the number of live objects your tests need to use; the most useful of
these approaches is creating mock objects.

7.2.1 Mock objects

Working with mock objects is one place where you’ll see the advantage of using a
dynamically typed language. In a statically typed language, the compiler won’t let you
run any code unless the types match those declared in the production code. The objects
you use in tests must be real objects, or objects that inherit from the expected type.

 In a dynamically typed language, you can take advantage of duck typing. The objects
you use for testing need only implement the attributes and methods used in the tests.
Let’s see this in action by testing the execute method of MultiDoc’s OpenCommand.

Listing 7.6 gives a quick refresher of what the execute code looks like.

 def execute(self):
 fileName = self.mainForm.document.fileName
 directory = Path.GetDirectoryName(fileName)
 directoryExists = Directory.Exists(directory)
 openFileDialog = self.openFileDialog

5 See http://msdn2.microsoft.com/en-us/library/0k6kkbsd.aspx.

Listing 7.6 OpenCommand.execute: the method we want to test

Test structure
To make testing easier, we’ve reorganized the layout of the MultiDoc project. If you
download the source code for chapter 7 from the IronPython in Action website, then
you’ll see the changes we’ve made.

The important changes are that the production modules are kept in a package called
main, and the test files are in a package called tests. A module called loadassemblies
adds references to all the assemblies you’ll use; this can be loaded in the test packages
so that you always have references to assemblies you need.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/0k6kkbsd.aspx

167Testing with mocks
 if fileName is not None and directoryExists:
 openFileDialog.InitialDirectory = directory
 openFileDialog.FileName = fileName

 if openFileDialog.ShowDialog() == DialogResult.OK:
 document = self.getDocument(openFileDialog.FileName)
 if document:
 self.mainForm.document = document

The first behavior of execute to test is that it correctly sets the Filename and Initial-
Directory attributes on the OpenFileDialog. OpenCommand has a reference to the
MainForm, so it can check whether the current document has a fileName set on it or
not. If this reference isn’t None, then the filename should be set on the OpenFile-
Dialog, so that the dialog opens in the same folder as the current file.

 Where possible, classes should be tested in isolation. This is one of the ways that testing
encourages you to write better code. By making classes easier to test, you end up mak-
ing them more modular and decoupled from other classes (which is usually in the
right direction along the road to better).6

 The only attribute of MainForm that OpenCommand uses is the document. Instead of
using a real instance and a real document, you can use a mock object. With a stati-
cally typed language, you’d have to provide an object that the compiler recognizes as
being of a suitable type. Plenty of libraries could help you to do this, but it’s a lot sim-
pler with a dynamic language such as Python. Listing 7.7 shows just about the sim-
plest possible mock object, and how you can use it to create a mock MainForm for
testing the OpenCommand.

class Mock(object):
 pass
mainform = Mock()
document = Mock()
document.fileName = None
mainform.document = document
command = OpenCommand(mainform)

6 For an article on testing by Martin Fowler that strongly argues that these are stubs, see http://martin-
fowler.com/articles/mocksArentStubs.html.

Listing 7.7 A simple Mock class and a mock mainform instance

Mocks versus stubs
There’s some dispute in the testing community as to whether the kinds of objects
we’re creating here should be called mocks or stubs.6

Those who argue in favor of the name stubs use the term mocks for a different style of
testing. Instead of performing an action and then testing state, which is what we’re
doing here, they prefer to set up expectations first and then perform the action. If the
action doesn’t meet the expectations, then the test fails.

Personally, I (Michael) find action followed by assert more natural and easier to read.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://martin-fowler.com/articles/mocksArentStubs.html
http://martin-fowler.com/articles/mocksArentStubs.html

168 CHAPTER 7 Agile testing: where dynamic typing shines
If you call execute as it stands, then the call to openFileDialog.ShowDialog() will
block—which isn’t ideal for an automated test suite. Instead of a real OpenFileDialog,
we need a mock one with a ShowDialog method.

 The real dialog box returns either DialogResult.OK or DialogResult.Cancel. If
the user chooses a file, then the returned value is DialogResult.OK, which triggers
the creation of a new document. In this test, we don’t want this result, so we want a
class that returns DialogResult.Cancel and has Filename and InitialDirectory
attributes (which we do want to test). Next, we’ll want to test what happens when the
user accepts the dialog box. Listing 7.8 shows a MockDialog class that allows you to
control what’s returned from ShowDialog.

class MockDialog(object):
 def __init__(self):
 self.InitialDirectory = None
 self.FileName = None
 self.returnVal = DialogResult.Cancel

 def ShowDialog(self):
 return self.returnVal

command.openFileDialog = MockDialog()

The OpenCommand stores the dialog as an instance attribute, so replacing it with the
mock dialog is easy.

 Now to use this in a test. In listing 7.9, the test name reflects the behavior we’re
testing. Because you’ll need an OpenCommand initialized with a mock MainForm and dia-
log in the next few tests, we place this code in a setUp method.

def setUp(self):
 mainform = Mock()
 document = Mock()
 document.fileName = None
 mainform.document = document

 self.command = OpenCommand(mainform)
 self.command.openFileDialog = MockDialog()

def testExecuteShouldSetFilenameAndInitialDirectoryOnDialog(self):
 self.command.execute()
 self.assertNone(self.command.openFileDialog.FileName,
 "FileName incorrectly set")

 self.command.mainForm.document.fileName = __file__
 self.command.execute()
 self.assertEquals(self.command.openFileDialog.FileName,
 __file__,
 "FileName incorrectly set")
 self.assertEquals(self.command.openFileDialog.InitialDirectory,
 Path.GetDirectoryName(__file__),
 "InitialDirectory incorrectly set")

Listing 7.8 A mock OpenFileDialog class

Listing 7.9 Testing the use of OpenFileDialog

Replaces OpenFileDialog
with mock

Sets a real
filename

Tests behavior
with no filename
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

169Testing with mocks
The mock objects we’ve created in this section are pretty specific to testing the Open-
Command. Instead of creating all your mocks from scratch, you could use any of the fol-
lowing Python mock libraries:

■ Mock—http://pypi.python.org/pypi/mock/
■ Mox—http://code.google.com/p/pymox
■ The Python Mock Module—http://python-mock.sourceforge.net/
■ pMock—http://pmock.sourceforge.net/
■ pymock—http://pypi.python.org/pypi/pymock/
■ pymockobject—http://pypi.python.org/pypi/pymockobject/
■ minimock—http://blog.ianbicking.org/minimock.html
■ Stubble—http://www.reahl.org/project?name=stubble

Perhaps the reason for the many different mock libraries is that they’re so easy to
write. The first one in the list is my favorite, because I wrote it, but it’s often simpler to
write mocks as you need them as we’ve been doing.

 Even though creating mocks is easy, that doesn’t mean that there aren’t reusable
patterns. In the next section, we look at a slightly different testing pattern using a
Listener class.

7.2.2 Modifying live objects: the art of the monkey patch

Next, we need to test the behavior of execute when the dialog is accepted or can-
celed. If the dialog is accepted, it calls the getDocument method with the filename
from the dialog and sets the returned document onto the MainForm. If the dialog is
canceled, then it doesn’t.

 You could test this by providing a known filename and then checking that the
returned document is valid and complete. The test would need a real file, and would
also depend on the Document class remaining the same. If you changed Document,
then you’d also need to change the way you test OpenCommand. This is why testing in
isolation is preferred—tests for one part of the code become much less brittle to
changes in another part of the code.

 You can get around this by replacing the getDocument method with a custom
object that returns a mock document and also allows you to confirm whether it has
been called or not.

 Adding methods at runtime is another feature of dynamic languages, but is known
among the Python community by the slightly pejorative term of monkey patching. The
reason it’s frowned on is that it can make your code hard to read. If a class defines a
method, and then later on you see that method being called, you’ll assume you know
what code is being executed. If in fact that method has been replaced, it’s difficult to
know what code is being executed.

 One place where monkey patching is both accepted and useful is in testing.
Because methods are looked up dynamically, you can add methods at runtime. In
order to understand monkey patching, it will be useful to take a brief look at the
Python attribute lookup rules.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://pypi.python.org/pypi/mock/
http://code.google.com/p/pymox
http://python-mock.sourceforge.net/
http://pmock.sourceforge.net/
http://pypi.python.org/pypi/pymock/
http://pypi.python.org/pypi/pymockobject/
http://blog.ianbicking.org/minimock.html
http://www.reahl.org/project?name=stubble

170 CHAPTER 7 Agile testing: where dynamic typing shines
NOTE Monkey patching is a term that started with the Python community but is
now widely used (especially within the Ruby community). It seems to
have originated with Zope7 programmers, who referred to guerilla patch-
ing. This evolved from gorilla patching into monkey patching.

ATTRIBUTE LOOKUP RULES

When you call a method on an instance,
the method is looked up using the normal
order shown in figure 7.6.8

 You can confirm these rules at the inter-
active interpreter by adding a new method
to a class. All instances of the class then
gain the method.

>>> class AClass(object):
... pass
...
>>> instance = AClass()
>>> def method(self):
... print 'Hello'
...
>>> AClass.method = method
>>> instance.method()
Hello

In our case, you have the choice of patching the replacement object on the class or on
the instance. The disadvantage of patching the class is that it’s effectively a global and
modifying it will also modify it for other tests. You can override methods used at run-
time by patching the instance—which is what we need for testing. Again, this is easy to
show in an interactive interpreter session.

>>> def method2():
... print 'Hello 2'
...
>>> instance.method = method2
>>> instance.method()
Hello 2

We’ve now covered most of the basic principles of testing in Python, useful knowl-
edge to apply whether you’re programming in CPython or IronPython. Coming soon
is functional testing, but first we put monkey patching into practice with a useful
test class.

7 Zope is a large Python web framework that was first released in 1998. It’s mainly used to create Content Man-
agement Systems (CMS). The most famous application built with Zope is a popular CMS called Plone.

8 Because of the descriptor protocol, the lookup order and rules are a bit more complex—but figure 7.6 shows
the basic principle.

Figure 7.6 How a method call becomes an
attribute lookup followed by a call
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

171Testing with mocks
THE LISTENER CLASS

We want to test the behavior of OpenCommand.execute. If the call to ShowDialog
returns DialogResult.OK, then getDocument should be called with the filename from
the dialog, and the return value should be set as the document on MainForm. You
need to monkey-patch getDocument with something that will record what arguments
it’s called with and lets you control what it returns.9

 You could write a function that will record these things, but a useful pattern pro-
vides a general solution to this need: the Listener class (listing 7.10).

class Listener(object):
 def __init__(self):
 self.reset()

 def reset(self):
 self.returnVal = None
 self.triggered = False
 self.triggerArgs = None
 self.triggerKeyWargs = None

 def __call__(self, *args, **keywargs):
 self.triggered = True
 self.triggerArgs = args
 self.triggerKeyWargs = keywargs
 return self.returnVal

The magic of the Listener is in the __call__ method, which is another one of
Python’s magic methods. Instances of objects that define a __call__ method are call-
able like functions; but, because they’re class instances, they can store state.

9 Actually, thanks to Seo Sanghyeon, who found this for us.

Listing 7.10 Listener class that records arguments it’s called with

Bound and unbound methods
You may have noticed that when you patched the class with a function, it needed to
take the argument self like normal methods. When you look up a method defined
on a class, it gets wrapped as a bound method object—which is how self is passed
in. (This happens because functions are descriptors.) When you attach a function to
an instance, it’s just an ordinary attribute and so doesn’t get self passed to it.

Bound methods are named because of the way self is bound to the method.

This distinction between bound methods (methods looked up on an instance and
wrapped as a bound method) and unbound methods (the same object fetched directly
from the class) isn’t only deep Python; it can also be very useful.

.NET has a similar distinction with closed static and open instance delegates. Good
references are hard to come by, but the best we’ve found9 is at http://peisker.net/
dotnet/languages2005.htm.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://peisker.net/dotnet/languages2005.htm
http://peisker.net/dotnet/languages2005.htm

172 CHAPTER 7 Agile testing: where dynamic typing shines
 This __call__ method collects all the arguments it’s called with (using *args and
**keywargs) and stores them on the instance. When you monkey-patch a method
with a Listener instance you can tell whether it has been called and with what argu-
ments. Let’s use this to test the behavior of execute when the dialog is accepted or
canceled. The first part of this test, shown in listing 7.11, is easy. You assert that, when
the dialog is canceled, getDocument isn’t called.

def testExecuteShouldNotCallGetDocumentForCancelledDialog(self):
 listener = Listener()
 self.command.getDocument = listener

 self.command.execute()
 self.assertFalse(listener.triggered, "getDocument called incorrectly")

Listing 7.11 is trivially simple; you’re just testing that getDocument isn’t called. Its more
important counterpart test is listing 7.12.

def testExecuteWithAcceptedDialogShouldCallGetDocument(self):
 listener = Listener()
 self.command.getDocument = listener

 originalDocument = self.command.mainForm.document
 self.command.mainForm.document.fileName = __file__
 self.command.openFileDialog.returnVal = DialogResult.OK
 self.command.execute()
 self.assertEquals(listener.triggerArgs, (__file__,),
 "getDocument not called with filename")
 self.assertEquals(self.command.openFileDialog.InitialDirectory,
 Path.GetDirectoryName(__file__),
 "FileName incorrectly set")
 self.assertEquals(self.command.mainForm.document,
 originalDocument,
 "document incorrectly changed")

Here you’re testing what happens if the dialog is accepted, but getDocument returns
None (the default). If the dialog is accepted, then getDocument should be called with
the filename set on the dialog. Because getDocument returns None, the document on
MainForm should not be replaced.

 The last part of this test is listing 7.13, which tests that the document is replaced
when it should be.

def testNewDocumentFromGetDocumentShouldBeSetOnMainForm(self):
 listener = Listener()
 self.command.getDocument = listener
 self.command.mainForm.document.fileName = __file__
 self.command.openFileDialog.returnVal = DialogResult.OK

Listing 7.11 Testing that getDocument isn’t called if the dialog is canceled

Listing 7.12 Testing that accepting the dialog should call getDocument

Listing 7.13 Testing getDocument and MainForm interaction
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

173Testing with mocks
 newDocument = object()
 listener.returnVal = newDocument
 self.command.execute()
 self.assertEquals(self.command.mainForm.document,
 newDocument,
 "document not replaced")

Although the Listener is only a small class, it opens up the way to an effective and
readable testing pattern.

 But there’s a potential problem with monkey patching. Your tests become white-
box tests that know a great deal about the implementation of the objects under test.
For example, if you change the implementation of getDocument so that it takes two
arguments instead of one, the tests we’ve written so far would continue to pass even
though the code is broken. Finding this balance between testing implementation and
testing behavior is a constant tension in unit testing. One pattern that can help reduce
this coupling is dependency injection.

7.2.3 Mocks and dependency injection

In dependency injection, dependencies are supplied to components rather than
being used directly. Dependency injection makes testing easier, because you can sup-
ply mocks instead of the real dependencies and test that they’re used as expected. A
common way to do dependency injection in Python is to provide dependencies as
default arguments in object constructors.10

 Let’s look at testing a simple scheduler class to see how this works (listing 7.14).

import time

class Scheduler(object):
 def __init__(self, tm=time.time, sl=time.sleep):
 self.time = tm
 self.sleep = sl

 def schedule(self, when, function):
 self.sleep(when - self.time())
 return function()

Scheduler has a single method, schedule, that takes a callable and a time for the call-
able to be fired. The schedule method blocks by sleeping until the correct time
(when) using the time.time and time.sleep standard library functions; but, because
it obtains them with dependency injection, it’s easy to test. The injection is set up in
the Scheduler constructor, so the first thing you need to test is that the default con-
structor does the right thing. Setting up the default dependency in the constructor is
the extra layer that dependency injection introduces into your code. Listing 7.15
shows the test for the constructor.

10 With thanks to Alex Martelli. Examples adapted from http://www.aleax.it/yt_pydi.pdf.

Listing 7.14 A simple Scheduler class to test with dependency injection
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.aleax.it/yt_pydi.pdf

174 CHAPTER 7 Agile testing: where dynamic typing shines
import time
from unittest import TestCase
from dependency_injection import Scheduler

class DependencyInjectionTest(TestCase):

 def testConstructor(self):
 scheduler = Scheduler()
 self.assertEquals(scheduler.time, time.time,
 "time not initialized correctly")
 self.assertEquals(scheduler.sleep, time.sleep,
 "sleep not initialized correctly")

Having tested that the dependency injection is properly initialized in the default case,
you can use it to test the schedule method. Listing 7.16 uses a fake time module that
records calls to time, sleep, and the function you pass into schedule. Methods on
FakeTime are passed into the constructor instead of the defaults. You can then assert
that calls are made in the right order, with the right arguments, and that schedule
returns the right result.

def testSchedule(self):
 class FakeTime(object):
 calls = []

 def time(self):
 self.calls.append('time')
 return 100

 def sleep(self, howLong):
 self.calls.append(('sleep', howLong))

 faketime = FakeTime()
 scheduler = Scheduler(faketime.time, faketime.sleep)

 expectedResult = object()
 def function():
 faketime.calls.append('function')
 return expectedResult

 actualResult = scheduler.schedule(300, function)

 self.assertEquals(actualResult, expectedResult,
 "schedule did not return result of calling function")

 self.assertEquals(faketime.calls,
 ['time', ('sleep', 200), 'function'],
 "time module and functions called incorrectly")

Because the fake time function is set up to return 100, and the function is scheduled to
be called at 300, sleep should be called with 200. Dependency injection can easily be
done using setter properties, or even with simple attributes. Yet another approach is to
use factory methods or functions for providing dependencies, which can be needed
where fresh instances of dependencies are required for each use. Dependency injection

Listing 7.15 Testing that dependency injection is set up correctly

Listing 7.16 Testing schedule method by injecting faked-up dependencies
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

175Functional testing
is useful for both unit testing and subclassing, or overriding the behavior of classes; sub-
classing is significantly easier to do with Python than some other languages.

 One of the problems with unit testing is that, although it’s good for testing compo-
nents in isolation, it isn’t so good at testing that they’re wired together correctly. To
make sure that this is covered, you need some higher-level tests; this is where func-
tional testing comes in.

7.3 Functional testing
Functional tests, or acceptance tests, are high-level tests of an application from the
outside. As much as possible, they should interact with the application in the same way
the user does. Where unit tests test the components of your application, functional
tests test the interaction of those components; they’ll often pick up on bugs or prob-
lems that unit tests miss. Functional tests can be more than just useful tests, though.

 In the Extreme Programming (XP) tradition (you know a methodology has arrived
when it becomes a tradition), new features are specified by the customer as user sto-
ries.11 User stories describe (and specify) the behavior of your application. A func-
tional test then becomes an executable version of this user story. If you follow XP, then
your user stories provide a full specification of your application’s behavior. As well as
testing your components, functional tests will warn you when new features interact in
unexpected ways with existing features.

 In the first part of this section, we write a functional test to test the New Tab Page
feature, so we need a user story. The user story describes a feature from the point of
view of a user, and our user will be called Harold.12

1 Harold opens MultiDoc.
2 He clicks the New Page toolbar button.
3 A dialog called Name Tab appears.
4 Harold changes his mind, so he selects Cancel.
5 No new tab appears.
6 Our capricious user clicks the button again.
7 The dialog appears again.
8 This time he enters a name: My New Page.
9 He clicks OK.

10 There are now two tabs.
11 The second one is called My New Page.
12 Harold is ecstatic.

This user story specifies how the New Tab Page dialog should work, and how the user
interacts with it. We need to implement a test that follows Harold’s actions and checks
that MultiDoc behaves in the expected way.

11 See http://www.extremeprogramming.org/rules/userstories.html.
12 This is in homage to the long-suffering, but perhaps ever so slightly demented, star of the Resolver Systems

user stories.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.extremeprogramming.org/rules/userstories.html

176 CHAPTER 7 Agile testing: where dynamic typing shines
 This is where it gets tricky. We want to use our existing test framework, so that our
functional tests can be first-class members of the automated test suite, but you need a
way of driving and interacting with MultiDoc. You need to create a new test case class
that provides the infrastructure for writing functional tests. This test case should start
MultiDoc for you and allow you to interact with it. This in turn gives us a new problem
to solve: how do you interact with a running MultiDoc?

7.3.1 Interacting with the GUI thread

You need to start MultiDoc, perform actions, and then make assertions about the state
of MultiDoc. But, starting MultiDoc means starting the Windows Forms event loop,
which will seize the control flow of the thread. The logical thing to do is start Multi-
Doc on another thread. As if we didn’t have enough problems already, doing this will
create another one—any interaction with Windows Forms controls has to be on the
thread on which they were created. Fortunately, this is all relatively simple to do. You
need to know the following three facts:

■ The Windows Forms event loop must run in a Single Threaded Apartment
(STA) thread.13

■ Windows Forms controls provide an Invoke method, which takes a delegate
and executes on the control thread. It’s synchronous, so Invoke can return val-
ues but blocks until execution has completed.

■ IronPython provides a convenient delegate that you can create with a function
and use with Invoke. This delegate is called CallTarget0, and where you
import it from depends on which version of IronPython you’re using.

Listing 7.17 shows a simple example of starting the event loop on another thread.

import clr
clr.AddReference('System.Windows.Forms')
from System.Windows.Forms import Application, Form
from System.Threading import (
 ApartmentState,
 Thread, ThreadStart
)

try:
 # IronPython 1.x
 from IronPython.Runtime.Calls import CallTarget0
except ImportError:
 # IronPython 2.x
 clr.AddReference('IronPython')
 from IronPython.Compiler import CallTarget0

class Something(object):
 started = False

13 Because they wrap native controls that assume they’ll run in a thread with an STA state.

Listing 7.17 Interacting with Windows Forms controls from another thread

Somewhere to store attributes
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

177Functional testing
 form = None

something = Something()

def StartEventLoop():
 f = Form()
 f.Text = 'A Windows Forms Form'
 f.Show()
 something.form = f
 something.started = True
 Application.Run(f)

thread = Thread(ThreadStart(StartEventLoop))
thread.SetApartmentState(ApartmentState.STA)
thread.Start()

Some time for form to appear
while not something.started:
 Thread.CurrentThread.Join(100)

def GetFormTitle():
 title = something.form.Text
 return title

title = something.form.Invoke(CallTarget0(GetFormTitle))
print title

Thread.Sleep(5000)
delegate = CallTarget0(something.form.Close)
something.form.Invoke(delegate)

The delegate CallTarget0 wraps functions that don’t take any arguments. A corre-
sponding CallTarget1 wraps functions taking one argument, CallTarget2 for func-
tions that take two arguments, and so on up to CallTarget5.14 We find it simpler to
use CallTarget0 and pass in lambda functions where we need a function called with
multiple arguments.

 Listing 7.18 puts this knowledge to work with a new base class for tests: Function-
alTest. The setUp method starts MultiDoc and tearDown stops it. FunctionalTest
also provides a convenience method invokeOnGUIThread for interacting with Multi-
Doc by executing functions on the GUI thread.

from tests.testcase import TestCase

from main.mainform import MainForm

from System.IO import Directory, Path
from System.Windows.Forms import Application
from System.Threading import (
 ApartmentState,
 Thread, ThreadStart
)

14 .NET 3 also has two useful delegates with various aritys. These are Action and Func.

Listing 7.18 A FunctionalTest base class for interacting with a running MultiDoc

Stores reference to form

Waits for form to be shown

A brief pause to see form
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

178 CHAPTER 7 Agile testing: where dynamic typing shines
try:
 from IronPython.Runtime.Calls import CallTarget0
except ImportError:
 from IronPython.Compiler import CallTarget0

class FunctionalTest(TestCase):

 def setUp(self):
 self.mainForm = None
 self._thread = Thread(ThreadStart(self.startMultiDoc))
 self._thread.SetApartmentState(ApartmentState.STA)
 self._thread.Start()
 while self.mainForm is None:
 Thread.CurrentThread.Join(100)

 def startMultiDoc(self):
 fileDir = Path.GetDirectoryName(__file__)
 executableDir = Directory.GetParent(fileDir).FullName

 self.mainForm = MainForm(executableDir)
 Application.Run(self.mainForm)

 def tearDown(self):
 self.invokeOnGUIThread(lambda: self.mainForm.Close())

 def invokeOnGUIThread(self, function):
 return self.mainForm.Invoke(CallTarget0(function))

This new test case is nice, and it will work fine (trust me; we’ve already tried it). But it
isn’t quite sufficient for what we want to achieve. We want to test the New Page dialog;
and, if you invoke a function on the control thread that opens the dialog, Invoke will
block until the dialog is closed again. You need a way to asynchronously perform
actions on the control so that you can interact with the Name Tab dialog. This means
more fun with dialogs.

7.3.2 An AsyncExecutor for asynchronous interactions

You can use a similar pattern to interact asynchronously with the GUI thread. You can
launch the action from yet another thread that has the job of calling Invoke. This
won’t block the test thread while it’s waiting for Invoke to return. You may want to be
able to retrieve a return value, and to be able to join to the new thread to check that it
exits, you can encapsulate this functionality in an object. Listing 7.19 shows the Async-
Executor object along with a convenience method to use it from functional tests.

from System.Threading import (
 ManualResetEvent, Timeout
)
class AsyncExecutor(object):

 def __init__(self, function):
 self.result = None
 startEvent = ManualResetEvent(False)

 def StartFunction():

Listing 7.19 A FunctionalTest base class for interacting with a running MultiDoc

New subclass
of TestCase

Imports
CallTarget0
from
IronPython 2

Imports
CallTarget0
from
IronPython 1
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

179Functional testing
 startEvent.Set()
 self.result = function()

 self._thread = Thread(ThreadStart(StartFunction))
 self._thread.Start()
 startEvent.WaitOne()

 def join(self, timeout=Timeout.Infinite):
 return self._thread.Join(timeout)

 def executeAsynchronously(self, function):
 def AsyncFunction():
 return self.invokeOnGUIThread(function)
 executor = AsyncExecutor(AsyncFunction)
 return executor

Now you have all the infrastructure you need to write the functional test. Ideally, the
test would know nothing about the internal structure of MultiDoc; but in order to
make assertions about the state of MultiDoc, it needs to know something. This makes
the test brittle against changes to the structure of MultiDoc. In the next section, we
turn our user story into a functional test while looking at how you can mitigate against
this potential brittleness.

7.3.3 The functional test: making MultiDoc dance

You need to create a test file and add it to runtests.py. The new test inherits from the
test case, FunctionalTest. setUp automatically launches MultiDoc and gives you
access to the main class (the MainForm instance) as self.mainForm. We still need to
work out how you’ll interact with MultiDoc.

 One way would be to insert fake mouse and key events into the event loop. A man-
aged class is available for sending key presses to the Windows Forms message loop.
There are no managed classes for sending mouse movements and button presses, but
you can do this using unmanaged classes.15 Even taking this route, you’d still need
access to the controls to get the locations to send clicks to. If you’re going to have
access to the controls anyway, then you might as well trigger them programmatically.
This approach still tests that event handlers are wired correctly, and is a good compro-
mise between fully black-box testing and testing completely below the level of the GUI.
The advantage of simulating mouse moves and clicks is that it only works if your GUI
components are accessible to the mouse (that is, visible). The cost is having to main-
tain a more complex test framework.

 The first important step in our user story is clicking the New Page toolbar button.
This button is the fourth button in the toolbar, so you can access it using code like
mainForm.toolBar.Items[3].PerformClick() (which must be executed on the con-
trol thread, of course). This suffers from the brittleness we mentioned earlier. If you
change the order of buttons in the toolbar, then you have to modify everywhere that
uses this code. A simple solution is to access the button through a single method. This

15 This is the approach Resolver Systems takes with the test framework for Resolver One.

Waits for
ManualResetEvent
to signal

Joins execution thread

Convenience method
for FunctionalTest
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

180 CHAPTER 7 Agile testing: where dynamic typing shines
has all the usual advantages of avoiding duplication and means that you can change
the way you access toolbar buttons from a single place. Listing 7.20 shows the start of
the functional test and a method for clicking the New Page button.

from tests.functionaltest import FunctionalTest

from System.Threading import Thread
from System.Windows.Forms import Form, SendKeys

class NewPageTest(FunctionalTest):

 def clickNewPageButton(self):
 button = self.mainForm.toolBar.Items[3]
 executor = self.executeAsynchronously(
 lambda: button.PerformClick())
 Thread.CurrentThread.Join(200)
 return executor

Putting the access to UI components into methods also has the advantage of making
the functional test more readable. As you write more functional tests, and abstract out
of them methods for common actions, you effectively create a Domain Specific Lan-
guage (DSL) for writing your tests. The ideal would be to have one line of code per
line of user story.

 An alternative way of making tests less susceptible to breakage caused by layout
changes is to give controls a descriptive Name attribute. It’s then easy to provide a
findControlByName method that recursively iterates through child controls looking
for a specific control. You don’t need to store
a reference to all the controls you might want
to access through functional tests, and chang-
ing your layout won’t (necessarily) break all
your functional tests.

 Executing our functional test will cause
MultiDoc to appear along with dialog and new
tab pages. Following the user story, MultiDoc
will dance under the invisible hand of Harold.
(Because this is automated, the actual dance is
very quick, but it will look like figure 7.7.)

 The full functional test is shown in list-
ing 7.21. It contains the user story as com-
ments in the test method, each line followed
by the code that implements it.

def testNewPageDialog(self):
 # * Harold opens MultiDoc
 # * He clicks on the 'New Page' toolbar button

Listing 7.20 A FunctionalTest base class for interacting with a running MultiDoc

Listing 7.21 FunctionalTest base class for interacting with running MultiDoc

Delay for dialog
to appear

Done by setUp

Figure 7.7 MultiDoc dancing under the
invisible hand of Harold, our mythical user
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

181Functional testing
 executor = self.clickNewPageButton()

 # * A dialog called 'Name Tab' appears
 dialog = self.invokeOnGUIThread(
 lambda: Form.ActiveForm)
 title = self.invokeOnGUIThread(lambda: dialog.Text)
 self.assertEquals(title, "Name Tab",
 "Incorrect dialog name")

 # * Harold changes his mind, so he selects cancel
 self.invokeOnGUIThread(
 lambda: dialog.CancelButton.PerformClick())
 executor.join()

 # * No new tab appears
 def GetNumberOfPages():
 return len(self.mainForm.tabControl.TabPages)
 numPages = self.invokeOnGUIThread(GetNumberOfPages)
 self.assertEquals(numPages, 1,
 "Wrong number of tabPages")

 # * Our capricious user clicks the button again
 executor = self.clickNewPageButton()

 # * The dialog appears again
 dialog = self.invokeOnGUIThread(lambda: Form.ActiveForm)

 # * This time he enters a name 'My New Page'
 def TypeName():
 SendKeys.SendWait('My New Page')
 self.invokeOnGUIThread(TypeName)

 # * He clicks on OK
 self.invokeOnGUIThread(
 dialog.AcceptButton.PerformClick())

 # * There are now two tabs
 numPages = self.invokeOnGUIThread(GetNumberOfPages)
 self.assertEquals(numPages, 2,
 "Wrong number of tabPages")

 # * The second one is called 'My New Page'
 def GetSecondTabTitle():
 secondTab = self.mainForm.tabControl.TabPages[1]
 return secondTab.Text

 secondTabTitle = self.invokeOnGUIThread(GetSecondTabTitle)
 self.assertEquals(secondTabTitle, "My New Page",
 "Wrong title on new page")

 # * Harold is ecstatic

As you can see, several pieces of code in the test still poke inside MultiDoc to test its
state. If you were to implement more tests, you’d find that a lot of this code could be
shared between tests and moved up to become methods on FunctionalTest. In this
way, the tests become more DSL-like, and you build a comprehensive test framework.

 That was fun, but it might give you the impression that creating a functional test
suite for your application is easy. We didn’t have to deal with timing or threading

Dialog should
be active form

Not sure what assert to use
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

182 CHAPTER 7 Agile testing: where dynamic typing shines
issues at all. Despite potential difficulties, getting functional tests working is the most
satisfying part of writing tests. We’ve now finished with testing, so it’s time to wrap up.

7.4 Summary
In this chapter, we’ve gone from setting up a unittest-based test framework to the
principles of testing with Python. The dynamic nature of Python makes it easy to test.

 It seems obvious that testing is an important part of software development. A good
principle is that if you have untested code, you can’t be sure it works. As you add new
features, good test coverage tells you if you’ve broken any of your existing fea-
tures—an enormous benefit. A less obvious benefit comes when refactoring code.
Changing classes that you use extensively, to extend or improve the architecture of
your code, can be a daunting task. Your initial changes may break a lot, but with good
test coverage you’ll know you’ve finished when all your tests pass again!

 There’s a lot we haven’t covered in this chapter, but the basic examples of monkey
patching and mocks that we’ve used can be extended to provide solutions to difficult
testing situations. Because dynamic languages are so easy to test, lots of people are
exploring testing with Python, and lots of resources on the internet are available to
help you.

 Along the way, you encountered another of Python’s magic methods, __call__, for
creating callable objects. This method provides access to the Python equivalent of .NET
interfaces, plus things that aren’t possible with C# or VB.NET. In the next chapter, we
explore some more of these Python protocols. Not everything in the .NET framework
maps to Python syntax or concepts straightforwardly. In the next chapter, we also look
at some of the ways that IronPython integrates with the .NET framework. These are
things that past experience with Python or .NET alone hasn’t equipped you for.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

 Metaprogramming,
 protocols, and more
In this chapter, we’re going to look under the hood of the Python programming
language. We’ve covered all the basic syntax and how to use classes from the .NET
framework with IronPython. To make full use of Python, you need to know how to
hook Python classes into the infrastructure that the language provides. As you write
classes and libraries in Python, you’ll need to define how your objects take part in
normal operations and interact with other objects. Much of this interaction is done
through protocols, the magic methods that we’ve already briefly discussed.

 We focus here on the use of protocols, including the metaprogramming capa-
bilities of Python in the form of metaclasses. Metaclasses have a reputation for
being something of a black art, but no book on Python would be complete without
them. They can be used to achieve tasks that are much harder or even impossible

This chapter covers
■ Python protocols
■ Dynamic attribute access
■ Metaprogramming with metaclasses
■ Advanced .NET interoperation
183

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

184 CHAPTER 8 Metaprogramming, protocols, and more
with other approaches. In this part of the chapter, you’ll deepen your understanding
of Python as you learn about the most important protocols.

 The next part of the chapter looks at how IronPython integrates with .NET. Most of
the time IronPython sits easily with the way .NET does things, but sometimes they
don’t make such comfortable bedfellows. In these situations, you need to know how
.NET functionality is made available in IronPython. This information will prove invalu-
able in any non-trivial project; along the way, we take a closer look at some of the .NET
types that you use through IronPython.

 Let’s start by examining how Python protocols relate to interfaces, a topic that
.NET programmers will already be familiar with.

8.1 Protocols instead of interfaces
Interfaces are used in C# to specify behavior of objects. For example, if a class imple-
ments the IDisposable interface, then you can provide a Dispose method to release
resources used by your objects. .NET has a whole host of interfaces, and you can create
new ones. If a class implements an interface, it provides a static target for the compiler
to call whenever an operation provided by that interface is used in your code.

NOTE C# does have one example of duck typing: enumeration with the
IEnumerable interface. To support iteration over an object,1 classes can
either implement IEnumerable or provide a GetEnumerator method.
GetEnumerator can either return a type that implements IEnumerator or
one that declares all the methods defined in IEnumerator.

In Python, you don’t need to provide static targets for the compiler, and you can use
the principle of duck typing. Many operations are provided through a kind-of-soft
interface mechanism called protocols. This isn’t to say that formal interface specifica-
tion is decried in Python—how could you use an API if you didn’t know what interface
it exposed?—but, again, Python chooses not to enforce this in the language design.

NOTE Various third-party interface packages are available for Python, the most
common one being part of the Zope project.2

In this section, we look at the common Python protocols and how to implement them.

8.1.1 A myriad of magic methods

Methods that implement protocols in Python usually have names that start and end
with double underscores. They’re known as the magic methods because, instead of
you calling them directly, they’re usually called for you by the interpreter.

 When you compare objects, the comparison operation will cause the method cor-
responding to the operation to be called magically (as long as the object provides the
appropriate protocol method).

 We’ve already encountered several of the protocols in our journey so far: the
__init__ constructor and the __getitem__ and __setitem__ methods that implement

1 From http://msdn2.microsoft.com/en-us/library/ttw7t8t6(VS.71).aspx.
2 The zope.interface package: http://www.zope.org/Products/ZopeInterface.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/ttw7t8t6(VS.71).aspx
http://www.zope.org/Products/ZopeInterface

185Protocols instead of interfaces
the mapping and sequence protocols. As you’d expect, there are many more that we
haven’t yet encountered. A full list of all the common magic methods is in one of the
appendixes, but some of them are so central to Python that we can’t do justice to the
language without looking at them.

 As the heading implies, Python has a lot of magic methods. You implement these
to customize the behavior of your objects. Some of the protocols central to Python
are also simple to implement. We start with one of these, the __len__ proto-
col method.
THE LENGTH OF CONTAINERS

In .NET land, you find the number of members in a container object through the
Length property or the Count property, depending on what kind of container it is. In
Python, you determine the length of a container by calling len on it. Under the hood,
this calls the __len__ method (listing 8.1).

>>> class Container(object):
... def __len__(self):
... return 3
...
>>> container = Container()
>>> len(container)
3
>>>

This listing illustrates a silly implementation of __len__ that always returns 3. The
body of this method is likely to contain slightly more logic in a real container class.

 That was easy. For our next trick, we look at the Python equivalents of ToString.
REPRESENTING OBJECTS AS STRINGS

You didn’t read that last sentence wrong—it’s meant to be plural. You can explicitly
get a string version of an object by calling str on it. str is for producing a pretty ver-
sion of an object. You can also get a representation of an object with another built-in
function called repr.

 You can see this distinction by working at the interactive interpreter with strings
containing escaped quotes.

>>> x = 'string with \'escaped\' quotes'
>>> str(x)
"string with 'escaped' quotes"
>>> repr(x)
'"string with \'escaped\' quotes"'
>>>

The stringified version doesn’t have the escape backslashes. The repr’d version does
have them; and, because the repr’d version includes quotes, the console adds an
extra set.

 When you call str on an object, Python calls __str__ for you. When you use repr,
Python calls __repr__. Naturally these methods must return strings, as shown in
listing 8.2.

Listing 8.1 Specifying length of custom containers
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

186 CHAPTER 8 Metaprogramming, protocols, and more
>>> class Something(object):
... def __str__(self):
... return 'Something stringified'
... def __repr__(self):
... return "Something repr'd"
...
>>> something = Something()
>>> str(something)
'Something stringified'
>>> repr(something)
"Something repr'd"
>>>

Rather than having these methods return completely unrelated strings, the normal
difference is that repr should (if possible) return a string that can be eval’d to create
the equivalent object. This is why the quotes and backslashes turned up in the repr of
the string. It’s common for classes to have a repr of the form ClassName(arguments)
and a different str form.

 In this interactive session, we’ve been making the difference between str and
repr explicit. This difference also crops up implicitly—which, incidentally, is why
it’s nicer to have these methods as protocol methods rather than forcing you to call
them explicitly.

 When you print an object, Python will use __str__ to get a string representation.
When you display an object at the interactive interpreter, __repr__ is used.

>>> print something
Something stringified
>>> something
"Something repr'd"

When you use string interpolation, you can choose which method you want. %s is the
formatting character for stringification, and %r will use repr.

>>> '%s and %r' % (something, something)
"Something stringified and Something repr'd"

If __str__ is unavailable but __repr__ is available, then __repr__ will be used in its
place. If you want both stringification and repr’ing to be the same, and want to imple-
ment only one of these methods, then you should choose __repr__.

 Just for completeness, we should mention __unicode__. This protocol method is
called when you ask for a Unicode representation of an object by calling unicode on
it. Because strings are already Unicode in IronPython, it’s not likely that you’ll need it,
but you may encounter it in libraries and existing Python code.

NOTE In fact, in IronPython 2, even if you explicitly call unicode(some-
thing), the __unicode__ method won’t be called. This is really a bug,
but arises because the unicode and str types are both aliases to System.
String.

Listing 8.2 A class with custom string representations
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

187Protocols instead of interfaces
A common reason for providing these methods is for debugging; being able to get
useful information about your objects in tracebacks can be invaluable. A method
you’re likely to implement to influence the way your objects behave in code is the
__nonzero__ method.
TRUTH TESTING OF OBJECTS

If you recall from the tutorial, None, empty strings, zero, and empty containers evalu-
ate to False in logical expressions (and when used in if and while statements). Arbi-
trary objects evaluate to True. If you’re implementing custom containers, then for
consistency they should evaluate to False when they have no members; but, by
default, they will always evaluate as True.

 You can control whether an object evaluates to True or False by implementing the
__nonzero__ method. If this returns True, then the object will evaluate to True.

NOTE The full semantics of truth value testing are slightly more complicated
than we’ve described so far. If an object doesn’t implement __nonzero__,
then Python will also check for __len__. If __len__ is available and
returns 0, then the object will evaluate to False. The __nonzero__
method is useful for directly providing truth value testing without being
dependent on supporting length.

>>> class Something(object):
... def __nonzero__(self):
... return False
...
>>> something = Something()
>>> bool(something)
False

These examples of working with magic methods have been nice and straightforward,
almost trivially easy. This is good because even the more complex ones work on the
same principles; you just need to know the rules (or know where to look them up). We
now look at some more advanced protocols in the guise of operator overloading.

8.1.2 Operator overloading

Operator overloading allows you to control how objects take part in operations such
as addition, subtraction, multiplication, and so on. You can create custom datatypes
that represent values and can be used in calculations. You might want to define types
that represent different currencies, and use a converter when different currencies are
added together.

 Each of the built-in operators (+, -, /, *, and friends) has an equivalent magic
method that you can implement to support that operation. The method for addition
is __add__. This method takes one argument: the object being added to. Traditionally,
this argument is called other. Here’s a simple class that behaves like the number three
in addition:

>>> class Three(object):
... def __add__(self, other):
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

188 CHAPTER 8 Metaprogramming, protocols, and more
... return other + 3

...
>>> t = Three()
>>> t + 2
5

That’s nice and easy. What happens if you try a slightly different addition with this
class?

>>> 2 + t
Traceback (most recent call last):
 File , line 0, in ##29
TypeError: unsupported operand type(s) for +: 'int' and 'Three'

Because the Three instance is on the right-hand side of the addition, the integer add
method is called—and integers don’t know how to add themselves to the custom class.
You can solve this problem with the __radd__ method, which is the right-handed com-
panion of __add__ and the method called when a custom type is on the right-hand
side of an addition operation.

>>> class Three(object):
... def __add__(self, other):
... return other + 3
... def __radd__(self, other):
... return 3 + other
...
>>> t = Three()
>>> t + 2
5
>>> 2 + t
5

The good news is that fixing the problem is this simple; the bad news is that you need
to implement two methods for each operation. The next listing shows a simple way
around this two-methods problem.

In-place operators
In-place operations are a convenient way of updating variables. You can easily incre-
ment a loop variable like this:

i += 1

In-place operations also have a protocol method, __iadd__ in the case of addition.
Numbers are immutable, so the underlying value that i points to isn’t changed; in-
stead, the addition is done, and the reference is bound to the new value. This oper-
ation is effectively identical to the following:

i = i + 1

You don’t need to implement the in-place protocol methods for your types to support
these operations. Implementing them allows you to customize them if you want to.
Creating an event hook that supports in-place addition and subtraction to add and
remove event handlers is one place that these methods are useful.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

189Protocols instead of interfaces
Table 8.1 shows the common3 operator magic methods and the operations they pro-
vide. All the methods listed in this table also have right-hand and in-place equivalents
as well.

A practical application of operator overloading is creating custom datatypes. The next
listing is a datatype that allows you to store values with a known amount of uncertainty.
When you add two uncertain values, the uncertainty is added. When you multiply them,
the uncertainty increases dramatically! Listing 8.3 shows the code for an Uncertainty
class that supports addition and multiplication.

class Uncertainty(object):
 def __init__(self, value, spread):
 self.value = value
 self.spread = spread

 def __add__(self, other):
 if isinstance(other, Uncertainty):
 value = self.value + other.value

3 For a complete list of these methods, including some of the less common ones, see http://docs.python.org/
ref/numeric-types.html.

Table 8.1 The methods used to emulate numeric types

Method Operator Operation

__add__ + Addition

__sub__ - Subtraction

__mul__ * Multiplication

__floordiv // Floor division, truncating the result to the next integer down

__div__ / Division

__truediv / Used for division when true division is on

__mod__ % Modulo

__divmod__ Supports the built-in function divmod

__pow__ ** Raises to the power of

__lshift__ << Shifts to the left

__rshift__ >> Shifts to the right

__and__ & Bitwise AND

__xor__ ^ Bitwise exclusive OR

__or__ | Bitwise OR

Listing 8.3 Specifying length of custom containers

Handle adding to
another Uncertainty
instance
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/ref/numeric-types.html
http://docs.python.org/ref/numeric-types.html

190 CHAPTER 8 Metaprogramming, protocols, and more
 spread = self.spread + other.spread
 return Uncertainty(value, spread)
 return Uncertainty(self.value + other, self.spread)

 __radd__ = __add__

 def __mul__(self, other):
 if isinstance(other, Uncertainty):
 value = self.value * other.value
 spread = (
 self.spread * other.spread +
 self.value * other.spread +
 self.spread * other.value
)
 return Uncertainty(value, spread)
 return Uncertainty(self.value * other, self.spread * other)

 def __rmul__(self, other):
 return self.__mul__(other)

 def __repr__(self):
 return 'Uncertainty(%s, %s)' % (self.value, self.spread)

 def __str__(self):
 return u"%s\u00b1%s" % (self.value, self.spread)

There are a few things of note in listing 8.3. Like integers and floating point numbers,
Uncertainty instances are immutable, so addition and multiplication return new
instances rather than modifying themselves. It would be an odd side effect if taking
part in an addition modified a number that you held a reference to elsewhere! Inside
the numeric protocol methods, Uncertainty has to handle operations involving
another Uncertainty differently. The first thing it does is a type check. Because
__radd__ needs to do exactly the same as __add__, you make them the same method
with an assignment.

 There are also different implementations for __repr__ and __str__. The repr of
an Uncertainty looks like Uncertainty(6, 3); the str (which is more of a pretty
print) looks like 6±3. __str__ returns a Unicode string because it uses a Unicode
character. This would cause problems in CPython, unless your default encoding can
handle this character, but is fine under IronPython because strings are always Uni-
code. You’ll still need a terminal (or GUI control) capable of displaying Unicode char-
acters to see the fancy string representation.

 Operator overloading isn’t limited strictly to emulating numeric types. You can also
implement these methods for objects that don’t represent values, using ordinary
Python syntax to perform operations on them. For example, the popular path module
by Jason Orendorff 4 overloads division so that you can concatenate paths to strings by
using the division operator, which is the normal path separator on Unix systems.

newPath = path('some path') / 'subdirectory' / 'filename'

4 See http://pypi.python.org/pypi/path.py.

Returns new
instance

__radd__ does
same as __add__
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://pypi.python.org/pypi/path.py

191Protocols instead of interfaces
This kind of overloading operators with new meanings is a dubious practice in our
opinion, but some programmers are fond of this kind of trick. Something that isn’t
dubious, and in fact is central to Python, is working with iterators—the subject of the
next section.

8.1.3 Iteration

Iteration means repeatedly performing an action on members of an object. It’s one of
the fundamental concepts of programming, so being able to make your own objects
iterable (or enumerable) is important.

 You saw in the Document class for MultiDoc that providing a sequence-like API (a
zero-indexed __getitem__ method) gets you iteration for free. Life is rarely that sim-
ple, so you need to know how to support the iteration protocol.

 When Python encounters iteration over an object—as a result of a for loop, a list
comprehension, or an explicit call to the iter function—it will attempt to call
__iter__ on the object. If the object supports iteration, then this method should
return an iterator. An iterator is an object that obeys the following three rules:

■ It has a __iter__ method that returns itself.5

■ It has a next method that returns the next value from the iterator.
■ When the iterator is consumed (all the values have been returned), calling next

should raise the StopIteration exception.

That’s all nice and easy, but you probably immediately noticed that, unlike the other
protocol methods that we’ve used, next isn’t held in the double embrace of under-
scores. Most magic methods are rarely called directly. The double underscores are a
warning sign that, if you’re calling them directly, then you should be sure you know
what you’re doing. Calling next on an iterator is perfectly normal. One place where
we use this is for incrementing a counter, often on an iterator, like the following,
returned by the built-in function xrange:

>>> counter = xrange(100)
>>> counter.next()
0

So without further ado, listing 8.4 demonstrates iteration with a simple class that
returns every number between a start and a stop value.

class Iterator(object):
 def __init__(self, start, stop):
 self.stop = stop
 self.count = start

 def __iter__(self):
 return self

5 This allows an object to be its own iterator.

Listing 8.4 An example Iterator class

Needed for iterator
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

192 CHAPTER 8 Metaprogramming, protocols, and more
 def next(self):
 if self.count > self.stop:
 raise StopIteration
 count = self.count
 self.count += 1
 return count
>>> for entry in Iterator(17, 20):
... print entry,
...
17 18 19 20

This example is a simple one, but your classes can support iteration by returning an
object like this from their __iter__ methods. Your iterator is free to do as much
dynamic magic as it wants in next, such as reading from a file or a socket. A simpler,
and more powerful, way of implementing an iterator is through generators.

8.1.4 Generators

In the iterator created in listing 8.4, you needed to store state, in the form of the
count instance variable, so that successive calls to next could calculate the next return
value. A simpler pattern is available using the Python yield keyword, which is similar
to the C# Yield Return statement.

 When a function (or method) uses yield, it becomes a generator. Generators are a
lightweight form of coroutines.

Where a function uses yield, the value is returned and execution of the generator is
suspended. On the next iteration, execution continues at the point it was suspended.
Complex iteration can be implemented with generators, without having to explicitly
store state.67

6 A PEP is a Python Enhancement Proposal, and they’re the way new features are proposed for Python. PEP 342
(now part of Python 2.5) lives at http://www.python.org/dev/peps/pep-0342/.

7 See http://www.kamaelia.org/Home.

Returns next in sequence

Prints on one line

Coroutines and generators
Coroutines are subroutines that have multiple entry points and allow you to suspend
and resume execution at certain points.

Python generators are iterators that suspend execution (and return a value) at a
yield statement. On the next iteration, execution resumes at the point it was sus-
pended, making them a lightweight form of coroutines.

Features added in Python 2.5 bring generators closer to full coroutines. See PEP 342
for the details.6

Generators are a simple, but powerful, language feature. The BBC Research & Devel-
opment department has used them to implement a new form of concurrency powerful
enough to stream video and audio: the Kamaelia project.7
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.python.org/dev/peps/pep-0342/
http://www.kamaelia.org/Home

193Protocols instead of interfaces
 Listing 8.5 is an example with a Directory object that stores all the files in a speci-
fied path from the filesystem. It recurses into subdirectories, storing them as Direc-
tory objects. The __iter__ method is implemented as a generator and also recurses
through subdirectories.

import os

class Directory(object):
 def __init__(self, directory):
 self.directory = directory
 self.files = []
 self.dirs = []

 for entry in os.listdir(directory):
 full_path = os.path.join(directory, entry)
 if os.path.isfile(full_path):
 self.files.append(entry)
 elif os.path.isdir(full_path):
 self.dirs.append(Directory(full_path))

 def __iter__(self):
 for entry in self.files:
 yield os.path.join(self.directory, entry)

 for directory in self.dirs:
 for entry in directory:
 yield entry

>>> for entry in Directory(some_path):
... print entry
...
C:\\some_path\\file1.txt
C:\\some_path\\subdirectory\\another_file.txt
(and so on...)

Because the __iter__ method yields, it returns a generator, which is a specific kind of
iterator. As an iterator, it has the next method available.

>>> generator = iter(Directory(some_path))
>>> generator.next()
'C:\\some_path\\some_file.txt'

You can easily extract all members from objects that support iteration, by calling list
(or tuple) on them.

>>> paths = list(Directory(some_path))

We can’t leave Python protocols without looking at one of the most common pro-
gramming concepts implemented with magic methods: equality and inequality.

8.1.5 Equality and inequality

Comparing objects is a basic part of programming and one of the first things a new
programmer will learn; you need to know how to support equality and inequality
operations on your own classes. You do this with the __eq__ (equals) and __ne__ (not

Listing 8.5 Directory class that supports iteration with a generator

Returns all paths
in directory

Yields files first

Recursively iterates
over subdirectories
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

194 CHAPTER 8 Metaprogramming, protocols, and more
equals) protocol methods. For equality to work correctly, you need to implement both
these methods. If you don’t provide these methods, then Python will use object iden-
tity as the test for equality. An object will only compare equal to itself and not equal to
everything else.

 Listing 8.6 is a class with custom equality and inequality methods defined.

class Value(object):
 def __init__(self, value):
 self.value = value

 def __eq__(self, other):
 if isinstance(other, Value):
 return self.value == other.value
 return False

 def __ne__(self, other):
 return not self.__eq__(other)

if __name__ == '__main__':
 v1 = Value(6)
 v2 = Value(3)
 v3 = Value(6)
 assert v1 == v3
 assert v1 != v2
 assert v1 != 6

The __ne__ method returns the not of the equality method. This is the simplest possi-
ble implementation, and it would be nice if Python did this for you! The __eq__
method always returns False unless it’s compared against another Value instance. If
it’s compared to a Value object, then it compares value attributes. Without the isin-
stance check, equality testing would fail with an attribute error for objects that don’t
have a value attribute.

Listing 8.6 Object equality and inequality methods

Invoked for
equality

When comparing
against Value objects

Invoked for inequality

Equality and hashing
Hashing is the way that objects are stored in dictionaries. If a class defines equality
(or comparison) methods, then it should define a __hash__ method so that instances
can be hashed correctly. The rule is that objects that compare equal should hash equal-
ly. The exception to this rule is that mutable objects should be unhashable and raise
a TypeError. Custom __hash__ methods typically use the built-in hash function.

The __hash__ method for our Value class would be

def __hash__(self):
 return hash(self.value)

The __hash__ method for an unhashable object would be as follows:

def __hash__(self):
 raise TypeError('Value objects are unhashable')
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

195Dynamic attribute access
As well as protocols to control equality and inequality comparisons, there are protocol
methods for the other comparison operators.8 Table 8.2 shows the rich comparison
operators and corresponding protocol methods.

To support the full range of rich comparison operators, you need to implement all
these methods.9

TIP Another, easier way of supporting all comparison operations on an object
is the __cmp__ method, which is used to overload the cmp built-in function.
This method should return a negative integer if the object is less than the
one it’s being compared with, zero if it’s equal to the other object, and a
positive integer if it’s greater than the other object. With __cmp__ you
don’t know which comparison operation is being performed, so it’s less
flexible than overloading individual rich comparison operators.

We’ve now looked at quite a range of Python’s protocol methods. We haven’t used
them all (by any stretch of the imagination), but we’ve covered all the most common
ones. The important thing is to know the ones that you’ll use most often and where to
look up the rest!

 The next section will look at two protocol methods that are a little different.
Instead of enabling a specific operation, __getattr__ and friends allow you to cus-
tomize attribute access.

8.2 Dynamic attribute access
Python attribute access uses straightforward syntax, shared with other imperative lan-
guages like Java and C#. Through properties, you can control what happens when
individual attributes are fetched or set; but, with Python, you can provide access to
arbitrary attributes through the __getattr__ method.

8 This page in the Python documentation lists (among other things) the protocol methods for rich comparison:
http://docs.python.org/ref/customization.html.

Method Operator Operation

__eq__ == Equality

__ne__ != Inequality

__lt__ < Less than

__le__ <= Less than or equal to

__gt__ > Greater than

__ge__ >= Greater than or equal to

9 See the following article on rich comparison in CPython and IronPython, which also shows a simple Mixin
class to easily provide rich comparison just by implementing __eq__ and __lt__: http://www.void-
space.org.uk/python/articles/comparison.shtml.

Table 8.2 The methods
used for rich comparison
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/ref/customization.html
http://www.voidspace.org.uk/python/articles/comparison.shtml
http://www.voidspace.org.uk/python/articles/comparison.shtml

196 CHAPTER 8 Metaprogramming, protocols, and more
 The flip side of this is being able to dynamically access attributes when you have
their names stored as strings. Python supports this through a set of built-in functions.

8.2.1 Attribute access with built-in functions

The following are four built-in functions available for working with attributes:

■ hasattr(object, name)—Checks whether an object has a specified attri-
bute, returning True or False.

■ getattr(object, name)—Fetches a named attribute from an object. If the
attribute doesn’t exist, then an AttributeError will be raised. getattr also
takes an optional third argument. If this is supplied, it’s returned as a default
value when the attribute is missing (instead of raising an exception).

■ setattr(object, name, value)—Sets the named attribute on an object
with the specified value.

■ delattr(object, name)—Deletes the named attribute from an object. If
the attribute doesn’t exist, then an AttributeError will be raised.

NOTE The attribute-access functions invoke the whole Python attribute lookup
machinery. Underneath is a dictionary per object10 that stores attributes.
This dictionary is available as __dict__. The predominance of dictionar-
ies in the implementation of Python demonstrates how important the
concept of namespaces is to the language. A dictionary is a namespace,
mapping names to objects. Classes, instances, and modules are all exam-
ples of namespaces and are all implemented using dictionaries (which
are exposed through __dict__).

So what are these functions useful for?
 hasattr in particular is useful as a duck typing mechanism. If you want to support

a particular interface, one possible pattern is it’s better to ask forgiveness than ask permission.

try:
 instance.someMethod()
except AttributeError:
 # different kind of object

Sometimes you want to ask permission, though—perhaps particular objects need dif-
ferent treatment. You could do type checking with isinstance, but this defeats duck
typing and requires users of your code to use specific types instead of passing in
objects with a compatible API. Instead, you can use hasattr, as follows:

if hasattr(instance, 'someMethod'):
 instance.someMethod()
 # and so on

getattr, setattr, and delattr are particularly useful when you have a list of attri-
butes as strings (potentially as the result of a call to dir) and need to loop over the list

10 For creating massive numbers of objects, you can avoid the overhead of a dictionary per object, by using a
memory optimisation mechanism called __slots__ for storing named members only.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

197Dynamic attribute access
performing operations. In a brief while, we’ll use these functions in a proxy class that
illustrates the attribute-access protocol methods. Before we can do that, you need to
learn about the attribute-access protocol methods themselves.

8.2.2 Attribute access through magic methods

As with built-in functions like len and str, the attribute-access functions have corre-
sponding protocol methods that you can implement. With these functions, the
relationship between the protocol method and the corresponding function is a little
more complex.

 The attribute-access functions invoke the full attribute lookup mechanism for
Python objects. Included in this mechanism are three protocol methods that you can
implement to govern how some attributes are fetched, set, and deleted.

 The three protocol methods (hasattr has no direct equivalent as a protocol
method) are as follows:

■ __getattr__(self, name)—Provides the named attribute. This method is
called only for attributes that aren’t found by the normal lookup machinery.

■ __setattr__(self, name, value)—Sets the named attribute to the speci-
fied value. This method is invoked for all instance attribute setting.

■ __delattr__(self, name)—Deletes the named attribute. This method is
invoked for all instance attribute deletion.

As you can see, these methods are asymmetrical. __setattr__ and __delattr__ are
invoked for all set and delete operations on an instance, whereas __getattr__ is only
invoked if the attribute doesn’t exist. According to the Python documentation,11 this is
for efficiency and to allow __setattr__ to access instance variables.

 At Resolver Systems, we’ve created a spreadsheet application with IronPython.12

This is a spreadsheet for creating complex models or business applications using a
spreadsheet interface. IronPython objects that represent the spreadsheet are
exposed to the user, and can be manipulated from user code sections. One of our
core classes is the Worksheet, representing different sheets in the spreadsheet. The
user accesses values in a worksheet by indexing it with the column and the row num-
ber. Most spreadsheet users are more used to referring to locations by the A1 style
name, so we use __getattr__ to provide a convenient way of accessing values using
a syntax like this: worksheet.A1 = 3. We implemented this with code that looks like
the following:

def __getattr__(self, name):
 location = CoordinatesFromCellName(name)
 if location is None:
 raise AttributeError(name)
 col, row = location
 return self[col, row]

11 See http://docs.python.org/ref/attribute-access.html.
12 See http://www.resolversystems.com or http://www.resolverhacks.net.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/ref/attribute-access.html
http://www.resolversystems.com
http://www.resolverhacks.net

198 CHAPTER 8 Metaprogramming, protocols, and more
We also need to implemented __setattr__ to allow users to set values in the work-
sheet. __setattr__ is called for all attribute-setting operations, so we needed to dele-
gate to object.__setattr__ for all attributes except cells.

def __setattr__(self, name, value):
 location = CoordinatesFromCellName(name)
 if location is not None:
 col, row = location
 self[col, row] = value
 else:
 object.__setattr__(self, name, value)

You can put these methods to work in a proxy class that proxies attribute access from
one object to another.

8.2.3 Proxying attribute access

You’ve seen how Python has no true concept of private or protected members. If you
come to Python from a language like C#, you’ll probably be surprised at how infre-
quently you need these features. You can achieve the same effect as private members
through a factory function and a proxy class like the one in listing 8.7.

def GetProxy(thing, readlist=None,
 writelist=None, dellist=None):

 class Proxy(object):
 def __getattr__(self, name):
 if readlist and name in readlist:
 return getattr(thing, name)
 else:
 raise AttributeError(name)

 def __setattr__(self, name, value):
 if writelist and name in writelist:
 setattr(thing, name, value)
 else:
 raise AttributeError(name)

 def __delattr__(self, name):
 if dellist and name in dellist:
 delattr(thing, name)
 else:
 raise AttributeError(name)

 return Proxy()

You pass in the object you want proxied as the thing argument to GetProxy. You also
pass in three lists of attribute names (all optional). These are attributes that you do
want to allow access to—for read access, write access, and delete access.

 When you call GetProxy, it returns an instance of the Proxy class. This instance has
access to thing, and the attribute lists, through the closure; but, from the instance,
there’s no way to get back to the original object. Accessing attributes on the Proxy

Listing 8.7 Attribute protection with a factory function and proxy class

Allows access only to
names in readlist

Raises AttributeError
for disallowed names
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

199Metaprogramming
instance triggers __getattr__ (or __setattr__ or __delattr__). If the attribute
name is in the corresponding attribute list, then the access is allowed. If the attribute
isn’t in the list, then the access is disallowed, and an AttributeError is raised.

 This pattern is useful for more than protecting attribute access; it’s a general exam-
ple of the delegation pattern,13 but it does have a couple of restrictions. Although it
works fine for fetching normal methods, magic methods are looked up on the class
rather than the instance. Indexing the object, or any other operation that uses a pro-
tocol method, will look for the method on the Proxy class instead of the original
instance. Two possible approaches to solving this are as follows:

■ You can provide the magic methods you want on the Proxy class and proxy
those as well.

■ Because magic methods are looked up on the class, you can provide a metaclass
that has __getattr__ and friends implemented and does the proxying.

Another restriction is that, although attribute access is proxied, the proxy instance has
a different type to the object it’s proxying and so can’t necessarily be used in all the
same circumstances as the original.

 Using the __getattr__ and __setattr__ protocol methods to customize attribute
access isn’t something you do every day; but, in the right places, they can be used to
create elegant and intuitive APIs.

 Something that takes us even deeper into the dynamic aspects of Python is
metaprogramming with Python metaclasses. Understanding metaclasses will further
deepen your understanding of Python and open up some fun possibilities.

8.3 Metaprogramming
Metaprogramming is the programming language or runtime assisting with the writing or
modification of your program. The classic example is runtime code generation. In
Python and IronPython, this is supported through the exec statement and built-in
compile/eval functions. Python source code is text, so generating code using string
manipulation and then executing it is relatively easy.

 But, code generation has to be relatively deterministic (your code that generates
the strings is going to be following a set of rules that you determine), meaning that it’s
usually easier to provide objects rather than go through the intermediate step of gen-
erating and executing code. An exception is when you generate code from user input,
perhaps by translating a domain-specific language into Python. This is the approach
taken by the Resolver One spreadsheet, which translates a Python-like formula lan-
guage into Python expressions.

 Python has further support for metaprogramming through something called
metaclasses. These allow you to customize class creation—that is, modify classes or
perform actions at the point at which they’re defined. Metaclasses have a reputation
for being deep black magic.

13 See http://en.wikipedia.org/wiki/Delegation_pattern.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://en.wikipedia.org/wiki/Delegation_pattern

200 CHAPTER 8 Metaprogramming, protocols, and more
Metaclasses are deeper magic than 99% of users should ever worry about. If
you wonder whether you need them, you don’t.

 —Python Guru Tim Peters

They’re seen as magic because they can modify code away from the point at which it
appears in your source. In fact, the basic principles are simple to grasp, and no good
book on Python would be complete without an introduction to them.

8.3.1 Introduction to metaclasses

In Python, everything is an object. Functions and classes are all first-class objects that
can be created at runtime and passed around your code. Every object has a type. For
most objects, their type is their class, so what’s the type of a class? The answer is that
classes are instances of their metaclass.

 Just as objects are created by calling their class with the correct parameters, classes
are created by calling their metaclass with certain parameters. The default metaclass
(the type of classes) is type. This leads to the following wonderful expression:
type(type) is type

 type is itself a class, so its type is type!14

 What does this have to do with metaprogramming? Python is an interpreted lan-
guage—classes are created at runtime; and, by providing a custom metaclass, you can
control what happens when a class is created, including modifying the class.

 As usual, the easiest way to explain this is to show it in action. Listing 8.8 shows the
simplest possible metaclass.

class PointlessMetaclass(type):
 def __new__(meta, name, bases, classDict):
 return type.__new__(meta, name, bases, classDict)

class SomeClass(object):
 __metaclass__ = PointlessMetaclass

This metaclass doesn’t do anything, but illustrates the basics of the metaclass. You set
the metaclass on a class by assigning the __metaclass__ attribute inside the class defi-
nition. Subclasses automatically inherit the metaclass of their superclass.15 When the
class is created, the metaclass is called with a set of arguments. These are the class
name, a tuple of base classes, and a dictionary of all the attributes (including meth-
ods) defined in the class. To customize class creation with a metaclass, you need to
inherit from type and override the __new__ method.

 You can experiment here by defining methods and attributes on SomeClass, and
putting print statements in the body of PointlessMetaclass. You’ll see that methods
appear as functions in the classDict, keyed by their name. Inside the metaclass, you

14 This isn’t true in IronPython 1—which is a bug that has been fixed in IronPython 2.

Listing 8.8 The simplest example of a metaclass

15 Meaning that you can’t have incompatible metaclasses where you have multiple inheritance.

Metaclasses inherit from type

Set the metaclass on the class
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

201Metaprogramming
can modify this dictionary (plus the name and the bases tuple if you want) to change
how the class is created. But what can you use metaclasses for?

8.3.2 Uses of metaclasses

Despite their reputation for being deep magic, sometimes only a metaclass can
achieve something that’s difficult or impossible to do via other means. They’re
invoked at class-creation time, so they can be used to perform operations that would
otherwise require a manual step. These operations include16 the following:

■ Registering classes as they’re created —Often done by database Object-Relational
Mapping (ORM) because the classes you create relate to the shape of the data-
base table you’ll interact with. Registering classes as they’re created can also be
useful for autoregistering plugin classes.

■ Enabling new coding techniques —Such as enabling a declarative way of declaring
database schema, as is the case for the Elixir17 ORM framework.

■ Providing interface registration —Includes autodiscovery of features and adapta-
tion.

■ Class verification —Prevents subclassing or verifies code quality, such as checking
that all methods have docstrings or that classes meet a particular standard.

■ Decorating all the methods in a class —Can be useful for logging, tracing, and pro-
filing purposes.

■ Mixing in appropriate methods without having to use inheritance —Can be one way of
avoiding multiple inheritance. You can also load in methods from non-code
definitions—for example, by loading XML to create classes.

16 This borrows some of the use cases for metaclasses from an excellent presentation by Mike C. Fletcher. See
http://www.vrplumber.com/programming/metaclasses-pycon.pdf.

17 Elixir is a declarative layer built on top of the popular Python ORM SQLAlchemy. See http://elixir.
ematia.de/trac/wiki.

The __new__ constructor
So far, we’ve talked about __init__ as the constructor method of objects. __init__
receives self as the first argument, the freshly created instance, and initializes it.

The instance that __init__ receives is created by __new__, so it’s technically more
correct to call __new__ the constructor and __init__ an initializer. __new__ receives
the class as the first argument, plus any additional arguments used in the construc-
tion. (It receives the same arguments as __init__.)

__new__ is needed for creating immutable values; setting the value in __init__
would mean that values could be modified simply by calling __init__ on an instance
again. You can subclass the built-in types in Python; but, to customize immutable val-
ues like str and int, you need to override __new__ rather than __init__.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.vrplumber.com/programming/metaclasses-pycon.pdf
http://elixir.ematia.de/trac/wiki
http://elixir.ematia.de/trac/wiki

202 CHAPTER 8 Metaprogramming, protocols, and more
We can show a practical use of metaclasses with a profiling metaclass. This is an exam-
ple of the fifth use of metaclasses listed—wrapping every method in a class with a dec-
orator function.

8.3.3 A profiling metaclass

One of the use cases mentioned in the bulleted list is wrapping all methods with a dec-
orator. You can use this for profiling by recording method calls and how long they
take. This approach is useful if you’re looking to optimize the performance of your
application. With IronPython you always have the option of moving parts of your code
into C# to improve performance; but, before you consider this, it’s important to pro-
file so that you know exactly which parts of your code are the bottlenecks—the results
are often not what you’d expect. At Resolver, we’ve been through this process many
times, and have always managed to improve performance by optimizing our Python
code; we haven’t had to drop down into C# to improve speed so far.

 For profiling IronPython code you can use the .NET 'DateTime'18 class.

from System import DateTime
start = DateTime.Now

someFunction()

timeTaken = (DateTime.Now - start).TotalMilliseconds

There’s a drawback to this code. DateTime has a granularity of about 15 milliseconds.
For timing individual calls to fast-running code, this can be way too coarse. An alterna-
tive is to use a high-performance timer class from System.Diagnostics: the Stop-
watch19 class. Listing 8.9 is the code to time a function call using a Stopwatch.20

from System.Diagnostics import Stopwatch
s = Stopwatch()
s.Start()

someFunction()

s.Stop()
timeTaken = s.ElapsedMilliseconds

You can wrap this code in a decorator that tracks the number of calls to functions, and
how long each call takes (listing 8.10).

from System.Diagnostics import Stopwatch

timer = Stopwatch()
times = {}

18 See http://msdn2.microsoft.com/en-us/library/system.datetime.aspx.

Listing 8.9 Timing a function call with the Stopwatch class

19 See http://msdn2.microsoft.com/en-us/library/system.diagnostics.stopwatch(vs.80).aspx. Note that, on
multicore AMD processors, the StopWatch can sometimes return negative numbers (appearing to travel
backwards in time!). The solution is to apply this fix: http://support.microsoft.com/?id=896256.

20 The Python standard library time.clock() is implemented using StopWatch under the hood.

Listing 8.10 A function decorator that times calls

Cache to store times
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.datetime.aspx
http://msdn2.microsoft.com/en-us/library/system.diagnostics.stopwatch(vs.80).aspx
http://support.microsoft.com/?id=896256

203Metaprogramming
def profiler(function):
 def wrapped(*args, **keywargs):
 if not timer.IsRunning:
 timer.Start()

 start = timer.ElapsedMilliseconds
 retVal = function(*args, **keywargs)
 timeTaken = timer.ElapsedMilliseconds - start

 name = function.__name__
 function_times = times.setdefault(name, [])
 function_times.append(timeTaken)
 return retVal
 return wrapped

The profiler decorator takes a function and returns a wrapped function that times
how long the call takes. The times are stored in a cache (the times dictionary), keyed
by the function name.

 Now you need a metaclass that can apply this decorator to all the methods in a
class. You’ll be able to recognize methods by using FunctionType from the Python
standard library types module. Listing 8.11 shows a metaclass that does this.21

TIP Don’t forget that, to import from the Python standard library, it needs to
be on your path. This happens automatically if you installed IronPython
from the msi installer. Otherwise, you need the Python standard library
(the easiest way to obtain it is to install the appropriate version of
Python) and to set the path to the library in the IRONPYTHONPATH environ-
ment variable.

from types import FunctionType

class ProfilingMetaclass(type):

 def __new__(meta, classname, bases, classDict):

21 Which is hardly surprising—the Python built-in types are written in C and have been fine-tuned over the last
fifteen years or more. Their implementation in IronPython is barely a handful of years old.

Listing 8.11 A profiling metaclass that wraps methods with profiler

Decorator which
wraps functions

Adds current duration

Optimizing IronPython code
It’s always important to profile code when optimizing. The bottlenecks are rarely quite
where you expect them, and you can find effective ways of speeding up your code only
if you know exactly which bits are slow.

For experienced Python programmers, optimizing IronPython code is especially impor-
tant because the performance of IronPython is so different from CPython. For exam-
ple, function calls are much less expensive, as are arithmetic and operations
involving the primitive types. On the other hand, operations with some of the Python
types like tuples and dictionaries can be more expensive.21

Or FunctionType =
type(some_function)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

204 CHAPTER 8 Metaprogramming, protocols, and more
 for name, item in classDict.items():
 if isinstance(item, FunctionType):
 classDict[name] = profiler(item)
 return type.__new__(meta, classname, bases, classDict)

Of course, having created a profiling metaclass, we need to use it. Listing 8.12 shows
how to use the ProfilingMetaclass.

from System.Threading import Thread

class Test(object):

 __metaclass__ = ProfilingMetaclass

 def __init__(self):
 counter = 0
 while counter < 100:
 counter += 1
 self.method()

 def method(self):
 Thread.CurrentThread.Join(20)

t = Test()

for name, calls in times.items():
 print 'Function: %s' % name
 print 'Called: %s times' % len(calls)
 print ('Total time taken: %s seconds' %
 (sum(calls) / 1000.0))
 avg = (sum(calls) / float(len(calls)))
 print 'Max: %sms, Min: %sms, Avg: %sms' % (max(calls), min(calls), avg)

When the Test class is created, all the methods are wrapped with the profiler. When it’s
constructed, it calls method 100 hundred times. When the code has run, you print out
the entries in the times cache to analyze the results. It should print something like this:

Function: method
Called: 100 times
Total time taken: 2.07 seconds
Max: 39ms, Min: 16ms, Avg: 20.7ms

Function: __init__
Called: 1 times
Total time taken: 2.093 seconds
Max: 2093ms, Min: 2093ms, Avg: 2093.0ms

If this were real code, you’d know how many calls were being made to each method
and how long they were taking. With this simple technique, the times cache includes
calls to other methods, as well as overhead for the profiling code itself. It’s possible to
write more sophisticated profiling code that tracks trees of calls so that you can see
how long different branches of your code take.

