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junto inagotable de verdades interesantes — de ver-
dades que ademas no estan aisladas, sino en estrecha
relacién unas con otras, y entre las cuales, con cada
sucesivo avance de la ciencia, descubrimos nuevos y,
a veces, completamente inesperados puntos de con-
tacto.

C.F.GAuss






Indice General

Prefacio

Capitulo I: Introduccion a la teoria algebraica de nimeros

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8

Ternas pitagéricas . . . . . . . ... o
El Ultimo Teorema de Fermat . . . . .« o oo i
Factorizaciéon tnica . . . . . . . . . . . ...
La ley de reciprocidad cuadratica . . . . . .. .. ... ... ...
El teorema de Dirichlet . . . . .. .. .. ... .. ... .....
Ecuaciones diofanticas . . . . . . ... ... ... ..
Ecuaciones definidas por formas . . . . . . .. ... ... ... ..
Conclusion . . . . . . . . .

Capitulo II: Cuerpos numéricos

2.1
2.2
2.3
24
2.5

Enteros algebraicos . . . . . . .. ..o
Discriminantes . . . . . . ...
Moédulos y 6rdenes . . . . ... Lo
Determinacién de bases enteras . . . . . ... . ... ... ....
Normas e Indices . . . . . o oot

Capitulo III: Factorizacion ideal

3.1
3.2
3.3
3.4
3.5
3.6

Dominios de Dedekind . . . . . .. ... ... .. ... ...,
Divisibilidad ideal en 6rdenes numéricos . . . . . . .. ... ...
Ejemplos de factorizaciones ideales . . . . . . . .. ... ... ..
La funcién de Euler generalizada . . . . . .. .. ... ... ...
Factorizacién ideal en 6rdenes no maximales . . . . . . . . . . ..
El problema de la factorizacién unica real . . . . .. ... .. ..

Capitulo IV: Métodos geométricos

4.1
4.2
4.3
4.4
4.5
4.6
4.7

La representaciéon geométrica . . . . . . ... ...
Reticulos . . . . . . . . . . ..
El teorema de Minkowski . . . . .. . .. ... ... .. ....
Elgrupodeclases . .. ... ... ... ... ... ... ...
La representacion logaritmica . . . . . . . ... ... ..
Caélculo de sistemas fundamentales de unidades . . . . . . .. ..
Célculo del nimero de clases . . . . .. .. ... ... ......

ix

ot W ==

11
14
18

19
19
22
25
33
45

49
50
o8
64
71
72
75



vi INDICE GENERAL

Capitulo V: Fracciones continuas
5.1 Propiedades basicas . . . . . . . ... ... o
5.2 Desarrollos de irracionales cuadrédticos . . . . . .. ... .. ...
5.3 Transformaciones modulares . . . . . . .. ... .. ... .....
5.4 Unidades de cuerpos cuadraticos . . . .. ... ... .. .. ...
5.5 La fraccién continuadee . . .. ... .. ... ... ... ....

Capitulo VI: Cuerpos cuadraticos
6.1 Formas cuadraticas binarias . . . . . . .. .. ... L.
6.2 Equivalencia y similitud estricta . . . . . ... ... ... ...
6.3 Gruposdeclases . .. . ... .. .. .. ... e
6.4 Ecuaciones diofanticas cuadraticas . . . . . .. .. ... .. ...
6.5 Calculo de grupos declases . . . . . ... ... ... ... ...

Capitulo VII: Numeros p-adicos
7.1 Valores absolutos . . . . . . .. ... .. ... .. .. ... ...
7.2 Cuerpos métricos discretos . . . . . . . . ... ...
7.3 Criterios de existencia deraices . . . . . . . . ... ... .....
7.4 Series en cuerpos no arquimedianos . . . . . . ... ...

Capitulo VIII: El teorema de Hasse-Minkowski
8.1 Formas cuadraticas . . . . . . . .. ...
8.2 Formas cuadraticas sobre cuerpos p-adicos . . . . . . .. ... ..
8.3 Formas binarias en cuerpos p-adicos . . . . .. .. ... .. ...
8.4 El teorema de Hasse-Minkowski . . . . . ... ... ... ... ..
8.5 La ley de reciprocidad cuadratica . . . . . .. .. ... ... ...
8.6 Conclusion de la prueba . . . . . ... ... ...

Capitulo IX: La teoria de los géneros
9.1 Equivalencia modular . . . . ... .. ... 0L
9.2 Géneros de formas y médulos . . . .. ..o
9.3 El ntimero de géneros . . . . . ... oL
9.4 El caracter de un cuerpo cuadrédtico . ... .. ... .. .. ...
9.5 Representaciones por formas cuadraticas . . . . . . . .. .. ...
9.6 Grupos de clases y unidades . . . . . . .. ... L.

Capitulo X: El Ultimo Teorema de Fermat
10.1 Elcasop=3 . . . . . . .. . .
10.2 El teorema de Kummer . . . . ... .. ... ... ... ...

Capitulo XI: La funcién dseta de Dedekind
11.1 Convergencia de la funciéon dseta . . . . . . ... ... ... ...
11.2 Productosde Euler . . . . . . . . ... ... ... ... .. ...
11.3 Caracteres de grupos abelianos . . . . . . .. ... ... ... ..
11.4 Caracteres modulares . . . . . . .. .. .. ... ... .. ...

11.5 La funcién dseta en cuerpos ciclotémicos . . . . . . . . . . .. ..
11.6 El cdlculo de L(1,x) - . « v v v v v i i i e e

131
132
136
139
145
151

157
158
164
170
173

181
181
185
190
196
201
202

209
210
216
224
229
234
242

253
253
255



INDICE GENERAL vii

11.7 Enteros ciclotémicosreales. . . . . . . . .. ... ... ... .. 297
Capitulo XII: Sumas de Gauss 299
12.1 Propiedades béasicas . . . . . . . . ... o oL 299
12.2 Sumas de Gauss y la ley de reciprocidad . . . . . .. .. ... .. 301
12.3 El signo de las sumas cuadréticas . . . . .. ... .. ... ... 306
12.4 El ntimero de clases en cuerpos cuadraticos . . . .. .. ... .. 310
Capitulo XIII: Cuerpos ciclotémicos 315
13.1 La férmula del nimero de clases . . . . . . . .. ... ... ... 315
13.2 El primer factor del nimero de clases. . . . . .. . ... ... .. 317
13.3 Los ntimeros de Bernoulli . . . . . ... ... ... ... 322
13.4 El segundo factor del nimero de clases . . . . . .. .. ... ... 328
13.5 Numeros p-addicos ciclotémicos . . . . . .. . .. .. .. ... .. 332
13.6 La caracterizacion de los primos regulares . . . . . . .. ... .. 337
Capitulo XIV: Numeros trascendentes 347
14.1 El teorema de Lindemann-Weierstrass . . . . . . ... ... ... 347
14.2 El teorema de Gelfond-Schneider . . . . . .. .. ... ... ... 356
Bibliografia 363
Indice de Tablas 365

Indice de Materias 366






Prefacio

Este libro pretende servir de introduccién a la teoria algebraica de niimeros
a un lector con una cierta base de dlgebra moderna (un poco de dlgebra lineal,
un poco de teoria de anillos, un poco de teoria de cuerpos y un poco de teoria
de grupos). Ademds del interés que por sf misma puede despertar en cualquier
matematico, el algebrista puede ver en ella el origen histérico de muchos de
los conceptos que maneja y un campo inmenso donde aplicarlos. Es facil caer
en la falsa opinién de que la teoria de nimeros es una coleccién de resultados
anecddticos e intrascendentes sobre los niimeros naturales o enteros, y es dificil
mostrar en pocas palabras lo erréneo de esta creencia. Por ello hemos dedicado
el primer capitulo a presentar una panoramica de la teoria de nimeros en general
y del contenido de este libro en particular. A partir de ahi el lector puede hacerse
una primera estimacion de si realmente le interesa la teoria, aunque lo cierto es
que su auténtico encanto y su magnificencia no caben en el primer capitulo de
ningtn libro.

X






Capitulo I

Introduccion a la teoria
algebraica de niimeros

El interés del hombre por los niimeros es tan antiguo como la civilizacién.
Son muchos los pueblos antiguos que se interesaron por los nimeros bien por ra-
zones practicas inmediatas, bien por su relacién con la astronomia y el cémputo
del tiempo o incluso asociados a la adivinacién y el esoterismo. Entre todos
ellos destacan los griegos, que llegaron a desarrollar una teoria de nimeros pura
guiada por criterios estrictamente matematicos en el sentido moderno de la pa-
labra. Los griegos descubrieron las leyes bésicas de la aritmética. Conocian la
divisién euclidea, los nimeros primos, el calculo del méximo comun divisor y
el minimo comuin multiplo, etc. Quiza el lector crea que esto significa dominar
completamente los niimeros naturales, pero no es asi ni mucho menos. Lo que
hicieron los griegos al desarrollar la aritmética elemental fue simplemente des-
cubrir el lenguaje de los niimeros, lo cual no equivale a entender lo que se lee en
ese lenguaje. Para entender lo que queremos decir consideraremos un ejemplo
tomado de la Aritmética de Diofanto.

1.1 Ternas pitagoéricas

En el siglo III, Diofanto traté en su Aritmética el problema de encontrar
ternas de nimeros naturales no nulos z, y, z tales que z2 + y?> = 22. Estas
ternas se llaman ternas pitagoricas, pues segun el teorema de Pitdgoras permiten
construir tridngulos rectangulos con lados enteros. Los egipcios las usaban para
construir angulos rectos en arquitectura. Entre los ejemplos més conocidos estan
32 +42 =52, 5% + 122 = 132, 7% + 242 = 252, ;Cémo encontrarlas todas?

En primer lugar notamos que si (z,y, z) es una terna pitagdrica, también lo
es (mx, my, mz) para cualquier nimero m y, reciprocamente, dada una terna
pitagérica (z,y,z), podemos dividir sus componentes por su m.c.d. para ob-
tener otra que cumpla ademds (z,y,z) = 1. Una terna cuyos elementos no
tengan divisores comunes se llama primitiva. Si encontramos un método para
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hallar todas las ternas primitivas, las restantes se obtienen multiplicindolas por
ntimeros arbitrarios, luego el problema estd resuelto. Las ternas anteriores son
todas primitivas.

Ante todo observemos que un divisor primo de dos de las componentes de
una terna pitagérica, divide a la tercera. Por ejemplo, si p | z y p | 2z, entonces
p| 22 —22% conlo que p |y y por lo tanto p | y. Esto significa que, en realidad,
las componentes de una terna pitagorica primitiva son primas entre si dos a dos.
En particular no puede haber més de una componente par. Un ntimero es par o
impar si y sélo si lo es su cuadrado, y la suma y la diferencia de nimeros impares
es par. Como consecuencia si dos de las componentes son impares, la restante
ha de ser par, es decir, en una terna primitiva hay siempre dos componentes
impares y una par.

Ahora veamos que z ha de ser impar. En otro caso lo son x e y, es decir,
r=2m+1,y=2n+1,luego 2 = 4m? +4m+1, y> = 4n? +4n + 1. Al tomar
clases médulo 4 resulta que [z]? = [2]> + [y]> = [1] + [1] = [2]. Sin embargo
ninguna clase médulo 4 tiene a [2] por cuadrado: [0]2 = [0], [1]? = [1], [2]> = [0],
32 = [1]

Como la situacién de x e y es simétrica, podemos suponer que z es par e y
impar. Segun lo visto z es también impar. Consecuentemente z + y, z — y son
ambos pares. Digamos que x = 2u, z +y = 2v, z — y = 2w.

Ahora 22 = 2% —y? = (2 + y) (2 — y), luego u? = vw, v > 0, v > 0.

Por otro lado (v, w) = 1, ya que si un primo p divide a ambos, entonces

p | (tw) =gty by =52=x
p | w-w) =gty - 5(-y) =y,

y como (y, z) = 1, esto es contradictorio.

Por la factorizacién unica, es claro que si vw = v* con (v,w) = 1, v > 0,
w > 0, entonces tanto v como w han de ser cuadrados (cada uno ha de contener
cada primo un niimero par de veces porque asf le ocurre a u). Pongamos v = p?
y w = ¢. Obviamente (p,q) = 1.

Asf tenemos que z = v+ w = p? + ¢%, y = v — w = p?> — ¢°. En particular
q<p.

Como z e y son impares, p y q deben tener paridad opuesta. Sustituyendo
en las formulas anteriores queda

2

2?2 =22y =+ 202 + ¢ — p* + 2% — ¢* = % = (2pg)?,

luego = = 2pq. En consecuencia la terna original queda de la forma
(z,y,2) = (2pg,0* — ¢*,p* + &%),

donde p, ¢ son nimeros naturales primos entre si, ¢ < p y de paridad opuesta.

Reciprocamente, es facil comprobar que cualquier terna en estas condiciones
es una terna pitagérica primitiva. Por lo tanto ya sabemos enumerarlas todas.
La tabla 1.1 contiene las correspondientes a los valores de p < 7.
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Tabla 1.1: Ternas pitagoricas

plg| x| y| =
211 41 3| 5
31212} 5|13
411 8|15 |17
413|124 7125
512(20|21 |29
514140 9|41
6112|3537
65|60 11]61
712|28|45|53
714]56 33|65
716841385

En una tablilla cuneiforme aproximadamente del ano 1.500 a.C. se ha en-
contrado una enumeracién de ternas pitagdricas, entre las cuales se encontraba

(4.961,6.480,8.161). Se obtiene con p =81y g = 40.

La clasificacion de las ternas pitagoricas es un ejemplo tipico de lo que fue la
teoria de nimeros desde los griegos hasta mediados del siglo XVII. Hay una in-
finidad de resultados similares que describen el comportamiento de los ntimeros
enteros. Problemas faciles de enunciar y comprender y a menudo con soluciones
faciles de enunciar y comprender, pero tales que el argumento que lleva desde
el planteamiento hasta la soluciéon puede llegar a ser increiblemente ingenioso y
laborioso. Esto iba a cambiar en los siglos posteriores. En la seccion siguiente
presentamos uno de los problemas que contribuy6 méas a dicho cambio.

1.2 El Ultimo Teorema de Fermat

En el siglo XVII los matematicos estaban mas interesados por explorar ideas
nuevas, como el recién descubierto calculo diferencial, que por los viejos proble-
mas sobre niimeros enteros que se estudiaba en los libros de Euclides, Diofanto,
etc. Se tenfa la impresiéon de que no habia mucho que descubrir en este campo.
Uno de los principales responsables de que se renovara el interés por la teoria de
numeros fue Pierre de Fermat, quien, segin era habitual en la época, retaba a
otros matematicos a resolver problemas que él mismo habia resuelto o al menos
conjeturado. Estos eran del estilo de determinar qué numeros naturales pueden
expresarse como suma de dos cuadrados, o de tres, o de cuatro, etc., o qué
numeros coinciden con la suma de sus divisores propios, o hallar las soluciones
enteras de determinadas ecuaciones ...

La facilidad para formular conjeturas sencillas mediante cédlculos directos
hacia a los problemas mucho mas intrigantes. Por ejemplo, fueron muchos los
matemdticos que intentaron sin éxito probar algo tan simple (de enunciar y de
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constatar empiricamente) como que todo nimero natural es suma de cuatro
cuadrados. La primera prueba es de Lagrange. Entre los muchos resultados que
probé Fermat se encuentra el siguiente:

Teorema 1.1 La ecuacion, x* +y* = 22 no tiene soluciones enteras positivas.
DEMOSTRACION: Si existen soluciones positivas de la ecuacién z +y* = 22,
entonces (22,42, 2) es una terna pitagérica. Notar que si dividimos z, y, z por su
m.c.d. obtenemos ntimeros primos entre si que siguen cumpliendo la ecuacién,
luego podemos suponer que (z,y,z) = 1, y claramente esto implica que en
realidad son primos entre sf dos a dos y que la terna (22, y?, z) es primitiva.

Segtin los resultados de la seccién anterior, z2 = 2pq, 4% = p®’—q¢?, z = p?>+4¢°,
donde p y ¢ son nimeros enteros primos entre si, de distinta paridad y p > ¢ > 0
(intercambiamos x con y si es necesario para que 22 sea el par).

Ahora, p? = y? + ¢?, luego (q,y,p) es otra terna pitagdrica, lo que obliga a
que p sea impar, luego ¢ ha de ser par, y asi ¢ = 2ab, y = a® — b%, p = a® + b2,
para ciertos enteros a y b primos entre s, de paridad opuesta, a > b > 0 (notar
que se trata de una terna primitiva porque (p,q) = 1).

Por lo tanto x? = 4ab(a® + b?) y en consecuencia ab(a® + b*) = (x/2)2. Por
otra parte (a,b) = 1 implica ficilmente que (ab, a® + b?) = 1.

Ahora usamos un argumento muy simple pero importante: si el producto
de dos numeros naturales primos entre si es un cuadrado, entonces ambos son
cuadrados, pues cada uno de ellos debe tener cada factor primo con exponente
par.

Concluimos que ab y a® + b? son cuadrados y, por el mismo argumento,
también lo son a y b. Digamos a = u?, b = v2, a® + b? = w?.

Entonces u* + v =a? + 0> = w? = p < p? + ¢ = 2z < 22,

En resumen, si existe una terna de nimeros positivos (z,y, z) de manera que
x* +y* = 22, existe otra (u,v,w) que cumple lo mismo pero con w? < z2. Si
existieran tales ternas deberia haber una con z minimo, lo cual es falso segun
lo visto, por lo que la ecuacién no tiene solucion. L]

En particular el teorema anterior implica que la ecuacién z* + y* = 2% no

tiene soluciones positivas. Es conocido que Fermat creyo en cierta ocasiéon haber
probado que esto mismo es cierto para cualquier exponente distinto de 2. Es
practicamente seguro que cometié un error y que se dio cuenta de ello, pues
jamas afirmo publicamente tener tal prueba y el problema ha resistido el ataque
de los mejores matematicos de los tltimos doscientos anos. Simplemente, Fermat
anoté su presunto hallazgo en un margen de su ejemplar de la Aritmética de
Diofanto y después olvidé, o no consideré necesario, tachar la nota. Tras su
muerte, uno de sus hijos hizo publicas las notas de su padre, entre las cuales
figuraba esa pequena declaraciéon de haber probado lo que desde entonces se
conoce como Ultimo Teorema de Fermat, esto es, la afirmacién:

La ecuacion x™ 4+ y™ = 2™ no tiene soluciones enteras positivas para
exponentes n > 2.
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El nombre no hace referencia a que fuera el ultimo resultado que Fermat
hubiera demostrado, sino a que a principios del siglo XIX todas las afirmaciones
que Fermat habia dejado enunciadas sin demostracién habian sido demostradas
o refutadas salvo ésta, que era, pues, el iltimo ‘teorema’ de Fermat cuya prueba
faltaba encontrar.

El teorema anterior muestra que Fermat si habfa probado (y comunicado) la
prueba para exponente n = 4. M4&s atn, esto implica de hecho que el teorema
de Fermat es cierto para cualquier exponente de la forma n = 4k. En efecto,
si existieran nimeros positivos (x,y, z) tales que o 4yt = 2% entonces
(x* y*, 2¥) serfa una solucién a la ecuacién z* + y* = 2%, lo cual es imposible.
En particular el Ultimo Teorema de Fermat es cierto para las potencias de dos.

De aqui se sigue ahora que si el Ultimo teorema de Fermat es cierto para
exponentes primos impares, entonces es cierto para todo exponente. En efecto,
si existen soluciones positivas a una ecuacion ™ +y™ = 2™, entonces n no puede
ser potencia de 2, luego existe un primo impar p tal que p | n, o sea, n = pk,
para cierto entero k, luego (z¥,4*, 2¥) es una solucién positiva a la ecuacién
P +yP = 2P,

Observemos que si p es impar el Ultimo Teorema de Fermat equivale a la no
existencia de soluciones enteras no triviales (o sea, con zyz # 0) de la ecuacién

P +yP + 2P =0,

lo que muestra que en realidad el papel de las tres variables es simétrico. Esto
simplifica algunos argumentos.

Euler demostro el teorema de Fermat para p = 3, ya en el siglo XIX, el joven
Dirichlet y el anciano Legendre demostraron independientemente el caso p = 5,
pero Dirichlet fracasé al abordar el caso p = 7, y sélo consiguié una prueba para
exponente 14. La complejidad de los argumentos aumentaba tan rapidamente
que p = 7 era practicamente intratable. Mas adelante Kummer llegd a probar el
teorema de Fermat para todos los exponentes menores que 100. Evidentemente
esto no fue el resultado de cédlculos més prolijos todavia, sino de nuevas ideas.
Lo explicaremos con mas detalle en la seccion siguiente.

1.3 Factorizacién tnica

La clasificacion de las ternas pitagéricas, asi como el teorema 1.1, descansan
sobre la aritmética elemental. Sin embargo, la potencia de estos métodos pronto
se ve superada por la dificultad de los problemas que surgen de forma natural. El
Ultimo Teorema de Fermat es un caso extremo, pero hay ejemplos mas simples.
El resultado siguiente es uno de los problemas planteados por Fermat:
Teorema 1.2 Las unicas soluciones enteras de la ecuacion

y2 + 2 — .'1;3

son y =245, x = 3.
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DEMOSTRACION: En primer lugar, y ha de ser impar, pues si fuera par,
y? + 2 serfa divisible entre 2, pero no entre 4, mientras que x> serfa divisible
entre 2, luego entre 8.

Ahora consideramos el anillo Z[v=2] = {a + bv/=2 | a,b € Z}. En este
anillo la ecuacién factoriza en la forma

(y+\/—_2)(y—\/—_2):x3. (1.1)
Consideramos la norma N : Z[\/—_2 ] — N dada por
N(a+bvV=2) = (a+bvV-2)(a—bvV=2) = a® + 2b°.

Es fécil ver que esta norma es multiplicativa (se trata de la norma de la
extension Q(JTQ)/Q en el sentido de la teoria de cuerpos). Si z, y cumplen
la. ecuacién, entonces un divisor comin ¢+ dv/—2 de y + /-2 y de y — /=2
en Z[\/—_ﬂ dividirfa también a su suma 2y y a su diferencia 2v/—2. Tomando
normas, ¢ + 2d? | 4y2, ¢? +2d? | 8. Por lo tanto ¢? + 2d? | 4.

Las tnicas posibilidades son ¢ = £1, d = 0 o bien ¢ = 0, d = +1 o bien
¢ =22, d=0. En los dos primeros casos obtenemos una unidad y en los otros
obtenemos un elemento de norma 2 o 4, que no puede dividir a y + v/—2, cuya
norma es y2 + 2, impar.

Asf pues, y++/—2, y— +/—2 son primos entre si. Ahora bien, si dos niimeros
primos entre si son un cubo, tal y como afirma (1.1), entonces cada uno de ellos
lo es, es decir, y + /=2 = (a + b\/—_2)3 para ciertos enteros a y b.

Igualando los coeficientes de obtenemos que 1 = b(3a? — 2b?), lo que sélo es
posible sib =1y a = 1, de donde y = +5 y por lo tanto x = 3. L]

En realidad la prueba anterior tiene una laguna: si un producto de niimeros
primos entre si es un cubo perfecto, cada factor serd también un cubo perfecto
siempre y cuando se trate de elementos de un anillo con factorizacién unica,
es decir, donde todo elemento se descomponga de forma tnica (salvo orden y
asociacién) en producto de primos, y ademés cada unidad sea un cubo. Lo cierto
es que el anillo Z[JTQ] tiene estas propiedades, pero no lo hemos justificado.

Ejercicio: Probar que las tnicas unidades del anillo Z[\/f2] son +1.

Ejemplo En el anillo Z[\/—5] tenemos las factorizaciones
6=2-3=(1+Vv=5)(1+V-5). (1.2)

Si consideramos la norma N(m +yv—5 ) = 22 4 532 vemos que, al igual que en
el caso de Z [\/—_2 ], conserva productos, y los inicos elementos de norma 1 son
+1. Ademads no hay elementos de norma 2 o 3. De todo esto se sigue que los
cuatro factores de (1.2) son irreducibles y no asociados, pues tienen norma 4, 9
y 6, luego un factor propio de cualquiera de ellos habria de tener norma 2 o 3.
Por consiguiente nos encontramos ante una doble factorizacién en irreducibles
no primos. u
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La clave de la prueba del teorema 1.2 ha sido sin duda la factorizacién (1.1)
en el anillo Z[\/—_2] Paulatinamente los mateméticos fueron comprendiendo
que estructuras algebraicas abstractas como Z[\/—_Q ] 0, mas en general, anillos,
modulos, ideales, grupos, etc. proporcionaban herramientas poderosas para ob-
tener resultados sobre los niimeros enteros. Muchas pruebas basadas en largos
e ingeniosos céalculos de caracter elemental podian ser sustituidas por pruebas
cortas, conceptuales y claras basadas en estructuras algebraicas cada vez més
abstractas. En la mayoria de los casos, la posibilidad de dar una prueba ele-
mental resultaba practicamente inconcebible.

En la prueba del caso p = 3 del teorema de Fermat, Euler partié de la
descomposicién

2 +y° = (x+y) (2 —ay+97),

mientras que Dirichlet y Legendre, en sus pruebas para p = 5, consideraron
2 +y° = (z+y)(a* — 2y + 2% — 2y’ + ¢

El eje de los argumentos respectivos era el mismo argumento que hemos em-
pleado en la prueba de 1.2, es decir, determinar cuando los factores son primos
entre si, en tal caso argumentar que si el producto es un cubo o una potencia
quinta, lo mismo le ha de suceder a cada factor y después analizar las implica-
ciones de este hecho. Es facil comprender que el aumento de la complejidad del
segundo factor volvia los argumentos cada vez mas enrevesados.

Un paso importante fue dado por Lamé cuando pensé en considerar el anillo
de los enteros ciclotémicos

Zlw] = {ap 1Pt 4 carw +ag [ api,. .00 € 2,

donde w es una raiz p-ésima primitiva de la unidad. En efecto, si en la factori-
zacion
P —l=@-1)(z-w) - (z—wl )

sustituimos = por z/y y multiplicamos por —y? obtenemos
P oy = (z+y)(z+wy) (2 4+ 0P ty). (1.3)

Lamé conjeturé que si Z[w] tuviera factorizacién tinica tal vez serfa posible
generalizar los argumentos de los casos que hemos comentado para obtener una
prueba completa del teorema de Fermat, con la ventaja de trabajar con factores
lineales. Por ello muchos mateméticos de principios del siglo XIX investigaron
la factorizacién de enteros ciclotémicos. Cauchy trato sin éxito de encontrar
un algoritmo de divisién euclidea. Fue en este contexto, estudiando los enteros
ciclotéomicos, en el que Kummer pudo obtener el resultado que citdbamos antes,
en virtud del cual el teorema de Fermat es cierto para exponentes menores que
100. Kummer descubrié que los anillos de enteros ciclotémicos no siempre tienen
factorizacién tnica, pero que la conjetura de Lamé era correcta.
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1.4 La ley de reciprocidad cuadratica

La légica matematica nos ensena que no puede existir una teoria de niimeros
completa, en el sentido de que existen propiedades de los niimeros naturales que
son ciertas sin que exista ningin motivo por el cual lo sean, es decir, sin que
existan argumentos que lo prueben, ni mucho menos que lo expliquen. En un
término medio tenemos una amplia familia de resultados que podemos probar,
pero que en el fondo no comprendemos, en el sentido de que la prueba sélo es
una comprobacién de que todo encaja mas o menos sorprendentemente. Pero
en el extremo opuesto tenemos una importante clase de resultados que no sélo
sabemos demostrar, sino que podemos considerarlos bien comprendidos en el
sentido de que sabemos explicarlos a partir de principios generales conceptual-
mente simples. Si comparamos la teoria de ntimeros con la fisica, estos tres tipos
de situaciones se corresponden respectivamente con 1) hechos puntuales, como
que un determinado dia ha llovido en determinado sitio, cosa cuya necesidad no
cabe esperar que se pueda demostrar elegantemente a partir de ninguna teoria
fisica, 2) leyes basadas directamente en la experiencia, como el comportamiento
quimico de los distintos atomos, que la quimica fisica sélo justifica con precision
en muy pocos casos particulares, y 3) leyes como las que rigen los fenémenos
eléctricos, que, ademas de haber sido obtenidas empiricamente, todas ellas pue-
den explicarse perfectamente a partir de las ecuaciones de Maxwell.

Del mismo modo que las leyes fundamentales de la fisica sélo pueden enun-
ciarse en el contexto de teorfas abstractas que involucran conceptos muy distan-
tes de la experiencia cotidiana, el gran descubrimiento de la teoria de ntimeros
del siglo XIX fue que las leyes fundamentales sobre los niimeros involucran esen-
cialmente conceptos algebraicos abstractos, de forma que las propiedades que
se observan sobre los niimeros enteros son reflejos mas o menos lejanos de estas
leyes generales. En este sentido, la auténtica teoria sobre los niimeros enteros es
la teoria sobre los objetos algebraicos (o analiticos) donde se pueden enunciar
dichas leyes generales.

Las Disquisitiones Arithmericae de Gauss, publicadas a principios del siglo
XIX, constituyeron el primer paso por el que la teoria de niimeros pasé de ser
una coleccién de resultados dispersos con pruebas técnicas superficiales, a ser
la profunda y potente teoria que es en la actualidad. La parte mas importante
de las Disquisitiones es la teoria sobre formas cuadraticas binarias, con la que
se pueden hallar todas las soluciones enteras de cualquier ecuacién de la forma
p(z,y) = 0, donde p(z,y) es un polinomio de segundo grado con coeficientes en-
teros. Aunque no es éste el momento de entrar en detalles, es importante dejar
claro que no estamos hablando un algoritmo ingenioso para manipular ecua-
ciones, sino de una teoria algebraica que, en lenguaje moderno, emplea grupos
finitos, congruencias moédulo subgrupos, caracteres, matrices, determinantes,
moédulos, etc.

Gauss prob6 que los resultados fundamentales concernientes a las formas
cuadraticas sobre los nimeros enteros podian deducirse de un principio general,
un resultado descubierto por Euler, pero del que éste no fue capaz de probar
mas que una minima porcién. Gauss lo redescubrié y lo demostré en el contexto



1.4. La ley de reciprocidad cuadratica 9

de su teoria de formas cuadriticas. Se trata de la famosa Ley de Reciprocidad
Cuadratica. Para enunciarla debemos introducir algunos conceptos.

Definicién 1.3 Sea p un primo impar. Diremos que un niimero natural n primo
con p es un resto cuadrdtico médulo p si n = 22 (méd p), para cierto entero x.
En caso contrario (siempre suponiendo que n es primo con p) diremos que n es
un resto no cuadrdtico médulo p. Definimos el simbolo de Legendre como

n 1 sin es un resto cuadratico médulo p
(—> = —1 sim es un resto no cuadratico médulo p
p 0 sip|n

Es obvio que si a = b (méd p) entonces (a/p) = (b/p).

Conviene pensar en el simbolo de Legendre desde el siguiente punto de vista
algebraico: Sea U, el grupo de las unidades de Z/pZ. La aplicacién U, — Uﬁ
dada por z — 22 tiene por imagen al grupo de las clases de restos cuadréticos
médulo p, y su nicleo es #[1] (pues el polinomio 2 — 1 sélo puede tener dos
rajces). Por lo tanto U, /U2 = {£1}, y el simbolo de Legendre (cuando p { n)
es la composicién de la aplicacién n — [n] con este isomorfismo.

Ahora es claro que para todo a, b,
5)-G)G)
p p)\p)’
Ley de reciprocidad cuadratica

1. Sean p y q primos impares distintos entonces

(a) Sip=1(méd 4) o g=1 (méd 4) entonces
(5)-0)
q p
(b) Sip#1 (méd 4) y ¢ #1 (mdd 4) entonces
(-0
q p
2. (Primera Ley Suplementaria) Si p es un primo impar
-1\ _ 1 sip=1(mdd 4)
p /) | -1 sip=3(mdd 4)
3. (Segunda Ley Suplementaria) Sip es un primo impar

2\ _ 1 sip==+1 (méd 8)
p) | —1 sip# £l (mdd 8)
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Serfa dificil explicar aqui en poco espacio la importancia tedrica de estos
hechos, pero la tienen. Lo que si podemos mostrar ficilmente (aunque no sea
lo més importante) es que la ley de reciprocidad permite calcular fécilmente
cualquier simbolo de Legendre. Por ejemplo,

BN (3N (S oY (Y (2 (5 2y

) \rt)\r1)  \3/)\5) \3)\s5) 7
donde alternativamente hemos aplicado la ley de reciprocidad para invertir los
simbolos y hemos reducido los ‘numeradores’ médulo los ‘denominadores’.

Pero destaquemos ante todo que la Ley de Reciprocidad es lo mas opuesto
a un resultado elemental. Si el lector reflexiona sobre lo que significa que un
primo p sea un resto cuadratico médulo g y que ¢ sea un resto cuadratico
modulo p, seguro que no encuentra ninguna conexién, por minima que sea, que
le pueda sugerir un intento de prueba (a no ser que ya esté familiarizado con
la teoria de nimeros). Pese a ello ahi tenemos una relacién que ademds resulta
ser sorprendentemente simple en cuanto a su enunciado. Hoy se conoce casi un
centenar de pruebas distintas de la Ley de Reciprocidad Cuadratica. La primera
demostracion que encontré Gauss era muy técnica, hasta el punto de desalentar
a sus mejores alumnos. Poco después encontrd otra basada en lo mas sutil de
su teoria de formas cuadréticas, esta vez de estructura mucho més simple. Méas
tarde encontré otra basada en técnicas analiticas. Se conocen otras debidas a
Dirichlet (que usa andlisis de Fourier), a Kronecker (basada en las propiedades
de los enteros ciclotémicos), hay otra de cardcter elemental mucho més corta
(basada en argumentos de Gauss), pero la prueba que mds ha penetrado en el
contenido de la ley de reciprocidad se debe a Artin, data de mediados del siglo
XX y en esencia la explica en términos de cohomologia de grupos.

El camino que lleva desde la ley de reciprocidad de Gauss a la de Artin fue
iniciado por el propio Gauss, quien conjeturé una ley de reciprocidad cubica y
una bicuadratica, aunque no pudo probarlas. Gauss comprendié que el simbolo
de Legendre no es simplemente una notacién comoda para enunciar la ley de
reciprocidad, sino que el asociar las clases mdédulo p con las potencias de —1 juega
un papel importante. La razén por la que los niimeros enteros satisfacen una ley
de reciprocidad cuadrética es que Z contiene una raiz cuadrada primitiva de la
unidad, por lo que una ley de reciprocidad ctbica habia de buscarse en el cuerpo
Q(\/—_S), es decir, el cuerpo ciclotémico tercero, y una ley de reciprocidad
bicuadratica habia de buscarse en el cuerpo Q(le), el cuerpo ciclotémico
cuarto. Asf lo hizo y las encontrd. Precisamente, el anillo Z[i] se conoce como
anillo de los enteros de Gauss a raiz de sus investigaciones sobre la reciprocidad
bicuadratica.

Las primeras demostraciones de las leyes de reciprocidad cibica y bicuadra-
tica se deben a Hisenstein, quien encontré ademas un fragmento de una ley de
reciprocidad p-ésima, estudiando, por supuesto, el anillo de enteros ciclotémicos
de orden p. Kummer compaginé sus investigaciones sobre el Ultimo Teorema de
Fermat con la busqueda de una ley de reciprocidad general. Ambos problemas
apuntaban hacia los cuerpos ciclotémicos. Sus investigaciones fueron continua-
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das por Kronecker y sus discipulos, en una linea que llevo hasta la ya citada Ley
de Reciprocidad de Artin, una de las cumbres de la teoria de niimeros moderna.

1.5 El teorema de Dirichlet

Hay un problema maés que llevo al estudio de los enteros ciclotémicos. An-
tes que Gauss, Legendre habia abordado también el problema de demostrar la
Ley de Reciprocidad Cuadratica, y consiguié demostrarla aceptando sin demos-
tracién un hecho muy sencillo de enunciar y que los datos empiricos corrobo-
raban: Para todo natural n no nulo, cada una de las clases del grupo U, de
las unidades médulo n contiene al menos un nimero primo. Gauss no consi-
guié demostrar este hecho, pero se las arregl6 para evitarlo. Dirichlet vislumbré
una posible conexién con los cuerpos ciclotomicos que efectivamente le llevé
hasta una demostracién de lo que hoy se conoce como Teorema de Dirichlet
sobre Primos en Progresiones Aritméticas, pues admite el siguiente enunciado
elemental.

Teorema de Dirichlet Sia, b son nimeros enteros primos entre si, entonces
la progresion aritmética an + b, para n =1,2,... contiene infinitos primos.

Aunque no estamos en condiciones de explicar la idea que guié a Dirichlet,
digamos al menos que esta relacionada con que el grupo de Galois de la extension
ciclotémica n-sima de Q es isomorfo a U,. El teorema de Dirichlet es una
herramienta importante en la teoria de ntimeros y, aunque en ocasiones puede
ser evitado (como hizo Gauss para probar la Ley de Reciprocidad) ello suele
llevar a caminos torcidos que restan naturalidad a las demostraciones. Por este
motivo la prueba de Dirichlet fue muy celebrada, ademas de porque fue uno de
los primeros éxitos importantes de la teoria analitica de ntimeros.

1.6 Ecuaciones diofanticas

Una ecuacién diofdntica es simplemente una ecuacién polinémica de la que se
buscan las soluciones enteras. Se llaman asi en honor al matemético griego Dio-
fanto, aunque en todos los libros que se conservan no hay ningun resultado sobre
ecuaciones diofénticas en este sentido moderno. El buscaba siempre soluciones
racionales en lugar de enteras.

Todos los resultados que hemos probado en este capitulo son soluciones de
ecuaciones diofanticas. Del mismo modo que el estudio de los sistemas de ecua-
ciones lineales dio lugar al dlgebra lineal, las ecuaciones diofanticas estan en la
base de las distintas ramas de la teoria de niimeros. Sabemos que no puede exis-
tir una teoria general de ecuaciones diofanticas en el mismo sentido que la hay
para los sistemas de ecuaciones lineales, pero hay muchos resultados aplicables
a familias concretas de ecuaciones. Ya hemos comentado que Gauss dedicé gran
parte de sus Disquisitiones arithmeticae a encontrar un método para resolver
cualquier ecuacién diofantica de segundo grado con dos variables.
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Observar que las ecuaciones diofanticas con una variable son triviales, pues
resolverlas se reduce a aproximar analiticamente las raices del polinomio que
determina la ecuacién y comprobar si son enteras. Si pasamos a ecuaciones con
dos variables, las de grado 1 también son sencillas.

Ejercicio: Dar un método para determinar todas las soluciones enteras de una
ecuacién de la forma ax + by = ¢, donde a, b, ¢ € Z.

Asi pues, el primer caso no trivial es el de las ecuaciones de segundo grado
con dos variables (el caso estudiado por Gauss). Puede probarse que mediante
cambios de variable adecuados el problema puede reducirse a estudiar ecuaciones
definidas por formas cuadraticas, es decir, ecuaciones de la forma

az® + bry + cy® = d. (1.4)

Notemos que si a = 0 o ¢ = 0 el problema es trivial, pues una de las incégnitas
ha de ser un divisor de d y hay un numero finito de soluciones. Supongamos,
pues, a # 0 # c. Veamos hasta dénde podemos llegar mediante razonamientos
elementales para encontrar asi el nicleo del problema.

Factorizamos el polinomio az? + bx + ¢ = a(z — a)(x — (), y entonces la
ecuacion se convierte en

a(r — ay)(z — By) = d.

Los nimeros a y (3 son —bEvbi—dac W. Sea D = b? — 4ac. El nimero D se
llama discriminante de la forma cuadratica ax? + bxy + cy?.

Si D = 0 entonces « = 3 = —b/2a. Multiplicando por 4a obtenemos la
ecuacién (2az + by)? = 4ad, cuyas soluciones enteras son faciles de hallar.

Si D = k? # 0, entonces multiplicando por 4a queda

(2az + ky)(2ax — ky) = 4ad,
que a su vez se reduce a un numero finito de sistemas de ecuaciones de la forma
2ar + ky = u, 2ax — ky = v,

donde u y v recorren las factorizaciones de 4ad. Si d # 0 el nimero de soluciones
es finito. Si d = 0 la ecuacion se reduce a 2ax +ky = 0, cuya solucién es sencilla.
Nos queda el caso en que D no es un cuadrado perfecto. Entonces a y 3
son elementos del cuerpo Q(\/ﬁ ) Ma3s atin, son conjugados en el sentido de la
teorfa de Galois. Si llamamos N a la norma en @(\/5 ), la ecuacién se expresa

en la forma
N(z — ay) = d/a. (1.5)

Por lo tanto, la solucién de una ecuacién diofdntica de la forma (1.4) se
reduce (salvo casos triviales) a encontrar elementos de la forma = — ay con
norma igual a d/a.

Pensar en encontrar elementos de un cuerpo con una norma determinada en
lugar de en encontrar pares de enteros que cumplan una ecuacién determinada es
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un cambio de perspectiva muy importante. Con todo, el problema no es simple.
Buena muestra de ello es que la menor solucién de la ecuacién 22 — 61y% = 1 es
la dada por z = 1.766.319.049, y = 226.153.980.

Lo que hemos ganado es que ahora podemos dar un tratamiento sistematico
al problema. Es practicamente imposible trabajar en general con una ecuacién
con coeficientes indeterminados, pero es muy céomodo teorizar sobre extensio-
nes de Galois. Maés atin, un estudio directo de una ecuacién de grado 2 seria
dificilmente generalizable a ecuaciones de grados superiores, mientras que en
lugar de trabajar concretamente con ecuaciones del tipo (1.5), podemos con-
siderar ecuaciones similares definidas por normas de extensiones arbitrarias de
Q, sin que ello suponga apenas ninguin esfuerzo adicional. Ello nos llevara a un
método para resolver una familia de ecuaciones diofdnticas que incluye todas las
del tipo (1.4), pero también muchas otras de grados arbitrariamente grandes.
Vamos a plantear el problema en toda su generalidad:

Sea K una extension finita de Q, es decir, K es un cuerpo talque Q C K C C
y como espacio vectorial sobre Q tiene dimensién finita (en el caso anterior seria
K= Q(\/ﬁ ), que tiene dimensién 2 sobre Q). Un cuerpo en estas condiciones
se denomina cuerpo numérico.

La teoria de Galois nos da que la extensién tiene un elemento primitivo,
es decir, existe un ¢ € K tal que K = Q(¢) (en el caso anterior ¢ = VD).
Todo elemento de K es algebraico sobre Q, es decir, para cada a € K existe un
Unico polinomio ménico irreducible p(z) € Q[x] tal que p(a) = 0. Ademds p(x)
divide a cualquier polinomio de Q[z] que tenga a « por raiz. A este polinomio
lo llamaremos polinomio minimo de « y lo abreviaremos por pol min a.

En particular el grado de polmin( es el grado de K, es decir, la dimensién
de K como Q-espacio vectorial. Llamémoslo n.

La teoria de Galois nos da también que pol min { tiene n raices distintas en
C, lamémoslas (1, ..., (, (con ¢ = (1), asi como que para ¢ = 1,...,n existe un
isomorfismo o; : K — Q((;) tal que 0;(¢) = ¢;. Es fécil ver que o4,...,0, son
los tnicos monomorfismos de K en C, luego no dependen de la eleccion de (.

(En el caso anterior los conjugados de VD son +v/D y los monomorfismos
son la identidad y la conjugacién que envia v/D a —v/D. De hecho son isomor-
fismos, aunque si K no es una extensiéon de Galois puede ocurrir que Q(¢;) no
esté contenido en K).

El cuerpo L = Q((y, .-+, Cn) es la clausura normal de K, es decir, la menor
extensién de Galois sobre Q que contiene a K. Los monomorfismos o; son las
restricciones a K de los automorfismos de L.

Si ¢ es un automorfismo de L, entonces o; o o es un monomorfismo de K,
luego se trata de uno de los ;. Ademsds si i # j, entonces g; 0 0 # o; 0o (pues
difieren sobre ¢). Por lo tanto la composicién con o permuta los monomorfismos
o;. El cuerpo K tiene asociada una norma N : K — Q definida por

N(a) =a1(a)---on(a).

La norma de un niimero « es ciertamente un ntimero racional, debido a que
cualquier automorfismo o de L permuta los factores de N(«), y por consiguiente
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o(N(a)) = N(«). Siai,...,a, son elementos no nulos de K definimos
N(zion+- - 4zra,) = (2101 (1) + - +zpo1(ar)) - (2100 (a1)+ - 4aron(ar))

Es claro que se trata de una forma de grado n (una forma es un polinomio
cuyos monomios tienen todos el mismo grado). Tener en cuenta que el producto
de formas es una forma y que los factores que definen N(z1aq + - - - + zq;.) son
formas.

Al igual que ocurre con N(«), todo automorfismo o de L permuta los factores
de N(z1a1 + - -+ + zrav), luego

U(N(Iﬂh + -+ xT»Oér)) = N(z100 + - + zray).

La teorfa de Galois nos da entonces que N(z1a1 +- - -+ z,,) € Q[zy, ..., 2,].

Siz1,...,2, € Q, entonces N(z1aq + - - - + ;) es simplemente la norma
de z100 + - + 200y,

Un mddulo M de K serd un subgrupo de (K, +) generado por un conjunto
finito aq, ..., a, de elementos de K, es decir,

M={u,...,a); ={a1ion +---+ara, |ai,...,a, € Z}.

Hemos visto que hallar las soluciones de una ecuacién diofantica definida por
una forma cuadrética (1.4) con discriminante no cuadrado perfecto equivale a
encontrar las soluciones de (1.5), lo que a su vez equivale a encontrar los ele-
mentos del médulo M = (1, «) de norma d/a. En general, uno de los problemas
que resolveremos en este libro serd el de determinar las soluciones enteras de
una ecuacion del tipo

N(zio1 + - - 4+ 2p) = m,

lo cual equivale a su vez a encontrar los elementos del médulo M = (a1, ..., o),
de norma m. El método que daremos puede considerarse una generalizacién de
la teoria de Gauss sobre formas cuadraticas binarias. En la seccién siguiente
damos algunos resultados adicionales que terminan de perfilar el planteamiento
del problema.

1.7 Ecuaciones definidas por formas

Cada forma F(x1,...,x,) con coeficientes enteros plantea dos problemas
bésicos:
1. Determinar las soluciones de la ecuacién dioféntica F(z1,...,2,) = m,

para cada entero m.

2. Determinar qué enteros m estan representados por F', es decir, admiten
una expresiéon del tipo F(x1,...,2,) = m para ciertos enteros xy, ..., T.
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La teoria que vamos a desarrollar resolvera estos problemas para una familia
bastante amplia de formas. Para empezar, éstas habran de admitir una repre-
sentacién del tipo N(xjaq + -+ + 2,q,.), v entonces los problemas indicados
se pueden reformular, tal y como vimos en la secciéon anterior, en términos del
modulo generado por los ntimeros algebraicos asq, . .., Q.

Una técnica bésica en la resolucién de ecuaciones es transformarlas en otras
equivalentes, es decir, con las mismas soluciones, pero cada vez mas sencillas.
Aunque esto no basta para resolver ecuaciones diofdnticas, al menos nos da
cierta libertad para simplificar el problema lo més posible. En primer lugar no-
temos que al multiplicar una ecuacién por una constante (racional) no nula, las
soluciones (enteras) no varfan, por lo que en muchos casos podremos considerar
que una forma y uno cualquiera de sus multiplos son ‘la misma forma’, en el
sentido de que podremos reemplazar una por otra. Esto supone que admitimos
trabajar con formas con coeficientes racionales, no necesariamente enteros.

Hay otro sentido en el que dos formas pueden ser mutuamente reemplazables:

Definicién 1.4 Diremos que dos formas F(x1,...,2,), G(y1,...,ys) del mismo
grado son equivalentes (en sentido amplio) si cada una puede obtenerse de la otra
a partir de un cambio de variables lineal con coeficientes enteros. Diremos que
son equivalentes si r = s y la matriz del cambio de variables tiene determinante
+1 (con lo que tenemos dos cambios de variables mutuamente inversos).

Por ejemplo, las formas
2?4 Ty? + 2% — 62y + 6yz — 22 y 2u? — v?

son equivalentes (en sentido amplio), pues los cambios de variables

r = 3v u = —x+2y+z
Yy = u+ v Vo= r— Yy—z
zZ = —u+ v

convierten una en otra.

Es claro que en esta situaciéon una solucién entera de una de las formas
da lugar a una solucién entera de la otra mediante las formulas de cambio de
variables, luego sabemos resolver una si y sélo si sabemos resolver la otra.

Ejercicio: Probar que si los numeros algebraicos a1,...,a, y B1,...,0s generan un
mismo médulo de un cuerpo numérico K entonces las formas N(z1oq + -+ + zrau)
y N(x181 + -+ + xs03s) son equivalentes en sentido amplio, y si ambos son bases del
mismo mdédulo entonces son equivalentes.

Este ejercicio muestra que a cada mddulo le podemos asociar una unica
clase de equivalencia (en sentido amplio) de formas, asi como que toda forma
es equivalente en sentido amplio a una forma N(ziaq + -+ + z,q,), donde
a, ..., q, forman una base de un cierto médulo. (Notemos que todo médulo es
un Z-médulo finitamente generado y libre de torsion, luego es libre.)

El teorema siguiente muestra como la equivalencia de formas nos permite
pasar a formas con propiedades adicionales de interés:
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Teorema 1.5 Toda forma de grado n es equivalente a otra en la que la potencia
n-sima de una de las variables tiene coeficiente no nulo.

DEMOSTRACION: Sea F(z1,...,x,) una forma de grado n. Probamos pri-
mero que existen enteros ag, ..., a, tales que F(1,aq,...,a,) # 0. Lo haremos
por induccién sobre 7.

Sir =1 entonces es F(z1) = Az} con A # 0, luego F(1) # 0.

Si es cierto para formas con r — 1 variables, escribimos F' como

F=Gox! +Gia} '+ + G,

donde cada G; es 0 o una forma de grado ¢ con r — 1 variables, pero no pueden
ser todas nulas, pues F tiene grado n. Por hipotesis de induccion existen enteros
as,...,a.—1 tales que G;(1,as,...,a,.—1) # 0 para algin i.

El polinomio F(1,as,...,a,—1,2,) no es nulo, luego existe un entero a, tal
que F(1,a9,...,ar-1,a.) # 0.

Ahora hacemos el siguiente cambio de variables:

1 = Y
Ty = a2y1 + Y2
Ty = GrY1 + Yr-

Con ello F se convierte en G(y1,...,y,) = F(y1,a2y1 + yo, ..., ary1 + yr),
que es una forma equivalente (el cambio tiene determinante 1) y el coeficiente
de y}" es G(1,0,...,0) = F(1,aq9,...,a,) # 0. n

Ahora podemos dar una caracterizacion sencilla de las formas que admiten
una representacién de tipo N(z1a1 + -+ + Zrqp).

Definicién 1.6 Una forma F(x1,...,2,) € Q[z1,...,x,] es factorizable si exis-
te un cuerpo K (extensién de Q) tal que F' se escinde en producto de factores
lineales de K[z1,...,z,].

Por definicién, las formas N(z1aq + - - - + @) son factorizables. También
es evidente que si dos formas son equivalentes, una es factorizable si y sélo si lo
es la otra.

Ejercicio: Comprobar que la forma z? + y? + 2% no es factorizable (si lo fuera se
descompondria en dos factores lineales).

Los razonamientos con formas cuadraticas binarias vistos en la seccién an-
terior justifican que todas ellas son factorizables.

En general, una condicién necesaria para poder abordar una ecuacién diofén-
tica definida por una forma expresandola como norma en un mdédulo es que la
forma ha de ser factorizable. De hecho las formas N (zja1+- - -+z,a, ) factorizan
en cuerpos numéricos, pero esto no es una restriccién adicional:

Teorema 1.7 Toda forma factorizable factoriza en un cuerpo numeérico.
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DEMOSTRACION: Sea F' = (a11@1 + - + a1p@y) -+ - (0121 + -+ + Qppye)
una forma factorizable, donde los coeficientes a;; estdn en un cierto cuerpo K.
Es obvio que si una forma factoriza en un cuerpo K, también lo hacen sus
equivalentes, luego podemos exigir que el coeficiente A de z} sea no nulo. En-
tonces todos los coeficientes a;; son no nulos (su producto es A), luego podemos
extraerlos y escribir

F = A(xy + Braxo + - + Brry) -+ (1 + Bz + -+ + Bpry).
Para 2 < j < r hacemos x; = 1 y las demds variables 0, con lo que queda
F(xl,(),...,l,...,()) = A(ZL'1 +ﬂ1j)...(l’1 +ﬂnj)7

y asi tenemos un polinomio ménico con coeficientes racionales cuyas raices son
los elementos —f;;, luego son algebraicos.
El cuerpo Q({ﬂij}) es una extensién finita de Q, luego podemos identificarlo
con un subcuerpo de C, es decir, con un cuerpo numérico, y F factoriza en él.
|

Una forma de tipo N(zja1 + -+ + z,c,.) no tiene por qué ser irreducible
en el anillo Q[xy,...,2,]. Por ejemplo, en el cuerpo K = Q(\/?, \/5) se tiene
que N(zv2 + yv3) = (22® — 3y?)%. Desgraciadamente poco podemos decir en
general sobre formas reducibles, pues sus factores se comportan independien-
temente y la teoria de cuerpos no es de gran ayuda. Por ejemplo, de nuestro
andlisis de las formas cuadraticas binarias en la seccién anterior se deduce que
una forma cuadratica es reducible en Q[x,y] si y sélo si su discriminante es
cuadrado perfecto, y ese caso tuvo que ser estudiado aparte.

Nuestra teoria se aplicard satisfactoriamente a formas factorizables irredu-
cibles, caracterizadas por estar definidas por generadores de K.

Teorema 1.8 Sea un cuerpo numérico K = Q(aa,...,a,). Entonces la forma
F(zy,...,2.) = N(x1 + 2200+ - -+ 2) es irreducible en Q[xq, ..., 2z,] y toda
forma factorizable irreducible en Qx1,...,x,] es equivalente a un mailtiplo por
una constante de una forma de este tipo.

DEMOSTRACION: Supongamos que F = GH, donde G, H € Q[z1,...,z,].
Por definicién

F = (z1 + x901(ag) + -+ + zp0q (ozr)) _ (1’1 + xoop(ag) + -+ xran(ar)).

Cada forma L; = x1 + x90;(ag) + - - - + x0;(,) divide a G 0 a H. Digamos
que L; divide a G, o sea, G = L1 M. Aplicando el monomorfismo o; y teniendo
en cuenta que G tiene los coeficientes racionales llegamos a que G = L;o;(M),
o sea, todas las formas L; dividen al polinomio G.

Como ag, ..., q, generan K, si dos monomorfismos coinciden sobre ellos es
que son iguales. De aqui se sigue que las formas L; son distintas dos a dos, y
como el coeficiente de x; es 1 en todas ellas, no pueden diferenciarse en una
unidad, es decir, son primas entre si. Consecuentemente su producto, o sea, F
divide a G. Esto implica que H es una constante, luego F es irreducible.
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Si F*(z1,...,2,) es una forma irreducible factorizable de grado n, por el
teorema 1.5 podemos suponer que el coeficiente de x} es no nulo, y entonces F*
factoriza como

F*=A(x1 + Bigxe + -+ - + Biry) - - (1 + Brata + - -+ + Bnry).

Consideremos el cuerpo K = Q(f12,...,01,) v la forma irreducible F =
N(zy + Biaxa + - - + Biray).

Tenemos que la forma (214 Frox2+- - -+ f1,rx,) divide a F'y a F*. Aplicando
los monomorfismos de K obtenemos que todos los factores de F' dividen a F*
y en la prueba de la parte anterior hemos visto que son primos entre si, luego
F divide a F*. Como F* es irreducible ha de ser un miltiplo de F' por una
constante. [

1.8 Conclusion

El resto de este libro estd dedicado a desarrollar las técnicas algebraicas y
analiticas que permiten abordar los distintos problemas que hemos citado en
este breve recorrido por la teoria de ntimeros del siglo X7X. Encontraremos
un método para resolver las ecuaciones diofanticas del tipo estudiado en las
secciones anteriores, conoceremos la teoria de Gauss sobre formas cuadraticas,
incluyendo la ley de reciprocidad, determinaremos los enteros que son sumas
de dos, tres y cuatro cuadrados, probaremos los resultados mas importantes de
Kummer sobre el teorema de Fermat, asi como el teorema de Dirichlet sobre
primos en progresiones aritméticas. Todo ello lo obtendremos desde el marco
de la teoria general de cuerpos numeéricos, que fue desarrollada por Dedekind
a finales del siglo XIX generalizando y unificando los razonamientos de sus
antecesores. Fxcepcionalmente haremos una incursiéon en la teoria moderna.
Demostraremos el teorema de Hasse Minkowski sobre clasificaciéon de formas
cuadraticas, con el que obtendremos, si no la iltima palabra, si una vision
bastante profunda de la ley de reciprocidad cuadrética.

El ultimo capitulo contiene algunos resultados de la teoria de nimeros tras-
cendentes. Concretamente probamos el teorema de Lindemann—Weierstrass,
que generaliza las pruebas de trascendencia de e y 7, y el teorema de Gelfond—
Schneider, que resuelve una parte del séptimo problema de Hilbert. La teoria
de ntimeros trascendentes es mucho més ardua que la de ntimeros algebraicos,
y en muchas ocasiones requiere a ésta como herramienta a un nivel mucho més
elevado que el de este libro. Sirvan los ejemplos presentados como una pequena
y parcial muestra de sus técnicas.



Capitulo II

Cuerpos numeéricos

El estudio de los cuerpos numéricos esta en la base de la teoria algebraica de
numeros. Toda la teoria que vamos a desarrollar resulta especialmente sencilla y
elegante cuando se aplica al caso de los cuerpos cuadrdticos, es decir, los cuerpos
numéricos de grado 2. Comencemos describiendo estos cuerpos.

Si K es un cuerpo cuadratico, la teoria de Galois nos da que tiene un elemento
primitivo, es decir, existe un ¢ € K tal que K = Q({). Entonces polmin ¢ tiene
grado 2. MultiplicAndolo por una constante obtenemos un polinomio ax?+bzx+c
con coeficientes enteros con raiz ¢ y tal que a # 0. Si llamamos D = b? — 4ac,
entonces ( = %, y es claro que K = Q(\/E)

El nimero D no puede ser un cuadrado perfecto, o de lo contrario K = Q y

su grado serfa 1. Digamos que D = m?2d, donde d es libre de cuadrados (quiza
d = —1). Entonces VD = m\/d y es evidente que K = Q(\/E)

En resumen, todo cuerpo cuadratico es de la forma Q(\/& ) para un entero d
libre de cuadrados. Sus elementos son de la forma Q(Vd) = {a+bVd | a,b € Q}.

Pronto veremos que si d # d’ en estas condiciones, entonces los cuerpos que
determinan son distintos.

En lo sucesivo, cuando digamos que Q(\/E) es un cuerpo cuadratico se

sobrentendera que d es un entero libre de cuadrados. Si d < 0 se entiende que
Vd es el nimero complejo v/—d .

2.1 Enteros algebraicos

Puede considerarse que el primer paso en la construccién de la teoria alge-
braica de nimeros moderna lo dio Dedekind al definir los enteros algebraicos.
Estos permiten desarrollar una teorfa general que recoja como casos particulares
los resultados cldsicos sobre enteros cuadraticos (como son los enteros de Gauss)
o enteros ciclotémicos. En general, los enteros algebraicos juegan el mismo pa-
pel respecto a los nimeros algebraicos que los enteros ordinarios respecto a los
numeros racionales.

19
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Definiciéon 2.1 Un ntimero complejo es un entero algebraico si y sélo si es la
raiz de un polinomio ménico con coeficientes enteros.

Llamaremos A al cuerpo de todos los nimeros algebraicos y E al conjunto
de todos los enteros algebraicos (que, como pronto veremos, es un anillo). Cla-
ramente E C A.

Teorema 2.2 Un numero algebraico a es un entero algebraico si y solo si
polmina € Z[x].

DEMOSTRACION: Una implicacién es obvia. Supongamos que a es un entero
algebraico y sea p(x) € Z[z] un polinomio ménico tal que p(a) = 0. Sea ¢(x)
un factor irreducible de p(z) en Z[x] tal que ¢(a) = 0. Existe un polinomio
r(z) € Z[z] tal que p(z) = g(x)r(xz). Como el producto de los coeficientes
directores de ¢g(z) y r(x) debe ser igual al coeficiente director de p(z) que es
1, el coeficiente director de g(x) debe ser £1. Podemos exigir que sea 1 y
asf ¢(z) es un polinomio ménico irreducible en Z[z] del que a es rafz. Por el
criterio de irreducibilidad de Gauss, ¢(x) también es irreducible en Q[z], luego
¢(z) = polmina € Z[z]. n

Como el polinomio minimo de un nimero racional r es z — r, es obvio ahora
que un numero racional es un entero algebraico si y sélo si es un entero. Las
propiedades béasicas de los enteros algebraicos se deducen del teorema siguiente.

Teorema 2.3 Un numero complejo ¢ es un entero algebraico si y solo si el
anillo Zlc] = {q(c) | q(x) € Z[z]} es un Z-mddulo finitamente generado. En tal
caso dicho mddulo es libre de rango |Q(c) : Q.

DEMOSTRACION: Supongamos que ¢ es un entero algebraico. Entonces
p(c) = 0, donde p(z) es un polinomio ménico con coeficientes enteros y de
grado n. Veamos que

Zle)={(c"|m=1,...,n—1). (2.1)

Un elemento arbitrario de Z[c| es de la forma ¢(c¢), donde g(x) es un polinomio
con coeficientes enteros. Dividimos ¢(x) = p(z)u(x) 4+ r(x), donde u y r tienen
ambos coeficientes enteros y el grado de r es menor que n. Entonces resulta que
q(c) = r(c), luego pertenece al miembro derecho de (2.1), y la otra inclusién es
obvia. De hecho el generador (1,c,...,c" ') es una base, pues una combinacién
lineal nula es de la forma r(c) = 0, con r(x) € Z[z] de grado menor que n, luego
concluimos que r = 0.

Supongamos ahora que Z[c] es finitamente generado. Digamos que admite
n generadores vy, ..., v,. Cada v; es un polinomio en ¢ con coeficientes enteros.
Sea m mayor que el grado de cualquiera de dichos polinomios.

Entonces ¢™ se expresa como combinacién lineal con coeficientes enteros de
los v;, luego en definitiva ¢™ = ¢(c), con ¢(x) € Z[z] de grado menor que m. La
ecuacion ¢™ — ¢(c¢) = 0 justifica que ¢ es un entero algebraico. L]

Con esto estamos en condiciones de probar lo que habiamos anunciado:
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Teorema 2.4 FEl conjunto E de los enteros algebraicos es un subanillo de A.

DEMOSTRACION: Sean c, d € E. Hay que probar que ¢+ d y cd estéan en E.
Sea {v1,...,v,} un generador de Z[c] y sea {wy,...,wy,} un generador de Z[d).
Sea M el Z-médulo generado por los todos los productos v;w;.

Todo ¢" se expresa como combinacion lineal con coeficientes enteros de los
v; y todo d® se expresa como combinacién lineal con coeficientes enteros de los
wj. Al multiplicar estas expresiones obtenemos una expresién de ¢"d® como
combinacion lineal con coeficientes enteros de los generadores de M, luego cada
c'd® e M.

En particular, Z[cd] C M, luego es un Z-médulo finitamente generado (todo
submédulo de un Z-mdédulo finitamente generado es finitamente generado). Por
el teorema anterior cd € E.

Al desarrollar (¢ + d)* obtenemos una combinacién lineal con coeficientes
enteros de elementos de la forma ¢"d®, que estdn en M, luego Z[c+d] C M y
también se cumple que ¢+ d € E. n

Del mismo modo que todo nimero racional es cociente de dos niimeros en-
teros, todo nimero algebraico es cociente de dos enteros algebraicos. En efecto:

Teorema 2.5 Para cada c € A eziste un entero no nulo m tal que mc € E.

DEMOSTRACION: Sea polmine = 2™ 4+ a,_12" '+ - -+ a1x + ap. Sea m el
producto de los denominadores de todos los coeficientes no nulos de p(x).
Entonces m™(c"” + ap_1c" "1+ -+ ajc+ag) = 0, luego

(me)™ + ap—1m(me)" "t + -+ aym™  (me) + ap = 0.

Por lo tanto, ™ + anp_1ma™ ' + - + aym™ 'z + ay es un polinomio ménico
con coeficientes enteros del cual es raiz mec. [

Desde el punto de vista de la teoria algebraica de niimeros, los enteros usuales
son solo un caso particular de los enteros algebraicos. Por ello es costumbre
reservar la palabra “entero” para referirse a los enteros algebraicos. Nosotros
seguiremos esta costumbre en lo sucesivo y por ello a los elementos de Z los
llamaremos “enteros racionales”, pues ciertamente son los enteros (algebraicos)
que ademads son nimeros racionales.

Ejemplo Al trabajar con enteros algebraicos podemos permitirnos simplificar
los calculos usando aproximaciones racionales sin més precauciéon que vigilar
que los errores de redondeo no lleguen a media unidad, con lo que pueden ser
compensados al final tomando el entero mas proximo al resultado. Como ilus-
tracién consideremos una raiz o del polinomio z3 + 4z + 1. Obviamente es un
entero, luego también lo es 2 + . Supongamos que queremos conocer el poli-
nomio minimo de éste ultimo. Una forma de hallarlo es buscar aproximaciones
racionales de los tres conjugados de «, a saber:

o = —0,246266, ap =0,123133 +2,01134 ¢, a3 =0,123133 —2,01134 4,



22 Capitulo 2. Cuerpos numéricos

y después calcular
(z—2—af)(z—2—a3)(z—2-a3) = #°+2,000012° —42—9,00003 2, 1684-10~”i.

Evidentemente el polinomio buscado es polmin(2 + o?) = 23 + 222 — 4z — 9.
Podriamos haber llegado al mismo resultado mediante un calculo algebraico
exacto, pero si disponemos de un ordenador esta técnica resulta mucho mas
rapida y eficiente. Se puede emplear igual para calcular normas, trazas, etc.

2.2 Discriminantes

Completamos los requisitos algebraicos de nuestra teoria estudiando los dis-
criminantes de bases de cuerpos numéricos. En general, si K es un cuerpo
numérico, la traza Tr : K — Q determina una forma bilineal simétrica

KxK — Q
(@.p) = Tr(ap)

Dada una base {f1,...,8,} de K, la matriz de la forma en esta base es
A= (Tr(ﬁzﬂj)). Si llamamos o1, . .., 0, alos monomorfismos de K, es decir, los
monomorfismos o : K — C, esta matriz puede descomponerse como producto

A= (0k(8)) 1. (01(8))) -

Definicién 2.6 Llamaremos discriminante de una base B = {f1,...,0,} de
un cuerpo numérico K al nimero

2
AlB] = Alfr, .. 8] = det(Tr(8:;)) = (det(0:(5;)) ) -
Notar que el cuadrado hace que el valor del discriminante no dependa del orden

de los elementos de la base o del de los monomorfismos.

En particular, si ¢ es un elemento primitivo de K, las potencias 1, ¢, ..., (" !
forman una base de K. Por brevedad escribiremos A[¢] = A[1,¢, ..., ¢" 1.

Los discriminantes constituyen una herramienta muy poderosa para traba-
jar con cuerpos numéricos. El teorema siguiente recoge sus propiedades més
importantes.

Teorema 2.7 Sean B y C dos bases de un cuerpo numérico K.
1. A[B] € Q y A[B] #0.

2. Si Dg es la matriz cuyas filas son las coordenadas de los elementos de B
respecto de la base C, entonces A[B] = |DG2A[C].

3. Si los elementos de B son enteros, A[B] € Z y A[B] = 0,1 (méd 4).
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DEMOSTRACION: La propiedad 2) es un hecho general sobre formas bilinea-
les. Es obvio que los discriminantes son ntimeros racionales. Para probar que
son no nulos basta verlo para una base en particular (con esto probamos que
la forma bilineal determinada por la traza es regular). Consideremos concreta-
mente {1,(,...,(" 1}, donde ¢ es un elemento primitivo de K. Para esta base
el determinante que aparece es un determinante de Vandermonde

Al¢] = det(03(¢7 1) = det(o3(¢) )% = I (o500 - ai(¢))7,

1<i<j<n
y como los n conjugados de ¢ son distintos, el determinante es no nulo.

Es obvio que los conjugados de enteros son enteros, luego las trazas de los
enteros son enteros racionales, y asi la primera parte de 3) es clara.

Sea B = {f1,...,08n}. Sea p uno de los monomorfismos de K. Llamemos
A= (ai(ﬁj)). El determinante de A es una suma de productos de la forma

:|:O'7-(1)(/81) *O0r(n) (ﬂn)7

donde 7 € ¥, el grupo de las permutaciones de n elementos. Si le aplicamos p
obtenemos un término de la forma

ip(O—T(l)(ﬂl)) e p(O—T(n)(ﬂn))'

Ahora bien, cada monomorfismo o;p ha de ser un o,;), para cierto indice p(i)
(y ahora estamos llamando p a una permutacién de {1,...,n} inducida por el
automorfismo p). Por lo tanto la imagen por p del producto es

+0,:(1)) (B1) - Tp(r(n)) (Bn),

es decir, el sumando del determinante correspondiente a la permutacién 7p.

Si (la permutacién inducida por) p es una permutacién par entonces p envia
sumandos con signo positivo a sumandos con signo positivo y sumandos con
signo negativo a sumandos con signo negativo, mientras que si p es impar en-
tonces intercambia los sumandos positivos con los negativos. En otras palabras,
si llamamos respectivamente P y N a la suma de términos positivos y negativos
(sin el signo) del determinante de A, tenemos que det A = P — N y o bien
p(P) =Py p(N)=N,obien p(P) =Ny p(N) = P.

En cualquier caso p(P+ N) =P+ N y p(PN) = PN, para todo automor-
fismo p, luego concluimos que P+ N, PN € Q. Adem4s son enteros algebraicos,
luego estan en Z. Finalmente,

A[B]=(P—-N)>=(P+N)?>—4PN = (P+ N)?>=0,1 (méd 4),
pues todo cuadrado es 0 o 1 médulo 4. n

En la prueba anterior hemos visto que los discriminantes asociados a ele-
mentos primitivos son especialmente simples de manejar debido a que son el
cuadrado de un determinante de Vandermonde. Este hecho también simplifica
enormemente su calculo practico.
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Teorema 2.8 Sea K = Q(¢) un cuerpo numérico y p(x) = polmin . Entonces

Al = ()" NP (0),
donde p'(x) es la derivada formal de p(z) y n es el grado de K.

DEMOSTRACION: Segin hemos visto en la prueba del teorema anterior

2
A= JI (050 —au(0)" (2.2)
1<i<j<n
Por otro lado, p(z) = [[/;(z — 0i(¢)), vy se demuestra facilmente (por
induccién sobre n) que

luego

P (05(0) = [[(e:(0) = 0i(¢))  paraj=1,....n.
=
Multiplicando todas estas ecuaciones obtenemos
N@'(©) = [T oi(@'©) = [T#(03) = T (0(0) = 0s(0))-
j=1 i,j=1
i#j

Jj=1

2

Agrupamos los pares (0;(¢) —0:(¢)) (0:(¢) = ;(¢)) = —(0;(¢) = 0i(¢))". El

numero de factores (—1) que aparecen es n(n — 1)/2, luego teniendo en cuenta
(2.2) queda N(p'(¢)) = (=1)""~D/2A[(], y de aquf se sigue el teorema. =

Ejercicio: Sea K = Q(\/&) un cuerpo cuadratico. Calcular A[l, \/E] directamente
y mediante el teorema anterior.

Ejercicio: Sea w una raiz p-ésima primitiva de la unidad para un primo impar p.
Probar que Afw] = (_1)(P71)/2ppf2_

Ejemplo Si el polinomio f(x) = 2® + ax + b € Q[z] es irreducible y a es una
raiz, entonces Ala] = —27b% — 4a3.
En efecto, si o’ es cualquier conjugado de «, entonces
32 +aae —2aa’ —3b

2
fld)=3d"+a= o, =

Multiplicamos para los tres conjugados de «, teniendo en cuenta que su
producto es —b. Asi,

CL3 _ Cl3
Alo] = (N @) = § TT(-200’ = 30) = - TG~ a) =5 7 (<52 ).

Desde aqui se llega a la férmula indicada sin mds que operar. (Hemos supuesto
a # 0, pero si a = 0 es més sencillo.) n
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Ejercicio: Probar que si 2° +az +b € Q[z] es irreducible y « es una raiz, entonces
Ala] = 5%b* 4 2845,

Definicién 2.9 En el teorema 2.7 hemos visto que la forma bilineal asociada a
la traza de un cuerpo numérico K es regular, por lo que induce un isomorfismo
entre K y su espacio vectorial dual. Concretamente, cada o € K se corresponde
con la aplicacién lineal K — Q dada por § — Tr(af). Si B ={ai,...,a,} es
una base de K, podemos considerar su base asociada en el espacio dual de K, que
a través del isomorfismo citado se corresponde con una nueva base {a7,...,ak}
de K. Esta base se llama base dual de B, y esta caracterizada por que

) 1 sii=j
Tf(aiaj):{ 0 siij

Ejemplo Sea « una raiz del polinomio z3 + 4z + 1. Una base del cuerpo Q(«)
la forman obviamente los nimeros {1,a,a?}. Vamos a calcular la matriz en
dicha base de la forma bilineal asociada a la traza. En la pagina 22 tenemos los
conjugados de . Si por ejemplo queremos calcular Tr(a - «) calculamos

o2 + a3 + ai = —8,00001

con lo que Tr(o - @) = —8. Similarmente se calculan las demds trazas, y el
resultado es
3 0 -8
A= 0 -8 3
-8 3 32
El discriminante es AJa] = —283 y ademas
1 265 24 64
= s | 2 329
B\ 64 9 24

Es facil ver entonces que la base dual de la dada es

265 24 64

283 23" T 33
2 32 9
283~ 283% " 383
64 9 2

283 T 283% T 33

2.3 Modbdulos y 6rdenes

Finalmente estamos en condiciones de estudiar de forma sistematica algunos
conceptos que nos surgieron en el capitulo anterior, en relacién con el estudio de
las ecuaciones definidas mediante formas. Recordemos la definicién de médulo:
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Definicién 2.10 Un mddulo de un cuerpo numérico K es un subgrupo aditivo
de K finitamente generado.

Vimos en el capitulo anterior que los médulos estdan asociados a clases
de equivalencia de formas: Si ag,...,a, generan un mdédulo M, entonces la
ecuacion diofantica

N(zio1 + -+ 2p0) = ¢ (2.3)
tiene por soluciones a (las coordenadas de) los elementos de M de norma c¢. Un
generador distinto da lugar a una forma equivalente.

Si M es un médulo, es obvio que para todo o € M y todo m € Z, se cumple
ma = (0 siy sélosim =00 a=0, pero esto significa que M es libre de torsion,
y los Z-mddulos finitamente generados libres de torsién son libres, o sea, tienen
base, y todas las bases tienen el mismo nimero de elementos, llamado rango de
M (rang M).

Es inmediato que un conjunto finito de elementos de K es independiente
sobre Q si y sélo si es independiente sobre Z (una combinacién lineal en Q se
convierte en una combinacién lineal en Z multiplicando por un entero no nulo).
Consecuentemente si M es un médulo de K, rang M < n (el grado de K).

Los médulos de rango n se llaman mddulos completos. Si M es un médulo
completo, entonces una base de M como mddulo es también una Q-base de K.

Si By B’ son dos bases de M, entonces la matriz de cambio de base tiene
coeficientes enteros, al igual que su inversa, luego su determinante ha de ser
+1. El teorema 2.7 nos da entonces que A[B] = A[B’], luego podemos definir
el discriminante de M como el discriminante A[M] de cualquiera de sus bases.

Definicién 2.11 Si M es un médulo de K y a € K, a # 0, definimos
aM = {am |m e M},

que claramente es un médulo del mismo rango. Diremos que dos médulos M y
N son similares si existe un o € K, a # 0 tal que N = aM.

La similitud es una relacién de equivalencia entre los médulos de K.

Ejercicio: Comprobar que si F' es una forma asociada a un médulo de la forma oM,
entonces F' = N(a)F’, donde F’ es una forma asociada al médulo M.

Este ejercicio justifica que si estudiamos un médulo para resolver una deter-
minada ecuacién dioféntica de tipo (2.3) podemos sustituirlo por otro similar.

Observar que si a,...,a, son no nulos y generan un médulo completo M,
entonces los ndmeros 1,as/aq, ..., /a1 generan el médulo similar (1/aq)M
y, en particular,

K =Q(az/aq,...,a,/a;).

Por el teorema 1.8, la forma asociada a este ultimo generador es irreducible,
luego también lo es la forma N(z1+- - -+x-a.), pues se diferencia de la anterior
en una constante. En resumen, las formas asociadas a médulos completos son
irreducibles. Llamaremos formas completas a las formas asociadas a mdédulos
completos. Estas son exactamente las formas a las que la teoria que vamos a
desarrollar se aplica con éxito.
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Ejemplo Consideremos la ecuacién 22 4 5xy + 2y? = 2. Siguiendo la técnica
del capitulo anterior podemos factorizarla como

Por lo tanto la ecuacion estd asociada al médulo completo

M:<1’5+T\/ﬁ>’

correspondiente al cuerpo numérico Q(\/ 17). Las soluciones de la ecuacion se
corresponden con los elementos de M de norma 2. Por ejemplo, una solucién es
evidentemente (z,y) = (0, 1), correspondiente al segundo generador.

Con esto no hemos hecho sino reformular el problema. Veamos una minima
muestra de las ventajas del nuevo enfoque. Consideremos el niimero

€ =33+ 8/17.

Sencillos calculos nos dan que N(e) = 1 y que eM C M. Parte de la teorfa que
tenemos por delante dara cuenta de cémo se puede llegar a un nimero con estas
propiedades. De momento veamos el interés de estos hechos. Ahora es claro
que los ntimeros

w5+ VIT

€
estan todos en M y tienen norma 2, luego nos proporcionan nuevas soluciones
de nuestra ecuacién. Por ejemplo,

1 1 1 I
€5+2\/_7: 30 +273¢_7:_32+735+2¢_7

paran=1,2,3,...

nos lleva a la solucién (x,y) = (—32,73).

De este modo hemos encontrado infinitas soluciones de la ecuacién. Esto es
un fragmento de la técnica que usaremos para resolver el caso general: veremos
que todas las soluciones pueden encontrarse de este modo a partir de un niimero
finito de soluciones bésicas.

Planteando esto en general, una solucién de (2.3) esta determinada por un
elemento m en un médulo M tal que N(m) = ¢. Si € es un elemento de K tal
que em € M y N(e) = 1, entonces N(em) = ¢, luego em es otra solucién. Esto
nos lleva a la definicién de coeficiente de un maédulo.

Definicién 2.12 Sea M un médulo completo de un cuerpo numérico K. Di-
remos que a € K es un coeficiente de M si aM C M. Llamaremos O,; al
conjunto de todos los coeficientes de M. Es claro que Ojs es un subanillo de K.
Lo llamaremos anillo de coeficientes de M.
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Notar que para que « sea un coeficiente de M basta con que am € M cuando
m recorre una base de M.

En estos términos, los elementos de O, de norma 1 satisfacen las propiedades
que pediamos a € en el ejemplo anterior. Para localizarlos probaremos que las
unidades de Oj; son precisamente los elementos de norma +1 y asi el problema
se reducird parcialmente al problema algebraico de determinar las unidades de
un anillo. Primero necesitamos el siguiente hecho bésico sobre Oyy.

Teorema 2.13 Sea M un mddulo completo de K. Entonces Oy es también
un mddulo completo.

DEMOSTRACION: Si v € M es no nulo, entonces vyOy; C M y claramente
es un subgrupo abeliano de M, luego es un médulo. Asf, Oy = vy 1(7Oy) es
también un moédulo. Veamos que es de rango maximo.

Sea myq,...,m, una base de M. Si o € K es no nulo existen nimeros racio-
nales a;; tales que am; = Z?’Zl a;;m;j. Sea c el producto de los denominadores
de los a;;. Entonces c es un entero racional no nulo y cada ca;; € Z, luego

caiym; € M,y asi caom; € M. Como los elementos my,...,m, son una base de
M podemos concluir que ca € Oyy.

Ahora aplicamos esto a una Q-base de K, digamos ay, . . ., &y, y encontramos
nimeros racionales no nulos ¢y, . . ., ¢, tales que ciaq, . .., cpa, € Oy, luego Opy

contiene n elementos linealmente independientes, por lo que surango esn. =

Definicién 2.14 Diremos que O es un orden de un cuerpo numérico K si es un
médulo completo de K que ademés es un anillo unitario.

El teorema anterior prueba que el anillo de coeficientes de un médulo com-
pleto de K es un orden de K. Todo orden es el anillo de coeficientes de un
médulo completo (al menos de si mismo).

Los érdenes son moédulos muy especiales. Por lo pronto su estructura de
anillo nos permite argumentar en términos de divisibilidad, unidades, ideales,
etc. Otra caracteristica muy importante es que los elementos de un orden han de
ser enteros. Recogemos éste y otros hechos importantes en el préximo teorema.

Teorema 2.15 Sea O un orden de un cuerpo numérico K de grado n.

1. Si a € O entonces « es un entero y N(a), Tr(a) son enteros racionales.
Por lo tanto tenemos aplicaciones N : Q0 — Z y Tr : O — Z.

2. Sia,f €0 yalpl, entonces N(a) | N(B). En particular si o y 3 son
asociados N(a) = £ N(5).

3. Sia yb son enteros racionales, entonces a | b en Z si y sélo sia | b en O.
4. Si o € O entonces a | N(a) (en Q).

5. Un ndmero € € O es una unidad si y sdlo si N(e) = 1.
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DEMOSTRACION: 1) Si a € O, entonces Z[a] C O (porque O un anillo),
luego luego Z[a] es finitamente generado (porque O es un médulo), luego por el
teorema 2.3 concluimos que « es entero.

Los conjugados de enteros son enteros (porque tienen el mismo polinomio
minimo) y por lo tanto N(«) y Tr(«) son enteros (son el producto o la suma de
los conjugados de «). Ademds son racionales.

2) Es evidente, por la propiedad multiplicativa de la norma.
3) Sialben O, entonces a/b es entero y racional.

4) Supongamos « # 0 y consideremos el polinomio

p(x) = (:E — al(a)) (x - on(a)).

Los automorfismos de la clausura normal de K permutan los factores de
p(x), luego sus coeficientes son ndmeros racionales. Como « y sus conjugados
son enteros, también lo seran los coeficientes de p(x), es decir, son enteros
racionales.

El polinomio p(x) es ménico y su término independiente es + N(«). Por
lo tanto podemos despejar N(«)/« como combinacién de potencias de « con
coeficientes enteros racionales. Consecuentemente N(a)/a € O.

5) Si N(e) = £1 entonces € | N(e) = £1, luego € es una unidad. Si € es una
unidad entonces et € O, y N(¢) N(e71) = N(1) = 1, luego N(¢) = +1 (pues los
dos factores son enteros racionales). L]

Profundicemos ahora en la relacién entre un médulo y su anillo de coeficien-
tes. En primer lugar tenemos lo siguiente:

Teorema 2.16 Sea K un cuerpo numérico. Entonces:
1. Dos mddulos completos similares tienen el mismo anillo de coeficientes.

2. Si M es un mddulo completo, existe un m € Z no nulo tal que mM C Opy.

DEMOSTRACION: 1) es evidente.

2) Sea myq,...,my, una base de M y aq,...,a, una base de O,;. Existen
nimeros racionales a;; tales que m; = Z?:l a;jo;. Sim es el producto de los
denominadores de los a;; se cumple que mm,; € Oy, luego mM C Oyy. n

Asi pues, todo médulo es similar a otro contenido en su anillo de coeficientes,
pero es claro que si M C Q) entonces M es un ideal de Op;. Por lo tanto desde
un punto de vista tedrico podemos limitarnos a trabajar con ideales de 6rdenes
en lugar de médulos. El reciproco también es cierto: todos los ideales de un
orden son moédulos completos.

Teorema 2.17 Sea O un orden de un cuerpo numérico K. Los ideales no nulos
de O son mddulos completos (aunque su anillo de coeficientes no es necesaria-
mente Q).
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DEMOSTRACION: Sea I un ideal no nulo de O. Claramente I es un médulo
(todo Z-submédulo de un Z-mdédulo finitamente generado es finitamente gene-
rado). Sea a € I no nulo. Entonces O C I es un médulo similar al médulo
completo O, luego es un médulo completo. El rango de I ha de ser mayor o
igual que el de aQ, que es el méximo, luego I es un moédulo completo. ]

Volvamos al problema de las ecuaciones diofanticas definidas por formas com-
pletas. Ya sabemos que es equivalente a encontrar todos los elementos de una
norma dada ¢ en un médulo completo M. También hemos visto que si tenemos
un m € M con N(m) = ¢, entonces obtenemos nuevas soluciones considerando
nimeros de la forma em, donde, en los términos que hemos introducido, € es
una unidad de Qs de norma 1. Conviene introducir una definicién:

Definicion 2.18 Dos elementos x e y de un médulo completo M son asociados
si existe una unidad € € Q) tal que = = ey.

Teniendo en cuenta que un orden es su propio anillo de coeficientes, resulta
que cuando M es un orden este concepto de asociacién se corresponde con
el usual en teoria de anillos: dos elementos de un anillo son asociados si se
diferencian en una unidad.

Asi, resolver una ecuacién diofdntica asociada a una forma completa se re-
duce a encontrar un conjunto maximal de elementos no asociados de una norma
dada junto con todas las unidades de norma +1. El planteamiento es razonable
porque ahora probamos que tal conjunto maximal es siempre finito, es decir,
todos los niimeros de una norma dada se pueden obtener a partir de un niimero
finito de ellos multiplicando por unidades de norma 1.

Teorema 2.19 Un mddulo completo contiene sélo un nimero finito de elemen-
tos mo asociados de una norma dada.

DEMOSTRACION: Lo probamos primero para un orden O.
Sea o, ..., q, una base de O y sea ¢ > 1 un numero natural. Cada elemento
de O es congruente médulo ¢ con un elemento de la forma

Ty + -+ Ty con 0 <x; <ec.

Por lo tanto |0/(c)| < ™.

Sia = (mdd ¢) y |[N(a)| = |N(B)| = ¢, entonces o — 8 = ¢f, para un
d €0, luego a/B =1+ (¢/B)d € O, por el teorema 2.15, pues 5 | N(8) = +te.

Esto significa que 3 | a y andlogamente « | 3, luego o y 8 son asociados.
Asi pues, en O hay a lo sumo ¢" elementos no asociados de norma c.

Los elementos de norma +1 son unidades, luego todos son asociados.

Si M es un moédulo completo, existe m € Z no nulo tal que mM C Op;. Si
ai, ..., o, son elementos no asociados en M de norma ¢, entonces may, . .., Mo,
son elementos no asociados en Oy de norma m™c, luego no puede haber méas
que un nuimero finito de ellos. ]
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Es importante senalar que la prueba del teorema anterior no es constructiva,
es decir, no nos da un método para encontrar un conjunto maximal de elementos
no asociados de una norma dada. Mas adelante daremos una version efectiva
de este resultado. Por el momento hemos conseguido perfilar nuestro objetivo:

Para resolver el problema de las ecuaciones diofanticas determinadas
por formas completas hemos de dar un algoritmo para determinar un
conjunto maximal (finito) de elementos no asociados de una norma
dada en un médulo completo y otro para calcular un generador del
grupo de las unidades de norma +1 de un orden numérico (que
también veremos que es finito).

Terminamos la seccién con un resultado fundamental a la hora de trabajar
con 6rdenes numéricos. Partimos de unas consecuencias elementales de 2.7.

Teorema 2.20 Sea K un cuerpo numérico.
1. Si O es un orden de K, entonces AQ] € Z.

2. Si O C O son dos dérdenes de K, entonces A[O] = m?>A[Q’], para cierto
natural m. Ademds m =1 si y sélo st O = O'.

DEMOSTRACION: 1) es consecuencia inmediata del teorema 2.7.

2) Los elementos de una base de O se expresan como combinacién lineal
de los elementos de una base de O’ con coeficientes enteros racionales. Por
lo tanto la matriz D de cambio de base tiene coeficientes enteros racionales
y su determinante es un entero racional. Por el teorema 2.7 concluimos que
A]O] = |D|?A[O’]. Ademis los érdenes coinciden si y sélo si D es de hecho una
matriz de cambio de base en O, lo que sucede si y sélo si |D| = +1. L]

El ultimo apartado del teorema anterior implica que no es posible formar ca-
denas ascendentes de 6rdenes en un cuerpo numérico (esto es falso para médulos:
basta pensar en M C (1/2)M c (1/4)M c (1/8)M C ---).

Asi pues, cada orden estd contenido en un orden maximal por encima del
cual no hay més 6rdenes. Vamos a probar que de hecho todos los 6rdenes de
K estan contenidos en un mismo orden maximal. El teorema anterior nos dice
también que dicho orden tendrd un discriminante menor que el de cualquier otro
orden, y éste va a ser el criterio con el que lo encontraremos.

Definicién 2.21 Llamaremos orden (maximal) de un cuerpo numérico K al
conjunto O = K NE. Claramente es un anillo que contiene a todos los demés
ordenes de K.

No es evidente que Ok sea él mismo un orden. Para probarlo notemos
primero que del teorema 2.5 se sigue inmediatamente que K es el cuerpo de
cocientes de O, as{ como que existe un ¢ € Ok tal que K = Q((), es decir, que
siempre podemos tomar un elemento primitivo que sea entero. Las n primeras
potencias de este elemento primitivo constituyen una base de K formada por
enteros.
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Teorema 2.22 Si K es un cuerpo numérico, entonces Ok es un orden de K
que contiene a todos los ordenes.

DEMOSTRACION: Segiin acabamos de comentar, K tiene una base B for-
mada por enteros. Los discriminantes de estas bases son enteros racionales,
luego podemos tomar una base de K formada por enteros tal que el nimero
natural |A[BH sea minimo. Digamos B = {by,...,b,}. Vamos a probar que
entonces B es una base de O como médulo. Obviamente sus elementos son
linealmente independientes sobre 7Z, pues lo son sobre Q. Basta probar que
generan Og.

Supongamos, por el contrario, que existe un elemento d € Qg que no

pertenezca al submédulo generado por {by,...,b,}. Como en cualquier caso
{b1,...,b,} es una base de K, se cumplird que

d=aiby + -+ apby, (24)
para ciertos nimeros racionales aq, ..., a, no todos enteros. Podemos suponer

que a; ¢ Z. Seaa; =a+r,donde a € Zy 0 < r < 1. Sustituyendo en (2.4)
obtenemos que

rb1+a2b2+~~~+anbn:d—ab1EOK.

Si llamamos c; a este elemento y ¢; = b; para ¢ = 2,...,n obtenemos una nueva
base C' de K formada por enteros tal que la matriz de cambio de base es

r az as -+ Qp
o 1 0 - 0
pE—| 0 0 1 - 0
o 0o o0 --- 1

Claramente |Dg} =7 y en consecuencia
|ALC]] =r*|A[B]| < |A[B]],

en contra de la eleccién de B. Por lo tanto B es una base de O g como Z-méddulo.
n

Definicién 2.23 Llamaremos discriminante de K a Ag = AlOk] € Z. Una
base entera de K es una base de Qg como médulo.

Asi, si ay, ..., a, es una base entera de K, tenemos que
K = {sma1+--+ana,|al,...,a, € Q},
Ok = {aon+--+apa, |ay,...,a, €7Z}.

En otros términos, los enteros de K son los elementos cuyas coordenadas
son enteras.
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Es importante tener claro que una base de un cuerpo K formada por enteros
no es necesariamente una base entera. Basta pensar que si vy, ..., v, es una
base entera de K, entonces 2v1, ... , v, sigue siendo una base de K formada
por enteros, pero ya no es una base entera, pues v; es un entero algebraico y no
tiene coordenadas enteras respecto a esta segunda base.

En general, si C' es una base de K formada por enteros y B es una base
entera, entonces los mismos argumentos empleados en el teorema 2.20 nos dan
que A[C] = m2A[B], para cierto nimero natural m, de manera que C es una
base entera si y sélo si m = 1. Esto nos da de nuevo que una base entera es
simplemente una base formada por enteros con discriminante minimo, como de
hecho hemos visto en la prueba del teorema 2.22.

2.4 Determinacion de bases enteras

Para encontrar una base entera de un cuerpo numérico K basta dar un
procedimiento para obtener a partir de una base formada por enteros otra base
formada por enteros con discriminante menor, siempre que exista, pues asi,
partiendo de la base formada por las potencias de un elemento primitivo entero,
tras un numero finito de pasos llegaremos a una base de discriminante minimo,
que serd una base entera segun las tltimas consideraciones de la seccién anterior.

Antes de abordar el asunto en general veamos lo que ocurre con los cuerpos
cuadraticos.

Enteros cuadréaticos En K = Q(\/E ) el elemento primitivo v/d es obvia-
mente un entero, que da lugar al orden Z[\/E] ={a+0bVd|a,beZ}, una de
cuyas bases es {1, Vd } Su discriminante vale

SRV

El teorema 2.20 nos da que Ak se diferencia de 4d en un cuadrado. Como
d es libre de cuadrados, si Z[\/E ] no fuera el orden maximal éste tendria que
tener discriminante d. Ahora bien, por el teorema 2.7 esto sélo puede ocurrir si
d =1 (méd 4), pues ciertamente, 4 1 d.

Supongamos, pues, d = 1 (méd 4). Entonces el nimero

1+Vd
o = 2

2

— (—2vd)* = 4d.

cumple
1-d
polmina = 2% — z + — € Z[x],

luego es un entero. El orden, Z[«a] tiene discriminante

1 1 2
Ao =| 1 g 1-ya | =(-Vd) =d
2 2
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Como d es libre de cuadrados concluimos que Z[a] es en este caso el orden
de K.

Si llamamos o = V/d en el caso en que d Z 1 (méd 4) hemos probado que
Ok = Z|[a] en cualquier caso. Es inmediato que para cada niimero natural m # 0
el conjunto O, = Z[ma] = {a + bma | a,b € Z} es un orden de K. Ademds
AJO,,] = m?Ak, pues la matriz de cambio de base entre {1,a} y {1,ma} tiene
determinante m. Esto prueba que los 6rdenes O, son distintos dos a dos. Vamos
a ver que son todos los érdenes de K. Lo probamos en el teorema siguiente,
donde recogemos también los hechos que acabamos de demostrar.

Teorema 2.24 Sea K = @(\/8) un cuerpo cuadrdtico. Entonces

1. O = Z|a], donde

(2.5)

s
2

| VA sid#1 (méd 4)
“= st d=1 (mdd 4)

2. FEl discriminante de K es

Ap — 4d st d# 1 (méd 4)
K71 d sid=1(méd 4)

3. Los ordenes de K son de la forma
Om = ZIma] = {a +bma | a,b e Z}
y el discriminante de O,, es A[O,,] = m?Ag.

DEMOSTRACION: Sélo falta probar que todos los 6rdenes de K son de la
forma descrita.

Si O es un orden de K, sea m el minimo natural tal que existe un elemento
en O de la forma a 4+ ma, con a € Z. Como Z C O, tenemos que ma € O, luego
Om CO.

Si a+ba € O, entonces existen enteros racionales ¢ y r tales que b = mc+r
y 0 <r < m. Claramente (a + ba) — (a + cma) = ra € O, luego por definicién
de m ha de ser r =0, luego a + ba € O,,, vy se da la igualdad. L]

Una consecuencia del teorema anterior es que los cuerpos cuadraticos defini-
dos por diferentes valores de d son cuerpos distintos, pues tienen discriminantes
distintos.

Ejercicio: Probar que el tnico orden de QQ es Z.
Ejercicio: Probar que, en un cuerpo cuadratico, el médulo 207 es un ideal de O2
cuyo anillo de coeficientes es O1.

Queda planteado el problema de decidir, dada una base de un cuerpo K
formada por enteros, si es una base entera o si por el contrario existen bases
con discriminantes menores. Una condicién suficiente para el primer caso es,
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claramente, que el discriminante sea libre de cuadrados, pero esta condicién
no es necesaria, como muestran los cuerpos cuadraticos. El teorema siguiente
proporciona un algoritmo para decidir cudl es el caso y obtener explicitamente
una base con discriminante menor cuando ésta exista. Asi siempre es posible
hallar el orden de un cuerpo en un numero finito de pasos, si bien hay que
advertir que el proceso es demasiado laborioso para llevarlo a la practica (por
lo menos sin la ayuda de un ordenador) en la mayoria de los casos.

Teorema 2.25 Sea K un cuerpo numérico y M C Ok un mddulo completo
con base {aq,...,an}. Si M # Ok, entonces existe un nidmero primo p tal
que p* | A[M] y existen niimeros naturales 1 <t < n y gi,...,g—1 tales que
0<g; <p—1de modo que

oy = (qra1 + -+ gim1ov—1 + o) /p € Ok,
y 81 af es un numero cualquiera que cumpla esto, entonces
M* ={a1,...,00-1,07,0441,...,00)y
es un mddulo que contiene estrictamente a M y A[M*] = A[M]/p?.

DEMOSTRACION: Sea {f31, ..., (3.} una base de O. Sea a; = Y 7_, my;0,
con m;; € Z. Sea m = det(m;;). Entonces A[M] =m?Ag y m # +1. Sea p un
primo que divida a m.

Claramente existen aq,...,a, € Z no todos nulos (méd p) de manera que
Yo aimi; = 0 (méd p). Sea t tal que a; # 0 (mdd p) pero a; = 0 (mdd p)
para i > t.

Entonces ¥ = Y_i_y @i = Y5y D1y aimii B = Y (22:1 am%j) Bj-

Tenemos que p | S0, agmi; y p | o,y aimij, luego p | 35, aimy; y por
lo tanto v = pf para cierto 8 € Og.

Sea a* € Z tal que a;a* = 1 (mé6d p). Definimos paj = a*y—pryo, donde vy se
elige de modo que el coeficiente de a; se reduzca a 1 y los de los «; a sus minimos
(méd p), es decir, af es de la forma indicada en el enunciado y la matriz de cam-

bio de base entre {a,...,an} v {a1,..., 1,0, Qsq1,...,a,} estd formada
por una diagonal de unos excepto la fila i-ésima, que es (%, e g‘p’l , 2%, 0,...,0).

El determinante es 1/p, luego el discriminante de la segunda base es A[M]/p?.
n

La prueba del teorema anterior muestra que en lugar de 0 < ¢g; < p—1
podemos exigir que los g; varien en cualquier conjunto de representantes de las
clases médulo p. A veces es cémodo tomarlos, por ejemplo, entre —(p — 1)/2 y

(p—1)/2.

El ejemplo de Dedekind Como aplicacién del teorema anterior veamos un
famoso ejemplo debido a Dedekind (después veremos por qué es famoso). Es
facil ver que el polinomio 2% + 2 — 2z + 8 tiene una tnica raiz real que no es
entera (racional), y como es ménico concluimos que es irreducible en Q[x]. Sea &
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una de sus raices y consideremos el cuerpo cibico K = Q(¢). Vamos a calcular
el orden y el determinante de K.

Partimos del orden Z[¢], cuyo discriminante vale, segin el teorema 2.8,
Al¢] = —N(a), donde o = 362 + 2¢ — 2. Podemos hacer todos los calculos
tomando aproximaciones racionales de los conjugados de &, pero esta vez vamos
a esbozar cémo se haria un célculo algebraico exacto. Facilmente obtenemos
que

Q=762 -T46-20 y o =496% — 5186 + 1872.

Asf pues, las coordenadas de los vectores 1, a, a2, a® en la base £2,£,1 son
respectivamente (0,0, 1), (3,2, —2), (7, —74,—20) y (49, —518,1872).
Por lo tanto todo se reduce a resolver el sistema de ecuaciones

p(7,—74,-20) + ¢(3,2,—2) + 7(0,0,1) = (49, —518, 1872),

cuyas soluciones son p = 7, ¢ = 0, r = 2012. Esto significa que o® = 7a? +2012,
luego polmin o = 23 — 722 — 2012. El término independiente es el producto de
los tres conjugados de o cambiados de signo, luego N(a) = 2012 = 22 - 503.

Concluimos que A[¢] = —22-503. Segiin el teorema anterior cabe la posibili-
dad de que el 2 pueda ser eliminado. Esto sera asi si alguno de los siete niimeros
siguientes es entero:

1 €& 14€ € £4€ 14 14€+4¢2
2’ 9 2 7 97 2 2 2 '

El lector puede demostrar que 3 = es entero calculando su polinomio
minimo por el mismo método con que hemos calculado el de . Concretamente
se obtiene

&+e?
2

polmin § = &3 — 222 + 3z — 10.

El teorema anterior nos dice que A [1,5, %} = —503, y como es libre

de cuadrados, ha de ser el discriminante de K, o sea, O = Z [f, %} y
Ag = —503. "

Ejercicio: Calcular el orden maximal y el discriminante del cuerpo Q(¢), donde ¢ es
una raiz del polinomio = — z — 1.

Ejercicio: Sean K, K2 y K3 los cuerpos que resultan de adjuntar a Q una raiz de
los polinomios

22 —182z -6, z®—362—78, o z®—54x— 150

respectivamente. Probar que los tres tienen discriminante A = 22 . 3% . 23.
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Cuerpos cubicos puros Introducimos ahora una nueva familia de cuerpos
numeéricos, que proporcionan numerosos ejemplos de interés.

Definicién 2.26 Un cuerpo ciubico puro es un cuerpo numérico de la forma
Q(?/m), donde m es un entero racional que no sea un cubo perfecto (en par-
ticular distinto de 0 y de £1).

Hay que senalar que, al contrario de lo que ocurre con los cuerpos cuadrati-
cos, no todo cuerpo ciibico es de este tipo. Por ejemplo el cuerpo que acabamos
de estudiar.

Tenemos que /m es un ntimero real y polmin /m = 2% —m. Si llamamos w
a una raiz cibica primitiva de la unidad (una raiz de 2% +x + 1) es claro que las
otras raices de 23 —m son los ntimeros imaginarios w~y/m y w? ¢/m. Esto significa
que los monomorfismos del cuerpo Q(S/ﬁ ) son la identidad y las conjugaciones
dadas por o1 (Ym) = wym, o2(Ym) = w?Ym. Observar que los conjugados
de ¥/m no estdn en Q(W), o equivalentemente, que los monomorfismos no
son automorfismos, o que la extensién no es de Galois.

Podemos exigir que m no sea divisible entre ningiin cubo perfecto, pues un
factor cubico puede extraerse de la raiz y eliminarse sin que el cuerpo generado
varie. Entonces, si p es un divisor primo de m, el exponente de p en m ha de
ser 1 0 2. Sea a el producto de los primos que dividen a m con exponente 1y b
el producto de los primos que dividen a m con exponente 2. Entonces m = ab?,
(a,b) =1y a, b son libres de cuadrados.

Notar también que el signo de m es irrelevante, pues el —1 puede introducirse
y extraerse de la raiz, y al multiplicar el generador por —1 no variamos el cuerpo.
Por ello podriamos exigir que m, a y b fueran todos positivos, pero no vamos a
hacer tal cosa, sino que de momento dejaremos los signos indeterminados para
escogerlos méas adelante del modo méas conveniente para los calculos.

Para calcular el orden maximal de un cuerpo cibico partimos del orden
Z[W], con base 1, W, (\?’/W)2 = bm, pero observamos inmediata-
mente que salvo en el caso b = +1 no puede tratarse del orden del cuerpo, ya
que no contiene al entero m.

Por ello pasamos a la base 1,601,605, donde 8, = Vab2, 0 = Va2b. Los
calculos se simplifican bastante si observamos la simetria entre 61 y 65, en el
sentido de que se cumple Q(6;) = Q(6s), 02 = by, 63 = af. Estas férmulas
nos dan la accién de las conjugaciones sobre 61 y 65, a saber

0'1(01) :wé)l, 0'1(02) :w202, 02(91) :w291, 02(92) :wﬂg.

Con ello y un poco de paciencia podemos calcular

16 6

A[1,91,92] =1 w 91 w292 = —27a2b2.
1 w201 w 92

Teorema 2.27 Sea K = Q(61) = Q(62) un cuerpo cibico puro segun la de-
finicion anterior. Entonces una base entera de K la forman 60g,01,0s, donde
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0p = 1 sia # +b (méd 9) (y entonces Ax = —27a%b?) y 0y = (1 + 01 + 62)/3
sia = +b(méd 9) (y entonces A = —3a?b?). En el sequndo caso hay que
escoger los signos de a y b de manera que a = b (méd 9) y su resto mddulo 9
seal, 4 0T.

DEMOSTRACION: Vamos a aplicar el teorema 2.25 a la base 1,01,05. En
primer lugar demostraremos que no es posible eliminar ningin primo p que
divida a ab. Supongamos, por ejemplo, que p | a. Si p se pudiera eliminar
existirfa un entero de la forma o = (u + v0; + 63)/p, o bien a = (u + 61)/2,
donde u y v son enteros racionales entre 0 y p — 1. Trataremos la primera
posibilidad. La segunda es mas sencilla.

Seam = ¢/py L = K(m). Tenemos que ab® = pk, para cierto entero racional
k, luego tomando raices #; = 73, donde 3 = V/k € L y es un entero. Asi pues,
7| 61 en Op. El mismo argumento nos da que 72 | 65 en Op, y por otro lado
ma = u+ vl + 5.

De aqui se sigue que m | u en Oz. Elevando al cubo, p | u® en O y el
cociente es entero y racional, o sea, p | u® en Z, de donde p | u y ha de ser u = 0.

Consecuentemente 72 | v6; en O, y como antes llegamos a que p? | v3ab?
en Z, de donde haciendo uso de que p | a, (a,b) =1y que a y b son libres de
cuadrados, resulta que p | v, luego v = 0.

Ahora concluimos que p | 6 en Or, luego p? | a®b en Z, lo cual es contradic-
torio.

En consecuencia los primos que dividen a ab no pueden eliminarse. La
Unica posibilidad es eliminar el 3, para lo cual es necesario que no divida a ab.
Supongamoslo asi. Segun el teorema 2.25 hemos de comprobar los siguientes
numeros (para aprovechar la simetria ordenamos la base en la forma 61, 65, 1):

01 02 40, + 0, 1 +60; +1 +60, +1 +0; 05 +1
3737 3 73 3 3 3 '
Hemos tomado como representantes de las clases médulo 3 los niimeros —1,
0, 1 en lugar de 0, 1, 2 (ver el comentario tras el teorema 2.25).
Haciendo uso de la simetria y de que podemos elegir el signo de a y b sin

cambiar de cuerpo, podemos limitarnos a estudiar los nimeros
01 6O14+60 146, 1+4+6;+06
3’ 3 3 7 3 '

Por ejemplo, si (—6; + 62)/3 pudiera ser entero, también lo serfa (61 + 63)/3
(tomando —a en lugar de a), mientras que vamos a probar que (01 + 62)/3 no
es entero para ningin valor de a y b, luego lo mismo ocurrird con (—6; + 62)/3.
De hecho vamos a ver que 601/3, (01 + 63)/3, (1 + 61)/3 nunca son enteros.

Claramente polmin(6;/3) = 23 — ab?/3, y ab?/3 no es entero porque supo-
nemos que 3t ab. Con un poco mas de célculo se llega a

1+06; 3 o 1 1+ab?
| mi = — Zr—
polmin x x —|—3:r 57
olmmM = x3_a_bx_M
P 3 3 27

que obviamente no tienen coeficientes enteros.
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Asi pues, todo depende de (1 + 61 + 62)/3. Se puede comprobar que

L, 1+601+0, 3 5 1—ab 1+ ab® + a®b — 3ab
polmmT:x —x°+ 3 x — o7 .

Demostraremos que los coeficientes pueden hacerse enteros (escogiendo sig-
nos) exactamente cuando a = +b (méd 9), de donde se concluye inmediatamente
el teorema.

Supongamos que a = £b (mdd 9). Cambiando el signo a b si es preciso,
podemos exigir a = b (mé6d 9). El resto no puede ser 0 ni 3, pues en tal caso
3 dividirfa a (a,b) = 1. De aqui se sigue que ab = 1,4,7 (méd 9), y por lo tanto
3| (1—ab).

Cambiando el signo a ambos enteros podemos exigir que su resto médulo 9
sea 1, 4 0 7, es decir, que a = 9k + ¢, b = 9r 4 ¢, donde ¢ puede tomar el valor
1, 4 0 7. Sustituyendo en 1 + ab® + a®b — 3ab se obtiene que es miiltiplo de 27
en cualquiera de los tres casos.

