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La aritmética superior nos proporciona un con-
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Prefacio

Este libro pretende servir de introducción a la teoŕıa algebraica de números
a un lector con una cierta base de álgebra moderna (un poco de álgebra lineal,
un poco de teoŕıa de anillos, un poco de teoŕıa de cuerpos y un poco de teoŕıa
de grupos). Además del interés que por śı misma puede despertar en cualquier
matemático, el algebrista puede ver en ella el origen histórico de muchos de
los conceptos que maneja y un campo inmenso donde aplicarlos. Es fácil caer
en la falsa opinión de que la teoŕıa de números es una colección de resultados
anecdóticos e intrascendentes sobre los números naturales o enteros, y es dif́ıcil
mostrar en pocas palabras lo erróneo de esta creencia. Por ello hemos dedicado
el primer caṕıtulo a presentar una panorámica de la teoŕıa de números en general
y del contenido de este libro en particular. A partir de ah́ı el lector puede hacerse
una primera estimación de si realmente le interesa la teoŕıa, aunque lo cierto es
que su auténtico encanto y su magnificencia no caben en el primer caṕıtulo de
ningún libro.

ix





Caṕıtulo I

Introducción a la teoŕıa
algebraica de números

El interés del hombre por los números es tan antiguo como la civilización.
Son muchos los pueblos antiguos que se interesaron por los números bien por ra-
zones prácticas inmediatas, bien por su relación con la astronomı́a y el cómputo
del tiempo o incluso asociados a la adivinación y el esoterismo. Entre todos
ellos destacan los griegos, que llegaron a desarrollar una teoŕıa de números pura
guiada por criterios estrictamente matemáticos en el sentido moderno de la pa-
labra. Los griegos descubrieron las leyes básicas de la aritmética. Conoćıan la
división eucĺıdea, los números primos, el cálculo del máximo común divisor y
el mı́nimo común múltiplo, etc. Quizá el lector crea que esto significa dominar
completamente los números naturales, pero no es aśı ni mucho menos. Lo que
hicieron los griegos al desarrollar la aritmética elemental fue simplemente des-
cubrir el lenguaje de los números, lo cual no equivale a entender lo que se lee en
ese lenguaje. Para entender lo que queremos decir consideraremos un ejemplo
tomado de la Aritmética de Diofanto.

1.1 Ternas pitagóricas

En el siglo III, Diofanto trató en su Aritmética el problema de encontrar
ternas de números naturales no nulos x, y, z tales que x2 + y2 = z2. Estas
ternas se llaman ternas pitagóricas, pues según el teorema de Pitágoras permiten
construir triángulos rectángulos con lados enteros. Los egipcios las usaban para
construir ángulos rectos en arquitectura. Entre los ejemplos más conocidos están
32 + 42 = 52, 52 + 122 = 132, 72 + 242 = 252. ¿Cómo encontrarlas todas?

En primer lugar notamos que si (x, y, z) es una terna pitagórica, también lo
es (mx,my,mz) para cualquier número m y, rećıprocamente, dada una terna
pitagórica (x, y, z), podemos dividir sus componentes por su m.c.d. para ob-
tener otra que cumpla además (x, y, z) = 1. Una terna cuyos elementos no
tengan divisores comunes se llama primitiva. Si encontramos un método para

1
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hallar todas las ternas primitivas, las restantes se obtienen multiplicándolas por
números arbitrarios, luego el problema está resuelto. Las ternas anteriores son
todas primitivas.

Ante todo observemos que un divisor primo de dos de las componentes de
una terna pitagórica, divide a la tercera. Por ejemplo, si p | x y p | z, entonces
p | z2−x2, con lo que p | y2 y por lo tanto p | y. Esto significa que, en realidad,
las componentes de una terna pitagórica primitiva son primas entre śı dos a dos.
En particular no puede haber más de una componente par. Un número es par o
impar si y sólo si lo es su cuadrado, y la suma y la diferencia de números impares
es par. Como consecuencia si dos de las componentes son impares, la restante
ha de ser par, es decir, en una terna primitiva hay siempre dos componentes
impares y una par.

Ahora veamos que z ha de ser impar. En otro caso lo son x e y, es decir,
x = 2m+ 1, y = 2n+ 1, luego x2 = 4m2 + 4m+ 1, y2 = 4n2 + 4n+ 1. Al tomar
clases módulo 4 resulta que [z]2 = [x]2 + [y]2 = [1] + [1] = [2]. Sin embargo
ninguna clase módulo 4 tiene a [2] por cuadrado: [0]2 = [0], [1]2 = [1], [2]2 = [0],
[3]2 = [1].