 Metaclasses are magic, but perhaps not as black as they’re painted. This is true of all
the Python magic that you’ve been learning about. Python’s magic methods are magic
because they’re invoked by the interpreter on your behalf, not because they’re difficult
to understand. Using these protocol methods is a normal part of programming in

Listing 8.12 Timing method calls on objects with ProfilingMetaclass

Checks for methods

Wraps methods with profiler
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

205IronPython and the CLR
Python. You should now be confident in navigating which methods correspond to lan-
guage features and how to implement them.

 We’ve plunged into the depths of Python, so now it’s time to take a journey around
the edges—in particular, the edges where IronPython meets the Common Language
Runtime (CLR). Not all the key concepts in the CLR match directly to Python seman-
tics, particularly because it’s a dynamic language. To make full use of framework
classes, you need to know a few details.

8.4 IronPython and the CLR
So far, we’ve focused on navigating the .NET framework and the Python language,
emphasizing the skills you need to make effective use of IronPython. But not all .NET
concepts map easily to Python concepts—certain corners of .NET can’t be brought
directly into Python. This section looks at some of these dusty corners and how they
work in IronPython. Most of the things we explore are simple; but, even if they’re easy,
you need to know the trick in order to use them.

 The first line of IronPython/CLR integration is the clr module; in several of the
corners we look in, you’ll find new clr module functionality. As well as covering some
interesting topics, this section will be a useful reference as you encounter these situa-
tions in the wild.

The first dusty corner that we peer into is .NET arrays.22

8.4.1 .NET arrays

Arrays are one of the standard .NET container types, roughly equivalent to the Python
tuple.23 They’re also statically typed, of course. When you create an array, you specify type
and the size. The array can then be populated only with members of the specified type.

22 If you’re using .NET 3.0, you can use the Action and Func delegates instead.
23 Although arrays allow you to change their contents (they’re mutable). Like tuples, they have a fixed size.

Delegates and CallTarget0
One aspect of IronPython and .NET interoperation that you’re likely to need to know
about, but doesn’t fit into any of the subsections here, is the CallTarget family of
delegates. They’re useful for explicitly creating a delegate when IronPython can’t mag-
ically create one for you.22 You used this in the last chapter when invoking a callable
onto the GUI thread with Windows Forms.

Several delegates correspond to the number of arguments your callable needs to
take (CallTarget0 for zero arguments, CallTarget1 for a single argument, and so
on). We find it simpler to use CallTarget0 and wrap the callable with a lambda that
calls it with any arguments.

In IronPython 1, CallTarget0 lives in the IronPython.Runtime.Calls namespace.
In IronPython 2, it lives in IronPython.Compiler.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

206 CHAPTER 8 Metaprogramming, protocols, and more
 The tuple is a built-in Python type;
and, being dynamically typed, it’s gener-
ally more convenient to use than arrays
when you have a choice. When you’re
working with .NET APIs, they will some-
times require an array, and you need to
know how to create them.

 In C#, you can create an array of
integers using the syntax in figure 8.1.

 In IronPython, you use the following
syntax to achieve the same thing:

>>> from System import Array
>>> intArray = Array[int]((1, 2, 3, 4, 5))

This syntax looks like you’re indexing the Array type, so it’s valid Python syntax. This
tells IronPython that you want an array of integers. It’s populated from a tuple of the
initial members.

This technique isn’t the only way to create arrays. Another way is by using the Create-
Instance class method, which can be used to create multidimensional arrays.
CREATEINSTANCE AND MULTIDIMENSIONAL ARRAYS

The Array type also has a CreateInstance class method for constructing arrays. Using
this method doesn’t require you to prepopulate the array; it will be initialized with a
default value for every member. For integer arrays, this will be 0; for reference types, it

Generics
Arrays are far from the only place where you need to specify a type when working with
the .NET framework. The realm of generics is another of these places. Generics allow
.NET types to work with any type. A good example is the List type from System.
Collections.Generic, which is similar to the Python list.

In C#, you’d use syntax like the following to create a List that holds strings:

List<string> dinosaurs = new List<string>();

IronPython reuses the indexing syntax for generics, so the IronPython equivalent
would be the following:

dinosaurs = List[str]()

Unfortunately, in some cases (such as overloaded methods) IronPython can’t tell
whether you’re specifying the generic option, or the typed option. In this case, Iron-
Python will always pick the typed variant. The IronPython team is working to see if
they can find some way of specifying the generic option without having to introduce
new syntax.

Figure 8.1 Creating an integer array in C#
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

207IronPython and the CLR
will be null (None). There are several different ways of calling CreateInstance.24 The
most common are the following:

>>> multiArray = Array.CreateInstance(str, 5)

This code creates an array of strings with five members. The next way creates a two-
dimensional array from a type and two integers that specify the size of each dimension.

>>> multiArray = Array.CreateInstance(str, 5, 5)

This creates a two-dimensional array with 5 x 5 members. You can access individual
members in this array using another extension to Python syntax.

>>> aMember = multiArray[2, 2]

In normal Python syntax, this would be indexing multiArray with the tuple (2, 2).
Instead, you’re accessing the member at location 2, 2. (If you try indexing with a
tuple, it will fail.)25 Because this is valid Python syntax, no changes to the language
were necessary to support indexing multidimensional arrays.

 You can create arrays with any number of dimensions by passing a type and an inte-
ger array specifying the size of each dimension. The number of members of the array
determines the number of dimensions. The following code creates a five-dimensional
array of objects, with five members in each dimension:

>>> dimensions = Array[int]((5, 5, 5, 5, 5))
>>> multiArray = Array.CreateInstance(object, dimensions)
>>> multiArray[0, 0, 0, 0, 0] = SomeObject()
>>> print multiArray[0, 0, 0, 0, 0]
<SomeObject object at 0x....>

Another way of creating multidimensional arrays is by creating an array of arrays—the
so-called jagged array. The following code creates an array with five members; each
member is an array of five members:

>>> arrays = tuple(Array[int]((0, 0, 0, 0, 0)) for i in range(5))
>>> multiArray = Array[Array[int]](arrays)
>>> multiArray[0][0]
0

As you can see, this uses slightly different indexing syntax. Indexing the array returns
the member at that index, which itself is an array. You then index that to retrieve a
specific member.

 Arrays have useful methods and properties such as Copy, to copy an array, or Rank,
which tells you how many dimensions an array has. If you’re going to be using arrays a
lot, it’s worthwhile to familiarize yourself with the array API. The next corner of .NET
we shine a light on is overloaded methods.

24 For a list of the different ways to call CreateInstance, see http://msdn2.microsoft.com/en-us/library/sys-
tem.array.createinstance.aspx.

25 In his technical review, Dino noted: “I think this is an IronPython bug—or at least a small deficiency in the
way we map array to Python.”
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.array.createinstance.aspx
http://msdn2.microsoft.com/en-us/library/system.array.createinstance.aspx

208 CHAPTER 8 Metaprogramming, protocols, and more
8.4.2 Overloaded methods

C# allows overloaded methods—the same method being defined several times, but
with different types in the parameter list. The compiler can tell at compile time which of
the overloads you’re calling by the types of the arguments.

 This largely works seamlessly in IronPython. The IronPython runtime uses reflec-
tion (the .NET equivalent of introspection using the System.Reflection namespace)
to deduce which overload you’re calling. If IronPython gets it wrong, it’s a bug and
you should report it on the IronPython mailing list or the issue tracker on the Iron-
Python CodePlex site!

 On occasion, you may want direct access to a specific overload. IronPython pro-
vides an Overloads collection that you can index by type (or a tuple of types). The
IronPython documentation provides the following illustration, choosing the Write-
Line method that takes an object and then passing None to it:

from System import Console
Console.WriteLine.Overloads[object](None)

Three more .NET concepts that don’t map easily to Python are the out, ref, and
pointer parameters.

8.4.3 out, ref, params, and pointer parameters

Occasionally you’ll find a .NET method that requires an out or ref type parameter, an
argument that takes a pointer, or one that uses the params keywords. These concepts
don’t exist directly in IronPython, but you can handle them all straightforwardly.

 In C#, the body of the method modifies out (output) parameters. In Python, if you
passed in an immutable value for this parameter, such as a string or an integer, then in
Python the original reference wouldn’t be modified—which would kind of defeat the
purpose of having the parameter. This difficulty is easily solved in IronPython.
Because the original value of an out parameter isn’t used, the IronPython runtime
does some magic, and the updated value becomes an extra return value. Let’s observe
this in action with the Dictionary.TryGetValue method.26 This method takes two
parameters: the key you’re searching for and an out parameter modified to contain
the corresponding value if it’s found. Normally, it returns a Boolean that indicates
whether or not the key was found. The out parameter is modified to contain the
value. In IronPython, you get two return values.

>>> from System.Collections.Generic import Dictionary
>>> d = Dictionary[str, str]()
>>> d['key1'] = 'Value 1'
>>> d['key2'] = 'Value 2'
>>> d.TryGetValue('key1')
(True, 'Value 1')
>>> d.TryGetValue('key3')
(False, None)

26 This is the example used by Haibo Luo in a blog entry. See http://blogs.msdn.com/haibo_luo/archive/
2007/10/04/5284947.aspx.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://blogs.msdn.com/haibo_luo/archive/2007/10/04/5284947.aspx
http://blogs.msdn.com/haibo_luo/archive/2007/10/04/5284947.aspx

209IronPython and the CLR
Passing by reference is similar; in fact, you can often pass by reference instead of using
an out parameter. To pass by reference, you need to create a reference using a type
provided by the clr module. One example is the class method Array.Resize for resiz-
ing arrays. It’s a generic method, so you need to provide type information—making it
a great example of how dynamic typing makes life easier! This method takes a refer-
ence to an array and the new size as an integer.

NOTE clr.Reference isn’t to be confused with clr.References. clr.Refer-
ences is a list of all the assemblies (actual assembly objects) that you’ve
added a reference to.

First you construct an array of integers to resize, and then create a reference to that
array. clr.Reference is a generic, so you need to tell it the type of the reference you
require.

>>> from System import Array
>>> import clr
>>> array = Array[int]((0, 1, 2, 3, 4))
>>> array
Array[int](0, 1, 2, 3, 4)
>>> ref = clr.Reference[Array[int]](array)

Next you call Array.Resize. You need to specify the type of array (again); and,
because Resize is a generic method, you need to specify the type of array here as well
(otherwise the IronPython runtime won’t be able to find the right target and will
report TypeError: no callable targets). The resized array is stored as the Value
attribute of the reference.

>>> Array[int].Resize[int](ref, 3)
>>> ref.Value
Array[int]((0, 1, 2))

A pointer is a good old-fashioned kind of reference. You usually come across them
when dealing with unmanaged resources, and often they’ll be pointers to integers.
Integer pointers are represented with the System.IntPtr structure.

>>> from System import IntPtr
>>> ptr = IntPtr(3478)
>>> ptr.ToInt32()
3478
>>> IntPtr.Zero
<System.IntPtr object at 0x… [0]>

We’ve not encountered this in the wild; but, for completeness, we need to mention
another way of passing arguments: the C# params keyword. This is used to pass a vari-
able number of arguments (like the Python *args syntax), and the method receives a
collection of the arguments you pass. In IronPython, .NET APIs that use the params
keyword are handled seamlessly—you pass arguments as normal.

>>> something.Method(1, 2, 3, 4)

Another area of .NET that can potentially cause confusion is the peculiarity of value types.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

210 CHAPTER 8 Metaprogramming, protocols, and more
8.4.4 Value types

The .NET framework makes a distinction between value types and reference types.
The technical distinction is that value types are allocated on the stack or inline within
an object, whereas reference types are allocated on the heap. Value types are passed
by value (rather than by reference—hence, the names) making them efficient to
use.27 Table 8.3 lists the value and reference types.

In .NET land, you can pass a value type to methods expecting a reference type. Take,
for example, this overload of Console.WriteLine:

Console.WriteLine(String, Object)

This takes a format string and an object, and it writes the string representation of the
object to the standard output stream. The declaration of Object as the second argu-
ment means that this method can take any arbitrary object, but also means that it’s
expecting a reference type (because Object is a reference type). If you call this
method with a value type, like an integer, then the CLR will automatically box and
unbox the value so that it can be used in place of a reference type.

Table 8.3 .NET value and reference types

Value types Reference types

All numeric datatypes (including Byte) Strings

Boolean, Char, and Date Arrays (even arrays of value types)

All structures, even if members are reference types Class types (like Form and Object)

Enumerations (because the underlying type is numeric) Delegates

27 Well, large value types, such as big structs, can be expensive to copy—another reason to be aware of what’s
happening under the hood.

Enumeration values and names
Enumerations (enums) are implemented in .NET with underlying numeric values (usu-
ally integers) representing the different enumeration flags. In C#, you can cast enu-
meration members to their underlying value. In IronPython, you can do the equivalent.

>>> from System.Net.Sockets import SocketOptionName
>>> int(SocketOptionName.UnblockSource)
18

If you want programmatic access to the name, then you can call str on the enumer-
ation member.

>>> str(SocketOptionName.UnblockSource)
'UnblockSource'
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

211IronPython and the CLR
The boxing and unboxing can lead to certain difficulties, particularly because Python
doesn’t have value types and the programmer will expect everything to behave as a
reference.

 Take this code that uses Point, which, as a structure, is a value type:

>>> from System import Array
>>> from System.Drawing import Point
>>> point = Point(0, 0)
>>> array = Array[Point]((point,))
>>> array[0].X = 30
>>> array[0].X
0

This code creates a new Point object (point) and stores it in an array (array). When
you fetch the point by indexing the array, you end up setting the X member on an
unboxed value—probably not on the object you expected. This problem isn’t
restricted to Python; if you re-create the code in C#, the same thing happens.

 The situation is worse if you attempt to modify a value type exposed as a field (attri-
bute, in Python speak) on an object. Referencing the value type will return a copy, and
the update would be lost. In these cases, the IronPython designers have decided28 that
the best thing to do is to raise a ValueError rather than letting the unexpected behav-
ior slip through. As a result, value types are mostly immutable,29 although updates will
still be possible by methods exposed on the value types themselves.

8.4.5 Interfaces

Interfaces are a way of specifying that certain types have known behavior. An interface
defines functionality, and the methods and properties for that functionality.

 Where a class implements an interface, that interface will be added to the method
resolution order30 when you use it from Python (effectively making the interface behave
like a base class—coincidentally you can also implement an interface in a Python class
by inheriting from it). Even if an explicitly implemented interface method is marked
as private on a class, you’ll still be able to call it.

 As well as calling the method directly, you can call the method on the inter-
face—passing in the instance as the first argument in the same way you pass the
instance (self) as the first argument when calling an unbound method on a class.31

 The following snippet shows an example of calling BeginInit on a DataGridView,
through the ISupportInitialize interface that it implements:

28 This page has the details: http://channel9.msdn.com/wiki/default.aspx/IronPython.ValueTypes.
29 In fact, the CLR API design guide says Do not create mutable value types.
30 Accessible through the __mro__ attribute on classes. In pure-Python code, it specifies the lookup order for

finding methods where there’s multiple inheritance. For a comprehensive reference, see http://
www.python.org/download/releases/2.3/mro/.

31 You can also call methods on the base classes of .NET classes, by passing in the instance as the first argument.
This can also be useful when a method obscures a method on a base class making it impossible to call directly
from the instance.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://channel9.msdn.com/wiki/default.aspx/IronPython.ValueTypes
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/

212 CHAPTER 8 Metaprogramming, protocols, and more
>>> import clr
>>> clr.AddReference('System.Windows.Forms')
>>> from System.Windows.Forms import DataGridView
>>> from System.ComponentModel import ISupportInitialize
>>> grid = DataGridView()
>>> ISupportInitialize.BeginInit(grid)

How is this useful? Well, it’s possible for a class to implement two interfaces with con-
flicting member names. This technique allows you to call a specific interface method.

 This workaround is fine for methods, but you don’t normally pass in arguments to
invoke properties. Instead, you can use GetValue and SetValue on the interface prop-
erty descriptor.

ISomeInterface.PropertyName.GetValue(instance)
ISomeInterface.PropertyName.SetValue(instance, value)

NOTE GetValue and SetValue aren’t available only for property descriptors;
they’re also available for instance fields if you access them directly on the
class in IronPython.

Working with interfaces is mostly straightforward. Unfortunately, when it comes to
.NET attributes, it’s a much sorrier tale.

8.4.6 Attributes

Attributes in the .NET framework are a bit like decorators in Python and annotations
in Java. They’re metadata applied to objects that provide information to the CLR.
They can be applied to classes, methods, properties, and even method parameters or
return values (that is, pretty much everywhere).

 Attributes are used to provide documentation, specify runtime information, and
even specify behavior. The DllImport attribute provides access to unmanaged code;
and, in Silverlight, you use the Scriptable attribute to expose objects to JavaScript.
The following code segment uses the DllImport attribute to expose functions
user32.dll as static methods on a class in C#:

[DllImport("user32.dll")]
public static extern IntPtr GetDesktopWindow();

[DllImport("user32.dll")]
public static extern IntPtr GetTopWindow(IntPtr hWnd);

Because attributes are for the compiler, they’re used at compile time—a problem for
IronPython. First, there’s no syntax in Python that maps to attributes. The IronPython
team is keen to avoid introducing syntax to IronPython that isn’t backwards compati-
ble with Python.

 A worse problem is that IronPython classes aren’t true .NET classes. There are vari-
ous reasons for this, among them that .NET classes aren’t garbage collected and that
you can swap out the type of Python classes at runtime! The upshot is that you can’t
apply attributes to Python classes.

 The most common solution is to write stub C# classes and then subclass from Iron-
Python. You can even generate and compile these classes at runtime. We use both of
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

213IronPython and the CLR
these techniques later in the book. This isn’t the end of the story, though—the Iron-
Python team is still keen to find a solution to this problem that will allow you to use
attributes from IronPython.

8.4.7 Static compilation of IronPython code

A feature of IronPython 1 that nearly didn’t make it into IronPython 2 is the ability to
compile Python code into binary assemblies. Fortunately, this feature made a come-
back in IronPython 2 beta 4.

 IronPython works by compiling Python code to assemblies in memory. If you exe-
cute a Python script using the IronPython ipy.exe executable, then you can dump
these assemblies to disk by launching it with the -X:SaveAssemblies command-line
arguments. They’re not executable on their own though; they’re useful for debug-
ging, but they make calls into dynamic call sites32 generated at runtime when running
IronPython scripts.

 The clr module includes a function that can save executable assemblies: Compile-
Modules (IronPython 2 only). Its call signature is as follows:

clr.CompileModules(assemblyName, *filenames, **kwArgs)

This function compiles Python files into assemblies that you can add references to and
import from in the normal way with IronPython. This feature allows you to package
several Python modules as a single assembly. The following snippet of code takes two
modules and outputs a single assembly:

import clr
clr.CompileModules("modules.dll", "module.py", "module2.py")

Having created this assembly, you can add a reference to it and then import the
module and module2 namespaces from it.

import clr
clr.AddReference('modules.dll')
import module, module2

CompileModules also takes a keyword argument, mainModule, that allows you to spec-
ify the Python file that acts as the entry point for your application. This still outputs to
a dll rather than an exe file, but it can be combined with a stub executable to create
binary distributions of Python applications. Creating a stub executable can be auto-
mated with some fiddly use of the .NET Reflection.Emit API, but it’s far simpler to
use the IronPython Pyc33 sample. Pyc is a command-line tool that creates console or
Windows executables from Python files. It comes with good documentation, plus a
command-line help switch. The basic usage pattern is as follows:

ipy.exe pyc.py /out:program.exe /main:main.py /target:winexe module.py

➥ module2.py

32 An implementation detail of the Dynamic Language Runtime.
33 Available for download from the CodePlex IronPython site.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

214 CHAPTER 8 Metaprogramming, protocols, and more
In this chapter, we’ve climbed under the hood of both the Python language and how
IronPython interacts with the .NET framework. It’s time to summarize and move on to
the next chapter.

8.5 Summary
Python uses protocols to provide features, whereas a language like C# uses interfaces.
In addition, a lot of the more dynamic language features of Python, such as customizing
attribute access, can be done by implementing protocol methods. You’ll find that you
use some of these magic methods a great deal. Providing equality and comparison meth-
ods on classes is something you’ll do frequently when writing Python code. Other pro-
tocols, including metaclasses, you’ll use only rarely. Even if you don’t use them directly,
understanding the mechanisms at work deepens your understanding of Python.

 We’ve also worked with some of the areas of the .NET framework that don’t easily map
to Python. IronPython exposes objects as Python objects; but, in certain places, this is
a leaky abstraction. You should now have a clearer understanding of what’s going on
under the hood with IronPython, especially in the distinction between value and refer-
ence types. This understanding is vital when the abstraction breaks down and you need
to know exactly what’s happening beneath the surface. The specific information we’ve
covered is vital for any non-trivial interaction with .NET classes and objects.

 In the next chapter, we use some new features added to the .NET framework in
.NET 3.0, including the new user interface library, the Windows Presentation Founda-
tion (WPF). Although younger than Windows Forms, WPF is capable of creating attrac-
tive and flexible user interfaces in ways not possible with its older cousin.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Part 3

IronPython
 and advanced .NET

In the first two parts of this book, we explored the Python language, the .NET
framework, and how to get the best from both of them. In this section, we look
at how IronPython fits into some interesting and exciting areas of the .NET
framework. Since IronPython was first announced, the people at Microsoft have
released some impressive new technologies including .NET 3.0, Silverlight, and
PowerShell. They’ve also built IronPython support into existing technologies
like ASP.NET. These are interesting topics that give us an opportunity to put Iron-
Python to practical use.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

WPF and IronPython
The .NET framework has been around for a while now—the first pre-beta release was
in July 2000. You can see the major milestones in the life of the framework in figure 9.1.

 The most prevalent installed version of .NET (and the minimum requirement
for running IronPython) is version 2.0, which dates back to 2005. It includes dra-
matic improvements to the C# language (including support for generics), the run-
time, and numerous class libraries.

 .NET 3.0 and 3.5 build on the 2.0 version of the CLR. Although they add many
new assemblies and improvements, they don’t include a new version of the CLR.
.NET 3.0 is a standard part of Windows Vista and Windows Server 2008, and is avail-
able as an add-on for Windows XP and Windows Server 2003.

This chapter covers
■ Introduction to .NET 3.0 and WPF
■ WPF and XAML
■ Controls and layout
■ Loading and transforming XAML at runtime
■ XPS documents and flow content

Figure 9.1 Timeline
for the .NET framework
217

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

218 CHAPTER 9 WPF and IronPython
NOTE Most of .NET 3.0 hasn’t yet been ported to Mono. You can see the status of
the Mono implementation, called Olive, at http://www.mono-project.
com/Olive.

The four major components in .NET 3.0 are listed in table 9.1.

These are all large libraries in their own right. We’ll be taking a closer look at WPF and
using it from IronPython.

 WPF (the library formerly known as Avalon) is a new user interface library. Win-
dows Forms, although mature and widely used, is starting to show its age in some
areas; it’s built on top of User32, for creating the standard interface components, and
GDI/GDI+, for rendering shapes, text, and images.

 WPF is an entirely new library built on DirectX. DirectX started life as a games tech-
nology and is able to use the hardware acceleration provided by modern graphics
cards. WPF is not only a more modern and flexible toolkit; but, by offloading render-
ing to the GPU on the video card, it can also be massively richer without bogging down
your processor. WPF includes a standard set of controls and enables the integration of
powerful effects such as transparency, vector graphics, animation, and 3D content. Fig-
ure 9.2 shows an attractive user interface created with WPF.

 Because WPF handles all the drawing of controls, you’re free to implement entirely
new controls and apply transformations with the minimum of code. To do the same
with Windows Forms, you’d have to paint every aspect of the control yourself.

 In this chapter, we use WPF from IronPython, exploring some of the new controls
it offers. WPF is a large library, going wider than just user interface design. As well as
using controls, we work with some of the other features that WPF provides, such as
document support. WPF can be used entirely from code, but UIs can also be created
from an XML dialect called the eXtensible Application Markup Language, or XAML.
We work with WPF from both code and XAML.

 XAML allows interface design to be decoupled from application implementation.
Interfaces can be created by designers with tools like Expression Blend or the Mono
alternative, Lunar Eclipse. These interfaces can then be delivered to developers in the
form of XAML for use directly in projects.

 Developers may be more comfortable with producing the basic elements of an
application from code, but complex elements like gradients and animations are easier
to describe with XAML.

Table 9.1 The major new APIs of .NET 3.0

Name Purpose

Windows Presentation Foundation A new user interface library

Windows Communications Foundation Library for working with web services

Windows Workflow Foundation For creating, managing, and working with workflows

Windows CardSpace For managing digital identities.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.mono-project.com/Olive
http://www.mono-project.com/Olive

219

he
 in
udio
Designer support for creating WPF user interfaces in IronPython is built into Visual
Studio 2008 and the IronPython Studio. The IronPython Studio WPF designer is
shown in figure 9.3.

Figure 9.2 Woodgrove Finance—a WPF application

Figure 9.3 T
WPF designer
IronPython St
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

220 CHAPTER 9 WPF and IronPython
Windows Forms is a great user interface library. This may seem like an odd way to intro-
duce an alternative library, but bear with us. Windows Forms has been around for a long
time and, as a result, is stable with a rich set of controls. WPF opens up new opportunities
for creating attractive and innovative interfaces, but it doesn’t yet provide as many con-
trols as WinForms. The one you use should depend on your priorities. The great
strength of WPF is ultimately flexibility, but it does have some great tricks up its sleeves
even with its standard controls. These tricks include better high-level controls for layout,
particularly for interfaces that behave well when resized. This tackles a weakness of Win-
dows Forms—creating forms with a consistent resizable layout is notoriously difficult.

 We start with a traditional Hello World example, but first let’s look at the assem-
blies that contain WPF, and the namespaces they make available.

9.1 Hello World with WPF and IronPython
To use WPF, you’ll need to install .NET 3.0. If you’re running Vista, then you already
have .NET 3.0 installed.

 Installing .NET 3 installs the following key WPF assemblies:

■ PresentationFramework.dll—Holds the high-level WPF controls and types, such as
windows and panels.

■ PresentationCore.dll—Holds base types from which all the controls and display
elements derive, including the core classes UIElement and Visual.

■ WindowsBase.dll—Contains lower-level objects that still need to be publicly
exposed, such as DispatcherObject and DependencyObject. We use one or two
classes, like Point, provided by this assembly.

■ milcore.dll—The WPF rendering engine (and an essential part of Windows Vista).
■ WindowsCodecs.dll—A low-level imaging support library.

We can get a long way using only the first two of these assemblies, Presentation-
Framework and PresentationCore. These assemblies contain the namespace used by
WPF, all of which start with System.Windows.1 (System.Windows.Forms is the only
namespace in this hierarchy which isn’t part of WPF.) Table 9.2 shows the important
WPF namespaces, all of which we use in this chapter.

1 The MSDN documentation for this namespace is at http://msdn2.microsoft.com/en-us/library/system.win-
dows.aspx.

Table 9.2 Important WPF namespaces

Namespace Purpose

System.Windows Provides important classes and base element classes used
in WPF applications. This includes Application,
Clipboard, Window, and UIElement.

System.Windows.Controls Provides the standard WPF controls, plus the classes used
to create user controls.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.windows.aspx
http://msdn2.microsoft.com/en-us/library/system.windows.aspx

221Hello World with WPF and IronPython
There’s an enormous variety of classes in WPF, but the basics are easy to start with. We
begin with a traditional Hello World example.

9.1.1 WPF from code

We’ve talked enough about WPF—it’s
time to see it in action. Listing 9.12 creates
a Window, and an attractive-looking but-
ton, contained in a StackPanel. Fig-
ure 9.4 is the result of running the code.

import clr
clr.AddReference("PresentationFramework")
clr.AddReference("PresentationCore")

from System.Windows import (
 Application, SizeToContent,
 Thickness, Window
)

from System.Windows.Controls import (
 Button, Label, StackPanel
)

from System.Windows.Media.Effects import DropShadowBitmapEffect

window = Window()
window.Title = 'Welcome to IronPython'
window.SizeToContent = SizeToContent.Height
window.Width = 450

System.Windows.Documents Types for supporting FlowDocument and XPS documents.

System.Windows.Media For integrating rich media, including drawings, text, and
audio and video content in WPF applications.

System.Windows.Media.Effects Types for applying visual effects to bitmaps.

System.Windows.Media.Imaging Provides classes for working with images (bitmaps).

System.Windows.Shapes Various shapes (such as ellipse, line, path, and polygon,
plus the base class Shape)—for use in XAML and code.

System.Windows.Markup Classes for working with XAML, including serialization and
extensions to XAML.

2 Adapted from code originally created by Steve Gilham. See http://stevegilham.blogspot.com/2007/07/
hello-wpf-in-ironpython.html.

Listing 9.1 Hello World with WPF and IronPython

Table 9.2 Important WPF namespaces (continued)

Namespace Purpose

Adds references to
WPF assemblies

Window will update
height to content

Figure 9.4 Hello World with WPF and IronPython
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://stevegilham.blogspot.com/2007/07/hello-wpf-in-ironpython.html
http://stevegilham.blogspot.com/2007/07/hello-wpf-in-ironpython.html

222 CHAPTER 9 WPF and IronPython
stack = StackPanel()
stack.Margin = Thickness(15)
window.Content = stack

button = Button()
button.Content = 'Push Me'
button.FontSize = 24
button.BitmapEffect = DropShadowBitmapEffect()

def onClick(sender, event):
 message = Label()
 message.FontSize = 36
 message.Content = 'Welcome to IronPython!'

 stack.Children.Add(message)

button.Click += onClick
stack.Children.Add(button)

app = Application()
app.Run(window)

Most of this listing is simple enough that it should mainly speak for itself. One thing
you’ll notice straightaway is that the API is different than the one in Windows Forms.
This is hardly surprising because WPF is an entirely new library; but, although some
patterns are familiar, you need to learn a lot of new details.

 One obvious difference is at the end of the code. Instead of starting the event loop
with a static method on Application class, you create an instance. Because you can’t
have multiple event loops within the same AppDomain, Application is a singleton.
Instantiating it multiple times is not such a hot idea, but it will always return the same
instance. Like Windows Forms, WPF has single thread affinity, so interaction with
interface components must be on the same thread that Application is instantiated
on—which must be a single-threaded apartment (STA) thread. For single-threaded
applications, you don’t need to worry about this; for multithreaded applications, you
can use the WPF Dispatcher.3

 The WPF Button is also similar to its WinForms equivalent. You set up the button
click handler using our old friend, the Click event. But instead of setting the Text
property, you use Content. For setting the text on a button, you use a string, but you
could host any element in it (like an image or a TextBlock for more control over text
wrapping and providing an access key).

 Setting the Content on UI elements is one of the new patterns that comes with
WPF. This is how you set the contained elements in the Window (the new and improved
Form of a bygone era).

 Setting Content isn’t the only way that contained elements are set, though. The
star of this example is the StackPanel, one of the new layout classes provided by WPF.
Child controls are set on the stack panel by adding them to the Children container.
The StackPanel is a great way of stacking elements vertically or horizontally. In this

3 For more details, see the documentation on the WPF threading model at http://msdn2.microsoft.com/en-
us/library/ms741870.aspx.

Fancy bitmap
effect for button
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/ms741870.aspx
http://msdn2.microsoft.com/en-us/library/ms741870.aspx

223Hello World with WPF and IronPython
example, you add a new message to the panel every time the button is clicked. Other
WPF container classes4 include Grid, DockPanel, WrapPanel, and the Canvas.

 Most of the online examples for WPF start by showing you XAML, so let’s see how
our Hello World example looks in XAML.

9.1.2 Hello World from XAML

XAML is a declarative way of representing user interfaces in XML. XAML itself is exten-
sible; following are several XAML variants:

■ WPF XAML—Used to describe WPF content
■ XPS XAML—A subset of WPF XAML for creating formatted electronic documents
■ Silverlight XAML—Another subset of WPF XAML supported by the Silverlight

browser plugin
■ WF XAML—Windows Workflow Foundation XAML
■ Binary Application Markup Language (BAML)—A compiled form of XAML

There’s a straightforward correspondence between XAML and WPF classes. Any XAML
can be replaced by code that does the same job.

 When XAML is read in, a type converter turns the XML tree into an object tree
using the classes, structures, and enumerations contained in the System.Windows
namespaces. XAML is an abstraction; and, before using an abstraction, we like to
understand what’s going on under the hood.

 You can see the correspondence between the classes we’ve used and XAML in list-
ing 9.2, which is the XAML for Hello World.

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Welcome to IronPython" Width="450"
 SizeToContent="Height">
 <StackPanel Margin="15" x:Name="stackPanel">
 <Button FontSize="24" x:Name="button">
 <Button.BitmapEffect>
 <DropShadowBitmapEffect />
 </Button.BitmapEffect>
 Push Me
 </Button>
 </StackPanel>
</Window>

We’d show you a screenshot, but this is identical to the code written in the last section.
The top-level element has two XML namespaces, declared as attributes—which is nec-
essary for the text to be valid XML and valid XAML.

4 A useful reference on the WPF layout system can be found at http://msdn2.microsoft.com/en-us/library/
ms745058.aspx.

Listing 9.2 Hello World user interface in XAML
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/ms745058.aspx
http://msdn2.microsoft.com/en-us/library/ms745058.aspx

224 CHAPTER 9 WPF and IronPython
The XML tree defines the layout of the user interface. Child elements are nested in
their parent elements.

 The attributes of the elements set properties. For example, the Title, Width, and
SizeToContent properties on the window are set with attributes on the Window tag.

 More complex properties (usually objects that have their own properties) are set
using property-element syntax. You add a child element that specifies the parent and the
property being set. In our example, you set the BitmapEffect property of the button
with the following:

<Button.BitmapEffect>
 <DropShadowBitmapEffect />
</Button.BitmapEffect>

If you were creating an interface with C# and a WPF designer, then you could also
hook up events in the XAML. This creates a partial class in compiled XAML (BAML)
that will be associated with a C# class: the code-behind. Because of the differences
between IronPython classes and classes created with C#, you can’t hook up IronPy-
thon event handlers in IronPython.5 Instead, you have to load the XAML and turn it
into a WPF object tree using the XamlReader, so you need programmatic access to the
elements in the object tree.

 In this XAML example, you get access to the Button and the StackPanel by giving
them a name using the x:Name attribute. They’re then retrieved from the object tree
returned by XamlReader.Load using the FindName method. Listing 9.3 is the code that
reads in the XAML and sets up the button event handler.

import clr
clr.AddReference("PresentationFramework")
clr.AddReference("PresentationCore")

5 In fact, you can do it with the WPF designer in IronPython Studio. This generates code that uses a technique
similar to listing 9.3.

Listing 9.3 Consuming XAML from IronPython

XML escaping rules for XAML
XAML is XML, so you need to escape some characters using XML character entities.
Characters that need escaping are in table 9.3.

Character XML character entity

Less than (<) <

Greater than (>) >

Ampersand (&) &

Quotation mark (") " Table 9.3 XML
character entities
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

225Hello World with WPF and IronPython
from System.IO import File
from System.Windows.Markup import XamlReader

from System.Windows import (
 Application, Window
)
from System.Windows.Controls import Label

class HelloWorld(object):
 def __init__(self):
 stream = File.OpenRead("HelloWorld.xaml")
 self.Root = XamlReader.Load(stream)
 self.button = self.Root.FindName('button')
 self.stackPanel = self.Root.FindName('stackPanel')
 self.button.Click += self.onClick

 def onClick(self, sender, event):
 message = Label()
 message.FontSize = 36
 message.Content = 'Welcome to IronPython!'
 self.stackPanel.Children.Add(message)

hello = HelloWorld()

app = Application()
app.Run(hello.Root)

Because the XAML creates a Window, our HelloWorld class is no longer a window sub-
class itself. In fact, there’s no reason that the top-level element needs to be a window.
You could make the StackPanel the top-level element and set the return value from
XamlReader.Load as the Content on a Window subclass.

 Given that you’re probably a programmer, why should you use XAML instead of
code? One reason for considering XAML is for dynamic user interface creation. By
using the XamlReader, you can read in interface definitions at runtime. Alternative lay-
outs could be loaded in and swapped out in response to user actions, or even created
dynamically through text manipulation.

 There are other reasons for preferring XAML, as the following fragment illustrates:

<LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.25" Color="Tomato" />
 <GradientStop Offset="0.75" Color="DeepSkyBlue" />
 <GradientStop Offset="1.00" Color="LimeGreen" />
 </LinearGradientBrush.GradientStops>
</LinearGradientBrush>

This XAML fragment creates a colored gradient brush used to create colorful back-
grounds. The XAML is less verbose than the equivalent in code, even more so if you factor
in the imports (and the time it takes to find the right namespaces to import everything
from). More importantly, although XAML is quite easy to read and to write by hand, this
kind of element is much easier to create with tools like Expression Blend.

 Expression Blend allows you (or your designers) to create extremely rich inter-
faces with transitions, gradients, and animations. If Expression Blend is a designer’s

Creates WPF
object from XAML

Retrieves button
from object tree

Sets click handler
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

226 CHAPTER 9 WPF and IronPython
tool, why is it of interest to developers? As well as designing full interfaces, you can
also design individual components. You can copy and paste XAML from an Expression
project into your code, and vice versa.

 XAML generated by Expression Blend, or by the Visual Studio WPF designer, is
intended to be compiled and used with code-behind. It will include an x:Class attri-
bute valid only in compiled XAML. To make the XAML valid for consumption by the
XamlReader, you’ll need to remove this attribute from the top-level element.

 A free trial of Expression Blend is available for download,6 and Mono has a fledg-
ling equivalent tool (free and open source) called Lunar Eclipse.

 As well as creating sophisticated interfaces with Expression, WPF comes with a range
of standard controls sufficient for creating attractive, modern-looking applications.

9.2 WPF in action
Although WPF doesn’t have as many controls as Windows Forms, it includes standard
controls such as check boxes, drop-down lists, and radio buttons. It also includes a
range of new controls, both for advanced layout and entirely new user interface com-
ponents. WPF also covers a wide range of areas beyond traditional user interfaces,
including document support and 3D drawing. Even though it doesn’t have all the con-
trols that Windows Forms does, it still does an awful lot. It’s extremely useful for devel-
oping Windows applications from IronPython if you’re prepared to target .NET 3.0.7

Although most of the documentation and online tutorials focus on XAML, which
often isn’t the best way of working with WPF from IronPython, most of the features are
as straightforward to use from code as the last example.

 In this section, you’ll create a WPF application using a selection of controls, both new
and old. Although this application itself won’t win any design awards, it does show you
how to use a useful range of WPF controls. The finished application looks like figure 9.5.

6 From Microsoft product page: http://www.microsoft.com/expression/products/overview.aspx?key=blend.
7 Which will be an extra dependency on platforms older than Vista.

Figure 9.5 A selection
of WPF controls in a grid
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.microsoft.com/expression/products/overview.aspx?key=blend

227WPF in action
You can see that the controls are laid out in a grid. The code for each of the controls is
covered in its own section, starting with the basic framework of the application.

9.2.1 Layout with the Grid

The most important component in this user interface is the Grid. This is contained in
a border with curved edges, purely for visual effect, and has visible grid lines so that
you can see how the controls are contained within it. Listing 9.4 is the constructor for
ControlsExample8 and the methods it calls to create the main window. Controls-
Example itself is a subclass of Window.

import clr
clr.AddReference("PresentationFramework")
clr.AddReference("PresentationCore")
clr.AddReference("windowsbase")

from System.Windows import (
 Window, Thickness,
 HorizontalAlignment,
 SizeToContent, CornerRadius
)

from System.Windows.Controls import (
 Grid, ColumnDefinition, RowDefinition,
 Label, Border
)

from System.Windows.Media import Brushes

class ControlsExample(Window):
 def __init__(self):
 grid = self.getGrid()
 grid.Background = GetLinearGradientBrush()
 self.createControls(grid)

 border = Border()
 border.BorderThickness = Thickness(5)
 border.CornerRadius = CornerRadius(10)
 border.BorderBrush = Brushes.Blue
 border.Background = Brushes.Yellow
 border.Padding = Thickness(5)
 border.Child = grid
 self.Content = border

 self.Title = 'WPF Controls Example'
 self.SizeToContent = SizeToContent.Height
 self.Width = 800

 def getGrid(self):
 grid = Grid()
 grid.ShowGridLines = True

8 This listing is not the full code. The following section works through more of the code for ControlsExample.
You can download it as a single file from the book’s website.

Listing 9.4 Controls example framework with Grid in Window

Sets up grid

Creates rest of UI

Creates border

Puts grid in border

Sets border on window
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

228 CHAPTER 9 WPF and IronPython
 # 3x3 grid
 for i in range(3):
 grid.ColumnDefinitions.Add(ColumnDefinition())
 grid.RowDefinitions.Add(RowDefinition())

 label = Label()
 label.Margin = Thickness(15)
 label.FontSize = 16
 label.Content = "Nothing Yet..."
 label.HorizontalAlignment = HorizontalAlignment.Center
 self.label = label

 grid.SetColumnSpan(self.label, 3)
 grid.SetRow(self.label, 0)
 grid.Children.Add(self.label)

 return grid

This code initializes the grid and then calls down to createControls to create the rest
of the controls. Note that the grid is contained in the border by setting the Child attri-
bute of the border. Along the way, this code uses a helper function to set a colorful
background gradient and another function to place the controls in the grid. These
functions, along with the additional imports that they use, are shown in listing 9.5.

from System.Windows import Point
from System.Windows.Controls import ToolTip
from System.Windows.Input import Cursors
from System.Windows.Media import (
 Colors, GradientStop,
 LinearGradientBrush
)

def GetLinearGradientBrush():
 brush = LinearGradientBrush()
 brush.StartPoint = Point(0,0)
 brush.EndPoint = Point(1,1)
 stops = [
 (Colors.Yellow, 0.0),
 (Colors.Tomato, 0.25),
 (Colors.DeepSkyBlue, 0.75),
 (Colors.LimeGreen, 1.0)
]
 for color, stop in stops:
 brush.GradientStops.Add(GradientStop(color, stop))
 return brush

def SetGridChild(grid, child, col, row, tooltip):
 if hasattr(child, 'FontSize'):
 child.FontSize = 16
 child.Margin = Thickness(15)
 child.Cursor = Cursors.Hand
 child.ToolTip = ToolTip(Content=tooltip)
 grid.SetColumn(child, col)
 grid.SetRow(child, row)
 grid.Children.Add(child)

Listing 9.5 Helper functions for the controls example

Creates 3 rows
and 3 columns

Label spans 3
columns

Creates brush

Adds gradient
stops

Not all elements have
FontSize attributes
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

229WPF in action
GetLinearGradientBrush returns a brush (a LinearGradientBrush), which is set as the
Background property on the grid. The start and end points of the gradient are set using
the Point structure. This isn’t the Point from the System.Drawing namespace that we’ve
used before, but a new one. (In fact, if you attempt to use that one, you get the wonderful
error message expected Point, got Point.) Although this Point lives in the System.Windows
namespace, it’s defined in the WindowsBase assembly. This structure is the only reason
you need to explicitly add a reference to this assembly at the start of the application.

 SetGridChild is used to set the controls in the grid. Let’s look at how the grid is used.
 The grid in this application is three-by-three: three rows and three columns. The

rows and columns are created by adding RowDefinition and ColumnDefinition to
their respective collections on the grid object.

grid = Grid()
grid.ShowGridLines = True

for i in range(3):
 grid.ColumnDefinitions.Add(ColumnDefinition())
 grid.RowDefinitions.Add(RowDefinition())

The first row (row zero) contains the top label, spanning across all three columns.
The label has to be set in position in the grid and added to the Children collection on
the grid.

grid.SetColumnSpan(self.label, 3)
grid.SetRow(self.label, 0)
grid.Children.Add(self.label)

Later controls are added to the grid by SetGridChild.

grid.SetColumn(child, col)
grid.SetRow(child, row)
grid.Children.Add(child)

SetGridChild also does a couple of other neat things. It sets a cursor and a tooltip on
all the objects it places in the grid. If you move the mouse pointer over the controls,
then the mouse pointer becomes a hand and a tooltip for the control is shown.

 It’s time to look at some of the controls used in this application, starting with a cou-
ple of standard controls available in Windows Forms, but have a new implementation
for WPF.

9.2.2 The WPF ComboBox and CheckBox

Figure 9.6 shows the WPF CheckBox and ComboBox.
 They’re contained in a StackPanel and cre-

ated by the createComboAndCheck method (list-
ing 9.6).

from System.Windows.Controls import(
 StackPanel, CheckBox, ComboBox,
 ComboBoxItem

Listing 9.6 Creating ComboBox and CheckBox

Figure 9.6 CheckBox and ComboBox
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

230 CHAPTER 9 WPF and IronPython
)

def createComboAndCheck(self, grid):
 panel = StackPanel()

 label = Label()
 label.Content = "CheckBox & ComboBox"
 label.FontSize = 16
 label.Margin = Thickness(10)

 check = CheckBox()
 check.Content = "CheckBox"
 check.Margin = Thickness(10)
 check.FontSize = 16
 check.IsChecked = True
 def action(s, e):
 checked = check.IsChecked
 self.label.Content = "CheckBox IsChecked = %s" % checked
 check.Checked += action
 check.Unchecked += action

 combo = ComboBox()
 for entry in ("A ComboBox", "An Item", "The Next One", "Another"):
 item = ComboBoxItem()
 item.Content = entry
 item.FontSize = 16
 combo.Items.Add(item)
 combo.SelectedIndex = 0
 combo.Height = 26
 def action(s, e):
 selected = combo.SelectedIndex
 self.label.Content = "ComboBox SelectedIndex = %s" % selected
 combo.SelectionChanged += action
 combo.FontSize = 16
 combo.Margin = Thickness(10)

 panel.Children.Add(label)
 panel.Children.Add(combo)
 panel.Children.Add(check)
 SetGridChild(grid, panel, 0, 1, "ComboBox & CheckBox")

This code is all straightforward. It creates the CheckBox and adds an event handler,
called action, to be called when it’s checked or unchecked. When action is called, it
sets the text on the top label.

 Next, the ComboBox is created and populated with ComboBoxItems. Another
action event handler is added to the SelectionChanged event, and sets the text on
the label when the selection is changed.

 Finally, these components are placed in the StackPanel, which is added to the grid
in the first column and second row. A StackPanel has no FontSize property, so the Font-
Size is set on the individual controls. SetGridChild checks for the presence of the Font-
Size property using hasattr, and won’t attempt to set the FontSize on the StackPanel.

 The ComboBox and CheckBox are basic components in any user interface. WPF also
includes other standard controls such as the RadioButton, ListBox, TabControl,
TextBox, RichTextBox, TreeView, Slider, ToolBar, and ProgressBar. Although the

Called when
CheckBox is used

Populates ComboBox

Puts StackPanel
in grid
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

231WPF in action
API is different than the one in Windows Forms, you can see that the controls are just
as easy to use. The best way to start using them is to experiment and read the docu-
mentation that provides simple examples. All these controls live in the System.
Windows.Controls namespace, and you can find the documentation at http://
msdn2.microsoft.com/en-us/library/system.windows.controls.aspx.

 Another old friend is the Image control, which also has its place in the WPF library.

9.2.3 The Image control

One of the reasons we’ve chosen to show the Image control is to show that, although
everything may be shiny and new, it isn’t without warts. The first wart is that Image is
awkward to use from code. This is largely mitigated by creating the image from XAML,
but it doesn’t help with the second problem: how you specify the location of the image
to be shown. In fact, it makes this problem worse. Before we discuss this, let’s look at
the code (listing 9.7).

import os
from System import Uri, UriKind
from System.Windows.Controls import Image
from System.Windows.Media.Imaging import BitmapImage

def createImage(self, grid):
 image = Image()
 bi = BitmapImage()
 bi.BeginInit()
 image_uri = os.path.join(os.path.dirname(__file__), 'image.jpg')
 bi.UriSource = Uri(image_uri, UriKind.RelativeOrAbsolute)
 bi.EndInit()
 image.Source = bi
 SetGridChild(grid, image, 1, 1, "Image")

You can see that this code is verbose. You have to create both a BitmapImage and an
Image instance B. You specify the location of the image file using a Uri D, which can
be done only inside a BeginInit/EndInit block.9 The BitmapImage is set as the
Source on the Image instance E.

 It’s in specifying the location of the image that the real fun begins. You specify an
absolute location on the filesystem C. This is fine, if a little ugly, from code because
you can construct it dynamically. From XAML, it’s impossible—unless your application
is always going to run from the same location or you dynamically insert the location
into the XAML.

 One possible alternative is to use the pack URI syntax.10 It’s slightly odd, but easy
enough to use.

pack://siteoforigin:,,,/directory_name/image.jpg

Listing 9.7 Image control

9 For more detail on the use of images with WPF, this page is a helpful reference: http://msdn2.micro-
soft.com/en-us/library/ms748873.aspx.

10 See this page for all the gory details: http://msdn2.microsoft.com/en-us/library/aa970069.aspx.

B

C
D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.windows.controls.aspx
http://msdn2.microsoft.com/en-us/library/system.windows.controls.aspx
http://msdn2.microsoft.com/en-us/library/ms748873.aspx
http://msdn2.microsoft.com/en-us/library/ms748873.aspx
http://msdn2.microsoft.com/en-us/library/aa970069.aspx

232 CHAPTER 9 WPF and IronPython
Unfortunately, this specifies a location relative to the executing assembly of the current
application. If you’re running the script with IronPython, this means relative to the
location of ipy.exe. But creating a custom executable for your own applications is sim-
ple, and we explore this topic in chapter 15. If your XAML documents and resources
are distributed with your application, then this solution would work. For reference,
the equivalent XAML for the image is the following:

<Image Source="pack://siteoforigin:,,,/directory_name/image.jpg" />

Which is a lot simpler than the code in listing 9.7.
Later in this chapter, we look at how to use XAML
documents from WPF with a high-level document
reading control, including fetching images from
arbitrary locations.

 After the annoying complexity of working with
images, let’s take a look at one of the new con-
trols, the Expander.

9.2.4 The Expander

The Expander is one of our favorite controls. It
can contain other controls, which the user can
expand or hide. One use for the Expander is to
provide menus as sidebars, as shown in fig-
ure 9.7.

 The Expander is easy to use; the code from our
example application is in listing 9.8.

from System.Windows.Controls import (
 Expander, TextBlock, Button
)
from System.Windows.Media.Effects import (
 DropShadowBitmapEffect
)

def createExpander(self, grid):
 expander = Expander()
 expander.Header = "An Expander Control"
 expander.IsExpanded = True
 contents = StackPanel()
 textblock = TextBlock(FontSize=16,
 Text="\r\nSome content for the expander..."
 "\r\nJust some text you know...\r\n")
 contents.Children.Add(textblock)
 button = Button()
 button.Content = ‘Push Me'
 button.FontSize = 24
 button.BitmapEffect = DropShadowBitmapEffect()

Listing 9.8 Expander control

Sets title

Figure 9.7 Expander controls
with contained buttons
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

233WPF in action
 button.Margin = Thickness(10)
 def action(s, e):
 self.label.Content = "Button in Expander pressed"
 button.Click += action
 contents.Children.Add(button)

 expander.Content = contents
 SetGridChild(grid, expander, 2, 1, "Expander")

The Expander is created and populated with a StackPanel, which contains a Text-
Block and a Button. We’ll take a closer look at the TextBlock in a moment. The
Button has a Click event handler that changes the label, just to prove that it works.
Clicking the header hides and shows the contents of the Expander.

NOTE The source code for this application includes another control, which we
don’t have space to cover here. The InkCanvas is a control that can be
drawn on. You can use it to add user annotations, or diagramming capa-
bilities to an application. It’s particularly useful on tablet PCs and can
be used in conjunction with the InkAnalyzer,11 which provides hand-
writing recognition.12

Another new WPF component is the ScrollViewer.

9.2.5 The ScrollViewer

The ScrollViewer is a container element. When
the children it contains are bigger than the visible
area, it provides horizontal and vertical scrollbars
as necessary. Figure 9.8 shows it in action.

 Listing 9.9 is the code from our example appli-
cation that uses the ScrollViewer to contain a
control and one of the WPF basic shapes with a col-
ored gradient fill. (We thought it looked too good
to only use once.)

from System.Windows import (
 HorizontalAlignment, VerticalAlignment,
 TextWrapping
)
from System.Windows.Controls import (
 ScrollBarVisibility, ScrollViewer
)
from System.Windows.Shapes import Rectangle

def createScrollViewer(self, grid):

11 See http://msdn2.microsoft.com/en-us/library/system.windows.ink.inkanalyzer.aspx.
12 To use handwriting recognition, you need to install the tablet PC SDK. We’d include a URL, but it’s horrifi-

cally long and easy to find.

Listing 9.9 ScrollViewer control with Rectangle and TextBlock

Event handler
for button

Sets StackPanel
on Expander

Figure 9.8 The ScrollViewer control
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.windows.ink.inkanalyzer.aspx

234 CHAPTER 9 WPF and IronPython
 scroll = ScrollViewer()
 scroll.Height = 200
 scroll.HorizontalAlignment = HorizontalAlignment.Stretch
 scroll.VerticalAlignment = VerticalAlignment.Stretch

 scroll.HorizontalScrollBarVisibility = ScrollBarVisibility.Auto
 panel = StackPanel()
 text = TextBlock()
 text.TextWrapping = TextWrapping.Wrap
 text.Margin = Thickness(0, 0, 0, 20)
 text.Text = "A ScrollViewer.\r\n\r\nScrollbars appear as and when they are
 ➥ needed...\r\n"

 rect = Rectangle()
 rect.Fill = GetLinearGradientBrush()
 rect.Width = 500
 rect.Height = 500

 panel.Children.Add(text)
 panel.Children.Add(rect)

 scroll.Content = panel
 SetGridChild(grid, scroll, 1, 2, "ScrollViewer")

The ScrollViewer contains a StackPanel populated with a TextBlock and a Rect-
angle. By default, the horizontal scrollbar is disabled, so you enable it by setting
HorizontalScrollBarVisibility to ScrollBarVisibility.Auto. So that the Scroll-
Viewer fills the available space, you also set the HorizontalAlignment and Vertical-
Alignment to the appropriate enumeration member.

 It’s also worth noting that this code segment sets the margin on the TextBlock,
using Thickness created with four arguments rather than a single number (techni-
cally doubles—but IronPython casts the integers for you).

text.Margin = Thickness(0, 0, 0, 20)

The four numbers specify the margins on the left, top, right, and bottom. (The
Thickness structure represents a rectangle.) Here you’re specifying a bottom margin
of 20 pixels.

 The last detail from this code is that the colored gradient is set on the rectangle
with the Fill attribute. Other brushes are available, like image and tiled drawing
brushes,13 and you can add effects like opacity, reflection, and magnification.

 One of the most useful features of WPF is its support for text, in both large and
small amounts. The next section covers the TextBlock, which is a way of including
small amounts of text within your applications.

9.2.6 The TextBlock: a lightweight document control

The TextBlock is designed for displaying small amounts of flow content. Flow content
is formatted text that will be automatically reflowed as the container control is resized.

13 As usual, there’s a useful page on MSDN providing examples of the different brushes. See http://
msdn2.microsoft.com/en-us/library/aa970904.aspx.

Creates ScrollViewer
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/aa970904.aspx
http://msdn2.microsoft.com/en-us/library/aa970904.aspx

235WPF in action
As well as the TextBlock, there are other controls for incorporating whole documents
into applications.

 You’ve already used the TextBlock in the ScrollViewer example. There you set
the content by setting the Text property, using it as little more than a glorified label.
We used a TextBlock rather than a Label so that you could control the TextWrapping.

 In listing 9.10, you’ll create a TextBlock with flow content, using the programmatic
API.14 This example uses classes from the System.Windows.Documents namespace.

from System.Windows import TextAlignment
from System.Windows.Documents import (
 Bold, Hyperlink, Italic, Run
)

def createTextBlockAndHyperlink(self, grid):
 textblock = TextBlock()
 textblock.TextWrapping = TextWrapping.Wrap
 textblock.Background = Brushes.AntiqueWhite
 textblock.TextAlignment = TextAlignment.Center
 textblock.Inlines.Add(Bold(Run("TextBlock")))
 textblock.Inlines.Add(Run(" is designed to be "))
 textblock.Inlines.Add(Italic(Run("lightweight")))
 textblock.Inlines.Add(Run(", and is geared specifically at integrating "))
 textblock.Inlines.Add(Italic(Run("small")))
 textblock.Inlines.Add(Run(" portions of flow content into a UI. "))

 link = Hyperlink(Run("A Hyperlink - Click Me"))
 def action(s, e):
 self.label.Content = "Hyperlink Clicked"
 link.Click += action
 textblock.Inlines.Add(link)
 SetGridChild(grid, textblock, 2, 2, "TextBlock")

Documents are another place where XAML is significantly more concise than code.
The equivalent XAML for this TextBlock is as follows:

<TextBlock Background="AntiqueWhite" TextWrapping="Wrap"
 TextAlignment="Center">
 <Bold>TextBlock</Bold> is designed to be
 <Italic>lightweight,</Italic>
 and is geared specifically at integrating
 <Italic>small</Italic> portions of flow content
 into a UI.
 <Hyperlink>A Hyperlink - Click Me</Hyperlink>
</TextBlock>

Not only is this less work than the code; but, if you’re used to creating documents
using HTML (or other markups), it’s reasonably intuitive. You’ll notice that the code
has to wrap straight runs of text in the Run class, but this is done automatically in the

Listing 9.10 TextBlock with flow content

14 For a reference to the TextBlock content model, see http://msdn2.microsoft.com/en-us/library/
bb613554.aspx.

Sets up attributes
on TextBlock

Starts adding content

Click event handler
for Hyperlink
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/bb613554.aspx
http://msdn2.microsoft.com/en-us/library/bb613554.aspx

236 CHAPTER 9 WPF and IronPython
XAML. The only thing the XAML doesn’t do for you is set up the Click handler on the
hyperlink. This is the same problem that we’ve already encountered with using XAML
from IronPython, and you could solve it using the same trick of setting an x:Name
attribute in the XAML. Shortly we’ll explore a more general solution to this problem
when working with XAML documents from IronPython.

 Before we do that, let’s look at the other side of the coin—turning WPF objects
back into XAML.

9.2.7 The XamlWriter

In the Hello World example, we also looked at the equivalent XAML. The full XAML
for the example application we’ve been using to look at WPF controls would be pain-
ful to create by hand. Fortunately, there’s an easier way. Listing 9.11 uses a XamlWriter
to turn our ControlsExample into XAML.

from System.IO import File
from System.Windows.Markup import XamlWriter

window = ControlsExample()
text = XamlWriter.Save(window.Content)
File.WriteAllText('out.xaml', text)

The XamlWriter does have some limitations. For example, it can’t handle creating
XAML for subclasses of WPF objects.15 Our main ControlsExample class is a subclass of
Window, so you can only serialize the object tree below the top-level window. This is
why you call XamlWriter.Save (a static method) on the window’s Content property.

 We’ve already looked at including small amounts of flow content in user inter-
faces. WPF also provides a powerful way of incorporating whole documents through
XPS documents.

9.3 XPS documents and flow content
XML Paper Specification (XPS) is a combination of a document markup language,
which is a subset of XAML, and code support for viewing and printing documents.
Although you won’t read this in the Microsoft documentation, many see XPS as Micro-
soft’s answer to Adobe’s Portable Document Format (PDF) for creating print-ready
documents. Fortunately, that debate is irrelevant to us because the classes that provide
XPS support are a fantastic way of incorporating documents within WPF applications.

 One use for XPS documents is incorporating highly readable content within desk-
top applications, blurring the line between online and offline applications. One such
application is the Mix Reader (figure 9.9) created by Conchango for the Mix UK 2007
conference. It combines offline document reading with online capabilities including
RSS reading and Facebook and Twitter integration.

Listing 9.11 Creating XAML from WPF objects with XamlWriter

15 Not just a restriction when working from IronPython. The XamlWriter serialization is explicitly runtime and
can’t access design-time information.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

237XPS documents and flow content
Applications with dynamic content and features are particularly suited to Iron-
Python. You can dynamically create (and manipulate) XAML and then load it at run-
time using the XamlReader. In this section, we play with XAML while exploring docu-
ment integration.

 XPS documents are packages that can contain one or more fixed documents along
with their dependencies such as images and fonts. This format is most similar to PDF,
and Microsoft provides an XPS Viewer application16 and printing support. In fact, XPS
is now the native Windows Vista print spool file format.

 Fixed documents are a relatively low-level format that contains FixedPage ele-
ments. They’re used when an application needs to control the layout of the docu-
ment—for example, for printing—and they’re the type of document stored in XPS
files. Fixed documents must contain certain elements that make up the page, such as
width, height, and language.

 More interesting, from an application programmer’s point of view, are FlowDocu-
ments. Flow documents can be viewed with some high-level reader controls and reflow
dynamically as the control size changes. They also offer advanced document features

16 See http://www.microsoft.com/whdc/xps/viewxps.mspx.

Figure 9.9 The Mix Reader, a desktop WPF application with powerful document-reading capabilities
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.microsoft.com/whdc/xps/viewxps.mspx

238 CHAPTER 9 WPF and IronPython
such as pagination and columns. Of course, these features are better demonstrated
than explained.

9.3.1 FlowDocument viewer classes

WPF includes several controls for viewing flow content. You’ve already used the Text-
Block for including small amounts of formatted text; now it’s the turn of the classes
for viewing whole documents.

 There are three basic classes for viewing flow documents: FlowDocumentReader,
FlowDocumentPageViewer, and FlowDocumentScrollViewer. They’re all similar, but
have slightly different features for different uses.

 Figure 9.10 shows FlowDocumentExample.py,17 which embeds these three docu-
ment viewers in a TabControl. They all show the same document so that you can see
the differences.

 Like the other WPF controls you’ve used, you can populate these readers directly
from XAML or with an object tree created from code. For documents, it makes much
more sense to use XAML, but there’s a bit of work to be done from code. Let’s look at
how you use the viewers and what the differences are.

17 Available in the downloadable source code, under Chapter 9, from http://www.ironpythoninaction.com/.

Figure 9.10 The three
flow document viewer
classes displaying a
flow content document
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.ironpythoninaction.com/

239XPS documents and flow content
THE FLOWDOCUMENTREADER

The FlowDocumentReader is the most capable of the viewer controls. It has features
that allow the user to switch the display mode between single page, two pages side by
side, and continuous scrolling. It also has find and magnification built-in. Listing 9.12
shows the basic code to read in a XAML file and create the viewer.

from System.IO import File
from System.Windows.Controls import (
 FlowDocumentReader, FlowDocumentReaderViewingMode
)

from System.Windows.Markup import XamlReader

xamlStream = File.OpenRead("FlowDocument.xaml")
reader = FlowDocumentReader()
flowDocument = XamlReader.Load(xamlStream)
reader.Document = flowDocument
reader.ViewingMode = FlowDocumentReaderViewingMode.Page

Because the viewers are controls, they live in the System.Windows.Controls

namespace.
 The default viewing mode is Page; so, strictly speaking, the last line of the code is

unnecessary, but it demonstrates how you configure the viewing mode. The other
enumeration members, for the alternative viewing modes, are Scroll and TwoPage.
THE FLOWDOCUMENTPAGEVIEWER AND FLOWDOCUMENTSCROLLVIEWER

The other two viewer controls are used in exactly the same way, but present the docu-
ment in a fixed viewing mode instead of allowing the user to choose. In consequence,
they’re lighter weight and should be used when different viewing modes aren’t needed.

 The FlowDocumentPageViewer shows documents in page-at-a-time mode and
includes the magnification toolbar.

 The FlowDocumentScrollViewer shows documents in single-page view mode, with
a vertical scrollbar. A horizontal scrollbar is only shown if necessary. By default, this
viewer has no toolbar, but you can switch it on by setting the IsToolBarVisible prop-
erty to True.

 So what sort of markup do you use to create flow documents?

9.3.2 Flow document markup

You’ve already seen a simple example of the XAML flow document markup when cre-
ating the TextBlock. But that only scratches the surface of what’s possible.

 The document displayed by FlowDocumentExample.py is FlowDocument.xaml.
This shows off most of the document markup available.
BASIC MARKUP

When creating a viewer control, you need to set the Document property with a Flow-
Document, which must be the top-level element of the document. The basic markup
elements of flow content are easy to use. This short document contains text in a para-
graph, with bold and italic sections and a line break.

Listing 9.12 Creating FlowDocumentReader
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

240 CHAPTER 9 WPF and IronPython
<FlowDocument xmlns="… >
 <Paragraph>
 The markup enables me to make some things
 <Bold>Bold</Bold>, and other things
 <Italic>Italic</Italic>. Although it is another
 markup to learn, it is much easier to
 construct documents like this
 than to do it from code.
 <LineBreak />
 This text follows a line break.
 </Paragraph>
</FlowDocument>

All these elements have corresponding classes in the System.Windows.Documents
namespace, but constructing a document from code would be extremely tedious.

 As well as for dividing documents into paragraphs, you can use sections as con-
tainer elements. They can be useful ways of forcing a page break or applying styling
attributes to all contained elements. Children of a section must be block-level ele-
ments, which include the following:

■ Paragraph

■ List
■ Table
■ BlockUIContainer

Following are two section declarations. The first ensures a page break; the second
adds a light blue background to everything within the section.

<Section BreakPageBefore="True"/>
<Section Background="LightBlue"> </Section>

Lists are also easy to construct.

<List>
 <ListItem>
 <Paragraph><Italic>Item Number 1 - Italic</Italic></Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph><Underline>Item Number 2 - Underline</Underline></Paragraph>
 </ListItem>
</List>

Flow content can contain many other elements including figures, typography ele-
ments, and embedded user interfaces. You can find examples of these in FlowDocu-
ment.xaml. We haven’t yet covered images and hyperlinks because both of these
elements have problems that we need to solve.

9.3.3 Document XAML and object tree processing

XAML is essentially an XML tree used to represent documents and user interfaces. If
you need to apply transformations or changes to the tree, you have two choices. You
can either process the XAML before loading, or apply changes directly to the object
tree after loading. So far, we’ve encountered two reasons why you might want to do
that. The first is to resolve the difficulty with specifying the location of images.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

241XPS documents and flow content
HANDLING IMAGES

For an image element to be properly displayed, you need to provide an absolute loca-
tion for the image file. This is inconvenient, and it would be much better to specify
the location relative to the document file. We’ve already solved this problem when
creating images from code, but you need to do something different when working
with XAML.

 Because we’re working with an XML tree, you could use an XML parser or apply XSLT
transformations. But for specifying a location on the filesystem relative to the document,
all you need is a placeholder representing the directory of the document. You can then
do a string replace to insert that location into the XAML at runtime. Because you haven’t
yet used regular expressions (regex), we create a simple regex to do the job.

 For regular expressions, you have the choice of working with the .NET or the
Python libraries. Because we’re more familiar with Python regular expressions, we use
Python’s re module18 (listing 9.13)

from os.path import abspath, dirname, join
import re
from System.IO import File

document_location = re.compile(r'<%\sdocument_location\s%>',
 re.IGNORECASE)

documentDirectory = abspath(dirname(__file__))
filename = join(documentDirectory, "FlowDocument.xaml")
rawXAML = File.ReadAllText(filename)

if not documentDirectory.endswith('\\'):
 documentDirectory += ' \\'

xaml = re.sub(document_location, documentDirectory, rawXAML)

This code takes an image tag, <Image Source="<% document_location %>image2.jpg"
/>, and replaces <% document_location %> with the path to the directory containing
the document. The advantage of using a regular expression is that the replacement
can be case insensitive and also insensitive to whitespace inside the tag.

 This leaves a further problem. You now have the XAML, with the correct image
paths, as a string, but the XamlReader expects a stream. You get around this problem
by using a MemoryStream to wrap the string (listing 9.14).

from System.IO import MemoryStream
from System.Text import Encoding

bytes = Encoding.UTF8.GetBytes(xaml)
stream = MemoryStream(bytes)

flowDocument = XamlReader.Load(stream)

Listing 9.13 Regular expression to insert image locations into XAML at runtime

18 See http://docs.python.org/lib/module-re.html.

Listing 9.14 Wrapping a string as a stream

Creates
compiled regular
expression object

Directory containing
document

Performs
substitution
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/module-re.html

242 CHAPTER 9 WPF and IronPython
XAML files must be in the UTF-8 encoding—which is why you use Encoding.UTF8 to get
a byte array from the XAML string.

 The next problem we have to solve is working with links in documents.
HANDLING LINKS

Constructing hyperlinks in XAML is easy; but, unfortunately, they don’t work quite
how you might expect.

<Hyperlink NavigateUri="http://example.com">A Link</Hyperlink>

The NavigateUri isn’t intended for linking to arbitrary URLs, but for navigating to
XAML files. If these were created with code-behind, then the associated code would be
loaded with the XAML, and you could construct Page19-based user interfaces (for both
desktop applications and WPF applications hosted in a browser) that navigate like a
web application. Because you can’t use code-behind with IronPython, it isn’t useful for
our purposes, and hyperlinks in our XAML documents don’t do anything.

 But you can load the XAML and then find all the links in the object tree. You can
then attach click handlers to the links that launch the default system browser with the
URL specified in the NavigateUri.

 To do this, you need a way of walking the WPF object tree after you’ve created it.
Fortunately, there’s a convenient helper class for doing this. Listing 9.15 shows a
recursive generator function that uses LogicalTreeHelper to extract a list of objects.
You specify the objects you’re interested in by name, and FindChildren examines the
class name of all the objects in the WPF tree to find them. Using a generator means
that you don’t have to build up a list, but can yield matching objects as you find them.

from System.Windows import LogicalTreeHelper
from System.Diagnostics import Process

def FindChildren(child, name):
 if child.__class__.__name__ == name:
 yield child
 for item in LogicalTreeHelper.GetChildren(child):
 if isinstance(item, basestring):
 continue
 for entry in FindChildren(item, name):
 yield entry

flowDocument = XamlReader.Load(stream)
def OnClick(sender, event):
 uri = sender.NavigateUri
 Process.Start(uri.AbsoluteUri)

for link in FindChildren(tree, 'Hyperlink'):
 link.Click += OnClick

It would be simple to evolve this system to automatically hook up user interface ele-
ments embedded in documents. You could create a declarative naming scheme and

19 See http://msdn2.microsoft.com/en-us/library/system.windows.controls.page.aspx.

Listing 9.15 Attaching click handlers to all hyperlinks in a document

Ignores children
that are strings

Returns children of
object passed in

Launches browser to
hyperlink NavigateUri
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.windows.controls.page.aspx

243Summary
hook events up to handlers based on names declared in XAML elements. For example,
an object named Click_onClick would have its Click event hooked up to the
onClick method.

 Although this section has focused on using LogicalTreeHelper in the context of
documents, there’s no need to restrict its use to this. XAML is just text, and Python is a
particularly good language for text processing; even if you prefer working with code,
the possibilities for dynamically generating XAML are interesting (especially for com-
plex effects like animations and transitions).

9.4 Summary
WPF is a huge subject. Whole books have been written on WPF (quite a few of them),
so we’ve only scratched the surface. The aim of this chapter was to familiarize you with
the basic principles of working with WPF, and equip you to explore it yourself. If you
want to learn more, you can begin with the following topics:

■ Dependency properties and routed events
■ Data binding
■ Creating custom controls
■ 3D drawing and animations
■ Hosting Windows Forms controls in WPF

We’ve covered how to create WPF applications from IronPython and how to find your
way around the WPF namespaces and standard controls. Perhaps more importantly, at
least from the point of view of reading WPF documentation, is understanding XAML.
Even if you prefer working with objects from code (which we do), you need to be able
to read XAML to look up anything related to WPF! When you do work with XAML, you
have lots of options with IronPython. The XamlReader, XamlWriter, and Logical-
TreeHelper classes are particularly powerful tools.

 In the next chapter, we look at how IronPython can help with system administra-
tion tasks, ranging from simple scripts to remote monitoring of system resources.
Along the way, you’ll get a chance to see how you can use some of the libraries pro-
vided with PowerShell from IronPython.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Windows system
 administration

 with IronPython
Because Python is interpreted, it’s often referred to as a scripting language. The
Python community regards this term as slightly derogatory because it seems to
imply that Python is suited to only simple scripting tasks rather than larger applica-
tions. Having said that, Python does make a great scripting language. Scripts can be
kept as text source files, common tasks can be achieved with very little code, and
you don’t need to use classes or even functions if they aren’t appropriate for the job
at hand. The greatest advantage of Python for system administration tasks is that, as

This chapter covers
■ Shell scripting and Python libraries
■ Windows Management Instrumentation from .NET
■ Remote administration
■ Hosting PowerShell from IronPython
■ Hosting IronPython from PowerShell
244

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

245System administration with Python
a full programming language, it’s easy to migrate what starts as a simple script into a
full application.

 In this chapter, we look at system administration with IronPython, taking advan-
tage of the features that Python and the .NET framework provide. The aspects of .NET
that we use are Windows Management Instrumentation (WMI) and PowerShell, both
of which are frameworks aimed particularly at the systems administrator.

10.1 System administration with Python
Every computer user does some system administration, even if it’s only maintaining a sta-
ble and working system. System administration encompasses everything from keeping
a computer operating to maintaining large networks with many computers and servers.
Although these are radically different situations, they share some needs and techniques
in common. We start our look at administration with an example of simple scripting.

10.1.1 Simple scripts

For simple tasks, one of Python’s great advantages is that it doesn’t push any particular
programming paradigm. If you want to write a script to automate a regular task, you
aren’t forced to write an object-oriented application; you aren’t even forced to write
functions if the task at hand doesn’t call for them. Listing 10.1 is a script for a typical
admin task of clearing out the temp folder of files that haven’t been modified for
more than seven days.

import os, stat
from datetime import datetime, timedelta

tempdir = os.environ["TEMP"]
max_age = datetime.now() - timedelta(7)

for filename in os.listdir(tempdir):
 path = os.path.join(tempdir, filename)
 if os.path.isdir(path):
 continue
 date_stamp = os.stat(path).st_mtime
 mtime = datetime.fromtimestamp(date_stamp)
 if mtime < max_age:
 mode = os.stat(path).st_mode
 os.chmod(path, mode | stat.S_IWRITE)
 os.remove(path)

Python has a rich tradition of being used for shell scripting, particularly on the Linux
platform. Commands are executed on the command line, and output their results on
standard out, often as a series of lines. Commands that work on multiple files can
often accept input from standard input, so commands can be chained together; the
output from one script forms the input to the next.

 Microsoft has extended the shell scripting concept with PowerShell; you can pipe
objects, as well as text, between commands. We look at integrating IronPython with

Listing 10.1 Script to clear out temp folder

Python standard
library modules

Temp directory
environment variable

Makes file writeable
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

246 CHAPTER 10 Windows system administration with IronPython
PowerShell later in this chapter, but first we use IronPython to create more flexible
shell scripts.

10.1.2 Shell scripting with IronPython

Because Python is widely used by system administrators, it has grown many libraries to
make their lives easier, both in the standard library and third-party libraries. The
script in listing 10.1 uses the Python standard library modules os, stat, and datetime
to work with paths, files, and dates. There are many more standard library modules,
and table 10.1 lists some particularly useful for scripting.