Supongamos ahora que los coeficientes del polinomio minimo son enteros, es
decir, que

3 | (1—ab), (2.6)
27 | (1+ ab® + a*b — 3ab). (2.7)

De (2.6) se sigue que
a=b==1 (méd 3). (2.8)

El lector puede comprobar que los tinicos valores posibles para los restos médulo
9 de a y b (salvo el orden, que por simetrfa no importa) que incumplen la
condicién a = +b (méd 9) pero que cumplen (2.8) son (1,4), (1,7), (2,5), (2,8),
(4,7), (5,8). En ninguno de estos casos se cumple (2.7). "

La tabla siguiente resume el teorema:

Tabla 2.1: Tipos de cuerpos ctibicos puros

Condicién AK 00 91 92
Tipo I a # +b (méd 9) —27a2b? 1 Vab? | Va2b
TipoIl |[a=b=1+3t (m6d 9) | —3a2b? | (1 + 6, +02)/3 | Vab? | Va2b

Ejercicio: Probar que el orden de Q(\S/é) es Z[%]

Ejercicio: Probar que el anillo de coeficientes del médulo M = <4, 2, \3/1> es igual

a (1,2V/2,2V4).
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Enteros ciclotémicos En el capitulo anterior vimos algunos problemas im-
portantes relacionados con los cuerpos ciclotémicos y sus anillos de enteros.
Ciertamente hay muchas razones por las que estos anillos juegan un papel rele-
vante en la teoria algebraica de nimeros. Comenzamos a estudiarlos probando
que los que en el capitulo anterior llamamos ‘enteros ciclotémicos’ son realmente
los enteros ciclotomicos en el sentido general, es decir, probaremos que si w es
una raiz p-ésima primitiva de la unidad, donde p es primo, entonces el orden
de K = Q(w) es Z[w]. El resultado es cierto también si p no es primo, pero no
estamos en condiciones de probarlo. Comenzamos con algunas consideraciones
previas sobre trazas y normas:

Si p 14, entonces Tr(w’) es la suma de los p — 1 conjugados de w’, es decir,
Tr(w) =w+w? +-- FwP =1

Sia € Q entonces Tr(a) =a+a+---+a=(p—1)a. En resumen,

Tr(wi)—{ ~1  sipti

p—1 sipli

. —1 1 .
En general, si Y/ a;w’ es un elemento cualquiera de Q(w), entonces

p—1 p—1 p—1
Tr (Z aiwi> = Z a; Tr(w') = ag Tr(1) — Zai
=0 =0 i=1

p—1 p—1
= (P—l)ao—zai Zpao—zaio
i=1 1=0

Respecto a las normas, nos basta observar que si 7 = 1 —w, entonces N(7) =
p. En efecto, basta evaluar en 1 el polinomio

Pzt l=(r—w)(r—w?) e (m—wPh).

Teorema 2.28 Sea p un ndmero primo impar y K = Q(w), donde w es una
raiz p-ésima primitiva de la unidad. Entonces O = Zw).

4 -2 ; . -
DEMOSTRACION: Sea a = Y a;w" un entero ciclotémico de orden p.
Hemos de probar que todos los coeficientes son enteros racionales. En principio
sabemos que la traza es un entero. Mas atin, para cada 0 < k < p—2 tenemos que

Tr(aw™*) € Z. Asf tenemos la misma informacién sobre todos los coeficientes:

p—2
Tr(aw™) = pay — Zai €z, parak #p—1
i=0
p—2
Tr(aw) = - Zai €Z.
i=0

Por lo tanto pay € Z para todo k = 0,...,p — 1. Llamemos b, = pag.
Hemos de probar que p | by para todo k, con lo que los aj serdn también
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enteros. Consideremos m = 1 — w. Sustituyendo w = 1 — 7 y desarrollando

obtenemos
p—2 p—2
pa = Zbiwi = Zcmi,
i=0 i=0
donde
p—2 j
- 1) .
ci Z( ) (i)bj YA
J=1
parai=0,...,p— 2. Como 7 =1 — w, por simetria se cumple también
p—2 j
bi = Z(—l)l (Z)C],
Jj=t

parat=0,...,p— 2.

Por lo tanto basta probar que p | ¢; para todo j, pues entonces estas férmulas
implican que p también divide a los b;.

Lo probaremos por induccién. Suponemos que p | ¢; para cada i < k—1y
vamos a probar que p | ¢k, donde 0 < k < p—2.

La razén por la que hemos hecho el cambio de variable es que w es una
unidad de O, mientras que = cumple N(7) = p (veremos que esto implica que
7 es primo en Og). Tenemos que

p=N(l-w)= f[(l—w‘) =(1—w)r! ﬁ<1+w+---+w“1> =771,

i=1 i=1

para cierto § € Ok.

En consecuencia p = 0 (méd 7rk+1), es decir, médulo el ideal generado por
7Ftlen O.

Por otro lado,

p—2
0=pa= E et = e (mod 7R,
i=0

pues los términos anteriores a c;m* son miltiplos de p por hipétesis de induccién
y los posteriores son multiplos de 7*+1 directamente.
Esto equivale a que ¢,m* = nr**! para un cierto n € O, luego ¢, = nm.
. —1
Finalmente tomamos normas: ¢, = = N(cx) = N(1) N(7) = pN(n), luego en
efecto p | k. "

El teorema 2.8 nos da ahora los discriminantes:

Teorema 2.29 Sea p un primo impar. El discriminante del cuerpo ciclotémico
de orden p es igual a (—1)P=1/2pp=2,
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DEMOSTRACION: Sea w una raiz p-ésima primitiva de la unidad. Como los
enteros ciclotémicos son el anillo Z[w], una base entera de Q(w) estd formada

por 1, w, ..., wP~L. El polinomio minimo de w es p(z) = ‘"”;:11 y su derivada
" o) - (@ - 1)
prP~H(x—1) — (2P -1
p(z) = 5 ;
(z—-1)
luego p'(w) = pf::l. Asi pues,
p—1 . 1p—1
NP (w)) = pip =p' 2

Como p es impar, (—1)PP=D/2 = (—1)P=1/2 y por 2.8
Alw] = (=1)P=D/2pp=2,
| |

Respecto a los cuerpos ciclotémicos de orden arbitrario, nos conformaremos
con el hecho siguiente:

Teorema 2.30 Sea K = Q(w) el cuerpo ciclotémico de orden m (donde w es
una raiz m-sima primitiva de la unidad). Si p es un primo que no divide a m,
entonces tampoco divide al discriminante Alw].

DEMOSTRACION: Sea n = ¢(m). Segin se observa en la prueba del teorema
2.7, se cumple que

Al = J[ (os(w) - o5(w)), (2.9)

1<i<j<n

donde los nimeros o;(w) son las raices del polinomio ciclotémico p(z), es decir
n
p(x) = H(a? —oi(w)).
i=1

Sea O el orden maximal de K y sea p un ideal maximal de O que contenga a p.
Sea L = O/p. Entonces L es un cuerpo de caracteristica p en el que el polinomio
ciclotémico factoriza como

n

p(@) = [ (- o).

i=1
donde los corchetes | | indican clases médulo p. Tomando también clases en
(2.9) tenemos que
[Al= JI (loi(@)] —lo;()])*
1<i<j<n

Ahora bien, como p { m, el polinomio 2™ — 1 tiene derivada ma™~! # 0
en L[z], luego tiene m raices distintas en L, y por consiguiente el polinomio
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ciclotémico tiene n raices distintas en L. Consecuentemente [A] # 0, es decir,
que A ¢ p, luego ciertamente p { A. m

Para terminar con el caso de los cuerpos ciclotémicos, estudiemos el cuerpo
ciclotémico octavo Q(w). Su grado es 4 y, de hecho, polminw = 2* + 1. El
teorema 2.8 nos da que el discriminante del orden Z[w] es 256. Hemos de probar
que no es posible eliminar ningin 2.

Segtn el teorema 2.25, aplicado a la base 1,w,w?,w?, hemos de probar que
no son enteros un total de 15 nimeros. Descartamos inmediatamente 1/2, w/2,
w?/2 y w?/2, que tienen norma 1/4.

Si (w+w?)/2 = w(l +w)/2 fuera entero también lo serfa (1 + w)/2, luego
basta comprobar el segundo. Por este argumento eliminamos cuatro ntimeros
mas, y nos quedan

14w 14w? 14w 14w+w? 14w4wd 1402 +w? 14w+ w?+w?
2’ 2 7 2 7 2 ’ 2 ’ 2 ’ 2 '

Notar que (1 4+ w?)/2 = (1 +i)/2, luego no es entero. Para descartar a los
restantes observamos que r* +1 = (z — w) (2 — w?)(z — w?)(x —W7), y evaluando
en 1 concluimos que 1 —w y 1 — w? tienen norma 2.

Ahora, si a = (1 4+ w)/2 fuera entero, también lo serfa —w3a = (1 — w?)/2,
pero tiene norma 1/2. El nimero (1 + w?)/2 es conjugado del anterior, luego
tampoco es entero.

Respecto a
l+w+w?  wP—1) l4w+w?+w?  wi-1 2
2 2w-1) 7 2 T2w-1 2w-1)

vemos que también tienen norma fraccionaria.

Por 1iltimo, si el nimero o = (1 + w + w?)/2 fuera entero, también lo seria
wa+1=(1+w+w?)/2, que ya ha sido descartado, e igualmente se razona con
W4 w?+w?)/24+1+w=(1+w+w?))/2 n

Enteros ciclotémicos reales Sea K = Q(w) el cuerpo ciclotémico de orden
p. En el estudio de K resulta de gran ayuda considerar el cuerpo intermedio
K’ = KNR. Claramente K’ es el cuerpo fijado por la conjugacién compleja,
que es un automorfismo de orden 2, luego |K : K’'| = 2 y por consiguiente el
grado de K’ es m = (p — 1)/2. Un entero de K’ es en particular un entero de
K, luego se expresard como combinacién lineal entera de w,...,wP~'. Como
ha de quedar fijo por la conjugacién compleja es necesario que el coeficiente de
cada potencia w’ coincida con el de w™?, lo que implica que los enteros de K’
son combinaciones lineales enteras de los ntimeros 7; = w® + w™?. El reciproco
es obvio, luego en definitiva el orden maximal de K’ es el anillo Z[n, ..., 7m].

Vamos a calcular el discriminante Agr = Afny, ..., nm] = det(Tr(nn;)).
Para ello notamos que

iy = (W +w )W +oT) =0T 0T 0T+ 0T = iy,
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donde usamos la notacién 7; para todo i, no necesariamente entre 1 y m.

Por otra parte es claro que Tr(n;) = m + ...+ Ny = —1 si p { 4, mientras
que Tr(n;) =Tr(2) =2m=p—1sip]|i.

Cuando 4, j varian entre 1 y m observamos que 7+ j nunca es divisible entre
p, mientras que p | ¢ — j s6lo cuando i = j. Por lo tanto

sit =7
sii#j

Hay que calcular el determinante de una matriz de orden (p—1)/2 que tiene
los coeficientes de la diagonal principal iguales a p—2 y los restantes iguales a —2.
Si sumamos todas las columnas a la primera hacemos que todos los coeficientes
de la primera columna valgan 1. Si restamos la primera fila de todas las demés
llegamos a una matriz diagonal cuya diagonal principal contiene los coeficientes
(1,p,...,p). El discriminante es, por lo tanto, Axs = p™~ 1. "

—2
Tr(ning) = =1+ Tr(ni—;) = { -

Como ejemplo concreto consideremos el caso p = 7. Entonces K’ es un
cuerpo cubico, y una base entera la forman los nimeros 71, 72, 173. Puesto que
M + n2 + 13 = —1 podemos cambiarla por 1, 71, 72.

Ademés n? = (w + w®)? = w? + W% +2 = ny + 2. Por consiguiente, si
llamamos 1 = 1, tenemos que K’ = Q(n) y que una base entera viene dada por
{1,n7,7?> — 2}. (Notar que no sirve {1,7,7%})

Si tomamos w = cos(2mw/7) + isen(2m/7), entonces n = 2cos(2w/7), y sus
conjugados son 2 cos(47/7) y 2cos(67/7). Aproximadamente valen

mo o= 1,246979604,
ne = —0,4450418670,
ns = —1,801937736.

Con esto podemos calcular polminn = 23 + 22 — 2z — 1, la matriz asociada
a la traza:

3 -1 -1
-1 5 =2
-1 -2 5
y el discriminante de K, que, como ya sabiamos, es Ax = 72. n

Cuerpos cubicos ciclicos Segin la teorfa de Galois, un cuerpo K = Q(«) es
normal si y sélo si los conjugados de « pertenecen a K. Si K es un cuerpo ctbico
esto implica que su grupo de Galois tiene tres elementos y es, por lo tanto, un
grupo ciclico. En caso contrario la clausura normal de K ha de tener grado 6
sobre Q, y el grupo de Galois ha de ser isomorfo al grupo de permutaciones Xs.
Es claro que el cuerpo ctbico del ejemplo anterior es ciclico. Aqui probaremos
un resultado general que los caracteriza:

Teorema 2.31 Un cuerpo cibico es ciclico si y sélo st su discriminante es un
cuadrado perfecto.
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DEMOSTRACION: Sea K = Q(a) un cuerpo cibico, donde « es un entero, y
sean a1, ag,as los conjugados de a. Observar que el discriminante de K serd
un cuadrado perfecto si y sélo si lo es A = Afa], pues ambos se diferencian en
un factor cuadrado perfecto. A su vez, éste serd un cuadrado perfecto si y sélo
si VA = |a]| es (entero) racional.

Si K es ciclico entonces VA € K, luego Q(\/Z) no puede ser un cuerpo
cuadrético (pues estd contenido en K), y en consecuencia vA € Q.

Si por el contrario K no es ciclico, entonces el grupo de Galois de la clausura
normal de K contiene 6 automorfismos que permutan los conjugados de « de
todos los modos posibles. En particular existe un automorfismo o que deja fijo
a agz e intercambia oy y as. Es claro entonces que a(\/Z) = —VA, pues o
permuta dos columnas del determinante, con lo que VA ¢ Q. m

2.5 Normas e Indices

Veamos ahora un par de conceptos adicionales de utilidad en el estudio de
los cuerpos numéricos.

Definicién 2.32 Sea M un moédulo completo en un cuerpo numérico K de
grado n y O su anillo de coeficientes. Sea B una base de M y C' una base de O.
Sea Dg la matriz cuyas filas son las coordenadas de B respecto de la base C.
El teorema 2.7 nos da entonces que A[M] = (det DG)?A[0].

Definimos la norma de M como

N(M) = |det D§| = %.

De este modo N(M) es un nimero racional positivo tal que
A[M] = N(M)?A[0]. (2.10)

Observar que los ordenes tienen todos norma 1. También es obvio que si
M estd contenido en su anillo de coeficientes, entonces la matriz de cambio de
base tiene coeficientes enteros racionales, luego N(M) es un entero racional, y
de hecho todos los términos de la ecuacién (2.10) son enteros racionales. En
este caso la norma tiene una interpretacion algebraica importante.

Teorema 2.33 Sea M un maodulo completo contenido en su anillo de coeficien-

tes O. Entonces N(M) =10 : M]|.

DEMOSTRACION: Es un hecho conocido (se ve al probar que todo submédulo
de un Z-médulo libre es libre) que existe una base C = {aq,...,a,} de O tal
que para ciertos enteros racionales a; se tiene que B = {a1a, ..., a,q,} s una
base de M. La matriz Dg es en este caso particular una matriz diagonal, luego
N(M) = |ay -+~ ap|.
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El isomorfismo entre O y Z"™ que envia C' a la base canénica {eq,...,e,}
de Z", envia la base B a la base {ajey,...,ane,}, luego envia M al médulo
a1 X+ X anZ, y asi

O/M=(Zx - xL)[(@Z X X apZ) = (Zjar1Z) X - -+ x (L] anZ),
luego |0 : M| = (Z/a1Z) X --- X (Z]anZ)| = |a1| - - |an] = N(M). "

Todo médulo es similar a uno en las condiciones del teorema anterior, y las
normas de los médulos similares estan relacionadas del modo siguiente:

Teorema 2.34 Si M y aM son dos mddulos completos similares, entonces
N(aM) = [N(a)| N(M).

DEMOSTRACION: Sea {f1, - .., 3,} una base de M. Entonces {af,...,a8,}
es una base de aM. Si 01,...,0, son los monomorfismos de K, tenemos que
2 2
AlaM] = Alaf,...,ab,] = det(m(aﬂj)) = det (oi(a)ai(ﬂj))

= N(a)?det(04(6;))* = N(@)?A[B1, ..., Ba] = N(a)?A[M].

Como M y aM son similares, tienen el mismo anillo de coeficientes O, luego
N(aM)?A[0] = AlaM] = N(a)?A[M] = N(«)?N(M)2A[0], y consecuente-
mente N(aM) = | N(a)| N(M). "

Ejercicio: Sea O el orden de un cuerpo numérico K y a € O no nulo. Probar que
hay exactamente N(«) clases de congruencia médulo « en O.

Si las normas nos relacionan los mdédulos completos con sus anillos de coe-
ficientes, los indices, que definimos seguidamente, relacionan los érdenes con el
orden maximal.

Definicién 2.35 Sea K un cuerpo numérico y sea Ok su orden maximal. Si O
es cualquier orden de K, llamaremos indice de O al nico niimero natural ind O
tal que

A[O] = (ind 0)?Ag. (2.11)

Concretamente ind O es el valor absoluto del determinante de la matriz de
cambio de base entre una base de O y una base entera de K. El mismo argumento
empleado en la prueba del teorema 2.33 nos da que

En particular, si K = Q(«a) y « es entero, definimos ind o = ind Z[a].

Vamos a calcular los indices de los elementos de algunos cuerpos numéricos.
Para un cuerpo cuadratico Q(\/E ), cuando d # 1 (méd 4) tenemos que una base
del anillo Z[a +bVd } es 1,a + bv/d, mientras que una base del orden maximal
es 1,v/d, luego el determinante de la matriz del cambio de base es

1 0
a b

-
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Por lo tanto ind(a + b\/a) = [b].
Sid =1 (mdd 4) los enteros son de la forma (a—l—b\/a)/Z, con a = b (mdd 2),
y el indice vale igualmente

ind (#) = abs

Ahora consideramos un cuerpo ctbico puro Q( v abQ). Primeramente su-
pongamos que es de tipo I, es decir, a # b (mdéd 9). Usamos la notacién del
teorema 2.27. Una base del orden Z[x + y6; + z65] estd formada por

1 0
a—b
s b

‘|b.

1, a+ydi+20,  (v+yd+202)% = 22 +2yzab+ (2% a+22y)01 + (y*b+222)0s.
Asi pues,

1 0 0
ind(x + yb1 + 26) = abs T y z = \by?’ —az
22 4+ 2yzab 2%a+2zy y?b+ 22z

3|.

Si el cuerpo es de tipo II un entero es de la forma (z + y6; + 262)/3, donde
z =y =z (méd 3). El lector puede comprobar sin dificultad que ahora

0 0 1
ind <w) Lyt

Los anillos de la forma Z[a] se llaman anillos numéricos (de aqui procede el
uso de la palabra anillo en su sentido algebraico, haciendo referencia a que las
potencias de « se reducen ciclicamente). Los érdenes maximales de los cuerpos
cuadréticos son anillos numéricos, pero no ocurre lo mismo en todos los cuerpos
numéricos. Por ejemplo, en Q(\g/@ ) el orden maximal serfa de la forma Z[o] si
y sélo si ind & = 1 para algin nimero a, pero es imposible que 3y® — 723 = £1,
ya que no hay solucién médulo 7.

Finalmente calculamos el indice de los enteros del ejemplo de Dedekind Q(§)
que hemos estudiado en la seccion 2.4. El método que usaremos sera el mismo.

Un entero arbitrario es de la forma a = z + y& + 2(€ + £2)/2. Un simple
calculo nos da que

o = 2% — 8yz — 227 + (2ay + vz — 32%/2 4 2y2)E + (w2 + y? + 22 /2)€2

Tenemos las coordenadas de la base 1,a,a? de Z[a] en la base 1,&,£2 de
Q(¢), al igual que las de la base 1,&, (€ +£2)/2 del orden maximal. Resolviendo
un sistema de tres ecuaciones lineales obtenemos la matriz del cambio de base,
que resulta ser

1 0 0
z Y z )
2% —8yz — 222 2wy —22% +2yz —y? 2wz 4 27 + 22
de donde ind o = |29% + 223 — y22 + 29/?.
Observamos que el orden maximal de Q(§) no es tampoco un anillo numérico,
pues el indice de cualquier entero es siempre un numero par.






Capitulo III

Factorizacion ideal

Vimos en el capitulo I que la factorizacién tnica en un anillo puede tener
muchas consecuencias sobre los nimeros enteros. Kummer investigé la factori-
zacion unica en los anillos de enteros ciclotémicos de orden primo en relaciéon
con el ultimo teorema de Fermat, y su trabajo le llevé a un descubrimiento im-
portantisimo. En primer lugar observé que todo primo ciclotémico debia dividir
a un primo racional, por lo que la factorizacién tnica se reducia a probar que
todo primo racional se descompone en producto de primos, y se dedicé a buscar
factorizaciones explicitas en casos concretos para ratificar o refutar la conjetura
sobre la unicidad. Para cada primo racional, Kummer encontré argumentos
que le permitian predecir en cuantos primos ciclotomicos debia factorizar y con
qué multiplicidad y, para cada uno de los factores, encontré a su vez criterios
explicitos que le determinaban a qué enteros ciclotémicos debia dividir. Sélo
le faltaba encontrar los primos mismos. Con la ayuda de estos criterios le fue
relativamente ficil encontrarlos hasta que se enfrenté con la factorizacién del 43
en el anillo de enteros ciclotémicos correspondientes a p = 23. Para este caso
probd que la existencia de los factores primos que su teoria predecia conducia a
una contradiccién. Sin embargo, en el tiempo que tardé en encontrar este ejem-
plo de factorizacién no unica, su teoria habia mostrado tal grado de coherencia
y de capacidad de prediccién que Kummer confié més en sus razonamientos
que en la evidencia a la que habia llegado. Reforzando sus razonamientos para
no basarse en la hipotética factorizacion unica, demostré que su teoria sobre
factores primos era consistente con independencia de que los primos en cuestién
existieran o no, es decir, que podia asignar a cada entero ciclotémico una des-
composicion en factores primos que satisfacia las propiedades formales que se
cumplen en todo dominio de factorizacién tnica, aunque a veces, tales factores
resultaran ser, en sus propios términos, ‘factores ideales’. Mas tarde, Dedekind
simplifico la teoria de divisores ideales de Kummer sustituyendo la construccién
formal axioma&tica por una construccién algebraica, en la que cada divisor ideal
era identificado con el conjunto de todos sus multiplos ‘reales’. A su vez es-
tos conjuntos de multiplos podian ser determinados mediante unas propiedades
muy simples: las que definen los ideales en el sentido moderno de la palabra. El
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enfoque de Dedekind tenia la ventaja de que se podia aplicar sin ningtin cambio
al orden maximal de cualquier cuerpo numérico. Comenzamos el capitulo con
una exposicién de la teorfa de Dedekind en términos del dlgebra abstracta.

3.1 Dominios de Dedekind

Recordemos que si a y b son ideales de un anillo D, su producto es

n
ab = {Zpi%'

=1

nENypiEa,qiebparaizl,...,n}. (3.1)

En otras palabras, ab es el menor ideal que contiene a todos los productos
ab tales que a € ay b € b. Como a y b son ideales, estos productos estan
contenidos en ambos, luego se cumple que ab C a N b.

Definicion 3.1 Un dominio integro D es un dominio de Dedekind si todo ideal
propio de D (o sea, distinto de 0 y D) se descompone de forma unica salvo el
orden en producto de ideales primos.

Vamos a probar que la factorizacion ideal es formalmente andloga a la fac-
torizacién real de los dominios de factorizacién unica. Sin embargo tenemos
un obstéculo justo al principio, y es que hay un hecho obvio en todo dominio
integro cuyo analogo ideal no es evidente: los elementos no nulos son simplifica-
bles. Para probar que los ideales no nulos son simplificables demostraremos que
el conjunto de los ideales de un dominio de Dedekind se puede sumergir en un
grupo, con lo que para simplificar un ideal en ambos miembros de una igualdad
bastara con multiplicar por su inverso en dicho grupo.

Definicién 3.2 Sea D un dominio integro y K su cuerpo de cocientes. Un ideal
fraccional de D es un D-submédulo no nulo a de K tal que existe un ¢ € D no
nulo de manera que ca C D (donde ca = {ca | a € a} ).

Si a es un ideal fraccional de D, entonces ca es D-submoédulo de K contenido
en D, luego es un D-submédulo de D, o también, b = ca es un ideal no nulo de
Dya=c"'b.

El reciproco se prueba igualmente, luego, en definitiva, los ideales fracciona-
les de D son los conjuntos de la forma ¢~ 'b, donde b es un ideal no nulo de D
y ¢ € D es un elemento no nulo.

Tomando ¢ = 1 deducimos que todos los ideales no nulos de D son ideales
fraccionales. Reciprocamente, un ideal fraccional a es un ideal si y sélo si a C D
(por la propia definicién).

Podemos definir el producto de dos ideales fraccionales por la misma férmula
(3.1) que para ideales. Es fdcil comprobar que efectivamente el producto de
ideales fraccionales es un ideal fraccional, asi como que cumple la propiedad
asociativa.

Si ¢ € K es no nulo, llamaremos ideal fraccional principal generado por c al
ideal fraccional (¢) = ¢D. Es ficil ver que (¢)a = ca. En particular (¢)(d) = (ed).
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Llamaremos 1 = (1) = D. Es claro que al = a para todo ideal fraccional a.
Diremos que un ideal fraccional a es inversible si existe otro ideal fraccional b
tal que ab = 1. Es claro que si existe tal b entonces es tinico, y lo representaremos

por a~ L.

Todo ideal fraccional principal es inversible, pues (¢)~! = (¢71).

Antes hemos visto que todo ideal fraccional es de la forma ¢~ 1b, para cierto
ideal b y cierto ¢ € D. En términos del producto de ideales fraccionales tenemos
que todo ideal fraccional es de la forma (c) ~!b, o sea, una fraccién de dos ideales.
Para probar que los ideales fraccionales de un dominio de Dedekind forman un
grupo necesitamos unos hechos sencillos validos en cualquier dominio integro.

Teorema 3.3 Sea D un dominio integro.
1. Todo ideal fraccional principal de D es inversible.

2. Un producto de ideales no nulos de D es inversible si y solo si lo es cada
factor.

8. Si un ideal inversible de D factoriza como producto de ideales primos,
entonces la descomposicion es unica salvo el orden.

DEMOSTRACION: 1) Ya hemos comentado que (c)~! = (¢71).

2) Es obvio que si cada factor es inversible el producto también lo es (su
inverso es el producto de los inversos). Si el producto es inversible entonces
el inverso de un factor es el inverso del producto multiplicado por los factores
restantes.

3) Supongamos que un mismo ideal no nulo se expresa de dos formas

pl"'pr:ql"'CIs

como producto de ideales primos (necesariamente no nulos) . Podemos suponer
que r < s.

Tomamos un factor (digamos p1) que no contenga estrictamente a ninguno
de los restantes. Por definicién de ideal primo, y puesto que q;---qs C p1, ha
de existir un indice ¢ de modo que q; C p1. Reordenando podemos suponer que
g1 C p1. Igualmente ha de existir un indice j tal que p; C g1 C p;. Por la
eleccién de py ha de ser p; = q1 = p;. Tomando inversos podemos eliminarlos
de la factorizacién, hasta llegar a que D = qs_, - - - qs C (s, lo que contradice la
definicién de ideal primo a no ser que r = s. Es claro que con esto el teorema
queda demostrado. n

Teorema 3.4 Si D es un dominio de Dedekind, entonces los ideales fraccio-
nales de D forman un grupo. Ademds los ideales primos coinciden con los
maximales.
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DEMOSTRACION: Basta probar que todo ideal primo (no nulo) tiene un
inverso y es maximal, pues entonces todo ideal no nulo sera inversible por ser
producto de ideales primos (inversibles) y todo ideal fraccional serd inversible
porque es de la forma (c)~!'b, donde (c)~! es ciertamente inversible y b es un
ideal, luego inversible también.

Vemos primero que todo ideal primo inversible es maximal. Sea p un ideal
primo. Hay que demostrar que si d € D \ p entonces p + (d) = D. En caso
contrario existen ideales primos tales que p+(d) = py - -p, y p+(d?) = q1 - - qs.
Es fécil ver que

(p+(d)/p=(pr/p) - (pe/p) v (p+(d)/p=(a1/p) - (as/p).

El ideal (p + (d))/p = ([d]) es principal y D/p es un dominio integro, luego
tiene inverso por el teorema anterior, el cual nos da también que todos los ideales
primos p1/p, ..., p,/p tienen inverso como ideales de D/p.

Lo mismo ocurre con q1/p, ..., qs/p. Igualamos:

(ar/p) - (ar/p) = ([d%) = ([d])" = (p/p)” - (ps/p)".

Otra aplicacién del teorema anterior nos da que s = 2r y que, ordenando
adecuadamente, p;/p = q2i/p = q2;—1/p. De aqui se sngue que p; = q2; = q2i—1,
y de aqui a su vez obtenemos que p + (d*) = (p + (d))”. Consecuentemente

PP+ (@) = (p+ (D) Cp>+(d).

Todo elemento de p es, pues, de la forma ¢ + ad, con ¢ € p?> y a € D, pero
como p es primo y d ¢ p, ha de ser a € p, lo que prueba que p C p2 + p(d) C p,
es decir, p = p2 + p(d), y como p tiene inverso, 1 = p + (d), contradiccion.

Finalmente, si p es cualquier ideal primo no nulo, sea ¢ € p, ¢ # 0. Como
D es un dominio de Dedekind podemos factorizar (¢) = p; - - p, C p, donde los
ideales primos p; son todos inversibles (por el teorema anterior, ya que (c) lo es)
y en consecuencia maximales (por lo ya probado). Por definicién de ideal primo,
algun ideal p; estd contenido en p, luego por maximalidad p = p; es maximal y
tiene inverso. n

Ahora ya podemos trabajar con dominios de Dedekind como si fueran do-
minios de factorizacién tunica.

Definicion 3.5 Sea D un dominio de Dedekind. Diremos que un ideal b divide
a un ideal a si existe un ideal ¢ tal que a = bc. Lo representaremos b | a. Notar
que en tal caso ¢ = ab~!. Claramente b | asiy sélo si ab~! es un ideal.

Observar que b | a siy sélo si a C b. En efecto, si b | a entonces a = bec C b
y si a C b la propia definicién de producto nos da que ab™ Cc bb™' =1 = D,
luego el ideal fraccional ab~! es de hecho un ideal y por lo tanto b | a.

As{ un ideal p es primo siy sélosi p # 1y cuando p | ab entonces p | aop | b,
es decir, el concepto de ideal primo en un dominio de Dedekind es formalmente
andalogo al de primo real en un dominio de factorizacién unica.
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Similarmente, un ideal p es maximal si y solo si p # 1 y cuando a | p
entonces a = 1 o a = p, es decir, el concepto de ideal maximal en un dominio
de Dedekind es formalmente andlogo al de elemento irreducible en un dominio
de factorizacién unica (notar que en términos de ideales no hay ni unidades ni
asociados). Hemos probado que en un dominio de Dedekind ‘maximal’ equivale
a ‘primo’, lo cual es andlogo al hecho de que en un dominio de factorizacion
tnica ‘irreducible’ equivale a ‘primo’.

Si ¢ € D escribiremos a | ¢ 0 ¢ = ab en lugar de a | (¢) o (¢) = ab. De este
modo los divisores ideales pueden dividir a elementos reales. Concretamente,
tenemos a | ¢ si y sélo si (¢) C a, siy sélo si ¢ € a, es decir, un ideal, como
conjunto, es el conjunto de todos sus miltiplos reales. Notar también que a | b
si y solo si (a) | ().

La factorizacién tnica ideal nos permite hablar de la multiplicidad de un
ideal primo en otro ideal (o en un elemento real) exactamente en el mismo
sentido que en un dominio de factorizacién tinica. Toda familia finita de ideales
tiene un maximo comun divisor y un minimo comin miltiplo que se pueden
calcular del modo usual, aunque en realidad hay una caracterizacién mas simple:
Teniendo en cuenta que a | b es lo mismo que b C a, resulta que el maximo
comun divisor de una familia de ideales es el mayor ideal que los contiene, y el
minimo comun miultiplo es el mayor ideal contenido en ellos, o sea:

med(ay,...,a.) = a;+---+ap.,
mem(ay, ..., a.) = a;N---Na,.

En particular (a,b) = (a) + (b) puede entenderse como el ideal generado por
ay b o como el miximo comun divisor de (a) y (b). Es equivalente. Pode-
mos hablar de ideales primos entre si, etc. con las propiedades usuales. Como
ilustracién de la aritmética ideal vamos a probar el teorema chino del resto:

Teorema 3.6 (Teorema chino del resto) Sea D un dominio de Dedekind y
sean My, ..., m, ideales de D primos entre si dos a dos. Sim = my---m, se
cumple

D/m=(D/my) x -+ x (D/my)

y el isomorfismo viene dado por la aplicacién [o] — ([a], ..., [a]).

DEMOSTRACION: Es claro que la aplicacién indicada es un monomorfismo de
anillos. Sélo hay que probar que es suprayectiva, es decir, que dados aq, ..., a,
en D existe un a € D tal que o = «; (m6d m;) para ¢ = 1,...,n. Llamemos
mf = m/m;. Entonces m; y m} son primos entre si, es decir, m; + m =1 = D.
Por consiguiente o;; = §; + 7;, donde 3; € m; y v; € m}. Equivalentemente,
vi = o; (méd m;) y v; =0 (méd m;) para j #i. Esclatoquea =+ 4+,
es el buscado. [

De aqui deducimos un hecho técnico sobre dominios de Dedekind que es fécil
usar inadvertidamente, pues en los dominios de factorizacién tnica es trivial.
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Teorema 3.7 Sea D un dominio de Dedekind, sean pi,...,p, primos de D y
sean o y B € D no nulos tales que la multiplicidad de cada p; en 3 sea menor
o igual que en a. Entonces a/f = v/§, para ciertos v, § € D, de modo que
ningun p; divide a 9.

DEMOSTRACION: Sea 8 = p{' ---pSra, donde a no es divisible entre ningtin
p;. Por el teorema chino del resto existe un § € D tal que

0 =0 (mdd a), d=1(méd p;), i=1,...,r.

Esto implica que a | § y no es divisible entre ningtin p;. Por hipdtesis 3 | ad,
es decir, existe un v € D tal que ad = gy ]

Es facil encontrar dominios de factorizacién tinica que no sean dominios de
Dedekind. Por ejemplo Z[z] no es un dominio de Dedekind ya que (z) es un ideal
primo no maximal. Reciprocamente veremos que los érdenes maximales de todos
los cuerpos numéricos son dominios de Dedekind y muchos de ellos no tienen
factorizacién tnica. Por lo tanto la divisibilidad ideal no es una generalizaciéon
de la real, sino que ambas son paralelas. Las dos pueden darse simultaneamente.
Esto ocurre exactamente en los dominios de ideales principales:

Teorema 3.8 Un dominio integro D es un dominio de ideales principales si y
solo si es un dominio de Dedekind y un dominio de factorizacion unica.

DEMOSTRACION: Es sabido que si D es dominio de ideales principales en-
tonces tiene factorizacién tnica, y todo ideal propio de D es de la forma (c),
donde ¢ no es 0 ni una unidad. Entonces ¢ se descompone en producto de pri-
mos ¢ = pj -+ Pn, con lo que (¢) = (p1) - - - (pn) también es producto de ideales
primos. Reciprocamente, una descomposicién de (¢) en ideales primos da lugar
a una factorizacién de ¢, de donde se sigue la unicidad.

Si D es a la vez un dominio de Dedekind y un dominio de factorizacién tinica
entonces dado un ideal primo p tomamos un ¢ € p no nulo y lo factorizamos
¢ = p1-+-pp en producto de primos. Tenemos que p | ¢, luego p | p; para
algin 4, luego (p;) C p y, como los ideales primos son maximales, p = (p;)
es principal, y todo ideal propio de D es principal por ser producto de ideales
primos principales. n

El concepto de dominio de factorizacién tinica es muy 1til en cuanto que
proporciona un gran control sobre los anillos que tienen esta propiedad, pero esta
el inconveniente de que no es ficil determinar cuando se da el caso. En cambio,
el concepto de dominio de Dedekind admite una caracterizacién algebraica muy
facil de verificar en la practica. Veamosla.

Teorema 3.9 (Teorema de Dedekind) Sea D un dominio integro y K su cuerpo
de cocientes. Entonces D es un dominio de Dedekind si y solo si cumple las tres
propiedades siguientes:

1. D es noetheriano.

2. Los ideales primos no nulos de D son maximales.
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3. Sia € K es raiz de un polinomio mdnico con coeficientes en D, entonces
a€D.

DEMOSTRACION: Todo dominio de Dedekind es noetheriano, pues una ca-
dena de ideales estrictamente creciente significaria una cadena decreciente de
divisores, lo cual es imposible. La propiedad 2) estd probada en el teorema 3.4.
Es interesante notar que la prueba de 3) vale indistintamente para dominios de
Dedekind o para dominios de factorizacién tnica. En efecto:

Sea ¢ = §, con a,b € D. Sic ¢ D entonces b { a, luego existe un primo p
(ideal o real) tal que el exponente de p en a sea estrictamente menor que en b.
Sea p(z) = >.1" ,d;z", donde d,, = 1. Entonces

a” n—1

— + dn—l

a
b bn—_lJr"'erngrdo:O.

Multiplicando por b™ queda:
a = —dn_lba”_l — = dlb”_la — dob

Ahora bien, el exponente de p en el miembro izquierdo es exactamente n
veces el exponente en a, mientras que en el miembro derecho es estrictamente
mayor, con lo que tenemos una contradiccién.

Supongamos ahora que un dominio integro D cumple las tres propiedades
del enunciado y veamos que es un dominio de Dedekind. Dividimos la prueba
en varios pasos.

(i) Sea a # 0 un ideal de D. Entonces existen ideales primos pi,...,p, de
manera que p1---P, C a.

En caso contrario existe un ideal a tal que no existen ideales primos en las
condiciones pedidas y que es maximal entre los ideales para los que esto ocurre.

En particular a no puede ser primo, o cumplirfa (i) trivialmente. Tampoco
puede ser que a = D. Por lo tanto existen dos ideales b y ¢ tales que be C a,
peronob CaocCa.

Por la maximalidad de a, existen ideales primos pi,...,Ps ¥V Pst+1,--.,Pr
tales que

pr---ps Ca+ b, Pst1- - pr Ca+c,

de donde py ---p, C (a+b)(a+c) C aa + ab + ac + be C a, contradiccién.

(ii) Sia es un ideal no nulo de D, llamaremos a=* = {x € K | za C D}.

I es un D-submédulo de K, y para cualquier ¢ € a no nulo

Es claro que a~
se cumple que ca~! C D, luego a~! es un ideal fraccional de D.
También es inmediato que D C a~?, luego a = aD C aa~!.
De la definicién de a~! se sigue que aa~! = a~'a C D. Esto significa que el
ideal fraccional a~'a es de hecho un ideal de D.
1

Notar también que si a C b son dos ideales de D, entonces D C b~! C a~ 1.
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(iii) Sia es un ideal propio, entonces D G a™!.

Sea p un ideal maximal de D tal que a C p. Entonces p~! C a~!. Basta
probar que p~! contiene estrictamente a D. Sea a € p no nulo. Por (i), sea
r el menor natural tal que existen ideales primos para los que py ---p, C (a).
Como (a) C p y p es primo, existe un indice ¢ tal que p; C p. Reordenando
podemos suponer que p; C p. Como p; es maximal ha de ser p; = p, y por
la minimalidad de r tenemos que ps - - - p, no estd contenido en (a). Tomamos,
pues, un elemento b € py---p, \ (a).

Claramente bp C (a), luego ba='p C a='(a) = D y ba~' € p~!, pero por
otra parte b ¢ (a) = aD, luego ba~t ¢ D. Asf pues, p~! # D.

(iv) Sia es un ideal no nulo de D y S es un subconjunto de K tal que aS C a,
entonces S C D.

Sea s € §. Como D es noetheriano tenemos que a = (ay,...,a,,) para
ciertos ai,...,a,, € D. Por hipdtesis a;s € a para i = 1,...,m, luego existen
elementos b;; € D de manera que

m
a;s = E bija; parai=1,...,m.
Jj=1

Esto puede expresarse matricialmente mediante la ecuacién s(a;)" = B(a;)",
donde llamamos B = (b;;). Equivalentemente, (B — sl,,)(a;)" = 0. Por con-
siguiente la matriz B — sl,, no puede ser regular, pues entonces multiplicando
por su inversa concluirfamos que (a;) = 0, lo cual es imposible. Por lo tanto
|B — sl,,] = 0y el polinomio p(x) = |B — xl,,| € D[x] es mdnico, no nulo y
tiene por raiz a s. Por la hipdtesis 3) tenemos que s € D.

(v) Sip es un ideal mazimal de D, entonces pp~! = D.

Por (ii) sabemos que pp~! es un ideal de D tal que p C pp~! C D. Puesto
que p es maximal, ha de ser p = pp~! o bien pp~! = D. Si se diera el primer
caso, por (iv) tendrfamos que p~! C D, lo que contradice a (iii).

(vi) Sia#0 es un ideal, entonces aa™! = D.

Supongamos lo contrario. Como D es noetheriano existe un ideal a maximal
entre los que incumplen (vi). Obviamente a # D. Sea p un ideal maximal tal
que a C p.

Por (i) D C p~' Ca~ !, luego a Cap~t C aa~! C D. En particular el ideal
fraccional ap~! es un ideal de D. No puede ocurrir que a = ap ', pues entonces
(iv) implicarfa que p~! C D en contradiccién con (iii). Asf pues, a & ap~!, luego
la maximalidad de a implica que ap~! cumple (vi), es decir, ap~*(ap~1)~! = D.
Por definicién de a~! esto significa que p~!(ap~!)~! C a~!. Por consiguiente
D = ap~Hap~1)"! C aa~! C D, de donde aa~! = D, en contradiccién con
nuestra hipotesis.
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(vii) Todo ideal propio de D es producto de ideales primos.

En caso contrario sea a un ideal propio maximal entre los que no pueden
expresarse como producto de ideales primos. En particular a no es primo. Sea
p un ideal maximal tal que a C p. Como en (vi) concluimos que a C ap~! C D
y de nuevo por (iv) y (iii), la primera inclusién es estricta.

Por la maximalidad de a tenemos que ap~!' = p; ---p, para ciertos ideales
primos pi,...,p,. Por lo tanto a = p; ---p,p, en contra de la eleccion de a.

(viii) La descomposicion de un ideal en primos es inica salvo el orden.

Supongamos que un mismo ideal propio se expresa de dos formas

Pr--Pr=4d1---0s

como producto de ideales primos (necesariamente no nulos) . Podemos suponer
que r < 8.

Entonces, puesto que p; es primo y q1 - - - qs C p1, ha de existir un indice ¢ tal
que q; C p1. Reordenando podemos suponer que q; C p; y, por maximalidad,
de hecho q; = p;. Multiplicando por el inverso tenemos ps---p,. = qo2---(s.

Repitiendo el proceso llegamos a que p; = q; parai=1,...,7y (sir < s) a que
D =qs_,---qs, pero entonces D C (s, lo cual es imposible. Por lo tanto ha de
ser r = s. =

Observar que la prueba del teorema anterior nos ha dado una expresién
explicita para el inverso de un ideal en un dominio de Dedekind:

a!={re K |zacC D}

Terminamos nuestro estudio de los dominios de Dedekind en general con un
resultado técnico que en ocasiones es util. Si a es un ideal no principal de un
dominio de Dedekind, entonces ningiin multiplo real de a es exactamente igual
a a, es decir, para cualquier « € a se cumple que « divide estrictamente a a o, lo
que es lo mismo, que ca™! # 1. Vamos a probar que a puede tomarse de modo
que en este ‘exceso de divisores’ no aparezca un conjunto de primos prefijado.

Teorema 3.10 Sea D un dominio de Dedekind y a, b dos ideales no nulos de
D. Entonces existe un o € a tal que aa™' +b = 1.

DEMOSTRACION: Hay que probar que o puede tomarse de modo que ninguno
de los primos que dividen a b divida a aa™!, o equivalentemente, que o ¢ ap
para todo p | b.

Sean pi,...,p, los primos distintos que dividen a b. Si r = 1 basta tomar
a € a—ap;. Parar > 1seaq; = ap;lb. Siap;, Ca; = ap;lb entonces p; C p;lb,
luego b | p?, luego serfa r = 1.

Por lo tanto podemos tomar nimeros «; € a; \ ap; para i = 1,...,r y
a=a + -+ a.. Como cada a; € a; C a, se cumple que o € a. Si se
cumpliera que « € ap; para algun i, entonces para j # i tendriamos también
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que «; € a; C ap;, luego despejando «; en la definicién de o concluirfamos que
a; € a;p;, en contradiccién con la eleccién que hemos hecho. n

Una aplicacién de este resultado nos permite probar que todo ideal de un
dominio de Dedekind esta generado por a lo sumo dos elementos.

Teorema 3.11 Sea D un dominio de Dedekind y a un ideal no nulo de D. Sea
0 € a no nulo. Entonces existe un « € a tal que a = (o, 3).

DEMOSTRACION: Sea b = Ba~!. (como a | 3, se cumple que b es un ideal).
Por el teorema anterior existe un o € a tal que ca”™'+b = 1, 0 equivalentemente
aa~! 4+ Ba~! = 1. Multiplicando por a queda que a = (o) + (8) = (o, 3). =

3.2 Divisibilidad ideal en 6rdenes numéricos

El teorema de Dedekind probado en la seccién anterior nos permite probar
facilmente que los 6rdenes maximales de los cuerpos numéricos tienen factori-
zacién unica ideal. La tnica propiedad que en estos momentos no es evidente
es la tercera condiciéon. La probamos en un teorema aparte porque tiene interés
por si misma.

Teorema 3.12 Sic € A es raiz de un polinomio mdnico p(x) € E[z], entonces
ccE.

DEMOSTRACION: Sea p(x) = 2™ + a,_12" ! + -+ + ag, donde cada a; € E.

Sea B = Z[ag, . ..,an—1]. Entonces B es un submédulo del orden maximal
de Q(ag,...,an—1), luego es un Z-moédulo finitamente generado. Digamos que
B = (vy,...,v,). El mismo argumento empleado en el teorema 2.3 prueba ahora

que Bld] = (1,¢,...,¢" 1), (

Sea N el Z-médulo generado por los elementos v; - ¢*, donde 1 < i < 7,
0<k<n-1.

Asi, un elemento de B|c] es una combinacién lineal con coeficientes en B de
los ¢* y cada coeficiente es una combinacién lineal con coeficientes enteros de
los v;.

Por lo tanto B C N y es, en consecuencia, un Z-moédulo finitamente gene-
rado. Por el teorema 2.3 concluimos que ¢ es un entero algebraico. "

como B-médulo).

En particular, si K es un cuerpo numérico, O es su orden maximal y o € K
es raiz de un polinomio ménico de O[z], entonces « es entero, luego o € O.
Ahora es facil probar:

Teorema 3.13 Si O es el orden mazimal de un cuerpo numérico K, entonces
O es un dominio de Dedekind.

DEMOSTRACION: Acabamos de probar que O cumple la propiedad 3) del
teorema de Dedekind. Los ideales no nulos de O son médulos completos (teorema
2.17. Por lo tanto son finitamente generados (como Z-médulos, luego también
como ideales). Esto significa que O es noetheriano y asi tenemos 1).
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Por otra parte, los ideales tienen cocientes finitos (por 2.33, notar que su
anillo de coeficientes es necesariamente 0), y los dominios integros finitos son
cuerpos, luego los ideales primos son maximales (propiedad 2). L]

Ejercicio: Probar que un orden de un cuerpo numérico distinto del orden maximal
no puede tener factorizacién tnica, sea real o ideal.

Es costumbre hablar de ideales, unidades, etc. de un cuerpo numérico K
refiriéndose a los conceptos correspondientes de su orden maximal (todos estos
conceptos serfan triviales aplicados a K, por lo que no hay confusién posible).
En estos términos, los ideales fraccionales de K son simplemente los médulos
completos cuyo anillo de coeficientes es Q. En el capitulo anterior definimos
una norma sobre estos ideales, y en éste hemos definido un producto. Vamos a
probar que la norma conserva los productos. Esto nos permitird usar la norma
en el estudio de la divisibilidad ideal del mismo modo en que empleamos la
norma del cuerpo en el estudio de la divisibilidad real.

Teorema 3.14 Si a, b son ideales fraccionales de un cuerpo numérico K, en-
tonces N(ab) = N(a) N(b).

DEMOSTRACION: Todo ideal fraccional es de la forma a = o~ 'b, donde
a € Ok y b es un ideal. Por el teorema 2.34 tenemos que N(a) = | N(a™1)|N(b),
luego basta probar que la norma es multiplicativa sobre ideales no nulos.

Por la unicidad de la factorizacién en primos e induccién sobre el niimero
de factores, basta probar que N(ap) = N(a) N(p) cuando p es un ideal primo (el
caso en que uno de los factores es 1 es obvio).

Consideremos los grupos abelianos finitos a/ap < Ok /ap. El tercer teorema
de isomorffa implica que |Of /ap| = |Ok/a| |a/ap|, o sea, N(ap) = N(a) |a/ap|.
Basta probar que |a/ap| = |0k /p|. Notemos que por la factorizacién unica ap
no puede ser igual a p, luego ap G a, es decir, |a/ap| > 1.

Por el mismo motivo no pueden existir ideales b de Ok tales que ap & b & a,
pues entonces a | b | ap, luego la descomposicién en factores de b debe contener
a la de a y estar contenida en la de ap, luego b sera igual a ap o a a segin que
la multiplicidad de p en b sea la de ap o la de a.

Por lo tanto, si a € a\ ap, entonces a = ap + (a) y a su vez esto implica que
la aplicacién f: Ox — a/ap dada por f(x) = [xa] es un epimorfismo de O -
médulos con la propiedad de que p C N(f). Ahora, N(f) es un Og-submddulo
de Ok, o sea, un ideal. Como p es maximal, ha de ser N(f) = p o N(f) = Ok,
pero el segundo caso implicarfa que a/ap = Og/Ok, con lo que |a/ap| = 1,
contradiccién. Lo correcto es a/ap = Ok /p, v asl |0k /p| = |a/ap|. "

He aqui los hechos mas importantes en relacién con normas y divisibilidad:
Teorema 3.15 Sean a, b ideales de un cuerpo numérico K.
1. Sia|b entonces N(a) | N(b).

2. a|N(a). En particular si N(a) =1 entonces a = 1.
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3. Si N(a) es un nimero primo, entonces a es un ideal primo.

4. Sia esun ideal primo no nulo, entonces a divide a un unico primo racional
p y se cumple que N(a) = p™ para cierto natural m menor o igual que el
grado de K.

5. Sia€ O entonces N((a)) = |N(a)].
6. Solo un numero finito de ideales pueden tener una misma norma.

DEMOSTRACION: 1) es consecuencia inmediata del teorema 3.14.

2) Por definicién, N(a) = |Ok/a|]. El anillo O/a es en particular un grupo
finito (con la suma) y el orden de cualquier elemento es divisible entre N(a).
Por lo tanto N(a)[1] = [0], lo que equivale a que N(a) € a.

3) Un ideal de norma prima no puede descomponerse en primos (por 1y 2),
luego ha de ser primo.

4) Como a | N(a) y a es primo, a debe dividir a uno de los primos racionales
que dividen a N(a). Digamos que a | p. Entonces N(a) | N(p) = p”, donde n es
el grado de K. Consecuentemente, N(a) = p™ para un cierto m < n.

Si a dividiera a otro primo ¢, el mismo argumento nos darfa que N(a) habria
de ser potencia de ¢, lo cual es imposible salvo si ¢ = p.

5) Por el teorema 2.34.

6) Por 2), los ideales de norma m dividen a m y el conjunto de divisores de
m es finito. "

Este teorema contiene informacién relevante a la hora de estudiar los ideales
propios de un anillo de enteros. El apartado 4) nos dice que todo ideal primo
divide a un primo racional, por lo que factorizando los primos racionales se
encuentran todos los ideales primos. La unicidad de 4) implica que los primos
racionales (no asociados) son primos entre si, de donde se sigue la existencia
de infinitos ideales primos en cada anillo de enteros (al menos uno distinto
para cada primo racional). El apartado 5) muestra que la norma ideal extiende
consistentemente a la norma real.

Ejemplo Consideremos de nuevo el caso de factorizacién no tnica (1.2) que
encontramos en el anillo Z[\/—5]:

6=2-3=(1+v-5)(1+v-5).

Los cuatro factores son irreducibles, pero no son primos. Como N(2) = 4, el
ideal (2) sélo puede descomponerse en producto de dos ideales primos de norma
2, o0 sea, 2 = p1ps. Igualmente 3 ha de ser producto de dos ideales de norma 3,
digamos 3 = qt. Por otra parte, los factores de la derecha tienen los dos norma
6, luego han de descomponerse en producto de un ideal de norma 2 por otro de
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norma 3. La unicidad de la factorizacién obliga a que sea (1 + \/75) =piqy
(1 — \/—5) = pot, de modo que la factorizacion tnica de 6 es

6=2-3= (pip2)(a) = (pa)(pex) = (1+V5)(1 - V5).

Més atin, evidentemente p; es el maximo comiin divisor de 2 y 1+ /=5, es
decir, que p; = (2, 1+ \/—_5)

Similarmente py = (2,1 — \/—_5), q= (3,1 + \/—_5) yt= (3,1 — \/—_5)

Finalmente observamos que p; = po, pues 1 — /=5 =2 — (1 + H) Por
el contrario q # t, pues en otro caso 1 = 3 — (1 +vV-5+1- \/—_5) € ¢, O sea,
q=1.

Si llamamos p = p1 = po, la factorizacién de 6 es, en definitiva, 6 = p2qe. Los
factores son ‘ideales’ porque no estan en el anillo Z[H], pero se comportan
como si lo estuviesen. n

Veamos ahora cémo encontrar sistematicamente factorizaciones como la del
ejemplo anterior. Nuestro teorema basico es el siguiente.

Teorema 3.16 Sea K = Q(¢) un cuerpo numérico, donde ( es entero y p
un primo racional tal que p t ind¢. Sea g(x) = polmin¢ y g(z) la imagen
de g(x) por el epimorfismo de Z[x] sobre (Z/pZ)[z]. Sea g = g;'---gc la
descomposicion de g en polinomios mdnicos irreducibles en (Z/pZ)[x]. Entonces

los ideales p; = (p, gi(C)), para i = 1,...,7 son primos distintos en Ok y la
descomposicion de p en primos es p = p5* -+ per. Ademds N(p;) = pead 9.
DEMOSTRACION: Para cada i = 1,...,r, sea (; una raiz de g;(z) en una

extension de Z/pZ. Entonces (Z/pZ)(¢;) es una extensién finita de Z/pZ y
gi = polmin({;, Z/pZ).

Sea ¢; : Z[(] — (Z/pZ)((;) la aplicacién dada por ¢;(q(¢)) = ¢(¢;). Esté
bien definida, pues si ¢(¢) = r(¢), entonces (¢ — r)(¢) = 0, luego g|lg — r, de
donde g | ¢ — 7, y también g; | ¢ — 7, luego ¢({;) — 7(¢;) = 0.

Obviamente ¢; es un epimorfismo, luego Z[¢]/ N(¢;) = (Z/pZ)((;), y el se-
gundo anillo es un cuerpo, de donde N(¢;) es un ideal maximal de Z[(].

Llamemos q; al ideal generado por py ¢;(¢) en Z[¢]. Claramente q; C N(¢;)
(la imagen de p es [p] = 0). Veamos la otra inclusién. Si ¢(¢) € N(¢;), entonces
2(G) = 0, luego g(x) = h(x)gi(x). Fl hecho de que g(x) — A(z)gi(x) = 0
significa que todos los coeficientes del polinomio g(x) — h(z)g;(z) son multiplos

de p. Consecuentemente ¢(¢) = (q(¢) — h(¢)g:(¢)) + h()gi(¢) € q;. Por lo
tanto, q; = N(¢;) es un ideal maximal de Z[(].

Sea k =ind( = |OK : Z[CH. Claramente, si 8 € O, entonces kG € Z[(].

Veamos ahora que p; # 1. En otro caso existirian enteros (3,7 € O tales

que 1 = OBp + vg:(¢). Entonces k = kfBp + kvg:(¢) v kB, kvy € Z[(], luego
k € q;, = N(¢:), luego p | k, en contra de la hipétesis.

Tomemos un entero racional z tal que kx = 1 (méd p). Dado cualquier
B € Ok, sea v = kzf3. Entonces v € Z[(] y v = 8 (mdd p;). Esto prueba que
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la inclusién Z[{] — Ok /p; es suprayectiva, su nucleo contiene a q; y, como
éste es maximal, se da la igualdad, es decir, Ok /p; =2 Z[C]/q; = (Z/pZ)((;). En
particular, p; es un ideal primo de Ok-.

Aplicando que, en general, (p,u)(p,v) C (p, uv) concluimos que

pit - pm € (g1 (O - 90 (Q)) = (P, 9(C)) = (p,0) = (p).

Notar que la primera igualdad se debe a que g(¢) y ¢1({)¢* -+ - ¢,-(¢)° se dife-
rencian en un entero multiplo de p. Asi pues, p | pi*---p¢r. La igualdad la
obtendremos considerando las normas.
Por definicién de norma, N(p;) = |Ox/pi| = ‘(Z/pZ)(Cl)’ = p¥adgi En
total
N(pt - opir) = prrsmedovttermadas — o,

donde n es el grado de K. Asi pues N(p{'---pS) = N(p), lo que nos da que
p=pitpe

Los primos p; son distintos, pues si p; = p;, entonces g;(¢) € p;, de donde se
sigue facilmente que kg;(¢) € q;, y a su vez g; ([g‘]) = 0. Asi pues, los polinomios
G; vy g; tienen la raiz [(] en comun en Z[(]/q;, pero eso es imposible porque ambos
polinomios son irreducibles en Z/pZ[x], luego son primos entre si. L]

Asi tenemos un método préactico para factorizar cualquier primo de cualquier
cuerpo numérico salvo en un caso: salvo si un primo p divide a los indices de
todos los enteros de un cuerpo numérico K. Entonces se dice que p es un
divisor esencial de K. El ejemplo de Dedekind Q(£) que estudiamos en el
capitulo anterior es precisamente un ejemplo de cuerpo con un divisor esencial:
el 2, seglin se ve en la expresion para el indice de un entero arbitrario que alli
obtuvimos:

£+ &2
2

ind (x—l—yf—i—z ) = 2y% + 22 — y2? + 27|

Esta es la razén por la que es famoso el ejemplo de Dedekind. Existen métodos
para determinar las descomposiciones en primos de los divisores esenciales, pero
no entraremos en ello. En la seccién siguiente hallaremos la factorizacion del 2
para el caso particular del ejemplo de Dedekind.

Ejemplo Volvamos a obtener las factorizaciones de 2 y 3 en el anillo Z [\/—5 ] .

En primer lugar, polmin /=5 = 2% + 5. Su imagen en el cuerpo (Z/2Z)[z]
es z2 + 1 = (z + 1)?, luego 2 factoriza como 2 = (2,1 + \/75)2.

La imagen en (Z/3Z)[x] es 22 +2 =22 — 1 = (z + 1)(z — 1), lo que nos da
la factorizacion 3 = (3,14++v=5)(3,-1++v/=5) = (3,1++v/=5)(3,1 —v/-5).

El teorema 3.16 puede refinarse cuando se aplica a extensiones de Galois
de Q. Ello se debe esencialmente a que los automorfismos obligan a que las
factorizaciones presenten un alto grado de simetria. En efecto, ante todo, si K
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es una extension finita de Galois de Q y 0 € G(K/Q), es claro que la imagen
ola] de un ideal fraccional cualquiera de K es de nuevo un ideal fraccional, que
serd un ideal (entero) si y sélo si lo es a. Asi pues, podemos extender a ¢ a un
automorfismo del grupo de los ideales fraccionales de K dado por o(a) = olal.
Decimos ‘extender’ porque la accion sobre los ideales es consistente con la accién
sobre elementos reales en el sentido de que o(()) = (o(e)), para todo o € K
no nulo.

Diremos que dos ideales fraccionales a y b son conjugados si existe un auto-
morfismo o € G(K/Q) tal que o(a) = b.

Teorema 3.17 Sea K una extension de Galois de grado n sobre Q y sea p un
primo racional. Entonces la factorizacion de p en K es de la forma

p=(p1-pr)S (3.2)

donde los ideales p; son primos distintos, forman una clase de conjugacion y
todos tienen la misma norma N(p;) = p’, para un cierto f tal que efr = n.

DEMOSTRACION: Es obvio que si p | p, entonces todo conjugado de p cumple
lo mismo. Veamos que cualquier otro divisor q de p es un conjugado de p.
Supongamos, por reduccién al absurdo, que o(p) # q para todo automorfismo
0. Por el teorema chino del resto existe un o € O tal que

a = 0(mdd q),
a = 1(méd o(p)) para todo o € G(K/Q).

Pero entonces q | o | N(«), luego p | N(«), luego p | N(a) y por consiguiente
p | o(a) para algin o € G(K/Q), de donde o~ 1(p) | o, contradiccién.

Es claro que el exponente de un primo p en la descomposiciéon en primos de
p debe ser el mismo que el de todos sus conjugados. Como todos los divisores
primos de p son conjugados, de hecho todos tienen el mismo exponente e, luego
la factorizacién es del tipo (3.2). También es obvio que primos conjugados tienen
la misma norma, necesariamente potencia de p. La igualdad n = efr se sigue
de tomar normas en ambos miembros de (3.2). "

En particular, el teorema anterior afirma que dos primos de un cuerpo
numérico normal son conjugados si y sélo si dividen al mismo primo racional,
si y sélo si tienen la misma norma. Otra consecuencia interesante es el teorema
siguiente:

Teorema 3.18 Sea K una extension finita de Galois de Q y a un ideal frac-
cional de K. Entonces

N(a) =[] e(a), (3.3)

donde o recorre los automorfismos de K.
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DEMOSTRACION: Los dos miembros de (3.3) son multiplicativos, luego basta
probarlo para un ideal primo p. Sea N(p) = pf. La factorizacién de p es de la
forma (3.2), digamos que con p = p;.

Sea G =G(K/Q)y H={0€G|o(p1) =p1}. Esclaro que H es un sub-
grupo de G, asi como que los automorfismos que envian p; a p; son exactamente
los de Ho, donde o es un automorfismo fijo que cumpla esta propiedad. Por lo
tanto, en el miembro izquierdo de (3.3) (con p en lugar de a) cada conjugado
de p aparece el mismo numero de veces, concretamente, |H| = n/r = ef veces.
Asi pues,

[T = @r-p) =p" =N(p).

3.3 Ejemplos de factorizaciones ideales

Estudiemos ahora las descomposiciones de los primos racionales en algunos
de los cuerpos que venimos estudiando.

Cuerpos cuadraticos Sea K = Q(\/E) un cuerpo cuadratico. Sabemos que
su orden maximal es Z[¢], donde ¢ es v/d o bien (1 + \/E)/2 segin el resto
de d médulo 4. Segtin el caso, el polinomio minimo de ¢ serd 22 — d o bien
22—+ %. Segun el teorema 3.16, la factorizaciéon de un primo p en K
dependerd de la de estos polinomios en Z/pZ. Evidentemente, para el caso de
2% — d, el polinomio tendrd una raiz doble, dos raices o ninguna segin si d es
0 médulo p, es un cuadrado no nulo médulo p o no es un cuadrado médulo p.
En el caso del segundo polinomio llegamos a la misma conclusién estudiando
el discriminante (suponiendo p # 2), que es también (—1)% — 4(1 — d)/4 = d.
El caso p = 2 se analiza por separado sin dificultad. La tabla siguiente recoge
todos los casos. Los niimeros e y f son los que aparecen en el teorema 3.16.

Tabla 3.1: Factorizacién en cuerpos cuadraticos

Casos Factorizacién | e
plA p=yp 2|1
ptA, 2 =d (mbd p) resoluble D= Ppipo 101

op=2,d=1(mdéd 8)
ptA 22 =d (mbd p) no resoluble | p=p 11]2
op=2, d=5(méd 8)

Ejercicio: Probar que la ecuacién 22 — 15y% = 13 no tiene soluciones enteras.
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Cuerpos ciclotémicos El comportamiento de los primos racionales en los
cuerpos ciclotémicos se sigue del siguiente hecho elemental sobre extensiones
ciclotémicas de cuerpos finitos:

Teorema 3.19 Sea k = Z/pZ para un cierto primo p y sea w una raiz m-sima
primitiva de la unidad sobre Z/pZ, donde pt m. Entonces |k(w) : k| es igual al
orden de p mddulo m.

DEMOSTRACION: Sean = |k(w) : k|. Puesto que w tiene orden m en el grupo
multiplicativo de k(w), que tiene p™ — 1 elementos, concluimos que m | p™ — 1,
luego o, (p) | n.

Por otra parte, todo elemento de k(w) es de la forma h(w), donde h(z) € k[x].
Si llamamos 7 = o,,(p) es claro que h(w)?" = h(w?") = h(w), luego todos los

elementos de k(w) son raices del polinomio zP" — z, de donde se sigue que
p" < p", 0sea, n < on,(p),y asl tenemos la igualdad. n

Teorema 3.20 Sea K = Q(w) el cuerpo ciclotémico de orden m y p un primo
racional. Sea m = p'm/, donde p{m'. Entonces la factorizacion de p en K es

de la forma (3.2), donde f = 0,/(p), e = ¢p(p*) y r = p(m)/ef.

, ’ 7 , . o,
DEMOSTRACION: Sea w, = w™ y wy = WP, que son raices primitivas
de la unidad de orden p* y m’, respectivamente. Determinaremos primero las
factorizaciones de p en Q(wp) y Q(wm/).
Supongamos que ¢ # 0. Las raices p*-ésimas primitivas de la unidad son las
, i i1 . L P
raices de 2P — 1 que no lo son de zP  — 1, luego el polinomio ciclotémico es

P —1

LT g TN T D) T
P —1

Evaluando en 1 queda p = [](1 — w?) = N(1 — w,), donde j recorre los

J
ntiimeros menores que p’ no divisibles entre p. Esta es la descomposicién de p
en factores primos de Q(w,). Veamos que todos los factores son asociados. En
efecto, como (1 —w/)/(1 —wp) = 1+w, + -+ +wl ™! es entero y los dos son
primos, el cociente es de hecho una unidad, luego cada factor 1 —w/ es asociado
al—w,.

Por consiguiente, la factorizacién de p es de la forma p = ¢(1 — wp)d’(”z),
donde ¢ es una unidad. El ndmero 1 — w, no tiene por qué ser primo en Q(w),
pero esto prueba al menos que e > ¢(p*).

Supongamos ahora que m’ # 1. Por el teorema 2.30 p { Alwy,], luego en
particular p { indwy,,. Podemos aplicar el teorema 3.16 al orden Z[w,,]. El
polinomio ™ — 1 tiene rafces simples médulo p, luego p se descompondrd en
primos distintos. Veamos que si p es uno de los divisores de p y N(p) = pt,
entonces t = 0, (p).

Por 3.16 sabemos que t es el grado de uno de los factores irreducibles de
polmin w,,,» médulo p, que a su vez es el grado de la extensién ciclotémica
p-ésima de Z/pZ. Segin el teorema anterior, ¢ tiene el valor indicado.
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Comparando las normas concluimos que p se descompone en ¢(m’) /t factores
primos distintos de norma pt.

Sea O el orden maximal de Q(w), sea O, el orden maximal de Q(wy,/), sea
B un factor primo de p en Q(w) y p = PN O,,y. Es claro que p es un divisor
primo de p en O,,/, asi como que la aplicacién natural O, /p — O/P es un
monomorfismo de cuerpos. El cardinal del primero es p?, y el del segundo pf,
luego concluimos que f > o, (p).

Sea g = ¢(m’)/t. Veamos que p tiene al menos g factores distintos en Q(w).
Sean py,...,py los divisores primos distintos de p en Q(wy,’). Para cada j sea

T €P; \le

I#j

Entonces p | N(m;) (para la norma de Q(wn)/Q, luego también para la
norma de Q(w)/Q). Sea P, un divisor primo de p en Q(w) que divida a ;.
Veamos que estos ideales son distintos dos a dos. En caso contrario uno de ellos,
digamos ‘B dividirfa a dos ntimeros 7; y m;,. Por lo tanto el ideal p = PN O,y
contiene a p, 7;, m;;. Pero entonces p; = p = p;/, contradiccién.

Esto prueba que r > ¢(m')/t. Finalmente observamos que

¢(m) = efr > ¢(p') to(m')/t = $(m),

luego las tres desigualdades han de ser igualdades. L]

Ejemplo Vamos a considerar el caso m = 23 y p = 47 en el teorema anterior.
Como p = 1 (méd m), tenemos que f = o, (p) = 1, luego 47 factoriza en 22
primos distintos de norma 47. Vamos a probar que en Z[w| no hay elementos de
norma +47, con lo que los factores primos de 47 seran ideales no principales, y
habremos probado que Z[w] no tiene factorizacién tnica.

El discriminante del cuerpo es A = —232!. Si llamamos o71,...,09 a los
monomorfismos de Q(w), como Q(w)/Q es normal concluimos que todos los
conjugados o;(w’) estian en Q(w), luego VA = 23'0,/=23 = det(o;(w;)) €
Q(w), y de aqui concluimos que Q(\/—QS) C Qw).

Si en Q(w) hubiera un entero de norma £47, la norma de dicho entero
respecto a la extensién Q(w)/ Q(\/—23) seria un entero cuadratico de norma
+47 (necesariamente +47). Basta ver, pues, que en Q(\/—23) no hay enteros
de norma 47.

Ahora bien, un entero de Q(\/—23) es de la forma a + b%‘/__%, con a, b

enteros racionales, y su norma es

N<a+b1+\2/—23> <2a2+b+b\/;23> <2a2—|—bb\/;23>

1
= (20 -0)*+230%).
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Si hubiera un elemento de norma 47 tendriamos
188 = 47 -4 = (2a — b)? 4 23b°,

pero 188 no es un cuadrado perfecto, ni 188 — 23 = 165, ni 188 — 23 - 4 = 96,
luego b no puede tomar los valores 0, £1,+2, y para valores mayores resulta que
(2a — b)? + 23b2 > 188. n

Este fue el primer ejemplo de factorizacién no unica en anillos de enteros
ciclotémicos que encontré Kummer.

Ejercicio: Probar que todo cuerpo cuadrético estd contenido en uno ciclotémico.

Cuerpos ctbicos puros Consideremos ahora un cuerpo K = Q(W ) Sa-
bemos que el orden maximal es de la forma Z[fy, 01, 02], donde 6y, 61, 62 son los
enteros descritos en el teorema 2.27.
En el capitulo anterior también calculamos el indice de un entero arbitrario,
que resulta ser
ind(z 4+ yb; + 26:) = |by® — a2?|

para los cuerpos de tipo I e

) T+ yh + 20, |by? — a2’
ind =
3 9

para los cuerpos de tipo II, donde = y = z (méd 3).

En particular el indice de 0, es b para los cuerpos de tipo I y 3b para los de
tipo II. Similarmente el indice de 65 es a o 3a.

Como a y b son primos entre si, para factorizar un primo p podemos aplicar
el teorema 3.16 con ( = 61 o bien { = 65 excepto si p = 3 y el cuerpo es de
tipo II. Por simetrfa, podemos suponer que si p divide a m = ab® entonces p | a,
con lo cual podemos trabajar con #; salvo en el caso exceptuado.

El polinomio minimo de 6; es z® — ab?>. Hemos de estudiar sus raices
médulo p. Supongamos primero que p { 3ab.

Sea G = (Z/pZ)*. Hemos de estudiar qué elementos de G tienen raiz cibica
y cuéntas tiene cada uno. El homomorfismo f : G — G dado por [u] — [u]3
tiene por imagen al subgrupo H de todos los cubos. Claramente todos los
elementos de G/H tienen orden 3, luego |G/H| es potencia de 3 y por otra
parte |G/H| divide a |G| =p — 1.

Sip=—1(mdbd 3) entonces 34 p—1,luego G/H =1, G=H y f esun
isomorfismo. Esto significa que cada elemento de G tiene una tnica raiz cibica.

Si por el contrario p = 1 (méd 3) entonces G tiene un elemento u de orden 3.
Es claro que 1, u, u? estdn en el nicleo de f y de hecho son todo el ntcleo, pues
el polinomio 22 — 1 no puede tener més de tres raices en el cuerpo Z/pZ. Por lo

tanto |H| = |G|/3 y asi, sélo la tercera parte de elementos tienen raiz cibica, y
cada uno tiene tres distintas.
Esto se traduce en que si p = —1 (méd 3) el polinomio ® — ab? tiene una

Unica raiz médulo p, luego se descompone en un factor de grado 1 y otro de
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Tabla 3.2: Factorizacién en cuerpos cibicos puros

Casos Factorizacién e f
pt3ab 2% = ab? (méd p) resoluble P = p1paps 1
p=1(méd 3) |23 = ab?® (méd p) no resoluble | p=p 1 3
p1f3ab p =-1(mdd 3) P =Ppip2 11172
p | 3ab (excepto p = 3, tipo II) p=p> 3 1
p= tipo II 3 =p1p3 12 | 1

grado 2. La factorizacién de p es, por lo tanto, p = p1p2, donde N(p1) = p y
N(p2) = p*.

Si p =1 (méd 3) hay dos casos, seglin que la congruencia x> = ab® (méd p)
tenga o no solucién. Si la tiene, de hecho tiene tres soluciones distintas, y p
se descompone en producto de tres primos distintos p = p1pop3, todos ellos de
norma p. Si no hay solucién p se conserva primo.

Si p | ab (incluyendo p = 3), entonces z° — ab® = 2 (mdd p), luego p = p>,
salvo en el caso en que no podemos aplicar el teorema, es decir, si p =3y K es
de tipo II.

Sip=3taby K es de tipo I entonces 2% —ab®> = 2®> £1 = (z +1)3 (méd 3),
luego p = p3.

Nos falta considerar p = 3 en los cuerpos de tipo II. Necesitamos encontrar
otro entero en K cuyo indice no sea divisible entre 3. Por ejemplo vemos que
ind 6y = |b — al/9, luego si 27t b — a podemos usar y. En caso contrario

1416, —2
ind(90—92)=fnd< + 16 92) = b+ 8al

3 9 7’

y 2710+ 8a.

Ahora sé6lo queda un célculo laborioso que involucra calcular los polinomios
minimos de estos dos enteros, reducirlos médulo 3 y factorizarlos.

Por ejemplo, en la prueba del teorema 2.27 vimos que

1—ab B 1+ ab® + a?b — 3ab

lmfn 6y = 2° — 2?
pomlnoxac+3x 97

Para eliminar los denominadores hacemos a =9u+3t+ 1, b=9v+3t+1y
al tomar clases médulo 3 queda 23 — 22 + to — t2 + 3.

Sustituyendo t = 0, 1,2, se ve que siempre hay una raiz doble y otra simple.

Igualmente,

1+ 2ab b2 — 6ab — a*b —1
polmin(fy — ;) = 2° — 22 + +3ax+8a 6a27 a |
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y tras el cambio a = 9u+3t+ 1, b = 9v + 3t + 1 y la reduccién médulo 3
llegamos a x2 — 22 + (t + 1)x + t3 — 2 + ¢, que también tiene exactamente dos
raices médulo 3 para t = 0,1, 2.

Consecuentemente la factorizacién de 3 en este caso es 3 = p1p3.

Notar que hemos probado que los cuerpos cubicos puros no tienen divisores
esenciales. La tabla 3.2 resume los resultados que hemos obtenido.

Ejercicio: Sean K, K2 y K3 los cuerpos definidos en la pagina 36. Considerar las
factorizaciones de 5 y 11 en cada uno de ellos para concluir que se trata efectivamente
de tres cuerpos distintos.

El ejemplo de Dedekind Ya hemos comentado que el ejemplo de Dedekind
Q(¢), donde € es una raiz del polinomio 2 + 2% — 2 + 8, tiene a 2 como divisor
esencial, luego el teorema 3.16 no nos permite factorizar el 2. Si aproximamos
las raices del polinomio minimo de £ obtenemos los valores:

&1 = —2,76734574086197. ..
& = 0,883672870430983. .. +1,4525766646443. . . ¢
& = 0,883672870430983. .. —1,4525766646443. . . ¢

Si desarrollamos

<a+b€1+cgl+€%> <a+b§2+c€2+g> (a+b§3+c§3+§§)

2 2 2

y redondeamos los coeficientes, obtenemos que la norma de un entero arbitrario
2
a+ b€ + c% vale

a® — 8b% + 10¢ — b — 2ab® + 2a%¢c — 8b%c + 3ac® + 2bc? + 11abe.

Dando valores a (a,b,c) vemos que los enteros de coordenadas (8,2, —1),
(=7,1,4), (1,-1,1), (3,-3,2), (4,—4,3) tienen todos norma 2. Calculando los
cocientes respectivos se llega a que (8,2, —1) es asociado a (4,—4,3), y que
(—7,1,4) es asociado a (3, —3,2), en ambos casos a través de la unidad

E+¢&°

€=13+106 + 6>,

mientras que los restantes son no asociados entre si. A partir de aqui es facil
llegar a que

2= (4—4€+3§+2£2> (—7+§+4£+2€2> (1—£+€;§2>,

con lo que tenemos la factorizaciéon del unico primo racional que nos faltaba.
|

El teorema siguiente, junto con la descomposicién que acabamos de obtener,
proporciona una prueba alternativa de que el 2 es un divisor esencial:
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Teorema 3.21 Sea K un cuerpo numérico de gradon y p < n un primo racio-
nal. Sip se descompone en K como producto de n ideales distintos, entonces p
es un divisor esencial de K.

DEMOSTRACION: En caso contrario existirfa un entero @ € K tal que
K = Q(a) y p1inda. Si f(z) = polmina el teorema 3.16 implica que f
se descompone en n factores distintos médulo p, lo cual es absurdo, pues los
factores habrian de ser lineales y p < n. n

Enteros ciclotéomicos reales La factorizaciéon en los anillos de enteros ci-
clotémicos reales de orden primo estd determinada por el teorema siguiente:

Teorema 3.22 Sea K el cuerpo ciclotomico de orden p y sea K* = KNR, que
es un cuerpo numérico de grado m = (p—1)/2. La factorizacion de p en K* es
de la forma p = p™, donde N(p) = p. Si q es un primo racional distinto de p,
y f =o0p(q), entonces q factoriza en K* de la forma

qg=d4q1--4qr,

donde los primos q; son distintos dos a dos y N(q;) = ¢ si f es impar o bien
N(a:) = ¢//? si f es par.

DEMOSTRACION: Sabemos que p = ¢(w — 1)P~1, donde ¢ es una unidad ci-
clotémica y N(w—1) = p. Ahora tomamos normas respecto a la extension K/K*,
con lo que p? = €7P~1, donde € = N(¢) es una unidad de K* y m# = N(w — 1)
sigue teniendo norma p, luego es primo. En consecuencia p = €’/7(P~1/2 y ¢l
resultado es claro.

Supongamos ahora que g # p. En general, sabemos que ¢ factoriza en la
forma descrita en el teorema 3.17. Hemos de probar que e = 1 y que f es el
indicado. Supongamos en primer lugar que e > 1. Tomemos un primo Q que
divida a p en K y sea q = QN K*. Es claro que q es un ideal primo en K*
que divide a ¢. Sea 7 € q \ g2 tal que no sea divisible entre ningtin otro divisor
primo de ¢ (existe por 3.10). Entonces m = qa, donde a es un ideal primo con g.
Sea a € a®\ (q). Entonces ¢ | ga en K*, luego también en K, pero m € q C £,
luego Q° | par, y como p t N(«), ha de ser Q¢ | p, lo que contradice a 3.20.

Sean 9 y q como antes. Segin el teorema 3.20 sabemos que N(Q) = ¢7.
Sea N(q) = f’. Sea O el anillo de enteros ciclotémicos y O el anillo de enteros
de K*. La aplicacién O'/q — 0/Q dada por [a] — [a] es claramente un
monomorfismo de cuerpos, que nos permite identificar a O’/q con el conjunto
de clases de O/ con un representante en 0’, es decir, con un representante real.
Por definicién de norma de un ideal tenemos que el grado de esta extension es
precisamente f/f'.

Es evidente que 0/Q = (0’/q) ([w]), y [w] es rafz de un polinomio de grado
2 con coeficientes en O’ /q (el polinomio minimo de w sobre K’ médulo q), luego
el grado de esta extensién de cuerpos de restos es a lo sumo 2. En particular, si
f es impar ha de ser f/ = f. Supongamos ahora que f es par. Bastara probar
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que f # f’, o equivalentemente, que la extensién de cuerpos de restos no es
trivial.

El grupo de Galois de O/Q tiene orden f, luego contiene un automorfismo
de orden 2, digamos o. Puesto que [w] es raiz del polinomio ciclotémico médulo
9, ha de ser o([w]) = [w]", para cierto r primo con p. Como tiene orden 2, ha
de ser v = w (méd Q), luego Q | w” —wy de aquf que Q | w™ =1 — 1. Ahora
bien, este niimero es primo y divide a p salvo que p | 7% — 1. Esta es la tnica
posibilidad, luego 7 = +1 (méd p), y en consecuencia o ([w]) = [w]*'. Como
o tiene orden 2 el signo ha de ser negativo, y en general o([w]) = [w™%]. Si
llamamos 7; = w" + w™* las clases de estos nimeros generan O'/q y todas son
fijadas por o, luego o es la identidad en O’/q y no en O/9Q. Los dos cuerpos son
distintos. m

La demostracion de este teorema se simplifica considerablemente en un con-
texto mas adecuado. La hemos incluido aqui porque estos cuerpos nos pro-
porcionaran ejemplos interesantes y éste era el inico hecho cuya justificacién a
nuestro nivel presentaba inconvenientes.

3.4 La funcién de Euler generalizada

Completamos nuestro estudio de los ideales de los cuerpos numéricos gene-
ralizando la funcién de Euler que nos permite calcular el nimero de unidades
modulo un ideal.

Definicién 3.23 Sea K un cuerpo numérico. Llamaremos funcion de Fuler
generalizada de K a la funcién que a cada ideal a de K le hace corresponder el
orden ®(a) del grupo (Ox/a)* de las unidades médulo a.

Es evidente que (Ox/a)* estd formado por las clases de los enteros o que
cumplen a + (o) = 1. El teorema siguiente nos permite calcular facilmente la
funcién de Euler:

Teorema 3.24 Sea K un cuerpo numérico.

1. sia yb son ideales de K tales que (a,b) =1 entonces ®(ab) = ®(a)P(b).

e—1

2. Sip es un ideal primo de K, entonces ®(p°) = (N(p) — 1) N(p)
DEMOSTRACION: 1) es consecuencia inmediata del teorema chino del resto.

2) Sea m € p \ p2. Si a recorre un conjunto de representantes de las N(p®)
clases médulo p® y [ recorre un conjunto de representantes de las N(p) clases
modulo p, es claro que los elementos a+7€3 son no congruentes dos a dos médulo
petl v como hay N(p)¢*! de ellos, concluimos que forman un conjunto de
representantes de las clases médulo p¢Tt. También es claro que (a+7¢3,7) = 1
siy sélo si (a,m) = 1.

Por lo tanto, para cada unidad [a] médulo p® hay Np unidades [a + 7¢f]
médulo p¢*1, es decir, se cumple ®(p¢*1) = N(p)®(p®). Ahora sélo queda notar
que ®(p) = N(p) — 1 porque Ok /p es un cuerpo. n
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3.5 Factorizacion ideal en ordenes no maximales

Los érdenes no maximales de los cuerpos numéricos cumplen las propiedades
1y 2 del teorema de Dedekind (por los mismos argumentos que los maxima-
les), pero incumplen la 3, lo que impide que tengan factorizacién tnica real o
ideal. Sin embargo los fallos de la factorizacion ideal son minimos y pueden ser
‘acotados’, como vamos a ver aqui.

Definicién 3.25 Sea O el orden maximal de un cuerpo numérico K y O cual-
quier orden de K. Llamaremos conductor de O’ al conjunto

f={aec® a0 cCO}.

La ‘f” proviene del alemédn ‘Fiithrer’. El teorema siguiente contiene algunas
propiedades y caracterizaciones sencillas sobre este concepto.

Teorema 3.26 Sea K un cuerpo numérico, sea O su orden mazimal y sea O’
un orden de K de indice m. Sea § el conductor de O'. Entonces:

1. § es un ideal no nulo tanto de O como de O'. Ademds f | m.
2. Para todo a € O, si « =1 (méd ) entonces a € O'.

3. f es el mdzimo comun divisor de todos los ideales a de O que cumplen la
propiedad anterior, y también el de los que cumplen a C O'.

DEMOSTRACION: 1) Es claro que f es un ideal. Ademds, como |0/0’| = m,
tenemos que ma € O’ para todo « € O, luego m € f.

2) Es evidente, al igual que la segunda parte de 3). Respecto a la primera
basta probar que un ideal a de O cumple a C O’ si y sblo si cumple la propiedad
2). En efecto, si a cumple 2) y o € a, entonces a + 1 = 1 (mdd a), luego
a+1¢e 0, luego a € O'. La implicacidn opuesta es obvia. "

Si O es un orden numérico y f es un ideal de O, definimos I;(O) como el
conjunto de todos los ideales a de O tales que a + f = 0.

Teorema 3.27 Sea K un cuerpo numérico, sea O su orden mazimal y sea O’
un orden cualquiera de K de conductor §f. Entonces:

1. La aplicacion i : 1;(0") — I;(O) dada por i(a) = aO es biyectiva, y su
inversa viene dada por a — an©’.

2. Las correspondencias anteriores conservan productos e inclusiones, y ha-
cen corresponder ideales primos con ideales primos.

3. Todo ideal de I;(OQ") se descompone de forma tnica salvo el orden como
producto de ideales primos (que de hecho son mazimales).
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DEMOSTRACION: Observemos en primer lugar que si a € I(0’), entonces

luego i(a) € I;(O). De modo similar se comprueba que el producto de elementos
de I;(O') esta en I;(O') y que i conserva productos.

Para probar que i es inyectiva basta ver que a = i(a) N O’. En efecto:
aCi(a)NO =i(a)N(a+f)=a+ (i(a)Nf)=a+i(a)f=a+af=a.

Hemos usado que i(a) N § = mem(i(a), f) = i(a)f, porque los ideales son primos
entre si, asi como que i(a)f = (a0)f = a(Of) = af.

Para probar que 7 es suprayectiva y que su inversa es la indicada basta ver
que si a € I3(0) entonces aN O’ € I;(0') y que i(aN Q') = a.

En efecto, la primera afirmacién es inmediata, y en cuanto a la segunda
tenemos

a = a0’ =a((an0®)+7) =a(an®)+af=a(an )+ af
= a(@anO)+(@nf)=a(@nO)+(@an0)Nf=a(@anO)+ (anO')f
= (a+H)@nO®)=0@n®) =i(an®).

En la tdltima igualdad de la segunda linea hemos usado un hecho general: si
dos ideales a y b de un dominio A cumplen a + b = 1, entonces aNb = ab. En
efecto:

anb=(anb)(a+b)=(anb)a+ (aNb)b Cab+ab=abCanb.

El hecho de que las correspondencias de 1) hagan corresponder los ideales
primos es consecuencia inmediata de que para todo a € I;(0) se cumple

0'/(0'Na)=0/a. (3.4)

En efecto, el homomorfismo natural O’ — O/a dada por « — « + a tiene
nticleo O’ Na, y el hecho de que O = a + f implica que es suprayectivo.
El apartado 3) es consecuencia inmediata de los dos anteriores, ya probados
|

El teorema anterior implica que podemos hablar de divisibilidad, exponente
de un primo en un ideal, méximo comin divisor, minimo comin multiplo, etc.
siempre y cuando nos restrinjamos a ideales de I;(O’). Asi mismo podemos
simplificar ideales no nulos, etc.

No podemos interpretar el isomorfismo (3.4) como que las correspondencias
entre ideales conservan las normas. Esto sélo es cierto sobre ideales de I;(0’)
cuyo anillo de coeficientes sea precisamente O’. El teorema siguiente muestra
un caso particular de esta situacién.

Teorema 3.28 Sea K un cuerpo numérico, sea O su orden mazimal y sea O’
un orden de K de indice m. Sea § el conductor de O'. Entonces:
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1. I,(0") C I;(O).
2. I,(O) es el conjunto de los ideales a de O tales que (N(a),m) = 1.
3. Todos los ideales de I,,(Q") tienen anillo de coeficientes O’.

4. La biyeccion del teorema anterior hace corresponder I,,(Q") con I,,(0) y
conserva normas.

DEMOSTRACION: Por I,,,(O) entendemos el conjunto de ideales a de O' tales
que a+mO = O’ (es importante distinguir entre el ideal generado por m en 0’
y en O). La propiedad 1) es evidente. Para probar 2) consideramos un ideal a
de O’ tal que a+ (m) = O'. Sea 0" su anillo de coeficientes. Entonces m es una
unidad de O”/a. Si existiera un primo p que dividiera a N(a) y a m, entonces
p también serfa una unidad de O”/a, pero por otra parte es un divisor de cero.
Asi pues, (N(a), m) = 1. La otra implicacién es clara, teniendo en cuenta que
N(a) € a.

3) Sea a es un ideal de O’ tal que (N(a),m) = 1 y sea O” a su anillo de
coeficientes. Tenemos que a C O’ C ©” C O. Llamemos k = |0” : O’|. Entonces
k divide a N(a) = |0” : al y am = |0 : O], luego k = 1 y en consecuencia
0" =0

4) El isomorfismo (3.4) implica que la correspondencia i envia ideales de
1,,(0) aideales de I,,(0), asi como que conserva normas. Sélo falta afiadir que
todo ideal de I,,(0) tiene su antiimagen en I,,,(0’). Basta probarlo para ideales
primos, ahora bien, si p es un primo de norma prima con m, entonces la norma
de pN O’ es potencia del tinico primo que contiene, que es el mismo que contiene
p, luego no divide a m. ]

En general no es facil determinar el conductor de un orden numérico, pero el
teorema anterior nos determina un conjunto suficientemente grande de ideales
en el que tenemos asegurada la factorizacion tinica. Para los cuerpos cuadraticos
esto no supone ninguna restriccion:

Teorema 3.29 Sea K = Q(\/E) un cuerpo cuadrdtico y m un niumero natural
no nulo. Entonces el conductor del orden O, definido en 2.24 es f = m0O.

DEMOSTRACION: Segtn la definicién de O,, es obvio que O,, C Z + (m).
Teniendo en cuenta ademds que (m) C § vemos que

f=§0(Z+(m)) C (FNZ)+ (m) = (m) + (m) = (m).

Hemos usado que si u € f N Z entonces uO C O,, (por definicién de f), y esto
s6lo es posible si m | u. u

Asi, los teoremas 3.27 y 3.28 muestran que, en un cuerpo cuadrético, los
ideales de I,,,(0) se corresponden con los ideales de I;(0O,,) y también con los de
1,,(0,,), luego ambos conjuntos —que en principio son distintos— coinciden.
Concluimos, pues, que en el orden O,, tenemos factorizacién inica exactamente
en el conjunto I,,(0,,) de los ideales de norma prima con m.
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Ejercicio: Probar que en el orden Z[\/f?)] los ideales (2), (1 — \/73) y (1 + \/73)
son distintos, tienen norma 4, su anillo de coeficientes es Z[\/f?)] y los tres estan
contenidos en un dnico ideal propio: (2, 1+ \/73). El cuadrado de éste iltimo tiene

indice 8 en Z [\/73], luego ninguno de los tres ideales se descompone en producto de
primos.

Ejercicio: Probar que la ecuacién z? — 5y = 7 no tiene soluciones enteras.

3.6 El problema de la factorizacién tinica real

Aunque hasta ahora nos hemos preocupado tan sélo de describir el modo en
que se descomponen los primos racionales en un orden maximal, hemos de recor-
dar que el teorema 3.16 nos da explicitamente los generadores de los primos que
aparecen. Por ejemplo, si queremos conocer los factores primos de 2 en el anillo
de enteros ciclotémicos de orden 7, puesto que 07(2) = 3, el teorema 3.20 nos
da que 2 ha de tener dos factores primos de norma 8. Para encontrarlos hemos
de factorizar médulo 2 el polinomio ciclotémico séptimo. Los tinicos polinomios
de grado 3 que no tienen raices en Z/27Z (y que por tanto son irreducibles) son
22 +x+1y a3 +22+1. Como los factores han de ser distintos, la factorizacién
que buscamos es necesariamente (23 + z + 1)(z% + 2% + 1), y en consecuencia

2= (2,0 +w+1)(2,w? +w?+1). (3.5)

Sin embargo hay una pregunta importante que no sabemos resolver, y es
si los ideales que nos han aparecido son o no principales, lo que equivale a
preguntarse si el 2 puede descomponerse realmente en el anillo de enteros. Ob-
servar que un ideal a es principal si y sélo si existe un entero o € a tal que
N(«) = N(a), y entonces a = (a). Por lo tanto el problema de determinar si
un ideal dado es principal es de la misma naturaleza que el de determinar si
una ecuacion diofantica definida por una forma completa tiene solucién. En el
préximo capitulo los resolveremos conjuntamente.

Ejercicio: Probar que el segundo generador de cada factor de (3.5) tiene norma 8,
por lo que ambos factores son principales.

El interés determinar si un ideal dado es o no principal se debe, entre otras
razones, a que un orden maximal es un dominio de factorizacién tnica si y sélo
si todos sus ideales son principales. En el capitulo siguiente veremos también
que el problema se puede reducir a determinar si un nimero finito de ideales
son o no principales.

Una forma rapida de resolver estos problemas en casos muy particulares es
probar que el orden considerado es un dominio euclideo. Una posible norma
euclidea es el valor absoluto de la norma. La siguiente caracterizacién resulta
atil:

Teorema 3.30 Sea O el orden mazimal de un cuerpo numérico K. Entonces O
es un dominio euclideo con norma euclidea |N(z)| si y sdlo si para todo o € K
eziste un € O tal que |N(a — B)| < 1.
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DEMOSTRACION: La norma de un dominio euclideo ha de cumplir que
IN(a)|] < |N(aB)|, para todo par de enteros no nulos o y 3. Esto es evidente.

Por otra parte, dados Ay d en O con d # 0, existe un § € O tal que p = % -0
tiene norma menor que 1, luego A = 68 + dp y |N(dp)| < |N(4)], tal y como
exige el algoritmo euclideo. El reciproco es similar. ]

Una muestra de la limitada aplicacién de este hecho es el teorema siguiente:

Teorema 3.31 Si Q(\/E) es un cuerpo cuadrdtico con d < —11 entonces
(@(\/8) no es euclideo.

DEMOSTRACION: Como d ha de ser libre de cuadrados, de hecho d < —13.
Sea O el anillo de enteros. Observemos que si 6 = (a/2) + (b/2)Vd, donde a
y b son enteros, cumple | N(d)| < 3, entonces a? — db* < 12, y como d < —13,
necesariamente b = 0 y |a| < 3, pero entonces § = a/2 es entero y no puede ser
més que § = 0,1, —1. En particular las tinicas unidades de O son =+1.

Si O fuera euclideo podriamos tomar un § € O de norma euclidea minima
entre los enteros no nulos ni unitarios, con lo que todo A € O se expresa como
A =dc+r,donde r =0,1,—1, por la eleccién de 6.

Esto significa que 0/(6) = {[0], 1], [~1]}, luego | N(0)| < 3y, segtin hemos
visto, § es nulo o unitario, en contra de la eleccién que hemos hecho. L]

Ejercicio: Probar que los tnicos cuerpos euclideos Q(\/a) con d < —1 son los
correspondientes a d = —1, -2, -3, -7, —11.



Capitulo IV

Métodos geométricos

En este capitulo desarrollaremos las técnicas adecuadas para resolver los
problemas que hemos venido planteando en los capitulos anteriores. Todos es-
tos problemas, resueltos originalmente por distintos métodos y autores, pueden
reducirse a un teorema general debido a Minkowski, y que pertenece a una rama
de la teoria de nimeros conocida como geometria de los numeros. A modo de
primera aproximacién podemos pensar en el anillo de los enteros de Gauss, Z[i].
Hasta aqui hemos considerado a éste y otros anillos desde un punto de vista
puramente algebraico. Ahora nos fijamos en que este anillo esté contenido en el
plano complejo y, mas precisamente, sus elementos son los vértices de una red
de cuadrados de lado unidad que cubren todo el plano. Esta ‘representacion
geométrica’, debidamente generalizada, da pie a una serie de argumentos que
aportan informacién valiosa sobre los érdenes numéricos. El primer problema
es que N0 tenemos una representacion similar para anillos como Z[v/2]. Si ve-
mos este anillo como subconjunto del plano complejo nos encontramos con un
subconjunto denso de la recta real, algo muy distinto al caso anterior y donde
no podemos aplicar directamente las técnicas que vamos a desarrollar. La dife-
rencia basica es que en el primer ejemplo nimeros linealmente independientes
sobre Q son también linealmente independientes sobre R, mientras que en el
segundo todos los nimeros son linealmente dependientes sobre R. Nuestro pri-
mer paso serd ‘separar’ los elementos de un cuerpo numérico de modo que la
independencia lineal sobre QQ se conserve sobre R.

4.1 La representacion geométrica

Definicién 4.1 Sea K un cuerpo numérico de grado n. Para cada monomor-
fismo o : K — C definimos el conjugado de o como la composiciéon de o con la
conjugacién compleja, es decir, el monomorfismo dado por 6(a) = o(«). Dire-
mos que o es real si 0 = & o, equivalentemente, si o[K] C R. En caso contrario
diremos que o es complejo.

7
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Es evidente que el nimero de monomorfismos complejos de un cuerpo numé-
rico K ha de ser par. Llamaremos s al nimero de monomorfismos reales y 2t al
de complejos, de modo que si n es el grado de K tenemos la relacion n = s+ 2¢.
Adema&s numeraremos los n monomorfismos de K de modo que o1, ...,0s serdn
los reales ¥ 41,0541, --,0s+t, 0s4+¢ Seran los complejos.

Por ejemplo en el caso de los cuerpos cuadraticos tenemos s = 2, t = 0
para los cuerpos reales (de discriminante positivo) y s = 0, ¢ = 1 para los
imaginarios (de discriminante negativo). Para el cuerpo ciclotémico de orden p
se tiene s =0, t = (p — 1)/2. En los cuerpos ctibicos puros s = 1, t = 1, etc.

Ejercicio: Probar que el signo del discriminante de un cuerpo numérico es (—1)%.

La identificacién usual C = R2, como espacios vectoriales, nos da una iden-
tificacién natural R x Ct = R"™. Por ejemplo, si s = ¢t = 1 identificamos la terna
(1,2,3) con el par (1,2 + 3i).

Definimos R = R* x C! considerado como anillo con el producto definido
componente a componente (obviamente no es un dominio integro). A los ele-
mentos de R los llamaremos vectores.

Llamaremos representacion geométrica del cuerpo K a la aplicacién que a
cada nimero o € K le asigna el vector z(a) = (o1(a),...,0.4¢(a)).

Es claro que esta representacién es inyectiva y conserva sumas y productos.
Ademsds si a es un nimero racional, z(ax) = ax(a).
Definimos en R*! la norma dada por

N1,y Toss) = @1 Talasa |2 o]

Asf N(zy) = N(z) N(y), para z,y € R* y N(z(e)) = N(«), para todo a € K.

Ahora probamos que esta la representaciéon geométrica cumple el objetivo
que nos habfamos propuesto:

Teorema 4.2 Sea K un cuerpo numérico. Si los numeros ay,...,o,, de K
son linealmente independientes sobre Q, entonces los vectores x(ay), ..., x(n,)
son linealmente independientes sobre R.

DEMOSTRACION: Completando una base podemos suponer que tenemos n
numeros (donde n es el grado de K. Hemos de probar que el determinante

o1(a1) -+ os(a1) Reosyi(ar) Imosyi(ar) -+ Reospe(ar) Imosii(ar)

o1(an) -+ os(an) Reosyi(an) Imosyi(an) -+ Reosti(an) Imosii(an)

es no nulo. Ahora bien, sabemos que el determinante

o1(a1) -+ os(a1) osyi(ar)  Teyi(ar) - ospi(or)  Tsye(an)

o1(an) - oslan) Osiilam) Fssr(an) oo Osie(an) Ferelam)

es no nulo, pues su cuadrado es Alaq, ..., qy).
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Si a la columna (O'S+k (041-)) le sumamos la columna siguiente, se convierte en
(2 Reogik (ai)), y si ahora a la columna siguiente le restamos la mitad de ésta,
se convierte en (—i Im as+k(ai)). Después sacamos los coeficientes y queda
el primer determinante multiplicado por (—2i)f. Por consiguiente el primer

determinante es, salvo signo, ‘A[al, cey an]‘/Qt #0. m

4.2 Reticulos

El dltimo teorema que acabamos de obtener nos lleva a la definicién siguiente:

Definicién 4.3 Un reticulo en R™ es un subgrupo generado por un conjunto
finito de vectores linealmente independientes, es decir, un conjunto de la forma

M= (v1,...,0m); ={a1v1 + -+ amvm | a1,...,am € L},
donde v1, ..., v, son vectores linealmente independientes en R™.

Obviamente los vectores vy, ..., v, son también linealmente independientes
sobre Z, luego M es un Z-modulo libre de rango m. A este rango lo llamaremos
dimension de M. La dimension de un reticulo de R™ es necesariamente menor o
igual que n. A los reticulos de dimensién n los llamaremos reticulos completos.

El teorema 4.2 implica que la imagen de un moédulo a través de la represen-
tacion geométrica es un reticulo, que serda completo si el médulo lo es.
Por ejemplo, he aqui una imagen del reticulo en R? generado por los vectores

(1,2) y (2,1):

A la vista de la figura resulta natural definir el paralelepipedo fundamental
de una base v1, ..., v, de un reticulo M como el conjunto

T ={avi +- 4+ anvy |0 <a; <1}
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El paralelepipedo fundamental no esta determinado por el reticulo, sino que
cada base tiene uno distinto. Por ejemplo, los vectores (1,2) y (1, —1) generan
el mismo reticulo de la figura anterior y su paralelepipedo fundamental es el que
muestra la figura siguiente:

Por ello, cuando digamos que T es un paralelepipedo fundamental de un
reticulo M querremos decir que es el asociado a una cierta base de M. De todos
modos, los paralelepipedos fundamentales tienen una caracteristica invariante:
su volumen. Llamaremos i a la medida de Lebesgue en R™. Se sobrentiende
que todos los conjuntos sobre los que apliquemos g son medibles, por hipdtesis
cuando sea necesario.

Teorema 4.4 Sea M = (v1,...,v,) un reticulo completo en R™, con v; = (a;;).
Sea T el paralelepipedo fundamental asociado. Entonces u(T) = |det(a;;)|, y
este valor es independiente de la base escogida.

DEMOSTRACION: Sea f : R™ — R™ el isomorfismo que tiene matriz (a;;),
es decir, el isomorfismo que envia la base candnica de R™ a la base v1,...,v,.

Es claro que T = f [[0,1[”}, luego por las propiedades de la medida de
Lebesgue u(T) = | det(ag;) | ([0, 1[") = | det(as;)].

Si cambiamos de base la nueva matriz (a;;) se diferencia de la anterior en
una matriz de determinante +1, luego el valor absoluto del determinante sigue
siendo el mismo. L]

Cada moédulo completo en un cuerpo numérico tiene asociado un reticulo
a través de su representacion geométrica. La demostracion del teorema 4.2
contiene el calculo del volumen de su paralelepipedo fundamental:

Teorema 4.5 Sea K un cuerpo numérico y M un mddulo completo en K con
anillo de coeficientes O. La imagen de M por la representacion geométrica es
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un reticulo completo y el volumen de su paralelepipedo fundamental es

Para demostrar las propiedades elementales de los paralelepipedos necesita-
remos algunos conceptos topoldgicos:
Consideraremos en R" el producto escalar euclideo dado por

TY =Ty + 0+ TnYn.

As{ mismo consideraremos la norma euclidea ||z| = v/zz. Llamaremos B, a
la bola unitaria (de centro 0 y radio 1) en R™, y asi rB,, serd la bola de centro
0 y radio r. Cuando no haya confusién suprimiremos el subindice n.

Diremos que un subconjunto de R™ es discreto si no tiene puntos de acumu-
lacion, es decir, si es cerrado y como espacio topoldgico es discreto. Equivalen-
temente, un conjunto es discreto si y sélo si corta a cada bola 7B en un nimero
finito de puntos.

Si T es un paralelepipedo fundamental de un reticulo M de R" y x € M,
llamaremos trasladado de T por x al conjunto

T,=x+T={z+t|teT}

Teorema 4.6 Sea M un reticulo en R™ y sea T un paralelepipedo fundamental
de M. Entonces

1. St M es completo los conjuntos T, con x € M son disjuntos dos a dos y
cubren todo R™.

2. El conjunto M es discreto.

3. Para cada r > 0 sdlo un nimero finito de conjuntos T, corta a la bola rB.

DEMOSTRACION: 1) Sea wv1,...,v, la base cuyo paralelepipedo es T. Si
r € R™, entonces x se expresa de forma tnica como x = a1vy + -+ + GnUp,
donde aq,...,a, son numeros reales. Podemos descomponer de forma tnica
a; =k; +1r;,donde k; € Z y 0 < r; < 1. Llamando ahora v = kiv1 + - - - 4+ kn, vy,
yt=rwv+-+ 71,0, tenemos que z = u+t, conu € Myt €T, es decir,
rveT, SizeT, paraun v € M, entonces x = v+ ¢/, donde t’ € T es de la
forma syv; + -+ Sp,vn, con 0 < 5; < 1y v es de la forma mivy + - -+ + myuv,
con m; € Z.

La unicidad de las coordenadas da que k; + r; = a; = m; + s;. La unicidad
de la parte entera da que k; = m; y r; = s;, luego u = v. Esto prueba que cada
vector pertenece a un unico conjunto Ty,.

2) Puesto que todo reticulo puede sumergirse en un reticulo completo y que
todo subconjunto de un conjunto discreto es discreto, podemos suponer que M
es completo. En tal caso la aplicacién lineal que transforma la base canénica de
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R™ en una base de M es un homeomorfismo de R™ en si mismo que transforma
Z™ en M. Como Z" es discreto, lo mismo le sucede a M.

3) Sea vy, ..., vy, la base cuyo paralelepipedo es T. Sea d = ||v1||+- - -+]||vm]l-
Para todo u = a1v1+- - -+ vy € T tenemos |[ul| < ay||vi||+- -+ amlvm| < d.

Si un vector x € M cumple que T, corta a rB, entonces hay un vector de
la forma 2 +u € rB con u € T. Entonces ||z|| < ||z 4+ ul| + || —ul| < r +d,
y como M es discreto hay sélo un ntmero finito de vectores z € M tales que
lz]| < r+d. "

El resultado siguiente es importante porque da una caracterizacién topolo-
gica del concepto de reticulo, que nosotros hemos introducido algebraicamente.

Teorema 4.7 Un subgrupo de R™ es un reticulo si y sdlo si es discreto.

DEMOSTRACION: Una implicacién estd vista en el teorema anterior. Sea
ahora M un subgrupo discreto de R™. Sea V' el subespacio vectorial generado por

Men R”. Sea m su dimensién. Sean vy, ..., v, € M linealmente independientes.
Sea My C M el reticulo que generan. Sea T el paralelepipedo fundamental de
My asociado a {v1,...,vm}.

El mismo argumento del teorema anterior prueba que los conjuntos 7T;, con
u € My constituyen una particion de V. Esto significa en particular que todo
vector x € M se puede expresar en la forma r = u+ z, dondeu e My y z € T.
Como M es un subgrupo, también z € M, pero T es un conjunto acotado y M es
discreto, luego s6lo hay un numero finito de vectores z que puedan aparecer en
estas descomposiciones. Esto prueba que el grupo cociente M/Mj es finito. Sea
j = |M: Mp|. Entonces jz € My para todo x € M, luego M C (1/5)Mp, que
claramente es un reticulo, y todo subgrupo de un grupo finitamente generado
es finitamente generado.

Consecuentemente existen vectores wy,...,w, que generan M, y r < m.
Pero como My C M, los vectores linealmente independientes vy, ..., v, son
combinacién lineal de wi,...,w,, luego ha de ser r = m y éstos han de ser
linealmente independientes. Esto prueba que M es un reticulo. [

Finalmente caracterizamos la completitud de un reticulo.

Teorema 4.8 Sea M un reticulo en R™. Entonces M es completo si y solo si
existe un subconjunto acotado U de R™ tal que los trasladados ©+ U con x € M
cubren todo R™.

DEMOSTRACION: Si M es un reticulo completo el resultado se sigue de 4.6
tomando como U un paralelepipedo fundamental de M. Supongamos que M no
es completo y veamos que no puede existir un conjunto U como el del enunciado.

Sea V el subespacio de R™ generado por M. Como M no es completo V' # R™,
luego existe un vector w € R™ ortogonal a todos los vectores de V. Podemos
tomarlo de norma 1.

Sea r > 0 tal que |lu|| < r para todo vector u € U. Por la hip6tesis podemos
descomponer rw =x +u,conx € My u € U.
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Como w y « son ortogonales, tenemos que rww = uw, y aplicando la desi-
gualdad de Cauchy—Schwarz llegamos a una contradiccién: r < |lul| [|w]|| = |lu]|.
|

Ejercicio: Probar que un reticulo M es completo si y sélo si el grupo topolégico R™ /M
es compacto (es topolégicamente isomorfo a un producto de n veces la circunferencia
unidad).