Como la situación de x e y es simétrica, podemos suponer que x es par e y
impar. Según lo visto z es también impar. Consecuentemente z + y, z − y son
ambos pares. Digamos que x = 2u, z + y = 2v, z − y = 2w.

Ahora x2 = z2 − y2 = (z + y)(z − y), luego u2 = vw, v > 0, v > 0.
Por otro lado (v, w) = 1, ya que si un primo p divide a ambos, entonces

p | (v + w) =
1
2
(z + y) +

1
2
(z − y) =

1
2

2z = z,

p | (v − w) =
1
2
(z + y)− 1

2
(z − y) = y,

y como (y, z) = 1, esto es contradictorio.
Por la factorización única, es claro que si vw = u2 con (v, w) = 1, v > 0,

w > 0, entonces tanto v como w han de ser cuadrados (cada uno ha de contener
cada primo un número par de veces porque aśı le ocurre a u). Pongamos v = p2

y w = q2. Obviamente (p, q) = 1.
Aśı tenemos que z = v + w = p2 + q2, y = v − w = p2 − q2. En particular

q < p.
Como z e y son impares, p y q deben tener paridad opuesta. Sustituyendo

en las fórmulas anteriores queda

x2 = z2 − y2 = p4 + 2p2q2 + q4 − p4 + 2p2q2 − q4 = 4p2q2 = (2pq)2,

luego x = 2pq. En consecuencia la terna original queda de la forma

(x, y, z) = (2pq, p2 − q2, p2 + q2),

donde p, q son números naturales primos entre śı, q < p y de paridad opuesta.
Rećıprocamente, es fácil comprobar que cualquier terna en estas condiciones

es una terna pitagórica primitiva. Por lo tanto ya sabemos enumerarlas todas.
La tabla 1.1 contiene las correspondientes a los valores de p ≤ 7.
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Tabla 1.1: Ternas pitagóricas

p q x y z
2 1 4 3 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
5 4 40 9 41
6 1 12 35 37
6 5 60 11 61
7 2 28 45 53
7 4 56 33 65
7 6 84 13 85

En una tablilla cuneiforme aproximadamente del año 1.500 a.C. se ha en-
contrado una enumeración de ternas pitagóricas, entre las cuales se encontraba
(4.961, 6.480, 8.161). Se obtiene con p = 81 y q = 40.

La clasificación de las ternas pitagóricas es un ejemplo t́ıpico de lo que fue la
teoŕıa de números desde los griegos hasta mediados del siglo XVII. Hay una in-
finidad de resultados similares que describen el comportamiento de los números
enteros. Problemas fáciles de enunciar y comprender y a menudo con soluciones
fáciles de enunciar y comprender, pero tales que el argumento que lleva desde
el planteamiento hasta la solución puede llegar a ser incréıblemente ingenioso y
laborioso. Esto iba a cambiar en los siglos posteriores. En la sección siguiente
presentamos uno de los problemas que contribuyó más a dicho cambio.

1.2 El Último Teorema de Fermat

En el siglo XVII los matemáticos estaban más interesados por explorar ideas
nuevas, como el recién descubierto cálculo diferencial, que por los viejos proble-
mas sobre números enteros que se estudiaba en los libros de Euclides, Diofanto,
etc. Se teńıa la impresión de que no hab́ıa mucho que descubrir en este campo.
Uno de los principales responsables de que se renovara el interés por la teoŕıa de
números fue Pierre de Fermat, quien, según era habitual en la época, retaba a
otros matemáticos a resolver problemas que él mismo hab́ıa resuelto o al menos
conjeturado. Éstos eran del estilo de determinar qué números naturales pueden
expresarse como suma de dos cuadrados, o de tres, o de cuatro, etc., o qué
números coinciden con la suma de sus divisores propios, o hallar las soluciones
enteras de determinadas ecuaciones . . .

La facilidad para formular conjeturas sencillas mediante cálculos directos
haćıa a los problemas mucho más intrigantes. Por ejemplo, fueron muchos los
matemáticos que intentaron sin éxito probar algo tan simple (de enunciar y de
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constatar emṕıricamente) como que todo número natural es suma de cuatro
cuadrados. La primera prueba es de Lagrange. Entre los muchos resultados que
probó Fermat se encuentra el siguiente:

Teorema 1.1 La ecuación, x4 + y4 = z2 no tiene soluciones enteras positivas.