Two common needs in command-line scripts are to interpret command-line argu-
ments and to read from configuration files. Although the Python standard library does
include modules for these tasks,1 alternative libraries do the job better, as we demon-
strate in our next example.

Table 10.1 Standard library modules useful for shell scripting

Name Purpose

os Working with processes and operating system–specific information

os.path Handling files and paths

sys Containing more system-specific information and the standard input, output, and
error streams

stat Interpreting calls to os.stat()

shutil High-level file operations including copying, moving, and deleting trees of directories

glob Pathname pattern expansion

fnmatch Path and filename pattern matching

filecmp File and directory comparison

1 optparse and ConfigParser, respectively.

Python libraries and IRONPYTHONPATH
To use Python standard library modules from IronPython scripts, you need to install
IronPython 2 from the msi installer (that includes the standard library) or ensure that
Python is installed (Python 2.4 if you’re using IronPython 1, or Python 2.5 for Iron-
Python 2). If you do the latter, you’ll also need the standard library pointed to by the
IRONPYTHONPATH environment variable. On Windows, this will usually be the directory
C:\Python24\lib or something similar.

It’s also useful to have a directory to keep modules that aren’t in the standard library.
To have multiple directories in IRONPYTHONPATH, they should be separated by semi-
colons—for example:

C:\Python24\lib;C:\Modules
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

247System administration with Python
One command invaluable on UNIX-like systems, but missing from the Windows com-
mand-line environment, is the find command. Windows does have a command called
find, but it’s for searching for text in files and the search feature of the Explorer user
interface isn’t a replacement for command-line search. The UNIX find does a massive
range of different things, but the functionality I (Michael) miss most is searching a
path for files whose name matches (or doesn’t match) particular patterns. Let’s see
how much Python code it takes to implement this functionality.
The specification for search.py is as follows:

■ Accepting a path, or list of paths, to search for files (defaulting to the current
directory)

■ Accepting a pattern to match filenames with, using the standard * and ? wild-
cards and defaulting to everything

■ Accepting a pattern to exclude files
■ A mechanism for excluding specific directories from the search
■ Printing matching files to standard output on individual lines

As a first step, let’s look at how our script can meet that specification by accepting
command-line arguments.
PARSING COMMAND-LINE ARGUMENTS

Command-line arguments are exposed to you in their raw form as sys.argv, but you
can make life easier by using a module called argparse2 written by Steven Bethard.
Listing 10.2 is a simple function that creates an argument parser and uses it to parse
the arguments passed at the command line.

from argparse import ArgumentParser

def ParseArgs():
 description = "Search paths for files."
 parser = ArgumentParser(description=description)
 parser.add_argument('-p', '--path',
 action='append', dest='paths',
 default=[],
 metavar='path',
 help='paths to search',
)
 parser.add_argument('-i', '--include',
 action='store', dest='inc_patt',
 default='*',
 help='file name pattern to include',
)
 parser.add_argument('-x', '--exclude',
 action='store', dest='exc_patt',
 default=None,
 help='file name pattern to exclude',
)
 return parser.parse_args()

2 It isn’t yet in the standard library, but will be by Python 3.0. You can find argparse at http://argparse.
python-hosting.com.

Listing 10.2 Parsing command-line arguments with argparse

Printed in
help message

Default is to
match all files

Default is to
exclude none
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://argparse.python-hosting.com
http://argparse.python-hosting.com

248 CHAPTER 10 Windows system administration with IronPython
This snippet only uses the most basic features of argparse, which has a great deal
more functionality that we haven’t needed to use. To be able to specify multiple path
arguments, you use the append action rather than the store action for this argument,
and provide an empty list as the default value.

 You get two of the nicest features of argparse with no deliberate effort. If a user calls
the script with an invalid set of arguments, argparse will print a helpful error message
and exit. Additionally, it automatically generates a useful help message if the script is
called with the arguments -h or --help. You can see this message in figure 10.1.

As well as handling command-line arguments, you need a way of specifying directories
to exclude from the search. We regularly work with Subversion repositories and need
to locate files within them. Subversion repositories on the filesystem keep copies of
the working base of files under version control in hidden directories called .svn. Any
file that matches will inevitably also match a copy, so we like to be able to exclude all
.svn directories from searches. One way of doing this is through a configuration file.
READING ONFIGURATION FILES

I prefer the ConfigObj3 module for reading (and writing) ini-style configuration files.
This module also has many advanced options, but makes simple access to config files
trivially easy. Listing 10.3 is a function to read a list of excluded directories from a con-
fig file called search.ini, which is stored in the user’s home directory.

from configobj import ConfigObj

def GetExcludesFromConfig():
 home = os.path.join(os.getenv('HOMEDRIVE'),
 os.getenv('HOMEPATH'))

 rcfile = os.path.join(home, 'search.ini')
 config = ConfigObj(rcfile)
 exclude_dirs = config.get('exclude', [])
 if not isinstance(exclude_dirs, list):
 exclude_dirs = [exclude_dirs]

 return exclude_dirs

3 Disclaimer: I am one of the authors of ConfigObj. You can find it at http://pypi.python.org/pypi/ConfigObj/.

Listing 10.3 Reading config files with ConfigObj

Figure 10.1 The help
message generated for
search.py by argparse
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://pypi.python.org/pypi/ConfigObj/

249System administration with Python
This code first constructs the path to the user’s home directory by combining the envi-
ronment variables HOMEDRIVE and HOMEPATH. On a UNIX-type system, you could simply
use the HOME environment variable. Another alternative would be to call os.expand-
user(~), which does the same thing under the hood.

 You can access the config file by creating a ConfigObj instance with the path to the
file. You don’t have to worry about whether this file exists or not. By default ConfigObj
doesn’t raise an exception if the file doesn’t exist because you may be creating a new one.

 Normally ini files store key/value pairs, in sections defined by names in square
brackets. ConfigObj doesn’t require values to be in a section—which is useful for sim-
ple configuration files. It will also read a comma-separated list of values into a list of
strings for you. The search.ini file only needs to be a text file with a single entry,
exclude_dirs.

exclude_dirs = '.svn', '.cvs'

Having read in the config file, you can access the members using dictionary-like
access: exclude_dirs = config['exclude_dirs']. Unfortunately, if the config file
isn’t found or the exclude_dirs member isn’t present, then a KeyError exception is
raised. Instead, you can use the get method to fetch the value, supplying a default
value of an empty list if exclude_dirs isn’t available.

 If there was only a single value and the user forgot the trailing comma to make it a
list, then exclude_dirs would be read in as a string instead of a list. Before returning
the list of excluded directories, you check that it is a list; and, if it isn’t, you turn it into one.

 You now have the config file and command-line handling written, but the script
needs to be able to recursively walk directories returning filenames for you to filter.
WALKING DIRECTORIES

The Python standard library does contain a function for traversing directory trees
(os.walk), but it doesn’t include a mechanism for easily excluding directories and its
interface isn’t ideal for our use case. Fortunately, this is an ideal situation for a simple
Python generator. Reinventing the wheel may be bad as a general practice; but, if it
can be done in ten lines of Python, then it’s worth making an exception! Listing 10.4
recursively walks a directory tree, skipping directories in the exclude list, yielding file-
names as it finds them.

import os

def walk(directory, exclude_dirs):
 for entry in os.listdir(directory):
 path = os.path.join(directory, entry)
 if os.path.isfile(path):
 yield path
 elif os.path.isdir(path):
 if entry in exclude_dirs:
 continue

 for member in walk(path, exclude_dirs):
 yield member

Listing 10.4 A generator for walking directory trees

Yields full paths of files

Recurses into
subdirectories
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

250 CHAPTER 10 Windows system administration with IronPython
The final piece of the puzzle is to use the helper functions we’ve written to filter the
filenames and print the relevant ones to standard out.
FILTERING FILENAMES

To filter the filenames, using any include or exclude patterns that the user may have
supplied, you can use the fnmatch4 module. To do this, you need to use the arguments
as parsed by argparse. Listing 10.5 shows the search function, which iterates over all
the paths the user has specified, walks them with the walk function we just wrote, and
filters filenames using fnmatch.fnmatch. It also has a section of code that glues every-
thing together and runs when search.py is executed as a script.

import fnmatch

def search(exclude_dirs, paths, inc_pattern, exc_pattern):
 if not paths:
 paths = ['.']
 for path in paths:
 for file_path in walk(path, exclude_dirs):
 base_path, filename = os.path.split(file_path)
 if fnmatch.fnmatch(filename, inc_pattern):
 if (not exc_pattern or not
 fnmatch.fnmatch(filename, exc_pattern)):
 print file_path

if __name__ == '__main__':
 exclude_dirs = GetExcludesFromConfig()
 args = ParseArgs()

 search(exclude_dirs, args.paths, args.inc_patt,
 args.exc_patt)

One advantage of protecting the execution code with if __name__ == '__main__' is
that search.py can be imported from as a module as well as executed as a script. The
code is reusable; but, more importantly, you could (should!) write unit tests for the
individual functions.

 You can see in this listing how ParseArgs returns the arguments it has parsed. It
returns them as a single object, and the individual arguments are accessed using the at-
tribute names specified as the dest argument. The search function iterates over all the
paths returned by walk (which handles excluding directories for you), and then filters
the paths based on whether they do or do not match the include and exclude patterns.

 So far we’ve accomplished writing a useful, and easily extensible, shell script in sev-
enty lines of Python code.5 Extending this script—for example, to take an extra com-
mand-line argument to return only files newer than a certain file in order to pipe the
output to a backup script—would be simple.

4 See http://docs.python.org/lib/module-fnmatch.html.

Listing 10.5 Filtering filenames using fnmatch.fnmatch

5 For useful hints on working with Python scripts from the command line, read the following article: http://
www.voidspace.org.uk/python/articles/command_line.shtml.

Default if no paths are specified

Searches all user-specified paths
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/module-fnmatch.html
http://www.voidspace.org.uk/python/articles/command_line.shtml
http://www.voidspace.org.uk/python/articles/command_line.shtml

251WMI and the System.Management assembly
 As well as the flexibility of Python for creating admin tools, you also have the
power of .NET at your fingertips. The Windows operating system includes a powerful
system, aimed specifically at system administration, called Windows Management
Instrumentation.

10.2 WMI and the System.Management assembly
One of the primary Windows interfaces for system management is Management
Instrumentation, known affectionately by the acronym WMI. WMI is a management
infrastructure, through which system components provide information about their
state and notification of events. You can use WMI to change configuration, interrogate
the local system or remote computers, and respond to events. Practical uses for WMI
include tasks like inventorying all installed software, uninstalling programs, creating
scheduled tasks, and obtaining information about running services. Additionally,
applications can provide instrumentation so that they can be queried by WMI.

 Despite having Windows in the name, WMI is an implementation of the platform-
independent Web-Based Enterprise Management (WBEM) and Common Information
Model (CIM) standards. But, although parts of the necessary components have been
implemented in Mono, large parts of it are considered too Windows-specific and will
probably never be implemented. Sadly, this means that most of the examples in this
section don’t work with Mono.

 Although WMI provides you with access to some very low-level system information,
it has a good high-level managed interface, in the form of the System.Management
namespace. This makes it easier to work with WMI through .NET and IronPython than
some of the alternatives.

10.2.1 System.Management

System.Management provides a managed interface to the WMI infrastructure. The
core classes are ManagementObjectSearcher, ManagementQuery, and Management-
Eventwatcher. WMI queries are created using Windows Query Language (WQL),
which is a derivative of SQL. Much of working with WMI involves knowing how to con-
struct your WQL queries.6

SIMPLE WQL QUERIES

Listing 10.6 shows a basic example of WMI that queries and prints the processor usage
percentage every five seconds.

import clr
clr.AddReference("System.Management")
from System.Management import ManagementObject
from System.Threading import Thread

query = "Win32_PerfFormattedData_PerfOS_Processor.Name='_total'"

6 The Microsoft reference is at http://msdn2.microsoft.com/en-us/library/aa394606.aspx.

Listing 10.6 A simple WQL query to display CPU usage

WQL query for
processor usage
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/aa394606.aspx

252 CHAPTER 10 Windows system administration with IronPython
while True:
 mo = ManagementObject(query)
 print mo["PercentProcessorTime"]
 Thread.CurrentThread.Join(5000)

ManagementObjectSearcher is a more commonly used way of executing queries, and
it will return a collection of management objects. For example, listing 10.7 queries the
system for information about all the attached logical disks.

import clr
clr.AddReference("System.Management")
from System.Management import ManagementObjectSearcher

query = "Select * from Win32_LogicalDisk"
searcher = ManagementObjectSearcher(query)

for drive in searcher.Get():
 for p in drive.Properties:
 print p.Name, p.Value
 print

If you know the property that you’re interested in, you can index instead of going
through drive.Properties. For example, to get the drive name you can use
drive["Name"].
MONITORING EVENTS

Things get interesting when you start to monitor events. For this, you use the Manage-
mentEventWatcher class. Listing 10.8 creates a watcher that calls an event handler when
new processes start.

import clr
clr.AddReference('System.Management')
from System.Management import (
 WqlEventQuery, ManagementEventWatcher
)
from System import TimeSpan
from System.Threading import Thread

timeout = TimeSpan(0, 0, 1)
query = WqlEventQuery("__InstanceCreationEvent", timeout,
 'TargetInstance isa "Win32_Process"')

watcher = ManagementEventWatcher()
watcher.Query = query

def arrived(sender, event):
 print 'Event arrived'
 real_event = event.NewEvent
 instance = real_event['TargetInstance']

 for entry in instance.Properties:

Listing 10.7 Querying the system with ManagementObjectSearcher

Listing 10.8 Responding to events with ManagementEventWatcher

Loop, checking
every five seconds

Fetches real event!

Fetches process
instance
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

253WMI and the System.Management assembly
 print entry.Name, entry.Value

watcher.EventArrived += arrived
watcher.Start()

while True:
 Thread.CurrentThread.Join(1000)

This code is really very simple. All the magic happens in constructing the WQL query and
adding an event handler to the event watcher instance. Under the hood, WqlEventQuery
constructs the following WQL query:

select * from __InstanceCreationEvent
within 1 where TargetInstance isa "Win32_Process"

You specify a timeout when you construct the query (using System.Timespan); the
timeout corresponds to the within clause of the WQL query. Some events have a built-
in mechanism for notifying WMI (WMI event providers); these are called extrinsic
events. WMI discovers other events, intrinsic events, by polling, and the timeout tells WMI
how often to poll for you.

 This code snippet listens for events by hooking up a handler to the EventArrived
event. Instead of using this event, you can make a call to watcher.WaitForNextEvent,
which blocks until the event is raised. In this situation, you can also set a timeout
directly on the watcher. Instead of blocking forever, the timeout causes the watcher to
throw an exception if an event isn’t raised in time. The following snippet shows this
in practice:

>>> watcher = ManagementEventWatcher()
>>> watcher.Query = query
>>> watcher.Options.Timeout = TimeSpan(0, 0, 5)
>>> e = watcher.WaitForNextEvent()
Traceback (most recent call last):
SystemError: Timed out

As we mentioned, the secret knowledge needed for harnessing WMI is how to con-
struct your WQL queries. For example, to be notified of new USB storage devices
becoming available (plug-and-play events), you could use this query:

wql = ("Targetinstance isa 'Win32_PNPEntity' and "
 "TargetInstance.DeviceId like '%USBStor%'")
query = WqlEventQuery("__InstanceCreationEvent", timeout, wql)

Let’s look a bit more at WQL and the elements available to you to construct queries.
WQL, WMI CLASSES, AND EVENTS

The basic pattern for WQL notification queries is as follows:

SELECT * FROM __EventClass WITHIN PollingInterval WHERE TargetInstance ISA
WMIClassName AND TargetInstance.WMIClassPropertyName = Value

The key to constructing useful queries is knowing which events, classes, and proper-
ties provide you with the information you need.

 Intrinsic events are represented by classes derived from one of the following:

Waits for events
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

254 CHAPTER 10 Windows system administration with IronPython
■ __InstanceOperationEvent
■ __NamespaceOperationEvent
■ __ClassOperationEvent

The instance events, which are the most common, are as follow:

■ __InstanceCreationEvent
■ __InstanceModificationEvent
■ __InstanceDeletionEvent

Extrinsic events derive from the __ExtrinsicEvent class.
 When an event is raised, the corresponding WMI class is instantiated; this is the

TargetInstance we’ve already used in some of our examples. You can navigate the
documentation for all the standard WMI classes at http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_classes.asp.

 Once you have an event, and have pulled the target instance out, you can explore
the interesting properties through the Properties collection. Various tools are avail-
able to investigate WMI namespaces and all the classes they provide.7

 Sometimes it’s useful to work directly with these classes—which you do by creating
an instance of ManagementClass corresponding to the WMI class you’re interested in.
Listing 10.9 illustrates this by creating events with a timer.

from System.Management import ManagementClass, WqlEventQuery

TimerClass = ManagementClass("__IntervalTimerInstruction")
timer = TimerClass.CreateInstance()
timer["TimerId"] = "Timer1"
timer["IntervalBetweenEvents"] = 1000
timer.Put()

query = WqlEventQuery("__TimerEvent", "TimerId='Timer1'")

This code8 would be useful for making your WMI demos a bit more predictable; but
beyond that, it doesn’t have much practical application. Fortunately, you can do
more useful things with ManagementClass, such as listing all the processes that run
on startup.

>>> StartupClass = ManagementClass('Win32_StartupCommand')
>>> processes = StartupClass.GetInstances()
>>> for p in processes:
... print p['Location'], p['Caption'], p['Command']

7 For example, Marc, The PowerShell Guy, has one tool aimed at PowerShell but useful for anyone interested
in WMI. See http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-
part-1.aspx.

Listing 10.9 Creating timer events with ManagementClass

8 The timer.Put() line of this example requires administrator access under Vista.

Starts timer Query for
timer events
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_classes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_classes.asp
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx

255WMI and the System.Management assembly
As well as interesting properties, many WMI instances also have useful methods
(although not Win32_StartupCommand, as it happens). The Win32_Process class has
some, though; and because WMI method invocation is slightly odd, here’s an example:

>>> from System import Array
>>> StartupClass = ManagementClass('Win32_Processes')
>>> processes = StartupClass.GetInstances()
>>> proc = list(processes)[-1]
>>> proc.Properties['Name'].Value
'csrss.exe'
>>> arg_array = Array.CreateInstance(object, 2)
>>> proc.InvokeMethod('GetOwner', arg_array)
0
>>> arg_array
System.String[]('SYSTEM', 'NT AUTHORITY')

You can see from the GetOwner method documentation9 that it takes two strings as
arguments. (The documentation also specifies the meaning of the return value—in
this case, 0 for success.) These are out parameters to be populated with the user who
owns the process and the domain under which it’s running. But, because the argu-
ments have to be supplied as an array, you can create a fresh array with two members
and pass it into InvokeMethod along with the method name.

 Another method on Win32_Process is SetPriority.10 This takes a single integer
(the priority) as an argument (64 for idle priority), which you put in an object array.

>>> arg_array = Array[object]((64,))
>>> proc.InvokeMethod('SetPriority', arg_array)
0

You’ll see shortly that PowerShell can make it easier to discover the methods on WMI
objects.

 A lot of the real power of WMI for system administrators is in the ability to connect
to computers on the network. Because this isn’t something we’ve covered yet, let’s see
how it’s done.

10.2.2 Connecting to remote computers

Here’s where it starts to get fun. Connecting remotely isn’t something you want to
allow any old soul to do, and so the security permissions have to be set correctly on the
target computer. There are a couple of places where you might have to adjust permis-
sions. To allow remote access, the first place to try is Console Root > Component Ser-
vices > My Computer > (right-click) Properties > COM Security from the DCOMCNFG
application.11 You can launch DCOMCNFG from the command line, and it should look
like figure 10.2.

9 See http://msdn2.microsoft.com/en-us/library/aa390460(VS.85).aspx.
10 See http://msdn2.microsoft.com/en-us/library/aa393587(VS.85).aspx.
11 See this page for the details: http://msdn2.microsoft.com/en-us/library/aa393266(VS.85).aspx.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/aa390460(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/aa393587(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/aa393266(VS.85).aspx

256 CHAPTER 10 Windows system administration with IronPython
If you still get access permission errors in any of the following examples, you can also
set the access permissions for individual WMI namespaces via the Computer Manage-
ment console from the Control Panel. The full route to this dialog is Control Panel >
Administrative Tools > Computer Management > Services & Applications > WMI Con-
trol > (right-click) Properties, and it should look like figure 10.3!

 We haven’t talked about WMI namespaces at all yet. All the examples we’ve looked
at so far have worked without specifying an explicit scope. This means that they’ve
connected to the default namespace on the local machine. To connect to machines
on a network, you’ll need to connect to an explicit scope.

 The default scope is \\localhost\root\cimv2, which means the root\cimv2
namespace on the local machine. CIMV2 (where CIM stands for Common Information
Model) is the default namespace and contains all the most commonly used classes,
including all the ones we’ve used so far. There are other namespaces such as
root\DEFAULT, which contains classes for working with the registry. Other providers
can register namespaces to provide instrumentation via WMI. The BizTalk name-
space is root\MicrosoftBizTalkServer, SQLServer is root\Microsoft\SqlServer\,
and so on.12

12 There’s a recipe in the IronPython Cookbook that will list all the available WMI namespaces and the classes
they contain. See http://www.ironpython.info/index.php/WMI_with_IronPython.

Figure 10.2 Configuring remote access from Component Services
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.ironpython.info/index.php/WMI_with_IronPython

257WMI and the System.Management assembly
To specify the default namespace on a remote machine (in the same domain on the
network), you specify a scope like \\FullComputerName\root\cimv2. You do this with
the .NET ManagementScope class.
CONNECTION AUTHENTICATION AND IMPERSONATION

We’ve already talked about how you enable permissions for remote connections, but
you have two choices about how to connect. You can either connect using the creden-
tials of the user running the script, called impersonation, or you can explicitly specify a
username and password for the connection.

 Listing 10.10 shows how to create a ManagementScope for a connection to a remote
computer with a specific username and password.

from System.Management import (
 ConnectionOptions, ManagementScope
)
options = ConnectionOptions()
options.EnablePrivileges = True

Listing 10.10 Specifying username and password for a WMI connection

Figure 10.3 Configuring WMI access through Computer Management
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

258 CHAPTER 10 Windows system administration with IronPython
options.Username = "administrator"
options.Password = "******"
network_scope = r"\\FullComputerName\root\cimv2"
scope = ManagementScope(network_scope, options)

Listing 10.11 shows how to make the same connection using impersonation.

from System.Management import (
 AuthenticationLevel, ImpersonationLevel,
 ManagementScope, ConnectionOptions
)
options = ConnectionOptions()
options.EnablePrivileges = True
options.Impersonation = ImpersonationLevel.Impersonate
options.Authentication = AuthenticationLevel.Default
network_scope = r"\\FullComputerName\root\cimv2"
scope = ManagementScope(network_scope, options)

Whether you should use authentication or impersonation depends on the details of
the network you’re working with. If the computers you’re connecting to are config-
ured to allow remote connections from any user with the correct privileges, then
impersonation is easier. If the computer limits connections to a specific user, or set of
users, then you’ll need to use authentication.
QUERYING REMOTE COMPUTERS

Having created the scope, you use it to create a ManagementEventWatcher and start lis-
tening for events. Listing 10.12 is more of a real-world example than some of the
examples we’ve used so far. It monitors a remote computer for low memory situations
(specifically when the available physical memory drops below 10 MB).

import clr
clr.AddReference('System.Management')
from System.Management import (
 ConnectionOptions, ManagementScope,
 WqlEventQuery, ManagementEventWatcher
)
from System import TimeSpan
from System.Threading import Thread

options = ConnectionOptions()
options.Username = "administrator"
options.Password = "******"
network_scope = r"\\FullComputerName\root\cimv2"
scope = ManagementScope(network_scope, options)

wql = ('TargetInstance ISA "Win32_OperatingSystem" AND '
 'TargetInstance.FreePhysicalMemory < 10000')

timeout = TimeSpan(0, 0, 5)
query = WqlEventQuery("__InstanceModificationEvent", timeout, wql)

watcher = ManagementEventWatcher()

Listing 10.11 A WMI connection with impersonation

Listing 10.12 Monitoring memory use on a remote computer
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

259WMI and the System.Management assembly
watcher.Query = query
watcher.Scope = scope

interesting_properties = (
 'FreePhysicalMemory',
 'FreeSpaceInPagingFiles',
 'FreeVirtualMemory',
 'NumberOfProcesses',
 'SizeStoredInPagingFiles',
 'TotalVirtualMemorySize',
 'TotalVisibleMemorySize',
 'LocalDateTime'
)

def arrived(sender, event):
 print 'Event arrived'
 real_event = event.NewEvent
 instance = real_event['TargetInstance']

 for prop in interesting_properties:
 entry = instance.Properties[prop]
 print entry.Name, entry.Value

watcher.EventArrived += arrived
watcher.Start()

print 'started'
while True:
 Thread.CurrentThread.Join(1000)

If you’re monitoring a network of servers, you’re going to be interested in (and con-
cerned about) events like this. Because you’re monitoring for a change in the system,
this event is an __InstanceModificationEvent, and the WQL is as follows:

TargetInstance ISA "Win32_OperatingSystem"
AND TargetInstance.FreePhysicalMemory < 10000

Another useful thing to watch for13 might be disk space dropping below a certain
threshold on any fixed disk (that is, not including USB sticks/CDs and so on). Here’s
WQL with the threshold set at 1 MB:

TargetInstance ISA 'Win32_LogicalDisk' AND TargetInstance.DriveType = 3
AND TargetInstance.FreeSpace < 1000000

(You could achieve a similar goal by watching for the extrinsic event Win32_Volume-
ChangeEvent.)

 To be notified if CPU usage goes above 80 percent on any processor, the WQL is as
follows:

TargetInstance ISA 'Win32_Processor' AND TargetInstance.LoadPercentage > 80

The next query monitors for unauthorized access (failed login attempts). This query
relies on access auditing being in place so that the entries go into the event logs. To

13 Many thanks to Tim Golden, a Python and WMI guru, for his help with these examples. Tim has created an
excellent module for using WMI from CPython. See http://timgolden.me.uk/python/wmi.html.

Specifies scope for query
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://timgolden.me.uk/python/wmi.html

260 CHAPTER 10 Windows system administration with IronPython
remotely access the security logs, you’ll need to specify the security privilege. Setting
options.EnablePrivileges = True should be enough; but, if you’re using authentica-
tion, then you may need to set options.Authentication = AuthenticationLevel.
Security. This event is an __InstanceCreationEvent, and the WQL is as follows:

TargetInstance ISA 'Win32_NTLogEvent' AND
TargetInstance.CategoryString = 'Logon/Logoff' AND TargetInstance.Type =
'audit failure'

Systems administration requires a great many tools for different situations. Despite its
baroque interface, WMI is an extremely powerful tool. Because of the level of integra-
tion with .NET through the managed APIs, WMI works very well with IronPython. In
exploring those APIs, we’ve uncovered quite a few different ways it can be useful,
whether you’re investigating a single machine or monitoring a whole network of com-
puters. The advantage of Python here is that, as well as rapidly creating simple diag-
nostic scripts (or even working interactively), you can also build larger monitoring
applications where WMI is only a small part of the whole solution.

 Another useful tool for Windows system administration is PowerShell. It’s more
commonly used as a standalone environment, but we’re going to look at how Iron-
Python can be part of the answer from inside PowerShell and how PowerShell can
become another component for use in IronPython.

10.3 PowerShell and IronPython
The (relatively) new kid on the block for system administrators is PowerShell. Power-
Shell extends the concept of shell scripting to allow you to pipe objects between com-
mands instead of just data. It’s essentially a programming language (cleverly disguised
as a scripting environment) specialized for Windows system administration. We know
what you’re thinking; you have Python—why would you need another language?

NOTE There’s an open source implementation of PowerShell for Mono called
Pash (PowerShell + bash). See http://pash.sourceforge.net/ for more
details. It aims to be a faithful implementation of PowerShell, with the
project page proclaiming the user experience should be seamless for people who
are used to Windows’ version of PowerShell. The scripts, cmdlets and providers
should runs AS-IS (except where they use Windows-specific functionality).

In this section, you’ll see that IronPython and PowerShell can interact in two different
ways. We use PowerShell commands and APIs directly from IronPython, and we also use
IronPython in PowerShell as a way of overcoming some of PowerShell’s limitations.

10.3.1 Using PowerShell from IronPython

The normal way to use PowerShell is as a replacement command line. Running Pow-
erShell opens a console window that looks much like the normal Windows command
prompt, cmd.exe, but is in fact much more like the Python interactive interpreter. You
execute PowerShell commands that return objects, which you can store or pipe to
other commands. You can see the PowerShell command prompt in figure 10.4.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://pash.sourceforge.net/

261PowerShell and IronPython
PowerShell processes the output of its commands as .NET objects. The commands
themselves (cmdlets) are usually thin wrappers around .NET classes. The PowerShell
infrastructure provides argument parsing and binding, a runtime, and utilities for for-
matting and displaying results. This infrastructure is provided through a set of .NET
assemblies installed when you install PowerShell. The top-level namespace for this
infrastructure and its accompanying APIs is System.Management.Automation.14 This is
an apposite name. Automation is at the heart of systems administration. Humans are
unreliable and the more we can automate, and keep humans out of the process, the
better. Naturally, these namespace are available to use from IronPython.

NOTE To follow these examples, you’ll need PowerShell 1.0 installed.15 This sec-
tion isn’t a comprehensive introduction to PowerShell. If you want to
learn more about PowerShell, then Windows PowerShell in Action by Bruce
Payette (Manning, 2007) is a great resource.

The simplest way to access PowerShell functionality from IronPython is by creating a
runspace, which is a kind of execution scope for PowerShell commands. The Power-
Shell commands live in a different namespace, Microsoft.Powershell.Commands.
You can use a runspace to execute commands by name, and don’t need to directly ref-
erence this namespace.
THE POWERSHELL RUNSPACE

Listing 10.13 invokes a PowerShell command in a runspace and uses the object that
the command returns.

import clr
clr.AddReference('System.Management.Automation')
from System.Management.Automation import RunspaceInvoke

14 See http://msdn2.microsoft.com/en-us/library/system.management.automation.aspx.
15 PowerShell can be obtained from http://www.microsoft.com/powershell.

Listing 10.13 Executing PowerShell commands from IronPython

Figure 10.4 The PowerShell interactive environment
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.management.automation.aspx
http://www.microsoft.com/powershell

262 CHAPTER 10 Windows system administration with IronPython
runspace = RunspaceInvoke()
psobjects = runspace.Invoke("Get-Process -Name ipy")
process = psobjects[0]

print 'Path = ', process.Properties['Path'].Value

for prop in process.Properties:
 name = prop.Name
 if name in ('ExitCode', 'ExitTime', 'StandardIn',
 'StandardOut', 'StandardInput',
 'StandardOutput', 'StandardError'):
 # Can't fetch these on a process
 # that hasn't exited or redirected
 # the in/out/error streams
 continue
 print prop.Name, prop.Value

The call to Invoke returns a collection of PSObject objects, which you can interact with.
One use case is to take advantage of the WMI/PowerShell integration, which can make
it easier to work with certain aspects of WMI. Listing 10.14 uses the Get-WmiObject com-
mand to examine the video controller and the CPU and to find a running process.16

import clr
clr.AddReference('System.Management.Automation')
from System.Management.Automation import (
 PSMethod, RunspaceInvoke
)

runspace = RunspaceInvoke()
cmd = "Get-WmiObject Win32_VideoController"
psobjects = runspace.Invoke(cmd)
video = psobjects[0]

print
print 'Video controller properties'
for prop in video.Properties:
 print prop.Name, prop.Value

Listing 10.14 WMI from PowerShell inside IronPython!

16 There are several good examples of using COM from IronPython on the IronPython Cookbook, including a
good introduction, at http://www.ironpython.info/index.php/Interop_introduction.

Executes command

Pulls out first result

Skips properties that raise errors

IronPython, PowerShell, and COM
Automation with IronPython and COM is a big topic that we don’t have the space to
cover.16 As well as using PowerShell for easy access to WMI, you can use it to work
with COM. The following snippet shows how to use COM from PowerShell to sync an
iPod with the iTunes application:

PS > $app = Get-Object –ComObject iTunes.application
PS > $app.UpdateIPod()
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.ironpython.info/index.php/Interop_introduction

263PowerShell and IronPython
psobjects = runspace.Invoke("Get-WmiObject Win32_Processor")
cpu = psobjects[0]

print
print 'CPU properties'
for prop in cpu.Properties:
 print prop.Name, prop.Value

cmd = 'Get-WmiObject Win32_Process -filter \'Name="ipy.exe"\''
psobjects = runspace.Invoke(cmd)
ipy = psobjects[0]

print
print 'WMI process methods'
for member in ipy.Members:
 if not isinstance(member, PSMethod):
 continue
 print member

You’ll notice that the last command uses the filter keyword. This is a WMI query that
uses PowerShell rather than WQL syntax. Like the WMI objects we’ve already worked
with, PowerShell objects have a Properties collection that you can iterate over. They
also have Methods and Members collections. Unfortunately, I got null reference excep-
tions when accessing the Methods collection; but you can find methods by iterating
over all members and checking for instances of the PSMethod type.

MULTIPLE COMMANDS AND THE PIPELINE

The RunspaceInvoke instances are great for executing individual commands, but you
can achieve more by creating a pipeline. This gets you, in effect, a PowerShell environ-
ment embedded into IronPython. Listing 10.15 creates a pipeline, adds commands to
it, and then invokes the whole pipeline.17

import clr
clr.AddReference('System.Management.Automation')
from System.Management.Automation.Runspaces import (
 RunspaceFactory
)

Listing 10.15 The PowerShell pipeline

17 You can download the samples from the IronPython 2.0 release page on CodePlex.

A WMI query
from PowerShell

Loop through
all members

Find the methods

The IronPython PowerShell sample
The IronPython team has provided a wrapper around a lot of this functionality in the
PowerShell sample.17 You can directly invoke PowerShell commands on the shell
object they provide, by calling methods with lowercase command names and under-
scores instead of dashes.

>>> from powershell import shell
>>> shell.get_process('notepad').stop_process()
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

264 CHAPTER 10 Windows system administration with IronPython
runspace = RunspaceFactory.CreateRunspace()
runspace.Open()

runspace.SessionStateProxy.SetVariable("processName", 'ipy')
pipeline = runspace.CreatePipeline()
pipeline.Commands.AddScript('Get-Process -Name $processName')
pipeline.Commands.Add('Out-String')

results = pipeline.Invoke()
for result in results:
 print result

This code uses a different technique to create the runspace—from a factory that
returns a Runspace18 instance, which you must Open before using it. The runspace also
has an OpenAsync method, which opens it in another thread.

 The code also sets the processName variable in the execution environment via the
SessionStateProxy. These APIs are analogous to the IronPython hosting API, and
could be useful if you want to expose a PowerShell scripting environment to your
users!

 The last command added to the pipeline command collection is the Out-String
command. This formats the results using the PowerShell pretty printer so that, when
you print the results, you get nicely formatted output like the one in figure 10.5.

We’ve looked at one side of the coin: embedding PowerShell in IronPython. Let’s
move into the flip side.

10.3.2 Using IronPython from PowerShell

Because PowerShell is a .NET scripting environment, it can use .NET assemblies and
objects. The IronPython interpreter is an ordinary (for some value of ordinary) .NET
object and can easily be used from other .NET applications, which includes PowerShell.

 So why on earth would you want to do this? Well, it turns out that you can use Iron-
Python to overcome certain limitations with PowerShell. These limitations include
operations that would block the console or actions that should only be done from an
STA thread and don’t work directly from PowerShell, which runs in a Multi-Threaded

18 See http://msdn2.microsoft.com/en-us/library/system.management.automation.runspaces.runspace.aspx.

Figure 10.5 The formatted output from a PowerShell pipeline
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.management.automation.runspaces.runspace.aspx

265PowerShell and IronPython
Apartment (MTA).19 You can also use IronPython from within PowerShell to work with
Python libraries.
EMBEDDING IRONPYTHON IN POWERSHELL

You embed IronPython via its hosting API—which is something we’ll explore in more
detail when we look at providing a scripting API to a .NET application with Iron-
Python. IronPython 1 and 2 have different hosting APIs, so how you access IronPython
from inside PowerShell depends on which version of IronPython you have.

Listing 10.16 shows the PowerShell code necessary for executing code with Iron-
Python 1. It assumes you have the IronPython assemblies in the current working
directory.

$full_path = Resolve-Path $cur_dir 'IronPython.dll'
[reflection.assembly]::LoadFrom($full_path)

$engine = New-Object IronPython.Hosting.PythonEngine
$engine.Execute("print 'Hello World! from IP1'")

The call to load assemblies requires an absolute path, which you construct with a
call to Resolve-Path (which resolves paths relative to current working direc-
tory). Having constructed an IronPython engine, Python code is executed with the
Execute method.20

19 PowerShell 2 will support an -sta command-line switch. Even then this solution could be useful because it
will allow you to access STA functionality without having to start PowerShell with particular command-line
arguments.

Listing 10.16 IronPython 1 in PowerShell

20 Downloaded from http://www.ironpythoninaction.com/, of course.

Executing the examples
To execute the example scripts,20 you’ll need to set the execution policy to allow un-
signed scripts. The PowerShell command to do this is as follows:

Set-ExecutionPolicy Unrestricted

For more information about script signing, you can execute the following command:

Get-Help About_Signing

Loads IronPython assembly

Executes code from string

The IronPython 2 hosting API
The code here is written against the hosting API of IronPython 2.0.

These examples only use a small part of the IronPython hosting API. Chapter 15 has
a much more in-depth look at embedding IronPython in other .NET environments, and
many of the techniques shown there could also be used from PowerShell.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.ironpythoninaction.com/

266 CHAPTER 10 Windows system administration with IronPython
Listing 10.17 shows the equivalent for code for IronPython 2. The code is more com-
plicated because IronPython 2 is built on the DLR and the hosting API is more generic.

$base_dir_env = Get-Item env:IP2ASSEMBLIES
$base_dir = $base_dir_env.Value
$first_path = Join-Path $base_dir 'Microsoft.Scripting.dll'
$second_path = Join-Path $base_dir 'IronPython.dll'
[reflection.assembly]::LoadFrom($first_path)
[reflection.assembly]::LoadFrom($second_path)

$engine = [ironpython.hosting.python]::CreateEngine()
$st = [microsoft.scripting.sourcecodekind]::Statements
$code = 'print "Hello World from IP2!"'
$source = $engine.CreateScriptSourceFromString($code, $st)
$scope = $engine.CreateScope()
$source.Execute($scope)

This snippet uses a different technique to load the assemblies. It assumes you’ve set an
environment variable IP2ASSEMBLIES with the path to a directory containing the Iron-
Python 2 assemblies.

 To execute code you have to create a script source from the code string and the
SourceCodeKind.Statements enumeration member. The syntax to do this in Power-
Shell is somewhat ugly. The obvious thing to do is to abstract this little dance out into
a function like listing 10.18.

$base_dir_env = Get-Item env:IP2ASSEMBLIES
$base_dir = $base_dir_env.Value
$first_path = Join-Path $base_dir 'Microsoft.Scripting.dll'
$second_path = Join-Path $base_dir 'IronPython.dll'

[reflection.assembly]::LoadFrom($first_path)
[reflection.assembly]::LoadFrom($second_path)

$global:engine = [ironpython.hosting.python]::CreateEngine()
$global:st = [microsoft.scripting.sourcecodekind]::Statements

Function global:Execute-Python ($code) {
 $source = $engine.CreateScriptSourceFromString($code, $st)
 $scope = $engine.CreateScope()
 $source.Execute($scope)
}

This listing creates a function, which executes code that you pass in as a string. Power-
Shell’s scoping rules are very different from Python’s.21 The global keyword makes Exe-
cute-Python available to the interactive environment when this code is executed from
a script. Because PowerShell is dynamically scoped, all the variables the function uses
also have to be global because they’ll be looked up in the scope that calls the function.

Listing 10.17 IronPython 2 in PowerShell

Listing 10.18 Executing Python code from a function in PowerShell

21 And not at all better in our opinion. Dynamic scoping is designed with interactive use in mind, and is the same
as the scoping rules used by Bash.

Fetches
IP2ASSEMBLIES
environment
variable

Turns Python
code into
ScriptSource
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

267PowerShell and IronPython
 Execute-Python is called, as follows:

Execute-Python 'print "Hello world from PowerShell"'

You can build on this general technique, whether working with IronPython 1 or 2, to
do various things useful from within the PowerShell environment.
CREATING STA THREADS

PowerShell runs in an MTA thread, which causes problems for code that has to be called
from an STA. This prevents you using Windows Forms objects, such as calling Clip-
board.SetText to put text on the clipboard. You can get around this by spinning up an
STA thread from IronPython and setting the clipboard from there22 (listing 10.19).

Unhandled exceptions inside threads will cause PowerShell to bomb out
and die! You will get the exception traceback when it happens. Running
PowerShell from cmd.exe rather than launching it from the start menu
will give you a chance to read the traceback.

$global:ClipCode = @'
import clr
clr.AddReference("System.Windows.Forms")
from System.Windows.Forms import Clipboard
from System.Threading import (
 ApartmentState, Thread,
 ThreadStart
)

def thread_proc():
 Clipboard.SetText(text)

t = Thread(ThreadStart(thread_proc))
t.ApartmentState = ApartmentState.STA
t.Start()
'@

Function global:Set-Clipboard ($Text){
 $engine.Globals["text"] = $Text
 $engine.Execute($ClipCode)
}

This code works with IronPython 1 and assumes you’ve already created the IronPy-
thon engine as the $engine variable (and made it global). The reason this code is spe-
cific to IronPython 1 is that it sets the text variable in the Python engine Globals so
that the IronPython code can use it to set the text on the clipboard. To make this code
work with IronPython 2, you need to create an explicit execution scope and set the
variable in there. You then need to pass the scope in when you call Execute on $Clip-
Code, and this is where the fun starts.

 When you call Execute with one argument (a ScriptScope), it becomes a gener-
ic method. Calling generic methods from PowerShell is non-trivial. Luckily, Lee

22 Many thanks to Marc, The PowerShell Guy, who provided the original code for this example.

Listing 10.19 Setting the clipboard from PowerShell with IronPython 1

WARNING
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

268 CHAPTER 10 Windows system administration with IronPython
Holmes has solved this problem, so you’ll use his Invoke-GenericMethod23 script to
invoke Execute.

 Again assuming that you’ve already created an IronPython engine, listing 10.20
creates a Set-Clipboard function that sets text on the clipboard using IronPython 2.

$global:scope = $engine.CreateScope()
$global:ClipCode = $engine.CreateScriptSourceFromString(@'
import clr
clr.AddReference("System")
clr.AddReference("mscorlib")
clr.AddReference("System.Windows.Forms")
from System.Windows.Forms import Clipboard
import System
from System.Threading import Thread, ThreadStart

def thread_proc():
 Clipboard.SetText(text)

t = Thread(ThreadStart(thread_proc))
t.ApartmentState = System.Threading.ApartmentState.STA
t.Start()
'@, $st)

Function global:Set-Clipboard ($Text){
 $scope.SetVariable('text', $Text)
 $params = @('microsoft.scripting.hosting.scriptscope')
 ./Invoke-GenericMethod $ClipCode 'Execute' $params $scope
}

Another difference between this code and the code for IronPython 1 is that, for Iron-
Python 2, you need to explicitly add references to the system assemblies, both Sys-
tem.dll and mscorlib.dll. In IronPython 1, the PythonEngine does this, but not in
IronPython 2.

 The code that finds the right generic overload of Execute isn’t pretty, but it’s
abstracted away in the Invoke-GenericMethod script. The call parameters are as follows:

 ./Invoke-GenericMethod instance MethodName params arguments

params should be an array of strings with the type names of the arguments. The argu-
ments parameter is the set of arguments that Execute is to be called with, passed in as
an array of objects. If you pass in an individual string and an individual object for
params and arguments, then PowerShell will cast them into arrays.
ASYNCHRONOUS EVENTS WITHOUT BLOCKING

The next use case for IronPython from PowerShell is for handling events. In .NET,
asynchronous events are raised on another thread, preventing you from using Power-
Shell script blocks as event handlers. The usual solution is to wait for the event to be
raised on the main execution thread, which blocks the console. You can get around
this by subscribing to the event from IronPython.

23 See http://www.leeholmes.com/blog/InvokingGenericMethodsOnNonGenericClassesInPowerShell.aspx.

Listing 10.20 Setting clipboard from PowerShell with IronPython 2

Sets text
in scope

Type of
parameter
for Execute

Invokes
Execute
on $ClipCode
with $scope
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.leeholmes.com/blog/InvokingGenericMethodsOnNonGenericClassesInPowerShell.aspx

269PowerShell and IronPython
 Listing 10.21 uses the EventLog class,24 and its EntryWritten event, to print the
details of any messages written to the Windows event logs.

$source = $engine.CreateScriptSourceFromString(@'
import clr
clr.AddReference('System')
from System.Diagnostics import EventLog

def handler(sender, event):
 print 'Entry from', sender.Log
 entry = event.Entry
 print entry.Message

logs = EventLog.GetEventLogs()
for log in logs:
 try:
 log.EnableRaisingEvents = True
 log.EntryWritten += handler
 print 'Added handler to', log.Log
 except:
 print 'Failed to add handler to', log.Log
'@, $st)

$scope = $engine.CreateScope()
$source.Execute($scope)

After running this code, control returns immediately to the console. To see your event
handlers in action, start a new program, or perform any action that causes writes to
event logs, and you’ll see the log messages appear at the console. You can see the start
of one of these messages in figure 10.6.

 So far we’ve been using IronPython to access .NET features from PowerShell.
Because PowerShell has native access to most of .NET, bar a few limitations, a more
compelling reason to use IronPython is to access Python itself. In particular, you can
use IronPython to take advantage of Python libraries.

24 See http://msdn2.microsoft.com/en-us/library/system.diagnostics.eventlog.aspx.

Listing 10.21 Handling asynchronous events from PowerShell with IronPython

Figure 10.6 Listening to the Windows event logs
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn2.microsoft.com/en-us/library/system.diagnostics.eventlog.aspx

270 CHAPTER 10 Windows system administration with IronPython
CALLING PYTHON CODE AND RETURNING RESULTS

Using the same pattern as the previous examples, you can create a PowerShell function
that calls into Python code and returns the result. In theory, you could do this with a sin-
gle expression, creating the ScriptSource with SourceCodeKind.Expression rather
than SourceCodeKind.Statements.25 Calling generic methods that return values
becomes an even bigger world of pain, but there’s a simple way around this: you can
assign the return value to a variable and fetch that back out of the scope.

 The basic pattern is as follows:

$src = 'result = some_function(value)'
$script = $engine.CreateScriptSourceFromString($src, $st)
$scope.SetVariable('value', $value)

./Invoke-GenericMethod ...

[Ref] $result = $null
$scope.TryGetVariable('result', $result)
$result.Value

Fetching the result out of the scope is done with TryGetVariable, which takes an out
parameter. You do this from PowerShell by creating a [Ref] type. You fetch the result-
ing value by accessing the Value property after the call to TryGetVariable.

 Listing 10.22 pulls all this together. It provides two functions, B64Encode and
B64Decode, that can encode and decode strings with the base64 encoding, using the
base6426 library from the Python standard library.

$setupSrc = @'
import sys
sys.path.append(r'c:\Python25\lib')
import base64
'@
$init_code = $engine.CreateScriptSourceFromString($setupSrc, $st)

$src = 'result = base64.b64encode(value)'
$global:encode = $engine.CreateScriptSourceFromString($src, $st)
$src = 'result = base64.b64decode(value)'
$global:decode = $engine.CreateScriptSourceFromString($src, $st)

./Invoke-GenericMethod $init_code 'Execute' $params $scope

Function global:B64Encode ($value){
 $scope.SetVariable('value', $value)
 ./Invoke-GenericMethod $encode 'Execute' $params $scope | out-null
 [Ref] $result = $null
 $scope.TryGetVariable('result', $result) | out-null
 $x.Value
}

Function global:B64Decode ($value){
 $scope.SetVariable('value', $value)

25 Assumin that you’re working with the IronPython 2 API.

Listing 10.22 Calling Python functions and returning values

26 See http://docs.python.org/lib/module-base64.html.

Setup code that imports base64

Executes
setup code

Fetches
resultReturns result
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/module-base64.html

271Summary
 ./Invoke-GenericMethod $decode 'Execute' $params $scope | out-null
 [Ref] $result = $null
 $scope.TryGetVariable('result', $result) | out-null
 $result.Value
}

PowerShell functions return all unhandled output. Inside B64Encode and B64Decode,
unneeded values are suppressed by piping them to out-null. The real result is
returned by $result.Value, and it does in fact work!

PS C:\> $a = B64Encode 'This really works!'
PS C:\> $a
VGhpcyByZWFsbHkgd29ya3M=
PS C:\> B64Decode $a
This really works!

Extending this example to call Python functions that take or return multiple values
would be simple—just set and fetch more variables in the scope.

 One interesting, if slightly insane, way of using this would be when embedding
PowerShell into IronPython. You could pass in a scope populated with Python call-
back functions, and call into them from PowerShell as a way of communicating
between the environments.

 PowerShell is an interesting new programming environment. We’re not about to
give up IronPython for PowerShell, but it’s great to see that these two systems can
work well together. After summarizing this chapter, we’ll move on to using IronPython
with a completely different system.

10.4 Summary
Python is a powerful general-purpose programming language, and its combination of
clarity and succinctness means that systems administration is an area where it shines.
The integration of the .NET framework to the Windows operating system makes Iron-
Python particularly suited to Windows system administration.

 Python eats simple scripting tasks for breakfast, but it has the great advantage of
scaling well when simple scripts need to grow and become applications. Whatever task
you’re tackling, you should check for standard library or third-party modules that
could help. After the standard library, we recommend the Python Package Index
(PyPI)27 be your first port of call. Equally importantly, if you create general-purpose
libraries to support your Python applications, you should consider creating Python
packages with distutils28 or setuptools29 for distribution via PyPI.

 For systems administration, both WMI and PowerShell can also be powerful tools.
Despite the oddness of WMI, it provides a high-level API for working with low-level
details of a system, such as the BIOS, the computer hardware, and the operating

27 The Python package repository. See http://pypi.python.org/pypi.
28 The standard library module for compiling, creating, and installing Python packages. See http://

docs.python.org/lib/module-distutils.html.
29 setuptools is a third-party framework for the easy installation of Python packages. See http://peak.telecom-

munity.com/DevCenter/setuptools.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://pypi.python.org/pypi
http://docs.python.org/lib/module-distutils.html
http://docs.python.org/lib/module-distutils.html
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/setuptools

272 CHAPTER 10 Windows system administration with IronPython
system. For networked operations, it often provides a ready-made solution where the
alternative would be a custom-written application.

 The topic of PowerShell is a slight anomaly for this book. PowerShell is an alterna-
tive programming language; but, for programming tasks of any size, IronPython is
more suitable. This is hardly surprising, though; PowerShell is highly specialized to
provide a scripting environment for admins rather than to be an application program-
ming language. Despite their different virtues, the two environments can work well
together—IronPython using PowerShell for the things it’s good at and vice versa.

 The next chapter is on a very different topic: web application programming with
IronPython and ASP.NET.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

IronPython
 and ASP.NET
So far we’ve been focusing on using IronPython with Windows Forms to construct
rich desktop applications, but the .NET platform also provides a high-level frame-
work for building web applications: ASP.NET.

 ASP.NET includes lots of goodies for web development. It provides a powerful
page model where server-to-client round-tripping of data is handled automatically,
removing the need for a lot of the boilerplate code in a web application. The .NET
class library has a huge range of classes for solving different problems, and ASP.NET
also comes with a large number of its own built-in components for user interfaces.
The end result is that ASP.NET can help you write web applications faster and with
less code—and it can do this even better once we add Python to the mix!

This chapter covers
■ ASP.NET concepts
■ Building a web-based document editor
■ Handling view state
■ Creating reusable controls
273

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

274 CHAPTER 11 IronPython and ASP.NET
 The IronPython team has released a project enabling the use of IronPython within
ASP.NET. In this chapter we use it to build a simple application to display a MultiDoc
file in a web page, and then extend it to allow you to edit the file over the web. Finally
you’ll see how you can package up things we’ve built as controls that can be used in
other web pages. Before taking a closer look at the IronPython integration, though,
let’s get an overview of the framework itself.

11.1 Introducing ASP.NET
When writing web applications, the user interface isn’t defined in terms of Windows
Forms controls, but instead is displayed by the web browser. This means that your
interface needs to be represented to the browser as HTML and JavaScript.

ASP stands for Active Server Pages, and was introduced by Microsoft with Internet Infor-
mation Services (IIS) 3 in 1996. Originally, it provided a simple way of intermingling
HTML and JavaScript client-side code with code (usually written in a language called
VBScript) executed on the server. When the .NET platform was released in 2002, it
introduced a model for building web applications that was substantially different from
the original ASP system, called ASP.NET.

 ASP.NET provides a structure for creating web applications that allows you to reuse
parts of your user interface in the same way that you can reuse code. It also enables
you to package the client-side definition of components (their HTML and JavaScript
code) together with code that defines their behavior on the server. Before we can look
at how ASP.NET combines the client and server code, we need to define some of the
key concepts of the system.

11.1.1 Web controls

Web controls are .NET classes used by the ASP.NET machinery to generate HTML and
JavaScript code; they’re the building blocks of web pages. The programming interface
they expose is designed to be similar to the Windows Forms controls, although there
are many differences because of the more constrained request-response model of the
World Wide Web. ASP.NET includes dozens of web controls, from the common Button
and TextBox to the powerful GridView, and it’s easy to write new ones yourself.

Clients and servers
Web applications are networked applications—they’re implemented as a conversa-
tion between two computers. When we talk about events that occur in the application,
it’s important to have a clear understanding of where the events happen. Generally,
the computer running the web browser that displays the application user interface is
called the client, and events that happen on that computer are client-side events. The
computer that lives at the browser’s destination URL is called the server, and things
that happen on the server are said to be server-side.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

275Introducing ASP.NET
 An important point to note is that some web controls, such as the Panel and
Repeater, act as containers that can hold other controls. They enable you to construct
a user interface as a tree of controls, with containers providing structure for the text
boxes, labels, check boxes, and buttons.

11.1.2 Pages and user controls

Web controls are put together using a language that is HTML with extensions to allow
adding server code and referring to web controls. Files in this language can be pages
(with the .ASPX extension), or they can be reusable components called user controls
(in ASCX files), which can then be referenced from ASPX pages or other user controls.
Both ASPX pages and user controls can have server code either in the same file or in
an associated file, called its code file or code-behind. Separating the page and server
code is generally cleaner and easier to read, especially if the behavior of the page or
control is complicated.

 The extensions that make an ASPX page more than HTML include the following:

■ Directives —Located at the top of a file. They tell the ASP.NET system how to pro-
cess the file: where the code file is, whether the page should be cached, as well
as a host of other options. They can also add references to user controls that
can then be used in the page.

■ The runat=“server” attribute —Added to HTML elements. When an element has
this attribute, an object representing it is created on the server when the page is
requested. Server code for the page can interact with it to change its contents
or appearance, or even hide it.

■ Web controls —Included as tags, which look like <asp:Button id="button1"
runat="server" text=”Click”/>. The name button1 can then be used from
the server code to interact with the button. Attribute values (like the button’s
text) can also be set in the tag.

■ Code snippets —Included in the page, enclosed by <% %> tags. If the snippet starts
with =, the value of the expression will be converted to a string and appear in
the HTML sent to the client.

11.1.3 Rendering, server code, and the page lifecycle

So an ASP.NET page is a tree of web controls, constructed according to ASPX and ASCX
files. Each web control in the tree knows how to convert itself into HTML and
JavaScript code to be displayed in a browser. Where does the code-behind associated
with pages and user controls fit into the picture?

 The server code is used in two ways. The simplest way is that code-behind can pro-
vide methods that can be called from code snippets in the page or user control. This
technique can be useful for displaying small pieces of text or turning a part of the
markup on or off.

 The second way is much more central to the power of the ASP.NET framework. When
a page is requested and the tree of controls is being built, the system fires a number of
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

276 CHAPTER 11 IronPython and ASP.NET
different events that your server code can hook
into. Some of these events, such as the Page_Load
event, are fired every time a request for the page
is made; others, such as button clicks or drop-
down list selection change events, are only raised
when triggered by the user on the other end of
the internet. These events provide a tremendous
amount of control over how the page structure is
created and how the controls in the page are set
up. They also make it much simpler (from the
developer’s point of view) to handle user inter-
action in a web environment. Figure 11.1 shows
some of the events fired by the server while han-
dling a request.

 Now that you’ve seen a little of what ASP.NET
is and what it has to offer, we add IronPython into
the mix and use it to create some ASP.NET pages.

11.2 Adding IronPython to ASP.NET
Before you can start creating a simple IronPython web application, you’ll need to
download two things: Visual Web Developer Express (the free Microsoft IDE for
ASP.NET) and the IronPython ASP.NET integration package.

 Visual Web Developer Express is available from the following URL:

 http://msdn.microsoft.com/vstudio/express/downloads/default.aspx.

You should install it with all the default options. Including the MSDN Library docu-
mentation can be useful if you want to refer to a local copy, although it makes the
download bigger.

 IronPython for ASP.NET is available from the following URL:

 http://www.codeplex.com/aspnet/Release/ProjectReleases.aspx?ReleaseId=17613.

Download the ASP.NET WebForms IronPython Sample and the documentation pack-
age, and unzip them where convenient. The Sample zip file contains the directory lay-
out and files needed for an IronPython ASP.NET web project. We use this as a template
when creating our web application.

 Why do you need the IronPython for ASP.NET package? You already have Iron-
Python installed, and ASP.NET allows you to use any .NET language, right? Well, not
quite. Although ASP.NET is designed to be able to handle many different program-
ming languages, it expects all of them to compile into normal .NET assemblies; as
you’ve seen already, this is something that IronPython doesn’t do because its object
model is so different from that of the .NET platform.

 To solve this problem, the IronPython team has come up with an alternative com-
pilation and execution model for pages written in Python (and one likely to be extended

Figure 11.1 The ASP.NET page lifecycle
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/vstudio/express/downloads/default.aspx
http://www.codeplex.com/aspnet/Release/ProjectReleases.aspx?ReleaseId=17613

277Adding IronPython to ASP.NET
to other dynamic languages in the
future). You can see the differences
in figure 11.2.

 For more details about the chang-
es made to accommodate dynamic
languages, it’s well worth reading
David Ebbo’s whitepaper, available
at http://www.asp.net/ironpython/
whitepaper/. This covers the changes
made to ASP.NET internals and looks
at the performance implications of
the new model.

 From the perspective of a pro-
grammer writing web applications
using the IronPython support, the
biggest difference lies in the way custom page code is incorporated. In a standard
ASP.NET page, your methods and code snippets live in a subclass of the built-in Page
class. In an IronPython page, you don’t define a new class—your code is run by an
instance of ScriptPage created at execution time. This change has some implications
for how you manage the page state in your applications, as you’ll see later in the chapter.

11.2.1 Writing a first application

Now that you have all the prerequisites, you’re ready to create an IronPython web
project by following these steps:

1 Copy the ironpython-webform-sample di-
rectory from where you unzipped it, and
rename it to ironpython-in-action.

2 Start Visual Web Developer and select the
File > Open Web Site… menu option.

3 Navigate to the new ironpython-in-action
directory in the dialog box and click Open.

You’ll see the directory structure in the Solution
Explorer panel on the right side of the window
(figure 11.3).

 Now that the site has been created, you can
edit the files to add some behavior. Open
Default.aspx by double-clicking it in the Solution
Explorer. This is the home page of the applica-
tion—the word default in the filename means that
this page will be shown if someone makes a
request for the root directory of your web applica-
tion. As you can see, the markup in the file looks

Figure 11.2 Changes to the compilation model in
ASP.NET for IronPython

Figure 11.3 The skeleton web
application structure in Visual
Web Developer
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.asp.net/ironpython/whitepaper/
http://www.asp.net/ironpython/whitepaper/

278 CHAPTER 11 IronPython and ASP.NET
much like Extensible Hypertext Markup Language (XHTML), but note the following
two important differences:

■ The first line is an ASP.NET directive that tells the framework that any code in this file will
be in IronPython and that the code-behind for this page is Default.aspx.py.

A code-behind file stores the code for this specific page; keeping the ASPX
markup and code separate makes them easier to maintain.

■ The <head> and <form> tags have runat=“server” attributes.
This attribute tells the ASP.NET machinery to parse the contents of these tags

and execute any web controls encountered.

If you click the Design button at the bottom of the window, you can see that the page
body contains an asp:Literal element. Let’s change that—click the literal and delete
it, and then drag a Label onto the page from the Toolbox tab on the left. If you
change back to source view by clicking the Source button, you can see that the IDE has
added the following ASPX code to create a Label in the body of the page:

<asp:Label id="Label1" runat="server" text="Label"></asp:Label>

Let’s break this down into its separate components:

■ asp:Label—Tells ASP.NET the class of the web control that should be inserted.
■ id=“Label1”—Gives the control a name so that you can refer to it from code.
■ runat=“server”—Tells ASP.NET that this is a control that it should handle.

(Without this attribute, the tag would be ignored and sent directly to the
browser as is.)

■ text=“Label”—Is a property of the Label web control that determines what it
will display.

Edit the asp:Label tag to set the Text property to “” instead of the default text Visual
Studio has created, and save the file.

 The project skeleton has several other things in the directory—which we’ll look at
soon; the most important one for now is the Default.aspx.py file, which is the code-
behind file for Default.aspx page. Open this file and you’ll see the definition of a
function called Page_Load. This function is what the processing machinery calls when
the page is first requested; it passes in the page as sender and any event arguments as
e. At the moment, it sets the text of the old literal element you removed.

 Change the Page_Load function to the following:

def Page_Load(sender, e):
 Label1.Text = “Hello from IronPython”

Make sure that the second line is indented so that it’s the body of the function. Save
the file.

 Now a little magic: click the Start Debugging button (which looks like a green Play
button) in the toolbar. By default, the project isn’t configured for debugging, so
Visual Web Developer will ask whether you want the configuration changed—say Yes.
Then it will start its built-in development web server on our new project, and launch a
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

279Adding IronPython to ASP.NET
browser window navigating to the current page. After a brief wait (and maybe a notifi-
cation from your firewall software asking whether the web server should be allowed to
listen for requests), you should see the Hello from IronPython message you entered in
the Page_Load function.

That’s the first step: a basic page generated from IronPython code. Now let’s see how
to have the page respond to user input.

11.2.2 Handling an event

At this point you have code in the code-behind file that interacts with a control in the
ASPX page. Although this technically is handling an event (the Load event of the Page
class), extending the page functionality slightly demonstrates a little more of the power
of the ASP.NET system. Let’s add some controls to our page: a text box where users can
enter their names and a button that will trigger some processing on the server.

 Switch back to editing the ASPX page, and add the following lines at the start of the
main <div>, before the Label:

Name:
<asp:TextBox id="TextBox1" runat="server"></asp:TextBox>
<asp:Button id="Button1" runat="server" text="Go!" onclick=”Button1_Click”
/>

Debugging
The debugger integration for ASP.NET and IronPython is impressive; you can place
breakpoints by clicking in the gray gutter to the left of the code lines. Then, when you
click the Play button (or hit F5) and the web browser window appears, execution will
pause at the breakpoint. You can inspect the values of variables by hovering over
them, and step through single lines of code or into function calls. The debugger can
make it much easier to work out what your application is doing, particularly when it’s
not what you expect.

The integration with IronPython isn’t totally seamless at the moment, though; the vari-
able values displayed aren’t quite right, because they’re displayed at the C# level
rather than at the IronPython level, but it’s still useful.

Here are a few potentially useful tips:

■ In a multipage application, you can set the default page shown in the browser
when you debug by right-clicking a page in the project and selecting Set As
Start Page.

■ Breakpoints on the lines of def statements that define functions aren’t part
of the function, so they won’t be hit when the function is called; you need to
put them on lines inside a function to debug calls to it.

■ If you want to view the page you’ve been editing in the browser without stop-
ping at breakpoints, you can right-click the page in the project and select View
In Browser. This will start the integrated web server, but won’t switch Web
Developer into debugging mode. Ctrl-F5 does the same thing, except uses the
start page that has been set for the project.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

280 CHAPTER 11 IronPython and ASP.NET
You can add the controls by typing them into the Source view, or by dragging them from
the toolbox in either Source or Design view. Change the text on the button to something
more interesting—like Click Me or Go!—something with a bit of vim. Add the onclick
attribute to the button; this tells ASP.NET to call the function Button1_Click when the
button is clicked.

 Now edit the code-behind page to have the following function definitions:

def Page_Load(sender, e):
 pass
def Button1_Click(sender, e):
 Label1.Text = "Hello, " + TextBox1.Text

Click the Start Debugging button again; and, after a small pause, you should see a web
page with a text box and a button. If you type some text into the text box and click the
button, the message Hello, <name you typed> will appear below the text box.

 So what’s happening? Here are a few points to think about:

■ There are two requests for the page: the first when the page is initially loaded,
and the second when you click the button.

■ When the page is submitted because of the button click, the ASP.NET machinery
keeps track of this and ensures that the Button1_Click function is called.

■ After the second request, when the Hello, <name> message is visible, the text box
is still populated, even though you’ve done nothing on the server side to set its
value. The web controls’ state is stored in a location called the view state, and auto-
matically restored by the framework before event handlers like Button1_Click
are called.

Later on in the chapter, we explore how view-state handling works by making some-
thing more complex: an application that can display and edit MultiDoc documents.
We reuse the MultiDoc modules you already have to create, load, and save documents.
To integrate the modules into the project, we need to look at some of the support
infrastructure ASP.NET provides.

11.3 ASP.NET infrastructure
You may have noticed several other items in the project directory we used as a tem-
plate: files called Web.config and Global.py, along with the App_Script , aspnet_client,
and bin folders.

 The bin folder contains the IronPython assemblies, as well as Microsoft.Web.Script-
ing.dll, which provides the integration between ASP.NET and IronPython. The
aspnet_client directory is where any supporting JavaScript needed by the ASP.NET con-
trols will be placed. The other three items provide ways of hooking into the ASP.NET sys-
tem, and each one allows you to customize the environment in different ways.

11.3.1 The App_Script folder

For code in our web application to use the classes you’ve already written, you need to
be able to import the modules. In the normal Python world, you can make one mod-
ule available for import by another one in the following three ways:
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

281ASP.NET infrastructure
■ Putting the library module in the same directory as the importing module
■ Putting the library module in a directory on the Python import path (sys.path)
■ Adding the directory of the library module to the import path

These approaches all work just as well with IronPython in general; but, in the
ASP.NET environment, the first option isn’t available (because the current directory is
generally the location of the web server, rather than the directory containing the cur-
rently executing page), and the second isn’t useful because, by default, sys.path is
empty. Instead, the system provides a special folder called App_Script; any packages
and modules stored in this folder will be available for import by any other Python
code in the web application. (The third option is still available to you, as you’ll see in
section 11.3.2.)

 Several other special ASP.NET folders can be added to the project, if they’re
needed, by right-clicking the project in Web Developer and selecting the Add ASP.NET
Folder option. The most important of these folders is the App_Code folder, which is
similar to the App_Script folder but is intended to store C# (or other compiled lan-
guage) library code. This code will then be available to all modules in the web project,
along with the extra feature that the ASP.NET system will automatically detect changes
to the files and recompile them when necessary.

 Because we want to be able to read and write MultiDoc files, you need to add the
modules for those tasks to the web project. To do this, right-click the App_Script
folder and select Add Existing Item to add the files model.py, xmldocumentreader.py,
documentreader.py, and documentwriter.py from chapter 5 to the project. Once this
is done, you’ll be able to use them to read and write MultiDocs from any code-behind
page in the web application.

11.3.2 The Global.py file

The App_Script folder gives you a place to keep support modules that are used by pages
in our project, but it’s really meant for library code that you’ll write specifically for this
project; if several projects required the same module, you’d need to copy that Python
file to each App_Script folder. A better solution in this situation is to put the module in
a different location outside your project, and add that project to the sys.path list.

 You could modify sys.path by adding a line in your code-behind files, but you’d
need to do so on every ASPX page because you don’t necessarily know which page will
be visited first. The Global.py file can help because it provides a way to listen for
events that affect the application, no matter which page requested to cause the event.

 Looking at the Global.py file, you can see that it contains the following empty
event handlers:

■ Application_Start—Occurs when your application receives its first request
and is loaded to respond.

■ Application_End—Happens when the last session created by a request to your
application ends, and the ASP.NET framework unloads it. Subsequent requests
to the application will trigger another Application_Start event.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

282 CHAPTER 11 IronPython and ASP.NET
■ Application_Error—Happens when an uncaught exception is thrown during
a page request, allowing a standard mechanism for logging or changing error
display.

■ Application_BeginRequest—Is fired before each request is processed by your
application.

■ Application_EndRequest—Is fired after each request processed by your appli-
cation.

In our case, if we want to have extra directories in sys.path, the Application_Start
event handler is a good place to add them. Because the MultiDoc modules rely on
modules in the Python standard library, you should add the Lib directory to the
sys.path with the following change:

def Application_Start():
 import sys
 sys.path.append(“C:\\Python25\\Lib”)

(This code assumes that Python is installed in C:\Python25; change the path accord-
ingly if not.)

11.3.3 The Web.config file

The .NET framework provides a comprehensive, extensible configuration system
based on an XML format and a wide range of settings for web projects. The skeleton
project we’ve used contains a Web.config file for the project with the configuration for
our application. In particular, it includes a number of directives that enable Iron-
Python support in the application. For the moment, you don’t need to change the
Web.config file—the default settings are fine for what we’re going to do next.

 That’s all the setting-up finished; now we can implement the MultiDoc Viewer
using the modules we’ve added to the project.

11.4 A web-based MultiDoc Viewer
We start by creating a page that can display the contents of a MultiDoc, and then in
section 11.5 we extend it with controls and code to allow you to edit the file. To begin
with, the page will display a sample static MultiDoc XML file stored in the web applica-
tion directory; later we explore how you can change the Viewer to accept the docu-
ment to display as a parameter.

 For the sample MultiDoc file, add a new text file called doc.xml to the project, and
populate it with the following XML:

<document>
 <page title="Page one">This page is the first in the MultiDoc</page>
 <page title="Page two">Welcome to the heady delights of the second page</

page>
</document>

In the following sections we make the ASPX code and Python code-behind that will
display the information in this XML.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

283A web-based MultiDoc Viewer
11.4.1 Page structure

First, we need to decide how to display a MultiDoc object. Each document is essen-
tially a list of pages—we could display each page in order, but that would be quite dif-
ferent from the tab pages the desktop application uses for display. (It also wouldn’t
illustrate some of the details that we want to explore in the ASP.NET system.)

 Instead, let’s display a MultiDoc as a
list of the titles of all the pages it con-
tains, rendered as links that can be
clicked on to display the contents of that
page. Then the contents of the selected
page will be displayed as a title and body
(figure 11.4).

 We can convert this sketch into ASPX
code piece by piece.

 First, create a new web form by copying the webform_template.aspx and
webform_template.aspx.py files from the chapter 11 source code. Rename these files
to viewer.aspx and viewer.aspx.py respectively. Then edit viewer.aspx and change the
CodeFile attribute in the <%@ Page %> directive at the top to point to viewer.aspx.py.1

 Now that you have an empty web form, add a table with one row containing
two cells to the page. You can do this either using the Design view, by dragging-and-
dropping a table from the HTML section of the toolbox and deleting cells and rows as
desired, or by typing the HTML in Source view. I (Christian) prefer the latter. The
design view often generates messy HTML that’s hard to work with later, and has prob-
lems round-tripping more complicated page layouts. It can even break your pages in
some cases.

 The right-hand side of the page is straightforward: it contains a heading and then
two labels for the page title and page body respectively. Initially, the page will display
the details of the first page in the document and, when a page link is clicked, will dis-
play the details of that page instead. Create these by either dragging two Labels into
the right-hand table cell from the toolbox, or typing in the asp:Label tags. Give the
Label controls the IDs pageTitle and pageContent, and add some formatting.

 You’ll create the list of links on the left-hand side of the page using a Repeater
control. The Repeater is a container that repeats the controls in its item template once
for each item in its data source list. In our case, you’ll use the list of pages in the Mul-
tiDoc as the source, and the item template will contain a LinkButton control. Link-
Buttons are almost identical to Buttons, except that they’re displayed as hyperlinks in
the browser. The full ASPX code for the table is shown in listing 11.1.

1 The process of copying and renaming template files and updating the new .aspx file to refer to the new code-
behind is something that the IDE does automatically for supported languages, using the Add New Item…
menu option. Language support for IronPython was included in an earlier release of the ASP.NET integra-
tion, but was not ported forward when the package was upgraded to work with IronPython 2. We hope it will
be reinstated in the near future!

Figure 11.4 Sketch of the page layout for the
MultiDoc Viewer
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

284 CHAPTER 11 IronPython and ASP.NET
<table>
 <tr valign="top">
 <td>
 Pages:

 <asp:Repeater id="pageRepeater" runat="server">
 <itemtemplate>
 <asp:LinkButton id="pageLink" runat="server" onclick="pageLink_Click"

text="<%# title %>" enabled="<%# currentPage != title %>"/>

 </itemtemplate>
 </asp:Repeater>
 </td>
 <td>
 Current page

 <h2><asp:Label id="pageTitle" runat="server" /></h2>
 <asp:Label id="pageContent" runat="server" />

 </td>
 </tr>
</table>

Look at the asp:Repeater element, which creates the Repeater control. It begins in a
way similar to the web controls we’ve already created. The tag name is asp:Repeater,
and you give it an id and specify that it runs on the server. Next, in the <itemtem-
plate> element, you specify the child controls that will be repeated. Inside this is the
LinkButton, which has similar attributes to the button created in section 11.2.3—id,
runat, onclick, and text—as well as a new attribute, enabled, which controls
whether the LinkButton should respond to clicks. The values of the text and enabled
attributes are also new—they’re data-binding expressions.
DATA BINDING

Repeaters and other container controls can be filled using an ASP.NET feature called
data binding—you give the control a data source (often in the code-behind), such as a
list of items, and tell the control how to display each item (in the ASPX), and it does
the rest. You can see the display code in listing 11.1; the code-behind side of the data
binding looks like this:

pageRepeater.DataSource = document.pages
pageRepeater.DataBind()

When the DataBind method is called, the item template is duplicated for each item in
the DataSource, and any data-binding expressions (snippets of code enclosed in <%#
and %>) are evaluated. Note that these expressions are evaluated in the context of the
current item. So in listing 11.1, the <%# title %> expression is evaluated in the context
of a MultiDoc page object, and the text of the LinkButton is populated with the title
of the page.

 Data-binding expressions can be arbitrarily complex, and they can call methods or
refer to global variables as well as the attributes of the current data item. The expres-
sion for the LinkButton’s enabled attribute, <%# currentPage != title %>, disables

Listing 11.1 ASPX code for the MultiDoc Viewer user interface
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

285A web-based MultiDoc Viewer
the control when the title of the current data item matches the title of the page cur-
rently selected in the Viewer.