4.3 El teorema de Minkowski

Demostramos ahora el teorema central de este capitulo. Necesitamos un par
de conceptos geométricos adicionales: Un subconjunto A de R™ es convexo si
cuando a,b € Ay 0 < XA < 1, entonces Aa + (1 — A\)b € A. El conjunto X es
absolutamente convexo si es convexo y cuando a € A, también —a € A.

Teorema 4.9 (Teorema de Minkowski) Sea M un reticulo completo en R™
cuyo paralelepipedo fundamental tenga medida c¢. Sea A un subconjunto abso-
lutamente convezo y acotado de R™. Si p(A) > 2"c, entonces A contiene al
menos un punto no nulo de M.

DEMOSTRACION: La prueba se basa en el hecho siguiente:

Si1Y es un subconjunto acotado de R™ con la propiedad de que los
trasladados Y, para cada x € M son disjuntos dos a dos, entonces
uy) <e.

Para probarlo consideramos los conjuntos Y NT_,, donde T es un parale-
lepipedo fundamental de My T_, =T — z. Como los trasladados de T cubren
todo el espacio y son disjuntos, es claro que

p(Y)=> p(ynT.,)

zeM

(notar que sélo hay un ndmero finito de sumandos no nulos).

Claramente z + (Y NT_;) = Y, N T, y como la medida es invariante por
traslaciones, tenemos que p(Y NT_,) = u(Y, NT).

Asi pues,

p(V)=> u(YanT).
zeM

Dado que los conjuntos Y, son disjuntos dos a dos y estan contenidos en T,
concluimos que pu(Y) < u(T) = c.

Consideremos el conjunto (1/2)A. Por las hipdtesis del teorema tenemos que

u<1A) = pA) > ¢,
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luego, segin lo que hemos probado, los trasladados de (1/2)A no son disjuntos
dos a dos, sino que existen x,z" € M tales que  # 2’ y

(z+ %A) N (2" + %A) #+ .

Existen vectores a,a’ € A tales que = + (1/2)a = =’ + (1/2)d/, o equiva-
lentemente, x — 2’ = (1/2)a — (1/2)a’. Este vector estd en A porque A es
absolutamente convexo, y por otro lado es un elemento no nulo de M. n

Observamos que una pequena variante en la prueba nos da el siguiente re-
sultado que usaremos después.

Teorema 4.10 Sea M un reticulo completo en R™ cuyo paralelepipedo funda-
mental tenga medida c. Sea Y un subconjunto acotado de R™ cuyos trasladados
por puntos de M cubran todo R™. Entonces u(Y) > c.

DEMOSTRACION: Razonando como en la primera parte de la prueba del
teorema de Minkowski, ahora los conjuntos Y, NT cubren todo T (sin ser nece-
sariamente disjuntos), luego

p(V) =" p(YonT) > p(T) =c.
zeM

Para aplicar el teorema de Minkowski a los cuerpos numéricos usaremos
el conjunto absolutamente convexo cuyo volumen calculamos a continuacién.
Recordar la notacién n = s + 2t introducida en 4.1.

Teorema 4.11 Para cada numero real ¢ > 0, el conjunto
Xot(e) ={z € R*" | |w| + - + |2s| + 20mgpa] + - + 2wepe| < ¢}

es absolutamente convexro y acotado, y
~ (20)" Nt
H(Xarl0) = n! (g) ’

DEMOSTRACION: El conjunto X (c) es una bola para una norma en R™,
luego es absolutamente convexo y acotado. Para calcular su medida conviene
expresarlo como subconjunto de R", o sea, en la forma

Xsi(c) = {x S | |x1|+"'+|$5|+2\/ I§+1 +?J3+1JF"'+2\/ $§+t +ZJE-H < C}'

Veamoslo primero para t = 0 por induccién sobre s. Claramente tenemos
que Xio(c) = ]—c,c[ y su medida es 2¢, como afirma la férmula.
Ahora, por el teorema de Fubini,

#(Xapr0(c) = / (X0 (e — |2an]))daars
2 [ (2¢)5t1

— —Nzsi1|) drgrs = )
o e el e = G,
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A continuacién lo probamos para cualquier s, t por induccién sobre t. Lo
tenemos probado para t = 0. Sit =1y s = 0 no podemos aplicar la hipdtesis
de induccién, pues el teorema no tiene sentido para (s,t) = (0,0), pero es facil
ver que u(Xp1) tiene el valor requerido. En cualquier otro caso calculamos
1(Xgt+1)(c)) aplicando de nuevo el teorema de Fubini para separar las dos
dltimas variables y cambiamos a coordenadas polares (p, 8), para lo cual hemos
de multiplicar por el determinante jacobiano del cambio, que es p. Con todo
esto queda:

wCin@) = [ [ (uate200)p0)dp

2s+2t T\t 0/2
- or—= (_)/ —92 s+2t do.
TGronilg) ), 2 ede

La férmula de integraciéon por partes (u = p, dv = (c — 2p)**2!dp) nos da

2$+2(t+1) P t+1 c/2 1 (C _ 2p)s+2t+1
X, =1 (%) / S g,
#(Xste (©)) (s+260 \8) Jo 2 st2+1 P
y de aqui se llega sin dificultad al valor indicado por la férmula. m

He aqui la primera consecuencia del teorema de Minkowski:

Teorema 4.12 Sea M un mdodulo completo en un cuerpo numérico K de grado
n = s+ 2t. Entonces existe un numero a € M no nulo tal que

4 n!

mmns()lé|NMM

™ nn"

DEMOSTRACION: Sea X (c) segun el teorema anterior. Vamos a aplicarle el
teorema de Minkowski tomando como reticulo la imagen de M por la represen-
tacion geométrica de K, para lo cual se ha de cumplir que u(Xst(C)) > 2512,
donde k es la medida del paralelepipedo fundamental del reticulo, que por el

teorema 4.5 vale k = /| A[M]|/2".

En definitiva, se ha de cumplir que p(Xy(c)) > 25+, /|A[M]|. Por el teo-
rema anterior esto es
(20)"
n!

)

o\t
() >2+y/lamm)
8
o sea, c" > (%)t 1/|A[MH nl. Si ¢ cumple esta condicién, existe un @ € M no
nulo tal que z(a) € X (c).

Usando que la media geométrica es siempre menor o igual que la media
aritmética concluimos que

Vlor(@) - ou(@)ossr(@)? - 0ua(0)?]
|o1(a)] + -+ +[os(a)| + 2[oss1(@)] + - + 2[oure(a)| <€

i/ IN@)]

3|
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Asf pues, |N(a)| < ¢”/n™.
Dado 0 < € < 1, existe un ¢, > 0 tal que c? = (%)tn!, [|A[M]| + €, a partir
del cual obtenemos un a, € M no nulo tal que

Nl < (£) 2 lana]+ 5

Ahora bien, el conjunto de todos los z(a)) que cumplen esto para algin e
estd acotado (pues todos estdn en Xgi(c1)) v ademds todos ellos estdn en un
reticulo (discreto), por lo que sélo hay un ntmero finito de posibles «., luego
un mismo « (en M y no nulo) debe cumplir la desigualdad para todos los €, o

sea, | N(a)| < (%)tﬂ |A[M]|. n

nn

He aqui una aplicacion sencilla:

Teorema 4.13 (Minkowski) FEl discriminante de un cuerpo numérico (dis-
tinto de Q) no puede ser +1.

DEMOSTRACION: Si Ag = %1, tomando como médulo M el orden maximal
de K, el teorema anterior nos da la existencia de un entero no nulo « tal que

1 < |N(a)] < <é>t %

™

donde n = s+ 2t > 2 es el grado de K. Veamos que esta desigualdad es
imposible.

Podemos considerar al miembro de la derecha como producto de ¢ factores
4/m y n factores k/n, donde k varfa entre 1 y n. Por otro lado t < n/2, luego
podemos agrupar los primeros factores con los primeros del segundo tipo, de
modo que asi nos quedan dos clases de factores: de tipo k/n y de tipo 4k/nm
con k < n/2.

Los primeros son obviamente menores que 1 (salvo n/n). Si probamos que
los del segundo tipo son también menores que 1, todo el producto cumplira lo
mismo, y tendremos una contradiccién.

Ahora bien, como 2 < 7, resulta que n/2 < nn/4, luego k < nw/4 y asi
4k /nm < 1. n

Ejercicio: Usar la férmula de Stirling:

n\" _o_
n! = 27rn(—> e2n,  0<O<1,
e

para probar que si A es el discriminante de un cuerpo numérico de grado n entonces

m\% 1 2n— L
A —_ —_— n 6n |
1Al> (4) 27rne

Deducir que el minimo discriminante de un cuerpo de grado n tiende a infinito con n.
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Ejercicio: Aplicar el teorema de Minkowski a los conjuntos

A

{r e ||z < VAl |zl <1 (2<i<s+1)} sis#0

1
{xEROt | |Rex1| < 3 [Imz1| < \/|A[, |zi] < 1 (2§i§t)} sis=0

A

para probar que todo cuerpo numérico contiene un elemento primitivo entero los coe-
ficientes de cuyo polinomio minimo estan acotados por una cantidad que depende sélo
de n y A. Concluir que hay un nidmero finito de cuerpos numéricos con un mismo
discriminante dado (Teorema de Hermite). Observar que este argumento nos permite
obtener explicitamente tales cuerpos.

El teorema 4.12 tiene una consecuencia mas importante que las que acabamos

de obtener:

Teorema 4.14 Sea K un cuerpo numérico de grado n = s+ 2t y discriminante
A. Entonces todo ideal de K es similar a otro ideal a tal que

N(a) < (é)t%M-

™

DEMOSTRACION: Sea b un ideal de K. El ideal fraccional b~! es de la forma
B¢, para cierto entero 3 y cierto ideal ¢. Sea v € ¢ tal que

IN(Y)| < <é>”—' AL,

™

segun el teorema 4.12.

Segtin la definicién de norma de un médulo, tenemos 4/|A[c]| = N(¢)/|A].

Como « € ¢ se cumple que ¢ | 7, luego (y) = ca para cierto ideal a. Por lo tanto
a=~yc! =~871b, luego a es un ideal equivalente a b, y ademés

o= ) WOV 1yt g

El interés de esto reside en que, segin el teorema 3.15, s6lo hay un nimero
finito de ideales de una norma dada, luego hemos probado el conjunto de las
clases de similitud de ideales del orden maximal de un cuerpo dado es finito.
Dedicamos la préxima seccién a analizar las implicaciones de este hecho.

4.4 El grupo de clases

Dado un cuerpo numérico K, consideremos el grupo abeliano de los idea-
les fraccionales de K. Recordemos que los ideales fraccionales no son sino los
modulos completos cuyo anillo de coeficientes es el orden maximal de K. Entre
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estos médulos tenemos definida la relacién de similitud: Dos ideales fraccionales
a y b son similares si y sélo si existe un o € K no nulo tal que b = ca. Podemos
expresar « = 3/ con 3y «y enteros. Asi, a y b son similares si y sélo si existen
dos enteros 8 y v no nulos tales que fa = «b. Esta tltima ecuacién puede
expresarse equivalentemente en términos de ideales como (8)a = (7)b.

Los ideales principales generan un grupo en el grupo de todos los ideales
fraccionales. Sus elementos son de la forma (8)(y) ™!, y es evidente que la simi-
litud de médulos coincide con la congruencia moédulo este subgrupo. Usaremos
la notacién a ~ b para representar la similitud de ideales fraccionales.

Definicién 4.15 Llamaremos grupo de clases de K al cociente del grupo de
ideales fraccionales de K sobre el subgrupo generado por los ideales principales
no nulos de K. Dos ideales fraccionales determinan la misma clase si y s6lo si
son similares.

Todo ideal fraccional es de la forma a~'a, donde & es un entero no nulo y a
es un ideal K. Evidentemente o 'a es similar a a, luego concluimos que toda
clase del grupo de clases se puede expresar como la clase [a] de un ideal. M4s
aun, el teorema 4.14 afirma que toda clase de ideales tiene un representante de
norma menor o igual que cierta cota, y ya hemos observado que sélo hay un
nuimero finito de ideales en tales condiciones. Por lo tanto el grupo de clases es
finito, y a su nimero de elementos h se le llama numero de clases del cuerpo
numérico K.

Ahora observamos que si dos ideales son similares, entonces uno es principal
si y s6lo si lo es el otro: En efecto, si b = aa y a = (), entonces ay € b, luego
es un entero y de hecho b = (a).

Esto significa que la clase [1] = [(1)] no contiene més ideales que los princi-
pales, luego el grupo de clases es trivial (h = 1) si y sélo si todos los ideales de
K son principales, si y sélo si K tiene factorizacion tnica.

Més en general, si a es cualquier ideal de K, se cumple que [a]* = 1, es decir,
a es siempre un ideal principal.

Para aplicar el teorema 4.14 conviene definir las constantes de Minkowski

4\" n!
Mst - <;> ﬁ
Su célculo es independiente de los cuerpos numéricos, y en estos términos
el teorema 4.14 afirma que todo ideal de K es similar a otro de norma a lo
sumo Mg +/|A|. La tabla 4.1 contiene las primeras constantes de Minkowski

redondeadas hacia arriba en la ultima cifra para que las cotas que proporcionan
sean correctas.

Ejemplo El cuerpo ciclotémico de orden p tiene s = 0, t = (p — 1)/2. Para
p = 3 tenemos que todo ideal es similar a otro de norma a lo sumo My V3 < 1,2,
o sea, todo ideal es similar a un ideal de norma 1, o sea, a 1, y por lo tanto el
nimero de clases resulta ser h = 1 y el cuerpo tiene factorizacion tnica.
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Tabla 4.1: Constantes de Minkowski

n s t Mg,

2 2 01]0,5

2 0 1]0,63662
3 3 0]0,22223
3 1 110,28295
4 4 01]0,09375
4 2 110,11937
4 0 210,15199

Tomemos ahora p = 5. Se cumple que My2v53 < 1,7 y de nuevo tenemos
factorizacién unica.

Para el caso p = 7 resulta My3V75 < 4,2. Observar que en realidad hay
factorizacién tnica si y sélo si todos los ideales primos son principales. Li-
mitandonos a ideales primos, cuya norma es siempre de la forma ¢™ para un
primo racional ¢, sucede que las tinicas normas posibles menores o iguales que
4 son 2, 3 y 4, es decir, sélo hemos de examinar los divisores primos de 2 y
3. Ahora bien, sus érdenes modulo 7 son 3 y 6 respectivamente, luego 2 se
descompone en dos factores primos de norma 8 y 3 se conserva primo. Por lo
tanto no hay ideales primos de norma menor o igual que 4 y todo ideal es, pues,
similar a 1. También en este caso tenemos factorizacién tnica.

Para p = 11 tenemos Mysv11° < 58,97. Vamos a estudiar los primos
menores que 58. La tabla siguiente muestra el resto médulo 11 de cada uno de
ellos, asi como su orden f.

2 3 5 7 11 13 17 19 23 29

2 3 5 7 0 2 6 8 1 7
10 5 5 10 0 10 10 10 1 10
31 37 39 41 43 47 51 53 57

9 4 6 8 10 3 7 9 2

5 o5 10 10 2 &5 10 5 10

—- 3= 3

Para calcular la tabla rapidamente basta tener en cuenta que una raiz pri-
mitiva médulo 11 es 2, y que sus potencias son 1,2,4,8,5,10,9,7, 3, 6.

Las normas de los divisores primos de un primo racional ¢ son todas iguales
a ¢f. Como 2'° > 58, descartamos los divisores de 2. Igualmente 3° > 58 y
43% > 58, luego los tinicos primos de norma menor que 58 son los divisores de
11 y los de 23. Los divisores de 11 son los asociados de w — 1, luego son todos
principales.

El 23 se descompone en producto de 10 ideales primos de norma 23. Hemos
de ver si son principales. Segun el teorema 3.16 cada factor es de la forma
p = (23,w — k), donde & — k es uno de los diez factores en que el polinomio
ciclotémico se descompone mdédulo 23. El nimero k es una raiz médulo 23 del
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polinomio ciclotémico o, equivalentemente, una rafz distinta de 1 de z!'' — 1.
Los elementos de orden 11 médulo 23 son precisamente los cuadrados, como
52 = 2. Asf pues, podemos tomar p = (23,w — 2). Si probamos que es principal
el anillo de enteros ciclotémicos tendra factorizacién tunica.

Ejercicio: Probar que N(w — 2) = 2 — 1.

Hemos de encontrar un multiplo de p de norma 23. La técnica que vamos a
emplear es esencialmente una de las que usaba Kummer para encontrar primos
ciclotémicos. En primer lugar observamos que w = 2 (mdéd p), luego los restos
modulo p de las potencias de w son

| w2 (US w4 w5 wﬁ w7 w8 w9 |

w
24 8 7 9 5 3 6 —11|

Se trata de buscar un polinomio en w cuyo resto médulo p sea nulo y con
coeficientes pequefios para que la norma no aumente demasiado. Una posibilidad
es aprovechar el 8—7 que se ve en la tabla y tomar p(w) = w*+w3?—1. Claramente
p | p(w) y un cdlculo rutinario nos da que N(p(w)) = 23, luego efectivamente
p = (w* +w? — 1) y todos sus conjugados son principales. Esto prueba la
factorizacién tnica del undécimo cuerpo ciclotémico.

Observemos como los resultados que hemos desarrollado nos permiten re-
solver de una forma relativamente rapida un problema nada trivial, como es
determinar la factorizacién tnica de un cuerpo numérico. En principio el mismo
proceso es aplicable a los cuerpos ciclotomicos de orden 13, 17 y 19, aunque el
intervalo de primos a estudiar aumenta demasiado para que los calculos sean
viables (para el tercer caso la cota es del orden de 460.000). Ya sabemos que
para p = 23 no hay factorizacién tunica. n

Enteros ciclotémicos reales Veremos en el capitulo XIII que el calculo del
ntimero de clases de un cuerpo ciclotémico K de orden primo p se puede reducir
al calculo del niimero de clases del correspondiente cuerpo K’ = K NR. Vamos
a probar que estos cuerpos tienen factorizacién unica cuando p =19 y p = 23.

Para p = 19 hemos de estudiar los primos menores que Mgov/198 < 122, 1.
Hay un total de 30 de ellos. La prueba del teorema 3.22 muestra que el divisor
de 19 es principal. Si ¢ es cualquier otro primo, dicho teorema afirma que la
norma de cualquiera de sus divisores es ¢/, donde f es el orden de ¢ médulo 19
si es impar o la mitad de dicho orden si es par. Las posibilidades para f son 1,
3, 9. Ahora bien, ¥/122 < 4,96, lo que implica que cualquier primo ¢ > 3 cuyo
valor de f sea 3 0 9, tiene norma mayor que 122, luego no nos afecta. Por su
parte, 2 y 3 tienen f =9, con lo que la norma de sus divisores excede también
a 122. En resumen, s6lo hemos de estudiar los primos que tienen f = 1, que
se corresponden con primos cuyo orden médulo 19 es 1 o 2, es decir, primos
g = £1 (méd 19). Resulta que sélo hay dos primos en tales condiciones: el 37
y el 113.
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Si encontramos enteros ciclotémicos reales de norma 37 y 113, habremos
probado que K’ tiene factorizacién tinica. Con ayuda de un ordenador un simple
tanteo basta para dar con ellos. Si calculamos la expresion

N(aop + a1m + aan2 + aszns + aana + asns + agne + aznr + agns + agny),

(por ejemplo aproximando n, = 2 cos(2km/19) y redondeando el resultado) en-
contramos decenas de ejemplos sin dar a las variables mas valores que +1 y 0.
Por ejemplo

N +7n5—n6) = =37  N(L+mn, —n3) =—113.

Encontrarlos manualmente es mas laborioso, pero no excede lo razonable.
Veamos una posibilidad para el 37. Quizé la parte mas laboriosa sea encontrar
un factor irreducible del polinomio ciclotémico médulo 37. Por ejemplo sirve
22 + 3z + 1. De este modo, si consideramos el ideal q = (37,w? + w+ 1) en K,

tenemos que w? = —1 — 3w (mdd q). Despejando, w™! = —3 —w (méd q), luego
m =w+w ! =-3(mbd q). Ahora es ficil completar la tabla siguiente:
1 | n

|772| 13 |77
1

1 | ns | me | me | ms | mo |
1[=3]7]-18] |

4
0] -12]-11] 8 | -13[ -6

En ella se muestran los restos médulo q de los niimeros 7;, pero es claro que
éstos han de coincidir con los restos médulo ¢ N K’ en K’. El resto es andlogo
al estudio que hemos hecho antes sobre el cuerpo ciclotémico undécimo. =

El analisis para p = 23 es similar. La cota es ahora 900, pero por el mismo
motivo que antes basta estudiar los primos ¢ = £1 (mdd 23) La lista siguiente
contiene todos los primos en estas condiciones junto con un entero de la norma
correspondiente. De nuevo vemos que basta buscar entre los enteros con coefi-
cientes +1 y 0, por lo que no es dificil encontrar ejemplos rapidamente.

N(1+m —ns) =47 N(

N+ +717) = 137 N(L+m3 + 15 + 17 — 18 + m11) = —599
N(1 —n1 +mn3) =139 N(1 — 15 + 17 —ng + 110 + m11) = 643
N(L =72+ +15+n6) =229 N(L—n1 — 14+ 15 + 16 +19) = —827
N1 —n —ng) = =277 N(1 =5 +n7 —ns — 1m0 +m1) =829
N(L + 95 + 17 — 1m0 +n11) = 367

N(L =1 —=m2 =73 =01 — 15 — 16 — N7 — 718 — No) = 691
Esto prueba que el anillo de enteros ciclotémicos reales de orden 23 tiene

factorizacion unica. =

Ejercicio: Probar que @(\:75) tiene factorizacién unica.
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Ejemplo Para el ejemplo de Dedekind Q(¢), tenemos s =t =1y A = —503,
de donde concluimos facilmente que todo ideal es similar a uno de norma menor
o igual que 6. Un primo de norma menor o igual que 6 debe dividir a 2, 3 0 5.
Ya vimos en el capitulo anterior (pdgina 69) que 2 se descompone en tres ideales
primos principales. Como ind £ = 2, para factorizar los demés primos podemos
considerar el polinomio 23 + 22 — 22 4 8, que es irreducible médulo 3, luego 3 es
primo en Q(¢), mientras que dicho polinomio se descompone como (z+1)(z2+3)
médulo 5. Por lo tanto 5 se descompone en producto de un ideal de norma 25
y del ideal p = (5,1 + &), de norma 5. Si probamos que p es principal entonces
todo ideal de norma menor o igual que 6 sera producto de ideales principales, y
por lo tanto principal. Ahora bien, es facil ver que N(1+¢&) = 10, lo que implica
que 1 + ¢ factoriza como producto de p por un ideal (principal) de norma 2,
luego p también es principal, y asi Q(¢) tiene factorizacién unica. L]

De momento atn no disponemos de las herramientas necesarias para calcular
nimeros de clases en general. Ello supone ser capaz de decidir si dos ideales
dados son similares o no, lo que a su vez exige ser capaz de decidir si un ideal
dado es principal o no, y a su vez hemos visto que esto equivale a resolver las
ecuaciones diofdnticas asociadas a los ideales. Ahora vamos a generalizar el
concepto de grupo de clases a 6rdenes numéricos arbitrarios.

Supongamos que O’ es un orden de un cuerpo numérico, f es su conductor y
O es el orden maximal. El teorema 3.27 establece una biyeccion entre los ideales
de O’ primos con f y los andlogos en O. Esta correspondencia conserva todo
lo relacionado con la divisibilidad ideal, pero en general no conserva el caracter
principal de un ideal: si bien es obvio que la imagen en O de un ideal principal
de O’ es un ideal principal (con el mismo generador), bien puede ocurrir que
un ideal principal de O tenga asociado un ideal no principal de O’, debido a
que ninguno sus generadores pertenezca a O’. Por ello hemos de distinguir
entre ideales de O’ principales en O’ (luego también en O) de los que sélo son
principales en O. En particular, el hecho de que todos los ideales de O sean
principales no implica necesariamente que todos los ideales de O’ lo sean. Ni
siquiera los primos con el conductor. Ahora definiremos un grupo de clases de
ideales de O’ (primos con f) de modo que la clase trivial la formen precisamente
los ideales principales en O’, con lo que O’ tendrd factorizacién tnica real (para
numeros primos con f) si y sélo si el grupo de clases es trivial, en completa
analogia con el caso que acabamos de estudiar para érdenes maximales.

Definicién 4.16 Sea K un cuerpo numérico, sea O su orden maximal y sea O’
un orden cualquiera de K con conductor f. Llamaremos

IF(0) = {ab™" | a,b € [;(0)},

es decir, If*((f)) es el subgrupo generado por I;(O) en el grupo de los ideales
fraccionales de K. Segin el teorema 3.27, el semigrupo I;(O’) puede identificarse
con I;(0), luego podemos considerar a If*((‘)) como un ‘grupo de cocientes’ de
I;(0’). Similarmente definimos

F(0) = {a€O |a0+f=1},
PO = {a0B7'0 |, B € P(0)]}.
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De este modo Pf*((‘)’ ) es el subgrupo de I { (0) generado por los ideales prin-
cipales de I;(O’) (identificados con ideales de I;(0)).

Llamaremos grupo de clases de O’ al grupo cociente H(OQ') = I;‘(O)/Pf*(O’).

Todo a € I;(0’) cumple por definicién a + f = O, luego existen a € a 'y
¢ € f tales que a + ¢ = 1, es decir, (o) € I;(O"). Por la factorizacién tnica
existe b € I;(O’) tal que ab = («). Pasando a I;(O) y tomando clases, esto se
traduce en que [a]~! = [b]. Esto prueba que todas las clases de H(0O') tienen
un representante en I;(0’), luego podemos considerarlas como clases de ideales
de I;(0").

Asi mismo, si un ideal a € I;(O") cumple [a] = 1, entonces existen nimeros
B, € P;(O’) tales que (f)a = (7). Existe un a € a tal que v = fa. El hecho de
que v € F5(0’) implica que lo mismo vale para « y, por la factorizacién tnica,
a = (a). Asi pues, un ideal de I;(O’) es principal si y sélo si su clase es trivial.

Con esto hemos probado que el grupo de clases de un orden es exactamente
lo que queriamos que fuera. Ahora vamos a probar que es finito, a la vez que
calculamos su orden.

Teorema 4.17 Sea O el orden mazimal de un cuerpo numérico K. Sea O un
orden de K de conductor § y sea h el nimero de clases de K. Entonces el grupo
de clases de O’ es finito, y su orden es

,a()
"= e

donde ®(f) y ®'(f) son, respectivamente, el nimero de unidades de O/f y de
O'/f, mientras que e es el indice del grupo de unidades de O' en el grupo de
unidades de O. Ademds el cociente que aparece en la formula es entero, por lo
que h | W'.

DEMOSTRACION: Sea JH el grupo de clases de K. Consideremos el homo-
morfismo 7 (0) — H dado por a — [a].

Dado cualquier ideal a de K, existe un ideal b de manera que [a~!] = [b]. Por
el teorema 3.10 existe un ideal ¢ = ab~? tal que [¢] = [a] y ¢+f = 1. Esto implica
que el homomorfismo anterior es suprayectivo. Su ntcleo es evidentemente
Py (0). Asf pues

I;‘(O)/Pf*((‘)) >~ K.
Por el teorema de isomorfia podemos concluir que
h' = |P{(0): Py (O')] h,
supuesto que probemos que el indice es finito.

Sea ahora U el grupo de unidades del anillo O/f y consideremos la aplicacién
U— Pf*(O)/Pf*(O’) dada por [a] — [(@)]. Veamos que esté bien definida.

Si [a] = [A], entonces @ = B (mdd f) y por ser unidades existe un y € O tal
que ay = By = 1 (méd ). Como f C O’ esto implica que ay, By € O, luego

[(@)] = [(@)(B7)] = [(B)(am)] = [(8)]-
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Evidentemente se trata de un epimorfismo de grupos. Esto prueba ya la
finitud del grupo de clases. Vamos a calcular el nicleo. Si [(a)] = 1 entonces
(o) € Py (0), lo que significa que (a) = (3), donde 8 € P;(0'). A su vez esto
implica que o = €f3, para cierta unidad € de O. Reciprocamente, es claro que si
a es de esta forma entonces («) estd en el nicleo.

Llamemos E al grupo de unidades de © y E al subgrupo de U formado por
las clases con un representante en E. Similarmente, sea P;(0’) el grupo de las
clases de U con representantes en P;(O’). Hemos probado que el nicleo del

epimorfismo que estamos estudiando es E P;(0’), de donde

[Py (0) : B (0')] =

Claramente,

|E P;(0)] = |E: EnP(0)] | ()]
Si llamamos E’ al grupo de las unidades de O', es facil comprobar el iso-
morfismo E/E’ = E/(E N P;(0’)). Finalmente, si llamamos U’ al grupo de

las unidades de O'/f, también se ve facilmente que U’ = P;(O’). El teorema es
ahora inmediato. L]

Para el caso de érdenes cuadraticos la férmula admite una ligera simplifi-
cacion:

Teorema 4.18 Sea O, el orden de indice m en un cuerpo cuadrdtico K. Sea
h el nimero de clases de K y h,, el numero de clases de O,,. Entonces

®(m)
p(m)enm
donde ® es la funcion de Euler gemeralizada, ¢ es la funcion de Euler usual y

em es el indice del grupo de las unidades de O, en el grupo de las unidades de
K.

B = h,

DEMOSTRACION: Sélo hay que recordar que el conductor de O,, es (m) y
notar que O,,/(m) &2 Z/mZ. "

Ejemplo Consideremos el orden Z [\/7_3 ] , de indice 2 en el orden maximal de
(@(\/—_3 ) Es facil ver que el nimero de clases de este cuerpo es 1, asi como que
su grupo de unidades consta exactamente de las 6 raices sextas de la unidad (en
la seccién siguiente obtendremos este hecho como consecuencia de resultados
generales), mientras que el grupo de unidades de Z[/=3] consta sélo de {£1}.
Por consiguiente, y segtin la notacién del teorema anterior, e = 3.

Por otra parte, el 2 se conserva primo en @(\/—_3 ), luego ®(2) = N(2)—1 = 3.
En total concluimos que el nimero de clases de Z[\/—_S] es ho = 1. Como ya
sabemos, esto no significa que el anillo tenga factorizacién tnica. Un ejemplo
de factorizacién no tnica es el siguiente:

2.2=(1+v=-3)(1-v=3). (4.1)
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Vamos a probar que éste es en realidad el tnico caso posible. Consideremos un
ntimero cualquiera a + by/—3 € Z [\/—_3]

Supongamos que 2 | N(a + b\/—_3) = a® + 3b. Entonces a y b son ambos
pares o ambos impares. En el primer caso a + by/—3 = 2(u + vm), en el
segundo tenemos que a y b son ambos de la forma 4n + 1. Por lo tanto bien
a+b o bien a —b es miiltiplo de 4, es decir, 4 | a+ b, para una eleccién adecuada
del signo.

Trabajando en el orden maximal vemos que 2 es primo y 2 | N(a + bv/=3),
luego divide a a4by/—3. Como es invariante por conjugacién, de hecho tenemos
que 2 | a+by/—3. Por otra parte 1i‘2/__3 es una unidad, luego 14+/—3 es asociado
a 2 y también divide a a + by/—3. Digamos que

a+b\/*_:(1:|:\/*_3)(u+v\/*_3),

donde u y v son enteros o semienteros. Entonces

wt /T3 = ai3b+(z¢b)¢j37
luego eligiendo el signo podemos hacer que u y v sean ambos enteros.

Asi en ambos casos (tanto si a y b son pares o impares) hemos llegado a una
factorizacién de la forma a+byv/—3 = 73, donde T es 20 1+v/—-3y 3 € Z [\/—_3} .
Repitiendo el proceso podemos llegar a una factorizacién a+by/—3 = 71 - - - 7.3,
donde ahora N(3) es impar. Como el nimero de clases es 1, 8 se descompone
en producto de primos en Z[\/—_S], digamos

a+bV=3=r1-Tpm TS (4.2)

Los factores 7; son irreducibles de norma 4 y los factores 7; son primos de norma
impar. Todos ellos son primos en el orden maximal.

Ejercicio: Probar que la descomposicién (4.2) es tnica salvo signos y salvo las trans-
formaciones entre los 7; que pueden hacerse a partir de (4.1). La factorizacién es dinica
salvo signos si exigimos que en la descomposicién no aparezcan factores 1 & v/—3 con
signos opuestos.

Terminamos la seccién con un ultimo resultado de finitud:

Teorema 4.19 Si O es un orden numeérico, existe un numero finito de clases
de similitud de mddulos cuyo anillo de coeficientes es O.

DEMOSTRACION: El teorema 4.12 (teniendo en cuenta la definicién de norma
de un médulo) proporciona una cota C que sélo depende del cuerpo y de O tal
que todo médulo M con anillo de coeficientes O contiene un elemento a # 0 con
IN(a)| < CN(M). Como a® C M, también O C a~*M. Es facil ver que

0™ M : 0] =N(a™" M)~ = [N(a)l/N(M) < C.

Asf tenemos que todo médulo M es similar a otro M’ tal que O C M’ y
|M’ . O] < C. Sélo hay un ndimero finito de naturales ¢ tales que 1 < ¢ < C
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y, para cada uno de ellos, sélo hay un nidmero finito de médulos M’ tales que
O C M'y|M': Q| =t, pues estos médulos cumplen que M’ /O es un grupo finito
de orden t, con lo que tM’ C O, y en consecuencia @ C M’ C t~1O. Ahora bien,
los médulos intermedios entre O y t~1O estdn en correspondencia biunivoca con
los subgrupos del grupo cociente, que es finito porque ambos moédulos son libres
del mismo rango.

En conclusién, hay un niimero finito de tales médulos M’. L]

4.5 La representacion logaritmica

En esta seccién obtendremos la estructura del grupo de unidades de un orden
numérico arbitrario. Este grupo es multiplicativo, mientras que el teorema de
Minkowski se aplica a reticulos, que son grupos aditivos. Para relacionar unos
con otros usaremos logaritmos.

Definicién 4.20 Recordemos que R*" = R® x C!. Llamaremos representacion
logaritmica de R* a la aplicacién | cuyo dominio lo forman los vectores = de Rt
cuyas componentes son todas no nulas (o sea, tales que N(x) # 0) y dado por
l(z) = (li(z),...,ls+¢(2)), donde

e(z) = log|zk| parak=1,...,s,
FYW 7 log ok parak=s4+1,...,5+t.

Es inmediato que si N(z) # 0 # N(y), entonces I(zy) = I(z) +(y). También
es obvio por la definicién de norma en R¢ que

logN(2)] = b () + -+ + Lsela). (43)

Si K es un cuerpo numérico llamaremos representacion logaritmica de K
a la aplicacién | : K \ {0} — R*™* dada por l(a) = l(z(a)), donde z es la
representacién geométrica de K.

Asi pues,

l(a) = (logloy(a)l,... , log|os(a),loglosii (@), .. log [osre(a) ).

El vector I(«) se llama representacion logaritmica del ntimero «.. El espacio
R+t se llama espacio logaritmico de K.

Es claro que si a y 8 son nimeros no nulos, entonces I(af) = I(a) + ().
De aquf se sigue que [(a~!) = —I(a).

Por otro lado

log|N(a)| = log|N(z(a))| = ta(a) + -+ Lsya(a).
Un primer resultado elemental es el siguiente:

Teorema 4.21 Sea K un cuerpo numérico y O un orden cualquiera de K.
Entonces la restriccion de la representacion logaritmica de K al grupo de las
unidades de O es un homomorfismo de grupos cuyo nicleo estd formado por las
raices de la unidad en O y es un grupo ciclico finito de orden par.
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DEMOSTRACION: Sea W el niicleo indicado en el enunciado. Si @ € W
resulta que I («) = 0, luego |ok(a)| =1 para k = 1,...,s+t. Esto implica que
el conjunto {x(a) | a € W} estd acotado, y como sus elementos pertenecen a
un reticulo, que es un conjunto discreto, necesariamente ha de ser finito, y como
la representacion geométrica x es biyectiva concluimos que el subgrupo W es
finito.

En particular los elementos de W tienen orden finito, luego son raices de la
unidad. Reciprocamente si un w € O cumple w™ = 1, entonces todos los conju-
gados de w cumplen lo mismo, luego todos tienen mdédulo 1, y los logaritmos de
los médulos son 0, luego concluimos I(w) = 0.

Asi pues, W contiene exactamente a las raices de la unidad de O. En par-
ticular contiene al —1, de orden 2, luego W es un grupo abeliano finito de orden
par. Ademas es ciclico porque todo subgrupo finito del grupo multiplicativo de
un cuerpo es un grupo ciclico. [

Ejercicio: Probar que si un cuerpo numérico cumple s > 1 entonces sus tnicas raices
de la unidad son +£1.

Ahora ya podemos aplicar el teorema de Minkowski al estudio de las unida-
des.

Teorema 4.22 Sea K un cuerpo numérico y O un orden de K. FEntonces la
mmagen del grupo de las unidades de O a través de la representacion logaritmica
es un reticulo de dimension s+t — 1.

DEMOSTRACION: Sea M dicha imagen. Obviamente M es un subgrupo del
espacio logaritmico de K. Por el teorema 4.7, para demostrar que es un reticulo
basta ver que es discreto. Sea r > 0 y vamos a probar que sélo hay un nimero
finito de unidades e tales que ||i(e)|| < r.

Para ello vemos que li(€) < [lp(e)|] < [[l(e)]| < 7, luego |ok(e)| < e si
Ek=1,...,s8y |ak(e)|2 <e"sik=s+1,...,t. Esto significa que el conjunto
de los z(e), cuando € es una unidad con |[l(e€)]] < r, estd acotado, pero los
vectores z(¢) forman parte de un reticulo, luego son un nimero finito. Como
la representacién geométrica es biyectiva, el nimero de unidades € es también
finito.

Esto demuestra que M es un reticulo en R*™¢. Si € es una unidad de O,
sabemos que N(e) = £1, luego 0 = log|N(e)| = l1(€) + - - - + loy4(e).

Por lo tanto el reticulo M esté contenido en el subespacio

V={xeR"" |z, +- - + x5 =0},

y su dimensién es a lo sumo s +¢ — 1.

Para probar que su dimensién es exactamente ésta basta demostrar que
existe un subconjunto acotado U de V tal que los trasladados de U por los
elementos de M cubren todo el espacio V. Esto puede probarse modificando
levemente la prueba del teorema 4.8 o bien aplicando el teorema 4.8 a la imagen
de M a través de un isomorfismo entre V y Rs+¢=1,
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Es claro que todo vector de R** es la imagen por la representacién lo-
garftmica de un vector de R**. Por (4.3) resulta que un vector x de R*! con
coordenadas no nulas cumple [(z) € V siy sélo si N(z) = 1. Sea S el conjunto
de todos los z € R** tales que N(z) = +1. As{[[S] = V. Sea X C S un conjunto
acotado cualquiera.

Se cumple que [[X] estd acotado, pues si un vector (x1,...,xs4¢) cumple
lzx| < C para k = 1,...,8y |vx|> < C para k = s+ 1,...,s + t, entonces
lk(z) <logC'y por lo tanto lx(z) = — >, 4 li(x) > —(s +t —1)C, con lo que
(X)) estd acotado.

Como la norma es multiplicativa, si € es una unidad de O, se cumple que
x(e)X C S, y si todos los trasladados z(e) X cubren S, entonces los trasladados
[(€)+1[X] cubren V. Asi pues, basta demostrar que existe un conjunto acotado
X C S tal que los trasladados z(e) X cubren S.

Sea y = (%1,...,%Ts,y1 + 121,...,Ys +i2) € S y sea f : R — R 1a
aplicacién dada por f(x) = yz (el producto se calcula componente a componente
en RSt = R* x C!). Si ahora consideramos R*! = R*+2! la aplicacién f es lineal
y el determinante de su matriz (por ejemplo en la base canénica) es

€

Ts

—Z1 W1

Yt 2t
—Zt Yt

Llamemos N C R*! a la imagen de O por la representacién geométrica.
Las aplicaciones lineales de determinante +1 conservan la medida, luego los
paralelepipedos fundamentales de los reticulos N e yN tienen la misma medida.
Llamémosla k (observar que k no depende de y).

Sea @ > (%)t k y sea c = **/Q. Llamemos A al conjunto de los puntos
x € R tales que |x;| < cparai=1,...,s |1;]> <cparai=s+1,...,5+1.
Es facil comprobar que A es absolutamente convexo y acotado, asi como que
wu(A) = 25wtestt > 25728 (pues A es un producto de s intervalos de longitud
2¢ y t circulos de radio /c).

El teorema de Minkowski nos da un punto no nulo p € A N yN, es decir,
un punto de la forma p = yz(«) para cierto @ € O no nulo y de manera que
IN(p)| < ¢*T* = Q. Puesto que N(y) = £1 también se cumple que |N(a)| =
[z(a)| = IN(p)| < Q-

Por el teorema 2.19 existe sélo un nimero finito de elementos a no asociados
y de O con norma menor que () en médulo. Sean, pues, aq, ..., € O no nulos
tales que | N(«;)| < @ y de modo que cualquier otro entero en estas condiciones
sea asociado en O a uno de ellos. Notar que @) no depende de y, luego ay, . .., a,
tampoco (podriamos haberlos tomado al principio de la prueba). Ahora el «
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que habiamos encontrado se expresa como « = €q; para un cierto ¢ y una cierta
unidad € de O. Hemos demostrado que todo y € S se puede expresar en la forma
y = pa(a; )a(e).

Definimos X = SN U~ z(a; ')A, Se trata claramente de un conjunto
acotado y tenemos que todo y € S cumple y € x(€)X para cierta unidad e de
O, tal y como queriamos probar. n

Esto determina la estructura del grupo de las unidades de cualquier orden
de cualquier cuerpo numérico.

Teorema 4.23 (Teorema de Dirichlet) Sea O un orden de un cuerpo numé-

rico de grado n = s + 2t. Entonces existen unidades €1,...,¢. en O (donde
r =s+t—1) tales que toda unidad € € O se expresa de forma idnica como
€= (el -l donde ¢ € O es una raiz de la unidad y mq, ..., m, son enteros
racionales.

DEMOSTRACION: Sea U el grupo de las unidades de O. Basta tomar unida-
des €1,...,6. € U tales que l(e1),...,I(e) sean una base de [[U]. "

Definicién 4.24 Un conjunto de unidades €y, ..., €, en las condiciones de teo-
rema anterior se llama un sistema fundamental de unidades de O.

Los sistemas fundamentales de unidades de un orden pueden ser vacios. Esto
ocurre cuando r = s+t—1 = 0, lo cual s6lo es posible si s = 1, t = 0 (y entonces
n=s+2t=10sea, K=0Q),obien s =0,t=1 (y entonces n =2y K es un
cuerpo cuadritico imaginario).

Esto demuestra que Q y los cuerpos cuadraticos imaginarios son los tinicos
cuerpos con un numero finito de unidades. Las unidades de Q son obviamente
+1. Las de los cuerpos cuadraticos imaginarios son las raices de la unidad que
contienen. Ahora bien, los tnicos cuerpos ciclotémicos de grado 2 son Q(37)
(de orden 4) y Q(v/=3) (de orden 3 y 6 a la vez). Asi pues, las unidades de
cualquier otro cuerpo cuadratico imaginario son también {41}, mientras que
las de Q(¢) son {£1,=+i} y las de @(\/—_3) son las raices sextas de la unidad
{#1, fw, +w?}, donde w = (-1 +v/=3)/2.

Los sistemas fundamentales de los cuerpos cuadraticos reales y de los ciibicos
puros tienen un sélo miembro. En estos casos si € es un sistema fundamental
de unidades se dice simplemente que es una unidad fundamental.

La prueba del teorema de Dirichlet no es constructiva, es decir, no nos per-
mite obtener en la practica un sistema fundamental de unidades. Resolveremos
enseguida este problema, pero antes observemos lo siguiente:

Un sistema fundamental de unidades no es mas que una base de un cierto
Z-modulo, luego no es tnico. Sin embargo podemos asociar a cada orden un in-
variante concerniente a sus sistemas fundamentales de unidades de forma similar
a como asociamos el discriminante a las bases de un médulo.

Sea €1,...,€6. un sistema fundamental de unidades de un orden O de un
cuerpo numérico. Entonces I(e1),...,1(¢.) forman una base del reticulo {[U],
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donde U es el grupo de las unidades de O. El vector [y = \/%th(l’ .oy 1) es

unitario y ortogonal al subespacio V' formado por los vectores cuyas coordenadas
suman 0.

Los vectores lg,l(€1),...,l(e,) generan un reticulo completo cuyo parale-
lepipedo fundamental tiene medida independiente de la eleccién del sistema
fundamental de unidades (pues un cambio de sistema da lugar a un cambio de
base del reticulo).

Sabemos que esta medida k es igual al médulo del determinante de la matriz
que tiene por filas a lo,l(€1),...,1l(e.). Si sumamos todas las columnas a la
columna i-ésima y tenemos en cuenta que las componentes de [(e1),...,I(€)
suman 0, podemos desarrollar el determinante por dicha columna i-ésima y
concluir que k = /s +t R, donde R es el médulo de cualquiera de los menores
de orden r de la matriz que tiene por filas a l(e1),...,l(€,.).

Este valor R es independiente de la eleccién del sistema fundamental de uni-
dades y se llama regulador del orden Q. El regulador de un cuerpo numérico es

el regulador de su orden maximal. Para Q y los cuerpos cuadraticos imaginarios
se define R = 1.

4.6 Calculo de sistemas fundamentales de
unidades

El célculo de un sistema fundamental de unidades (y por lo tanto del regu-
lador) de un cuerpo numérico dado es, a nivel préactico, uno de los problemas
maés complicados de la teoria algebraica de niimeros, y conocer tales sistemas re-
sulta ser indispensable para tener un control satisfactorio del cuerpo en cuestion.
Desde un punto de vista tedrico no hay dificultad. En esta secciéon probaremos
que siempre es posible encontrar un sistema fundamental en un ntmero finito
de pasos. Un hecho clave en esta direccion es el teorema siguiente.

Teorema 4.25 Sea M un médulo completo de un cuerpo numérico K de grado

n. Sea {ai,...,a,} una base de M. Entonces existe una constante A tal que
todos los elementos a € M que cumplen |o1(a)| < ¢1,...,|on(@)] < cn, para
ciertos nimeros reales positivos ci,...,c, tienen sus coordenadas (en la base

dada) acotadas en mddulo por A 22‘;1 ¢

DEMOSTRACION: La matriz (Tr(aiaj)) puede ser calculada en la practica y
con ella, resolviendo sistemas de ecuaciones lineales (o calculando su inversa),
podemos calcular la base dual {31, ..., 3,} definida en 2.9.

Sea A > 0 tal que |0;(3;)] < A para todo i,j. En el peor de los casos
podemos obtener A calculando los polinomios minimos de los 3; y aproximando
sus raices. Ahora, un nimero de M que cumpla lo pedido es de la forma

a=aia] + -+ apan,, a; €7,
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donde

jail = | Tr(as)| =[S as@)o; (5] < AY Jos(@)] < 43 e
j=1 j=1 j=1

El préximo teorema contiene las ideas centrales del algoritmo para obtener
sistemas fundamentales de unidades de cuerpos numéricos.

Teorema 4.26 Sea M un reticulo en R™ de dimension r > 1, sea V el subes-
pacio generado por M, sea u € M no nulo, sea V' el subespacio de V ortogonal
au y sea N la proyeccidn de M en V'. Entonces:

1. N es un reticulo de dimension r — 1.

2. Supongamos que u # nv para todo v € M y todo nimero natural n. Si
U, ..., ur € M y sus proyecciones en V son una base de N, entonces
U, Ug, . .., U, SON una base de M.

3. Todo elemento x' € N es la proyeccién de un v € M tal que

m 2
e < 1405 4 e

DEMOSTRACION: 1) Obviamente N es un subgrupo. El apartado 3) implica
que es discreto, luego es un reticulo. Las proyecciones de r — 1 elementos de
M linealmente independientes de u son linealmente independientes, luego la
dimension de N es r — 1.

2) Sean u; = a;u + u}, donde cada uj es ortogonal a u. Similarmente,
dado cualquier v € M, sea v = au + v’, donde v’ es ortogonal a u. Entonces
v’ =Y, bju}, para ciertos enteros racionales b;. Consecuentemente:

V= <a — iain) u+ ibzul
i=2 i=2

De aqui se sigue que el primer sumando del segundo miembro estd en M y por
la hipdtesis sobre u el coeficiente by = a — ZLQ a;b; ha de ser un entero (los
elementos de M de la forma awu son claramente un reticulo de base u). Esto
prueba lo pedido.

3) Sea x = au+2’. Restando el oportuno tu, con ¢ entero racional, podemos
exigir que |a| < 1/2. Entonces

1 = Ta?llull® + [l'[* < ul®/4 + [l"]]*.
u

Veamos ahora cémo podemos calcular en la practica un sistema fundamental
de unidades de un cuerpo numérico K. Por simplificar la notacién supondre-
mos que r = 3, aunque el método es completamente general. En primer lugar
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calculamos una base entera de K, su base dual y la constante A del teorema
4.25 para el orden maximal de K.

Ordenando lexicograficamente las n-tuplas de enteros racionales podemos
enumerar los enteros de K. Eliminamos los que no tengan norma +1 y asi
tenemos una enumeraciéon de las unidades de K. Cuando encontramos una
unidad calculamos su representacién logaritmica y si es nula pasamos a otra.
Seguimos hasta hacernos con r unidades cuyas representaciones logaritmicas
sean linealmente independientes, digamos [1,1s,l3. Llamemos V; al subespacio
de R* formado por las cuddruplas cuyas coordenadas suman 0, sea [} = Iy, sea
V4 el subespacio de V; ortogonal a I, sea I} la proyeccién de I en V3, sea V3 el
subespacio de V; ortogonal a I} y I4 la proyeccién de I3 en V3. Asi mismo, sea
M; la imagen del grupo de unidades por la representacion logaritmica, sea My
la proyeccién de M; en V5 y sea M3 la proyeccion de Ms en V.

Entonces M3 es un reticulo de dimensién 1 que contiene al vector l5. Si
éste no fuera una base, existirfa un vector z € Mz tal que ||z|| < ||i4]|/2. Por
el teorema anterior x seria la proyeccién de un vector de My de norma menor

o igual que 3\/[[l5]]2 + [[I4][2, que a su vez serd la proyeccién de un vector de

M, de norma menor o igual que p = £+/[[I[[2 + [[5]]> + [[5]]>. Similarmente, si
I4 es multiplo de un elemento de My, éste tendrd que ser la proyeccién de un
elemento de M; de norma menor o igual que p.

Si una unidad e cumple que ||l(€)|] < p, entonces log |o(€)| < p si o es real
y log|o(€)]> < p si o es complejo. Por lo tanto |o(e)| < e” si o es real y
lo(e)| < eP/? si o es complejo. Continuamos nuestra enumeracién de unidades
hasta que el teorema 4.25 nos garantice que hemos pasado por todas las posibles
unidades e. Cada vez que nos encontremos con una unidad hemos de comprobar
si su representacién logaritmica I es multiplo de [} con norma menor, y si es asi
sustituir I por I. En caso contrario comprobamos si la proyeccién sobre V5 es
multiplo de I con norma menor. En tal caso sustituimos ly por [, y en caso
contrario hacemos lo mismo con la proyeccién sobre V3. Al terminar el proceso
tendremos un sistema fundamental de unidades de K.

Ejemplo Consideremos el cuerpo K = Q(¢), donde ¢ es una raiz del polinomio
2%+ 22 — 22 + 8, es decir, el ejemplo de Dedekind del que ya hemos hablado en
otras ocasiones. Sabemos que una base entera de K la forman los ntimeros

£+ &

Ck1:]., 052:57 a3 = 2 .

No es dificil calcular la matriz (Tr(aiozj))7 que resulta ser

3 -1 2
-1 5 —13
2 —-13 =2
Su inversa es
1 179 28 -3
— 28 10 —-37
503

-3 =37 -—-14
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Esto nos da la base dual

1 £+¢2
o] 53<7Q+ 8¢ -3 5 ),
1 £+¢2
= —(28+10¢—
fa% 503<8+ 0¢&—37 5 ),
1 £+&2
= —(-3- — 14 .
o 503( 3—-37¢ 5 )

Sustituimos ¢ por aproximaciones complejas de los tres conjugados de £ (estén
dadas en el capitulo anterior) y calculamos el mayor médulo de los ntimeros
obtenidos. Este resulta ser A = 0’42 (redondeado hacia arriba).

Si enumeramos los enteros de K y buscamos los de norma 1, el primero que
encontramos (aparte de +1) es la unidad

E+¢&

€=13+10£+6>—>.

Su representacion logaritmica es
I(e) = (log |e(&1)],log |e(&2)|?) = (=7'02735,702735),

cuya norma es menor que 9’94, luego si € no fuera una unidad fundamental de

K habria otra unidad cuya representacién logaritmica tendria norma menor que

9'94/2, y sus coordenadas en la base entera que estamos considerando estarian

acotadas por A(e?94/2+42¢994/4) < 71. Si comprobamos todos los enteros cuyas

coordenadas son menores o iguales que 70 en médulo, veremos que no hay més

unidades, luego € es una unidad fundamental y el regulador es R = 7/02735.
n

Ejercicio: Comprobar que 1 — 6 v/6 + 3 ¥/36 es una unidad fundamental de Q(\S/é)

Ejemplo Vamos a calcular un sistema fundamental de unidades del cuerpo
ciclotomico séptimo. Para este cuerpo se cumple s = 0, t = 3, luego el sistema
consta de dos unidades.

En primer lugar probaremos un resultado general nos reduciré a la mitad el
grado del cuerpo a estudiar.

Teorema 4.27 (Lema de Kummer) Si Q(w) es el cuerpo ciclotémico de or-
den p, entonces toda unidad de Z[w] es el producto de una unidad real por una
potencia de w.

DEMOSTRACION: Sea € = r(w) una unidad de Z[w]. Su conjugado complejo
es € = r(w™!) = r(wP™1), que también es una unidad. Consideremos la unidad
w=¢€/e€ Zw.

Todo conjugado de y es de la forma o(u) = r(w¥)/r(w=*). Como el deno-
minador es el conjugado (complejo) del numerador, concluimos que |o(u)| = 1.
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Esto significa que p esté en el nicleo de la representacion logaritmica, y segun
el teorema 4.21 es una raiz de la unidad.

El grupo de las raices de la unidad de Q(w) es ciclico de orden un cierto
natural m. Sea ¢ un generador. Puesto que w estd en dicho grupo, ha de ser
p | m. Digamos m = p'z con i > 1.

El cuerpo Q(¢) es un cuerpo ciclotémico de grado ¢(m), donde ¢ es la funcién
de Euler. Asf pues, ¢(m) = (p — 1)p'~t¢(x) | p— 1. Esto implica que i = 1y
que ¢(z) = 1, de donde x = 2 (ha de ser par), y asf el grupo de las raices de la
unidad de Q(w) tiene orden 2p, luego esté formado por las unidades +w?.

Continuando nuestro razonamiento, u = +w’ para un entero racional i.

Supongamos que el signo fuera negativo. Entonces ¢ = —w’¢. Tomamos
congruencias en Z|w] médulo el primo 7 = 1 —w. Observar que w = 1 (méd 7).
Asi, e = —€ (méd 7). Por otra parte, tomando congruencias en ¢ = r(w) y
€ = r(w™!) llegamos a que tanto € como € son congruentes médulo 7 con la
suma de los coeficientes de 7(x), luego € = —e (méd 7), lo que implica que € = 0
(méd 7), es decir, 7 | €, lo cual es imposible porque 7 es un primo y € una
unidad. En consecuencia ha de ser € = w'e.

Sea j un entero racional tal que 2j = i (méd p). Entonces ¢ = w?€, luego
€/ =E/wT =¢€/wI €R. "

Observar que hemos demostrado que las tnicas raices de la unidad de Q(w)
son las potencias de w y sus opuestas. Teniendo en cuenta que las tnicas raices
de la unidad reales son +1, esto estd contenido en el enunciado del teorema
anterior.

Teorema 4.28 Sea K el cuerpo ciclotémico de grado p y sea K' = K NR.
Entonces un sistema fundamental de unidades para K' es también un sistema
fundamental de unidades para K. Si R es el requlador de K y R’ el regulador
de K', entonces R =2""'R', donde m = (p —1)/2 es el grado de K.

DEMOSTRACION: Sea €1, ..., €, un sistema fundamental de unidades de K.
Si € es una unidad de K, por el teorema anterior € = w'n para una cierta unidad
real, o sea, una unidad de K’.

Entonces n = £e]"* - - - €', para ciertos enteros racionales my, ..., m,, luego
tenemos la descomposicién € = Fwie™ --- €™ tal y como exige el teorema de
Dirichlet. Falta ver que la expresién es tnica, pero si tenemos dos expresiones
Fwie e = iwjelfl - €Fr entonces w7 es una rafz de la unidad real,
luego w7 = 41y asi €™ ... €M = 4ebt ... ek,

Por la unicidad que nos da el teorema de Dirichlet, el signo ha de ser +1 y
los exponentes han de coincidir.

Sea ahora {e1,...,€,—1} un sistema fundamental de unidades de K’, luego
de K. Los automorfismos de K’ son todos reales, luego el regulador R’ es el
modulo del determinante de uno cualquiera de los menores de orden m — 1 de
la matriz (log|oi(e;)]). Por el contrario, los automorfismos de K son todos
complejos, (pero extienden a los de K”) luego el regulador de K es un menor de
la matriz (log|oi(e;)|?) = (2log|oi(e;)|). Asf pues, R =2""'R/. n
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Volvamos, pues, al problema de hallar un sistema fundamental de unidades
de Q(w), donde w” = 1. Sea n = w + w8 Podemos trabajar en el cuerpo
Q(n). En el capitulo IT (pagina 44) vimos que una base entera de este cuerpo es
{1,n7,n7? — 2}. Mediante las aproximaciones racionales de 7 dadas all{ también
obtenemos facilmente la norma de un entero arbitrario:

N(a+bn+c(n?—2)) = a®+b*+c® —a’b—2ab® — a’c+ 3b*c — 2ac® — 4bc® + 3abe.

Asf mismo podemos calcular la constante A = 068 del teorema 4.25.
Si comenzamos a enumerar los enteros para buscar unidades enseguida en-
contramos dos independientes, a saber n y 1 + 7. Calculamos:

I(n) = (0'220724, —0'809587,0'58886)
I(1+n) = (0'809587,—0'58886,—0'220724)

Calculamos la proyeccién de I(1 4 n) sobre el espacio ortogonal a I(n). Si la
llamamos z, ha de ser de la forma 2 = [(1+n)+ Al(n), donde A estd determinado
por la ecuacién (I(1+7) + Al(n))l(n) = 0. Calculando sale A = —0'5 y

x = (0'699225, —0'184069, —0'515156).

Ahora calculamos p = £4/[i(n)|]>+ [z]|> = 0'68. Por lo tanto hemos de
comprobar todos los enteros cuyas coordenadas no superen en moédulo la cota

A-3-ef =403.

Descartando duplicidades por el signo, hay 40 unidades a considerar. Puede
comprobarse que las representaciones logaritmicas de todas ellas tienen coorde-
nadas enteras respecto a la base I(n) y [(1+n). Por ejemplo, una de las unidades
es 3— 21+ (n? —2), cuya representacién logarftmica resulta ser 21(n) —41(1+n).
Asf llegamos a que un sistema fundamental de unidades de Q(w) es {n,1 + n},
y por lo tanto cada unidad se expresa de forma tnica como

+wl(w+ W)™ (1 + w4+ )",
donde i, m, n son enteros racionales (0 < i < 7). El regulador de K’ es

~ 1 0220724  —0'809587

Y
~ ] 0809587  —0'58886 =033,

RI

El regulador de K es R = 4R’ = 2'12. n

Tenemos, pues, resuelto el problema de encontrar las unidades de un cuerpo
numérico. Sin embargo para obtener nuevas soluciones de una ecuacion diofan-
tica a partir de una dada necesitamos las unidades de norma +1. Vamos a ver
que un pequeno retoque nos permite obtener una expresién que genere exclusi-
vamente las unidades de norma positiva.

Sea K un cuerpo numérico y sea €1, ..., €, un sistema fundamental de uni-
dades de K.

Supongamos primero que el grado n de K es impar. Puesto que n = s 4 2t,
se ha de cumplir s # 0, luego K tiene un monomorfismo real y por lo tanto
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uno de los cuerpos conjugados de K esta formado por ntimeros reales. Pero las
Unicas raices de la unidad reales son +1, luego dicho cuerpo conjugado tiene
sblo estas dos raices de la unidad, y consecuentemente K también.

Entonces toda unidad de K es de la forma £e]"' --- €. Si alguna de las
unidades €; cumple N(¢;) = —1, entonces N(—¢;) = (—1)" N(e;) = 1. Sustitu-
yendo €; por —¢; tenemos un sistema fundamental de unidades todas ellas con
norma positiva.

Claramente, N(£e{"" - - - er) = £1, luego las unidades de norma 1 de K son

exactamente las de la forma €]"* - - €.

Supongamos ahora que n es par. Si K contiene una raiz de la unidad distinta
de +1, entonces lo mismo les ocurre a todos sus conjugados, luego ninguno de
ellos puede ser real, o sea, s = 0. Entonces la norma de cualquier elemento de
K se calcula como producto de pares de conjugados complejos, pero el producto
de un par de conjugados complejos es siempre un niimero real positivo y asi
todas las normas son positivas.

Si K no contiene més raices de la unidad que +1, entonces, como el grado
es par, concluimos que N(£1) = 1, y en cualquier caso tenemos que las raices
de la unidad de K tienen norma 1.

Supongamos que €1, . . ., € tienen norma positiva y que €xy1, ..., €, la tienen
negativa. Entonces €1, ..., €k, €-€x11,...,€6-6,—1, €. €s un sistema fundamental
de unidades donde sélo la tdltima tiene norma negativa. En general, podemos
tomar un sistema fundamental de unidades €1, ..., ¢, donde todas tienen norma
positiva salvo quiza la ultima.

Si todas tienen norma positiva, entonces todas las unidades de K tienen
norma positiva y el problema estd resuelto. Si N(e,) = —1 entonces es claro que
N(wet ---em) = (=1,

Por lo tanto las unidades de norma positiva son las de la forma we]™ - - - €

luego las unidades €1, .. ., €,_1, €2 generan las unidades de norma positiva (junto
con una rafz primitiva de la unidad). "

2m,.
T bl

4.7 Calculo del nimero de clases

En esta secciéon veremos como puede calcularse el niimero de clases de un
cuerpo numérico. El 1ltimo problema que nos falta resolver para calcular
numeros de clases es determinar si un mddulo completo contiene elementos
de una norma dada. M4ds en general, vamos a dar un método para encontrar
un conjunto finito de niimeros con la norma deseada tal que cualquier otro sea
asociado a uno de ellos.

Partimos de un mdédulo completo M en un cuerpo numérico K. Sea O su

anillo de coeficientes. Sea €q,..., €, un sistema fundamental de unidades de O.
Los vectores Il(€1),...,1(e) junto con lyp = (1,...,1) forman una base de
Rs+t,

Si u € M es no nulo, entonces I(1) = aly + Y ;_, a;l(e;), donde los coefi-
cientes son nimeros reales.
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Usando (4.3) tenemos que log|N(p)| = (s + t)a, o sea,

_ log|N(u))|
s+t

Podemos descomponer «; = k; + [3;, con k; entero racional y |5;] < 1/2.

El niimero u' = ,uel_kl -~ F es asociado a p y cumple que

/) = aly + Zﬁzl(ez)

Asi pues, todo nimero de una norma dada en M tiene un asociado cuya
representacién logaritmica se encuentra en un cierto conjunto acotado. Sabemos
enumerar los elementos en estas condiciones y entre ellos obtener un sistema
maximal de niimeros no conjugados. m

Ejemplo Vamos a calcular el ntimero de clases del cuerpo Q(«), donde « es
una raiz del polinomio x®+4x+1. Los calculos de la pgina 25 muestran que una
base entera de K es 1,«, a2, pues el discriminante de esta base es A = —283,
primo. Es facil ver que la norma viene dada por

N(a + ba + ca®) = a* — b + ¢ + 4ab® — 8a*c + 16ac® — 4bc* + 3abe.

Segun el teorema 4.14, todo ideal de K es similar a uno de norma menor o
igual que Mj1+/|A] < 80'1. La tabla siguiente contiene todos los primos de K
de norma menor o igual que 80, obtenidos mediante el teorema 3.16.

p=(p,n) IN(m)| | p=(p,n) |N(n)| p=(p,n) |N(n)]
(2,1+a) 221 (19,3 + a) 219 | (71,12 + ) 52. 71
(2,14 a+a?) — | (81,=74+a) | —22-3-31 | (71,26 + ) -
(3,~1+a) 2-3| (37,7+a) 2-5-37 | (71,33 + a) -
(3, -1+ a+a?) — | (43,-11 +a) 25.43 | (73,21 + ) 27.73
(5,2 + @) 3-5| (47, -17+a) | 2-47-53 | (73,-164+a) | 3-19-73
(5,—2 — 20+ a?) — | (53,17 + ) — | (73,5 + ) 2.73
(17, -2+ a) 17 | (67, —32+ a) — 1 (79,4 + ) 79

También hemos calculado la norma de los segundos generadores de algunos
de ellos. Llamemos p = (2,1 + ).

Claramente p | 1+, y como no hay mas ideales de norma 2, necesariamente
14+a = p2. Esto implica que en el grupo de clases [p?] = 1, luego [p] = [p]~!. Por
otra parte, si g = (2,1 + a + a?), entonces 2 = pq, con lo que [q] = [p]~* = [p].

Similarmente, —1 4+ a = p(3,—1 4 ), con lo que [(3, =1+ a)] = [p] ' = [p].
Asf mismo [(3, —1 +a+a?)] = [(3,—1 +a)] ! = [p].

El mismo argumento justifica que los ideales de norma 5 y 25 son similares
a p. El ideal de norma 17 es principal. También son principales los ideales de
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norma 53 y 67, pues N(24 3a) = 53 y N(3+2a) = 67. Teniendo esto en cuenta,
todos los ideales de la segunda columna resultan ser similares a 1 o a p.

Respecto a la tercera columna, todos los ideales son claramente similares a
1 o0 a p salvo quiza el segundo y el tercero. Tanteando un poco observamos que
N(—=1+3a?) = —2- 71, luego uno de los tres ideales de norma 71 divide a este
ntmero. Para saber cudl de los tres, notamos que « es congruente con —12,
—26 v —33 médulo cada uno de ellos, luego —1 + 3a? sélo es congruente con
0 médulo el tercero. Asf pues, —1 + 3a? = p(71,33 + «), luego (71,33 + a) es
similar a p. Como el producto de los tres ideales es 71 y el primero es también
similar a p, concluimos que el segundo es principal.

En resumen, hemos probado que todo primo de norma menor que 80 es
similar a 1 o a p. Todo ideal de norma menor o igual que 80 es producto de
algunos de estos primos, luego es similar a una potencia de p, pero como la clase
de p tiene orden 2, de hecho es similar a 1 o a p. Por lo tanto el grupo de clases
tiene uno o dos elementos, segtin si p es principal o no lo es.

Puesto que p es el inico ideal de norma 2, sera principal si y sélo si existe un
entero de norma +2. Vamos a probar que no es asi, con lo que definitivamente,
el nimero de clases serda h = 2. La constante del teorema 4.25 es menor que
A=1.

Es facil ver que « es una unidad fundamental de K: se cumple que I(a) =
(—1,40138,1,40138) y su norma es menor que 2, luego si no fuera una unidad
fundamental, habria otra de norma menor que 1, y sus coordenadas estarian
acotadas en médulo por e 4 2¢'/2 = 6/02. Las tnicas unidades que cumplen
estas cotas son 1, +a, +a? y +at.

Segin hemos razonado antes, si existiera un entero de norma 42, multipli-
cando por una unidad existiria uno £ cuya representacién logaritmica seria de

la forma log2
() = =5=(1,1) + Bl(a),

con | 5] < 1/2, lo que lleva a que los conjugados de £ han de estar acotados por
el'0% (el real) y €1'95/2 (los imaginarios). Segin el teorema 4.25, las coordenadas
de £ estdn acotadas por A(el,5 + 261/5/2) < 7'4. Se comprueba sin dificultad
que no hay ntmeros de norma +2 en ese rango. "

Ejercicio: Mostrar un ejemplo de factorizacién no tnica en el cuerpo anterior.

En general, para saber si dos ideales dados a y b son o no similares factoriza-
mos N(b) en ideales primos y multiplicamos los factores diferentes de b, con lo
que obtenemos un ideal ¢ tal que be = N(b), y por lo tanto [¢] = [b] 7. Entonces
[a] = [b] si y s6lo si [ab™!] = [ac] = 1, es decir, si y s6lo si el ideal ac es principal,
si y sélo si éste contiene un ntmero de norma N(ac). Esto nos permite calcular
explicitamente el grupo de clases de un cuerpo numérico dado: se obtiene un
conjunto finito de representantes de las clases, se eliminan los redundantes y
para cada producto ab se calcula el ideal del conjunto de representantes al cual
es similar.
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En realidad nos falta algo para poder realizar en la practica estos calculos,
y es que en los algoritmos que hemos visto hasta ahora siempre hemos supuesto
que conocida una base de los médulos que hemos manejado. Esto es cierto en
general, excepto cuando el médulo es un ideal, en cuyo caso es frecuente que lo
que conozcamos sea un generador como ideal y no una base como médulo. En
lugar de describir en general el método para calcular bases (que serfa engorroso)
lo mostraremos con un ejemplo ilustrativo: Calcularemos una base del ideal
generado por w? + w + 1 en el anillo de enteros ciclotémicos de orden 7.

Un elemento arbitrario de este ideal es de la forma
(aw® 4+ bw? + cw® +dw? +ew + f) (W +w+1) = (b—c+d)® + (—a+ b+ e)w?
+(—a+d+ flP+(—a—c+d+e)w? + (—c+e+ flw+ (—a+b—c+ f).
Como solo nos interesa la estructura de médulo conviene escribir simplemente
(b—c+d,—a+b+e,—a+d+ f,—a—c+d+e,—ct+e+ f,—a+b—c+f).

Si el ideal tuviera dos generadores llegariamos a una expresién similar pero con
el doble nimero de pardmetros. Llamemos M C Z5 a este médulo. Podemos
llegar a una expresion similar si partimos de un médulo dado por un conjunto
de generadores.

Igualamos a 0 la primera componente b —c+d =0, con lo que b = c¢—d. Si
sustituimos llegamos a la expresién general de un elemento del médulo My =
MNOXZXZXZxXZxXZ),que es

(0,—a+c—d+e—a+d+ f,—a—c+d+e,—c+e+ f,—a—d+ f).

Restando ambas expresiones obtenemos (b — ¢+ d,b — ¢+ d,0,0,0,b — ¢ + d),
luego si llamamos v; = (1,1,0,0,0,1) € M, tenemos que M = (v1) + M.

Igualamos a 0 la segunda componente de la expresion general de un elemento
de Mj y obtenemos a = ¢ — d + e. Sustituyendo obtenemos una expresién de un
elemento genérico de M3 = M N(0x 0 X Z X Z X Z X Z), que es

(0,0,—c+2d—e+ f,—2c+2d,—c+e+ f,—c—e+ [).
Al restar queda
(0,—a+c—d+e,—a+c—d+e,—a+c—d+e0,—a—c—d+e),

luego llamando ve = (0,1,1,1,0,1) € M resulta que M = (vy,vs) + M.
Ahora ¢ = 2d — e + f, la expresién de un elemento de M, es

(0,0,0,—2d + 2e — 2f, —2d + 2¢, —2d),
y al restar queda
(0,0,—c+2d—e+ f,—2c+4d —2e+2f,—c+2d—e+ f,—c+2d—e+ f),

luego haciendo vz = (0,0,1,2,1,1) € M3 llegamos a que M = (v1,v2,v3) + My.
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Ahora d = e — f, luego los elementos de My son de la forma
(07 07 Oa Oa 2f7 —2e + 2f)

y la resta da (0,0,0, —2d+2e —2f, —2d+2e —2f, —2d+2e — 2 f), luego podemos
tomar vy = (0,0,0,2,2,2) € My y asi M = (vy,v9, v304) + M.

La siguiente ecuacién es f = 0, que da (0,0,0,0,0, —2¢) para los elementos
de Mg y vs = (0,0,0,0,2,2) € Ms. Claramente vg = (0,0,0,0,0,2) € Mg
completa un sistema generador de M, que por ser triangular es obviamente una
base. En resumen, una base del ideal (w3 + w + 1) la forman los enteros

{WHwr+1, W+ +w?+1, P +w+l, 202 +2w+2, 2w+2, 2}

El método que hemos seguido tiene la ventaja de que se justifica a si mismo
cada vez que se emplea, pero si el lector desea algo mas rédpido puede probar
que no es necesario restar las nuevas expresiones de las anteriores para obtener
los generadores, sino que basta asignar a los pardmetros los valores adecuados
para que la primera componente no nula tome valor minimo mayor que 0. Por
ejemplo, para obtener v; basta hacer b = 1 y los demds pardmetros nulos en la
expresion general de un elemento de M y quedarnos con v; = (1,1,0,0,0,1),
luego hacemos ¢ = 1 en My y sale vo = (0,1,0,—1,—1,0). En la expresién de
M3 hacemos ¢ = —1 y queda vs = (0,0,1,2,1,1). En My hacemos e = 1 y asi
vy = (0,0,0,2,2,0). En M5 tomamos f = 1, con lo que vs = (0,0,0,0,2,2), y
finalmente vg = (0,0,0,0,0,2).

Es facil ver que estos elementos generan el mismo médulo. De hecho, eli-
giendo adecuadamente los parametros segin este criterio, podriamos haber lle-
gado a la misma base.

El 1inico inconveniente adicional que puede surgir es que no podamos des-
pejar ninguna variable en una ecuacién porque todas tengan los coeficientes
distintos de £1. En tal caso, puesto que igualamos a 0, tendremos siempre los
coeficientes primos entre si (no necesariamente dos a dos), y no es dificil ver que
siempre es posible hacer un cambio de variables lineal de determinante 1 que
deje una variable con coeficiente 1.

Una aplicacion del calculo de bases es, por ejemplo, decidir si dos modulos
dados son o no el mismo médulo. Lo seran si la matriz de cambio de base tiene
determinante +£1.

Por 1ltimo hemos de notar que, de acuerdo con las observaciones que hicimos
en la pagina 31, en este capitulo hemos resuelto el problema de determinar las
soluciones de una ecuacion diofantica definida por una forma completa.



Capitulo V

Fracciones continuas

Entre los métodos conocidos a finales del siglo XVII para resolver ciertas
ecuaciones diofanticas se encuentran ciertos algoritmos que en términos moder-
nos lo que hacen es calcular unidades fundamentales de cuerpos cuadraticos,
de forma mucho més sencilla y rapida que con los métodos generales que ex-
plicamos en el capitulo anterior. La forma més elegante y refinada de estos
algoritmos se expresa en términos de fracciones continuas. En este capitulo ex-
pondremos los resultados bésicos entorno a ellas y su aplicacion al célculo de
unidades fundamentales cuadraticas. En el siguiente veremos que también sim-
plifican considerablemente la determinacién de si dos médulos (y en particular
dos ideales) son o no similares, con la consiguiente ventaja a la hora de calcular
los nimeros de clases.

5.1 Propiedades basicas

Definicién 5.1 Partamos de una sucesién de enteros racionales ag, a1, ao, ...
todos positivos salvo quiza el primero. Llamaremos

[ao} = ap,
[a03 al} = ap+ D)
ai
1
lag,a1,a2] = ag+ ——7,
ap + a—2
1
[CLO,CLl,CLQ,CL?,} = ap + 1 )
al + a —|—L
2 as
En general tenemos definido el nimero racional [ay, . . ., a,] para todo n, que
es no nulo si n > 1. Una definiciéon formal se da por recurrencia de derecha a
izquierda, es decir: g = an, Tit1 = aGn_1—; + 1/x;, [ao, ..., an] = Tp.
Llamaremos 7, = [ag, . - ., an| = pn/qn, donde p, y g, son enteros racionales

primos entre s{ g, > 0 (convenimos que si ag = 0, entonces py = 0, go = 1).

111
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La sucesién r,, se llama fraccion continua determinada por la sucesion a,.
Los nimeros racionales r,, se llaman convergentes de la fraccién continua.

Demostraremos que los convergentes realmente convergen a un cierto niimero
real. Para ello comenzamos obteniendo una relacién recurrente para los nume-
radores y los denominadores p,, v qn.

Teorema 5.2 Con la notacion anterior:
po=4ap, =1, p1=aea1+1, q =ai,
Pn = @pPn—1 + Pn_2, Qn = ApQn—1 + qn—2.

DEMOSTRACION: Los casos n = 0,1,2 se comprueban directamente. Hay
que probar que los valores dados por las férmulas (en estos tres casos) son
realmente primos entre si, pero esto se ve facilmente por los métodos usuales.

Supongdmoslo cierto para n — 1 > 2 y probémoslo para n. Definimos los
enteros racionales primos entre si
/.

—:[al,...,aﬂ_ﬂ, j:0,1,2,...

Por la hipétesis de induccién aplicada a n — 1 se cumplen las férmulas

Pr1=anPy o+ Doz Gu1 = anGy o+ Qg (5.1)
Por otra parte = = ag + f—_l, luego
4qj j—1
pj = aopj_1 + qj_1, 4 = Di_1, (5.2)

donde se ha usado que si (p;_;,q;_,) = 1, los valores que dan estas férmulas
también son primos entre si.
Haciendo j = n en (5.2) y usando (5.1) obtenemos

pn = ao(anpy_o+ 1y _3) + (and, o +q,_3)
= an(aop, o+ ¢,_2) + aop,_3 + ¢, _3,
I = GnGy_o+q),_s.

Aplicando (5.2) con j =n—1y n —2 se deduce
Dn = GnPn—1 + Pn-2, Gn = AnQn—1 + gn—2.

De estas relaciones se sigue en particular que la sucesién g, es creciente, y
si ag > 0 entonces p,, también lo es. Veamos otra consecuencia sencilla:

Teorema 5.3 Con la notacion anterior, PpGn+1 — Pnt1qn = (—1)"+1 0, lo que
es lo mismo: vy, — 1 = (—=1)" " /qnqni1-
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DEMOSTRACION: Claramente

Pndn4+1 — Pnt+1q9n = pn(anJrl(In + anl) - (anJrlpn +pn71)Qn
Pndn—-1 — Pn—-149n = 7(pn—1‘]n - ann—l),

y €omo pog1 — p1go = apar — (apa1 + 1) = —1, se cumple el teorema. m

Con esto estamos en condiciones de demostrar la convergencia de las frac-
ciones continuas.

Teorema 5.4 Con la notacion anterior, existe un unico niumero real o tal que
To <To <1y <rg<:Q: - <rp<rs<rg<ry.
Escribiremos « = [ag, a1, az,as3, ... |.
DEMOSTRACION: Los convergentes estdn ordenados como se indica, pues

Tp+2 —Tn =Tpt2 — Tntl +Tntl — Tn = (_1)n+1/Qn+IQn+2 + (_1)n+1/QnQn+1a

luego la sucesién de los convergentes pares es creciente y la de los impares
decreciente. El teorema anterior nos da que cualquier convergente par es menor
que cualquier convergente impar, asi como que sus distancias tienden a 0 (la
sucesién ¢,q,+1 tiende a infinito), luego r, converge a un ntmero «, que es el
supremo de los convergentes pares y el infimo de los impares. m

Teorema 5.5 Las fracciones continuas son niumeros irracionales.

DEMOSTRACION: Con la notacién anterior, supongamos que o = p/q es un
ntimero racional (con p y g primos entre sf).

Como la sucesién g, es creciente, existe un n tal que ¢ < ¢,,+1. Puesto que «
estd entre r, y 41, se cumple que |a— 7| < |rp — rot1] = 1/qngns1 < 1/gng.

Pero por otro lado | — ru| = |p/q — pu/tnl = IPan — apul/ana = 1/ana,
puesto que p/q # pn/qn, luego |pg, — qpn| > 1, contradiccion. =

El resultado que da importancia a las fracciones continuas es el que garan-
tiza que todo ntimero irracional positivo admite un tnico desarrollo en fraccién
continua. En efecto:

Teorema 5.6 Sea o un numero real cualquiera.

1. Si « es racional entonces o = [ag, . . ., ay] para ciertos enteros racionales.
2. Si « es irracional entonces o = [ag,a1,a2,a3,... | para ciertos enteros
racionales.

Ademds si a es irracional el desarrollo es unico.
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DEMOSTRACION: Definimos ag = F(«a) (la parte entera de «). Si a # [ao],
entonces podemos escribir a = ag + 1/ay para un cierto nimero real positivo
ay. Tomamos a; = E(ag). Sia; = «a; entonces a = [ag,a1]. En otro caso
a1 = ay + 1/ay para cierto nimero real positivo as.

Si el proceso termina es que « es un numero racional. Veamos que si no
termina obtenemos una fraccién continua que converge a a.

Por construccién se tiene que a = [ag, ..., an,ant+1] (nOtar que el tdltimo
término no es un ndmero natural, pero la definicién vale igualmente).

Es fécil ver que la funcién [a, ..., a,, z] es mondtona creciente cuando n es
impar y monétona decreciente cuando n es par. Como a1 = E(ap41) < apti,
se cumple que a es mayor que todos los convergentes pares y menor que todos
los impares. Esto prueba que la fraccién continua converge a «.

Para probar la unicidad supongamos que tenemos dos fracciones continuas
infinitas, tales que [ag,a1,... | = [bo,b1,... |. Entonces ap < [ag,a1,... | <
ag + 1 e igualmente con la otra fraccién. Como el limite es irracional no se dan
las igualdades, luego ag = E([ag, a1, ... ]) = E([bo,b1,... ]) = bo.

Restando ag de ambas y tomando inversos resulta [a1,as,... | = [b1,be, ... ].
Siguiendo asi llegamos a que todos los coeficientes coinciden. L]

Los ntimeros racionales admiten dos desarrollos en fraccién continua, por
ejemplo, [2,3,1] = [2,4].

El teorema 5.3 afirma que |r, — rnq1| = 1/gngnt+1 para cualquier par de
convergentes consecutivos de una fraccién continua. Puesto que su limite o se
halla entre ambos, tenemos que

oo = 1] < 1/qnans1 < 1/q,2L.

Esto significa que los convergentes son buenas aproximaciones de sus limites.
Podemos mejorar ligeramente este hecho observando que

loo = rn| + |l = roga] = |10 — rpga| = 1/ qngna-

Cualquier par de ntimeros reales distintos cumple zy < (22 + y?)/2, concluimos
que
o= 72l + | | < 50z + 57—
a—r o—Tnt1| < =— .
! ! 2¢7 20544
Esto prueba que de cada dos convergentes consecutivos de un nimero irra-
cional «, uno de ellos, p/q cumple |a —p/q| < 1/2¢*. El resultado principal que

necesitamos es el reciproco de este hecho.

Teorema 5.7 Sip, q son niimeros naturales primos entre si y |a—p/q| < 1/2¢?,
entonces p/q es un convergente de a.

DEMOSTRACION: Vamos a probar que si p y ¢ son enteros cualesquiera
tales que 0 < ¢ < @n+1, entonces |ga — p| > |gna — p,|. Esto significa que el
convergente n-simo es la mejor aproximaciéon racional de o con denominador
menor que ¢p41-
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En efecto, la matriz de los coeficientes del sistema de ecuaciones

p = Uupp+UPnt1
q = UQ@n+ Vqn+t1

tiene determinante +1, luego tiene una solucién entera (u,v). Por la hipdtesis
se ha de cumplir u # 0 y en el caso en que v # 0 entonces u y v tienen signos
opuestos, y asi

|q04 - pl = ‘(uqn + an+1)a - (upn + 'Uanrl)‘
= |u(gna — pn) + v(qni10 — ppy1)| = [gna — pol.

Ahora, en las hipdtesis del teorema, tomamos un n tal que g, < q¢ < gn1-
Entonces

-
q

Pn
n

q qn

’p Dn

S’a—

aq — agn — 1 1
_ lag=pl | |ogn pn|§<_+_>aq_p|_
q Gn 4

Como q > ¢, y |ag — p| < 1/2q, concluimos que

[P4n — apnl _ o
4qn qqn

y como el numerador es entero, ha de ser 0, o sea, p/q es el convergente n-simo.
n

Probamos ahora un resultado sencillo pero ttil en la manipulacién de frac-
ciones continuas.

Teorema 5.8 Sea o = [ag, a1, az2,... | ¥ sea B = [ant1,nt2, Cnis,--- |, Para
n > 1. Entonces se cumple que

_ BPn + Pn—1
U= .
ﬁqn + gn-1

DEMOSTRACION: La prueba consiste simplemente en observar que en la
demostraciéon del teorema 5.2 no se ha usado que los coeficientes a,, sean en-
teros salvo para probar que (pn,qn,) = 1. Por lo tanto podemos aplicarlo a
a = lag, ..., an, 3] y concluir que, aunque ahora p,41 y ¢n+1 NO sean nimeros
racionales,

o= Pn+1 _ Bpn + Pn-1
n+1 Ban + qn-1

Ejercicio: Probar que las fracciones continuas determinan un homeomorfismo entre
[0,1]\ Q y el producto de una cantidad numerable de copias de N (el espacio de Baire).
Deducir de aqui que el espacio de Baire es homeomorfo a R\ Q.
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5.2 Desarrollos de irracionales cuadraticos

La relacién de las fracciones continuas con los cuerpos cuadraticos se basa
en que los desarrollos de los irracionales cuadraticos son periddicos, tal y como
probamos a continuacion.

Teorema 5.9 Un numero irracional o es cuadrdtico si y solo si los coeficientes
de su fraccion continua se repiten periodicamente a partir de un cierto término.

DEMOSTRACION: Supongamos que los coeficientes de la fraccién continua
de « se repiten a partir de un cierto término.

Puesto que [ag,a1,a9,... | = ag + 1/[a1,az,... ], es claro que uno es cua-
dratico si y solo si lo es el otro, luego podemos suponer que los coeficientes de
« se repiten desde el primero (sin anteperiodo), o sea,

a=1[ag, . Any A0y Qn,y A0y - Apy- .. .
El teorema anterior nos da entonces que

_ QPn + Pn—1

aGn + Gn—1 ’

Operando obtenemos un polinomio de segundo grado del cual es raiz o.
Observar que la férmula anterior no vale si el periodo tiene longitud 1, pero
en tal caso también podemos considerar que el periodo tiene longitud 2.

Supongamos ahora que « es un irracional cuadritico. Digamos que «a es
raiz del polinomio ax? + bx + ¢, donde a, b, ¢ son enteros racionales, a > 0 y
d=b>—4ac > 0.

Consideremos la forma cuadratica f(z,y) = ax?+bry+cy®. Asi f(a,1) = 0.
El cambio de variables

r = pnxl"i_pnfly/a
= ¢ + gn1y

tiene determinante £1, luego f es equivalente a la forma

Fa(@,y) = F(Pn + Po19, G + 1Y) = ana® + by + coy’.
Asi, si llamamos a;, = [an, nt1,-. .- |, €l teorema 5.8 nos da que
o = PnOnt1 +pn—1’
GnQn41 + gn—-1
luego

1

0 = a,l) =

f( ) (QnanJrl + dn—1
1

= n\&n al )

(QHO‘n—Q—l +QH—1)2 f <a 1 )

)2 f(pnan—‘ﬂ + Pn—1, nOn+1 + Qn—l)
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o sea, fn(apy1,1) = 0. También se cumple que a, = fn(1,0) = f(pn,qn),
Cp = fn(oa ]-) = f(pnfh anl) =Qap—-1Y b% —4anc, =d.
De f(a,1) = 0 se sigue

2
a—;f(&,q—n>f(a,1)—a<<&> a2>+b<&a).
qn dn Qn dn qn

Sabemos que | — p,/qn| < 1/¢2, luego

| + pn/qn < 2lal +1

a? q?

|O‘2 - (pn/Qn)2| <

Todo esto implica que |a,| < |a|(2|a]+1) +|b], o sea, |a,| satisface una cota
independiente de n. Las relaciones que hemos obtenido prueban que |b,| y |¢p]
también estdn acotadas.

Por lo tanto los polinomios f,(z, 1) varfan en un conjunto finito, al igual que
sus raices, entre las que se encuentran los niimeros a,,. En consecuencia existen
naturales n y k tales que au, = a4, v €s claro que esto implica que a4+, = am,
para todo m > n, o sea, los coeficientes de « se repiten periddicamente. m

Ejemplo Consideremos el nimero o = (1 + \/E_)) /2, que es raiz del polinomio
2? —x — 1. Puesto que a? = a + 1, resulta que a = 1 + 1/a, lo que implica
1+5
2

claramente que

=[1,1,1,... ]
u

En general, para calcular el desarrollo de un irracional cuadratico o vamos
calculando sus coeficientes a,, al mismo tiempo que los restos a,,. Concretamente
ap es la parte entera de ay, y a1 = 1/(a, — ay). Si tenemos la precaucién
de expresar siempre a,, en forma canénica, a 4+ bv/d, detectaremos cuindo a,,
coincide con otro resto anterior, con lo que terminara el periodo.

Ejemplo Desarrollemos v/19:

— ./ _ _ 4419 _ _ 24419 _
Qo = 197 ag = 4; ap = +3 , a1 = 27 Qg = +5 y G2 = ]-7
— 3+V19 _ — 3+V19 _ — 24+Vv19 —
a3z = 2 0373, Gy = ’ a4*17 a5 = 2 a5727

5
ag =4++v19, ag =28, a7:4+;)/ﬁ, a7 = 2.

Asi pues, V19 = [4,2,1, 3,1, 2, 8], donde la barra indica el periodo que se repite.
Este niimero tiene un anteperiodo de longitud 1. Enseguida veremos que esto
no es casual. [

Una fraccién continua es periddica pura si no tiene anteperiodo.
Teorema 5.10 Un irracional cuadrdtico o tiene fraccion continua periodica

pura si y sélo si a > 1 y su conjugado & (es decir, la otra raiz de polmin ar)
cumple —1 < & < 0.
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DEMOSTRACION: Recordemos que el desarrollo en fraccién continua se cal-
cula partiendo de ag = a y de aqui a, = E(ay), antr1 = 1/(a — ay).

Por induccién es claro que —1 < @, < 0. En efecto, a,11 = 1/(@, — ayn)
y admitiendo —1 < &, < 0, tenemos —1 — a,, < &, — a, < —ay, con lo que
—-1< —1/(an + 1) < OQpg1 < —1/an < 0.

Ahora, despejando en oy, 11 = 1/(a, —ay, ), tenemos que —1/&, 11 = ap — @y,
y como 0 < —a, < 1, concluimos que a,, = E(a, — ay) = E(—1/0n11).

Por el teorema anterior sabemos que «,, = «, para ciertos m < n, luego
también 1/&,, = 1/ay,, y asi a;—1 = a,—1. Por lo tanto

Up—1 = Qp—1 + 1/am = ap-1+ l/an = Op_1.

Repitiendo el argumento llegamos a que oy = @y—m, luego la fraccion es
periodica pura.

Ahora supongamos que la fraccién es periédica pura. Entonces ag coincide
con un coeficiente posterior, luego o > ag > 1. Por el teorema 5.8 resulta que

Pnx +pn71
o=,
gnCx + dn—1

luego « es raiz del polinomio f(x) = ¢,2% + (¢n_1 — Pn)T — Pn_1-
Ahora bien, & también es raiz de este polinomio, y f(0) = —p,—1 < 0,
f(=1) =p,—Dn-1+qn—gn_1 > 0, por el teorema 5.2, luego -1 <@ < 0. =

Si d no es un cuadrado perfecto, entonces el conjugado de E(\/a) +Vd es
E(\/E) — V/d, que claramente estd entre —1 y 0, luego E(\/E) + V/d tiene un

desarrollo periédico puro. Por lo tanto el desarrollo de v/d tiene exactamente
una cifra de anteperiodo.

5.3 Transformaciones modulares

Seguidamente investigamos cuando dos irracionales tienen fracciones conti-
nuas finalmente iguales. Veremos que esto sucede cuando son equivalentes en el
sentido siguiente:

Definiciéon 5.11 Dos ntimeros « y 3 son equivalentes si existen enteros racio-
nales a, b, ¢, d tales que
aB+b

= d—bc==£1. .
a Grd a c (5.3)

Se comprueba enseguida que dos ntimeros racionales cualesquiera son equi-
valentes, y que un niimero racional nunca es equivalente a uno irracional, por
lo que podemos limitarnos a considerar niimeros irracionales.

También es facil ver que la férmula anterior define una biyeccién sobre los
nimeros irracionales. Las biyecciones de este tipo se llaman transformaciones
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modulares. Las inversas y la composicién de transformaciones modulares son
de nuevo transformaciones modulares, por lo que la equivalencia de nimeros
irracionales (y en general la de ntimeros reales) es una relacién de equivalencia.

Los teoremas 5.3 y 5.8 nos dan que la transformacién a = [ag, . .., an, 3] es
modular, dada concretamente por

_ BPn + Pn—1
o= .
Ban + qn-1

El teorema siguiente caracteriza las transformaciones modulares que se pueden
expresar de esta forma.

Teorema 5.12 Si una transformacion modular (5.3) cumple ¢ > d > 0 en-

tonces se puede expresar de la forma a = [ag,...,an, 8] para ciertos enteros
racionales ag, . . ., 4y, todos positivos salvo quizd el primero.
DEMOSTRACION: Hay que probar que existen ag, ..., a, tales que
Pn=4a, Pn-1= ba qn = C, qn—1 = d. (54)

Lo probaremos por induccién sobre d.
Si d =1 tenemos que a = bc+ 1. En el caso a = be+ 1 sirve a = [b, ¢, 3]. Si
se cumple a = be — 1, entonces « = [b—1,1,¢ — 1, 3].

Supongamos ahora que d > 1. Aplicando el teorema 5.2, las ecuaciones (5.4)
equivalen a

Pn—1 = b7 Pn—2=a0a— anb» qn—1 = da gn—2 = C — and- (55>

Se sigue cumpliendo b(c — a,d) — (a — a,b)d = £1 para cualquier a,, y por
hipétesis de induccién (5.5) tendrd solucién si garantizamos d > ¢ — a,d > 0, 0
equivalentemente, si ¢/d > a,, > (¢ —d)/d.

Notemos que ¢/d no puede ser entero, pues si ¢ = kd entonces d | 1. Como
¢/d— (c—d)/d = 1, podemos tomar un nimero natural a,, en estas condiciones
y asi se cumple el teorema. n

Teorema 5.13 Dos numeros irracionales o y 3 son equivalentes si y sélo si
sus desarrollos en fraccion continua son finalmente iguales, es decir, si

a:[aOa"'vaﬂMCOvclv"‘ ]7 5:[b07~~wbn,00,01,-~ ]

DEMOSTRACION: El teorema 5.8 nos da que en estas condiciones tanto o

como f3 son equivalentes al nimero [cg, ¢y, ... |, luego son equivalentes entre si.
Supongamos ahora que o y § son equivalentes. Digamos que
a b
a= b+ , ad — bc = £1.
cf+d

Podemos suponer que ¢ +d > 0. Sea 8 = [by,...,bk_1,B%], donde 5} =
[bk, bg+1, - - |. Entonces:
g BrPr—1 + Pr—2
Brk-1 + qr—2
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Componiendo las transformaciones modulares obtenemos que
Pj3. + R
a=—"
QB+ S
donde

= apk-1 -+ bgk—1,
apr—2 + bqr_2,
Cpr—1 + dqr—1,
= cpr—2 +dgr_2,

n O
Il

que son enteros racionales y cumplen PS — QR = +1.

Por el teorema 5.3 y puesto que 3 se encuentra entre dos convergentes conse-
cutivos cualesquiera, |px—1/qk—1— B <1/qr-1qx, 0 sea, [pk—1 — Bar—1] < 1/qx.
Por lo tanto pg—1 = Bqx—1 + §/qr—1, e igualmente px_o = Bqr_2 + &' /qr—2, con
0], [6"] < 1.

De aqui resulta que

cd’

5
Q=(B+d)gpr+—, S=(cB+d)gps+ ——.
qk—1 qrk—2

Teniendo en cuenta que ¢ + d > 0, es claro que haciendo k suficientemente
grande podemos conseguir ) > S > 0. Aplicando el teorema anterior resulta
que a = [ag, ..., am, Ok], de donde se sigue el teorema. "

5.4 Unidades de cuerpos cuadraticos

Recordemos que segtn el teorema 2.24 los 6rdenes de los cuerpos cuadréticos
Q(\/c_i) son los de la forma O, = Z[mw] = {a+bmw | a,b € Z}, donde w = V/d
o bien w = (1 + V/d)/2 segtin el resto de d médulo 4.

Sabemos también que si d > 0, un sistema fundamental de unidades de O,,
consta de una sola unidad €, y es obvio que si € es una unidad fundamental,
las unidades fundamentales son exactamente +e y +1/e. Por lo tanto hay una
Unica unidad fundamental € > 1. En lo sucesivo, cuando hablemos de la unidad
fundamental de O, nos referiremos siempre a la unidad mayor que 1.

Sie =22+ ymw > 1 es cualquier unidad de O,,, como N(e) = eg = +1,
tenemos que € = £1/¢, y en cualquier caso € — € > 0, o sea, ym(w — @) > 0, y
como w — @ > 0, resulta que y > 0.

Por otro lado, @ < —1 excepto en el caso d = 5. En efecto, en el caso
d# 1(méd4) es @ = —V/d < —1, mientras que si d = 1 (méd 4), entonces
w = (1—\/3)/2<—1 siy s6lo si vVd > 3, siysélosid>9, o sea, siy solo si
d # 5.

Claramente mw < —1 excepto si m = 1,d = 5. Como |¢| = |z + ymu| < 1,
salvo en el caso exceptuado ha de ser x > 0.
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Hemos concluido que la unidad fundamental de O,, es € = = + ymw con
xz,y > 0salvosid =25, m = 1. En tal caso no es dificil comprobar que la unidad
fundamental es w (o sea, z =0, y = 1).

Ahora es facil ver que €” = 2’ + y'mw, con ' > x e ¥y’ > y. Por lo tanto la
unidad fundamental estd caracterizada por que es de la forma € = x + ymw con
x,y > 0 minimos entre los coeficientes de las unidades (salvo el caso exceptuado).

Puesto que N(€) = (z + ymw)(z + ymo) = 1, resulta

1
y(z +ymw)’

+m ‘
Y
En el caso d = 1 (méd 4) (salvo el caso exceptuado)

-1
- V-1 =y E—i—m\/g—i_l <L
- y y 2 2y27
\/_+1

pues m¥5= > 2. En el caso restante,

ymZ

1 1
x+ym\/_) = PVI-T+Vd) 27

donde hemos usado que N(€) = 22 —y?m?2d = £1, luego 22 > dy*>—1 > y%(d—1),
y en consecuencia x > yv/d — 1.
En cualquier caso (salvo el exceptuado) llegamos a que

__m\/_'

1
2y2’

- - (—m(D)' <

lo que por el teorema 5.7 significa que x/y es uno de los convergentes de —mw
(notemos que (z,y) = 1, o de lo contrario € no podria tener norma unitaria).

Como el numerador y el denominador de los convergentes crece, tenemos
que el convergente z/y correspondiente a la unidad fundamental serd el primero
que cumpla que la norma del entero asociado sea +1.

Ejemplo Vamos a calcular la unidad fundamental del orden Z [\/ﬁ ] , es decir,
el orden O3 de Q(\/é) Hemos de calcular los convergentes de \/54. Para ello

hallamos el desarrollo v54 = [7,2,1,6,1,2,1,4] y mediante las férmulas del
teorema 5.2 calculamos

an | 7T 2 1 6 1 2 1
Pn 7 15 22 147 169 485
Gn 1 2 3 20 23 66
p% — 54q2 8 9 -2 9 -5 1
Con lo que la unidad fundamental buscada es 485 + 66+/54. =

Este método tiene su origen en un algoritmo para resolver la llamada ecua-
cién de Pell, que no es sino la ecuacién diofintica 2 — dy?> = 1. Si d no
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es un cuadrado perfecto, una solucién entera (z,y) de la ecuacién de Pell se
corresponde con una unidad z + yv/d del orden Z [\/E]

En el caso en que d < 0 el niimero de unidades (de soluciones) es finito, y
es igual a 2 (las correspondientes a +1, esto es (£1,0)) salvo si d = —1,—3, en
cuyo caso hay 4 y 6 soluciones respectivamente.

Si d > 0 entonces hay infinitas soluciones (x,y), que son de la forma

J;—l—y\/E: i(u—&—v\/a)n, paran € Z,

donde u 4 vV/d es la unidad fundamental del orden Z[\/E] La solucién (u,v)
se llama solucion fundamental.

Finalmente si d = k? entonces la ecuacién factoriza como (z+ky)(z—ky) = 1,
lo que implica ¢ + ky =x — ky =1, o bien z + ky = = — ky = —1, lo que lleva
a las soluciones triviales (41, 0) (salvo si d = 0, en cuyo caso (£1,y) es siempre
solucién).

Segin los cdlculos anteriores, la solucién fundamental, o sea, la minima
solucién no trivial, de la ecuacién x? — 54y = 1 es (485, 66).

Si O es el orden maximal de un cuerpo cuadrético real K y € es su unidad
fundamental, es facil comprobar que la unidad fundamental de un orden cual-
quiera O,, es €°, donde k es el menor niimero natural no nulo tal que € € O,),.
De aqui se deduce que el indice e, del grupo de unidades de O, en el grupo de
unidades de O es precisamente k. Recordemos que dicho indice interviene en la
férmula del teorema 4.18 para el cdlculo del niimero de clases de los 6rdenes no
maximales.

Ejemplo Sea K = Q(ﬁ ) Es facil comprobar que la unidad fundamental de
K es e = 1 ++/2 y que su ntimero de clases es h = 1. Si m = 2°t, donde t es
impar y €™ = a + bv/2, entonces la potencia de 2 que divide a b es exactamente
2% (se prueba sin dificultad por induccién sobre s). Consecuentemente, egs = 2°.

Por otra parte, 2 = p? en K, donde p es un ideal de norma 2. Por lo tanto,
la férmula de 4.18 nos da que el nimero de clases de Ogs es

P (ka) 22k— 1

h s — g
T p(2F) e 2k—12k

=1.

Ejercicio: Sea K = Q(\/E) Probar que el nimero de clases de Ogx es 1 y el nimero
de clases de O,k es 2, para k > 3.

5.5 La fraccion continua de e

Ya que hemos desarrollado la teoria béasica sobre fracciones continuas, dedica-
mos esta seccién a ilustrar algunos resultados mas avanzados. Nuestro objetivo
serd obtener el desarrollo en fraccién continua del nimero e, que es

e=1[2,1,2,1,1,4,1,1,6,1,1,8,... ]
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Ninguno de los resultados de esta seccidén serd necesario en los capitulos
siguientes.

Fijemos un nimero natural m no nulo y para cada n > 0 definamos

" _i 2r +2n + 1 2r + 2 1
T35 (2r k20t l) 2040600 (20 +2) mAT

En primer lugar observamos que

=1 1 1,
_ _ = /m —1/m
v ; (2r)! m2r 2(6 e,
P = E ! ! :T(el/mfefl/m).

(2r 4+ 1)! m?2r 2

Il
=]

T

Comprobemos ademas que se cumple la relacion

m*hy, = (2n + D)m* Y1 + Unia, n=0,1,2,... (5.6)
de donde se sigue en particular que todas las series convergen.
En efecto:
9 9 o~ (2r +2n+3)m32r 2r +2 1
n—(2n+1 ntl = —.
m Y= 2ntD)m Y ;01-3~5-~-(2T+2n—|—3) 2.4-6---(2r +2) m2

Si eliminamos el primer sumando, que es nulo, y cambiamos el indice r por r+1
obtenemos la expresién que define a 1, 1.
Es claro que v, > 0 para todo nimero natural n. Por lo tanto podemos
definir
miby

Wy = ———
n wnJrl’

Dividiendo entre mi, 11 en (5.6) llegamos a la férmula siguiente:

n=0,1,2,...

1
wn=02n+1)m+ , n=20,1,2,...
Wn 41

de donde se sigue que w, > 1 para todo n, y que el desarrollo en fraccién
continua de wqg es
wo = [m,3m,5m, ... |.

Ahora bien,
m,(/jo el/m+e—1/m _ 62/m+1

wo = N = el/m _ o—1/m - e2/m _ 1’

con lo cual obtenemos en particular que

1
e+1 = [2,6,10,14,... |.

e —
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Puesto que las fracciones continuas (infinitas) representan niimeros irraciona-
les, esto prueba que el niimero e no es racional. Mas atin, que no es un irracional
cuadratico, pues la fraccién continua que nos ha aparecido no es periédica.

Sea ahora
Cema4n 1

=—=1 .
§ 2 +u)0—1

Es inmediato que £ = [1,m — 1,3m,5m, ... |.

Para obtener el desarrollo en fraccién continua de e necesitamos eliminar el
2 del denominador de ¢. Llamemos 1 = ¢2/™ = 26 — 1. Vamos a exponer un
método general que permite calcular en muchos casos la fraccion continua de
un nimero 7 a partir de la fraccién continua de un nimero £ cuando entre ellos
se da una relacién del tipo
ué +v

)

w

donde uw y w son nimeros naturales no nulos y v es un ntimero entero.
Antes de enunciar el resultado principal hemos de observar que si a > 1
entonces

[...,a]=]...,a—1,1],

por lo que un niimero racional admite siempre un desarrollo en fraccién continua
de longitud par y otro de longitud impar.

También es util notar que las férmulas del teorema 5.2 son vélidas para
n = 0,1 si convenimos en que p_; =1,¢_; =0,p_2=0,q_2=1.

Teorema 5.14 Sea & = [ag, a1, az,... | el desarrollo en fraccidn continua de un
irracional §. Sea py/qn el convergente n-simo y &, = [an, Gnt1,Gni2,- .. |. Sea
n = (u€+v)/w, donde u, v, w son nimeros enteros, u > 0, w > 0, uw = D > 1.
Para un indice cualquiera n > 1 desarrollamos el nimero racional

ulag, ar, ..., an—1] +v _ upn_1 +0¢n-_1 = [bo, b1 bm—1)
= = (00,015 - -5 Om—

w Wl4n—1

eligiendo el final de modo que m = n (méd 2). Sear;/s; el convergente j-ésimo
de este desarrollo, de modo que en particular se tiene
UPp—1 + Vp— T
Pn—1+ qn1: mll (57)

wWqn—1 Sm—1

Entonces existen nimeros enteros u', v, w’ tales que

u v Pn—1 Pn-2 _ Tm—1 Tm-2 ul vl

0 w dn—1 4n-2 n Sm—1 Tm—2 0 ’
>0 0w >0 vw =D, —w <o <, yn=1[bo,b1, .., bm_1,Mm], donde
N = (W&, + ') /w'.
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DEMOSTRACION: La ecuacién matricial equivale al siguiente sistema de
ecuaciones:

UPn—1 +Vqn_1 = Tmo1t, (5.8)
WGn—1 = Smt, (5.9)
UPn_2 +VGn_2 = Tm1V + Tm_ow', (5.10)
Weph—2 = Sm_1V + Sm_ow'. (5.11)

Como 7,—1 Y Sm—1 son enteros primos entre si, de (5.7) se sigue que los

cocientes
UPn—1 + VGn—1 _ wqn—1

Tm—1 Sm—1
son un mismo nimero entero v’ que satisface (5.8) y (5.9). Considerando el
segundo cociente concluimos que u’ > 0.
Las ecuaciones (5.10) y (5.11) forman un sistema de ecuaciones lineales de
determinante 41, luego tiene solucién entera v’, w’.
Tomando determinantes en la ecuacion matricial llegamos a que

uw(_l)n—l — (_1)m—1u/w/7

y puesto que m = n (méd 2), podemos concluir que D = uww = w'w’. De aquf
se deduce ademds que w’ > 0. De (5.11) se sigue que

!
Wl4n—-1 — Sm—2W Sm—2
v = > w > _w/7
sm—1 Sm—1
y usando ademds (5.9)
WGp—2 — Sm—oW' w !
/! n— m— !
v = < gn—2 = dn—2 <u.
Sm—1 Sm—1 gn—1

Por el teorema 5.8 tenemos

_ pnflgn + Pn—2

¢ Qn—lfn + Gn-2 ’

Haciendo uso de esto y de las ecuaciones que definen a v/, v/, w’ llegamos a que

_ ué + v _ (upp—1 +vGn—1)&n + (UPp—2 + VGn_2)
w w(Qn—lfn + Qn—2)
Ton—1U En 4 Ty 10" + Ty 0w’

Sm—1UW&n + Sm_1V'Spm_ow’

de donde, de acuerdo con la definicién n,, = (v'&, + v')/w’, se concluye

o Tm—lnm + T'm—2

Sm—1"m + Sm—2

Consecuentemente 1 = [bg, b1, ..., b1, Nm]- m
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Ahora observamos que en las hipStesis del teorema anterior se cumple
N = (W&, +0)/w' >0 Jw' > —1.