Demostración: Si existen soluciones positivas de la ecuación x4 +y4 = z2,
entonces (x2, y2, z) es una terna pitagórica. Notar que si dividimos x, y, z por su
m.c.d. obtenemos números primos entre śı que siguen cumpliendo la ecuación,
luego podemos suponer que (x, y, z) = 1, y claramente esto implica que en
realidad son primos entre śı dos a dos y que la terna (x2, y2, z) es primitiva.

Según los resultados de la sección anterior, x2 = 2pq, y2 = p2−q2, z = p2+q2,
donde p y q son números enteros primos entre śı, de distinta paridad y p > q > 0
(intercambiamos x con y si es necesario para que x2 sea el par).

Ahora, p2 = y2 + q2, luego (q, y, p) es otra terna pitagórica, lo que obliga a
que p sea impar, luego q ha de ser par, y aśı q = 2ab, y = a2 − b2, p = a2 + b2,
para ciertos enteros a y b primos entre śı, de paridad opuesta, a > b > 0 (notar
que se trata de una terna primitiva porque (p, q) = 1).

Por lo tanto x2 = 4ab(a2 + b2) y en consecuencia ab(a2 + b2) = (x/2)2. Por
otra parte (a, b) = 1 implica fácilmente que (ab, a2 + b2) = 1.

Ahora usamos un argumento muy simple pero importante: si el producto
de dos números naturales primos entre śı es un cuadrado, entonces ambos son
cuadrados, pues cada uno de ellos debe tener cada factor primo con exponente
par.

Concluimos que ab y a2 + b2 son cuadrados y, por el mismo argumento,
también lo son a y b. Digamos a = u2, b = v2, a2 + b2 = w2.

Entonces u4 + v4 = a2 + b2 = w2 = p < p2 + q2 = z < z2.
En resumen, si existe una terna de números positivos (x, y, z) de manera que

x4 + y4 = z2, existe otra (u, v, w) que cumple lo mismo pero con w2 < z2. Si
existieran tales ternas debeŕıa haber una con z mı́nimo, lo cual es falso según
lo visto, por lo que la ecuación no tiene solución.

En particular el teorema anterior implica que la ecuación x4 + y4 = z4 no
tiene soluciones positivas. Es conocido que Fermat creyó en cierta ocasión haber
probado que esto mismo es cierto para cualquier exponente distinto de 2. Es
prácticamente seguro que cometió un error y que se dio cuenta de ello, pues
jamás afirmó públicamente tener tal prueba y el problema ha resistido el ataque
de los mejores matemáticos de los últimos doscientos años. Simplemente, Fermat
anotó su presunto hallazgo en un margen de su ejemplar de la Aritmética de
Diofanto y después olvidó, o no consideró necesario, tachar la nota. Tras su
muerte, uno de sus hijos hizo públicas las notas de su padre, entre las cuales
figuraba esa pequeña declaración de haber probado lo que desde entonces se
conoce como Último Teorema de Fermat, esto es, la afirmación:

La ecuación xn + yn = zn no tiene soluciones enteras positivas para
exponentes n > 2.
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El nombre no hace referencia a que fuera el último resultado que Fermat
hubiera demostrado, sino a que a principios del siglo XIX todas las afirmaciones
que Fermat hab́ıa dejado enunciadas sin demostración hab́ıan sido demostradas
o refutadas salvo ésta, que era, pues, el último ‘teorema’ de Fermat cuya prueba
faltaba encontrar.

El teorema anterior muestra que Fermat śı hab́ıa probado (y comunicado) la
prueba para exponente n = 4. Más aún, esto implica de hecho que el teorema
de Fermat es cierto para cualquier exponente de la forma n = 4k. En efecto,
si existieran números positivos (x, y, z) tales que x4k + y4k = z4k, entonces
(xk, yk, zk) seŕıa una solución a la ecuación x4 + y4 = z4, lo cual es imposible.
En particular el Último Teorema de Fermat es cierto para las potencias de dos.

De aqúı se sigue ahora que si el Último teorema de Fermat es cierto para
exponentes primos impares, entonces es cierto para todo exponente. En efecto,
si existen soluciones positivas a una ecuación xn+yn = zn, entonces n no puede
ser potencia de 2, luego existe un primo impar p tal que p | n, o sea, n = pk,
para cierto entero k, luego (xk, yk, zk) es una solución positiva a la ecuación
xp + yp = zp.