 The clarity of these data-binding expressions is due, in part, to using IronPython.
When using C# in ASP.NET, data-binding expressions are often much more compli-
cated, due to the indirection required to express arbitrary attribute lookups in a stati-
cally typed language.

 The ASPX code for the MultiDoc Viewer is complete; now you need to provide the
behavior of the page in the code-behind file.

11.4.2 Code-behind

Open the code-behind file, viewer.aspx.py (if you’re editing the ASPX page, you can
hit F7), and add the code in listing 11.2.

from documentreader import DocumentReader
multidoc = None # the MultiDoc instance
currentPage = None # the title of the selected page

DOCUMENT_LOCATION = "doc.xml"
def getMultiDoc():
 reader = DocumentReader(Page.MapPath(DOCUMENT_LOCATION))
 return reader.read()

def getPage(multidoc, name):
 matches = [page for page in multidoc.pages if page.title == name]
 if matches:
 return matches[0]
 return None

This code provides the DocumentReader class, initializes the two pieces of state that the
page will manage, and defines two simple functions; getMultiDoc uses the Document-
Reader class to create a MultiDoc instance (using MapPath to avoid having to specify a
full path to the doc.xml file), and getPage finds a page in the MultiDoc by its title (or
None if there’s no page with the given title).

 The state variables are in the global scope; but, because of the way ASP.NET inte-
grates the code-behind file, they aren’t shared between requests (what you might
expect if this were a normal Python module). In this case, storing the state in global
variables is similar to the way the state would be managed in C#—they would be
instance variables of the page subclass.

 Now you need to hook into the ASP.NET page lifecycle to interact with the web con-
trols on the page.
PAGE LIFECYCLE

A number of different events are raised for a page and its controls in the processing of
a request. (See figure 11.1 for a more comprehensive list.) In this case, you need to
handle the following:

Listing 11.2 Reading MultiDoc file and finding pages
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

286 CHAPTER 11 IronPython and ASP.NET
■ Page_Load event —Happens when the page is requested, after child controls have
been created but before any handling of user input to the page has been done

■ Click events —Are triggered when a user clicks on a LinkButton to select a page
of the MultiDoc document

■ Page_PreRender event —Is raised when the system is ready to convert the tree of
web controls into HTML to be sent to the browser

Let’s look at the code for each of these events in turn, beginning with Page_Load
(listing 11.3).

def Page_Load(sender, event):
 global multidoc, currentPage
 multidoc = getMultiDoc()
 if not IsPostBack:
 currentPage = multidoc.pages[0].title

The Page_Load handler is automatically hooked up to the event by the ASP.NET
machinery. In this listing, the code added to the handler loads the MultiDoc from the
XML file; and, if this request isn’t a postback (that is, it’s caused by the user navigating
to the page, rather than clicking a LinkButton on the page), it sets the currently
selected page title to be the first in the document. (The global statement at the start of
the function is required so that the assignments rebind the global variables, rather
than shadowing them with local variables.) In listing 11.4, you can see the handler for
clicking on page links.

def pageLink_Click(sender, event):
 global currentPage
 currentPage = sender.Text

The handler function defined in this listing is attached to each LinkButton created by
the Repeater in the ASPX page. When a user clicks one of the page links, the
pageLink_Click function will be called. Because the handler is attached to multiple
LinkButtons, you use the sender parameter to work out the title that the user clicked,
and store that title in the page state for when you render the page. The PreRender
handler that uses the page state is shown in listing 11.5.

def Page_PreRender(sender, event):
 pageRepeater.DataSource = multidoc.pages
 pageRepeater.DataBind()
 selectedPage = getPage(multidoc, currentPage)
 pageTitle.Text = selectedPage.title
 pageContent.Text = selectedPage.text

The PreRender handler in this listing is triggered by ASP.NET when all postback event
handling is completed, and allows you to use the page state that you’ve loaded and

Listing 11.3 MultiDoc Viewer Page_Load handler

Listing 11.4 MultiDoc Viewer pageLink_Click handler

Listing 11.5 MultiDoc Viewer Page_PreRender handler
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

287Editing MultiDocs
modified in the other handlers to update the state of the web controls on the page. In
the MultiDoc Viewer, you create the page links from the list of pages in the MultiDoc
using data binding, and then you put the relevant parts of the selected page into the
pageTitle and pageContent controls.

 The MultiDoc Viewer is now complete. Hit the Play button, and the page should
open in a browser window like figure 11.5.

You can click the links to view different pages. Try editing the XML file to add some
extra pages in the document and see that they appear in the Viewer.

 The structure of the code-behind may seem a little indirect at first glance: why not
have the pageLink_Click handler set the page title and text itself, rather than setting
internal page state and relying on the Page_PreRender handler to update the labels?
This approach tends to cause duplication of code. You’d need to cater for the non-
postback situation (when the pageLink_Click handler wouldn’t be called), and popu-
late the pageTitle and pageContent controls in the Page_Load handler. Additionally,
in more complicated pages, more actions are available than clicking one of a list of
links; keeping track of where you need to update which controls quickly becomes
unwieldy. Writing the postback handlers (such as Click or TextChanged) to only
update internal page state, and then having the PreRender handler translate that page
state into the states of the child controls, is much more manageable when the possible
interactions are wider.

 You can see this clearly when we extend the MultiDoc Viewer to allow editing of
the documents.

11.5 Editing MultiDocs
Let’s extend the Viewer into an application that will enable you to update the Multi-
Doc file, as well as looking at it. What do you need to add to the interface to support
this? The simplest way is to add an Edit button to the page display area on the right
side of the page. When the users click the Edit button, the page title and page

Figure 11.5 The com-
pleted MultiDoc Viewer
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

288 CHAPTER 11 IronPython and ASP.NET
contents are swapped out with text boxes, allowing them to edit the values. The Edit
button is replaced with a Cancel button and a Save button. Clicking either button will
take the page out of edit mode, but the Save button also writes the updated content of
the document out to the XML file.

 These changes to the user interface allow you to edit a MultiDoc through the inter-
net. Now we’ll walk through making these changes, starting with the ASPX file.

11.5.1 Swapping controls

It’s entirely possible to swap out the labels for editable text boxes by manipulating a
web control’s Controls collection. But it’s often simpler and clearer to do so by hiding
the controls you want to remove, and making some other (previously hidden) con-
trols visible. A control that makes this technique especially convenient is the Panel,
whose sole purpose is to contain other controls.

 Let’s update the ASPX page to do this. Change the right-hand cell of the table to
contain the code found in listing 11.6.

Current page

<asp:Panel id="viewPanel" runat="server" visible="false">
 <h2><asp:Label id="pageTitle" runat="server" /></h2>
 <asp:Label id="pageContent" runat="server" />

 <asp:Button id="editButton" runat="server" text="Edit this page"

onclick="editButton_Click" />
</asp:Panel>

The code in this listing wraps the pageTitle and pageContent labels in an asp:Panel
element, which has its own ID and adds an Edit button after the labels. The panel will
start off hidden (because visible is false). You can show the panel from the code-
behind with the following code:

viewPanel.Visible = True

Now you add the Panel containing the controls that you want to display when the
page is in edit mode (listing 11.7).

<asp:Panel id="editPanel" runat="server" visible="false">
 <asp:TextBox id="pageTitleTextBox" runat="server" columns="40" />

 <asp:TextBox id="pageContentTextBox" runat="server" columns="40" height="100"

textmode="multiline" />

 <asp:Button id="cancelButton" runat="server" text="Cancel"

onclick="cancelButton_Click" />
 <asp:Button id="saveButton" runat="server" text="Save"

onclick="saveButton_Click" />
</asp:Panel>

With the ASPX code in this listing added, the page now has two sets of controls that
you can turn on and off, depending on whether it should be in reading mode or edit
mode. The next step is to extend the code-behind page to handle the new controls.

Listing 11.6 Changing page display to allow showing and hiding

Listing 11.7 Controls to edit a MultiDoc page
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

289Editing MultiDocs
 We do need to think about one more thing, though. The original MultiDoc Viewer
only has one piece of state that changes: the current page title. When someone
clicked a page link and changed that state, you were always given the new value for it
(as the text of the LinkButton that was the sender argument to the handler), so you
could set up the page correctly. In the MultiDoc Editor, there are now two different
pieces of state that can be changed: the current page title, and whether the page is in
edit mode. When you receive an Edit button Click event, you aren’t also told what the
current page should be. Correspondingly, if you receive a page link Click, you don’t
know whether the page should be in edit mode. You need some other way to persist
this information from the handling of one page request to the next.

 The facility that ASP.NET provides to deal with this problem is called view state.

11.5.2 Handling view state

View state is an important concept in ASP.NET. At the end of processing a request, the
state of all the controls on the page is serialized and stored in a hidden form field in the
HTML page sent back to the client. When the next request from the client is received,
serialized state is reconstituted and set back into the controls before any postback events
are raised. (To ensure that the client hasn’t monkeyed with the state it sends back, the
framework cryptographically signs the view state and validates it before deserializing it.)

 View state is managed automatically for web controls (unless it has been turned off
for the control by setting EnableViewState to false), but you need to add some extra
state to the process. In a C# web project, you could do this by overriding the
SaveViewState and LoadViewState methods to inject the extra state to be saved.
Unfortunately, because in IronPython you don’t directly inherit from the ASP.NET
Page class, the SaveViewState and LoadViewState methods don’t get called in Iron-
Python pages. To hook into the view state system, you need a little C# to call custom
methods in the code. You put a CustomScriptPage class into the App_Code folder in
the web project (listing 11.8).

using Microsoft.Web.Scripting.UI;
using Microsoft.Web.Scripting.Util;

public class CustomScriptPage: ScriptPage {
 protected override void LoadViewState(object savedState) {
 DynamicFunction f = this.ScriptTemplateControl
 ➥ .GetFunction("ScriptLoadViewState");
 if (f == null) {
 base.LoadViewState(savedState);
 } else {object baseState = this.ScriptTemplateControl
 ➥ .CallFunction(f, savedState);
 base.LoadViewState(baseState);
 }
 }

 protected override object SaveViewState() {
 DynamicFunction f =this.ScriptTemplateControl
 ➥ .GetFunction("ScriptSaveViewState");

Listing 11.8 CustomScriptPage class for delegating view state handling to Python
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

290 CHAPTER 11 IronPython and ASP.NET
 if (f == null) {
 return base.SaveViewState();
 } else {
 object baseState = base.SaveViewState();
 return this.ScriptTemplateControl.CallFunction(f, baseState);
 }
 }
}

This listing creates a subclass of ScriptPage (the base class of all IronPython ASP.NET
pages) that will look up functions called ScriptLoadViewState and Script-

SaveViewState in the script of the page (the Python code, in this case), and delegate
to them. You can then tweak the view state objects in the code-behind. To declare that
our page should inherit from this class, you need to change the first line of the ASPX
page to add the Inherits option.

<%@ Page Language="IronPython" CodeFile="Default.aspx.py"
Inherits="CustomScriptPage" %>

To simplify much of the state management in the page, you can use a minimal page
state class to group the pieces of state together into one object. This lets you leave out
most of the global statements in event handlers, and makes it easier to work out
where the names being used in a section of code are coming from. As you can see in
listing 11.9, we’ve decided to call the object containing the page state self, which is a
little non-standard, but seems to have the right feel in code using the state. (If this
seems wrong, you can happily call it state instead.)

class PageState(object):
 pass
self = PageState()
self.document = None
self.currentPage = None
self.editing = False

Once you have that, you can save and load the page state (listing 11.10).

from System.Web.UI import Pair
import pickle

def ScriptSaveViewState(baseState):
 state = Pair()
 state.First = baseState
 state.Second = pickle.dumps((self.document, self.currentPage,

self.editing))
 return state

def ScriptLoadViewState(state):
 self.document, self.currentPage, self.editing =

➥ pickle.loads(state.Second)
 return state.First

Listing 11.9 A class to group together page state

Listing 11.10 Loading and saving the MultiDoc Editor view state
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

291Editing MultiDocs
The ASP.NET view state machinery can’t natively serialize Python types, so in this
listing the ScriptSaveViewState function creates a Pair. A Pair is a .NET class, a
clumsy version of Python’s tuple, which can contain two other objects (as .First and
.Second) and can be serialized in the view state. You store the standard page view state
in .First, and use the Python serialization module pickle to create a string from a
tuple of the three pieces of state you need to preserve. Then, in ScriptLoad-
ViewState, you receive the view state object that ASP.NET has pulled out of the
request, deserialize our custom page state tuple from the pair.Second, and return the
other half back to the machinery to restore the child control state.

 You can piggyback almost anything in the view state in this way, as long as you
ensure that the original view state is maintained and that anything you add can be seri-
alized by ASP.NET. (The pickle module is very useful here.) Also, you need to be care-
ful that the functions loading and saving the view state are symmetrical—any change
in the way you store your custom state needs to be reflected in how it’s loaded again.
One more thing to keep in mind is that the view state is sent to the client in each
response, and then back to the server with the subsequent request, so it can’t be used
to store large volumes of data.

 As well as code for loading and saving the view state of the page, you need to
include the code for loading and saving MultiDoc files (listing 11.11).

from documentreader import DocumentReader
from documentwriter import DocumentWriter

DOCUMENT_FILE = "doc.xml"

def getDocument():
 reader = DocumentReader(Page.MapPath(DOCUMENT_FILE))
 return reader.read()

def saveDocument(document):
 writer = DocumentWriter(Page.MapPath(DOCUMENT_FILE))
 writer.write(document)

def getPage(document, name):
 matches = [page for page in document.pages if page.title == name]
 if matches:
 return matches[0]
 return None

def Page_Load(sender, event):
 if not IsPostBack:
 self.document = getDocument()
 self.currentPage = None
 self.editing = False

This listing shows the familiar getDocument and getPage functions and adds the new
saveDocument function. It also includes the Page_Load event that determines how the
state is initialized in the first request, when IsPostBack is false and no view state
is processed.

Listing 11.11 Loading and saving MultiDoc file
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

292 CHAPTER 11 IronPython and ASP.NET
 Because you’re now storing the page state in a wrapper object named self, you
need to change the data-binding expression in the ASPX file from currentPage !=
title to self.currentPage != title.

 Next you handle the Page_PreRender event (to display the state of the page), and
the postback events for the controls you’ve added: Click events from the page links;
the Edit, Save, and Cancel buttons; and the TextChanged events from the title and
body text boxes.

11.5.3 Additional events

To start with, let’s consider how our page’s state should be displayed in the web con-
trols in the Page_PreRender handler (listing 11.12). This handler will be called after
all of the click-type postback events in the page’s lifecycle.

def Page_PreRender(sender, event):
 pageRepeater.DataSource = self.document.pages
 pageRepeater.DataBind()
 viewPanel.Visible = self.currentPage and not self.editing
 editPanel.Visible = self.editing

 if self.currentPage:
 selectedPage = getPage(self.document, self.currentPage)
 pageTitle.Text = pageTitleTextBox.Text = selectedPage.title
 pageContent.Text = pageContentTextBox.Text = selectedPage.text

In this listing, the Page_PreRender handler databinds the pageRepeater in the same
way as the previous version of the handler (listing 11.5), creating the page links on the
left-hand side of the page. Then you decide which (if either) of the right-hand side
panels should be displayed. Finally, if you have a current page, you populate the labels
and text boxes for the view and edit panels.

 The other event handlers, in listing 11.13, are simple—they merely record the user
input in the page state, and rely on the PreRender handler to display the page in a
consistent way, whereas the view state is managed by the Save and Load functions.
Using the PageState holder class means that the handlers don’t need any global state-
ments cluttering up the code.

def pageLink_Click(sender, event):
 self.currentPage = sender.Text

def editButton_Click(sender, event):
 self.editing = True

def cancelButton_Click(sender, event):
 self.editing = False
 # throw away any changes that have been made
 self.document = getDocument()

def saveButton_Click(sender, event):

Listing 11.12 MultiDoc Editor Page_PreRender handler

Listing 11.13 Postback event handlers in MultiDoc Editor
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

293Editing MultiDocs
 saveDocument(self.document)
 self.editing = False

def pageTitleTextBox_TextChanged(sender, event):
 selectedPage = getPage(self.document, self.currentPage)
 selectedPage.title = self.currentPage = pageTitleTextBox.Text

def pageContentTextBox_TextChanged(sender, event):
 selectedPage = getPage(self.document, self.currentPage)
 selectedPage.text = pageContentTextBox.Text

In this listing, the TextChanged event handlers for the page title and page body
are interesting because typing into the text box doesn’t trigger a postback by de-
fault (although it can if the text box has AutoPostBack set to True). In this case,
when ASP.NET restores the view state and then applies the posted data to the
controls, it detects that the text has changed and raises the event. You use this notifi-
cation to update the document before the Save button or page link Click events
are raised.

 Try running the MultiDoc Editor now. You can view the different pages and click
the Edit button to change page titles and bodies. When you click the Save button, the
file is updated on the disk.

 Beware, though! If you enter anything that looks like HTML tags, you’ll see a
rather alarming error page, beginning with the message: A potentially dangerous
Request.Form value was detected from the client. This is a security feature in ASP.NET
intended to prevent cross-site scripting (XSS) attacks, but it’s so heavy-handed that
the idea must be to shock developers into crafting a strategy to handle HTML in user
input, after turning the validation off. Obviously, how you prevent cross-site script-
ing depends on the extent to which you trust the user—in this case, it’s you. To turn
off validation, edit the Web.config file, and add validateRequest=“false” to the
<pages/> element.

 At this point, the MultiDoc Editor is largely complete. The only significant feature
missing is a New Page button; adding this is straightforward with the techniques used
so far, so we don’t cover it here. Another consideration that we haven’t examined is
how to handle two people editing the document at the same time. Obviously, the sec-
ond person to save changes will overwrite those of the first. You can handle this in
many ways—for example, using a timestamp on the document or a locking protocol.
A robust solution might involve a database; we discuss using the .NET facilities to com-
municate with databases in the next chapter.

 You can see an example of what the Editor looks like in figure 11.6.
 Now that you have a MultiDoc Editor, you might want to use it within a larger web-

site. In ASP.NET, packaging up the ASPX and Python code is done by creating a user
control. The control can then be embedded into ASPX pages or other user controls, in
almost the same way as you’d incorporate standard web controls. Let’s look at what
changes you need to make the Editor reusable.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

294 CHAPTER 11 IronPython and ASP.NET
11.6 Converting the Editor into a user control
First, create an empty user control to hold the code of our page, by copying the user
control template files from the chapter 11 code into the web project. Copy both
usercontrol_template.ascx and usercontrol_template.ascx.py to the folder, and
rename them as MultiDocEditor.ascx and MultiDocEditor.ascx.py. Open up the cop-
ied .ascx file, and you’ll see that it starts with the following line:

<%@ Control Language="IronPython" CodeFile="usercontrol_template.ascx.py" %>

This is almost exactly the same as the page directive at the start of an ASPX page,
except for the word Control, and the extension of the code-behind file. The Control
directive is all there is in this file, though; it doesn’t have the HTML (the doctype, as
well as html, head, body, and form elements) that empty ASPX pages have. User con-
trols are never rendered directly to web clients; they’re always contained in an ASPX
page that wraps them (and any other controls in the page) with the normal HTML
structure. Other than that difference, writing a user control is similar to writing a nor-
mal ASPX web page.

 Change the Control directive so that the CodeFile attribute refers to MultiDoc-
Editor.ascx.py.

 Now create a new web form called Container.aspx by copying the template web
forms, renaming them, and editing the CodeFile attribute in the .aspx. This will
be the page that wraps the user control. After the page directive, add the follow-
ing line:

<%@ Register src="MultiDocEditor.ascx" tagname="multidoceditor"
tagprefix="ipia" %>

This Register directive allows you to include the MultiDocEditor user control in the
web page. You add the following line inside the <form> element of the page:

<ipia:multidoceditor id=”editor” runat=”server” />

Figure 11.6 Editing
a MultiDoc page in a
browser
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

295Converting the Editor into a user control
You can see that the element name has been constructed from the tagprefix and
tagname parameters in the register directive. The tag prefix (ipia in the example)
can be anything you like; this can be useful when you want to disambiguate controls
from different sources that have the same name.

 Now the container page embeds the editor control, although the control doesn’t
do anything yet. You could put some text into the ASCX file and view Container.
aspx in the browser, and the page would display that text where you’ve added the
control. Then you populate the control with the code you already have by doing
the following:

■ Copying the table from the MultiDoc Editor ASPX page into the ASCX
■ Copying all the code from the original code-behind file to the new one

Unfortunately, before the control will work, we need to revisit the view state handling.

11.6.1 View state again

When implementing the Editor as a web page, our page inherited from a custom sub-
class of ScriptPage. User controls can also inherit from a custom base class, but it
needs to be a subclass of ScriptUserControl. You can create a custom subclass to for-
ward the view state handling methods with the code in listing 11.14.

using Microsoft.Web.Scripting.UI;
using Microsoft.Web.Scripting.Util;

public class CustomScriptUserControl: ScriptUserControl {
 protected override void LoadViewState(object savedState) {
 ScriptTemplateControl stc = (this as

IScriptTemplateControl).ScriptTemplateControl;
 DynamicFunction f = stc.GetFunction("ScriptLoadViewState");
 if (f == null) {
 base.LoadViewState(savedState);
 } else {
 object baseState = stc.CallFunction(f, savedState);
 base.LoadViewState(baseState);
 }
 }

 protected override object SaveViewState() {
 ScriptTemplateControl stc = (this as

IScriptTemplateControl).ScriptTemplateControl;
 DynamicFunction f = stc.GetFunction("ScriptSaveViewState");
 if (f == null) {
 return base.SaveViewState();
 } else {
 object baseState = base.SaveViewState();
 return stc.CallFunction(f, baseState);
 }
 }
}

Listing 11.14 Delegating view state handling to Python
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

296 CHAPTER 11 IronPython and ASP.NET
This code is almost the same as the CustomScriptPage definition in listing 11.8, with
one odd difference—for some reason, ScriptUserControl doesn’t expose a .Script-
TemplateControl directly. Instead, it explicitly implements the property on the
IScriptTemplateControl interface; the definition of the property looks something
like this:

public virtual ScriptTemplateControl
IScriptTemplateControl.ScriptTemplateControl { get {…} }

You need to cast this ScriptUserControl to an IScriptTemplateControl before you
can get hold of the .ScriptTemplateControl property. Ordinarily, you’d use explicit
interface implementation to disambiguate when inheriting from two interfaces that
expose the same member and you’d need to provide different implementations, but
that doesn’t seem to be the situation here.

 At this point in the section, you could be forgiven for thinking that wrapping up a
page into a user control is rather a lot of work. Forwarding the view state between the
C# and Python code of a control is definitely one part of the ASP.NET–IronPython
integration that’s still fairly nasty, and it’s something that we expect will be fixed in
future versions as the IronPython support matures. In any case, the classes you have
work well now, so you can simply reuse the classes when you need to manage view state
from IronPython pages and user controls, without worrying too much about the fact
that they’re workarounds for gaps in the system.

 Once the CustomScriptUserControl class is in App_Code, you can change the
user control to inherit from it by adding Inherits="CustomScriptUserControl" to
the Control directive in MultiDocEditor.ascx. The view state handling in the code-
behind file will now be called by the ASP.NET machinery, and the MultiDocEditor user
control will work! The only problem is that it’s not reusable except in a very basic
sense: you can put it on different pages, or several instances on one page, but each
instance will be editing the same file. That isn’t especially useful. You need to be able
to specify which file a particular editor should be using. You can do this by adding a
filename parameter to the control.

11.6.2 Adding parameters

If you were implementing the user control in C#, you’d expose a filename parameter
by creating a property on the class. In IronPython, you make the filename settable in
essentially the same way, although it doesn’t use the Python property system (because
the IronPython code-behind file doesn’t directly define a class). Add the functions in
listing 11.15 to the MultiDocEditor code-behind file to give the user control a File-
name property.

def GetFilename():
 return self.filename

def SetFilename(filename):
 self.filename = filename

Listing 11.15 Creating the Filename property
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

297Converting the Editor into a user control
These functions will be called by the ASP.NET infrastructure when you specify the file-
name in ASPX pages that embed the control. (The case of the attribute needs to
match the name of the getter and setter functions.)

<ipia:multidoceditor id=”editor” runat=”server” Filename=”doc.xml” />

Alternatively, the getter and setter functions can be called from the code of the con-
tainer page.

def Page_Load(sender, e):
 editor.SetFilename(“doc.xml”)

To complete the process, the code-behind needs a few changes to make use of the file-
name that’s passed in. First, the filename needs to be added to the page state.

self = PageState()
self.filename = None
self.document = None
self.currentPage = None
self.editing = False

Then it needs to be loaded and saved with the view state.

def ScriptLoadViewState(state):
 self.filename, self.document, self.currentPage, self.editing =

➥ pickle.loads(state.Second)
 return state.First

def ScriptSaveViewState(baseState):
 state = Pair()
 state.First = baseState
 state.Second = pickle.dumps((self.filename, self.document,

self.currentPage, self.editing))
 return state

And of course it should be used to load and save the MultiDoc file:

def getDocument():
 reader = DocumentReader(Page.MapPath(self.filename))
 return reader.read()

def saveDocument(document):
 writer = DocumentWriter(Page.MapPath(self.filename))
 writer.write(document)

With these changes, the MultiDoc Editor user control is complete! You can view the
container page in the browser and edit the document as you could in the case of the
single web page. You can add another <ipia:multidoceditor/> element to the con-
tainer page, specify a different MultiDoc file, and edit the two documents indepen-
dently in one page. Or you can even create another user control that wraps the
MultiDocEditor control—perhaps one that lists the MultiDoc files in a directory in a
drop-down list, and allows the user to select which file to edit. As you can see, user
controls provide a flexible mechanism for packaging and reusing components when
constructing a web application.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

298 CHAPTER 11 IronPython and ASP.NET
11.7 Summary
This chapter has been a look at the basics of creating ASP.NET web pages and user con-
trols with IronPython. You’ve created a web application, and a web page to display Mul-
tiDoc documents. Then you extended the web page with more complex interactions to
allow you to edit the documents. Finally, you packaged this functionality into a reus-
able user control that can be embedded into web pages and other controls. Along the
way we’ve touched on some of the support ASP.NET provides for building applications,
including view state management, debugging, configuration, and the special
App_Script and App_Code directories for shared code. There’s a lot more in the
framework; in fact, there are whole books devoted to it! We hope that our overview has
given you enough information on the underpinnings of the system that you can take
other resources written with C# or Visual Basic in mind and apply them to IronPython.

 The support for IronPython in ASP.NET is still new, and there are some rough
edges—notably in the view state handling where you needed to use C# to forward calls
to IronPython. The IronPython–ASP.NET integration is a work in progress. There are
big plans for the future, so we can look forward to the holes being filled soon.

 In the next chapter, we look at using databases and web services with IronPython.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Databases
 and web services
So far in the book we’ve concentrated on creating fairly self-contained applications;
most data storage has been in the form of text or XML files. For a lot of tasks this
can be sufficient, but often the data your application will be manipulating lives
somewhere else: maybe in a relational database or behind a web service. One appli-
cation I (Christian) worked on was part of a flight-planning system; weather maps
and forecasts that the application needed were managed by another system accessi-
ble through a separate web service, while user preferences and details were stored
in a local SQL Server database.

 In this chapter we look at some of the techniques we can use to get access to this
data. To start with, we cover the base API that the .NET framework provides for talk-
ing to different relational databases, followed by the higher-level classes that can be

This chapter covers
■ Using ADO.NET to work with databases
■ Interacting with SOAP and REST web services
■ Creating a REST web service
299

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

300 CHAPTER 12 Databases and web services
layered on top for slicing and dicing data in your application. Then we see how we can
interact with different types of web services from IronPython.

12.1 Relational databases and ADO.NET
Relational database management systems (RDBMSs) are everywhere in the IT industry,
and there is a huge range of different database engines, from open source projects
such as MySQL and PostgreSQL to commercial vendors like Microsoft SQL Server and
Oracle. While the various engines often have quite different capabilities and feature
sets, they all use a common model to represent data (the relational model) and provide
a standardized1 language for getting that data: SQL (Structured Query Language).
However, although the language is standard, the methods for connecting to a data-
base and sending an SQL query to it can often be quite different. ADO.NET (the .NET
Database Communication layer) is designed to solve this problem.

In section 12.1, we cover the basics needed to use the .NET communication compo-
nents in IronPython. We start by looking at the structure of the ADO.NET layers, and
then we explore the methods they provide for managing relational data. By the end of
the section, you should have a good understanding of the basics of talking to any data-
base from IronPython. You’ll also have enough grounding to use examples written for
other .NET languages to learn more advanced ADO.NET techniques.

 So what is ADO.NET? The ADO part comes from the previous Microsoft approach to
data access, ActiveX Data Objects, but there’s really only a slight spiritual relationship
between ADO and ADO.NET. It’s tricky to describe precisely, because ADO.NET isn’t a
class library itself. Instead, it’s a design for a large suite of related data access libraries,
with a layer of classes that you can use to provide uniform data manipulation on top,
as Figure 12.1 shows.

1 Well, standardized to an extent. There are large differences between the SQL supported in different data-
bases, but generally the core operations (select, insert, update, and delete) work the same.

What is the relational model?
It’s a formal framework for reasoning about databases, devised by Edgar Codd
in 1969. It defines databases in terms of relations, which are sets of things that
Codd called tuples, although from a Python perspective they’re more like dictionaries
keyed by strings. All of the tuples in a relation have the same attributes (which are
the keys of the dictionaries), and the values of the attributes have to be atomic: they
can’t be lists or tuples themselves. In relational database management systems, re-
lations are called tables, tuples are rows, and attributes are columns.

From that foundation, the relational model expands to define keys (sets of attributes
that uniquely identify a tuple within a relation) and a language for expressing queries
called the relational algebra (which is what SQL is based on).

You can find a lot more information about the relational model on Wikipedia.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

301Relational databases and ADO.NET
 The bottom layer of ADO.NET is the
Data Provider layer. Each DBMS has its
own ADO.NET data provider, which
wraps the specific details for connecting
to and interacting with that database in
a collection of classes with a common
interface. You can see the most impor-
tant classes in a data provider, as well as
their roles, in table 12.1. We’ll look at
these in more detail soon.

The layer above the data providers contains the DataSet and its component classes.
DataSets are used to present and manipulate data pulled in from external sources in
memory and to save changes made to the data back to the database (or another data
store). A DataSet is a container for relational data and can con-
tain a number of DataTables (each of which represents a table
in the database) as well as relationships between the tables,
which can be used to navigate the data and maintain consis-
tency. You can see in figure 12.2 how the classes fit together.

 So that’s the basic structure of ADO.NET data providers and
DataSets. In the rest of this section, we look at using them
from IronPython. We start with the data provider class-es: con-
necting to the database, issuing commands, querying the data,
and using transactions to bundle changes together. Then we
see how DataSets fit on top, using the DataAdapter.

 All of this is quite abstract. Let’s see it in action (and in
more detail).

12.1.1 Trying it out using PostgreSQL

To begin exploring the Data Provider layer, we need a database to work with and a cor-
responding data provider to connect to it from IronPython. In these examples we’re
going to use PostgreSQL, a high-quality open source DBMS. You can download the

Table 12.1 The core classes in a data provider

Class Description

Connection Maintains the channel of communication with the database engine

Command Allows executing commands to query and altering data in the
database through a connection

DataReader Gives access to the stream of records resulting from a query

DataAdapter Manages the movement of data between the Data Provider layer and
the layer above it: the ADO.NET DataSet

Figure 12.1 Application code can talk to databases
using data providers directly or via DataSets.

Figure 12.2 The struc-
ture of a DataSet
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

302 CHAPTER 12 Databases and web services
database engine from www.postgresql.org, and the ADO.NET data provider for Postgre-
SQL is Npgsql, which is available at npgsql.org. You can administer Postgres databases
completely through the command-line tools that come with it, but if you’d like a GUI
administration tool to manage the database, PGAdmin (available from www.pgad-
min.org or included with recent versions of PostgreSQL) works well.

INSTALLING THE PIECES

Download and install PostgreSQL. For our purposes, the default settings will work
well. Then run the SQL script chapter12\12.1.1\schema.sql from the source code for
the book using the following command:

psql –U postgres –f schema.sql

Finding out more about PostgreSQL and Npgsql
PostgreSQL has an extensive manual available from http://www.postgresql.org/
docs/manuals/.

The main tools for working with PostgreSQL databases are the psql command-line cli-
ent and PGAdmin. You can run both of them from the Start menu. When using psql,
enter \? for help on psql commands and \h for help on SQL commands.

There’s a whole host of information about advanced uses of Npgsql in the user man-
ual at http://npgsql.projects.postgresql.org/docs/manual/UserManual.html.

Using another DBMS with the examples in this chapter
ThisWhile the database examples in this chapter have been written with PostgreSQL
in mind, it should be straightforward to follow along with a different database system.
You’ll need to change a few things:

■ The script that creates the example database uses PostgreSQL-specific com-
mands to create the tables, sequences, and foreign key constraints. You
should change the creation script to use the syntax for your database or cre-
ate the tables yourself through the administration interface. The insert state-
ments that populate the database tables should work as is.

■ Rather than installing Npgsql, you’ll need to download and install the
ADO.NET data provider for your database, if you haven’t already.

■ Where we add a reference to the Npgsql assembly and import from Npgsql,
check the provider’s documentation to find out the assembly you need to ref-
erence and the namespace that contains your provider’s classes. Where the
examples use NpgsqlConnection or NpgsqlDataAdapter, you should use
the corresponding classes in your data provider.

■ When you create a database connection, the details of the connection string
will be slightly different. Again, the provider’s documentation will specify
which parameters are expected.

With those changes in place, you can use any database engine to work through the
examples.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/manuals/
http://npgsql.projects.postgresql.org/docs/manual/UserManual.html
http://www.postgresql.org
www.pgadmin.org
www.pgadmin.org

303Relational databases and ADO.NET
If psql isn’t on your path, you’ll need
to include the full path to the Postgre-
SQL bin directory. This will connect to
the database server as the postgres
user and create a new database called
ironpython_in_action, with tables
you can use for experimenting with
ADO.NET in IronPython. The data-
base contains information about mov-
ies, actors, and directors; figure 12.3
shows the fields in the tables and the
relationships between them.

 The final new piece that you need
is the PostgreSQL data provider, Npgsql. Download the latest binary distribution (at the
time of writing this was 2.0.2) for your platform, and unzip it into a directory. To ensure
that you can use it from IronPython, add the directory containing Npgsql.dll to your
IRONPYTHONPATH environment variable. Once that’s all done, you should be able to
import Npgsql and instantiate the classes it provides to communicate with the database.

12.1.2 Connecting to the database

One of the things I like about Python is that I can explore a new API in the interactive
interpreter and get immediate feedback, rather than having to build a test program
and then realizing that I’ve misunderstood how the API works. So let’s explore: run
ipy, and enter the following commands:

>>> import clr
>>> clr.AddReference('Npgsql')
>>> import Npgsql as pgsql

If the last import succeeds, then the interpreter has found and loaded the Npgsql
assembly, and we can try to connect to the database. To do this, we use the Npgsql-
Connection class (each data provider defines its own connection class).

>>> connection = pgsql.NpgsqlConnection(
... 'server=localhost; database=ironpython_in_action;'
... 'user id=postgres; password=<postgres user password>')2

(The password parameter should be the postgres user’s password that you specified
when installing PostgreSQL.)

 The parameter the NpgsqlConnection constructor takes is a connection string speci-
fying the details of the database we’re connecting to. What it should contain and how
it is formatted depends on the data provider, although all the providers I’ve used
have had the same format you see here. Also, while our connection string is pretty
close to minimal, there’s a great variety of optional parameters that you can specify in

2 Note that there is no comma between these two strings. We’re making use of the fact that Python will join
adjacent string literals together to fit this connection string on the page nicely; you can enter it as one long
string if you’re typing it.

Figure 12.3 The example database stores information
on movies, people, and roles and how they’re related.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

304 CHAPTER 12 Databases and web services
the connection string, such as whether connections should be pooled, whether
the communication should be encrypted with SSL, and so on. To determine exactly
what parameters a specific provider expects, you need to look in the documenta-
tion for that provider; another useful reference for a large number of databases is
at www.connectionstrings.com.

>>> connection.Open()

The Open method does what it says on the tin: it creates the underlying communica-
tion channel to the database and logs in. If there were any network problems stopping
us from reaching the database, or we’d given incorrect credentials in the connection
string, the Open call would fail with a (hopefully) helpful error message.

 In an application (particularly a web application) it’s very important to ensure that
connections that are opened are closed (by calling the Close method) again. Data-
base connections are external resources that generally are not totally managed by the
.NET framework, and often they’re pooled to reduce the expense of creating and
opening them. In a pooling situation, calling Close will return the connection to the
pool for another task to use.

 Before closing this connection, though, let’s look at how we can use it to have the
database do our bidding.

12.1.3 Executing commands

Using our connection we can execute commands against the database; essentially, any-
thing we could do using psql (the PostgreSQL command shell), we can do now from
Python code.3 To insert a row into the person table, we would execute the code in list-
ing 12.1.

>>> command = connection.CreateCommand()
>>> command
<Npgsql.NpgsqlCommand object at 0x... [Npgsql.NpgsqlCommand]>
>>> command.CommandText = "insert into person (name) values ('Danny Boyle')"
>>> command.ExecuteNonQuery()
1

We call the Connection.CreateCommand method to get an NpgsqlCommand associated
with the connection. Then we set the command text to a SQL insert statement and call
the command’s ExecuteNonQuery method, which runs the statement and returns the
number of records affected by the statement. The NonQuery in the method name indi-
cates that we don’t expect any data back in response.

 Imagine we have a list of actors that we had loaded from somewhere else and want
to insert into the person table. We could use a loop to put the people into the database,
constructing the insert statement using % string formatting, as shown in listing 12.2.

3 Admittedly, it’s a bit more verbose, but there are also definite benefits, like being able to run insert statements
in loops, generate SQL statements programmatically, or save the result of a query in a variable for future use.

Listing 12.1 Inserting a record
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

www.connectionstrings.com

305Relational databases and ADO.NET
>>> people = ['James Nesbitt', "Sydney 'Big Dawg' Colston",
... 'Helena Bonham Carter']
>>> insert_statement = "insert into person (name) values ('%s')"
>>> for p in people:
... command.CommandText = insert_statement % p
... command.ExecuteNonQuery()
Traceback (most recent call last):
 File , line unknown, in Initialize##365
 File Npgsql, line unknown, in ExecuteNonQuery
 File Npgsql, line unknown, in ExecuteCommand
 File Npgsql, line unknown, in CheckErrors
EnvironmentError: ERROR: 42601: syntax error at or near "Big"

Oops—in listing 12.2, the single quotes in Sydney Colston’s name have been inter-
preted as the end of the string in the command, and the next part of his name isn’t
valid SQL, so the database has thrown a syntax error. We could avoid this by replacing
every single quote with two single quotes (this is the SQL method of embedding
quotes in strings), but that’s easy to forget and error prone. ADO.NET provides
another way to handle SQL commands with values that vary: command parameters.
(These are sometimes called bind variables in other database APIs.)4

12.1.4 Setting parameters

To use a command with parameters, we set its CommandText to be a string containing
references to parameters, rather than literal values:

>>> command = connection.CreateCommand()
>>> command.CommandText = 'insert into person (name) values (:name)'

Listing 12.2 Trying to insert multiple people by constructing SQL strings

4 This command will delete the movie table with all of its data and all of the relationships with other tables. The
extra characters are to ensure that the resulting string is valid SQL when concatenated with the text of the
rest of the command in an insecure way.

SQL injection
Actually, the fact that “Big Dawg” isn’t valid SQL is quite lucky: if his nickname had
been “); DROP TABLE movie CASCADE; --”4 we might have lost a big chunk of our data.
This would be a huge security flaw in a web application: it’s an attack called SQL in-
jection. Even if the permissions on the database tables have been locked down so
that the attacker couldn’t drop a table, the attacker might be able to log in with ele-
vated privileges or view or edit other users’ information. Command parameters are
the solution to this problem.

In general, if you find yourself constructing SQL strings programmatically, you should
think twice. At the very least, check to see whether what you are doing can be done
using parameters instead.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

306 CHAPTER 12 Databases and web services
This is similar to the insert_statement variable we used earlier, except that it uses
:name instead of %d to refer to the value we want. Also, the single quotes are not
needed, because the parameter value is never stitched into the string. It’s passed in sep-
arately, and the database engine uses it as it executes the statement. This is what makes
parameterized commands safer and easier to program with: you don’t need to worry
about quoting strings, and for dates you can simply pass the date object rather than hav-
ing to convert them into a string in a format the database engine will understand.

 Now our loop to insert multiple people looks like the code in listing 12.3.

>>> command.Parameters.Add('name', None)
>>> for p in people:
... command.Parameters['name'].Value = p
... command.ExecuteNonQuery()

Another benefit of using parameters is that they are more efficient if you are executing
a statement more than once with different parameters. Parsing an SQL statement is ex-
pensive, so databases will usually cache parsed form and reuse it if exactly the same state-
ment is sent again. Parameterized commands let you take advantage of that behavior.

 Now we can send commands to the database to insert, update, or delete rows. Next
we look at the methods that allow us to get information back.

12.1.5 Querying the database

The simplest form of query is one that returns a single value, for example, retrieving
an attribute of an item in the database or counting the records that match search cri-
teria. In that situation, we can use the ExecuteScalar method of the command, which
you can see in listing 12.4.

>>> command = connection.CreateCommand()
>>> command.CommandText = 'select count(*) from person'
>>> command.ExecuteScalar()
5L
>>> command.CommandText = 'select name from person where id = 1'
>>> command.ExecuteScalar()
'David Fincher'

As you can see, ExecuteScalar returns whatever type of object the query returns; this
can make it a bit of a hassle in a statically typed language like C#, where you’d have to
cast the result before you could use it. In Python, this kind of function is convenient.

 A minor point to note is the way ExecuteScalar deals with NULL5 values in the data-
base or queries that return no rows. Both of these are displayed in listing 12.5.

Listing 12.3 Setting parameter values in a parameterized command

Listing 12.4 Getting a value from the database with ExecuteScalar

5 NULL is a special SQL value used in databases to indicate that no value has been specified in a column. In a
way it’s similar to Python’s None, but there are a number of differences in the way NULLs behave when used
in arithmetic or Boolean expressions with other values.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

307Relational databases and ADO.NET
>>> from System import DBNull
>>> command.CommandText = 'select null'
>>> command.ExecuteScalar() is DBNull.Value
True
>>> command.CommandText = 'select id from person where 1 = 2'
>>> command.ExecuteScalar() is None
True

When the query in listing 12.5 returns a row with a NULL in it, ExecuteScalar gives us
DBNull, a special singleton value in .NET that is similar to None. When there are no
rows returned, ExecuteScalar gives us None instead.

 We can also call ExecuteScalar with a query that returns multiple rows:

>>> command.CommandText = 'select id, name from person'
>>> command.ExecuteScalar()
1L

In this case, it returns the first value of the first row of the results. If we want to see
more of the results, we’ll need to use a DataReader.

12.1.6 Reading multirow results

To get the results from a query, we call ExecuteReader on a command (using the
same command text as above):

>>> reader = command.ExecuteReader()
>>> reader
<NpgsqlDataReader object at 0x…>

Now the DataReader is ready to start reading through the rows. Readers have a num-
ber of properties and methods for examining the shape of the rows that have come
back. You can see some of these used in listing 12.6.

>>> reader.HasRows
True
>>> reader.FieldCount
2
>>> [(reader.GetName(i), reader.GetFieldType(i))
... for i in range(reader.FieldCount)]
[('id', <System.RuntimeType object at 0x...[System.Int32]>),
('name', <System.RuntimeType object at 0x... [System.String]>)]

We use the HasRows and FieldCount properties and the GetName and GetFieldType
methods to see the structure of the data returned for our query.

 Readers also have a current row; when the reader is opened, it’s positioned
before the first row in the results. You advance to the next row with Read, which
returns True unless you’ve run out of rows. Getting the values of the fields in the
current row can be done in a number of ways. The most convenient is by indexing

Listing 12.5 ExecuteScalar with NULL or no rows

Listing 12.6 Finding out what data is in a DataReader
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

308 CHAPTER 12 Databases and web services
into the reader by column number or name. Putting this together, we have the loop
shown in listing 12.7.

>>> while reader.Read():
... print reader['id'], reader['name']
1 David Fincher
2 Edward Norton
3 Brad Pitt
and so on...

A number of other methods are available for getting fields of the current row, such as
GetDecimal, GetString, and GetInt32 (and nine more!), but they’re not especially use-
ful in Python. Their only purpose is to inform the compiler what type you want (to avoid
a cast), but they’ll fail (at runtime) if you request a field as the wrong type. Worse, they
accept only an integer column index, so they’ll break if the query changes to reorder
the columns, unless you use the GetOrdinal method of the reader to look up the name
first. In a choice between reader.GetString(reader.GetOrdinal('name')) and
reader['name'], I vastly prefer the latter.

 Some databases will allow you to make several queries in one command, and then
they return multiple result sets attached to one reader. In this case you can use the
NextResult method to move to the next set of rows. Similarly to Read, NextResult
returns True unless you’ve run out of result sets. Unlike Read though, you don’t need
to call it before you start processing the first result set, because that would be inconve-
nient for the most common usage. For example, maybe we wanted to get all of the
movies someone directed and all of the roles that person has had with one command.
Listing 12.8 shows how we could do this.

>>> # 1 is David Fincher's id in the person table
>>> command = connection.CreateCommand()
>>> command.CommandText = (
'select id, title, released from movie where director_id = 1;'
'select m.title, r.character from role r, movie m '
'where person_id = 1 and r.movie_id = m.id')
>>> reader = command.ExecuteReader()
>>> while True:
... while reader.Read(): |
... print [reader[i] for i in range(reader.FieldCount)]
... if not reader.NextResult(): |
... break
[1, 'Fight Club', <System.DateTime [15/10/1999 00:00:00]>]
[2, 'Se7en', <System.DateTime [05/01/1996 00:00:00]>]
['Being John Malkovich', 'Christopher Bing']

Notice that the result sets can have different structures. In listing 12.8, the first query
results in rows with an integer, a string, and a date, while the second has rows with two
strings.

Listing 12.7 Getting values from the current row

Listing 12.8 Getting multiple result sets from one command

Two different
queries in the text
of one command

Deal with all records in
the current result set

Move to the
next set of
records, if any

Results from
the first query

Results from the second query
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

309Relational databases and ADO.NET
 Once you’ve finished with the results held by a DataReader, it’s important to
call the Close method.6 This allows the database to release the result set; while the
.NET runtime will eventually free a reader that’s gone out of scope, that “eventually”
might be a long time in the future, and you might run out of database connections in
the meantime.

 Suppose our database was being used behind a website running a competition
between people in the movie industry, so we wanted to use it to keep running totals
of the number of movies each person had directed and acted in. We have role_count
and directed_count fields in the person table; when we insert a movie record we
want to increment the directed_count for the director, and when we insert a role we
want to increment the role_count for the actor.7 We could do this in two steps, insert-
ing the row and then updating the relevant total, but this means that at certain
points the database totals will be wrong. Someone could get all the movies for Wes
Anderson after we’ve inserted the record for The Darjeeling Limited but before we’ve
updated his directed_ count. Worse, someone could trip over the power cord on our
server between the insert and the update, and his total would stay wrong until some-
one noticed. We can avoid getting into an inconsistent state like this by using data-
base transactions.

12.1.7 Using transactions

Transactions are a packaging mechanism that database engines provide to allow appli-
cations to make several changes to the tables in the database but have them appear to
database users as if they all happened at once, at the moment the transaction is com-
mitted. Committing a transaction means applying the changes it contains. If something
has gone wrong during a transaction (say an error in the program or some precondi-
tion for the changes we were making isn’t met), we can throw away the changes in it by
rolling back the transaction.

 We can create a transaction using the BeginTransaction method of a connection.

>>> transaction = connection.BeginTransaction()
>>> transaction
<NpgsqlTransaction object at 0x…>

Until now, the connection we’ve been using has been in autocommit mode. This
means that each command we’ve run has been wrapped in an implicit transaction
that has been committed after the command has run. We can prevent this by explic-
itly associating a transaction with a command before executing it, as shown in list-
ing 12.9.

6 One way to ensure the reader is closed is the with statement. IronPython maps the Python context manager
method __exit__ to the IDisposable interface’s Dispose method, and DataReaders and Connections
both implement IDisposable.

7 This denormalization is premature when the database is this size, but potentially in a large database where
reads of the totals are much more common than writes to the movie and role tables, it would make sense.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

310 CHAPTER 12 Databases and web services
>>> command = connection.CreateCommand()
>>> command.CommandText = ("insert into movie (title, released,"
... " director_id) values ('The Darjeeling Limited', '2007-11-23'"
... ", 2)")
>>> command.Transaction = transaction
>>> command.ExecuteNonQuery()

If you check in the database using psql or pgAdmin, the record for The Darjeeling Lim-
ited doesn’t show up yet, because the transaction hasn’t been committed. This allows
us to update the person table, as shown in listing 12.10, to ensure the database state is
consistent before any of it is visible.

>>> command = connection.CreateCommand()
>>> command.CommandText = ('update person set directed_count ='
... ' directed_count + 1 where id = 2')
>>> command.Transaction = transaction
>>> command.ExecuteNonQuery()

In listing 12.10 we create another command and execute it after associating it with the
transaction we already have in progress.

 Again, checking the database will show that the data is apparently unchanged.
Now we can apply both changes at once by committing the transaction.

>>> transaction.Commit()

Listing 12.9 Setting the transaction of a command before execution

Listing 12.10 Executing another command as part of the same transaction

Transaction properties: ACID
The key feature of transactions is that they give us four guarantees about how chang-
es will be made to the database. (The guarantees are often referred to using the mne-
monic ACID.) These guarantees are the following:

Atomicity —The changes made in a transaction are treated as all-or-nothing. If any of
them are applied, they all are.

Consistency —A transaction cannot succeed if it would leave the database in an in-
consistent state, for example, where a record in a child table has no corresponding
parent record.

Isolation —Other transactions can’t see changes made in this transaction until it has
been committed.

Durability —Once a transaction has been committed, the changes it contains will be
applied to the database, even in the event of system failure.

These properties make changes to databases much easier to reason about. In some
circumstances maintaining the isolation constraint can be costly, so you can ask the
database to reduce a transaction’s isolation level for performance reasons.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

311Relational databases and ADO.NET
We could have canceled the changes by calling the transaction’s Rollback method. If
the application had crashed for some reason before we called Commit, the database
would have discarded the changes. In fact, the point of the transaction machinery is to
guarantee that even if the database server crashed, once it was brought back up, the
database would still be in a consistent state.

 Now that we’ve looked at transactions, we’ve covered the use of all of the key
classes in the data provider layer bar one: the DataAdapter. Since the purpose of the
DataAdapter is to connect the Data Provider layer with DataSets, to discuss them
properly we need to look at DataSets as well.

12.1.8 DataAdapters and DataSets

The data provider classes provide functionality that will enable you to do anything you
might need to with your database. However, for some uses they are inconvenient.
DataReaders provide a read-only, forward-only stream of data; if you want to do com-
plex processing that requires looking at data a number of times or navigating from
parent records to child records, you’ll need to perform multiple queries or store the
information in some kind of data structure. While this data structure could be a col-
lection of custom objects, for some applications it can be convenient to use a DataSet.

 DataSets are DBMS independent, unlike data providers, so you don’t need to use
different classes for different databases. The details of how to communicate with a
given database are specified by the DataAdapter class from the data provider.

 So how do we get data into a DataSet? In listing 12.11, we ask the DataAdapter to
fill it up.

>>> clr.AddReference('System.Data')
>>> from System.Data import DataSet
>>> dataset = DataSet()
>>> adapter = pgsql.NpgsqlDataAdapter()
>>> command = adapter.SelectCommand = connection.CreateCommand()
>>> command.CommandText = 'select * from person'
>>> adapter.Fill(dataset)
21

Before the adapter can fill the DataSet, it needs to know how to get the data, which
we tell it by setting its SelectCommand. The Fill method returns the number of
records the command returned. In listing 12.12 we examine the information that
came back from the database.

>>> dataset.Tables.Count
1
>>> table = dataset.Tables[0]
>>> table.TableName
'Table'
>>> table.Columns.Count
2

Listing 12.11 Filling a DataSet from a DataAdapter

Listing 12.12 What’s in the DataSet after filling it?
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

312 CHAPTER 12 Databases and web services
>>> [(c.ColumnName, c.DataType.Name) for c in table.Columns]
[('id', 'Int32'), ('name', 'String')]
>>> table.Rows.Count
7
>>> row = table.Rows[0]
>>> row['id'], row['name'] # you can access fields by name
(1, 'David Fincher')
>>> row[0], row[1] # or by index
(1, 'David Fincher')

As you can see, the adapter.Fill call has created a new table (rather unimaginatively
named Table) in the DataSet. This gives us the basic structure of a DataSet: a collec-
tion of tables, each of which has columns defining the structure of the data and rows
containing the data.

 You can use the multiple-result-set capability of a command to fill more than one
table in the dataset. You can see this behavior in listing 12.13.

>>> dataset = DataSet()
>>> adapter = pgsql.NpgsqlDataAdapter()
>>> command = adapter.SelectCommand = connection.CreateCommand()
>>> command.CommandText = ('select * from person; '
... 'select * from movie; '
... 'select * from role')
>>> adapter.Fill(dataset)
21
>>> [t.TableName for t in dataset.Tables]
['Table', 'Table1', 'Table3']
>>> t = dataset.Tables
>>> t[0].TableName, t[1].TableName, t[2].TableName = 'person', 'movie', 'role'
>>> [(t.TableName, t.Rows.Count) for t in dataset.Tables]
[('person', 21), ('movie', 6), ('role'’, 16)]

In listing 12.13, the CommandText we provide for the SelectCommand consists of three
SQL statements to get data for all of the tables in the database at once. When we fill
the DataSet from this, we get three tables, with the default names Table, Table1, and
Table2. We then change the tables’ names to match what they contain, and we can
manipulate them in the same way we saw in listing 12.12.

 DataSets have a huge array of features beyond what we’ve seen here:

■ Each DataTable can have UniqueConstraints and ForeignKeyConstraints to
ensure that their data is manipulated only in consistent ways.

■ A DataSet can be configured with DataRelations,8 which specify parent-child
relationships between tables (such as movie and role in our example database).

■ The data in DataSets can be updated and then sent back to the database using
the DataSet.Update method. This uses the InsertCommand, UpdateCommand,
and DeleteCommand properties on the DataAdapter.

Listing 12.13 Filling a DataSet with more than one result set

8 These should really be called DataRelationships to avoid confusion with relations (that is, tables) in the
relational model sense.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

313Web services
DataSets are a large topic, and you can find a lot of information about them in books
about ADO.NET and articles on the web. Despite that, in my experience working with
databases and the .NET framework, the advanced features of DataSets tend not to be
as useful as you might expect. They fall into a very narrow space between two broad
types of tasks.

 On one hand, tasks that require simple database interaction are better done using
the Data Provider layer directly. This is even truer in IronPython than in languages
like C# or VB.NET, because Python’s rich native data structures make it easy to collect
the results of a query as a list or dictionary of items (something you might do with a
DataTable or DataSet otherwise).

 On the other hand, for tasks needing complex database interaction, it’s almost
always better to use classes to model the entities involved. Then you can attach compli-
cated behavior to the objects and give them methods to manage their relationships
directly. In general, these classes will use the data provider classes to load and store
their information in the database, while client code will deal with the higher-level
interface the custom classes provide. The resulting code is clearer and easier to main-
tain because it’s more closely related to the problem domain, rather than dealing with
the verbose, very general API of the DataSet.

 In section 12.1 we explored how you can use the different parts of ADO.NET with
IronPython to interact with a wide range of data sources. There’s a lot more to see, at
both the DataSet and Data Provider layers, and lots of examples and articles are avail-
able that go into more detail on specific areas of the framework, as well as extensive
MSDN documentation. Since ADO.NET is essentially a set of class libraries, examples
using C# or VB.NET are easy to convert into IronPython code.

 In the next section we look at how we can use IronPython to deal with another
kind of data source: a web service. We cover talking to various kinds of web services
from IronPython, as well as implementing one from the ground up.9

12.2 Web services
The term web service has a number of meanings, depending on whom you ask. The
simplest is that a web service is a way for a program on one computer to use HTTP
(and hence the web) to ask another computer for some information or to ask it to
perform some action. The key idea is that the information that comes back in
response is structured to be useful to a computer program, rather than the jumbled
HTML of a normal web page with navigation, advertising, script code, and content all
mixed together. The format of the information could be anything; commonly used
formats are XML (particularly RSS, Atom, and SOAP), JavaScript Object Notation
(JSON), and good-old plain text. Python’s strong string-handling capabilities come in
very handy when dealing with all of these different formats, and often libraries are
available to do the parsing for us.

9 Well, maybe not from the ground up. There are a lot of goodies to help in the .NET framework!
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

314 CHAPTER 12 Databases and web services
 In section 12.2 we look at three different kinds of web service. To begin, we see an
example of one of the simplest: the feed of recent articles from a weblog. The code
for using this service makes exactly the same kind of request a web browser makes for
web pages, but it processes the information it gets back rather than displaying it
directly to the user. In section 12.2.2 we look at using SOAP web services, which have a
different way of packaging up requests and responses. The .NET framework has some
tools that make SOAP services very convenient to use. Then in the last part of the
chapter we explore how we can build our own web service using the REST architec-
tural style.

 To use the first of our web services, we can request the Atom feed from a weblog to
see the articles that have been posted recently.

12.2.1 Using a simple web service

When an article is published on a weblog, the blogging system will update its Atom
or RSS feed so that news readers can alert users to the new article. We can download
the feed using the WebClient class, which provides a high-level interface for talking
to websites.

>>> from System.Net import WebClient
>>> url = 'http://www.voidspace.org.uk/ironpython/planet/atom.xml'
>>> content = WebClient().DownloadString(url)

Now content is a string containing XML in the Atom format. An Atom document looks
something like what you see in listing 12.14.

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<feed xmlns="http://www.w3.org/2005/Atom">

 <title>feed title</title>
 <link rel="self" href="link to feed"/>
 <link href="link to site"/>
 <id>unique identifier of the feed</id>
 <updated>when it was last updated</updated>

 <entry>
 <title type="html">title of this entry</title>
 <link href="url of this entry"/>
 <id>unique identifier of this entry</id>

 <updated>when it was last updated</updated>
 <content type="html">the body of this entry</content>

 <author>
 <name>author's name</name>
 <uri>author's website</uri>
 </author>
 </entry>

(more entries)

</feed>

Listing 12.14 Anatomy of an Atom XML weblog feed
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

315Web services
The feed structure (in listing 12.14) has a small set of metadata elements, including
these:

■ Its title
■ A link to the feed
■ A link to the site that provides the feed
■ A unique identifier for the feed
■ When the feed was last updated

Then it has a number of entry elements, each of which has its own details:

■ A title for the entry
■ A link to the entry
■ A unique identifier for this individual entry
■ When it was updated
■ The content of the entry
■ The author’s details: a name and a link to the author’s website

We can process this in a number of ways; we could use libraries to parse Atom feeds
and produce objects that give us the details of items in the feed, or we could use the
XmlDocumentReader class from chapter 5 to extract the details. Those would work fine,
but in web service scenarios we’re often dealing with ad hoc XML formats, so it’s
handy to have a simple way of extracting details from the document without having to
write specific handler classes for each format.

 In that vein, in listing 12.15 we use a wrapper around XmlElements that makes pull-
ing information out of arbitrary XML documents more convenient: it uses
__getattr__ to make failed attribute lookups try to find the name in XML attributes
and child elements.10 You can see the code for the simplexml module in the source
code for section 12.2.1.

>>> from simplexml import SimpleXml
>>> feed = SimpleXml.fromString(content)
>>> feed.title
'Planet IronPython'
>>> feed.link.href
'http://www.voidspace.org.uk/ironpython/planet/atom.xml'
>>> len(feed.entries)
120
>>> for entry in feed.entries[:3]:
... print entry.title.InnerText
... print entry.link.href
... print entry.author.name

10 This approach is based on the one used in the DynamicWebServices C# sample released by the IronPython
team. That was released for IronPython 1.1, and the APIs it uses are not available in IronPython 2.0, but the
behavior was fairly simple to reproduce in IronPython itself.

Listing 12.15 Extracting Atom feed details with simplexml

Parses the feed XML

Child elements are available
as attributes

Navigate multiple
elements at once

Elements appearing multiple
times become a list

Standard XmlElement
attributes are also available
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

316 CHAPTER 12 Databases and web services
... print

...
Miguel de Icaza: Custom Controls in Gtk# Article
http://tirania.org/blog/archive/2008/Jun-01-1.html
Miguel de Icaza (miguel@gnome.org)

Miguel de Icaza: Holly Gtk Widgets
http://tirania.org/blog/archive/2008/Jun-01.html
Miguel de Icaza (miguel@gnome.org)

John Lam on IronRuby: IronRuby and Rails
http://feeds.feedburner.com/~r/LessIsBetter/~3/301250579/ironruby-and-

➥ rails.html
John Lam
and so on...
>>> fuzzy_entries = [e.title.InnerText for e in feed.entries
if e.author.name.startswith('Fuzzyman')]
>>> len(fuzzy_entries)
42

You can see in listing 12.15 that getting details out of the feed XML is very easy using
this technique (assuming you know the structure of the XML), and now you could
store the entry data in a database or a file or display it in a user interface. Python’s
powerful list comprehensions can be very useful at this point for chopping up the data
and filtering out desirable (or undesirable) parts.

 A web service can be as straightforward as that: an occasionally updated file on a
web server that is downloaded by programs running somewhere else. In general,
though, a web service will wrap up a number of related operations on some data. In an
example we’ll look at soon, the operations will enable us to query, create, update, and
delete a set of notes stored by the service.

 There are two main approaches to web services: the SOAP camp and the propo-
nents of a technique called REST. Although both of these techniques sit on top of
HTTP, they use it in very different ways.

 In a SOAP web service, all calls are HTTP POSTs to one URL. The posted data con-
tains XML that identifies the operation that should be executed, as well as the parame-
ters for the operation, in a structure called the SOAP envelope (because it has the
address information for the message). The operations offered by a SOAP service and
the types of the parameters they require are documented in an XML format called
WSDL. WSDL service descriptions are fairly complicated structures, but the advantage
of having them in a machine-readable format (rather than just as documentation) is
that they can be created and used by tools. In general, this is the way SOAP services are
made (particularly in .NET); the service provider will create an interface in code,
which is then analyzed by a tool to produce WSDL for the service. Service consumers
then take that WSDL and feed it to another tool, which generates a proxy to allow
communication with the service.

 Where a SOAP service uses only POSTs to a specific URL, with all other information
carried in XML envelopes, REST services use a much broader range of HTTP features,
and a service will handle an arbitrary number of URLs (generally the entire URL space

Selecting entries
from the feed
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

317Web services
under a root). A URL within a REST service denotes a resource managed by the ser-
vice. Each resource is manipulated by sending an HTTP request to the URL, and which
operation to perform on the resource is determined by the HTTP method specified.
Essentially an operation in a REST service is the combination of a noun (a resource
URL) and a verb (the HTTP method).

Those are the key differences between the approaches. Let’s look at how we can use
both kinds of web services from IronPython.

12.2.2 Using SOAP services from IronPython

The .NET framework has very solid tool support for SOAP/WSDL–style web services. In
Visual Studio you can add a web reference to a web service URL that will automatically
create a proxy class and all of the associated data structures that might be used in the
service’s interface. Under the hood, this uses a tool included with the .NET SDK called
wsdl.exe to download the WSDL for the service and generate C# code, which is then
compiled into an assembly that client code can use. We can use this method from the
command line as well,11 as you can see in listing 12.16:

11 This uses a sample web service hosted by dotnetjunkies.com.

HTTP methods
The HTTP standard defines a number of methods that can be specified in a request.
These are the methods that are commonly used in REST services, along with what
they might do:

GET—Ask for the details of a resource.

POST—Create, update, or delete a resource, or do something with the request data.

PUT—Create or update a resource.

DELETE—Delete a resource.

There’s obviously some overlap between POST and PUT/DELETE. In general the key
difference is that PUT and DELETE act on specific individual resources, while a POST
that created a new resource would act on the container. So, for example, if /users/
john/bookmarks is the URL for John’s bookmarks, you could create a new bookmark
by POSTing a representation of a bookmark to a forum to that URL, but to update the
bookmark you’d do a PUT to /users/john/bookmarks/forum. The meaning of POST is
also more general, so it can be useful for things that don’t fit so naturally into GET/
PUT/DELETE, such as changing the workflow state of an item in a document manage-
ment system.

The standard also allows for defining new methods. Protocols such as WebDav do
this, and it might be appropriate in some cases when defining the interface for a web
service.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

318 CHAPTER 12 Databases and web services
C:\Temp> wsdl.exe /namespace:MathService http://www.dotnetjunkies.com/
quickstart/aspplus/samples/services/MathService/

➥ CS/MathService.asmx
Microsoft (R) Web Services Description Language Utility
[Microsoft (R) .NET Framework, Version 2.0.50727.42]
Copyright (C) Microsoft Corporation. All rights reserved.
Writing file 'C:\Temp\MathService.cs'.

This creates MathService.cs and puts the generated class into the MathService
namespace (which we need if we want to be able to import it easily). Now, as shown in
listing 12.17, we can compile the code into a .NET assembly.

C:\Temp> csc.exe /target:library MathService.cs
Microsoft (R) Visual C# 2005 Compiler version 8.00.50727.1433
for Microsoft (R) Windows (R) 2005 Framework version 2.0.50727
Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

We can use the generated proxy in the assembly to communicate with the web service
as if it was a local library, as shown in listing 12.18.

>>> import clr
>>> clr.AddReference('MathService')
>>> from MathService import MathService
>>> service = MathService()
>>> service.Add(3, 4)
7.0

The proxy also provides asynchronous versions of the methods, as shown in listing 12.19.

>>> def showResult(s, e):
... print 'asynchronous result received:', e.Result

>>> service.MultiplyCompleted += showResult
>>> service.MultiplyAsync(4, 5)
>>> asynchronous result received: 20.0

Both of the command-line tools used here are actually using facilities for code genera-
tion and compilation that are built into the framework. All of the creation of proxy
classes can be done at runtime, if necessary. In prototyping situations this can be quite
handy. The code in listing 12.20 uses the wsdlprovider module, which you can find in
the source code for section 12.2.2.

>>> import wsdlprovider as wsdl
>>> url = 'http://www.webservicex.net/WeatherForecast.asmx'

Listing 12.16 Generating a C# proxy for a SOAP service with wsdl.exe

Listing 12.17 Compiling the C# proxy into a class library with csc.exe (the C# compiler)

Listing 12.18 Using the MathService proxy

Listing 12.19 Calling a web service method asynchronously

Listing 12.20 Calling a SOAP service using a dynamically generated proxy
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

319Web services
>>> assembly = wsdl.GetWebservice(url)
>>> service = assembly.WeatherForecast()
>>> f = service.GetWeatherByZipCode(‘90210’)
>>> print f.PlaceName, f.StateCode
BEVERLY HILLS CA
>>> for d in f.Details:
... print d.Day, d.MaxTemperatureC
...
Sunday, June 08, 2008 24
Monday, June 09, 2008 24
Tuesday, June 10, 2008 23
Wednesday, June 11, 2008 24
Thursday, June 12, 2008 27
Friday, June 13, 2008 27

That gives you an overview of how to use SOAP web services from IronPython. How
about implementing them? Unfortunately, that’s very difficult. The .NET framework’s
support for creating SOAP services is primarily based on introspecting classes and
using attribute annotations on them to generate the web service description and hook
your custom classes into the server. Since IronPython doesn’t create classes that are
directly usable from the C# side, the tools can’t process them, and there’s no way for
us to attach attributes to them anyway. In theory, we could use the XML libraries to roll
our own WSDL and SOAP interfaces, but given the complexity of the formats, this
would be a lot of work.

 This doesn’t mean we can’t implement web services in IronPython at all, though.
REST services are based on the idea of reusing the features of HTTP, rather than sim-
ply sitting on top of it in the way that SOAP does. This means that a lot of the basic
structure for implementing a REST service is already provided by the components that
handle normal web traffic in the .NET framework. Let’s take a look at how this works.

12.2.3 REST services in IronPython

Rather than looking at how to use a public web service (which will probably only have
read-only access), we’re going to implement our own basic but fairly complete REST
service in IronPython. This service will store notes that are given to it by client pro-
grams. Notes are simple data items containing the following:

■ A title
■ A body
■ An id—a unique identifier for the note that allows it to be retrieved

The next step in defining our service is to determine the operations we want to sup-
port and how we will map the operations to resource URLs and methods. Table 12.2
provides a description of each operation in the notes service.

 As you can see, some requests pass a note as a payload. After each request, the
server indicates whether the operation was completed using the HTTP status code and
sends back a response that contains the information that needs to be sent back (if
any). In addition, each response will have a status (normally ok, if the operation suc-
ceeded), and in the case that the operation failed, a reason will be given.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

320 CHAPTER 12 Databases and web services
This set of operations and rules almost gives us an interface that we could write a cli-
ent for. The only detail that remains is what the formats of the various payloads should
be. This could actually be any format we like; XML is an obvious one, but JavaScript
Object Notation (see http://json.org) or plain text could work just as well. We stick
with XML since in .NET it doesn’t require any extra libraries.

 So the payloads we have in requests and responses are notes, links to notes, and
responses.

■ Notes will look like this:
<note id="note_id" title="the title of the note">
Note body
</note>

■ Links to notes will look like this:
<notelink title="note title" href="http://url/of/note"/>

■ Responses will look like this:
<response status="ok or error">
Either a note, note link, list of links or error reason, depending on the
request.
</response>

The response element will always be the root of the XML document the service sends
back. It acts as a container for the information we need to send back, and it provides a
handy place to report status information that isn’t part of the notes that we’re managing.

 With the formats nailed down, we have a complete interface. The service and cli-
ents could be implemented in any language, as long as it has facilities for talking
HTTP and parsing and generating XML, although obviously we’ll be looking at imple-
mentations in IronPython. Let’s look at how a client for this service would be written.
THE NOTES SERVICE CLIENT MODULE

The client module abstracts the communication and message parsing that we need to
do to make requests to the notes service, so that we can write applications that use the
notes service without worrying much about the underlying details. Essentially, it’s a
hand-written version of the code the .NET WSDL tools generate for a SOAP service, but
because the REST style is so close to HTTP, the code is quite simple.

Table 12.2 The operations provided by the notes service

Operation URL Method Details

List notes /notes GET Response will contain a list of note titles
and links.

Add a note /notes POST Request should be the note to add.
Response will contain a link to the new note.

Get the details of a note /notes/<note id> GET Response will contain the details of the note.

Update a note /notes/<note id> PUT Request should be the updated note.

Delete a note /notes/<note id> DELETE
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://json.org

321Web services
 We start from the core of the module in listing 12.21 and work outward. The com-
plete client.py module is available in the source code for this section. It uses the
Note class from note.py, which stores the note’s id, title, and body, and provides meth-
ods to convert to and from XML. The notes service client also uses the simplexml
module we saw earlier in the chapter for parsing responses.

from simplexml import SimpleXml
from note import Note

from System.IO import MemoryStream
from System.Net import WebException, WebExceptionStatus,\
 WebRequest
from System.Xml import XmlDocument, XmlWriter

def sendMessage(method, url, note=None):
 request = WebRequest.Create(url)
 request.Method = method
 if note is not None:
 writeNoteToRequest(note, request)
 try:
 response = request.GetResponse()
 except WebException, e:
 if e.Status == WebExceptionStatus.ProtocolError:
 # this is an error message from the service
 # look in the response for the problem
 response = e.Response
 else:
 raise
 stream = response.GetResponseStream()
 responseDoc = SimpleXml.fromStream(stream)
 stream.Close()
 checkResponse(responseDoc)
 return responseDoc

class ServiceError(Exception):
 pass

def checkResponse(response):
 if response.status != 'ok': |
 raise ServiceError(response.InnerText)

The sendMessage function in listing 12.21 is the heart of the client module. It takes
an HTTP method (like GET or PUT), the URL to send the request to, and a Note
instance, if one should be sent as the payload of this message. It sends the request,
parses the response, checks to see whether the operation was successful (using
the checkResponse function), and returns the response. The higher-level functions
on top of sendMessage will then be able to get the details they need out of the
response node.

 Next, in listing 12.22 we have the writeNoteToRequest function, which handles
the nuts and bolts of creating an XML document and serializing it into the request:

Listing 12.21 The notes service client: sendMessage

For creating and
writing payloads

Not all operations
need notes

Sends request data
to the server

Indicates
an HTTP
error code

Parses the response
into a SimpleXml

Checks the
status attribute
of the response
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

322 CHAPTER 12 Databases and web services
def writeNoteToRequest(note, request):
 doc = XmlDocument()
 doc.AppendChild(doc.CreateXmlDeclaration('1.0', 'utf-8', 'yes'))
 doc.AppendChild(note.toXml(doc))
 request.ContentType = 'text/xml'
 stream = request.GetRequestStream()
 writer = XmlWriter.Create(stream)
 doc.WriteTo(writer)
 writer.Flush()
 stream.Close()

We add a declaration to the document to indicate the encoding, and then we convert
the note to XML nodes and add it to the document. Notice that we pass the document
into the call to note.toXml; this is because the XmlDocument has methods for creating
XML nodes that are associated with the document. There’s no simple way of creating
the nodes without the document they are going to be added to.

 With sendMessage as a base, the implementations of functions to call the different
note service operations follow very simply from the definition of the service interface,
as you can see in listing 12.23.

index = 'http://localhost:8080/notes'

def getAllNotes():
 response = sendMessage('GET', index)
 return [(n.title, n.href) for n in response.notelinks]

def getNote(link):
 response = sendMessage('GET', link)
 return Note.fromXml(response.note.element)

def addNote(note):
 response = sendMessage('POST', index, note)
 return response.notelink.href

def updateNote(link, note):
 sendMessage('PUT', link, note)

def deleteNote(link):
 sendMessage('DELETE', link)

Each function in listing 12.23 calls sendMessage with the method and URL that repre-
sent its operation, as well as a note if one should be sent with the request, and extracts
the information it needs from the response that comes back.