Mas aun, si a, > D, teniendo en cuenta que a,, es la parte entera de &,, de
hecho

N = (W +0") /W' > (W'D + ") /w' > (u*w —w')/w =u?—-1>0,
y si a, > 2D entonces
Nm = (W&, +0")Jw' > (W'2D 4+ ') Jw’ > 2u* — 1> 1.
Esto es importante porque cuando n,, > 1, la relacién

n= [b07b17' '~7bm717nm]

indica que los coeficientes de la fraccién continua de 7, son la prolongacién del
desarrollo de 7 en fraccién continua, que comienza con [bg, b1, ..., bpm—1,... |.

Es fécil ver que esto sigue siendo cierto cuando 7,, > 0 si convenimos en que
[...,a,0,b,¢,... |=[...,a+byec,... ]

Nuestra intencién es partir de un nimero irracional &y y dividir su fraccién
continua en secciones

50 = [a0a~‘-aan171 | Anyse -y Uno—1 I Anyy -+ yng—1 ‘ Apgy .- ]7
a las que aplicar sucesivamente el teorema anterior.

Dado n9 = (uo&o + vo)/wo tal que wg,wyg > 0y D = wowy > 1, el teo-
rema nos da ntmeros u1, vy, w; en las mismas condiciones (con el mismo D) y
bo, ..., bm,—1 tales que

no = (b0, bmy—1,Mm,]  con Ny = (U1, +v1)/ws.

Ahora aplicamos el teorema a &, = [anyy -5y — 1 | gy vy Qg1 | Gngy .- ]
y obtenemos nimeros ug, v2, wy con el mismo D y by, ..., bm,—1 tales que

77m1 = [bm17 crty bm2717 th] con 77’177,2 = (U2§n1 + 02)/’“}2’

Suponiendo que b,,, > 0 podemos enlazar ambos pasos y escribir

o = [bO;"'abml—lanml] - [bOa"'abml—l ‘ bm17"',bm2—1777m2]~

A continuacién aplicamos el teorema a &,,,, y asi sucesivamente. De este modo
vamos obteniendo el desarrollo en fraccién continua de 79, suponiendo que los
sucesivos b,,, que vamos obteniendo no sean negativos. Una forma de garan-
tizarlo es partir la fraccién original de modo que cada a,, > D, aunque no es
necesario.

Con la ayuda del teorema siguiente podremos garantizar que, con las hipo-
tesis adecuadas, al cabo de un numero finito de pasos entraremos en un ciclo
que nos dard una férmula general para el desarrollo completo de 7y. Al mismo
tiempo nos dard una técnica tutil para simplificar los calculos.
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Teorema 5.15 En las hipotesis del teorema 5.14, si sustituimos ag por otro
nimero congruente mddulo D, digamos ag+ Dg (pero mantenemos los mismos
ai,...,an—1) entonces se obtienen los mismos nimeros u',v',w’, asi como los
mismos m y by, ...,bm—1. El nimero by se transforma en by + u2g.

DEMOSTRACION: Claramente

u[a0+Dgaa17"'7an—1]+v _ u[GOaala"'aan—1]+v+UDg
w w w
) ey — +
_ ulag, ar an-1] +v + 2y
w
Segun el teorema 5.14 el desarrollo de este niimero es [bg, b1, . . ., bm—1], luego

es inmediato que con el cambio todos los coeficientes quedan igual salvo el
primero que se incrementa en u?g.

Las relaciones recurrentes que determinan los denominadores de los con-
vergentes no dependen del primer término de la fraccién continua, luego los
nimeros ¢g; y s; permanecen invariantes.

La férmula (5.9) nos da que v’ tampoco varia. Como v'w’ = D, también w’
permanece inalterado. Por dltimo, la ecuacién (5.11) garantiza la conservacién
de v'. =

Con esto tenemos en realidad un método general para calcular las fracciones
continuas de nimeros 7y a partir de niimeros &y, pero explicaremos mejor este
método aplicandolo al caso que nos interesa. Digamos sélo en general que si
aplicamos sucesivamente el teorema 5.14, las ternas (u;, v;, w;) que vamos ob-
teniendo varfan en un conjunto finito (a causa de las restricciones que impone
el teorema), luego después de un ndmero finito de pasos volveremos a la misma
terna.

Recordemos que si 2o = (e2/™ 4 1)/2 habfamos calculado

& =[1,m—1,3m,5m,... |

y que 19 = e2/™ =2¢, — 1. En este caso u = 2, v = —1, w = 1. Como D = 2,
para obtener congruencias médulo 2 haremos m = 2t (y después estudiaremos
el caso m = 2t + 1). Dividimos la fraccién de este modo:

Co=[1]|2t—1]6t|10t|14¢]... ].

Vamos a aplicar el teorema 5.14 a cada segmento. El teorema 5.15 nos
dice que podemos sustituir cada coeficiente por otro congruente médulo 2. Por
ejemplo podemos considerar

&=Ml1l0l0]0]..].

Ciertamente esto no tiene sentido como fracciéon continua, pero los cédlculos
a realizar si lo tienen porque cada uno de ellos sélo involucra a un segmento,
es decir a una fraccién [1] o [0] que si es correcta. Al hacer los célculos obten-
dremos para cada segmento unos coeficientes | by, , ..., bm,+1 — 1 |, que serdn
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los que buscamos salvo el primero. A estos primeros coeficientes tendremos que

sumarles las cantidades 0, u?(t — 1), u3 3t, u3 5t, . ..
Aplicamos el teorema 5.14 al primer segmento:

1[1]_1:1:[ = [by], m=1.
S0
)

[l V)

X¢
t

La ecuacion matricial es

(?‘i><ié)-<13) (o) ()
G NN

Ahora aplicamos el teorema al segundo segmento [1]

1ij4+0 1
=—-=[0,1,1] = [bs, b3,
1 9 [ ) Ly ] [ 2,U3, 4]7
donde hemos tomado el desarrollo con tres cifras para que la longitud sea impar

como la de [1]. Ahora

1o/ /1 1\ (1 1\ (1 1\[u wu
0 2 1 0/) \2 0/ \ 21 0 wy )’
de donde
Uz V2 . 1 -1
0 wo o 0 2
Sélo hay que rectificar el valor de b, que en realidad es u2(t—1) =t—1>0
=[1|t-11,1][|..]

luego por ahora tenemos que g
La siguiente aplicacién del teorema es al segmento [0]:

1[0]2_ ! = —1 = [_17171] = [b57b6’b7]'

(o) o)=(a) (e i)

0

y esta vez llegamos a que

uz U3
0 ws

Il
7N
o
N
—_
N———
I
/N
o2
[\v]
<
ES
~_
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El valor corregido de bs es bs = —1 +u23t =3t —1 > 0.
Tenemos, pues, que 1o = [1 |t —1,1,1 |3t —1,1,1[... ].

Ahora bien, para los calculos relativos al cuarto segmento partimos exac-
tamente de los mismos datos que para el tercero (la fraccién [0] y la terna
(us, vs,ws) = (1,—1,2)), luego llegaremos exactamente a los mismos coeficien-
tes [—1,1,1], y otra vez a la misma terna. Lo tdnico que cambiard serd la
correccién del primer coeficiente, que ahora sera 5t, y después 7t, etc., dando
lugar siempre a coeficientes mayores que 0.

Consecuentemente tenemos la fraccién continua de 79, que no es sino

mo=[1,t—1,1,1,3t—1,1,1,5t — 1,1,1,7t — 1,1,1,... ],

0 mas brevemente:

En el caso t = 1 aparece un cero que debe ser cancelado:
e=11,0,1,1,2,1,1,4,1,1,6,... | =[2,1,2,1,1,4,1,1,6,... ],

asi, e = [2,1,2k,1]32 .

En general, este método puede ser aplicado siempre que la fraccién continua
de & pueda ser dividida en segmentos que (por lo menos desde uno dado en
adelante) tengan todos la misma longitud y los mismos términos, salvo quizé el
primero, y de modo que los primeros términos de cada segmento sean mayores o
iguales que D (para que los coeficientes que obtenemos puedan ser enlazados) y
congruentes médulo D (para que podamos reducirlos a constantes por el teorema
5.15 y asf llegar a un ciclo como ha ocurrido en el ejemplo).

Otra aplicacién la tenemos cuando hacemos m = 2t + 1 en la expresion
original. Entonces queda

Co=[1]2t]6t+3]10t+5]|14t+7]... ],

y con este método podemos calcular la fraccién continua de €2/(2+1) Para ello
reducimos médulo 2 a la fraccién 5 =[1|0|1]1]1]... ].
Esta vez se obtienen las ternas

(237171)3 (17032)’ (2ﬂ07]‘)7 (]‘7072)ﬂ (137172)7 (2aoa 1)

La primera repeticién (uy, vy, w1) = (us,vs, w3) no es significativa, pues los
primeros (y tnicos) coeficientes de los segmentos primero y tercero son [0] y [1]
respectivamente, luego no son congruentes y por lo tanto no podemos garantizar
que comience un ciclo (y de hecho no comienza).

n cambio la repeticion (us, vs, ws) = (ug, v, we) si cierra el proceso. La

E bio 1 t , Us, , Vs, 1 L
fracciéon que se obtiene es

no=[110[210,1,1]0]2]0,1,1]10[2[0,1,1[0[2]0,1,1]... ]
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Para corregir los primeros coeficientes observamos que al pasar de &y a &
hemos restado 2-0, 2¢t, 2(t+ 1), 2(5t +2), 2(7t + 3), ... as{ como que los valores
de u; son 2,1,2,1,1,2,1,1,2,1,1,2, ...

Por lo tanto ahora hemos de sumar

0, t, 4(t+1), 5t+2, 7t+3, 49 +5), 11t +7, 13t +9, 4(15¢t + 11), ...

Omitimos los detalles, pero no es dificil llegar a que la expresion final es

e/ 2D — (1 (1 4 6k)t + 3k, (12 + 24k)t + 6 + 12k, (5 + 6k)t + 2 + 3k, 1, 1]

= [1, (1 + 6k)t + 3k, (12 + 24k)t + 6 + 12k, (5 + 6k)t + 2 + 3k, 13,

La férmula se simplifica bastante en el caso t = 0, que nos da

e = [1,3k,6+ 12k, 2+ 3k, 152, = [1,0,6,2 + 3k, 1, 1,3 + 3k, 18 + 12k]3>,
= [7.2+ 3k, 1,1,3 + 3k, 18 + 12k]3>,

Explicitamente:

e =7,2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,1,12,54, ... |.



Capitulo VI

Cuerpos cuadraticos

En los cuerpos cuadréticos, toda la sutileza de la teoria algebraica de niime-
ros se muestra de la forma maés simple posible. Esto los convierte en los modelos
idéneos para formular conjeturas y obtener primeras pruebas. Ciertamente, los
resultados mas importantes de la teoria algebraica de niimeros han seguido este
proceso: primero fueron probados para cuerpos cuadraticos y sélo en una se-
gunda etapa fueron generalizados. Este proceso de generalizacion es a menudo
complicado y suele requerir ideas esencialmente nuevas. Tanto es asi que atun
hoy existen hechos sobre cuerpos cuadraticos que plausiblemente deberian co-
rresponderse con hechos generales sin que tan siquiera se sepa cémo abordar el
problema de formularlos adecuadamente.

Los resultados fundamentales que hemos probado hasta ahora (finitud del
numero de clases, célculo de unidades fundamentales, etc) fueron obtenidos
por Gauss en el caso cuadratico, aunque en términos muy diferentes a los que
nosotros hemos empleado. La teoria de Gauss trata sobre formas cuadraticas
binarias, pero es equivalente a la teoria de cuerpos cuadraticos debido a que la
relacién entre médulos y formas que hemos estudiado puede refinarse en el caso
cuadratico hasta tal punto que permite traducir fielmente cualquier hecho sobre
formas a un hecho analogo sobre médulos y viceversa.

Sin embargo, hay un sentido en el que ambos enfoques no son equivalentes,
y es que mientras la mayor parte de la teoria resulta mas natural en términos
de moédulos, lo cierto es que hay algunos conceptos de gran importancia tedrica
que resultan completamente naturales en términos de formas y sin embargo hace
falta profundizar mucho en la teoria para comprender completamente su sentido
en términos de médulos. Por ello resulta enriquecedor conocer ambos plantea-
mientos y la relacion entre ambos. En este capitulo nos limitaremos a exponer
la parte de la teoria de Gauss sobre formas cuadréticas que se corresponde con
la teoria que ya conocemos, a la vez que mostraremos las simplificaciones de la
teoria general aplicada al caso cuadratico. Esto nos servird de preparativo para
desarrollar en capitulos posteriores el resto de dicha teoria, cuya generalizacion
ha constituido uno de los problemas centrales de la teoria desde la época de
Gauss hasta mediados del presente siglo.

131
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6.1 Formas cuadraticas binarias

Definicién 6.1 Una forma cuadrdtica (binaria) es un polinomio de la forma
f(z,y) = ax?® + by + cy?, donde a, b, c son enteros racionales no todos nulos.

En lo sucesivo, y mientras no se indique lo contrario, cuando hablemos de
una forma f(z,y) entenderemos que a, b, ¢ son sus coeficientes de acuerdo con
la formula anterior. Vamos a introducir algunos conceptos bésicos sobre formas
cuadréticas.

En primer lugar recordemos de 1.4 que dos formas cuadréticas f(z,y) y
g(x,y) son equivalentes si f(x,y) = g(px + qy,rx + sy), donde p, ¢, 7, s son
enteros racionales tales que ps—qr = £1. En tal caso las soluciones enteras de la
ecuacion f(z,y) =t estdn en correspondencia biunivoca con las de la ecuacién
g9(z,y) =t.

Esto se expresa mejor con notacién matricial. La forma f(z,y) se puede
representar matricialmente como

f(x,y)(z,y)< b72 bf ) < i >

de modo que si una forma f tiene matriz A y otra forma g tiene matriz B,
entonces f y g son equivalentes si y sélo si existe una matriz C con coeficientes
enteros racionales y determinante 1 tal que A = CBC".

Determinante y discriminante En particular notamos que el determinante
de f, esto es, el nimero |B| = ac — b*/4 es invariante por equivalencia. El
discriminante de f se define como el entero racional b — 4ac. Puesto que no es
mas que —4 veces el determinante, también es invariante por equivalencia.

Formas completas Todas las formas cuadraticas se descomponen en pro-
ducto de dos formas lineales. Dada una forma f(x,y), si se cumple a = ¢ =0 la
factorizacién es obvia. Supongamos ahora que a # 0. Entonces consideramos el
polinomio f(x,1) = az?+bz+c = a(z+a)(x+3) y encontramos la factorizacién

f(z,y) = a(z + ay)(z + By).

Observar que « y 3 son (b + \/5)/2(1, donde D es el discriminante de f. Si
D es cuadrado perfecto, el polinomio az? + bx + ¢ es se descompone en factores
lineales en Q|z], luego también en Z[z], y asf la forma f(z,y) se descompone
en factores lineales en Z[x,y]. Por el contrario, si D no es cuadrado perfecto,
entonces D = m?2d para ciertos enteros racionales m, d, con d libre de cuadrados,
luego v y 8 son elementos conjugados del cuerpo Q(\/&), y la factorizacién
puede expresarse como f(x,y) = aN(z + ay). En los términos del capitulo II
esto significa que la forma f(z,y) es (salvo una constante) una forma completa.

En el caso a = ¢ = 0 se cumple que D = b? es cuadrado perfecto y por
otro lado la forma también factoriza en Z[z, y], luego concluimos que una forma
cuadrética factoriza en Z[z, y] si y sdlo si su discriminante es cuadrado perfecto
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y, puesto que las formas completas son irreducibles en Q[xz,y], una forma es
completa (salvo una constante) si y sélo si su discriminante no es cuadrado
perfecto. En lo sucesivo sélo consideraremos formas cuadraticas completas.

Signo El discriminante de una forma cuadratica determina su signo en el
sentido siguiente: Si f(z,y) tiene determinante D, entonces

daf(z,y) = (2ax + by)* — Dy,

luego si D < 0 el signo de f(z,y) es igual al signo de a para todos los valores
de = e y, mientras que si D > 0 la forma toma valores tanto positivos como
negativos.

De acuerdo con esto, diremos que f(x,y) es definida positiva si f(z,y) > 0
para todo par (x,y) # (0,0), lo cual ocurre cuando D < 0, a > 0.

Diremos que f(z,y) es definida negativa si f(x,y) < 0 cuando (x,y) # (0,0),
lo cual ocurre si D < 0, a < 0.

Y en otro caso, es decir, si D > 0, diremos que la forma es indefinida.

Observar que si D < 0, una forma definida negativa se transforma en definida
positiva (con el mismo discriminante) cambiando el signo a sus coeficientes, por
lo cual en la mayoria de los casos no sera restriccion el trabajar sélo con formas
definidas positivas.

Por otro lado es obvio que si dos formas estan relacionadas por un cambio
de variables entonces una toma sélo valores positivos si y sélo si lo mismo le
ocurre a la otra, es decir, dos formas equivalentes son ambas definidas positivas,
ambas definidas negativas o ambas indefinidas.

Formas principales El discriminante D = b? — 4ac de una forma cuadrética
no puede ser cualquier nimero, sino que cumple D = 0 (méd 4) si b es par y
D =1 (mdd 4) si b es impar.

Si un entero racional D cumple estas condiciones siempre existen formas
cuadraticas de discriminante D. La ma&s sencilla de todas recibe el nombre de
forma principal de discriminante D, definida como 2% — %yz siD=0(méd 4) y
x4+ zy + %yQ si D =1 (méd 4). Las formas principales estdn determinadas
por las condiciones a =1y b =0 o 1, segtn sea el resto de D.

Modédulos A continuacién vamos a refinar la relacién que ya conocemos en
general entre formas y médulos. Segin vimos en el capitulo II, a cada base de
un médulo completo le sabemos asociar una forma con coeficientes racionales.
Como ahora estamos trabajando con coeficientes enteros, multiplicaremos la
forma por el entero adecuado para que los coeficientes resulten enteros. La
forma resultante sera tnica si exigimos que sus coeficientes a, b, ¢ sean primos
entre si.

Las formas cuadraticas con coeficientes primos entre si se llaman formas
primitivas.
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La forma explicita de asignar a cada base de un médulo completo su forma
primitiva resulta ser muy sencilla. Para obtenerla probamos primero un resul-
tado auxiliar:

Teorema 6.2 Sea 7y una raiz irracional de un polinomio ax? + bx + ¢ con coe-
ficientes enteros racionales primos entre si, a > 0. Entonces el anillo de coefi-
cientes del mddulo (1,7) es (1,av), el discriminante de este orden es b*> — 4ac
y la norma del médulo es 1/a.

DEMOSTRACION: El ntimero v pertenecerd a un cuerpo cuadratico @(\/8)

Todo elemento de Q(\/E) es de la forma 6 = x 4 y7y, donde x e y son nimeros
racionales. Se cumplird § (1,~7) C (1,7) siy s6losi éd € (1,7) y

c b
57=m+yv2=—;y+ (m— Ey>76 (1,7).
O sea, § es un coeficiente de (1,~) si y sélo si x, y, cy/a, by/a son enteros.
Puesto que (a,b,c) = 1, esto ocurre si y sélo si x e y son enteros y a | y.

Ahora es fécil calcular la matriz de cambio de base de (1,v) a (1,av), y
concluir que la norma de (1,7) es 1/a.
El discriminante del orden es

2
= a(av?® 4+ ay* — 2a77) = a(—=by — ¢) + a(—by — ¢) — 2ac

= —ab(y +7) — 2ac — 2ac = b* — 4ac.
| |

Sea ahora (a, §) una base (ordenada) de un médulo M de un cierto cuerpo
cuadratico (@(\/E) A esta base le asociamos la forma cuadratica

N(az + By)

NO) = az® + bay + cy’. (6.1)

flz,y) =

Vamos a probar que los coeficientes a, b, ¢ son enteros primos entre si.
Llamemos v = —3/a. Entonces v es rafz de un tnico polinomio Az? + Bz + C
con coeficientes enteros racionales tales que (4, B,C) =1y A > 0. Asi

A(eré) (m+§) = Az? + Bx + C,
«@ a

luego

Nj(éla) (va+ B)(za + B) = Az* + Bx + C,
de donde

N(azx + fy) = M(Ax2 + Bay + Cy?).

A
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Por el teorema anterior, la norma de M = (o, 8) = a(1,7) es | N(«)|/A, y
por consiguiente

aa® + bay + ey = N(ag + By)/ N(M) = £(Aa® + Bay + Cy?),

luego la forma que le hemos asignado a la base («, 5) segin (6.1) es primitiva.

M4s atdn, el anillo de coeficientes de M = («,3) es el mismo que el de
(1,7), es decir, el orden (1, A7), y, por el teorema anterior, su discriminante es
B?2—4AC = b?>—4ac. Esto significa que el discriminante del anillo de coeficientes
de M es el mismo que el de la forma cuadratica asociada.

Observamos ademds que a = N(«)/ N(M), y por lo tanto si el discriminante
es negativo, o sea, si el cuerpo es imaginario, entonces a > 0, luego la forma es
definida positiva. En resumen:

Teorema 6.3 Para cada base ordenada (a, 3) del médulo M, la forma cuadrd-
tica f(x,y) = N(azx + By)/ N(M) tiene coeficientes enteros, es primitiva, tiene
el mismo discriminante que el anillo de coeficientes de M vy es definida positiva
cuando dicho discriminante es negativo.

Es facil comprobar que, como ya observamos en el capitulo II las formas
asociadas a dos bases de un médulo M son equivalentes, y los coeficientes del
cambio de variables son los mismos que los del cambio de base. En particular
el determinante del cambio de variables es el mismo que el determinante del
cambio de base. Esto significa que a cada médulo M le asignamos una clase de
equivalencia de formas. Al variar la base de M recorremos todas las formas de
la clase.

También comentamos en el capitulo II que si M tiene asociada una forma f,
entonces un moédulo similar vM tiene asociada la forma N(v)f. Sin embargo,
como ahora hemos modificado la correspondencia para trabajar sélo con formas
primitivas, la relacién se simplifica:

Siy#£0,y f eslaforma asociada a la base («,3) de M, la forma asociada
a la base (ya,v0) de vM es

N(vaz +76y) _ N(y)Nlaz+By) _ .
NGM) C Nsan @)

donde el signo es el de N(7).

Asi, si la clase asociada a M es [f], la clase asociada a yM es [+ f]. Cuando
N(vy) > 0 ambas clases son la misma, pero si N(y) < 0 las formas f y —f no
son necesariamente equivalentes. En los cuerpos imaginarios, donde la norma
siempre es positiva, esto nos permite asociar a cada clase de similitud de médulos
una clase de equivalencia de formas, pero en los cuerpos reales puede haber clases
de similitud a las que correspondan dos clases de equivalencia.

Por otra parte, la correspondencia de mddulos a clases de formas (primitivas
no definidas negativas) es siempre suprayectiva. En efecto, hemos visto que
toda forma factoriza como f(z,y) = aN(xz + ay), luego la forma asociada al
médulo M = (1, a) se diferencia de f en el factor a N(M). Como ambas formas
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son primitivas el factor ha de ser +1, concretamente el signo de a. Si a > 0 nos
sirve el médulo M. Sia < 0 el discriminante ha de ser positivo (o la forma serfa
definida negativa), luego existe un nimero v de norma negativa y nos sirve el
moédulo yM.

La correspondencia de médulos a clases de formas no es inyectiva por razones
obvias, desde el momento en que médulos similares M y yM con N(v) > 0 tienen
asociada la misma clase, pero la situacién es peor, en el sentido de que puede
haber también moédulos no similares cuya clase asociada sea la misma. Veamos
en qué condiciones esto es posible:

Supongamos que a dos médulos M y M’ les corresponde la misma clase de
formas. Escogiendo oportunamente las bases podemos suponer que M = {«, 3},
M' = (o', ") y que la forma asociada a ambas bases es la misma. En la prueba
del teorema 6.3 hemos visto que v = —3/a y v/ = —3'/a’ son raices del mismo
polinomio, luego son iguales o conjugados. Puesto que M y M’ son similares,
respectivamente, a (1,7v) v (1,7), concluimos que M es similar a M’ o bien a
su conjugado.

Esto es todo lo que podemos decir: si dos médulos son conjugados, la forma
que les asignamos es la misma, y mas adelante veremos ejemplos de médulos no
similares a sus conjugados, con lo que una misma clase de formas se corresponde
a veces con mddulos no similares. En cualquier caso, una clase de formas nunca
se corresponde con més de dos clases de modulos similares.

En resumen tenemos que una clase de moédulos similares puede correspon-
derse con dos clases de formas y que una clase de formas puede corresponderse
con dos clases de modulos similares. Esta situacion tan poco satisfactoria se
puede arreglar completamente si refinamos las relaciones de equivalencia que
estamos considerando. Nos ocupamos de ello seguidamente.

6.2 Equivalencia y similitud estricta

Definicion 6.4 Dos formas cuadraticas son estrictamente equivalentes si son
equivalentes mediante un cambio de variables de determinante +1. Dos mdédulos
M y N de un cuerpo cuadratico son estrictamente similares si M = aN para
un cierto nimero o de norma positiva.

Observar que dos formas que se diferencien en un cambio de variables de
discriminante negativo pueden ser pese a ello estrictamente equivalentes. Por
ejemplo, si una forma cumple a = ¢, entonces el cambio z = y, y = x produce
el mismo efecto (ninguno) que el cambio z =z, y = y.

También puede que dos formas sean equivalentes pero no estrictamente equi-
valentes, en cuyo caso su clase de equivalencia se parte en dos clases de equiva-
lencia estricta.

Lo mismo sucede con la similitud estricta de médulos, aunque aqui podemos
precisar un poco maés:
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Si el discriminante de un orden es negativo (el cuerpo es imaginario) todas
las normas son positivas, luego la similitud coincide con la similitud estricta
sobre los médulos de dicho orden.

Si el discriminante es positivo, entonces la similitud coincide con la similitud
estricta en los médulos del orden si y sélo si su unidad fundamental tiene norma
negativa.

En efecto, si € es una unidad de norma negativa y tenemos M = a/N con
N(a) < 0, entonces también M = eM = eaN, luego la similitud coincide con la
similitud estricta.

Reciprocamente, si « es cualquier nimero que cumpla N(a) < 0y M es
cualquier médulo del orden considerado, los médulos M y aM han de ser
estrictamente similares, luego existe un § de norma positiva de manera que
BM = aM, luego (a/B)M = M y por lo tanto N(M) = |N(a/8)|N(M), de
donde |N(a/B)| = 1y, dados los signos de las normas de o y (3, ha de ser
N(a/B) = —1. Claramente o/ es una unidad del orden de M y si una unidad
tiene norma —1 la unidad fundamental también.

Asi pues, la similitud y la similitud estricta sélo difieren en los mddulos
cuyos érdenes tienen unidades fundamentales de norma 1, y en este caso todas
las clases de similitud de médulos se dividen en dos clases de similitud estricta.

Finalmente vamos a refinar la correspondencia entre médulos y formas que
hemos descrito en la seccién anterior de manera que induzca una biyeccion entre
clases de equivalencia y similitud estrictas.

Definicién 6.5 Una base (a,3) de un médulo M de un cuerpo cuadrético
Q(\/E) estd orientada si el determinante

A:

o Qi

QX @I

cumple A > 0 parad >0y A/i > 0 para d < 0 (la barra indica la conjugacién
compleja).

Més explicitamente, si @ = p+ ¢vd y 8 = r 4+ sV/d, entonces
A = 2(ps — qr)Vd,

luego la orientacién de la base (a,3) segtin la definicién anterior equivale a
que su orientacién es la misma que la de la base (1, \/8) en el sentido usual en
espacios vectoriales. Los siguientes hechos se comprueban sin dificultad:

1. Si (e, 8) no estd orientada, entonces (5, «) si lo estd.
2. Si (o, 3) estd orientada, entonces (3, @) también lo esté.
3. Si (a, B) estd orientada, entonces (ya,v3) lo estd si y sélo si N(y) > 0.

4. Un cambio de base conserva la orientacién si y sélo si su determinante es
positivo.
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Como consecuencia, si recorremos las bases orientadas de un médulo M,
las formas asociadas recorren una clase de equivalencia estricta. A mddulos
estrictamente similares les corresponde la misma clase de equivalencia estricta
de formas.

Tenemos, pues, una correspondencia que a cada clase de equivalencia es-
tricta de mdédulos le asigna una clase de equivalencia estricta de formas (las
asociadas a las bases orientadas de los mddulos de la clase). Esta corresponden-
cia sigue siendo suprayectiva (considerando sélo formas primitivas no definidas
negativas), pues si a una forma f(z,y) le corresponde una base (¢, 3) y ésta no
est4 orientada, podemos tomar la base (@, 3), que da la misma forma y s est4
orientada.

Vamos a ver que también es inyectiva. Sean M y M’ dos mdédulos que
tengan asignada la misma clase de formas. Escogiendo adecuadamente las bases
podemos suponer que M = (o, ), M’ = (/, ) y que la forma asociada a ambas
bases es la misma.

En la prueba del teorema 6.3 hemos visto que N(«) tiene el mismo signo
que el coeficiente de 2% y lo mismo vale para la otra, luego N(a) y N(o’) tie-
nen el mismo signo. Por consiguiente las bases (1,8/a) y (1,3 /a’) estdn am-
bas orientadas o ninguna lo estd, segin el signo de N(a). Pero sabemos que
B/ay [B'/a’ son iguales o conjugados, y no pueden ser conjugados porque la
conjugacién invierte la orientacion, asi que son iguales. De aqui se sigue que
M=a(l,8/a) =a(l,5/d) (a/a’)M', luego M y M’ son estrictamente simi-
lares.

Vamos a reflexionar sobre como las relaciones estrictas resuelven los proble-
mas que nos aparecian con las relaciones no estrictas. Consideremos primera-
mente el caso de los cuerpo reales, donde la situacién era peor. Dado un médulo
M podemos considerar las clases estrictas [M], [M], [-M] y —[M], donde M es
el médulo conjugado de M y —[M] representa a la clase de similitud estricta de
los médulos yM con N(v) < 0.

Estas clases no son necesariamente distintas. Puede ocurrir que M = M (por
ejemplo si en un cuerpo cuadréatico un primo factoriza como p = p?, entonces
M = p es su propio conjugado) y puede ocurrir [M] = —[M] (esto ocurre
exactamente cuando hay unidades de norma negativa). Por lo tanto tenemos
una, dos o cuatro clases estrictas.

Si a M le corresponde la forma f(z,y) = ax?® + bry + cy?, entonces a M
le corresponde f(y,x) (porque al conjugar se invierte la orientacién y hay que
cambiar el orden de la base), mientras que, segiin hemos probado, a —M le co-
rresponde la forma — f(x,y). Por simple estética podemos transformar f(y,x)
mediante el cambio x = —y, y = = y considerar la forma estrictamente equiva-
lente ax? — bxy + cy?. Asi, la biyeccién entre clases acttia como sigue:

[M] «— [az® + bxy + cy?]
(7] —  [a2® - boy + )
—[M] —— [~a2® —bay — cy?]
—[M] — [-ax®+ bay — cy?].



6.3. Grupos de clases 139

Al considerar relaciones no estrictas la biyeccién se estropea, porque M es
similar a —M y M es similar a —M, mientras que ax? +bzy + cy? es equivalente
a ar? — bry + cy? (mediante el cambio © = z, y = —y) v —ax?® — bzy — cy? es
equivalente a —ax? + bxy — cy?.

En los cuerpos imaginarios sélo tenemos las clases [M] y [M] (que pueden
ser la misma o no) y las clases de formas [az? + bxy + cy?], [ax?® — bry + cy?] (las
dos restantes las eliminamos por definicién). Aqui el problema es mas simple:
las clases de formas se convierten en la misma al considerar la equivalencia no
estricta, mientras que las clases de modulos pueden seguir siendo distintas.

Es importante recordar, pues, que mddulos estrictamente similares se co-
rresponden con formas estrictamente equivalentes y viceversa, pero que esto es
falso si consideramos relaciones no estrictas.

6.3 Grupos de clases

Vamos a definir un producto de médulos que induzca una estructura de grupo
en los conjuntos de clases de similitud estricta y no estricta de los médulos de
un orden cuadratico dado. En el caso de la similitud no estricta veremos que el
grupo asi obtenido es el mismo grupo de clases que definimos en 4.16.

Definicién 6.6 Sean M y M’ dos médulos completos de un cuerpo cuadréatico.
Elijamos dos bases M = (a, 8), M’ = (a/, #’). Llamaremos mddulo producto al
médulo

MM' = {(ad,af, B, B6") .

La definicién no depende de la eleccién de las bases, pues M M’ es, de hecho,
el médulo generado por los productos mm’ con m € M y m' € M’ (es ficil
ver que el producto es un médulo completo). Observemos que el producto de
ideales es un caso particular del producto de médulos. El producto de médulos es
conmutativo y asociativo. Los hechos mas importantes en torno a este producto
se deducen del teorema siguiente:

Teorema 6.7 Si M es un mddulo completo con anillo de coeficientes O y M
es su conjugado, entonces MM = N(M)O.

DEMOSTRACION: Supongamos primero que M = (1,v). Entonces, con la
notacién del teorema 6.2, tenemos que

= _ b ¢ b ¢ 1
MM = <17777?77> = <17’77—'Y— _7__> = <177a_7_> = - <a'ab7cva‘fy>'
a a a a a

Puesto que ﬁl, b,¢) = 1, todo entero racional es combinacién lineal entera de
ellos, luego MM = (1/a) (1,ay) = N(M)O.

Si M es un médulo arbitrario, M = aM’, donde M’ tiene la forma anterior,
luego MM = aaM'M = N(a)N(M")O = |N(a)|N(M")O0 = N(M)O. =
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De aqui se siguen varias consecuencias. En primer lugar, si M y M’ son
médulos de un mismo orden O y llamamos O’ al anillo de coeficientes del pro-
ducto M M’, tenemos que

N(MM"O' = MM'MM = N(M)ON(M')O = N(M)N(M')o.

Como dos érdenes distintos no pueden ser similares, resulta que O = @', es
decir, el producto de médulos de un orden vuelve a ser un médulo del mismo
orden. Tomando ahora normas en N(MM’)O = N(M)N(M')O concluimos
también que N(MM') = N(M)N(M').

Mas ain, dado un médulo cualquiera M de un orden O, se cumple MO = M
y el médulo M’ = M/ N(M) tiene la propiedad de que MM’ = O. En resumen:

Teorema 6.8 FEl conjunto de todos los mddulos completos con anillo de coe-
ficientes igual a un orden cuadrdtico O es un grupo abeliano con el producto
definido en 6.6.

Ejercicio: Probar que en un cuerpo cuadratico se cumple que OO, = Opm,msy,
para todo par de nimeros naturales no nulos m, m’.

Ejercicio: Sea M = <4, 2, €/Z> un médulo de Q(%) Probar que su anillo de coe-
ficientes es <1, 22, 2\3/@ mientras que el de M? = <2, 22, \3/1> es el orden maximal
<1, 72, \5/1> (donde el producto se define andlogamente a 6.6).

Si O es un orden cuadratico, la clase de similitud (estricta) de O esté formada
por los médulos a0, donde o # 0 (N(a) > 0). Claramente se trata de un
subgrupo del grupo de todos los mddulos de O, y la similitud (estricta) es
precisamente la congruencia médulo este subgrupo, por lo que el conjunto de
clases de similitud es el grupo cociente. Estos grupos cociente se llaman grupo
de clases estrictas'y grupo de clases no estrictas del orden considerado.

Vamos a probar que el grupo de clases no estrictas de un orden cuadratico
es el mismo definido en 4.16. Como la definicién dada alli se basa en ideales,
necesitaremos el teorema siguiente, que caracteriza los modulos que son ideales
de su anillo de coeficientes.

Teorema 6.9 Sea K = Q(\/E) un cuerpo cuadrdtico. Sea w = \/d o bien
w = (1 + \/E)/Q segun el resto de d modulo 4. Entonces

1. Si a es un mddulo de la forma a = k{a,b+ mw), con a, b, k enteros
racionales, entonces a es un ideal de O, si y sélo si a | N(b+ mw).

2. Todo ideal de O,, puede expresarse de esta forma.

3. Si a es un ideal en estas condiciones y su anillo de coeficientes es Oy,
entonces se cumple N(a) = k?|al.
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DEMOSTRACION: Sea a un médulo completo contenido en O,,. Sea k el
mayor nimero natural que divida (en O,,) a todos los elementos de a. Entonces
a = kM, donde M es un mddulo completo contenido en O,, tal que no hay
ningin natural mayor que 1 que divida a todos sus elementos. Obviamente a
serd un ideal de O, si y sélo si lo es M.

Es facil ver que M tiene una base de la forma M = (a,b+ c¢mw), donde a,
b, ¢ son enteros racionales, a > 0. En efecto, dada una base de M, podemos
sustituir una de sus componentes por la suma o resta de ambas, de manera que
el coeficiente de mw disminuya en valor absoluto. Tras un ndmero finito de
pasos debera hacerse nulo. El ntimero a es el menor natural no nulo contenido
en M. Puesto que (a, b, c) divide a todos los elementos de M, se cumple que a,
b, ¢ son primos entre si.

Es claro que M serd un ideal de O, siy sélo si amw, mw(b+ cmw) € M.

La condicién amw € M equivale a que existan enteros racionales u y v tales
que amw = ua + v(b + cmw).

Operando se llega a que v = a/c y a que v = —b/c. Consecuentemente,
amw € M cuando y sélo cuando ¢ | a y ¢ | b, pero como (a,b,c) = 1, esto
equivale a que ¢ = 1.

Admitiendo ¢ = 1, la segunda condicién se convierte en mw(b+ mw) € M,
que a su vez equivale a (m Tr(w) —m@) (b+mw) € M (puesto que Tr(w) = w+m).

Sumamos y restamos —b y la condicién equivale a

(=b—mw)(b+ mw) + (mTr(w) + b)(b + mw) € M.

Como el segundo sumando es un multiplo entero de un elemento de M, esta
seguro en M, luego la condicién se reduce a que (b+ ma)(b+ mw) € M, o sea,
N(b+ mw) € M y en definitiva a que a | N(b + mw).

Para probar la ultima afirmacién podemos suponer que a = (a,b+ mw).
Notamos que mw = —b (mdéd a), luego todo elemento de O,, es congruente con
un entero médulo a. Por otra parte a es el menor nimero natural no nulo
contenido en a, luego |0,,/a| = a. Si el anillo de coeficientes de a es O,
entonces esta cantidad es precisamente N(a). "

Ejercicio: Probar que si a = k{a,b+ w) es un ideal del orden maximal de K en
las condiciones del teorema anterior y su norma es prima con m, entonces se cumple
anNOm =k (a,mb+mw).

Ahora probamos un resultado técnico:

Teorema 6.10 Si az? + bxy + cy? es una forma cuadrdtica primitiva y m es
un entero racional, existe una forma cuadrdtica o’ z? + b zy+c'y? estrictamente
equivalente a la dada y tal que (a',m) = 1.

DEMOSTRACION: Sea r el producto de los primos que dividen a m pero no a
c. Sea t el producto de los primos que dividen a m y a ¢ pero no a a (se entiende
que valen 1 si no hay tales primos).

Entonces (r,t) = 1, luego existe un entero u tal que ur = 1 (méd t). Sea
finalmente s = (ur — 1)/t. Asi ru — ts = 1, luego el cambio de variables
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z = ra’ + sy', y = tr’ + uy’ transforma la forma cuadritica dada en otra
propiamente equivalente en la que a’ = ar? + brt + ct2.

Veamos que (a’,m) = 1. Sea p un divisor primo de m. Si p { ¢, entonces
plrypft, luegopfa'.

Si p | ¢ distinguimos dos casos: si p{ a entonces p | t pero p { r, luego p1a'.
Sip|cyp|a, como (a,b,¢c) =1 tenemos que pt b, ptryptt, luego pta.

Con esto podemos probar el resultado que necesitamos para relacionar las
dos definiciones que hemos dado del grupo de clases.

Teorema 6.11 Todo mddulo completo M con anillo de coeficientes O,, es es-
trictamente similar a un ideal de O,, de norma prima con cualquier entero
prefijado n.

DEMOSTRACION: Consideremos un médulo M cuyo anillo de coeficientes
sea O,,. Este tendrd asociada una forma cuadratica primitiva, y por el teorema
anterior podemos obtener otra propiamente equivalente az? + bxy + cy? con
(a,n) = 1. Esta forma cuadratica puede expresarse como a(x + vyy)(z + Jy),
donde —v es una raiz del polinomio ax? + bx + ¢, y por lo tanto la forma estd
asociada al médulo (1,7), o también al mdédulo estrictamente similar

fa.a7) = < ¢>

donde b? — 4ac = t2d con d libre de cuadrados. Cambiando ~ por su conjugado
si es preciso podemos suponer que las bases estan orientadas.

Como formas equivalentes estan asociadas a médulos similares, en realidad
este médulo es similar al médulo original M y en particular su anillo de coefi-
cientes sigue siendo O,,.

Asi mismo el discriminante de la forma ha de ser el de O,,, es decir, o bien
t2d = m?2d o bien t2d = m?4d, segtin el resto de d médulo 4. Por lo tanto t = m
o bien t = 2m.

Observar que

N(%)zac y T‘r(#):b,

luego se trata de un entero. En el caso d # 1 (mdd 4), el coeficiente b ha de
ser par, digamos b = 2V, y t = 2m, y el médulo es <a, b+ m\/8>, que por el

teorema 6.9 es un ideal de O,, de norma prima con n.
En el caso d =1 (mdd 4) llegamos a lo mismo. En efecto, entonces el médulo

que hemos obtenido es
< b+t >
a, —tw ),
2

pero t = m y el ideal tiene la misma forma que en el caso anterior. L]
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Recordemos que, si O,, es un orden cuadratico, el grupo de clases que
habiamos definido en 4.16 (teniendo en cuenta las observaciones tras 3.29) es
I (9)/ Py (0,,), donde I, (0) es el grupo de los ideales fraccionales del orden
maximal O que se expresan como cocientes de ideales primos con m. El teorema
3.27 nos da un isomorfismo entre I}, (O) y un subgrupo del grupo de los médulos
con anillo de coeficientes O, (los que se expresan como cociente de ideales de
norma prima con m). Al componerlo con la proyeccién en el grupo de clases
de similitud (que hemos definido en esta seccién) obtenemos un homomorfismo
que es suprayectivo por el teorema anterior. Su nucleo estda formado por los
cocientes de ideales a/b primos con m que, vistos como médulos de O,,, son
(estrictamente) similares a O,,, es decir, tales que existe un v € K* (de norma
positiva) de modo que /8 = 70,, o, equivalentemente o« = /3. El teorema
siguiente prueba que (para la similitud no estricta) este nicleo es precisamente
P (0n):

Teorema 6.12 Sea K un cuerpo cuadrdtico y a, b dos ideales de I,,,(0,,) tales
que eziste un v € K* (de norma positiva) de modo que a = ~vb. Entonces
v = B/a, para ciertos a, 3 € Op, de norma (positiva) prima con m.

DEMOSTRACION: Recordemos del capitulo IIT (ver las observaciones tras el
teorema 3.29) que I,,(0,,) es el conjunto de los ideales de norma prima con m.

Expresemos v = (/a, para ciertos o, § € Oy, el orden maximal de K.
Tenemos que aa = b, en principio considerando a a y b como ideales de O,,,
pero multiplicando por O; podemos verlos como ideales de O;. Entonces, en
virtud de 3.27, los ideales a y b son primos con m, luego los primos que dividen a
m han de dividir a a y a 3 con la misma multiplicidad. Aplicando el teorema 3.7
podemos suponer que ninguno de ellos divide a 3 (y, por consiguiente, tampoco
a ).

En particular (o) 4 (m) = 1, luego existen o/, & € K tales que aa’ = 1+E&m.
Cambiando a y 8 por aa’ y S se sigue cumpliendo que () +(m) = 1 (es decir,
a es primo con m luego (B también), pero ademds ahora o € 1+ (m) C Op,.
Maés atn (a) € I, (0,,) (pues su norma es prima con m).

Falta probar que también 3 € O,,. Por el teorema 3.27 podemos escribir
(@)a = ((8) N Om)b, lo que prueba que (a)a C b (vistos como ideales en O,).
Ahora la relacién aa = b muestra que b C b, es decir, que § es un coeficiente
de b, luego por 3.28 tenemos que § € O,, v, al igual que sucedia con «, también
(8) € In(Om).

Por 1ltimo, si v tiene norma positiva podemos exigir que o y 3 también la
tengan (cambidndolos si es preciso por aa y fa). [

Asi pues, tenemos que el grupo de clases de similitud no estricta de los
modulos cuyo anillo de coeficientes es el orden cuadratico O,, es isomorfo al
grupo de clases H(0,,) = I, (0)/P% (0,,). En particular su orden viene dado
por el teorema 4.17.

Maés ain, también podemos representar el grupo de clases de similitud es-
tricta de O,, como un grupo de clases de ideales del orden maximal. Basta
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definir
P (0m) = {(«01)(801)7" |, B € Pop(Om), N(a) >0, N(3) > 0}.

(Observemos que P,,(0,,) es simplemente el conjunto de los elementos de O,
de norma prima con m).

Hemos probado que el grupo de clases de similitud estricta es isomorfo a
15,(0)/ Py (O).

La biyeccion entre el grupo de clases estrictas y el conjunto de clases de
equivalencia estricta de formas determina en éste una estructura de grupo.
Gauss probé que esta estructura estd inducida por una operacién entre for-
mas cuadraticas que él describi6é y denominé composicion de formas. No vamos
a describir esta composicion, pero si es importante observar qué clase de formas
es el elemento neutro del grupo.

Teorema 6.13 Las formas asociadas a los drdenes cuadrdticos son las formas
principales.

DEMOSTRACION: Dado un entero libre de cuadrados d, los 6rdenes de
Q(\/E) son, segtn el teorema 2.24, los médulos O = (1, kw), donde w es Vd o
(1 + \/3)/2, segin el resto de d médulo 4.

Si d # 1 (méd 4) la forma asociada a Oy es N(z + kvV/dy) = 22 — k?dy?, 1a
forma principal de discriminante 4k2d.

Sid=1(méd4) y k = 2k es par entonces O = <1,k’\/a>, y la forma

asociada es, como antes la forma principal de discriminante k2d. Si k es impar

o2228)- 2225)

y en esta base

1+kvd 1—k%d
N<z+y%>—z2+wy+ v

que también es la forma principal de discriminante k2d. Observar que todas las
bases que hemos considerado estan orientadas. L]

Gauss llamé clase principal (estricta) de un discriminante dado D a la clase
de equivalencia (estricta) de la forma principal de discriminante D. Acabamos
de probar que los médulos asociados a las formas de la clase principal (estricta)
son exactamente los de la clase de similitud (estricta) del orden de discriminante
D. Por ello esta clase de similitud recibe también el nombre de clase principal
(estricta). En términos de ideales, la clase principal (estricta) estd formada por
los ideales principales (generados por elementos de norma positiva). Este es el
motivo por la que en la teoria general de anillos los ideales generados por un
solo elemento reciben el nombre de ‘ideales principales’.
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Terminamos esta seccién con unos breves comentarios sobre los grupos de
clases estrictas. Sabemos que éstos coinciden con los grupos de clases no estric-
tas en los 6rdenes de cuerpos imaginarios, por lo que podemos restringirnos a
cuerpos reales.

Si O es un orden cuadratico de discriminante D > 0, definimos —1 = [\/ﬁ}
Se trata de la clase estricta que contiene a todos los ideales principales de O
generados por nimeros de norma negativa. Si llamamos 1 = [D] a la clase
principal, tenemos que 1 = —1 si y sélo si la unidad fundamental de O tiene

norma negativa. En cualquier caso se cumple que (—1)? = [\/5]2 =[D]=1.

Ahora, si {[Mi],...,[M,]} es el grupo de clases no estrictas, eso significa que
todo médulo es similar a uno de los médulos My, ..., M}y, luego todo médulo
es estrictamente similar a uno de los médulos £My,...,£ M}, donde —M =

VDM, y el grupo de clases estrictas es {:E[Ml], el :I:[Mh]}.

Esto implica que el grupo de clases no estrictas es isomorfo al cociente del
grupo de clases estrictas sobre el subgrupo {£1}, ahora bien, es importante
dejar claro que la estructura del grupo de clases estrictas no se deduce de la es-
tructura del grupo de clases no estrictas. Por ejemplo, si sabemos que tres clases
no estrictas cumplen [M][N] = [R], no podemos concluir que esto siga siendo
cierto si interpretamos las clases como clases estrictas. Entonces tendremos
que [M][N] = [£R], pero el signo concreto tendra que ser verificado calculando
explicitamente el coeficiente que hace similar a R con M N. En términos de
la teoria de grupos, no es cierto en general que el grupo de clases estrictas sea
producto directo de {£1} por un grupo isomorfo al de clases no estrictas.

6.4 Ecuaciones diofanticas cuadraticas

Consideremos una forma cuadrética completa primitiva f(x,y) de discrimi-
nante D y que factorice en el cuerpo Q(\/E ) Vamos a aplicar la teoria que he-
mos expuesto para determinar las soluciones enteras de la ecuacién f(x,y) = m.

Podemos suponer que m > 0y que f no es definida negativa, o de lo contrario
cambiamos el signo a los dos miembros y obtenemos una ecuacion equivalente.

Segin hemos visto, la forma admite una representacién del tipo

Fz,y) = w7

N(M)
donde (a, 3) es una base orientada del médulo M. Las soluciones (z,y) de la
ecuacion estdn en correspondencia biunivoca con los elementos £ = ax+ Gy € M
de norma m N(M).

Sea O el anillo de coeficientes de M. Sea C' la clase de equivalencia estricta
de M. La clase C esta univocamente determinada por f.

Si & € M tiene norma m N(M), entonces el médulo a = M~ cumple
aM = £0 C M, luego a C O, es decir, a es un ideal de O. Su norma es
N(a) = N()N(M)~! =m y se cumple a € C~1.
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Reciprocamente, si a es un ideal de © contenido en la clase C~! y de norma
m, existe un ¢ de norma positiva tal que a = EM ™!, luego € € aM C M y
N(¢) = mN(M).

Tenemos, pues, una correspondencia entre los elementos ¢ € M de norma
mN(M) y los ideales en C~! de norma m. Mas atn, si tenemos dos parejas
(€,a), (1,b), entonces a = EM ™!, b = M ~!, y por consiguiente a = £1)~1b,
N(&p~1) = 1. Consecuentemente a = b si y sélo si £~ es una unidad de O
(de norma positiva), si y sélo si € y 1 son asociados.

Diremos que dos soluciones (x,y) son asociadas si sus ndmeros correspon-
dientes son asociados en el sentido de 2.18. Resumimos en un teorema lo que
hemos obtenido:

Teorema 6.14 Sea O un orden cuadrdtico de discriminante D. Sea f una
forma cuadrdtica de discriminante D y sea C la clase de similitud estricta de
ideales de O asociada a f. FEntonces la ecuacion f(x,y) = m tiene solucion
entera, para un m > 0 si y solo si la clase C~' contiene ideales de norma m.

Ahora probaremos que es ficil encontrar los ideales de norma m. Nos faltard
un método para seleccionar los que estan en C~1, o sea, los que son estrictamente
similares a M ~! (o equivalentemente a M).

Sea a un ideal del orden O de norma m (con anillo de coeficientes O). Sea k el
menor nimero natural no nulo contenido en a. Entonces a = (k, kv) =k (1,7).
El nimero «y esta determinado salvo signo y adicién de enteros racionales. Serd
tinico si lo elegimos de forma que v = x+yv/d cony > 0, —1/2 < z < 1/2. Con
la notacién de 6.2 se cumple v = (fb + \/5)/2@ con —a <b<a.

Puesto que O = (1,av) y a C O, concluimos que a | k, o sea, k = as para un
entero racional s > 0.

Por otro lado m = N(a) = k?(1/a) = as® y tenemos a = as (1,7).

Vamos a probar que la representacién a = as (1,7) es unica si exigimos que
a, s y v cumplan las propiedades siguientes:

1. La parte imaginaria (o irracional) de v es positiva.

2. La parte racional de « estd en |—1/2,1/2].

2

3. m=as“, a, s > 0.

En efecto, si a/, s’, v determinan el mismo ideal a, o sea, si se cumple
as (1,7) = a’s’ (1,7'), entonces as = a’s’, pues ambos son el minimo natural
contenido en a (usando 1). De aqui que (1,7) = (1,~4') y por 1) y 2) v =~".

Por 3) y usando as = a’s’ deducimos que s = s, luego a = d’.

Ahora, dado m, tomemos a y s de modo que m = as? (hay un nimero finito
de posibilidades). Con ellos buscamos b y ¢ tales que b — 4ac = D, (a,b,c) = 1,
—a < b < a y construimos v = (—b + \/5)/2@.

Es claro que a = as (1,) es un ideal de norma m de su anillo de coeficientes
O = (1,a7), de discriminante D (sélo hay que notar que a C O). De este modo
los encontramos todos.



6.4. Ecuaciones diofanticas cuadraticas 147

En los 6rdenes maximales (o en érdenes cualesquiera cuando buscamos idea-
les de norma prima con el indice) es més facil plantear todas las factorizaciones
posibles en ideales primos y encontrar tales primos factorizando los primos ra-
cionales.

Después hemos de plantear la igualdad a = éM 1, descartar los ideales para
los que no hay solucién y encontrar los valores de £ cuando la hay. Esto es
precisamente lo que nos falta resolver.

Ejemplo Consideremos la ecuacién 17x2 + 32zy + 1432 = 9. Su discriminante
es D=72=4-9-2, luego esta asociada a un médulo del orden O3 de Q(\/ﬁ)

Para calcular este médulo factorizamos la forma cuadratica:

16 4+ 3v/2 16 — 3+/2
1722 + 322y + 14y% = (33 + —;77\/_ Z/) (x + T\/_y>

1
17

Por lo tanto podemos tomar M = <17, 16 + 3v2 >, de norma 17. Claramente

entonces
1 16 — 2+4/2
M= — <17, 16 — 3\/§> - <1, u> .

(172 + (16 + 3v2)y) (172 + (16 — 3v2)y).

17 17

Ahora buscamos todos los ideales de O3 de norma 9. Esto significa buscar los
nimeros (a, b, c) que cumplen 9 = as?, b?> — 4ac = 72, (a,b,c) =1, —a < b < a.

Las posibilidades para a son a = 1,9. Si a = 1 ha de ser b = —1,0. Vemos
que la ecuacién 1 — 4¢ = 72 es imposible, mientras que b = 0 da (1,0, —18).

Si a =9, de la ecuacién b?> — 36c = 72 se sigue 6 | b, luego b = 6k con
k2 —c=2,yk=-1,0,1.

En total obtenemos las soluciones (9, —6,—1), (9,0, —2), (9,6, —1).

Las soluciones halladas corresponden a los cuatro ideales

3<1,3\/§>, 9<17ﬂ%‘/§>, 9<1,g>.

Sabemos, pues, que las soluciones (z,y) de la ecuacién (salvo asociacién) se
corresponden con los nimeros

€=17c + (16 +3v2)y (6:2)

tales que a = £M !, donde a recorre los cuatro ideales que hemos obtenido.
Calcular los valores de ¢ presupone decidir si existen, es decir, presupone un
algoritmo para determinar si dos médulos (a y M ~! en este caso) son estricta-
mente similares.
En esta direccién probamos el teorema siguiente:
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Teorema 6.15 Los mddulos (1,7) y (1,7') (correspondientes a un mismo orden
cuadrdtico real) son similares si y sdlo siy y ' son equivalentes en el sentido
de 5.11.

DEMOSTRACION: Si existe un niimero £ tal que (1,v) = £ (1,+'), entonces
&Y = py+gq, £ = ry+ s, donde p, g, v, s son enteros racionales tales que
ps — qr = £1. Dividiendo ambas ecuaciones obtenemos

; Py +q
ry+s’

con ps —qr = *1.
Reciprocamente, si se cumple esto

(ry+s, py+q = (1,7).

1,7 =
<’7> ry+s ry+s

En el capitulo anterior vimos que dos niimeros reales son equivalentes si y s6lo
si sus fracciones continuas son finalmente iguales, lo que resuelve completamente
el problema de la similitud de ideales y médulos de un cuerpo real. Notemos que
el teorema no nos dice si los médulos son estrictamente similares, pero esto se
comprueba calculando explicitamente el nimero que da la similitud (si no hay
unidades de norma negativa y éste tiene norma negativa, entonces los médulos
no son estrictamente similares). Lo ilustramos continuando con nuestro ejemplo:

Calculamos la unidad fundamental del orden O3 = 7Z [3\/5 ] Para ello desa-

rrollamos 3v/2 = [4,@] y la unidad fundamental resulta ser e = 17 4 12v/2,
de norma 1. Por lo tanto la similitud estricta no coincide con la no estricta.
Veamos ahora si los médulos 3 <1, 3\/§> y (1, 16*—3‘/§> son similares. Calcu-

7
lamos: 3
— 16 — 3v/2 _
3V2=4,4,8 — =10,1,2,4,8].
\/_ [ ) ) :|7 17 [ ) ) 9 ) ]

Como las fracciones son finalmente idénticas los nimeros son equivalentes,
concretamente, si llamamos o = [4,8] tenemos que 3v2 = [4,a] = 4+ 1/a
mientras

16 — 3v/2 1
16-3v2 _ 0,1,2,0] = ————.
17 1

1+
1
24 =
@

A partir de aqui se obtiene enseguida que

16 —3v2  3v2-2
17 3v2-1"

y el teorema anterior nos da entonces que

<1, 16 ;3ﬁ> -5 (13v2).
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luego 3<1,3\/§> = (9v/2 — 3)M~', pero el niimero ¢ = 9v/2 — 3 tiene norma
negativa, luego no da una solucién.

1+v2
3

_14v2
===

Consideramos ahora el ideal 9 <17 > En primer lugar calculamos

v 0,1,4,8].

De aqui se sigue facilmente que

16-3v2  y+1
17 2y+1

luego

9<1, ! +3\/§> =9 (2 ! +3\/§ + 1> M= (15+6V2)M .

El nimero ¢ = 15 4 6v/2 tiene norma 153, luego es vélido y, segin (6.2)
proporciona la solucién (—1,2).

Con el ideal 9 <1, 173\/§> llegamos a & = 21 — 121/2, también de norma 153

y que proporciona la solucién (5, —4). El ultimo ideal se descarta igual que el
primero.

Con esto concluimos que las soluciones de la ecuacién dada son de la forma
(Zn, yn), de modo que

(154 6v2) (17 +12v2)" = 172, + (16 + 3V2)yn,
o bien
(21— 12v2) (17 + 12v2)" = 172, + (16 + 3V2)yn,

para cada entero racional n.
Dado que los dos valores de £ que hemos hallado tienen la misma norma,
resulta razonable investigar su cociente. Es facil ver que

21 —12v2 = (3+2v2) (15 + 6v2).

El ndmero 3 + 2v/2 es una unidad, pero no del orden O3, por lo que las dos
soluciones que hemos hallado no son asociadas.

Si observamos que 17 4+ 12/2 = (3 +2v2 )2 resulta que podemos expresar
las soluciones de la ecuaciéon como

(154 6v2) (3+2v2)*" = 17, + (16 + 3v2 )y,

+(15 4 6v2) (3 +2v2)"" =172, + (16 +3v2)yn,

0 mas sencillamente,

£(15+6v2) (3+2v2)" = 172, + (16 + 3v2) s,
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Nos falta resolver el problema de la similitud de médulos en cuerpos imagina-
rios. Una forma sencilla de abordarlo es en términos de formas cuadraticas. Las
formas que nos interesan son las definidas positivas. Sea, pues, az? + bxy + cy?
una forma definida positiva. Esto significa que a,c >0y D = b? — 4ac < 0.

El cambio de variables x = 3’, y = —x’ intercambia los coeficientes a y ¢
mientras que cambia b por —b, luego nos permite pasar a una forma equivalente
en la que a < c.

Por otra parte, el cambio z = 2’ £ ¢/, y = ¢/ la convierte en

az? + (b=+ 2a)zy + (a £ b+ c)y?,

con lo que aplicando varias veces este cambio podemos pasar a una forma equi-
valente en la que || < a. Con ello podemos perder la condicién a < ¢, pero
podemos repetir el proceso nuevamente, y tras un nimero finito de pasos (puesto
que cada vez el valor de a se hace menor) llegamos a una forma equivalente a
la primera que cumple simultdneamente [b] < a < ¢. Mds atn, si b = —a el
segundo cambio nos permite hacer b = a sin cambiar ¢, y si a = ¢ entonces el
primer cambio nos permite obtener b > 0. La definicién y el teorema siguientes
recogen lo que hemos obtenido:

Definicién 6.16 Una forma cuadritica definida positiva ax? + bxy + cy? estd
reducida si cumple —a <b<a<cobien0<b<a=c

Teorema 6.17 Toda forma cuadrdtica definida positiva es estrictamente equi-
valente a una forma reducida.

Maés atn, tenemos un algoritmo para encontrar dicha forma. Observar que
las formas principales estdn reducidas. El teorema siguiente resuelve el problema
de la similitud de médulos en cuerpos imaginarios:

Teorema 6.18 Dos formas reducidas son estrictamente equivalentes si y solo
st son iguales.

DEMOSTRACION: Sea f(x,y) = ax? + bxy + cy? una forma reducida. Si
0 < |y| < |x| entonces

flz.y) az® — [bzy| + cy® = |z|(alz| — [by]) + c[y[?

|2*(a = [b]) + clyl* > a — |b| + <.

vV v

Se obtiene el mismo resultado si suponemos 0 < |z| < |y|.

Puesto que a — |b| + ¢ se alcanza en (1,£1), tenemos que esta cantidad es el
minimo de f sobre pares (z,y) donde = # 0, y # 0.

Si consideramos tan sélo pares (z,y) de enteros primos entre si, los tinicos
que falta por considerar aparte de los que tienen componentes no nulas son
(1,0) y (0,1), donde f toma los valores a y c¢. Por lo tanto, el conjunto de las
imdgenes que toma f sobre tales pares comienza con a <c<a—b|+¢,...

Es facil ver que un cambio de variables de determinante 1 biyecta los pares
de ntimeros enteros primos entre si, luego si dos formas cuadréticas reducidas de
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coeficientes (a,b,c) y (a’,b’,c’) son estrictamente equivalentes, ambas alcanzan
el mismo minimo sobre tales pares, es decir, a = a'.

Si a = b = ¢, entonces la primera forma toma el valor a al menos sobre tres
pares de enteros primos entre si. Si a = ¢ # b (y entonces ¢ < a—|b|+c¢) lo toma
s6lo dos veces y si a < ¢ lo toma solo una vez. Lo mismo le ocurre a la segunda
forma, luego si @ = b = ¢ tenemos que @’ = b’ = ¢’ y ambas son la misma forma,
sia=c#btenemos o’ = #b,ysia< centonces también o’ < ¢/, y en este
ultimo caso ¢ y ¢’ son ambos iguales al minimo valor distinto de a que toman
ambas formas sobre pares de enteros primos entre si. En cualquier caso tenemos
c=c.

Finalmente, si a = ¢ # b 0 bien a < ¢, concluimos por el mismo argumento
que también a — |b| + c=a' — |b/| + ¢, y as{ en cualquier caso b = +b'.

Vamos a probar que si b = —b’ entonces b = 0. En el caso a = ¢ es inmediato
por la definicién de forma reducida (serfa, b > 0, b’ > 0), luego suponemos a < c.
No puede ser b = a porque entonces b’ = —a’, en contra de la definicién

de forma reducida. Asi pues, —a < b < a < c¢. Llamemos f a la primera
forma y f’ a la segunda. Digamos que f(z,y) = f'(px + qy,rz + sy). Entonces
a = f(1,0) = f'(p,r), pero f’ sélo toma el valor a en (+1,0), luego p = +1 y
r =0. Como ps — qr = 1, ha de ser s = £1. Igualmente ¢ = f(0,1) = f/(q, s),
luego ¢ = 0. En definitiva, f(z,y) = f'(+z, ty), de donde b= = 0. n

De este modo, para comprobar si dos médulos son similares basta reducir sus
formas cuadréticas asociadas y ver si coinciden. En la seccién siguiente veremos
un ejemplo.

6.5 Calculo de grupos de clases

Las técnicas que acabamos de desarrollar nos permiten calcular facilmente
los grupos de clases cuadraticos. Veamos algunos casos:

Ejemplo Calculemos el grupo de clases no estrictas del orden maximal del
cuerpo Q(\/S_Q ) Como se trata de un orden maximal podemos aplicar el teo-
rema 4.14 y concluir que todo ideal es semejante a otro de norma a lo sumo 9.
Hemos de buscar todos los ideales de norma menor o igual que 9.

Buscaremos primero los ideales primos. Puesto que 22 — 82 = 2% (mdéd 2),
el teorema 3.16 nos da la factorizacién 2 = (2, /82 )2, luego hay un tinico ideal
de norma 2.

Por otra parte, 22 —82 =22 — 1 = (z + 1)(z — 1) (mdd 3), luego

3=(3,V82—-1)(3,V82+1)

y por lo tanto hay dos ideales de norma 3.

Para el 5 resulta que 22 — 82 = 22 — 2 (mdd 5) es irreducible, luego 5 es
primo y no hay ideales de norma 5. Lo mismo ocurre con el 7.

En total hemos encontrado los siguientes ideales primos:

p=(2,V82), q=(3,v82-1), t=(3,V82+1).
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Con ellos se forman los ideales siguientes de norma menor o igual que 9:

L p, p% P 9, ¢% v, Y pg, pr, g

Sin embargo sabemos que p? = 2 es principal, asi como qt = 3, luego la lista
de representantes de clases de similitud se reduce a

L p, g, ¢° v, v} pg, pr.

Para estudiar las relaciones de similitud entre ellos necesitamos conocer ba-
ses. El teorema 6.9 nos da que

p=<2,\/8_2> q=<3,1—\/8_2>, t=<3,1—|—\/8_2>.

(estos ideales estdn contenidos en p, q y t y tienen la misma norma).

Asi pues,
82 1—+/82 1 82
1:<1,\/8_2>, p=2 1,£ L q=3 1,7\/_ L t=3 1,i .
2 3 3
Los desarrollos en fracciéon continua son
V82 = [9,18],
2
@ = [4,1,1,8],
1—+82
T\/_ — [-3,3,5,1,2],
1 82
+—\/_ — [3’ 2.1, 5]
3
Vemos, pues, que ningiin par es similar. Estudiemos ahora g2, que es similar
a
) 1-v82 83-2v82\ ) 1—/382
o3 3 T 9 ’
Calculamos /&
1—+v82 -
T = [_1797171a8]7
luego [q%] = [p].

Podriamos seguir estudiando los ideales, pero las reglas elementales de la
teoria de grupos nos permiten acabar sin més calculos. En efecto, puesto que
[p] tiene orden 2 y [q]? = [p], concluimos que [q] tiene orden 4. Si eliminamos g2
de la lista de representantes nos quedan siete ideales, luego h < 7, pero como
hay una clase de orden 4 ha de ser 4 | h, lo que obliga a que h = 4. Sabemos que
las cuatro clases [1], [p], [q], [t] son distintas, luego [q]® = [t] y esto ya determina
el producto de cualquier par de clases. La unidad fundamental del orden tiene
norma negativa, luego el grupo de clases estrictas es el mismo. L]
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Ejemplo Calculamos el niimero de clases del cuerpo Q(\/ —17 ) Este coincide
con el nimero de formas reducidas de discriminante D = —56. Para hallarlas
todas notamos en general que —D = 4ac — b*> > 3ac, luego a, |b|,c < —D/3.
En este caso buscamos coeficientes menores o iguales que 18. Los unicos
valores posibles son (3,£2,5), (2,0,7), (1,0, 14), luego el nimero de clases es 4.

Ejemplo Vamos a calcular el grupo de clases asociado al orden maximal del
cuerpo Q(\/—161 )

En general conviene observar que si tenemos un ideal en la forma indicada
por el teorema 6.9, es decir, a = (a,u + mw), donde a, u son enteros racionales
y N(u + mw) = av, entonces la forma asociada es

N(az + (u + mw)y)

= az® + Tr(u + mw)zy + vy>.
a

Tenemos D = —644 y por el teorema 4.14 todo ideal es similar a uno de
norma menor o igual que 16. El comportamiento de los primos menores que 16
es el siguiente:

2=22 3=313;, 5=515y, 7T=75, 11 =11111,.

Los ideales de norma menor o igual que 16 son (eliminando los que obvia-
mente son similares):

1, 2, 31, 32, 51, D52, 2031, 2032, To, 33, 33, 2051,

2052, 11y, 11z, 2070, 3151, 3152, 3251, 3252.

El ideal 1 corresponde a la forma principal 22 + 161%2.
El ideal 2¢ = <2, 1+ \/—161> se corresponde con

N (Qx + (14 /=161 )y)/Q — 222 + 22y + 812,

que ya estd reducida. Como no es la forma principal, el ideal 2¢ no es principal.
El orden de la clase [2¢] es obviamente 2.

Consideremos los ideales 31 = <3, 1+ \/—161>, 39 = <3, -1+ \/—161>, cuyas
formas asociadas son, respectivamente, 322 4 2xy + 54y? y 322 — 2xy + 5492, que
ya estan reducidas. Como no son la forma principal, ninguno de estos ideales
es principal.

Vamos a calcular el orden de [31]. Se comprueba facilmente que

31 = (9,3 +3V/-161,-160 + 2vV—161) = (9,1 + v—161),

luego la forma asociada es 922 + 2zy + 1832, que ya esté reducida, por lo que el
ideal tampoco es principal.
Ahora 3} = (81,9 + 9v/—161, 160 + 2,/—161) = (81,1++/—161), y su

forma es 8122 + 2xy + 2y2, que se reduce a 222 + 2zy + 81y2. Esta es la forma
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asociada a 2, luego [31]* = [20]. Por lo tanto [31]® = [29]2 = 1 y el orden de
[31] resulta ser 8.

Como el nimero de clases es a lo sumo 20, en realidad ha de ser 8 o bien
16. Ahora bien, si estudiamos 79 = <7, \/—161> vemos que su forma asociada
es 722 + 23y2, distinta de la principal y de la asociada a [2y]. Por lo tanto [7]
es una clase de orden 2 que no es potencia de [3;] (la inica potencia de orden
2 es [20]). Por consiguiente el ntimero de clases es 16 y el grupo de clases estd
generado por [31] v [7o]. n

Ejercicio: Calcular la tabla del grupo de clases del ejemplo anterior.

Ejemplo Consideremos ahora K = Q(\/flél). Vamos a calcular los grupos
de clases de los 6rdenes Q7 y O3 de K, asi como el epimorfismo del primero en
el segundo. Puesto que la mayor parte de las comprobaciones son mecanicas,
nos limitaremos a exponer los resultados y esbozar como pueden obtenerse.

22 + 126y 1 1 22 + 1492

9% + 14y° (23,9 +3v—14) | (23,3 — /—14)

Tx? + 18y> (7, 3@) (7, 14) 222 + Ty?

2% 4 63y> (2,3v/-14) (2,v/—14 )

5a% —dzy + 26y* | (5,3+3vV—14) | (5,1++/—14) | 3a?+ 2zy + 5y?
102% — dzy + 13y* | (13,2 -3y/—14) | (13,5 — v/—14)

5a% 4+ day + 26y* | (5,3 —3v—14) | (5,1—+/—=14) | 3z* — 2zy + 5y?
102% + 4oy 4+ 13y? | (13,2 +3v=14) | (13,5 + /—14)

Es facil obtener todas las formas cuadraticas reducidas de discriminante
—4 - 14. Resultan ser las cuatro que aparecen en la ultima columna de la tabla.
Esto nos dice que el niimero de clases de Q(s/—14) es h = 4. El teorema 4.18
nos da entonces que el niimero de clases de O3 es hg = 8.

Seguidamente vamos factorizando primos. Consideremos el caso del 2:

o Claramente 2 = p2, donde p = (2, \/—14) = <2, \/—14>.

e La forma cuadratica asociada es 2x? + 7y?, que ya estd reducida, luego
situamos el ideal en la tercera columna, al lado de esta forma.

e Calculamos p N O3 = <2, 3\/714> y lo situamos en la segunda columna.

e (Calculamos la forma cuadratica asociada a este ideal, que ya estd reducida
y es 222 + 63y%. La situamos en la primera columna.

Nos saltamos el 3, pues no podemos bajarlo a O3. Repetimos el proceso con
el 5, el 7y el 13 (el 11 se conserva primo). Con ello completamos toda la tabla
salvo la segunda fila. Los primos siguientes nos dan formas ya calculadas en la
primera fila. Podemos seguir tanteando hasta encontrar el 23 o bien observar
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que necesitamos un ideal similar a 1, por lo que queremos un primo representable
por la forma 22 4 14y2. Entonces no es dificil pensar en 23.

Con esto hemos encontrado ocho ideales de O3 cuyas formas reducidas son
todas distintas, luego representan las ocho clases posibles. Cada uno se corres-
ponde con el ideal de O que esté a su lado en la tercera columna. Estos tiltimos
son similares por parejas y representan las cuatro clases de ideales de O;. =

Ejercicio: Comprobar que el grupo de clases de O; en el ejemplo anterior es ciclico
y estd generado por cualquiera de los divisores de 5. Asi mismo, el grupo de clases de
03 es de tipo Cy x (s, y dos generadores son un divisor de 5 y el divisor de 2.

Ejercicio: Comprobar que existen tres clases de equivalencia no estricta de formas
cuadraticas de discriminante —56.






Capitulo VII
Numeros p-adicos

En su trabajo sobre el dltimo teorema de Fermat, en un momento dado Kum-
mer se encontrd con una ecuacién entre enteros ciclotémicos donde las incégnitas
estaban en los exponentes. Si se hubiera tratado de una ecuacién ordinaria, lo
natural hubiera sido tomar logaritmos, de forma que se volviera lineal, pero esto
no tenia sentido en el caso que le ocupaba. Sin embargo Kummer encontré un
artificio de calculo que le dio un resultado similar. Bésicamente se trataba de
considerar las derivadas logaritmicas de ciertos polinomios minimos. En ésta y
otras ocasiones, Kummer habia estado rozando un concepto muy profundo. To-
dos sus céalculos se expresan de forma clara y natural en términos de los niimeros
p-adicos, descubiertos méas tarde por Kurt Hensel. A partir del trabajo de Hel-
mut Hasse, alumno de Hensel, los nimeros p-adicos se situaron en el nicleo de
la teoria algebraica de ntimeros del siglo X X. Nosotros no entraremos a explicar
el porqué de su importancia a niveles mas avanzados. Puesto que los vamos a
necesitar mas adelante para exponer razonablemente los resultados de Kummer
sobre el ultimo teorema de Fermat, los introducimos ahora y asi aprovechamos
la ocasién para dar un enfoque moderno y elegante de la parte de la teoria de
Gauss sobre formas cuadraticas que todavia nos queda por estudiar.

Los numeros p-adicos presentan caracteristicas comunes con los numeros
reales y los nimeros racionales. Trataremos de motivar su definicién mediante
un ejemplo. Consideremos la igualdad 22 = 2. No existe ningiin niimero racional
que cumpla esta ecuacién, pero podemos encontrar aproximaciones racionales
todo lo precisas que queramos:

Ahora fijjamos un ntmero primo, por ejemplo p = 7, y vamos a buscar
aproximaciones enteras “médulo 77. Las soluciones de 22 = 2 (méd 7) son
xo = +3. Quedémonos de momento con xg = 3. El cuadrado de 3 no es 2,
pero “se parece” a 2 en el sentido de que 9 y 2 son congruentes médulo 7.

157
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Obtendremos una aproximacién mejor si hacemos 2 = 2 (méd 7%). Puesto

que esta congruencia implica la anterior, una solucién ha de ser de la forma
x1 = 3+ Tt. Se ha de cumplir ademds que

(3+7)?% = 2 (méd 7?),
9+6-7t+7** = 2 (méd 7%),
7(14+6t) = 0 (méd 7%),
(1+6t) = 0 (méd 7)

t = 1(méd7).

Asi pues, z; = 3+ 1 -7 es una mejor aproximacién a v/2 médulo 7 en el
sentido de que su cuadrado es congruente con 2 médulo 7 y médulo 72.

El mismo razonamiento nos lleva a 22 =3 +1-7 4+ 2- 72, cuyo cuadrado es
congruente con 2 médulo 73. Las aproximaciones se pueden afinar tanto como
se quiera. Los términos siguientes son

341-7T4+2-746-74+1-T+2.7+1-742.744.78+...

Nuestra intencién es definir los ntmeros heptadicos de modo que esta serie
infinita sea uno de ellos, una raiz cuadrada de 2 heptddica, de modo que cada
suma parcial se parece a v/2 en el sentido de que sus cuadrados son congruentes
con 2 moédulo més potencias de 7 cada vez.

En términos topolédgicos, la idea subyacente es que queremos considerar
“préoximos” dos numeros enteros si su diferencia es divisible entre muchas po-
tencias de 7.

Ejercicio: Calcular los primeros términos de una serie de potencias de 7 similar a la
anterior y que converja a la otra raiz cuadrada de 2 heptadica, la que comienza por 4.

Para tratar estas ideas en el contexto adecuado debemos introducir algunos
conceptos basicos.

7.1 Valores absolutos

Definiciéon 7.1 Sea K un cuerpo. Un wvalor absoluto en K es una aplicacién
| |: K — [0,400[ que cumpla las propiedades siguientes:

1. || =0siysblosia=0,
2. |a+ ] <laf+ 5],
3. |ap| = |al|A].

Es obvio que el valor absoluto usual en @Q, R o C es un valor absoluto en el
sentido de la definicién anterior. En general, la restriccién de un valor absoluto
a un subcuerpo es un valor absoluto en dicho subcuerpo.

Por otro lado todo cuerpo K admite al menos un valor absoluto: el llamado
valor absoluto trivial, dado por

lalo = 0 sia=0
=11 sia#0

Veamos ahora los hechos y conceptos basicos en torno a los valores absolutos:
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Propiedades elementales Las propiedades 1) y 3) de la definicién 7.1 afir-
man que todo valor absoluto en un cuerpo K es un homomorfismo entre el
grupo multiplicativo K* de K y el grupo ]0,4oo[. En particular esto implica
que |1 =1y |a7! = |a|~!. Por lo tanto, |—1|*> = |(—1)?| = 1, luego |-1| = 1.
Mids en general, |-«| = |a|. El mismo argumento empleado en R con el valor
absoluto usual prueba en general que |a — 8| > ||a| — |8]|.

Ejercicio: Probar que un cuerpo finito no admite més valor absoluto que el trivial.

Cuerpos métricos Todo valor absoluto en un cuerpo induce en éste una
distancia (en el sentido topolégico) dada por d(«,8) = |a — B]. Un cuerpo
métrico es un par (K,7T), donde K es un cuerpo y T es una topologia en K
determinada por un valor absoluto.

Quiza el lector hubiera esperado que hubiéramos definido un cuerpo métrico
como un par formado por un cuerpo y un valor absoluto. Efectivamente, ésta
es la definicién que adoptan muchos textos, pero preferimos la que hemos dado
porque enfatiza un hecho importante, y es que todos los conceptos que vamos
a introducir dependen exclusivamente de la topologia, y no del valor absoluto
que la induce. Dado un cuerpo métrico K, llamaremos valores absolutos de K
a los valores absolutos que inducen la topologia de K.

Los mismos argumentos que se emplean en el caso de los nimeros reales
y complejos sirven para demostrar que la suma y el producto son aplicaciones
continuas en un cuerpo métrico, asi como cualquiera de sus valores absolutos,
los polinomios, la funcién 1/x (salvo en 0), etc.

Equivalencia Diremos que dos valores absolutos en un mismo cuerpo K son
equivalentes si inducen la misma topologia en K. El teorema siguiente prueba
que dos valores absolutos equivalentes han de ser muy parecidos, lo que explica
por qué nunca necesitamos fijar un valor absoluto concreto.

Teorema 7.2 Sean | |1 y| |2 dos valores absolutos en un mismo cuerpo K.
Las afirmaciones siguientes son equivalentes:

1. ] |1yl |2 son equivalentes.

2. Para todo a € K, se cumple |a|; < 1 si y sdlo si |ala < 1.

3. Para todo o, B € K, se cumple |alr < |81 si y sdlo si |ala < |B2.
4. Existe un nimero real p > 0 tal que para todo o € K, |a|; = |alb.
DEMOSTRACION: 1) = 2), pues |a| < 1 equivale a que h;ILn a™ = 0.

2) = 3) es evidente. Para probar 3) = 1) observamos que el conjunto de
bolas abiertas

{B(e,[8]) | o, B € K, B # 0}

forman una base de K. En efecto, si K es trivial es inmediato, y si no lo es
existe un S € K no nulo con |§| < 1 (existe un elemento no nulo que cumple
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|B] # 1 y si es necesario tomamos su inverso), con lo que los radios |5"| son
arbitrariamente pequefios. La propiedad 3) implica entonces que las topologias
inducidas por los dos valores absolutos tienen una misma base.

4) = 2) es evidente. Sélo falta demostrar 4) a partir de las propiedades
anteriores.

Si ambos valores absolutos son el trivial no hay nada que probar. Supon-
gamos que el primero no es trivial, con lo que existe un a € K no nulo tal
que |a|; < 1. Sea (8 cualquier elemento no nulo de K que cumpla [5]; < 1.
Un par de ndmeros naturales (m,n) cumple |[a™|; < |3"|; si y sblo si cumple
|a™]2 < |8™]2. Pero |a™|; < |6™]1 equivale a |a|f* < |B|T, ¥ a su vez a que

1
oglajy _ n
log|Bli = m

Como lo mismo vale para | |3 concluimos que todo niimero racional r cumple

log |l log |al2
log |31 log |82’

La densidad de Q en R implica que los cocientes de logaritmos son iguales, luego
para todo # € K con |f|; < 1 se cumple

siysélosi 7>

_ loglaly _ log|Bh
log|ala  log|Bla’

donde p es una constante positiva, ya que |a|; < 1 implica que |a|z < 1. De
aqui se sigue que |3]; = |3]5 para todo 3 de K con |3|; < 1. Tomando inversos
también vale si |31 > 1, pero la equivalencia implica que si ||y = 1 también
|Bl2 = 1, luego también se cumple la igualdad. "

Es importante notar que la propiedad 4 del teorema anterior no afirma que
si| | es un valor absoluto en un cuerpo K y p > 0 entonces | | sea un valor
absoluto equivalente. Lo serd si de hecho es un valor absoluto, pero puede no
serlo. Las propiedades 1) y 3) de la definicién se cumplen sin duda, pero la 2)
puede fallar. A este respecto es ttil el resultado siguiente:

Teorema 7.3 Si| | es un valor absoluto en un cuerpo K y 0 < p < 1, entonces
| |? es un valor absoluto equivalente al dado.

DEMOSTRACION: La tnica propiedad no evidente es la desigualdad triangu-
lar, pero si |a] > |5] > 0, entonces

la+ 51

lal” [1+5/al? <ol (1+]5/al)”
< lof? (1+[8/al) <lal” (1+8/al’) =|al” +|8]".

A
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Isometrias e isomorfismos topolégicos Sean k y K dos cuerpos dotados
de sendos valores absolutos | |r y | |k. Una isometria de k en K respecto a
los valores absolutos indicados es un monomorfismo de cuerpos ¢ : k — K tal
que ‘¢(a)|K = |alk, para todo a € k.

Un isomorfismo topoldgico ¢ : k — K entre dos cuerpos métricos es una
aplicacion que es a la vez isomorfismo y homeomorfismo. Dejamos al lector la
prueba del teorema siguiente:

Teorema 7.4 Sea ¢ : k — K wun isomorfismo topoldgico entre dos cuerpos
métricos. Para cada valor absoluto de k existe un unico valor absoluto de K
de modo que ¢ es una isometria entre ambos. Esta correspondencia define una
biyeccion entre los valores absolutos de k y los de K.

La propiedad arquimediana Un principio béasico del cédlculo infinitesimal
es que si x e y son dos cantidades positivas existe un nimero natural n tal que
y < nx (o si se prefiere, tal que y/n < x). La primera referencia conocida de
esta propiedad data del siglo IV a.C. y se debe a Eudoxo. Sin embargo, hoy se
la conoce como propiedad arquimediana, por el uso sistemético que Arquimedes
hizo de ella en su trabajo. La propiedad arquimediana puede expresarse en
términos de valores absolutos arbitrarios:

Un valor absoluto | | en un cuerpo K es arquimediano si para todo a € K
no nulo y todo nimero real > 0 existe un niimero natural n tal que |na| > r.

La propiedad 4) del teorema 7.2 implica que un valor absoluto es arquime-
diano si y sélo si lo es cualquier otro equivalente a él. Por ello podemos decir que
un cuerpo métrico es arquimediano si lo es cualquiera de sus valores absolutos.

Puede probarse que los 1inicos cuerpos métricos arquimedianos son los sub-
cuerpos de C, por lo que la teoria que estamos desarrollando sélo aporta cosas
nuevas cuando se aplica a cuerpos no arquimedianos. Aparentemente la mera
propiedad — puramente negativa — de no ser arquimediano es muy débil. Sin
embargo el teorema siguiente prueba lo errénea que resulta dicha impresion.

Teorema 7.5 Sea K un cuerpo métrico y | | cualquiera de sus valores absolu-
tos. Las afirmaciones siguientes son equivalentes:

1. K no es arquimediano.
2. Para todo nimero natural n, se cumple |n| < 1.
3. Para todo o, 3 € K, se cumple |a + | < méx{|a|,|8|}.

4. Para todo nimero real p > 0 se cumple que | |? es un valor absoluto
(equivalente al dado).

DEMOSTRACION: 1) < 2) Si existe un ntmero natural n tal que |n| > 1
entonces, para todo a no nulo [n*a| = |n|*|a| toma valores arbitrariamente
grandes. Reciprocamente, si [n| < 1 para todo natural n, entonces |na| < |af
para todo n, luego K no es arquimediano.
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2) = 3) Para todo natural n se cumple

n

> (})akort] < X laltiar
k=0

k=0
(n+ 1) méx{|al, 5]}

la+ 6"

IN

Tomando rafces n-simas queda |a + b| < ¥/n + I méx{|a|,|B|}, y tomando
el limite en n obtenemos la desigualdad buscada.

3) = 2) es inmediato por induccién.

3) = 4) Sélo hay que probar que | |? cumple la desigualdad triangular, pero
es facil ver que si | | cumple 3) entonces | |? también cumple 3), asi como que
3) implica la desigualdad triangular.

4) = 3) Para cada p > 0, aplicando la desigualdad triangular de | |? tenemos

1 1 [
ja+ Bl = (Ja+B1)""" < (jal +1817) /" < 20 mix{|al, 18]},
y haciendo tender p a infinito obtenemos la desigualdad de 3). L]

La propiedad 2) del teorema anterior implica, entre otras cosas, que el
caricter arquimediano de un valor absoluto en un cuerpo K sélo depende de su
comportamiento sobre el cuerpo primo de K. En particular todo subcuerpo de
un cuerpo (no) arquimediano es (no) arquimediano. Por otra parte, la propie-
dad 3) — la desigualdad triangular fuerte — es la que confiere a los cuerpos no
arquimedianos sus propiedades més caracteristicas, como pronto veremos.

Ejercicio: Probar que todo valor absoluto en un cuerpo de caracteristica prima es no
arquimediano.

Ejercicio: Probar que si K es un cuerpo no arquimediano y o, € K, |a| # |0
entonces |a + §| = méx{\od7 \,8|}

Compleciones De acuerdo con la topologia general, una sucesién («;,) en un
cuerpo métrico es de Cauchy si para todo nimero real € > 0 existe un nimero
natural r tal que si m,n > r entonces |a,, — ay,| < €. Notar que por el apartado
4) del teorema 7.2 esta propiedad no depende del valor absoluto considerado.

Es facil ver que toda sucesion convergente es de Cauchy. Un cuerpo métrico
K es completo si todas sus sucesiones de Cauchy son convergentes. Es bien
sabido que R y C son cuerpos métricos completos, mientras que Q no lo es.

Las sucesiones de Cauchy tienen una caracterizacion sencilla en los cuerpos
no arquimedianos:

Teorema 7.6 Una sucesion (o) en un cuerpo métrico no arquimediano es de
Cauchy si y sdlo si lim(a, — ap—1) = 0.
n
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DEMOSTRACION: Supongamos que la sucesién cumple esta propiedad y sea
e > 0. Por definiciéon de limite existe un r > 0 tal que si n > r entonces
|, — an,1| < €. Si tomamos r < m < n, entonces

lon, — am| = |(O‘n —ap—1)+ 0+ (Qmy1 — amﬂ < méx oy — a1 <,
m<i<n

luego la sucesién es de Cauchy. El reciproco es claro. m

Como consecuencia inmediata:

o0
Teorema 7.7 En un cuerpo métrico completo no arquimediano, la serie Y, xp
n=1
es convergente si y solo st limz, = 0.
n

El resultado fundamental sobre completitud es el siguiente:

Teorema 7.8 Si k es un cuerpo mélrico, existe un cuerpo métrico completo
K tal que k es denso en K. Ademds K es unico salvo isomorfismo topoldgico,
es decir, si K y K' son cuerpos métricos completos que contienen a k como
conjunto denso, entonces existe un isomorfismo topoldgico de K en K' que deja
fijos a los elementos de k.

DEMOSTRACION: La prueba es formalmente idéntica a la conocida cons-
truccién de R mediante sucesiones de Cauchy. Por ello nos limitaremos a esbo-
zarla. Sea A el conjunto de todas las sucesiones de Cauchy de k. Claramente A
es un anillo con la suma y el producto definidos término a término. El conjunto
I formado por las sucesiones convergentes a 0 es un ideal de A (se comprueba
que las sucesiones de Cauchy estdn acotadas y de aqui que el producto de una
sucesién de Cauchy por una convergente a 0 converge a 0).

Sea K el anillo cociente A/I. Se cumple que K es un cuerpo, pues si [z,] € K
no es nulo, entonces la sucesién (x,,) no converge a 0. Mds atn, no tiene a 0 como
punto de acumulacién, pues una sucesién de Cauchy converge a cualquiera de sus
puntos de acumulacién. En particular, (x,) es finalmente no nula, y modificando
sus primeros términos podemos tomar otra equivalente (congruente médulo I)
de modo que todos sus términos sean no nulos. Entonces [1/x,] es la inversa de
[zn] (se comprueba facilmente que la sucesién (1/z,) es de Cauchy).

Si [z,] € K, se comprueba que la sucesién |z,| es una sucesién de Cauchy
en R, luego converge a un ntimero Han que depende exclusivamente de la clase
de equivalencia y no del representante. Es inmediato comprobar que esto define
un valor absoluto en K.

La aplicacién que a cada x € k le asigna la clase [(z)] € K (la clase de la
sucesién constantemente igual a z) es claramente un monomorfismo de cuerpos.
Si identificamos a k con su imagen, es claro que k es un subcuerpo de K y que
el valor absoluto que hemos definido en K extiende al dado en k.

Ahora, si [z,] € K, la sucesién (z,), considerada como sucesién en K,
converge precisamente a [z,]. En efecto, dado € > 0, existe un natural r tal
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que si m,n > r entonces |z, — T,| < €, luego h’rrln\xn — | < ¢, luego por

|[2n] — Zm| < €, para todo m > r, luego la sucesién (z,,) converge a [x,].

la definicién del valor absoluto de K tenemos que |[(#n — Zm)n]| < €, o sea,

Esto implica que k es denso en K. Ademds K es completo, pues dada una
sucesién de Cauchy (y,) en K, para cada n existe un elemento z,, € k tal
que |y, — z,| < 1/n, de donde se sigue facilmente que la sucesién (z,,) es de
Cauchy en k, luego converge a un z € K. Es inmediato que = es un punto de
acumulacién de (y, ), luego (y,) es convergente.

Falta probar la unicidad. Si K y K’ son dos cuerpos completos que contienen
a k como conjunto denso, entonces cada x € K es el limite de una sucesién (z,,)
en k, que serd de Cauchy en K’, luego convergerd a un elemento ¢(x) € K’
independiente de la sucesion elegida.

Esto define una aplicacién ¢ : K — K’ y se comprueba sin dificultad que
se trata de una isometria que fija a los elementos de k. L]

El cuerpo métrico K construido en el teorema anterior se llama complecion
del cuerpo k. Hemos probado que cada valor absoluto se k se extiende a su
complecién (de forma dnica por densidad).

Por ejemplo, R es la compleciéon de Q respecto al valor absoluto usual.

7.2 Cuerpos métricos discretos

Retomemos las ideas con las que comenzabamos el capitulo. Nuestra in-
tencion es definir un valor absoluto sobre los nimeros racionales de forma que
dos nimeros enteros estén préximos si su diferencia es divisible muchas veces
entre un primo prefijado p. Més en general:

Definicién 7.9 Sea K un cuerpo numérico y O su orden maximal. Sea p un
ideal primo de O. Para cada o € O definimos el valor p-ddico de o como el
exponente de p en la factorizacién ideal de . Lo representaremos por v, ().
Todo elemento no nulo de K se expresa como cociente de enteros, v = a/f.
Definimos su valor p-adico como v,(y) = vp(a) — vp(8). Es claro que esta
definicién depende sélo de v y no de su representacién como fraccién.

De este modo tenemos definida una aplicacién de K* = K \ {0} en Z.
Conviene recoger sus propiedades bésicas en una definiciéon general:

Definicién 7.10 Una valoracion es una aplicacién v : K \ {0} — Z, donde K
es un cuerpo, tal que:

1. v es suprayectiva,
2. v(af) = v(a) +v(B), para a, f € K \ {0}
3. v(a+ B) > min{v(a),v(d)}, para a, 8 € K \ {0}, a # — .
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Es facil comprobar que las valoraciones p-adicas que hemos definido antes
cumplen realmente estas propiedades. Las propiedades 2) y 3) se comprueban
primero sobre enteros y después sobre nimeros arbitrarios. Para 1) considera-
mos un nimero 7 € p \ p?, de modo que v, () = 1. Entonces v, (7") = n.

Si v es una valoracién en un cuerpo K, conviene definir v(0) = +o0. Si
acordamos las identidades n + co = 400 + 00 = +00, entonces las propiedades
2) y 3) son vélidas para todo a,3 € K. Dejamos al lector la prueba de las
siguientes propiedades adicionales:

1. v(£1) =0,

2. v(—a) = v(a),

3. v(@/B) = v(a) — v(B),

4. Si v(a) # v(B) entonces v(a + B) = min{v(a), v(3)}.

En estos términos, queremos considerar que dos enteros algebraicos o y
[ estdn mds proximos respecto a un primo p cuanto mayor sea vp(a — ). Si
queremos reducir esta nocién de proximidad a un valor absoluto, éste debera ser
menor cuanto mayor sea vp,. Ademds tenemos que transformar las propiedades
aditivas de las valoraciones en las propiedades multiplicativas de los valores
absolutos. La forma de hacerlo es obvia:

Si v es una valoracién en un cuerpo K y 0 < p < 1, definimos |a| = p?(®)

(entendiendo que [0 = p*t> = 0). Es claro que | | asi definido es un valor abso-
luto no arquimediano en K. Distintos valores de p dan lugar a valores absolutos
equivalentes, por lo que cada valoraciéon dota a K de una unica estructura de
cuerpo métrico.

Ejercicio: Probar que si un valor absoluto estd determinado por una valoracién,
entonces todos los valores absolutos equivalentes estan definidos a partir de la misma
valoraciéon tomando distintos valores de p.

Un cuerpo métrico K es discreto si sus valores absolutos vienen inducidos por
una valoracién. En particular todo cuerpo métrico discreto es no arquimediano.

Ejercicio: Probar que un cuerpo métrico K no trivial es discreto si y sélo si la imagen
de K™ por uno cualquiera de sus valores absolutos es un subgrupo discreto de R*.

Ejercicio: Probar que los valores absolutos de un cuerpo métrico discreto estan
inducidos por una tunica valoracién (probar que p es necesariamente el mayor valor
absoluto menor que 1).

Notar que una valoracién puede ser recuperada a partir de uno cualquiera
de los valores absolutos que induce mediante la relacién v(a) = log|a|/ log p.
Puesto que —log : [0, +00[ — RU{+00} es una aplicacién continua, concluimos
que v : K — Z U {400} también es continua.

Sea k un cuerpo métrico discreto y K su complecién. Dado o € K \ {0},
existe una sucesion (,,) en k convergente a . Por continuidad (|, |) converge
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a |a| # 0. Por la continuidad del logaritmo concluimos que (v(ay)) ha de
converger a log|a|/logp, pero se trata de una sucesién de nimeros enteros,
luego el limite ha de ser entero. Asi pues, si definimos v(a) = log|al|/logp
tenemos una aplicacién continua v : K \ {0} — Z que extiende a la valoracién
de k. Es facil ver que se trata de una valoraciéon en K que induce los valores
absolutos de éste. Esto prueba que la complecién de un cuerpo métrico discreto
es discreta.

Como caso particular tenemos que cada ideal primo p en un cuerpo numérico
k dota a éste de una estructura de cuerpo métrico discreto. Representaremos
por | | a cualquiera de los valores absolutos inducidos por la valoracién p-adica
(v lo llamaremos valor absoluto p-ddico).

Definiciéon 7.11 Sea K un cuerpo numérico y p un ideal primo de K. Lla-
maremos cuerpo de los nimeros p-ddicos K, a la complecién de K respecto al
valor absoluto p-adico. Llamaremos también v, y | |, a las extensiones a K,
de la valoracion y el valor absoluto p-adicos.

Tenemos, pues, que K, es un cuerpo métrico discreto completo.
oo}
Ejercicio: Probar que la sucesién (p™) converge a 0 en Qp, y que »_ p" =1/(1 —p).

n=0

Las propiedades bésicas de las compleciones que acabamos de definir pueden
probarse en general sobre cuerpos métricos discretos: Sea K un cuerpo métrico
discreto y sea v su valoracién. Definimos

D = {aeK|v()>0t={acK || <1},
U = {aeK|v(a)=0}={aecK||af =1},
p = {aeK|v(a)>1}.

Es inmediato comprobar que D es un anillo, U su grupo de unidades y p un
ideal primo de D. Diremos que D es el anillo de enteros de K y que U es el
grupo de unidades de K.

Ejercicio: Probar que los conjuntos o + 8D, con o, € K, 8 # 0 son abiertos y
cerrados y forman una base de K.

Fijemos un elemento 7 € K tal que v(r) = 1. Para todo o € K no nulo, si
v(a) = n, entonces € = /7™ cumple v(e) = 1, luego @ = en™ y ¢ € U. Esta
descomposicion es tnica, pues si en™ = €7, entonces

n=uv(en™) =v(7™) = m,

y simplificando las potencias de 7 llegamos a que € = €.

En particular vemos que p = (7), con lo que 7 es primo, y la descomposicién
que acabamos de obtener (cuando « es entero) es de hecho una descomposicién
de a en factores primos. El teorema siguiente recoge todo lo que acabamos de
probar:
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Teorema 7.12 Sea K un cuerpo métrico discreto. Entonces su anillo de en-
teros D es un dominio de factorizacion unica. Sus primos son exactamente los
elementos ™ que cumplen v(w) = 1. Todos son asociados, por lo que p es el dnico
ideal primo de D, y estd generado por cualquiera de ellos. Fijado un primo ,
todo elemento no nulo de K se expresa de forma unica como a = en™, donde
e € U y, necesariamente, n = v(«). En particular K es el cuerpo de cocientes
de D.

En realidad el anillo de enteros de un cuerpo discreto es mucho més que un
dominio de factorizacion uinica. Es trivialmente un dominio euclideo, tomando
como norma la propia valoracién. Efectivamente, se cumple que v(«a) < v(af),
para « y [ no nulos, y dados A,§ € D con § # 0, la divisién euclidea es
simplemente A = §-0+ A si v(A) < v(d) o bien A = % d + 0 en caso contrario.

En particular todos los ideales de D son principales, y teniendo en cuenta la
estructura aritmética de D son féaciles de determinar:

Teorema 7.13 Sea K un cuerpo métrico discreto. Entonces su anillo de ente-
ros es un dominio euclideo, y sus ideales son exactamente

0c...cp®Pcp’cpcl

Ahora nos ocupamos mostrar la fuerte relacién entre la aritmética de un
cuerpo numérico y la de sus compleciones.

Teorema 7.14 Sea K un cuerpo numérico y p un primo de K. Sea O el anillo
de enteros de K y O, el de K. Sea p. el inico primo de Op,. Entonces:

1. Oy es la clausura de O.
2. p7 es la clausura de p™.
3. La aplicacion [a] — [a] determina un isomorfismo O/p™ = O, /p7.

DEMOSTRACION: 1) Como O C O, y O, es cerrado en K, tenemos que la
clausura de O estd contenida en O,.

Tomemos ahora a € O, y fijemos un nimero real 0 < ¢ < 1. Como K es
denso en K, existe un § € K tal que | — 3|, < €. Entonces

Bly =l + (8 = a)ly < méax{laly, |8 —alp} < 1.

Sea 3 = a/b, donde a,b € Q. Por el teorema 3.7 podemos exigir que p t b. Si
z € 0, la desigualdad |z — 5], < € equivale a que |bx — a|, < ¢, lo que a su vez
equivale a que bz = a (mdéd p™) para un n suficientemente grande. Puesto que b
es una unidad moédulo p, siempre podemos encontrar un z en estas condiciones,
luego en total

la — 2|, <méx{|a— 8, |8 -z} <e

Esto prueba que « esta en la clausura de O.
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2) Por el apartado anterior, todo elemento de O, es de la forma o = lim vy,
n
con o, € 0. Por la continuidad de la valoracién, v,(a) = limwy(cv,), luego
n
o € p? siy sélo si a,, € p” para todo n suficientemente grande.

3) Es claro que la aplicacién estd bien definida y es un homomorfismo. Ob-
servemos que o = 3 (méd p™) equivale a vy (o — ) > n, y lo mismo es vélido
para p., luego la aplicacién es inyectiva. Por tltimo el apartado 1) implica que
para todo o € O, existe un 3 € O tal que vp(a — ) > n, lo que se traduce
en que todo elemento de O, es congruente mddulo p} con un elemento de O, es
decir, que la aplicacién es suprayectiva. L]

Segun el teorema anterior, la congruencia de dos enteros de K médulo p? es
equivalente a la congruencia médulo p™. Por ello en lo sucesivo suprimiremos el
asterisco, y ya no distinguiremos entre p y p..

Ejercicio: Sea K un cuerpo numérico y p un ideal primo de K. Determinar la
clausura en K, de un ideal cualquiera de K.

Pasamos ahora a estudiar la topologia de los cuerpos discretos. En el caso
concreto de los cuerpos p-adicos, la finitud de los cuerpos de restos se traduce en
una propiedad de compacidad analoga a la de los niimeros reales y complejos.

Teorema 7.15 Sea K un cuerpo métrico discreto y completo, D su anillo de
enteros y p su ideal primo. Las afirmaciones siguientes son equivalentes:

1. El cuerpo de restos D/p es finito.
2. Un subconjunto de K es compacto si y sélo si es cerrado y acotado.

DEMOSTRACION: Supongamos que D/p es finito. Sea F un conjunto de
representantes de las clases de equivalencia. Sea 7 un primo en D, de modo
que p = (m). Basta probar que D es compacto, pues entonces lo serdn todas
las bolas cerradas y también todos los conjuntos cerrados y acotados. A su vez
basta ver que toda sucesién de enteros («;,) tiene una subsucesién convergente.

Tiene que haber infinitos términos de la sucesién congruentes médulo m con
un mismo x¢ € F. Sea, pues, (o) una subsucesién tal que para todo ntimero
natural n se cumpla o) = z¢ (méd 7). Digamos ol = zo + L7, con 8L € D.

Similarmente podemos tomar una subsucesién (a2) de (al) tal que los co-
rrespondientes 32 sean todos congruentes con un mismo r; € F médulo 7. De
este modo o? = xo + x17 + 32 w2

En general podemos ir obteniendo una sucesién de subsucesiones (¥ ) (cada
cual subsucesién de la anterior) de modo que
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Es claro que (') es una subsucesién de la sucesién de partida. Claramente
las sucesiones (z;7") y (B ™) convergen a 0, luego, teniendo en cuenta el
teorema anterior, existe

(o9}
s n __ 7
hylznan = g T,
=0

pues la serie es convergente y G 7™ tiende a 0.

Reciprocamente, si D/p es infinito, las clases de congruencia médulo p son
una particién de D (cerrado y acotado) en conjuntos abiertos, luego D no es
compacto. [

La propiedad 2) del teorema anterior es simplemente la compacidad local.
Hemos visto, pues, que un cuerpo métrico discreto completo es localmente com-
pacto si y sélo si su cuerpo de restos es finito.

En la prueba del teorema anterior esta contenida la mayor parte del resultado
siguiente:

Teorema 7.16 Sea K un cuerpo métrico discreto. Sea p su ideal primo y sea
F un conjunto de representantes de las clases modulo p tal que 0 € F. Sea w
un primo de K. Entonces todo elemento o € K no nulo se expresa de forma
inica como

o= anwn, (7.1)
n=k

donde x, € F, k € Z y xy #0. Ademds k = v(«). Si K es completo cada serie
de esta forma determina un elemento de K.

DEMOSTRACION: Sea k = v(a). Aplicamos el proceso de la prueba del teo-
rema anterior a la sucesién constante igual al entero 7—* o, con la particularidad
de que, al ser todos los términos iguales, no es necesario tomar subsucesiones ni
suponer que F es finito. El resultado es un desarrollo de tipo (7.1) para 7= % «
y multiplicando por 7% obtenemos otro para c.

Observar que si en (7.1) multiplicamos ambos miembros por 7~* obtenemos
una serie todos cuyos términos son enteros, luego el limite también (el anillo
de enteros de K es claramente cerrado). De hecho, el resto médulo p de dicho
limite es z # 0. Por lo tanto v(7 %a) = 0 y v(a) = k.

Si un mismo « admite dos desarrollos de tipo (7.1), ambos tendran el mismo
k=v(a):

7

T TR VAT La s ST SR

acmrk + xk+17rk+1 + Tpqom
Multiplicamos por 7~ y obtenemos una igualdad de enteros:
$k+$k+1ﬂ'+$k+2ﬂ'2+-~- :yk+yk+1ﬂ-+yk+2712+...

Claramente entonces xp = yi (méd 7), y como ambos estdn en F', necesaria-
mente xp = yi. Restando y dividiendo entre m queda

Th+1 + Tkt + 0 = Ypt1 + Y2 + -0
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Del mismo modo concluimos que zx+1 = yr+1, € inductivamente llegamos a que
todos los coeficientes coinciden. La completitud de K implica la convergencia
de las series. ]

En particular, en las condiciones del teorema anterior, « es entero si y sélo
si k> 0. Sino es asi, a se descompone como

—1 e
o= E Tt + E 7",
n==k n=0

es decir, el su desarrollo en serie de potencias tiene una parte fraccionaria finita
y una parte entera infinita, al contrario que el desarrollo decimal de los nimeros
reales.

Ejercicio: Sea p un primo racional y considerar en el cuerpo Q, las representaciones
de la forma (7.1) con # = py 0 < z, < p. Probar que los nimeros naturales se
caracterizan por que sus desarrollos son finitos, los niimeros enteros tienen desarrollos
finalmente iguales a p — 1 y los niimeros racionales se corresponden con las series con
coeficientes finalmente periédicos

Ejercicio: Probar que si K es un cuerpo métrico discreto localmente compacto,
entonces todos los anillos de restos D/p™ son finitos.

Ahora ya podemos ver en la expresion
V2=3+4+1-T4+2-7246-T+1- 7 +2. 7 +1-7542.7 44.7 ...

un ejemplo tipico de nimero heptddico. .. supuesto que exista, es decir, no he-
mos garantizado que el proceso que nos va dando los coeficientes de la serie
pueda continuarse indefinidamente. Esto se sigue inmediatamente de un hecho
conocido sobre restos cuadraticos: un entero m es un resto cuadratico médulo
p", donde p es un primo impar, si y sélo si m es un resto cuadratico médulo p.
Esto puede probarse estudiando con detalle los grupos de unidades médulo p'.
Nosotros lo deduciremos de las propiedades de los niimeros p-adicos. Dedicamos
la seccién siguiente a esta clase de resultados de existencia.

7.3 Criterios de existencia de raices

Los teoremas siguientes garantizan en la existencia de raices de ciertos poli-
nomios en cuerpos métricos discretos y completos.

Teorema 7.17 Sea K un cuerpo métrico discreto completo. Sea D su anillo de
enteros y p su ideal primo. Sea F(x1,...,2,) € D]x1,...,25] y sean v1,...,Vn
enteros tales que para cierto i (1 <1i<mn)y cierto k > 0 se cumpla:

F(yi,.--y,7) = 0(mdd p2k+1)’
Fi/(th-n,’)/n) = O(méd pk)’
F{('Yl,...,’yn) §é 0 (méd pk‘+1)’
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donde F! representa la derivada parcial formal respecto a la indeterminada x;.
Entonces existen enteros 01, ...,0, tales que F(01,...,0,) = 0 y ademds para
cada j se cumple §; = v; (méd phtl).

DEMOSTRACION: Consideremos el polinomio

f(i]']) = F(7la sy Yi—1 Ty Vit - - - 7777,)

Basta encontrar un entero a tal que f(a) = 0y a = 7; (méd p*+1). Por
simplificar la notacién llamaremos v = ~;.