Observemos que si p es impar el Último Teorema de Fermat equivale a la no
existencia de soluciones enteras no triviales (o sea, con xyz �= 0) de la ecuación

xp + yp + zp = 0,

lo que muestra que en realidad el papel de las tres variables es simétrico. Esto
simplifica algunos argumentos.

Euler demostró el teorema de Fermat para p = 3, ya en el siglo XIX, el joven
Dirichlet y el anciano Legendre demostraron independientemente el caso p = 5,
pero Dirichlet fracasó al abordar el caso p = 7, y sólo consiguió una prueba para
exponente 14. La complejidad de los argumentos aumentaba tan rápidamente
que p = 7 era prácticamente intratable. Más adelante Kummer llegó a probar el
teorema de Fermat para todos los exponentes menores que 100. Evidentemente
esto no fue el resultado de cálculos más prolijos todav́ıa, sino de nuevas ideas.
Lo explicaremos con más detalle en la sección siguiente.

1.3 Factorización única

La clasificación de las ternas pitagóricas, aśı como el teorema 1.1, descansan
sobre la aritmética elemental. Sin embargo, la potencia de estos métodos pronto
se ve superada por la dificultad de los problemas que surgen de forma natural. El
Último Teorema de Fermat es un caso extremo, pero hay ejemplos más simples.
El resultado siguiente es uno de los problemas planteados por Fermat:

Teorema 1.2 Las únicas soluciones enteras de la ecuación

y2 + 2 = x3

son y = ±5, x = 3.
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Demostración: En primer lugar, y ha de ser impar, pues si fuera par,
y2 + 2 seŕıa divisible entre 2, pero no entre 4, mientras que x3 seŕıa divisible
entre 2, luego entre 8.

Ahora consideramos el anillo Z
[√
−2

]
= {a + b

√
−2 | a, b ∈ Z}. En este

anillo la ecuación factoriza en la forma(
y +

√
−2

)(
y −

√
−2

)
= x3. (1.1)

Consideramos la norma N : Z
[√
−2

]
−→ N dada por

N
(
a + b

√
−2

)
=

(
a + b

√
−2

)(
a− b

√
−2

)
= a2 + 2b2.

Es fácil ver que esta norma es multiplicativa (se trata de la norma de la
extensión Q

(√
−2

)/
Q en el sentido de la teoŕıa de cuerpos). Si x, y cumplen

la ecuación, entonces un divisor común c + d
√
−2 de y +

√
−2 y de y −

√
−2

en Z
[√
−2

]
dividiŕıa también a su suma 2y y a su diferencia 2

√
−2. Tomando

normas, c2 + 2d2 | 4y2, c2 + 2d2 | 8. Por lo tanto c2 + 2d2 | 4.
Las únicas posibilidades son c = ±1, d = 0 o bien c = 0, d = ±1 o bien

c = ±2, d = 0. En los dos primeros casos obtenemos una unidad y en los otros
obtenemos un elemento de norma 2 o 4, que no puede dividir a y +

√
−2, cuya

norma es y2 + 2, impar.
Aśı pues, y+

√
−2, y−

√
−2 son primos entre śı. Ahora bien, si dos números

primos entre śı son un cubo, tal y como afirma (1.1), entonces cada uno de ellos
lo es, es decir, y +

√
−2 =

(
a + b

√
−2

)3 para ciertos enteros a y b.
Igualando los coeficientes de obtenemos que 1 = b(3a2 − 2b2), lo que sólo es

posible si b = 1 y a = ±1, de donde y = ±5 y por lo tanto x = 3.

En realidad la prueba anterior tiene una laguna: si un producto de números
primos entre śı es un cubo perfecto, cada factor será también un cubo perfecto
siempre y cuando se trate de elementos de un anillo con factorización única,
es decir, donde todo elemento se descomponga de forma única (salvo orden y
asociación) en producto de primos, y además cada unidad sea un cubo. Lo cierto
es que el anillo Z

[√
−2

]
tiene estas propiedades, pero no lo hemos justificado.

Ejercicio: Probar que las únicas unidades del anillo Z
[√

−2
]

son ±1.