 At this point the client is complete; it provides a function for every operation the
notes service offers. If you look in client.py, you can see some examples of using the
module to manipulate notes in the service. Of course, you won’t be able to run them
without the service itself! So now it’s time to see how it hangs together.
THE NOTES SERVICE

The notes service is built on the .NET HttpListener class, which provides a simple way
to write applications that need to act as HTTP servers. To use the HttpListener, you

Listing 12.22 Sending a note to the server from the client

Listing 12.23 The notes service client: note operations
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

323Web services
tell it what URLs you want to handle, start it, and wait for requests. Each request comes
as a context object that gives you access to everything that was sent from the client and
allows you to send response data back. The HttpListener provides methods for han-
dling requests asynchronously, but to keep things simple the notes service uses the
synchronous GetContext method to receive requests. The full code of the Notes-
Service class can be found in service.py in the source code for section 12.2.3. First,
in listing 12.24 we look at the main loop of the service.

class NotesService(object):

 def __init__(self):
 self.listener = HttpListener()
 self.listener.Prefixes.Add('http://localhost:8080/notes/')
 self.notes = {
 'example': Note('example',
 'An example note',
 'Note content here')}

 def run(self):
 self.listener.Start()
 print 'Notes service started'
 while True:
 context = self.listener.GetContext()
 self.handle(context)

As you can see, when a NotesService instance is created, we create its HttpListener
and specify that we want to handle all requests that begin with 'http://local-
host:8080/notes/'. We also create a dictionary that acts as storage for all notes main-
tained through the service. Obviously this could be replaced by storing the notes in a
database or in the file system in a more full-featured implementation. In the run
method, we have the main loop of the service. The HttpListener is told to begin lis-
tening for incoming requests, and we call its GetContext method in an infinite loop.
GetContext will block until a request is received. Then we call the handle method,
which uses the HTTP method of the request and the requested URL to dispatch the
request to the service’s operation methods. Let’s look at the handle method now in
listing 12.25.

def handle(self, context):
 path = self.pathComponents(context)
 method = context.Request.HttpMethod
 print method, path
 handlers = {}
 if path == ['notes']:
 handlers = dict(GET=self.getNotes, POST=self.addNote)
 elif len(path) == 2:
 handlers = dict(GET=self.getNote,
 PUT=self.updateNote,

Listing 12.24 The notes service main loop

Listing 12.25 NotesService: dispatching requests in the handle method

Possible handlers
for requests to
/notes/

Possible handlers
for /notes/note-id
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

324 CHAPTER 12 Databases and web services
 DELETE=self.deleteNote)
 handler = handlers.get(method, self.error)
 try:
 handler(context)
 except ServiceError, e:
 self.error(context, e.statusCode, e.reason)

First, handle gets the requested path (as a list of the slash-separated components in
the URL) and the HTTP verb that was used in the request. For each kind of path we
build a dictionary of handlers, and then we use that handler dictionary to get the
method corresponding to the verb that was sent. The handler dictionary maps the
verbs that are valid for that kind of path to their corresponding NotesService meth-
ods. In the event that we were given a totally invalid path or a verb that isn’t sup-
ported, we dispatch the request to the error method, which sends a response
indicating that the combination of method and path didn’t make sense. If there is a
problem while one of the handlers is executing (for example, if a client tries to
update a note that doesn’t exist), the handler will raise a ServiceError exception
(defined elsewhere in service.py) with the HTTP status code that should be sent, as
well as a message describing the problem.

 The service can now dispatch requests to the correct handler method based on the
verb and URL. What does a handler method look like? They all have the same basic
structure:

1 Gather any information needed from the request and check that the operation
makes sense (no deleting nonexistent notes!).

2 Perform the requested operation (if it’s something that changes the stored
notes).

3 Create a response document with any information that needs to be sent back to
the client and send it.

Making a response and writing it back to the client are common tasks, so they have
been pulled out into separate methods. makeResponse creates an XML document con-
taining an empty response element with a default status of ok. writeDocument handles
the nuts and bolts of writing the XML document out to a response stream. They’re
quite similar to the code for building documents and writing them to streams that we
saw in the client module, so we won’t cover them here. You can see the details in the
source code for the NotesService class.

 The first handler we will look at is getNotes, which generates a response with links
to all of the notes. You can see what it looks like in listing 12.26.

def getNotes(self, context):
 doc = self.makeResponse()
 for note in self.notes.values():
 link = note.toSummaryXml(
 doc, LINK_TEMPLATE)

Listing 12.26 NotesService: the getNotes handler

Fall back to the error
handler if none match

Call the selected handler with context
Send the error
back to the client
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

325Web services
 doc.DocumentElement.AppendChild(link)
 self.writeDocument(context, doc)

Since this operation is only a query, we don’t need to change the notes store. We create
a new response document and then go through all of the notes, creating an XML snippet
representing a link to each (using the LINK_TEMPLATE constant defined at the top of the
file) and adding that to the response, before sending it back using writeDocument.

 The other handler that deals with requests to the top-level URL, /notes/, is addNote,
in listing 12.27. The method needs a note to be sent in the request, so we need the helper
method getNoteFromRequest to parse the XML document into a note.

def getNoteFromRequest(self, request):
 message = XmlDocument()
 message.Load(request.InputStream)
 request.InputStream.Close()
 return Note.fromXml(message.DocumentElement)

def addNote(self, context):
 note = self.getNoteFromRequest(context.Request)
 if note.id in self.notes:
 raise ServiceError(400, 'note id already used')
 self.notes[note.id] = note
 doc = self.makeResponse()
 doc.DocumentElement.AppendChild(note.toSummaryXml(doc, LINK_TEMPLATE))
 self.writeDocument(context, doc)

Once addNote has read in the note that was sent, it checks that the id is not already
taken. If it is, it raises a ServiceError, which is caught in handle and causes an error
to be written back to the client with the problem. Otherwise, we add the note to the
store and send the client back a link to the new location of the note.

 The next operation to look at is getNote, which is the first that handles a URL for
an individual note. We have three operations at this level, so we obviously also need a
method to get the note that is referred to by the current URL from the store, which
we’ll call getNoteForCurrentPath. You can see these methods in listing 12.28.

def getNoteForCurrentPath(self, context):
 lastChunk = self.pathComponents(context)[-1]
 noteId = HttpUtility.UrlDecode(lastChunk)
 note = self.notes.get(noteId)
 if note is None:
 raise ServiceError(404, 'no such note')
 return note

def getNote(self, context):
 note = self.getNoteForCurrentPath(context)
 doc = self.makeResponse()
 doc.DocumentElement.AppendChild(note.toXml(doc))
 self.writeDocument(context, doc)

Listing 12.27 NotesService: the addNote handler

Listing 12.28 NotesService: the getNote handler
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

326 CHAPTER 12 Databases and web services
getNoteForCurrentPath gets the path and uses the HttpUtility.UrlDecode method
to decode the note id in the URL. This is because some characters have special mean-
ing in URLs and so can’t be used “naked” in ordinary parts of a URL, like the note id in
a request to the notes service. These special characters are quoted by replacing them
with a % and then their ASCII code in hexadecimal. So forward slashes become %2F
(because ord(/) is 47, which is 0x2F), and spaces become %20 (although sometimes
they are special-cased as + for readability). Once we have the decoded note id, we
check to see whether there is a note with that id in the store; if there isn’t, we raise an
HTTP 404 Not Found error. Once the note is retrieved, getNote is simple: it just writes
the note out to the client.

 The next operation is updateNote, in listing 12.29, which brings together all of
the building blocks we’ve seen: it receives both a note in the request and a note id in
the URL.

def updateNote(self, context):
 note = self.getNoteForCurrentPath(context)
 updatedNote = self.getNoteFromRequest(context.Request)
 if note.id != updatedNote.id:
 raise ServiceError(400, 'can't change note id')
 self.notes[note.id] = updatedNote
 self.writeDocument(context, self.makeResponse())

updateNote gets the note for the current path from the storage and then reads in the
note that has been sent. We check that the id has been kept the same; if not, we raise
an error. This is a slightly arbitrary restriction, although there is some justification for
it: one of the principles of the web (which is inherited by REST) is that
things—resources—shouldn’t move. The key feature of the web is linking between
resources, and some of those links may be from places that you can’t update. Allowing
the note id to change would change its URL, so any links to the old note would be bro-
ken.

 If the note exists in the store and the new one has the same id, we replace the old
note in the store with the new one. The update operation doesn’t need to return any-
thing (other than telling the client that everything was OK), so it just writes an empty
response back.

 The last operation is deleteNote (listing 12.30), which is simple.

def deleteNote(self, context):
 note = self.getNoteForCurrentPath(context)
 del self.notes[note.id]
 self.writeDocument(context, self.makeResponse())

We get the note, and if it exists, we remove it from the NotesService store. Then we
tell the client that the job’s been done.

Listing 12.29 NotesService: the updateNote handler

Listing 12.30 NotesService: the deleteNote handler
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

327Web services
 And that’s the last operation we wanted to support! Now the notes service is com-
plete. You can see the full code for the NotesService class in the source code for
section 12.2.3. If you want to see it in action, you can run it at the command line with
ipy service.py; when it’s started and listening for requests, you’ll see the message
Notes service started. The client module has some examples of using the service
in its if __name__ == '__main__' section, so you can run it with ipy client.py. When
you run the client, the server will show you the requests it’s receiving as they come in.

 Another trick that can be quite useful when trying out libraries like the client
module is the -i command-line option for ipy.exe,12 making the command ipy –i
client.py. (The i stands for interact.) This will run the file, including the __main__
section, and then display a normal Python >>> prompt instead of exiting, which lets
you run commands in the module. So you can try calling getAllNotes and then creat-
ing your own Notes, sending them to the service with addNote, and manipulating
them with the other functions in the module.

 Now you’ve seen how we can communicate with and implement REST-style web ser-
vices using IronPython. Obviously our notes service is fairly simple; it doesn’t store the
notes anywhere so they won’t persist between runs of the service. It can handle only a
single request at a time, and it doesn’t have the kind of error handling or logging you
would want in a production system. That said, it covers a lot of the techniques you’ll
need to create your own services, and you can apply the principles of the REST archi-
tectural style it uses to many situations where you need separate systems to communi-
cate over the web.

 There are philosophical differences between the SOAP and REST techniques for
building web services. With SOAP, the focus is on using tools to automatically generate
web services and clients from interfaces or class descriptions, which can be very conve-
nient. However, frequently the tools for different platforms or vendors (such as Micro-
soft, Sun, and IBM) will not agree on how an interface or data structure should be
represented in WSDL or SOAP, and so services created with the tools won’t interoper-
ate. If you’re trying to integrate a Java system with a .NET one (and this kind of sce-
nario is often exactly where you would want to use web services), the incompatibilities
that arise can be extremely difficult to work around. And if you’re trying to use a SOAP
web service from a platform that doesn’t have much tool support for it, the complexity
of the protocol means that you have a lot of work to do. The REST style is in part a
response to these problems: it’s much simpler, so it’s feasible to write the interfaces
yourself, and you can easily debug and fix problems.

 At the moment, neither style is obviously better in all situations. Luckily, we can use
both kinds of services from IronPython. We can also create REST services, and in the
case of creating SOAP services, a lot of effort is being devoted to the problem of add-
ing .NET attributes to IronPython classes, both by the IronPython team and the com-

12 This option works the same way in CPython as well.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

328 CHAPTER 12 Databases and web services
munity.13 Hopefully this work will enable us to use the .NET tools to build SOAP
services as conveniently as we can use them.

12.3 Summary
In this chapter, we’ve covered the basics of using the ADO.NET libraries with IronPy-
thon to get access to data stored in all kinds of relational databases, from embedded
databases like Sqlite all the way to high-end commercial databases like SQL Server and
Oracle. The nice thing about the Data Provider layer is that it lets us talk to these very
different databases with the same interface.

 We’ve also looked at dealing with SOAP and REST web services from IronPython, as
well as implementing our own simple REST service. Web services are becoming more
and more useful in all kinds of ways. Companies such as Google, Amazon, and Yahoo!
are exposing huge swathes of their systems as web services, so the information they
provide can be mashed up and integrated more tightly with other websites, as well as
enabling us to use their data in new ways. At the other end of the scale, we can build
web services that provide back-end data to the browser, letting us make web applica-
tions with richer interfaces using AJAX and Flash.

 In the next chapter, we look at Silverlight, a new browser plugin that can be used
to make more dynamic web interfaces in a similar way to Flash. Of course, from our
perspective, the key feature of Silverlight is that it allows us to script the browser
in IronPython!

13 The Coils project (http://www.codeplex.com/coils) is one approach to solving this problem.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.codeplex.com/coils

Silverlight:
 IronPython in the browser
Improved browser capabilities, enabled by faster computers, have not only made
complex and rich web applications possible, but have also changed the way we use
computers. Techniques like AJAX, and powerful JavaScript libraries that abstract
away painful cross-browser issues, have resulted in client-side (in the browser) pro-
gramming becoming one of the most important fields in modern software develop-
ment. Despite this, web applications remain restricted by the user interface
capabilities of JavaScript and the performance of JavaScript when running large
programs. Ways around these difficulties include web-programming frameworks
such as Flash, AIR, Flex, and Silverlight, which have their own programming and
user interface models.

This chapter covers
■ Packaging a dynamic Silverlight application
■ Using the Silverlight APIs
■ Building user interfaces
■ Interacting with the browser DOM
329

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

330 CHAPTER 13 Silverlight: IronPython in the browser
 In case you haven’t heard of it, Silverlight is a cross-platform browser plugin cre-
ated by Microsoft. It is superficially similar to Flash but with the magic extra ingredi-
ent that we can program it with Python. Because Silverlight is based on the .NET
framework, it is a major new platform that IronPython runs on.

 Silverlight has a user interface model based on Windows Presentation Foundation,
and we can use it to do some exciting things, such as media streaming, creating
games, and building rich internet applications.

 In this chapter, we look at some of what Silverlight can do and how to do it from
IronPython. We’ll be exploring, creating, and deploying dynamic Silverlight applica-
tions and programming with the Silverlight APIs—some of which are familiar and
some of which are new.

13.1 Introduction to Silverlight
Silverlight is a cross-platform, cross-browser plugin for embedding into web pages.
There are two versions of Silverlight: Silverlight 1 is for media streaming and is pro-
grammed with JavaScript. Silverlight 2, the interesting version, has at its heart a cut-
down and security-sandboxed version of the .NET framework called the CoreCLR.
That means it contains many of the APIs we are already familiar with, including the
WPF user interface. More important, the CoreCLR is capable of hosting the Dynamic
Language Runtime, so Silverlight can be programmed with DLR languages like Iron-
Python and IronRuby.

 In this chapter we explore some of the features that Silverlight provides. Figure 13.1
shows a Tetrislite1 game written for Silverlight 2, from the Silverlight Gallery.

 By cross-platform, Microsoft means Windows and Mac OS X. By cross browser, the
Microsoft folks mean the Safari, Firefox, and Internet Explorer web browsers. This
isn’t the end of the story, though; Silverlight support is in the works for the Opera

1 See http://silverlight.net/Community/gallerydetail.aspx?cat=sl2&sort=1.

Figure 13.1 Tetrislite from the
Silverlight Gallery
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://silverlight.net/Community/gallerydetail.aspx?cat=sl2&sort=1

331Introduction to Silverlight
browser and for the Windows Mobile and Nokia S60 platforms. The Silverlight team
members are not working directly to support Linux, but they are working with the
Mono team on an officially blessed Mono port of Silverlight called Moonlight.2 This
will initially work on Firefox on Linux, but the eventual goal is to get Moonlight work-
ing on multiple browsers (like Konqueror) and on every platform that Mono runs on.

 Microsoft is assisting the Moonlight effort by providing access to the Silverlight test
suite and the proprietary video codecs that Silverlight uses. At the time of writing,
Moonlight supports the 1.0 engine, and work has begun on the 2.0 engine. Moonlight
uses the Mono stack, but a lot of the work involves implementing the security model
that provides the Silverlight browser sandboxing. Another big part is the user inter-
face model; this is particularly interesting, as previously the Mono team has said that
they have no interest in implementing WPF. Perhaps this will change now that they are
implementing a subset of WPF for Moonlight.

 So what benefits for web application programming does Silverlight have over tradi-
tional JavaScript and AJAX? The first advantage is that it can be programmed in Python,
and frankly that’s enough for us. The Python community has long wanted to be able to
script the browser with Python rather than JavaScript, and it is at least slightly ironic that
it is Microsoft that has made this possible. Perhaps a more compelling reason is that Sil-
verlight is fast. By some benchmarks3 IronPython code running in Silverlight runs two
orders of magnitude faster than JavaScript! As well as having its own user interface
model, Silverlight also gives you full access to the browser DOM (Document Object
Model), so that everything you can do from JavaScript you can also do from inside Sil-
verlight. In fact, one of the dynamic languages that run on the DLR is an ECMA 34–com-
pliant version of JavaScript called Managed JScript. This makes it easier to port AJAX
applications to Silverlight, because a lot of the code can run unmodified.

 The features of Silverlight include

■ A user interface model based on WPF
■ APIs including threading, sockets, XML, and JSON
■ A powerful video player
■ Deep zoom and adaptive media streaming
■ Client-side local storage in the browser
■ Access to the browser DOM and techniques to communicate between JavaScript

and the Silverlight plugin
The last point is particularly interesting. Although most example Silverlight applica-
tions take over the whole web page, this is not the only way to use it. Like Flash, the Sil-
verlight plugin can occupy as little of a web page as you want,5 and you can embed
several plugins (which can communicate with each other) in the same page. In fact,
the Silverlight plugin need not be visible at all. By interacting with JavaScript and the

2 See http://www.mono-project.com/Moonlight.
3 And of course all benchmarks are misleading, in the same way that all generalizations are wrong.
4 ECMA 3 is the standard that covers JavaScript 2, the version in use by most current browsers.
5 Yes, you can use Silverlight to create really annoying adverts that everybody hates.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.mono-project.com/Moonlight

332 CHAPTER 13 Silverlight: IronPython in the browser
browser DOM, you can use all your favorite AJAX tricks from Silverlight, including
using existing JavaScript libraries for the user interface, with the business logic imple-
mented in Python.

 Moonlight has an additional mode of operation that isn’t (yet!) supported by Sil-
verlight. Moonlight applications called desklets6 can run outside the browser with full
access to the Mono stack.

 Creating Silverlight applications with dynamic languages is very simple. Let’s dive
into the development process.

13.1.1 Dynamic Silverlight

Silverlight applications are packaged as xap files (compressed zip files), containing
the assemblies and resources used by your application. An IronPython application is
just a normal application as far as Silverlight is concerned; a DLR assembly provides
the entry point and is responsible for running the Python code.

 The DLR assemblies, along with the tool for developing and packaging dynamic
applications, are known by the wonderful mouthful Silverlight Dynamic Languages SDK
and can be downloaded from http://www.codeplex.com/sdlsdk.

The Silverlight Dynamic Languages SDK is comprised of the DLR runtime and Iron-
Python, IronRuby, and Managed JScript assemblies compiled for Silverlight, along with
the development tool Chiron.exe. Releases of IronPython should also include binary
builds of IronPython for Silverlight and Chiron but won’t include the other languages.

 Chiron can create xap files for dynamic applications and will also work as a server,
allowing you to use your applications from the filesystem while you are developing
them. Chiron runs under Mono, so you can use it on the Mac.

 Silverlight lives on the web, so to use it we need to embed it into a web page.

6 See http://tirania.org/blog/archive/2007/Jun-28.html, but also see the following page for an alternative that
works with Silverlight as well as Moonlight: http://blogs.microsoft.co.il/blogs/tamir/archive/2008/05/02/
stand-alone-multiplatform-silverlight-application.aspx.

Deep Zoom and adaptive streaming
Deep Zoom is a fantastic image-zooming technology based on Seadragon: see http:
//livelabs.com/seadragon/.

Adaptive streaming allows the browser to adjust the quality of streamed audio and
video according to the available bandwidth and CPU power.

Chiron and the dynamic experience
Chiron packages IronPython Silverlight applications as the browser requests them.
This means that you can have a truly dynamic experience developing Silverlight appli-
cations with IronPython. Simply edit the Python file with a text editor or IDE and re-
fresh the browser, and you immediately see the changes in front of you.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.codeplex.com/sdlsdk
http://tirania.org/blog/archive/2007/Jun-28.html
http://blogs.microsoft.co.il/blogs/tamir/archive/2008/05/02/stand-alone-multiplatform-silverlight-application.aspx
http://blogs.microsoft.co.il/blogs/tamir/archive/2008/05/02/stand-alone-multiplatform-silverlight-application.aspx
http://livelabs.com/seadragon/
http://livelabs.com/seadragon/

333Introduction to Silverlight
EMBEDDING THE SILVERLIGHT CONTROL

Embedding a Silverlight control into a web page is straight-
forward. You use an HTML <object> tag, with parameters
that initialize the control and HTML that displays the Install
Microsoft Silverlight link and image (shown in figure 13.2) if
Silverlight is not installed.

 Listing 13.1 is the typical HTML for embedding the Silver-
light control into a web page.

<div id="SilverlightControlHost" width="480" height="320">

 <object data="data:application/x-silverlight,"
 type="application/x-silverlight-2"
 id="SilverlightControl"
 width="100%" height="100%">
 <param name="source" value="app.xap"/>
 <param name="onError" value="onError" />
 <param name="background" value="white" />
 <param name="initParams"
 value="debug=true,reportErrors=errorLocation" />

 <a href="http://go.microsoft.com/fwlink/?LinkID=124807"
 style="text-decoration: none;">
 <img src="http://go.microsoft.com/fwlink/?LinkId=108181"
 alt="Get Microsoft Silverlight"
 style="border-style: none" />

 </object>
 <iframe style='visibility:hidden;height:0;width:0;border:0px'
></iframe>

</div>

The onError parameter is a JavaScript function that will be called if an error occurs
inside Silverlight (including in your code). The value in initParams is a bit special.
debug=true enables better exception messages. As well as getting the error message,
you’ll get a stack trace and a snapshot of the code that caused the exception. It works
in conjunction with an errorLocation div in your HTML (plus a bit of CSS for styling),
which is where the tracebacks from your application are displayed. You can see the
necessary HTML/CSS in the sources of the examples for this chapter.

Listing 13.1 The HTML to embed the Silverlight control

Required version
of Silverlight

Object tag that
embeds the plugin

Name of the
application
to load

JavaScript function
called in event of error

Special
handling for
reporting
errors

Image/link shown
if Silverlight is not

installed

CLR tracebacks in error reporting
By adding exceptionDetail to initParams, you can extend the error tracebacks to
include the CLR errors:

<param name="initParams" value="debug=true, reportErrors=errorDiv,
exceptionDetail=true" />

This is usually more information than you want in tracebacks, but it can be invaluable
in tracking down the underlying reason for some errors.

Figure 13.2 The image
displayed to the user if
Silverlight is not installed
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

334 CHAPTER 13 Silverlight: IronPython in the browser
THE XAP FILE

The xap file is really just a zip file with a different extension; you can construct xap
files manually or they can be autogenerated for you by Chiron. The command-line
magic to make Chiron create a xap file from a directory is

bin\Chiron /d:dir_name /z:app_name.xap

If you’re running this on the Mac, then the command line will look something like
this:

mono bin/Chiron.exe /d:dir_name /z:app_name.xap

More important, you can use Chiron to test your application from the filesystem, with-
out having to create a xap file. If your application is called app.xap, then your applica-
tion files should be kept in a directory named app. Chiron will act as a local server and
dynamically create xap files as they are requested. The command to launch Chiron as
a web server is

Chiron /w

By default, this serves on localhost port 2060. The most important part of the xap file
is the entry point, which in dynamic applications will be a file called app.py, app.rb, or
app.js, depending on which dynamic language you are programming in.

13.1.2 Your Python application

Our first app.py will be the simplest possible IronPython Silverlight application. Because
we’re using the WPF UI system, we work with classes from ystem.Windows namespaces.
Listing 13.2 creates a Canvas, with an embedded TextBlock displaying a message.

from System.Windows import Application
from System.Windows.Controls import Canvas, TextBlock

canvas = Canvas()
textblock = TextBlock()
textblock.FontSize = 24
textblock.Text = 'Hello World from IronPython'
canvas.Children.Add(textblock)

Application.Current.RootVisual = canvas

The important line, which is different from our previous work with WPF, is the last
one, where we set the container canvas as the RootVisual on the current application.
This makes our canvas the root (top-level) object in the object tree of the displayed
user interface. You’re not stuck with a single Python file for your application though.
Imports work normally for Python modules and packages contained in your xap file
(or your application directory when developing with Chiron). You can use open or
file to access other resources from inside the xap file, but they are sandboxed, and
you can’t use them to get at anything on the client computer.

Listing 13.2 A Simple IronPython application for Silverlight
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

335Introduction to Silverlight
Because we’re using WPF, many applications load XAML for the basic layout. They do
so with very similar code to listing 13.2, as shown in listing 13.3.

from System.Windows import Application
from System.Windows.Controls import Canvas

canv = Canvas()
xaml = Application.Current.LoadRootVisual(canv, "app.xaml")
xaml.textblock.Text = 'Hello World from IronPython'

Instead of setting the RootVisual on the application, this code loads the XAML with a
call to LoadRootVisual. Listing 13.4 shows the app.xaml file, for a Canvas containing
a TextBlock, loaded from the xap file in listing 13.3.

<Canvas x:Class="System.Windows.Controls.Canvas"
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<TextBlock x:Name="textblock" FontSize="30">Hello world from XAML</TextBlock>

</Canvas>

The call to LoadRootVisual returns us an object tree. Like the object trees we worked
with from XAML in chapter 9, we can access elements that we marked with x:Name as
attributes on the object tree. This allows us to set the text on the TextBlock through
xaml.textblock.Text. Many of the techniques we learned when working with the
WPF libraries for desktop applications are relevant to Silverlight, but they are far from
identical. One of the major differences is that we have fewer controls to work with.
Let’s look at some of the APIs available for creating Silverlight applications, including
the extended set of controls.

13.1.3 Silverlight controls

Silverlight ships with a set of standard controls based on WPF and contained in the
System.Windows.Controls namespace. Figure 13.3 shows examples of the standard
controls.

Listing 13.3 IronPython Silverlight application that loads XAML

Listing 13.4 Silverlight XAML for UI layout

Project structure in Silverlight applications
In Silverlight projects you can break your applications into multiple Python files in
the same way you can with normal Python applications. Import statements from Py-
thon files kept in the xap file work normally, including from Python packages. You
can even keep Python files in a subdirectory and add it to sys.path to be able to
import from them.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

336 CHAPTER 13 Silverlight: IronPython in the browser
USING CONTROLS

As you might expect from their WPF inheritance, the Silverlight controls are attractive
and easy to use. Figure 13.4 shows a TextBox with a Button and a TextBlock.

 Using and configuring the controls from
code is splendidly simple. Listing 13.5 shows a
Button and a TextBox inside a horizontally
oriented StackPanel. When the Button is
clicked, or you press Enter, a message is set on
the TextBlock.

from System.Windows import Thickness
from System.Windows.Controls import (
 Button, Orientation, StackPanel, TextBox
)
from System.Windows.Input import Key

panel = StackPanel()
panel.Margin = Thickness(20)
panel.Orientation = Orientation.Horizontal

button = Button()
button.Content = 'Push Me'
button.FontSize = 18
button.Margin = Thickness(10)

textbox = TextBox()
textbox.FontSize = 18
textbox.Margin = Thickness(10)
textbox.Width = 200

def onClick(s, e):
 textblock.Text = textbox.Text
 textbox.Text = ""

def onKeyDown(sender, e):
 if e.Key == Key.Enter:
 e.Handled = True

Listing 13.5 A TextBox with a Button in a horizontal StackPanel

Figure 13.3 Some of the
standard Silverlight controls

Setting a margin
around the element

Make the panel
horizontal

Create the TextBox

Figure 13.4 A TextBox with Button and
TextBlock
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

337Introduction to Silverlight
 onClick(None, None)

button.Click += onClick
textbox.KeyDown += onKeyDown

Along with the standard controls, there is a set of extended controls that comes with
Visual Studio Tools for Silverlight.7 This set includes additional controls such as
Calendar, DataGrid, DatePicker, TabControl, and so on.

TIP In addition to the standard and extended controls, Microsoft has a Code-
plex project (available with source code and tests, under the same open
source license as IronPython) called Silverlight Toolkit.8

The toolkit is a collection of controls and utilities for Silverlight,
including TreeView, DockPanel, and charting components.

USING THE EXTENDED CONTROLS

Visual Studio Tools for Silverlight comes with a lot more than just a new set of
controls. It also includes additional assemblies for working with JSON, XML, and so
on (don’t use the outdated version of IronPython it includes, though!). What we’re
about to cover is just as relevant for using these other assemblies as it is for the ex-
tended controls.

 The two assemblies that implement the extended controls are

■ System.Windows.Controls.dll

■ System.Windows.Controls.Data.dll

As with using other assemblies from IronPython, in order to use them we need to add
a reference to them with clr.AddReference.

import clr
clr.AddReference('System.Windows.Controls')

Table 13.1 lists the Silverlight controls.

7 Silverlight Tools for Visual Studio 2008 works with Visual Studio 2008 or Visual Web Developer 2008 Express.
The tools are linked to from http://silverlight.net/GetStarted/default.aspx.

8 See http://www.codeplex.com/Silverlight.

Table 13.1 Silverlight controls

Border DatePicker MultiScaleImage Slider

Button Grid OpenFileDialog StackPanel

Calendar GridSplitter Panel TabControl

Canvas HyperlinkButton PasswordBox TextBlock

CheckBox Image ProgressBar TextBox

ComboBox InkPresenter RadioButton ToggleButton
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://silverlight.net/GetStarted/default.aspx
http://www.codeplex.com/Silverlight

338 CHAPTER 13 Silverlight: IronPython in the browser
It will be self-evident what most of these controls are for from their names (one of the
advantages of consistent naming schemes). One that may not be familiar is MultiScale-
Image.9 This control is for displaying multiresolution images using Deep Zoom. It allows
the user to zoom and pan across the image.

 These assemblies extend the System.Windows.Controls namespace, so the
extended controls are imported from the same place as the standard controls. Of
course, you can use the extended controls from XAML as well as from code.
EXTENDED CONTROLS FROM XAML

Using the extended controls from XAML requires us to tell the XAML loader where to
find the classes that correspond to the XAML elements. We do this by adding extra
xmlns declarations to the first tag in the XAML. Listing 13.6 is a part of an XAML file that
uses several of the extended controls (Calendar, DatePicker, and GridSplitter).

<UserControl
 x:Class="System.Windows.Controls.UserControl"
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:c="clr-

namespace:System.Windows.Controls;assembly=System.Windows.Controls">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 ...
 <StackPanel Grid.Row="0" Grid.Column="1"
 Margin="20,20,10,20">
 <ContentControl Content="ContentControl"
 Margin="5"/>
 <Button Content="ToolTipped Button" Margin="5"
 ToolTipService.ToolTip="Some ToolTip"/>
 <ToggleButton Content="ToggleButton" Margin="5"/>
 <c:DatePicker Margin="5"/>
 <c:Calendar Margin="5"/>
 </StackPanel>

 <c:GridSplitter Grid.Column="1"
 Width="5" HorizontalAlignment="Left"
 VerticalAlignment="Stretch"

ContentControl ListBox RepeatButton ToolTip

DataGrid MediaElement ScrollViewer UserControl

9 See http://msdn.microsoft.com/en-us/library/system.windows.controls.multiscaleimage(VS.95).aspx.

Listing 13.6 XAML for a UI using the extended controls

Table 13.1 Silverlight controls (continued)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/en-us/library/system.windows.controls.multiscaleimage(VS.95).aspx

339Introduction to Silverlight
 ShowsPreview="True" />
 </Grid>
</UserControl>

To load this XAML from IronPython, like the example in listing 13.3,10 we don’t need to
explicitly add references to the assemblies containing the controls; the XML namespace
declarations do this for us. The xmlns:c declaration also declares a prefix (c) that we
must use to reference controls from the System.Windows.Controls assembly. For exam-
ple, the DatePicker control is referenced with c:DatePicker in the XAML.

 Once this XAML is loaded, the results look like figure 13.5.

If you don’t like the standard silver theme, you can use a new theme for all the con-
trols in an application. In discussing the extended controls, there’s an important
point that we have glossed over.

13.1.4 Packaging a Silverlight application

If you look in the source code for the example applications that use the extended con-
trols, you’ll see a file that we haven’t yet discussed, AppManifest.xaml. This is an XML
file that tells Silverlight not only what assemblies your application uses but also which
one provides the entry point. The reason it isn’t included in the earlier examples is
that Chiron can autogenerate it for applications that use no assemblies beyond the
standard IronPython/DLR ones.

 When you deploy a typical dynamic application, the xap file contains the following:

■ app.py—your main Python file
■ The IronPython assemblies (dlls)

10 This XAML has a UserControl as the root element, so you’ll need to modify listing 13.3 to create a
UserControl instead of a Canvas. This is shown in ControlsExample2 in section 13.1.3 of the downloadable
source code.

Figure 13.5 A user interface
loaded from XAML
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

340 CHAPTER 13 Silverlight: IronPython in the browser
■ An XAML (XML) manifest file
■ Any additional Python modules, XAML files, assemblies, or resources your app

uses

Listing 13.7 shows the manifest file needed for a basic dynamic application. You can
either copy and paste this into your applications or let Chiron create it for you.

<Deployment
 xmlns="http://schemas.microsoft.com/client/2007/deployment"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 RuntimeVersion="2.0.31005.00"
 EntryPointAssembly="Microsoft.Scripting.Silverlight"
 EntryPointType="Microsoft.Scripting.Silverlight.DynamicApplication">
 <Deployment.Parts>
 <!-- Add additional assemblies here -->
 <AssemblyPart Source="Microsoft.Scripting.dll" />
 <AssemblyPart Source="Microsoft.Scripting.Core.dll" />
 <AssemblyPart Source="IronPython.dll" />
 <AssemblyPart Source="IronPython.Modules.dll" />
 <AssemblyPart Source="Microsoft.Scripting.ExtensionAttribute.dll" />
 <AssemblyPart Source="Microsoft.Scripting.Silverlight.dll" />
 </Deployment.Parts>
</Deployment>

Requiring XML manifest files may seem like unnecessary overhead for dynamic appli-
cations, but they serve a very serious purpose: making Silverlight applications fit for
the enterprise.

 It is interesting to note the EntryPoint attribute in the top-level Deployment ele-
ment. This is how Silverlight knows how to execute a dynamic application, and in fact
a dynamic application is just a normal C# application as far as Silverlight is concerned.
Microsoft.Scripting.Silverlight.dll actually does the magic for us.

 To use additional assemblies in your applications, including the extended con-
trols, you need to include them in the manifest. This has a serious downside, even if
your application is only a single Python file a few kilobytes in size; the resulting xap
file will need to contain the IronPython assemblies and be several hundred kilobytes
in size.

 Fortunately, there is a way around this. If instead of just specifying the assembly
name as the Source attribute for the assemblies, you specify an absolute URL, the
assemblies will be fetched separately rather than being expected inside the xap file. If
several of your applications share the same assemblies, then the browser can cache
them, and your application can shrink back down to a more manageable size.11

 We’ve covered all the basics now, and in fact you have everything you need to start
writing Silverlight applications; everything else is mere detail. The best way of learning

Listing 13.7 The XML manifest file for an IronPython application

11 At some point a mechanism like the Global Assembly Cache will be implemented for Silverlight, but there
isn’t one yet.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

341A Silverlight Twitter client
Figure 13.6 An IronPython Silverlight Twitter client

these details is to use them, so in the
next section we look at a more sub-
stantial Silverlight application: a Twit-
ter client.

13.2 A Silverlight Twitter client
Deploying applications through the
web has the massive advantage of deploy
once, use anywhere, but with JavaScript it
means coping with the pain of cross-
browser issues and slow client-side per-
formance. With Silverlight we can
bring our structured application pro-
gramming techniques and adapt them
for the browser, often using the same
libraries that we use on the desktop. In
this section we look at a basic Silver-
light Twitter client written in IronPy-
thon,12 shown in figure 13.6.

 This example consists of about 600
lines of code in total. We won’t go
through all the code line by line, but
through it we can explore the follow-
ing aspects of working with Silverlight:

■ Cross-domain policies and tips for debugging Silverlight programs
■ Creating user interfaces
■ Making web requests from Silverlight
■ Using XML from the Twitter API
■ Threading and asynchronous callbacks and dispatching onto the UI thread
■ Storing data in the browser with IsolatedStorage
■ Timers

In some ways a Twitter client is a difficult example for Twitter. It means working with
data fetched from an external server, and we quickly run into problems with making
cross-domain calls from Silverlight. We start by looking at what you can and can’t do.

13.2.1 Cross-domain policies

When writing web client applications with JavaScript you can make calls back to the
server with XMLHttpRequest, or its equivalent. This uses cookies and authentication
that the browser has cached for the site you are accessing. If JavaScript on a web page

12 The user interface is deliberately gaudy so that you can visually see the way the UI elements are nested inside
each other.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

342 CHAPTER 13 Silverlight: IronPython in the browser
could access any domain, this would be a security hole, as applications could access
any site effectively logged in as you. To prevent this, the browser restricts JavaScript to
allow only requests to the same domain as the current web page, blocking cross-
domain calls.13

 In theory, Silverlight doesn’t have the same problems as JavaScript (it does use the
browser networking stack under the hood but works with it directly). However, for
nebulous security reasons, Silverlight still applies some restrictions. Silverlight allows
your applications to make some cross-domain calls, so long as the domain you are
accessing allows it.

 The way a domain allows calls from a Silverlight application is by providing a
clientaccesspolicy.xml file at the top level of the domain.14 Listing 13.8 is an example
client-access policy file that allows access to the whole domain and from any refer-
ring domain.

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Of course, this is most useful when the domain you want to access is under your con-
trol. If it isn’t your server, the typical solution is to proxy the service you want to access.
This means that your application queries a server that is under your control, and the
server makes the query and returns the result.

 Unfortunately, although Twitter exposes a nice and simple API for clients to use, it
doesn’t have the necessary client-access policy allowing us to query it from Silver-
light.15 To make the client work, we’ve implemented a simple Python proxy server that
runs locally. Because we will be using Chiron, which serves on port 2060, the local
proxy server runs on port 9981. You can start it by executing the following command
from the directory containing the example code for this section:

python simple_proxy.py

13 There are various ways around this restriction from JavaScript, of course. For example, the jQuery library pro-
vides an API for accessing web services across domains.

14 Silverlight also supports a subset of the crossdomain.xml schema used by Flash. See the following page for
details: http://msdn.microsoft.com/en-us/library/cc197955(VS.95).aspx.

Listing 13.8 A clientaccesspolicy.xml file to allow cross-domain calls into a website

15 I (Michael) really wanted to write a Twitter client though, as I’ve been having a lot of fun with it recently. You
can follow me at http://www.twitter.com/voidspace.

Allow POST requests

Specify domains
allowed access

Specify which
paths are available
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/en-us/library/cc197955(VS.95).aspx
http://www.twitter.com/voidspace

343A Silverlight Twitter client
As far as Silverlight is concerned, calls to this server are still cross domain, so our
proxy server has to provide a valid client access policy when /clientaccesspolicy.xml is
requested. Before we look at the substance of the application, let us share a tip for
debugging Silverlight applications.

13.2.2 Debugging Silverlight applications

The normal first resort for tracking down bugs in Python programs is the judicious use
of print statements. This technique doesn’t work in Silverlight, and to make it worse,
the error messages can be extremely cryptic.16 There is a way around this, though.
Python allows us to override standard output with a custom writer. Listing 13.9 shows
how to create a custom writer and set it on sys.stdout.17

import sys
from System.Windows.Browser import HtmlPage

class Writer(object):
 def __init__(self):
 self.stdout = ''

 def write(self, text):
 self.stdout += text
 element = HtmlPage.Document.debugging
 element.value = self.stdout

output_writer = Writer()
sys.stdout = output_writer

When a print statement is executed, the write method of our custom writer is called.
This looks up the HTML element with the id debugging and sets the text on it.
We fetch this element from the HtmlDocument,18 which we get hold of via System.
Windows.Browser.HtmlPage.Document. Figure 13.7 shows the textarea with the
debugging output from running the Twitter client.

16 This was to save space in the Silverlight runtime and may be improved in a future version of Silverlight.

Listing 13.9 Diverting standard out to an HTML text area

17 The actual code in the example is slightly different. We shouldn’t modify the browser DOM from anything
other than the UI thread, so it contains code to dispatch the write in case we want to print from an asyn-
chronous callback off the main thread. This topic is covered in more detail later in the chapter.

18 See http://msdn.microsoft.com/en-us/library/system.windows.browser.htmldocument(VS.95).aspx.

The textarea
HTML element

Set the text

Divert standard out

Figure 13.7 The HTML textarea
containing the output of print
statements from the Twitter client
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/en-us/library/system.windows.browser.htmldocument(VS.95).aspx

344 CHAPTER 13 Silverlight: IronPython in the browser
Silverlight provides other ways to interact with the browser DOM, which we look at
shortly. First we look at parts of the Silverlight UI model that we haven’t already seen.

13.2.3 The user interface

The main user interface for the Twitter client is a Border containing a StackPanel,
two classes we worked with in the chapter on WPF. The main application is contained
in a class called MainPanel that inherits from StackPanel. The rest of the user inter-
face is laid out by nesting StackPanels in new borders where necessary. From the won-
derful color scheme I chose, you should be able to see the different elements nested
inside each other.

 When you first log in, you are presented with the login panel shown in figure 13.8.

This is a horizontally oriented StackPanel (in a border) with nested vertical Stack-
Panels containing the username/password textboxes, the login button, a check box,
and a textblock for messages.

 We haven’t yet used the CheckBox, but like the other user interface components,
it’s very simple. Listing 13.10 shows the configuration of the login button and the
Remember me check box in the login panel.

from System.Windows import Thickness, HorizontalAlignment

from System.Windows.Controls import (
 Button, StackPanel, CheckBox
)

button = Button()
button.Content = ' Login '
button.FontSize = 16
button.Margin = Thickness(5, 5, 5, 5)
stretch = HorizontalAlignment.Stretch
button.HorizontalAlignment = stretch

remember_me = CheckBox()
remember_me.IsChecked = True
remember_me.Margin = Thickness(5, 5, 5, 5)
remember_me.Content = 'Remember'

button_pane = StackPanel()
button_pane.Children.Add(button)
button_pane.Children.Add(remember_me)

The textbox for the username is a straightforward TextBox, but we can’t use that for
entering the password because we don’t want it to be visible while it is being typed.

Listing 13.10 Configuring the Button and CheckBox in the login panel

Figure 13.8 The Silverlight Twitter
client login panel

Set the button to
stretch horizontally

Create the CheckBox

Check it
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

345A Silverlight Twitter client
Thankfully, a password textbox is one of the standard controls. The difference
between the PasswordBox API and a straight TextBox is that instead of setting and
fetching the Text property, we use the Password property.

 Once the user has logged in, the tweets are fetched from the Twitter API and dis-
played inside a grid.
THE GRID, THE SCROLLVIEWER, AND THE HYPERLINKBUTTON

The grid is inside a ScrollViewer, so that all the Twitter messages can be seen. The grid
has two columns. The Twitter usernames are displayed in the left column as clickable
links, with the Twitter messages in the right column (these are all visible in figure 13.6).
The code that does all this is in listing 13.11.

from System.Windows import (
 HorizontalAlignment, GridLength,
 VerticalAlignment, TextWrapping,
 FontWeights
)

from System.Windows.Controls import (
 ScrollViewer, ScrollBarVisibility,
 TextBlock, Grid, HyperlinkButton,
 ColumnDefinition, RowDefinition,
)

from System.Windows.Media import Colors, SolidColorBrush
from System import Uri

viewer = ScrollViewer()
viewer.Height = 475
viewer.Background = SolidColorBrush(Colors.White)
auto = ScrollBarVisibility.Auto
viewer.VerticalScrollBarVisibility = auto

grid = Grid()
grid.ShowGridLines = True
viewer.Content = grid

first_column = ColumnDefinition()
first_column.Width = GridLength(115.0)
grid.ColumnDefinitions.Add(first_column)
second_column = ColumnDefinition()
grid.ColumnDefinitions.Add(second_column)

for i in range(len(statuses)):
 grid.RowDefinitions.Add(RowDefinition())

def configure_hyperlink(block, col, row):
 block.FontSize = 14
 block.Content = name
 uri = Uri('http://twitter.com/%s' % name)
 block.NavigateUri = uri
 block.FontWeight = FontWeights.Bold

 block.HorizontalAlignment = HorizontalAlignment.Left
 block.VerticalAlignment = VerticalAlignment.Center

Listing 13.11 Creating and populating the main grid for the Twitter client

Make the scrollbar
visible when needed

Set explicit width
on left column

One row per
message

Function to configure
the HyperlinkButton

Set the link on the
HyperlinkButton
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

346 CHAPTER 13 Silverlight: IronPython in the browser
 grid.SetRow(block, row)
 grid.SetColumn(block, col)

for row, status in enumerate(statuses):
 name = status['name']
 text = status['text']

 block1 = HyperlinkButton()
 configure_hyperlink(block1, 0, row, name)

 block2 = TextBlock()
 block2.Text = text
 block2.TextWrapping = TextWrapping.Wrap
 block2.FontSize = 14
 grid.SetRow(block2, row)
 grid.SetColumn(block2, 1)

 grid.Children.Add(block1)
 grid.Children.Add(block2)

There are several details worth noticing in this code. Using color brushes in Silverlight
is slightly different from in WPF. Instead of using something like Brushes.White to set
the background, we construct a brush with SolidColorBrush(Colors.White).

 The HyperlinkButton is placed at the left and the center (vertically) by setting
horizontal and vertical alignment. By default the HyperlinkButton opens in the same
window. You can specify that the link should open in a new window by setting Hyper-
linkButton.TargetName = "_blank".19

 Because the Twitter messages are often longer than the width of the grid, we need
to ensure that the TextBlock wraps the text by setting the TextWrapping property.
We’ve covered the important parts of the user interface, so now we look at how we
access server resources from Silverlight.

13.2.4 Accessing network resources

The basic class for accessing network resources from Silverlight is the WebClient,
which can be used for both GET and POST requests. It has an asynchronous API, so
you configure it to fetch an API and provide callbacks to handle the response.
THE WEBCLIENT

The Twitter API is extremely easy to work with,20 by virtue of its XML or JSON over REST
interface. To verify login details or fetch the latest messages for a Twitter user, you sim-
ply fetch a URL from the Twitter API (using basic authentication with the user creden-
tials), which then returns either XML or JSON, depending on which format you asked
for in the URL.

 Because of the cross-domain policy, we can’t access the Twitter domain, so we can
leave the proxy server to handle the authentication. The twitter_proxy module
wraps the WebClient in a Fetcher class, shown in listing 13.12, which takes a callback
function along with the username, the password, and the action to be performed.

19 Although currently that stops the link button working altogether on Safari on the Mac!
20 See http://groups.google.com/group/twitter-development-talk/web/api-documentation.

Wrap the text in
the TextBlock
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://groups.google.com/group/twitter-development-talk/web/api-documentation

347A Silverlight Twitter client
from System import Uri
from System.Net import WebClient
from System.Windows.Browser import HttpUtility

get_url = 'http://localhost:9981/?action=%s&name=%s&pass=%s'

class Fetcher(object):
 def __init__(self, name, password, action, callback):
 name = HttpUtility.UrlEncode(name)
 password = HttpUtility.UrlEncode(password)
 uri = Uri(get_url % (action, name, password))
 self.callback = callback

 web = WebClient()

 web.DownloadStringCompleted += self.completed
 web.DownloadStringAsync(uri)

 def completed(self, sender, event):
 if not event.Error or event.Cancelled:
 self.callback(event.Result)

It is called like this:

Fetcher(username, password, 'fetch', callback)

If you watch the local proxy for the first time this is called, you will see that before
fetching the requested URL, Silverlight asks for /clientaccesspolicy.xml. If the server
doesn’t respond to this, then an exception will be raised.

Because we are putting the action, username, and password as parameters into the
GET string, they need to be URL encoded. This is the task of the HttpUtility class,
which also has a corresponding UrlDecode method that could be useful if you ever
want to look at the query parameters of the current URL.21

 When the response is available, the DownloadStringCompleted event fires and the
completed method is called. If the request completes successfully, then our original
callback is called with the response as a string.

Listing 13.12 The Fetcher class for downloading web resources with WebClient

21 This is made available through System.Windows.Browser.HtmlPage.Document.DocumentUri.

UrlEncode values
for the GET string

Hook up async
callback event

Start the request

WebClient and changing data
Under the hood, WebClient caches requests for us. If we fetch the same URL later,
even from a new instance, the same data will be returned instead of a new request
being made. This is a problem if the data you want changes.

In the Silverlight Twitter client we solved this by adding a digit to the end of the URL
sent to the proxy. The digit is incremented with every request so that WebClient sees
a different URL every time.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

348 CHAPTER 13 Silverlight: IronPython in the browser
PARSING THE XML FROM TWITTER

The main client application takes the results (a string of XML) and needs to parse this
into messages suitable for populating the grid. Because Silverlight comes with the
XmlReader (and the associated classes and enumerations), we can actually reuse the
XmlDocumentReader class from chapter 5 to parse the response.

 Literally the only changes we needed to make to this class were to add a reference
to the System.Xml assembly and the addition of a single line to handle the XML decla-
ration that we didn’t need for MultiDoc. Since we have our XML as a string, we can
pass a TextReader into the call to XmlReader.Create instead of a stream. Just as in the
desktop .NET framework, XmlReader lives in the System.Xml assembly, so we need to
add a reference to it before we can import from it.

 The XML that Twitter returns when we ask for a user’s messages has a top-level
statuses element containing a series of status blocks nested in it. Each one of these
has various elements that describe the message and the user who posted it. For our
basic client, we are interested in only the body of the message itself and the name of
the user who posted it. With the event-based parsing of XmlReader, we need only
define handler methods for the parts of the Twitter XML that we are using, ignoring
the rest. You can see the (brief) code that does this in the twitter module. It returns
a list of dictionaries, each dictionary with name and text members, ready for display-
ing in the grid.
POSTING WITH WEBCLIENT

For posting a Twitter message, we need to make a POST request. We can also use the
WebClient for this, using the UploadStringAsync method instead. Listing 13.13 shows
the Poster class, which posts Twitter messages.

from System importUri
from System.Net import WebClient
from System.Windows.Browser import HttpUtility

class Poster(object):

 def __init__(self, tweet, username, password, callback):
 uri = Uri(post_url)
 self.callback = callback

 print 'Tweeting:', tweet[:10]
 tweet = tweet[:140]

 url_encoded_tweet = HttpUtility.UrlEncode(tweet)

 username = HttpUtility.UrlEncode(username)
 password = HttpUtility.UrlEncode(password)

 data = 'username=%s&password=%s&tweet=%s' % (username,
 password, url_encoded_tweet)

 web = WebClient()
 web.UploadStringCompleted += self.completed
 web.UploadStringAsync(uri, "Post", data)

Listing 13.13 Making POST requests with HttpWebRequest

Shorten the message to
maximum 140 characters

URL-encode
Twitter message

Create POST data

Hook up callback
for completion

Make the POST
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

349A Silverlight Twitter client
 def completed(self, sender, event):
 if event.Cancelled or event.Error:
 # Post failed
 print 'POST failed'
 return self.callback('')
 return self.callback(event.Result)

This Poster class wraps up the API, so that when we instantiate Poster with the data
for the post and a callback function, it will make the request, and the callback will be
called with the results once the request is complete.

As is common in .NET, asynchronous callbacks often happen on a different thread
than the one you create them from, and we need to handle this.

13.2.5 Threads and dispatching onto the UI thread

Like WPF and Windows Forms, the Silverlight user interface runs within a single main
thread. Any operations that interact with user interface elements, or access the
browser DOM, should be done from this thread.

 Fortunately this is straightforward. WPF uses dispatchers to invoke delegates onto
the UI thread, and Silverlight includes a cut-down version of this system. Silverlight
provides a single dispatcher, which is accessible via the Dispatcher property on user
interface components. From IronPython, functions that we pass into the Dispatcher.
BeginInvoke method are invoked onto the main thread.

 A lot of the core threading classes from .NET are available in Silverlight. Listing 13.14
creates a new thread, and after a brief pause it uses the dispatcher to invoke a function
that changes the text on a textblock.

from System.Windows import Application
from System.Windows.Controls import Canvas, TextBlock
from System.Threading import Thread, ThreadStart

root = Canvas()
Application.Current.RootVisual = root

text = TextBlock()
thread_id = Thread.CurrentThread.ManagedThreadId

Listing 13.14 Using the dispatcher to modify the user interface from another thread

Posting to the proxy
Since the only time we make POST requests to the proxy server it is to post a new
message, there is no need to specify the action in the URL. When I originally imple-
mented this, I set the post URL to be http://localhost:9981 and then spent a long
time trying to find out why it didn’t work.

Of course, the client access policy specifies that all URLs below / are allowed, so
changing the post URL to http://localhost:9981/ (with the trailing slash) worked!
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

350 CHAPTER 13 Silverlight: IronPython in the browser
text.Text = "Created on thread %s" % thread_id
text.FontSize = 24
root.Children.Add(text)

def wait():
 Thread.Sleep(3000)
 thread_id = Thread.CurrentThread.ManagedThreadId
 def SetText():
 text.Text = 'Hello from thread %s' % thread_id
 text.Dispatcher.BeginInvoke(SetText)

t = Thread(ThreadStart(wait))
t.Start()

When this code is run, the textblock displays the message “Created on thread 1.” After
three seconds, this changes to show the thread ID of the new thread that we created.

 This is simple enough, but there might not always be a convenient user interface
element available to dispatch on from code that needs it. The Twitter client has a
dispatcher module that does this for us. When the UI is first created, the main appli-
cation (in app.py) calls the function SetDispatcher. The dispatcher module also
exports two other functions, Dispatch and GetDispatchFunction. These either
immediately dispatch a function for us or turn a function into one that is dispatched
when it is called (which is useful for creating dispatched callbacks). Dispatch and
GetDispatchFunction are used throughout the Twitter client, where code might
interact with the user interface.

 A common need is to have some event regularly occur at a timed interval. We use
this in the Twitter client to fetch the latest tweets every 60 seconds. We can do this with
the DispatcherTimer. Listing 13.15 uses a DispatcherTimer to update a counter in
a textblock.

from System.Windows.Threading import DispatcherTimer
from System import TimeSpan

text = TextBlock()
text.Text = "Nothing yet"
text.FontSize = 24
root.Children.Add(text)

counter = 0
def callback(sender, event):
 global counter
 counter += 1
 text.Text = 'Tick %s' % counter

timer = DispatcherTimer()
timer.Tick += callback
timer.Interval = TimeSpan.FromSeconds(2)
timer.Start()

When this code is executed, the Tick event fires every two seconds and increments
the counter. Because Tick is executed on the UI thread, there is no need for us to

Listing 13.15 Using a DispatcherTimer for timed events on the UI thread

Pause for
three seconds

Invoke onto
the UI thread

Create a new thread
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

351A Silverlight Twitter client
explicitly dispatch the callback. If we didn’t need to interact with the user interface,
then we could use the System.Threading.Timer class instead.

 Another of the Silverlight APIs that the Twitter client uses is the isolated storage sys-
tem, for storing user login details in the browser.

13.2.6 IsolatedStorage in the browser

Isolated storage provides a mechanism for applications to store data in the browser
cache. The intent of this is to provide a temporary cache for applications or for stor-
ing configuration information. Data stored there does persist but is destroyed if the
user clears the browser cache. With this in mind, the default limit per application is 100
kilobytes of storage. You can request more, which will present the user with a dialog
requesting permission to increase the limit for this application.

 Isolated storage provides a filesystem-like mechanism that we access through the
System.IO.IsolatedStorage namespace. We can list the files (or directories) stored
and load, save, or delete files.

 In the Twitter client this is used for the user login credentials. If the Remember
check box is checked when the user logs in, then the username and password are
saved in a file.22

 When the application is first loaded, if that file exists in the application storage, then
the file is loaded and the username and password textboxes are populated from it.

 The basis of using isolated storage from our applications is to get a data store by
calling IsolatedStorageFile.GetUserStoreForApplication(). This returns the
IsolatedStorageFile instance for the current application. Listing 13.16 shows three
functions to load and save files listed in the data store and to list the contents.

from System.IO.IsolatedStorage import (
 IsolatedStorageFile, IsolatedStorageFileStream
)
from System.IO import FileMode, StreamReader, StreamWriter

def ListFiles():
 store = IsolatedStorageFile.GetUserStoreForApplication()
 return store.GetFileNames('.')

def DeleteFile(name):
 store = IsolatedStorageFile.GetUserStoreForApplication()
 store.DeleteFile(name)

def SaveFile(name, data):
 store = IsolatedStorageFile.GetUserStoreForApplication()
 mode = FileMode.Create
 iStream = IsolatedStorageFileStream(name, mode, store)

 writer = StreamWriter(iStream)

22 In a plain text file, but this is not recommended for production systems storing sensitive user data like pass-
words!

Listing 13.16 Using the Silverlight isolated storage

List all files
in the store

Mode to
write files
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

352 CHAPTER 13 Silverlight: IronPython in the browser
 writer.Write(data)

 writer.Close()
 iStream.Close()

def LoadFile(name):
 store = IsolatedStorageFile.GetUserStoreForApplication()
 mode = FileMode.Open |
 iStream = IsolatedStorageFileStream(name, mode, store)

 reader = StreamReader(iStream)
 data = reader.ReadToEnd()

 reader.Close()
 isolatedStream.Close()

 return data

The data store isn’t a flat file system; we can create subdirectories and work with those
as well. The store has many useful methods;23 one of the more important ones is Try-
IncreaseQuotaTo to request an increase in the amount of storage available. This
method can be called only from inside the event handler of a control such as a button.
You pass in the amount of space you want (in bytes), which presents a dialog to the
user to approve the request. The method returns a Boolean indicating whether the
request succeeded or not. The following snippet of code shows a request to double
the amount of storage for an application:

from System.IO.IsolatedStorage import IsolatedStorageFile
store = IsolatedStorageFile.GetUserStoreForApplication()
space = store.AvailableFreeSpace
success = store.TryIncreaseQuotaTo(space * 2)

Figure 13.9 shows the dialog presented to
a user when this code runs on Safari under
Mac OS X.

 If you attempt to execute this code out-
side a user-interface event handler, then it
will fail and return False without showing
the dialog.

 We’ve now seen that Silverlight con-
tains all the necessary ingredients for cre-
ating serious applications that live on the
web. Writing web applications is different from programming for the desktop. Although
the CoreCLR lessens that difference, the key to creating effective applications is under-
standing the difference, and that means being able to make good use of the important
Silverlight APIs such as IsolatedStorage.

 There are a couple more important Silverlight APIs that we have only skirted
around the edges of; these are working with videos and the browser DOM.

23 These are listed at http://msdn.microsoft.com/en-us/library/system.io.isolatedstorage.isolatedstoragefile_
members(VS.95).aspx.

Write into the
data store

Mode to
read files

Read from the
stored file

Figure 13.9 Requesting to increase the storage
for a Silverlight application
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/en-us/library/system.io.isolatedstorage.isolatedstoragefile_members(VS.95).aspx
http://msdn.microsoft.com/en-us/library/system.io.isolatedstorage.isolatedstoragefile_members(VS.95).aspx

353Videos and the browser DOM
13.3 Videos and the browser DOM
Despite its diminutive download, Silverlight packs in a great deal. The intended use for
Silverlight spans the gamut of games, applications, and media streaming, so along with
the .NET Base Class Libraries it comes with APIs specific to these tasks. Some of these are
the adapted version of their complementary WPF class in the desktop framework. Oth-
ers, like those for working with the
browser DOM, are new to Silverlight. In
this final section of the chapter, we use
two more of the core Silverlight APIs.

13.3.1 The MediaElement video player

The media capabilities are provided in
part through the MediaElement class.
Figure 13.10 shows a video as part of a
Silverlight canvas.

 This class is a control, and like the
other controls, it lives in the System.
Windows.Controls namespace. Having
instantiated it, you specify a data source
as a Uri, as in listing 13.17.

from System.Windows.Controls import MediaElement
from System import Uri, UriKind

video = MediaElement()
source = Uri('SomeVideo.wmv', UriKind.Relative)
video.Volume =
video.Source = source
video.Width = 450

As always, the MediaElement has methods, properties, and events that we haven’t used
here. The methods to start and stop playing are Play and Pause, but the video will
start playing as soon as it has downloaded events, so it is unnecessary. Other useful
properties are Position, which we can set with a TimeSpan object, and both Width and
Height to scale the video. As with setting the Width and Height scales, setting one
automatically adjusts the other.

 In addition to using it directly, we can use the MediaElement as the source for a
VideoBrush, which we can use as the foreground mask on another control or to fill a
shape, which we then transform or animate. Listing 13.18 shows how to set a video as
the foreground mask for the text in a textblock.

from System import TimeSpan, Uri, UriKind
from System.Windows import Application, RoutedEventHandler
from System.Windows.Controls import (

Listing 13.17 Using the MediaElement video control

Listing 13.18 Setting a VideoBrush with a video on a TextBlock

Create the
MediaElement The Uri for

the video file

A number from 0-1

Scale the video

Figure 13.10 The MediaElement class in action
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

354 CHAPTER 13 Silverlight: IronPython in the browser
 Canvas, TextBlock, MediaElement
)
from System.Windows.Media import VideoBrush, Stretch

root = Canvas()

source = Uri('../SomeVideo.wmv', UriKind.Relative)
video = MediaElement()
video.Source = source
video.Opacity = 0.0
video.IsMuted = True

def restart(s, e):
 video.Position = TimeSpan(0)
 video.Play()

video.MediaEnded += restart

brush = VideoBrush()
brush.Stretch = Stretch.UniformToFill
brush.SetSource(video)

t = TextBlock()
t.Text = 'Video'
t.FontSize = 120
t.Foreground = brush

root.Children.Add(t)
root.Children.Add(video)

Application.Current.RootVisual = root

MediaElement exposes an event called MediaEnded that fires when the video ends. We
make the video loop by hooking up a restart function to this event that restarts the
video.24

 Figure 13.11 shows the results of setting a
VideoBrush on a TextBlock from IronPython.

 An important aspect of Silverlight that we
have touched on only briefly is working with
the browser and the Document Object Model.

13.3.2 Accessing the browser DOM

We flirted with the DOM when we looked at diverting standard output, so that debug-
ging print statements would appear in an HTML text area. We access HTML elements
in the page through the Document property on System.Windows.Browser.HtmlPage.
We can access elements by using their id as the attribute name on Document, which
does a dynamic lookup (one of the joys of working with a dynamic language). This
returns an element object,25 with which we can do many useful things.

24 In my initial experiments, I forgot to add the MediaElement as well and then spent an hour trying to work
out why it wasn’t working.

25 Specifically, an HtmlElement object. See http://msdn.microsoft.com/en-us/library/system.windows.
browser.htmlelement(VS.95).aspx.

Make the MediaElement
itself invisible

Silence is golden

Set the video
to repeat

The fill style
for the brush

Add the video
as well24

Figure 13.11 A VideoBrush showing
through the text on a TextBlock
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/en-us/library/system.windows.browser.htmlelement(VS.95).aspx
http://msdn.microsoft.com/en-us/library/system.windows.browser.htmlelement(VS.95).aspx

355Videos and the browser DOM
 Listing 13.19 shows how to set the innerHTML on an element, using GetElement-
ById as an alternative way to fetch elements, modifying style rules on an element with
SetStyleAttribute, plus setting properties with the SetProperty method.

from System.Windows.Browser import HtmlPage

document = HtmlPage.Document
element = document.some_element
element.innerHTML = "Some HTML."

element2 = document.GetElementById('another_element')
element2.SetStyleAttribute('border', 'solid black 2px')

element3 = document.GetElementById('some_textbox')
element3.SetProperty('disabled', True)
element3.value = 'Text in a textblock'

As well as using innerHTML we could also use innerText. Because we have access to
these attributes, we can use all our favorite AJAX tricks from Silverlight.

 Some properties on HTML elements require us to use the GetProperty and Set-
Property methods rather than simple attribute access. Fetching the disabled prop-
erty of a textblock as an attribute will return a string instead of a Boolean (and setting
it directly with a string or a Boolean doesn’t work), so you should use the getter and
setter methods instead.

 In addition to access to the HTML elements, we can also set event handlers and
interact with JavaScript. Listing 13.20 does three things:

1 Adds a mythical DoSomething Python function as an event handler for a button
in the HTML with the id some_button.

2 Calls a JavaScript function (function_name) with a string argument.
3 Creates a JavaScript object (XmlHttpRequest) and invokes methods on it (which

executes a synchronous GET request JavaScript and allows us to retrieve result).

from System import EventHandler

handler = EventHandler(lambda sender, event: DoSomething())
button = document.some_button
button.AttachEvent(handler)

jscriptfunc = "function_name"
argument = "Something"
HtmlPage.Window.CreateInstance(jscriptfunc, argument)

request = HtmlPage.Window.CreateInstance("XMLHttpRequest")
request.Invoke("open", "GET", url, False)
request.Invoke("send", "")
result = request.GetProperty("responseText")

These simple tricks make it possible to create hybrid applications with both JavaScript
and Silverlight, which communicate with each other.

Listing 13.19 Interacting with DOM elements from inside Silverlight

Listing 13.20 DOM events and JavaScript from Silverlight

Create an
EventHandler
delegate

False makes
the request
synchronous
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

356 CHAPTER 13 Silverlight: IronPython in the browser
 There is one final way of interacting with the browser that we need to mention,
and it is a bit more indirect. If we give the Silverlight control an id when we embed it
in HTML, we can access it in the same way we have accessed any other element by id. A
better way to get a reference to the current Silverlight control is

System.Windows.Application.Current.Host

The SilverlightHost object itself is not particularly interesting, but it exposes a
Content subobject that is. This has members26 like ActualHeight and ActualWidth
that tell us the real size of the Silverlight control within the web page. IsFullScreen
will not only tell us if the Silverlight control is operating in full-screen mode, but if set
to True from a button event handler it will also switch the plugin to full-screen mode.
Most important, though, the content object also has a ReSized event, which fires
when the control changes size. If, instead of creating the Silverlight control with a
fixed size in the HTML embedding code, we let the browser size it, then we can
respond appropriately (perhaps re–lay out the UI) when the control is resized.

 We’ve had only one chapter to learn about Silverlight, but it’s clear that this frame-
work has a huge amount of potential. It’s particularly exciting that programming it
from IronPython is such a good experience; long may the reign of dynamic languages
on the web continue.

13.4 Summary
Rich internet applications are already an important part of the internet revolution,
and they’re only becoming more important. Silverlight is one of the new frameworks
that allow programmers to really take advantage of client-side processing power in
web applications.

 One of the tools we used when writing this chapter was the Silverlight IronPython
Web IDE.27 This allows us to experiment with the Silverlight APIs by executing code in
the browser, and it has several examples preloaded, including some topics we didn’t
have space for here.

 There’s a lot we haven’t had time to use. We haven’t looked at loading XAML or ini-
tializing controls from XAML or animations with the StoryBoard. Because the Silver-
light user interface model is based on WPF, these features are very similar to using
them from WPF, and this includes using Expression Blend28 as a design tool. With
clever structuring, your desktop and online versions of your applications could share a
lot of their code and XAML.

 This is one of the best things about working with Silverlight; much of our existing
knowledge about .NET and IronPython is directly applicable. This even includes
extending IronPython with C# and embedding IronPython into C# or VB.NET applica-
tions, which are the focus of the next part of this book.

26 See http://msdn.microsoft.com/en-us/library/system.windows.interop.content_members(VS.95).aspx.
27 This is available online at http://www.voidspace.org.uk/ironpython/webide/webide.html.
28 To use Expression Blend with Silverlight you’ll need version 2.5 or later.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/en-us/library/system.windows.interop.content_members(VS.95).aspx
http://www.voidspace.org.uk/ironpython/webide/webide.html

Part 4

Reaching out
 with IronPython

IronPython is just one of the now-numerous languages that run on the .NET
framework. In the book so far we have been focusing on the different ways that
we can access features of the .NET framework from within the IronPython world-
view. In this final part of the book, we look at the other side of the story, working
with IronPython from other .NET languages. We start this look by creating class
libraries with C# and VB.NET specifically to use from IronPython.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

Extending IronPython
 with C#/VB.NET
There is a standard mantra about performance when programming with Python
(CPython). The mantra goes something like this: “Code in Python first; then profile
and optimize your bottlenecks. Finally, if you still need your code to run faster,
rewrite the performance-sensitive parts of your code in C.” Okay, as mantras go
there are probably snappier ones, but it still contains a lot of wisdom. Of course,
with IronPython we wouldn’t drop down to C1 but into C# or VB.NET instead.

This chapter covers
■ Creating class libraries for IronPython
■ .NET attributes and IronPython
■ Calling unmanaged code with P/Invoke
■ Creating dynamic objects with C#/VB.NET
■ Compiling assemblies at runtime

1 Well, not usually. There are tools like SWIG that will allow you to generate .NET wrappers for C/C++ libraries.
359

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

360 CHAPTER 14 Extending IronPython with C#/VB.NET
 This is an area where IronPython has a great advantage over CPython. Both C# and
VB.NET are modern object-oriented languages with garbage collection and all the fea-
tures of the common language runtime, and both are substantially easier to work with
than C. In order to write a Python extension in C, you have to manage your own mem-
ory and use the Python C API to create and interact with Python objects. By way of con-
trast, we have shown how simple it is to use .NET classes from IronPython, and this
includes classes you write yourself.

 If you have come to IronPython from C# or VB.NET, then the parts of this chapter
showing the syntax of these languages will already be familiar to you.2 (Of course, if
you’re coming to IronPython from Python, this material will be a nice introduction to
both of them.) The important thing to take from this chapter, though, is that it is
possible to create objects that behave as you would expect in Python. This shouldn’t
really come as much of a surprise; after all, the native IronPython types like lists and
dictionaries are written in C#. IronPython does lots of clever magic for us that allows
us to use the standard .NET interfaces and mechanisms in ways that feel entirely natu-
ral to the Python programmer. In this chapter you will be learning how to take advan-
tage of that magic.

 Creating class libraries with Visual Studio and using them from IronPython is
something we’ve already looked at. In chapter 6 we used the Visual Studio Windows
Forms designer to create a dialog as a C# class library and then imported it from
IronPython. In this chapter we take this further and look at writing class libraries in
C# or VB.NET for use from IronPython. Specifically you’ll be learning how to expose
Python-friendly APIs from our .NET classes and even making them behave like
dynamic Python objects. We finish off by dynamically compiling and using these class
libraries at runtime.

14.1 Writing a class library for IronPython
Writing code in C# or VB.NET (or Boo or F# or any of the wealth of .NET languages
that exist now) and using it from IronPython is straightforward. Improving perfor-
mance is not the only reason to use an alternative language; in fact, my experience has
been that IronPython is usually fast enough. It may be that you are writing a .NET class
library and simply want to know how to make it as usable as possible from IronPython
as well as other languages. Alternatively, you may be using C# to access features of the
.NET framework that are hard to use from IronPython, like Linq or .NET attributes. In
this section we write general-purpose class libraries and see how standard .NET con-
cepts seamlessly map to their equivalents in Python. We also use C#/VB.NET to over-
come some of the limitations of IronPython.

 The first step is finding an IDE you are happy with. Actually, any text editor and the
command line would do fine, and for Python development that’s exactly what many
programmers use. For statically typed languages, the need to invoke the compiler on
many interdependent files in potentially large projects is at least one of the reasons

2 And if not, there is an excellent appendix with an introduction to C#.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

361Writing a class library for IronPython
why most developers will use a full IDE. For Windows, Visual Studio (in one of its many
variants) is a logical, but not the only, choice. For platforms other than Windows,3

MonoDevelop makes a great development environment.

14.1.1 Working with Visual Studio or MonoDevelop

Visual Studio Express is free to download and use, but you have to choose which lan-
guage you’ll be developing with. There are separate versions for C#, C++, VB.NET,
and web development, but you can have several different versions of Visual Studio
Express installed on the same machine. If you have Visual Studio Professional, then
you don’t have to make a choice, as it supports all of the standard .NET languages.
Figure 14.1 shows a new class library being created with the VB.NET version of Visual
Studio Express.

 MonoDevelop is an IDE written with the GNOME user-interface toolkit, and it works
with Linux or Mac OS X.4 It supports C, C#, and VB.NET and is included in the Mono
package for Mac OS X. Figure 14.2 shows MonoDevelop in use editing a C# project.

 Let’s use these IDEs to create objects we can use from IronPython.

3 It is technically possible but very difficult to get MonoDevelop working on Windows. SharpDevelop is a good
open source .NET IDE for Windows.

4 It is possible to compile MonoDevelop for Windows, but it has a lot of dependencies. It is likely that prebuilt
binaries for Windows will be made available as MonoDevelop matures.

Figure 14.1 The VB.NET version of Visual Studio Express
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

362 CHAPTER 14 Extending IronPython with C#/VB.NET
14.1.2 Python objects from class libraries

Because IronPython is specialized for working with .NET objects, it uses the standard
.NET mechanisms. This means that if an object implements IEnumerable, then we can
iterate over it from IronPython; if it provides ToString, then Python will use it to pro-
duce its string representation; and so on. Even better than that, we can take advantage
of some of the magic that IronPython does on our behalf. .NET methods that expect
delegates can receive Python functions without the user (from IronPython) needing
to be explicitly aware of the delegate. When we pass in a Python function, IronPython
will wrap it with a delegate for us.

 Listing 14.1 shows the code for a fairly simple class in C#. PythonClass is initialized
with an integer and a callback delegate. Iterating over instances yields all the even num-
bers from the initial value downward, after calling the delegate we pass in originally.

using System;
using System.Collections;
namespace PythonExtension

Listing 14.1 A C# class for use from IronPython

Figure 14.2 MonoDevelop on Mac OS X, editing a C# console project
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

363Writing a class library for IronPython
{

 public delegate int Callback(int input);

 public class PythonClass : IEnumerable
 {
 private int _value;
 private Callback _callback;
 public PythonClass(int value, Callback callback)
 {
 _value = value;
 _callback = callback;
 }

 public override string ToString()
 {
 return String.Format("PythonClass<{0}>", _value);
 }

 public IEnumerator GetEnumerator()
 {
 for (int i = _value; i > 0; i--)
 {
 if (i % 2 == 0)
 {
 yield return _callback(i);
 }
 }
 }

 public static PythonClass operator +(PythonClass a,
 PythonClass b)
 {
 return new PythonClass(a._value + b._value,
 a._callback);
 }
 public Object this[Object index] {
 get {
 Console.WriteLine("Indexed with {0}", index);
 return index;
 }
 set {
 Console.WriteLine("Index {0} set to {1}", index, value);
 }
 }
 }
}

This is slightly odd code; the only good excuse for writing it is if you have profiled your
Python code and identified a bottleneck that you can speed up by moving it into C#.

 It does illustrate lots of good points for us, though. As well as allowing iteration
(through the IEnumerable.GetEnumerator method it defines) and working with
functions cast to the Callback delegate by IronPython for us, it also defines the
operator + method (operator overloading), which allows us to add PythonClass
instances together.