Vamos a construir una sucesién de enteros ag, a1, ..., todos congruentes
con v médulo p**! y de modo que f(a,,) = 0 (méd p2*+1+™) . Por hipétesis
podemos partir de oy = . Dados «y, ..., a,—1 en estas condiciones, tenemos
en particular que

Am—1 =7 (méd pk+1)a f(am—l) =0 (méd p2k,+m)-
Desarrollemos f(z) en potencias de & — vp—1:

f(l’) = ﬂO +51($ _Ofmfl) +ﬂ2(.’[ _am71)2 + -

donde los coeficientes [3; son enteros.

Ast, Bo = f(am—1) = m2*T™ A, para un cierto entero A y un primo 7, y
B = f'(am_1) = f'(7) (méd p**1), luego B = 7B para un cierto entero B no
divisible entre p.

Esta tltima condicién nos asegura que existe un entero C' de manera que
A+ BC =0 (méd p). Si hacemos a,, = a1 + 7™ tenemos ciertamente
que Qi = o = (méd pFHl) y ademds

f(am) = 7T2k+mA_|_ ﬂ,kB(ﬂ.kerO) + ﬂg(ﬂk+m0)2 4.
7T2k+m(A + BC) + ﬁg(ﬂk+m0)2 +...=0 (méd p2k+1+m),

puesto que para r > 2 se cumple que kr +mr > 2k + 1+ m.

Con esto queda justificada la existencia de la sucesién ag, a1, . . ., y de hecho,
segiin la construccién, am, = am,_1 + 7F"C, o sea, v(ay, — apm_1) > k +m,
luego por el teorema 7.6 resulta que existe « = lima,, € D. Puesto que la

m
sucesion (a, —v)/mF*t1 también estd contenida en D, su limite, (o —7)/7*+!,
es un entero, luego se cumple que o = v (méd pF+1).

Ademds por construccién v(f(am)) = 2k + 1 + m, luego lim f(ay,) = 0.

m
Como los polinomios son funciones continuas, f(a) = 0. m

A menudo nos bastard aplicar el caso particular k = 0, que enunciamos a

continuacion:

Teorema 7.18 Sea K un cuerpo métrico discreto completo. Sea D su anillo de

enteros y p su ideal primo. Sea F(x1,...,x,) € D][x1,...,2,] y s€an v1,...,Vn
enteros tales que para cierto i (1 <1i <n) se cumpla:
F(’Ylv'-wr}/n) = O(méd p)7

F/(vi,...,7) # 0 (méd p).
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Entonces existen enteros 01,...,0, tales que F(01,...,0,) = 0 y ademds para
cada j se cumple 0; = y; (mé6d p).

El teorema siguiente es menos practico, porque reduce la existencia de raices
de un polinomio en un cuerpo métrico discreto y completo a la solubilidad de
infinitas congruencias, pero muestra de la forma mas clara posible la relacion
entre existencia de raices y congruencias. Dejamos la prueba a cargo del lector.

Teorema 7.19 Sea K un cuerpo métrico discreto completo. Sea D su anillo

de enteros y p su ideal primo. Sea F(x1,...,x,) € D[x1,...,2,]. Entonces la
ecuacion F(x1,...,x,) = 0 tiene solucién en D si y sélo si las congruencias
F(z1,...,2,) =0 (méd p™) tienen solucion para todo m.

Notar que si F' es un polinomio ménico con una sola variable, la propiedad 3)
del teorema 3.9 nos da que la existencia de una raiz en D es de hecho equivalente
a la existencia de una raiz en K.

Por otro lado, el criterio de irreducibilidad de Eisenstein es aplicable a los
cuerpos métricos discretos, lo que nos da polinomios irreducibles de grado arbi-
trariamente grande. En particular la clausura algebraica de cualquiera de estos
cuerpos tiene grado infinito.

Ejercicio: Sea p un primo impar y ¢ un resto cuadratico médulo p. Probar que existe
V¢ € Qp. En particular ¢ es un resto cuadratico médulo p™ para todo m.

Ejercicio: Sea ¢ un nimero impar. Probar que v/c € Q2 si y s6lo si ¢ =1 (mdd 8).

Si p y g son primos impares, sea a un resto cuadratico médulo p y b un resto
no cuadrético médulo g. Tomamos ¢ = a (méd p), ¢ = b (mdd ¢), de modo que
c tiene raiz cuadrada en Q, pero no en Q;. Més en general:

Ejercicio: Sean p y ¢ dos ntimeros primos. Probar que los cuerpos Q, y Q4 no son
isomorfos.

Terminamos con un caso particular sobre existencia de raices de la unidad.
Teorema 7.20 El cuerpo Q, contiene una raiz de la unidad de orden p — 1.

DEMOSTRACION: Consideremos un entero racional ¢ no divisible entre p. La
sucesién {cP } converge en Z,, pues

P R (C(p—l)p" —1) = " (cd)(p"“) ~1) y pt @™

Esto prueba que " — P tiende a 0, luego ¢*" es de Cauchy y por lo tanto
convergente a un nimero ¢ € Zj,.

Ahora bien, en realidad hemos probado que ¢®~D?" — 1 tiende a 0, y por
otra parte esta sucesién converge a (P~ — 1, es decir, (P~ = 1.

Asf mismo " — ¢ converge a ( —cy p| P — ¢, 0 sea, v,(c?" —c) > 1. Por
continuidad v,({ —¢) > 1, o sea, { = ¢ (méd p).

Hemos probado que si 1 < ¢ < p — 1 existe un ¢ € Z, tal que rl=1y
¢ = ¢ (méd p). Por lo tanto hay al menos p — 1 raices p — 1-ésimas de la unidad
en Zp, luego tiene que haber raices primitivas. L]
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Ejercicio: Probar que si p es un primo impar el polinomio ciclotémico p-ésimo es
irreducible en Q.

7.4 Series en cuerpos no arquimedianos

Para terminar con las propiedades generales de los cuerpos no arquimedianos
dedicamos esta seccion al estudio de las series infinitas. El notable teorema 7.7
hace que éstas presenten un comportamiento especialmente simple, andlogo al
de las series absolutamente convergentes en R o en C. El teorema siguiente es
un buen ejemplo de ello.

Teorema 7.21 La convergencia y la suma de una serie en un cuerpo completo
no arquimediano no se altera si se reordenan sus términos.

DEMOSTRACION: Es claro que una sucesién de niimeros reales tiende a cero
si y solo si cualquier reordenacion suya tiende a cero. Por el teorema 7.7, una

(o)
serie Y a, es convergente si y sélo si (a,) tiende a 0, si y sélo si (|a,|) tiende
n=0
a 0, y esto no depende de la ordenacion.
o0

Supongamos ahora que Y. «, converge a S pero una reordenacién suya
n=0

> By converge a S’ # 5. Seae=|5 -5

n=0
Existe un k tal que si m > k entonces

ian—S
n=0

También podemos exigir que |a,| < € para n > k. Sea k' > k tal que
{ai,...,ar} C{PB1,..., 0k} Entonces

< €.

k' K’
S-S = ‘(S—Zﬁn) + (X6 -5)
n=0 n=0
k %
- ‘(S—Zan) ~R+ (Y 8.-95)]
n=0 n=0
donde R es la suma de los elementos de {f1, ..., 0} \ {oa,...,ar}, todos ellos

con valor absoluto menor que e.
La desigualdad triangular no arquimediana nos da que |[S — S| < ¢, en
contradiccién con la eleccién de e. Por lo tanto S = 5’. m

De aqui se sigue que (en los cuerpos completos no arquimedianos) podemos
definir series de la forma 3 «;, donde I es un conjunto numerable, sin especificar
iel
el orden de los sumandos. Bajo esta notacién se incluyen las sumas finitas.
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Observar que si la serie es convergente, para todo € > 0 existe un Fy C [

finito tal que para todo Fy C F C I finito se cumple | Y a; — > ;] < e. En
i€l i€F
efecto, basta tomar Fj de modo que |o;| < €¢/2 para i € I \ Fy, pues entonces
todas las sumas parciales de la serie Y. «a; = > «; — Y. «a; tienen valor
iEI\F i€l i€F
absoluto menor que €/2, luego el limite cumple | > a; — > ] < €/2 < e.
i€l i€F

De hecho esto es una caracterizacién de la convergencia que no depende de

ninguna ordenacién en particular.

También se cumple la asociatividad infinita:

Teorema 7.22 Sea (o;)icr una familia de elementos de un cuerpo completo

(o)
no arquimediano. Sea I = |J I, una divisién de I en partes disjuntas. Si
=0
o0
> «a; es convergente también lo son las series >, a; y Y. > i, y ademds
i€l i€l, n=04i€l,
o0
POLTEDDED PRI
iel n=04i€l,

DEMOSTRACION: Las series . a; son convergentes porque son finitas o
icl,

bien los sumandos (ordenados de algiin modo) forman una subsucesién de una
sucesion convergente a cero.

Dado € > 0, todos los ¢ salvo un ndmero finito cumplen que |o;| < e,
luego todas las series Y. «; salvo quizd un nimero finito de ellas cumplen que

i€l,

| > ;| < e (lo cumplen las sumas parciales y por continuidad el limite), lo que
icl,

o)

significa que el término general de la serie Y > «; tiende a 0, luego la serie
n=0:€1,

es convergente.

oo
Sea ahora e > 0. Existe un nimero natural ng tal que | Y. > «a;] <e.
n=no+1i€l,

Para cada n < ng existe un conjunto finito F,, C I,, tal que si F,, C F' C I,,,

entonces | > a; — Y. ;| <e.
iel, i€F,

Sea F' un conjunto finito que contenga a todos los F,, y de manera que

| > a; — 3 au| < e. Entonces

iel ieF
oo
DD = o
n=0i€l, i€l
no
< E oog ai)—F(E E ai—gai)—k(g ai—gai) < €.
n=no+1  i€l, n=0iecl, ieF ieF iel

Por lo tanto ambas sumas coinciden. n
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oo
Ejercicio: Probar que aunque las series Z iy Z Z «; converjan, la serie Z ;
=, n=0i€l, iel
no tiene por qué converger.
Ahora es claro el teorema del producto de series, es decir,
g Oézﬂj:(g ai)(E /Bj),
(i,5)EIXT iel jeJ

donde la serie de la izquierda converge si convergen las dos series de la derecha.
En efecto, la convergencia es obvia, y aplicando el teorema anterior,

> =Y (S-S (E) - (Se) (59)

(i,)€IxT iel jeJ iel iel

Definicién 7.23 Si A es un anillo, se llama A[[z]] al anillo de las series formales
de potencias sobre A, es decir, de las series de la forma

oo
g anx" a, € A.
n=0

Las operaciones en A[[z]] son

oo oo oo
Z anx” + Z [ — Z(an + bp)x”,
n=0 n=0 n=0

oo oo o0 n
(Z anx") (Z bnac”) Z (Z akbn,k)x”.
n=0 n=0 n=0 k=0
De este modo, si K es un cuerpo completo no arquimediano y dos series de
potencias convergen en un x € K, entonces las series suma y producto en K[[z]]
convergen a la suma y el producto de los limites respectivamente. Es conocido

que lo mismo es cierto para K = C.

Ejercicio: Probar que una serie de potencias en un cuerpo completo no arquimediano
K converge en todo K, o bien en un disco |z| < 7 o bien sélo en 0.

Ejercicio: Sea K un cuerpo y K((z)) el cuerpo de cocientes de K|[[z]]. Para cada

serie formal de potencias no nula s = > anz"”, sea v(s) el minimo n tal que a, # 0.
n=0

Probar que v se extiende a una valoracién en K ((z)) con la que éste se convierte en

un cuerpo métrico discreto completo cuyo anillo de enteros es K[[z]]. Probar que todo

[eS]

s € K((x)) no nulo se expresa de forma tinica como s = Y, anz™, con m € Z, a, € K

n=m
y am # 0, donde la serie ha de entenderse como limite en K ((z)) de la sucesién de
sumas parciales. Ademds entonces v(s) = m.

Podemos definir como sigue una sustitucién en A[[z]]: Sean dos series

f@) = aa” v g@) =3 bua",
n=0 n=1

la segunda sin término independiente.
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e}
Para cada natural n sea a, g(z)" = Y. c,xz". Entonces definimos
k=n

ook
(go f)lx) =ao+ Z Z Crp.

k=1n=1

Si f y g son series de C[[z]] de modo que g no tiene término independiente,
g converge en un disco de centro 0 y f converge en la imagen por g de dicho
disco, entonces g o f converge en el disco a la composicion de g y f. En efecto,

la serie
oo o0
k
ap + Cnk®

n=1k=n

converge a g o f en un entorno de 0, su derivada r-ésima es

i i C"kk(k_l)"'(k—r—kl)xk*”’

n=1 k=méax{n,r}

y en 0 queda
-
7! Z Cnr
n=1

luego su serie de Taylor es la que hemos definido como g o f. Ahora vamos a
probar que el mismo resultado es valido en nuestro contexto.

Teorema 7.24 Sea K un cuerpo métrico discreto completo. Sean f y g dos
series de potencias en K tales que f(z) converja para v(z) > r, g(y) tenga
término independiente nulo, converja para un ciertoy € K y v(byny™) > r para
todo m > 1 (siendo by, el coeficiente m-simo de g). Entonces (go f)(y) converge

a f(9(y)).

DEMOSTRACION: Siguiendo la notacién que hemos empleado para definir
go f, consideremos la serie ) ¢;;47. Por definicién de ¢y, tenemos que

i,]
mo__ § t t,
CnmlY = anbtly R btny .
t1,.tn 21
ti+-+tp=m

Sea N = min{v(b,,y™)} > r. Entonces

v(Cpmy™) > Im'n{v(anb,glyt1 -~-btnyt")} > v(an) +nN.

Como N = v(xp) paraun 2oy f(zo) converge, resulta que v(a, )+nN = v(a,z{)
tiende a infinito, luego lo mismo le ocurre a v(c,my™) (uniformemente en m).
Esto significa que v(cpmy™) se hace arbitrariamente grande para todo n > ng

(o]
y todo m. Para los n < ng usamos que a, g(y)" = > Cumy™ converge, luego
m=n
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V(Crnmy™) tiende a infinito para cada n. En definitiva, existe un mq tal que si
n > ng o m > myg entonces v(cpmy™) es arbitrariamente grande. Esto garantiza
la convergencia de la serie doble

ook
(o Ny) =ao+ > > cary”

k=1n=1

y, como entonces podemos reordenar los sumandos, resulta que

(g )y Z Z Cnky” Z 2 (9W)" = Fa(v)-

n=0k=n

Ahora aplicamos los resultados que hemos obtenido al estudio de dos series
concretas muy importantes. Partamos de un cuerpo numérico K y p un ideal
primo de su anillo de enteros. Sea p el primo racional divisible entre p. Digamos
que p = p©a, para cierto ideal a primo con p. Es claro entonces que se cumple
la relacién v, (r) = ev,(r) para todo nimero racional r.

Vamos a estudiar el comportamiento de las series de potencias en K

o0 " e n+1
expx = E —, log(1 = E
n!
n=0 n=1

En primer lugar calcularemos su dominio de convergencia. Claramente

vp(n!) = E(n/p) + E(n/p*) + - -,

donde E denota la parte entera (observar que E(n/p') es el ntimero de miiltiplos
de p* menores que n), luego

en
p—1

vp(n!) = e(E(n/p) + E(n/p®) + ) <e(n/p+n/p’ +--) =

v (%T) = nuy(z) — vp(n)) > n <vp(x) - pi 1) .

Si vy (z) > e/(p — 1), entonces vy (z"/n!) tiende a infinito y expz converge.
Por el contrario, si vy(z) < e/(p—1), para n = p™ tenemos

con lo que

" n—1
i (%) = o) - e D) = apla) e

n! p—1
() e + e < e
= n| vpl\xr) —
P p—1) p—-1-"p-1

luego el término general de exp x no converge a 0 y la serie diverge.
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Concluimos que la serie exp & converge exactamente en p”, siendo

n—E<L>+1.
p—1

La férmula del producto de series nos da sin dificultad que para todo par de
elementos de p™ se cumple exp(z + y) = expzexpy.

Nos ocupamos ahora del logaritmo. Si vp(x) < 0 es claro que el término
general de log(1 + x) no converge a 0. Si vp(x) > 1 entonces para cada natural
n = p*m se cumple que p* < ny vy(n) = ea < e(logn/logp). Por lo tanto

mn

Up (;) = nvp(x) — vp(n) = nvp(z) —e

logn
logp’

y la expresién de la derecha tiende a infinito con n, lo que significa que el término
general de log(1 + z) tiende a 0 y en consecuencia la serie converge.

La conclusién es que log(1 + z) converge exactamente cuando vy (z) > 1 o,
lo que es lo mismo, log x estd definido en 1 4 p. Probemos que si €1,e5 € 1 + p,
entonces log e1eo = loge; + log €s.

En efecto, sea € = 14, e = 1 +y. Supongamos que v,(y) > vp(z), de
modo que y = tz, con vy(t) > 0 (suponemos x # 0, pues en caso contrario el
resultado es trivial).

Vamos a considerar paralelamente el caso en que t y x son niimeros complejos
de moédulo menor que 1. En cualquier caso se cumple

A+2)1+y) =1+ t+ Dz +ta?

Consideramos (t + 1)z + tz? como una serie de potencias en x. Puesto que
vp(x) > 1, el teorema 7.24 nos da que

oo
logejes = Z cr(t)zh,
k=1

donde ¢ (t) es un cierto polinomio en ¢ con coeficientes racionales. Esto también
es cierto (con el mismo polinomio) en el caso complejo.
También en ambos casos se cumple
0 71)k+1
log €1 +loges =log(1l + x) + log(l + tx) = Z (T(l + tF) 2.
k=1

Pero en el caso complejo sabemos que ambas series son iguales, luego
(_1)k+1
k

para todo ndmero complejo ¢ tal que |t| < 1, pero esto implica que ambos
polinomios son idénticos, luego la igualdad es cierta también cuando t estd en
K, y de aqui se sigue la igualdad de las series en este caso tltimo caso.

Con esto hemos demostrado el teorema siguiente:

cr(t) = (147
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Teorema 7.25 Sea K un cuerpo métrico discreto completo de caracteristica 0.
Supongamos que v(r) = evy(r) para todo nimero racional r y sea

N—E(L)H.
p—1

exp: p” — K, logzler*>K;r

Entonces las funciones

son homomorfismos de grupos.

En general no es cierto que estas funciones sean una la inversa de la otra.
No obstante si es cierto cuando restringimos el logaritmo a un dominio menor.

Teorema 7.26 En las condiciones del teorema anterior, exp : p* — 1+ p~ es
un isomorfismo y su inversa es log : 1+ p* — p~.

DEMOSTRACION: En primer lugar demostraremos que exp : p* — 1+p~ y
log : 14+p" — p”. Sil4+ax € 1+p” entonces vp(x) > k. Enelcasol <n <p—1
se cumple v, (2" /n) > nk > k, mientras que si 2 < p < n tenemos

n -1 log p

_ e(n—1) (logp logn >0
logp \p—1 n-1)77

”v(ﬁ>—“ > (n—l)n—vp(n)>(n—1)pe o logn

(usando que la funcién logt¢/(t — 1) es monétona decreciente para ¢t > 2).
Asi, todos los términos de la serie log(1+x) cumplen v, (2™ /n) > &, y por la
continuidad de v, podemos concluir que v, (log(l—i—x)) > Kk, o sea, log(l+z) € A.
Sea ahora z € A. Hemos de probar que vp(2™/n!) > k para n > 1. Sea
p* <n<ptl Asi

vp(a"/nl) =k > (n—1)k—e(E(n/p)+ E(n/p?) + -+ E(n/p%))
(n—1e enp®—1 <
p—1 p° p—1 "~

> 0.

Para probar que las dos aplicaciones son mutuamente inversas tomamos
x € Ay consideramos logexpx = log(l + (expzx — 1)) La serie expz — 1
tiene término independiente nulo y los razonamientos anteriores muestran que
podemos aplicar el teorema 7.24, con lo que logexp x es la serie de potencias
que resulta de componer las series de ambas funciones.

Pero lo mismo es valido para las funciones complejas, y en este caso se cumple
que logexpx = z, es decir, la composicion formal de las series de potencias es
simplemente la serie z, por lo que logexpxz = x para todo z € A. Igualmente
se razona con la composicién en sentido inverso. [

Para el caso concreto de los ntimeros p-adicos, donde p es un primo impar,
se cumple k = 1. Observar que los nimeros de la forma 1+ x tales que p | = son
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exactamente las unidades p-adicas congruentes con 1 médulo p. A estas unidades
se las llama unidades principales de Q,. Asi pues, las funciones exponencial y
logaritmica p-adicas son isomorfismos entre el grupo aditivo de los enteros p-
adicos multiplos de p y el grupo multiplicativo de las unidades principales. Si
p = 2 se cumple Kk = 2, y en efecto el logaritmo no es biyectivo en todo su
dominio: log1 =log(—1) = 0.



Capitulo VIII

El teorema de
Hasse-Minkowski

En este capitulo probaremos el teorema de Hasse-Minkowski, en el cual se
basara el tratamiento que daremos en el capitulo siguiente a la teoria de Gauss
sobre géneros de formas cuadraticas. Historicamente, este teorema fue la pri-
mera muestra relevante de la importancia de los nimeros p-adicos en la teoria
algebraica de nimeros. Para alcanzar nuestro objetivo conviene que exponga-
mos los hechos bésicos sobre formas cuadréticas en un cuerpo arbitrario K.

8.1 Formas cuadraticas

En todo lo que sigue se entenderd que K es un cuerpo, del que tan sélo
supondremos que su caracteristica es distinta de 2.

Definicién 8.1 Una forma cuadrdtica sobre K es un polinomio homogéneo de
grado 2, es decir, una suma de monomios de grado 2.

Por ejemplo: 3722 —2y2 + 622z — 122y + 5y2 es una forma cuadratica sobre Q con
tres variables. En el capitulo VI considerdabamos tan sélo formas cuadraticas
binarias sobre el anillo Z. Observar que la forma anterior puede escribirse como

327 — 2y + 022 — 6wy — 6yx + 3wz + 322 + (5/2)yz + (5/2) 2y

3 -6 3 T
=(z,y,2) | =6 -2 5/2 y |,
3 5/2 0 2

y en general toda forma cuadratica se puede expresar de la forma
flxe, .o m) = (21, .. zn) Az, . 2),

donde A es una matriz simétrica en K univocamente determinada por f.

181
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Se llama determinante de una forma f al determinante de la matriz A. Una
forma cuadratica es reqular si su determinante es distinto de 0. En caso contrario
se dice que la forma cuadratica es singular.

Diremos que una forma cuadratica f representa un elemento o € K si existe
un cierto X € K™ tal que f(X) = a. En este sentido, toda forma cuadrética
representa a 0. Es 1til convenir en que una forma cuadratica representa 0 en K
si y s6lo si se tiene f(X) = 0 para un cierto X # 0.

A la hora de estudiar si un elemento estd representado o no por una forma
cuadratica, resulta de gran ayuda el concepto de equivalencia de formas:

Dos formas cuadréticas f y g son equivalentes si una se obtiene de la otra a
partir de un cambio de variables lineal de determinante no nulo.

Es claro que dos formas cuadraticas equivalentes representan a los mismos
elementos de K.

En otras palabras, si f(X) = X AX?, las formas equivalentes a f son las que
se obtienen haciendo X = Y C, donde C' es una matriz cuadrada con determi-
nante no nulo, es decir, son las formas del tipo g(Y) = f(YC) = Y CAC'Y".
En resumen:

Dos formas cuadraticas f(X) = XAX?, g(X) = XBX?", son equivalentes si
y s6lo si existe una matriz regular C tal que B = CAC".

Observar que si A es una matriz simétrica, una matriz del tipo CAC" siempre
es simétrica. Notar también que si dos formas cuadréticas son equivalentes,
una es regular si y sélo si lo es la otra. En el capitulo VI exigiamos que la
matriz de cambio de variables tuviera determinante +1. Ello se debia a que
estabamos considerando formas cuadraticas sobre Z, y al definir la equivalencia
en un anillo hay que exigir que la matriz de cambio tenga inversa en el anillo.
Asi pues, al hablar de formas cuadréticas con coeficientes enteros habremos
de distinguir entre equivalencia entera y equivalencia racional. Obviamente la
primera implica la segunda.

Es claro que una condicién necesaria para que dos formas cuadraticas sean
equivalentes sobre un cuerpo K es que sus determinantes difieran en un factor
que sea un cuadrado en K.

Vamos a buscar en cada clase de equivalencia de formas un representante lo
mas sencillo posible. Para ello nos basaremos en el teorema siguiente.

Teorema 8.2 Si una forma cuadrdtica f(x1,...,x,) representa a un o # 0
entonces es equivalente a una forma del tipo ax? + g(z2,...,1,), donde g es
una forma cuadrdtica con n — 1 variables.

DEMOSTRACION: Sea A la matriz de f. Consideremos el espacio vectorial
K™y seav € K™ de manera que f(v) = a, o sea, vAv? = . Claramente v # 0.
Sea W = {w € K" | vAw' = 0}. Es fécil comprobar que se trata de un
subespacio vectorial de K™. Dado cualquier x € K™, la ecuacién vA(z—Av)t =0
tiene siempre solucién A = (vAz')/a, es decir, para este valor de A se cumple
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que w = x — Av € W, y asi hemos probado que todo z € K" se expresa como
r=w+w,con\e KyweW.

Asf pues, K™ = (v) + W, y obviamente la suma es directa, luego podemos
tomar una base de K™ de la forma vy,...,v, con v1 =v y va,...,v, € W.

Sea eq, ..., e, la base canénica de K™ y C' la matriz de cambio de base, es
decir, tal que para todo i se cumple v; = ¢;C.

La matriz B = CAC" determina una forma cuadrética g equivalente a la
dada. La primera fila de esta matriz es e;CAC? = vACY, y el coeficiente i-
ésimo de este vector es vACte! = vAv! = 0sii # 1 (pues entonces v; € W),
mientras que para i = 1 queda vAv? = a. En resumen, la primera fila de B es
(«,0,...,0). Lo mismo ocurre con la primera columna porque la matriz B es
simétrica.

Es claro entonces que la expresién explicita de g como g(X) = XBX?® no
contiene m4s monomios con 1 que ax?, luego g tiene la forma indicada en el
enunciado. m

Aplicando repetidas veces el teorema anterior obtenemos lo siguiente:

Teorema 8.3 Toda forma cuadrdtica f(x1,...,x,) es equivalente a otra del
tipo a1x? + -+ + 2.

A estas formas cuadraticas se les llama formas diagonales, pues son aque-
llas cuya matriz asociada es diagonal. Observar que el determinante de una
forma diagonal es el producto de sus coeficientes (de la diagonal), por lo que es
regular si y sélo si todos son no nulos. El teorema anterior simplifica muchas
demostraciones, por ejemplo la siguiente:

Teorema 8.4 Si una forma cuadrdtica regular representa 0 en un cuerpo K,
entonces representa a todos los elementos de K.

DEMOSTRACION: Puesto que las formas equivalentes representan a los mis-
mos elementos, podemos suponer que la dada es del tipo f = a123 +- -+, 22,
donde por ser regular todos los coeficientes son no nulos. Supongamos que

2 2
a1a] + -+ aga;, =0

es una representacién de 0 en K. Podemos suponer que a; # 0. Sea v cualquier
elemento de K. Tomemos un cierto ¢ € K que determinaremos después. Si
calculamos

flar(T41),a2(1 = t),...,a,(1 — 1))
=a1a? + -+ apa’ +t3(aad 4 -+ ana?)
+2a1a3t — 20003t — - - — 20,02t = 4aqa’t,

vemos que basta hacer t = v/4a;a? para que

f(al(l +1),a2(1 —t),...,an(1 7t)) =7
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De aqui deducimos que el problema de si una forma cuadratica regular re-
presenta a un elemento se puede reducir siempre al problema de si una forma
cuadratica representa 0. En efecto:

Teorema 8.5 Una forma cuadrdtica reqular f(x1,...,x,) representa un ele-
mento vy # 0 en un cuerpo K si y solo si la forma —yx2 + f(x1,...,x,) Tepre-
senta 0.

DEMOSTRACION: Es obvio que si f(ai,...,a,) = 7 para ciertos valores
(a1,...,a,), entonces —y1%2 + f(ay,...,a,) = 0 es una representacién de 0.

Supongamos ahora que —ya3 + f(ay, ..., a,) = 0, donde no todos los a; son
nulos. Si es ag # 0, entonces v = —f(a1/agp,...,an/ap). Si por el contrario
ap = 0 entonces tenemos que la forma f(z1,...,2,) representa 0 en K, luego
por el teorema anterior representa también a . L]

El comportamiento de las formas cuadréticas binarias (que son las que més
nos van a interesar) es especialmente simple. Los teoremas siguientes lo ponen
de manifiesto:

Teorema 8.6 Todas las formas cuadrdticas binarias requlares que representan
0 en un cuerpo K son equivalentes.

DEMOSTRACION: Si una forma f(z,y) representa 0, por el teorema 8.4
también representa a 1, luego por el teorema 8.2 la forma f es equivalente a una
forma del tipo 22 + a?, donde a # 0. Existen u,v € K tales que u? + av? =0
con u # 0 o v # 0, pero de hecho esto implica que ambos son no nulos. Asi,
a = —(u/v)?. Haciendo el cambio = 2/, y = (v/u)y’ llegamos a que f es
equivalente a la forma z? — y2. .

Teorema 8.7 Una forma cuadrdtica binaria reqular f con determinante d re-
presenta 0 en un cuerpo K st y solo si —d es un cuadrado en K.

DEMOSTRACION: Si f representa 0 entonces por el teorema anterior es equi-
valente a la forma 22 — y? de determinante —1, luego los determinantes d y —1
se diferencian en un factor que es un cuadrado en K.

Si el determinante de f (cambiado de signo) es un cuadrado en K, lo mismo
le sucede a los determinantes de todas las formas equivalentes. En particular f
es equivalente a una forma del tipo g(x,y) = az? + by?, donde —ab = a? # 0.

Entonces g(a, a) = —a?b + ba? = 0 es una representacién de 0. "

Teorema 8.8 Dos formas cuadrdticas binarias requlares de K son equivalentes
sty solo si sus determinantes difieren en un factor que es un cuadrado en K y
existe un elemento no nulo de K representado por ambas.

DEMOSTRACION: Las condiciones son claramente necesarias. Si tenemos dos
formas regulares que representan a un mismo elemento « # 0, entonces por el
teorema 8.2 son equivalentes respectivamente a las formas f(z,y) = az? + By2,
g(z,y) = ax? +~yy?. Como los determinantes a3 y ary difieren en un cuadrado,
8 = v62, luego el cambio de variables = 2/, y = §y/ transforma g en f, y por
lo tanto las formas son equivalentes. L]
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8.2 Formas cuadraticas sobre cuerpos p-adicos

Nuestro siguiente objetivo es estudiar las formas cuadréticas sobre los cuer-
pos p-adicos. Para estudiar las formas cuadraticas sobre un cuerpo K es im-
portante conocer sus cuadrados. El conjunto K*? = {2? | 2 € K \ {0}} es
claramente un subgrupo del grupo multiplicativo K* = K \ {0}.

Por ejemplo, en el caso del cuerpo C es claro que C*2 = C*, lo cual tiene como
consecuencia que todas las formas cuadréticas regulares (con el mismo nimero
de variables) son equivalentes. En efecto, toda forma regular es equivalente a

una del tipo
2.2

a%x% T+t anTy,
y haciendo el cambio y; = a;x;, resulta equivalente a la forma x? + --- + 22.
El caso de los nimeros reales también es sencillo. Aqui R*? = ]0, +o0],
y el grupo cociente R*/R*? tiene orden 2. Un conjunto de representantes de
las clases es 1. En términos méas simples, todo ntimero real no nulo es de la
forma +a?. El mismo razonamiento que en el caso complejo nos lleva ahora a
que toda forma cuadrética regular de n variables es equivalente a una del tipo
+a?+. .. +22. Asi pues, hay a lo sumo n + 1 clases de equivalencia de formas
regulares, segin el nimero de signos negativos que aparezcan. De hecho no es
dificil probar que hay exactamente n + 1 clases.

Nos interesa obtener resultados similares para los cuerpos p-addicos Q,. Lla-
maremos Zj, al anillo de los enteros p-adicos. Hemos de estudiar los grupos Q;z
asi como los cocientes Q5 / Q;Q.

La primera observacion es que los cuadrados p-adicos no nulos son de la
forma (ep™)? = €*p®", donde € es una unidad de Z, y n es un nimero entero.
Asi pues, caracterizar los cuadrados de Q,, equivale a caracterizar las unidades
de Z, que son cuadrados en Zj,. Por el criterio de irreducibilidad de Gauss un
entero p-adico es un cuadrado en Z, si y sélo si lo es en Q,,.

Si llamamos U, al grupo de las unidades de Z,, concluimos que estudiar el
grupo Q3? se reduce a estudiar el grupo U2. Cuando p es un primo impar la
situacién es la siguiente:

o0

Teorema 8.9 Sea p un primo impar. Entonces una unidad € = Y c,p"™ (con
n=0

0 <cn, <p) esun cuadrado si y sélo si cy es un resto cuadrdtico mddulo p.

DEMOSTRACION: Si € = 12, para una cierta unidad 7, entonces existe un
entero racional 0 < d < p tal que n = d (méd p) (d es el término independiente
del desarrollo de 7 en serie de potencias, y no es 0 porque 1 es una unidad).
Entonces ¢y = € = d? (méd p).

Reciprocamente, si ¢ = d? (méd p) para un cierto d (no divisible entre p),
consideremos el polinomio F(z) = 22 —e. Tenemos que F(d) = 0 (mdd p)
mientras que F'(d) = 2d # 0 (méd p). El teorema 7.18 nos da que existe un
n € Zyp tal que € = n?. [
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Definiciéon 8.10 Definimos el simbolo de Legendre extendido de una unidad
€ € Up respecto a un primo impar p como

¢ 1 siecU?
p) | -1 sie¢U?

El teorema anterior implica que este simbolo de Legendre extiende al usual.
De hecho (¢/p) depende sélo del resto de € médulo p (que con la notacién del
teorema es ¢p), de donde se concluye inmediatamente que sigue siendo multipli-
cativo.

El simbolo de Legendre (extendido) es un epimorfismo del grupo U, en el
grupo {+1} cuyo nicleo es precisamente Ug. Asi pues, |Up, : Ug| =2.

Teorema 8.11 Sip es un primo impar, entonces |Qy, : (@;2\ =4.

DEMOSTRACION: Sea ¢ una unidad que no sea un cuadrado. Entonces
Up/UZ = {[1],[e]}, luego toda unidad es de la forma n? o bien en®. Todo
elemento de Qj es de la forma n®p*"** o bien en’p*"**, con i = 0,1, luego
Q;/Q;2 = {[1],[€], [p], [pe] }. Es claro que estas cuatro clases son distintas. m

Ahora nos ocupamos del caso p = 2.

Teorema 8.12 Una unidad diddica € es un cuadrado en Qo si y sdlo si se
cumple que € =1 (mdd 8).

DEMOSTRACION: Si € = 1%, entonces 7 = 1 (méd 2) y por otro lado existe
un entero racional k tal que n = k (méd 8). Por la condicién anterior k es impar
y ademds € = k? (méd 8).

Es facil probar que el cuadrado de un nimero impar siempre es congruente
con 1 médulo 8 (basta verlo para 1, 3, 5, 7).

Supongamos ahora que ¢ = 1 (méd 8). Tomamos F(x) = 22 — ¢ y vemos que
F(1)=0(méd 8), F'(1) =2=0 (m6d 2) y F'(1) =2 #£ 0 (méd 4). El teorema
7.17 nos da que € es un cuadrado. n

Toda unidad diaddica € es congruente médulo 8 con un nimero impar, o sea,
con una de las unidades u = 1, 3, 5 0 7. Entonces eu™! =1 (mdd 8), luego es un
cuadrado. Asi pues toda unidad diddica es de la forma e = un?, donde u toma
uno de los cuatro valores citados. Esto significa que U /U3 = {[1], [3], [5],[7]} ¥
todas las clases son distintas, porque ningiin cociente entre ellas es congruente
con 1 médulo 8.

Teorema 8.13 Se cumple que |Q} : Q3] = 8.
DEMOSTRACION: Razonando como en el teorema 8.11 se llega a que

y a que las ocho clases son distintas. L]



8.2. Formas cuadraticas sobre cuerpos p-adicos 187

Ahora podemos razonar como hemos hecho antes con las formas cuadréticas
sobre R y sobre C (eliminando los cuadrados) hasta concluir que toda forma
cuadrética regular sobre Q, es equivalente a una de la forma ayz3 +- - + ap 22,
donde cada «; es una unidad de U, (o mds precisamente un miembro de un
conjunto fijo de representantes de las clases de congruencia de U,/ UPQ).

Agrupando las variables adecuadamente tenemos que toda forma cuadratica
regular es equivalente a una forma F' del tipo

F =Fy+pF = (e12] + - + 22) + plery127 1 + - + €,23), (8.1)

donde €4, ..., €, son unidades.

Para estudiar la representacién de cero por una forma F podemos suponer
r > n —r, pues pF es claramente equivalente a F} + pFy y las formas F' y pF,
aunque no son equivalentes, representan cero ambas o ninguna. Nuestro primer
resultado es el siguiente:

Teorema 8.14 Con la notacion anterior, sea p # 2, 0 < r < n. Entonces la
forma F' representa O en Q, si y sélo si lo hace una de las formas Fy o F}.

DEMOSTRACION: Una implicacién es obvia. Supongamos que F representa
0, es decir,

(107 + -+ €pal) + plerral g + -+ €pal) =0 (82)

para ciertos nimeros p-adicos aq,...,a, no todos nulos. Multiplicando por
la potencia de p adecuada podemos suponer que todos son enteros y que al
menos uno de ellos no es divisible entre p. Supongamos primeramente que entre
ai, ..., a, hay alguno no divisible entre p, digamos a;. Entonces

Folay,...,a,) =0 (méd p) y (Fo)ilai,...,a.) = 2€a; Z0 (mdd p).

Por el teorema 7.18 la forma F{y representa 0.

Si por el contrario aq, ..., a, son todos divisibles entre p, entonces podemos
sacar factor comin p en (8.2) y concluir que Fi(ar41,...,a,) = 0 (méd p),
donde alguno de los nimeros a,41,-..,a, no es divisible entre p. Razonando
como en el caso anterior concluimos ahora que F} representa 0. n

En realidad en la demostracién anterior no se ha usado la igualdad (8.2),
sino tan sélo la congruencia

(€107 + -+ €a2) + plepp1ar,, + -+ + €pa2) =0 (méd p?).
Teniendo esto en cuenta podemos afirmar lo siguiente:

Teorema 8.15 Con la notacion anterior, si p # 2, la forma F representa 0 en
Qp st y solo si la congruencia F = 0 (mdd p?) tiene una solucion en Zy, en la
que no todos los numeros sean divisibles entre p.



188 Capitulo 8. El teorema de Hasse-Minkowski

Por otra parte el teorema 8.14 reduce el problema de la representacién de
0 por una forma arbitraria a la representacién de 0 por una forma del tipo
f= elx% + -+ ermf, donde €1, ...,€,. son unidades p-ddicas (siempre con
p # 2). Ademds, aplicando el teorema 7.18 como lo hemos hecho en el teorema
8.14 obtenemos el criterio siguiente para este tipo de formas:

Teorema 8.16 Seaney, ..., €. unidades p-ddicas. Entonces la forma cuadrdtica
f=ex?+ - +e.22 representa 0 en Qy st y sdlo sila congruencia f =0 (mdd p)
tiene una solucion en la que no todos los niumeros son divisibles entre p.

Notar que todo entero p-adico es congruente con un entero racional médulo
p y médulo p?, luego las congruencias f = 0 (méd p) y F =0 (méd p?) pueden
reducirse a congruencias de formas con coeficientes enteros racionales, y pueden
resolverse en la practica porque las soluciones posibles forman un conjunto finito.
Ahora resolvemos el caso p = 2.

Teorema 8.17 Con la notacion anterior, para p = 2, la forma F representa
0 en Q2 si y sdlo si la congruencia F = 0 (méd 16) tiene una solucion donde
alguna de las variables toma valor impar.

DEMOSTRACION: De nuevo, una implicacién es obvia. Supongamos que
F(a1,...,a,) = 0 (méd 16) donde alguno de los enteros a; es impar. Si esto
sucede para ¢ < r, entonces tenemos que

F(ay,...,a,) =0 (mdd 8), F/(a1,...,a,) = 2¢a; 0 (mbd 4),

luego el teorema 7.17 nos da que F representa 0.
Si los nimeros ay,...,a, son todos pares, digamos a; = 2b;, entonces tene-
mos que

A(erh? + -+ €:b2) + 2(pp1a7 4, + -+ + €,a2) =0 (méd 16),
luego
2(erb? + -+ €:b2) + (erp102, + -+ €nal) = 0 (mdd 8),

y como en el caso anterior podemos concluir que la forma 2Fy + F; representa
0 en Qq, luego lo mismo le ocurre a la forma 4Fy + 2F;, que es equivalente a F'.
u

En la prueba anterior hemos obtenido el criterio siguiente:

Teorema 8.18 Con la notacion anterior, si F =0 (méd 8) tiene una solucion
en la que alguna variable x4, ..., x, toma valor impar, entonces F' representa 0

en Qs.

Ahora probamos un hecho elemental sobre congruencias del que sacaremos
muchas aplicaciones al tema que nos ocupa.

Teorema 8.19 Sean a, b, ¢ enteros racionales y p un primo impar. Entonces
la congruencia ax® + by? + cz? = 0 (méd p) tiene una solucién no trivial (es
decir, donde no todas las variables son mailtiplos de p).
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DEMOSTRACION: Si algiin coeficiente es nulo médulo p es evidente. En otro
caso podemos dividir entre uno de ellos y probar que la ecuacién ax? + by? = 22
tiene soluciones no nulas. Esto es lo mismo que probar que la forma az? + by?
representa a un cuadrado no nulo en Z/pZ. Como el nimero de no cuadrados
es (p—1)/2, basta probar que az?+ by? toma méas de (p—1)/2 valores no nulos,
pues entonces alguno de ellos serd un cuadrado. El niimero de valores no nulos
que toma esta forma (para a, b genéricos) es el mismo que el de los que toma la
forma 22 + ay? (para a genérico). Si a no es un cuadrado médulo p entonces la
forma 22 +ay? representa a todos los elementos de Z/pZ: los cuadrados haciendo
y = 0 y los no cuadrados haciendo = 0. Si a es un cuadrado, entonces la forma
22 + ay? representa a los (p — 1)/2 cuadrados (con y = 0) y basta probar que
también representa a algiin no cuadrado. Como ay? recorre todos los cuadrados,
basta probar que la suma de dos cuadrados (méd p) no siempre es un cuadrado
(méd p), pero esto es obvio, ya que todo elemento de Z/pZ se expresa como
suma de unos, y si la suma de cuadrados fuera siempre un cuadrado, todos los
elementos de Z/pZ serfan cuadrados. L]

Teorema 8.20 Toda forma cuadrdtica con cinco o mds variables representa 0
en cualquier cuerpo p-ddico.

DEMOSTRACION: Las formas singulares siempre representan 0, luego pode-
mos suponer que tenemos una forma regular del tipo Fy + pFy, segin (8.1), y
de acuerdo con la observacién posterior a (8.1) podemos suponer que r > n—r,
luego r > 3.

Supongamos primero p # 2. Basta probar que Fj representa 0, y por el
teorema 8.16 basta probar que la congruencia Fy = 0 (méd p) tiene una solucién
no trivial. La forma F es congruente (méd p) a otra del tipo ayz? + - - + a,22,
donde los a; son enteros racionales y r > 3. El teorema anterior nos da lo
pedido.

Suponemos ahora que p =2y 3 < r < n. Consideramos la forma

2 2 2 2
[ =ex] + e2x3 + €325 + 2¢,7;,.

Es claro que si f representa 0 lo mismo le ocurrird a F'. Al ser unidades, los
coeficientes son congruentes con 1 médulo 2, luego €1 + €3 = 2a para un cierto
entero diddico «. Entonces

€1 + €3 + 26,0% = 20 + 26,07 = 2a(1 + e,) =0 (méd 4),
y asi €1 + €3 + 2¢,0% = 43, donde 3 es un entero diddico. Entonces:
€1- 12+ ea- 12 4 €3+ (20)* + 2,02 = 48 + €3 - 487 = 43(1 + e36) = 0 (méd 8).

Por el teorema 8.18 resulta que f representa 0.

En el caso en que r = n > 5 tomamos f = elx% + egxg + 63{17% + 64$Z + 65:5%
y de nuevo basta probar que f representa 0.
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Los cinco coeficientes son congruentes con +1 (mdd 4) y, como hay cinco,
debe haber dos pares congruentes (méd 4), digamos

€1 =€ (m6d 4) y €3 =e4 (méd 4).

Entonces €1 + €2 = €3 + €4 = 2 (m6d 4), luego €1 + €2 + €3 + €4 = 4, donde
es un entero diddico. Tomando 1 = x92 = x3 = x4 = 1, x5 = 2 resulta que

f(mlva,Z'S; CC4,$5) = 47 + 654’72 = 47(1 + 657) =0 (méd 8)
y se concluye como en el caso anterior. L]

El teorema 8.5 nos da la siguiente consecuencia inmediata:

Teorema 8.21 Toda forma cuadrdtica reqular con cuatro o mds variables re-
presenta a todos los numeros p-ddicos no nulos.

Otra consecuencia importante del teorema 8.19 (junto con el teorema 8.16)
es la siguiente:

Teorema 8.22 Siey,..., €. son unidades p-ddicas con p # 2 yr > 3, entonces
la forma cuadrdtica €123 + - - + €22 representa 0 en Q,.

8.3 Formas binarias en cuerpos p-adicos

Ahora nos ocupamos de las formas cuadraticas binarias. El problema de si
una forma binaria regular representa un nimero p-adico dado se reduce, pasando
a una forma equivalente y dividiendo entre un coeficiente, a si una forma del
tipo 22 — ay? representa a un cierto ntimero p-adico, con a # 0. Llamemos
N, al conjunto de los ntimeros p-adicos no nulos representados por esta forma.
Teniendo en cuenta el teorema 8.5

BeN, < z2—ay’representa 3 < ax?+ fy? — 22 representa 0.

Observemos que si a no es un cuadrado en Q, entonces
? —ay® = (z —yva)(z+yva) =Nz +yVa),

donde N es la norma de la extensién Qp(\/a)/(@p, con lo que N, es la imagen
por la norma del grupo multiplicativo de Q, (\/a ) En particular es un subgrupo
de Q. Si por el contrario « es un cuadrado en Q, entonces la forma 2% — ay?
representa 0 y en consecuencia a todos los niimeros p-ddicos, por lo que N, = Q.
De hecho en este caso la extension Qp(\/a ) /Q, es trivial, y N, sigue siendo el
grupo de las normas no nulas de la extension.

Puesto que la forma 22 — ay? representa todos los cuadrados, tenemos las

inclusiones Q*? C N, C Q. Los teoremas 8.11 y 8.13 prueban que el indice
i P

|Q;, : Nof es finito. Ya hemos dicho que si @ es un cuadrado entonces N, = Q.

En el caso contrario tenemos:

Teorema 8.23 Si o € Q) no es un cuadrado, entonces |Q; i No| =2.
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DEMOSTRACION: Supongamos primero que p # 2. Veamos que N, # (@;2.
En efecto, como —a € N, esto es cierto si —a no es un cuadrado. Si lo es
entonces la forma 2% — ay2 es equivalente a %+ yQ, y por el teorema 8.5 esta
forma representa a toda unidad e (incluyendo a las que no son cuadrados), pues
seglin el teorema 8.22 la forma 22 + y? — €22 representa 0. Por lo tanto N,
contiene a todas las unidades y en consecuencia N, # Q;z.

Ahora probamos que N, # Q). Sea ¢ una unidad que no es un cuadrado.
Hemos de probar que la forma axz? + By? — 22 no representa a 0 para todo
valor de 3, ahora bien, si multiplicamos « por un cuadrado no nulo, la forma
resultante representa 0 en los mismos casos, luego podemos suponer que « es ¢,
p o pe (por la prueba del teorema 8.11). Ahora bien,sica =e¢y S=posia=p,
pe vy B =€, el teorema 8.14 implica que la forma az? 4+ By? — 22 no representa
0, luego en cualquier caso existe un 5 que no estd en Ng.

Puesto que |Qj : Q52| = 4, necesariamente |Q} : No| = 2.

Nos queda el caso en que p = 2. Ahora |Q} : Q52| = 8 y como representantes
de las clases podemos tomar 1, 3, 5, 7, 2, 6, 10, 14. Vamos a comprobar que
cuando « y 3 varfan en este conjunto de representantes la forma ax? + By% — 22
representa 0 en los casos indicados con un + en la tabla siguiente:

1|3|5|7]2]|6]|10]14
L[+ [+ [+ [+ [+ ]+
3+ + + +
5+ |+ +][+

e + - -
2 [+ + |+ +
6 |+ + + [+
10| + - + |+
U] +]+ ++

Una vez probado esto, la tabla indica que cuando o # 1, o sea, cuando «
no es un cuadrado perfecto, la forma ax? 4+ By% — 22 representa 0 para todos
los 8 que pertenecen a cuatro de las ocho clases posibles, luego |N,, : (Q);’;2| =4.
Puesto que |Qj : Q2| = 8 se concluye que |Q} : No| = 2.

Supongamos primero que a = 2¢, § = 27, donde ¢, n son unidades (1, 3, 5
0 7). Si se cumple que 2ex? + 2ny? — 22 = 0, podemos suponer que z, ¥, 2 Son
enteros p-adicos no todos pares. Claramente z es par, pero x e y son ambos
impares, pues si uno de ellos fuera par, digamos 3, entonces 2ex? serfa divisible
entre 4, luego x también seria par.

Haciendo z = 2t la ecuacién se reduce a ex? 4 ny? — 2t = 0. Tenemos, pues,
que la forma 2ex? + 2ny? — 22 representa 0 si y sélo si la forma ex? + ny? — 2t2
representa 0 (y entonces x e y pueden tomarse impares). Por el teorema 8.18
esto equivale a que la congruencia ex?+ny? —2t%> = 0 (méd 8) tenga solucién con
z e y impares. El cuadrado de un impar es siempre congruente con 1 (méd 8),
mientras que 2t? puede ser congruente con 0 o con 2 (méd 8). Consecuentemente
la congruencia tiene solucién si y sélo si € + 71 =2 (méd 8) o e +7n =0 (mdd 8).
Esto da los valores del cuadrante inferior derecho de la tabla.
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Ahora sea o = 2¢, f = 1. En la ecuacién 2ex? + ny? — 22 = 0 podemos
suponer que x, y, z son enteros p-adicos no todos pares. Pero de hecho y, z han
de ser ambos impares, pues si uno de ellos es par, digamos y, entonces 2 | z,
luego 4 | 2ex? luego los tres serfan pares.

Por el argumento anterior esto equivale a que 2ex? + ny? — 22 = 0 (méd 8)
tenga solucién con y, z impares, y a su vez a que 2¢ + 7 = 1 (méd 8) o bien
7 = 1 (mdd 8). Esto nos da el cuadrante superior derecho de la tabla y por
simetria el inferior izquierdo.

Finalmente sea o = ¢, 3 = 1. Ahora en ex? 4+ ny? — 22 = 0 se cumple que
entre x, y, z hay exactamente un par y dos impares.

Si z es par ez +ny? = e+n =0 (mdd 4), luego o bien € = 1 (méd 4) o bien
7 =1 (méd 4).

Si z es impar entonces ez +ny? = 1 (mdd 4), y como entre z, y hay un par
y un impar, llegamos otra vez a que € =1 (méd 4) o bien n =1 (mdéd 4).

Reciprocamente, si se cumple, digamos, € = 1 (mdd 4), entonces ha de ser
€ =1 (méd 8) o bien € = 5 (mdd 8). En el primer caso ex?+ny?—22 = 0 (méd 8)
tiene solucién (1,0,1), en el segundo (1,2,1). Esto implica que ex? + ny? — 22
representa 0. En resumen la condicién es e = 1 (méd 4) o n = 1 (méd 4), o sea,
e =5 0mn =25, lo que nos da el resto de la tabla. L]

Como consecuencia, si @ no es un cuadrado, el grupo cociente Q, /Ny es
isomorfo al grupo {£1}. Componiendo la proyeccién en el cociente con este
isomorfismo obtenemos un homomorfismo de Q en {£1} cuyo niicleo es exac-
tamente N,. Si « es un cuadrado entonces N, = Q; y dicho homomorfismo
también existe trivialmente. En definitiva estamos hablando que la aplicacién
que asigna a cada [ un signo +1 segun si § estd o no en N,. A este homomor-
fismo llegaron independientemente Hasse y Hilbert, el primero siguiendo méas o
menos nuestra linea de razonamientos en términos de representaciéon de niimeros
p-adicos por formas binarias, el segundo estudiando los grupos de normas de las
extensiones cuadraticas de los cuerpos p-adicos.

Definicion 8.24 Para cada par de ntimeros p-adicos no nulos a y 3 se define
el simbolo de Hilbert como

(a7ﬁ)p={ 1 sifBeN,

~1 sifé¢N,

Teniendo en cuenta la definicién de N, y el teorema 8.5, tenemos las equi-
valencias siguientes:

1. (a,8)p =1
2. 2% — ay?® representa a 3 en Q,,
3. az? + By* — 22 representa 0 en Q,

4. az? + By? representa 1 en Q,.
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Si sabemos calcular simbolos de Hilbert, estamos en condiciones de determi-
nar si cualquier forma cuadrédtica binaria representa o no a un numero p-adico
dado. El calculo del simbolo de Hilbert es muy sencillo a partir de las propie-
dades que recogemos en el teorema siguiente.

Teorema 8.25 Sea p un nimero primo, sean o, 3, o, 3 nimeros p-ddicos no
nulos y sean €, n unidades p-ddicas. Entonces

1. (o, B)p = (B, ).

2. (a, ﬂﬁl)p = (Oé, ﬂ)p(o‘7 ﬁ/)p; (OZO/, ﬂ)p = (Ol, ﬂ)P(O‘/v ﬂ)p

3. Si o 0 B es un cuadrado en Q, entonces (o, 3), = 1.

4. (a,—a)p =1, (a,0)p = (a,—1)p.

5. Sip# 2 entonces (p,€), = (¢/p) (stmbolo de Legendre), (¢,n), = 1.

6. (2,€)2 =1 si y sdlo sie==+1 (méd 8),
(e,m)2 =1 siy sdlo sie =1 (mbd 4) o bien n =1 (méd 4).

DEMOSTRACION: 1) Es inmediato.

2) Por la observacién previa a la definicién anterior: el simbolo de Hilbert
para un « fijo y como funcién de 3 es el homomorfismo de Q; en {£1} con
nucleo N,,.

3) Si o =4? entonces (a, 3), = (v, 0); = 1.

4) La ecuacién ax? — ay? — 2% = 0 tiene solucién (1,1,0).

Por 2) 1 = (o, —a)p = (0, ) p(cx, —1)p, luego (e, )p = (v, —1)p.

5) Por el teorema 8.14, la forma px? + ey? — 22 representa 0 si y sélo si la
forma, ey? — 22 representa 0, lo cual sucede si y sélo si € es un cuadrado.

Por el teorema 8.22, la forma ex? 4 ny? — 22 siempre representa 0.

6) En la tabla construida en la prueba del teorema 8.23 vemos que la forma
2ex? + ny? — 22 representa 0 si y sélo si 2¢ +7 = 1 (mdd 8) o n = 1 (méd 8).
En particular, para ¢ = 1 tenemos que 222 + ny? — 22 representa 0 si y sélo si
n = +1 (méd 8).

También alli hemos probado que la forma ex? + ny? — 22 representa 0 si y
s6lo si € =1 (mdd 4) o bien n =1 (mdd 4). "

Notar que una consecuencia de 2) y 3) es que

(a_17/6)p = (a75)p (avﬁ_l)p = (avﬁ)p'

Para calcular un sfmbolo de Hilbert arbitrario (p*e, p'n), usando el teorema
anterior, en primer lugar 1) y 2) y 3) nos lo reducen a los casos (€,n),, (pe, n)p,
(p,p)p. El tltimo caso se reduce a los anteriores por 4) y éstos se resuelven
mediante 5) y 6).
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Ejemplo Consideremos la forma 2x? — 5y2. No es facil a priori determinar
qué niimeros estan representados por ella. Por ejemplo, 53 = 2-72 —5-33 sf estd
representado en Q, mientras que 47 no lo estd. Para probarlo basta ver que no
esta representado en QQ;. En efecto:

47

5
202 — by’ =47 o 2? — = =
X y X 2y B

y la dltima ecuacién tiene solucién en Qs si y sélo si (5/2,47/2); = 1. Ahora
bien,

(5/2,47/2)2 = (5,47)2(2,47)2(5,2)2(2,2)2 =1-1- (1) - 1 = —1.

Por otro lado, la forma si representa a 47 en Q5. En efecto, al igual que
antes esto equivale a que (5/2,47/2)5 = 1, y ahora

(5/2,47/2)5 = (5,47)5 (2,47)5 (5,2)5 (2,2)s = (1) -1 (~1) - 1 = 1.

Si queremos una representacién concreta observamos que 47 = 2 (mdéd 5),
luego 47/2 =1 (mé6d 5) (en Qs) y por el teorema 8.9 existe \/47/2 € Q5. Asi

2
47
2 ) —5.0%=47.

Ejercicio: Determinar qué primos p cumplen que la forma anterior representa a 47
en Q,. Determinar también los niimeros representados por dicha forma en Qs.

Ahora veremos como decidir si dos formas cuadraticas dadas son equivalentes

en Q.

Teorema 8.26 Sea f una forma cuadrdtica binaria con coeficientes en Q, y
determinante d # 0. Entonces (o, —d), toma el mismo valor sobre todos los
numeros p-dadicos o # 0 representados por f.

DEMOSTRACION: Si ax?+By? es una forma equivalente a f, su determinante
se diferencia del de f en un cuadrado, luego

(a’ _d)P = (Ot, _aﬂ)p = (a7ﬁ)Pa

y este simbolo vale 1 si y s6lo si ax? + By? representa 1, si y sélo si f representa
1. Esta condiciéon no depende de a. L]

Definicion 8.27 Sea f una forma cuadratica binaria regular con coeficientes
en Q. Llamaremos d(f) al determinante de f y ¥,(f) = (a, —d(f))p, donde «

es cualquier nimero p-adico no nulo representado por f.

Segtn hemos visto, ¥, (f) =1 siy s6lo si f representa 1 en Q,,.
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Teorema 8.28 Sean f y g dos formas cuadrdticas binarias regulares sobre Q,.
Entonces [ y g son equivalentes si y sélo si d(f)/d(g) € Q;f y Up(f) = vp(g).

DEMOSTRACION: Las condiciones son claramente necesarias. Suponiendo
estas condiciones vamos a ver que f y g representan los mismos nimeros. Sea
v # 0 un numero representado por g. Podemos suponer que f es del tipo
az? 4 By?. Entonces

(o, —aB)y = p(f) = ¥p(9) = (1, —d(7)),, = (v, —aB)y,

p

luego (ya~t,—af), = 1, y la ecuacién ya~'z? — aBy? — 22 = 0 tiene una

solucién no trivial.
Si x = 0 entonces —af es un cuadrado, luego por el teorema 8.7 las dos
formas representan 0 y consecuentemente a todos los nimeros p-adicos. Si

x # 0 entonces
2 2
x x

luego f también representa a . En cualquier caso, las formas f y g son equi-
valentes por el teorema 8.8. n

Hemos visto cémo la representacion de nimeros y la equivalencia de formas
binarias sobre los cuerpos @, se rigen por reglas sencillas y relativamente faciles
de obtener. En el nticleo de los resultados que hemos obtenido se halla el
teorema 7.17, que permite encontrar facilmente soluciones de ecuaciones y cuya
prueba es esencialmente topoldgica. Con los cuerpos p-adicos sucede lo mismo
que con el cuerpo R, que la topologia (més exactamente la completitud) permite
demostrar facilmente que ciertas ecuaciones tienen solucién.

De hecho todos los resultados que hemos obtenido son todavia mas sencillos
en el caso de R: Para cada nimero real a no nulo podemos definir N, exac-
tamente igual a como hemos hecho para los ntimeros p-adicos, y es inmediato
que N, = R* si @ > 0 o bien N, =10, +o0o[ si @ < 0. Por lo tanto sigue siendo
cierto que el indice |R* : N, | vale siempre 1 o 2 y es posible definir el simbolo
de Hilbert:

Definicién 8.29 Si « y [ son nimeros reales no nulos definimos
2

— ay? repesenta a 3 en R,
en caso contrario.

1 siz

@mn={ |

Las propiedades de («, 3)c son las mismas que sobre los cuerpos p-ddicos,
aunque las comprobaciones son mucho mas sencillas. Respecto al calculo expli-
cito, es facil comprobar que (a, 3)oo = 1siy sélosia >00 5 > 0.

Ejercicio: Interpretar el invariante ¥ (f) y comprobar que determina la equivalencia
de formas cuadraticas binarias en R exactamente igual que en el caso p-ddico.

En la definicién anterior hemos introducido por primera vez un convenio
que tiene su explicacién en el desarrollo posterior de la teoria, y que aqui no
podriamos justificar debidamente. Se trata del uso del subindice oo para hacer
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referencia a los niimeros reales. En esta misma linea, llamaremos Q. = R y
representaremos por | | al valor absoluto usual en R. En la practica esto
nos permitira englobar a R y los cuerpos p-ddicos bajo la expresién comin Q,,
si entendemos que p recorre los nimeros primos incluyendo p = oco. Como
acabamos de decir, existe una base tedrica para hablar de un ‘primo infinito’
en QQ en estrecha analogia con los primos finitos usuales, pero no estamos en
condiciones de entrar en ello.

8.4 El teorema de Hasse-Minkowski

Por fin estamos en condiciones de abordar el teorema central de este capitulo:

Teorema 8.30 (Teorema de Hasse-Minkowski) Una forma cuadrdtica con
coeficientes racionales representa 0 en Q si y sdlo si representa 0 en todos los
cuerpos Qp, para todo primo p, incluido p = oco.

Aplicando el teorema 8.5 tenemos la siguiente consecuencia inmediata:

Teorema 8.31 Una forma cuadrdtica con coeficientes racionales representa a
un nimero racional v en Q si y solo si representa a r en todos los cuerpos Qy,
para todo primo p, incluido p = oco.

Asi pues, el problema de si un nimero racional esta representado en QQ por
una forma cuadrética se reduce al mismo problema sobre los cuerpos p-adicos,
donde la solucién es mucho mas sencilla gracias esencialmente a la completitud.
De hecho los problemas de representacién de nimeros por formas cuadréticas
en cuerpos p-adicos pueden resolverse sistematicamente. Nosotros s6lo hemos
expuesto la teoria completa para formas binarias, pero se pueden dar resultados
generales. Un ataque directo del problema en QQ es inviable en general y termina
siempre en comprobaciones laboriosas en cada caso particular.

Pero aparte del interés del teorema de Hasse-Minkowski para la teoria de
ecuaciones diofanticas, podemos ver en él un indicio de un principio alrededor
del cual gira la teoria algebraica de nimeros moderna. Vagamente puede ser
enunciado como sigue: Los resultados ‘globales’, referentes a la aritmética de Q
o de cualquier cuerpo numérico pueden descomponerse en resultados analogos
‘locales’ en torno a las compleciones del cuerpo respecto todos sus primos (y
aqui hay que incluir ciertos ‘primos infinitos’ asociados a valores absolutos ar-
quimedianos), de tal forma que la totalidad de los resultados locales equivale
al correspondiente resultado global. Este principio de localizacion, conjeturado
por Hensel y puesto de manifiesto por Hasse, se aplica igualmente al cédlculo
de discriminantes, a la determinacién de las descomposiciones en primos y al
trabajo con muchos conceptos adicionales de la teoria de nimeros que nosotros
no tocaremos. Anadamos tan sélo que Hensel descubrié los ntimeros p-adicos
mientras investigaba los exponentes de los primos que dividen al discriminante
de un cuerpo numérico y, efectivamente, este problema puede reducirse a estu-
diar los discriminantes de extensiones locales asociadas, cada uno de los cuales
es divisible inicamente entre un primo.
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En esta seccion demostraremos el teorema de Hasse-Minkowski para formas
de hasta tres variables, con lo que el teorema 8.31 estara probado para formas
binarias. El resto de la prueba requerira consideraciones adicionales que incluyen
la ley de reciprocidad cuadratica (que probaremos en el capitulo siguiente) y el
teorema de Dirichlet sobre primos en progresiones aritméticas, que probaremos
en el capitulo XI. Por otra parte, en lo sucesivo sélo necesitaremos los casos que
vamos a probar aqui.

DEMOSTRACION: (del T2 8.30 para formas de hasta 3 variables)

Como observacién general podemos suponer que la forma cuadrética con-
siderada es regular, porque las formas singulares representan 0 en todos los
cuerpos. Ademds una implicacién es inmediata.

Cuando el nimero n de variables es 1 el teorema es trivial: una forma con
una variable nunca representa 0.

Paran = 2 la prueba es muy sencilla: Sea f una forma cuadrética binaria con
coeficientes racionales. Sea d su discriminante. Por el teorema 8.7, f representa
0 en un cuerpo K siy s6lo si —d es un cuadrado en K. Como f representa 0 en R,
tenemos —d > 0. Sea —d = p’fl ---pPr. donde py,...,p, son primos (naturales)
distintos y k1, ..., k, son enteros racionales. Como —d es un cuadrado en cada
Qyp, resulta que cada exponente k; es par, luego —d es un cuadrado en Q.

Observar que los casos n = 1,2 no aportan nada, pues disponemos de cri-
terios directos para decidir si una forma con una o dos variables representa 0 o
no en Q. En cambio el caso n = 3 si aporta informacion relevante y la prueba
ya no es tan simple.

Pasando a una forma equivalente y multiplicando por un entero racional si
es preciso, podemos suponer que la forma considerada es del tipo ax? +by? + cz?
con coeficientes enteros (esto no modifica la representacién de 0).

Observar que para aquellos primos p que no dividan a abc los coeficientes
son unidades p-adicas, y por el teorema 8.22 la forma representa 0 en Q,. Esto
significa que las condiciones del teorema para la representacion de 0 en Q son en
realidad un ndmero finito (y esto es valido para formas con cualquier nimero de
variables). El teorema de Hasse-Minkowski nos da, pues, un criterio explicito
y verificable en un numero finito de pasos para saber si una forma cuadratica
representa o no 0 en Q. Para el caso n = 3 tal criterio (en otros términos que
no involucran ndmeros p-adicos) era ya conocido por Legendre.

Puesto que la forma ax? 4 by? + cz? representa 0 en R, no puede ocurrir que
los tres coeficientes sean del mismo signo. Multiplicando por —1 si es preciso
podemos suponer que dos son positivos y uno negativo. Mediante un cambio de
variables podemos eliminar todos los cuadrados, con lo que podemos suponer
que a, b, ¢ son libres de cuadrados y primos entre si. Mds auin, si dos de ellos
tienen un factor comun p, digamos p | a, p | b, entonces multiplicando por p
y eliminando el cuadrado pasamos a una forma con coeficientes a/p, b/p, pc.
Repitiendo este proceso llegamos a una forma ax? + by? — cz? donde a, b, ¢ son
numeros naturales libres de cuadrados y primos entre si dos a dos.
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Sea p un divisor primo impar del coeficiente c. Como f representa 0 en Q,,
por el teorema 8.14 la forma ax? + by? también representa 0 en Qp y, claramente
entonces, la congruencia az? + by? = 0 (méd p) tiene una solucién no trivial,
digamos (g, yo) con yo Z 0 (mdd p). Esto nos da la factorizacién

az? + by? = ayaz(acyo + yxo)(zyo — yxo) (M6d p).

Como ¢ es 0 médulo p en realidad tenemos una factorizacién de la forma
original:
az® +by® — c2® = LP(x,y,2)MP(z,y, z) (méd p),

donde L? y MP son formas lineales con coeficientes enteros. Lo mismo vale para
los divisores primos impares de a y b. Para p = 2 también es cierto, aunque no
necesitamos las hipotesis:

2

az® + by* — cz® = (ax + by — cz)? (méd p).

Si para cada primo p | abe tomamos r, € Z de modo que 7, = 1 (méd p),
rp = 0 (méd abe/p) y sumamos las formas r,LP(z,y,2), por una parte y por
otra las formas r, MP(z,y, z), obtenemos formas lineales L(z,y,z), M(z,y, 2)
con coeficientes enteros tales que

L(z,y,2) = LP(2,y,2) (méd p),  M(z,y,z) = M"(z,y,2) (méd p)
para todos los divisores primos de abc. Claramente entonces
ax® + by* — cz® = Lz, y, 2) M (z,y, z) (méd abe)

Podemos ignorar el caso ¢ = b = ¢ = 1, pues la forma z% +y? — 22 representa
0 en Q, luego no hay nada que probar.
Ahora daremos valores enteros a las variables (x,y, z) de modo que

0<z<Vbe, 0<y<+ac, 0<z<Vab. (8.3)

Puesto que a, b, ¢ son libres de cuadrados y primos entre si dos a dos, los
ntumeros vbe, y/ac, vVab no son enteros. El ntmero de ternas que cumplen

8.3 es el producto de las partes enteras por exceso de vbe, \/ac, Vab, que es

estrictamente mayor que
Vbey/acVab = abe.

Como L(z,y, z) s6lo puede tomar abc valores médulo abe, han de existir dos
ternas distintas (21,91, 21) ¥ (22, y2, 22) tales que

L(xz1,y1,21) = L(z2, y2, 22) (méd abe).

Llamando (zg, Yo, 20) a la diferencia de ambas ternas, la linealidad de L implica
que L(xo,yo,20) = 0 (mdd abc). Asi,

ax% + byg — czg = L(zg, Yo, 2z0) M (z0, Yo, 20) = 0 (méd abe).
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Ademis tenemos que |zo| < vbe, |yo| < v/ac, |20| < Vab, de donde se sigue que
—abe < azd + byt — cz3 < 2abe.

Esto sélo es posible si axg + by2 — c22 = 0 o bien ax + byt — ¢z = abe. En
el primer caso ya tenemos que ax? + by* — cz? representa 0 en Q (pues la terna
(20, Y0, 20) no es nula). En el segundo caso se comprueba que

a(zozo + byo)2 + b(yozo — ax0)2 - c(zg + ab)2 =0.

Si 22 + ab # 0 tenemos que az? + by? — cz? representa 0 en Q. Si —ab = 23,
entonces la forma ax?+by? representa 0 (por el teorema 8.7), luego ax?+by? —cz?
también. -

El teorema de Hasse-Minkowski también nos permite reducir la equivalencia
de formas cuadraticas en QQ a la equivalencia en los cuerpos p-adicos. Para verlo
necesitamos un resultado general:

Definicion 8.32 Si f y g son dos formas cuadraticas sobre un cuerpo K con
m y n variables respectivamente, llamaremos suma directa de f y g a la forma
cuadratica dada por

(f®g)(x17"'7xm+n) = f(xlv'“axm) +g(mm+1,...,xm+n).

Claramente la suma directa de formas cuadraticas regulares es de nuevo una
forma cuadrética regular (su determinante es el producto de los determinantes).

Teorema 8.33 (Teorema de Witt) Sean f, g, h formas cuadrdticas regula-
res en un cuerpo K. Si f @ g es equivalente a f @ h, entonces g es equivalente
ah.

DEMOSTRACION: Si cambiamos f por una forma equivalente sigue cum-

pliéndose la hipétesis, luego podemos suponer que f es diagonal. De aqui se

sigue que es suficiente probar el teorema para el caso en que f(x) = az? con

a # 0. Sean A y B las matrices de g y h. Entonces las matricesde f@ gy f@Bh

son respectivamente
a 0 a 0
0 A Y 0 B )’

donde 0 representa en cada caso a una fila o a una columna de ceros.
Como az? @ g y ax? © h son equivalentes, sus matrices verifican la relacién

v T a 0 v S [(a 0
S Q' 0 A T @) \0 B )’
para una cierta matriz regular. Esto equivale a las ecuaciones
Ya+T AT = a,

vaS+T'AQ =
SaS+Q'AQ = B.

=
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Sea M = @ + kTS para un cierto k € K. Vamos a ver que eligiendo k
adecuadamente se cumplird que M es regular y M/AM = B, conloque gy h
seran equivalentes. Tenemos

MAM = (Q' +kS'T)A(Q+KTS) = Q' AQ+kS'T' AQ+kQ ATS+k>S'T' ATS
= Q'AQ—kyaS'S —kyaS'S+k*(a—~%a)S'S = Q"AQ+a((1—+*)k* —2kv) S'S.

Esto serd igual a B si (1 —v2)k? — 2ky = 1, o sea, si k? — (vk +1)2 = 0.

Basta tomar k de modo que k = vk + 1, es decir, £k = 1/(1 — ) salvo
que v = 1, en cuyo caso la ecuacién se reduce a —2k = 1 y sirve k = —1/2
(suponemos siempre que la caracteristica de K es impar).

Asf pues, para el k adecuado, tenemos M’AM = B, y como B es regular,
M también ha de serlo. L]

Teorema 8.34 Dos formas cuadrdticas regulares con coeficientes racionales
son racionalmente equivalentes si y solo si son equivalentes en Q, para todo
primo p, incluido p = oc.

DEMOSTRACION: Por induccién sobre el ntimero n de variables. Sin = 1 dos
formas az? y br? son equivalentes en un cuerpo si y sélo si a/b es un cuadrado.
Pero, como hemos visto en la prueba del teorema 8.30 para n =1, si a/b es un
cuadrado en todos los cuerpos @, entonces es un cuadrado en Q.

Supongamos que n > 1. Sean dos formas f y g segtn las hipdtesis. Sea r
un ndmero racional no nulo representado por f. Como f y g son equivalentes
en los cuerpos @, tenemos que g representa a r en todos estos cuerpos, y por
el teorema 8.31 resulta que g representa a r en Q.

Por el teorema 8.2 tenemos que f y g son equivalentes a formas rz? @ f' y
rz? @ g'. Por el teorema anterior f' y ¢’ son equivalentes en todos los cuerpos
Qy, luego por hipétesis de induccién tenemos que f’ y ¢’ son equivalentes en Q,
con lo que f y g también lo son. L]

Observar que con la prueba del teorema de Hasse-Minkowski para formas de
hasta tres variables tenemos probado el teorema anterior para formas cuadra-
ticas binarias. Para este caso, podemos dar condiciones mucho més simples en
términos de los invariantes definidos en 8.27.

Definiciéon 8.35 Sea f una forma cuadrética binaria sobre Q. Entonces el
determinante de f se expresa de forma tnica como d(f) = §(f)c?, donde §(f)
es un ndimero racional libre de cuadrados. Es claro que 0(f) es un invariante,
es decir, si f y g son formas equivalentes, entonces §(f) = d(g).

Para cada primo p tenemos definido 9, (f) = (r, —4(f ))p, donde 7 es cual-
quier nimero racional no nulo representado por f (definicién 8.27).

También es obvio que si f y g son (racionalmente) equivalentes también son
equivalentes en Q,, y entonces 9, (f) = ¥,(g). Todo esto se cumple trivialmente
en el caso p = oo.

Combinando los teoremas 8.28 y 8.34 (junto con sus versiones para oo) ob-
tenemos:
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Teorema 8.36 Dos formas cuadrdticas binarias f y g sobre Q son (racional-
mente) equivalentes si y solo si 6(f) = 6(g) y ¥p(f) = ¥p(g) para todo primo p,
incluido p = 0.

Para calcular ¢,(f) podemos tomar una forma equivalente, luego podemos
suponer que f es del tipo az? + by?. Se cumplird que v¥,(f) = 1 si y sélo si
az? + by? — z? representa 0 en Q,. Por el teorema 8.22 esto se cumple siempre
que p es impar y no divide a ab. Por lo tanto las condiciones en el teorema
anterior se reducen a un numero finito y son decidibles en la préctica.

8.5 La ley de reciprocidad cuadratica

Observemos que en la demostraciéon del teorema 8.30 para formas de tres
variables no se ha usado la hipétesis de que la forma represente 0 en Q2. Como
consecuencia resulta que si una forma cuadratica de tres variables representa
0 en todos los cuerpos Q,, incluido p = oo, salvo quizd para p = 2, entonces
representa 0 en QQ, y por lo tanto también en Q. La causa de este fenémeno se
encuentra en la ley de reciprocidad cuadratica, que enunciamos en el capitulo I
(seccién 1.4). Ahora vamos a presentarla en una versién equivalente que muestra
con elegancia su conexién con la teoria de formas cuadraticas.

Teorema 8.37 La ley de reciprocidad cuadrdtica es equivalente a la siguiente
afirmacion: para todos los nimeros racionales no nulos a y b se cumple

H(a’ b)p = 13

donde p recorre todos los primos, incluido p = 0.

DEMOSTRACION: Observar que el producto es finito, en el sentido de que
casi todos sus factores son iguales a 1. Concretamente, si p # 2 y p no divide
al numerador ni al denominador de ab, entonces de acuerdo con las propiedades
de los simbolos de Hilbert, (a,b), = 1.

Por estas mismas propiedades, todo producto de este tipo se descompone en
un nimero finito de productos similares donde a y b estdn en uno de los casos
siguientes:

l.a=b=-1.

2. a = ¢ (primo), b = —1.

3. a=¢q, b= ¢ (primos distintos).

Basta, pues, considerar productos asociados a pares en uno de estos casos.

1) En cualquier caso se cumple

[[-1-1)p = (-1, =1)a2(-1, D)oo = (-1)(-1) = 1.

p
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2) Igualmente:

12 -1, =212, -1 =1-1=1.

P

La primera ley suplementaria se cumple si y sélo si

1@~ = (@, ~1)sla, ~1) = (~1)= /2 (i) 1

» q

3) La segunda ley suplementaria se cumple si y sélo si

H(2’q)P = (2’q)2(27q>q = (_1>(92_1)/8 (g> =1

» q

Y la ley de reciprocidad principal se cumple si y sélo si

Tty = (0l fa o = (-1 2007 () () o,

» q
[

En el préximo capitulo demostraremos la férmula del producto de los sim-
bolos de Hilbert y con ella tendremos probada la ley de reciprocidad cuadratica.
Observar que esta férmula explica por qué en el teorema 8.30 no era necesaria
la hipdtesis de que la forma cuadritica representara 0 en Qq: a efectos de
representacion de 0 toda forma f con tres variables puede expresarse como
az? + by? — 2% (tomando una equivalente diagonal y dividiendo entre el tercer
coeficiente). Entonces, (a,b), = 1 equivale a que f represente 0 en Q,, y la
férmula del producto implica que si esto sucede para todos los primos salvo
quizd uno (incluido p = co) también ha de cumplirse para éste tltimo.

8.6 Conclusion de la prueba

Para completar la prueba del teorema 8.30 necesitaremos el siguiente hecho
auxiliar:

Teorema 8.38 Sea K un cuerpo de caracteristica distinta de 2 y con mds de
cinco elementos. Si una forma cuadrdtica diagonal representa 0 en K, entonces
tiene una representacion de 0 en la que ninguna variable toma el valor 0.

DEMOSTRACION: Primeramente demostramos que si ax? = ¢ # 0, entonces

para todo b # 0 existen elementos no nulos a y 3 tales que aa? +b3% = c. Para
ello consideramos la identidad

(t—1)? a
(t+1)2 * (t+1)2 =1




8.6. Conclusién de la prueba 203

2

Multiplicamos por az* = ¢ y queda

t—1\? a2 ?
alx—— at| — ) =c¢
t+1 t+1
Existe un v € K tal que v # 0y t = by?/a # +1. Esto se debe a que las
ecuaciones by? = £1 tienen a lo sumo dos soluciones cada una, y K contiene al

menos un sexto elemento, aparte de las posibles cuatro soluciones y el 0.
Para este valor de ¢ se cumple

2 2
t—1 2xy
b _ =
a<xt+1> i <t+1> -
tal y como queriamos.

Sea ahora ajz? + -+ + a,z2 = 0 una representacién de 0 de una forma
cuadrética diagonal sobre K.

Podemos ordenar las variables de modo que sean todas no nulas hasta x,
mientras que z,41 = --- = x, = 0. Obviamente r > 2. Segun lo probado,
existen a y 8 no nulos en K tales que arscz =a,a?+ ar+1/6’2.

Esto nos da una representacién de 0 donde el niimero de variables no nulas ha
aumentado en una unidad. Repitiendo el proceso se llega a una representacion
sin variables nulas. m

CONCLUSION DE LA PRUEBA DE 8.30:

Consideremos ahora una forma con cuatro variables
aw? + bz? + cy? + d=?,

donde, como en el caso n = 3, podemos suponer que los coeficientes son enteros
libres de cuadrados. Ademads, como la forma representa 0 en R, no todos los
coeficientes tienen el mismo signo. Podemos suponer que a > 0y d < 0.

Consideraremos también las formas g = aw? +bx? y h = —cy?® —dz%. Vamos
a demostrar que g y h representan en Q a un mismo entero racional no nulo,
con lo que tendremos una representacién de 0 en Q de la forma dada.

Sean pq,...,ps los primos impares distintos que dividen a los coeficientes a,
b, ¢, d. Para cada uno de estos primos, asi como para p = 2, podemos encontrar
una representacién de 0 en Q, de la forma aw? + bz? + cy? 4+ dz? = 0 donde
ninguna de las variables sea nula. Ademéas podemos exigir que todas tomen
valores enteros y que uno de ellos no sea divisible entre p.

Sea b, = aw? + bx? = —cy? — dz? € Zy,. Podemos exigir que b, # 0, pues si
el asi obtenido es 0, las formas g y h representan 0 en @, luego representan a
todos los nimeros p-adicos y podemos tomar cualquier otro.

Ademés podemos exigir que p? { by, pues si p?k | b, podemos cambiar b, por
b,/p**, w por w/p*, x por x/p*, etc.

Consideremos el sistema de congruencias

t = by (mdd 16),
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t = by, (méd p?), (8.4)

t = by, (méd p?).

Podemos sustituir cada b, por un nimero entero congruente respecto al
moédulo indicado y aplicar el teorema chino del resto para obtener un entero ¢
que satisfaga estas ecuaciones, y que estard univocamente determinado médulo
m = 16p}---p}.

Para cada indice i tenemos que vy, (t) = vy, (bp, ), luego b,,t~! es una unidad,
y ademds by,t~! = 1 (méd p;). Por el teorema 8.9 tenemos que b,,t~! es un
cuadrado en Q,,. Igualmente, bot~! es una unidad y bot=' = 1 (méd 8), luego
por el teorema 8.12 también es un cuadrado.

Asi pues, para p = 2,p1,...,ps se cumple que bpt’l es un cuadrado en Q,,
luego las formas —tz3 @ g y —tz3 @ h representan 0 en Q,. Podemos tomar
t > 0 y entonces, puesto que a > 0y d < 0, tenemos que —tx% Dgy —tx% ®h
también representan 0 en R.

Si p es cualquier otro primo que ademas no divida a ¢, como no divide a
ninguno de los coeficientes de g y de h, todos los coeficientes de las formas
—tz2 ® g y —tz @ h son unidades en Q,, luego por el teorema 8.22 ambas
formas representan 0.

Vamos a probar que podemos elegir ¢ de modo que a lo sumo haya un tnico
primo q que divida a t y sea distinto de 2, pq, ..., ps. Entonces tendremos que las
formas —tz2 @ g y —tz2 @ h representan 0 en todos los cuerpos Qp, incluyendo
p = 00, salvo quizd para el primo ¢. Usando la férmula del teorema 8.37 (ain
no demostrada) resulta que también representan 0 en el caso exceptuado (ver la
observacidn tras el teorema). Por el teorema 8.30 para formas de tres variables
resulta que —tz2 & g y —txd & h representan 0 en Q. Por el teorema 8.5 las
formas g y h representan ambas a ¢ y el teorema quedard probado (para cuatro
variables).

Sea t cualquier entero que cumpla las congruencias (8.4). En su lugar pode-
mos tomar cualquier otro ntimero de la forma ¢ + km. Veamos que uno de éstos
nos sirve.

Sea d el méximo comun divisor de ¢ y m. Sean t' = t/d y m' = m/d.
Entonces t' y m’ son primos entre si. Ahora usamos el teorema de Dirichlet
sobre primos en progresiones aritméticas (ver el capitulo I), que nos garantiza
la existencia de un primo de la forma g = t' + km’. Entonces t* =t + km = dg
sélo es divisible entre un primo distinto de 2,p1,...,ps, tal y como queriamos.

Probamos ahora el teorema para formas con cinco variables:
av? + bw? + ca® + dy® + ez?.

Como en los casos anteriores podemos suponer que los coeficientes son ente-
ros y libres de cuadrados. Si esta forma representa 0 en R entonces no todos los
coeficientes tienen el mismo signo. Digamos a > 0, e < 0. Sea g = av? + bw?,

h=—cx? —dy? — ez?.
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Razonamos exactamente igual como en el caso n = 4 (usando el teorema
de Dirichlet) para probar que existe un nimero natural ¢ representado por las
formas g y h en todos los cuerpos Q,, incluyendo p = oo, salvo quizéd para un
primo impar g que no divide a los coeficientes a, b, ¢, d, e.

Igualmente se prueba que la forma g representa a t también en Q, luego en
Q. Para la forma h usamos otro argumento: por el teorema 8.22 representa 0
en Qg, luego por el teorema 8.4 también representa a ¢. Con esto concluimos
que g v h representan a t en Q y la prueba termina.

Observar que por el teorema 8.20 toda forma cuadrética con cinco o més
variables representa 0 en todos los cuerpos p-adicos, luego lo que hemos probado
es que una forma con cinco variables representa 0 en Q si y sélo si representa 0
en R, y lo mismo hay que probar para formas de méas de cinco variables. Ahora
bien, toda forma con mas de cinco variables es equivalente a una forma diagonal,
y si representa 0 en R no todos los coeficientes tendréan el mismo signo, luego
podemos ordenar las variables de modo que los dos primeros coeficientes tengan
signos distintos, y asi la forma dada se descompone como f @ g, donde f es una
forma diagonal con cinco variables que representa 0 en R y g es cualquier forma.
Por el caso n = 5 tenemos que f representa 0 en Q, luego f @ g también. m

Vamos a acabar el capitulo con una aplicacién interesante del teorema de
Hasse-Minkowski. Nos apoyaremos en el teorema siguiente.

Teorema 8.39 Sea f una forma cuadrdtica con coeficientes enteros definida
positiva (es decir, f(x) > 0 para todo x € Q" y f(x) =0 si y sdélo six=0) y
supongamos que para todo x € Q™ existe un &’ € Z™ tal que f(x —2') < 1. En-
tonces todos los nimeros naturales representados por f en Q son representados
también en Z.

DEMOSTRACION: Sea A la matriz simétrica asociada a f, es decir, la matriz
que cumple f(z) = zAx! para todo x € Q™. Los coeficientes de A son enteros
0 semienteros.

Para cada par de n-tuplas z,y € Q" definimos g(x,y) = xAy’. La aplicacién
g es una forma bilineal simétrica y f(x) = g(z,z). Ademds g toma valores
enteros o semienteros sobre los nimeros enteros.

Sea n un numero natural representado racionalmente por f. Entonces existe
un z € Z" tal que f(z) = t>n para cierto nimero natural ¢ > 0, que podemos
tomar minimo. Basta probar que t = 1.

Por hipétesis existe un y € Z™ tal que z = x/t — y cumple g(z, z) < 1.

Si fuera g(z, z) = 0 entonces z = 0 (porque f no representa cero) y asi resulta
que 2/t = y + z tiene coeficientes enteros. Como f(z/t) = n la minimalidad de
t implica que ¢t = 1.

Si g(z, 2z) # 0 sean

a=g(y,y)—n, b=2(nt—g(x,y)), ' =at+b, 2 =az+by.
Entonces a, b, t' son enteros y
t' = at® +bt =t%g(y,y) — nt® + 2nt* — 2t g(x,y)
= g(y.y) =2 g(z,y) + g(w,2) = g((ty — 2), (ty — 2)) = t* (2, 2).
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Asf pues, ¥ = tg(z,2) y, como 0 < g(z,2z) < 1, resulta que 0 < ¢ < t. Por
otra parte,

glz',a’) = a®g(z,2)+2abg(z,y) + b g(y,y)
a*t*n 4 ab(2nt — b) 4+ b*(n + a) = n(a*t* + 2abt + bv*) = t"*n,

lo que contradice la minimalidad de ¢ L]

Teorema 8.40 (Gauss) Un numero natural es suma de tres cuadrados si y
s6lo si no es de la forma 4™(8m — 1).

DEMOSTRACION: La forma cuadrédtica f(z,y,z) = 22 + y? + 22 estd en
las hipétesis del teorema anterior, pues sin duda es definida positiva y, dada
una terna (z,y, z) de nimeros racionales, siempre podemos encontrar una terna
(z',3y', 2") de nlimeros enteros tales que

|l‘—$/|<1/27 |y_y/|<1/27 |Z_Z/|<1/27

conloque f(z—a',y—y',2—2) <1/441/4+1/4 = 3/4 < 1. Por lo tanto basta
probar que un numero natural estd representado racionalmente por f siy sélo
si no es de la forma indicada. Por el teorema 8.31 los ntimeros representados
racionalmente por f son los representados por f en R y en todos los cuerpos
p-adicos.

Obviamente los nimeros racionales representados por f en R son exacta-
mente los mayores que 0 y por el teorema 8.22 f representa 0 en todos los
cuerpos Q, con p # 2, luego también a cualquier ntimero racional.

Concluimos que un nimero natural a es suma de tres cuadrados si y sélo si
esta representado por f en Qs.

Ahora bien, f representa a a en Qs si y sélo si la forma z2 + y? + 22 — at
representa 0 (teorema 8.5) y a su vez esto equivale a que exista un numero
diddico no nulo u tal que z2 + y? represente a u y z? — at? represente a —u (en
principio u podria ser 0, pero en tal caso ambas formas binarias representan 0
y podemos tomar cualquier u.

De nuevo por el teorema 8.5 esto equivale a que exista un nimero diddico u
tal que las formas 22 + 3% — uw? y 22 — at? + uw? representen 0, y en términos
del sfmbolo de Hilbert esto se expresa como que (—1,u)s =1 = (a, —u)s.

Esta condicién depende sélo de las clases de a y de u médulo Q32 Un
conjunto de representantes de estas clases es 1,3,5,7,2,6,10,14. La condiciéon
(=1,u)2 = 1 la cumplen los niimeros congruentes con 1, 5, 2, 10 (observar que —1
es congruente con 7 y considerar la tabla calculada en la prueba de 8.23). Los
valores de —u son, pues, 7,3,14,6. La misma tabla nos da que para cualquier
a podemos encontrar un —u entre estos cuatro que haga (a, —U)2 = 1 salvo si
a=T7(méd Q32).

Por lo tanto los niimeros naturales n representados por f son todos excepto
los que cumplen a = 7 (méd Q3?), o equivalentemente, —a = 1 (méd Q32), o
sea, excepto los que cumplen que —a es un cuadrado en Qs.

Por el teorema 8.12 esto equivale a que —a sea de la forma 4™(8m + 1), o
equivalentemente, a que a sea de la forma 4™(8m — 1). L]

2
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Teorema 8.41 (Legendre) Todo nimero natural es suma de cuatro cuadra-
dos.

DEMOSTRACION: Todo niimero natural a es de la forma a = 4"m, donde m
no es divisible entre 4. Si m es congruente con 1,2,3,5,6, mddulo 8 entonces
a es suma de tres cuadrados. En caso contrario m = 7 (méd 8) y por lo tanto
m — 1 =6 (mdd 8) si es suma de tres cuadrados.

Asi pues, sim — 1 = 22 + y? + 22, tenemos que

a=4"m = (2"z)* + (2"y)? + (2"2)* + (2")%

Ejercicio: Probar que un nimero natural a es suma de dos cuadrados si y sélo si los
primos impares que lo dividen con exponente impar son congruentes con 1 médulo 4.






Capitulo IX

La teoria de los géneros

Finalmente estamos en condiciones de abordar, desde el punto de vista que
pretendiamos, la parte méas profunda e interesante de la teoria de Gauss sobre
formas cuadréticas binarias, la teoria de los géneros. Como es habitual, noso-
tros la trataremos tanto en términos de formas cuadraticas como en términos
de médulos e ideales de 6rdenes cuadraticos. En este capitulo, y mientras no
se indique lo contrario, la expresién ‘forma cuadratica’ tendra el sentido que le
ddbamos en el capitulo VI, es decir, el de forma cuadratica binaria con coefi-
cientes enteros, regular y primitiva (y definida positiva si su discriminante es
negativo).

Ya conocemos un método para determinar si una forma cuadratica dada
representa o no a un entero dado. Sin embargo el método es demasiado complejo,
en el sentido de que se trata de una serie de calculos que nos dan la respuesta en
cada caso particular, pero no nos dicen nada sobre qué enteros son representables
en general por una forma dada. Por ejemplo, con las técnicas del capitulo
anterior es facil ver que la forma x2 + y? representa a un primo impar p si y
s6lo si p = 1 (mdd 4). Las técnicas del capitulo VI nos permiten probar que
5 esta representado por dicha forma, asi como que 7 no lo estd, pero no nos
son de ninguna ayuda para llegar hasta esta sencilla caracterizaciéon. Por otra
parte, resultados de este tipo eran conocidos desde la época de Fermat, aunque
las pruebas requerian argumentos especificos en cada caso particular.

La teoria de los géneros si proporciona esta clase de resultados. Gauss descu-
brié que existen condiciones necesarias, muy sencillas de enunciar y de manejar,
para que un nimero esté representado por una forma cuadratica. En ocasiones
estas condiciones son también suficientes, con lo que el problema de determi-
nar los numeros representados por la forma considerada tiene una respuesta
particularmente simple. Cuando no son suficientes, al menos proporcionan in-
formacion relevante sobre el problema. Una parte de la teoria era ya conocida
por Legendre, con anterioridad al trabajo de Gauss.

El punto de partida de la teoria de géneros es el hecho evidente de que
para que la ecuacién f(z,y) = m tenga soluciones enteras, donde f es una

209
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forma cuadrética, es necesario que las congruencias f(z,y) = m (méd n) tengan
solucién para todo niimero natural n. Dedicamos la primera seccién a estudiar
este problema.

9.1 Equivalencia modular

Del mismo modo que en el estudio de la representabilidad de nimeros por
formas cuadraticas es imprescindible el concepto de equivalencia, para estudiar
la representabilidad médulo un natural n hemos de introducir la equivalencia
modulo n:

Definicion 9.1 Diremos que dos formas cuadraticas f y g son equivalentes
médulo un natural n > 1 si existen enteros a, b, ¢, d tales que

f(z,y) = glaz + by, cx + dy) (mdd n) (ad — be,n) = 1.

Al exigir que el determinante del cambio de variables sea primo con n ga-
rantizamos que tenga inverso modulo n, de modo que dos formas equivalentes
modulo n representan los mismos niimeros médulo n. Es obvio que la equivalen-
cia médulo n es una relacion de equivalencia en el sentido usual del término, asi
como que dos formas equivalentes (en Z) son equivalentes médulo cualquier na-
tural n. El teorema siguiente nos indica que es suficiente estudiar la equivalencia
modulo potencias de primos.

Teorema 9.2 Sean m y n dos numeros naturales primos entre si. Entonces
dos formas cuadrdticas son equivalentes modulo mn si y solo si son equivalentes
maodulo m y mddulo n.

DEMOSTRACION: Si tenemos que f(x,y) = g(a1z + azy, azz + asy) (méd m)
y f(z,y) = g(bix + bay,bsx + bgy) (mbd n), donde los determinantes de los
cambios son primos con m y n respectivamente, por el teorema chino del resto
podemos encontrar enteros ¢; tales que ¢; = a; (méd m) y ¢; = b; (méd n).
Entonces f(z,y) es congruente con g(ci1x + coy, csx + c4y) médulo m y médulo
n, luego también modulo mn, y es facil ver que el determinante de este cambio
es también primo con mn, luego f y g son equivalentes médulo mn. El reciproco
es obvio. "

Para estudiar la equivalencia moédulo una potencia de primo p™ vamos a
buscar formas equivalentes a una dada lo més sencillas posibles. Supongamos
primero p # 2. Dada una forma f(z,y) de discriminante D, el teorema 6.10 nos
da otra forma equivalente az? + bxy + cy? tal que p{ a. El cambio de variables

x = 2 —by

y = 2ay’

la transforma en
a(x? — Dy?). (9.1)
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Para simplificar ain més la expresién, notemos que si U, representa al
grupo de las unidades de Z/p"Z y Ugn al subgrupo de los cuadrados, entonces
|Upn : U3n| = 2. En efecto, basta ver que la aplicacién z — 22 tiene niicleo
{+£1}, pero si 22 = 1 (méd p"), entonces p™ | 2> — 1 = (z + 1)(z — 1), y no
puede ocurrir simultdneamente que p | z + 1y p |  — 1, pues restando saldria
que p | 2. Por lo tanto p™ | x4+ 1 0 p™ | 2 — 1, con lo que z = +1 (mdd p").

Tomemos un resto no cuadrético cualquiera moédulo p, digamos r. Obvia-
mente r tampoco es un cuadrado médulo p”, con lo que Upn = U2 UrUZ,.
En particular, el nimero a de (9.1) se escribird médulo p™ como a = u? o bien
a = ru?, para un cierto entero u (primo con p). El cambio 2’ = ux, y' = uy nos
transforma (9.1) en una de las dos formas

2>~ Dy* o r(z?— Dy?), (9.2)

donde, recordemos, r es cualquier resto no cuadratico médulo p que fijemos de
antemano. Ahora distinguimos dos casos:

Si p | D, entonces las formas (9.2) son congruentes médulo p con z? y

rz? respectivamente, que se caracterizan por que una representa sélo restos

cuadréticos médulo p y la otra sélo restos no cuadréaticos médulo p. En resumen:

Teorema 9.3 Sip | D, toda forma cuadrdtica f de discriminante D es equiva-
lente mdédulo p™ con una de las formas (9.2) y sdlo con una. Concretamente, f
es equivalente a la primera si y solo si representa restos cuadrdticos modulo p
y es equivalente a la sequnda en caso contrario.

De acuerdo con esto, Gauss dio la definicién siguiente

Definicién 9.4 Sea f una forma cuadratica de discriminante D y p un primo
impar tal que p | D. Diremos que f tiene cardcter positivo médulo p si f
representa restos cuadraticos médulo p. En caso contrario se dice que f tiene
cardcter negativo médulo p. Equivalentemente, definimos el cardcter médulo p
de f como

donde a es cualquier nimero representado por f que sea primo con p.

Las consideraciones anteriores prueban que x,(f) no depende de la eleccién
de a, asi como que formas equivalentes médulo p™ tienen el mismo cardcter
médulo p. En particular, si C' es una clase de equivalencia (estricta o no es-
tricta) de formas cuadréticas de discriminante D, podemos definir x,(C') como
el caracter de cualquiera de sus miembros. También hemos probado que dos
formas f y g de discriminante D son equivalentes médulo p™ si y sélo si tienen
el mismo caracter médulo p.

Examinemos ahora el segundo caso, es decir, p 4 D. Entonces es claro que
los polinomios x? y r — Dy? toman cada uno (p+ 1)/2 valores distintos médulo
p, luego ha de haber enteros u e v que den la misma imagen, es decir, tales que
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r = u? — Dv? (méd p). Entonces, u?> — Dv? es un resto no cuadritico médulo
p, v si elegimos a éste precisamente como r, tenemos la igualdad r = u? — Dv2.
El cambio de variables

= ux’ + Dvy

= wvr' +uy

transforma la forma de la izquierda de (9.2) en la forma de la derecha, luego
ambas son equivalentes médulo p™ y, en definitiva, todas las formas cuadraticas
de discriminante D son equivalentes médulo p™. Para extender a este caso las
conclusiones anteriores definimos el cardcter médulo p de una forma f (cuando
p es impar y no divide al discriminante) como x,(f) = 1. Definimos igualmente
el cardcter de una clase de férmulas.

De este modo sigue siendo cierto que dos formas cuadraticas de discriminante
D son equivalentes médulo p™, con p impar, si y sélo si tienen el mismo caracter
médulo p, lo cual se cumple siempre si p t D.

Nos falta estudiar el caso p = 2. Si una forma cuadratica tiene discriminante
D = b% — 4ac, entonces D es impar si y sélo si b lo es, y entonces D = 1 (méd 8)
siy s6lo si 2 | ac. Ocupémonos primero del caso impar.

Teorema 9.5 Toda forma cuadrdtica de discriminante impar D es equivalente
mdodulo 2™ a una de las dos formas

xy o z? +acy+y2.

Concretamente, una forma es equivalente a la primera si y sélo si D =1 (méd 8)
y es equivalente a la sequnda en caso contrario.

DEMOSTRACION: Toda forma con discriminante D = 1 (mdd 8) es equi-
valente a una forma ax? + bxy + 2cy? con a impar. Con el cambio 3 = by
podemos hacer b = 1. Por otra parte, si aplicamos a xy el cambio de variables
x =a' + 2uy, y = ax’ + vy (con v impar) obtenemos la forma

az® + (v + 2au)zy + 2uvy>.
Para que ésta sea congruente con la dada se han de cumplir las congruencias

v+2au = 1 (mdd2") (9.3)

w = ¢ (méod 2™). (9.4)

Como v es una unidad médulo 2", podemos despejar u en (9.4) y sustituirlo en
(9.3). Asf obtenemos v + 2acv~! =1 (méd 2"), o equivalentemente:

v(v —1) = —2ac (méd 2™)

Si demostramos que esta congruencia tiene solucién v impar, entonces (9.3) nos
permitird calcular u, y tendremos probado que xy es equivalente a cualquier
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forma con discriminante D = 1 (méd 8). Ahora bien, es ficil ver que la con-
gruencia v — v — 2k = 0 (méd 8) tiene solucién para todo k, y el teorema 7.17
implica que existe un entero diddico v tal que v?> — v — 2k = 0. Tomando clases
modulo 2™ obtenemos la solucién buscada.

Consideremos ahora el caso D # 1 (méd 8). En primer lugar probamos que
si a, b, ¢ y r son impares entonces la congruencia

az? + by + cy® = r (méd 27) (9.5)

tiene solucién. Dividiendo entre r podemos suponer a = 1. Asi nos queda la
forma f(x,y) = 22 + bry + (2k + 1)y?. Observamos que

F1,00=1, f(1,2)=2b+5, f(-1,2)=-2b+5 y f(1,4)=1+4b

son cuatro impares distintos médulo 8, luego uno de ellos es congruente con
r médulo 8, es decir, se cumple (9.5) médulo 8. Ademds en cualquiera de los
cuatro casos la derivada f,(z,y) = &b (méd 4), luego el teorema 7.17 nos da
que (9.5) tiene solucién en Zg y por consiguiente también médulo 2™.

En particular existen enteros u y v tales que au? + buv + cv? = 1 (méd 2").
Uno de los dos ha de ser impar. Supongamos que es u. El cambio de variables
r = ur', y = v’ + y nos convierte la forma de partida en otra equivalente con
a = 1. El cambio 3’ = by nos hace b = 1, luego toda forma en el caso que estamos
estudiando es equivalente médulo 2" a una de la forma x2 + xy + (2k + 1)y2.

Vamos a probar que la forma z? + zy + y? se puede transformar en ésta
mediante un cambio adecuado. Concretamente hacemos = = z’ + uy’, y = vy/,
(con v impar) con lo que llegamos a z2 + (2u + v)zy + (u? + uv + v?)y?. Hemos
de conseguir

2u+v = 1 (mdd2")
u? +uv+02 = 2k41 (méd 2")

Al despejar v en la primera congruencia y sustituir en la segunda llegamos a
la misma congruencia que antes, a saber: u? —u = impar (méd 2"), que ya
sabemos que tiene solucién.

Por dltimo notamos que las dos formas del enunciado no son equivalentes
modulo 27, pues evidentemente xy representa a todos los enteros, mientras que
22 + a2y +y? # 2 (méd 4). .

En particular el teorema anterior prueba que todas las formas cuadréticas
con discriminante impar son equivalentes médulo 2™. Al igual que hemos hecho
con los primos impares, definimos el cardcter médulo 2 de una forma f con
discriminante impar como x2(f) = 1. Asi sigue siendo cierto en este caso que
dos formas con el mismo discriminante son equivalentes médulo p™ si y sélo si
tienen el mismo cardcter médulo p.

Ya s6lo nos queda el caso en que 2 divide al discriminante. Este caso presenta
diferencias relevantes respecto al de los primos impares, debidas esencialmente
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a que el indice del subgrupo de los cuadrados en Usn no es 2, sino 4. En
efecto, dado un entero impar a, del teorema 8.12 se sigue que a se expresa como
a = re?, donde r = +1,45 y € es una unidad diddica. Tomando restos médulo
2" obtenemos que a = rk? (méd 2") para cierto entero impar k.

Teniendo esto en cuenta, procedemos como en el caso de los primos impares.
Dada una forma cuadratica ax?+2bzy+cy?, pasando a otra equivalente podemos
suponer que a es impar. El cambio x = 2’ — by, y = ay’ la transforma en
a(z? — D'y?), donde D’ = D/4. Por tltimo, expresando a = rk? (méd 2") y
haciendo el cambio z’ = kz, 3’ = ky llegamos a una forma equivalente a una de
las cuatro formas

r(z? — D'y?), r=4+1,45. (9.6)

Ahora vamos a ver que si 22 — D’y? representa r médulo 8, entonces es
equivalente con la correspondiente forma de (9.6) médulo 2™. En efecto, supo-
nemos que existen enteros u, v tales que A = u? — D'v? =7 (méd 8). El cambio
x = ux’'+D'vy', y = v’ +uy nos transforma x2 — D'y? en A(x?— D’y?). Ahora
expresamos A = 1'k? (méd 2"), donde v’ = £1, 45, y al tomar restos médulo 8
queda que v’ = r, con lo que el cambio ' = kx, 3y’ = ky nos lleva a una forma
equivalente a (9.6) para el r considerado.

En vista de esto estudiamos los impares representados médulo 8 por la forma
22 — D'y?. Son los indicados en la tabla siguiente, en funcién del resto de D’
modulo 8:
D |01 2 34| 5 6 |7
ro|1|£1]+£1 1] +1 111
+5 5|5 |£5|-5|5

—_

La tabla se interpreta como sigue:

e Si D/4 = 1,5 (méd 8) entonces 2% — D'y? representa todos los impares
médulo 8, luego es equivalente a todas las formas (9.6) y asi, todas las
formas de discriminante D son equivalentes médulo 2.

e Si D/4 =3,4,7 (méd 8) entonces las formas 22 — D'y? y 5(z% — D'y?) son
equivalentes, de donde se sigue que —(z? — D'y?) y —5(2? — D'y?) también
lo son. Por lo tanto toda forma de discriminante D es equivalente a
+(22— D'y?), y estas dos no son equivalentes entre si, pues una representa
sélo los impares congruentes con 1,5 moédulo 8, y obviamente, la otra sélo
representa los congruentes con —1, —5 médulo 8.

e Si D/4 =2 (mébd 8) tenemos que +(z% — D'y?) son equivalentes, y por lo
tanto £5(2? — D'y?) también lo son. Toda forma de discriminante D es
equivalente a x2 — D'y? si los impares que representa son congruentes con
+1 médulo 8 y es equivalente a 5(z2 — D'y?) si los impares que representa
son congruentes con +5 (méd 8).

e Si D/4 =6 (mdd 8) llegamos a una conclusién similar.
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e Si D/4 = 0 (méd 8) entonces cada forma de (9.6) sélo representa a los
impares congruentes con r médulo 8, luego determinan cuatro clases de
formas diferentes.

Estas conclusiones se pueden expresar también en términos de caracteres,
solo que ahora hemos de distinguir entre cuatro clases moédulo los cuadrados
y no entre dos. El andlogo al simbolo de Legendre seran ahora las funciones
siguientes:

Definicién 9.6 Las funciones § y ¢, definidas sobre los enteros impares, son las
dadas por

o \k=Dy2 1 sik= 1 (mdd 4)
6(k) = (1) { -1 sik=-1(mébd 4)

o (k271)/8 _ 1 si k =+1 (méd 8)
e(k) = (=1) —{ ~1 si k=5 (méd 8)

Podemos considerar a  y € como funciones en Ug, y entonces ¢ distingue a
{1,5} de {—1, -5}, mientras que e distingue a {1, —1} de {5, =5} y su producto
€d distingue a {1, -5} de {-1,5}.

Si f es una forma cuadrética de discriminante par D y a es cualquier nimero
impar representado por f, definimos el cardcter médulo 2 de f como

1 si D/4=1,5(mdbd 8)
) ela) si D/4=2(méd 8)
2() =93 5(a)  si D/4=34,7 (méd 8)
d(a)e(a) si D/4 =6 (méd 8)

Si D/4 =0 (mdéd 8) definimos tres caracteres de f médulo 2, dados por

x21(f) =d(a), x2a(f) =€la), xzs(f)=0d(a)e(a).