Ejemplo En el anillo Z
[√
−5

]
tenemos las factorizaciones

6 = 2 · 3 =
(
1 +

√
−5

)(
1 +

√
−5

)
. (1.2)

Si consideramos la norma N
(
x + y

√
−5

)
= x2 + 5y2 vemos que, al igual que en

el caso de Z
[√
−2

]
, conserva productos, y los únicos elementos de norma 1 son

±1. Además no hay elementos de norma 2 o 3. De todo esto se sigue que los
cuatro factores de (1.2) son irreducibles y no asociados, pues tienen norma 4, 9
y 6, luego un factor propio de cualquiera de ellos habŕıa de tener norma 2 o 3.
Por consiguiente nos encontramos ante una doble factorización en irreducibles
no primos.
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La clave de la prueba del teorema 1.2 ha sido sin duda la factorización (1.1)
en el anillo Z

[√
−2

]
. Paulatinamente los matemáticos fueron comprendiendo

que estructuras algebraicas abstractas como Z
[√
−2

]
o, más en general, anillos,

módulos, ideales, grupos, etc. proporcionaban herramientas poderosas para ob-
tener resultados sobre los números enteros. Muchas pruebas basadas en largos
e ingeniosos cálculos de carácter elemental pod́ıan ser sustituidas por pruebas
cortas, conceptuales y claras basadas en estructuras algebraicas cada vez más
abstractas. En la mayoŕıa de los casos, la posibilidad de dar una prueba ele-
mental resultaba prácticamente inconcebible.

En la prueba del caso p = 3 del teorema de Fermat, Euler partió de la
descomposición

x3 + y3 = (x + y)(x2 − xy + y2),

mientras que Dirichlet y Legendre, en sus pruebas para p = 5, consideraron

x5 + y5 = (x + y)(x4 − x3y + x2y2 − xy3 + y4).

El eje de los argumentos respectivos era el mismo argumento que hemos em-
pleado en la prueba de 1.2, es decir, determinar cuándo los factores son primos
entre śı, en tal caso argumentar que si el producto es un cubo o una potencia
quinta, lo mismo le ha de suceder a cada factor y después analizar las implica-
ciones de este hecho. Es fácil comprender que el aumento de la complejidad del
segundo factor volv́ıa los argumentos cada vez más enrevesados.

Un paso importante fue dado por Lamé cuando pensó en considerar el anillo
de los enteros ciclotómicos

Z[ω] = {ap−1ω
p−1 + · · · a1ω + a0 | ap−1, . . . , a0 ∈ Z},

donde ω es una ráız p-ésima primitiva de la unidad. En efecto, si en la factori-
zación

xp − 1 = (x− 1)(x− ω) · · · (x− ωp−1)

sustituimos x por x/y y multiplicamos por −yp obtenemos

xp + yp = (x + y)(x + ωy) · · · (x + ωp−1y). (1.3)

Lamé conjeturó que si Z[ω] tuviera factorización única tal vez seŕıa posible
generalizar los argumentos de los casos que hemos comentado para obtener una
prueba completa del teorema de Fermat, con la ventaja de trabajar con factores
lineales. Por ello muchos matemáticos de principios del siglo XIX investigaron
la factorización de enteros ciclotómicos. Cauchy trato sin éxito de encontrar
un algoritmo de división eucĺıdea. Fue en este contexto, estudiando los enteros
ciclotómicos, en el que Kummer pudo obtener el resultado que citábamos antes,
en virtud del cual el teorema de Fermat es cierto para exponentes menores que
100. Kummer descubrió que los anillos de enteros ciclotómicos no siempre tienen
factorización única, pero que la conjetura de Lamé era correcta.
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1.4 La ley de reciprocidad cuadrática

La lógica matemática nos enseña que no puede existir una teoŕıa de números
completa, en el sentido de que existen propiedades de los números naturales que
son ciertas sin que exista ningún motivo por el cual lo sean, es decir, sin que
existan argumentos que lo prueben, ni mucho menos que lo expliquen. En un
término medio tenemos una amplia familia de resultados que podemos probar,
pero que en el fondo no comprendemos, en el sentido de que la prueba sólo es
una comprobación de que todo encaja más o menos sorprendentemente. Pero
en el extremo opuesto tenemos una importante clase de resultados que no sólo
sabemos demostrar, sino que podemos considerarlos bien comprendidos en el
sentido de que sabemos explicarlos a partir de principios generales conceptual-
mente simples. Si comparamos la teoŕıa de números con la f́ısica, estos tres tipos
de situaciones se corresponden respectivamente con 1) hechos puntuales, como
que un determinado d́ıa ha llovido en determinado sitio, cosa cuya necesidad no
cabe esperar que se pueda demostrar elegantemente a partir de ninguna teoŕıa
f́ısica, 2) leyes basadas directamente en la experiencia, como el comportamiento
qúımico de los distintos átomos, que la qúımica f́ısica sólo justifica con precisión
en muy pocos casos particulares, y 3) leyes como las que rigen los fenómenos
eléctricos, que, además de haber sido obtenidas emṕıricamente, todas ellas pue-
den explicarse perfectamente a partir de las ecuaciones de Maxwell.