This class implements
IEnumerable

Constructor takes a
callback and value

Used for string
representation

Used for iteration

Only even numbers

Operator overloading
for addition

The indexer
Equivalent of Python
__getitem__

Equivalent of Python
__setitem__
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

364 CHAPTER 14 Extending IronPython with C#/VB.NET
 The last block of code in the class is the syntax for the indexer, which is the C#
equivalent of Python’s __getitem__ and __setitem__ methods. A .NET class with a
public indexer is, of course, indexable from IronPython. The syntax public Object
this[Object index] (with a nested getter and setter like C# properties) declares a
public indexer that takes an object as the index, and the getter returns an object. The
setter method inside the indexer declaration receives the value being set as an implicit
argument called value (it has the same type as the return type of the indexer declara-
tion). In general, Python is my first love, but the C# syntax for properties and indexers
is nicer than Python’s.

 Listing 14.2 shows the same code, but this time written using VB.NET.

Imports System
Imports System.Collections
Imports System.Collections.Generic
Public Delegate Function Callback(ByVal input As Integer) As Integer

Public Class PythonClass
 Implements IEnumerable

 Private _callback As Callback
 Private _value As Integer

 Public Sub New(ByVal value As Integer, ByVal callback As Callback)
 Me._value = value
 Me._callback = callback
 End Sub

 Public Overrides Function ToString() As String
 Return String.Format("PythonClass<{0}>", Me._value)
 End Function

 Public Shared Operator +(ByVal a As PythonClass, ByVal b As PythonClass)_
 As PythonClass
 Dim value As Integer
 value = a._value + b._value
 Return New PythonClass(value, a._callback)
 End Operator

 Public Function GetEnumerator() As IEnumerator Implements_
IEnumerable.GetEnumerator

 Dim i As Integer
 Dim list As New List(Of Integer)
 For i = Me._value To 0 Step -1
 If (i Mod 2 = 0) Then
 list.Add(Me._callback(i))
 End If
 Next i
 Return list.GetEnumerator()
 End Function

 Default Public Property Item(ByVal index As Object) As Object
 Get
 Console.WriteLine("Indexed with {0}", index)

Listing 14.2 A VB.NET class for use from IronPython

This class
implements
IEnumerable

Constructor takes
a callback and

value

Used for string
representation

Operator overloading
for addition

Used for iteration

Only even numbers

The indexer

Equivalent of Python
__getitem__
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

365Writing a class library for IronPython
 Return index
 End Get
 Set(ByVal value As Object)
 Console.WriteLine("Index {0} set to {1}", index, value)
 End Set
 End Property

End Class

The VB.NET code is semantically almost identical to the C#, as they are very similar
languages. We use the default namespace,5 and the iteration is provided by a list
instead of yield return. The VB.NET syntax for the indexer is very similar to that of
C#. It has to have the name Item and be marked as the Default property, and we also
explicitly declare the value argument to the setter.

 The VB.NET code is a bit less concise than equivalent Python code. My favorite
example of this is the declaration of the iterator method. In Python it is def
__iter__(self):. In VB.NET it is Public Function GetEnumerator() As IEnumerator
Implements IEnumerable.GetEnumerator!

 Figure 14.3 shows our extension class in use with IronPython (whether compiled
from C# or VB.NET). A PythonClass instance is initialized with a function (that Iron-
Python neatly turns into a Callback delegate for us) and an integer. When we iterate
over it, by calling list on an instance, we can see that our callback function is called
on each number before it is yielded. We can also add PythonClass instances, which
call the operator + method we defined, and we can call str on them, which calls our
ToString method.

 We can get lots of standard Python behavior by using normal .NET mechanisms or
implementing standard interfaces. To implement a Python mapping type (such as the
Python dictionary), you can either use a public indexer or implement the IDictionary

5 We could have also used the default namespace in C#. All that changes is the way we import the class from
IronPython, as you’ll see shortly.

Equivalent of Python
__setitem__

Figure 14.3 PythonClass in use from IronPython with a Python callback function
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

366 CHAPTER 14 Extending IronPython with C#/VB.NET
interface. To implement a sequence type, you can implement IList, and so on. Iron-
Python also defines and uses several interfaces that are special.

 For example, although ToString is used when str is called on an instance of our
class, it isn’t used for repr. You can control the output of repr by implementing the
IronPython interface ICodeFormattable. This is part of IronPython 2, and it means ref-
erencing the IronPython assemblies, which is fine if your class is going to be used only
from IronPython, but not so good if you are creating a general-purpose class library. If
you are happy to tie your objects to IronPython, then the easiest way of working out
what interfaces you should use is to browse the IronPython source code. If you look at
List.cs from the IronPython 2 source, you can see that the Python list implements the
following interfaces: IMutableSequence, IList, ICodeFormattable, IValueEquality,
and IList<object>.

 Most of the Python-specific interfaces are defined in Interfaces.cs in the Iron-
Python sources. You’ll see that many of the Python interfaces require you to define
the Python “magic methods” that you’re already familiar with; for example, imple-
menting ICodeFormattable means providing a __repr__ method.

In fact, we can provide standard Python features on .NET classes without having to
implement these specific interfaces. This is something we’ll cover shortly.

 So far we’ve done nothing that we couldn’t also have done from pure Python. In
the next section we use .NET attributes to call into unmanaged code, something that
we can’t do directly with IronPython.

14.1.3 Calling unmanaged code with the P/Invoke attribute

The inability to use .NET attributes is an annoying hole in the IronPython .NET inte-
gration. Fortunately it is almost always easy to overcome by writing a small amount of
C# and either subclassing or wrapping from Python.

 One important attribute is DllImport,6 which is also known as P/Invoke (Platform
Invoke), used for calling into unmanaged code.7 If you need to interact with native

6 This attribute is documented at http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.
dllimportattribute.aspx.

7 The FePy project does contain an experimental library for doing dynamic platform invoke that doesn’t require
any C#. It needs some work to get it functioning on Windows, though, and means knowing more about topics
like C calling conventions than most of us want to have to learn.

Interfaces implemented by Python types
Knowing which interfaces the basic Python types implement can be really valuable
when you’re interacting with Python objects from other .NET languages. This is some-
thing we look at more closely in the next chapter, but if you can cast an object you
pull out of the Python engine to a known type (interface), then you can use those
methods from C#/VB.NET.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.dllimportattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.dllimportattribute.aspx

367Writing a class library for IronPython
code, such as the Win32 APIs on Windows, you can decorate class methods with this
attribute and use functions from native dlls.

 One of the places where we use this at Resolver Systems is in our test automation
framework. We use functions in the User32.dll to interact with Win32 windows. This
includes making sure our forms are the foreground window (so that mouse move and
mouse button events we send go to our form), closing windows, and getting the title
of the topmost window (so that we can confirm that it is our form).

 Some of this functionality is available in the System.Windows.Automation
namespace, but this is new to .NET 3.0, and we need our test framework to be able to
run on machines that have only.NET 2.0 installed.

 DllImport makes it very easy to expose native functions. Listing 14.3 is an example
of using Win32 APIs from User32.dll. It exposes sufficient functions for us to be able
to get the title of the current topmost window.

using System;
using System.Text;
using System.Runtime.InteropServices;

namespace WindowUtils
{
 public class WindowUtils
 {
 [DllImport("user32.dll")]
 public static extern bool IsWindowVisible(IntPtr hWnd);

 [DllImport("user32.dll")]
 public static extern IntPtr GetTopWindow(IntPtr hWnd);

 [DllImport("user32.dll")]
 public static extern IntPtr GetWindow(IntPtr hWnd, uint wCmd);

 [DllImport("user32.dll", SetLastError = true, CharSet = CharSet.Auto)]
 public static extern int GetWindowTextLength(IntPtr hWnd);

 [DllImport("user32.dll", SetLastError = true, CharSet = CharSet.Auto)]
 public static extern int GetWindowText(IntPtr hWnd, [Out] StringBuilder

lpString, int nMaxCount);

 [DllImport("user32.dll", SetLastError = true, CharSet = CharSet.Auto)]
 public static extern int GetClassName(IntPtr hWnd, [Out] StringBuilder

lpString, int nMaxCount);
 }
}

As you can see, this is a very thin wrapper around the native code we are calling. The
native functions are exposed by declaring them as static methods marked as extern
and with the same name and signature as the native functions. In order to do anything
useful with these functions, we’re going to write some more code, but now that they’re
available, we can write that code in Python rather than C#.

Listing 14.3 A thin wrapper that exports functions from User32.dll in C#
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

368 CHAPTER 14 Extending IronPython with C#/VB.NET
Listing 14.4 shows the same code using VB.NET instead of C#. The code, again, is virtu-
ally identical. The main difference is that we don’t need to declare the out parameters
because VB.NET initializes them for us.

Imports System
Imports System.Text
Imports System.Runtime.InteropServices

Public Class WindowUtils

 <DllImport("user32.dll")> _
 Public Shared Function IsWindowVisible(ByVal hWnd As IntPtr) As Boolean
 End Function

 <DllImport("user32.dll")> _
 Public Shared Function GetTopWindow(ByVal hWnd As IntPtr) As IntPtr
 End Function

 <DllImport("user32.dll")> _
 Public Shared Function GetWindow(ByVal hWnd As IntPtr, ByVal wCmd As

UInteger) As IntPtr
 End Function

 <DllImport("user32.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _
 Public Shared Function GetWindowTextLength(ByVal hWnd As IntPtr) As Integer
 End Function

 <DllImport("user32.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _
 Public Shared Function GetWindowText(ByVal hWnd As IntPtr, ByVal lpString As

StringBuilder, ByVal nMaxCount As Integer) As Integer
 End Function

 <DllImport("user32.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _
 Public Shared Function GetClassName(ByVal hWnd As IntPtr, ByVal lpString As

StringBuilder, ByVal nMaxCount As Integer) As Integer
 End Function

End Class

From Python, we can call these functions as static methods on the WindowUtils class.
They either take or return us a window handle (as an IntPtr), and in the case of
GetWindowText and GetClassName they also take a StringBuilder to put text into.
Because these are C functions, they can’t just take an arbitrary string builder, but they
also need to know the maximum length of the string they will be populating it with
(good old manual memory management at work). In the case of GetClassName, we
know that the Window class names are all less than 256 characters, so we can simply
pass in a string builder initialized with a capacity of 256. Window titles can be an arbi-
trary length, so we have to make two calls. First we call GetWindowTextLength, which
tells us the length of the string, and then we can call GetWindowText, passing in a
string builder with the correct capacity.

 There is a little additional complexity in the Python code that uses these functions.
The full code is shown in listing 14.5, and the top-level function is GetTopWindowTitle.

Listing 14.4 A thin wrapper that exports functions from User32.dll in VB.NET

_ is the VB.NET line
continuation symbol
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

369Writing a class library for IronPython
It gets a handle for the topmost window by calling the aptly named GetTopWindow. This
turns out to be a surprisingly useless functionality on its own, because the topmost win-
dow is inevitably some invisible system window that we aren’t interested in at all. We can
remedy this by using the GetWindow function and the magic GW_HWNDNEXT constant that
will return us the handle of the next window. We simply iterate through all these win-
dows until the _ExcludeWindow function finds us one that is both visible and not a sys-
tem window. Having gotten the handle of the topmost visible and interesting window,
we can call GetWindowText and return its title.

import clr
clr.AddReference('WindowUtils')
from WindowUtils import WindowUtils

from System import IntPtr
from System.Text import StringBuilder

GW_HWNDNEXT = 2
def GetTopWindowTitle():
 handle = WindowUtils.GetTopWindow(IntPtr.Zero)
 while handle != IntPtr.Zero:
 if not _ExcludeWindow(handle):
 break
 handle = WindowUtils.GetWindow(handle, GW_HWNDNEXT)

 if handle != IntPtr.Zero:
 return GetWindowText(handle)
 return ''

excludes = 'button', 'tooltip', 'sysshadow', 'shell_traywnd'
def _ExcludeWindow(handle):
 if not WindowUtils.IsWindowVisible(handle):
 return True
 class_name = GetWindowClassName(handle)
 for entry in excludes:
 if entry in class_name.lower():
 return True
 return False

def GetWindowClassName(hWnd):
 length = 255
 sb = StringBuilder(length + 1)
 WindowUtils.GetClassName(hWnd, sb, sb.Capacity)
 return sb.ToString()

def GetWindowText(hWnd):
 length = WindowUtils.GetWindowTextLength(hWnd)
 sb = StringBuilder(length + 1)
 WindowUtils.GetWindowText(hWnd, sb, sb.Capacity)
 return sb.ToString()

You can see from figure 14.4 that all this actually works!
 This technique works fine where we can expose the functionality we need with a

thin wrapper and then use it directly in Python. It doesn’t work so well where we want

Listing 14.5 Automation code getting the top window title by calling into native functions

Filter
uninteresting
windows

Get the next
window handle

Ignore invisible
windows

Ignore some
system windows

Get the length
of the title

Finally get the title
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

370 CHAPTER 14 Extending IronPython with C#/VB.NET
to apply an attribute to a class, or one of its members, which we want to write in
Python. In order to achieve this, we still need to write some statically typed code where
we can apply the attributes, but we can then subclass from Python.

14.1.4 Methods with attributes through subclassing

You’ve seen that we can subclass .NET objects in IronPython, and we can use this to
work with attributes. One place this is useful is in Silverlight for communication
between IronPython and JavaScript. In the last chapter we looked at several different
ways that IronPython and JavaScript can interact, but we didn’t cover every possible
scenario. In particular, you may want to call into IronPython from JavaScript and have
a value returned.

 Doing this opens up an interesting possibility. Complex business logic in a client-
side application can be written in Python and executed inside Silverlight, where it will
run much faster than the equivalent code written in JavaScript. The user interface of
the application, or perhaps just part of it, can be written with JavaScript UI libraries,
but calling into IronPython to do the heavy lifting. The Silverlight integration could
even be optional, acting as an accelerator if present, so long as you are happy to write
your code in both JavaScript and IronPython!

 We expose code from Silverlight to JavaScript by creating instances of types
marked with the ScriptableType attribute, with methods marked with the Script-
ableMember attribute, and we have the same old problem of trying to use attributes
from IronPython.

 We can overcome this problem by writing a very small amount of C# or VB.NET. To
do this from Visual Studio we need the professional version, with Silverlight Tools8

installed. We can then create new class library projects for Silverlight, as you can see in
figure 14.5.

8 See http://go.microsoft.com/fwlink/?LinkId=120319.

Figure 14.4 Printing the top window title once a second
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://go.microsoft.com/fwlink/?LinkId=120319

371Writing a class library for IronPython
We can pass only the basic datatypes like strings and numbers between Silverlight and
JavaScript. This restriction isn’t a problem, though, because we can pass strings to Java-
Script. We can construct anything we want in the form of JSON strings, which JavaScript
can eval (deserializing with a JavaScript JSON library would be better, of course).

 Listing 14.6 shows a C# class with the ScriptableType attribute (from System.
Windows.Browser) and a method with the ScriptableMember attribute. method takes
and returns a string but actually delegates to a method called real. Because real is a
virtual method, we can override it to provide the real implementation in Python.

using System;
using System.Windows.Browser;

namespace Scriptable
{
 [ScriptableType]
 public class Scriptable
 {
 [ScriptableMember]
 public string method(string value)
 { return this.real(value); }

 public virtual string real(string value)
 { return "override me"; }
 }
}

Listing 14.6 A stub C# class marked with scriptable attributes

Figure 14.5 Creating a
Silverlight class library
project with VS 2008 Pro

IronPython classes and interfaces
It is worth noting at this point that we don’t need to use this technique for IronPython
classes to implement interfaces. An IronPython class can implement a .NET interface
by subclassing it and providing the required methods.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

372 CHAPTER 14 Extending IronPython with C#/VB.NET
Listing 14.7 is the same class written in VB.NET. Instead of virtual, the delegated
method real is marked as Overridable.

Imports System
Imports System.Windows.Browser

<ScriptableType()> _
Public Class Scriptable
 Public Function method(ByVal value As String) As String
 Return real(value)
 End Function

 <ScriptableMember()> _
 Public Overridable Function real(ByVal value As String) As String
 Return "override me"
 End Function
End Class

So how do we use this? Well, as with any other assembly, we have to add a reference to
it, followed by importing the Scriptable class we want to use. We can then subclass
Scriptable and provide a useful implementation of the real method that receives
and returns a string when called from JavaScript. The important step is calling Html-
Page.RegisterScriptableObject, which exposes objects to the outside world. The
first argument to RegisterScriptableObject is the name our object will be exposed
with, and the second is an instance of a scriptable class. Listing 14.8 shows the Iron-
Python code that makes use of our Scriptable class.

import clr
clr.AddReference("Scriptable")
from Scriptable import Scriptable

from System.Windows.Browser import HtmlPage

class ScriptableClass(Scriptable):
 def real(self, string):
 …
 return new_string

instance = ScriptableClass()

HtmlPage.RegisterScriptableObject("scriptable", instance)

Having registered the object from inside Silverlight, we can now access it from the out-
side. The following snippet of JavaScript fetches the Silverlight control by id (one
good reason to give the control itself an id when you embed it in the web page) and
then calls the exposed method:

control = document.getElementById('SilverlightPlugin');
result = control.Content.scriptable.method(value);

Listing 14.7 A stub VB.NET class marked with scriptable attributes

Listing 14.8 Exposing a scriptable class and method to JavaScript

Subclass the class with
scriptable attributes

Override the virtual
real method

Provide a useful
implementation Register the

scriptable
instance
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

373Writing a class library for IronPython
Note that the JavaScript calls method, which has the ScriptableMember attribute
applied, rather than real, which actually does the work.

 This is all fine and dandy if you have Visual Studio Professional, but it’s something
of a problem if you don’t. Although Visual Studio and Silverlight Tools provide a con-
venient way of compiling class libraries for Silverlight, this isn’t the only way.
COMPILING ASSEMBLIES WITHOUT VISUAL STUDIO

Having to have Visual Studio 2008 just to compile a few lines of C# is a nuisance. For-
tunately, a C# compiler is a standard part of a normal .NET install, and we can use this
directly.

 The C# compiler is called csc.exe. We can pass in command-line arguments that tell
it not to reference the standard .NET assemblies but use the Silverlight ones instead.

 Listing 14.9 is a batch file9 that compiles any C# files in the current directory (*.cs)
into an assembly specified by the /out argument. The /nostdlib+ /noconfig argu-
ments tell csc not to use the standard framework assemblies, and the /r arguments
add explicit references to the Silverlight assemblies we are using.10

set sl=C:\Program Files\Microsoft Silverlight\2.0.31005.0
set csc=C:\Windows\Microsoft.NET\Framework\v2.0.50727\csc.exe

%csc% /t:library /out:Scriptable.dll
 /nostdlib+ /noconfig
 /r:"%sl%\mscorlib.dll" r:"%sl%\System.dll"
 /r:"%sl%\System.Core.dll"
 /r:"%sl%\System.Net.dll"
 /r:"%sl%\System.Windows.Browser.dll"
 *.cs

pause

This is very simple to automate as part of your build process, and it minimizes the dif-
ficulty of maintaining the small parts of a project that can’t be kept in pure Python.

 We’ve been looking at creating class libraries for use from IronPython. C# and
VB.NET are, like Python, imperative object-oriented programming languages. If you
know one, the core concepts are similar enough that the others are easy to learn.
Despite the similarities, there are also many differences, and there are times when one
language is more appropriate than another. With the help of the Dynamic Language
Runtime, the .NET framework is a great environment to engage in “polyglot program-
ming.”11 In this section we’ve shown several good reasons to write code in C#/VB.NET
for use from IronPython, whether for performance reasons or to use features of the
CLR that we can’t access directly from IronPython. In fact, using .NET attributes, we
can even use C# to access code written in C.

9 The lines that start with %csc% should be on one line; I’ve split the code into multiple lines here for readability.

Listing 14.9 A batch file for compiling .cs files into assemblies for Silverlight

10 The exact location (on disk) of the Silverlight assemblies will depend on the version you have installed. The
directory path shown in listing 14.9 is the location for Silverlight 2.

11 One of the first references to polyglot programming on the .NET framework dates from 2002, the same year
as the release of version 1.0 of the .NET framework. See http://www.ddj.com/architect/184414854.

Path to csc.exe,
the C# compiler

Location of the
Silverlight assemblies

All C# files in
this directory
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.ddj.com/architect/184414854

374 CHAPTER 14 Extending IronPython with C#/VB.NET
 When we write .NET libraries for IronPython, they are generally usable with no spe-
cial effort, but there are things that that we can do to make these objects feel more
“Pythonic.”

14.2 Creating dynamic (and Pythonic) objects from C#/VB.NET
When you create a normal Python class, you can add whatever attributes you want at
runtime, as the following interactive session illustrates:

>>> class SomeClass(object): pass
>>> instance = SomeClass()
>>> instance.x = 3
>>> instance.x
3

We can also define the magic methods __setattr__, __getattr__, and __delattr__
to customize what happens when arbitrary attributes are set, fetched, or deleted. We
can’t do that with the classes we’ve been writing in C# and VB.NET; attempting to do
so will throw an attribute error. To be fair, the same thing will happen with Python
classes implemented in C extension modules (or Python classes that define
__slots__), but CPython does provide ways for extension classes to provide dynamic
attribute access—and so does IronPython.

 In this section we look at several special methods that you can define on .NET
classes to permit, and customize, dynamic attribute access. Implementing these pro-
vides a nice, Python-friendly API, while still not being dependent on IronPython and
allowing classes to be used from other languages. As well as using the dynamic attri-
bute access methods, you can use argument attributes to make your method signa-
tures feel more native to the Python programmer.

14.2.1 Providing dynamic attribute access

Dynamic attribute access can be used to create a natural-feeling API, like accessing
DOM elements by name on the Document class in Silverlight.

 There are actually five methods that a .NET class can implement to provide
dynamic attribute access.12 These methods are

■ GetCustomMember—Runs before normal .NET lookups
■ GetBoundMember—Runs after normal .NET lookups
■ SetMember—Runs before normal .NET member assignment
■ SetMemberAfter—Runs after normal .NET member assignment
■ DeleteMember—Runs before normal .NET operator access (there’s no .NET

equivalent)

These methods aren’t part of an interface, but instead you mark them with the
SpecialName attribute.13 This is a standard .NET attribute (living in the System.

12 Special thanks to Srivatsn Narayanan, from the IronPython team, for his help with this section.
13 See http://msdn.microfost.com/en-us/library.system.runtime.compilerservices.specialnameattribute.aspx.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microfost.com/en-us/library.system.runtime.compilerservices.specialnameattribute.aspx

375Creating dynamic (and Pythonic) objects from C#/VB.NET
Runtime.CompilerServices namespace), and so using it doesn’t require us to refer-
ence the IronPython assemblies.

 Because you almost certainly don’t want dynamic attribute access to interfere with
the normal use of your class (access to members that you have defined normally),
you will probably want to implement GetBoundMember/SetMemberAfter. These
are run after normal .NET lookup has been tried and are called only if the name
doesn’t exist.

 You can use GetCustomMember and SetMember (called before normal .NET look-
ups) to override normal member lookup. With GetCustomMember you can signal to
IronPython that it should proceed with normal lookup by returning Operation-
Failed.Value.14 OperationFailed is defined inside the IronPython assemblies, and
so you will need to reference them to use it. SetMember can signal that normal mem-
ber lookup should proceed by returning a bool; True signifies that no further lookups
are required and False signifies that normal lookup should continue. If SetMember
returns anything other than a bool, then no further lookups will be attempted.

 Listing 14.10 is a class that uses GetBoundMember, SetMemberAfter, and Delete-
Member to allow you to fetch, set, and delete members.

using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.CompilerServices;

namespace DynamicObject
{
 public class DynamicObject
 {
 private Dictionary<string, object> _dict = new Dictionary<string, object>();

 public Dictionary<string, object> container
 {
 get { return _dict; }
 }

 [SpecialName]
 public object GetBoundMember(string name)
 {
 if (!_dict.ContainsKey(name))
 {
 string msg = String.Format("'DynamicObject' has no attribute '{0}'",
 name);
 throw new System.MissingMemberException(msg);
 }
 return _dict[name];
 }

14 GetBoundMember can also return OperationFailed.Value, which will signal to IronPython to raise an
AttributeError.

Listing 14.10 A C# class that allows dynamic attribute access from IronPython

Fetch the underlying
attribute dictionary Attribute

fetch method

Raise an AttributeError
for missing attributes

Return the
requested attribute
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

376 CHAPTER 14 Extending IronPython with C#/VB.NET
 [SpecialName]
 public void SetMemberAfter(string name, object o)
 {
 _dict.Add(name, o);
 }

 [SpecialName]
 public void DeleteMember(string name)
 {
 if (!_dict.ContainsKey(name))
 {
 string msg = String.Format("'DynamicObject' has no attribute '{0}'",
 name);
 throw new System.MissingMemberException(msg);
 }
 _dict.Remove(name);
 }
 }
}

The class DynamicObject stores attributes in a dictionary (just as they would be stored
in the __dict__ dictionary on a Python object), which is exposed via the container
property. The three special methods for fetching, setting, and deleting attributes
manipulate the underlying dictionary. Both DeleteMember and GetBoundMember
check to see if an attribute exists before attempting to fetch it or delete it from the dic-
tionary. If the attribute is not found, then it raises a MissingMemberException (which
becomes an AttributeError in IronPython) rather than a KeyNotFoundException.
Returning OperationFailed.Value here would have the same effect but would
require us to reference the IronPython assemblies.

 The following interactive session shows our DynamicObject class in action:

>>> import clr
>>> clr.AddReference('DynamicObject')
>>> from DynamicObject import DynamicObject
>>> d = DynamicObject()
>>> d.attribute = 'an attribute'
>>> print d.attribute
an attribute
>>> del d.attribute
>>> d.attribute
Traceback (most recent call last):
AttributeError: 'DynamicObject' has no attribute 'attribute'

Because the attributes are stored in a publicly exposed dictionary, a C# application could
use DynamicObject by directly working with container (an alternative would be to use
an indexer and allow both indexing and attribute access). This way we have created an
API that is usable from all .NET languages but uses the dynamic features of Python when
used from IronPython.

 Listing 14.11 is the same class implemented in VB.NET.

Method for setting
attributes

Method for deleting
attributes
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

377Creating dynamic (and Pythonic) objects from C#/VB.NET
Imports System
Imports System.Collections.Generic
Imports System.Text
Imports System.Runtime.CompilerServices

Public Class DynamicObject

 Private _error As String = "'DynamicObject' has no attribute '{0}'"
 Private _instance_dict As New Dictionary(Of String, Object)
 Public ReadOnly Property container() As Dictionary(Of String, Object)
 Get
 Return _dict
 End Get
 End Property

 <SpecialName()> _
 Public Function GetBoundMember(ByVal name As String) As Object
 If Not _instance_dict.ContainsKey(name) Then
 Dim msg As String = String.Format(_error, name)
 Throw New System.MissingMemberException(msg)
 End If
 Return _instance_dict.Item(name)
 End Function

 <SpecialName()> _
 Public Sub SetMemberAfter(ByVal name As String, ByVal value As Object)
 _instance_dict.Add(name, value)
 End Sub

 <SpecialName()> _
 Public Sub DeleteMember(ByVal name As String)
 If Not _instance_dict.ContainsKey(name) Then
 Dim msg As String = String.Format(_error, name)
 Throw New System.MissingMemberException(msg)
 End If
 _instance_dict.Remove(name)
 End Sub

End Class

There is a sixth method, related to dynamic attribute access, that we can also imple-
ment. In Python we determine the members available on an object by calling dir on
it. This doesn’t play well with objects that dynamically create members, like the code
we have just written (pure Python code has the same problem with objects that use
__getattr__ for attribute access). Calling dir on a DynamicObject instance shows
only the public members we have explicitly defined (plus default members that exist
on all objects) and not the ones that were created by SetMemberAfter. The sixth
method is GetMemberNames, and it will be used when dir is called on an object that
implements it. Like the other methods, it must be marked with the SpecialName attri-
bute, and it should return an IEnumerable (of string) that lists all of the member
names on the object.

Listing 14.11 A VB.NET class that allows dynamic attribute access from IronPython

Fetch the underlying
attribute dictionary

Attribute fetch method

Raise an
AttributeError for
missing attributes

Method for
setting attributes

Method for
deleting attributes

Return the requested
attribute
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

378 CHAPTER 14 Extending IronPython with C#/VB.NET
 These special methods mirror the Python magic methods__getattr__ and
__setattr__.15 There are plenty of other Python protocols that you might want to
support; let’s see how you do that.

14.2.2 Python magic methods

The intention is that you should be able to provide any Python magic method on a C#
or VB.NET class simply by implementing it.

So if we could implement __getattr__ directly, why did we first look at GetBoundMember,
SetMember, and friends? Well, there are a few exceptions—and that includes the get/
set/delete member customizers that we covered in the last section. On top of this they
are DLR methods rather than being Python specific. Classes that implement these meth-
ods will work with any language that runs on the Dynamic Language Runtime.

 There is one more exception, too, the __call__ method, which you can imple-
ment with a Call method marked with the SpecialName attribute. The following snip-
pet of C# shows the Call method definition:

[SpecialName]
object Call(string someArg, int someOtherArg)

In general, if there’s a .NET interface or operator method that maps onto the Python
methods, you should use it. You’ve already seen how .NET indexing maps to the
Python __getitem__ and __setitem__ methods. Instead of __enter__/__exit__, you
can implement IDisposable and so on. This mapping of .NET interfaces and meth-
ods into Python methods is done in the source file TypeInfo.cs.

 In implementing these methods we’re explicitly providing features to create
objects that are easy and intuitive to use from Python. What intuitive means in a pro-
gramming context is “familiar,” and this means using the techniques and patterns that
are common to Python. This can be a hard goal when writing in a language that has its
own idioms. There is more to the IronPython .NET integration that we can take advan-
tage of to achieve it.

14.2.3 APIs with keyword and multiple arguments

One way to create a flexible and easy-to-use API in Python is through the use of key-
word arguments. Keyword arguments serve two purposes in a single mechanism. They

15 GetMemberNames mirrors the __dir__ magic method added in Python 2.6.

Protocol methods on .NET classes with IronPython 2
I (Michael) say intention because during the early IronPython 2 Betas, it was still nec-
essary to implement interfaces for some of the protocol methods, such as ICode-
Formattable to support repr. By IronPython 2, if there is any protocol method (other
than the exceptions) that can’t be implemented directly, it will be a bug.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

379Creating dynamic (and Pythonic) objects from C#/VB.NET
make individual arguments to a function or method optional (supplying a default
value if the argument is not passed) and make argument passing more explicit by
allowing them to be passed in by name. Python also allows you to collect all arguments
passed in using the *args notation.

.NET supports the latter, through the params keyword in C# and ParamArray
in VB.NET, but it doesn’t directly support the concept of keyword arguments. Both
VB.NET and C# have some concept of optional arguments, though, and IronPython
again does magic on our behalf to make them compatible with Python keyword argu-
ments. This means that we can write .NET classes in C# and VB.NET that accept key-
word arguments when used from IronPython.

 In C# we do this by marking parameters with the DefaultParameterValue attri-
bute16 from the System.Runtime.InteropServices namespace. This allows us to spec-
ify a value that will be used if the argument is not passed at call time. Interestingly, we
can’t omit the argument when calling from C#. Although C# allows us to create
methods with parameters marked in this way, the language itself doesn’t support
optional arguments.

 This attribute works fine in most cases. One situation it doesn’t work in is where
the parameter is of a nullable type. A nullable type is a special version of a value type
(like an integer or a Boolean, which can’t normally be represented by a null) that
allows null as a valid value. Under the hood .NET boxes the value, so there are perfor-
mance implications, but they can be extremely useful where you need null to repre-
sent a special value. In C# you declare a variable to be of a nullable type by adding a
question mark to the type declaration. A nullable integer is declared with the type
declaration int?. Unfortunately we can’t use the DefaultParameterValue attribute
with nullable types, but we can use the Optional attribute17 instead. This doesn’t allow
us to specify a default value, but you can always check for null inside the body of your
method and supply a default yourself.

16 See http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.
defaultparametervalueattribute.aspx.

17 See http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.optionalattribute.aspx.

Constructors and keyword arguments
While we’re talking about keyword arguments, don’t forget that IronPython already
gives special treatment to keyword arguments passed into constructors. Additional
arguments passed to a constructor by keyword will be used to set properties on the
object after it has been created.

i = SomeClass(arg1, X=value)

is the equivalent of

i = SomeClass(arg1)
i.X = value
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/en-us/library/system.runtime.interopservices
http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.optionalattribute.aspx

380 CHAPTER 14 Extending IronPython with C#/VB.NET
 Listing 14.12 shows a C# class with three static methods. The first takes strings as
arguments but provides default values for the last two. The second method takes nul-
lable integers as its last two arguments. It prints all three arguments it is called with,
but if the second argument is null (omitted), then it is replaced with a default value
inside the body of the method.18 The third method allows you to call it with as many
arguments as you want, using the params keyword, and prints out how many argu-
ments it is called with.

using System;
using System.Runtime.InteropServices;

namespace DefaultArguments
{
 public class Example
 {
 public static void DefaultValues(string string1,
 [DefaultParameterValue("default")] string string2,
 [DefaultParameterValue("another")] string string3)
 {
 Console.WriteLine("1st argument = " + string1);
 Console.WriteLine("2nd argument = " + string2);
 Console.WriteLine("3rd argument = " + string3);
 }

 public static void OptionalIntegers(int value1,
 [Optional] int? value2, [Optional] int? value3)
 {
 if (!value2.HasValue)
 {
 value2 = 100;
 }
 Console.WriteLine("1st argument = {0}", value1);
 Console.WriteLine("2nd argument = {0}", value2);
 Console.WriteLine("3rd argument = {0}", value3);
 }

 public static void MultipleArguments(params object[] args)
 {
 int len = args.Length;
 Console.WriteLine("You passed in {0} args", len);
 for (int i = 0; i < len; i++)
 {
 object v = args[i];
 Console.WriteLine("Argument {0} is {1}", i, v);
 }
 }
 }
}

18 The example tests the nullable using !value2.HasValue. A more concise alternative is the C# null-coalescing
operator: value2 = value2 ?? 100.

Listing 14.12 Methods with multiple arguments and default arguments from C#

Provide a default
value of "default"

Optional arguments
for nullable integers

Provide a default
for null values

Collects
arguments as

an object array

Print all the
arguments
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

381Creating dynamic (and Pythonic) objects from C#/VB.NET
When this is compiled, we can call these methods from IronPython, passing in argu-
ments by keyword. Of course in Python, and similarly in IronPython, we can always
pass in arguments by name. The important difference is that with arguments marked
with these attributes we can omit altogether the ones that have default values.

 You can see how they behave in practice from the output from the following inter-
active session. Note particularly that when calling DefaultValues and Optional-
Integers, we can omit the second argument and pass in the third by keyword.

>>> import clr
>>> clr.AddReference('DefaultArguments')
>>> from DefaultArguments import Example
>>> Example.DefaultValues('first', string3='third')
First argument = first
Second argument = default
Third argument = third
>>> Example.OptionalIntegers(10, value3=2)
First argument = 10
Second argument = 100
Third argument = 2
>>> Example.MultipleArguments(1, 'two', object(), 4)
You passed in 4 arguments
Argument 0 is 1
Argument 1 is two
Argument 2 is System.Object
Argument 3 is 4

VB.NET does have language support for optional arguments. To a certain extent this
makes things easier; we can just declare arguments as optional and supply a default
value. These behave like arguments marked with the DefaultParameterValue attri-
bute, which means that we can’t use them with nullable types.

In fact, the use of optional arguments is looked down on (sorry, I mean “is not recom-
mended”) in VB.NET. The recommended technique is to use multiple overloads. You
can supply one overload that takes all the arguments and alternative overloads that
take fewer arguments but fill in the missing ones with default values. In this case
IronPython allows us to pass in arguments by name and works out for us which over-
load to call. To make more than one argument optional, you will have to implement a
different overload for every possible combination of arguments, and each overload

Optional arguments in VB.NET
If you read about optional arguments in VB.NET, you will find that they are usually not
recommended. The main reason for this is that optional arguments aren’t usable if
you consume the API from C#. In addition, the optional values are stored as metadata
in the IL bytecode and actually compiled into the methods’ callers (meaning changes
to default values require their callers to be recompiled as well). Because IronPython
resolves them dynamically, it doesn’t suffer from these problems.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

382 CHAPTER 14 Extending IronPython with C#/VB.NET
must have a different type signature. Unfortunately, this makes having several
optional arguments of the same type impossible just through overloads.

 Listing 14.13 shows what we can do with VB.NET. The Example class here has Default-
Values and MultipleArguments methods that do the same as their C# equivalents.

Public Class Example
 Public Shared Sub DefaultValues(ByVal string1 As String, _
 Optional ByVal string2 As String = "default", _
 Optional ByVal string3 As String = "another")
 Console.WriteLine("First argument = " + string1)
 Console.WriteLine("Second argument = " + string2)
 Console.WriteLine("Third argument = " + string3)
 End Sub

 Public Shared Sub MultipleArguments(_
 ByVal ParamArray args() As Object)
 Dim len As Integer = args.Count
 Console.WriteLine("You passed in {0} arg", len)
 For i As Integer = 0 To UBound(args, 1)
 Dim arg As Object = args(i)
 Console.WriteLine("Argument {0} is {1}", i, arg)
 Next
 End Sub
End Class

Designing an API is one of the most important tasks in programming. It influences the
structure and usability of your application or libraries. This is why I am a fan of test-
driven development; it makes you think about the usability of your API before you think
about the implementation.

 We’ve been looking at ways to give an API written in C# or VB.NET that elusive
Pythonic quality when used from IronPython. Of course, the easiest way to achieve
this is to write your code in Python in the first place, but it may not always be possible.
We have already shown how using attributes from IronPython requires the writing of
at least some code in a more traditional .NET language, whether it be a stub class or a
thin wrapper around native functions. In particular, writing stub classes can feel like
mechanical work, ripe for automation. In fact, we can automate the compiling of
these classes from text (which, after all, is what the compiler does), which means we
could automate the generation of the stubs at runtime!

 In the next section we use some of the APIs available in .NET that allow us to
dynamically compile (and then use) code at runtime.

14.3 Compiling and using assemblies at runtime
The code we wrote earlier to wrap native functions for WindowUtils was brief, but having
to maintain a separate Visual Studio project and recompile and then copy assemblies
across every time we changed the code could be annoying. We can avoid this, and actu-
ally eliminate the need to even save binary assemblies at all, by compiling straight from
source code into memory!

Listing 14.13 Optional and multiple arguments from VB.NET

Arguments
declared as
optional

Taking multiple arguments
with ParamArray

Print all the
arguments
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

383Compiling and using assemblies at runtime
 .NET provides access to the compiler infrastructure, through the System.CodeDom.
Compiler namespace19 in conjunction with an appropriate code provider. Access-
ing this programmatically from IronPython is straightforward once you know the
magic invocations.

 Listing 14.14 is a Generate function that uses either a CSharpCodeProvider or a
VBCodeProvider, configured with CompilerParameters initialized from the options
chosen in the function call signature. It takes the source code and an assembly name,
and depending on the options you pass in, it will return either the compiled assembly
or the path to the assembly saved on disk.

from System.Environment import CurrentDirectory
from System.IO import Path, Directory

from System.CodeDom import Compiler
from Microsoft.CSharp import CSharpCodeProvider
from Microsoft.VisualBasic import VBCodeProvider

def Generate(code, name, references=None, outputDir=None,
 inMemory=False, csharp=True):
 params = Compiler.CompilerParameters()

 if not inMemory:
 if outputDir is None:
 outputDir = Directory.GetCurrentDirectory()
 asmPath = Path.Combine(outputDir, name + '.dll')
 params.OutputAssembly = asmPath
 params.GenerateInMemory = False
 else:
 params.GenerateInMemory = True

 params.TreatWarningsAsErrors = False
 params.GenerateExecutable = False
 params.CompilerOptions = "/optimize"

 for reference in references or []:
 params.ReferencedAssemblies.Add(reference)

 if csharp:
 provider = CSharpCodeProvider()
 else:
 provider = VBCodeProvider()
 compile = provider.CompileAssemblyFromSource(params, code)

 if compile.Errors.HasErrors:
 errors = list(compile.Errors.List)
 raise Exception("Compile error: %r" % errors)

 if inMemory:
 return compile.CompiledAssembly
 return compile.PathToAssembly

The parameters for the Generate function are

19 See http://msdn.microsoft.com/en-us/library/system.codedom.compiler.aspx.

Listing 14.14 A function to compile, and save or return, assemblies from source code

Configure the path
to save assembly

Add references
to assemblies

Get the appropriate
code provider This is the

important
bit

Raise an exception
with any errors
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://msdn.microsoft.com/en-us/library/system.codedom.compiler.aspx

384 CHAPTER 14 Extending IronPython with C#/VB.NET
■ code —This is the source code we are compiling, as a string.
■ name —The name of the assembly to generate.
■ references —A list of strings with additional assemblies that your assembly

needs to reference. If these assemblies aren’t a standard part of the .NET frame-
work, then they will need to be absolute paths to the assemblies on the filesystem.

■ outputDir —This is an optional argument for a directory to save the assembly
to. If you don’t supply a path here, but inMemory is False, then the assembly will
be saved in the current directory.

■ inMemory —If this is True, then the assembly will be generated in memory, and
Generate will return the assembly object. If this is False, then Generate will
return the path to the saved assembly instead.

■ csharp —If this is True, then the source code should be C#. If it is False, then
the source code should be VB.NET.

If we call Generate with inMemory=True and no outputDir parameter, then instead of
saving the generated assembly to disk, it compiles into memory and returns us an
assembly object. From there we can either access the namespaces contained in the
class as attributes on the assembly, or we can take advantage of the fact that
clr.AddReference allows us to add a reference to an assembly object. After adding a
reference to the assembly, we can import from it normally.

 Going back to our earlier example of wrapping native functions in the Window-
Utils class, instead of keeping this as a separate Visual Studio project we can generate
the assembly from the source code as a string. We can do that by changing the start of
automation.py to the following:

import clr
assembly = Generate(source, 'WindowUtils', inMemory=True)
clr.AddReference(assembly)
from WindowUtils import WindowUtils

From there on, automation can use WindowUtils in exactly the same way as if the
assembly had been loaded from disk. If we need to modify the source code, we can
simply rerun our script, and although we still have a compile phase, it is done dynami-
cally at runtime rather than as a separate step before we can run our code.

 Instead of adding a reference and then importing, we could also do this:

assembly = Generate(source, 'WindowUtils', inMemory=True)
WindowUtils = assembly.WindowUtils.WindowUtils

Of course, C# can do all of this; in fact IronPython is built on a similar technique but
using the Reflection.Emit API to generate code directly as IL bytecode. The differ-
ence is that with IronPython we can dynamically reference and use assemblies at run-
time, whereas C# code must have access to all the classes it uses at compile
time—making code generation like this much less useful.

 Dynamically compiling at runtime opens up all sorts of interesting possibilities.
Consider, for example, the subject of building stub classes, like the one we used for
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

385Summary
working with Silverlight attributes. We can now create assemblies from text, and Iron-
Python is an excellent language for manipulating and generating text. We could use
introspection on Python classes to autogenerate the stubs for us, decorated with attri-
butes as required. This is left as an exercise for the reader!20

14.4 Summary
For complete integration with the .NET framework, it is sometimes necessary to use
another language. Fortunately, with IronPython this is very easy, and not only is it
much easier than with our old friend CPython, but these languages are much more
pleasant to work with than C.

 Even when working with C, CPython doesn’t have the advantage over IronPython.
CPython has an FFI21 called ctypes,22 and the .NET equivalent is the Platform Invoke
attribute. This requires at least some C# or VB.NET, and if writing this code feels pain-
fully like writing boilerplate, then you can always generate the code automatically and
compile at runtime.

 We’re not generally fans of code generation23 as a form of metaprogramming;
however, in the case of IronPython it could be an ideal way of taking advantage of the
benefits of static typing. Translating algorithms or interface code into assemblies,
compiled from C# generated at runtime, is a powerful concept.

 This chapter has been about writing C#/VB.NET in order to extend IronPython,
writing class libraries that we use from inside it. The other side of the coin, and one of
the major use cases for IronPython, is to embed the Python engine into a .NET appli-
cation and interact with it from the outside. This is also easy, but there are lots of dif-
ferent ways of doing this—and you’ll be learning about them in the next chapter.

20 Although Curt Hagenlocher has started a project that uses a very similar technique to generate proxy classes,
allowing you to use IronPython classes from C#. See http://www.codeplex.com/coils.

21 The Foreign Function Interface is for calling into native code.
22 See http://docs.python.org/lib/module-ctypes.html.
23 Ironically, Resolver One is based on the principle of generating Python code from spreadsheet formulas.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.codeplex.com/coils
http://docs.python.org/lib/module-ctypes.html

Embedding
 the IronPython engine
Embedding the IronPython engine is one of the major reasons for wanting to use
IronPython. It provides a ready-made scripting language engine for embedding
into applications. You can use it to provide user scripting and plugins or integrate
Python code into systems written in other languages. You could even use it to pro-
vide user scripting for Silverlight applications.

 Embedding the IronPython engine means turning the world, as we have seen it
so far, inside out. Instead of using .NET objects from inside IronPython, we host the
language engine inside C# or VB.NET—and interact with Python objects from these
languages. This means that we make objects available for the Python code to work
with and then work with objects created from Python back on “the other side.”

This chapter covers
■ Creating a custom executable
■ The IronPython engine
■ The DLR hosting API
■ Handling Python exceptions
■ Interacting with dynamic objects
386

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

387Creating a custom executable
 Although we work specifically with IronPython, much of what we look at is relevant
to the other DLR languages as well.

 There are many different ways of embedding IronPython, corresponding to the
myriad of use cases to which you might apply it. In this chapter we take a leisurely
stroll through some of the more common hosting scenarios. Not only will this cover
many of the straightforward things you might want to achieve, but it will equip you to
experiment with more esoteric uses to which you might bend IronPython.

 IronPython is an enormously powerful tool for use in .NET applications. As well as
providing ways to extend and script applications, it also allows you to create custom
DSLs1 where business rules can be stored as text without the application having to be
recompiled. We’ll be covering all of these use cases but starting with one of the sim-
pler use cases: creating an executable that launches a Python application.

15.1 Creating a custom executable
One of the most basic ways of embedding IronPython is to create an executable file
that executes a Python file. This allows you to distribute a Python application, where
the main entry point is a standard .exe file. Because this uses only a subset of the API,
it makes a great first example. Before we tackle the whole code for creating a custom
executable, let’s look at the major components in the hosting API, starting with the
IronPython engine itself.

15.1.1 The IronPython engine2

To use IronPython we need to include all five assemblies that come with it:

■ Microsoft.Scripting.dll
■ Microsoft.Scripting.Core.dll
■ IronPython.dll
■ IronPython.Modules.dll
■ Microsoft.Scripting.ExtensionAttribute.dll

The first two assemblies comprise the Dynamic Language Runtime. The next two are
specific to IronPython. IronPython.dll implements the Python language syntax and

1 Domain Specific Languages—These are “little languages” that encapsulate rules for a specific problem
domain.

2 See http://www.ironpythoninaction.com/.

The IronPython hosting API
In this chapter we work with the IronPython and DLR hosting API, which are part of
IronPython 2. All the examples in this chapter use the API from the IronPython 2 Final
Release. If there are any changes for subsequent releases, we will post them to the
IronPython in Action website.2
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.ironpythoninaction.com/

388 CHAPTER 15 Embedding the IronPython engine
semantics. IronPython.Modules.dll provides a C# implementation of some of the
built-in modules that in CPython are written in C.

 The last assembly is a bit special; it is there so that .NET projects using IronPython
work with both .NET 2.0 and .NET 3.0. The DLR uses extension methods, both because
it shares an AST format with LINQ (expression trees) and to provide convenience
methods on several parts of the hosting API. The extension methods are decorated
with the ExtensionAttribute attribute, which is part of .NET 3.0. All the Microsoft.
Scripting.ExtensionAttribute assembly does is provide this attribute so that Iron-
Python can be compiled under .NET 2.0. The important thing is that it must be
included in your projects but not directly referenced. If your project is a .NET 3.0 proj-
ect, then it will use the standard ExtensionAttribute, and if it is a .NET 2.0 project, it
will use the one provided by the DLR.

 The main entry point for applications that embed IronPython is the Python class
in the IronPython.Hosting namespace. It has convenience methods for creating
ScriptEngine and ScriptRuntimes preconfigured for working with IronPython.3

 Once we have set up a project that references these assemblies, we can extract a
Python language engine from their grasp with the following snippet of C#:

using IronPython.Hosting;
ScriptEngine engine = Python.CreateEngine();

The VB.NET equivalent is

Imports IronPython.Hosting
Dim engine As ScriptEngine = Python.CreateEngine()

This code creates a single engine. The Dynamic Language Runtime supports the cre-
ation of multiple runtimes within a single application. This can be extremely useful
for creating execution contexts that are isolated from each other,4 a feature that
Resolver One uses to have multiple open but separate spreadsheets.

 In the examples that follow we will cover the most common ways of working with
the IronPython hosting API, but you often have a choice of several different routes to
achieve the same end. For more complete documentation on all the possibilities, you

3 The IronRuby project has a similar entry point with easy access to engines and runtimes preconfigured for
working with IronRuby.

4 There is also support for creating separate runtimes in different AppDomains for further isolation.

Examples in C# or VB.NET
This chapter illustrates the IronPython embedding API by working through four differ-
ent examples. These examples are all available in the chapter 15 folder of the down-
loadable sources, as Visual Studio projects in both C# and VB.NET. Because of space
restrictions we only show code examples in either C# or VB.NET, except where there
are notable differences between them.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

389Creating a custom executable
should refer to the source code (this is open source after all) or the “DLR Hosting
Spec” document.5

 Once we have created an engine, we are ready to execute code, either from a
string or directly from a file. At this stage our goal is to create an executable that
launches a Python application, so we want to run a file.

15.1.2 Executing a Python file

To execute code we must introduce two more components from the hosting API, the
ScriptSource and the ScriptScope. The ScriptSource can be created from the
engine, either from a source file or from code in a string. A ScriptScope represents a
Python namespace (a scope) and is also created from the engine.

 C# snippets to do this are as follow. First, for executing code from a string:

ScriptSource source;
source = engine.CreateScriptSourceFromString(sourceCode,
 SourceCodeKind.Statements);
ScriptScope scope = engine.CreateScope();
source.Execute(scope);

To execute Python code in a file:

ScriptSource source;
source = engine.CreateScriptSourceFromFile(programPath);
ScriptScope scope = engine.CreateScope();
source.Execute(scope);

Figure 15.1 shows a diagram of the DLR host-
ing API that we’ve used to get to this point.

 This isn’t quite enough, however. In order to
properly execute a Python program, we should do
a bit more work and set up things like sys.path
(the import path) and provide any command-
line arguments that were passed to the program.
SETTING THE COMMAND-LINE ARGUMENTS

Command-line arguments in a .NET applica-
tion are passed into the Main method of our
application as a string array. Python programs

5 This is available from the DLR project page on CodePlex: http://www.codeplex.com/dlr.

Exploring the IronPython hosting API
As with the other assemblies we have used in this book, the easiest way of exploring
the IronPython hosting API is with the interactive interpreter. From ipy.exe you can add
references to the DLR and IronPython assemblies and experiment interactively with
these classes.

Figure 15.1 The major DLR hosting API
components used to execute a Python file
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.codeplex.com/dlr

390 CHAPTER 15 Embedding the IronPython engine
expect sys.argv to be a list of strings, where the first entry is the program filename and
the entries following are the command-line arguments.

 The Python class provides easy access to the sys module for a Python engine with
the GetSysModule method. This method takes the engine as an argument and
returns a ScriptScope. Listing 15.1 extracts the sys module and sets the command-
line arguments.

using IronPython.Runtime;

List argList = new List();
argList.extend(args);
ScriptScope sys = Python.GetSysModule(engine);
sys.SetVariable("argv", argList);

The value of sys.argv needs to be a Python list. Naturally the Python list type in Iron-
Python is implemented in C#, so we can use it from our embedding code—including
using Python methods like append and extend to add elements.

 We’ve now used two convenience methods from the Python class. It has many
more, the most useful of which are listed in table 15.1.

 Both CreateRuntime and CreateEngine optionally take a dictionary of options to
configure the engine/runtime. GetSysModule, GetBuiltinModule, GetClrModule, and

Listing 15.1 Setting the command-line arguments for Python code from C#

Table 15.1 Methods on the Python class

Method name Purpose

CreateRuntime(): ScriptRuntime Creates a new ScriptRuntime with the IronPython
scripting engine preconfigured.

CreateEngine(): ScriptEngine Creates a new ScriptRuntime and returns the
ScriptEngine for IronPython. If the
ScriptRuntime is required, it can be acquired
from the Runtime property on the engine.

GetEngine(ScriptRuntime
runtime): ScriptEngine

Given a ScriptRuntime, this gets the
ScriptEngine for IronPython.

GetSysModule(this ScriptEngine
engine): ScriptScope

Gets a ScriptScope, which is the Python sys module
for the provided ScriptRuntime.

GetBuiltinModule(this
ScriptEngine engine):
ScriptScope

Gets a ScriptScope, which is the Python
__builtin__ module for the provided
ScriptRuntime.

GetClrModule(this ScriptEngine
engine): ScriptScope

Gets a ScriptScope, which is the Python clr module
for the provided ScriptRuntime.

ImportModule(this
ScriptRuntime runtime, string
moduleName): ScriptScope

Imports the Python module by the given name and
returns its ScriptScope. If the module does not exist,
an exception is raised.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

391Creating a custom executable
ImportModule can all be called with either a ScriptRuntime or a ScriptEngine. These
four methods are also extension methods, so if you’re using .NET 3.5 you’ll be able to
do someEngine.GetSysModule() after using or importing IronPython.Hosting.

 Back to our example: as well as passing in the command-line arguments, we also
need to make sure that the import path is set up correctly for the Python program.
SETTING THE SEARCH PATH

The Python engine has a method called SetSearchPaths, which allows us to pass in an
array of paths. These set up sys.path, which is the module search path for import
statements and adding references to assemblies.

 In order to properly replicate the environment a program runs under when exe-
cuted with ipy.exe, we need to honor the IRONPYTHONPATH environment variable. This
means fetching the environment variable and breaking up a string like
C:\Python25\lib;C:\Python\25\lib\site-packages into its component parts by
splitting on the semicolons.

 Perhaps more important, the directory the Python program is in needs to be in the
import path. We can’t assume that this is the current directory, because the applica-
tion could have been launched from a shortcut or simply from another directory.

 Listing 15.2 shows code that creates a List (a generic .NET List, not a Python one)
and populates it with the directory containing the Python program plus any paths from
IRONPYTHONPATH. It then calls engine.SetSearchPaths with an array from the List.

string filename = "program.py";
string path = Assembly.GetExecutingAssembly().Location;
string rootDir = Directory.GetParent(path).FullName;

List<string> paths = new List<string>();
paths.Add(rootDir);

string path = Environment.GetEnvironmentVariable("IRONPYTHONPATH");
if (path != null && path.Length > 0)
{
 string[] items = path.Split(';');
 foreach (string p in items)
 {if (p.Length > 0) { paths.Add(p); }}
}
engine.SetSearchPaths(paths.ToArray());

Listing 15.3 does the same thing, but in VB.NET.

Dim filename As String = "program.py"
Dim path As String = Assembly.GetExecutingAssembly().Location
Dim rootDir As String = Directory.GetParent(path).FullName

Dim paths As List(Of String) = New List(Of String)()
paths.Add(rootDir)

Dim path As String = Environment.GetEnvironmentVariable("IRONPYTHONPATH")

Listing 15.2 Populating the engine import paths from C#

Listing 15.3 Populating the engine import paths from VB.NET

Location
of executing
application

Check IRONPYTHONPATH
for contents

Set the paths

Location
of executing
application
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

392 CHAPTER 15 Embedding the IronPython engine
If path <> Nothing AndAlso path.Length > 0 Then
 Dim items As String() = path.Split(";"c)
 For Each p As String In items
 If p.Length > 0 Then
 paths.Add(p)
 End If
 Next
End If
engine.SetSearchPaths(paths.ToArray())

One thing to be careful of in VB.NET is that the And logical operator does not short
circuit (it evaluates both sides of the expression even if the first is False). Before split-
ting the IRONPYTHONPATH environment variable, we need to check that it is not null
and not empty. We need to use the AndAlso operator because we can’t check the
length of the string if it is null.

 Now we’re ready to execute the code, but with one caveat: because we are execut-
ing code in a dynamic language, we need to be able to handle runtime exceptions
gracefully.
HANDLING PYTHON EXCEPTIONS

Our .NET code is just a thin wrapper around the Python program, so unhandled
exceptions will be fatal anyway, and we could simply let them bubble up. The problem
with this approach is that the traceback written to the console will be an incompre-
hensible CLR traceback, including all the stack frames inside the DLR. What we want is
a straightforward Python traceback, and we can get this by catching the exception and
using ExceptionOperations to format the traceback.

 We have to confess to slightly misleading you earlier; although Execute is a per-
fectly valid way to run the code in a ScriptSource, it isn’t the best way to run a script
that is a full program. Python programs can exit with a return code6 (an integer), and
if this happens we want to propagate the exit code. Instead of Execute, we can use
ExecuteProgram, which returns us the integer exit code (and will create its own scope
rather than requiring us to pass one in). Listing 15.4 executes the ScriptSource we
created from program.py inside some exception-handling code. If the program termi-
nates normally, it exits with the return code from ExecuteProgram. If an exception is
raised, it writes out the formatted exception message and exits with a return code of 1.

try
{
 ScriptSource source;
 source = engine.CreateScriptSourceFromFile(programPath);
 int result = source.ExecuteProgram();
 return result;
}
catch (Exception e)
{
 ExceptionOperations eo = engine.GetService<ExceptionOperations>();

6 A Python program exits with an explicit return code by calling sys.exit(integer).

Listing 15.4 Executing the ScriptSource, handling any exceptions (in C#)

Check IRONPYTHONPATH
for contents

Set the paths
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

393IronPython as a scripting engine
 Console.Write(eo.FormatException(e));
 return 1;
}

We have pulled all this together into the EmbeddedExecutable example in the down-
loadable source code.

 Something the example does that isn’t shown in the code snippets above is to set
debug mode on the engine. This is done by passing in a dictionary of options to the
CreateEngine call, with Debug set to true. It causes the IronPython engine to compile
Python code in debug mode (without optimizations—so it isn’t recommended for
production code). This allows you to use the Visual Studio debugger, including set-
ting breakpoints, on the Python code.

 When you run EmbeddedExecutable.exe, it runs program.py, which prints a mes-
sage along with the command-line arguments it is passed. It then raises an exception
to illustrate the exception formatting, as you can see in figure 15.2.

Embedding IronPython in a custom executable uses only a fraction of the hosting API,
but we have used some of the most important classes. The ScriptEngine, Script-
Scope, and ScriptSource will accompany us through the rest of the book.

 Next we look at some different hosting scenarios and explore more of the API. These
build on what we have already learned, but instead of just executing Python code, we
actually interact between the host application and the Python environment it is hosting.

15.2 IronPython as a scripting engine
By embedding IronPython in an application we can do much more than create exe-
cutable wrappers over Python applications. Potential uses include providing scripting
capabilities and plugins for .NET applications and even writing (or prototyping) parts
of an application in IronPython.

 In this section we work through another example,7 which covers the core classes and
basic techniques for embedding IronPython. In the next section we build on this with
a more specific example that uses IronPython to add a plugin mechanism to a program.

 Topics we cover in this section are creating compiled code objects from Python
code, setting and fetching variables from execution scopes, adding references to

7 We use the BasicEmbedding example in the downloadable sources.

Figure 15.2 An executable application (.exe) that launches a Python program
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

394 CHAPTER 15 Embedding the IronPython engine
assemblies, and publishing Python modules to runtimes. This will give us several dif-
ferent ways to interact between IronPython code and the .NET application. We can
directly place objects into an execution context (a scope) for Python code to
use—possibly calling back into our application from these objects. We can then fetch
objects back out of the execution context after Python code has run. Alternatively, we
can add references to assemblies or build and publish Python modules, so that Iron-
Python code can access them by importing them.

15.2.1 Setting and fetching variables from a scope

The methods that initialize the main execution scope and then execute the Python
code are very similar to the code we have already written. There are two important dif-
ferences, though.

 When we were running a Python program, we created a ScriptSource from the
source code file and called ExecuteProgram to run it. ExecuteProgram executes code
in its own execution scope. However, if we execute code in an explicitly created
ScriptScope, we can then access variables, classes, and the like that have been created
by the executed code. Conversely, if we want to provide objects for the code to use, we
can place them in the scope prior to execution.

 The second difference in the embedding code we are about to write is the way that
code is executed. In the snippets we have just seen, a ScriptSource is created from
the source code and then executed directly with the scope. If we are going to execute
the code several times, which is entirely likely in a hosting situation, then we can opti-
mize by compiling the code from the ScriptSource.

 Calling script.Compile() returns us a CompiledCode object that we can use in
place of the ScriptSource.

 ScriptScope and CompiledCode are two highly reusable components. You can cre-
ate multiple scopes and execute the same code in the different scopes or create a sin-
gle scope and execute different code with access to the same objects.

 The ScriptScope is a DLR class and is not tied to IronPython. You can execute
Python code to create an object graph in a scope and then execute Ruby code in the
same scope and with access to the same objects.8 This permits some very interesting
interoperability stories. Where IronRuby (or Managed JScript or IronScheme or …)
uses IronPython objects, they retain their behavior as Python objects but are
still usable from these other languages. There are some restrictions in the ways they
can interoperate; it is unlikely that Python classes will ever be able to inherit from
Ruby classes or vice versa, for example.9 It should still be possible for dynamic lan-
guages running on .NET to share libraries, though. Python on Rails or Ruby on
Django, anyone?

 From a hosting point of view, the interesting thing we can do with scopes is to set
variables in and fetch variables out of them. This means that you can publish an object

8 The Silverlight DLRConsole application does exactly this.
9 If they could, which metaclass should they use—the Python one or the Ruby one?
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

395IronPython as a scripting engine
model from the hosting application into the scope for user code to work with (call
methods, add handlers to events, and so on). After executing Python code you can
then fetch objects it has created out of the scope.

The methods for working with names contained in a scope are shown in table 15.2.

You also have read-only access to all the variable names as IEnumerable of string
through the public VariableNames property, and the variables themselves as IEnumer-
able of KeyValuePairs (containing string, object pairs) through the Items property.

 The most important of these methods are the three that allow you to set and fetch
variables in the scope:

■ GetVariable
■ TryGetVariable
■ SetVariable

Setting variables is straightforward. You call SetVariable with any string and any
object. If you want Python code to actually have access to the variables you set, then

Table 15.2 ScriptScope methods for working with names and variables

Method name Purpose

ClearVariables(): Void Clears all the variables in the scope.

ContainsVariable(String): Boolean Returns true if the scope contains the specified
name.

GetVariable(String): Object Fetches the named variable from the scope as
Object. Will raise an UnboundNameException if the
variable does not exist.

GetVariable<T>(String): T Fetches the named variable as type T. Will raise an
ArgumentTypeException if the variable is of the
wrong type.

RemoveVariable(String): Boolean Removes the named variable, returning true for
success.

SetVariable(String, Object): Void Sets the specified variable in the scope.

TryGetVariable(String, out Object):
Boolean

Takes an out parameter, which will not be set if the
variable does not exist in the scope.

Python scopes and variables
We use the term variable to refer to the contents of a Python scope with some un-
ease. Although it is probably the right term when used from the .NET side, Python
doesn’t really have a concept of variables. Instead it has objects and names refer-
encing those objects. Nonetheless, variable is the term used in the API for named
objects in a ScriptScope.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

396 CHAPTER 15 Embedding the IronPython engine
you should restrict the strings (variable names) to be valid Python identifiers, but the
scope doesn’t enforce this.10

 Fetching variables has more complications associated with it, mainly because of the
impedance mismatch of interacting with a dynamic language from a statically typed
language. So long as the variable exists—and after executing arbitrary Python code
there’s no guarantee of that—C# and VB.NET insist on knowing the type before they
will allow you to do anything useful with it.

 For known types you have a choice of checking that the variable exists with
ContainsName and use the generic version of GetVariable to fetch it from the scope.
To fetch a string you use GetVariable<string>(name) from C# or GetVariable(Of
String)(name) from VB.NET. Alternatively you can use TryGetVariable, which takes
an out parameter that will be null (nothing) after the call if the variable doesn’t
exist.11 From C# you will then need to cast the value to the known type after fetching
it. TryGetVariable returns a Boolean indicating success or failure of attempting to
fetch the variable.

 If you are executing arbitrary code you will, therefore, need code that can handle
the variable not existing or being the wrong type. If you are executing known code
rather than arbitrary code, then it is fine to do any necessary error handling within
the Python code and be able to guarantee that the variable exists and is of the
expected type.

 For .NET types, once you’ve pulled them out of the scope you have full access to
them as if they were created from C#/VB.NET. If they are dynamic objects, such as
functions or classes, you can still use them—but you have to use mechanisms provided
by the Dynamic Language Runtime to perform operations on them.12 This is some-
thing that we will look at later in the chapter.

 In the meantime we now have all the pieces we need to set variables in a scope,
execute code in that scope, and then fetch objects back out. Listing 15.5 is the start of
an Engine class in C#. You instantiate it with Python source code as a string.

public class Engine
{
 ScriptEngine _engine;
 ScriptRuntime _runtime;
 CompiledCode _code;
 ScriptScope _scope;

 public Engine(string source)
 {
 _engine = Python.CreateEngine();
 _runtime = _engine.Runtime;

10 This mirrors the behavior of Python, where you can also programmatically set invalid identifiers in a
namespace.

11 Or if the variable is set to None inside the scope.
12 This is not hard, but will be even easier once support for dynamic operations is built into the CLR or C#/

VB.NET languages—as is happening in C# 4.0 and VB.NET 10.

Listing 15.5 Creating an execution scope with access to contained variables (in C#)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

397IronPython as a scripting engine
 _scope = _engine.CreateScope();
 _scope.SetVariable("__name__", "__main__");

 ScriptSource _script = _engine.CreateScriptSourceFromString(source,
SourceCodeKind.Statements);

 _code = _script.Compile();
 }

 public bool Execute()
 {
 try
 {
 _code.Execute(_scope);
 return true;
 }
 catch (Exception e)
 {
 ExceptionOperations eo = _engine.GetService<ExceptionOperations)();
 Console.Write(eo.FormatException(e));
 return false;
 }
 }

 public void SetVariable(string name, object value)
 {
 _scope.SetVariable(name, value);
 }

 public bool TryGetVariable(string name, out result)
 {
 return _scope.TryGetVariable(name, out result);
 }
}

The Execute method catches any exceptions raised in the Python code (writing the
Python exception to standard out) and returns a Boolean indicating success or fail-
ure. The SetVariable and TryGetVariable methods on the engine merely delegate
to methods on the ScriptScope. Handling error conditions, such as the variable not
existing or being of the wrong type, is up to the caller.

 This code does something that our last example didn’t. Now that we know how to
set variables in our execution scope, we can set the __name__. Python code would
expect __name__ to exist, and for the top-level script it would expect it to be set to
__main__. The reason why we didn’t do this when creating the executable is that
engine.CreateScriptSourceFromFile implicitly sets the name in the scope to the
name of the file (minus the .py).13 The advantage of using CreateScriptSourceFrom-
File is that it doesn’t read the whole file at once. If your top-level program depends on
the name being set to __main__, then you can have the best of both worlds by using
the three-argument form: engine.CreateScriptSourceFromFile(path, Encoding.
Default, SourceCodeKind.Statements).

 This allows you to execute the ScriptSource in a scope with an explicit __name__
set, without it being implicitly overridden because it is from a file.

13 This is the same behavior when importing a module in Python; the name in the module corresponding to the
file os.py is os, for example.

Set name
in scope

Create ScriptSource
from Python code

Create CompiledCode
from ScriptSource

Execute Python
code in the scope
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

398 CHAPTER 15 Embedding the IronPython engine
 With what you know already you could probably achieve almost everything you
need when embedding IronPython. Magically injecting variables is not (always) the
most elegant way of exposing objects to your hosted code. A much nicer solution is to
make your objects available either in Python modules or in assemblies that the Python
code can import in the usual way.

15.2.2 Providing modules and assemblies for the engine

Adding references to assemblies is done with the LoadAssembly method on the
ScriptRuntime. This takes an actual assembly object, so we need to use the System.
Reflection API to obtain it.

 We can use this to overcome another minor limitation when embedding IronPython.
ipy.exe adds references to mscorlib.dll and System.dll (the core assemblies containing
the System namespace) for us. This means that import System, or variants, can be exe-
cuted without explicitly having to add references to these assemblies. Code running
inside the default embedded IronPython engine will need to manually add the refer-
ences before being able to import from System. We can solve this by getting Assembly
objects from types in each of the two assemblies. We can do this in C# with this:14

_runtime.LoadAssembly(typeof(String).Assembly);
_runtime.LoadAssembly(typeof(Uri).Assembly);

Which translates to this in VB.NET:

_runtime.LoadAssembly(GetType(String).Assembly)
_runtime.LoadAssembly(GetType(Uri).Assembly)

The BasicEmbedding example also includes a ClassLibrary.dll assembly containing a
class with a couple of static methods (shared functions in VB.NET–speak) that write to
stdout. We can add a reference to this assembly by first loading it with Assembly.
LoadFile from the same directory as the executable. This time we have the example
code in VB.NET, shown in listing 15.6.

Dim _assembly As Assembly
Dim libraryPath As String

Dim fullPath As String = Assembly.GetExecutingAssembly().Location
Dim rootDir As String = Directory.GetParent(fullPath).FullName

libraryPath = Path.Combine(rootDir, "ClassLibrary.dll")

_assembly = Assembly.LoadFile(libraryPath)
_runtime.LoadAssembly(_assembly)

Once we’ve added a reference to the assembly, Python code running in the hosted
engine is free to import from its namespace(s).

 If the object model you want to expose isn’t contained conveniently in a single
assembly, or you want to construct it from live objects at runtime, then an alternative is
to construct a Python module and add that to the runtime instead.

14 The choice of Uri is entirely arbitrary. We just need some class that lives in System.dll.

Listing 15.6 Adding a reference to an assembly on the ScriptRuntime (in VB.NET)

Path to
assembly
on disk
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

399IronPython as a scripting engine
 In Python, import statements first check to see if the requested module is already
in sys.modules. The embedded equivalent is runtime.Globals, and just like
sys.modules it doesn’t have to be a “real” Python module you put in there but any
object you want Python code to be able to import.

 ScriptRuntime.Globals is actually our old friend the ScriptScope. This means
that you set objects in it using the same SetVariable method we have already used.
You can put any object into there, and import statements executed in the embedded
engine will fetch them. Using this technique is another way to make a host object
model available to user code.

 The challenge is that we do want to create a real Python module to put in there. We
could just create and populate a new ScriptScope and publish that. Under the hood
IronPython modules use a ScriptScope to store the namespace, and it would behave
like a module when imported. However, ScriptScope doesn’t have the right repr, and
it has a few other minor differences, so it will seem a bit odd if the user does introspec-
tion on a ScriptScope published as a module. The answer is to use the Scope object,
which as far as IronPython is concerned is a real Python module. We construct a Scope
object from a ScriptScope using HostingHelpers.GetScope.15

 The following snippet of VB.NET creates a ScriptScope called inner in which we
set a string with the name HelloWorld. This is wrapped in a Scope object that is then
published into the runtime globals.

Dim _module As Scope
Dim inner As ScriptScope

inner = _engine.CreateScope()
inner.SetVariable("HelloWorld", "Some string...")

_module = HostingHelpers.GetScope(inner)
_runtime.Globals.SetVariable("Example", _module)

Code running in the embedded engine can either execute import Example and access
HelloWorld as a module attribute or execute from Example import HelloWorld to get
direct access to the string we set in inner.

 We’ve now covered all the major classes necessary for a wide range of different embed-
ding scenarios. Figure 15.3 summarizes what we learned so far. It shows the core classes
that we have worked with and the relationship between them and their useful members.
Our core Engine class is now basically complete, with only one minor modification
needed. Since we know how to make modules available for importing, we turn the
scope in which we execute the main script into a proper module.

 This C# snippet does this and puts the module into the runtime globals with the
name __main__:

_scope = _engine.CreateScope();
_scope.SetVariable("__name__", "__main__");

Scope _main = HostingHelpers.GetScope(_scope);
_runtime.Globals.SetVariable("__main__", _main);

15 HostingHelpers lives in the Microsoft.Scripting.Hosting.Providers namespace. ScriptScopes
are “remotable wrappers” for Scopes. HostingHelpers.GetScope gets the local version, so it will work only
for local ScriptScopes. There are other ways of creating Scopes when using the DLR remoting support.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

400 CHAPTER 15 Embedding the IronPython engine
The advantage of doing this is that the Python code import __main__ now does the
right thing. This is not a common thing to do but is used, for example, by unit-
test.main() to introspect the main execution scope
and find all TestCase classes.16

 The example project uses the Engine class by
embedding a Python script as a resource. Let’s see how
it uses the engine.

15.2.3 Python code as an embedded resource

This example executes a Python file that is stored as an
embedded resource compiled into the main assembly.
This can be a useful way of preventing Python code your
application depends on from being modified in your dis-
tributed application. Even though it isn’t distributed as
plain text, it isn’t an effective way of keeping the source
code secret, as it will be easily discoverable within
the assembly.17

 Adding a Python source file as an embedded resource
to a Visual Studio project is as simple as adding the file
(either from an existing file or adding a new text file and
renaming) and setting the Build Action to Embedded
Resource, as shown in figure 15.4.

 Listing 15.7 shows the C# code to retrieve the
source code from the embedded resource as a string.

16 Some of these classes have other useful members. This diagram is a reference to the ones we have used so far.
17 Although you could encrypt your Python source code. Because that will require the means to decrypt the code

in the assembly as well, it is still discoverable—but probably more work than assemblies compiled from C#,
which are usually trivially disassembled with Reflector.

Figure 15.3
Core hosting classes16

Figure 15.4 Creating embedded
resources in Visual Studio
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

401IronPython as a scripting engine
static string GetSourceCode()
{
 Assembly assembly = Assembly.GetExecutingAssembly();
 string name = "BasicEmbedding.source_code.py";
 Stream stream = assembly.GetManifestResourceStream(name);
 StreamReader textStreamReader = new StreamReader(stream);
 return textStreamReader.ReadToEnd();
}

The important call here is assembly.GetManifestResourceStream(name), which
gives us access to our embedded source file as a stream.

 Our example retrieves the source code and uses the Engine we have created to
execute it. Before executing it sets a variable (imaginatively called variable) into the
execution scope and fetches it out again after execution. Listing 15.8 shows the full
code in VB.NET.

Sub Main()
 Dim source As String
 Dim engine As Engine

 source = GetSourceCode()
 engine = New Engine(source)

 engine.SetVariable("variable", "Hello World!")