Hemos demostrado que estos caracteres no dependen de la eleccion de a asi
como que formas equivalentes médulo p™ tienen el mismo carédcter (o los mismos
caracteres 1) médulo p, para todo primo p, por lo que tiene sentido hablar del
cardcter de una clase de equivalencia de formas. Ademads tenemos el resultado
siguiente:

Teorema 9.7 Si p es primo, dos formas cuadrdticas de discriminante D son
equivalentes modulo p™ si y sélo si tienen el mismo cardcter modulo p. Esto
ocurre siempre que p{ D.

Para tratar unificadamente todos los casos en la medida de lo posible, con-
viene observar que para cada discriminante D y para cada primo p tenemos
definida una funcién xj, : U, — {£1} si p es impar, o x5 : Us — {£1} si

1En lo sucesivo, cuando hablemos del cardcter de una forma médulo un primo p habremos
de recordar que si p = 2 puede haber en realidad tres caracteres, si bien no lo indicaremos
explicitamente en cada ocasién para evitar constantes y mondtonas salvedades como ésta.
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p = 2, de manera que para cada forma cuadratica f de discriminante D se cum-
ple que x,(f) = X;([a]), donde a es cualquier niimero primo con p representado
por f.

La funcién xj es constante igual a 1 si p { D, es el simbolo de Legendre de
psip| D esimpar y es una de las funciones 1,9, ¢,¢ed si p = 2. Es importante
notar que cualquiera de ellas es multiplicativa, es decir, x;(zy) = x;(z)x;(y),
asi como que X;(x) s6lo depende del resto de z médulo D (si D es par pero
84 D, entonces x5 = 1,4, y en realidad depende del resto de  médulo 4).

9.2 Géneros de formas y moédulos

Definiciéon 9.8 Diremos que dos formas cuadraticas de un mismo discriminante
D son del mismo género si tienen los mismos caracteres.

Esto completa la clasificacién de las formas cuadraticas binarias: éstas se
dividen en érdenes segin su discriminante, las formas de cada orden se dividen
a su vez en géneros segun sus caracteres, y las formas de un mismo género se dis-
tribuyen en clases de equivalencia (en Z). Por ultimo cada clase de equivalencia
puede dividirse en dos clases de equivalencia estricta.

Segun los teoremas 9.2 y 9.7, dos formas son del mismo género si y sélo si
representan los mismos enteros médulo cualquier nimero natural n > 1.

Ejemplo En el capitulo VI calculamos las formas cuadraticas reducidas de
discriminante D = —504 = —23 .32 .7. Para este discriminante tenemos tres
caracteres no triviales, x2, x3 ¥ Xx7. El caracter médulo 2 viene inducido por
x5 = €. La tabla siguiente contiene todas las formas reducidas de discriminante
D junto con su sistema de caracteres. Vemos que las ocho clases de equivalencia

se reparten en cuatro géneros, a dos clases por género.
Forma X2 | X3 | X7
x? + 126y +
Tz + 183> +
922 + 14y
222 + 633>

1022 + 4oy + 13y% | — | +

1022 — 4oy + 13y | — | + | —
522 +4xy+26y% | — | — | —
522 —dxy +269% | — | — | —

+ o+ |+ o+
+ o+ |+t

En particular notamos que, aunque tres caracteres podrian definir ocho
géneros, de hecho sélo aparecen cuatro. Concretamente sucede que y2 = x7.
u

Todas las regularidades que se aprecian en este ejemplo pueden ser explicadas
tedricamente. Para ello conviene reformular la teoria de los géneros en términos
de ideales, donde tenemos una estructura de grupo.
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En el capitulo VI definimos una correspondencia biunivoca entre las clases
de equivalencia estricta de formas cuadréticas de discriminante D y las cla-
ses de similitud estricta de los médulos cuyo anillo de coeficientes es el orden
cuadrético de discriminante D. A través de esta correspondencia podemos de-
finir los caracteres y el género de una clase de similitud estricta de mddulos
C como los caracteres y el género de su clase de formas asociada. As{ mismo
definimos los caracteres y el género de un médulo en particular como los de su
clase de similitud estricta.

Conviene tener presente que dos mddulos similares no son necesariamente
del mismo género. Para ver ejemplos de esta situacién consideramos un orden
numérico de discriminante D > 0. Siguiendo la notaciéon que introdujimos
en el capitulo VI, llamamos 1 y —1 a las clases de similitud estricta de los
ideales principales generados respectivamente por nimeros de norma positiva
0 negativa. Sabemos que una forma asociada a 1 es la forma principal, que
representa a 1, y por lo tanto todos sus caracteres son positivos. Al estudiar
la relacién entre médulos y formas vimos también que a —1 le corresponde la
forma principal cambiada de signo, que representa a —1. Si, por ejemplo, D es
divisible entre un primo impar p tal que (—1/p) = —1, entonces, dado cualquier
médulo M del orden considerado, el médulo D M es similar a M pero tiene
caracter distinto moédulo p.

Notemos que hemos probado lo siguiente:

Teorema 9.9 En un orden cuadrdtico real, x,(—1) = x;(—1), para nimero
primo p.

Recordemos ahora el teorema 6.11, en virtud del cual si O es un orden cuadra-
tico, toda clase de similitud estricta de médulos de O admite como representante
a un ideal de norma prima con cualquier entero prefijado n. Cuando hablemos
de un ideal de un orden cuadratico O, sobrentenderemos siempre que su norma
es prima con el indice de O en su orden maximal. Los resultados del capitulo 3
nos garantizan que estos ideales heredan el buen comportamiento de los de los
ordenes maximales a través de la correspondencia descrita en el teorema 3.27.
Teniendo esto en cuenta, el teorema siguiente nos permite calcular los caracteres
de una clase sin necesidad de pasar por la clase de formas asociada.

Teorema 9.10 Sea O un orden cuadrdtico, a un ideal de O y p un primo que
no divida a N(a). Entonces xp(a) = x;(N(a)).

DEMOSTRACION: Hemos de calcular el cardcter de cualquier forma cuadra-
tica asociada a a. Segun el capitulo VI, tomamos una base orientada de a,
digamos (o, ), y una tal forma es la dada por f(z,y) = N(az + By)/ N(a).

Ahora bien, sabemos que a | N(a), es decir, N(a) € a, luego existen enteros
racionales u, v tales que N(a) = au + Bv. Entonces

f(u,v) =N(N(a))/N(a) = N(a),

luego efectivamente, x,(a) = x,(f) = x;(N(a)). "
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Este teorema tiene muchas consecuencias. La més importante es que, en
términos de mddulos, los caracteres son homomorfismos de grupos:

Teorema 9.11 Si M y N son mddulos de un mismo orden cuadrdtico O y p
es un primo, entonces Xp(MN) = xp(M)xp(N). En términos algebraicos, los
caracteres son homomorfismos del grupo de los mddulos de O (o del grupo de
clases estrictas de Q) en el grupo {+1}.

DEMOSTRACION: Sean a y b ideales de O estrictamente similares a M y N
respectivamente y con normas primas con p. Entonces

Xp(MN) = xp(ab) = x5, (N(a) N(b)) = x; (N(a))x; (N(b))
= Xp(a)xp(b) = xp(M)xp(N).

Si O es un orden cuadratico, xi,-..,Xm son sus caracteres, H es su grupo
de clases estrictas y llamamos Cy = {£1}, entonces tenemos un homomorfismo
de grupos

m veces
xX:H—Cyx---xCy

que a cada clase le hace corresponder su sistema de caracteres. Dos clases de H
son del mismo género si y sélo si tienen la misma imagen por x. En particular
el ntcleo de x es el género formado por las clases cuyos caracteres son todos
positivos. A este género lo llamaremos género principal Gg. Los géneros son las
clases del grupo cociente H/Ggy. A este grupo lo llamaremos grupo de géneros
del orden O. Su orden es potencia de 2 (de hecho, divide a 2™). También
es obvio ahora que todos los géneros contienen el mismo nimero de clases de
similitud estricta.

Ejemplo En el capitulo VI calculamos el grupo de clases de Q(\/7161 ) Vi-
mos que tiene orden 16, y estd generado por las clases o = [31], de orden 8, y
7 = [7o], de orden 2. Sus formas cuadraticas asociadas son 322 + 2xy + 54y? y

7x? + 2332, respectivamente. Por otro lado, el discriminante es A = —4-7-23
y los caracteres a considerar son 2 (que se calcula con x5 = §), x7 v x23. De
aqui obtenemos inmediatamente que los caracteres de o son (— —+) y los de 7

son (—+ —). Los restantes se calculan mediante el teorema 9.11:

I +4+|c* +++ |7 —4—-|70* —4-
o ——+|0® ——+|70 +——|70% +-——
o +4++|0% +++ |70 —+—|70° —4-—
o2 ——+ |07 ——+|70° +——|T07 +-——

Vemos que aparecen cuatro géneros: (++ +),(— —+),(—+ —),(+——) y
que hay exactamente cuatro clases de cada género. L]

La tnica propiedad que observamos y que todavia no sabemos justificar es
por qué el numero de géneros siempre es la mitad del nimero méaximo posible.
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La explicacién hay que buscarla en los géneros del orden maximal de un cuerpo
cuadratico y en su relacién con los géneros de sus otros 6rdenes. Conviene
introducir algunas definiciones.

Definicién 9.12 Diremos que un niimero entero D es un discriminante funda-
mental si es el discriminante del orden maximal de un cuerpo cuadratico.

Si D es el discriminante de un orden cuadratico arbitrario, entonces D se
descompone de forma tnica como D = m2D,, donde m es un ntiimero natural
(el indice del orden) y Dy es un discriminante fundamental.

Llamaremos caracteres fundamentales del orden cuadratico de discriminante
D a los caracteres Y, correspondientes a primos p que dividen al discriminante
fundamental Dy.

En el caso en que haya tres caracteres médulo 2, sélo consideraremos funda-
mental a uno de ellos, al tinico que cumple el teorema siguiente:

Teorema 9.13 Sea O un orden cuadrdtico de discriminante D y sea Xxp un
cardcter fundamental de O. Entonces

1. Si f es una forma cuadrdtica de discriminante D,
Xp(f) = (a,D)p = Pp(f),

donde a es cualquier numero racional representado racionalmente por f y
Up(f) es el invariante definido en 8.27.

2. 81 M es un médulo de O, entonces x,(M) = (N(M), D),.

DEMOSTRACION: 1) Supongamos en primer lugar que p es impar y que a es
primo con p. Como Dy es libre de cuadrados (salvo una posible potencia de 2)
se cumple que el exponente de p en D = m2Dy es impar. Asf pues, teniendo en
cuenta las propiedades del simbolo de Hilbert (teorema 8.25)

ol = (%) = @i = @D),

Sip =2 (y a es impar) distinguimos casos segin el resto de D /4 médulo 8.
Observar que en general (a, D)2 = (a,D/4)s.

o Si D/4 =1 (méd 4) entonces (a, D/4)s = 1 = xa(f).

e Si D/4=—1 (mbd 4) entonces (a, D/4)s = §(a) = x2(a).

e Si D/4=2(mdbd 8) entonces D/4 = 2u, donde u = 1 (méd 4) y asi
(a,D/4)2 = (a,2) (a,u)2 = (a,2)2 = €(a) = x2(f)

o Si D/4 =6 (méd 8) entonces D/4 = 2u, donde u = —1 (méd 4) y

(@, D/4)s = (a,2)2 (a,u)2 = €(a)d(a) = x2(f)-
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e Si D/4 =0 (mbd 8) entonces tenemos tres caracteres médulo 2. Vamos a
ver que uno de ellos es (a, D/4)s (el mismo para toda forma f y todo a).
Sea D /4 = 2u, donde u es impar. Entonces (a, D/4) = (a,2%)s (a,u)s. El
primer factor es 1 o €(a), segun si i es par o impar. El segundo factor es
1 0 §(a) segin el resto de v mdédulo 4. No pueden ser ambos iguales a 1,
pues si i es par, entonces Dy = 4d (pues 2 | Dy por definicién de cardcter
fundamental) y como Dy es un discriminante maximal d = —1 (mdd 4).
Asf pues, (a, D)y es uno de los tres caracteres 6(a), e(a), §(a)e(a).

Por otra parte, el discriminante D y el determinante d de la forma f satis-
facen la relacién d = —D/4, por lo que ¥,(f) = (a,D/4), = (a,D),. Pero el
teorema 8.26 nos da que ¥( f) se puede calcular en realidad con cualquier nimero
p-adico representado por f. En particular con cualquier nimero racional.

2) Sea (a, B) una base orientada de M. Una forma asociada a M es

Flany) = Nez+5y)

N(M)

Como (a, #) es una Q-base del cuerpo cuadrético al que pertenece M, existen
numeros racionales a, 0 tales que ax + 0y = N(M). Entonces, f(«a,3) = N(M),
es decir, f representa racionalmente a N(M), y concluimos por el apartado
anterior. [

De aqui se siguen muchas consecuencias importantes. Por ejemplo, si H,, es
el grupo de clases de un orden O,, y H es el grupo de clases del orden maximal
O, entonces tenemos un epimorfismo « entre ellos dado por a([a]) = [a]. Si xp
es un caracter fundamental de O,,, trivialmente lo es de O también, y por el
teorema anterior se cumple

xo (@ () ) = (N(), Do)y = (N(a), m* Do), = xy ([a])-

Esto significa que los caracteres de a([u]) se obtienen sin mas que suprimir los
caracteres no fundamentales de [a]. En particular o envia clases del mismo
género a clases del mismo género.

Ejemplo En el capitulo VI calculamos el epimorfismo entre el grupo de clases
del orden de discriminante D = —504 = —8-9 -7 y el de su orden maximal, de
discriminante Dy = —56 = —8 - 7. La tabla siguiente muestra los géneros de
ambos grupos de clases:

z? + 126y> +++ || 2 + 1492 ++
922 + 149> + -+
72 + 18y> +++ || 222 4+ Ty? ++
222 + 63y2 +—-+
522 —dxy 4+ 26y% | — — — || 322 + 22y + 532 | — —
102% — 4oy + 13y | — + —
52 4 4wy + 2692 | — — — || 322 — 22y +5y% | — —
1022 + 4oy + 13y | — + —
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Los caracteres fundamentales son xo2 vy x7. Por ello los caracteres del orden
maximal se obtienen eliminando el signo central. m

Para érdenes maximales el teorema 9.13 puede mejorarse.

Teorema 9.14 Sea O un orden cuadrdtico mazximal de discriminante D y sea
Xp cualquier cardcter de O. Entonces

1. Si f es una forma cuadrdtica de discriminante D,

Xp(f) = (aﬂD)p = wp(f)a

donde a es cualquier nimero racional representado racionalmente por f.
2. 81 M es un mdédulo de O, entonces x,(M) = (N(M), D),.

DEMOSTRACION: El teorema 9.13 prueba estos hechos en el caso en que
p | D. Sipt D sabemos que x,(f) = 1 para toda forma de discriminante
D. Por otro lado, a puede tomarse primo con p y entonces, si p es impar,
Yp(f) = (a, D), = 1 (pues p divide a D con multiplicidad 1). Si p = 2 enton-
ces podemos tomar ¢ impar, y necesariamente D = 1 (mdd 4), luego también
va(f) = (a, D)y = 1.

La versién en términos de médulos se deduce de la de formas como en el
teorema 9.13. m

Ahora podemos comprender por qué el nimero de géneros es siempre la mi-
tad del que a priori podria ser. En un orden maximal, el nimero de caracteres
negativos de un género ha de ser par, como consecuencia del teorema 8.37 (ad-
mitiendo la ley de reciprocidad cuadratica). En efecto, la férmula producto que
aparece en dicho teorema tiene como caso particular que

[T x(M) = T](N(M), D), =1.

p

(Falta el factor (N(M), D)o, pero siempre vale 1, porque N(M) > 0.) De hecho
vamos a probar que esta propiedad equivale a la ley de reciprocidad cuadratica,
y nos basaremos en ello para demostrarla.

Teorema 9.15 Las siguientes afirmaciones son equivalentes:
1. La ley de reciprocidad cuadrdtica.

2. 8i M es un médulo de un orden cuadrdtico maximal de discriminante D,
entonces
H Xp(M) =1,
P

es decir, el numero de caracteres negativos de M es par.

3. Si D es un discriminante fundamental y m es el numero de primos dis-
tintos que dividen a D, entonces el niumero de géneros g del orden de
discriminante D cumple g < 21,
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DEMOSTRACION: Acabamos de probar que 1) implica 2).

2) implica 3) es evidente, pues de los 2™ géneros posibles, la mitad de ellos
tendrian un ndmero impar de caracteres negativos, luego segiin 2) no se dan.
Vamos a probar que 3) implica la ley de reciprocidad cuadratica.

1.

Si p es un primo p = —1 (mdd 4) entonces (—1/p) = —1.

Consideremos K = Q(\/—l)7 D = —4, m = 1. Entonces hay un solo
género, el principal. Si fuera (—1/p) = (—4/p) = 1, entonces p se des-
compone como producto de dos primos de norma p. Si p es uno de estos
primos,

X?(p) = (p7 _4)2 = (p7 _1)2 - _1a

con lo que el género de p no seria el principal, contradiccién.

Si p es un primo p =1 (mdd 4) entonces (—1/p) = 1.

Consideramos K = (@(\/]_9), D=p, m=1,g=1. Como el tinico género
es el principal, aplicando 9.9 tenemos que 1 = Xp(fl) = (-1/p).

Las afirmaciones 1) y 2) prueban la primera ley suplementaria.

Si p es un primo p =1 (mdd 8) entonces (2/p) = 1.

Consideramos K = Q(\/}—?), D =p, m=1, g=1. Entonces (1 + \/1_7)/2
tiene norma par, pero no es divisible entre 2, lo que prueba que 2 se
descompone en producto de dos primos de norma 2. Si q es uno de estos

primos, 1 = xp(q) = (2,p)p = (2/p).

Si p es un primo p = 3,5 (mdd 8) entonces (2/p) = —1.

Tomamos K = Q(\/ﬁ), D=8 m=1,g=1. Si(2/p) =1 entonces p
se descompone en dos factores de norma p. Si p es uno de estos factores
1= x2(p) = (p,8)2 = (p,2)2 = —1, contradiccidn.

Sip =7 (mdd 8) entonces (—2/p) = —1.

TomamosK = Q(\/—Q), D= -8 m=1, g =1y razonamos igual que en

el caso anterior.

Si p =7 (mdd 8) entonces por 1) y 5)
(2/p) = (=1/p)(=2/p) = (=1)(=1) = 1.

Las afirmaciones 3), 4) y 6) prueban la segunda ley suplementaria.

Sipy ¢ son primos impares p = 1 (méd 4) y (¢/p) = —1, entonces también
(p/q) = —1.

Tomamos K = (@(\/}_7), D=p,m=1g=1. Si(p/q) =1, entonces ¢q
se escinde en dos primos de norma ¢. Si q es uno de ellos, 1 = x,(q) =
(4,p)p = (a/p)-



9.2. Géneros de formas y moédulos 223

8. Si p y ¢ son primos impares p = —1 (mdd 4) y (¢/p) = —1, entonces
(=p/q) = -1

Tomamos K = (@(\/—p), D =—-p, m=1, g =1y razonamos igual que
en el caso anterior.

Por 1) y 2), tenemos (—1/q) = ¢ (mdd 4), luego 8) implica que (p/q) = —1
sig=1(méd 4)y (p/qg) =1siqg=—1(mdd 4).

9. Sipy ¢ son primos impares p = 1 (méd 4) y (¢/p) = 1, entonces (p/q) = 1.
Si ¢ =1 (mdd 4), entonces (p/q) = —1 implicarfa (¢/p) = —1 por 7).

Si g = —1 (méd 4), entonces (p/q) = —1 implicaria (¢/p) = —1 por el
comentario posterior a 8).

Los apartados 7) y 9) prueban la mitad de la ley de reciprocidad.

10. Si p y ¢ son primos p, ¢ = —1 (mdd 4) y (¢/p) = 1, entonces (p/q) = —1.
Tomamos K = @(,/pq), D = pg, m =2, g < 2. Entonces x,(—1) =
(—1/p) = —1 por 1), e igualmente y4(—1) = —1, luego g = 2 y los géneros
son (+), (——).

Claramente p = p?, ¢ = g2, para ciertos ideales p, g. Como N(\/pq) = —pq
ha de ser (/pg) = pq, luego [pq] = —1, [p]® = 1, [q]> = 1. Esto implica

que [p] = —lg].
Ahora bien, x,(~[a]) = —xp(la]) = —(a/p) = ~1 ¥ xq(lp]) = /0
Como ambos caracteres han de ser iguales, Xq([p]) =—1.

La afirmacién 10) y la observacién tras 8) completan la prueba.

Ejercicio: Admitiendo la ley de reciprocidad cuadritica, probar que el nimero de
géneros de cualquier orden cuadrético es a lo sumo 2™~ !, donde m es el nimero de
caracteres. Si hay tres caracteres médulo 2, el nimero de géneros es a lo sumo 2™ 2.

Dedicaremos la seccién siguiente a demostrar la ley de reciprocidad cuadré-
tica. Ahora seguiremos extrayendo consecuencias de los teoremas 9.13 y 9.14.
El teorema siguiente es inmediato si tenemos en cuenta 8.36.

Teorema 9.16 Si D es un discriminante fundamental, entonces dos formas
cuadrdticas de discriminante D son racionalmente equivalentes si y solo si son
del mismo género. Si D no es fundamental, dos formas del mismo género son
racionalmente equivalentes, pero el reciproco es falso en general.

Ejercicio: Sea D un discriminante fundamental y f, g dos formas de discriminante
D. Si f representa un nimero a y g representa un nimero b’a, entonces f y g son del
mismo género. El reciproco es cierto aunque el orden no sea maximal.

Una consecuencia inmediata del teorema 9.14 es que en un orden maximal, el
género de un médulo depende sélo de su norma. Mas exactamente, la situaciéon
es ésta:
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Teorema 9.17 Si dos mddulos M y M’ del orden O,, de un cuerpo cuadrdtico
K son del mismo género, entonces existe un v € K de norma positiva tal que
N(M) = N(y) N(M"). Si el orden es el mazimal (m = 1) entonces el reciproco
también es cierto.

DEMOSTRACION: Sea M = (u,v), M’ = (u/,0’). Las formas asociadas a
estos moédulos son

Flary) = N(uz + vy) N(vw'z + v'y)

N(M) N(M')

Si médulos son del mismo género entonces las formas f y g son racionalmente
equivalentes (y el reciproco es cierto si el orden es maximal). Por el teorema
8.8, esto ocurre si y s6lo si ambas formas representan racionalmente a un mismo
numero, es decir, si y sélo si existen nidmeros racionales no nulos r, s, r’, s’ tales
que N(ur +vs)/N(M) = N(u'r’" +v's")/ N(M’) o, en otros términos, si y sélo si
existen elementos no nulos £ y & en K tales que N(¢)/N(M) = N(¢')/ N(M")
o, equivalentemente N(M) = N(M’')N(£/¢'). Entonces v = £/¢ cumple el
teorema. u

y o glx,y) =

Ejercicio: Probar que, en un orden cuadratico arbitrario, dos ideales con la misma
norma son del mismo género (tener en cuenta que dos ideales primos con la misma
norma son conjugados, y que dos ideales conjugados son del mismo género).

9.3 EIl niimero de géneros

En esta seccion demostraremos la ley de reciprocidad cuadrética contando
el nimero de géneros. De acuerdo con el teorema 9.15 es suficiente probar que
en un orden maximal el nimero de géneros g es a lo sumo 2™ !, donde m es el
ntimero de primos que dividen al discriminante.

Para ello nos basaremos en la siguiente observacion trivial: Si C' es una clase
de similitud estricta (no necesariamente de un orden maximal), entonces C?
pertenece al género principal, pues para cualquier cardcter se cumple x,(C?) =
xp(C)? = 1. Asi, si llamamos H al grupo de clases, H? al subgrupo de los
cuadrados y Gy al género principal, tenemos que g = |H : Go| < |H : C?|, luego
basta probar que este tltimo ndice es a lo sumo 2™ 1.

En realidad el ntiimero de géneros es géneros es exactamente igual a 21, y
este hecho tiene interés tedérico por si mismo. Para probarlo necesitamos probar
a su vez que el género principal coincide con el grupo de los cuadrados. Esto
se conoce como teorema de duplicacion de Gauss. Demostramos primero un
resultado técnico que podemos evitar si nos restringimos a érdenes maximales
(el tnico caso necesario para determinar el nimero de géneros y probar la ley
de reciprocidad).

Teorema 9.18 Sea K un cuerpo cuadrdtico y m un numero natural. Si existe
un v € K no nulo cuya norma es positiva y se expresa como cociente de enteros
primos con m, entonces v puede escogerse de la forma v = «/8, donde a y [
son enteros de morma positiva prima con m.
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DEMOSTRACION: Sea v = «/f, donde o y 3 son enteros en K. Sean
P1, - .-, Pr los primos que dividen a m y que en K se descomponen como p; = p;q;,
donde p; # ¢;. Sean a; y a} los exponentes de p; y q; en «. Sean b; y U
los exponentes en 3. Por hipétesis ha de ser a; + a; = b; + b;. Llamemos
¢; = a; — b; = b, — al. Para cada i, sea m; € p; \ p?. Por el teorema chino del
resto existe un entero ¢ € K tal que

¢ = ol (mod pith),

¢ = 1(médq&th).

De este modo, p; divide a ( con exponente c;, mientras que ¢; no divide a
¢. Sea (' el conjugado de (. Claramente  y ¢’ tienen la misma norma, luego
v* = (¢'a)/(¢P) tiene la misma norma que . Ahora, el exponente de p, tanto
en ¢'a como en (S es a;, y el exponente de q; en (' y en (3 es bl.

Asf pues, todo divisor primo de m divide a ('a y en (8 con la misma mul-
tiplicidad (para otros divisores distintos de los que hemos tratado —ver la ta-
bla 3.1— se sigue inmediatamente de la hipétesis). Podemos aplicar el teorema
3.7 para concluir que v* = o*/(3*, donde ningiin primo que divida a m divide
a #* (luego tampoco a a*). Por consiguiente, a* y #* tienen norma prima con
m. Si no es positiva los multiplicamos por a*. [

Teorema 9.19 (Teorema de duplicacién) FEl género principal de un orden
cuadrdtico O, estd formado por los cuadrados del grupo de clases.

DEMOSTRACION: Consideremos una clase [a] del género principal. Por el
teorema 6.11 podemos suponer que a es un ideal de norma prima con m. El
teorema 9.17 nos da que N(a) = N(v) para un cierto v con N(y) > 0. Por el
teorema anterior podemos tomar v = /3, donde «, 5 € O tienen norma positiva
prima con m. Entonces [a] = [Ba] y N(fa) = N(«). Esto significa que podemos
suponer que v € O. Ahora veremos que podemos tomarlo en O,,. En efecto,
existen u y v enteros en K tales que uy+vm = 1. Asiuy € 14+(m) C O,, y sigue
siendo primo con m. Lo mismo vale para (u7)?. Ademés N(u?va) = N((u7)?)
y tanto u?y como (u7)? tienen norma positiva. Por consiguiente [a] = [u?va] y
podemos sustituir v por (uy)?2.

Descompongamos en ideales primos de O,,:

a; b; Cj _ Ui Vs w;
a=[Deivar IIe7. v =TDeiar 115"
i 7 % 7

donde hemos distinguido entre los primos p; de norma p; tales que p; = p;q;
con p; # q; y los primos restantes t; de norma r;-j (t; = 1,2) tales que r; = t?
o bien r; = t;.

Al igualar las normas y teniendo en cuenta que la factorizacién es tnica,
resulta que a; + b; = u; +v; y ¢;j = w;. Tomando clases estrictas tenemos

la] = [y~"a] = [ Jlpa)® [aal® s~ [a:] =,

2
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Pero [1] = [p;] = [pi][a:], luego [q;] = [p;] ™" y asi

| |

A %
|

El grupo de clases de un orden cuadratico se descompone en producto de gru-
pos ciclicos de 6rdenes potencias de primos (los llamados divisores elementales).
Digamos que

H = {c1) x - x{cr) x {dq) x -+ x (ds), (9.7)

donde cy,...,c, tienen orden 2% y di,...,d, tienen orden impar. Por consi-
guiente el género principal es

Go = (cf) x - x {(c2)y x (di) x -+- x (d3).
Pero d; = (df)(t_l)ﬂ7 donde ¢ es el orden de d;, luego (d?) = (d;), y asi

Go = (cf) x - x {c2) x (d1) x - x (dg) .

Esto nos da la siguiente expresién para el grupo de géneros:

G=H/Gy= ((c1) /(c})) x -+ x ({c) / {c2)) .

Resulta, pues, que el niimero de géneros es g = 2™, donde n es el nimero de

.. t;—1 .,
divisores elementales pares de H. Puesto que cada clase c? tiene orden 2, el

grupo
A= <c?t171> X oo X <c§tr71> <H

es isomorfo al grupo de géneros.

Pero por otro lado A = {C' € H | C? = 1} (teniendo en cuenta (9.7), un
elemento de H tiene orden 2 si y sélo si todos sus factores tienen orden 2, si y
s6lo si estd en A).

Definicion 9.20 Una clase C' del grupo de clases estrictas H es ambigua si
cumple C? = 1.

Hemos probado que el grupo de géneros es isomorfo al grupo de clases am-
biguas. Gauss demostrd la ley de reciprocidad cuadratica contando el nimero
de clases ambiguas, que es lo que vamos a hacer a continuaciéon. En lo sucesivo
consideraremos unicamente clases de similitud estricta en un orden cuadratico
maximal (trabajar en el caso general no aprovecharfa para nada).

Si C es una clase de H, llamaremos C a la clase conjugada de C, es decir,
la formada por los médulos conjugados de los médulos de C. Si a es un ideal
y @ es su conjugado, entonces aa = (N(a)), luego para toda clase C' se cumple
que CC = 1. Por lo tanto C es una clase ambigua si y sélo si C = C.

Un ideal a es ambiguo si @ = a y no es divisible entre enteros racionales no
unitarios.
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Consideremos un ideal ambiguo a # 1 y descompongdmoslo en factores pri-
mos. Si p es uno de los primos de a, segin probamos en el capitulo III (ver
tabla 3.1) hay tres posibilidades: o bien p = p es un primo racional, o bien
N(p) = p = pq, con q # p (y entonces q = p, por el teorema 3.17), o bien
N(p) =p=p*.

Descartamos la primera posibilidad por definicién de ideal ambiguo. El
segundo caso tampoco puede darse, pues como p | a, también p | a = a, luego
p = pp | a, en contra de la definicién de ideal ambiguo.

Esto prueba que los unicos factores primos posibles de los ideales ambiguos
son los primos p tales que N(p) = p?, y éstos son exactamente los que dividen al
discriminante D del orden que estamos considerando. Mas atn, la multiplicidad
de p en a tiene que ser 1, o de lo contrario N(p) = p? dividirfa a a.

Reciprocamente, si a es un ideal formado por productos de divisores primos
de D con multiplicidad 1, es claro que a es un ideal ambiguo. Si llamamos m al
namero de divisores primos de D, tenemos que el nimero de ideales ambiguos
es 2™ (incluyendo al ideal 1, que no tiene factores primos).

Si demostramos que cada clase ambigua contiene exactamente dos ideales
ambiguos habremos demostrado que hay exactamente 2™~ ! clases ambiguas,
luego también 2™ ~1 géneros, tal y como queremos demostrar.

La clave de la prueba es un sencillo resultado debido a Gauss y a Kummer,
que Hilbert generalizé hasta lo que ahora se conoce como el teorema 90 de
Hilbert.

Teorema 9.21 Sea K = Q(\/E) un cuerpo cuadratico y O su orden maximal.
Si o € K cumple que N(a) = 1, entonces existe un p € O tal que o = p/p.
Ademds p es unico salvo miltiplos por nimeros racionales.

DEMOSTRACION: Si o = —1 basta tomar p = v/d. En otro caso se cumple
que a = (1 + «)/(1 + &). Multiplicando por un entero racional podemos exigir
que el numerador esté en O, y se cumple lo pedido.

Si p/p = 0/ entonces pg = po = r € Q, pues r es invariante por conju-

gacién. Por lo tanto
ro r
= — = —70 = 80"

od  N(o)

con s € Q. n

p:

ST

Teorema 9.22 Cada clase ambigua de un orden cuadrdtico mazximal O contiene
exactamente dos ideales ambiguos. Por lo tanto O tiene exactamente 2™ !
clases ambiguas, luego también 2™~ géneros, donde m es el niimero de divisores
primos del discriminante de O.

DEMOSTRACION: Veamos en primer lugar que toda clase ambigua contiene
al menos un ideal ambiguo. Toda clase ambigua contiene un ideal a. Que la
clase sea ambigua significa que [a] = [a], es decir, que a = «a para un cierto
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nimero « de norma positiva. Como a y a tienen la misma norma ha de ser
N(a) = 1, luego por el teorema anterior a = (p/p)a, con p € O. Por lo tanto
pa = pa.

Si N(p) < 0 hacemos vVdpa = —vVdpa = v/dpa y N(v/dp) > 0. De este modo
tenemos un ideal b estrictamente similar a a y tal que b = b. Si b es divisible
entre enteros racionales hacemos b = mc, donde ¢ ya no es divisible entre enteros
racionales. Entonces ¢ es estrictamente similar a a y es claro que se trata de un
ideal ambiguo.

Ahora basta probar que la clase principal contiene exactamente dos idea-
les ambiguos, pues si (1) y («) son los dnicos ideales estrictamente principales
ambiguos, toda clase contiene al menos dos ideales ambiguos: el que ya hemos
probado que existe, digamos a y el ideal aa. Por otro lado, si una clase contu-
viera tres ideales ambiguos, digamos a, Sa y va, con N(3), N(v) > 0, entonces
los ideales (1), (8), (7) estarfan en la clase principal y serfan ambiguos.

Supongamos que (a) es un ideal ambiguo con N(«) > 0 y veamos qué po-
sibilidades hay. Tenemos que () = (@), luego a/& = € es una unidad de O de
norma +1.

Sid#—1,-3,d <0, entonces e = +1, y si a« = a + b\/d (con a, b enteros o
semienteros) la condicién a = +a nos da a = a o bien a = bv/d (con lo que a
y b han de ser enteros). Como ademds (a) no ha de ser divisible entre enteros
racionales, las tinicas posibilidades son (1) y (\/3)

Si d = —1,—3 no es necesario hacer calculos: en ambos casos el nimero de
clases es 1 y m = 1, luego el nimero de ideales ambiguos es 2 y, efectivamente,
hay dos ideales en la clase principal. Con esto tenemos probado el teorema para
cuerpos imaginarios.

Supongamos ahora que d > 0 y que la unidad fundamental tiene norma
negativa. Como N(€) > 0, necesariamente, +¢ ha de ser una potencia par de
la unidad fundamental, luego € = +n? para una cierta unidad 7. Tenemos que
a = £n?. Multiplicando por 7 queda af = £na.

Sea aff = a + bV/d. Este ntimero tiene la propiedad de que su conjugado es
él mismo o su simétrico. Esto lleva a que aij = a o bien «ij = bv/d, luego ()
ha de ser (a) o (WE ) ¥, como no ha de ser divisible entre enteros, sélo hay dos

posibilidades: (1) y (\/E)

Nos queda el caso en que d > 0 y la unidad fundamental 7 tiene norma
positiva. Por el teorema anterior, n = p/p para un cierto entero p. Podemos
suponer que N(p) > 0, pues en caso contrario cambiamos p por Vdp, y 1 por
—n (que es también una unidad fundamental). También podemos suponer que
p no es divisible entre enteros racionales.

Notar que p no es una unidad, o de lo contrario 7 = p?, lo cual es imposible
dado que 7 es una unidad fundamental. Por lo tanto los ideales (1) y (p) son
distintos y claramente son ambiguos. Vamos a probar que no hay ninguno més.

Si (a) es un ideal ambiguo (con N(«) > 0) tenemos que o = e para una
unidad €, que sera de la forma ¢ = +n' = +p'/p'. Entonces ap’ = +ap'.
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Expresando este nimero como a + bv/d (con a, b enteros o semienteros), esta
ecuacién conduce a que ' = a o bien ap’ = b\/d (con a, b enteros). Teniendo
en cuenta los signos de las normas, el segundo caso es imposible, luego ap’ = a.

Digamos que t = 2k + u, donde u = 0, 1. Se cumple que p = N(p)/n, luego
podemos escribir ap*/n* = a/ N(p)*. El primer miembro es entero y el segundo
es racional, luego ap®/n* = a’ € Z.

Si u =0 queda () = (a’) = (1), puesto que («) no es divisible entre enteros
racionales. Supongamos finalmente que v = 1, de modo que (a) = (a’/p).

Tenemos que p | a’. El hecho de que (p) sea ambiguo implica que los factores
primos de (p) son todos distintos dos a dos y, si p es uno de ellos, entonces p? = p
para un cierto primo p tal que p | N(p) | N(a'), luego p | @’ y asi concluimos que
N(p) | o

Consecuentemente a’/p = a’p/ N(p) = a’'p, para un cierto entero racional
a”, y nos queda («) = (a”’p) = (p). "

Con esto queda demostrada la ley de reciprocidad cuadrética. Notemos que,
sin el teorema 9.19, el teorema anterior prueba que |H : H?| = 2™~1 lo cual es
suficiente para probar la ley de reciprocidad. Todavia no hemos probado que el
nimero de géneros es exactamente la mitad del nimero de géneros posibles en
ordenes no maximales. Esto lo veremos mas tarde. Terminamos la seccién con
algunas consecuencias inmediatas del teorema anterior:

e Hay cuerpos cuadrdticos (tanto reales como imaginarios) con un ndmero
de clases arbitrariamente grande, pues si llamamos n al nimero de clases
en cada género, tenemos la relacién h' = gn = 2™ ln, y basta tomar
determinantes divisibles entre muchos primos.

e El niimero de clases estrictas h’ es impar si y sélo si el discriminante D es
divisible por un tnico primo (pues el nimero de géneros es el nimero de
divisores elementales pares del grupo de clases).

e En particular, una condicién necesaria para que un cuerpo tenga facto-
rizacién unica (h = 1) es que el discriminante sea divisible por un solo
primo en el caso de los cuerpos imaginarios o cuerpos reales con unidades
de norma negativa, y que el discriminante sea divisible por a lo sumo dos
primos en el caso de cuerpos reales sin unidades de norma negativa.

9.4 El caracter de un cuerpo cuadratico

La ley de reciprocidad cuadratica tiene muchas repercusiones sobre los cuer-
pos cuadraticos. En esta seccién veremos que determina unas reglas muy sen-
cillas sobre el tipo de factorizacién de los primos racionales. Ya hemos usado
en varias ocasiones que un primo racional p puede factorizar de tres formas
distintas en un cuerpo cuadratico:

Definicién 9.23 Sea K un cuerpo cuadrético y p un primo racional. Diremos
que p se escinde en K si p = pq, donde p y q son dos primos distintos de K.
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Diremos que p se ramifica en K si p = p2, para un cierto primo p de K. Diremos
que p se conserva en K si p es primo en K.

Llamaremos cardcter de K a la aplicacién xx : Z — {—1,0,1} dada por

IT (a,Ak), si(a,Ag)=1
Xk (a) = {

plAK

0 si(a,Ag) #1

Seguidamente probamos que x i determina el caracter de los primos respecto
a K (si se ramifican, se escinden o se conservan):

Teorema 9.24 Sea K un cuerpo cuadrdtico y q un primo racional. Entonces

0 siq se ramifica en K,
xx(q) = 1 siq se escinde en K,
—1 siq se conserva en K,

DEMOSTRACION: El caso de los primos que se ramifican es claro. Suponga-
mos que ¢ se escinde. Entonces existe un ideal q tal que N(q) = ¢.

Xk () = H (¢, Ak)p = H (N(q), Ax)p = H Xp(q) = 1.

plAK plAk plAK

Reciprocamente, supongamos que xx(¢) = [[ (¢,Ax)p, = 1. El teorema
plAK

[1(a.2k), =1. (9.8)

p

8.37 nos da que

cuando p recorre todos los primos incluido p = co. Si p{ Ak, p # ¢ se cumple
que (¢, Ag)p = 1, pues si p es impar es inmediato y si p = 2 entonces tenemos
que Ag =1 (mdéd 4), con lo que también se cumple. Ademas (¢, Ax ) = 1, ya
que ¢ > 0. Esto implica que si eliminamos el factor (¢, Ax), en 9.8 el producto
sigue dando 1, luego (¢, Ak), = 1.

Si ¢ es impar (¢, Ax)q = (Ax/q) =1, luego g se escinde en K. Sig =2 la
condicién (2, Ak)s = 1 equivale a que D = +1 (mdéd 8), y puesto que entonces
A es impar, Ag = 1 (mdd 4), luego ha de ser de hecho Axg = 1 (méd 8), y
esto implica que 2 se escinde. L]

Esto tiene interés porque las propiedades del simbolo de Hilbert prueban que
Xk tiene un comportamiento muy satisfactorio:

Teorema 9.25 Sea K un cuerpo cuadrdtico de discriminante A y sean m y n
enteros racionales.

1. xx(mn) = xxg(m)xx(n).
2. Sim=n (méd A), entonces xx(m) = xx(n).

3. XK toma los tres valores —1,0, 1.
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4. xk(=1) = A/|A].

DEMOSTRACION: 1) Es inmediato a partir de la definicién de xx y de las
propiedades del simbolo de Hilbert.

2) Si m y n no son primos con A, entonces xx(m) = xx(n) = 0. En caso
contrario es claro que

xx(m) = [ x;(m),

plA
y las funciones x;(m) dependen sdlo del resto de m médulo A.

3) Obviamente xx toma el valor 0y xx (1) = xx(1?) = xx(1)? = 1. Hay
que probar que también toma el valor —1.

El discriminante A sélo es potencia de 2 cuando A = £8, A = —4. En estos
casos podemos encontrar explicitamente un primo que se conserve en el cuerpo
en cuestién. Supongamos, pues que A es divisible entre un primo impar q.

Sea A = gm, donde (¢,m) = 1, puesto que salvo potencias de 2 se cumple
que A es libre de cuadrados. Por el teorema chino del resto existe un entero r
tal que r es un resto no cuadritico médulo ¢ y » = 1 (méd 8m). Entonces, si
p| A, p# g tenemos que (r,A), = (r,p), = (r/p) =1 si p es impar, y también
si p =2, usando que r =1 (mdd 8). Por consiguiente

xi(r) = (r,A)g = (r/q) = —1.

4) Sea A = 2'm, donde m es impar libre de cuadrados. Para cada primo
p | m tenemos que (—1,A), = (—1,p), = (—1/p) = p (mdd 4).

Por otra parte (—1,A)y = (=1,2) (=1,m)s = (—1,m)s = m (méd 4).

Al multiplicar todas las congruencias queda xx(—1) = m |m| (méd 4). No-
tar que si A es impar hemos incluido un factor de maés, pero no importa, pues
en tal caso (—1,A)y =m =1 (mdd 4).

Claramente entonces yx(—1) = m/|m| = A/|A|. "

Definicién 9.26 Sea K un cuerpo cuadratico de discriminante A. Sea Ua el
grupo de las unidades del anillo de restos médulo |A[, esto es, el formado por
las clases [m] tales que (m,A) = 1.

El teorema anterior permite considerar x : Un — {£1}, y vista asi es un
epimorfismo de grupos.

Llamaremos clases de escision de K a las clases cuya imagen por y g es 1.

Las clases de escision forman el nicleo de x g, luego son un subgrupo de
Ua que contiene exactamente a la mitad de las clases. Teniendo en cuenta que
X% = 1 es evidente que las clases que son cuadrados son de escisién.

El apartado 4) del teorema anterior nos dice que si A > 0 entonces [m] es
una clase de escision si y sélo si lo es [—m], mientras que si A < 0 entonces [m]
es una clase de escisién si y sélo si [-m] no lo es.

Estas propiedades permiten determinar facilmente las clases de escision.
Segiin el teorema 9.24, un primo p ¥ A se escinde en K si y sélo si [p] es



232 Capitulo 9. La teoria de los géneros

una clase de escision (y se conserva en caso contrario). Notar que el teorema de
Dirichlet asegura que todas las clases de Ua contienen infinitos niimeros primos,
si bien hemos podido definir el concepto de clase de escisién sin necesidad de
este hecho.

Todas estas propiedades de la factorizacion de los primos en cuerpos cuadré-
ticos eran ya conocidas por Euler, aunque fue Gauss el primero en demostrarlas
gracias a la ley de reciprocidad cuadrética.

Ejemplo Vamos a calcular el caracter de Q(\/ 15), o sea, A = 60. El grupo
U60 es

{11, (7], (11, [13], [17], [19], [23], [29], [31], [37], [41], [43], [47], [49], [53], [59] }

Comenzamos con x(59) = x(—1) = x(1) = 1.

x(7) = (60/7) = (4/7) = (2/7)> = 1, luego x(49) = 1, x(53) = x(~7) = L,
x(11) = x(—49) = 1.

x(13) = (60/13) = (8/13) = (2/13) = —1, luego x(47) = —1.

x(17) = (60/17) = (9/17) = 1, luego x(43) = 1.

Como ya tenemos ocho clases de escisién, las hemos encontrado todas, a
saber:

{[1], [7), [11], [17], [43], [49], [53], [59] }.

Ahora podemos probar calcular el nimero de géneros de los érdenes no
maximales.

Teorema 9.27 Sea O un orden cuadrdtico con m caracteres. Entonces una
combinacion de caracteres se corresponde con un género de O si y solo si el
numero de caracteres fundamentales negativos es par y, en caso de que haya
tres caracteres modulo 2, el numero de caracteres negativos modulo 2 es par.

DEMOSTRACION: Sea K el cuerpo cuadratico al que pertenece O. Puesto
que los valores de x;(z) dependen sélo del resto de z médulo p (o médulo 8), el
teorema chino del resto nos da un entero m primo con el discriminante A de O
tal que x;, (m) toma cualquier juego de valores prefijado, y m estd determinado
médulo A (aqui se usa la restriccién sobre los caracteres médulo 2). Si probamos
que O tiene un ideal de norma m, evidentemente su género tendrd la combinacion
de caracteres prefijada.

No es facil probar la existencia de tal ideal, asi que simplificaremos el
problema haciendo uso del teorema de Dirichlet sobre primos en progresiones
aritméticas (que probaremos en el capitulo XI). La sucesién m + kA contiene
un primo ¢, de modo que podemos razonar con ¢ en lugar de m. Ahora basta
observar que

xx(@) =[] x50 =1,

plAK
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por hipétesis, y esto significa que ¢ se escinde en K, luego existe un primo q de
norma 1, y como (g, A) = 1, la correspondencia entre los ideales de O y los de
K implica que O también tiene un primo de norma ¢ L]

El caracter de un cuerpo cuadratico nos da una expresion sencilla para el
nimero de ideales de una norma dada:

Teorema 9.28 Sea K un cuerpo cuadrdtico. El numero de ideales de K de

norma k es igual a Y xx(r).
r|k

DEMOSTRACION: Descompongamos k = pi' - - p;* como producto de facto-
res primos. Teniendo en cuenta la propiedad multiplicativa de xx se cumple

que
ZXK ZXK pl : ZXK Pt
r|k

i .
Si xk(pj) = 0 entonces Z Xk (pj)* = 1, luego estos factores no influyen.
1=

Si xk(pj) = —1 entonces Z Xk (p;)? vale 1 si s; es par y 0 si es impar.

Por lo tanto la suma total es 1gua1 a 0 cuando alguno de los exponentes s;
correspondientes a primos que se conservan es impar. Ciertamente, cuando esto
ocurre no hay ideales de norma k.

Si todos estos exponentes son pares entonces el sumatorio se reduce a los
factores correspondientes a los primos que se escinden. Supongamos que son
P1,-..,Pq. Entonces

S xw(r) = (s1+1)+ (sq+ 1) (9.9)

r|k

Hay que probar que éste es el nimero de ideales de norma k. Ahora bien, si a
es un ideal de norma £ y p es un primo que divide a un p; que se ramifica o se
conserva, entonces el exponente de p en a ha de ser 2s; si p; se ramifica o s; si
pj Se conserva.

La tnica variacién puede darse en los exponentes de los ideales que dividen
a primos racionales que se escinden p; = pq, donde los exponentes de p y g
han de cumplir inicamente que su suma sea s;. Por lo tanto el exponente de p
puede ser cualquiera entre 0 y s;, y éste determina el exponente de g. Asi pues,
cada primo p; que se escinde da lugar a s;,1 variaciones en la factorizacién de
a, luego el niimero de ideales de norma k es el dado por (9.9). m

Terminamos esta seccién con una variante de la férmula del teorema 4.18 en
la que sustituimos la funcién de Euler por el caracter del cuerpo cuadratico.

Teorema 9.29 Sea K un cuerpo cuadrdtico, sea h su nimero de clases y hy,
el nimero de clases del orden O,,. Sea e,, el indice del grupo de las unidades
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de O, en el grupo de las unidades del orden maximal. Entonces

hng H(l—XKT(m)h.

~ plm

DEMOSTRACION: Por las propiedades de la funcién de Euler generalizada,

o(m) = [[20™),
plm

donde k,, es el exponente de p en m.
Si xk(p) = 1 entonces p = p1p2, con N(p1) = N(p2) = p, luego

- _ 2
(p'r) = B(p")2(py") = (0 (0 = 1))
Si xx(p) = 0 entonces p = p2, con N(p) = p.
®(p'r) = d(p**r) = p* 7 (p - 1).

St x(p) = —1 entonces N(p) = p* y ®(p*) = p**»~2(p* - 1).
Es facil comprobar que los tres casos se retinen en la férmula

(p'r) = p*H(p—1) — P2 (p — D)xx (p) = ¢(p*)p" <1 — XKT(M> ~

Multiplicando sobre p obtenemos ®(m) = m ¢(m) [] (1 - XKT(”)> Sustitu-
plm
yendo en la férmula del teorema 4.18 obtenemos la expresiéon buscada. L]

Ejercicio: Usar la férmula del teorema anterior para calcular el nimero de clases del

orden O3 de Q(\/TQ)

9.5 Representaciones por formas cuadraticas

Hemos iniciado el capitulo explicando que nuestra intencién al estudiar los
géneros era buscar condiciones suficientes para que un entero esté representado
por una forma cuadratica, pero pronto nos hemos desviado hacia consideraciones
tedricas sobre los géneros. Ahora estudiaremos la parte practica. Como punto
de partida, consideremos el teorema 6.14, segtin el cual una forma representa
un nimero natural m si y sélo si la clase inversa de su clase de ideales asociada
contiene un ideal de norma m. Usando la factorizacién tnica es ficil determinar
si existen o no ideales con una norma dada. El problema es decidir a qué clase
pertenecen si existen. Si eliminamos esa parte de la conclusién obtenemos este
enunciado méas débil: si O es un orden cuadratico de discriminante D, un nimero
natural m estd representado por alguna forma cuadratica de discriminante D si
y s6lo si O tiene ideales de norma m. Ahora reformulamos la condicién sobre la
existencia de ideales.
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Teorema 9.30 Sea K un cuerpo cuadrdtico con discriminante A y sean m, k
numeros naturales primos entre si. Las afirmaciones siguientes son equivalentes:

1. k estd representado por una forma cuadrdtica de discriminante m2A.

2. Los primos p que dividen a k y tales que xi(p) = —1 tienen exponente
par.

3. (k,A)p, =1 para todo primo p{ A.

DEMOSTRACION: Sabemos que una forma f de discriminante m2A repre-
senta a k siy sélo si el orden O, tiene ideales de norma k. Como k es primo con
m esto equivale a que el orden maximal de K tenga ideales de norma k. Todo
ideal de K se descompone en producto de ideales primos que tendran norma p
(para los primos p tales que i (p) # —1) o p? (cuando xx(p) = —1).

Es claro entonces que K tiene un ideal de norma k si y sélo si los primos que
cumplen xi(p) = —1 aparecen en k con exponente par. Esto nos da primera
equivalencia.

Respecto a la segunda, notemos que si pt A y k = p"n (quizd con r = 0),
entonces para p # 2 se cumple

(k,A)p = (n,A)p (", A)p = (A/P)" = xx (P)"-
Si p = 2, entonces A es impar, luego A =1 (mdd 4).
(k,A)z = (n,A)2 (2", A)2 = (2,A); = xk(2)".

Asi pues, para todo primo p t A se cumple (k,A), = xx(p)", con lo que la
tercera afirmacién equivale a las anteriores. m

Notar que la afirmacién 3) impone sélo un nimero finito de restricciones, ya
que si p es un primo que no divida a A ni a k, entonces (k, A), = 1.

También es interesante notar que k estd representado por una forma de
discriminante m2A si y sélo si lo estd su parte libre de cuadrados, si y sélo
si lo estan los primos que dividen a ésta. Asi mismo, si p es primo y p { m,
entonces la representabilidad de p por una forma del determinante considerado
sblo depende de su resto médulo A.

Todo esto es especialmente 1til en los cuerpos cuadraticos con una sola clase
de similitud. Si todas las formas cuadraticas son equivalentes, entonces todas
representan a los mismos ntimeros, luego un nimero es representado por una
forma cuadratica (cualquiera) de discriminante D si y sélo si es representado
por una forma cuadratica particular con dicho discriminante, y las condiciones
que proporciona el teorema son condiciones necesarias y suficientes para que
una forma dada represente a un ntimero.

Ejemplos ;Qué nimeros naturales se pueden expresar como suma de dos
cuadrados?

La forma z2 + 32 es la forma principal de discriminante —4 y el cuerpo
asociado tiene una sola clase de similitud. El grupo Uy, estd formado por las
clases {£[1]}, y como xx(1) =1, ha de ser xx(—1) = —1.
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Concluimos que los nimeros de la forma 22 + y? son aquellos cuya parte
libre de cuadrados no contiene primos congruentes con —1 mdédulo 4 (o equi-
valentemente, estd formada por primos congruentes con 1 médulo 4 més el 2).

| |

El mismo anélisis vale para los nimeros de la forma x2+2y?. Ahora D = —8
y Us = {[1],[3],[5],[7]}. Como (—8/3) = (1/3) = 1, tenemos xx(3) = 1, luego
Xk (5) = xk(7) = —1.

Los niimeros de la forma 2 + 232 son aquellos cuya parte libre de cuadrados
no contiene mas primos que 2 y los congruentes con 1 o 3 médulo 8. ]

Para 2% 4 3y? el discriminante es D = —2? - 3, luego la forma est4 asociada
al orden Oy de Q(\/—_S) El teorema anterior nos da que los ntimeros impares
de la forma 22 + 3y? son aquellos cuya parte libre de cuadrados no contiene méas
primos que 3 y los congruentes con 1 médulo 3. Es claro que todo nimero en
estas condiciones es de la forma z? 4 3y? aunque sea par. Por otra parte, 2 es
primo en Q(\/—_S) y debe dividir a los dos conjugados z #+ y+/—3 con la misma
multiplicidad, luego la multiplicidad de 2 en 2% +3y? = (ac—i—y\/—_?)) (x —y \/—_3)
ha de ser par. Asfi, si un primo p divide a la parte libre de cuadrados de z2+3y?,
necesariamente p es impar y se corresponde con un primo de norma p en la
factorizacién de x2 + 3y?, luego es 3 o congruente con 1 médulo 3, es decir, la
condicion vale en realidad para todos los niimeros, pares o impares. L]

La forma 2 + 4y tiene discriminante —16, y est4 asociada al orden Oy de
Q(4). El teorema anterior nos da que si k es impar entonces esta forma representa
a k si y sélo si su parte libre de cuadrados consta de primos congruentes con
1 médulo 4. Si k es par entonces 2 + 4y? = 2r implica que x es par, luego
k = 422 + 442, luego un nimero par estd representado por esta forma si y sélo
si es multiplo de 4 y al dividirlo entre 4 estd representado por z2 + 2.

En resumen: Los nimeros representados por 22 +4y? son aquellos cuya parte
libre de cuadrados consta de primos congruentes con 1 médulo 4 y el 2, pero
con la condicién de que si aparece el 2 su multiplicidad en k£ sea mayor que 1.

u

Muy diferente es el caso de la forma 22 4 5y2. Se trata de la forma principal
de discriminante —20, asociada a Q(\/—_5), pero el nimero de clases de este
cuerpo es 2. Esto significa que hay otra forma no equivalente con el mismo
discriminante. Es facil ver que se trata de 222 + 2xy + 3y2.

Asi pues, las condiciones del teorema anterior son necesarias y suficientes
para que un numero k esté representado por una de las dos formas,

flz,y) =2 +5y> o g(z,y) =22% + 2zy + 3y°.

Mads aun, ningin numero puede estar representado a la vez por las dos formas,
o de lo contrario ambas serian del mismo género, pero como —20 es divisible
entre dos primos, el cuerpo tiene dos géneros y las dos clases son de géneros
diferentes.

Por ejemplo, ¢(1,0) = 2y ¢(0,1) = 3, mientras que f(1,1) = 6. Vemos asi
que f representa a un numero libre de cuadrados pero no representa a ninguno
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de los primos que lo componen (mientras que en los ejemplos anteriores, f
representaba a un nimero si y sélo si representaba a todos los primos de su
parte libre de cuadrados).

Veamos de todos modos cudles son las condiciones del teorema anterior.
Consideramos

Uso = {[11, 131, 7], [9], [11], [13], [17], [19]}.
Los cuadrados son [1] y [9], luego ambos tienen cardcter positivo. Calculamos
por ejemplo x (3) = (=20/3) = (1/3) =1,y 1 = xx (3)xx (9) = xx(7), luego
las clases de escisién son {[1], [3], 7], [9]}.

Sabemos que un nimero esta representado por una de las formas f o g siy
solo si su parte libre de cuadrados consta de primos congruentes con 1, 3, 7, 9
médulo 20 ademas del 2 y el 5.

Esto lo cumplen ciertamente los nimeros 2, 3 y 6, pero nada nos dice cémo
distinguir cuando la forma que los representa es f y cuando es g. La respuesta
nos la proporciona la teoria de géneros:

Teorema 9.31 Sea K un cuerpo cuadrdtico con discriminante A, sean m y k
numeros naturales primos entre si y sea G un género del orden O,,. Entonces k
estd representado por una forma de género G si y solo si (k,A), = xp(G) para
todo primo p.

DEMOSTRACION: La condicién es necesaria por la propia definicién de x,.
Si un nimero k cumple esta condicién, en particular cumple que (k,A), =1
para todos los primos p 1 A, luego por el teorema 9.30 sabemos que k estd
representado por una forma f de discriminante m2A. Entonces

Xp(f) = (k, A)p = xp(G),
luego la forma es de género G. n

Notar que la representabilidad de un primo que no divide a m por una forma
de género G depende sélo de su resto médulo m2A.

Ejercicio: Probar que k esta representado por una forma de género G si y sélo si G
(visto como conjunto de ideales) contiene un ideal de norma k.

Con esto podemos resolver el problema que teniamos planteado. Las formas
f v g son de géneros distintos, concretamente f es de género (++) y g es de
género (——) (los caracteres relevantes son x2 y X5).

Un numero k& que cumpla las condiciones del teorema 9.30 estard represen-
tado por la forma f si ademds cumple (k, —20)3 = (k, —20)5 = 1. En realidad
sabemos que los dos signos han de coincidir en cualquier caso, luego la condicion
se puede reducir a (k, —20)5 = 1.

Si k = 5'r esto equivale a

(k’ _20)5 = (5a 5)15(53 —4)%(7’, 5)5 = (57 _1)%(57 —1)%(7‘, 5)5 = (T/5) =1

Asi, si k es representado por una de las formas f o g, serd representado por
f siy sélo si el nimero r que resulta de eliminar el 5 en la descomposiciéon en
primos de k& cumple r = £1 (méd 5). Esto confirma que es g quien representa
a 2y 3, pero es f quien representa a 6. L]
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Ejemplos Veamos ahora un par de ejemplos de discriminante positivo. Con-
sideremos la forma x? — 2y2. Observar que en los casos anteriores, en tltimo
extremo, decidir si una de las formas consideradas representaba a un nimero
dado podia resolverse en un nimero finito de pasos dando valores a = e y, pues
los valores posibles estaban acotados. Con esta forma hay infinitas posibilidades.

El discriminante es 8 y el niimero de clases estrictas es 1 (porque la unidad
fundamental tiene norma negativa). Us = {[1], [3], [5], [7]}.

Se cumple xx (1) = xx(7) = 1 (porque A > 0), luego un nidmero natural
k es de la forma x? — 2y? si y sélo si su parte libre de cuadrados consta de los
primos 2 y los congruentes con £1 moédulo 8.

En realidad ésta es la condicion para que cualquier nimero natural k esté re-
presentado por cualquier forma de discriminante 8, en particular para que k esté
representado por la forma —x2 + 2y2, o sea, para que —k esté representado por
22 —2y%. Por lo tanto la condicién vale para ntimeros enteros no necesariamente
positivos. n

Vamos a calcular los primos de la forma p = 2% — 3y%. El discriminante es
12 y corresponde al orden maximal de Q(\/§ ) (es la forma principal). Ahora la
unidad fundamental tiene norma positiva, por lo que hay dos clases de formas
cuadriticas no equivalentes. Un representante de la otra clase es 322 —y? (si una
forma representa un primo p no puede representar a —p, o habria una unidad
de norma negativa). Ademds hay dos géneros, luego buscamos las condiciones
para que un entero p esté representado por el género principal.

La condicién del teorema 9.30 es que p = 2,3 o p = £1 (méd 12). Para que
p esté representado por una forma del género principal hace falta ademéas que
(p,12)3 = (p,3)3 = 1. Esto lo cumplen sélo los primos p = 1 (méd 12). "

Ejercicio: Determinar los primos de la forma p = 322 + 2zy + 5y%. ;Qué podemos
decir de los primos de la forma p = z? 4 14y? ?

En vista de los resultados que hemos obtenido, la teoria de los géneros es
especialmente 1til al estudiar formas asociadas a érdenes en los que cada género
contiene una tunica clase de similitud de ideales. La tabla 9.1 contiene los pri-
meros discriminantes negativos con esta propiedad junto con los coeficientes
(a,b,c) de formas cuadréticas representantes de cada clase.

El teorema 9.28 nos da el nimero de representaciones que admite un entero
por formas de un discriminante dado:

Teorema 9.32 Sea O un orden cuadrdtico y k un numero natural primo con
el indice de O. Sea F un conjunto completo de representantes de las clases de
similitud estricta de formas cuadrdticas con anillo de coeficientes O. Entonces
el niumero de representaciones no asociadas de k por formas cuadrdticas de F
es exactamente Y xk (1), donde K es el cuerpo cuadrdtico asociado a O.
r|k

En particular, si el orden es imaginario, el nimero total de soluciones de las
ecuaciones f(x,y) =k cuando f recorre F esuy . xk(r), donde u es el nimero
de unidades de O. rlk
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Tabla 9.1: Algunos discriminantes negativos para los que cada género contiene
una Unica clase de similitud de ideales.

-D |a,b,c | -D |abec |-D|abc |—-D]|abc |—-D]|a,bc
3(11,1,1 52 11,0,13 | 115 | 1,1,29 | 187 | 1,1,47 | 288 | 1,0,72
411,0,1 2,2,7 5,5,7 7,3,7 4,4,19
711,1,2 60| 1,0,15| 120 | 1,0,30 | 192 | 1,0,48 8,0,9
811,0,2 3,0,5 2,0,15 3,0,16 8,8,11

111]1,1,3 64 | 1,0,16 3,0,10 4,4,13 | 312 | 1,0,78
12 1,0,3 4,4,5 5,0,6 7,2,7 2,0,39
15]1,1,4 67 |1,1,17 | 123 |1,1,31 | 195 | 1,1,49 3,0,26
2,1,2 72| 1,0,18 3,3,11 3,3,17 6,0,13
16 | 1,0,4 2,0,9 | 132 1,0,33 55,11 | 315 | 1,1,79
191]1,1,5 75| 1,1,19 2,217 7,1,7 5,5,17
20| 1,0,5 3,3,7 3,0,11 | 228 | 1,0,57 7,7,13
2,2,3 84 1,0,21 6,6,7 2,2,29 9,9,11
24 | 1,0,6 2,2,11 | 147 | 1,1,37 3,0,19 | 340 | 1,0,85
2,0,3 3,0,7 3,3,13 6,6,11 2,2,43
27 | 1,1,7 5,4,5 | 148 | 1,0,37 | 232 | 1,0,58 5,0,17
28 11,0,7 88 [ 1,0,22 2,2,19 2,0,29 10,10,11
3211,0,8 2,0,11 | 160 | 1,0,40 | 235 | 1,1,59 | 352 | 1,0,88
3,2,3 91 |1,1,23 4,4,11 5,5,13 4,4,23
3511,1,9 5,3,5 5,0,8 | 240 1,0,60 8,0,11
3,1,3 96 | 1,0,24 7,6,7 3,0,20 8,8,13
36 |1,0,9 3,0,8 | 163 | 1,1,41 4,0,15 | 372 | 1,0,93
2,2,5 4,4,7 | 168 | 1,0,42 5,0,12 2,2,47
40 | 1,0,10 5,2,5 2,0,21 | 267 | 1,1,67 3,0,31
2,0,5 99 | 1,1,25 3,0,14 3,3,23 6,6,17
43 | 1,1,11 51,5 6,0,7 | 2801 1,0,70
48 1 1,0,12 | 100 | 1,0,25 | 180 | 1,0,45 2,0,35
3,0,4 2,2,13 2,2,23 5,0,14
51| 1,1,13 | 112 | 1,0,28 5,0,9 7,0,10
3,3,5 4,0,7 7,4,7

Este teorema es especialmente 1til cuando se aplica a los érdenes en los que
cada género contiene una sola clase de similitud de ideales. Entonces dos formas
cuadraticas representan a un mismo entero si y sélo si son equivalentes. Asi, en
los términos del teorema anterior, si una forma f de F representa a k, ninguna
otra forma de F' lo representa, por lo que la férmula da el niimero de soluciones
no asociadas de una ecuacién f(z,y) = k para una forma fija f cuando k es
primo con el indice del orden asociado y supuesto que la ecuacién tenga al menos
una solucién.

De aqui se deduce un criterio de primalidad:

Teorema 9.33 Sea f(z,y) una forma cuadrdtica asociada a un orden de dis-
criminante A < —4 en el que cada género contenga una unica clase de similitud
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estricta de ideales. Sea p un nimero natural primo con A que se expresa exac-
tamente de cuatro formas distintas como p = f(x,y) con (z,y) = 1. Entonces
p es primo.

DEMOSTRACION: El orden de f tendrs exactamente dos unidades, luego el
teorema anterior junto con 9.28 nos da que su cuerpo cuadratico tiene exac-
tamente dos ideales de norma p. M4s ain, en la demostracién de 9.28 se ve
que el numero de ideales de norma p viene dado por la férmula 9.9, de donde
se sigue que p es divisible entre un unico primo que se escinde y adema&s con
multiplicidad 1. Basta ver que p no es divisible entre primos que se conservan o
se ramifican. Ciertamente, p no es divisible entre primos que se ramifican, pues
por hipdtesis es primo con el discriminante del cuerpo. Supongamos que ¢ es
un primo que se conserva y divide a p.

Consideremos un médulo asociado a la forma f. Podemos exigir que sea un
ideal de norma prima con ¢q. Més atn, segun el teorema 6.9 podemos tomarlo
de la forma a = {(a,b+ mw), donde N(a) = a. Cambiando f por una forma
estrictamente equivalente, podemos suponer que

p=fa,y) = ezt Ot mely)

a

Notar que si (x,y) = 1 y aplicamos un cambio de variables lineal de determinante
1, las imagenes siguen cumpliendo lo mismo. El numerador es un entero racional,
luego tenemos que ¢ | N(az + (b 4+ mw)y), y como ¢ es primo en el orden
cuadrético, también ¢ | ax + (b + mw)y. Esto implica que ¢ | az + by, q | my,
con lo que q | y y q | ax, lo cual es imposible. "

Un caso particular de este teorema era ya conocido por Euler, quien lo usé
para encontrar primos grandes. Concretamente, Euler definié un niumero idéneo
(o conveniente) como un nimero natural n tal que —en nuestros términos— el
orden de discriminante —4n tiene una sola clase de similitud estricta de ideales
en cada género. Entonces se cumple:

Si n es un ntimero idéneo y p es un nimero impar que se expresa de
forma tnica como p = z? + ny?, para ciertos nimeros naturales x,
y tales que (z,ny) = 1, entonces p es primo.

Las cuatro representaciones de las que habla el teorema anterior son entonces
(£, +y). Euler encontré los siguientes niimeros idéneos:

Tabla 9.2: Los ntimeros idéneos de Euler
1,2,3,4,5,6,7,8,9,10,12,13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40,
42,45,48,57,58,60,70,72,78,85,88,93,102, 105,112,120, 130, 133, 165,
168,177,190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462,
520, 760, 840, 1.320, 1.365, 1.848.

No se conoce ninguno mas, y de hecho se conjetura que no los hay.

Ejercicio: Probar que 3.049 = 7% + 120 - 5% es primo.
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Ejemplo El mayor niimero primo que encontré Euler con ayuda de los niime-
ros convenientes es p = 18.518.809 = 1972 4 1.848 - 100%. Vamos a esbozar un
argumento (debido a Gauss) que lo demuestra. Un célculo directo obligaria a
comprobar que p no es divisible entre los primeros 590 primos.

Hemos de probar que la tnica soluciéon de la ecuacién
p=2%+1.84897 (9.10)

es * = 197, y = 100. Una tal solucién cumple z? = 1 (méd 1.848). Como
1.848 = 8-3-7-11, esto es equivalente a que 22 = 1 (méd 8), 22 = 1 (méd 3),
22=1(méd 7), 22 =1 (méd 11), 0aque z = 1 (méd 2), x = +1 (méd 3,7, 11).

Por el teorema chino del resto, x = +1, 443, £155 £ 197 (mé6d 462) (notar
que 462 = 2-3-7-11). Puesto que = < ,/p, esto nos da 76 posibilidades para x:

1+ 462k
—1+ 462k
43 + 462k
—43 + 462k

0<Ek<Y,
1<
0<
1<
155 + 462k 0<
1<
0<
1<

—155 + 462k
197 + 462k

k<
<k<
k<
k<
k<
<k<
k<
—197 + 462k k<

9
<9,
<9,
<9.

Hay que descartarlas todas menos x = 197. La mayoria de ellas se eli-
minan tomando congruencias. Por ejemplo, consideremos el primo 5. Al to-
mar congruencias médulo 5 en la ecuacién (9.10) queda 2% + 3y? = 4 (méd 5).
Como y? = 0,1,4 (méd 5), resulta 22 = 1,2,4 (méd 5), pero 2 no es un resto
cuadratico médulo 5, y por consiguiente 72 = 1,4 (méd 5). Esto equivale a que
x Z 0 (méd 5).

Si consideramos, por ejemplo x = 1 4+ 462k = 1 + 2k (mdéd 5), la condicién
es 2k # —1 (mdd 5), o también k # 2 (méd 5), lo que nos elimina los casos
k = 2,7. Del mismo modo eliminamos un par de casos de cada una de las ocho
sucesiones.

Repitiendo el proceso con el primo 13 eliminamos los valores k = 0,4, 5,9 de
la primera sucesién.

Cuando el primo que usamos divide a 1.848 hemos de tomar congruencias
modulo una potencia, para evitar identidades triviales. Por ejemplo, si usamos
el 3 hemos de plantear 22 + 3y? = 4 (méd 9). Como y? = 0,1 (méd 3), ha de
ser 3y = 0,3 (méd 9), luego 22 = 1,4 (méd 9). Si lo aplicamos a la primera
sucesién obtenemos

(1+462k)° = (1+3k)> =146k =1,4 (méd 9),

de donde 6k = 0,3 (mdéd 9), 2k = 0,1 (mdéd 3), k = 0,2 (mdd 3), lo cual nos
descarta el valor k£ = 3.
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Tomando congruencias médulo 9, 5, 49, 121, 13, 17, 19 y 23 descartamos
todos los casos excepto —43 + 3 - 462, —155 4 6 - 462 y 197. Los dos primeros
pueden descartarse directamente, despejando y? de (9.10) y comprobando que
el nimero que obtenemos no es realmente un cuadrado. L]

9.6 Grupos de clases y unidades

Dos de los invariantes mas cadticos en la teoria de cuerpos cuadraticos son
el numero de clases y, en el caso de los cuerpos reales, el signo de la unidad
fundamental. A su vez éste tltimo interviene en la relacién entre la similitud
estricta y la no estricta y por lo tanto en la relacién entre el nimero i’ de clases
estrictas y el niimero h de clases no estrictas. La teoria de los géneros aporta
algunos datos sobre ambos invariantes. El teorema siguiente nos muestra un
ejemplo sencillo:

Teorema 9.34 Si K es un cuerpo cuadrdtico real y su discriminante es divisible

entre un primo p = —1 (méd 4), entonces la unidad fundamental de K cumple
N(e) = 1.
DEMOSTRACION: Por el teorema 9.9, x,(—1) = (—=1/p) = —1, luego la clase

de similitud estricta —1 no coincide con la clase 1, es decir, los ideales generados
por elementos de norma negativa no son estrictamente similares a los generados
por elementos de norma positiva, aunque evidentemente si son similares. Segun
vimos en el capitulo VI, la similitud estricta difiere de la no estricta sélo si la
unidad fundamental tiene norma positiva. L]

Una forma concisa de expresar la hipétesis del teorema es Ax # x2 + y2.
Ahora estamos en condiciones de precisar la relacién entre la similitud estricta
y la no estricta en un cuerpo cuadréatico real. M&s en general, conviene clasificar
los cuerpos cuadraticos en los cuatro tipos siguientes:

Tabla 9.3: Clasificacién de los cuerpos cuadraticos

Tipo | Discriminante Xp(—1) N(e) | A H’

I |Ag<0 — — | A H =H

II | Ag = 2%+ 972 Todos +1| —1 | h H =H
IIT |0<Ag #2?+y? | Alguno — 1| +1 |2k | H' = H x {£1}
IV | Ag =22 + y? Todos +1| +1 |2h | H' % H x {£1}

Los cuerpos cuadraticos de tipo I son los cuerpos imaginarios. Los de tipo
II son los cuerpos reales cuya unidad fundamental tiene norma negativa. Aca-
bamos de ver que esto implica que Ax = z? + y? o, equivalentemente, que
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Xp(—1) = 1 para todos los caracteres. En ambos casos la similitud estricta coin-
cide con la no estricta. Los cuerpos reales con unidad fundamental de norma
positiva son de tipo III o de tipo IV segun si Ak es divisible o no entre un primo
p = —1 (méd 4) o, equivalentemente, si x,(—1) = —1 para algin primo p. La
razén de esta distincion es que de ella depende que el grupo de clases no estrictas
H se pueda representar como factor directo del grupo de clases estrictas H', en
el sentido preciso indicado en el teorema siguiente.

Teorema 9.35 Sea K un cuerpo cuadrdtico de tipo III. Entonces existe un
subgrupo H del grupo de clases estrictas H' de K, de modo que la aplicacion
[x] — [x] es un isomorfismo de H en el grupo de clases no estrictas de K, y
H' = H x {£1}. Si K es de tipo IV no existe tal subgrupo.

DEMOSTRACION: Sea p un primo tal que x,(—1) = —1 Como el nimero
de signos negativos ha de ser par, podemos suponer que p es impar. Sea H
el conjunto de todas las clases x tales que xp(z) = 1, o sea, el nicleo de x,.
Claramente H es un subgrupo de indice 2 en H’. Basta probar que la aplicacién
[x] — [z] es inyectiva en H, pues ciertamente es un homomorfismo de grupos
y su imagen tiene el mismo ndmero de elementos de H. Si [M], [M'] son dos
clases de H con la misma imagen, es decir, si M y M’ son similares, entonces
existe un a € K tal que M = aM’, luego x,(M) = x,((@))xp(M’'), lo que
implica que x,((a)) = 1. Por lo tanto [(a)] # —1, es decir, N(a) = 1, luego
M y M’ son estrictamente similares y [M] = [M']. Como —1 ¢ H, es claro que
H' =H x {£1}.

Si K es de tipo IV entonces —1 esta en el género principal, luego el teorema
9.19 nos da que —1 = =2 para cierta clase € H'. Si H' = H x {£1} para
cualquier subgrupo H (sin més hipdtesis) entonces tendr{amos que +x € H para
una eleccién adecuada del signo, luego —1 = (£z)? € H, lo cual es imposible.

|

Asi pues, la extensién H'/H no es trivial en los cuerpos de tipo IV. El hecho
de que existan tales cuerpos equivale a decir que el reciproco del teorema 9.34
es falso. Sirvan como ejemplos Q(\/ﬂ) (el menor de todos) y Q(\/ﬁ)

Un reciproco parcial al teorema 9.34 es que si Ax > 0 es divisible entre un
solo primo, entonces N(¢) = —1. En efecto, en tal caso K tiene un solo género,
luego una sola clase ambigua, pero —1 y 1 son ambiguas, luego 1 = —1.

Ejercicio: Si Ak es divisible entre un solo primo, entonces h es impar

Ejercicio: Si Ax = 22 + 32 y cada género contiene un ndmero impar de clases
estrictas, entonces N(¢) = 1, es decir, K es de tipo IV.

Una consecuencia obvia de la teoria de géneros es que predice la presencia
de potencias de 2 en el numero de clases. No se conoce nada parecido para
otros primos. El menor cuerpo cuadrético imaginario cuyo nimero de clases
es divisible entre un primo impar al cuadrado es (@(\/72.299). El grupo de
clases contiene un factor C3 x C'5. El menor cuerpo cuadratico real en estas
condiciones es Q(\/ 62.501) (con idéntico factor). Respecto a la presencia de
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primos impares en el nimero de clases, terminamos el capitulo con un resultado
elemental sobre la cuestién. Notar que no requiere teoria de géneros.

Teorema 9.36 Supongamos que d = 7% —4gP < 0 es libre de cuadrados, donde
g y p son primos y r es impar. Supongamos ademds que |d| > 4g. Entonces p
divide al numero de clases de Q(\/E)

DEMOSTRACION: Notar que d = 1 (méd 4). Sea

Claramente N(a) = gP. Por lo tanto o = p?, donde p | g (no puede haber dos
primos distintos, pues serian los divisores conjugados de g, y entonces g | «,
pero « no es divisible entre enteros racionales).

Basta probar que p no es principal, pues entonces [p] tendra orden p en el
grupo de clases. A su vez, basta probar que no hay nimeros de norma g. En
caso contrario existirian a y b enteros o semienteros de modo que

a b a? — bd?
g—N<§+§\/c_i)—T,

pero a? — bd*> = 4g implica (teniendo en cuenta la hipétesis) que b = 0, luego
g = (a/2)?, contradiccién. n

Esta situacion es relativamente frecuente. Por ejemplo:
—15=12—-4.22, —23=32-4.23 —31=1%2-4.23,
—47=9%2-4.2°, —71=212-4.2T, —79=7%—-4.25

—271 =89% — 4. 2%,
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Tabla 9.4: Grupos de clases de cuerpos cuadraticos imaginarios
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Los valores de d marcados con un asterisco son los congruentes con 1 médulo 4.

El niimero « es el indicado en 2.5.

d A h Clases Relaciones Caracteres
-1 —22 1 (1) 1 +
—2 —23 1 (1) 1 +
—-3* -3 1 (1) 1 +
-5 —22.5 2 (1) A2 ++

2,1+ @) A —
—6 -23.3 2 (1) A? ++
(2,a) A ——
-7 =7 1 (1) 1 +
—-10 -23.5 2 (1) A2 ++
(2,a) A ——
—11*  —11 1 1) 1 +
-13  -22.13 2 (1) A? ++
(2,14 ) A ——
—14 —23.7 4 (1) Lt ++
(3,2+a) L3 -
(2,a) L? ++
3,14+ «) L —_
—15* 3.5 2 (1) A2 ++
2,1+ @) A ——
17 —22.17 4 (1) L ++
(3,2+ ) L3 —
(2,1+ ) L? ++
(3,1+a) L —
—19* —19 1 (1) 1 +
-21 -22.3.7 4 (1) A2pB? +++
(5,3 + ) AB -—+
(3»05) B -+ -
(27 1 + O‘) A + - =
—22  —23.11 2 (1) A2 ++
(2,a) A ——
-23* 23 3 (1) L3 +
(2,14 a) L? +
(2,a) L +
-26 -23.13 6 (1) LS ++
5,3+ @) L5 ——
3,1+ a) 4 ++
(2,a) L3 -
3,2+ ) L? ++
5,2+ @) L ——
—-29 —22.29 6 (1) LS ++
(3,2 + ) L° -
(5,4 + ) * ++
(2,1+a) L3 -
5,1+ @) L? ++
3,14+ «) L ——
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d A h Clases Relaciones Caracteres
-30 -23.3.5 4 (1) A2B? +++
(2,a) AB - —+
3,a) B + - -
(5,a) A -+ -
-31*  -31 3 (1) L3 +
(2,0) L? +
(2,1+a) L +
-33  —22.3.11 4 (1) A2B? +++
(2,1 +a) AB -——+
3,a) B -+ -
(6,3 + ) A +——
—-34 —23.17 4 (1) L4 ++
(5,4 + ) L3 -
(2,) L2 ++
5,1+ a) L -
—35% 5.7 2 (1) A? +4
5,2+ ) A ——
-37  —22.37 2 (1) A? ++
2,14+ a) A ——
—-38 —23.19 6 (1) Ls ++
3,24+ a) L5 ——
(7,2 + @) L4 ++
(2,a) L3 -
(7,5 + ) L? +4
3,1+ a) L ——
-39 —-3-13 4 (1) 4 ++
2,1+ ) L3 -
(3,14 ) L? ++
(2,&) L -
—41 —22.41 8 (1) L8 ++
3,2+ ) L7 -
(5,34 ) LS +4+
(7,6 + @) Lo -
2,1+ ) L4 ++
(7,14 ) L3 ——
(5,2 + ) L? ++
3,14+ «) L ——
—42  —23.3.7 4 (1) A2B? +++
(7,a) AB -+ -
(3, ) B - —+
(27 a) A + - -
—43*  —43 1 (1) 1 +
—46  —23.23 4 (1) L4 ++
(5,3 4 ) L3 —
(2,0) L? ++
5,2+ a) L ——
—47%  —47 5 (1) L5 +
(2,a) L4 +
3,2+ ) L3 +
3,a) L? +
(2,1 +a) L +
—51*  —3-17 2 (1) A2 ++

3,1+ ) A ——
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d A h Clases Relaciones Caracteres
—-53  —22.53 6 (1) LS ++
(3,24 ) L? -
(9,8 + ) L4 ++
(2,14 a) L3 —
9,1+ a) L? ++
3,14+ ) L ——
—55%  —5-11 4 (1) 4 ++
(27 1 + OL) L3 -
(5,2 + ) L? ++
(2,04) L -
—57 —22.3.19 4 (1) A?p? +++
(2,1+ ) AB -——+
(3,14 ) B -+ -
(6,3 + ) A +-—-
-58 —23.29 2 (1) A? ++
(2,a) A ——
—59* —59 3 (1) L3 +
(3,2 + ) L? +
(3,) L +
—-61  —22.61 6 (1) L3 ++
(5,34 ) L? +4
(5,24 ) L ++
(7,5 + @) AL? —
(7,34 o) AL —
2,1+ @) A ——
—-62  —23.31 8 (1) L8 ++
(3,2+ ) L7 —
(7,14 ) LS ++
(11,2 + ) L? —
(2,2) L ++
(11,9 + ) L3 —
(7,6 + ) L? ++
3,14+ ) L _
—-65 —22.5.13 8 1) L4 +++
(3,24 ) L3 B
(9,4 + @) L? +4++
3,1+ ) L -+ —
(11,10 + ) AL3 +--
(2,1+a) AL? -—+
(11,1 + @) AL +—--
(5,a) A - —+
-66 —23.3.11 8 1) 4 +++
5,3+ @) L3 -+ -
(3, ) L? +++
(5,24 ) L -+ -
(7,2 + ) AL3 +——
(11, ) AL? - —+
(7,5 + ) AL +—--
(2,a) A - —+
—67*  —67 1 1) 1 +

247
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d A h Clases Relaciones Caracteres
—69 —22.3.23 8 (1) L4 +4++
(7,6 + @) L3 +—-=
(6,3 + ) L? +++
(7,14 @) L + - =
(5,1 + ) AL3 - —+
(3, @) AL? -+ -
(5,4 +a) AL - —+
(2,1+a) A -+ -
-70 -23.5.7 4 (1) A2B? +++
(7, @) AB b
(57 Oé) B +--
(27 a) A -+ -
-7 =71 7 (1) L’ +
(2,1+ ) LS +
(5,3+ @) L5 +
(3,2+ ) L4 +
(3, ) L? +
(5,1 + ) rL? +
(2,0) L +
-73 —22.73 4 1) Lt ++
(7,5 + ) L3 -
(2,14 a) L? ++
(7,2 +a) L —
-74  —23.37 10 (1) L5 ++
(11,6 + ) L4 ++
3,1+ a) L3 ++
(3,2 + ) L? ++
(11,5 + @) L ++
(5,4 + ) AL* -
(6,4 + ) AL3 ——
(6,2 + ) AL? —_
(5,14 ) AL ——
(2,a) A ——
77 —=22.7.11 8 (1) L* + 4+ 4+
(3,24 ) L3 -+ -
(14,7 + ) L? +++
(3,14 ) L -+ -
6,5+ a) AL3 -—+
(7, @) AL? + - -
6,1+ a) AL -—+
(2,1+a) A +--
-78 —23.3.13 4 (1) A2B? ++ 4+
(2,a) AB - —+
(13, ) B + - —
(37 Oé) A -+ -
—79* =79 5 (1) L5 +
(2,a) L4 +
(5,4 + ) L3 +
(5,a) L? +
(2,1+a) L +
—82 —23.41 4 (1) L4 ++
(7,4 + @) L3 ——
(2, ) L? ++

(7,3 +a) L —
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d A h Clases Relaciones Caracteres
—83* 83 3 (1) L3 +
(3,24 ) L? +
(3, ) L +
-85 —22.5.17 4 (1) A2B? +++
(5, ) AB -—+
(10,5 + a) B +--
(2,14 ) A -+ -
—86  —23.43 10 (1) Lo ++
(3,24 a) Lo —_
9,2+ ) L8 ++
(5,24 @) L —
(17,13 + @) LS ++
(2,a) L ——
17,4+ @) L4 ++
(5,3 + ) L3 -
9,7+ ) L? ++
(3,14 ) L —
—87* —3-29 6 (1) LS ++
(2,1+a) L° -
(7,24 ) L4 ++
3,1+ a) L3 —_
(7,44 @) L? ++
(2,a) L ——
-89  —22.89 12 (1) L2 ++
(3,24 a) Lt —
(17,9 + ) Lo ++
(7,34 @) L —
5,4+ ) L8 ++
(6,14 a) L —
2,1+ ) LS ++
(6,54 @) L® ——
(5,14 ) Lt ++
(7,4 + @) L3 -
(17,8 + ) L? ++
(3,14 ) L —
—91* —7-13 2 (1) A? ++
(7,3 + ) A ——
-93 —22.3.31 4 (1) A2B? +++
(6,3 + ) AB -—+
(3,) B +-—-
(2,14 a) A — 4 -
—94  —22.47 8 (1) L8 ++
(5,44 a) L7 —
(7,5+ ) LS ++
(11,4 + @) L ——
(2,a) L* ++
(11,7 + @) L3 -
(7,2+ @) L? ++
5,1+ ) L ——

249
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d A h Clases Relaciones Caracteres

-95* —5.19 1 (1) L8 ++
(2,a) ) ——

4, a) LS ++

(3,24 ) L? ——

(5,2 + @) L4 ++

3,a) L3 ——

(4,34 ) L? ++

(2,14 a) L —

97 —22.97 1 1) Lt ++
(7,6 + @) L3 ——

(2,14 a) L? ++

(7,14 ) L —_

Tabla 9.5: Grupos de clases de cuerpos cuadraticos reales

Los valores de d marcados con un asterisco son los congruentes con 1 médulo
4. El numero « es el indicado en 2.5. Se indica también la fraccién continua de
Va y una unidad fundamental e.

d A h NG € N(e) Clases Caract.
2 23 1 [1,2] 1+a -1 (1) +
3 22.3 1 1,ﬁ} 2+« +1 (1) +
5 5 1 [1] o -1 (1) ++
23.3 1 [2,24] 5+ 2a +1 (1) +
22.7 1 [2TT14] 8 + 3ax +1 (1) ++
10 225 2 [35] 3+a -1 (1) ++
(270‘) -
12211 1 [3,36] 10 + 3 +1 (1) ++
13* 13 1 [2,3] 1+« -1 (1) +
14 22.7 1 [3T,2,1,6] 15 + 4o +1 (1) ++
15 22.3.5 2 [3,1,6] 4+« +1 (1) +++
) 2,14+a) ——+
17 17 1 [2,1,13] 34 20 —1 (1) +
19 22.19 1 :4,m] 170 +39a 41 (1) ++
21% 3.7 1 [2,13] 24a +1 (1) ++
22 23.11 1 =4,m] 197 + 42c +1 (1) ++
23 22.23 1 [4T318] 24 + 5o +1 (1) ++
26 23-13 2 [5710] 5+a -1 (1) ++
(2,0{) -
29* 29 1 3,5 2+« -1 (1) +
30 23.3.5 2 [52,10] 11+ 2a +1 (1) F++
) (2,) +--
31 2231 1 [5,1,1,3,5,3,1,1,10] 1520+273a +1 (1) ++
33 3.1 1 (321,25 19 + 8a +1 (1) ++
34 2.17 2 [5T4110] 35 + 6a 1 (1) T+
1

w
+
L
|
|
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d A h Va € N(e) Clases Caract.
35 22.5-7 2 [51,10] 6+ a +1 (1) +++
(27 1+ Oé) -+ -
37% 37 1 [31,15] 5+ 2a -1 (1) +
38 23.19 1 [6,6,12] 37 + 6a +1 (1) ++
39 22.3-13 2 [6,4,12] 25 + 4o +1 (1) +++
2,14a) ——+
41% 41 [3.1,2,2,1,5] 27 + 10a -1 (1) +
2 22.3.7 2 [6212] 13 + 2« +1 (1) +4++
(27 0{) +--
43 22.43 1 [6,1,1,31,5 3.482 +531a  +1 (1) ++
1,3,1,1, 12]
46  23.23 1 [6,1,31,1,2,6 24.335 + 3.588a  +1 (1) ++
2,1,1,3,1, 12]
47 22.47 1 [6,1,5,1, 12] 48 + T +1 (1) ++
51 22.3.17 2 [7,7,14] 50 + Ta +1 (1) +++
~ (37 O‘) -+ +
53* 53 1 [4,7] 3+a -1 (1) +
55 22.5-11 2 [7,2,2,2,14] 89 + 12cx +1 (1) +4+
~ (2) 1+ a) -—+
57 3-19 1 [4,3,1,1, 1,3,7] 131 + 40a +1 (1) ++
58  23.29 2 [7LLLLLL14] 99 + 13a -1 (1) ++
) (270‘) -
59  22.59 1 [7,1,2,7,2,1,14] 530 + 69cx +1 (1) ++
61* 61 1[4, 2,2,7] 17 + 5a -1 (1) +
62 23.31 1 [7,1,6,1,14] 63 + 8a +1 (1) ++
65* 5-13 2 [4T1,7] 7+ 20 -1 (1) ++
5,2+ a) _
66 2-3-11 2 [8,8,16] 65 + 8o +1 (1) +++
(37 O‘) +--
67  22.67 1 [8,52,1,1,7,1, 48.842 + 5.967a  +1 (1) ++
1,2,5,16]
69* 3.23 1 [4T1,1,7] 11 + 3 +1 (1) +4+
0 22.5-7 2 [8,271,21,2,16] 251 + 30 +1 (1) ++
(27 0{) -—+
71 2271 1 [8,221,71, 3.480 +413a  +1 (1) ++
2,2,16 |
73* 73 1 [4132171, 943 + 250 -1 (1) +
23.17]
74 23.37 2 [8, 1,1, 1, 1,16] 43 + 5 -1 (1) ++
(270‘) -
7T 711 1 [4,17] 4+a +1 (1) Tt
78 22.3-13 2 [8,1,4,1,16] 53 4 6 +1 (1) + 4+
(27 Cl{) -—+
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d A Va € N(e) Clases Caract.
79 22.79 8,1,7,1,16 | 80 4 9o +1 (1) Tt
(37 2 + Oé) -
(37 1+ a) -
82  23.41 9,78 ] 9+ -1 (1) ++
3,1+ ) ——
(2,0) ++
(37 2+ Ot) -
83 22.83 9,9,18 ] 82 4 9o +1 (1) ++
85* 5.17 [5.9] 1+ a -1 (1) ++
(5) 2+ a) -
86  23.43 [9,3,1,1,1,8, 10.405 + 1.122a +1 (1) ++
1,1,1,3,18]
87 22.3.29 9,3,18 | 28 + 3a +1 (1) +++
(27 1+ Oé) - —+
89* 89 5,411, 447 + 106 -1 (1) +
1,49]
91 22.7.13 [9,1,1,5,1,5, 1.574 + 1650 +1 (1) +++
1,1,18] (2,14+a) +-——
93*  3.31 13 4 3a +1 (1) ++
94 23.47 [9,1,2,3,1,1, 2.143.295 + 221.064a  +1 (1) ++
57 17 87 1’ 57 17
1,3,2,1,18]
95 22.5.19 [9,1,2,1,18] 39 + 4o +1 (1) +++
(27 1+ Ot) - —+
97* 97 [5.2,2,1,4 5.035 + 1.138cx -1 (1) +

4,1,2,2,9]



Capitulo X

El Ultimo Teorema de
Fermat

En los capitulos anteriores hemos aplicado la teoria de los cuerpos numéricos
al estudio de la teoria de Gauss, que éste desarrollé enteramente en términos
de formas cuadréticas. El lector se hard idea, sin duda, de la enorme ventaja
que supone sustituir las formas por ideales en los resultados principales. Sin
embargo, hemos de recordar que la teoria de ideales no surgié de aqui, sino
del trabajo de Kummer en torno al dltimo teorema de Fermat, por lo que es
ilustrativo ahondar en su relacién con este problema. En el capitulo I vimos
va los precedentes. Segun dijimos, el primer resultado al respecto, después
del teorema 1.1, es la prueba de Euler para el caso p = 3. Conviene que nos
detengamos en ella.

10.1 El casop =3

Teorema 10.1 No existen enteros no nulos x, y, z tales que x> + y> = 23.

DEMOSTRACION: Vamos a seguir la prueba del teorema 1.1. Para empe-
zar suponemos que existen ntmeros (z,y,z) que cumplen 2% + y3 = 23, Di-
vidiéndolos entre su m.c.d. podemos suponer que son primos entre si y, al cum-
plir la ecuacién, han de ser primos entre si dos a dos. Es obvio que a lo sumo
uno de los tres nimeros puede ser par, pero si x, y son impares entonces z es
par, luego exactamente uno de ellos es par.

Por simetria podemos suponer que x e y son impares. Entonces x + vy, z —y
son pares, digamos x +y=2p, x —y=2q. Asix=p+q,y=p—q.

Ahora consideramos la factorizacién siguiente:

2y’ = (z+y)(@® — 2y + 7).
Sustituyendo obtenemos
@ +y’ =2 ((p+9)? ~ (p+a0)(p—a) +(p—a)?) = 2p(p° + 3¢°).

253
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Ademds podemos afirmar que p y ¢ son primos entre si (un factor comun
lo seria de x e y) y tienen paridades opuestas (porque x = p + ¢ es impar).
Cambiando el signo de x, y, z si es necesario podemos suponer que = + y > 0,
luego p > 0 e, intercambiando x con y si es necesario, también ¢ > 0 (no puede
ser que x = y, pues ¢ serfa 0, y como (z,y) = 1 habrfa de ser z =y =1, y
entonces 2> = 2, lo cual es imposible).

En resumen, si existe una solucién (z,y,z) con x e y impares, entonces
existen numeros naturales no nulos p y ¢ de paridad opuesta, primos entre si
tales que el ntimero 2p(p? + 3¢?) es un cubo.

El andlogo en la prueba del teorema 1.1 era la factorizaciéon 2 = 4ab(a®+b?),
que nos daba que ab(a?+b?) debia ser un cuadrado. Igualmente nosotros hemos
de justificar que los ntimeros 2p y p? + 3¢? son primos entre si, con lo que cada
uno de ellos serd un cubo.

En realidad esto no tiene por qué ser cierto, pero poco falta. Notemos
primero que, como p y g tienen paridad opuesta, p? + 3¢? es impar, de donde se
sigue claramente que (2p, p? + 3¢%) = (p,p* + 3¢®) = (p,3¢?) y como (p,q) = 1
el tinico factor comin de p y 3¢® es 3. En otras palabras, si 3 { p, entonces
(2p, p? + 3¢®) = 1. Supongamos que es asi.

Entonces, segiin lo dicho, 2p y p? + 3¢% son cubos. Ahora necesitamos un
resultado que juegue el papel de la clasificaciéon de las ternas pitagéricas en la
prueba de 1.1. Se trata del hecho siguiente que demostraremos después:

(x) Si los enteros p, q, v cumplen p* + 3¢> = 13, (p,q) = 1 yr

es impar, entonces existen enteros a y b tales que p = a®> — 9ab?,
g = 3a%b— 303, r = a® + 3b°.

Admitiendo esto, p = a(a — 3b)(a + 3b), ¢ = 3b(a — b)(a + b). Claramente a
y b son primos entre s{ y tienen paridades opuestas (o si no p y ¢ serfan pares).

Por otra parte 2p = 2a(a — 3b)(a + 3b) es un cubo. Veamos de nuevo que
los factores 2a, a — 3b y a + 3b son primos entre si dos a dos, con lo que los tres
seran cubos.

Como a y b tienen paridades opuestas, a — 3b y a + 3b son impares, luego un
factor comin de 2a y a + 3b es un factor de a y a + 3b, luego también un factor
comun de a y 3b. Igualmente un factor comin de a+3by a—3blo es de a y 3D,
luego basta probar que (a,3b) = 1. Puesto que (a,b) = 1, lo contrario obligaria
a que 3 | a, pero entonces p | 3 y estamos suponiendo lo contrario.

Asi pues, 2a = u?, a—3b = v3, a+3b = w?, luego v} +w? = 2a = u3. Nuestro
objetivo es encontrar una solucién de la ecuacién de Fermat con 23 par y menor
(en valor absoluto) que el valor del que hemos partido. Asi podremos concluir
que no pueden existir tales soluciones ya que no puede haber una minima.
Hemos de reordenar la terna (u,v,w) para dejar en tercer lugar la componente
par. Como u3v3w? = 2a(a—3b)(a+3b) = 2p | 23, lo cierto es que la componente

par, sea cual sea, es menor en médulo que z3.

Falta llegar a la misma conclusién si 3 | p. Supongamos que p = 3s y que
31 ¢q. Entonces nuestro cubo es 2p(p? + 3¢?) = 3% - 25 (3s® + ¢?) y los ntimeros
32 . 2s y 352 + ¢2 son primos entre sf, pues (s,q) = 1 obliga a que los tinicos
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divisores comunes posibles sean 2 y 3, pero 352 + ¢* es impar (luego 2 no sirve)
y 31 ¢, (luego tampoco sirve).

Consecuentemente 32 - 2s = u® y 3s% + ¢® = v3. Aplicando (x) llegamos a
que ¢ = a(a — 3b)(a + 3b), s = 3b(a —b)(a +b).

Por otro lado 3% - 2s = 3% - 2b(a — b)(a + b) es un cubo, luego 2b(a — b)(a + b)
también lo es. El resto es practicamente igual al caso anterior. m

Nos falta demostrar (x). Euler supuso la factorizacién tnica en el anillo
Z[\/—_S ] Aunque esto es falso, en el capitulo IV probamos que su ntmero
de clases es 1, lo que se traduce en que sus elementos de norma impar si se
descomponen de forma tinica como producto de primos, y esto basta. En efecto,
como (p,q) = 1 el niimero p + gv/—3 no es divisible entre enteros no unitarios,
es decir, no es divisible entre primos que se conservan, y si un primo p = w17y se
escinde y 7 | p+q+/—3, entonces 73 1 p+¢v/—3. Por lo tanto la descomposicién
en primos es

ptaV Bl

donde N(;) = p; son primos distintos dos a dos. Tomando normas queda que

7,3 — p?nl . .pznr,
luego 3 | n; para todo i, lo que implica que p + gv/—3 es un cubo en Z[\/—B}.
Por consiguiente

p+aV=3=(a+bv/=3)" = a® — 9ab® + (3ab — 36°)v/=3,
y esto prueba (x). n

Ejercicio: Probar que, aunque 42 4+ 3 - 4% = 8% no es cierto que p = ¢ = 4 tengan la
forma indicada en (x).

Ejercicio: Probar (x) sin suponer que r sea impar.

10.2 El teorema de Kummer

Segun explicamos en el capitulo I, Kummer siguié la idea de Lamé de con-
siderar la factorizacion

2’ + P = (z+y)(z+wy) - (z+wPy), (10.1)

donde w es una raiz p—ésima de la unidad. Kummer creyé haber probado el
teorema de Fermat completo hasta que Dirichlet le hizo notar que su prueba
suponia la factorizacién tnica de los anillos de enteros ciclotémicos. Ello le
llevé a investigar si dicha factorizacién tnica era cierta, para completar asi su
prueba. Como ya sabemos, la conclusion fue que en general es falsa, pero al
mismo tiempo descubrié la factorizacion tinica en ideales. El paso siguiente era
determinar si el argumento que probaba el teorema de Fermat suponiendo la
factorizacion uinica real seguia siendo valido usando tinicamente la factorizaciéon
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tnica ideal. El resultado fue que hacian falta algunas hipdtesis adicionales.
Vamos a describir el problema con mas detalle. Segun lo dicho, partimos de
la factorizacién 10.1. Siguiendo el esquema de la prueba de Euler, hemos de
estudiar si los monomios x + w'y son primos entre si.

Como en el caso p = 3, si la ecuacién zP + yP = 2P tiene solucién, podemos
suponer que x, y, z son primos entre si dos a dos.

Si dos monomios  + w'y, ¥ + w’/y (digamos con i < j) tienen un factor en
comun, entonces este factor divide a

(z+ wiy) — (z + w'y) = W " (w" — 1)y = unidad (w — 1)y, (10.2)

asi como a . o '
(x +wy) —w ™ (z + w'y) = unidad (w — 1)z.

(En la prueba de 3.20 vimos que los ntimeros w’ — 1, donde p 1 i son conjugados.)

Como x e y son primos entre si, el unico factor comin que pueden tener dos
de los monomios es w — 1. De hecho, las ecuaciones anteriores muestran que si
w — 1 divide a uno de los monomios, en realidad los divide a todos. Esto sucede
siy sélo si w—1] z, lo que equivale a que p | z.

Observar que como p es impar y no exigimos que x, y, z sean positivos, los
tres son intercambiables, es decir, la ecuacién xP 4+ yP = zP puede expresarse
también como (—z)? 4+ y? = (—x)P, etc. Por lo tanto si p divide a uno de los
tres niimeros x, y, z podemos exigir que divida a z, y el caso contrario es que p
no divida a ninguno de ellos. Esta es la distincién tradicional en el teorema de
Fermat:

Caso I 2P 4 yP = 2P donde x, y, z son enteros no nulos primos entre si dos a
dos y primos con p.

Caso II zP 4 y? = zP donde x, y, z son enteros no nulos primos entre si dos a
dos y ademds p | z.

Notar que en la prueba de Euler también hemos tratado por separado los
casos I y II.

En la prueba del caso I para p = 3 hemos usado que como los dos factores
eran primos entre si y su producto era un cubo, ambos tenian que ser cubos.
Lo que tenemos ahora es que si a y [ son enteros ciclotémicos primos entre si
tales que a8 = P para un tercer entero ciclotémico v, entonces los ideales («)
y () son potencias p-ésimas. Digamos que () = aP. Sin embargo, para que el
argumento de Kummer funcione es necesario que o = §”, para cierto entero §.
Esto nos lleva al problema siguiente:

Si « es un entero ciclotémico tal que () = aP para un cierto ideal
a, ;bajo qué condiciones podemos garantizar que « es una potencia
p-ésima?

En primer lugar es necesario que el ideal a sea principal. Esto puede ga-
rantizarse a partir de un resultado sencillo sobre grupos: supongamos que p no
divide al ntimero de clases h del cuerpo ciclotémico. Entonces al tomar clases se
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cumple que [a]? = [(a)} =1, luego el orden de [a] divide a p, pero dicho orden
ha de dividir también al orden h del grupo de clases, luego ha de ser 1, es decir,
[a] =1y el ideal a ha de ser principal, digamos a = (4).

Asf pues (a) = (67), pero esto no garantiza que « sea una potencia p-ésima,
sino tan s6lo que o = €dP para una cierta unidad ciclotémica e. Nos falta
justificar de algin modo que € es también una potencia p-ésima. Observemos
que una condicién necesaria para que un entero ciclotomico cualquiera sea una
potencia p-ésima es que sea congruente con un entero racional médulo p. En
efecto, si e =P y 1 = ag + a1w + -+ + a,_1wP~ !, al tomar clases médulo p
queda que [¢] = [ag]” + [@1]P + - - + [ap-1]P.

Esta condicién no es en general suficiente, y el reciproco completa las hipo-
tesis de Kummer:

Definicién 10.2 Un primo impar p es regular si cumple:
A) p no divide al nimero de clases del cuerpo ciclotémico de orden p.

B) Si € es una unidad ciclotémica, entonces € es una potencia p-ésima si y sélo
si € es congruente con un entero racional médulo p.

Con esto podemos demostrar el resultado de Kummer:

Teorema 10.3 (Kummer) El dltimo teorema de Fermat es cierto para expo-
nentes requlares.

DEMOSTRACION: Segtin las observaciones anteriores, si p es un primo regular
y suponemos que existen enteros no nulos tales que zP + y? = 2P, de hecho
podemos suponer que x, y, z son primos entre si dos a dos y que o bien p no
divide a ninguno de ellos (caso I) o bien p divide a z (caso II). En cualquier caso
tenemos la factorizacién

P=ab fyf = (z+y)(r+wy) - (z+ P y),

En el caso I los factores son primos entre si. En el caso II su unico factor
comun es el primo w — 1.

Consideremos en primer lugar el caso 1. Por la factorizacién tinica en ideales,
cada ideal (z + w'y) es una potencia p-ésima, luego por la propiedad A) de la
definicién de primo regular podemos concluir que x 4+ wy = €3P, para una cierta
unidad € y un entero ciclotémico 3 (ver las explicaciones previas a la definicién).

Vamos a llegar a una contradiccién tan sélo a partir de aqui, sin necesidad
de usar la condicién B). Para ello aplicamos la conjugacién que envia w a w™?
(que no es sino la conjugacién compleja). Asi obtenemos que x 4+ w ™ty = 3P.

Del teorema 4.27 se sigue que €¢/€ = w", donde 0 < r < p. Por otra parte
hemos visto que toda potencia p-ésima es congruente médulo p con un entero
racional, luego 4P = m (méd p), de donde se sigue que 37 = 37 (méd p). Reu-
niendo todo esto vemos que

rtwly=eff =w e =w e = w " (x + wy) (mbd p).
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Equivalentemente:
rw” +yw "t —yw — 2 =0 (méd p). (10.3)

Notemos que si p divide a un entero ciclotémico o y tenemos una expresién
de a como combinacién lineal entera de p — 1 potencias de w, como éstas son
una base entera, es necesario que p divida a cada uno de los coeficientes. Usa-
remos esto para probar que r = 1 descartando cualquier otra posibilidad (notar
también que podemos suponer p > 5, ya que el caso p = 3 estd probado).

Si 7 = 0 la congruencia (10.3) se convierte en yw™! — yw = 0 (méd p), luego
p | y, contradiccién.

Si r =2 queda 2w? — x = 0 (méd p), luego p | x, contradiccién.

Si r > 2 todas las potencias de w que aparecen en (10.3) son distintas, y
como sélo hay 4 < p — 1, concluimos igualmente que p | .

Asf pues, ha de ser r = 1, y entonces (10.3) es (x —y)w+y — 2z = 0 (mdd p),
con lo que concluimos que x = y (mdéd p).

Ahora bien, si escribimos la ecuaciéon de Fermat como xP + yP 4+ 2P = 0, el
caso I es simétrico respecto a tres variables x, y, z luego intercambiando los
papeles podemos llegar igualmente a que z =y = 2z (mdd p).

Pero 0 = aP + y? 4+ 2P =z + y + ¢ = 3z (mdd p), y como p > 3, llegamos
una vez mas a la contradiccién p | x.

Supongamos ahora que p | z (caso II). Sustituyamos z por p¥z, donde ahora
z es primo con p. Tenemos entonces que zP + y? = p*P2P, donde z, y, z son
enteros primos con p.

En el anillo de enteros ciclotémicos, p factoriza como p = n(w—1)P~1, donde
7 es una unidad. La ecuacién se convierte en

P 4+ yP = e(w — 1)P"2P, (10.4)

donde € es una unidad y m = k(p — 1) > 0.