Del mismo modo que las leyes fundamentales de la f́ısica sólo pueden enun-
ciarse en el contexto de teoŕıas abstractas que involucran conceptos muy distan-
tes de la experiencia cotidiana, el gran descubrimiento de la teoŕıa de números
del siglo XIX fue que las leyes fundamentales sobre los números involucran esen-
cialmente conceptos algebraicos abstractos, de forma que las propiedades que
se observan sobre los números enteros son reflejos más o menos lejanos de estas
leyes generales. En este sentido, la auténtica teoŕıa sobre los números enteros es
la teoŕıa sobre los objetos algebraicos (o anaĺıticos) donde se pueden enunciar
dichas leyes generales.

Las Disquisitiones Arithmericae de Gauss, publicadas a principios del siglo
XIX, constituyeron el primer paso por el que la teoŕıa de números pasó de ser
una colección de resultados dispersos con pruebas técnicas superficiales, a ser
la profunda y potente teoŕıa que es en la actualidad. La parte mas importante
de las Disquisitiones es la teoŕıa sobre formas cuadráticas binarias, con la que
se pueden hallar todas las soluciones enteras de cualquier ecuación de la forma
p(x, y) = 0, donde p(x, y) es un polinomio de segundo grado con coeficientes en-
teros. Aunque no es éste el momento de entrar en detalles, es importante dejar
claro que no estamos hablando un algoritmo ingenioso para manipular ecua-
ciones, sino de una teoŕıa algebraica que, en lenguaje moderno, emplea grupos
finitos, congruencias módulo subgrupos, caracteres, matrices, determinantes,
módulos, etc.

Gauss probó que los resultados fundamentales concernientes a las formas
cuadráticas sobre los números enteros pod́ıan deducirse de un principio general,
un resultado descubierto por Euler, pero del que éste no fue capaz de probar
más que una mı́nima porción. Gauss lo redescubrió y lo demostró en el contexto
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de su teoŕıa de formas cuadráticas. Se trata de la famosa Ley de Reciprocidad
Cuadrática. Para enunciarla debemos introducir algunos conceptos.

Definición 1.3 Sea p un primo impar. Diremos que un número natural n primo
con p es un resto cuadrático módulo p si n ≡ x2 (mód p), para cierto entero x.
En caso contrario (siempre suponiendo que n es primo con p) diremos que n es
un resto no cuadrático módulo p. Definimos el śımbolo de Legendre como

(
n

p

)
=




1 si n es un resto cuadrático módulo p
−1 si n es un resto no cuadrático módulo p

0 si p | n

Es obvio que si a ≡ b (mód p) entonces (a/p) = (b/p).

Conviene pensar en el śımbolo de Legendre desde el siguiente punto de vista
algebraico: Sea Up el grupo de las unidades de Z/pZ. La aplicación Up −→ U2

p

dada por x 
→ x2 tiene por imagen al grupo de las clases de restos cuadráticos
módulo p, y su núcleo es ±[1] (pues el polinomio x2 − 1 sólo puede tener dos
ráıces). Por lo tanto Up/U

2
p
∼= {±1}, y el śımbolo de Legendre (cuando p � n)

es la composición de la aplicación n 
→ [n] con este isomorfismo.

Ahora es claro que para todo a, b,(
ab

p

)
=

(
a

p

) (
b

p

)
.

Ley de reciprocidad cuadrática

1. Sean p y q primos impares distintos entonces

(a) Si p ≡ 1 (mód 4) o q ≡ 1 (mód 4) entonces(
p

q

)
=

(
q

p

)
.

(b) Si p �≡ 1 (mód 4) y q �≡ 1 (mód 4) entonces(
p

q

)
= −

(
q

p

)
.