 Dim result As Boolean = engine.Execute()

 If (Not result) Then
 Console.WriteLine("Executing Python code failed!")
 Else
 Dim variable As Object = Nothing
 Dim success as Boolean
 success = engine.TryGetVariable("variable", variable)
 If (success) Then
 Console.WriteLine("""variable"" = {0}", variable)
 Else
 Console.WriteLine("Fetching ""variable"" failed")
 End If
 End If
End Sub

engine.Execute does the error handling for us, returning a Boolean indicating
whether or not the execution succeeded. Assuming we can’t trust our code not to fail,
we need to check this result and handle the failure. Because we are actually executing
code from an embedded resource and not arbitrary user code, we could skip the error
checks if they aren’t necessary. If the code executes correctly, it fetches the variable
variable back out of the execution scope (handling the case when it doesn’t exist in
the scope) and writes it out to the console. Because we are writing it out to the

Listing 15.7 Fetching an embedded resource from an assembly (in C#)

Listing 15.8 Using the Engine to execute Python code, with error handling (in VB.NET)

Fetch the
Python code

Execute
the code

Fetch "variable"
from execution
scope
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

402 CHAPTER 15 Embedding the IronPython engine
console, we fetch it as an object, neatly bypassing the problem of having to know
what type it is.

 Unfortunately, this type problem we skipped over is quite a big issue for using
embedded IronPython for anything practical. Although we already have most of the
pieces of the jigsaw, the next section puts them together (and shows one way of resolv-
ing the type problem) by implementing a plugin system for a .NET application.

15.3 Python plugins for .NET applications
The example we’ve just worked through has taken us through a good proportion of
the IronPython hosting API. There are still some useful tricks we can learn, though. In
particular we can solve the problem of how to communicate between dynamic lan-
guages and C#/VB.NET, which have to know the types of objects in order to be able to
do anything useful with them.

 The goal of this example is to create a .NET application that allows the user to write
plugins that extend the functionality in Python. The application interface consists of a
toolbar and a multiline textbox.

 The user can add plugins by creating Python
files in the application’s plugins directory, which
are all loaded when the application starts. Any
plugin that is successfully loaded has a button
added to the toolbar, and the plugin is
called—with access to the application text-
box—when its button is clicked. The final prod-
uct is shown in action in figure 15.5.

 Although this is a trivially simple example, it
solves the real-world problems involved in creat-
ing a user-extensible application. It loads an arbi-
trary number of Python plugin scripts and
provides them with an API in a clean manner. As
well as bridging between code written in a dynam-
ically typed language and an application written
in statically typed languages, we will also be cover-
ing some useful techniques for plugin situations.
These include

■ The autodiscovery of plugins, dynamically executing them at runtime rather
than requiring configuration or other mechanisms

■ Diverting the standard output and error streams for hosted DLR runtimes and
their engines

■ Handling specific exceptions from hosted Python code

We start by looking at how to create the host environment so that Python code can
simply and cleanly add plugins.

Figure 15.5 The IronPython Plugins
example application
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

403Python plugins for .NET applications
15.3.1 A plugin class and registry

In order to solve the type problem, we can provide a base class that plugin classes must
inherit from. On the .NET side we can handle user plugins as this base class, and the
compiler is happy—knowing what methods and properties are available.18

 We also have to provide a mechanism for the plugins to be added to the applica-
tion. We can do this with a PluginStore class, also accessible to user code, which acts
as a registry for plugins.

 Our PluginBase class is instantiated with a name, which will be used for the tool-
bar button. It also provides an Execute method, which does nothing on the base class
but will be called with the textbox in real plugins (when the corresponding toolbar
button is clicked).

 On the .NET side, where we need to interact with the user plugins, we can use the
PluginBase type. Listing 15.9 shows an implementation in C#.

public class PluginBase
 {
 private string _name;
 public string Name
 {
 get { return _name; }
 }

 public PluginBase(string name)
 { _name = name; }

 virtual public void Execute(TextBox textbox)
 { }
 }

The PluginStore class is equally simple. It has a public static (shared) method,
AddPlugin, which takes a PluginBase instance. This adds the plugin to a list accessed
as the Plugins property. This list is marked as internal (friend), which means that
only classes in the same assembly can access the list and it isn’t exposed to user code.
Listing 15.10 shows the PluginStore class in VB.NET.

Public Class PluginStore

 Private Shared _plugins As List(Of PluginBase) _
 = New List(Of PluginBase)()

 Friend Shared ReadOnly Property Plugins() _
 As List(Of PluginBase)
 Get
 Return _plugins
 End Get

18 Additional user-defined methods and members won’t be directly visible, of course.

Listing 15.9 A base class for user plugins to inherit from (in C#)

Listing 15.10 The PluginStore registry class (in VB.NET)

The constructor
takes a name

Plugins override
this method
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

404 CHAPTER 15 Embedding the IronPython engine
 End Property

 Public Shared Sub AddPlugin(ByVal plugin As PluginBase)
 _plugins.Add(plugin)
 End Sub
End Class

In fact, the PluginStore is the only public class in the main assembly. We can add the
main assembly to the runtime (along with the assembly containing the PluginBase),
and user code can call PluginStore.AddPlugin without being able to access any of
the application internals that we haven’t explicitly exposed.

 Listing 15.11 shows the Python code that creates a new plugin and adds it to the
PluginStore.

from Plugins import PluginBase
from EmbeddingPlugin import PluginStore

class Plugin(PluginBase):
 def Execute(self, textbox):
 textbox.Text += "Plugin 1 called\r\n"

plugin = Plugin("Plugin 1")
PluginStore.AddPlugin(plugin)

Our application can execute all the user scripts and then access any successfully added
plugins via PluginStore.Plugins. Let’s look at how our application loads the user
scripts.

15.3.2 Autodiscovery of user plugins

Our application uses a very simple mechanism to load user scripts. Alongside the exe-
cutable is a directory called plugins. When the application starts, it executes all the
Python files in this directory.

 As we are executing user code we obviously need to be tolerant of errors, and to
make things more interesting, let’s see how we can handle specific Python errors
differently.

 The SyntaxErrorException is raised when we attempt to execute invalid code. It
lives in the Microsoft.Scripting namespace. It is an exception shared by all DLR lan-
guages. The Python-specific exceptions live in the IronPython.Runtime.Exceptions
namespace, so with the right using or Imports directive we can catch specific Python
errors. Listing 15.12 shows the code that loads and executes all the plugins. Any errors
in executing plugin code are caught, and a message box is displayed to the user, but
syntax errors and SystemExit exceptions19 are treated differently with a custom mes-
sage. Figure 15.6 shows the error message shown to users for syntax errors.

 Listing 15.12 is the C# code that loads and executes the scripts from the plugins
directory.

Listing 15.11 IronPython plugin using PluginBase and PluginStore

19 This is raised if the user calls sys.exit(n).
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

405Python plugins for .NET applications
using IronPython.Runtime.Exceptions;

public void LoadPlugins()
{
 string exePath = Assembly.GetExecutingAssembly().Location;
 string rootDir = Directory.GetParent(exePath).FullName;
 string pluginsDir = Path.Combine(rootDir, "plugins");

 foreach (string path in Directory.GetFiles(pluginsDir))
 {
 if (path.ToLower().EndsWith(".py"))
 {
 CreatePlugin(path);
 }
 }
}

public void CreatePlugin(string path)
{
 try
 {
 ScriptSource script;
 script = _engine.CreateScriptSourceFromFile(path);
 CompiledCode code = script.Compile();
 script.Execute();
 }
 catch (SyntaxErrorException e)
 {
 string msg = "Syntax error in \"{0}\"";
 ShowError(msg, Path.GetFileName(path), e);
 }
 catch (SystemExitException e)
 {
 string msg = "SystemExit in \"{0}\"";
 ShowError(msg, Path.GetFileName(path), e);
 }
 catch (Exception e)
 {

Listing 15.12 Finding and executing user plugins (in C#)

Figure 15.6
Custom error
message for
syntax errors
in plugin code

Find the plugins
directory

Filter the
Python files

Catch Python syntax

Catch SystemExit
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

406 CHAPTER 15 Embedding the IronPython engine
 string msg = "Error loading plugin \"{0}\"";
 ShowError(msg, Path.GetFileName(path), e);
 }
}

public void ShowError(string title, string name, Exception e)
{
 string caption = String.Format(title, name);
 ExceptionOperations eo = _engine.GetService<ExceptionOperations>();
 string error = eo.FormatException(e);
 MessageBox.Show(error, caption, MessageBoxButtons.OK,
 MessageBoxIcon.Error);

}

The ShowError method may seem slightly odd: the caller has to extract the filename
from the full path instead of it being done inside the method. It is written this way be-
cause we reuse ShowError to show a different kind of message when we call the plugins.

 Before we finish off the application by hooking up the plugins to the toolbar buttons,
we look at how we can improve the development process for the user writing the plugins.

15.3.3 Diverting standard output

This example is a Windows Forms application, which makes for much better screen-
shots. It does have one disadvantage, though; it means that print statements inside the
user code are lost because there is no standard output for them to go to. This could
make debugging plugins much harder for our users. Luckily, DLR runtimes support
diverting the standard output and error streams, and in this example we send them to
the application textbox.

 The API for diverting the output and error streams20 is through runtime.IO.
SetOutput and runtime.IO.SetError methods that take a .NET Stream and an encod-
ing. To use these methods, we need a Stream that diverts everything written to it back
to the textbox.

 Stream is an abstract class—inheriting from it is easy but requires implementing a
tedious number of methods and properties. For this example we’ve chosen to inherit
from MemoryStream and override the Write method. This is an abuse of Memory-
Stream, but it works fine.

 Listing 15.13 shows the PythonStream class and setting an instance onto the run-
time to divert both standard output and standard error.

internal class PythonStream: MemoryStream
{
 TextBox _output;
 public PythonStream(TextBox textbox)
 {

20 We could also do this from within Python code by replacing sys.stdout and sys.stderr with custom
objects.

Listing 15.13 Diverting output streams to a textbox (in C#)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

407Python plugins for .NET applications
 _output = textbox;
 }

 public override void Write(byte[] buffer, int offset,
 int count)
 {
 string text = Encoding.UTF8.GetString(buffer, offset,
 count);
 _output.AppendText(text);
 }
}

public void SetStreams()
{
 PythonStream stream = new PythonStream(_box);
 _runtime.IO.SetOutput(stream, Encoding.UTF8);
 _runtime.IO.SetErrorOutput(stream, Encoding.UTF8);
}

Minor points are worth noticing from this listing. When we set the streams on the run-
time we need to specify an encoding; so in our custom stream we need to use the same
encoding to decode the bytes back into a string. The stream is constructed with a text-
box, and the Write method simply calls AppendText to add new text.

 The “Loading Plugin 1” and other messages shown in figure 15.5 actually come
from print statements in the plugin code. When the plugin is loaded (executed), any-
thing written to standard out appears in the main textbox.

 The final thing we need to do is to create a toolbar button per plugin and hook up
its Click event to call the appropriate Execute method.

15.3.4 Calling the user plugins

Once the plugins have all been loaded, we can iterate over PluginStore.Plugins and
add a button and handler for each one. The code to do this from C# is shown in list-
ing 15.14.

int index = 0;
foreach (PluginBase plugin in PluginStore.Plugins)
{
 ToolStripButton button = new ToolStripButton();
 button.ToolTipText = plugin.Name;
 button.Text = plugin.Name;

 int pluginIndex = index;
 button.Click += delegate {
 ExecutePluginAtIndex(pluginIndex);
 };

 pluginToolStrip.Items.Add(button);
 index++;
}

public void ExecutePluginAtIndex(int index)
{

Listing 15.14 Adding toolbar buttons and click handlers per plugin (in C#)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

408 CHAPTER 15 Embedding the IronPython engine
 PluginBase plugin = PluginStore.Plugins[index];

 try
 {
 plugin.Execute(_textbox);
 }
 catch (Exception e)
 {
 string msg = "Error executing plugin \"{0}\"";
 ShowError(msg, plugin.Name, e);
 }
}

In C# we can use a closure to call the right plugin when its handler is invoked. By turn-
ing the index into a variable local to the scope of the foreach loop (the pluginIndex
variable), the anonymous delegate will invoke ExecutePluginAtIndex with the cor-
rect index when its button is clicked.

 The VB.NET code, shown in listing 15.15, has to be slightly different.

Dim index As Integer = 0
For Each plugin As PluginBase In PluginStore.Plugins

 Dim button As ToolStripButton = New ToolStripButton()
 button.ToolTipText = plugin.Name
 button.Text = plugin.Name

 Dim handler As ButtonHandler
 handler = New ButtonHandler(engine, index, button)
 pluginToolStrip.Items.Add(button)
 index += 1
Next

Friend Class ButtonHandler
 Dim _engine As Engine
 Dim _index As Integer

 Public Sub New(ByVal engine As Engine, _
 ByVal index As Integer, _
 ByVal button As ToolStripButton)
 _engine = engine
 _index = index

 AddHandler button.Click, AddressOf ClickHandler
 End Sub

 Public Sub ClickHandler(ByVal sender As Object, _
 ByVal e As EventArgs)
 _engine.ExecutePluginAtIndex(_index)
 End Sub
End Class

Public Sub ExecutePluginAtIndex(ByVal index As Integer)
 Dim plugin As PluginBase = PluginStore.Plugins(index)

 Try

Listing 15.15 Adding toolbar buttons and click handlers per plugin (in VB.NET)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

409Using DLR objects from other .NET languages
 plugin.Execute(_box)
 Catch e As Exception
 Dim msg As String = "Error executing plugin ""{0}"""
 ShowError(msg, plugin.Name, e)
 End Try
End Sub

Because we don’t have the luxury of closures in VB.NET, we have to use a class to cap-
ture the state (which is what the compiler does under the hood for us in C# anyway).
For every plugin a new ButtonHandler instance is created, which has a ClickHandler
to be called when the button is used.

 In the previous two sections of this chapter we have gone through two different
examples of embedding IronPython. The first was a gentle amble through the hosting
API that introduced us to all the major classes. The example that we have just com-
pleted showed us how to use embedded IronPython for a practical purpose, in the
form of application plugins. This example solved the mismatch between dynamic and
statically typed languages by using a specific type for plugins. We can also use more
general techniques to interact with dynamic objects and, in the process, extend Iron-
Python to some new use cases.

15.4 Using DLR objects from other .NET languages
One of the (many) great advantages of Python is that code can be modified without
having to be recompiled. It is stored as plain text and can even be generated at run-
time. There has been a lot of focus in the technical world recently on using dynamic
languages to provide Domain Specific Languages (DSLs), small languages that model
a particular problem domain.

 We can use IronPython for this purpose by evaluating expressions or executing
code stored as text or received as user input. Business rules can be stored in text files
and edited without the application needing to be recompiled.

 This use case requires new ways of interacting with dynamic objects. We need to be
able to create and use normal Python objects (the built-in types and Python classes
and instances) from .NET, while retaining their behavior as Python objects.

15.4.1 Expressions, functions, and Python types

The simplest example of this is to use IronPython to evaluate individual expressions.
IronPython makes a great calculator!21

 So far, whenever we have executed Python code from a string we have passed in
the enumeration member SourceCodeKind.Statements. This member has a sister,
SourceCodeKind.Expression, that allows us to evaluate an expression and return an
object. It is used in this snippet of C# to evaluate a simple mathematical expression:

string code = "2 + 3 + 5";
ScriptSource source;

21 You can see an example of embedded IronPython as a calculator at http://www.voidspace.org.uk/ironpython/
dlr_hosting.shtml.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.voidspace.org.uk/ironpython/dlr_hosting.shtml
http://www.voidspace.org.uk/ironpython/dlr_hosting.shtml

410 CHAPTER 15 Embedding the IronPython engine
source = runtime.CreateScriptSourceFromString(code,
 SourceCodeKind.Expression);
int result = source.Execute<int>(scope);

This code uses the generic form of Execute that allows us to specify the type of the
returned object. Using the generic version requires us to pass in an explicit scope to
Execute. If we wanted to use the default scope, we could instead cast the returned
object to retrieve the integer.

Since we are retrieving results with specific types, we can use the System.Func dele-
gate to define functions in Python and call them from other .NET languages. This del-
egate is a standard part of .NET 3.5 (C# 3.0), but it is also provided by IronPython 2, so
you can happily use it in .NET 2.0 projects.22

 The simplest example of this is to evaluate an expression that returns us a lambda
function, as shown in listing 15.16.

string code = "lambda x, y: x * y";

ScriptSource source;
source = engine.CreateScriptSourceFromString(code,
 SourceCodeKind.Expression);

Func<int, int, int> lambda;
lambda = source.Execute<Func<int, int, int>>(scope);

int result = lambda(9, 8);
Console.WriteLine("9 * 8 = {0}", result);

Listing 15.17 shows the equivalent VB.NET code.

Dim code As String = "lambda x, y: x * y"

Dim source As ScriptSource
Dim lambda As Func(Of Integer, Integer, Integer)
source = engine.CreateScriptSourceFromString(code, SourceCodeKind.Expression)

lambda = source.Execute(_

22 Actually it has two more. The purpose of SourceCodeKind.SingleStatement speaks for itself.

Listing 15.16 Creating and using Python functions from C#

Listing 15.17 Creating and using Python functions from VB.NET

SourceCodeKind and interactive sessions
The SourceCodeKind enumeration has another member22 as well: Interactive-
Code. This can detect incomplete statements and is useful for executing code from
interactive sessions, from a TextBox acting as a console in a UI, for example. You
can call ScriptSource.GetCodeProperties(), which returns a SourceCodeProp-
erties value that will tell you if the source code is invalid or incomplete.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

411Using DLR objects from other .NET languages
Of Func(Of Integer, Integer, Integer))(scope)

Dim result As Integer = lambda(9, 8)

Console.WriteLine("9 * 8 = {0}", result)

Func is generic, with type specifiers for the arguments and the return value. This
example specifies a function that takes two integers as arguments and returns an inte-
ger: Func<int, int, int>. The last type specified is always the return type. There are
convenient definitions for functions that take up to eight arguments (and if that isn’t
enough, you need to rethink your function API!).

 Instead of evaluating an expression to create a lambda, we could execute a func-
tion definition in a scope and pull the function out by name. This would work with
any callable object, and we could pull them out as any form of delegate—allowing the
ScriptScope to do the language conversion when we pull out the value.

 As well as allowing you to use dynamically created functions, you could use Python
functions to provide a .NET API to Python libraries.

 We can use functions because they have a corresponding type defined in C#, and
the same is true of the other Python types. The built-in Python types live in the Iron-
Python.Runtime namespace. The very basic types, like strings and integers, aren’t
there because IronPython uses the standard .NET types for these. Types that are avail-
able include the following:

■ List
■ FrozenSetCollection
■ PythonDictionary
■ PythonFile
■ PythonGenerator
■ PythonTuple
■ SetCollection

Most of the normal Python methods are
available on these types, including the magic
double-underscore methods. You can
explore the types and their members using
Visual Studio 2008 Object Browser or Reflec-
tor.23 Figure 15.7 shows some of the mem-
bers on the Python List type.

 We can retrieve these objects by type
from a Python scope or create and use them
directly. When we created a custom execut-
able for a Python program, we created
a Python List and set it on the language

23 This extremely useful tool for introspecting .NET assemblies is available at http://www.red-gate.com/
products/reflector/.

Figure 15.7 The Python List type viewed from
the Visual Studio 2008 Object Browser
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.red-gate.com/products/reflector/
http://www.red-gate.com/products/reflector/

412 CHAPTER 15 Embedding the IronPython engine
context as sys.argv. Listing 15.18 shows creating a tuple in Python and then using it
from C#.

string code = "('hello', 'world')";
ScriptSource source;
source = engine.CreateScriptSourceFromString(code,
 SourceCodeKind.Expression);

PythonTuple tuple = source.Execute<PythonTuple>(scope);
Console.WriteLine("tuple = ({0}, {1})", tuple[0], tuple[1]);

These techniques are great for the built-in Python types, and for objects with known
types, but they don’t allow us to use classes defined in Python. Fortunately, there are
other techniques we can use with Python classes and instances.

15.4.2 Dynamic operations with ObjectOperations

IronPython (and IronRuby) classes are not .NET classes. IronPython classes are .NET
objects—instances of IronPython.Runtime.Types.PythonType, the Python type

metaclass.24 This is because Python classes can have members added and removed at
runtime. You can even change their base classes dynamically, things that we couldn’t
do with .NET classes.

 Python classes are still usable from C# and VB.NET; we can actually solve the type
problem by ignoring it! We can keep objects as objects on the .NET side and use the
Python engine to perform operations like creating instances and calling methods.

 The mechanism for doing this is to use ObjectOperations, a class that provides
dynamic operations for DLR objects. The ScriptEngine exposes this as the Opera-
tions property, returning an ObjectOperations instance bound to the semantics of
the engine’s language.

 ObjectOperations is a class with many useful methods, and again the best way to
find out what it can do is to explore it with Reflector or the Visual Studio Object
Browser. It knows how to perform comparisons and mathematical operations on
dynamic objects, following the semantics of the language for those operations. In the
case of Python that means autopromoting integers to longs if necessary and using the
__add__ method for addition where appropriate, and so on.

 More important, ObjectOperations knows how to call objects and set and fetch
members. Using these capabilities alone we can achieve most of what we might want
to do with dynamic objects. Listing 15.19 shows how to fetch a Python class out of an
execution scope, create an instance of that class, and call a method on it.

string code = @"
class Something(object):
 def method(self, value):

Listing 15.18 Creating a tuple in Python and using it from C#

24 All Python classes are instances of their metaclass, and for new style classes the base metaclass is type. type
can also be used as a function to tell you the type of objects.

Listing 15.19 Creating class instances and calling methods using ObjectOperations
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

413Using DLR objects from other .NET languages
 return value + 1
";

ObjectOperations ops = engine.Operations;
ScriptSource source;
source = engine.CreateScriptSourceFromString(code,
 SourceCodeKind.Statements);
source.Execute(scope);

object klass = scope.GetVariable("Something");

object instance = ops.Call(klass);
object method = ops.GetMember(instance, "method");

int result = (int)ops.Call(method, 99);
Console.WriteLine("99 + 1 = {0}", result);

Calling the method is a little cumbersome, but if we were working with known Python
classes, it would be easy to abstract away with a thin wrapper layer.

 We create an instance of a class in the same way we do in Python, by calling the
class. This is done with ops.Call, and afterward we fetch a method from the instance
with ops.GetMember. GetMember takes the instance and the name of the member
we want to fetch as a string. This mirrors the way we use the getattr function
from Python.

 Having fetched the method we call it, again with ops.Call. Any arguments passed
to ops.Call are passed in as arguments to the object we are calling; the overload we
are using is Call(object, params object[]). We cast the objects to known types only
at the point at which we actually need them, in this case the return value from calling
the method. GetMember also has a generic version, which we can call if we care about
the type of object it will return.

 The corresponding partner to GetMember is SetMember. Its signature matches
setattr; ops.SetMember(object, name, value) where name is a string specifying the
member to set.

 Table 15.3 lists methods of ObjectOperations, including the three we have already
discussed.

Table 15.3 Methods on ObjectOperations for working with dynamic objects

Method name Purpose

Call Calls the object with any arguments specified

GetMember The equivalent of the two-argument form of getattr

SetMember The equivalent of setattr

RemoveMember The equivalent of delattr

GetMemberNames Lists all members; the equivalent of dir

ContainsMember The equivalent of hasattr

Create the class

Fetch the class object

Create an instance

Call a method
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

414 CHAPTER 15 Embedding the IronPython engine
It may not be immediately obvious why we might need ConvertTo and TryConvertTo
when we can always cast objects. We can use them to take advantage of some of the
magic that IronPython does on our behalf, particularly when using Python functions
as event handlers. Under the hood IronPython wraps the function as a delegate for us,
and we can use ObjectOperations.ConvertTo to do the same from the .NET side. The
following snippet shows how to do this from C#:

ObjectOperations ops = engine.Operations;
object function = scope.GetVariable("function");
SomeObj.SomeEvent += ops.ConvertTo<DelegateType>(function);

Remember that if you want to be able to unhook the handler, you’ll need to keep a
reference to the delegate it returns!

 As well as being able to fetch and call methods on dynamic objects, we can use the
Python built-in functions on them.

15.4.3 The built-in Python functions and modules

If we have a collection of objects created from Python code and we want to add them
up, we have several choices of how to do it. We could set them in an execution scope
with names and evaluate an expression that adds them up, or we could use Object-
Operations.Add in a loop. We have a third choice as well; Python has a perfectly good
built-in function for adding things up: sum.

 Python has a wide range of useful built-in functions, and in IronPython they are
implemented as static methods on IronPython.Runtime.Builtin. Some of the built-
in functions require a CodeContext; we’ll see how to provide this when we look at
working with built-in modules. sum is perhaps not the most useful example to pick, but
some of the built-in functions are very useful for working with dynamic objects.

 For example, if we have obtained (by whatever means) a dynamic object that we
believe to be an instance of a particular class, we can confirm this by using the is-
instance function. Listing 15.20 shows an example of using both the isinstance and
the issubclass functions from C#.

string code = @"
class Something(object):
 def method(self, value):

TryGetMember Takes an out parameter that will be left unmodified if the member
does not exist

ConvertTo/TryConvertTo Converts a dynamic object to the specified type, either in generic
form or taking a System.Type

Listing 15.20 Using the built-in functions isinstance and issubclass from C#

Table 15.3 Methods on ObjectOperations for working with dynamic objects (continued)

Method name Purpose
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

415Using DLR objects from other .NET languages
 return value + 1

class SomethingElse(object):
 pass
";

ObjectOperations ops = engine.Operations;

ScriptSource source;
source = engine.CreateScriptSourceFromString(code,
 SourceCodeKind.Statements);
source.Execute(scope);

PythonType klass;
PythonType klass2;
klass = scope.GetVariable<PythonType>("Something");
klass2 = scope.GetVariable<PythonType>("SomethingElse");

object instance = ops.Call(klass);

bool isinstance = Builtin.isinstance(instance, klass);
bool isinstance2 = Builtin.isinstance(instance, klass2);
bool issubclass = Builtin.issubclass(klass, typeof(object));
bool issubclass2 = Builtin.issubclass(klass, klass2);

Console.WriteLine("isinstance(instance, Something) = {0}",
 isinstance);
Console.WriteLine("isinstance(instance, SomethingElse) = {0}",
 isinstance2);
Console.WriteLine("issubclass(Something, object) = {0}",
 issubclass);
Console.WriteLine("issubclass(Something, SomethingElse) = {0}",
 issubclass2);

This example creates two Python classes and fetches them both out of the scope. It
creates an instance of the first one (Something) and then performs various checks on
the instance and the classes using Builtin.isinstance and Builtin.issubclass.

 One difference about the way we use Python classes in this example is that we are
specifically pulling them out as PythonType rather than object. isinstance takes two
objects, but issubclass requires the first argument to be a PythonType (new style
class) or OldClass (guess).

 We’ve now used the built-in types and the built-in functions, but there is one more
class of Python built-in that we haven’t used directly with embedded IronPython.
From the title of this section it won’t come as a shock to you to hear that these are the
built-in Python modules.

 The built-in modules are implemented in the IronPython.Modules assembly. In
there you will find a single entry for each module (ClrModule, PythonDateTime,
PythonSocket, and so on) plus one for each type that the module exports. Functions
in the module are defined as static methods on the module object.

 Listing 15.21 uses the Python pickle module25 to serialize and deserialize a Python
dictionary. It then checks that the serialization and deserialization have worked, using

25 See http://docs.python.org/lib/module-pickle.html.

True

False

True

False
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/module-pickle.html

416 CHAPTER 15 Embedding the IronPython engine
ObjectOperations.Equal to compare the original dictionary and the deserialized
object. In order to use the pickle loads and dumps functions, we must first create
a CodeContext.26

string code = "{'name': 'Michael Foord', 'Age': 21, 'Profession': 'Software
Development'}";

ObjectOperations ops = engine.Operations;

ScriptSource source;
source = engine.CreateScriptSourceFromString(code,
 SourceCodeKind.Expression);
object dict = source.Execute(scope);

LanguageContext language = HostingHelpers.GetLanguageContext(engine);
CodeContext co = new CodeContext(new Scope(), language);
string cereal = (string)PythonPickle.dumps(co, dict, 0, null);
object dict2 = PythonPickle.loads(co, cereal);
bool result = ops.Equal(dict, dict2);

Console.WriteLine("original and unmarshalled dictionaries equal = {0}",
result);

The call to PythonPickle.dumps takes a CodeContext, a Python object, a protocol,
and a bin argument. First we construct a CodeContext with a new Scope and the
appropriate LanguageContext. Creating CodeContexts like this is useful for working
with several of the built-in functions and modules.

 This example uses protocol 0, which ensures that the resulting pickle is serialized
as ASCII rather than using a binary format. Storing binary data in Unicode .NET
strings is a recipe for pain, and it means we can pass in null for the bin argument.

 dumps returns an object, which we can cast to a string. If we feed this string back
into PythonPickle.loads (along with the context), it deserializes the string back into
a Python dictionary for us. This could be useful for persisting state from the dynamic
part of an application.

 The DLR hosting API is larger than we could hope to cover in a single chapter. Top-
ics we haven’t had a chance to look at include the Dynamic Language Runtime sup-
port for creating engines and executing code inside AppDomains. This is a good way
of limiting what user code is able to do when run inside your application. It also has a
Platform Adaptation Layer (PAL), used by Silverlight, that allows you to customize the
way files are opened and imports are resolved and even to execute code in custom
namespaces that can provide or change names on demand.

 Not only that, but there is an enormous number of ways you could use embedded
IronPython. What we have managed to do, though, is look at some of the most com-
mon ways of using IronPython, and most of the numerous alternatives will bear some
similarity to the scenarios we have explored. What I really hope you take away from

Listing 15.21 Serializing and deserializing Python objects from C# with pickle

26 CodeContext lives in the Microsoft.Scripting.Runtime namespace.

Create a
CodeContext

Serialize
Deserialize
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

417Using DLR objects from other .NET languages
this chapter is a kick-start in being able to imagine what is possible and knowing how
to start exploring. Before we finish, there is some big news about how you will interact
with dynamic languages in future versions of the .NET framework.

15.4.4 The future of interacting with dynamic objects

At the 2008 Microsoft PDC conference, Jim Hugunin and Anders Hejlsberg
announced27 that the DLR would be integrated into version 4.0 of the .NET frame-
work. Alongside this there will be changes to C# and Visual Basic to introduce
dynamic features that use the DLR.

 The major change in C# 4.0, at least the one that is relevant to us, is the addition of
the dynamic keyword. This is a static declaration to the compiler that operations on
the object are to be handled dynamically at runtime! Operations on objects declared
as dynamic will be delegated to the DLR. For ordinary .NET objects the DLR uses
reflection (just as it does inside IronPython), but it also enables some things not
normally possible from C#. These include duck typing, the use of late-bound COM,
and the creation of fluent APIs,28 like XML or DOM traversal using element names as
object attributes.

 More important, it allows you to receive objects from a DLR language engine and
use them as dynamic objects. Objects created by IronPython or IronRuby can be used
from C# while retaining their behavior as Python and Ruby objects.

 The C# Future documentation29 gives this example of using the new dynamic key-
word. All of the uses of d shown here will be done by the DLR:

dynamic d = GetDynamicObject(...);
d.M(7); // calling methods
d.f = d.P; // getting and settings fields and properties
d["one"] = d["two"]; // getting and setting through indexers
int i = d + 3; // calling operators
string s = d(5,7); // invoking as a delegate
int a = d; // assignment conversion

The final operation creates a typed object (a) from the dynamic object d. As with the
examples you’ve been working on in this chapter, these operations could raise
runtime errors, and so the sort of error handling that we’ve been discussing will still
be needed.

 The bottom line is that the hosting APIs make it easy to work with dynamic lan-
guages, but interacting with dynamic objects will get a whole lot easier.

27 Jim’s blog has links to videos of their talks: http://blogs.msdn.com/hugunin/archive/2008/10/29/dynamic-
language-runtime-talk-at-pdc.aspx.

28 .NET objects that implement the IDynamicObject interface can provide custom behavior when used dynam-
ically.

29 This documentation is available from http://code.msdn.microsoft.com/csharpfuture/.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://blogs.msdn.com/hugunin/archive/2008/10/29/dynamic-language-runtime-talk-at-pdc.aspx
http://blogs.msdn.com/hugunin/archive/2008/10/29/dynamic-language-runtime-talk-at-pdc.aspx
http://code.msdn.microsoft.com/csharpfuture/

418 CHAPTER 15 Embedding the IronPython engine
15.5 Summary
The integration of IronPython with the underlying .NET runtime is what makes it such
a joy to work with. This extends to embedding IronPython in C# and VB.NET. Creating
and using language engines is straightforward (once you know the magic incanta-
tions), so experimenting is easy and enables things that previously might have
required writing your own scripting language!

 There is a natural complication when using objects created by a dynamic language
from statically typed languages; this is something that can and will 30 get easier, but
there are many ways you can minimize the intricacy. One useful principle is to do as
much as possible inside the engine. If you do your type checking and error handling
in Python, then you can guarantee to return a known type into your statically typed
code. When you really want to work with a dynamic object, then ObjectOperations is
your friend.

 We’ve now used IronPython from both the inside and the outside, and we’ve also
reached the end of the last chapter. This willingness to experiment, and an excite-
ment about the possibilities, is the most important message of the book. Have fun
programming!

30 For example, see the discussion about C# 4.0 at http://channel9.msdn.com/posts/Charles/C-40-Meet-the-
Design-Team/.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://channel9.msdn.com/posts/Charles/C-40-Meet-the-Design-Team/
http://channel9.msdn.com/posts/Charles/C-40-Meet-the-Design-Team/

appendix A:
A whirlwind tour of C#

Obviously this book has primarily been about IronPython, but in several places
we’ve explored some aspects of using IronPython with other .NET languages, the
foremost being C#. If you don’t know C#, this appendix will give you a brief over-
view of the core parts of the language. It should be enough to let you read the code
examples in the book, although you’ll probably want more detail if you’re trying to
write C# code.

A.1 Namespaces
Namespaces are similar to Python packages and modules. The classes in an assembly
live in namespaces, which can be nested to provide a hierarchical structure. This
structure is used to group together related classes to make them easier to find.
Namespaces are specified in C# like so:

namespace EvilGenius.Minions {
 class GiantRobot {
 ...
 }
}

Here we declare a namespace called EvilGenius.Minions, which contains the
GiantRobot class. Another major feature of namespaces is that they enable us to
avoid name collisions: the fully qualified name of the class is EvilGenius.
Minions.GiantRobot, and we could happily use other GiantRobot classes in our
project as long as they are in different namespaces.

 This is similar to how Python modules work, but namespaces differ from modules
in several ways. First, namespaces are entirely independent of the name of the file in
which they are defined, and you can have a file that defines multiple namespaces.
Conversely, you can define classes in a particular namespace in multiple different
files. For example, if the GiantRobot class is defined in GiantRobot.cs, you could
419

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

420 APPENDIX A A whirlwind tour of C#
have another file defining the fully qualified class EvilGenius.Minions.Corrupt-
Bureaucrat. Both classes are in the EvilGenius.Minions namespace.

 Namespaces and assemblies are orthogonal; assemblies are the physical organiza-
tion of code, whereas namespaces provide logical organization.

A.2 Using directive
In C# code, you have access to any classes in the current assembly or referenced
assemblies. Classes in the current namespace can be referred to directly. To refer to
classes in other namespaces, you can use fully qualified class names in your code, but
that’s very verbose. The alternative is to add a using directive to the top of the file:
using EvilGenius.Minions;

 Then occurrences of the unadorned class name GiantRobot in the code refer to
EvilGenius.Minions.GiantRobot.

 In the case of a name collision (say you also wanted to use Transformers.Auto-
bots.GiantRobot in the code), the using directive can create an alias:

using autobots=Transformers.Autobots;

Then you can refer to the alternative GiantRobot class as autobots.GiantRobot.

A.3 Classes
Class declarations in C# are structured like this:

public class GiantRobot: Robot, IMinion, IDriveable {
 public string name;
 public GiantRobot(string name) {
 this.name = name;
 }
 // more fields and methods here
}

The access modifier public before the class keyword indicates that the class is accessi-
ble outside the current namespace. The names after the colon specify what this class
inherits from. GiantRobot is a subclass of the Robot class, as well as the IMinion and
IDriveable interfaces. C# doesn’t allow multiple inheritance of classes, but imple-
menting multiple interfaces is fine. If no parent class is specified in a class definition
(or it inherits only from interfaces), the class inherits from System.Object.

 The body of the class can contain definitions of various kinds of members:

■ Constructors
■ Fields (like the name attribute in the previous snippet)
■ Methods
■ Properties
■ Events
■ Operators

Each of these members has access modifiers as well:
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

421Attributes
■ private—Can be used only inside this class
■ protected—Accessible from this class and any subclasses
■ internal—Accessible from any class in the current assembly
■ public—Available from any code

Classes can also contain other types (including classes, interfaces, structs, or dele-
gates) as members.

 As well as access modifiers, other modifiers can be applied to classes when they are
defined:

■ abstract—This declares that the class can be used only as a base class and can’t
be instantiated. It might contain declarations of abstract methods (without any
implementation) that subclasses must define when they are declared. (Abstract
classes can still contain concrete implementations of some methods.)

■ static—This indicates that this class can’t be instantiated or used as a type (so it
can’t be subclassed). Static classes are essentially containers for their members;
in Python it would make more sense to use a module.

■ sealed—This prevents this class from being subclassed, for security or perfor-
mance reasons. When the compiler sees a method call on a sealed class, it can
generate a direct call to the method, rather than a virtual call.

■ partial—Partial classes are classes that are defined in more than one file. This can
be useful if some code in a class is machine generated; the generated code can
be kept in a separate file and regenerated without clobbering the custom code.

A.4 Attributes
Attributes are declarative information that can be attached to different elements of a pro-
gram and examined at runtime using reflection. They can be applied to types, methods,
and parameters, as well as other items. The .NET framework defines a number of attri-
butes, such as SerializableAttribute, STAThreadAttribute, and FlagsAttribute,
which control various aspects of how the code runs. You can also create new attributes
(to be interpreted by your own code) by inheriting from System.Attribute.

 The following code applies the SecretOverrideAttribute to the OrbitalWeather-
ControlLaser.Zap method:

class OrbitalWeatherControlLaser {
 //...
 [SecretOverride("zz9-plural-z-alpha")]
 public void Zap(Coords target) {
 //...
 }
}

As you can see, attribute constructors can take arguments, and the –Attribute suffix
of the class name can be omitted when attaching it.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

422 APPENDIX A A whirlwind tour of C#
A.5 Interfaces
An interface is a type that defines methods and properties with no behavior. Its pur-
pose is to make a protocol explicit without imposing any other restrictions on the
implementation. For example, the previous GiantRobot class implements the
IDriveable interface:

interface IDriveable {
 IDriver Driver {get; set;}
 void Drive();
}

This means that GiantRobot must provide a definition of the Driver property and the
Drive method. Classes that implement multiple interfaces must provide definitions
for all of the interfaces’ members. Interfaces can subclass other interfaces (and even
inherit from multiple interfaces), which means that they include all of the members
of their bases as well as the members they declare.

 Ordinarily, a class that inherits from an interface can implement its members sim-
ply by defining them with the correct name, parameters, and return type. In some
cases, you might not want the interface members to be part of your class’s interface
(for example, if you have two different interfaces that clash). You can implement
those members explicitly, so that they are available only when used through a refer-
ence to the interface:

public class ExplicitlyDriveable: IDriveable {
 // member prefixed with interface name
 public void IDriveable.Drive() {
 // implementation here...
 }
 // other members
}

Then code trying to use the Drive method on an ExplicitlyDriveable instance
must cast it to IDriveable first.

A.6 Enums
Enumerations are collections of named constants, which look like this:

enum RobotColor {
 MetallicRed,
 MetallicGreen,
 MetallicBlue,
 Black
}

The enum values can be referred to in code using RobotColor.MetallicBlue. By
default, enumerations inherit from int, but they can be declared (using the inheri-
tance syntax) as any of the integral .NET types: sbyte, byte, short, ushort, int, uint,
long, or ulong.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

423Methods
 Enums can be combined as flags with the bitwise-or operator (|) if you annotate
them with the Flags attribute, in which case you should also specify the value of each
member (by default, they’re assigned sequentially from 0). For example, if you
wanted the RobotColor values to be combinable, you could define it as follows:

[Flags]
enum RobotColor {
 MetallicRed = 1,
 MetalicGreen = 2,
 MetallicBlue = 4,
 Black = 8
}

A.7 Structs
Structs are data structures that are defined similarly to classes. The difference is that a
struct is a value type rather than a reference type like a class. When a variable is of a class
type, it contains a reference to an instance of the class (or null). A struct variable
directly contains the members of the struct rather than being a reference to an object
elsewhere in memory. This is generally useful for performance or memory optimiza-
tion: a large array of structs can be much quicker to create than the same size array of
objects. In some situations using structs can be slower, though, particularly when
assigning or passing them as parameters (because all their member data needs to be
copied).

 Struct definitions look like this:

struct Projectile {
 public float speed;
 public Projectile(float speed) {
 //...
 }
}

Structs can’t inherit from any type (other than object, which they inherit from
implicitly), and no types can inherit from them.

A.8 Methods
Methods in C# are members of classes and structs that are defined by giving the access
level, the return type, the name of the method, and the parameters it accepts, as well
as the block of code that is executed when it is called:

class GiantRobot {
 //...
 public void GoToTarget(string targetName) {
 Point location = this.targetDatabase.Find(targetName);
 this.FlyToLocation(location);
 }
}

The void return type indicates that this method returns nothing.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

424 APPENDIX A A whirlwind tour of C#
A.8.1 Virtual and override methods

The virtual modifier applied to a method indicates that it can be overridden in a
subclass. The subclass’s version of the method must have the same visibility, name,
parameter types, and return type as the base class method and be defined using the
keyword override.

class GiantRobot {
 //...
 public virtual void TravelTo(Point destination) {
 this.TurnTowards(destination);
 while (this.Location != destination) {
 this.Trudge();
 }
 }
}

class FlyingRobot: GiantRobot {
 //...
 public override void TravelTo(Point destination) {
 if (this.WingState == WingState.Operational) {
 this.FlyTo(destination); // whee!
 } else {
 base.TravelTo(destination); // oh well...
 }
 }
}

(Methods defined with override can also themselves be overridden by subclasses.)
 In a method, this refers to the current instance in the same way as self in Python,

although this doesn’t need to be a parameter of each method. To call a superclass
method or property (for example, from the body of an override method), you refer
to base, which works similarly to calling super(Class, self) in Python, although the
semantics are simpler because any C# class has only one superclass.

A.8.2 Other method modifiers

A number of other modifiers can be included after the access modifier when defining
a method. The more commonly seen modifiers are these:

■ static—This method must be called directly on the class rather than on an
instance (and so can’t refer to this). Often code that would be in a standalone
function in Python is put into a static method in C#.

■ sealed—This override method can’t be overridden again in a subclass. This is
often done for performance or security reasons.

■ abstract—This method must be implemented in subclasses. Abstract methods
can’t contain any code.

A.8.3 Parameter passing

By default, method parameters are passed by object value in the same way as in Python
(with the extra wrinkle that structs are copied). In Python, this is the only way to pass
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

425Events
parameters; if you want to see modifications by a function or method, you need to
mutate an object that is passed in.

 In C# you can change this behavior using the ref and out parameter modifiers. If
a parameter has the ref modifier, it is passed by reference instead. Assignments to that
parameter in the method will be reflected in the variable passed in by the caller. For
example, an int variable passed as a ref parameter can be assigned in the method,
and the variable’s value will be updated in the calling scope. Out parameters are simi-
lar, with the difference that they don’t need to be assigned a value before calling the
method, and they must be assigned in the method. The difference between them is
that out parameters are viewed as extra return values of the method (for which you
might use a tuple in Python), while ref parameters are values that are both input and
potentially output of the method.

A.8.4 Method overloading

There can be multiple different methods in a class with the same name, as long as the
combination of name and parameter types is unique within the class. Methods that
have the same name but different parameters are said to be overloaded. When you call
an overloaded method, the compiler uses the compile-time types of the parameters
passed in to determine which version of the method is called. This is an important dis-
tinction between overload dispatch, where the selection of which overload to call is
purely based on the declared types of the parameters, and method dispatch, where
the method called is determined by the type of the instance at runtime, regardless of
the declared type of the variable.

A.9 Delegates
A delegate is a type that represents a reference to a method. Delegates are essentially
the same as Python function references; a delegate that has been created from an
instance carries a reference back to that instance in the same way as a bound method
reference. Delegate definitions look like this:

delegate int IntegerFunction(int a, int b);

This creates an IntegerFunction type that accepts two integers and returns an
integer.

 In addition to creating delegates from method references, you can create them
from anonymous functions, which are very similar to Python lambdas:

IntegerFunction f = (int a, int b) => (a * a + b + 1);

A.10 Events
An event is a member of a class that enables it to notify other code when something
happens. Each event is declared with a delegate type, and interested parties add dele-
gates of that type to the event; the delegates will be called when the event is triggered.
For example, the HideoutEntrance might need to let other parts of the system know
when there’s an intruder:
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

426 APPENDIX A A whirlwind tour of C#
delegate bool SecurityHandler(string details);
class HideoutEntrance {
 //...
 event SecurityHandler IntruderDetected;
}

Then interested parties can create SecurityHandler delegates and attach them to the
IntruderDetected event so that they can respond to the problem:

hideoutEntrance.IntruderDetected += this.ActivateSentryTurret;

Event handlers can be removed with the -= operator. Events are triggered by calling
them, in the same way as invoking a delegate (although if no handlers are attached,
the event will be null).

A.11 Operator overloading
Operator overloading enables you to define how instances of your class should behave
when they’re used in expressions. For example, if you want to be able to add instances
together, you can define operator +:

class Magnitude {
 //...
 public static operator +(Magnitude a, Magnitude b) {
 return Magnitude(a.size + b.size);
 }
}

These operator overrides work in much the same way as the magic methods in Python
(such as __add__, __mul__, or __eq__). Operator members must be declared as
public static, and they can be for unary operators (like ++) as well as binary opera-
tors (like addition).

A.12 Properties and indexers
Properties are function members that are run when a particular attribute is retrieved or
assigned. They can be used for validating the value that’s being set or lazily creating an
expensive attribute only when it’s needed. A property definition looks like this:

class Heist {
 //...
 private float executionTime;
 public float Hours {
 get {
 return this.executionTime / 3600;
 }
 set {
 this.executionTime = value * 3600;
 }
 }
}

A property can be made read-only by leaving out the setter or made write-only by omit-
ting the getter. The setter is called with an implicit parameter named value, which,
surprisingly enough, is the value that was set.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

427Loops
 Indexers are members that allow a class to act like a collection, similarly to the
Python __getitem__ and __setitem__ magic methods. They can have getters and set-
ters in the same way as properties, but they are defined slightly differently:

class LootBag {
 // container for items
 private ArrayList _underlyingItems;
 //...
 public object this[string name] {
 get {
 return this._underlyingItems[name];
 }
 set {
 this._underlyingItems[name] = value;
 }
 }
}

Indexers can be overloaded if you want to handle different types or numbers of
parameters. In the same way as for properties, the value to be set is an extra implied
parameter called value, and either the getter or setter can be omitted to make the
indexers read- or write-only.

A.13 Loops
C# has four looping constructs: while, do, for, and foreach. while and foreach are
like the while and for loops in Python; the do and for loops don’t have any Python
analogue.

A.13.1 while loop

The while loop works in almost exactly the same way as its Python counterpart. The
only major difference is that the condition of the loop in C# must evaluate to a bool,
while Python will allow any type.

int a = 10;
while (a > 0) {
 a--;
}

The loop control keywords break and continue work (for all C# loops) exactly the
same way as they do in Python. The condition of the loop must be included in paren-
theses.

A.13.2 do loop

The do loop is like a while loop, where the condition is checked at the end of the loop
body; that is, the loop body always executes at least once.

int a = 0;
do {
 a--;
} while (a > 0);

After the execution of this loop, a will have the value -1.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

428 APPENDIX A A whirlwind tour of C#
A.13.3 for loop

The C# for loop has three parts in addition to the loop body:

■ An initialization clause, which sets up variables before the loop begins
■ A condition that is tested before each execution of the loop body
■ An iteration clause, which is executed after each execution of the loop body

Here’s an example:

int total = 0;
for (int i = 0; i < 10; i++) {
 total += i;
}

After execution, total will have the value 45 (the sum of 0 to 9), because it stops
when i equals 1. Each of the three control clauses is optional, and each clause can
consist of multiple statements separated by commas.

A.13.4 foreach loop

foreach loops are the closest equivalent to Python’s for loops. The foreach loop can
iterate over any collection that implements the IEnumerable interface, including arrays.

string[] names = new string[] {"Alice", "Bob", "Mallory"};
foreach (string person in names} {
 Console.WriteLine(person);
}

A.14 Casts
Casts are used to convert an expression to a different type. There are two kinds of casts
in C#:

GiantRobot robot = new GiantRobot();
IDriveable vehicle = (IDriveable)robot;
IMinion minion = (robot as IMinion);

The difference between these casts is that the first form, (IDriveable)robot, will
raise an exception at runtime if the conversion is invalid, while the robot as IMinion
expression will return null if there is no way to convert the type.

 Casting from a class to one of its base classes or interfaces (upcasting) always suc-
ceeds. Downcasting (going in the opposite direction) can fail, because not every IMin-
ion object is a GiantRobot.

A.15 if
The C# if statement looks very similar to the Python one. The condition must be in
parentheses and yield a Boolean.

if (!robot.AtDestination()) {
 robot.Walk();
} else if (robot.CanSee(target)) {
 robot.Destroy(target);
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

429try/catch/finally and throw
} else {
 robot.ChillOut();
}

If statements can be chained as you see here, so there’s no need for the elif from
the Python if statement.

A.16 switch
Some situations that would require an if-elif-else construct or a dictionary lookup
in Python can be done more cleanly in C# using a switch statement.

WeaponSelection weapon;
switch (target.Type) {
 case TargetType.Building:
 weapon = WeaponSelection.FistsOfDoom;
 break;
 case TargetType.ParkedCar:
 weapon = WeaponSelection.Stomp;
 break;
 case TargetType.FluffyKitten:
 case TargetType.FluffyBunny:
 weapon = WeaponSelection.MarshmallowCannon;
 break;
 case default:
 // death ray not operational yet
 weapon = WeaponSelection.InconvenienceRay;
 break;
}

The case labels must be constants, and each case has to end with a flow-control state-
ment like break, throw, or return; execution isn’t allowed to fall through from one
case to another. If you want fall-through behavior, you can use the goto case state-
ment to explicitly jump to the case that should be executed. Two case labels together
(like the FluffyKitten and FluffyBunny case shown previously) are treated as if they
share the same body. If the switch expression doesn’t match any of the case labels
and there’s a default case, it is executed.

A.17 try/catch/finally and throw
Exceptions in C# are handled in the same way as they are in Python, with only minor
syntactic differences:

try {
 robot.ReturnToBase(TransportMode.FootThrusters);
} catch (FootThrusterFailure) {
 robot.ReturnToBase(TransportMode.BoringWalking);
} catch (EmergencyOverrideException e) {
 robot.SelectTarget(e.NewTarget);
} catch {
 robot.AssumeDefensivePosition();
 throw; // re-throw the original exception
} finally {
 robot.NotifyBase();
}

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

430 APPENDIX A A whirlwind tour of C#
In this example, catch is equivalent to Python’s except, and throw corresponds to
raise.

A.18 lock
All reference types in C# can be used as locks to prevent multiple threads from occu-
pying critical sections at the same time. The lock statement provides a convenient way
to specify a critical section:

lock(this.RightEye) {
 this.RightEye.Close();
 this.RightEye.Open();
}

This will prevent any other thread from executing this section of code with the same
RightEye object. As long as other operations on the right eye are locked, it will also
prevent this wink from being interrupted or interrupting some other operation.

 The lock statement guarantees that the lock will be released when execution
leaves the block, even if an exception is thrown.

A.19 new
The new operator is used to create new instances of types. It can be used to create class
or struct instances, arrays, and delegates.

GiantRobot robot = new GiantRobot("destructo", true);

For classes and structs, the constructor that matches the parameters is called.
 The new operator can also initialize the object that is created, by assigning to mem-

bers (if the object is a class or struct instance) or by specifying the elements for a col-
lection or array.

string[] demands = new string[] {"helicopter", "money", "island"};

When creating an array, if initial items have been provided, you don’t need to also
specify the size.

A.20 null
Where Python has None, a value that is the singleton instance of NoneType, the equiva-
lent in C# is null. null is a reference that (paradoxically) doesn’t refer to any object.
This has two consequences: first, null can be assigned to a variable of any reference
type, and second, value types like int, DateTime, or custom structs can’t be null,
because they don’t contain references.

 The second fact can be inconvenient in some situations, so each value type in C#
has a nullable version, represented with the type name followed by a question mark.
For example, a nullable integer variable would be declared with int?. Nullable types
can then be used as normal (although there are performance differences under the
hood) and be assigned null in the same way as reference types.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

431Operators
A.21 using statement
The using statement (not to be confused with the using directive) ensures that an
object will be disposed of when execution leaves the block. It’s essentially a specialized
version of a try-finally statement.

using (DatabaseConnection conn = context.OpenConnection()) {
 // use the opened connection
}
// the connection will be Disposed at the end of the block

The target object must implement the IDisposable interface, which has only one
member, the Dispose method. The using statement guarantees that Dispose will be
called on the target, regardless of whether execution leaves the block by returning,
throwing an exception, or falling off the bottom.

A.22 Operators
There’s a large overlap between the operators in Python and C#. Table A.1 lists those
that are different in C#:

Table A.1 Differences between C# and Python operators

Operator Name Description

! logical negation The equivalent of Python’s not operator.

++ -- increment and decrement Adds or subtracts 1 from a value. These are unusual from a
Python perspective, because they both yield a value and
mutate the operand, which can be confusing. Increment and
decrement can be prefix or postfix; if prefix, the increment/
decrement is done before yielding the value; if it is postfix,
the increment or decrement is done after yielding the value.

== != equality and inequality Generally used for identity (reference equality, is in Python)
with reference types, although they can be overridden to be
value equality. For value types, these are the same as the
Python equivalents.

is is Corresponds to the Python isinstance function, although
it can compare to only one type.

&& || logical and, logical or Corresponds to Python and and or, and short-circuits in the
same way. In the standard implementations the result is con-
verted to bool, unlike Python’s Boolean operators.

?? null coalescing The expression a ?? b returns a, or b if a is null. A common
Python idiom is to use a or b for this purpose, which works
because or doesn’t convert its result to a bool.

?: conditional operator The expression a ? b : c returns b if a is true, and c otherwise.
It corresponds to the Python expression b if a else c.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

432 APPENDIX A A whirlwind tour of C#
A.23 Generics
Generic types are types that include one or more type parameters. They’re often used to
create containers or data structures that can operate on a range of types of objects
without having to cast them to some common base type (in the most general case, this
would be object). When you create an instance of a generic type, you specify the type
parameters, and the instance acts as if those types had replaced all of the type parame-
ters in the definition.

class LinkedList<T> {
 private T item;
 private LinkedList<T> rest;
 public LinkedList(T item) {
 this.item = item;
 this.rest = null;
 }
 public T Head {
 get { return this.item; }
 }
 public void InsertAfter(T newItem) {
 LinkedList<T> newNode = new LinkedList<T>(newItem);
 newNode.rest = this.rest;
 this.rest = newNode;
 }
 // more list methods...
}

This code (partially) defines a LinkedList generic class that could hold any object.
The difference between this and an ArrayList or Python list (which could also hold
any type of object) is that client code can create a LinkedList of strings, and then
the compiler will ensure that only strings go in and come out.

LinkedList<string> list = new LinkedList<string>("abc");
list.InsertAfter("def");
string s = list.Head // no casting is required.

The LinkedList class doesn’t need to do anything with the type parameter T, other
than store instances of T or pass them around. Some generic classes need to have
more interaction with their type parameters, for example, being able to create
instances or call methods on the objects. To guarantee that the actual type used with
the generic class has the necessary methods, generic classes can specify constraints on
the type parameters, such as these:

■ where T: class—Specifies that the type specified for T must be a reference type,
while where T: struct constrains T to be a value type

■ where T: <class or interface name>—Says that T must inherit from the class or
interface

■ where T: new()—Requires that T has a no-argument constructor
■ where T: U—Specifies that T must be the same type or a subclass of the U type

parameter

Any type constraints are checked at compile time when an instance of a generic type is
created.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

appendix B:
Python magic methods

Creating your own objects in Python inevitably means implementing one or more
of Python’s protocol methods—the magic methods whose names start and end with
double underscores. These protocols are roughly the equivalent of interfaces
in Python.

 The lookup rules for the magic methods are slightly different from those of
other attributes. Normal attribute lookup order1 is instance -> class -> base classes.
Magic method lookup goes directly to the class, skipping the instance. This means
that you can’t override these methods by attaching a function directly to the
instance (or through __getattr__); overriding has to happen at the class level. To
provide these methods for classes themselves, they need to be implemented on the
classes’ class, that is, its metaclass.2

 This appendix is a reference to all the common magic methods.3

1 This order assumes the usual caveat that the descriptor protocol makes the full lookup rules more com-
plex. Section B.9 of this appendix describes the descriptor protocol.

2 The IronPython generics support using the Array[int] syntax, which is implemented by adding a
__getitem__ method to the type metaclass.

3 This is only a summary; for full details refer to the Python documentation at http://docs.python.org/
index.html.
433

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/index.html
http://docs.python.org/index.html

434 APPENDIX B Python magic methods
B.1 Object creation
The object creation methods are called when a class is instantiated, as shown in table B.1.

B.2 Comparison
The rich comparison methods are called during comparison operations involving the
==, !=, <, <=, >, and >= operators. They are also called by operations that implicitly
involve comparisons, such as sorting a list. All these methods should return a Boolean.
They can also return the NotImplemented singleton to indicate that the operation is
not implemented for the two values being compared.

 In Python there is no comparison fallback. To support all the comparison opera-
tors you need to implement all the comparison methods, shown in table B.2.

 Classes of immutable objects that implement the comparison methods should also
implement __hash__. Objects that compare equal should have the same hash.

Table B.1 Object creation

Method Description

__new__(cls, ...) The object constructor. Responsible for creating new instances. It
receives the class as the first argument, followed by all arguments
passed in the instantiation call. To customize instance creation when
inheriting from the built-in immutable types or .NET objects, you should
override __new__ instead of __init__.a This method returns the
new instance, but there is no requirement for it to be an instance of the
class provided. If the instance returned is not an instance of cls, then
__init__ will not be called.

a. Initializing immutable values is done in __new__, because otherwise it would be possible to change an immutable
value by calling __init__ with a different value.

__init__(self, ...) The object initializer. Called after __new__ when a new instance is cre-
ated. Like other instance methods, it receives the instance as the first
argument. It also receives all the arguments passed in the instantiation
call. Returning anything other than None from this method will cause a
TypeError to be raised.

Table B.2 Comparison methods

Method Description

__eq__(self, other) Called for equality operations (==). Python defaults to identity compari-
son for equality where __eq__ is not defined.

__ne__(self, other) Called for inequality operations (!=). Python defaults to identity compari-
son for inequality where __ne__ is not defined.

__lt__(self, other) Called for less-than operations (<).

__le__(self, other) Called for less-than or equals operations (<=).
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

435Containers and iteration
B.3 Miscellaneous
Table B.3 provides a selection of important methods that don’t fit into any other category.

B.4 Containers and iteration
Python has two protocols for objects that support subscription (indexing): the
sequence protocol and the mapping protocol. The sequence protocol4 is used for
sequences (like lists, tuples, and strings) that are indexed with an integer. The map-
ping protocol5 is used for types (like dictionaries) that map keys to values. Both
sequences and mapping types are typically iterable, with sequences iterating over their
values and mapping types iterating over their keys.

__gt__(self, other) Called for greater-than operations (>).

__ge__(self, other) Called for greater-than or equals operations (>=).

Table B.3 Miscellaneous methods

Method Description

__nonzero__(self) Called to implement truth value testing and the built-in function bool.
This method should return a Boolean. If a class doesn’t implement
__nonzero__ but does implement __len__, then that will be called
instead. A nonzero return value from __len__ indicates that an instance
is True. If a class defines neither __len__ nor __nonzero__, all its
instances are considered True.

__subclasses__(self) Available on classes only. Returns a list of all subclasses of the class.

__call__(self, ...) Called when an object is called as a function.

__hash__(self) Called when an object is used as a dictionary key, for set membership,
and by the built-in function hash. Should return a 32-bit integer or a
long (new in Python 2.5). Objects that compare equal should have the
same hash. Mutable objects (which should not be used as dictionary
keys) should implement __hash__ to raise a TypeError. It is easi-
est to implement __hash__ by using the hash function on all the
components of the object that play a part in comparison (either combin-
ing them with exclusive or or hashing a tuple of them).

__del__(self) Called when a Python object is about to be destroyed. __del__ can res-
urrect an object by creating a new reference to the object. A lot of the stan-
dard Python documentation for __del__ does not apply, because
IronPython uses .NET garbage collection rather than reference counting.

4 For additional methods commonly defined by mutable sequence types see http://docs.python.org/lib/
typesseq-mutable.html.

5 For additional methods commonly defined by mapping types see http://docs.python.org/lib/typesmapping.
html.

Table B.2 Comparison methods (continued)

Method Description
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/typesseq-mutable.html
http://docs.python.org/lib/typesseq-mutable.html
http://docs.python.org/lib/typesmapping.html
http://docs.python.org/lib/typesmapping.html

436 APPENDIX B Python magic methods
B.4.1 Mapping and sequence protocol methods

Both the mapping and sequence protocols use __getitem__, __setitem__, and
__delitem__ to fetch, set, and delete items. The mapping and sequence protocol
methods are shown in table B.4.

Table B.4 Mapping and sequence protocol methods

Method Description

__getitem__(self, index) Called when an item or slice is fetched. If an item is indexed using
slice syntax, then the index will be a slicea object. Classes may
raise a TypeError if the index is an inappropriate type. A class
implementing the sequence protocol should raise an
IndexError if the index is outside the bounds of the sequence.
A class implementing the mapping protocol should raise a
KeyError instead. The same rules about slicing and exceptions
also apply to __setitem__ and __delitem__. Note that
these methods should also accept negative indices to mean index-
ing from the end (where 0>N>=-len(S)).

a. The start, stop, and step attributes correspond to the [start:stop:step] components of the slice (or
None if the component is omitted).

__setitem__(self, index,
value)

Called when an item or slice is set.

__delitem__(self, index) Called when an item or slice is deleted.

__len__(self) Called by the built-in function len and returns the number of
items in the container. May also be called when creating an
iterator from an object.

__contains__(self, item) Called by the in operator (x in y). Should return a Boolean
indicating whether the container contains the item.

__iter__(self) Called when iterating over an object or by the built-in function
iter. It should return an iterator object. Iterator objects have
an __iter__ method that returns self and a next method
that returns the members of the iterator sequentially. Once the
iterator is exhausted, subsequent calls to next should raise
StopIteration.

__reversed__(self) Containers may implement this method to provide an optimized
reverse iterator for instances. If this method is available, it is
called by the built-in function reversed.

__missing__(self, key) New in Python 2.5. This method is called on subclasses of the
built-in dictionary (dict) type when a key that doesn’t exist is
requested. This method is useful for providing default values.

__length_hint__(self) Iterators can implement this as an optimization so that Python can
preallocate space for them. IronPython doesn’t use it (yet, any-
way), but if you see this method, now you know what it is for.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

437Conversion to string
B.4.2 Generator expressions and conditional expressions

Generator expressions are a form of iteration that we haven’t covered elsewhere.
We’ve shown how list comprehensions allow for an extremely concise form of itera-
tion and filter in a single expression:

result = [x for x in iterable if some_condition(x)]

This is comparable to LINQ over objects, which was introduced in C# 3.0 (.NET 3.5).
There is an alternate form of list comprehensions called generator expressions,
which arrived in Python 2.4. Instead of square brackets, they use parentheses to sur-
round the expression. The major difference is that instead of being evaluated imme-
diately, they are evaluated lazily. A generator expression returns a generator object
(the same kind of object returned by a generator function). Like other iterators, this
can be consumed by iterating over it, or you can consume individual items by calling
the next method.

 Because they are lazily evaluated, we can combine them:

from os import listdir
python_files = (f for f in listdir('.') if f.endswith('.py'))
first_lines = ((f, open(f).readline()) for f in python_files))
names_to_first_line = dict(first_lines)

None of the generator expressions are actually executed until the final dict call. A
nice side effect is that they look nicer when used in places that take any iterable:

total = sum(val for val in some_list if val > 0)

Both list comprehensions and generator expressions can take advantage of an-
other feature new to Python 2.5: conditional expressions (also known as ternary
expressions).

 Conditional expressions have the basic syntax

X if Y else Z

This evaluates Y, and if it is True it returns X—otherwise, it returns Z. We can use this
in list comprehensions and generator expressions:

generator = (f(a) if test(a) else g(a) for a in some_list)

This generator expression tests each member of some_list, yielding f(a) if test(a)
returns True and g(a) if test(a) returns False.

 Advanced tools for working with iterators and generators can be found in the stan-
dard library module itertools; see http://docs.python.org/library/itertools.html.

B.5 Conversion to string
There are several ways that objects can be converted to strings, both implicitly and
explicitly. Table B.5 lists the protocol methods that do this.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/library/itertools.html

438 APPENDIX B Python magic methods
B.6 Attribute access
In Python you can completely customize attribute access on objects for fetching, set-
ting, and deleting. Table B.6 shows the attribute access methods.

B.7 Numeric types
Numeric types are expected to implement a whole host of different methods in order
to support the full range of numeric operations and conversions between the differ-
ent built-in types. In addition, other types are free to implement individual methods
to support a subset of the operations. For example, strings and lists both implement

Table B.5 String conversion methods

Method Description

__repr__(self) Called by the built-in repr function and when an object is displayed on the
console. This method should return a string. Many of the built-in types have
string representation that can be used to reconstruct the object if passed in
to eval.

__str__(self) Called by the built-in str function (type) or when an object is printed. This
method should return a string. If __str__ is not defined on an object but
__repr__ is, then str will call this instead (so if you define only one,
choose __repr__).

__unicode__(self) Normally called by the built-in unicode function (type) and should return a
Unicode string. In IronPython the unicode type is the str type, so
__str__ will be called instead.

Table B.6 Attribute access methods

Method Description

__getattr__(self, name) If this method is implemented, then it will be called with the attri-
bute name when an attribute that doesn’t exist on the object is
requested. If fetching the attribute fails, it should raise an
AttributeError.

__setattr__(self, name,
value)

If this method is implemented, it will be called whenever an attribute
is set on an instance. __setattr__ can do “real” attribute set-
ting by delegating to object: object.__setattr__(self,
name, value).

__delattr__(self, name) If this method is implemented, it will be called whenever an attribute
is deleted.

__getattribute__(self,
name)

This method is always called for attribute access (new-style classes
only). It is an important part of the descriptor protocol. It should return
the attribute or raise an AttributeError. If both this method and
__getattr__ are explicitly defined, then __getattr__ will be
called only if __getattribute__ calls it.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

439Numeric types
the addition methods so that you can add strings and lists together. Strings implement
the modulo operator for string interpolation.

B.7.1 Arithmetic operations

Table B.7 shows the methods that implement the binary arithmetic operations (+, -,
*, /, //, true division, %, divmod(), pow(), **, <<, >>, &, ^, |). If one of those meth-
ods does not support the operation with the supplied arguments, it should return
NotImplemented.

These methods all have an additional two forms.
 If they are on the right-hand side of a binary operation, then the right-hand ver-

sion of the operator method will be called. This has the same name as the normal
operator but with an r prepended. For example, the right-hand addition operator
method is __radd__.

 All of the operators (except for the divmod function) also have an in-place equiva-
lent. The in-place operators are +=, -=, /=, //=, %=, **=, <<=, >>=, &=, ^=, and |=. The
in-place operator methods have the same name as the standard operator methods

Table B.7 Binary arithmetic operations

Method Description

__add__(self, other) Called for addition operations (+).

__sub__(self, other) Called for subtraction operations (-).

__mul__(self, other) Called for multiplication (*).

__floordiv__(self, other) Called for floor division (//).

__div__(self, other) Called for division (/).

__truediv__(self, other) Called for division when true division is on.

__mod__(self, other) Called for the modulo operator (%).

__divmod__(self, other) Called by the built-in divmod function. This method should
be the equivalent to using __floordiv__ and __mod__.

__pow__(self, other[, modulo]) Called for power operations (**). Can also be called by the
built-in pow function. This method must accept an optional
third argument if it is to support the three-argument form
of the pow function.

__lshift__(self, other) Called for left-shift operations (<<).

__rshift__(self, other) Called for right-shift operations (>>).

__and__(self, other) Called for binary and operations (&).

__xor__(self, other) Called for binary exclusive or operations (^).

__or__(self, other) Called for binary or operations (|).
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

440 APPENDIX B Python magic methods
with an i prepended. For example, the in-place addition operator method is
__iadd__. Because in-place operations rebind the name being operated on, mutable
values that implement in-place operators should return self from the in-place opera-
tor methods (immutable values can return a new value as normal). If an in-place oper-
ator is used on an object that implements the standard operator method but not the
in-place operator method, then the standard operator method will be used instead.
Table B.8 shows the unary arithmetic operations.

B.7.2 Conversion between numeric types

The methods in table B.9 are used to convert objects between numeric types, usually
by built-in functions.

B.8 Context managers and the with statement
The Python with statement (new in Python 2.5)6 supports the concept of a runtime
context. This allows you to perform operations on an object, with a context manager

Table B.8 Unary arithmetic operations

Method Description

__neg__(self) Called for the unary negation operator (-)

__pos__(self) Called for the unary plus operatory (+)

__abs__(self) Called by the built-in function abs; returns the absolute value

__invert__(self) Called by the invert operator (~)

Table B.9 Type conversion

Method Description

__complex__(self) Called by the built-in function complex. Should return a complex number.

__int__(self) Called by the built-in function int. Should return an int.

__long__(self) Called by the built-in function long. Should return a long.

__float__(self) Called by the built-in function float. Should return a float.

__oct__(self) Called by the built-in function oct. Should return a string (the octal
representation).

__hex__(self) Called by the built-in function hex. Should return a string (the hex
representation).

__index__(self) Called whenever Python needs an integer object (such as in slicing). Must
return an integer (int or long). New in version 2.5.

6 Using with in Python 2.5 (IronPython 2) requires the future import: from __future__ import
with_statement.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

441Context managers and the with statement
to handle closing or disposing of the object once the operations are complete. This is
useful for committing database transactions (or rolling them back in case of an error),
synchronizing threads, or working with files.

The context management protocol involves implementing a pair of methods,
__enter__ and __exit__. Table B.10 describes these methods.

Python defines these methods on files, so that you can use the following pattern:

with open(filename) as handle:
 data = handle.read()
 ...

When the with statement is executed,7 __enter__ is called and the file handle
returned is bound to the name handle. When the code inside the with block is exited
(or an exception is raised), __exit__ is called, which closes the file.

 The standard library module contextlib8 is extremely useful for working with the
context management protocol. contextlib.closing is a convenient decorator for
creating context managers that automatically close a resource. When closing is insuf-
ficient, contextlib.contextmanager is the simplest way to create a context manager.
When working with decorators in general, functools9 is another extremely useful

Table B.10 The context management protocol

Method Description

__enter__(self) Enter the runtime context of the context manager. The object(s)
returned by this method are bound to the names in the as
clause of the with statement (if any).

__exit__(self, exc_type,
 exc_val, exc_tb)

Exit the runtime context associated with the context manager. If
the with statement exits normally, then exc_type,
exc_val, and exc_tb will all be None. If an exception
occurs, then they will have the same values as would be
returned by sys.exc_info().
Context managers should not re-raise exceptions; instead they
should return a Boolean indicating whether or not they have
handled the exception (a return value of False will cause the
exception to be re-raised after __exit__ has completed).

7 The with statement does not create a new scope.
8 See http://docs.python.org/library/contextlib.html.
9 See http://docs.python.org/library/functools.html.

with as RAII
The Python with statement is analogous to the C# using statement and is a form
of RAII (Resource Acquisition Is Initialization). with is an improvement on RAII in C++
because it can tell if an exit is exceptional or not.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/library/contextlib.html
http://docs.python.org/library/functools.html

442 APPENDIX B Python magic methods
module. For example, functools.wrap preserves the name (__name__) and doc-
strings of decorated functions.

B.9 The descriptor protocol
The descriptor protocol is an aspect of Python that is regarded as deep black magic,
perhaps even more so than metaclasses. Like metaclasses, the rules are very simple
once you understand them; it is just not very often that you need to explicitly imple-
ment them. The descriptor protocol is how properties, class methods, and static meth-
ods are implemented.

 When an object is fetched from a class or instance dictionary, the
__getattribute__ method checks for these methods and invokes them appropriately
to fetch the object. This allows you to customize what happens when an object
is accessed as a class or instance attribute. Table B.11 shows the descriptor pro-
tocol methods.

Python has a built-in property descriptor that allows you to invoke code when an attri-
bute is requested on an instance. It doesn’t have an equivalent classproperty allow-
ing you to create static properties as you can in C#. Using the descriptor protocol we
can implement classproperty in a few lines of code:

class classproperty(object):
 def __init__(self, function):
 self.function = function

 def __get__(self, instance, owner):
 return self.function(owner)

classproperty can be used as a decorator. When it decorates a method (which
should receive the class as its only argument), it replaces the method in the class with
a descriptor. The original method is stored as a function object, the function attri-
bute on the descriptor.

 When the descriptor is fetched from the class, its __get__ method is invoked, and
the stored function is called with the class passed in. Despite its mystery-shrouded rep-
utation, the descriptor protocol can be used very simply to add new language features.

Table B.11 Descriptor protocol methods

Method Description

__get__(self, instance, owner) Called to get attributes from an instance or a class
(owner). If fetched from a class, instance will be
None.

__set__(self, instance, value) Called to set the attribute on an instance of the owner
class to a new value.

__delete__(self, instance) Called to delete an attribute on an instance of the owner
class.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

443Magic attributes
B.10 Magic attributes
As well as magic methods, many Python objects have magic attributes. These are attri-
butes whose names start and end with double underscores and that have a special
meaning to the Python interpreter. Table B.12 lists the most common of these attri-
butes along with their description.

Table B.12 Python magic attributes

Name Description

__doc__ Most Python objects have a __doc__ attribute that holds the docstring for the
object. If there is no docstring, this attribute will be None. Docstrings are dis-
played by the help function and used by automated documentation tools. Doc-
strings can be assigned directly or created with a string literal as the first entry
(before any code) in a module, class, function, or method.

__dict__ __dict__ is a read-only attribute that holds all members of an object. It forms the
object namespace. It exists for all objects except for those that use __slots__.

__slots__ When __slots__ is set as a class variable (a list of strings), it reserves space
in the class for the named members. Instances of classes with __slots__ will
not have a __dict__ dictionary, and attempting to set an attribute not listed in
__slots__ will raise an AttributeError. It is intended as a memory optimi-
zation, saving the space required for a dictionary per instance. In IronPython classes
that define __slots__ are heavily optimised; attribute lookup is approximately 4x
faster. __slots__ has several caveats about its use. See the Python documen-
tation for more details.a

a. See http://docs.python.org/ref/slots.html.