Hemos de probar que esta ecuacién no tiene soluciones enteras primas con
w — 1. Para ello probaremos méas en general que no existen enteros ciclotémicos
x, y, z primos con w — 1 que satisfagan (10.4). Supongamos por reduccién al
absurdo que existen enteros ciclotémicos que cumplan (10.4) con el menor valor
posible para m. Factorizando el miembro izquierdo de (10.4) tenemos

(x+y)(x+wy) - (z+ P y) = e(w—1)Pm2P. (10.5)

Sabemos que en el caso II el primo w — 1 divide de hecho a todos los factores
de la izquierda. M4s atin, la ecuacién (10.2) implica que (w — 1) no divide a la
diferencia de dos cualesquiera de estos factores. Equivalentemente, los niimeros

:c—f—wiy

. i=0p-1,

son no congruentes dos a dos médulo w — 1.
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Como N(w — 1) = p, estos nimeros forman un conjunto completo de repre-
sentantes de las clases de congruencia médulo w — 1.

En particular existe un tinico i entre 0 y p — 1 tal que (w — 1)? | z + wiy. Si
llamamos y a w'y, se sigue cumpliendo (10.4) y ahora (w —1)? | x + y, mientras
que los factores restantes x +w'y son divisibles entre w —1 pero no entre (w—1)2.

En consecuencia el miembro izquierdo de (10.5) es divisible entre (w—1)P*!,
y en particular ha de ser m > 1.

Sea m = (z,y). Como z e y son primos con w — 1, lo mismo le ocurre a m.
Por lo tanto si i # 0 tenemos que (z + w'y) = (w — 1)mc;, mientras que = + y
ha de ser divisible entre los p(m — 1) 4+ 1 factores w — 1 restantes que dividen el
miembro derecho de (10.5), es decir,

(z+y) = (w— 1P Dilme,.

Los ideales ¢;, para i = 0,...,p — 1, son primos entre si dos a dos, pues si
un primo p divide a dos de ellos, entonces mp divide a dos ntimeros x + w'y,
T + w’y, luego también divide a su suma y a su diferencia, es decir, a (w — 1)y,
(w— 1)z, luego a m = (x,y), pero esto es imposible.

La ecuacién dada queda ahora del modo siguiente:

mp(w — 1)me0C1 e Cp_1 = (w — 1)pm(z)p

Puesto que los ¢; son primos entre si, todos han de ser potencias p-ésimas.
Digamos que ¢; = b?, con lo que

(@+y) = (w—1P" D b,
(z+w'y) = (w—1)mb?, i=1,...,p—1.
Despejamos m en la primera ecuacién y lo sustituimos en la segunda:
(w— 1P Vel (2 + wiy) = (x +y)b?, i=1,...,p—1. (10.6)

Esto implica que los ideales b} y b son similares, luego (b;bo)P es principal,
donde by = N(bg)/bg. Por la propiedad A de la definicién de primo regular
concluimos que el ideal b;bg también es principal, digamos b;by = (a;). Multi-
plicando por by queda N(bg)b; = (a;)bg. Notar que tanto N(bg) como (o) son
primos con w — 1. Elevamos a p y sustituimos en (10.6):

(w— 1P UN(bo)P(z + w'y) = (z + y)(a;)?, i=1,....,p—1.
Eliminando los ideales queda
(w — 1P U N(bo)P (2 + w'y) = ei(x +y)al,
donde ¢; es una unidad, o equivalentemente
(w = D)P" D (2 4 wy) = ez + )l (10.7)

donde 7; = a;/ N(by).
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Nuestro objetivo es combinar estas ecuaciones para llegar a una ecuacién
similar a (10.4) pero con un valor menor para m. Una forma rdpida de hacerlo
es partir de la identidad

(z+wy)(1+w) - (z+w’y) =w(z+y).
Si la multiplicamos por (w — 1)?™~1) y usamos (10.7) para i = 1,2 obtenemos
(z+ynfea(l+w) = (@+y)be = (@ + yw(w - 1P,
Como 1 4+ w es una unidad, esta ecuacién se puede poner en la forma
W +Abe = n(w — 1P,
donde € y 1 son unidades. Multiplicando por N(bg)? queda una ecuacién de tipo
o + € = lw — 1P,

donde a, [ y v son enteros ciclotémicos primos con w — 1. Esta ecuacion sera
de tipo (10.4) si € es una potencia p-ésima. Lo probaremos usando la propiedad
B de la definicién de primo regular.
En efecto, basta observar que p(m —1) > p, pues hemos probado que m > 1,
luego
aP + ¢ =0 (mdd p).

Despejando € (lo cual es posible porque § es primo con p) vemos que es con-
gruente con una potencia p-ésima médulo p, luego es congruente con un entero
racional médulo p, luego es una potencia p-ésima (por la propiedad B). =

Este teorema no aporta informacion alguna en ausencia de un criterio para
reconocer qué primos son regulares. Kummer formulé dos conjeturas sobre los
primos regulares:

1. La propiedad A implica la propiedad B, de modo que un primo p es regular
siy sélo si pth, donde h es el niimero de clases del cuerpo ciclotémico de
orden p.

2. Existen infinitos primos regulares.

Admitiendo la primera conjetura, el problema de decidir si un primo es
regular se reduce al calculo del nimero de clases del cuerpo ciclotémico corres-
pondiente, lo cual no es cosa facil, pues & aumenta muy rapidamente con p.
Pocos meses después de probar el teorema anterior, Kummer demostré la con-
jetura 1 y hall6 un método sorprendentemente simple de decidir si se cumple
la propiedad A sin necesidad de calcular explicitamente el nimero de clases h.
Ambos resultados se obtienen a partir de una técnica comun que desarrollare-
mos en los proximos capitulos. Respecto a la segunda conjetura, nunca ha sido
demostrada ni refutada, pero Kummer se retracté de ella cuando dispuso de
més datos. En realidad no hay evidencias de que sea falsa.



Capitulo XI

La funcion dseta de
Dedekind

Segin comentabamos en el capitulo anterior, Kummer buscaba una carac-
terizacién préctica de los primos regulares, lo que supone ser capaz de decidir
si un primo p divide o no al nimero de clases del cuerpo ciclotémico de orden
p. Al abordar el problema se dio cuenta de que podia aprovechar el trabajo de
Dirichlet sobre los primos en progresiones aritméticas, que a su vez se basaban
en su propia teoria de factorizacion ideal en los cuerpos ciclotémicos. Los resul-
tados de Dirichlet y Kummer sobre cuerpos ciclotémicos fueron generalizados
por Dedekind a cuerpos numéricos arbitrarios, y es en este contexto general en
el que los expondremos aqui. El punto de partida es el siguiente resultado de

Euler:
oo
> =Tl
s 71 _ 1
ns - =
n=1 P 1 p*
donde p recorre los nimeros primos y s > 1.

Esta féormula puede considerarse como la primera piedra de la teoria analitica
de ndmeros. En ella se relacionan una serie y un producto infinito (objetos
analiticos) con la sucesién de los nimeros primos. La demostracién utiliza por
una parte resultados analiticos sobre convergencia de series y por otra el teorema
fundamental de la aritmética.

Gauss estudié més a fondo la férmula de Euler y definié la que hoy se conoce
como funcion dseta de Riemann:

1
¢(s) = Z —, para s> 1.
n=1

nS

Su convergencia es facil de probar. Sélo hay que observar que

gy 1 " dx
e S < pvy
n xz n n—1 %
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para n > 1 en la desigualdad de la izquierda y n > 2 en la desigualdad de la

derecha. De aqui
N g Al | N da
— < — <1 —,
A SETR A

n=1 1
para todo nimero natural N > 1. Integrando y tomando limites en N queda

1
s—1

1
< <14+——, s>1.
<) <14 s

Mas aun, multiplicando por s — 1 y tomando limites en s obtenemos

lim (s —1)¢(s) = 1. (11.1)

s—1+

Euler noté que esto implica la existencia de infinitos nimeros primos. En
efecto, (11.1) implica que el miembro izquierdo de la férmula de Euler tiende a
infinito cuando s tiende a 1, pero el miembro derecho estaria acotado si el pro-
ducto fuera finito. Por supuesto la existencia de infinitos primos puede probarse
por medios mucho més elementales (ya hay una prueba en los Elementos, de
Euclides), sin embargo, tras intentar sin éxito generalizar la prueba de Euclides
para demostrar que toda sucesion aritmética contiene nimeros primos, Dirichlet
se planteo la posibilidad de lograrlo mediante el argumento de Euler.

Dirichlet conocia los resultados de Kummer, en particular el teorema 3.20,
segun el cual el tipo de factorizacion de un primo p en un cuerpo ciclotémico de
orden m depende del resto de p médulo m, y por lo tanto de la clase de p en
U,,. Dirichlet conjeturé que una férmula similar a la de Euler donde la suma
se haga sobre los ideales del cuerpo ciclotémico m-simo y el producto sobre los
correspondientes primos ciclotémicos, tal vez podria utilizarse para probar que
toda progresién ma + n con [n] € U,, contiene niimeros primos.

Ejercicio: Probar que la funcién dseta de Riemann converge uniformemente en los
subconjuntos compactos de ]1, +oo[. Deducir que es continua en dicho intervalo.

Resultados béasicos sobre series y productos infinitos Para comodidad del
lector, enunciamos aqui los resultados analiticos mas importantes que vamos a utilizar.

Criterio de mayoracién de Weierstrass Si {f,} es una sucesién de funciones
definidas en A C C y {an} es una sucesion en R de modo que |frn(z)| < an para todo z € A y
Zn ap < 400, entonces la serie funcional Zn fn(2) converge uniformemente en su dominio.

Criterio de comparacion Si {a,} y {bn} son dos sucesiones en C tales que ewiste
limy, |an|/|bn| entonces la serie ,, Gn converge absolutamente si y sdlo si lo hace Zn b

Productos infinitos Un producto infinito Hn(l +an) de nimeros complejos converge
(absolutamente) si y sdlo si la serie Zn an converge (absolutamente). En tal caso la serie
Zn log(1 4 an) converge a un logaritmo del producto.
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11.1 Convergencia de la funciéon dseta

Definicién 11.1 Sea K un cuerpo numérico. Se llama funcidn dseta de Dede-

kind de K a la funcién )

Crl(s) =) NO

a

donde a recorre todos los ideales no nulos de K.

Observar que la funcién dseta de Q es precisamente la funcién dseta de
Riemann.

Nuestro primer problema es demostrar que esta serie converge para s > 1.
Si llamamos A al nimero de clases de K podemos descomponerla en suma de h

series como sigue:
1
k() =D_> — =5
C aeC N(CL)S

donde C recorre las clases de similitud de ideales de K.
Para probar la convergencia de la serie completa es suficiente probar la de

las series .
Cols) =) NOD

acC

En primer lugar las reescribimos para que el conjunto de indices sea el de
los ntimeros naturales, como es habitual. Para ello llamamos fc(n) al nimero
de ideales de C' de norma n, con lo que

Cols) = Z fC(:L)

n

La convergencia la obtendremos a partir de una estimacion de la sucesién
de coeficientes. En realidad estimaremos la funcién jo(r) que da el ndmero de
ideales de C' de norma menor o igual que r.

Fijamos un ideal b perteneciente a la clase inversa C~! en el grupo de clases.
Entonces para cada ideal a € C el producto ab esta en la clase principal, es decir,
es un ideal principal ab = («). La aplicacién que a cada ideal a € C le asigna el
ideal ab es una biyeccién entre los ideales de C' y los ideales principales (a) de
K divisibles entre b. Ademé&s N(a) N(b) = | N(«)|, luego jo(r) es el nimero de
ideales principales de K divisibles entre b y de norma menor o igual que r N(b).

En lugar de contar ideales principales contaremos enteros o € b tales que
IN(a)| < rN(b), pero para no contar varias veces—infinitas, de hecho— el
mismo ideal, hemos de considerar sélo un representante de cada clase de equi-
valencia respecto a la asociacién.

El proceso de seleccion de los representantes lo llevaremos a cabo con la
ayuda de los métodos geométricos desarrollados en el capitulo IV. Conservamos



264 Capitulo 11. La funcién dseta de Dedekind

la notacién que introdujimos alli. Concretamente oy, ...,0s seran los mono-
morfismos reales de K, mientras que 0s11,0s41,--.,0s+¢t, Ost¢ Seran los mono-
morfismos complejos. Asi, el grado de K serd n = s + 2t. La representacion
geométrica de un nimero o € K es

z(a) = (o1(a),...,05p(@)) € R

En Rt se define la norma N(z1,...,Ts1¢) = @1 Ts|Tsr1]? -+ |Tspe]?, de
modo que N(zy) = N(z) N(y) y N(z(a)) = N(a).

Los elementos z € R con N(z) # 0 tienen asignada la representacién
logaritmica dada por {(z) = (l1(z), ..., ls4¢(2)), donde

() = log|zg| parak=1,...,s,
kA= log |zk|? parak=s+1,...,s+t.

Sea €1,..., €6 un sistema fundamental de unidades de K. Sabemos que los
vectores I(€1), . ..,1(e,) forman una base del subespacio

V={zeR"|z1+ 4z =0},

de dimensién r = s+t — 1.

Si a estos vectores les anadimos I* = (1, 2.,1,2,.0, 2) obtenemos una base
de R**t. Asi, la representacién logarftmica de cada vector 2 € Rt de norma no
nula se expresa de forma tnica como I(x) = &* + &1l(e1) + - - - + & l(€,), donde
&,€1,...,& son numeros reales.

Por ultimo, sea m el nimero de raices de la unidad contenidas en K.

Definicién 11.2 Con la notacién anterior, un subconjunto X de R*! es un
dominio fundamental de K si es el conjunto de los puntos x que cumplen las
condiciones siguientes:

L. N(z) # 0,
2. l(x) =&+ &l(er)+ -+ &), con 0 < & < 1.

El dominio fundamental de K estd univocamente determinado si fijamos un
sistema fundamental de unidades de K. El teorema siguiente prueba que todo
entero de K tiene un tnico asociado en el dominio fundamental salvo raices de
la unidad, es decir, en realidad tiene m asociados. Podriamos haber dado una
definicién ligeramente mas restrictiva de modo que sélo hubiera un asociado,
pero esto complicaria ligeramente las pruebas, y a la hora de contar ideales no
importa que cada uno aparezca repetido m veces, pues basta dividir entre m el
resultado final.

Teorema 11.3 Cada elemento no nulo de K tiene eractamente m asociados
cuya representacion geométrica se encuentra en el dominio fundamental de K.

Para probarlo demostramos primero lo siguiente:
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Teorema 11.4 Siy € R y N(y) # 0, entonces y admite exactamente m repre-
sentaciones de la forma y = x x(€), donde x pertenece al dominio fundamental
de K y € es una unidad de K.

DEMOSTRACION: Sea l(y) = vI* +y1l(e1) + -+ + vl(e). Paraj=1,...,r
descompongamos 7; = k; + &;, donde k; es un entero racional y 0 < &; < 1.

Sea e = e ... b y o = yu(e™!). Entonces y = zz(e), N(z) = N(y) #0 y
(z) =U(y) +Ue") = 1Uy) —kil(er) = —keller) = "+ &ller) +- -+ &l er),

luego z estd en el dominio fundamental de K.

Por otra parte, si x z(e) = 2’ z(€¢'), entonces I(x) + I(e) = I(z') + I(¢). Las
coordenadas de l(€) y I(¢') en la base l(e1), ..., I(€.) son enteros racionales, y las
de I(z) y I(2') estédn entre 0 y 1. La unicidad de la parte entera de un nimero
real nos da que I(€) = I(¢'). Consecuentemente ¢ = ew, donde w es una raiz m-
sima de la unidad, y por lo tanto las representaciones de ¥y en la forma indicada
son exactamente y = x z(€)x(w), donde x y € son fijos y w recorre las m raices
de la unidad de K. m

DEMOSTRACION (del teorema 11.3): Si 8 € K es no nulo entonces por el
teorema anterior existen m representaciones distintas z(3) = x z(e) con z € X
y € una unidad de K. Los ntimeros B3¢~! son m asociados de 8 que cumplen
r(fe ) =z € X.

Reciprocamente, cada asociado de fe tal que © = z(8)z(e) € X da lugar a
una representacién distinta z(3) = z z(¢7!), luego hay exactamente m. m

Antes de seguir con el problema de la convergencia de las funciones dseta
observamos una propiedad importante de los dominios fundamentales:
Si & > 0 es un nimero real y 2 € R° tiene norma no nula, entonces

Ik(§x) = log|éxy| =log€ +lx(x), paral <k <s,
j(éx) = log|éx;|> =2logé + lp(w), paral<j<t.

En consecuencia, [({x) = log&l* + I(x) y las coordenadas &1,...,&, de los
vectores [(£x) y I(z) en la base I*,1(e1),...,l(€e) son las mismas.

Todo esto implica que si el dominio fundamental de K contiene a un vector
x, también contiene a todos sus multiplos positivos. Los subconjuntos de Rt
con esta propiedad se llaman conos.

Recordemos que estamos buscando una estimacién de la funcién jo(r), que
puede calcularse como el numero de ideales principales («) tales que o € b
y |N(a)] < rN(b). Si llamamos M a la imagen de b por la representacién
geométrica, que es un reticulo completo de R™, cada ideal tiene exactamente
m generadores en el dominio fundamental X, luego mjc(r) es el nimero de
vectores 2 € M N X que cumplen |N(z)| < rN(b).

Llamemos T = {x € X | |[N(z)| < 1}. Teniendo en cuenta que si 7 > 0 es
un ndmero real entonces N(rz) = r™ N(x) (donde n es el grado de K), asi como
que X es un cono, resulta que

{$€X||N(x)|§7“}—{w<niﬁ>€X|'N<

xT

{z/?

oo} e
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luego m jo(r) es también el nimero de puntos de M N {/N(b)rT y nuestro
problema se reduce a estimar el nimero de puntos de un reticulo completo
en un determinado conjunto. Para resolverlo daremos un teorema general que
requiere algunos conceptos nuevos:

Definicién 11.5 Un cubo en R* es un producto cartesiano de k intervalos ce-
rrados y acotados. Si todos ellos son iguales a [0, 1] tenemos el cubo unitario.

Si S ¢ R*, una funcién ¢ : S — R™ tiene la propiedad de Lipschitz si existe
una constante C' tal que para todo z, y € S se cumple ||¢p(z) —o(y)|| < Cllz—y]l.

Usando el teorema del valor medio es facil ver que toda funcién de clase C*
tiene la propiedad de Lipschitz en compactos.

Un subconjunto D C R"™ es parametrizable Lipschitz de grado k si existe
un ntimero finito de funciones de Lipschitz con dominio [0, 1]* cuyas imagenes
cubren a D.

Dadas tres funciones f, g, h : |0, +oo[ — R, diremos que
f(r) = g(r) + O(h(r))
si la funcién (f(r) — g(r))/h(r) estd acotada.

Teorema 11.6 Sea T un subconjunto acotado de R™ medible Lebesgue cuya
frontera sea parametrizable Lipschitz de grado n—1, sea M un reticulo completo
en R™, sea V' la medida de su paralelepipedo fundamental, sea v = u(T) y sea
u € R"™. Sin(r) es el nimero de puntos de u+ M contenidos en rT, entonces

n(r) = %r" +O0(r" 1),

donde la cota en O depende solo de M, de n y de las constantes de Lipschitz.

DEMOSTRACION: Sea P el paralelepipedo fundamental de M. Sea m(r) el
nimero de puntos & € u+ M tales que = + P estd contenido en el interior de 7T’
y sea f(r) el nimero de puntos x € u + M tales que = + P corta a la frontera
de rT. Claramente m(r) < n(r) < m(r) + f(r).

Los m(r) trasladados de P son disjuntos y estdn contenidos en 7T, que a
su vez estd contenido en la unién de los m(r) + f(r) trasladados de P, también
disjuntos. Tomando medidas queda m(r)V < r"v < m(r)V + f(r)V, luego

m(r) <

" <m(r)+ f(r).

<l=

Asf pues, |n(r) — (v/V)r"| < f(r), y sélo hay que probar que f(r) < Cr™—1.
Para ello nos apoyaremos en el hecho siguiente: el nimero de puntos = € u+ M
tales que = 4+ P corta a un conjunto de didmetro dado d estd acotado por una
cantidad que sélo depende de M y de d, pero no del conjunto. En efecto,
mediante una traslacién podemos suponer que u = 0 y que uno de tales puntos
es el 0, y entonces dichos puntos estdn contenidos en la bola de centro 0 y radio

—
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la suma de d més el didmetro de P, y el conjunto de puntos de M en esta bola
es la constante buscada.

Sea ¢ : [0,1]""! — R™ una funcién de Lipschitz que cubra una porcién
de la frontera de T. Entonces r¢ sigue siendo de Lipschitz y cubre la porcién
correspondiente de la frontera de rT. Sea [r] la parte entera de r.

Si dividimos el intervalo [0,1] en [r] segmentos de longitud 1/[r], el cubo
unidad queda dividido en [r]"~! cubos cuyas imagenes por ¢ tienen didmetro
a lo sumo Cy/[r], donde Cy depende sélo de n y de la constante de ¢, luego
la imagen por r¢ de cada uno de estos cubos tiene didmetro a lo sumo Cj
(independiente de 7).

El niimero de puntos x € u + M tales que = + P corta a esta imagen esta
acotado por una cantidad Cy que s6lo depende de M, de n y de la constante de
¢, luego el nimero de puntos z € u + M tales que = + P corta a la imagen de
r¢ es a lo sumo Co[r]"~1 < Cyrn—1.

Como toda la frontera esta cubierta por un ntimero finito de tales imagenes,
concluimos que f(r) < Cr"~1, para una cierta constante C. ]

Ahora hemos de aplicar este teorema cuando M es la imagen del ideal b por

la representacién geométrica, u =0y

T={zeX]||N@) <1}

Ejercicio: Representar graficamente el conjunto T para un cuerpo cuadrético real y
para un cuerpo cuadratico imaginario.

Hemos visto que, en términos de la funcién n(r) la funcién jo es

jo(r) = w (11.2)

Para aplicar el teorema hemos de probar que T satisface las hipotesis. Esto
nos lleva a un calculo bastante largo:

Todo x € R*" de norma no nula cumple
Wz) = &" + &iller) + -+ &l(er), (11.3)

donde &,&1,...,&. son numeros reales. El conjunto T estd formado por los
vectores x que cumplen:

1. 0<|N(z)| <1,
2.0<¢ < 1.

En la prueba del teorema 4.22 observamos que la aplicacién de R$* en R%¢
que a cada z le asigna yz (para un cierto y € R* fijo) es lineal (considerando a
R3¢ como espacio vectorial sobre R) y que su determinante es N(y).

Sea T" el conjunto de los puntos de T cuyas s coordenadas reales sean po-
sitivas. Si fijamos un conjunto de s signos d1,...,d0s = +1, entonces la multi-
plicacién por el punto (d1,...,0s,1,...,1) es una aplicacién lineal de determi-
nante +1. En total hay 2° aplicaciones de este tipo, que transforman el conjunto
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T’ en 2% conjuntos disjuntos de la misma medida y cuya unién es T'. Basta pro-
bar que T” es acotado, medible y que su frontera es parametrizable Lipschitz de
grado n — 1, pues entonces T también serd medible y acotado, u(T) = pu(77)2° y
su frontera serd parametrizable Lipschitz de grado n — 1 (ya que esta contenida
en la unién de las fronteras de las 2° imagenes de T").

Representemos las coordenadas de un punto z € R como

= (21, ., Ts,Y1 + 021, Yt +12¢).
Estamos identificando R con R™, con lo que z se identifica con la n-tupla

(1'13"'axsaylazlw"vytazt)'

Segtin la ecuacién (4.3), las componentes de [(z) suman log|N(z)|, pero
sumando en el miembro derecho de (11.3) y teniendo en cuenta que las compo-
nentes de [(¢;) suman log 1 = 0, tenemos que log‘N(a:)‘ =¢{(s+2t) =nk.

Por lo tanto (11.3) se convierte en

I(z) = %log|N(x)|l* Fal(e) + -+ (). (11.4)

Ahora hacemos el cambio de variables

Ti = Pis i=1,...,s,
Yi = Ps+jC059ja jzla"'at7
Zj = Pstj senﬁj, j: 1,...,t.

Se comprueba facilmente que el determinante jacobiano es psy1 - - - ps+t. Vea-
mos cudl es la expresién de T” en estas coordenadas.

s+t
En primer lugar, si x € T”, entonces N(z) = [] pi* , donde e; = 1 para

i=1
i=1,...,sye =2parai =s+1,...,t, vy l;(z) =logp;’. La ecuacién (11.4)
equivale al sistema de ecuaciones

s+t T
€5 €j €4
logp’ = Llog [ [ "+ _ &kli(ex). (11.5)
i=1 k=1

Por lo tanto el conjunto 7" estd formado por los puntos de coordenadas

(pla'~'aps+t7913"'a0t)

tales que
s+t
1. 0< prlgl, 0<0,...,0, <2m.
i=1

1=

2. En (11.5) se cumple 0 < &, < 1.
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Para probar que T” estd acotado basta ver que lo estdn las coordenadas p;
de todos sus puntos. Ahora observamos que las ecuaciones

R 2
log pj’ = E] log & + kalj(ek). (11.6)
k=1

definen un cambio de variables

(plv"'7p5+ta917"'70t)H (€7§1a"'a§r7917"'59t>

y, respecto a éstas 1ltimas, el conjunto F’ est4 definido por las condiciones
0<¢&<], 0<&g <1, 0<50; <2, (11.7)

En efecto, las ecuaciones (11.6) pueden escribirse también como
1 . ,
logpj:E10g€+;€k10g|0’j(€k)‘7 j=1,...,8+t,

o también

pj = /" exp (Z{k 10g|0j(ek)> , j=1,...,s+t (11.8)

k=1

Estonosda (p1, ..., pstt,01,...,0:) apartirde (§,&1,...,&,61,...,0;). Para

la transformacién inversa notamos que al sumar las ecuaciones (11.6) queda
s+t

&= 11 p;* y las coordenadas &; estdn determinadas por un sistema de r ecua-
i=1

ciones lineales con determinante no nulo (notar que la determinacién de £ hace

que se cumpla la suma de las s+t ecuaciones, luego si los &; se escogen de modo

que cumplan las s + ¢ — 1 primeras, la dltima se cumple automdticamente).

Ahora ya es claro que T” estd acotado. Para calcular el determinante jaco-
biano comprobamos que

Opi _pi OPi _ Piy ()
o6 n& 0&% ey T

Por consiguiente el jacobiano es

% %zl(el) %MET)
J = : : :
T P lete) o P ()
€1 51(61) ll(ér)
_ P1Pstt . .
ng& 2t

Cs+t ls+t(€1) et ls+t(€7‘)
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En el ultimo determinante sumamos todas las filas a la primera, con lo que
ésta se convierte en (n,0,...,0). Desarrollando el determinante y recordando
la definicién del regulador R de K dada en el capitulo 4 obtenemos que el
determinante jacobiano vale

J:pl...ps_"_tR: R .
£2t 2'psi1 e Pt

Recordemos que el primer cambio de variables tenia jacobiano psi1 - - - ps+t,
luego el jacobiano de la composicién es R/2°.

Puesto que T’ se obtiene de un cubo mediante un cambio de variables de
clase C', podemos concluir que 7" es medible y su medida es (R/2%)(27)! = n'R.
Por consiguiente u(T) = 257'R.

Falta probar que la frontera de 7" es parametrizable Lipschitz. Ahora bien,
cambiando /™ por &, el cambio de coordenadas (11.8) se transforma en

.
pj = Eexp <Z§k10g|0j(5k)|>a j=1....s+t,

k=1

que, compuesto con el cambio a polares, nos da una aplicacién h de clase C*
que biyecta el cubo ]0,1] x [0,1[" x [0, 27" con el conjunto T”. Con un cambio
de variables obvio podemos sustituir este cubo por ]0,1] x [0, 1],

Ahora bien, esta aplicacion estd definida de hecho en todo R™, y la imagen del
cubo [0,1]™ es un compacto que contiene a la clausura de 7. Por consiguiente
los puntos de la frontera de T’ deben ser imagen de puntos de la frontera del
cubo.

Esta frontera es la unién de las 2n caras formadas por las n-tuplas con
una coordenada constante igual a 0 o a 1. Las 2n funciones que resultan de
sumergir R"~! en R fijando una coordenada igual a 0 o a 1 son de clase C' y
las imagenes del cubo [0,1]"~! cubren la frontera del cubo unitario en R", por
lo que al componerlas con h obtenemos 2n funciones de clase C' tales que la
frontera de T” est& cubierta por las imdgenes del cubo unitario. Como son de
clase C!, las restricciones al cubo unitario tienen la propiedad de Lipschitz.

Recapitulando, podemos aplicar el teorema 11.6, y las constantes que apa-
recen son
v=u(T)=2°7"R
y, segun el teorema 4.5, la medida del paralelepipedo fundamental de la imagen
del ideal b por la representacién geométrica es

D)

ot
donde A es el discriminante de K. La conclusién es que
2s+t tR
n(r) = 2 TR +O(r" .
|Ak|N(b)

Teniendo en cuenta la relacién (11.2) hemos probado el teorema siguiente:
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Teorema 11.7 Sea K un cuerpo numérico de discriminante A, sea R el re-
gulador de K, sea m el numero de raices de la unidad contenidas en K y sea
C una clase de similitud de ideales de K. Entonces la funcidn jo(r), definida
como el numero de ideales en C' de morma menor o igual que r, verifica

_ 2(2m)'R

= r4 O(rt=Ym).
m/|Ak]

Jje(r)

Observar que en particular se cumple

) 25(2m)t
i dC) _ 2°@)'R
r—+4oo T m |AK|

y hay que destacar que este limite no depende de la clase C. De aqui se sigue
precisamente la conexién entre las funciones dseta y el nimero de clases de K.
Veamoslo.

Teorema 11.8 Con la notacion del teorema anterior, se cumple

1. La funcidén (c(s) converge uniformemente en los compactos de |1, +o00[ y
eziste

, 25(2m)'R
lim (s —1 §) = —F—,
Jim (5= ele) = s

2. La funcidn Cx(s) converge uniformemente en los compactos de |1,4+o00[ y

o _ 2°(27)'R
Jim (s = 16 (s) =~ (10.9)

donde h es el nimero de clases de K.

DEMOSTRACION: El segundo apartado es consecuencia clara del primero.
Para probar éste consideremos la sucesién {z,} que comienza con tantos unos
como ideales tiene C' de norma 1, seguido de tantos doses como ideales tiene C'
de norma 2, etc. Entonces

o0

1 1
Col(s) =) Ny 2ea

acC n=1

Claramente, jc(z,,) es el nimero de términos de la sucesién menores o iguales
que T, luego claramente jo(z, — 1) <n < jo(z,). Por lo tanto:

(mn - 1) jelwn 1) _ n_ jolen)

Ty T, — 1 Ty Ty

Es obvio que z,, tiende a infinito, luego al tomar limites en n queda
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Llamemos L a este limite. Entonces, dado € > 0, existe un ng tal que si n > ng
entonces n
L—-—e< — < L+e,

Ty
luego
1 1 1
L—¢— < —< (L S
( 6) ns x5 ( +€) ns

Todo compacto contenido en |1, +o00[ estd contenido en un intervalo [so, s1],
donde 1 < sp, y vemos entonces que la serie (¢(s) estd mayorada en dicho
compacto por la serie convergente

o0

s 1
Z(L+6) 1%7

n=no

luego converge uniformemente. Mas atn,

Llamemos r1(s) y r2(x) a las sumas de los ng — 1 primeros términos de las
funciones ((s) y (c(s) (que son funciones continuas en todo R). As{

(L —€)°C(s) = (L = €)°r1(s) < Gols) —ra(s) < (L+€)°C(s) — (L +€)°ri(s).
Multiplicando por s — 1 y tomando limites cuando s tiende a 1 queda

L—e< lfmifrlfCC(S) <limsup(c(s) < L +e.
s—1 s—1+

Como € es arbitrario concluimos que existe

25(2m)'R
Iim (s —1 s)=L=———r.
s—>1+( )Ce(s) Ak

[ ]

Vemos asi que la funcién dseta de Dedekind de un cuerpo K es un objeto
analitico que contiene informacién algebraica importante sobre K precisamente
donde no estd definida: en el 1. Aunque no entraremos en ello, puede probarse
que (i se extiende a una funcién holomorfa con un polo simple en 1, por lo que
el miembro derecho de (11.9) es precisamente el residuo en 1 de (k.

11.2 Productos de Euler

Ahora demostramos la generalizacién de la féormula de Euler citada al co-
mienzo del tema. Esta presenta la ventaja de que depende sélo de los ideales
primos de K. Los resultados mas importantes que vamos a obtener se basan en
esta igualdad.
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Teorema 11.9 Sea K un cuerpo numérico. Para cada s > 1 se cumple

Cels) = [[———

p 1= N(p)®

donde p recorre los ideales primos de K. La convergencia del producto es abso-
luta.

DEMOSTRACION: Para probar que el producto converge absolutamente ob-

servaimos que
1 1
S 14—
Hl 1 H<+N(p>8—1>’

p ~ N()?® p

y entonces es suficiente probar que la serie
Z :
S _
. N(p) 1

converge (absolutamente).
Ahora bien, la convergencia de esta serie se sigue inmediatamente de la
convergencia de Y ﬁ, que a su vez es consecuencia de la convergencia de
p

> —N(i)s (donde ahora a recorre todos los ideales no nulos de K).
a

Para cada ideal primo p se cumple que

1 i 1
T ks
L= xor oo N®™
Sea N un nimero natural y sean p1, ..., p, los primos de K de norma menor

o igual que N. Multiplicando las series anteriores para estos primos obtenemos

o0

1 1 1
H T_ 1~ Z kT)SZZN(a)S’

k1
N(p)<N N(p)® K1y kr=0 N(p7 pr

donde a recorre los ideales no divisibles entre primos de norma mayor que N.
Asi pues,

%—CK(S)< Z ! ,

NN T N N(a)>N N(a)®

pero esta ultima expresién tiende a 0 con N, luego se tiene la igualdad buscada.
n

Segun explicabamos, la férmula anterior es el punto de partida del argumento
de Dirichlet que le permitié demostrar el teorema sobre primos en progresiones
aritméticas. A su vez, la presencia del factor h en el residuo de la funcién dseta
fue aprovechada por Kummer para caracterizar de forma practica sus primos
regulares. Aun estamos lejos de llegar a estos resultados, pero podemos probar
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hechos mas simples igualmente importantes y que dan idea del papel que juega
la férmula de Euler generalizada en los problemas que nos ocupan.

Por ejemplo, Gauss utilizé la férmula de Euler para probar que la serie
> % es divergente, donde p recorre los niimeros primos, lo que no sélo implica
la existencia de infinitos primos, sino que, en cierto sentido, los primos son
relativamente abundantes entre los nimeros naturales. El argumento de Gauss
se generaliza sin dificultad a cuerpos numéricos arbitrarios. Mas ain, permite
probar que existen infinitos primos de norma prima.

Teorema 11.10 Todo cuerpo numérico tiene infinitos primos de norma prima.
De hecho, si py1 recorre los primos de morma prima de un Cuerpo mumeérico,

entonces 1
Y s =
- N(p1)

DEMOSTRACION: Si en la férmula del teorema anterior tomamos logaritmos

nos queda
1
log (r (s Zlog ( NOL ) ,

y usando el desarrollo de Taylor

o) _1)ym
log(1+z) = Z (=1 2™, para|z| <1,

m

m=1

obtenemos
= 1
log Cic(5) = e (11.10)

; m=1 mN(p)mb

(notar que todas las series convergen absolutamente). Sea
P(s) = Z _1
- N(p1)*’

donde p; recorre los primos de norma prima de K, y sea G(s) la suma de los
términos restantes de (11.10), es decir,

pZI’mZQmNpl ZZmN ms’

donde g recorre los primos tales que N(q) = ¢ con f > 1. Para cada uno de
estos primos

&S] [e%S)
1 1 1 2

Z mN )ms < Z oms | 25 —1 < s”

m=1 q m=1 q q q

Por otra parte
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Si el grado de K es n, entonces el nimero de primos que dividen a un mismo
primo racional p es a lo sumo n, luego

1 — 1
G(s) < QnZ e <2n Z T 2n¢(2s).
P m=1

Esto implica que la funcién G(s) estd acotada en el intervalo |1,2]. Pero por
otra parte log(x(s) = P(s) + G(s) y el logaritmo tiende a infinito cuando s
tiende a 1, luego la funcién P(s) no puede estar acotada en |1, 2]. Sin embargo,
si la serie del enunciado convergiera, como N(p1) < N(p1)*, llegarfamos a que

1 1
PO =2 o = 250

p1 p1

para todo s > 1. -

La prueba del teorema de Dirichlet se basa en un argumento similar al an-
terior, pero hay que separar los primos segun la clase de similitud a la que
pertenecen, y esto requiere un analisis mas fino de la férmula de Euler, lo cual
a su vez requiere algunos conceptos nuevos. Sin embargo, si estamos en condi-
ciones de exponer los resultados analogos para cuerpos cuadraticos, lo que nos
servird de orientacién para el caso ciclotémico, un poco mas complicado.

Consideremos la formula de Euler generalizada para un cuerpo cuadrético
K y en ella agrupemos los primos que dividen a un mismo primo racional, es

decir,
Ck(s) = H H 1_;1

P plp N(p)®

Para cada primo p, el producto asociado puede ser de tres tipos:

1 1 3] 2 qe]
T T si p se escinde,
p* p*
1 1 1
1 — = 1711 Ssi p se conserva,
T P
T si p se ramifica.
pS

Por lo tanto
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donde hemos usado la férmula de Euler para la funcién dseta de Riemann (la
funcién dseta de Q). Llamemos

oo

Xk (n)

L(s,xkx) = Z - paras > 1. (11.11)
n=1

Es claro que la serie converge absolutamente (estd mayorada por la funcién

dseta) y el mismo argumento que prueba la férmula de Euler para Q permite

probar la relacién
1

L(vaK) = H 1— Xk (p)’

p p*

sin més que sustituir la funcién constante 1 por la funcién x i (notar que ya te-
nemos garantizada la convergencia absoluta del producto). En definitiva hemos
factorizado la funcién dseta de K como

(ke (s) = C(s)L(s; xx)-

Multiplicamos ambos miembros por (s — 1) y tomamos limites cuando s tiende
a 1. El teorema 11.8 nos da que existe
25Tt R
lim L(s,xx) =

s—1+ m,/‘AK‘

Por lo tanto podemos definir L(1, xx) como este limite y asi la funcién L es
continua en [1,4+oo[. Puesto que estamos considerando un cuerpo cuadratico,
la expresion de L(1, x k) se simplifica considerablemente:

Teorema 11.11 Sea K un cuerpo cuadrdtico de discriminante A. Entonces el
numero de clases de K viene dado por

VA
h— 2loge
myv/—A
2

L(l,xg) siA>0ye>1 eslaunidad fundamental de K,

L(1,xk) st A<0ym es el nimero de unidades de K.

El andlisis de las funciones L se puede llevar mas lejos hasta obtener resul-
tados més operativos. Por ejemplo, la serie (11.11) converge en realidad para
s > 0, lo que permite calcular L(1, xx) sumando la serie directamente (sin
necesidad de tomar limites). No obstante, antes de entrar en ello conviene ge-
neralizar los conceptos que estamos manejando, para que los resultados sean
aplicables a cuerpos numéricos no necesariamente cuadraticos, especialmente a
los ciclotémicos.

Terminamos esta seccién demostrando una versién débil del teorema de Di-
richlet. La prueba contiene las ideas esenciales de la demostracién general.
Vamos a probar que en un cuerpo cuadritico K hay infinitos primos que se
escinden e infinitos primos que se conservan. El teorema 11.10 ya prueba la
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existencia de infinitos primos que se escinden, pero no vamos a usar este hecho
para no ocultar la idea principal.

Consideramos los dos factores de la funcién (x(s), es decir, las funciones
¢(s) y L(s,xk). El argumento del teorema 11.10 es aplicable a ambas, lo que
nos da las ecuaciones

log((s) = 3 -+ Gals),

P
g Lisov) = 35 ),
P
donde Gy y G5 son funciones acotadas en ]1,2].

Llamemos A y B a los conjuntos de primos que se escinden y conservan,
respectivamente. Entonces Ay B cubren todos los primos salvo un niimero finito
de ellos. Sien la primera ecuacién separamos los sumandos 1/p correspondientes
a éstos y los incorporamos a G(s), tenemos

1 1

log¢(s) = > —+ Y —+Gis),
pEAp peBp
1 1

log L(s,xkx) = Z P Z - + Ga(s),

pEA pEB

Sumando y restando ambas ecuaciones concluimos ninguna de las dos series
estd acotada cuando s tiende a 1, y por lo tanto las dos series

Yooy X

pEA p peB

son divergentes.

Sillamamos m al valor absoluto del discriminante de K, el caracter y i divide
las clases de U, en dos conjuntos. Lo que hemos probado es que hay infinitos
primos en cada uno de los dos grupos de clases. Para probar el teorema de
Dirichlet hemos de refinar el argumento para distinguir cada una de las clases
de U,,. Esto lo lograremos sustituyendo los cuerpos cuadraticos por cuerpos
ciclotémicos.

Notemos que en la prueba anterior no interviene la funcién dseta de K,
sino tan sélo las funciones ( y L, que sélo involucran nimeros enteros y el
caracter xx. Esto puede hacer pensar que la prueba no depende de la teoria
de cuerpos cuadréticos. En efecto, la mayor parte de la prueba anterior (asi
como la del teorema de Dirichlet) puede basarse en argumentos sobre series de
caracter elemental. El Unico punto no trivial, que nosotros hemos justificado
con ayuda de la funcién (g, es que L(1, xx) # 0. Esto también puede probarse
mediante técnicas analiticas, pero ya no es trivial. Es necesario usar la teoria de
funciones holomorfas. Aun asi, la prueba analitica del teorema de Dirichlet es
mas elemental que la que nosotros daremos, pero ésta es la original de Dirichlet
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y en la que se ven mas claramente las ideas subyacentes. Ademaés se generaliza
més facilmente a otros resultados de gran importancia en el desarrollo de la
teoria algebraica de nimeros.

11.3 Caracteres de grupos abelianos

En su estudio de la funcién dseta de los cuerpos ciclotémicos, Dirichlet se
encontré con unas funciones que juegan el mismo papel que el caracter de un
cuerpo cuadratico. Introducimos el concepto en el contexto general de los grupos
abelianos finitos:

Definicion 11.12 Sea G un grupo abeliano finito. Un cardcter de G es un
homomorfismo y : G — C*.

Los caracteres de ideales o de formas cuadraticas en el sentido de Gauss son
esencialmente caracteres del grupo de clases estrictas, o también del grupo de
géneros, en el sentido de esta definiciéon. El cardcter de un cuerpo cuadratico
K es un cardcter del grupo Uja| de las unidades médulo |A|, donde A es el
discriminante de K. Las funciones ¢, €, de definidas en 9.6 inducen caracteres
en el grupo Us.

En todos estos casos los caracteres tomaban tan sélo los valores +1, ahora ad-
mitimos que tomen valores complejos cualesquiera. De todos modos un caréacter
no puede tomar cualquier valor: Si g es un elemento de un grupo abeliano
G de orden n, entonces g" = 1, luego cualquier cardcter de G cumplird que
x(g)" = x(¢g™) = x(1) = 1. Por lo tanto los caracteres de un grupo de orden n
sélo toman valores en el grupo de las raices n-simas de la unidad.

Llamaremos G* al conjunto de todos los caracteres de G. Es claro que G*
es un grupo abeliano si definimos el producto de dos caracteres x y 1 como el
cardcter determinado por (x¥)(g) = x(9)¥(g) para todo g € G.

El elemento neutro de G* es el llamado cardcter principal de G, dado por
1(g) = 1 para todo g € G. El grupo G* se llama grupo dual de G.

Examinemos en primer lugar cémo son los caracteres de los grupos ciclicos.
Sea G un grupo ciclico de orden n. Sea g un generador de G y sea w € C una
raiz n-sima primitiva de la unidad.

Entonces los grupos G = (g) vy (w) son ciclicos de orden n, luego son iso-
morfos. Un isomorfismo entre ellos es, por ejemplo, la aplicacién x : G — (w)
dada por x(¢™) = w™. Claramente x es un caracter de G con la propiedad de
que x(g) = w.

Para cada m =0,...,n — 1 se cumple que x™(g) = x(9)™ = w™, y como w
es una raiz primitiva de la unidad concluimos que los caracteres x™ son distintos
dos a dos.

Por otro lado, si ¢ € G* se tiene que cumplir que ¥ (g) es una raiz n-sima de
la unidad, o sea, ¥(g) = w™ = x™(g) para un cierto m, y si dos homomorfismos
coinciden sobre un generador, han de ser iguales, es decir, se cumple ¥ = x™
param =0,...,n—1.
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Esto prueba que G* es un grupo ciclico de orden n generado por x. En
particular tenemos que G* es isomorfo a G.

Vamos a ver que esto es cierto para todo grupo G aunque no sea ciclico.
Para ello nos basaremos en que todo grupo abeliano finito se descompone en
producto cartesiano de grupos ciclicos y aplicaremos el teorema siguiente.

Teorema 11.13 Sean G y H grupos abelianos finitos. Entonces si x € G* y
¥ € H*, la aplicacion x x ¢ : Gx H — C dada por (x x¥)(g,h) = x(g)¥(h) es
un cardcter del grupo G x H y ademds la aplicacion f: G* x H* — (G x H)*
dada por f(x,v) = x X ¥ es un isomorfismo de grupos.

La prueba es inmediata. La dejamos a cargo del lector.
Teorema 11.14 Si G es un grupo abeliano finito, G* es isomorfo a G.

DEMOSTRACION: El grupo G se descompone en producto cartesiano de
grupos ciclicos y por el teorema anterior G* es isomorfo al producto cartesiano
de los grupos de caracteres de sus factores, que segiin hemos visto son ciclicos
del mismo orden. Asi pues G y G* se descomponen en producto de grupos
ciclicos de los mismos 6rdenes, luego son isomorfos. m

Observar que no existe un isomorfismo canénico entre G y G*, es decir, un
isomorfismo que asigne a cada elemento un caracter construido a partir de él.
El isomorfismo depende de la estructura del grupo G.

Por el contrario si es posible definir un isomorfismo canénico entre G y su
bidual G**, concretamente, si llamamos €(g) : G* — C a la aplicacién dada
por €(g)(x) = x(g) para todo x € G*, se ve facilmente que € : G — G** es un
isomorfismo.

Ahora vamos a relacionar los caracteres de un grupo con los de sus subgrupos.

Teorema 11.15 Sea G un grupo abeliano finito y H un subgrupo de G. FEn-
tonces todo cardcter de H se extiende a un cardcter de G, y el numero de
extensiones es igual al indice |G : H|.

DEMOSTRACION: La aplicacion G* — H* que cada caricter de G lo res-
tringe a H es obviamente un homomorfismo de grupos. Sea N el nicleo de este
homomorfismo. Un cardcter y estd en N siy sélo si x(h) = 1 para todo h € H.
Esto significa que H estéd contenido en el nicleo de x, luego x induce un caracter
X' : G/H — C dado por x'([g]) = x(9).

La aplicacién N — (G/H)* dada por x — x’ es también un homomorfismo
de grupos. Es fécil ver que de hecho es un isomorfismo. En efecto, si /' = 1
entonces obviamente xy = 1, y si tomamos ¢ € (G/H)*, entonces ¢ define el
cardcter x(g) =1 ([g]), que claramente estd en N y x' = 9.

Consecuentemente |N| = [(G/H)*| = |G : H| y por lo tanto la imagen de la

restriccién tiene orden |G* : N| = |H|, por lo que la restriccién es un epimorfismo
y cada cardcter de H* tiene exactamente |N| = |G : H| antiimédgenes, o sea,
extensiones. L]

El teorema siguiente es fundamental a la hora de trabajar con caracteres.
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Teorema 11.16 (relaciones de ortogonalidad) Sea G un grupo abeliano de
orden n. Sea x € G* y g € G. Entonces

_fn o six=1 _fn o six=1

DEMOSTRACION: La primera relacién es obvia para y = 1. Si x # 1 entonces
existe un z € G tal que x(z) # 1. Por consiguiente

X(@) Y x(9) = x(zg) =D x(9),
geG geG geG
(pues cuando g recorre G, xg también recorre G). Por lo tanto

(x(x)—1) Y x(9) =0,

geG

> x(g) =0.

geG

de donde

La segunda relacion se deduce de la primera aplicindola al grupo G* y al
cardcter dado por €(g)(x) = x(g). .

El nombre de relaciones de ortogonalidad proviene de la interpretacion si-
guiente, que nos va a ser util en algunas ocasiones. Sea G un grupo abeliano
de orden n y sea V el conjunto de todas las aplicaciones de G en C. Clara-
mente V' es un espacio vectorial de dimensién n sobre C. Una biyeccién de G
con {1,...,n} induce de forma natural un isomorfismo entre V' y C". La base
candnica de C" se identifica con la base formada por las funciones {f,}ucc
dadas por

1 sit=wu

f“(t):{ 0 sit#u

Definimos el producto en V dado por

(f.9) = = F(0)5(0),

teG

donde la barra indica la conjugacién compleja. La aplicacién ( , ) es lo que se

llama un producto sesquilineal, es decir, es lineal en la primera componente y

semilineal en la segunda (conserva la suma y ademés (f, ag) = a(f, g)).
Ahora, si x y 9 son dos caracteres de G, el teorema anterior nos da que

O DS BITID U R

teG t nG

Esto significa que los caracteres son ortogonales respecto al producto ( , ).

De la ortogonalidad se sigue que los caracteres son linealmente indepen-
dientes, pues si C es una combinacién lineal nula de los caracteres, entonces
(C,x) = 0, y por otro lado es igual al coeficiente de x en C. Esto a su vez
implica que los caracteres forman una base de V', una base ortonormal.
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11.4 Caracteres modulares

Estudiamos ahora con méas detalle los caracteres de los grupos de unidades
modulo un nimero natural m. Tal y como hemos hecho hasta ahora en los
casos particulares que hemos manejado, conviene considerar a estos caracteres

definidos sobre Z.

Definicién 11.17 Un cardcter médulo m es una aplicacién x : Z — C que
cumple las condiciones siguientes:

1. Para todo a € Z se cumple x(a) = 0 si y sélo si (a,m) # 1.
2. Sia=d (méd m), entonces x(a) = x(a).
3. Sia,b € Z, entonces x(ab) = x(a)x(b).

Obviamente todo cardcter y mddulo m define un cardcter x’ del grupo de
unidades U,, mediante X’([a]) = x(a) y, reciprocamente, todo cardcter de U,
estd inducido por un tnico caracter médulo m. En la préctica identificaremos
los caracteres médulo m con los caracteres de U,,. En general, los caracteres
moédulo m para un moédulo cualquiera se llaman caracteres modulares. Por
ejemplo, es claro que el simbolo de Legendre (z/p) es un cardcter médulo p.

Notar que si x es un cardcter modular y(—1)% = X((—l)z) =x(1) = 1, luego
x(—1) = £1. Si x(—1) = 1 se dice que x es un cardcter par, y si x(—1) = —1 se
dice que x es impar. Los caracteres pares cumplen en general que x(—n) = x(n),
mientras que los impares cumplen x(—n) = —x(n).

Sim | m’ entonces todo caracter xy médulo m determina un cardcter médulo
m' dado por
: !
x(a) si(a,m') =1,
)~ { X@) s (am)
0 si(a,m')#1.
Llamaremos a x’ el cardcter inducido por x. Observar que el valor de x/(a)
depende en realidad del resto de @ médulo m y no del resto médulo m/.
En términos de caracteres ordinarios la interpretaciéon es la siguiente: si
m | m entonces existe un homomorfismo f : U, — Uy, dado por f([a]) = [a].
Si x es un caracter de U, entonces Y’ es la composicién de x con f.

En realidad f es un epimorfismo, pues si (a,m) = 1, por el teorema chino
del resto existe un a’ que cumple ¢’ = a (méd m) y ¢’ = 1 (mdd p) para todo
primo p que divida a m’ pero no a m. Entonces (a/,m’) =1y f([d']) = [a]. A
f lo llamaremos epimorfismo canonico de Uy, en Uy,.

Visto asi es claro que el cardcter inducido x’ determina a Yy, pues X([a]) se
puede calcular como x’([b]), donde [b] es una antiimagen de [a] por f.

También es claro que si m | n | 7, x es un cardcter médulo m y x’ es
el cardcter que induce médulo n, entonces x y X’ inducen el mismo caricter
médulo r. En efecto, tenemos

v, -Lu, LU, 5,
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de modo que X’ = gox vy los caracteres que x y x’ inducen médulo r son (fog)oc
y f o (g o c) respectivamente.

Teorema 11.18 Si un cardcter x mddulo m estd inducido por un cardcter x1
mddulo my y por un cardcter xo modulo mo entonces también estd inducido por
un cardcter médulo d = (mq, ms).

DEMOSTRACION: Sea m’ el minimo comiin miltiplo de m; y mso. Tenemos
la situacion siguiente:

/ N
Upn — Upy Ua
N e

Umg X2

donde todas las flechas sin nombre son los epimorfismos canoénicos.

Por hipétesis x1 y x2 inducen el mismo caricter x moédulo m, pero los
caracteres inducidos por x1 y X2 moédulo m’ también inducen el cardcter Yy,
luego han de coincidir. Sea pues X’ el cardcter inducido por x1 y x2 médulo m/.

Sean N; y N los nicleos de los epimorfismos candnicos de U, en Uy, ¥
Un,, es decir,

Ni={[a] €Up |a=1(méd m1)} y Ny={[a] €Up |a=1(méd my)}.

Por el teorema de isomorffa sus érdenes son ¢p(m’)/¢p(my) y ¢p(m’)/p(ms) respec-
tivamente. Es obvio que ambos estan contenidos en el nicleo N del epimorfismo
canénico de Uy, en Ug, que es N = {[a] € Upy | a =1 (mdd d)} y tiene orden
B(m')/8(d).

También es claro que N; N Ny = 1, luego | N1 No| = |N1||Na| = |N|, pues la
ultima igualdad equivale a que ¢(m')p(d) = ¢(mq)d(ms), lo cual se demuestra
sin dificultad para toda funcién aritmética multiplicativa. Como Ny Ns < N, de
hecho se tiene la igualdad N = Ny No.

Para todo [a] € Uy, se cumple que x'(a) = x1(a) = x2(a), luego x'(a) =1
tanto si [a] € Ny como si [a] € Na, luego x'(a) = 1 siempre que [a] € N, es
decir, para todas las clases [a] que cumplen a = 1 (méd d). De aqui se sigue
que si a = o’ (méd d) entonces x'(a) = x'(a’).

Dado [a] € Uy existe un [a'] € U,y tal que ¢/ = a (méd d) (por la supra-
yectividad del epimorfismo canénico). Podemos definir ¢(a) = x/(a’) sin que
importe la eleccién de a’ (por lo que acabamos de probar). Claramente ¢ es un
caracter médulo d que induce a x’ y por lo tanto a . L]

Si un carécter ¥ estd inducido por un caracter y, entonces v ‘contiene menos
informacién’ que x, en el sentido de que ambos coinciden sobre los nimeros
primos con el médulo de 1, mientras que v se anula sobre algunos ntimeros en
los que x no lo hace. Por eso tiene mucha importancia el concepto siguiente:

Definiciéon 11.19 Un cardcter modular es primitivo si no estd inducido por un
caracter de modulo menor.
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Del teorema anterior se desprende que todo cardcter modular x estd indu-
cido por un tdnico cardcter primitivo. En efecto, basta tomar un caracter que lo
induzca x’ de médulo minimo. Entonces x’ no puede estar inducido por ningtin
caracter de médulo menor porque tal cardcter también induciria a x en contra-
diccién con la eleccion de x. La unicidad se debe a que si x estuviera inducido
por dos caracteres primitivos x1 y x2 de moédulos my y mo, entonces por el teo-
rema anterior ambos serfan inducidos por un cardcter de médulo d = (mq, ms).
Por ser primitivos ha de ser d = my = mo, y de aqui que x1 = Xo2.

Dado un caracter x, llamaremos xg al cardcter primitivo que lo induce. El
médulo de xo se llama conductor de x.

El teorema siguiente es 1til para reconocer caracteres primitivos.

Teorema 11.20 Un cardcter x mddulo m es primitivo si y sélo si para todo
divisor propio d de m existe un entero x tal que (x,m) =1, x = 1 (mdd d) y

x(x) # 1.
DEMOSTRACION: Si x no es primitivo estd inducido por un cardcter xo
médulo d, donde d es un divisor propio de m. Si = 1 (méd d) entonces

(z,m) =1y x(x) = xo(x) = xo(1) = 1.

Reciprocamente, si existe un divisor d de m tal que para todo = 1 (méd d),
(z,m) = 1 se cumple x(x) = 1, entonces si x = 2’ (mdd d) y x, =’ son primos
con m se cumple x(x) = x(z’). De aqui que podamos definir un cardcter v
médulo d mediante ¥ (a) = x(z), para cualquier z tal que (z,m) =1y z =a
(méd d). Existe tal « por la suprayectividad del epimorfismo candnico de U,
en Uy. Claramente v induce a y. L]

Para terminar vamos a caracterizar los caracteres de los cuerpos cuadraticos.
Obviamente, una condicién necesaria para que un cardcter modular x sea el
caracter de un cuerpo cuadratico es que sélo tome los valores 1,0, —1. Supuesto
esto, la condicién necesaria y suficiente para que x sea realmente el caracter de
un cuerpo cuadratico es que sea primitivo.

Definicién 11.21 Un caracter modular x es un cardcter cuadrdtico si 'y solo si
no es el caracter principal y sélo toma los valores 0 y £1.

El teorema 9.25 afirma que los caracteres de los cuerpos cuadraticos reales
son pares, mientras que los de los cuerpos imaginarios son impares.

Teorema 11.22 Los caracteres de los cuerpos cuadrdticos son primitivos. Todo
cardcter cuadrdtico primitivo es el cardcter de un unico cuerpo cuadrdtico.

DEMOSTRACION: Sea K un cuerpo cuadratico de discriminante A y sea p
un divisor primo de A. Para probar que xx es primitivo basta ver que existe
un entero z tal que (z,A) =1,z =1 (méd |A|/p) y x(z) = —1.

Supongamos primero que p # 2. Sea s un resto no cuadritico médulo p.
Como p tiene exponente 1 en A, existe un entero x tal que

z=s (méd p), x=1(méd 2|A|/p).
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Entonces x(z) = (x/p) = (s/p) = —1.

Supongamos ahora que p = 2. Sea K = Q(\/E) Sid = —1 (méd 4) entonces
A = 4d y basta tomar z tal que x = —1 (méd 4), 2 = 1 (méd |d|), con lo que
x(xz) = —1. Observar que de hecho se cumple x = 1 (mdéd 2|d|), tal y como se
requiere.

Si d = 2d’, entonces A = 8d" y tomamos x = 5 (mdd 8), z = 1 (méd |d'|).
Entonces = 1 (méd 4|d'|) y x(z) = —1.

Investiguemos ahora para qué naturales m existen caracteres cuadraticos
primitivos médulo m. Supongamos primero que m = p', donde p es un primo
impar.

Es claro que un cardcter cuadratico de Upn estd determinado por su ntcleo
(toma el valor 1 en el nicleo y —1 en el complementario). Pero el grupo Up,»
es ciclico, luego tiene un tnico subgrupo de indice 2, luego un 1nico caracter
cuadratico. El caracter cuadrético de U,» ha de coincidir con el cardcter indu-
cido por el cardcter cuadratico de Up,, luego el tinico caso en que es primitivo
es cuando n = 1. De hecho el caracter en cuestion es el simbolo de Legendre
x(a) = (a/p).

Consideremos ahora m = 2™. El grupo Us es trivial, luego no tiene carac-
teres cuadraticos. El grupo Uy es ciclico de orden 2, y tiene un unico carédcter
cuadratico, que serd primitivo porque no hay médulos menores que lo puedan
inducir. Claramente se trata del cardcter §(a) = (—1)@~1/2,

El grupo Us tiene cuatro caracteres, de los cuales uno es el principal (que
no es cuadrético), otro es el inducido por el cardcter cuadratico médulo 4 (que
no es primitivo) y los dos restantes tienen que ser primitivos a falta de médulos
menores que los induzcan. De hecho se trata de los caracteres € y de definidos
en 9.6.

En general, el grupo Usn es el producto de un grupo ciclico de orden 2 por
un grupo ciclico de orden 2"~2. Sea a un elemento de U« de orden 2"~2. Si
H < Us» tiene indice indice 2 entonces

_ A |

= T )

—1
<2,

de donde [H N {a) | > 2773, luego (a?) < H y asi
H/(a®) < Upn/(a®) = Ca x Cs.

Esto da sélo tres posibilidades para H, con lo que Uz~ tiene exactamente tres
caracteres cuadraticos, que coinciden con los inducidos por los tres caracteres
no principales médulo 8.

Supongamos ahora que m > 1 es cualquier nimero natural y x es un caracter
cuadratico primitivo médulo m. Descomponemos m en producto de potencias de
primos distintos. Entonces el grupo U,, factoriza en el producto de los grupos de
unidades correspondientes a dichas potencias y, por el teorema 11.13, el caracter
x factoriza en producto de caracteres de médulos potencias de primo. Todos los
factores son caracteres primitivos, pues basta que uno de ellos pueda inducirse
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desde un médulo menor para que lo mismo le ocurra a y. Ademads, como Y tiene
orden 2, todos sus factores tienen orden 2 (el orden de x es el minimo comin
multiplo de estos 6rdenes, y ninguno de los factores puede tener orden 1 porque
son primitivos).

Todo esto implica que m ha de ser un ntmero natural impar d libre de
cuadrados, o bien 4d o bien 8d. Mas ain, si m = d o m = 4d hay un tnico
caracter cuadratico primitivo médulo m, el producto de los unicos caracteres
cuadréticos primitivos médulo los primos p | m y mddulo 4 en su caso (en
realidad hemos probado que hay a lo sumo uno, pero esto basta). Si m = 8d
hay a lo sumo dos caracteres, pues puede variar el caracter médulo 8.

En todos estos casos existe un cuerpo cuadratico K de discriminante A
de manera que m = |A|. En efecto, si m = d y d = 1 (méd 4), entonces
K = Q(Vd), y si d = —1(méd 4), entonces K = Q(v/—d). De hecho hay
un unico cuerpo K con discriminante +m, y su caracter es primitivo, luego
ciertamente hay un nico caracter primitivo médulo m en correspondencia con
un unico cuerpo cuadrético.

Si m = 4d tomamos K = Q(v—d) sid = 1 (méd 4) y K = Q(\/E) si
d = —1 (méd 4), con lo que la situacién es anéloga.

Finalmente, si m = 8d entonces los cuerpos Q(\/iQd) tienen ambos dis-
criminante +m, pero sus caracteres son distintos, ya que uno es par y el otro
impar. Por lo tanto también hay exactamente dos caracteres cuadraticos primi-
tivos médulo m en correspondencia con dos cuerpos cuadraticos. m

11.5 La funcién dseta en cuerpos ciclotémicos

La teoria de caracteres nos permitird desarrollar la funcién dseta de los
cuerpos ciclotémicos de manera andloga a como hemos hecho con los cuerpos
cuadraticos. Sea, pues, Q(w) el cuerpo ciclotémico de orden m. En la férmula
de Euler agrupamos los factores que dividen a un mismo primo racional p:

Ck(s) = HH 17%7

P plp N(p)®

donde p recorre los primos racionales.

Si p es un primo y m = p'm’, el teorema 3.20 nos da que p tiene ¢(m)/f,
factores primos, donde f, es el orden de p en U,,/, y la norma de cada factor es
igual a pfr. Por lo tanto

() =]] (1—#

P

—é(m)/fp
) . (11.12)

Para simplificar esta expresién consideramos

wp = cos(2n/ ;) + isen(2/ f,).
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es decir, una raiz f,-ésima primitiva de la unidad. Entonces

fp_l

wfr — 1= H(x—wg),

k=0

de donde, sustituyendo = = p*® y dividiendo entre pfr*,

1 fr—1 wk
1-— = 1— 2. 11.13
o1 (-3) o

Entonces el producto

fﬁl <1_w_§>¢(m)/fp: (1_L)¢(m)/'fp
ps pfps

k=0

tiene ¢(mn) factores, de los cuales ¢(m)/f, son iguales a 1 —w¥ /p* para cada k,
pero el nimero total de factores es independiente de p.
Si ¥ es un caracter médulo m/, puesto que pfr =1 (méd m’), se cumple que

x(p)’* = x(p) = x(1) =1,

luego x(p) = w’;, para un cierto k.

57
del subgrupo ciclico generado por [p] en U, que cumple ¢ ([p]) = w;f y, por
el teorema 11.15, este cardcter se extiende a exactamente ¢(m')/f, caracteres
distintos de Uy, o sea, existen exactamente ¢(m')/f, caracteres médulo m’
que cumplen x(p) = w’g 0, dicho de otro modo, si x recorre todos los caracteres

médulo m/, entonces x(p) recorre ¢p(m')/ f, veces cada raiz de la unidad.

Reciprocamente, si partimos de un cierto w,, existe un unico caracter

Llamemos Yo al caracter primitivo que induce a un caracter dado y. De
nuevo por 11.15 cada cardcter médulo m’ induce ¢(p®) caracteres médulo m,
luego cuando x recorre los caracteres médulo m cuyo conductor divide a m/,
la expresién xo(p) recorre ¢(m)/ f, veces cada rafz f,-ésima de la unidad. Los
restantes caracteres médulo m tienen conductor miltiplo de p, luego para ellos
Xo(p) = 0. Estos célculos prueban que

()2

X

donde x recorre los caracteres modulo m.
Asf la férmula (11.12) se convierte en

1
) = —m
P X ps

Finalmente invertimos el orden de los productos, con lo que obtenemos el
teorema siguiente:
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Teorema 11.23 Sea K el cuerpo ciclotémico de orden m. Entonces

Ck(s) = HL(S,X), para todo s > 1
X

donde,

L(s,x) = 3 X(;I(f) =11 (11.14)

n=1

1
| _ x®"
o

La funcién L(s, x) se conoce como la funcién L de Dirichlet asociada a x.

DEMOSTRACION: Sélo queda justificar la convergencia de los dos miembros
de (11.14), la igualdad entre la serie y el producto se demuestra por el mismo
argumento empleado en el teorema 11.9.

La serie converge absolutamente (y uniformemente en los compactos) para
s > 1, porque estd mayorada por la funcién dseta de Riemann. El producto
converge como consecuencia de la convergencia de (x (s), pero de hecho conviene
observar que la convergencia es absoluta. En efecto, podemos expresarlo como

(- 520)

p

y la convergencia absoluta del producto es, por definicion, la de la serie

Z Xo(p)

— .
— 1° = Xo(P)

Esta se comprueba facilmente comparando los médulos con 1/p®. m

De ahora en adelante, para simplificar la notacién, siempre que x sea un
cardcter modular sobrentenderemos que x(n) representa en realidad a xo(n).
Por ejemplo, si 1 es el cardcter principal médulo m, entonces 1y es el caracter
principal médulo 1, por lo que entenderemos que 1(n) = 1 incluso cuando
(n,m) # 1. Esto implica que

Lis )= 3 = (o).
n=0

En particular L(s, 1) tiende a infinito en 1. Para los caracteres no principales
la situacién es muy diferente, como se deduce del teorema que sigue.

Teorema 11.24 Sea {a,} una sucesién de nimeros complejos tal que las sumas
k
A = > ay estén acotadas. Entonces la serie
n=1
o0
an

nS
n=1

converge para todo nimero real s > 0. Para todo 6 > 0 la convergencia es
uniforme en el intervalo [§, +oo|, luego la suma es continua en )0, 4+00].
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DEMOSTRACION: Dado € > 0, sea ng tal que 1/n5 < € para n > ng. Asi
1/n® < e para todo s > 0 y todo n > ng. Sea M > N > ny. Entonces

M M M—-1

Qaj B Ak Ak 1 Ak
ks Z *Z > (k+1)s
k=N k=N k=N—1
AN = Ay A
#3 (5 - o)t

luego si, segin la hipdtesis, se cumple que |Ag| < C para todo k, entonces

Z

para todo s en el intervalo [, +00[. "

1 1 C 2C
=—<2
NS+CZ<kS (k+1)5)+Ms N < CG

Teorema 11.25 Si x es un cardcter modular no principal la serie
o0

=y
n=1

converge para todo nimero real s > 0 y la convergencia es uniforme en cada
intervalo [0, +00[. En particular la funcion L(s,x) es continua en |0, +00].

DEMOSTRACION: Es una consecuencia inmediata del teorema anterior pues,
si m es el conductor de Y, el teorema 11.16 nos da que Y x(n) = 0 cada vez que

n
n recorre un conjunto completo de representantes de las clases médulo m. De
aqui se sigue inmediatamente que todas las sumas finitas estan acotadas. =

Es importante tener presente que la expresién de L(s, x) como producto sélo
es valida en |1, +oo[ y que la convergencia de la serie no es absoluta en ]0, 1].
En particular tenemos que

= i@, para x # 1 (11.15)
n=1

Ahora que sabemos que L(s,x) converge en 1 podemos llevar més lejos el
teorema 11.23 y obtener de la férmula que necesitaba Kummer para caracterizar
los primos regulares.

Teorema 11.26 Sea K el cuerpo ciclotémico de orden 2m, sea A su discrimi-
nante y R su requlador. Entonces, el nimero de clases de K es

b 2m\/\K HL

¢>(2m)/2
(2m) R ]

donde x recorre los caracteres no principales modulo m.
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DEMOSTRACION: Notar que si m es impar, entonces el cuerpo ciclotémico
de orden m es el mismo que el de orden 2m. En cualquier caso, el cuerpo
ciclotémico de orden 2m tiene 2m raices de la unidad.

Por el teorema 11.23 tenemos que

lim (s = 1)¢xe(s) = lm (s = 1)¢(s) [T Ls,0 = [T L1,

s—1+t s—1+

Ahora basta aplicar el teorema 11.8. n

Una consecuencia inmediata del teorema anterior es que si x es un caracter
modular no principal, entonces L(1, x) # 0. Esto es exactamente lo que necesi-
tamos para probar el teorema de Dirichlet.

Teorema 11.27 (Dirichlet) Sim y n son ndmeros naturales primos entre s,
entonces la sucesion mk +n, para k =1,2,3,... contiene infinitos primos.

DEMOSTRACION: Consideremos el logaritmo complejo que extiende al real
alrededor de 1. Su desarrollo de Taylor es

n+1
log(1 + 2) Z ———2" para |z| < 1.

Sea ahora un caracter modular x. Entonces
& n
~tog (1-X00) _ 37 X0y
n=1 p
para todo primo p y todo s > 1. La convergencia absoluta del producto (11.14)

implica que la serie
g £(5, ) = 5 10
p n=1

converge a un logaritmo del producto para s > 1. Observar que log L(s,1) es
simplemente la composicién de la funcién real L(s,1) con la funcién logaritmo
real. Descomponemos

X

log L(s, x)

' X)s

donde

Ahora observamos que

= 1
SX|<ZZ pns p_l Z Zn(n_l)ZI

pn2 p n=2

(la dltima serie es telescépica).



290 Capitulo 11. La funcién dseta de Dedekind

Si hacemos variar C' en U, tenemos

log L(s,x) = Zx Z%#—R(s,x).

peC

Podemos ver estas ecuaciones como un sistema de ¢(m) ecuaciones lineales
en el que las incégnitas son las series sobre los primos de las clases de U,,.
Vamos a despejar una de ellas, digamos la correspondiente a la clase A, para lo
cual multiplicamos por (A1) y sumamos todas las ecuaciones:

ZX Y log L(s, x) = Z(ZxCA )Z—+RA()

peE C
donde

|Ra(s)] = ‘Zx( “IR(s, x ‘ Z|R $,x)| < ¢(m), para todo s > 1.
X
Por las relaciones de ortogonalidad de los caracteres la ecuacion se reduce a

ZX Dlog L(s, x) = ¢(m) Z is + Ra(s). (11.16)

pEA

Ahora tomaremos limites cuando s — 17. Debemos detenernos en el com-
portamiento de log L(s,x). Puesto que L(1,x) (para x no principal) es un
numero complejo no nulo, es conocido que en un entorno de L(1,x) existe
una determinacién continua del logaritmo. Componiéndola con L(s,x) obte-
nemos una funcién continua log’ L(s, ) definida en un entorno de 1, digamos
]1 —€,1+¢[. La funcién log L(s, x) — log’ L(s, x) es continua en el intervalo
J1,1 + €[ y sélo puede tomar los valores 2kmi, para k entero, luego por conexién
k ha de ser constante en |1,1 + €[ y consecuentemente existe

h’m+ log L(s,x) = log’ L(1, x) + 2kmi.
s—1
Agrupamos todos los sumandos acotados en (11.16) junto con R4(s) y queda

log L(s,1) = 9(m) 3 -+ Tas),

pEA

donde T'4(s) es una funcién acotada en un entorno de 1.
Por otro lado L(s,1) tiende a infinito cuando s tiende a 1, luego lo mismo

le ocurre a log L(s,1). Esto implica que la funcién 3 - s Do estd acotada en
peA
un entorno de 1, lo que sélo es posible si tiene infinitos sumandos. Més aun, es

claro que esto solo es posible si

pEA

Como A es una clase cualquiera de U,,, digamos A = {km +n | k € Z} con
(m,n) =1, esto prueba el teorema. "
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11.6 El célculo de L(1, x)

Una vez probado el teorema de Dirichlet, nuestro interés por las funcio-
nes L se centra ahora en encontrar una expresion lo mas simple posible para
los ntmeros L(1,x), de modo que las férmulas de los teoremas 11.11 y 11.26
nos permitan calcular lo mas eficientemente posible el nimero de clases de los
cuerpos cuadraticos y ciclotémicos. Ciertamente, las expresiones que vamos
a obtener para las funciones L seran completamente satisfactorias, pero en la
formula de 11.26 interviene también el regulador del cuerpo, cuyo calculo in-
volucra determinar un sistema fundamental de unidades, y esto no es sencillo.
Pese a ello, dicha férmula nos permitird obtener resultados cualitativos sobre h
que seran suficientes para caracterizar de forma efectiva a los primos regulares.

La unica expresién con que contamos para calcular L(1,x) es (11.15), pues
el producto de Euler diverge en 1. Aunque no es el camino que vamos a seguir,
es interesante notar que en el caso de caracteres cuadréticos las series L(1, x)
pueden calcularse directamente por técnicas elementales en cada caso particular.

Ejemplo Sea K = Q(\/g ) Vamos a calcular directamente

Para ello observamos que
1
L(1,xk) :/ (l—z—a?+a8+2°—2f —a" 428+ )de.  (11.18)
0

En efecto: para justificar el cambio de la integral y la suma podemos agrupar
los términos en la forma

1
/((17$7$2)+($3+$57(7]67937)4*(5684*%1071‘1171’12)4*"')d(ﬂ,
0

con lo que podemos aplicar el teorema de la convergencia monétona de Lebesgue,
segun el cual la integral coincide con

1 1 1 n 1 n 1 1 1 n 1 n 1 1 1 n

1 2 3 4 6 7 8 9 11 12 13
Las sumas parciales de esta serie son una subsucesién de las de (11.17), luego
el limite es el mismo. De (11.18) obtenemos

L(LXK)

1
/ 1—z—2?+231+2°+20 ... )da
0

L ) 1
= /(17x7x2+x‘3)
O 1

dx
N

1— a2

1
= - d
/0 a2 tatl
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Esta integral puede calcularse por las técnicas habituales. No obstante, el
truco siguiente proporciona un camino mas répido: hacemos y = = + 1/x, con
lo que dy = (1 — 1/2?) dx.

1 2 00
Ll xx) = _/0 x2+x+11+1/13;x+1/x2dx:/2 yQ—kd%
N _Llogﬂrm
5/2 22 —=5/4 Vb z—5/2 5/2
BEIN Y1
V5 2
El teorema 11.11 nos da que el nimero de clases de Q(\/g) esh=1. ]

Este método puede emplearse para evaluar cualquier funcién L asociada a
un cuerpo cuadratico. Si en lugar de calcular formalmente la integral usamos
un ordenador que la aproxime con precisién suficiente, el resultado es una forma
muy rapida de calcular nimeros de clases (los errores de cilculo se cancelan al
aplicar el teorema 11.11 porque sabemos que el resultado ha de ser entero).!

Ejercicio: Sea K = Q(7). Probar que L(1, xx) = 7/4. Se trata de la famosa férmula
de Leibniz para el cédlculo de 7.

Ejemplo Vamos a calcular el nimero de clases del cuerpo ciclotémico octavo
mediante la formula del teorema 11.26.

Sea w una raiz octava primitiva de la unidad. En el capitulo IT vimos que el
anillo de enteros de Q(w) es Z[w], y que su discriminante es 256.

Maés delicado es el cdlculo del regulador. Vamos a probar que Q(w) tiene
una unidad fundamental real, con lo que ésta sera la unidad fundamental de

Qw)NR = Q(\/i), es decir, e = 1 + /2.

En efecto, sea € una unidad fundamental. Si o es cualquier automorfismo
del cuerpo, entonces o(e/€) = o(e)/o(€), luego |o(e/€)| = 1. Esto significa que
€/€ estd en el niicleo de la representacién logaritmica, luego es una raiz de la
unidad, € = w?**%€, donde i = 0, 1. Si cambiamos ¢ por w¥e tenemos una unidad
fundamental que cumple € = w'é. Basta probar que i = 1 es imposible.

Sea € = a + bw + cw? + dw?®. Entonces igualdad ¢ = wé nos da que

a4 bw 4 cw? 4+ dw? = wla — dw — cw? — bw?) = b+ aw — dw? — cw?,
de donde a = by ¢ = —d, luego € = a(l + w) + c(w? — w?).
Ahora bien, m = w — 1 es primo (tiene norma 2) y w = 1 (méd ), por lo que
€ =0 (mdéd ), lo cual es imposible porque es una unidad.

1Puede probarse en general que el cambio de la serie y la integral siempre es licito, aunque
este punto es delicado: una forma de probarlo es integrar entre 0 y ¢ < 1, donde el cambio
es posible por la convergencia uniforme, y después aplicar la continuidad de la integral en un
miembro y el teorema de Fatou en el otro, segin el cual si una serie de potencias tiene radio
de convergencia 1, sus coeficientes tienden a 0 y converge a una funcién holomorfa definida
en 1, entonces la serie converge también en 1 a dicha funcién.
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Segtin lo dicho, esto prueba que una unidad fundamental es € = 1 + /2,
luego el regulador es

R:log(1+\/§)2 =2log(1+ Vv2).

Por 1ltimo, los caracteres no principales médulo 8 son los tres caracteres
cuadraticos 4, €, de definidos en 9.6, y que se corresponden respectivamente con
los cuerpos Q(7), Q(ﬁ) y Q(ﬁ) Segun 11.26, el nimero de clases que
buscamos es

8-16
"= (27)2 - 2log (1 +v/2) L(1,8)L(1,€)L(1, be).

Por otra parte, la férmula del teorema 11.11 nos permite calcular facilmente

o B log(l + \/5) o
=7 L(1,e) = — & L(1,d¢) = —.

Concluimos que h = 1. m

L(1,)

%

Ejercicio: Llegar al mismo resultado por las técnicas del capitulo IV.

Veamos ahora una técnica mucho maés eficiente para el calculo de funciones L
en 1. Dado un caricter modular no principal x, que podemos suponer primitivo,
en primer lugar agrupamos los sumandos de la serie L(s, x) segin las clases de
U,,, donde m es el conductor de x. Trabajamos con s > 1, de modo que la serie
converge absolutamente y las reordenaciones son licitas:

L(s,x) = > m=Z><(C) > o

)
ns ns
n=1 C n=1

donde
o — 1 sinelC
"1 0 singC
Ahora consideramos el cardcter ¢ de Z/nZ determinado por 1(1) = w, donde
w = cos(2m/m)+isen(27/m), y notamos que por las relaciones de ortogonalidad

Por consiguiente

m—1
a, = i (r—mn)k
m )
k=0
donde r € C'y, volviendo a la funcién L,
oo 1 m—1 1 1 m—1 o) wink
L(s) = 3ox(r) 30 0 STl = o3 (3o xne™t) 35
r n=1 k=0 k=0 T n=1

donde r varfa en un conjunto completo de representantes de las clases de U,,.

Con esto nos hemos encontrado un concepto famoso en la teoria de nimeros:
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Definiciéon 11.28 Sea m un ntmero natural y a¢ un nimero entero, sea y un
cardcter médulo m y w = cos(2n/m) + isen(2n/m). Se llama suma de Gauss
de x a la expresion

Galx) = 3 X ()™,

donde r recorre un conjunto completo de representantes de las clases de U,,.
Escribiremos G(x) en lugar de Gy (x).

En términos de las sumas de Gauss, la expresion que hemos obtenido para
L(1,x) es

—nk

m—1 00
L(s,x) = % PR D= (11.19)
k=1 n=1

nS

Dedicaremos el capitulo siguiente al estudio de estas sumas. Aqui probaremos
el unico resultado en torno a ellas que nos hace falta de momento:

Teorema 11.29 Sea x un cardcter primitivo. Entonces

Ga(x) = x(a)G(x),
donde la barra denota la conjugacion compleja.

DEMOSTRACION: Sea d = (a,m) y sea m = td. Entonces w® es una raiz
t-ésima primitiva de la unidad y w®* = w® siempre que u = 1 (méd t). Sid # 1
entonces t es un divisor propio de m y por el teorema 11.20 existe un entero u
tal que u =1 (méd t), (u,m) =1y x(u) # 1.

Cuando r recorre un conjunto completo de representantes de las clases de
U, lo mismo le sucede a ur, luego

Ga() = 32 x(r)o™ = x(u) 3 x(r)w™ = x(u)Gal).

Puesto que x(u) # 1 ha de ser G,(x) = 0. Asi mismo, x(a) = 0, luego se cumple
la igualdad.

Por el contrario, si (a,m) = 1, cuando r recorre un conjunto completo de
representantes de las clases de U,, lo mismo le sucede a ar, luego

X(@)Ga(x) =Y x(ar)w™ = x(r)w" = G(x),

y multiplicando por x(a) = x(a)~! obtenemos la igualdad. "
Sabiendo esto, la férmula (11.19) se simplifica:

—nk
b

Lisx) = S Y
k n=1

donde ahora k recorre un conjunto de representantes de las clases de U, (siempre
suponiendo que Y es primitivo o, equivalentemente, que m es el conductor del
cardcter x).
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N
El paso siguiente es notar que las sumas »_ w™
n=1
m | N por las relaciones de ortogonalidad) y en consecuencia toman un nimero
finito de valores. Podemos aplicar el teorema 11.24 y concluir que la serie

"k se anulan cada vez que

& wfnk
>
n=1

converge para s > 0 a una funcién continua. Ahora hacemos que s tienda a 1y

resulta que
GX) = @
L{l,x) = —= > Xk
k n=1
La ultima serie se simplifica si tenemos presente que la serie de Taylor

o0 Zn
—log(l—2) = Z o
n=1

converge en realidad siempre que |z| < 1, excepto en z = 1. Con ello tenemos
probado el teorema siguiente:

—nk

Teorema 11.30 Sea m un nimero natural, sea x un cardcter primitivo mdédulo
m no principal y sea w = cos(2m/m) + isen(2w/m). Entonces

L1, = - S g1 - w7,
k

donde k recorre un conjunto de representantes de las clases de Uy, y el logaritmo
tiene parte imaginaria en |—7/2,7/2].

Lo importante de esta férmula es que la serie infinita ha sido absorbida por
el logaritmo. Pronto veremos que podemos reducir los logaritmos complejos a
logaritmos reales, pero quiza sea clarificador considerar un caso concreto antes
de seguir:

Ejemplo Vamos a aplicar el teorema anterior al cardcter e(n) = (—1)(’”2*1)/8.
Para calcular la suma de Gauss hemos de considerar la raiz octava de la
unidad

Claramente
Gle)=w—w? -’ +uw =vV2+V2=18

Por consiguiente

L(l,e) = \_/—% (log(1 —w™) —log(1l —w™®) —log(1l —w™®) +log(1l —w™ "))
-1, l-w 1 2442

(0] = (0]
B ET-P T B B2

1 2_10g(1+\/§)
= %log(l—&-\/i) = T
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Ejercicio: Comprobar que las sumas Gq4(€) cumplen el teorema 11.29.

Ejercicio: Calcular las sumas de Gauss correspondientes al caracter de.

Los célculos del ejemplo y el ejercicio anterior se pueden seguir facilmente
en general. En las condiciones del teorema 11.30 tenemos que

—k km ( <7r kw) , <7r k‘ﬂ'))
l—-w " "=2sen— (cos| = — — | +isen | = — — .
m 2 m 2 m

(basta desarrollar el miembro derecho usando la trigonometria).

Si0 < k < m entonces —7/2 < /2 — km/m < 7/2, luego

1k
log(l —w ™) =log|l —w ™| +in (= - —
og(l—w ™) =log|l —w™"|+1 (2 m)’

(recordar que tomamos el logaritmo con parte imaginaria entre —7/2 y 7/2).
Como 1 —w ™" y 1 —wF son conjugados se cumple también

1 &
log(1 — ) = log |1 — wk| —im (= — 2.
og(l —w") =log|l — w¥| 271'(2 m)

Supongamos ahora que el cardcter x es par. Segun el teorema 11.30
L(l,x) = Zx )log(1 —w ™),
L(1,x) = ZX Ylog(1 —w™").
Sumando ambas expresiones
2L(1,x) = ZX (log(1 —w™") +log(1 —w™*))
= —2 T zk:mlog I1—wk|=-2 % ZMIOgZSen %T

k

Si el cardcter x es impar obtenemos

20L(1,x) = ZX log (1- ) +log(1 — w_k))
- _ % v(k)ir l_ E
= 2 m zk:X(k) (2 m) '

Finalmente, por las relaciones de ortogonalidad se cumple > x(k) = 0, lo
%

que nos permite simplificar ambas férmulas. Recogemos su forma definitiva en
el teorema siguiente:
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Teorema 11.31 Sea x un cardcter primitivo médulo m.

1. Si x es par entonces

101,50 = -0 S i tog 1 - ot = CY 55
k

2. Si x es impar

L1, = MO S5k
k

En ambos casos k recorre los numeros 0 < k < m primos con m.

El estudio de las sumas de Gauss que llevaremos a cabo en el capitulo si-
guiente nos permitird simplificar atin mas estas férmulas, especialmente en el
caso de los caracteres cuadraticos.

11.7 Enteros ciclotéomicos reales

Por ultimo estudiamos la funcién dseta de los cuerpos K* = K N R, donde
K es el cuerpo ciclotémico de orden p. Razonamos exactamente igual que como
hemos hecho para el cuerpo ciclotémico. En primer lugar agrupamos los factores
del producto de Euler correspondientes a un mismo primo racional:

() = [T =

q qlg N(‘l)s

Ahora tenemos en cuenta el teorema 3.22, que nos da el nimero de divisores
primos de cada primo racional y la norma de cada uno. Separamos el factor
correspondiente a p, para el que tenemos un unico ideal de norma p. Para los
primos restantes g, hay (p — 1)/2f, ideales de norma gf«, donde f? es o0,(q) o
bien 0,(¢)/2. Segin esto

1 1\ =
CK*(S):l 1 H(l_q7q> .

P° q#p

Ahora tomamos wy = cos(2n/ f,) +isen(2n/ f,) y usamos la férmula (11.13),
en virtud de la cual podemos afirmar

() I

El ndmero total de factores es (p—1)/2 y por otra parte hay p— 1 caracteres
modulo p, de los cuales la mitad son pares y la mitad impares. Veamos que

L0310

k=0 x(1)=1
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Supongamos primero que o,(g) es impar. Entonces [—1] no pertenece al
subgrupo generado por [¢] en U,. Dado un k, existe un tnico caracter ¢ de ([q])
tal que w([q]) = w(’;, que se extiende exactamente a dos caracteres del grupo
{[q], [-1]), de los cuales uno serd par y el otro impar (si ambos coincidieran sobre
[—1] coincidirfan en todo el grupo).

El cardcter par se extiende a (p — 1)/2f, caracteres pares médulo p. Por
lo tanto cuando y varia entre los caracteres pares médulo p tenemos que x(q)
toma (p—1)/2f, veces el valor w” para cada k entre 0 y fq—1. De aqui se sigue
lo pedido en este caso.

Supongamos ahora que 0,(g) es par y por tanto f, = 0,(¢)/2. En este caso,
el cardcter ¥ de ([¢]) que cumple 1/1([ ]) 5, cumple también que

Y([-1)) =9 ([gf) = (w)fs =17 =1.

Por lo tanto 9 se extiende a (p —1)/2f, caracteres médulo p, todos ellos pares,
y de nuevo cuando y varia entre los caracteres pares médulo p se cumple que
x(q) toma (p —1)/2f, veces el valor w} para cada k entre 0y f, — 1.

Con esto tenemos que

Cre+ (s

P q#p x(1)= 1 q

Si entendemos, como siempre, que el caracter principal toma el valor 1 incluso
sobre p, vemos que el producto de la derecha para ¢ = p coincide con el factor
de la izquierda, luego en realidad

el =11 1 7= = 1 2o

7 x(1)= qs x(1)=

Recogemos esto y su consecuencia inmediata sobre el ntimero de clases en el
teorema siguiente:

Teorema 11.32 Sea K el cuerpo ciclotomico de orden p y K* = KNR. Sea
m=(p—1)/2 el grado de K* y R* su regulador. Entonces

1. La funcion dseta de K* factoriza como
(k)= ] L(s,%),
x(1)=1
donde x recorre los caracteres pares modulo p.
2. El numero de clases h* de K* viene dado por
m—1
oo VP - ] La,x).

Qm— 1
x(l) 1
x#1



Capitulo XII

Sumas de Gauss

Las sumas de Gauss nos han aparecido en el capitulo anterior al evaluar
las funciones L, pero lo cierto es que estas sumas ya habian sido estudiadas
mucho antes de que Kummer y Dirichlet se las encontraran como nosotros nos
las hemos encontrado. Como su nombre indica, estas sumas fueron introducidas
por Gauss, quien obtuvo importantes resultados sobre y mediante ellas.

En este capitulo trataremos de explicar el motivo de su interés y asi mismo
obtendremos los resultados que necesitamos para acabar de perfilar el anélisis
de las funciones L.

12.1 Propiedades basicas
En primer lugar recordamos la definicién de las sumas de Gauss:

Definicién 12.1 Sea m un numero natural y a un nimero entero, sea x un
cardcter médulo m y w = cos(2w/m) + isen(2m/m). Se llama suma de Gauss
de x a la expresién

Ga(x) =Y x(r)w™,
s
donde r recorre un conjunto completo de representantes de las clases de U,,.

En el capitulo anterior probamos ademés que si x es un caracter primitivo
entonces

Ga(x) = x(0)G(x), (12.1)

donde G(x) = G1(x), luego podemos limitarnos a estudiar esta suma, que recibe
el nombre de suma principal.

Ejemplo Consideremos el cardcter y médulo 5 dado por

X(l) =1, X(Q) =1, X(S) =—, X(4) =-L

Vamos a calcular G(x).

299
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Sea
27 Y 2
w = cos — + 1 sen —.
5 5
Las relaciones (w + w?) + (w? + w?) = (w + w?)(w? +w?) = —1 implican que
w+ w* v w? 4+ w? son las raices del polinomio 22 + 2 — 1, de donde

O s eV R S B Sl 4
2 2

2 —1+/5 2
2

De aquif que w v w* son raices del polinomio x
—1-5
2

x + 1, mientras que w

y w3 lo son de x2 — z + 1, por lo que

B [5evE . c1-vB [5-y5
w=—y "% > YTy TV

5 —1-Vv5  [5-5 s —1+VE  [5+45
e L [

Ahora un simple cédlculo nos da que

G(X)—w+iw2iw3w4—\/5_2\/5+\/5+2\/3i.

Observar que |G(x)| = V5. u

Ejercicio: Sea y el cardcter definido por el simbolo de Legendre x(n) = (n/5). Probar

que G(x) = V5.

Ejercicio: Usar el ejemplo anterior para sumar las series

U S S S S SN I
4 6 9 11 14 16 19
Yy
11,1111 11
2 3 7 8 12 13 17 18

Aunque el valor de una suma de Gauss no es predecible en general, su médulo
estd perfectamente determinado. Lo calculamos en el teorema siguiente, cuya
prueba contiene una interesante interpretacion algebraica de las sumas de Gauss

Teorema 12.2 Todo cardcter primitivo x mddulo m cumple |G(x)| = v/m.

DEMOSTRACION: Consideremos el conjunto V formado por todas las apli-
caciones f : Z/mZ — C. Segin explicamos en el capitulo anterior, V' es un
espacio vectorial sobre C que tiene como base a los caracteres de Z/mZ. Para
cada k € Z/mZ sea fj, el cardcter determinado por fi(1) = w™*. Las aplicacio-
nes f1,..., fm son todos los caracteres de Z/mZ. Es importante notar que no
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son caracteres modulares, pues éstos son los caracteres del grupo multiplicativo
U, mientras que aquéllos son los caracteres del grupo aditivo Z/mZ.
También sabemos que en V' esta definido el producto sesquilineal

1 m
_EXZ:

respecto al cual los caracteres fi son una base ortonormal. Puesto que x € V,
podemos expresarlo como combinacién lineal

m
X=Y oxfr, ar€eC
k=1

Los coeficientes se pueden calcular como

G0 = (0 fa) = - D0 x(Rw* =

Vemos, pues, que salvo el factor (1/m) las sumas de Gauss de x son las coorde-
nadas del caracter multiplicativo x en la base de los caracteres aditivos médulo
m. Explicitamente:

= Wy s
k=1

Usando la sesquilinealidad del producto y la ortonormalidad de la base ob-
tenemos

(o) = IR S S e 1) = C )
k,r=1

pero por otra parte, usando la definicién del producto sesquilineal,
1 & 1 &
= — E = — E m).
m &~ m &= ¢( )

Comparando los dos resultados concluimos que |G(x)|? = m. "

12.2 Sumas de Gauss y la ley de reciprocidad

Para entender como llegé Gauss al estudio de las sumas que llevan su nombre
hemos de remontarnos al trabajo de Euler en torno a la ley de reciprocidad
cuadrética. Euler la descubrié empiricamente, pero sélo pudo probar la primera
ley suplementaria y parte de la segunda. Respecto a la primera se basé en el
hecho siguiente:
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Teorema 12.3 Sea p un primo impar y a un entero primo con p. Entonces

(ﬂ) = aP~V/2 (mad p).
p

DEMOSTRACION: Si (a/p) = 1 entonces a = 72 (méd p), de donde se sigue
que aP~1/2 = 7P=1 = 1 (méd p). Por otro lado, el polinomio z»~1/2 — 1 no
puede tener més de (p — 1)/2 raices médulo p, luego sus raices son exactamente
los (p — 1)/2 restos cuadraticos médulo p.

Si (a/p) = —1, entonces (a?~1/2)2 = gP~1 = 1 (méd p), luego ha de ser
aP~1/2 = £1 (méd p), y como no es congruente con 1, ha de serlo con —1 m

Haciendo a = —1 se obtiene que (—1/p) = (—1)®?=Y/2 (méd p), y como
ambos miembros son £1 y 1 # —1 (mdd p), la congruencia ha de ser de hecho
una igualdad, lo que prueba la primera ley suplementaria.

Respecto a la segunda ley suplementaria, Euler sé6lo probé que si p es un
primo p = 1 (mdd 8), entonces 2 es un resto cuadratico médulo p. Para ello
se basé en la existencia de una rafz primitiva de la unidad médulo p (de lo
cual sélo tenia una evidencia empirica y fue demostrado més tarde por Gauss).
Tomemos una raiz primitiva ¥ médulo p. Sea w = [u(pfl)/ 8]. Entonces w® = 1,
y 8 es el menor exponente que cumple esto, luego w* = —1, w? = —w™2 y asi
w? 4+ w2 = 0. Esto implica que

(WwHw P =w?+24+w? =2,

como queriamos probar.

Si p £ 1(méd 8) el argumento anterior es aparentemente inviable, pero
en realidad la idea puede aprovecharse si contamos con el dlgebra moderna,
concretamente con la teoria de cuerpos finitos. En esencia, lo que nos impide
empezar el razonamiento es que necesitamos una raiz octava de la unidad en
Z/pZy puede que no la haya, pero podemos obtenerla en un cuerpo mayor.

Sea p un primo impar cualquiera y sea w una raiz octava primitiva de la
unidad en una extensién K de Z/pZ. Si llamamos v = w + w™!, el mismo
argumento de antes prueba que ¥2 = 2, pero esto no significa que 2 sea un resto
cuadrético médulo p, ya que v no tiene por qué estar en Z/pZ (no hay que
olvidar que al fin y al cabo 2 no tiene por qué ser un resto cuadratico).

Tenemos que (2/p) = 1 si y sblo si v € Z/pZ (pues en K no puede haber
m4és rafces cuadradas de 2 que +, pero los elementos de Z/pZ son exactamente
los elementos de K que cumplen zP = z. Calculamos, pues, 7 = w? + w™P.
Para ello observamos que, como w® = 1, se cumple

WPHwP=wtwl=xy sip=+1(mdd 8),
WHwP=w+w3=—(wtwl)=—y si p =43 (mdd 8).

O sea, 77 = (—1)®*=1/85 con lo que 4P = v si y sélo si (—1)"2-D/8 =1y,
segtin lo visto, esto equivale a que (2/p) = (—1)®"~1/8, n
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Como ya hemos advertido, esta técnica es demasiado moderna, pero Gauss
encontré un argumento intermedio que proporciona una prueba ligeramente
mas larga, pero que da cuenta del caso general, al contrario de lo que ocurre
con el argumento de Euler. No es dificil imaginar de qué se trata: en lugar de
considerar una raiz octava de la unidad en un cuerpo de caracteristica p, Gauss
tomd una raiz octava de la unidad en C y considerd congruencias médulo p. Sea

w = cos(2m/8) +isen(27/8) = ? + g i.

Entonces es claro que v = w + w™" = /2, y en particular 42 = 2. Conviene
observar que aunque la prueba de v? = 2 es ahora inmediata, podriamos haber
obtenido esto mismo por medios puramente algebraicos sin mas que repetir el
argumento anterior (esto indica que no se trata de una mera casualidad y hace

plausible que el argumento pueda ser generalizado).
Ahora tomamos congruencias en Zlw] y usamos el teorema 12.3:

AP = (72)(1771)/2 —9o-1)/2 — <Z) (méd p).
p

De aqui que v? = (2/p)v (mdd p). Como el cociente médulo p es un anillo
de caracterfstica p tenemos que v¥ = (w+w )P = wP +w P (méd p) y podemos
concluir como antes que

(—1)F DBy = (%) 7 (méd p).

Multiplicamos por v ambos miembros y queda

(—1)P*-D/8g = (%) 2 (méd p),

luego (—1)®*=D/8 = (2/p) (méd p), y asi (1) ~D/8 = (2/p). .

La clave de la prueba ha sido la férmula (v +~v71)? = 2. Gauss se plante
el encontrar relaciones similares para primos impares con las que obtener una
prueba mas simple de la ley de reciprocidad cuadratica en toda su generalidad.
Asi es como llegd a las sumas de Gauss y, mas exactamente, al siguiente caso
particular:

Definicién 12.4 Sea p un primo impar. Llamaremos sumas cuadrdticas de
Gauss moédulo p a las sumas

donde w = cos 27 /p + i sen 27 /p.
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Claramente G,(p) = G4(x), donde x es el cardcter médulo p determinado
por el simbolo de Legendre. En particular llamaremos G(p) = G1(p).

La relacién (12.1) implica que si p 1 a entonces G4 (p) = (a/p)G(p).

En realidad Gauss definié
2
Ga(p) = w™. (12.2)

Es fécil ver que se trata de una definicién equivalente: podemos descomponer
G.(p) = R— N, donde R y N son las sumas de las potencias de w® con expo-
nentes respectivamente restos y no restos cuadréticos. Entonces 1+ N + R = 0,
pues se trata de la suma de todas las potencias de w (repetidas varias veces si a
no es primo con m), y en consecuencia R — N = 2R+ 1, que coincide con (12.2),
pues 22 recorre dos veces los restos cuadriticos més el cero. De hecho, Gauss
estudié las sumas G, (b) definidas de este modo para todo b, no necesariamente
primo. De todos modos la sumas asociadas a primos son las tnicas relevantes
en el problema que nos ocupa.

Como consecuencia del teorema 12.2 sabemos que |G(p)| = /p, pero Gauss
probd algo maés fuerte:

Teorema 12.5 Sea p un primo impar. Entonces
G(p)* = (-1,

DEMOSTRACION: Aplicando la conjugacién compleja a la definicién de G(p)

resulta
-5 (L) =60 - () 6w

(]

p p

r=1

Asf pues, si (—=1/p) = 1 tenemos que G(p) = G(p), luego G(p) € Ry
G(p)? > 0. Por el teorema 12.2 ha de ser G(p)? = p. L

Por el contrario, si (—1/p) = —1. entonces G(p) = —G(p), lo que implica
que G(p) es imaginario puro, y asi G(p)? < 0. El teorema 12.2 nos da que
G(p)* = —p.

En resumen queda que G(p)? = (—1/p)p = (—1)P~1/2p, "

Ejercicio: Usar el teorema 11.30 para probar en general que si x es un caracter
cuadrético primitivo médulo m, entonces G(x)* = x(—1)m

Veamos ahora céomo la relacién que proporciona el teorema anterior permite
probar facilmente la ley de reciprocidad.

Sean p y ¢ primos impares distintos. Sea p’ = (—1)P~1/2p. Consideraremos
congruencias moédulo ¢ en el anillo ciclotémico p-ésimo y usamos el teorema de
Euler 12.3.

G(p)qfl _ (G(p)2)(q71)/2 — p’(Q*l)/z = <%> (m(’)d q)‘
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Por otra parte, si consideramos la definicién de G(p) tenemos

Glp) = (Z (2) wr>q -5 () =Gut = (£) 6 (o)

r=1 r=1
Combinando las dos congruencias queda
P _ g (4 ,
4 G(p) =G(p)* = » G(p) (méd q).

Multiplicamos por G(p) y asi (p'/q)p’ = (¢/p)p’ (méd q), de donde concluimos

(B)-()-G) Q)

Al igual que ocurre con el caso del 2, la demostracion se simplifica si usamos
cuerpos finitos en lugar de congruencias. Para esta prueba necesitamos la version
del teorema 12.5 en cuerpos finitos. De hecho el argumento que presentamos es
valido en cualquier cuerpo, lo que prueba que se trata de una relacién puramente
algebraica.

Sean p y ¢ primos impares distintos y sea w una raiz p-ésima primitiva de la
unidad en una extensién de Z/gZ. Definimos la suma de Gauss

=3 Wt (12.3)

Es facil ver que la forma cuadratica 2 + y? representa todas las clases
médulo p. Esto se sigue de los resultados vistos en capitulos anteriores, pero un
argumento elemental es el siguiente: dado, r, los polinomios 2 e r — y? toman
(p + 1)/2 valores distintos médulo p, luego ha de haber un z y un y tales que

2?2 =r—192 Sea

G ={(z,y) € Z/pZ x Z/pZL | 2* + y* # 0}.
Es claro que G es un grupo con el producto dado por
(z, y)(l"', y’) = (M' —yy Yy + x’y).

El inverso de un par se calcula por la misma férmula que el de un nimero
complejo. Ademds la aplicacién (z,y) — 2% +y? es un epimorfismo de G en U,.
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De aqui concluimos que la forma 2 + y? representa el mismo nimero de veces
cada clase no nula médulo p.

Si (=1/p) = —1, entonces 22 + y? = 0 sélo sucede cuando z = y = 0. Por
lo tanto, de los p? sumandos de (12.3), hay uno igual a w® = 1 y los p? — 1
restantes se reparten entre las p — 1 potencias no triviales de w, de modo que
cada una aparece p + 1 veces. Por consiguiente

p—1

V=1+@p+1)> W =1+p-1)(-1)=-p= <?1)p-
r=1
Si (—1/p) = 1 entonces para cada clase € Up, la ecuacién 2 +y? = 0 tiene
exactamente dos soluciones, luego en total hay 2(p — 1) + 1 representaciones del
0, que se corresponden con otros tantos sumandos iguales a 1 en (12.3). Queda
un total de p? —2p + 1 = (p — 1)? sumandos, con lo que cada potencia de w no

trivial aparece p — 1 veces. Asi pues,

P =14 (- )W =2 14 (- (1) =p= <__1>p-

Por otra parte,
p
2 q
1= Wi = (—) 0
=0 p

pues si (¢/p) = 1 entonces ¢ = u? (méd p), luego gz = (ux)? (méd p) y cuando
x recorre las clases médulo p lo mismo vale para uxz. Por lo tanto en este caso
~v? = ~. En cambio, si (¢/p) = —1 los exponentes de 7 recorren dos veces los
restos no cuadraticos médulo p (mds el cero), mientras que los de v recorren
dos veces los restos cuadraticos (més el cero). Claramente entonces v+ 9 = 0,
pues es dos veces la suma de todas las potencias de w.

Con esto tenemos que v¢~! = (¢/p). Ahora bien, v € Z/qZ y serd un resto
cuadratico médulo ¢ si y s6lo siy € Z/qZ, siy sélo si 14~ = 5. Por consiguiente

(3)-(0)- () (@ -come()

12.3 El signo de las sumas cuadraticas

Una de las caracteristicas de Gauss era su extremada meticulosidad. En sus
trabajos no dejaba de discutir el menor aspecto de cualquier problema, y asi,
a pesar de que la férmula del teorema 12.5 era suficiente para demostrar la ley
de reciprocidad cuadrética, quedaba planteado el problema de calcular el valor
exacto de G(p).
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Por 12.5 podemos afirmar que

) £yp sip= 1(méd4)
e { +y/pi sip=—1(méd 4) (12.4)

La cuestién era determinar el signo. El caso es que los célculos explicitos
muestran que siempre aparece el signo positivo, pero Gauss tardé tres anos
en encontrar una prueba de ello. Con sus propias palabras: “... este estudio,
que a primera vista parece muy sencillo, conduce directamente a dificultades
iesperadas, y su desarrollo, que ha llegado hasta aqui sin obstdculos, requiere
métodos completamente nuevos.”. Vamos a dar una prueba debida a Shur.

Teorema 12.6 Sea p un primo impar. Entonces

| VP sip= 1(mdd4)
G(p) = { VPi sip=—1(mdd 4)

DEMOSTRACION: Sea w = cos(27/p) + isen(2w/p). Consideremos la matriz
A = (w*), donde z, y varfan entre 0 y p — 1. La expresién (12.2) para la suma
G(p) prueba que ésta es la traza de la matriz A. Sean Aq,..., A, los valores
propios de A. Entonces G(p) = A1 + -+ + A, ¥ todo se reduce a calcular los
valores propios de A. Calculamos ahora A%. El coeficiente x, y de A? es

Zwt(ery) _Jp siz+y=0 (méd p)
po 0 siz+y#0 (méd p)

Es obvio que los valores propios de A2 son los cuadrados de los valores
propios de A, pero el polinomio caracteristico de A? es facil de calcular:

polcarA? = (t — p)PH/2(¢ 4 p)P-1)/2,

(Esbozamos el célculo: el determinante de tI — A% puede desarrollarse por
la primera fila, de modo que queda (¢t — p)|B|, donde B es una matriz de orden
p — 1 que tiene a t en toda la diagonal principal y —p en la otra diagonal.
Desarrollando este determinante por la primera fila queda (¢ — p)(¢|C| + p| D)),
y los dos determinantes pueden desarrollarse por la dltima fila para llegar a

(t =p)(|B| = p*|B']) = (t — p)(t* — p*)| B,
donde B’ es como B pero con dos filas y columnas menos).

Asi pues, los valores propios de A% son (p + 1)/2 ntmeros iguales a p y
(p — 1)/2 ntumeros iguales a —p, luego cada valor propio de A es de la forma
+./p o iy/p. Més atin, si llamamos a, b, ¢, d a las multiplicidades de los valores

propios /p, —+/p, i,/P, —iy/P, ha de cumplirse

a+b=(p+1)/2, c+d=(p—1)/2. (12.5)
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Ademaés tenemos
G(p) = (a—b+ (c— d)i)\/p. (12.6)
Comparando con (12.4) concluimos que
a—b==+1, c=d cuando p = 1 (mdd 4),
c—d=%1, a=b cuando p = —1 (mdd 4). (12.7)
Calculemos por otro lado el determinante de A. Para ello observamos que
47 = (~1pe D12,

luego |A| = £iP(P=1)/2pP/2 Nos falta determinar el signo. Para ello observamos
que |A| es un determinante de Vandermonde. Sea n = cos(w/p) + isen(w/p).
Entonces

Al = I[[ w-wy= I -

0<r<s<p-—1 0<r<s<p-—1

_ r+s(,.S—T —(s—7r r+s - (8 - T)W

= H Nt — ) H n (2zsen— :
0<r<s<p—1 0<r<s<p—1 p

El primer producto del dltimo término es 7 elevado a !

3 (r+5)—§§(r+s)—z§<rz+y) _2p<”T1>2.

0<r<s<p—1 r=1s=0 r=1

Como el orden de i es 2p, dicho producto es 1 y queda

)

|A] = ip(P—1)/29p(p—1)/2 H sen w
0<r<s<p—1 p

donde todos los senos son positivos. Comparando las dos expresiones que hemos
obtenido llegamos a que |A| = iP(P=1)/2pp/2,

Por otro lado |A] es el producto de los valores propios de A, o sea,
|A| — (—l)bic(—i)dpp/2 _ Z-2b+cfdpp/2.