2. (Primera Ley Suplementaria) Si p es un primo impar(−1
p

)
=

{
1 si p ≡ 1 (mód 4)
−1 si p ≡ 3 (mód 4)

3. (Segunda Ley Suplementaria) Si p es un primo impar(
2
p

)
=

{
1 si p ≡ ±1 (mód 8)
−1 si p �≡ ±1 (mód 8)
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Seŕıa dif́ıcil explicar aqúı en poco espacio la importancia teórica de estos
hechos, pero la tienen. Lo que śı podemos mostrar fácilmente (aunque no sea
lo más importante) es que la ley de reciprocidad permite calcular fácilmente
cualquier śımbolo de Legendre. Por ejemplo,(

15
71

)
=

(
3
71

) (
5
71

)
= −

(
71
3

) (
71
5

)
= −

(
2
3

) (
1
5

)
= 1,

donde alternativamente hemos aplicado la ley de reciprocidad para invertir los
śımbolos y hemos reducido los ‘numeradores’ módulo los ‘denominadores’.

Pero destaquemos ante todo que la Ley de Reciprocidad es lo más opuesto
a un resultado elemental. Si el lector reflexiona sobre lo que significa que un
primo p sea un resto cuadrático módulo q y que q sea un resto cuadrático
módulo p, seguro que no encuentra ninguna conexión, por mı́nima que sea, que
le pueda sugerir un intento de prueba (a no ser que ya esté familiarizado con
la teoŕıa de números). Pese a ello ah́ı tenemos una relación que además resulta
ser sorprendentemente simple en cuanto a su enunciado. Hoy se conoce casi un
centenar de pruebas distintas de la Ley de Reciprocidad Cuadrática. La primera
demostración que encontró Gauss era muy técnica, hasta el punto de desalentar
a sus mejores alumnos. Poco después encontró otra basada en lo más sutil de
su teoŕıa de formas cuadráticas, esta vez de estructura mucho más simple. Más
tarde encontró otra basada en técnicas anaĺıticas. Se conocen otras debidas a
Dirichlet (que usa análisis de Fourier), a Kronecker (basada en las propiedades
de los enteros ciclotómicos), hay otra de carácter elemental mucho más corta
(basada en argumentos de Gauss), pero la prueba que más ha penetrado en el
contenido de la ley de reciprocidad se debe a Artin, data de mediados del siglo
XX y en esencia la explica en términos de cohomoloǵıa de grupos.

El camino que lleva desde la ley de reciprocidad de Gauss a la de Artin fue
iniciado por el propio Gauss, quien conjeturó una ley de reciprocidad cúbica y
una bicuadrática, aunque no pudo probarlas. Gauss comprendió que el śımbolo
de Legendre no es simplemente una notación cómoda para enunciar la ley de
reciprocidad, sino que el asociar las clases módulo p con las potencias de−1 juega
un papel importante. La razón por la que los números enteros satisfacen una ley
de reciprocidad cuadrática es que Z contiene una ráız cuadrada primitiva de la
unidad, por lo que una ley de reciprocidad cúbica hab́ıa de buscarse en el cuerpo
Q

(√
−3

)
, es decir, el cuerpo ciclotómico tercero, y una ley de reciprocidad

bicuadrática hab́ıa de buscarse en el cuerpo Q
(√
−1

)
, el cuerpo ciclotómico

cuarto. Aśı lo hizo y las encontró. Precisamente, el anillo Z[i] se conoce como
anillo de los enteros de Gauss a ráız de sus investigaciones sobre la reciprocidad
bicuadrática.

Las primeras demostraciones de las leyes de reciprocidad cúbica y bicuadrá-
tica se deben a Eisenstein, quien encontró además un fragmento de una ley de
reciprocidad p-ésima, estudiando, por supuesto, el anillo de enteros ciclotómicos
de orden p. Kummer compaginó sus investigaciones sobre el Último Teorema de
Fermat con la búsqueda de una ley de reciprocidad general. Ambos problemas
apuntaban hacia los cuerpos ciclotómicos. Sus investigaciones fueron continua-
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das por Kronecker y sus disćıpulos, en una ĺınea que llevó hasta la ya citada Ley
de Reciprocidad de Artin, una de las cumbres de la teoŕıa de números moderna.

1.5 El teorema de Dirichlet

Hay un problema más que llevó al estudio de los enteros ciclotómicos. An-
tes que Gauss, Legendre hab́ıa abordado también el problema de demostrar la
Ley de Reciprocidad Cuadrática, y consiguió demostrarla aceptando sin demos-
tración un hecho muy sencillo de enunciar y que los datos emṕıricos corrobo-
raban: Para todo natural n no nulo, cada una de las clases del grupo Un de
las unidades módulo n contiene al menos un número primo. Gauss no consi-
guió demostrar este hecho, pero se las arregló para evitarlo. Dirichlet vislumbró
una posible conexión con los cuerpos ciclotómicos que efectivamente le llevó
hasta una demostración de lo que hoy se conoce como Teorema de Dirichlet
sobre Primos en Progresiones Aritméticas, pues admite el siguiente enunciado
elemental.