__class__ A reference to the class for all class instances (everything in Python is an instance
of a class).

__bases__ A class attribute referencing a tuple of the base classes for the class.

__name__ An attribute (string) on modules, functions, and classes. It is assignable, allowing
decorated functions to retain the same name as the function they wrap (very use-
ful for tracebacks from decorated functions).

__all__ An optional attribute (list of strings) for modules. If available, this lists all the names
that will be exported by the module when from module import * is executed.
Defining __all__ can be a useful way of defining the public API of a module.

__file__ A module attribute (string) containing the path the module was loaded from on the
filesystem. This attribute does not exist for built-in modules.

__module__ A class, function, and method attribute (string) with the name of the module the
object was defined in.

__metaclass__ If this is defined as a class attribute, then the callable assigned will be called to
create the class instead of type. It can also be used as a module-level attribute,
and all old-style classes (without an explicit alternative metaclass or inheriting
from a class with a metaclass) will use the callable assigned as their metaclass.
A quick way to convert all old-style classes in a module into new-style classes is to
add __metaclass__ = type at the start of the module. (It doesn’t affect
new-style classes, as they inherit type as a metaclass from object.)

__debug__ A global variable (Boolean) indicating whether the interpreter is being run with opti-
mizations on (-O or –OO command-line switches).
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/ref/slots.html

444 APPENDIX B Python magic methods
B.11 Functions and modules
There are also a handful of modules and one built-in function whose names start and
end with double underscores. Table B.13 lists the magic modules and functions.

Table B.13 Magic functions and modules

Name Description

__builtin__ The Python module that contains all the built-in functions and exceptions. You can
import this and patch it to affect the global scope of all modules. You can effectively
create new built-ins, or point existing names to different objects, at runtime.

__main__ This module is the main script (as a module) that the interpreter is executing.

__init__ Python packages consist of directories containing an __init__.py file. As well as
marking the directory as a package, this module acts as the top-level namespace for
the package.

__import__ A built-in function that provides programmatic access to the import machinery.
The function signature is __import__(name[, globals[, locals[,
fromlist[, level]]]]).
See the Python documentation on built-in functionsa for more details.

a. See http://docs.python.org/lib/built-in-funcs.html.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://docs.python.org/lib/built-in-funcs.html

appendix C:
For more information

This appendix lists online sources of information about IronPython and dynamic
languages on the .NET framework.

 The most important website is the one for this book. The website contains news
and the downloadable source code for the examples. In the unlikely event of any
mistakes being found, it will also be a home for the errata.

■ http://www.ironpythoninaction.com/

C.1 IronPython and Python language sites
■ IronPython project page—http://www.codeplex.com/IronPython
■ Python—http://www.python.org/
■ Python documentation—http://docs.python.org/
■ FePy, IronPython Community Edition—http://fepy.sourceforge.net/
■ IronPython for ASP.NET—http://www.asp.net/DynamicLanguages/

C.2 Mailing lists and newsgroups
■ IronPython mailing list—http://lists.ironpython.com/listinfo.cgi/

users-ironpython.com
■ Google Groups gateway—http://groups.google.com/group/ironpy
■ Python newsgroup—comp.lang.python
■ Google Groups gateway—http://groups.google.com/group/

comp.lang.python/topics
■ Python announce newsgroup—comp.lang.python.announce
■ Google Groups gateway—http://groups.google.com/group/

comp.lang.python.announce/topics
445

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.ironpythoninaction.com/
http://www.codeplex.com/IronPython
http://www.python.org/
http://docs.python.org/
http://fepy.sourceforge.net/
http://www.asp.net/DynamicLanguages/
http://lists.ironpython.com/listinfo.cgi/users-ironpython.com
http://lists.ironpython.com/listinfo.cgi/users-ironpython.com
http://groups.google.com/group/comp.lang.python/topics
http://groups.google.com/group/ comp.lang.python/topics
http://groups.google.com/group/comp.lang.python.announce/topics
http://groups.google.com/group/comp.lang.python.announce/topics

446 APPENDIX C For more information
C.3 Python and IronPython code examples
■ IronPython Cookbook—http://www.ironpython.info/
■ ActiveState Python Cookbook—http://code.activestate.com/recipes/langs/

python/
■ Python Package Index—http://pypi.python.org/pypi

C.4 Learning Python
■ Python tutorial—http://docs.python.org/tutorial/
■ Dive Into Python—http://diveintopython.org/
■ Michael Foord’s IronPython articles—http://www.voidspace.org.uk/

ironpython/
■ Python quick reference—http://rgruet.free.fr/
■ A Byte of Python—http://www.swaroopch.com/notes/Python

C.5 Blogs
■ Michael’s blog—http://www.voidspace.org.uk/blog
■ IronPython URLs news and link aggregator—http://ironpython-urls.blogspot.

com
■ Planet Python—http://planet.python.org
■ Planet IronPython—http://www.voidspace.org.uk/ironpython/planet/
■ Jeff Hardy, developer of NWSGI—http://jdhardy.blogspot.com/

C.6 IronPython team
■ Jim Hugunin, creator of IronPython—http://blogs.msdn.com/hugunin/
■ Harry Pierson, IronPython PM—http://devhawk.net/
■ Curt Hagenlocher, core developer—http://blogs.msdn.com/curth/
■ Dino Viehland, core developer—http://blogs.msdn.com/dinoviehland/
■ Jimmy Schementi, Silverlight & dynamic languages PM—http://

blog.jimmy.schementi.com/
■ Martin Maly, DLR core developer—http://blogs.msdn.com/mmaly/
■ Dave Fugate, IronPython tester—http://knowbody.livejournal.com/
■ Srivatsn Narayanan, IronPython tester—http://blogs.msdn.com/srivatsn/
■ Oleg Tkachenko, IronPython and Visual Studio integration—http://

www.tkachenko.com/blog/
■ Seshadri Pillailokam Vijayaraghavan, DLR tester—http://blogs.msdn.com/

seshadripv/default.aspx
■ Shri Borde, IronPython/IronRuby dev lead—http://blogs.msdn.com/shrib/
■ Bill Chiles, DLR PM —(Bill doesn’t have a blog or website)
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://www.ironpython.info/
http://code.activestate.com/recipes/langs/python/
http://code.activestate.com/recipes/langs/python/
http://pypi.python.org/pypi
http://docs.python.org/tutorial/
http://diveintopython.org/
http://www.voidspace.org.uk/ironpython/
http://www.voidspace.org.uk/ironpython/
http://rgruet.free.fr/
http://www.swaroopch.com/notes/Python
http://www.voidspace.org.uk/blog
http://ironpython-urls.blogspot.com
http://ironpython-urls.blogspot.com
http://planet.python.org
http://www.voidspace.org.uk/ironpython/planet/
http://jdhardy.blogspot.com/
http://blogs.msdn.com/hugunin/
http://devhawk.net/
http://blogs.msdn.com/curth/
http://blogs.msdn.com/dinoviehland/
http://blog.jimmy.schementi.com/
http://blog.jimmy.schementi.com/
http://blogs.msdn.com/mmaly/
http://knowbody.livejournal.com/
http://blogs.msdn.com/srivatsn/
http://www.tkachenko.com/blog/
http://www.tkachenko.com/blog/
http://blogs.msdn.com/seshadripv/default.aspx
http://blogs.msdn.com/seshadripv/default.aspx
http://blogs.msdn.com/shrib/

447IDEs and tools
C.7 Silverlight
■ Silverlight homepage—http://silverlight.net/
■ Moonlight—http://www.mono-project.com/Moonlight
■ Silverlight Dynamic Languages SDK—http://www.codeplex.com/sdlsdk
■ Michael Foord’s Silverlight articles—http://www.voidspace.org.uk/ironpython/

silverlight/

C.8 .NET and Mono
■ .NET framework—http://msdn.microsoft.com/en-us/netframework/

default. aspx
■ Mono homepage—http://www.mono-project.com/Main_Page
■ C# 4.0 and Visual Studio 10 CTP—http://go.microsoft.com/

fwlink/?LinkId=129231

C.9 Dynamic languages on .NET
■ Dynamic Language Runtime project page—http://www.codeplex.com/dlr
■ Python.NET, CPython .NET integration—http://pythonnet.sourceforge.net/
■ IronRuby—http://ironruby.net/
■ IronScheme—http://www.codeplex.com/IronScheme
■ Boo, a Python-inspired statically typed .NET language with duck

typing—http://boo.codehaus.org/
■ Cobra, another Python-inspired statically typed .NET language—http://

cobra-language.com/

C.10 IDEs and tools
■ SharpDevelop—http://www.icsharpcode.net/OpenSource/SD/Default.aspx
■ MonoDevelop—http://monodevelop.com/Main_Page
■ Wing IDE—http://www.wingware.com/
■ Visual Studio—http://www.microsoft.com/VisualStudio/default.mspx
■ Visual Studio Express—http://www.microsoft.com/Express/
■ IronPython Studio—http://www.codeplex.com/IronPythonStudio
■ Resolver One, IronPython spreadsheet—http://www.resolversystems.com/
■ Crack.NET, debugger with IronPython scripting—http://www.codeplex.com/

cracknetproject
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

http://silverlight.net/
http://www.mono-project.com/Moonlight
http://www.codeplex.com/sdlsdk
http://www.voidspace.org.uk/ironpython/silverlight/
http://www.voidspace.org.uk/ironpython/silverlight/
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://www.mono-project.com/Main_Page
http://go.microsoft.com/fwlink/?LinkId=129231
http://go.microsoft.com/fwlink/?LinkId=129231
http://www.codeplex.com/dlr
http://pythonnet.sourceforge.net/
http://ironruby.net/
http://www.codeplex.com/IronScheme
http://boo.codehaus.org/
http://cobra-language.com/
http://cobra-language.com/
http://www.icsharpcode.net/OpenSource/SD/Default.aspx
http://monodevelop.com/Main_Page
http://www.wingware.com/
http://www.microsoft.com/VisualStudio/default.mspx
http://www.microsoft.com/Express/
http://www.codeplex.com/IronPythonStudio
http://www.resolversystems.com/
http://www.codeplex.com/cracknetproject
http://www.codeplex.com/cracknetproject

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

index
Symbols

- 189, 439
^ 189, 439
!= 195, 434
? 247
?? 380
?xml 116
@ 113
* 189, 247, 439
** 189, 439
**= 439
**keywargs 172
*args 114, 172
/ 189, 439
// 36, 189, 439
//= 439
/= 439
\ 185
& 101, 115, 189, 439
% 97, 162, 189, 439

See also string formatting
%= 439
+ 187, 439
+= 41, 75, 188, 439
< 195, 434
<< 189, 439
<<= 439
<= 195, 434
-= 439
== 195, 434
> 195, 434
>= 195, 434
>> 189, 439
>>= 439
>>> 24

| 189, 439
~ 249

A

ABC 20
Abort, DialogResult

member 140
AbortRetryIgnore 139
__abs__ 440
abs 46
abstract method 424
Abstract Syntax Tree (AST) 388
abstractions, the law of

leaky 147
acceptance test 175
acceptance tests 158
AcceptButton 145
AcceptsReturn 87
AcceptsTab 87
access modifiers 420
access policy 342
ACID 310
action-assert test pattern 167
Active Server Pages 274
ActiveForm 181
ActualHeight 356
ActualWidth 356
adaptation 201
adaptive streaming 331
__add__ 187, 189, 412, 439
add_argument 247
addition 188–189, 439
AddRange 70
AddReference 25, 150, 337

addTests 164
administration 155
ADO.NET 300
aesthetics 147
AIR 329
AJAX 19, 329, 331, 355
algorithm 111, 385
alias 420
AliceBlue 71
__all__ 443
alpha channel 71
ampersand 101, 115
Anchor 87
AnchorStyles 87
__and__ 189, 439
and method 439
and, bitwise 189
AndAlso 392
animation 356
annotation 319
anonymous delegate 408, 425
anonymous functions 102
ApartmentState 176, 267–268
API. See Application Program-

ming Interface (API)
apostrophe 115
App_Code folder 281, 296, 298
App_Script folder 280–281, 298
AppDomain 388, 416
append 41
Apple Mac 87
Application 25, 64, 222
application design 82
application loop 73
Application Programming Inter-

face (API) 82, 141, 196
449

Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX450
Application_BeginRequest 282
Application_End 281
Application_EndRequest 282
Application_Error 282
Application_Start 281
ApplicationContext 65
AppManifest 339
architecture 327
ARGB 71
argparse 247
ArgumentNullException 114
ArgumentParser 247
ArgumentTypeException 96
ArithmeticError 96
ArithmeticException 96
Array 70
arrays 205, 210
ASCII 94
ASCX file 275
ASP.NET 4, 273
aspnet_client folder 280
ASPX file 275, 288
assemblies 6, 12, 25, 166

adding references 398
Assembly 391
assembly 419
assert 160, 167

statement 159
AssertionError 159
assignment conversion 417
assignment statements 40
AST. See Abstract Syntax Tree
Asterisk 97, 140
AsyncExecutor 178
asynchronous 318, 346
asynchronous events 268
Atom 313–314

feed 315
atomicity 310
AttachEvent 355
attribute 319

.NET 421
access 135, 195, 438
lookup 170
lookup order 433
XML 114

AttributeError 52, 96, 136, 196,
376, 438

attributes 360, 366, 370, 433
in XML elements 125
.NET attributes 212

audio 332
authentication 346

credentials, XML 121
AuthenticationLevel 258

Auto, ScrollBarVisibility
member 234

auto-commit 309
automation 261, 367, 382

tools 158
AutoPostBack 293
AvailableFreeSpace 352

B

BackColor 70
Background 235
backslash 34, 186
BAML. See Binary Application

Markup Language (BAML)
base 424
Base Class Libraries 63
base64 270
__bases__ 443
basestring 34
Bash 266
batteries included 58
BBC research &

development 192
BDFL. See Benevolent Dictator

for Life (BDFL)
BeginInit 211, 231
BeginInvoke 349
BeginTransaction 309
benchmarks 331
Benevolent Dictator for Life

(BDFL) 20
best practices 82
Bethard, Steven 247
bin folder 280
Binary Application Markup

Language (BAML) 223
binary files 95
binary format 154
binary operations (and, or and

exclusive or) 439
BinaryFormatter 154
bind variable. See parameter
bioinformatics 21
Bitmap 103, 154
BitmapEffect 222, 224
BitmapImage 231
BitTorrent 21
bitwise operations 189
BizTalk 256
black magic 199
black-box tests 158
blocking 143
BlockUIContainer 240
BODMAS 42

boilerplate 155, 385
Bold 73
Boo 360
bool 33, 187, 435
Boolean 39
Booth, Duncan 91
Border 227, 337, 344
BorderStyle 71
bound method 135, 171
boxing 210
break 43

C# 427
BreakPageBefore 240
breakpoint 279
brittleness in tests 179
browser 18, 330
browser cache 351
Brushes 227
brushes 234, 346
bug fixing 158
Build Action 400
build solution, Visual

Studio 150
__builtin__ 444
built-in 45

Builtin 415
functions 414
modules 414
types 411

business applications 64
business rules 387, 409
Button 25, 222, 274, 280, 336
button 74, 143, 221
Byte 210
byte string 32
bytecode 384

C

C 359
C# 113, 184, 208, 359, 386
C# 3.0 437
C# Future 417
C++ 148, 359, 441
C++/CLI 4
cache 351
Calendar 337
Call 413
__call__ 112, 171, 378, 435
callable 45, 112, 171, 411, 435
callbacks 346
calling conventions 366
CallTarget0 176, 205
Cancel, DialogResult

member 140
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX 451
CancelButton 145
Canvas 223, 334
Caption 254
caption 139
Cardspace 218
case sensitivity 31
case. See switch statement
cast 422, 428
casting 366, 414
catch 408
CDATA 115, 123
Char 210
CharSet 367
charting 337
CheckBox 229, 337, 344
CheckCharacter 122
CheckCharacters 117
Checked 230
child elements 115
Children 222, 229
Chiron 332
chmod 245
CIM. See Common Information

Model (CIM)
Civilization IV 21
__class__ 443
class 47–50

attributes 49
C# 420
library 149, 360
statement 48

__ClassOperationEvent 254
ClassType 48
Clear 69

TabPages method 138
ClearVariables 395
Click 26, 104, 286–287, 292, 337
client area 76
clientaccesspolicy.xml 342
client-server 274
client-side 274
Clipboard 220, 267
clock, time module

function 202
Close

Connection 304
DataReader 309
Form method 146, 177

close, file method 95
closed static delegates 171
CloseOutput 117
closure 22, 52, 408
clr 205

AddReference 25
clr module 34

ClrModule 415
cmd.exe 260, 267
cmdlets 261
__cmp__ 195
cmp 195
CMS. See Content Management

System (CMS)
code

examples 85
generation 199, 224, 385, 409
reuse 151
snippet 275, 277

code-behind 242, 275, 278,
280, 295–296

CodeContext 414
codecs 331
CodeFile attribute. See code-

behind
codeproject 78
coils project 385
collecting test results 163
collections 69

module 60
Color 25, 70
ColorfulConsole 23
Colors 345
ColumnDefinition 227, 338, 345
COM 262, 417
ComboBox 229, 337
Command 254, 301, 304
command line 247

arguments 389
command pattern 91
CommandText 304, 312
comment symbol 31
commit 309
Commit Transaction 310
Common Information Model

(CIM) 251, 256
Common Language Runtime

(CLR) 3
common type system 78
Communications Foundation,

Windows 218
community 169
ComObject 262
comp.lang.python 83
comparison 39, 195, 434
compatibility 158
compilation 276, 281
Compile 394
compile 199

Python 213
re module function 241

CompileAssemblyFromSource
383

CompiledAssembly 383
CompiledCode 394
CompileModules 213
compiler 150, 184, 373, 382
CompilerOptions 383
CompilerParameters 383
complex 32, 440
complex numbers 35
ComponentModel 212
Computer Management

console 257
Conchango 236
conditional 43
conditional expressions 437
ConfigObj 248
ConfigParser 246
configuration 282

files 248
ConformanceLevel

117–118, 122
Connection 301
connection

pooling 304
string 303

ConnectionOptions 257
consistency 310
console 410
constant 422
constraint, type parameter 432
constructor 49, 173, 184,

201, 434
C# 420

container 275, 283, 288, 320
length 185

containers 16, 36, 435
truth testing 187

Contains 69
__contains__ 436
ContainsMember 413
ContainsVariable 395
Content 222, 236, 336, 356
Content Management System

(CMS) 170
ContentControl 338
context management

protocol 441
continue, C# 427
Control 68
control thread 179
control tree 275, 286
ControlCollection 68
controller 89–91, 134
Controls 26
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX452
controls 335
Controls collection 288
conversion, between numeric

types 440
ConvertTo 414
coordinates 76
Copy, Array method 207
CoreCLR 18
CornerRadius 227
coroutines 192
Count 69, 185
coupling 173
cPickle 60, 154
cpu usage 251
CPython 10, 95, 360, 385
CreateCommand 304
CreateEngine 388
CreateInstance 206, 355
CreateRunspace 264
CreateRuntime 390
CreateScope 389
CreateScriptSourceFromFile

389, 397
CreateScriptSourceFromString

270, 389
credentials 257
cross-browser 329
cross-domain calls 342
cross-platform 128, 330
cross-site scripting 293
csc.exe 318, 373
CSharpCodeProvider 383
CSS 333, 355
cStringIO 60
ctypes 385
CurrentThread 180, 350
currying 22
Cursors 228

D

data binding 284, 287, 292
data modeling 82
data provider 301, 303
data structure 111
DataAdapter 301, 311–312
database 293
DataColumn 312
DataGrid 337
DataGridView 211
DataReader 301, 307, 309, 311
DataRelations 312
DataRow 312
DataSet 301, 311
DataTable 301, 312

datatypes
basic 31
built-in 32–39
built-in .NET types 66
container 36
heterogeneous 16
mapping type 83
numeric 187, 210
reference types 210
sequence type 88
structure 70
value types 210

Date 210
DatePicker 337
DateTime 202
datetime 245
DBNull 307
DCOMCNFG 255
__debug__ 443
debugger 278–280, 393
debugging 156, 343
decimal 60
DecoderFallbackException 96
decoding 326
decorator 113, 201
decoupling 167
dedent. See indentation
Deep zoom 331
def keyword 44
default encoding 94
default metaclass 200
default value 379

for function parameters 45
Default, in VB.NET 365
Default.aspx 277
DefaultParameterValue 379
__del__ 435
del 37–38, 82, 136
__delattr__ 197, 374, 438
delattr 196
delegate 74, 205, 210,

362, 411, 425
delegation pattern 199
DELETE 317
__delete__ 442
DeleteCommand 312
DeleteMember 374
__delitem__ 82, 436
denormalization 309
dependencies 158
dependency injection 173
DependencyObject 220
Deployment 340
descriptor protocol

135, 170, 442

deserialization 154, 415
design mode 278, 283
design patterns 84, 111
desklets 332
destructor 435
DeviceId 253
Diagnostics 202
dialog 143, 360
DialogResult 92, 131, 140, 145
__dict__ 164, 196, 376, 443
dict 33, 38, 436
Dictionary 208, 375
dictionary 196

methods 38
digital identity 218
__dir__ 378
dir 27, 196, 413
directive 275, 278, 282–283,

290, 294
Directory 99, 391
directory tree 249
DirectX 218
Dispatcher 349
DispatcherObject 220
DispatcherTimer 350
dispatching 349
DisplayStyle 103–104
Dispose 184, 431
__div__ 189, 439
diverting standard output 406
DivideByZeroException 96
division 189, 439

floor 36
true 36

__divmod__ 189, 439
divmod 189, 439
Django 21, 394
DllImport 212, 366
DLR. See Dynamic Language

Runtime (DLR)
DLRConsole 19
do loop 427
__doc__ 58, 443
Dock 87, 101, 144
DockPanel 223, 337
DockStyle 87, 101, 144
docstring 27, 58, 135, 201, 443
doctest 158
doctype 294
Document 374
document markup 236
Document Object Model

(DOM) 19, 121, 331, 354
document observers 134, 136
documentation 64
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX 453
DocumentReader 285
documents 85
DOM. See Document Object

Model (DOM)
Domain Specific Language

(DSL) 180–181, 199,
387, 409

downcasting 428
DownloadStringAsync 347
DownloadStringCompleted 347
DropDownItems 102
DropShadowBitmapEffect

222, 224
DSL. See Domain Specific

Language (DSL)
duck typing 16, 82–84, 166, 184,

196, 417
dumps 416
dunder 49
durability 310
dynamic 417

attribute access 374
call sites 213
languages 15–18
scoping 266
typing 16

Dynamic Language Runtime
(DLR) 7, 15–18, 213, 387

Hosting Spec 389
DynamicApplication 340

E

Eckel, Bruce 17
ECMA 19, 331
ElapsedMilliseconds 202
element 115
elif 43
Elixir 201
else 43, 51
embedded resource 400
embedding 264–265, 386
EnablePrivileges 257
EnableRaisingEvents 269
EnableViewState 289
EnableVisualStyles 87
encapsulation 91
enclosing scope 120
EncoderFallbackException 96
Encoding 242, 407

XMLWriterSettings
Property 117

encoding 93
encoding declaration 115
EndElement 118

EndInit 231
EndOfStreamException 96
endswith 437
engine creation options 393
__enter__ 441
Enter key 145
entity reference 115
EntryPointAssembly 340
EntryWritten 269
enum 422
enumerate 46, 346
enumeration 71, 210, 422
environ 245
Environment 391
environment variable 12, 391
EOFError 96
__eq__ 195, 434
Equal 416
equality 194
Erlang 132
Error, MessageBoxIcon

member 140
Escape key 145
escaping 224

XML entity references 115
eval 186, 199, 438
evaluate expressions 409
event 74, 279, 425

See also ASP.NET
Event handler 426
event handler 73, 75–76,

188, 352
event loop 73
EventArrived 253
event-based programming 73
__EventClass 253
EventHandler 355
EventLog 269
events 420
exc_tb 441
exc_type 441
exc_val 441
except 50, 96
Exception 52, 96
exception 162

model 95
exception handling 50–52, 392,

404, 417
exceptionDetail 333
ExceptionOperations 392
exceptions 50, 95
Exclamation 140
exclusive or 439

bitwise 189
executable 387

ExecutablePath 104
Execute 389, 410
ExecuteNonQuery 304
ExecuteProgram 392
ExecuteReader 307
ExecuteScalar 306
execution scope 394
Exists 99
__exit__ 441
exit code 392
Expander 232
expanduser 249
expectations 167
explicit interface

implementation 422
expression 42
Expression Blend 218, 225–226
expression trees 388
expressions 102, 159
extended controls 338
Extensible Hypertext Markup

Language (XHTML) 278
extension methods 391
ExtensionAttribute 388
extensions methods 388
extern 212, 367
extreme programming

(XP) 175
extrinsic event 253
__ExtrinsicEvent 254

F

F# 360
factory function 174, 198
False 33, 39
fdel 135
FePy 13, 366
FFI. See Foreign Function Inter-

face (FFI)
fget 135
field 212

C# 420
field descriptors 212
FieldCount 307
fields 417
File 94
__file__ 104, 168, 443
file 334

operations 246
file dialog 167
FileAccess 94
filecmp 246
FileMode 154, 351
FileName 93, 130
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX454
FileStream 94, 154
filesystem 93, 351
Fill 234

DataAdapter 311
Filter 93
filtering 250
finally 51
FindChildren 242
FindName 224
Firefox 18, 330
Fixed3D 72
FixedPage 237
FixedSingle 72
flag enumerations 72
Flags 421, 423
Flash 329
Fleming, Justin 153
Fletcher, Mike 201
Flex 329
__float__ 440
float 32, 35, 440

comparing 160
floating point numbers. See float
floor division 36, 189, 439
__floordiv__ 189, 439
flow content 235
FlowDocument 237, 239
FlowDocumentPageViewer 239
FlowDocumentReader 239
FlowDocumentReaderViewing-

Mode 239
FlowDocumentScrollViewer 239
Flush 118
fnmatch 246, 250
Font 73
FontSize 222, 230, 336
FontStyle 73
FontWeights 345
for loop 43

C# 428
foreach 408
foreach loop, C# 428
ForeColor 70
Foreground 354
Foreign Function Interface

(FFI) 385
foreign key 302
ForeignKeyConstraints 312
Form 25, 65–66, 144
formal proof 111
format 320
FormatException 393
formatting 186

string 97
FormBorderStyle 71, 144

Fowler, Martin 167
FreePhysicalMemory 258–259
from module import * 105
FromArgb 71
fromtimestamp 245
frozenset 33
FrozenSetCollection 411
fset 135
Fuchsia Shock Design 153
fullscreen 356
Func 410
function 22, 44–47, 111–114,

120, 435
Function, in VB.NET 365
functional programming

54, 111
functional test 158, 175
FunctionType 203
__future__ 36, 440
future import 440

G

games 330
garbage collection 122, 435
GDI/GDI+ 218
GDI+ 12
__ge__ 195, 435
generated code 148
GenerateExecutable 383
GenerateInMemory 383
generating XAML 243
generator expressions 437
generator object 437
generators 192, 249
generic methods from

PowerShell 267
generic type, C# 432
generics 16, 206, 217, 267,

391, 433
genomics 21
GET 317, 321, 346
__get__ 442
get, dictionary method 125
__getattr__ 195, 197, 374
getattr 196, 413
__getattribute__ 438, 442
GetBuiltinModule 390
GetBytes 241
GetClassName 367
GetClrModule 390
GetCodeProperties 410
GetContext 323
GetCustomMember 374
GetDecimal 308

GetDesktopWindow 212
GetDirectoryName 106
GetElementById 355
getElementById 372
GetEngine 390
GetEnumerator 184, 363
getenv 248
GetEnvironmentVariable 391
GetEventLogs 269
GetExecutingAssembly 391, 398
GetFieldType 307
GetFileName 99
GetFileNameWithoutExtension

155
GetFiles 155
Get-Help 265
GetInstances 254
GetInt32 308
__getitem__ 82, 184, 191,

364, 436
GetManifestResourceStream

401
GetMember 413
GetMemberNames 413
GetName 307
Get-Object 262
GetOrdinal 308
GetOwner 255
GetPixel 103
GetScope 399
GetService 392
GetString 308
GetSysModule 390
getter methods 134
GetTopWindow 212, 367
GetType 398
GetUserStoreForApplication

351
GetValue 212
GetVariable 395
GetWindow 367
GetWindowText 367
GetWindowTextLength 367
Get-WmiObject 263
GIL. See Global Interpreter Lock

(GIL)
Gilham, Steve 221
glob 246
Global Assembly Cache 340
Global Interpreter Lock

(GIL) 12
Global.py 280–281
Globals 267, 399
globals 444
glyFX 103
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX 455
glyFx 138, 154
GNOME 361
Golden, Tim 28
Google 21
GPU 218
gradient fill 233
GradientStop 225
GradientStops 228
greater than 195
Grid 223, 227, 337, 345
GridLength 345
GridSplitter 337
GridView 274
__gt__ 195, 435
Guido van Rossum 6, 20
GW_HWNDNEXT 369

H

Hand 140, 228
handwriting recognition 233
hasattr 196, 230, 413
__hash__ 194, 434
hash 194, 435
hashable 38
Haskell 17, 132
HasRows 307
HasValue 380
Height 68
Hejlsberg, Anders 417
help 27, 58
__hex__ 440
hex 440
hierarchical format 115
higher order functions 111
history of IronPython 9–11
Holmes, Lee 268
HOME 249
home page 277
HOMEDRIVE 249
HOMEPATH 249
HorizontalAlignment

227, 234, 344
HorizontalScrollBarVisibility

234
Host 356
hosting 386
HostingHelpers 399
HTML 19, 274, 333, 354–355
HtmlDocument 343
HtmlPage 343, 354
HttpListener 322
HttpUtility 326, 347
Hugunin, Jim 9, 105, 417
hWnd 367

Hyperlink 235, 242
hyperlink 283
HyperlinkButton 337, 345

I

__iadd__ 188, 440
IBM 327
ICodeFormattable 366
Icon 152
icons 103, 138
IDE 278, 356, 360
IDE. See Integrated Develop-

ment Environment (IDE)
identifiers 396
identity 434
IDictionary 82, 365
IDisposable 184, 431
IDynamicObject 417
IEnumerable 69, 184, 362, 377,

395, 428
IEnumerator 184
if statement 43

C# 428
Ignore 140
IGNORECASE 241
IgnoreComments 122
IgnoreProcessingInstructions

122
IgnoreWhitespace 122
IL. See Intermediate Language

(IL)
IList 69, 82, 366
Image 231, 241, 337
ImageFormat 103
images 221
Imageworks. See Sony Image-

works
immutable 37, 41, 188, 201, 434
imperative programming 132
impersonation 257
ImpersonationLevel 258
implicit transaction 309
__import__ 444
import 55, 58, 335, 391
ImportError 57, 95
importing 55
ImportModule 390
Imports 404
IMutableSequence 366
in operator 69, 436
in32_LogicalDisk 259
incompatibility 327
increment 188

incremental development 85
indentation 31, 43, 117
IndentChars 117
__index__ 440
indexer 364, 417

C# 427
IndexError 36, 96, 436
indexing 36, 82, 435
IndexOutOfRangeException 96
Industrial Light & Magic 21
inequality 193
Infinite, TimeOut member 179
Information 140
infoworld 10
inheritance 48

from immutable types 201
ini files 248
__init__ 48, 77, 184, 201,

434, 444
__init__.py 56
InitialDirectory 93, 130
initializer 201, 434
InkAnalyzer 233
InkCanvas 233
InkPresenter 337
Inlines 235
inner function 53, 111, 120
innerHTML 355
innerText 355
in-place operations 188
in-place operators 439
insert 304
InsertCommand 312
instance creation 434
__InstanceCreation 252
__InstanceCreationEvent

253–254
__InstanceDeletionEvent 254
__InstanceModificationEvent

254, 259
__InstanceOperationEvent 254
instantiation 413, 434
__int__ 440
int 47, 188, 440

as a function 47
integer 32, 35
Integrated Development Envi-

ronment (IDE) 30
integration 327

tests 158
interactive interpreter

23–28, 185
interactive session 410
InteractiveCode 410
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX456
interface 296, 320, 322, 420, 422
inheriting from Python 211
packages 184
Zope package 184

interfaces 82, 184, 366, 433
Intermediate Language (IL) 6
Internet Explorer 18, 330
Internet Information

Services 274
interop 366
interoperation 327
interpolation 97
interpreter 303
Interval 350
IntervalBetweenEvents 254
__IntervalTimerInstruction 254
IntPtr 209, 212, 367
intrinsic event 253
introspection 15, 208, 319, 385
InvalidOperationException 96
__invert__ 440
invert 440
Invoke 176, 262
Invoke-GenericMethod 268
InvokeMethod 255
IOError 95, 131
IOException 95
ipy 303, 327

interact option 327
ipy.exe 23

command-line arguments 213
command-line options 23

ipyw.exe 23
Ironclad 59
IronPython

for .NET programmers 13
for Python programmers 11
versions 66

IronPython Cookbook 256
IronPython for ASP.NET 276
IronPython Studio 8, 219, 224
IronPython.Hosting 388
IronPython.Modules 387
IronPython.Runtime 390
IronPython.Runtime.Exceptions

 404
IRONPYTHONPATH 59, 203,

246, 303, 391
IronRuby 17, 332, 388, 394, 417
IronScheme 17, 394
is operator 69
IsChecked 230
IScriptTemplateControl 296
IsFullScreen 356
isinstance 34, 46, 194, 414

IsolatedStorage 351
IsolatedStorageFile 351
IsolatedStorageFileStream 351
isolation 166, 310
IsPostBack 291
issubclass 165, 414
IsToolBarVisible 239
ISupportInitialize 211
IsWindowVisible 367
Italic 73
item template 283–284
Items 102, 395
items 84
__iter__ 90, 191, 436
iter 191, 436
iterable 37, 46
iteration 435
iterator 37
itertools 60
iTunes 262
IValueEquality 366

J

J# 148
jagged array 207
JavaScript 17, 274, 329, 355, 370
JavaScript Object Notation

(JSON) 331, 371
Join, Thread method 180
jQuery 342
JScript 394
JSON. See JavaScript Object

Notation (JSON)
JUnit 158
Jython 10

K

Kamaelia 192
Key 336
key 300
KeyDown 337
KeyError 38, 96, 249, 436
KeyNotFoundException 96, 376
Keys 101, 108
keys 84
KeyValuePair 395
keyword arguments 45, 378
keywords 42
Konqueror 331

L

Label 69, 227, 278, 283
Lam, John 17
lambda 102, 141, 205, 410
LanguageContext 416
late-bound COM 417
layout 87, 144, 223, 356
lazy evaluation 437
__le__ 195, 434
left shift 189, 439
__len__ 185, 187, 435–436
len 46, 69, 185, 436
Length 69, 185
__length_hint__ 436
less than 195
Lewis, CS 63
lexical scoping 22, 52
LinearGradientBrush 225, 229
line-endings 128
LineNumberOffset 122
LinePositionOffset 122
link 320
LinkButton 283, 286
LINQ 388
Linq 360, 437
Linux 331
List 206, 390, 411
list 33, 70, 390
list comprehension 54, 316, 437
ListBox 230, 338
listdir 155, 245, 437
Listener 171
ListItem 240
lists 36–37
little languages 387
LoadAssembly 398
LoadFrom 265
LoadRootVisual 335
loads 416
LoadViewState 289
local storage 351
local variables 111, 120
LocalDateTime 259
localhost 334, 347
locals 444
Location 73, 254
lock statement, C# 430
logging 201
logical expressions 187
logical operator 392
LogicalTreeHelper 242
__long__ 440
long 32, 35, 440
Long-integer. See long
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX 457
lookup rules 433
loose coupling 157
lower 47
__lshift__ 189, 439
__lt__ 195, 434
Lunar Eclipse 218, 226
Luo, Haibo 208

M

Mac 330
OS X 87, 361

magenta 104
magic attributes 443
magic methods 49, 83, 184, 433
Mailman 21
__main__ 57, 147, 327, 399, 444
main, unittest function 160
maintainablity 81
makedirs 28
makeSuite 164
managed code 6
Managed JScript 17, 331, 394
ManagedThreadId 350
ManagementClass 254
ManagementEventwatcher 251
ManagementObjectSearcher

251
ManagementQuery 251
ManagementScope 257
manual tests 157
ManualResetEvent 178
mapping 38
mapping protocol 82, 185, 435
Marc, the PowerShell Guy 267
Margin 222, 234, 336
Martelli, Alex 83, 173
mask 353
math 60
max 46
Me, in VB.NET 364
media 221

streaming 330
MediaElement 338, 353
MediaEnded 354
memory 71

optimisation 196
MemoryError 96
MemoryStream 241, 406
menus 101–102
MenuStrip 101
message loop 179
message pump 73
MessageBox 97, 139
MessageBoxButtons 97, 139

MessageBoxIcon 97, 139–140
__metaclass__ 200, 443
metaclass 199, 433
metadata 212
metaprogramming 22, 199, 385
method

C# 420, 423
HTTP 317, 319, 321, 324

method resolution order 211
Microsoft 327
Microsoft Robotics Kit 4
Microsoft.Powershell.

Commands 261
Microsoft.Scripting 387
Microsoft.Scripting.Core 387
Microsoft.Scripting.Extension-

Attribute 388
Microsoft.Scripting.Hosting.

Providers 399
Microsoft.Scripting.Silverlight

340
milcore 220
min 46
minimock 169
MinimumSize 87
__missing__ 436
MissingMemberException

52, 96, 376
mix-in 201
Mnet 21
mock objects 166
Mock, library 169
mocks 167
__mod__ 189, 439
modal 143
model 88, 134
model-view-controller

84–91, 100
Model-View-Controller

(MVC) 134
modularity 157, 167
__module__ 443
module 55, 399, 419

search path 391
ModuleType 164
modulo 162, 189, 439

operator 97
monkey patching 170
Mono 8, 87, 218, 251, 331, 361
MonoDevelop 361
Moonlight 18, 331
MouseEventHandler 74
MouseMove 74
MoveToNextAttribute 125

Mox 169
__mro__ 211
msbuild 166
mscorlib 25, 268, 398
MSDN documentation 63
MTA. See Multi-Threaded Apart-

ment (MTA)
__mul__ 189, 439
multicore 12
multidimensional arrays 206
MultiDoc 274
multiple assignment 42
multiple inheritance 48, 200
multiple result sets 308
multiplication 189, 439
MultiScaleImage 337
Multi-Threaded Apartment

(MTA) 265, 267
mutable 37, 41, 117
mutable objects 435
MVC. See Model-View-Controller

(MVC)
MySQL 300

N

__name__ 57, 147, 327, 397, 443
name 40

binding to object 40
collision 419–420, 422
mangling 49

Name, Control property 180
NameError 53, 95, 161
namespace 389, 399

C# 419
namespace declarations 339
__NamespaceOperationEvent

254
Namespaces

Microsoft.Win32 12
System 12
System.Data 12
System.Diagnostics 12
System.Drawing 12
System.Environment 12
System.IO 12
System.Management 12
System.ServiceModel 12
System.Text 12
System.Threading 12
System.Web 12
System.Windows 12
System.Windows.Forms 12
System.XML 12
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX458
namespaces 25
number of 63
System.Collections 27
System.Drawing 25
System.Windows.Forms

25, 63–77
XML 116

NameTable 122
NASA 21
native functions 367
NavigateUri 242
__ne__ 193, 195, 434
__neg__ 440
negation 440
.NET 3.0 63, 217, 226
.NET 3.5 63, 217, 391, 410, 437
.NET 4 417
network 274
__new__ 201, 434
new 74
new operator, C# 430
NewLineChars 117
NewLineHandling 117
NewLineOnAttributes 117
New-Object 265
new-style classes 48
Next 76
next 90, 191, 436
NextResult 308
No, DialogResult member 140
node handlers, XML 123
node, XML 322
NodeType 124
Nokia 20

S60 331
None 33, 39, 44, 113, 307

DialogResult member 140
FormBorderStyle member 72
MessageBoxIcon

member 140
NoneType 33, 47
__nonzero__ 187, 435
nose 158
not 194
Nothing 396
NotImplemented 434, 439
NotImplementedError 96
NotImplementedException 96
Npgsql 302–303
NpgsqlCommand 304
NpgsqlConnection 302–303
NpgsqlDataAdapter 302
NULL 306
null 39, 113, 207, 392, 396

C# 430

nullable type 379
C# 430

null-coalescing operator 380
NumberOfProcesses 259
numeric types 35–36, 187, 438

O

object 40
html tag 333

Object Browser 411
object pyramid 32
object tree 240, 334
ObjectOperations 412
object-oriented 84
Object-Oriented Programming

(OOP) 47
Object-Relational Mapping

(ORM) 201
observer pattern 134
__oct__ 440
oct 440
Offset 225
OK, DialogResult member 140
OKCancel 139
OldClass 415
old-style classes 48, 443
Olive 218
OmitXmlDeclaration 117–118
OOP. See Object-Oriented

Programming (OOP)
opacity 234
Open 304
open 46, 94, 441
open instance delegates 171
OpenAsync 264
OpenFileDialog 129, 167, 337
OpenRead 155
operation 319, 322
OperationFailed 375
Operations 412
operator 363, 434

C# 420, 431
operator overloading

187, 363, 426
optimization 203
Optional 379
optparse 60, 246
__or__ 189, 439
or 439

bitwise 189
Oracle 300
Orendorff, Jason 190
Orientation 336

ORM. See Object-Relational
Mapping (ORM)

os 60
module 28

OS X 330
os.path 60, 92
other, method argument 187
out 208, 270, 425
out parameter 396
out-null 271
OutOfMemoryException 96
OutputAssembly 383
Out-String 264
OverflowError 96
OverflowException 96
overload 139
overloading 208, 425
Overloads 208
overloads 65
override 424
Overrides 364

P

P/Invoke. See Platform Invoke
pack 231
Pack URI 231
package 56, 419
packaging 339
padding 144
page lifecycle 275, 285, 292
Page_Load 276, 278–279, 286
Page_PreRender 286–287, 292
Pair 291
Panel 275, 288, 337
ParamArray 379
parameter 305–306
parameterized command 306
params 208, 379, 413
Parent 70
parentheses 42, 48
parsed data, XML 115
parsing 121, 306
Pash 260
pass by object value 424
pass by reference 425
PasswordBox 337, 345
Path 92, 99
path separator 190
PathToAssembly 383
Payette, Bruce 261
payload 319–320
PDF. See Portable Document

Format (PDF)
peisker 171
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX 459
PEP. See Python Enhancement
Proposal (PEP)

PercentProcessorTime 252
performance 202, 359
PerformClick 179
persistence 154
Peters, Tim 200
PGAdmin 302
pgAdmin 310
philosophy, SOAP vs. REST 327
pickle 154, 291, 415
PictureBox 103
pipeline 263
pixels 145
Platform Invoke 366
Plone 170
plug-and-play 253
plugin 201, 330, 402
pMock 169
Point 25, 73, 211, 228
pointer 74, 78, 209
PointToClient 76
PointToScreen 76
polling 253
PollingInterval 253
polyglot programming 373
Portable Document Format

(PDF) 236
__pos__ 440
POST 316–317, 346, 348
postback 286–287, 292
PostgreSQL 300–301, 304
__pow__ 189, 439
pow 439
power 189
power operation 439
PowerShell 260–271
precedence 42
premature optimization 156
presentation layer 89
PresentationCore 220
PresentationFramework 220
print 343
print spool 237
print statement 406
printing 236
private 150, 211, 421
ProcessIdentityConstraints 122
profiling 156, 202–205
programming

event-based 73
functional 22, 111
imperative 132
metaprogramming 22, 199
object-oriented 22

paradigms 22
procedural 22

ProgressBar 230, 337
ProhibitDtd 122
project structure 119, 335
properties, keyword

arguments 66
property 135, 296, 442

C# 420, 426
property descriptors 212
protected 150
protocol. See interface
protocols 82, 184, 433
prototyping 7, 156, 318, 393
proxy 346

class 198
PSObject 262
psql 302, 304, 310
public 65, 150, 364, 420
Push 27
PUT 317, 321
Put 254
py.test 158
Pyc 213
pycheesecake 158
PyFIT 158
pymock 169
pymockobject 169
PyPI 271
pypi 169
PyPy 10
pystone 10
Python 20–23, 31–41

C API 12, 360
comparison with C# 14
DLR hosting class 388
documentation 189, 197
exceptions 95
extending 360
implementations 10
libraries 411
license 59
namespaces 196
philosophy 5
protocols 184
Python 3 36, 48
Python 3.0 34
quotes 21
Zen of Python 21

Python 3.0 48
Python Enhancement Proposal

(PEP) 192
Python Package Index 271
python.exe 23
PythonDateTime 415

PythonDictionary 411
PythonFile 411
PythonGenerator 411
pythonic 66, 382
pythonistas 105
PythonPickle 416
PythonSocket 415
PythonTuple 411
PythonType 412
pythonw.exe 23
pyunit 158

Q

Query 252
query 84, 306
Question 140
quotation mark 115
quoting 305, 326

R

r, file access mode 94
__radd__ 188, 439
RadioButton 230
RAII. See Resource Acquisition is

Initialization (RAII)
Rails 394
raise 51, 114, 161
Random 75
random 60
range 46
Rank 207
raw string 34
rb, file access mode 95
re 60, 241
Read 307–308
read eval print loop 24
read, file method 95
readability 6, 78, 121, 139
ReadAllText 94, 241
readline 437
read-only property 136
rebinding names 113
Rectangle 234
recursion 193
ref 208, 425
refactoring 86, 157, 182
Reference 209
reference 40

counting 435
type 40, 210, 423, 430

ReferencedAssemblies 383
References 209
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX460
references 209
to assemblies 166

reflection 150, 208, 265,
384, 421

Reflection.Emit 213, 384
Reflector 400, 411
RegisterScriptableObject 372
regression tests 158
regular expressions 34, 241
relation 300
relational algebra 300
relational model 300
RelativeOrAbsolute 231
reload 57
remoting 399
Remove 69
remove 245
RemoveAt 69
RemoveMember 413
RemoveVariable 395
RepeatButton 338
Repeater 275, 283–284
replace, string method 128
reportErrors 333
__repr__ 366, 438
repr 185, 366, 438
request 319, 324
Resize 209
resize, form layout 87
ReSized 356
Resolve-Path 265
Resolver One 4, 179, 385
Resolver Systems 123, 197
resource 326
Resource Acquisition is Initial-

ization (RAII) 441
response 319–320, 324
REST 346
resurrection 435
Retry 140
RetryCancel 139
return statement 44
reuse 293
__reversed__ 436
reversed 46, 436
RGB 71
rich comparison 195, 434
RichTextBox 230
right shift 189, 439
Riley, James Whitcomb 83
Rollback 311
rollback 309
root element 115–116
RootVisual 334
RoutedEventHandler 353

RowDefinition 227, 338, 345
__rshift__ 189, 439
Ruby 17, 170, 394, 417
Run 26, 235
runat 275, 278
runspace 261
RunspaceFactory 264
RunspaceInvoke 261
runtime 111

compilation 384
context 441
modification 169

RuntimeError 95
RuntimeVersion 340

S

S_IWRITE 245
Safari 18, 330, 352
sandbox 18
sandboxing 331
Save, XamlWriter method 236
SaveFileDialog 92
SaveViewState 289
Schema 116
schema 201
Schemas 122
Scope 399
scope 53, 389
scoping 120
screen 76
Scriptable 212
ScriptableMember 370
ScriptableType 370
ScriptEngine 388
scripting 154, 245
ScriptPage 277, 289–290, 295
ScriptRuntime 388
ScriptScope 267, 389, 394
ScriptSource 270, 389
ScriptTemplateControl 296
ScriptUserControl 295–296
Scroll 239
ScrollBars 87
ScrollBarVisibility 234, 345
ScrollViewer 233, 338, 345
SDK. See Software Development

Kit (SDK)
Seadragon 332
Seagate 21
sealed method 424
Section 240
security 331
SelectCommand 311–312
SelectedIndex 89, 141, 230

SelectedIndexChanged 89, 138
SelectionChanged 230
self 48, 77, 135, 171
self-closing elements, XML 125
sender 74
SendKeys 181
SendWait 181
Seo, Sanghyeon 171
sequence 37, 46, 302
sequence protocol 82, 90,

185, 435
Serializable 421
Serialization 116
serialization 154, 321, 415
server 334
server-side 274
SessionStateProxy 264
Set 39
__set__ 442
set 33, 38
__setattr__ 197, 374, 438
setattr 196, 413
SetCollection 411
SetError 406
Set-ExecutionPolicy 265
__setitem__ 82, 184, 364, 436
SetLastError 367
SetMember 413
SetOutput 406
SetPixel 103
SetPriority 255
SetProperty 355
SetSearchPaths 391
SetStyleAttribute 355
setter methods 134
SetText 267
settrace, sys module

function 158
setUp 162, 177
setuptools 271
SetValue 212
SetVariable 395
shapes 221
shared functions 398
SharpDevelop 361
ShedSkin 17
shell scripting 246
shift, left and right 189
short circuit evaluation 392
ShortcutKeys 101, 108
Show, MessageBox method

97, 141
ShowDialog 92, 131, 143
ShowGridLines 229
ShowInTaskbar 144
Licensed to Deborah Christiansen <pedbro@gmail.com>

Download at Boykma.Com

INDEX 461
shutil 246
side effects 111
Silverlight 18–20, 329, 370, 386
Silverlight Toolkit 337
SilverlightHost 356
Simple Object Access Protocol

(SOAP) 12
Simula 47
Single Threaded Apartment

(STA) 176, 222, 264
singleton 307
siteoforigin 231
site-packages 391
Size 68
SizeStoredInPagingFiles 259
SizeToContent 221
sldlsdk 332
sleep 174
slice 436
Slider 230, 337
__slots__ 196, 374, 443
Smalltalk 31
SOAP. See Simple Object Access

Protocol (SOAP)
SocketOptionName 210
sockets 331
Software Development Kit

(SDK) 332
SolidColorBrush 345
solution explorer 149
Sony Imageworks 21
sorted 46
sorting 434
Source 241, 340
SourceCodeKind 266, 270,

389, 409
SourceCodeProperties 410
SpamBayes 21
SpecialName 374
specification 159, 184
split, os.path function 92
Spolsky, Joel 147
spreadsheet 197
sql injection 305
SQL Server 300
SQLAlchemy 201
SqlServer 256
st_mode 245
STA. See Single Threaded

Apartment (STA)
Stack 27
stackless Python 10
StackPanel 221, 229,

336–337, 344

standard library 13, 20, 23,
58–60, 154, 203, 246, 282

StandardError 96
start page 279
Start, Thread method 177, 268
startswith 48
stat 245
state changes 85
statement 42
STAThread 421
static class 421
static compilation 213
static method 64, 398, 424
static typing 16, 82, 167
status, HTTP 319, 324
Stop, MessageBoxIcon

member 140
StopIteration 96, 191, 436
Stopwatch 202
StoryBoard 356
__str__ 438
str 185, 366, 438
strategy pattern 111
Stream 406
streaming 192, 330, 332
StreamReader 94, 351, 401
StreamWriter 94, 351
Stretch 234, 344
StringBuilder 117, 367
StringIO 60
strings 33–35, 93, 185, 210

basestring 34
byte-strings 34
formatting 304
interpolation 97, 186
literals 33
methods 34
raw strings 34
representation 438
triple quoted 33
Unicode strings 34

strip 47
strong typing 16
struct 423
structure 70, 84, 101, 119,

156, 210
Stubble 169
stubs 167
style rules 355
__sub__ 189, 439
subclass 148, 150
subclassing 175, 201, 371

.NET types 77
submenu 102

subscription 435
subtraction 189, 439
subversion 248
sum 46, 414
Sun Microsystems 327
SWIG 359
switch statement, C# 429
Symbian 20
syntactic sugar 113
SyntaxError 42, 95
SyntaxErrorException 404
sys 60, 246, 390
sys.argv 390, 412
sys.exc_info 441
sys.exit 392, 404
sys.maxint 35
sys.modules 56, 399
sys.path 57, 59, 281, 335, 389
sys.stderr 406
sys.stdout 343, 406
System 76, 398
system administration 251
System.CodeDom.Compiler 383
System.Collections 63, 206, 364
System.dll 268
System.Drawing 70
System.Environment 383
System.Func 410
System.IO 63, 94
System.IO.IsolatedStorage 351
System.Management 251
System.Management.

Automation 261
System.Reflection 208, 398
System.Runtime.

CompilerServices 375
System.Runtime.InteropServices

 367, 379
System.Text 117
System.Threading 351
System.Windows 220, 345
System.Windows.Automation

367
System.Windows.Browser

343, 354, 371
System.Windows.Controls

228, 335
System.Windows.Controls.

Data 337
System.Windows.Documents

235
System.Windows.Input 228, 336
System.Windows.Markup 239
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX462
System.Windows.Media
227, 345

System.Windows.Media.Effects
232

System.Windows.Media.Imaging
 231

System.Xml 348
System.Xml.Xsl 116
SystemError 253
SystemException 96
SystemExit 404

T

TabAlignment 86
TabCompletion 23
TabControl 86, 90, 230, 337
table 302, 304
tablet PC 233
TabPage 86
tag 115
TargetInstance 252, 254
TargetName 346
taskbar 144
TDD. See test-driven develop-

ment (TDD)
tearDown 162, 177
TEMP 245
temp folder 245
ternary expressions 437
test runner 163
test suites 163–166
TestCase 159, 164
test-driven development

(TDD) 159
test-first 158
testing 17, 147
TestResult 164
TestSuite 164
testutils 164
Tetris 330
text files 93
Text property 65
TextAlignment 235
textarea 343
TextBlock 222, 235, 334
TextBox 86, 144, 230, 274, 336
TextChanged 287, 292–293
TextTestRunner 164
TextWrapping 235, 345
The Darjeeling Limited 309
theme 339
Thickness 222, 234, 336
this 424

Thread 176, 204, 258, 349
threading 176, 181
threads 349
ThreadStart 176, 267, 349
throw statement, C# 430
ThrowInvalidStateTransition

118
Tick 350
time 60
time module 173
timedelta 245
Timeout 178
timeout 253
timer 350
TimerId 254
TimeSpan 350, 353
Timespan 253
timing 181, 204
tinypy 10
Title 93
ToArray 391
ToggleButton 337
ToInt32 209
ToolBar 103, 230
toolbox 283
ToolStrip 103, 107–108
ToolStripGripStyle 105
ToolStripItemDisplayStyle

103–104
ToolStripMenuItem 101, 107
ToolTip 228, 338
ToolTipService 338
ToolTipText 104
ToString 118, 185, 362
TotalMilliseconds 202
TotalVirtualMemorySize 259
ToUpper 34
ToyScript 17
Trac 21
traceback 267, 333, 392
tracing 201
tradition 175
transaction 112, 309
TransparentColor 104
TreatWarningsAsErrors 383
TreeView 230, 337
triple-quoted strings 33
True 33, 39
true division 36, 189, 439
__truediv__ 189, 439
truth testing 187
truth value testing 435
try 50, 96, 408
try/catch statement, C# 429

TryConvertTo 414
TryGetMember 414
TryGetValue 208
TryGetVariable 270, 395
TryIncreaseQuotaTo 352
tuple 33, 37, 300, 412
TurboGears 21
Twitter 341
TwoPage 239
type 24, 165, 200, 412, 443

checking 165
converter 223
inferencing 17
parameter, C# 432

TypeError 96, 188, 194, 209
typeof 398
types module 60

U

UCS2 117
Udell, Jon 10
UIElement 220
uint 367
unary arithmetic operations 440
UnblockSource 210
unbound method 171, 211
Uncertainty 189
Unchecked 230
Underline 240
underscores 83, 184
Unicode 34, 93, 190
__unicode__ 186, 438
Unicode string 32
UnicodeDecodeError 96
UnicodeEncodeError 96
Uniform Resource Indicator

(URI) 121
Uniform Resource Locator

(URL) 121, 274
UniformToFill 354
UniqueConstraints 312
unit tests 158
unittest 60, 158, 400
UNIX 247
unmanaged code 179, 366
unmanaged resources 78
unparsed character data,

XML 115
upcasting 428
Update 312
UpdateCommand 312
UpdateIPod 262
UploadStringAsync 348
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 463
Uri 231, 345
UriKind 231, 353
URL. See Uniform Resource

Locator (URL)
UrlDecode 347

HttpUtility 326
UrlEncode 347
USBStor 253
user control 275, 293, 296–297

interaction 276
interface 273–274

user stories 175
User32 212, 218, 367
UserControl 338
using 56, 404, 441
using directive 420
using statement, C# 431
UTF-16 117
UTF-8 94, 242

V

ValidationFlags 122
ValidationType 122
value 426

in property setters 364
value type 210–211, 423, 430
ValueError 211
VariableNames 395
variables 395
VB.NET 65, 148, 298, 359, 386
VBCodeProvider 383
VBScript 274
verb, HTTP 317, 324
verbosity 164–165
VerticalAlignment 234, 345
video 331, 353
VideoBrush 353
view 141

in browser 279
viewing modes 239
viewstate 280, 289–291, 293,

295–298
virtual 372, 424
Vista 217
Visual Basic. See VB.NET
Visual Studio 7, 67, 148–151,

370, 388, 400
web service URL 317
writing a class library 361

Visual Studio 2008 Object
Browser 411

Visual Studio Tools for
Silverlight 337, 370

Visual Web Developer
276, 278, 281

Volta 4

W

w, file access mode 94
WaitForNextEvent 253
WaitOne 179
walk 249
walking directories 249
Warning 96
Warning, MessageBoxIcon

member 140
WarningException 96
wb, file access mode 95
WBEM. See Web-Based Enter-

prise Management
(WBEM)

weak typing 16
web

application 18, 273,
277, 281–282

browser 18, 274, 278–279,
286, 314

control 274–275, 278,
288, 293

development 273
page 274
project 277, 280–281
reference 317
server 278–279
service 313, 319

Web.config 280, 282, 293
Web-Based Enterprise Manage-

ment (WBEM) 251
WebClient 314, 346, 348
WebDav 317
weblog 314
while 43
while loop

C# 427
white-box tests 173
whitepaper. See IronPython for

ASP.NET
whitespace 122
Width 68
wikipedia 83, 134, 159
wildcards 247
win32 367
Win32_LogicalDisk 252
Win32_NTLogEvent 260
Win32_OperatingSystem

258–259

Win32_PerfFormattedData_Perf
OS_Processor 251

Win32_PNPEntity 253
Win32_Process 252, 255, 263
Win32_StartupCommand 255
Win32_VideoController 262
Win32_VolumeChangeEvent

259
Win32Exception 96
Window 221, 227
Windows 330
Windows Cardspace 218
Windows Communications

Foundation 218
Windows Forms 63–77, 144,

176, 220, 267, 274
designer 360

Windows Management Instru-
mentation (WMI)
251–260, 262

Windows Mobile 20, 331
Windows Presentation Founda-

tion (WPF) 3, 18, 64,
217–218, 243, 330

designer 219
Windows Query Language

(WQL) 251
Windows Server 217
Windows Workflow

Foundation 218
WindowsBase 220, 229
WindowsCodecs 220
WindowsError 96
winforms, IronPython

sample 26
Wing IDE 30
with 441
within 253
WMI. See Windows Management

Instrumentation (WMI)
Woodgrove Finance 219
WordWrap 87
Workflow 218
WPF. See Windows Presentation

Foundation (WPF)
WQL. See Windows Query

Language (WQL)
WqlEventQuery 253, 258
WrapPanel 223
wrapping functions 102, 113
WriteAllText 94, 236
WriteLine 208
writing files 93
writing XML 117
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX464
wsdl.exe 317
wsdlprovider 318

X

x
Class 226
Name 236

XAML 64, 218, 223–226,
335, 338

XamlReader 224, 226, 237, 241
XamlWriter 236
xap files 332
XHTML. See Extensible Hyper-

text Markup Language
(XHTML)

XML 12, 114, 201, 223, 331, 348
XML Paper Specification

(XPS) 236
XmlDocument 322
XmlDocumentReader 348
XmlElement 315

XmlException 124, 129
XMLHttpRequest 341
XmlHttpRequest 355
XmlParserContext 121
XmlReader 116, 121, 348
XmlReaderSettings 121
XmlResolver 121
XmlTextReader 128
XmlUrlResolver 121
XmlWriter 116
XmlWriterSettings 116
XNA 4
__xor__ 189, 439
XP. See extreme programming

(XP)
XPath 116
XPS Viewer 237
XPS. See XML Paper Specifica-

tion (XPS)
XQuery 116
xrange 191
XSL/T 12

XSLT 116
XSS. See cross-site scripting

Y

Yes, DialogResult member 140
YesNoCancel 139
yield 192, 249
Yield Return 192
yield, in C# 362
YouTube 21
Yum 21

Z

Zen of Python 21
Zero, IntPtr member 209
ZeroDivisionError 96
zip 46
zip files 332
Zope 21, 170, 184
Licensed to Deborah Christiansen <pedbro@gmail.com>

9 7 8 1 9 3 3 9 8 8 3 3 7

99445

ISBN-13: 978-1-933988-33-7
ISBN-10: 1-933988-33-9

I
ronPython, Microsoft ’s implementation of the Python program-
ming language for .NET and Mono, combines Python’s fl exibility
with easy access to the .NET libraries. IronPython enables diverse

programming techniques such as functional and metaprogramming,
and the Dynamic Language Runtime ensures compatibility with new
technologies like Silverlight. Th e newly released IronPython version 2.0
is ready for prime time.

IronPython in Action introduces IronPython as a fi rst class .NET lan-
guage. You’ll start by using the interactive console to explore the .NET
framework with live objects. Following numerous small examples, you’ll
dive into the world of dynamic programming, including live introspec-
tion, dynamic and “duck” typing, metaprogramming, and more. Th en
you’ll learn to access WPF, Silverlight, and other core .NET technolo-
gies. You’ll even tackle advanced topics like embedding IronPython as a
ready-made scripting language into C# and VB.NET programs.

Th is book assumes some programming experience but requires no pre-
vious knowledge of Python or .NET.

What’s Inside
 An introduction and language tutorial
 Overview of .NET for Python programmers
 Embedding IronPython in C# applications
 Web programming with ASP.NET, Silverlight, and the DLR

About the Authors
A prolifi c speaker and writer, Michael Foord is a Python and .NET devel-
oper with Resolver Systems. Coauthor Christian Muirhead, also at Re-
solver Systems, is actively developing a next-generation data modeling
tool in IronPython.

For online access to the authors, code samples, and a free ebook for
owners of this book, go to www.manning.com/IronPythoninAction.com

$44.99 / Can $44.99 [INCLUDING eBOOK]

IronPython IN ACTION

Microsoft .NET

Michael J. Foord Christian Muirhead Foreword by Jim Hugunin

“... everything you need to get
 started with IronPython.”
 —From the Foreword by Jim
 Hugunin, Creator of IronPython

“Th e best book on one of the
 best implementations of
 Python.”
 —Alex Martelli, Author of
 Python in a Nutshell

“A long-awaited guide”
 —Keith J. Farmer
 Development Lead, Idea Entity

“... excellent explanations of
 unique and valuable features.”
 —Noah Gift , Author of
 Python for Unix and
 Linux System Administration

“If you are a .NET programmer
 this book is for you... and if you
 are new to programming, it’s
 for you too.”
 —Craig Murphy, Microsoft MVP
 craigmurphy.com

M A N N I N G

SEE INSERT

123

	Front Cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code conventions and downloads
	Author Online
	About the authors
	About the title
	About the cover illustration
	Getting started with IronPython
	A new language for .NET
	1.1 An introduction to IronPython
	1.1.1 What is IronPython?
	1.1.2 A brief history of IronPython
	1.1.3 IronPython for Python programmers
	1.1.4 IronPython for .NET programmers

	1.2 Python on the CLR
	1.2.1 Dynamic languages on .NET and the DLR
	1.2.2 Silverlight: a new CLR
	1.2.3 The Python programming language
	1.2.4 Multiple programming paradigms

	1.3 Live objects on the console: the interactive interpreter
	1.3.1 Using the interactive interpreter
	1.3.2 The .NET framework: assemblies, namespaces, and references
	1.3.3 Live objects and the interactive interpreter
	1.3.4 Object introspection with dir and help

	1.4 Summary

	Introduction to Python
	2.1 An overview of Python
	2.1.1 Python datatypes
	2.1.2 Names, objects, and references
	2.1.3 Mutable and immutable objects

	2.2 Python: basic constructs
	2.2.1 Statements and expressions
	2.2.2 Conditionals and loops
	2.2.3 Functions
	2.2.4 Built-in functions
	2.2.5 Classes

	2.3 Additional Python features
	2.3.1 Exception handling
	2.3.2 Closures and scoping rules
	2.3.3 List comprehensions
	2.3.4 Modules, packages, and importing
	2.3.5 Docstrings
	2.3.6 The Python standard library

	2.4 Summary

	.NET objects and IronPython
	3.1 Introducing .NET
	3.1.1 Translating MSDN documentation into IronPython
	3.1.2 The Form class

	3.2 Structures, enumerations, and collections: .NET types
	3.2.1 Methods and properties inherited from Control
	3.2.2 Adding a Label to the Form: ControlCollection
	3.2.3 Configuring the Label: the Color structure
	3.2.4 The FormBorderStyle enumeration
	3.2.5 Hello World with Form and Label

	3.3 Handling events
	3.3.1 Delegates and the MouseMove event
	3.3.2 Event handlers in IronPython

	3.4 Subclassing .NET types
	3.5 Summary

	Core development techniques
	Writing an application and design patterns with IronPython
	4.1 Data modeling and duck typing
	4.1.1 Python and protocols
	4.1.2 Duck typing in action

	4.2 Model-View-Controller in IronPython
	4.2.1 Introducing the running example
	4.2.2 The view layer: creating a user interface
	4.2.3 A data model
	4.2.4 A controller class

	4.3 The command pattern
	4.3.1 The SaveFileDialog
	4.3.2 Writing files: the .NET and Python ways
	4.3.3 Handling exceptions and the system message box
	4.3.4 The SaveCommand
	4.3.5 The SaveAsCommand

	4.4 Integrating commands with our running example
	4.4.1 Menu classes and lambda
	4.4.2 .NET classes: ToolBar and images
	4.4.3 Bringing the GUI to life

	4.5 Summary

	First-class functions in action with XML
	5.1 First-class functions
	5.1.1 Higher order functions
	5.1.2 Python decorators
	5.1.3 A null-argument-checking decorator

	5.2 Representing documents with XML
	5.2.1 The .NET XmlWriter
	5.2.2 A DocumentWriter Class
	5.2.3 An alternative with an inner function

	5.3 Reading XML
	5.3.1 XMLReader
	5.3.2 An IronPython XmlDocumentReader

	5.4 Handler functions for MultiDoc XML
	5.5 The Open command
	5.6 Summary

	Properties, dialogs, and Visual Studio
	6.1 Document observers
	6.1.1 Python properties
	6.1.2 Adding the OpenCommand

	6.2 More with TabPages: dialogs and Visual Studio
	6.2.1 Remove pages: OK and Cancel dialog box
	6.2.2 Rename pages: a modal dialog
	6.2.3 Visual Studio Express and IronPython
	6.2.4 Adding pages: code reuse in action
	6.2.5 Wiring the commands to the view

	6.3 Object serializing with BinaryFormatter
	6.4 Summary

	Agile testing: where dynamic typing shines
	7.1 The unittest module
	7.1.1 Creating a TestCase
	7.1.2 setUp and tearDown
	7.1.3 Test suites with multiple modules

	7.2 Testing with mocks
	7.2.1 Mock objects
	7.2.2 Modifying live objects: the art of the monkey patch
	7.2.3 Mocks and dependency injection

	7.3 Functional testing
	7.3.1 Interacting with the GUI thread
	7.3.2 An AsyncExecutor for asynchronous interactions
	7.3.3 The functional test: making MultiDoc dance

	7.4 Summary

	Metaprogramming, protocols, and more
	8.1 Protocols instead of interfaces
	8.1.1 A myriad of magic methods
	8.1.2 Operator overloading
	8.1.3 Iteration
	8.1.4 Generators
	8.1.5 Equality and inequality

	8.2 Dynamic attribute access
	8.2.1 Attribute access with built-in functions
	8.2.2 Attribute access through magic methods
	8.2.3 Proxying attribute access

	8.3 Metaprogramming
	8.3.1 Introduction to metaclasses
	8.3.2 Uses of metaclasses
	8.3.3 A profiling metaclass

	8.4 IronPython and the CLR
	8.4.1 .NET arrays
	8.4.2 Overloaded methods
	8.4.3 out, ref, params, and pointer parameters
	8.4.4 Value types
	8.4.5 Interfaces
	8.4.6 Attributes
	8.4.7 Static compilation of IronPython code

	8.5 Summary

	IronPython and advanced .NET
	WPF and IronPython
	9.1 Hello World with WPF and IronPython
	9.1.1 WPF from code
	9.1.2 Hello World from XAML

	9.2 WPF in action
	9.2.1 Layout with the Grid
	9.2.2 The WPF ComboBox and CheckBox
	9.2.3 The Image control
	9.2.4 The Expander
	9.2.5 The ScrollViewer
	9.2.6 The TextBlock: a lightweight document control
	9.2.7 The XamlWriter

	9.3 XPS documents and flow content
	9.3.1 FlowDocument viewer classes
	9.3.2 Flow document markup
	9.3.3 Document XAML and object tree processing

	9.4 Summary

	Windows system administration with IronPython
	10.1 System administration with Python
	10.1.1 Simple scripts
	10.1.2 Shell scripting with IronPython

	10.2 WMI and the System.Management assembly
	10.2.1 System.Management
	10.2.2 Connecting to remote computers

	10.3 PowerShell and IronPython
	10.3.1 Using PowerShell from IronPython
	10.3.2 Using IronPython from PowerShell

	10.4 Summary

	IronPython and ASP.NET
	11.1 Introducing ASP.NET
	11.1.1 Web controls
	11.1.2 Pages and user controls
	11.1.3 Rendering, server code, and the page lifecycle

	11.2 Adding IronPython to ASP.NET
	11.2.1 Writing a first application
	11.2.2 Handling an event

	11.3 ASP.NET infrastructure
	11.3.1 The App_Script folder
	11.3.2 The Global.py file
	11.3.3 The Web.config file

	11.4 A web-based MultiDoc Viewer
	11.4.1 Page structure
	11.4.2 Code-behind

	11.5 Editing MultiDocs
	11.5.1 Swapping controls
	11.5.2 Handling view state
	11.5.3 Additional events

	11.6 Converting the Editor into a user control
	11.6.1 View state again
	11.6.2 Adding parameters

	11.7 Summary

	Databases and web services
	12.1 Relational databases and ADO.NET
	12.1.1 Trying it out using PostgreSQL
	12.1.2 Connecting to the database
	12.1.3 Executing commands
	12.1.4 Setting parameters
	12.1.5 Querying the database
	12.1.6 Reading multirow results
	12.1.7 Using transactions
	12.1.8 DataAdapters and DataSets

	12.2 Web services
	12.2.1 Using a simple web service
	12.2.2 Using SOAP services from IronPython
	12.2.3 REST services in IronPython

	12.3 Summary

	Silverlight: IronPython in the browser
	13.1 Introduction to Silverlight
	13.1.1 Dynamic Silverlight
	13.1.2 Your Python application
	13.1.3 Silverlight controls
	13.1.4 Packaging a Silverlight application

	13.2 A Silverlight Twitter client
	13.2.1 Cross-domain policies
	13.2.2 Debugging Silverlight applications
	13.2.3 The user interface
	13.2.4 Accessing network resources
	13.2.5 Threads and dispatching onto the UI thread
	13.2.6 IsolatedStorage in the browser

	13.3 Videos and the browser DOM
	13.3.1 The MediaElement video player
	13.3.2 Accessing the browser DOM

	13.4 Summary

	Reaching out with IronPython
	Extending IronPython with C#/VB.NET
	14.1 Writing a class library for IronPython
	14.1.1 Working with Visual Studio or MonoDevelop
	14.1.2 Python objects from class libraries
	14.1.3 Calling unmanaged code with the P/Invoke attribute
	14.1.4 Methods with attributes through subclassing

	14.2 Creating dynamic (and Pythonic) objects from C#/VB.NET
	14.2.1 Providing dynamic attribute access
	14.2.2 Python magic methods
	14.2.3 APIs with keyword and multiple arguments

	14.3 Compiling and using assemblies at runtime
	14.4 Summary

	Embedding the IronPython engine
	15.1 Creating a custom executable
	15.1.1 The IronPython engine
	15.1.2 Executing a Python file

	15.2 IronPython as a scripting engine
	15.2.1 Setting and fetching variables from a scope
	15.2.2 Providing modules and assemblies for the engine
	15.2.3 Python code as an embedded resource

	15.3 Python plugins for .NET applications
	15.3.1 A plugin class and registry
	15.3.2 Autodiscovery of user plugins
	15.3.3 Diverting standard output
	15.3.4 Calling the user plugins

	15.4 Using DLR objects from other .NET languages
	15.4.1 Expressions, functions, and Python types
	15.4.2 Dynamic operations with ObjectOperations
	15.4.3 The built-in Python functions and modules
	15.4.4 The future of interacting with dynamic objects

	15.5 Summary

	appendix A: A whirlwind tour of C#
	A.1 Namespaces
	A.2 Using directive
	A.3 Classes
	A.4 Attributes
	A.5 Interfaces
	A.6 Enums
	A.7 Structs
	A.8 Methods
	A.8.1 Virtual and override methods
	A.8.2 Other method modifiers
	A.8.3 Parameter passing
	A.8.4 Method overloading

	A.9 Delegates
	A.10 Events
	A.11 Operator overloading
	A.12 Properties and indexers
	A.13 Loops
	A.13.1 while loop
	A.13.2 do loop
	A.13.3 for loop
	A.13.4 foreach loop

	A.14 Casts
	A.15 if
	A.16 switch
	A.17 try/catch/finally and throw
	A.18 lock
	A.19 new
	A.20 null
	A.21 using statement
	A.22 Operators
	A.23 Generics

	appendix B: Python magic methods
	B.1 Object creation
	B.2 Comparison
	B.3 Miscellaneous
	B.4 Containers and iteration
	B.4.1 Mapping and sequence protocol methods
	B.4.2 Generator expressions and conditional expressions

	B.5 Conversion to string
	B.6 Attribute access
	B.7 Numeric types
	B.7.1 Arithmetic operations
	B.7.2 Conversion between numeric types

	B.8 Context managers and the with statement
	B.9 The descriptor protocol
	B.10 Magic attributes
	B.11 Functions and modules

	appendix C: For more information
	C.1 IronPython and Python language sites
	C.2 Mailing lists and newsgroups
	C.3 Python and IronPython code examples
	C.4 Learning Python
	C.5 Blogs
	C.6 IronPython team
	C.7 Silverlight
	C.8 .NET and Mono
	C.9 Dynamic languages on .NET
	C.10 IDEs and tools

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back Cover