De aqui obtenemos que 2b + ¢ —d = p(p — 1)/2 (mdd 4). Uniendo esto a
(12.5) y (12.7) resulta que si p =1 (mdd 4) entonces ¢ = d, y

1 1 -1
a—b—atb—2=LT1 Pl P11 (néda),
2 2 2
luegoa—b=1,ysi p=—1(mdd 4) entonces a =b y
-1 1
c—dz—(p—1)/2—2b=—p7—%E_p;1(méd4),
luego ¢ —d = 1. En ambos casos (12.6) nos da el resultado. "

1Usamos aqui la férmula de Bernoulli: ZZLI k2 = %{277&1)

capitulo siguiente, p. 323.

. La probaremos en el



12.3. El signo de las sumas cuadraticas 309

Las sumas de Gauss tienen aplicaciones muy diversas en teoria de niimeros.
Entre otras cosas, permiten calcular el niimero de soluciones de ciertas congruen-
cias, permiten obtener generalizaciones de la ley de reciprocidad cuadratica y
tienen importancia en el estudio de los cuerpos ciclotémicos. Ahora nos dedica-
remos a obtener los resultados adicionales que nos hacen falta para completar
nuestra evaluacion de las funciones L. Para el caso cuadrético debemos extender
el teorema anterior a sumas de caracteres de médulo no necesariamente primo.
Todas las dificultades de calculo las hemos superado ya. Lo que queda es facil.
La clave es el teorema siguiente:

Teorema 12.7 Sean x1, ..., Xn caracteres modulo my, ..., m, respectivamente,
donde los nimeros m; son primos entre st dos a dos. Sea x = x1 X -+ X Xn Y
m=mq X m,. Entonces

Ga(x) = Ga(x1) - Galxn) x1(m/m1) - Xn(m/mp).

DEMOSTRACION: Basta probarlo cuando n = 2 y el caso general se sigue
por induccién. Concretamente hemos de ver que

Ga(x1 % x2) = Ga(x1)Gal(x2) x1(M2)X2(M1).

Para ello observamos que la aplicaciéon U,,, x U,,, — U, definida como
([u], [v]) > [umz+vmy] es biyectiva (aunque no es un homomorfismo). Ademsds,
si w = cos(2m/m) + isen(27/m), entonces

W™ =cos(2n/my) +isen(2w/my) y  w™ = cos(2m/ms) + isen(2w/ms).

Por lo tanto,

Gal01)Galx2) xa (m2)xa(ma) = (32 1 (o ()™ ™ )y (ma) s (m1)

=) xa(maw) xa(myv)wtmzetme)

u,v

= Z X1 (Mot + mav)xa (mau + myv)w®m2utmv) = Z x1(r)xz(r)w®”
-

u,v
= 3 T = Gal),
r
donde u varfa en U,,,, v varfa en U,,, vy r en U,,,. n
Con esto podemos probar:

Teorema 12.8 Sea x un cardcter cuadrdtico primitivo mddulo m. Entonces

vm osix(-1)= 1
G0 = { ivm six(—1)=-1
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DEMOSTRACION: Por el teorema 11.22 sabemos que m ha de ser el discrimi-
nante de un cuerpo cuadratico, es decir, que existe un nimero impar r libre de
cuadrados de modo que m = r, m = 4r o m = 8r. Digamos que r = py - - - Ps.
Llamemos r; = r/p;.

Sea x; el tnico caracter cuadratico médulo p;, es decir, el determinado por
xi(a) = (a/p;) para (a,p;) = 1. Sea ) = x1 X -+ X xs. Por el teorema anterior

G() = G(x1) -~ G(xs) x1(r/p1) - - - X (1/Ds)-

Sea t el nimero de primos p; congruentes con —1 médulo 4. Entonces el
teorema 12.6 nos da que

e (3) () -4 () ()

/T sites par
i+/r sitesimpar

G(¥)

_ it\/;(l)t(tl)/ZitQ\/F{

Por otra parte, y;(—1) = —1 si y sélo si p; = —1 (méd 4), luego (—1) =1
si y sélo si t es par. Esto prueba el teorema cuando m = r.

Supongamos ahora que m = 4r. Entonces xy = § X v, donde J es el caracter
primitivo médulo 4. Es fdcil comprobar que G(6) = i — (—i) = 2i. Por el
teorema anterior G(x) = G(6)G(¢)d(r)(4) = 2iG()d(r).

Sir =1 (mdd 4) entonces t es par y §(r) = 1, luego G(x) = 2i\/r = iy/m, y
por otra parte x(—1) = 6(—1)1)(—1) = —1, luego se cumple el teorema.

Sir = —1 (méd 4) entonces t es impar y 6(r) = —1, de donde llegamos a
que G(x) = 2i - iy/r(=1) = v/m, y por otra parte x(—1) = §(—=1)p(—-1) = 1.
Esto completa la prueba para el caso m = 4r.

En el caso m = 8r se razona igualmente, con la tnica diferencia de que ahora
tenemos que considerar dos posibilidades para el cardcter médulo 8, a saber, los
caracteres € y de. n

12.4 EIl niimero de clases en cuerpos cuadraticos

Si en las férmulas del teorema 11.11 evaluamos la funcién L mediante las
férmulas del teorema 11.31 y en éstas evaluamos la suma de Gauss, obtenemos
el teorema siguiente:

Teorema 12.9 Sea K un cuerpo cuadrdtico de discriminante A y sea h su
numero de clases. Entonces

1. St K esreal y e > 1 es su unidad fundamental,

1

km
- _ 1 el
h Tome Ek Xk (k) logsen —,

donde k recorre los nimeros naturales 0 < k < A/2, (k,A) = 1.
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2. Si K es imaginario y A < —4,

1

donde k recorre los nimeros 0 < k < |A|, (k,A) = 1.

Notar que en el caso real k deberia variar entre 0 y A y faltaria un factor
1/2, pero claramente el sumando correspondiente a A — k es igual al sumando
correspondiente a k, luego podemos reducir a la mitad el nimero de sumandos y
simplificar el 2. En el caso imaginario suponemos A < —4 para evitar distinguir
el nimero de unidades. Los casos exceptuados tienen h = 1.

La férmula para cuerpos imaginarios puede simplificarse mas todavia. Sea
m = |A| y supongamos primero que m es par.

Observemos que xx(k +m/2) = —xx (k). En efecto, con la notacién del
teorema 12.8 es evidente que ¥ (k+m/2) = (k). Sim = 4r entonces yx = X1,
y es claro que §(k +2) = —3§(k). Si m = 8r entonces xx = € X ¢ o bien

XK = 0€ X 1, y también es claro que e(k +4) = —e(k), de donde se sigue la
relacién.

En las sumas siguientes k recorre sélo los niimeros primos con m en los
rangos indicados:

m/2 m/2
o= =Y k==Y Wk = (k+5) (k+ 5 ) =
k k=1 k=1
m/2 m/2 m/2

=Y @k + Y xw®) (k+5) = T D (),
k=1 k=1 k=1

luego
m/2

h = % Z xx (k).
=1

Si por el contrario m es impar, entonces

m/2 m/2
hm = = xx(k)k == xx(k)k—> xx(m—k)(m—k)
k k=1 k=1
m/2 m/2
= =) xx®k+Y xx(k)(m— k)
k=1 k=1
m/2 m/2

= —2ZXK(k)k+mZXK(k)- (12.8)
k=1 k=1

Por otra parte separamos los sumandos pares de los impares:

m/2 m/2
hmo= = xx(k)k =Y xx(2k)2k — > xx(m — 2k)(m — 2k)
k k=1 k=1
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m/2 m/2

= —2xx(2) Y xx(B)Ek+ Y xx(2k)(m — 2k)
k=1 k=1
m/2 m/2

= —axx (@)D xx®k+mxx(2) Y xx (k).
k=1 k=1

Por lo tanto

m/2 m/2
hmxk(2) = —4 Z xx (k)k+m Z xx (k). (12.9)
k=1 k=1

Multiplicamos (12.8) por 2 y le restamos (12.9):
m/2
hm(2 — xk(2)) =m Z XK (k).
k=1
Finalmente observamos que la ecuacién obtenida en el caso m par es ésta
misma, puesto que entonces Xk (2) = 0. En resumen:

Teorema 12.10 Sea K un cuerpo cuadrdtico de discriminante A < —4. En-
tonces el numero de clases de K viene dado por la férmula

=
—

donde k recorre los nimeros primos con A.

Esta férmula, ya simple de por si, se simplifica ain mdas cuando se aplica a
cuerpos de discriminante primo. Concretamente tendran que ser cuerpos de la
forma K = Q(\/—_p), donde p = —1 (méd 4). Entonces el cardcter de K es el
simbolo de Legendre y x(2) depende del resto de p médulo 8. El enunciado es
claramente:

Teorema 12.11 Seap = —1 (méd 4) un primo racional y sean respectivamente
R y N el numero de restos cuadrdticos y restos no cuadrdticos modulo p en el
intervalo [0,p/2]. Entonces el nimero de clases de Q(y/=p) viene dado por

B R—N sip=7(mdd 8)
| 2(R-N) sip=3(méd?8)

Ejercicio: Probar que en las condiciones del teorema anterior h es impar. (Esto lo
sabfamos ya como consecuencia de la teorfa de géneros.)

El teorema anterior implica en particular que R > N. No se conoce ninguna
prueba elemental de este hecho. Nuestra prueba depende—entre otras cosas—de
la determinacién del signo de las sumas de Gauss cuadraticas.
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Ejemplo Vamos a calcular el nimero de clases de Q(\/723). La tabla si-
guiente indica el simbolo de Legendre de los ntimeros necesarios:

1
| 1

2 34 5 6 7 89 10 11|
1 11 11 111 -1 1]

(Notar que sdlo hace falta calcular los valores para 2, 3, 5, 7y 11. Los restantes
se deducen de éstos.)
Por consiguiente h =7 — 4 = 3. m

En el caso real no hay férmulas tan simple, pero vamos a encontrar una
variante interesante de la férmula del teorema 12.9.

Consideremos
[Isen(wb/A)
b

b= ];[sen(ﬂ'a/A)’

donde a y b recorren los ndmeros entre 0 y A/2 primos con A y tales que

xk(a) =1, xx(b) = —1. Entonces la férmula del teorema 12.9 es
1
h=—1ogb,
log e

de donde 6 = e"!°8¢ = ¢ En particular 6 es una unidad de K.

La férmula 6 = €’ tiene interés entre otros motivos porque no existe ninguna
demostracion puramente aritmética de este hecho. Ni siquiera se conoce una
prueba elemental de que 6 > 0.

Los resultados que hemos obtenido se aplican también a los cuerpos ci-
clotémicos, pero nos ocuparemos de ello en el préximo tema.






Capitulo XIII

Cuerpos ciclotémicos

En este capitulo obtendremos la férmula analitica para el nimero de clases
de los cuerpos ciclotémicos de orden primo y de su analisis obtendremos la
caracterizacion de Kummer de los primos regulares.

13.1 La formula del numero de clases

Sea p un primo impar. Sea K = Q(w) el cuerpo ciclotémico de grado p y
sea K* = KNR. Seam = (p—1)/2 el grado de K*. Partimos de las férmulas
que obtuvimos en el capitulo XI para el nimero de clases de ambos cuerpos
(teoremas 11.26 y 11.32):

\/ﬁp ) \/Z—)m—l
2m—17TmR H ( ’X)’ 2m_1R* H ( 7X)
x#1 x(1)=1
x#1

El teorema 4.28 nos da ademds la relacién R = 2™~ R* entre los reguladores,
lo que nos permite expresar h en la forma

m+2
P/ i IT z@ o ne

- 2m—1ﬂ-m
x()=-1

Puesto que h y h* son nimeros naturales las férmulas no se alteran si sus-
tituimos las funciones L por sus mddulos (recordemos que en sus desarrollos
aparecen sumas de Gauss, de las que sélo conocemos los médulos). Vamos usar
la notacién clasica introducida por Kummer, segin la cual el numero de clases
se descompone como h = hihs, donde

_ !
hi = om—1m H |L(1,x)l, hy = om—Tfpx H |L(1, x)|.
x(1)=-1 x(1)=1
x#1

315
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Los ntmeros hy; y hy reciben el nombre de primer y segundo factor del
nimero de clases. Vemos, pues, que el segundo factor es el nimero de clases de
K*, por lo que en particular es un nimero natural. Probaremos que h; también
lo es, y asi los dos factores seran divisores del nimero de clases.

Ahora conviene hacer unas observaciones generales sobre caracteres de gru-
pos abelianos que nos permitiran simplificar las expresiones de ambos factores.

Sea G un grupo abeliano finito y V' el conjunto de todas las aplicaciones de
G en C. Vimos en el capitulo XI que V es un espacio vectorial que tiene por
base a los caracteres de G. Para cada g € G sea T, : V. — V la aplicacién
dada por Ty(f)(t) = f(gt). Claramente T, es una aplicacién lineal y si x es
un cardcter de G se cumple Tg(x) = x(g9)x, es decir, los caracteres son vectores
propios de T.

Sea ahora v € V' y consideremos T'= ) v(g)T,. La aplicacién T también

€G

es lineal y tiene a los caracteres por Vectoﬁes propios. En efecto,

T = Y () T,00 ) = > vlg)x(9)x(b),

9eG geG

luego

geG

Por lo tanto la matriz de T en la base formada por los caracteres es una
matriz diagonal y su determinante vale

det T =[] > v(9)x(9).

X g€G

Calculemos por otro lado el determinante de T' en la base candnica de V,
esto es, en la base {fs}seq formada por las funciones

1 sit=s

fs(t):{ 0 sit#s

El coeficiente (s,t) de la matriz es

T(f)(t) = Y v(@Ty(f) (1) = D v(g)f(tg) = v(st™).
9eG geG

Con esto hemos probado el teorema siguiente:

Teorema 13.1 Sea G un grupo abeliano finito y v : G — C. Entonces la

eTpresion
11> v(9)x(9),

X g€G

donde x recorre los caracteres de G, es igual al determinante de (U(st’l)) e

)
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Notemos que la matriz simétrica (v(st))s 1 Se diferencia de la indicada en
el teorema tan sélo en el orden de las columnas (alterado segtn la permutacién

t — t~1), luego, salvo signo, los determinantes coinciden.

Fijamos ahora la notacién que seguiremos en todo el analisis del niimero de
clases. Sea ( una raiz de la unidad de orden p — 1 y sea g una raiz primitiva
médulo p, es decir, un generador del grupo U,. Sea x el cardcter de U, deter-
minado por x(g) = ¢!, Es claro que 1, x, ..., x?~2 son todos los caracteres
médulo p. Ademés x* es par si y sélo si k es par.

13.2 El primer factor del namero de clases

Investigamos ahora el factor hy; del niimero de clases. Hemos de probar que
es un numero natural, y ademéas daremos una féormula practica para calcularlo.

En la férmula de h; intervienen los caracteres impares. Aplicamos el teorema
11.31 evaluando la suma de Gauss mediante 12.2:

p—1
Z)—CQT+1(k) k"

k=1

2041y _ TP
IL(1,x" )| = =

Llamemos g al menor resto positivo médulo p de g". Asi

2r+1 ‘ _ T\/P

p—2

Z geC k]

k=0

2 +l
|L(1, x*" 5

Si llamamos
p—2
r) =Y gra®,
k=0

tenemos que

L1 )| = T2 ey,

Recordando que en la definicién de hy aparecen m = (p —1)/2 factores, conclui-

mos que
1

hi = ———|F(Q)F(¢*) - F(¢P2)]. 13.1
1= Gy [F(Q)F(C?) -+ F(¢"7)] (13.1)
Observemos ahora que ("™ = —1, por lo que
m—1 m—1
Y = (g = gman)CETE =" gk — gmak)CF T
k=0 k=0

Vamos a aplicar el teorema 13.1 tomando como G = Z/mZ. Sea 1) el cardcter
determinado por (k) = ¢(?*. Es claro que las potencias de ¢ recorren todos los
caracteres de G y la expresion anterior es

m—1
F(C) =" (g = gman)SE 07 ().
k=0
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Notemos que la funcién f(k) = (gr — gmax)C* depende sélo del resto de k

médulo m, pues

Fk+m) = (grsm — G2mrr)C" T = (Gham — g)(—1)CF = f(k).

Por consiguiente la férmula (13.1) se escribe equivale a

h = s 1S fker k)]

r=0 keG

Aplicando el teorema 13.1 (y la observacién posterior)

1 s
hy = W |det((gs+t - gm+5+t)< +t)"

donde s, y t varian entre 0 y m — 1. Mas atn, el determinante que aparece en
la férmula anterior es, por definicién,

m—1
Z siga H (gs+0'(5) - gm+s+a(s))gs+g(5)~
oEX ., s=0

Al agrupar las potencias de ¢ de cada factor obtenemos ( elevado al expo-
nente 2(1+2+---m—1) = m(m — 1), es decir, (—1)™ L. Este signo sale factor
comun de todos los sumandos y se cancela con el valor absoluto que rodea al
determinante. En definitiva hemos probado lo siguiente:

Teorema 13.2 El primer factor del nimero de clases viene dado por la formula

1
hy = W |det(gs+t - 9m+s+t)|’

donde s y t varian entre 0 y m — 1, y g, es el menor resto positivo modulo p
de g™.

Esta expresiéon involucra sélo niimeros enteros y no presenta por tanto ningin
problema para su cédlculo efectivo. Por ejemplo, si p = 23 una raiz primitiva es
g = 5. Hemos de calcular

n 0 1 2 3 45 678 9101112131415 1617 18 192021
gn 1 5 210 420 81716 11 92218211319 315 6 71214
gn — 9114n|—21-13 -19 -3 -1517-711 9-1-5211319 315—-17 7—-11-9 1 5

y de aqui

—21-13-19 —=3-15 17 -7 11 9 —-1 —5
—-13-19 —3-15 17 -7 11 9 —-1 -5 21
-19 —3-15 17 =7 11 9 —-1 -5 21 13
—3-15 17 =7 11 9 -1 —5 21 13 19
—-15 17 -7 11 9 -1 —5 21 13 19 3
he— L |17 =7 11 9 -1 -5 21 13 19 3 15
1= %60 =7 11 9 —1 —5 21 13 19 3 15-17
11 9 -1 —5 21 13 19 3 15-17 7
9 —1 -5 21 13 19 3 15-17 7-11
-1 -5 21 13 19 3 15-17 7-11 —9
-5 21 13 19 3 15-17 7-11 -9 1
21 13 19 3 15-17 7-11 -9 1 5
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Un ordenador calcula este determinante en fracciones de segundo. El resul-
tado es 127.262.242.448.329.728, de donde h; = 3. La tabla siguiente contiene
el valor de h; para primos p < 100. Vemos que aumenta rdapidamente. De
hecho puede probarse que a partir de 23 siempre es mayor que 1, con lo que los
tnicos cuerpos ciclotémicos de orden primo con factorizacién tinica son los siete
correspondientes a p < 23.

Tabla 13.1: Primer factor del nimero de clases de los cuerpos ciclotémicos

p |hi|p | p |

3 1 29 | 23 61 | 41 -1.861

5 1 31| 32 67 | 67-12.739

7 1 37 | 37 71| 7% -79.241

111 |41 112 73 | 89-134.353

1311 |43 211 79 | 5-53-377.911
1711 |47|5-139 83 | 3-279.405.653

19 |1 53 | 4.889 89 | 113 -118.401.449
2313 59 | 3-59-233 | 97 | 577 - 3.457.206.209

La tabla muestra también que los primos 37, 59 y 67 son irregulares.

Todavia no hemos probado que, como hace ver la tabla, el niimero h; es un
numero natural. El determinante de la expresién del teorema 13.2 es claramente
un entero racional. Hay que probar que es divisible entre 2™~! y entre p™—!.
El caso del 2 es muy simple. Notamos que

Gk + Germ = g% + gFT™ = gF (14 g™) = 0 (méd p),

luego gr + gr+m = p y por consiguiente uno de ellos es par y el otro impar.
Por lo tanto, la matriz (gs4+ — gm+s+¢) tiene todas sus coordenadas impares.
Sumando una fila a todas las restantes obtenemos otra matriz con el mismo
determinante y m — 1 filas formadas por nimeros pares, de donde extraemos un
factor 2m1,

Falta probar que este mismo determinante es divisible entre p™~!. Para ello
usaremos la expresién equivalente que aparece en (13.1). Sea

B = F(QF(() -+ F(¢"™?).

El nimero B es, salvo el signo, el determinante del teorema 13.2, luego es un
entero racional. La clave es que cada factor es una suma geométrica médulo p:

p—2 p—2
F(C) =Y gk¢™ = (9¢")F (méd p).
k=0 k=0

Para sumarla multiplicamos por la razén menos 1:
F(C")(g¢" = 1) = (9¢")P~ " —=1=0 (mdéd p),
es decir, p | F(C")(g¢" — 1).
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Ahora hemos de estudiar la posibilidad de que divisores primos de p en Q(¢)
dividan al factor de la derecha. Puesto que p =1 (méd p — 1), el teorema 3.20
nos da que p se descompone en ¢(p — 1) factores primos de norma p.

Si p es uno de estos factores, el polinomio zP~! — 1 tiene todas sus raices
distintas médulo p (es primo con su derivada), luego las potencias de ¢ recorren
las p — 1 clases no nulas médulo p. En particular existe un r tal que (7" =g
(méd p), luego p | g¢" — 1.

Notemos que como g tiene orden p — 1 médulo p, lo mismo le ha de ocurrir
a (™", para lo cual es necesario que (r,p — 1) = 1. Ademds p no puede dividir
a otro g¢* — 1, pues entonces g¢* =1 = g¢" (mdd p), luego ¢ = ¢" (méd p) y,
suponiendo 0 < r,s < p — 1, ha de ser r = s.

En resumen, cada uno de los ¢(p — 1) divisores primos de p divide exacta-
mente a uno de los ¢(p — 1) ndmeros g¢" — 1 con (r,p — 1) = 1.

Llamamos p, al Unico divisor primo de p que divide a g{" — 1. Entonces

tenemos que
p= H Pr.
(r,p—1)=1

(Convenimos en que la definicién de p, vale para todo entero primo con p — 1,
de modo que p, = py4p—1. Si 7 no es primo con p — 1 tomamos p, = 1).

Sabiendo todo esto, la relacién p | F(¢")(g¢" — 1) implica que pp; -t | F(¢7),
luego multiplicando para todos los r impares hasta p — 2 obtenemos que

PP ps ety | F(OF(CP) -+ F(¢P2),

luego p™~! | B, como habia que probar.

Esta técnica que hemos empleado para probar que h; es entero puede re-
finarse para obtener un criterio sencillo de cudndo p | hy, lo cual tiene interés
porque una de las condiciones de la definicién de primo regular es que p { h, y
en particular ha de ser p{ hy.

En primer lugar, p dividird a h; si y sélo si divide a B/p™~!, y como éste
es un entero racional, esto ocurrird si y s6lo si uno cualquiera de los primos p,.,
por ejemplo p_1, divide a B/p™~!. Ahora bien, sabemos que

B F(Qp1 F(Cps  F(CP?)pp—2

pmt P p P

donde cada factor de la derecha es un ideal (entero). Por consiguiente p | hy si
y s6lo si p_; divide a uno de los ideales F((")p,p~*, para r = 1,3,...,p — 2.
Esto equivale a su vez a que p2, | F(¢")p, para algtin r.

Ahora bien, p?; en ningtin caso puede dividir a F(("Y)p_;. En efecto,
tenemos que g( ! =1 (méd py), de donde

p—2 p—2

F(¢CH=) (g¢Hr=>1

k=0 k=0

-1 (méd p_l),
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luego, p_1 ¥ F(¢1). Asf pues, p | hy si y sélo si p2, | F(¢")p, para algin
r=1,3,...,p—4, lo que a su vez equivale a que p?, | F(¢").

Hasta aqui todo es valido para cualquier eleccién de la raiz primitiva g. Dada
una raiz primitiva cualquiera h médulo p, podemos tomar g = h?, con lo que
tenemos una rafz primitiva que ademds cumple gP~! = pPP=1) =1 (méd p?),
pues ¢(p®) = p(p — 1).

Con esta eleccion de g y teniendo en cuenta la factorizacién

PP = (@ —y) (@ —yl) - (- yPTY),

Vemos que
p—2

[T(1-9¢*) =1-g"" =0 (méd p?),
r=0

y, dado que p_; no puede dividir a otro factor que no sea 1 — g !, concluimos
que p2, | 1 —g¢ 1, es decir, ¢ = g (méd p2 ).
Esto nos permite eliminar a ¢ de la condicién que hemos obtenido, pues

p—2 p—2
F(C) =Y g* = grg"” (méd p?,),
k=0 k=0
luego p2, | F(¢") siy sélo si
p—2 p—2
p?, | z:gkgkr7 siysélosi p?| ngg]".
k=0 k=0

Con esto tenemos ya una condicién en términos de niimeros enteros, pero se
puede simplificar mucho més. El razonamiento que sigue es incorrecto, pero se
puede arreglar:

p—2 p—2 p—2 p—2 p—1
S grg = gt =D =3 gt =S et (méd p?). (13.2)
k=0 k=0 k=0 k=0 n=1

El problema es, por supuesto, que en principio las congruencias son ciertas
sé6lo médulo p, no p?. Si pese a ello logramos justificarlas habremos eliminado
los gi de la condicién.

Para arreglarlo expresamos g, = ¢* + pay, para cierto entero a;. Tomamos
congruencias médulo p? y elevamos a r + 1:

g]:+1 — gk(rJrl) + (7"—|— 1)gkrpak — gk(rJrl) + (7"—|— 1)gkr(gk _gk) (méd p2),

o sea,
gt = (r+ 1)gpg™ — kg" Y (méd p?). (13.3)

Si no estuviera el wltimo término y teniendo en cuenta que nos interesa r < p—1,
esta férmula nos asegurarfa que p? divide al primer término de (13.2) si y sélo
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si divide al cuarto, con lo que el problema estaria resuelto. Afortunadamente,
el sumando molesto desaparece al sumar respecto a k:

p2 (P-1(r+1) _q

T g — A
2 :gk( +1) _ S =0 (mod p2)’
k=0 9

vaque g1 =1 (méd p?) y ptg" ™t —1parar+1<p—1.

Por lo tanto al sumar en (13.3) obtenemos
p—2 p—2
gt =+ g™ (méd p?),
k=0 k=0
y como p 1k + 1, llegamos a que

p—2 p—2 o1
P’ | E grg™" siysélosi p? | E QZH - E :nT'“,
k=0 k=0 n=1
Hemos demostrado el teorema siguiente:

Teorema 13.3 Se cumple que p divide al primer factor de h si y solo si p?
divide a alguno de los numeros

p—1
ST:ZnT, parar=2,4,...,p—3.

n=1

Aunque esta condicién puede parecer completamente satisfactoria, lo cierto
es que admite una reformulacién més simple, que no sélo tiene interés préctico,
sino que es relevante para estudiar cuando p divide al segundo factor de h. Nos
ocupamos de ella en la seccion siguiente.

13.3 Los numeros de Bernoulli

Hay férmulas para calcular las sumas de potencias 1% + 2% + ... + mF. La
correspondiente a k = 1 es sobradamente conocida:

n(n—i—l)'

L4243+ 4n=——

Fue Jacques Bernoulli quien obtuvo la generalizacién de esta férmula a expo-
nentes superiores, y sus resultados eran bien conocidos en la época de Kummer.
Béasicamente Bernoulli demostré que existe un tnico polinomio de grado n, hoy
llamado polinomio de Bernoulli, B, (z), tal que

x+1
" = / B, (z)dx.
xT
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Por ejemplo, si planteamos

x+1 3 b 2 x+1
= / (am2+bx+c)dx:{%+%+cx}

x

1 1
= ax2+(a+b)x+§a+§b+c,

al igualar los coeficientes llegamos a que Bo(z) = 22 — x + 1/6, de donde

m m+1
Z 12— / Bo(x) d — m(m + 125(2m + 1).
k=1 L

Para obtener los resultados generales sobre los polinomios de Bernoulli que
vamos a necesitar conviene introducirlos desde un contexto diferente, relacio-
nado con las investigaciones de Euler sobre las series

1
(k)= o
n=1
Definicién 13.4 Llamaremos polinomios de Bernoulli a las funciones By(x)
determinadas por
ze® o= Bi(z)

z _ 1 |
e 1 — k!

Observar que la funcién de la izquierda tiene una singularidad evitable en 0,
por lo que se trata de una funcién entera y la serie de potencias de la derecha
converge en todo el plano complejo.

Se llama nimeros de Bernoulli a los nimeros By, = By(0).

El teorema siguiente demuestra que las funciones Bj(z) son efectivamente
polinomios, asi como que estan determinados por los numeros de Bernoulli.

Teorema 13.5 Se cumple que By (z) = Z () Br z"*.
k=0

DEMOSTRACION: En efecto:

o - e (S0 (S5

n=0

n=0 k=0

Comparando coeficientes queda
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Una regla para recordar esta férmula es
Bn(z) = (B +)",

donde las “potencias” B* que aparecen al aplicar el teorema del binomio han
de entenderse como los nimeros de Bernoulli By,.

Ahora veremos que los polinomios que hemos definido se corresponden con
los polinomios estudiados por Bernoulli. Ello es consecuencia del teorema que
sigue.

Teorema 13.6 Para todo n > 1 se cumple

d Bn+1 (1‘)

ir = (n+1)B,(x).

+
DEMOSTRACION: Por el teorema anterior By11(x) = Z (") Bjan ik,

Por lo tanto

d B, 1)!
;1 Zkl (n+ Bk(n-i-l—k)x"_k

El teorema siguiente recoge las propiedades méas importantes de los nimeros
y polinomios de Bernoulli:

Teorema 13.7 Para todo n > 0 se cumple:

1. Bpyi(x + 1) — Bpga(z) = (n+ D)z™. En particular, para n > 2 tenemos
que Bp(0) = Bn(1).

2. Como consecuencia,

_ r+1
2" = Bnpa(@+1) = Baya(2) = / By, (x) dz.
n+1 "

3. FEsto a su vez implica

m m—+1

B 1) — B,
E k" = Bn(x) dr = n+1(m + :)[ e .
k=1 n+

1

DEMOSTRACION: La identidad siguiente se comprueba sin esfuerzo:

(x+1)z xz
€ € Tz

z —z = ze
er —1 ez —1
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Desarrollando en serie ambos miembros queda

— B,(z+1)— B, — "
3 (= + )' () n _ 3 I_'antl.
o n! = nl
Igualando los coeficientes obtenemos el resultado. m

Teniendo en cuenta que B, = B,(0) = B,(1), el teorema 13.5 nos da la
relacion siguiente.

n
Teorema 13.8 Para n > 2 se cumple que B, = Y (})Bs.
k=0

Podemos expresar esta férmula como B, = (B + 1)". Observar que B,
figura en ambos miembros de la igualdad, por lo que se simplifica. Esta férmula
aplicada a n+1 expresa a B,, en funcién de los niimeros anteriores y en particular
demuestra que los nimeros de Bernoulli son nimeros racionales. Teniendo en
cuenta que By = 1 podemos calcular facilmente los restantes. Por ejemplo:

BQZB0+231+BQ, luego Bl :71/2
B3 = By +3B1 + 3By + B3, luego By = 1/6.

Los niimeros de Bernoulli de indice impar distinto de 1 son todos nulos. Lo
demostraremos enseguida. Los siguientes nimeros de indice par son

1 1 1 5 691
B,=——. Bs=—. Be=——. Big=—. Bjg=——_
4 300 0T 4 7B 300 P T 0 2 2.730°
BT 3617 _ 43.867 174611
14 — 67 16 — 510 5 18 — 798 9 20 — 330 )

Los numeradores y denominadores de los ntimeros Bs,, crecen muy rapida-
mente. Por ejemplo, Euler calcul6 hasta

8.615.841.276.005
14.322 '

30 =

Los primeros polinomios de Bernoulli son

Bo(l‘) = 1,
1
Bi(z) = x— 3
1
By(z) = 2 —x+ 5
. 1
Bs(z) = - gzz + 2%
1
B = gt 932
1(x) x '+ 30’
4 1
Bs(z) = % — —az'+ §x3 — -z

2 3 6
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Del teorema 13.7 se siguen ahora facilmente los casos particulares

m

= m(m+1) s mm+D2m+1 sy mi(m+1)2
Zk:T, > k= , I;k =" 1"

k=1 k=1 6 4

Respecto a los nimeros de Bernoulli de indice impar, observemos que, por
la definicién y teniendo en cuenta que By =1, By = —1/2,

y f(2) es par, pues

z z z z —24+e*4+e*
f(Z)_f(_Z)_ez—1+§+6_z—l+§_z<l+ﬁ>_

Esto implica que Bgg1 = 0, para k > 1, tal y como habiamos afirmado.

Nuestro interés en los nimeros de Bernoulli se debe a que proporcionan
férmulas para calcular las sumas S, que aparecen en el teorema 13.3. El teorema
siguiente nos permitira reformular la condicién de dicho teorema en términos
de los nimeros Bs,. Para enunciarlo definamos un p-entero como un nimero
racional r tal que p no divide al denominador de su fraccién irreducible. Es
claro que el conjunto de los p-enteros es un anillo cuyo dnico primo es p (de
hecho es precisamente Q N Z,).

Teorema 13.9 (Teorema de von Staudt) Sea m un nimero par y exprese-
mos B, = Cp, /Dy, con (Cy,, Dy,) = 1. Entonces

1. D,, es libre de cuadrados.
2. Para cada primo p se cumple que p | Dy, siy sélo sip—1|m.

3. Si un primo p cumple que p | D,,, entonces pB,, = —1 (méd p) en el
anillo de los p-enteros.

DEMOSTRACION: Probaremos el teorema por induccién sobre m. Sea p un

p—1

primo cualquiera. Llamemos S,,(p) = > k™. Entonces los teoremas 13.5 y
k=1

13.7 nos dan que

i m+ 1 _
(0 + 10800) = Buia ) = B =3 (" ) B
k=0

Equivalentemente

m—1

1 m+1\ ,._
k=0
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Vamos a probar que todos los niimeros en el sumatorio son p-enteros multiplos
de p. Por hipétesis de induccién los nimeros pBj son p-enteros (porque son
nulos o bien p divide al denominador de Bj con multiplicidad a lo sumo 1).
Basta probar que los niimeros

1 m-+1\ ., &
m+1 k p

son p-enteros multiplos de p.
Si p = 2 es inmediato, puesto que m + 1 es impar y el nimero combinatorio
es un entero. Supongamos que p es impar. Entonces

1 m+1\ . mm—1)---(k+1) .
m+1\ & )* N (m—Fk+1)! '

Sir=m —k+ 1, entonces el exponente de p en 7! es a lo sumo
r
p—1

<-—<r—-1=m-k,

N3

E(r/p)+ E(r/p )+-~-<5+E+---:

donde E denota la parte entera (observar que E(r/p?) es el niimero de miiltiplos
de p® menores que ). De aquf se sigue lo pedido.

Con esto hemos probado que pB,, es p-entero para todo primo p, lo que
prueba que D,, es libre de cuadrados. Mds atn, la férmula (13.4) implica ahora
que

pB,, = Sim(p) (méd p).
Sip—1|m entonces k™ =1 (méd p) para 1 < k < p— 1, luego

p—1

Sm(p) = Zk;m =p-—1=-1(mdd p),

k=1

mientras que si p — 14 m, tomando una raiz primitiva g médulo p tenemos

pil p72 g(pfl)m — 1
éhn@» ::jz:}yn EE:E:!fnT:: ——E;r:jr—-EEO Onéd]ﬂ,
k=1 r=0

pues p{ g™ — 1 pero p | g™ — 1.
Resulta, pues, que pB,, = —1,0 (méd p) segin si p — 1 divide o no a m. En
el primer caso p 1 pBy,, luego p | D,,. En el segundo p | pB,,, luego p 1 D,,.

Ma3s atin, en la prueba hemos visto que todos los términos del sumatorio que
aparece en la férmula (13.4) son p-enteros. Si ademds suponemos que m < p—1
entonces p — 1 1 k, para todo k < m, luego p | pBy y todos los términos del
sumatorio son miltiplos de p?. Por lo tanto tenemos:

Teorema 13.10 Sip es un primo, m es par y m < p — 1, entonces

pBy = Sy (p) (méd p?).
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Esto nos permite reformular como sigue el teorema 13.3:

Teorema 13.11 Sea p un primo impar. Entonces p no divide al primer factor
del numero de clases del cuerpo ciclotomico p-ésimo si y solo si p no divide a
los numeradores de los nimeros de Bernoulli By, By, ..., B,_3.

DEMOSTRACION: La condicién equivalente que proporciona el teorema 13.3
es que p? no ha de dividir a las sumas Si(p) para k = 2,4,...,p — 3. Por el
teorema anterior esto equivale a que p? no divida a pBj;, en el anillo de los p-
enteros, y como p no divide a los denominadores de los By, esto equivale a que
p no divida a los numeradores de los By. L]

13.4 El segundo factor del nimero de clases

El segundo factor del nimero de clases contiene el regulador del cuerpo
ciclotémico, lo que impide encontrar una expresién sencilla para calcularlo. Sin
embargo su relacién con las unidades a través del regulador nos dara informacion
vital para probar que la condicién A de la definicién de primo regular implica
la condicién B.

Para desarrollarlo hemos de evaluar en 1 las funciones L correspondientes a
los caracteres pares x2", para lo que empleamos de nuevo los teoremas 11.31 y
12.2:

1

VP

En la ultima serie cada sumando se repite dos veces. En efecto, para cada
0 < k < m se cumple que

m_ 1GOENIRS s :
IL(1,x*")| = l(p%)' > X (gM)log |1 —w? || =
k=0

p—2

k
ZCQTklogH—wg I|-
k=0

¢rim+h) jog 1 — W™ | = (Flog |1 — w™?" | = ¢ log |1 —w?'|,

(el ultimo paso es porque 1 — w9" y1-— w9" son conjugados).

Asi pues,
m—1
2 k
LX) = —= ¢**log |1 —w? ||,
VP ;

lo que nos lleva a esta expresion para el segundo factor:

m—1

Z ¢ log |1 — w9k|

k=0

m—1

1
hQZE H

r=1

Al igual que hemos hecho con el primer factor, vamos a aplicar el teorema
13.1 para obtener una expresién mucho mas simple. Por abreviar llamaremos
a, = log |1 — w9k|. Como ya hemos comentado, 1 — w9 es el conjugado de
1-— wgk, por lo que ay sélo depende del resto de k médulo m.



13.4. El segundo factor del numero de clases 329

Consideramos de nuevo G = Z/mZ y el caracter ¥(k) = ¢?*, de modo que

m—1

I1 > v (k)

r=1 keG

1
hy = o . (13.5)

No podemos aplicar 13.1 porque falta el caracter principal. El factor que
le corresponderia seria ag + - 4+ a,,—1. Vamos a calcularlo. Factorizando el
polinomio ciclotémico obtenemos que p = (1 — w)---(1 — wP~!). Tomando
médulos y teniendo en cuenta que g recorre todas las clases de U, cuando k

varfa entre 0y p — 1 resulta que |1 — w9 |- |1 — w9 '| = p. Usando una vez
maés que |1 — w9k+m\ =11- w9k| queda

m—1 .
H I1—wd > =p.
k=0

Por 1ltimo, tomando logaritmos:

ap+ -+ am—1 = log/p.

Ahora multiplicamos y dividimos por log,/p en (13.5) de modo que ya apa-
recen todos los caracteres de G:

1
~ R*log\/p

IT > v

r=0 keG

ho

El teorema 13.1 nos permite concluir que

2 | det(ai)l,

1
"~ R*log/p
donde i, j varian de 0 a m — 1.

La primera fila de la matriz (a;4;) (para i = 0) es (ao,@1,...,am=-1), ¥
las demas son permutaciones ciclicas de ésta. Si sumamos todas las columnas
a una fija obtenemos una columna con todos los coeficientes iguales a log /p.
Esta constante se simplifica con la que aparece en el denominador y queda una
columna de unos. Restamos la primera fila a las filas restantes y desarrollamos
el determinante por la columna fijada. El resultado es que

_ Al

hQ_Ea

donde A es cualquiera de los menores de orden m—1 de la matriz B = (a;4+;—a;),
donde ¢ varia entre 1 y m — 1y j varia entre 0 y m — 1.
Vamos a calcular los coeficientes a;4; — a;. En principio tenemos
it
1 -0

i — a5 = lOg m
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Para simplificar esta expresién consideramos el ntimero
p=—wPTV/2 = cos(n/p) +isen(n/p) € K.
Entonces w = p?, de donde

L-wh _1=p™ ot sen(hn/p)

l—w  1-p? p—p! sen(r/p) -

Si p 1k entonces 1 —w y 1—w" son asociados, luego el término de la izquierda
es una unidad de K. Obviamente p también lo es, luego los nimeros
_sen(kr/p) | 1—wF

- - k 13.
en(r/p) " 1-w para p 1 k, (13.6)

son también unidades de K. De hecho son reales y positivas, luego son unidades
de K*.

Sea 7 el valor absoluto del menor resto médulo p de g situado en [—m,m].
Entonces

1—w i1 i1
- =p9 "0y = £p% 05
Los numeros w, w9, ..., w9 son no conjugados dos a dos (el conjugado
de w9 es w9 ™). Por lo tanto los automorfismos de K dados por oj(w) = w?
(=0, ..., m—1) son no conjugados dos a dos. Aplicamos ¢; y queda
1 o't

= +0;(p)? 1o;(6;).
Tomando médulos y logaritmos:
aitj — a; = log|o;(6:)].

Ahora veamos que cuando ¢ varia entre 1 y m — 1, entonces 7 varia entre 2
y m. Para ello observamos que si ¢ = +¢/ (méd p) con 1 < i < j < m—1
entonces ¢/~ = +1 (méd p) y 0 < j —i < (p— 3)/2, pero esto sdlo es posible si
i = j. Por lo tanto los valores de 7 cuando ¢ varia entre 1 y m — 1 son distintos
dos a dos. Por definicién 7 varfa entre 1 y m, pero ¢g° = 1 (méd p) es imposible
cuando i varia entre 1 y m — 1 (£1 se obtiene elevando g a 0 y a m). Asi pues, ©
varia entre 2 y m, y como ha de tomar m — 2 valores distintos, los toma todos.

Llamemos C = (log|0;(6;)]), para 2 < i <m, 0 < j <m — 1. Acabamos de
probar que las columnas de C' son salvo el orden las mismas que las de la matriz
B = (a;+; — a;). Por lo tanto el valor de det A que buscamos es (salvo signo,
que no importa) cualquiera de los menores de orden m — 1 de la matriz C.

Sea ahora €y, ..., €,_1 un sistema fundamental de unidades de K*. Podemos
tomarlas todas positivas. Cada unidad 6; se expresard como

m—1
b= 11
k=1

para ciertos enteros ¢;;, (no hay que anteponer un signo negativo porque 6; > 0).
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Entonces )
log o (0:)] = > cixlogoj(ex)-
k=1

Esto significa que C es el producto de la matriz (¢;) por (log|oj(ex)|) o,
mas precisamente, que cualquier menor de orden m — 1 de C' es el producto de
(¢ir) por el menor correspondiente de (log|o;(ex)]).

Tomando determinantes queda | det A| = | det(c; )| R*, luego ha = | det(c;r ).

Pero (ci) es la matriz de las coordenadas de las unidades 6; en la base
€1yevvsEm_1- Estas tltimas son una base del grupo de las unidades reales y po-
sitivas de K, luego las primeras son una base de un cierto subgrupo. Es conocido
que el determinante de la matriz que relaciona ambas bases es precisamente el
indice del subgrupo. En resumen, hemos probado el teorema siguiente:

Teorema 13.12 El sequndo factor del nimero de clases coincide con el indice
en el grupo de las unidades reales y positivas de K del subgrupo generado por

las unidades L
kzw, para k =2,...,m.
sen(r/p)

En términos equivalentes, podemos hablar del indice del grupo generado por
las unidades 6; en el grupo de las unidades de K* (con ello anadimos un factor
Cy a los dos grupos indicados en el teorema). En particular, si ho = 1 resulta
que las unidades 6; son un sistema fundamental de unidades de K.

Ejemplo Si p = 7 sabemos que h = 1 y por lo tanto también hy = 1. Esto
implica que un sistema fundamental de unidades esta constituido por

1—w?
b = ply——=—w (e =’ —wl = oy = T4 m t
pl-u? —1/, 2 6
03 = 14 mz—w ((-U +w+1):w +w+1:1+7]1~

Si llamamos 1 = 11 (y entonces 7o = 72 — 2) tenemos que 03 =n?> +n—1y
03 = 1 + ’/] | |

Ejercicio: En el capitulo IV probamos que un sistema fundamental de unidades para
p =Teran, 1+ n. Calcular la representacién logaritmica de 0 y deducir de ella que
0: = 7]71(1 + 77).

El paso siguiente para llegar a la caracterizacién de los primos regulares es
estudiar bajo qué condiciones podemos garantizar que p no divide a ho. El punto
de arranque serd el siguiente: si p | ho, entonces el grupo cociente determinado
por los grupos de unidades considerados en el teorema anterior tiene un elemento
de orden p, es decir, existe una unidad ¢ > 0 en K tal que

m

e =[] o5, (13.7)
k=2

para ciertos enteros ci, pero tal que € no es de esta forma.
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A su vez, que € no sea de esta forma equivale a que algin ¢ no sea divisible
entre p, pues si dos unidades positivas € y 6 cumplen que €? = §P, entonces €/
es una raiz p-ésima de la unidad positiva, lo que sélo es posible si € = 4.

Si logramos probar que cuando € cumple (13.7) todos los exponentes ¢ son
multiplos de p, tendremos garantizado que p no divide divide a hy. La idea
de la demostracién es tomar logaritmos para convertir la igualdad anterior en
una ecuacion lineal en log ;. y probar una cierta independencia lineal de estos
logaritmos que nos dé las divisibilidades (algo andlogo a cuando decimos que si
p|a+byV2entonces p|aypl|b).

Sin embargo este argumento depende fuertemente de propiedades algebrai-
cas y es completamente inviable usando logaritmos habituales. En su lugar
habremos de usar logaritmos p-adicos. Kummer no conocia los ntimeros p-
adicos cuando realizé estos cédlculos, pero éstos estaban implicitos en su trabajo
y fueron definidos poco después por Hensel. En realidad Kummer trabajé con
derivadas logaritmicas. La idea es que el cuerpo ciclotémico se puede identificar
con el cociente de Q[z] sobre el ideal generado por el polinomio ciclotémico. La
derivada logarftmica de un polinomio p(x) es p'(x)/p(x).

13.5 Numeros p-adicos ciclotémicos

Sea p el unico divisor primo de p en el cuerpo ciclotémico K. Consideramos
la valoracién p-ddica v, segun la definicién 7.9, la cual induce a su vez el valor
absoluto

lal, = pv» ()] 0<p<l.

Llamaremos K, al cuerpo de los niimeros p-ddicos, es decir, a la complecién
de K respecto a este valor absoluto (teorema 7.8) Claramente Q C K C K.
Llamaremos O, al anillo de los enteros de p-ddicos, que segin 7.14 es la clausura
en K, de Z[w]. Segin dicho teorema tenemos también que O, /p = Zw|/p =
Z/pZ. En particular todo entero p-ddico es congruente médulo p con un entero
racional.

Puesto que p = pP~1, se cumple v,(r) = (p — 1)vy(r), para todo 7 € Q no
nulo. Por consiguiente
rlp = ) =

donde definimos el valor absoluto p-adico tomando como base p'/®=1 . Esto
significa que el valor absoluto p-adico extiende al valor absoluto p—adico. Por
consiguiente, la clausura de Q en K, es una complecién de Q respecto al valor
absoluto p-ddico, y segin el teorema 7.8 es topolégicamente isomorfa a Q,. En
vista de esto podemos considerar Q, C K,. En particular Z, C O,.

El teorema siguiente nos da la relacién fundamental entre K, y Q,.

Teorema 13.13 Sea 7 un primo de K,. Entonces {1,7,7%,..., 7772} es una
base de K, sobre Q, y también una base de O, sobre Z,.
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DEMOSTRACION: Veamos en primer lugar que 1,7, 72, ..., 77~2 son lineal-
mente independientes sobre Q, (con lo que también lo serdn sobre Z,). Consi-
deremos una combinacion lineal nula

2 —2
ap + o+ a4 oo =0,

Si no todos los coeficientes son nulos, multiplicando por una potencia adecuada
de p podemos conseguir otra combinaciéon con no todos los coeficientes nulos y
tal que todos son enteros p-adicos y al menos uno de ellos es una unidad. Sea i
el menor indice tal que «; sea una unidad. Para todo j < ¢ tenemos que

vp(am) = +vp(ay) =5+ (p— Doplay) >p—1>i+ 1.
Si j > i concluimos igualmente que
vp () = j +vp(ay) > j > i+ 1,

es decir, p't! divide a todos los términos de la combinacién lineal salvo quiza
a a;m, pero esto implica que también divide a éste, luego p | a;, v esto es
contradictorio, pues vp(a;) = (p — 1)vp(ay) = 0.

Ahora basta probar que todo o € Oy se expresa como combinacién lineal de
estos nimeros con coeficientes en Z,,.

Teniendo en cuenta el teorema 7.16, a se puede expresar como

-2 ~1
a=ap0+ apm+ -+ agp_2m’ "+ BT,

donde 0 <ap; <p—1y B €0,
Puesto que p = enP~1, para cierta unidad e, tenemos de hecho que

—2
o =ago+ ap1m+ -+ agp—2m’ " + Y1p,

con v; € 0.
Igualmente vy = a1 0+ a1 17+ -+ + al,p_yr”’Q + 7v2p, con lo que

o= (a070 + al,op) + ((Lo,l + al’lp)ﬂ + -+ ((Lo,pfz + al’p,gp)ﬂp_Q + 72p2.
Tras n + 1 pasos obtenemos
n n n
o= (z p) + (z p) . (z p> S
i=0 i=0 i=0

Es obvio que todas las series convergen y v,p" tiende a 0, luego

a= (Z ai70p"> + (Z ampi> T+ -+ (Z ai,pgp’) aP~2,
i=0 i=0 =0

Finalmente, todo elemento de K, puede expresarse como p"c, con o € Oy y
n € Z. De aqui se sigue inmediatamente que 1,7, 72,..., 72 es un generador
de K, sobre Q. n
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Si aplicamos el teorema anterior al primo m = w — 1 concluimos que

K, =Qp(1, w2, .. mPTE) = Qp(m) = Qp(w),

luego K, es la extensién ciclotémica de orden p de Q,. Ademas tiene grado p—1,
luego el grupo de Galois es ciclico de orden p — 1, todas las raices de la unidad
distintas de 1 son conjugadas y los Q,-automorfismos K estan determinados por
oi(w) =w', parai=1,...,p—1. A suvez esto implica que los Q,-automorfismos
de K, son extensiones de los Q-automorfismos de K, y por consiguiente la norma
y la traza de K,/Q, extienden también a las de K/Q.

Dado un automorfismo o y un « € O, por definicién v, (a(a)) es la multi-
plicidad de 7 en o(«), que coincide con la multiplicidad de o(7) en o(a) (pues
o(m) también es primo y todos los primos de K, son asociados), que a su vez
coincide con la multiplicidad de 7 en a. Es decir, vy (o(a)) = vy(). De aqui
se sigue esto mismo para todo a € K, luego |o(a)|, = |ap, es decir, que los
automorfismos son isometrias. En particular son homeomorfismos.

Esto implica que un Qp-automorfismo de K, deja fijos los elementos de un
subcuerpo L de K si y sélo si deja fijos a los elementos de la clausura de L
en K,. Teniendo en cuenta el teorema de Galois resulta que la aplicacién que
a cada subcuerpo L de K le asigna su clausura en K, es una biyeccién entre
los subcuerpos de K y los subcuerpos de K, que contienen a Q,. Ademads esta
biyeccién conserva los grados.

En particular el cuerpo K = K NR tiene gradom = (p—1)/2 sobre Q,. A
los elementos de este cuerpo los llamaremos niumeros p-ddicos reales.

Finalmente notamos que segtn el teorema 7.25 tenemos definida una funcién
logaritmo exactamente sobre los enteros p-ddicos de la forma ¢ = 1 4 z, con
vp(x) > 1, es decir, en las unidades ¢ = 1 (méd p). A estas unidades las
llamaremos unidades principales. Sin embargo, el logaritmo sélo es biyectivo
restringido a un dominio menor, a saber, sobre el conjunto de las unidades que
cumplen € = 1 (méd p?). Si € es una unidad de este tipo, entonces el teorema
7.26 garantiza ademds que log(e) es un entero miltiplo de p? (en efecto,con la
notacién del capitulo VII tenemos e =p — 1y k = 2).

Ejercicio: Probar que logw = 0.

Recordemos que nuestra intencion es tomar logaritmos en la ecuacién (13.7),
pero sucede que las unidades involucradas no tienen por qué ser principales.
Ahora bien, puesto que O, /p = Z/pZ, es claro que e?~! =1 (mdd p) para toda
unidad p-ddica €, o sea €?P~! es siempre una unidad principal. Podemos, pues,
elevar la ecuacién a p — 1 y tomar logaritmos:

plogel™! = Z cxlog 00" (13.8)
k=2

Ahora observamos que las unidades que aparecen son enteros ciclotémicos
reales, luego los logaritmos son nimeros p-ddicos reales (el logaritmo es una serie
de potencias y cada suma parcial estd en K*, luego la suma estd en la clausura
de este cuerpo). No es evidente, pero también probaremos que son enteros.
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Si demostraramos que los nimeros log 02’71 forman una Z,-base del anillo
de los enteros p-ddicos reales, necesariamente los nimeros ¢ /p serfan enteros
p-adicos, con lo que todos los ¢ serfan multiplos de p, que es lo que queremos
probar. No obstante es facil ver que dicho anillo tiene rango m, mientras que
solo tenemos m — 1 logaritmos log 9’,2_1. Por lo tanto hemos de refinar nuestro
plan.

Ahora bien, si o es un automorfismo de K y € es una unidad principal, es
obvio que o (€) es también una unidad principal (pues v, (o (€) — 1) = vy (e — 1)),
y por la continuidad o(loge) = log o (e), luego

Tr(loge) = Za(log €) = Zlog o(e) = 1ogHa(e) = log N(e).

o

Si ademds € es una unidad de K, como es el caso, entonces N(e) = 1, luego
la traza de loge es nula. Sea V el conjunto de los nimeros p-adicos reales de
traza nula. Claramente V' es un espacio vectorial de dimensién m — 1 sobre Q,
y si € es una unidad real de K tenemos que logeP~! € V.

Nuestra intencién es probar que los nimeros log 02’_1 forman una Z,-base
del moédulo formado por los enteros de V. Para ello buscaremos una base de
este moédulo y estudiaremos si el determinante de la matriz de coordenadas de
los logaritmos en dicha base es una unidad de Z,. Esta base la obtendremos a
partir de la que nos proporciona el teorema 13.13, pero primero escogeremos un
primo 7 adecuado.

Veamos que existe un tnico primo 7 € O, tal que
p=-m""1 y 7=1-w (méd p?). (13.9)
Factorizando el polinomio ciclotémico y evaluando en 1 tenemos que
p=(-w)(l—w?) (1 - ),

de donde

b

(1+w)(1+w+w2>~~(1+w+"'“‘JH):W'

Teniendo en cuenta la expresion de la izquierda, este nimero es un entero
p-adico. Tomamos congruencias médulo p en O,.

a:#;4.&..@71);1(@@),

donde hemos usado el teorema de Wilson: (p —1)! = —1 (méd p) (la prueba es
elemental: el polinomio 2P~! — 1 tiene por raices a todos los elementos no nulos
de Z/pZ, luego su término independiente —1 es el producto de todos ellos).

Aplicamos el teorema 7.18 al polinomio f(z) = 2P~! — a. Tenemos que

f1)=0(médp) y f(1)=p—1#0(mbdp).
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Por consiguiente existe un entero p-adico 7 tal que Y*~1 = —p/(1 —w)P~1 y

v =1 (mdéd p).

Por la segunda condicién, v es una unidad p-ddica, luego 7 = v(1 — w) es
un primo. Claramente cumple la primera condicién de (13.9) y 7 — (1 —w) =
(7 — 1)(1 — w) es divisible entre p2, luego también cumple la segunda.

Para probar la unicidad observamos que si un primo p cumple (13.9) entonces
(p/m)P~t = 1, luego p = (m, para una cierta raiz (p — 1)-ésima de la unidad
¢. Puesto que (7 = 7 (méd p?), resulta que ¢ = 1 (méd p). Si fuera ¢ # 1
entonces = — ¢ dividirfa al polinomio 2?~2 4+ 2P~ 3 + ... + 2 + 1, y evaluando en
1 tendriamos 1 — ¢ | p—1, luego p | p— 1, lo cual es imposible. Por consiguiente

(=lyp=m. =

Veamos ahora las ventajas del primo que acabamos de construir. Sea o el
automorfismo de K, de orden 2, esto es, el dado por o(w) = w™!. Puesto que
7y o(m) son ambos rafces del polinomio 2P~ + p, es claro que o(w) = (m, para
cierta raiz (p — 1)-ésima de la unidad (. Segun el teorema 7.20 tenemos que
¢ € Qp, luego aplicando o de nuevo queda que m = ¢*m, con lo que ¢* = 1, o sea,
¢ = £1. No puede ser ( = 1 porque entonces o(7w) = 7 y o serfa la identidad
(por 13.13). Consecuentemente o(7) = —.

Los numeros p-adicos reales son precisamente los niimeros fijados por o,
pero si expresamos un ntimero arbitrario de K, como combinacién lineal de
1,7,...,m™"2, observamos que los nimeros fijados por ¢ son los que tienen
nulas las coordenadas asociadas a las potencias impares, luego una base del
cuerpo de los niimeros p-adicos reales es {1, 72,74, ..., 7772}, o sea, este cuerpo

es Q,(m?).

A su vez de aqui se deriva otra consecuencia notable: Si € es una unidad
principal real, entonces € es de la forma € = ag + asm? + - - + ap,gwp_27 donde
los coeficientes son enteros p-adicos por 13.13. Ademds 1 = € = ag (mdd p),
luego

1 <wp(ap —1) = (p— 1vp(ao — 1),

con lo que en realidad 2 <p—1 < wy(ap — 1) y de aqui que € = 1 (mdd p?).

Esto significa que las unidades principales reales estdn en realidad en el
dominio donde el logaritmo es inyectivo, y en particular el teorema 7.26 implica
que el logaritmo de una unidad principal real es un entero p-adico, que es uno de
los resultados que necesitdbamos. Recojamoslo en un teorema junto con otros
hechos que hemos probado:

Teorema 13.14 Si € es una unidad ciclotémica real, entonces logeP™1 es un
entero p-ddico real de traza nula. Mds aun,

log e’ = 0 (méd p?).

Ya tenemos una base para los numeros p-ddicos reales. Ahora hemos de
quedarnos con los que tienen traza nula. Para ello calculamos Tr(z*). Observar
que si € es una raiz de la unidad de orden p — 1 entonces los nimeros (/7 para
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j=0,...,p— 2 son todos raices del polinomio 2P~! + p. Por lo tanto cuando o
recorre los Qp-automorfismos de K, tenemos que o(m) recorre los nimeros ¢7m
y o(n") recorre los nimeros (7", es decir

p—1
Tr(n') = (V.
j=0

Ahora las relaciones de ortogonalidad de caracteres implican que Tr(7®) = 0
parai=1,...,p — 2, mientras que obviamente Tr(1) = p — 1. Por consiguiente
la traza de un ntmero p-adico real arbitrario es

Tr(ap + aam? + -+ + ap_om® %) = (p — 1)ao.
Con esto tenemos probado el teorema siguiente:

Teorema 13.15 Si w es un primo p-ddico que cumple las condiciones (13.9),
los nimeros w2, 7, ..., 772 son una Qp-base del espacio vectorial V' de los
numeros p-ddicos reales de traza nula, asi como una Z,-base del mddulo de los

enteros de V.

La dltima afirmacién es consecuencia inmediata del teorema 13.13.

13.6 La caracterizacion de los primos regulares

Con los resultados de la seccién anterior estamos en condiciones de estudiar
la divisibilidad del segundo factor del nimero de clases entre el primo p. Por el
teorema 13.14 sabemos que los nimeros log 9271 son enteros p-adicos de traza
nula, luego por 13.15 se pueden expresar en la forma

m—1
log " =Y br®, 2<k<m, (13.10)
i=1

donde los coeficientes by; son enteros p-adicos.

Segun ya hemos explicado, queremos probar que estos niimeros son una base
del médulo de todos los enteros p-adicos de traza nula, lo cual equivale a que
el determinante de la matriz (by;) sea una unidad de Z,, es decir, que no sea
divisible entre p.

Observemos que si « € V es un entero miltiplo de p, entonces «/p es un
entero p-ddico obviamente real y que sigue cumpliendo Tr(a/p) = Tr(a)/p = 0,
luego a/p € V. Esto implica que las coordenadas de « en la base {7%'} serdn las
de a/p (que son enteras) multiplicadas por p. En resumen, los enteros de V' son
multiplos de p si y sélo si sus coordenadas son multiplos de p. A su vez de aqui
deducimos que si dos enteros de V' son congruentes médulo p, sus coordenadas
en la base {72} también lo son.

Como consecuencia, si sustituimos cada log 0Z71 por otro entero de V' con-
gruente con él moédulo p, el determinante de la matriz de coordenadas corres-
pondiente serd congruente médulo p con el de (b;), luego nos servird igualmente
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para determinar si éste es o no multiplo de p. Esto nos permite truncar las series
de potencias que definen los logaritmos.
Consideremos el polinomio

x? Pl
Ll = —_— e _11772_'
l+z)=2z 5+ +(-1) 21
Sin>py vy(a) > 2 entonces
a” logn
— > 2n— >2n—(p—1
(%) = 2z oo )"
n(p—1)logn
> p4(n—p)tn— "p=Dloen
n—1 logp
—1)n (lo logn
> pi(n-p)+ BN (lsp logny
logp p—1 n-1

(donde usamos que la funcién ¢/(t — 1) es mondtona decreciente para t > 2).

Esto significa que la diferencia entre log(1 + «) y L(1 + «) es una suma de
multiplos de 7P, es decir, log(1 + ) = L(1 + «) (méd 7). Esto es aplicable a
las unidades principales reales, luego

log(0P~") = L") (méd 7P). (13.11)

Comenzaremos probando que los logaritmos truncados tienen las mismas
propiedades algebraicas que los logaritmos usuales si trabajamos mddulo 7P.
Usaremos también la exponencial truncada

r 2P zP~1
E =14+—=+—=+-- . 13.12
@ =1+ T oo (13.12)
Notemos que si € = 1 (mdd m) entonces L(e) = 0 (mdd ) y, reciprocamente,
si @« = 0 (méd 7) entonces F(a) = 1 (mdd ). Veamos ahora otros hechos

elementales:

Teorema 13.16 Se cumplen las propiedades siguientes:
1. Sie=1 (méd ) entonces E(L(€)) = € (méd «P).
2. 8t =0 (méd 7) entonces L(E(a)) = o (méd 7P).
3. Sia; =ay =0 (mdd 7), entonces

E(aq + az) = E(a1)E(ag) (méd 7P).

4. Sie; =€y =1 (mbd 7), entonces

L(e1ez) = L(e1) + L(ez) (méd «P).
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DEMOSTRACION: Consideramos la igualdad de series de potencias formales
exp(log(l +z)) = 1+ 2. Un examen de la definicién de composicién de series
formales muestra que el coeficiente de 2 en la composicién depende tinicamente
de los coeficientes de grado menor o igual que k£ de las series compuestas. Por
lo tanto, el polinomio E(L(1 + z)) coincide con la serie 1 4+ = hasta el término
de grado p—1, es decir, E(L(14z)) = 14z +p(x), donde p(z) es un polinomio
de grado mayor o igual que p, y ciertamente tiene coeficientes enteros p-adicos.
Por consiguiente se cumple la primera relacion.

La segunda relacion se prueba razonando del mismo modo con la composicién
de series log(l + (exp(z) — 1)) = .

Es claro que
(IE + y)k k " ykfr
TRl Ak
De aqui se sigue que E(x +y) = E(z) + E(y) + G(z,y), donde G(z,y) es el
polinomio formado por la suma de los productos de monomios de E(z) y E(y)
al menos uno de los cuales tiene grado mayor o igual que p. Claramente los
coeficientes de G son enteros p—adicos, luego se tiene la tercera propiedad.

La cuarta propiedad la deducimos de las anteriores:

Leres) L(E(L(e1))E(L(e2))) = L(E(L(e1) + L(e2)))
L(e1) 4+ L(ez) (méd #P).

Ademsés de estas propiedades, vamos a necesitar un hecho més delicado:
Teorema 13.17 Si el primo © cumple (13.9) entonces
E(r)=w (méd 77) y L(w) =7 (mdd =P).
DEMOSTRACION: Probemos en primer lugar que
E(p)? =1 (méd 72~ 1), (13.13)

Sea E(x) = 1+ zg(x), donde g(z) es un polinomio con coeficientes enteros
(p-adicos). Entonces

E(z)” = 1+ (’17) zg(@)+ -+ <p P 1) (zg(x))" " +aPg(x)P = 1+ph(z)+aPg(x)?,

donde h(x) tiene coeficientes enteros (notar que p divide a los ntimeros combi-
natorios).

En la prueba del teorema 13.16 hemos visto que E(z)E(y) = E(xy)+G(z,y),
donde G(x,y) es un polinomio con coeficientes enteros (p-adicos) con todos los
términos de grado > p. Inductivamente se llega a que F(z)? = E(px)+x? M (z),
donde M tiene coeficientes enteros. Asi pues,

1+ ph(x) + 2Pg(x)" = E(pr) + 2" M (z),
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luego

pr  (px)? (p)P~"

hiz) = 22
Ph(a) =+ St T o
donde H(z) = M(x) — g(x)P tiene coeficientes enteros. Despejando 2P H () en
(13.14) vemos que los coeficientes de H(x) son todos miltiplos de p. Dividimos

entre p y nos queda que

+2PH(z), (13.14)

$2 —2xp—1
h(l-):x_|_p_+...+pp

2 oo YW

donde G(z) tiene coeficientes enteros. Hacemos x = 7 y as{ vemos que
h(m) =7 (méd #P).
(tener presente que 7P~ | p). De aqui que ph(r) = prr (méd 72P~1).

Por otro lado g(7) = 1 (méd =), luego

p—1
p —
w1 (o(m) =17 = gt -1+ 3 (1) 0ot
de donde g(7)? = 1 (méd 7P~ 1) (pues p divide a los ntimeros combinatorios) y
7Pg(m)P = 7P (méd 72P~1). Reuniendo todo esto llegamos a que
E(m)P =1+ ph(n) + 7Pg(m)P =14 pr + 7P = 1 (méd 7P~ 1),

pues pr + 7P = 0 por (13.9).

Por definicién de E y por (13.9) se cumple E(r) = 1 + 7 = w (mdd 72).
Sea w™lE(7w) = 1 + 7%y, donde v es un entero p-ddico. Elevando a p y usando
(13.13) obtenemos

p
Q+m)P =147 <Z>7’“‘1w2’“ =1 (méd 7%71)
k=1

El ntimero que multiplica a v es divisible exactamente entre 7P (pues el
primer sumando es pr?), luego v = 0 (méd 7P~2).

Asf pues, w'E(r) = 1 + 7%y = 1 (méd 7P), lo que nos da la primera
afirmaciéon del enunciado. La segunda es consecuencia inmediata del teorema
anterior. n

Con esto estamos en condiciones de calcular L(Qﬁ_l). Teniendo en cuenta
(13.6) vemos que
O = (1+w+ -+ (=1)"

Por (13.9) tenemos que w = 1 (méd 7), luego 1 +w + --- + w* =t = k (méd n),
y usando una vez més que 77! divide a los niimeros combinatorios,

(I+w+ -+ P = kP = k (méd «P~ ).
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Asi pues,

w—1

p—1 —1p(_1)1-Fk = _ k-1
ek ek k( ) _kwkfl(p)

k —1
et (w - 1> WF=DEHD/2 (16d 771,
T kﬂ'

Notar que todos los factores del ultimo miembro son unidades principales.
Ciertamente w lo es, de 7 = w — 1 (méd 72) se sigue que (w — 1)/7 también lo
es, y el factor central lo es también por serlo 6} .

Esto nos permite aplicar L y separar los factores por el teorema 13.16:

Ler Yy =1 (” - 1) y (“’k - 1) Lk - L L(w) (méd 7).

T km

Por el teorema anterior y 13.16, w* = E(km) (méd 77), de donde

k_1 Ekr)-1
v = (k) (méd 7P~ 1),
km km

Lo mismo es valido para (w — 1)/m, con lo que

LY=L (%) - g ~L (%) + %” (méd 7P1). (13.15)

Esta expresion nos lleva a estudiar el polinomio

I (E(x) - 1) T
x 2
Para ello consideramos la funcién
-1
log (%> - g = log(exp(x) — 1) — logx — g (13.16)
T

Si la consideramos como funcién de variable compleja, al derivarla se convierte

en
e 1 1 1 1 1 1 =z 1 1

et —1 = 2 e””—1+2 x Ee$—1+2 x
Hemos multiplicado y dividido entre x porque asi podemos aplicar la definicion

de los ntmeros de Bernoulli 13.4 (asi como que los de indice impar son nulos
salvo By = —1/2 y que By = 1):

o0 o0
x Bk k €T Bgi 2i—1
e _ — 1 - 7
P ];) i 2“’31,:1 2"

Por consiguiente la derivada de 13.16 es

i Bsi x2i71
— (20)! ’
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e integrando llegamos a que

exp(z) — T <=~ By
o (P5) 5 - L
i=1
(notar que la funcién de la izquierda vale 0 en 0).

Esta igualdad sobre funciones de variable compleja implica esta misma igual-
dad cuando el primer término se interpreta como la composicién en Q[[z]] de la
serie de la funcién (exp(z) — 1)/z — 1 con la serie de la funcién log(1 + z). Por
otra parte, en el calculo del coeficiente de * de la composicién de dos series, s6lo
usamos sus coeficientes de grado menor o igual que k, y si truncamos la expo-
nencial segun (13.12) estamos conservando los coeficientes de (exp(x) —1)/xz —1
hasta el de grado p — 2, luego

m—1
E(x)—1 Bs; )
L ((L) —Z = 220 ar 1 R(),

T

donde R(x) € Q[[z]] tiene coeficientes enteros p-adicos (pues la composicién de
dos polinomios con coeficientes enteros tiene coeficientes enteros).
Ahora llevamos esta expresién a (13.15), que junto con (13.11) nos da

m—1

— E*) 7% (méd 7P~ 1),

log(82 ) = L)
80 ) ; 21)
=1
Recordemos que, segin hemos razonado al comienzo de la secciéon, esto im-
plica que los coeficientes by; que aparecen en (13.10) han de cumplir

Ba;
(20)(20))!

b = (1—k%) (méd p), 2<k<m, 1<i<m-—1,
luego

m—1 m—1
det(b;) = H %d t(k* — 1) (méd p).

i=1

Observemos que

1 1 1 - 1

1 922 94 ... 9p=3
det(in - 1) — 1 32 34 e 3p73

1 nf 7,;4 ... mz;f3

(restando la primera columna a todas las demds y desarrollando por la primera
fila se obtiene el determinante de la izquierda).
El determinante de la derecha es de Vandermonde, por lo que en definitiva

m— 1 m 1B
det(by;) = H 2@ A H (s —r?) (méd p).
i=1 1<r<s<m
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Claramente p { s> — 72 = (s +7)(s — r). As{ mismo p { (2i)(2i)!. Por el
teorema 13.9 p tampoco divide a los denominadores de los nimeros By;. Por
lo tanto, una condicién suficiente para que p no divida a det(by;) es que p no
divida a los numeradores de los niimeros de bernoulli By, ---, B,_3. Teniendo
en cuenta los teoremas 13.11 y 13.15 llegamos a la conclusién siguiente:

Teorema 13.18 Si p no divide al primer factor hy del nidmero de clases del
cuerpo ciclotomico p-ésimo, entonces los niumeros log QZ_I ,k=2,...,m son
una Zyp-base del mddulo de los enteros p-ddicos reales de traza nula.

Con esto llegamos finalmente al teorema que perseguiamos:

Teorema 13.19 (Kummer) Sea p un primo impar. Las afirmaciones siguien-
tes son equivalentes:

1. p es reqular.
2. p no divide al nimero de clases h del cuerpo ciclotomico p-ésimo.

3. p no divide al primer factor hy del nimero de clases del cuerpo ciclotomico
P-€51mo.

4. p no divide los numeradores de los nimeros de Bernoulli By, By, ..., Bp_s.

DEMOSTRACION: La prueba de que 3) implica 2) estd diseminada en los
razonamientos precedentes, pero la repetimos por claridad. Hay que probar que
si pt hy entonces p 1 hs.

El teorema 13.12 nos da que ho es orden del grupo cociente de las unidades
reales positivas del cuerpo ciclotémico p-ésimo sobre el subgrupo generado por
las unidades 6, con k =2,...,m = (p—1)/2.

Si p divide a este orden, entonces el grupo cociente tiene un elemento de
orden p, o sea, existe una unidad ciclotémica ¢ > 0 tal que €? cumple (13.7)
para ciertos enteros cg, pero € no es de esa forma.

Que € no sea de esa forma equivale a que algin ¢, no sea divisible entre p,
pues en caso contrario serfa e? = 0P, para una cierta unidad ¢ de la forma (13.7),
pero entonces €/d serfa una raiz p-ésima de la unidad positiva, lo que sélo es
posible si € = 4.

Como O,/p es el cuerpo de p elementos, se cumple que e#~1 = 1 (méd p)
para toda unidad €, o sea e?~! es una unidad principal y estd definido log e? 1.
Elevamos a p—1 la ecuacién (13.7) y tomamos logaritmos, con lo que obtenemos
(13.8).

Por el teorema 13.14 tenemos que log €’ ~! es un entero p-adico de traza nula,
luego por el teorema 13.18 se expresa de forma tinica como combinacién lineal
de log 95;71 con coeficientes en Z,, pero por (13.8) estos coeficientes han de ser
los niimeros ¢ /p, luego son enteros p-ddicos, de donde p divide a todos los ¢
en Zy, y también en Z.

Con esto tenemos la equivalencia entre 2), 3) y 4), y por la definicién de
primo regular 1) implica 2). Vamos a probar que 2) implica 1). Sélo hay
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que ver que si € es una unidad ciclotémica congruente con un entero moédulo p
entonces € es una potencia p-ésima.

Digamos que ¢ = a (méd p). Por el teorema 4.27 ha de ser ¢ = w*ny, para
una cierta unidad real 7. Entonces 7 se expresa como combinacién lineal con
coeficientes enteros (p-ddicos) de los ntimeros 1,72, 74, ..., 7P~2, luego existe un
entero p-adico b (el coeficiente de 1) tal que n = b (méd 72). Como todo entero
p-adico es congruente con un entero racional moédulo p, podemos suponer que
belZ.

Por (13.9) tenemos que w = 1 + 7 (méd 72), luego w* = 1 + kr (méd 72).
Por lo tanto tenemos que

a = b(1 + kr) (méd 72). (13.17)

De aqui se sigue que a = b (méd 7), y como son enteros ha de ser a = b (méd p),
luego @ = b (méd 72). Entonces (13.17) implica que bkm = 0 (méd 72) y asf
7 | bk, pero w1 b, ya que en caso contrario tendriamos 7 | n. Consecuentemente
7|k, luego p | k y asf w* = 1, o sea, € = 1 es una unidad real.

Como (—1)? = —1 podemos suponer que € > 0 (si —e es una potencia p-
ésima también lo es €). Por el teorema 13.14 esté definido loge?~!. Més atin,
puesto que e~ = aP?~! =1 (méd p), de la definicién de logaritmo se sigue que
loge?~ =0 (méd p).

También por 13.14 tenemos que log e?~! /p es un entero p-adico real de traza
nula, luego por 13.18 podemos expresar

m

logeP™! = chk log 67", (13.18)
k=2

para ciertos enteros p-adicos cg.

Por otra parte, el grupo generado por los nimeros 6, tiene indice finito
(teorema 13.12) en el grupo de las unidades reales positivas. En consecuencia
existe un nimero natural a # 0 tal que

m
e =[] o, (13.19)
k=2
para ciertos enteros di. Podemos suponer que los ntmeros a,ds,...,d, son

primos entre si, pues si tuvieran un factor comin ¢, tendriamos dos unidades
reales positivas o y 5 tales que o = 3¢, luego o/ seria una raiz de la unidad
real y positiva, luego @ = 3. Esto significa que ¢ podria ser eliminado de ambos
miembros dando lugar a una ecuaciéon andaloga.

Elevamos a p — 1 y tomamos logaritmos:

alogel™! = de log 92—1.
k=2

Comparando con (13.18) concluimos que dj, = pacy, para k = 2,...,m, es decir,
p | di (en Z, y por lo tanto en Z), con lo que ha de ser (a,p) = 1.
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Ahora (13.19) implica que €* es la potencia p-ésima de otra unidad, €* = 6P.
Sean u y v enteros tales que au + vp = 1. Entonces

€= (€ () = ()" (P = (5P,
luego efectivamente es una potencia p-ésima. [

Con esto hemos llegado al resultado de Kummer sobre el teorema de Fermat
en su forma definitiva. En particular, hemos demostrado que el iltimo teorema
de Fermat es cierto para todos los exponentes menores que 100 salvo quizéd
para 37, 59, 67 y 74. Las estadisticas indican que la proporcién de primos
regulares es mayor que la de primos irregulares. Por ejemplo, de los 549 primos
impares menores que 4.000 hay 334 primos regulares, lo que supone un 61%
aproximadamente. Pese a ello no se sabe si el nimero de primos regulares
es finito o infinito. Por el contrario se puede probar que hay infinitos primos
irregulares.

Tabla 13.2: Primos irregulares menores que 1.000.

Se indica también el menor indice 27 tal que p divide al numerador de Ba;.

P 21 P 21 p 21 p 21 P 21 P 21 p 21
3732|257 164 | 379 100 | 491 292 | 613 522 | 683 32 | 811 544
59 44263 100 | 389 200 | 523 400 | 617 20 | 691 12 | 821 744
67 58| 271 84| 401 382|541 86| 619 428 | 727 378 | 827 102
101 68| 283 20| 409 126 | 547 270|631 80 | 751 290 | 839 66
103 24 | 293 156 | 421 240 | 557 222 | 647 236 | 757 514 | 877 868
131 22| 307 88 | 433 366 | 577 52 | 653 48 | 761 260 | 881 162
149 130 | 311 292 | 461 196 | 587 90 | 659 224 | 773 732 | 887 418
157 62| 347 280 | 463 130 | 593 22 | 673 408 | 797 220 | 929 520
233 84 | 353 186 | 467 94 | 607 592 | 677 628 | 809 330 | 963 156
971 166

(Hay un total de 168 primos menores que 1.000. El porcentaje de primos regulares en
este intervalo es del 61,9%).






Capitulo XIV

Numeros trascendentes

Dedicamos este ultimo capitulo a dar una pequena muestra de las aplicacio-
nes de la teoria algebraica de nimeros a las pruebas de trascendencia. Estas
son esencialmente analiticas, pero requieren conceptos algebraicos elementales,
como la teorfa de Galois (o al menos la teorfa sobre polinomios simétricos) y los
enteros algebraicos. En realidad, los tltimos avances en la teoria de ntimeros
trascendentes hacen uso de un aparato algebraico mucho maés sofisticado, pero
no vamos a entrar en ello. Aqui probaremos dos resultados clasicos, el teorema
de Lindemann-Weierstrass, que data del siglo pasado, y el teorema de Gelfond-
Schneider, de 1934.

14.1 El teorema de Lindemann-Weierstrass

En 1873 Hermite demostré la trascendencia del nimero e. Anteriormente
ya se habia probado que e no era racional. De hecho era conocido su desarrollo
en fraccién continua, visto en el tema anterior. En 1882 Lindemann consiguid
generalizar el argumento de Hermite y demostroé la trascendencia de w. Linde-
mann afirmé que sus técnicas permitian probar de hecho un resultado mucho
mas general. La primera prueba detallada de este resultado fue publicada por
Weierstrass y constituira el contenido de esta seccién junto con sus consecuencias
inmediatas. Necesitaremos dos resultados auxiliares.

Teorema 14.1 Sean f;(x) € Z[z], i = 1,...,r polinomios no constantes de
grado k; y para cada i sean (4, ..., Bk, las raices de fi(x). Supongamos que
son no nulas. Sean a; € Z para i =0,...,r tales que ag # 0. Entonces

ki
ap —l—zr:aiZeﬁ’” #0.
k=1

i=1

DEMOSTRACION: Supongamos que se cumple la igualdad. Vamos a expresar
cada ¥ como

oBri My + €xi

- )

. k=1,....k, i=1,...,m
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donde My € Z, My # 0. Entonces, sustituyendo en la igualdad obtendremos

que
agMy -I—ZGZZMlﬂ -l—za,zaﬂ =0, (141)
i=1 k=1 i=1 k=1

con agMy # 0.
Vamos a encontrar un primo p tal que ay My no sea divisible entre p, mientras

que la suma
Z %) Z Mkz

i=1

serd un nimero entero multiplo de p. Por otra parte se cumplird que

i

ki
§ az ekz

i=1

<1, (14.2)

con lo que tendremos una contradiccién, pues en (14.1) los dos primeros suman-
dos son un entero no divisible entre p, luego no nulo, mientras que el tercero
tiene médulo menor que 1.

Para conseguir todo esto definimos primeramente

T

T ks
z):Hfi(z):b0+b12+"'+bNZN=bNHH z = Bki),
=1 paleater

T

donde N = > k; v bg # 0, ya que las raices son no nulas. Podemos suponer
i=1

que by > 0. Sea

+oo b(Nfl)Pflzp—lfp(Z)e—z
My = / N dz,
° 0 (p—1)!

donde p es un numero primo y la integracién se realiza sobre el semieje real
positivo.

Vamos a probar que la integral es finita y que, si p es suficientemente grande,
se trata de un numero entero no divisible entre p. Notar que

(N+1)p
b%v_l)p_lzp_lfp(z) = b%v_l)p_lbgzp_l + Z cs—12°7,
s=p+1

para ciertos coeficientes ¢; € Z, y byby # 0. Por lo tanto

b%vfl)i’)*lbg (Ni)in 400 )
My, = —/ e *dz+ / 2T re *dz
(p—1)! 0 s=pt1 0
(N+1)p
_ b(N Lp— 1bp+ Z cg L 7b(N Lp— 1bp +pC,

s=p+1 p
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para un cierto C € Z. Hemos hecho uso de la conocida identidad de Euler

+oo
nl = / Z2"e *dz,
0

que se demuestra sin dificultad por induccién sobre n integrando por partes.
Asi, cualquier primo p mayor que |ag|, by, |bo| hace que My sea un entero

racional y que p 1 agMop.
Ahora definimos

+oo b(N_l)P_l p—1 fp —z
My, — eﬁm/ N hd {(z)e dz, k=1,.. ki, i=1,...,m
Bri (p - 1)'
Bri b(N—l)P—l p—1 ¢p —z
€ri = 66’”/ N c ']'C(Z)e dz, k=1,...,k;, i=1,...,r,
0 (p—1)!
donde los caminos de integracion son los indicados en la figura siguiente:
Bri My
€ki
Moy

La finitud de Mj; se debe a que, puesto que el integrando es una funcién
entera, por el teorema de Cauchy sabemos que la integral a lo largo de una
trayectoria como la de la figura siguiente es nula para todo R suficientemente

grande:

Bri My

€ki

M(] R

Ahora bien, es ficil ver que la integral sobre el segmento vertical tiende a
0 con R, luego la integral que define Mjy; es finita y al sumarle la integral que
define a €g; da exactamente M. Asi pues, My; + €x; = ePri M, y tenemos la

descomposicion buscada.
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Si en la definicién de Mpy; descomponemos en factores el polinomio f(z)
obtenemos

r kj
o B T TG et
My =/ = ' dz.
Bri (p - 1)'

El camino de integracién es z = u + By, luego dz = du. Al hacer el cambio
la integral se convierte en

k;

too bxp—l(u + ﬁki)p—lupe—u H *(u + 6/%‘ _ ﬁtj)p
0 (p—1)! '

donde el asterisco en el producto indica que falta el factor (¢,5) = (k,4), que
hemos extraido como uP. Podemos redistribuir los coeficientes bV :

k

T J
oo (ONU+ b B )P tuPe™ TT [1*(bnu + by Bri — by Btj)?
M, = / j==] du
' 0 (p - 1)!

Es facil ver que, puesto que by es el coeficiente director de un polinomio
cuyas raices son los f;;, los nimeros a;; = by 3;; son enteros algebraicos. Con
esta notacién:

1 ro
bvu + agi)P " uPe™™ [ TTM(bvu + cgs — a5)?

(

+oo k

M, = j=1i=1 du.
¥ /0 (p—1)!

Sumando obtenemos que

T

ki +oo . p —u
uP®(u)e
E a; E Mki:/ ————du,
1 0 (p—1)!

i=1
donde

r k; r kj

O(u) = Zai (byu + agi)P~1 HH*(bNu—&—ozki —ayj)P.

i=1 k=1 j=1t=1

Si consideramos una extension finita de Galois K de QQ que contenga a todos
los aj;, resulta que un automorfismo de K permuta los nimeros oy, . . ., s,
y se ve claramente que entonces deja invariante a ®(u). Esto significa que
®(u) € Q[u], y como los a;; son enteros, en realidad ®(u) € Z[u]. Digamos que

(N+1)p

uP®(u) = Z de_qu®t.

s=p+1
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Entonces
r ki (N+1)p +oo (N+1)p
dsfl 1 - (S — ].)'
E a; p My = E —/ wlre T du = E de_1——= = pC,
—_ 1) —_ 1)
i=1 k=1 s=p+1 (»—=1!Jo s=p+1 (p—1)!

para un C € Z. Sélo queda demostrar (14.2).
Sea R tal que todos los ntimeros f;; estén contenidos en el disco de centro 0
y radio R. Llamemos

ki = ﬁé)ﬁb%ﬂf(z)e_”ﬁ“ , g= |Izr|1§)1(% \b%’lzf(zﬂ,

y sea go el maximo de todos los niimeros gi;. Entonces

Bri bg\lf\[—l)p—lzpflfp(z)efZ+ﬁki
lexi| = / ' dz
0 (p—1)!
= %\%H bx 2 f(2)e * by 2 f(2) [P < goRLlr
(p—1)! (p—1)!
Puesto que la iltima expresién tiende a 0 con p, eligiendo p suficientemente
grande podemos garantizar que se cumple (14.2). m
ki
Teorema 14.2 Consideremos nimeros Y, Agie* i, donde k; > 1,i=1,...,r,
k=1
r>2, Ap; € C\ {0} y 14, ..., ag,;; son nimeros complejos distintos para cada
i. Si operamos el producto
ks k}i N
13 e =3
i=1k=1 i=1
donde (1, ..., N son distintos dos a dos (es decir, los coeficientes B; se obtienen

multiplicando un Ay; para cada i y después sumando todos los productos que
acomparnian a un mismo exponente), se cumple que alguno de los coeficientes B;
es no nulo.

DEMOSTRACION: Ordenemos los niimeros oy, . . . , ag,; segln el crecimiento
de sus partes reales y, en caso de igualdad, segin el crecimiento de sus partes
imaginarias. Entonces el nimero aj; + - -+ + a1, no puede alcanzarse mediante
otra combinacién aj,1 + --- + a;.», pues la parte real de una cualquiera de
estas sumas serd mayor o igual que la de la primera, y en caso de igualdad
la parte imaginaria serd mayor. Consecuentemente existe un ¢ de modo que
B; = a11 + -+ + a1, y el coeficiente B; sera exactamente Ay1--- A1, #0. =

Teorema 14.3 (Teorema de Lindemann-Weierstrass) Si ai,...,q, son
nidmeros algebraicos distintos (n > 2) y ¢1,...,c¢, son nimeros algebraicos no
todos nulos, entonces

c1e®t 4 -+ cpe® £ 0.
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DEMOSTRACION: Supongamos, por el contrario, que
cr1e®t + -+ cpe®r = 0. (14.3)

Podemos suponer que todos los coeficientes ¢; son no nulos. Multiplicando la
ecuacion por un numero natural suficientemente grande podemos suponer que
de hecho son enteros algebraicos. Veremos en primer lugar que podemos suponer
también que son enteros racionales.

Sean ¢, ..., cik, los conjugados de cada c¢;. Entonces
k1 En
« Qpn)
IT - I (crne® + -+ + cnie) =0,
=1 i,=1

pues entre los factores se encuentra (14.3). Operemos el polinomio

k1 ko,
h B
H (c1i,21 4+ + Cni, 2n) = E Chiyeoshn 217 20
i1=1 ip=1
donde el dltimo sumatorio se extiende sobre todas las n-tuplas (h,...,hy,) de

ntimeros naturales tales que hi +---+h, =N =k +--- + k,.

Si consideramos una extension finita de Galois K de Q que contenga a to-
dos los nimeros ¢;;, resulta que todo automorfismo de K permuta los nimeros
Cit, - - -, Cik; , luego deja invariante a este polinomio, lo que implica que sus coe-
ficientes cp, ... p, son numeros racionales. Como ademds son enteros, tenemos
que ¢, ,....n, € 2.

Sustituimos z; = e* y nos queda

k1 K M
H=3 hyas+eethnon _ i
H(clileal + ot ey, €)= Chy...h, €Ot nen — E by,
i=1

i1=1 in=1

donde los coeficientes b; son enteros racionales obtenidos sumando los ¢y, ... b,
que acompanan a un mismo exponente, es decir, segin las hipdtesis del teorema
anterior, por lo que alguno de ellos es no nulo (y claramente ha de haber al
menos dos no nulos). Los niimeros b; son nimeros algebraicos distintos, luego
tenemos una expresion como la original pero con coeficientes enteros.

A partir de ahora suponemos (14.3) con ¢; € Z y donde aj,...,q, son
numeros algebraicos distintos.

Sea f(z) € Q[z] el producto de los polinomios minimos de los nimeros «;

(sin repetir dos veces el mismo factor). Sea m > n el grado de f, sean vy, ..., Vm
todas las raices de f. Llamemos p = m(m — 1)...(m —n + 1), al ntimero de
n-tuplas posibles (i1,...,4,) de ndmeros distintos comprendidos entre 1 y m.
Entonces

H(Cleﬂyil _|_ v _|_ Cne'yin) = O’

donde el producto recorre las p citadas n-tuplas. El producto es 0 porque entre
sus factores se encuentra (14.3).
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Consideremos el polinomio

h h
[Tz + -+ cnzi) =D B2t - 20,

donde la suma se extiende sobre las m-tuplas (hy, ..., h,,) de ntimeros naturales
que suman f y los coeficientes By, .. p,. son enteros racionales.
La expresiéon de la izquierda es claramente invariante por permutaciones de

las indeterminadas z1,..., 2y, luego los coeficientes By, . 5, son invariantes
por permutaciones de hy,...,h,,. Consecuentemente podemos agrupar asi los
sumandos:

T
h h
[lerme + -+ eumo) = B efon o,
k=1

donde r es el nimero de elementos de un conjunto de m-tuplas (hgi, ..., hgm)
de nimeros naturales que suman g sin que haya dos que se diferencien sélo
en el orden, y el segundo sumatorio varia en un conjunto Py de permutaciones

(k1,...,km) de (1,...,m) que dan lugar, sin repeticiones, a todos los monomios
posibles z,}gl"l e z,i’; ™. Sustituimos las indeterminadas por exponenciales y queda

T
[Tcre™ -t epetn) =" B Y et thiniin —
k=1

La definicién del conjunto P hace que el polinomio

H(SU — (he12ky + -+ + hem2k,,))

sea invariante por permutaciones de z1, ..., zZmy, luego

Fk(l‘) = H(LL‘ — (hkl’)’kl + -+ hkm’Ykm)) S Q[LL‘]

Si llamamos ik, - . ., Ytk @ las raices de Fy(x) (repetidas con su multiplicidad),
nuestra ecuaciéon puede escribirse como

T
H(Clewl + .4 cne%t) = ZBk(e“/lk 4+ e“/tkk) =0.
k=1

Sean s;(z) € Q[z], i = 1,...,q los distintos factores monicos irreducibles de los
polinomios Fy(z). Asf cada Fj(x) se expresa como

para ciertos nimeros naturales p;g.
Sean (14, ..., B, las raices de s;(z) (todas son simples, porque el polinomio
es irreducible). Entonces el polinomio Fj(z) tiene p; veces cada raiz §;;, luego

q
Bk(e'Ylk_A'_,_,_Fe'Ytkk):Zpik:Bk(eﬁli_F.,__i_eﬁtii)'
=1



354 Capitulo 14. Numeros trascendentes

Sumando resulta

H(Clewl o dopeling = ZBk(e'Ylk b )
k=1

q
= ZAi(eﬁli+"'+eﬁtii):0,
=1

donde
T
A= ZpikBk € Z.
k=1

Notemos que todos los nimeros 3;; son distintos, pues son raices de polino-
mios irreducibles distintos. Por construccién, los exponentes 3;; son todas las
sumas distintas de exponentes v;; que aparecen al efectuar el producto de la
izquierda de la ecuacién. Podemos aplicar el teorema anterior y concluir que
alguno de los coeficientes A; es no nulo. Eliminando los nulos podemos suponer
que ninguno lo es. En resumen tenemos

q
ST A 4o ) =0,

i=1

donde los coeficientes son enteros racionales no nulos y los exponentes de cada
sumando son familias de nimeros conjugados correspondientes a polinomios
irreducibles distintos s;(x) de grado ¢;. Distinguimos dos casos:

1) Algun fBx; = 0. Pongamos por ejemplo i = 1. Esto significa que s1(z) = z,
luego ademads t; = 1 y la ecuacién se reduce a

q
A+ A 44 Pty =0,

=2

donde los exponentes son todos no nulos, y esto contradice al teorema 14.1.
2) Todos los By; son distintos de 0. Dividimos la ecuacién entre e para
k=1,...,t1, con lo que obtenemos las ecuaciones

q t;
DAY =0, k=1,... 1.
=1 t=1

Las sumamos y queda

t;

q ¢
Z A, ZI: Z ePri—Br — ().
k=1t

i=1 =1
En el sumando ¢ = 1, los sumandos con k& = ¢ valen todos 1. Los separamos:

ty i

q
t1 A + Ay Zeﬁtifﬁkl + ZAZ Zzeﬂti*@cl =0,

k£t i=2  k=1t=1

donde en el primer sumatorio k y ¢ varian entre 1y ¢;.
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El polinomio

g1(z) = H(CC — (B — Br))
k#t
es invariante por permutaciones de los conjugados (i1, luego sus coeficientes
son racionales. Igualmente ocurre con los polinomios

t;

gi(x) = 1_1[ [ = (B = Br)

k=1t=1
para i =2,...,q. Ademads todos tienen las raices no nulas.
Llamando Ay = t1A1 # 0, k1 = t1(t1 — 1), k; = t1t; para i = 2,...,q y

aqi, ..., k,;; a las raices de g;(z), la ecuacién se convierte en

q ki

Ap + E A; E et =0,

=1 k=1
que contradice al teorema 14.1. m
Ejercicio: Probar que si ai,...,a, son nimeros algebraicos linealmente indepen-
dientes sobre Q entonces €™, ..., e“" son algebraicamente independientes sobre Q, es
decir, no son raices de ningtin polinomio P(z1,...,z,) € Q[z1,...,z,] no nulo.

Algunas consecuencias inmediatas son las siguientes:

1. Sia # 0 es un nimero algebraico, entonces e es un niumero trascendente.
En particular el nimero e es trascendente.
En efecto, si ¢ = e® fuera algebraico, tendrfamos e® — ce = 0, en contra-
diccién con el teorema de Lindemann-Weierstrass.

2. El niumero 7 es trascendente.
Si 7 fuera algebraico también lo serfa i, y el nimero ™ = —1 serfa
trascendente.

3. Sia#1 es un numero algebraico, entonces log a es trascendente.
Si 8 = loga # 0 fuera algebraico, entonces a = e” serfa trascendente.

4. Sia# 0 es un numero algebraico, entonces sen a, cos o, tan « son nime-

ros trascendentes.
Si B =sena = (' — e7)/2i fuera algebraico, entonces

el — et _ 28 =0,
en contradiccién con el teorema de Lindemann-Weierstrass. Igualmente
con el coseno.

Si B =tana = (e — e71) /('™ + e~'®) fuera algebraico, entonces
(B—1)e 4+ (B+1)e ™ =0,

en contradiccion con el teorema de Lindemann-Weierstrass.
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Ejercicio: Probar que las funciones arcsen, arccos y arctan toman valores trascen-
dentes sobre nimeros algebraicos (salvo casos triviales).

14.2 El teorema de Gelfond-Schneider

Entre los famosos problemas planteados por Hilbert a principios de siglo, el
séptimo consistia en determinar el cardcter algebraico o trascendente de ciertos
numeros concretos, tales como la constante de Euler. Entre otras cosas Hil-
bert preguntaba si en general o es un nimero trascendente cuando « y 3 son
niimeros algebraicos, a # 0, 1 y 3 es irracional (en los casos exceptuados o
es obviamente algebraico). Por o se entiende ¢#1°2®  donde log o es cualquier
logaritmo complejo de a. Esta parte del séptimo problema fue demostrada in-
dependientemente por Gelfond y Schneider en 1934. De este hecho se sigue en
particular que los ntimeros 2V2 o ™ = (—1)~% son trascendentes.

Sea K un cuerpo numérico de grado h y (1,..., 8, una base entera de K.
Siae K llamaremow(’), parai=1,...,h, alos conjugados de o en un cierto
orden. Llamaremos |a] = méx |a®].

1<i<h

Si v1,...,7n es la base dual de f1,..., [, entonces, todo entero a de K
se expresa en forma unica como o = a1/ + -+ - + apfh, para ciertos enteros
racionales a; tales que

1 h . V1T 1
jadl = | Tr(@r0)] = o @ 4+ + 0™ < mix |7 Ta].

Asi pues, existe una constante ¢ que depende s6lo de K y de la base 31, ..., Bx
tal que para todo entero a € K se cumple

a=a1f1+---+apfy conla| <c, i=1,... h.
Probamos dos teoremas previos:

Teorema 14.4 Sea (a;i) una matriz M X N con coeficientes enteros racionales
tal que M < N y de modo que todos los coeficientes estén acotados por A > 1.
Entonces el sistema de ecuaciones lineales

aj1x1 +---+ajyry =0, 1<j5<M,

tiene una solucion entera no trivial tal que |z < E((NA)M/(N_M)), para
1<k <N (donde E denota la parte entera).
DEMOSTRACION: Para cada N-tupla de enteros racionales (z1,...,ZxN) con-

sideremos la M-tupla de enteros racionales (y1, ..., ya) dada por
Y; = ajx1 + - +ajnrn, 1<j< M.

Sea H = E((NA)M/(N=M)) De este modo, (NA)M/N=M) < H + 1, luego
NA < (H+1)WN=M/M NAH+1< NA(H+1) < (H+1)Y/M luego tenemos
que (NAH + )M < (H + 1)V,
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Sea (1,...,2n) tal que 0 <z, < H para 1 <k < N. Sea —B; la suma de
los a;;, negativos y C; la suma de los aj; positivos. Entonces

Bj +C; = |aji| + -+ + |ajn| < NA,

y claramente —B; H < y; < C;H.

Ahora bien, el nimero de N-tuplas (z1,...,zy) tales que 0 < xp, < H
es (H + 1)N, mientras que sus M-tuplas asociadas (y1,...,yn) varfan en un
conjunto de a lo sumo (C;H + B;H + 1)M < (NAH + 1)M elementos. Como
(NAH +1)M < (H + 1)V, ha de haber dos N-tuplas distintas con la misma
imagen. Su diferencia cumple el teorema. n

Teorema 14.5 Sea (ay;) una matriz p X q con coeficientes enteros en K tal
que p < q y de modo que |ag| < A. Entonces el sistema de ecuaciones lineales

ak1£1+"'+akq£q:07 1§k§pa

tiene una solucion entera (en K) no trivial tal que @ < c(1 + (cqA)P/a=P)),
para 1 < I < q, donde ¢ es una constante que depende de K y de la base
B1y--.,0n, pero no de la matriz.

DEMOSTRACION: : Para cualquier g-tupla (z1,...,2,) de enteros de K
consideremos sus coordenadas

S=anbi+ - +amby, 1<1<gq,
donde 1, ...,z son enteros racionales. Asi mismo sea
aglfr = a1 B+ agenfr, 1<k<p, 1<1<gq, 1<r<h.

Entonces

q q h hooq h
E apé = E Qg E Ty = E E Ty E OklrufBu
=1 [ —

r=11=1 u=1

u=1 \r=1 [=1
luego (&1,. .., &) serd solucién del sistema de ecuaciones si y sélo si las coorde-
nadas (z1,. .., %) son solucién del sistema de M = hp ecuaciones con N = hg
incognitas

h ¢
E E akiruZlr = 0, ISUSha 1§k§p
r=11=1
Segun hemos observado al comienzo de la seccidn, existe una constante ¢’
tal que
/ / z /!

a <cd|a < max |5;|A=c"A.
| klrul = | klﬁr' = 1§i§h|ﬁl|
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Por el teorema anterior este sistema de ecuaciones tiene una solucién entera no
trivial tal que

|z < E((hqc”A)p/(qu)) <1+ (hqc”A)p/(qu), 1<i<gq, 1<r<h.

Los (&1,...,&,) con estas coordenadas son enteros de K no todos nulos que
cumplen el sistema de ecuaciones y ademés

&l < zal 1Bl + -+ |zinl [Bn] < 112?<Xhm(|x”| S )
< h'(1+ (th//A)p/(q—p)) =c(1+ (ch)p/(q—p)).

Teorema 14.6 (Gelfond-Schneider) Si« y 8 son nimeros algebraicos tales
que o # 0, 1 y 8 es irracional, entonces el niimero o es trascendente.

DEMOSTRACION: Fijemos un valor para log o y supongamos que y = e?log®
es algebraico. Sea K un cuerpo numérico de grado h que contenga a a, 5y 7.
Sean m = 2h +2 y n = ¢?/(2m), donde t = ¢ es un miltiplo de 2m.

Observar que podemos tomar valores para n arbitrariamente grandes en estas
condiciones. En lo sucesivo las letras ¢, ¢, ¢, ... representaran constantes que
dependeran de K, de una base entera de K prefijada y de «, 3, v, pero nunca
de n.

Sean p1, ..., p; los nimeros (a+b8)loga, con1 < a < ¢,1 <b < ¢q. Observar
que como [ es irracional, los nimeros 1 y 8 son linealmente independientes,

luego los nuimeros p1, ..., p; son distintos dos a dos.

Sean 1, . .., n; nimeros complejos en K arbitrarios. Consideremos la funcién
holomorfa en C dada por R(z) = ne”* + --- 4+ nef**. Consideremos las mn
ecuaciones lineales con t = 2mn incégnitas (91,..., 1)

(loga)*kRk)(l) =0, 0<k<n-1, 1<I<m.
Los coeficientes de la ecuacién (k,1) son los ntimeros
(log ) ¥ pFerit = (logar) ™ ((a + b3) log a)kellattilosa — (4 L paykalabl ¢ K,

conl1<lI<m,1<a,b<q,0<k<n—1.

Sea ¢; un numero natural no nulo tal que ¢, ¢108 y ¢17y sean enteros en K.
En cada coeficiente, al desarrollar el binomio (a + b3)* aparecen monomios de
«, By~ con grado a lo sumo

E+al +bl <n—1+mqg+mqg<n+4m?*n = (4m> + 1)n,

(m2+1)n

. - . . 4
luego si multiplicamos cualquiera de los coeficientes por c; = cy obtene-

mos un entero de K.
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El médulo de los conjugados de los coeficientes multiplicados por ¢f es a lo

sumo
bl

. X . . —  ——al —
|8 (a + 03D (aD)al (D) < i (a + b]B])* o] ]
" —p—1 T4 Mg n — n—1—2m?*n —2m3n
<cg+alB)" ol T < g (V2my/n+Vemy/nB)" ol
o s TannT2min ——2m? n— _
< Cg( 3+ 2m\ﬁ|) Al m2n A m n\/ﬁ 1_ an(n /2,

Podemos aplicar el teorema anterior, que nos garantiza que 71,...,7: pue-
den elegirse de modo que sean enteros en K, no todos nulos, satisfagan las 2¢
ecuaciones (multiplicadas o no por ¢, da igual) y ademds

|7k |

IN

c(1+ (c2tcy n("fl)/z)) < Adct g nn=1/2
n=0/2 < gnp(ntD/2, (14.4)

A

smen cf nt

para 1 < k <'t.

A partir de ahora consideramos la funcién R(z) para estos ny,...,7n;. En
primer lugar, R(z) no puede ser idénticamente nula, pues desarrollindola en
serie de Taylor en el origen resultaria entonces que

771,0]1€+"'+77tpf:07 para k=0,1,2,3,...

pero las t primeras ecuaciones son un sistema de ecuaciones lineales en 1y, ..., 7
cuyo determinante es de Vandermonde, luego es no nulo, puesto que p1,...,ps
son distintos dos a dos. Esto implica que 173 = --- =1, = 0, lo cual es falso.

En resumen tenemos que la funcién entera R(z) es no nula pero tiene sus
n — 1 primeras derivadas nulas en los puntos { = 1,...,m.

Existe, pues, un natural 7 > n tal que R®(I) = 0 para 0 < k < r — 1,
1<l1<my R"(ly) # 0 para un cierto [y tal que 1 < Iy < m.

Llamemos p = (loga)™"R™(ly) # 0. El mismo andlisis que hemos realizado

antes sobre los coeficientes del sistema nos da ahora que p € K y que C;Jr?mqp
es un entero en K.
Asf pues, 1 < | N(¢;72™p)| = |N(p)|, luego
IN(p)] = ey "2 > 5 (14.5)

Por otro lado tenemos que p es una suma de ¢ términos, cada uno de los
cuales es el producto de un 7y, para el que tenemos la cota (14.4), y de un
coeficiente de la forma (a + b3)"a®o~%0  cuyos conjugados estdn acotados por

—,. ——alo — — . Mg T—m
(a+ 08D el yiblo < (¢ +qlB)" Tl ™ V™" < (coq)™c2.

Consecuentemente m <t n( Y/ 2(cgq)mcl.
Ahora acotamos t = q2 =2mn <2mr,n <r, g < \/2m\/ﬁ < V2mri/2 vy
llegamos a

Ip| < 2mr e rUHD/2 (V2m )TTT/QC?W < grrtd2, (14.6)
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Vamos a obtener una cota mds fina para |p|. Para ello aplicaremos la férmula
integral de Cauchy a la funcién

st =t 1 ()

k#lo

Puesto que las derivadas anteriores al orden r son nulas en 1,...,m, la
funcién S es entera. Ademds

X X 1 S
p = (loga)""R"(ly) = (loga)~"S(ly) = (loga) ™" %/c . EZZ)O dz,
donde C' es la circunferencia |z| = m(1 4+ r/q), que contiene a los nimeros
1,...,m, en particular a ly. Para los puntos z € C tenemos las cotas
R(z)] < tcy n(nt1)/2 exp((q + ¢|8]) log | m(1 + r/q))
< teh p(n+1)/2 cg+q <y 7“(7""3)/27
lz—k| > |z2|—|kl>mQ+7r/q)—m=mr/q, parak=1,...,m,
(Z—lo)_rﬁ lo —k 7'<(i)rﬁmr(i)r261l(g)mr
o \z—k ~\mr/ 1 mr r ’
k}#lg k7£l0
S@I < rteer e, (4)
< ’I‘cho r(r+3)/26q1 (\/%)mrr—mr/Q _ C71~2 T(3r+37m7‘)/2.

Acotando la integral llegamos a que

1 T q
< (1 -9 1 = r . .(3r+3—mr)/2 (_)
ol < geltoga)ian (14 5) s <
_ |10g0¢|_r i + i 071“2 ,r(3r+3—mr)/2
mr - m
< |10ga|—r(q + 1)7“071"2 T(3r+3—m7')/2 _ 071“3 7,(37"+3—mr)/2.
Ahora vamos a acotar |N(p)|, que es el producto de los médulos de los

conjugados de p, usando la cota anterior para |p| y la cota (14.6) para los h — 1
conjugados restantes. Concretamente

IN(p)| < faqrBr8=mn)/2(erprt3/2yh=1 _ o1 p(8r+8—mr)/2+(h=1)(r+3/2)

Si sustituimos m = 2h + 2 la expresién se simplifica hasta

IN(p)| < rEh=n/2,
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Pero combinando esto con (14.5) resulta c¢;” < ¢}, 7(3#77/2 6 1o que es lo
mismo, r("3M/2 < ¢, ¢f = ¢f.. Tomando logaritmos es facil llegar a que

1—% 1 <1
5 o ogr 0g C15.

Hemos probado que esto se cumple para una constante c15 y para valores de
r arbitrariamente grandes (pues r > n), pero esto es claramente contradictorio,
pues el miembro de la izquierda tiende a +oo cuando r tiende a +oo. [
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