Teorema de Dirichlet Si a, b son números enteros primos entre śı, entonces
la progresión aritmética an + b, para n = 1, 2, . . . contiene infinitos primos.

Aunque no estamos en condiciones de explicar la idea que guió a Dirichlet,
digamos al menos que está relacionada con que el grupo de Galois de la extensión
ciclotómica n-sima de Q es isomorfo a Un. El teorema de Dirichlet es una
herramienta importante en la teoŕıa de números y, aunque en ocasiones puede
ser evitado (como hizo Gauss para probar la Ley de Reciprocidad) ello suele
llevar a caminos torcidos que restan naturalidad a las demostraciones. Por este
motivo la prueba de Dirichlet fue muy celebrada, además de porque fue uno de
los primeros éxitos importantes de la teoŕıa anaĺıtica de números.

1.6 Ecuaciones diofánticas

Una ecuación diofántica es simplemente una ecuación polinómica de la que se
buscan las soluciones enteras. Se llaman aśı en honor al matemático griego Dio-
fanto, aunque en todos los libros que se conservan no hay ningún resultado sobre
ecuaciones diofánticas en este sentido moderno. Él buscaba siempre soluciones
racionales en lugar de enteras.

Todos los resultados que hemos probado en este caṕıtulo son soluciones de
ecuaciones diofánticas. Del mismo modo que el estudio de los sistemas de ecua-
ciones lineales dio lugar al álgebra lineal, las ecuaciones diofánticas están en la
base de las distintas ramas de la teoŕıa de números. Sabemos que no puede exis-
tir una teoŕıa general de ecuaciones diofánticas en el mismo sentido que la hay
para los sistemas de ecuaciones lineales, pero hay muchos resultados aplicables
a familias concretas de ecuaciones. Ya hemos comentado que Gauss dedicó gran
parte de sus Disquisitiones arithmeticae a encontrar un método para resolver
cualquier ecuación diofántica de segundo grado con dos variables.
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Observar que las ecuaciones diofánticas con una variable son triviales, pues
resolverlas se reduce a aproximar anaĺıticamente las ráıces del polinomio que
determina la ecuación y comprobar si son enteras. Si pasamos a ecuaciones con
dos variables, las de grado 1 también son sencillas.

Ejercicio: Dar un método para determinar todas las soluciones enteras de una
ecuación de la forma ax+ by = c, donde a, b, c ∈ Z.

Aśı pues, el primer caso no trivial es el de las ecuaciones de segundo grado
con dos variables (el caso estudiado por Gauss). Puede probarse que mediante
cambios de variable adecuados el problema puede reducirse a estudiar ecuaciones
definidas por formas cuadráticas, es decir, ecuaciones de la forma

ax2 + bxy + cy2 = d. (1.4)

Notemos que si a = 0 o c = 0 el problema es trivial, pues una de las incógnitas
ha de ser un divisor de d y hay un número finito de soluciones. Supongamos,
pues, a �= 0 �= c. Veamos hasta dónde podemos llegar mediante razonamientos
elementales para encontrar aśı el núcleo del problema.

Factorizamos el polinomio ax2 + bx + c = a(x − α)(x − β), y entonces la
ecuación se convierte en

a(x− αy)(x− βy) = d.

Los números α y β son −b±
√
b2−4ac
2a . Sea D = b2 − 4ac. El número D se

llama discriminante de la forma cuadrática ax2 + bxy + cy2.
Si D = 0 entonces α = β = −b/2a. Multiplicando por 4a obtenemos la

ecuación (2ax + by)2 = 4ad, cuyas soluciones enteras son fáciles de hallar.
Si D = k2 �= 0, entonces multiplicando por 4a queda

(2ax + ky)(2ax− ky) = 4ad,

que a su vez se reduce a un número finito de sistemas de ecuaciones de la forma

2ax + ky = u, 2ax− ky = v,

donde u y v recorren las factorizaciones de 4ad. Si d �= 0 el número de soluciones
es finito. Si d = 0 la ecuación se reduce a 2ax±ky = 0, cuya solución es sencilla.

Nos queda el caso en que D no es un cuadrado perfecto. Entonces α y β
son elementos del cuerpo Q

(√
D

)
. Más aún, son conjugados en el sentido de la

teoŕıa de Galois. Si llamamos N a la norma en Q
(√

D
)
, la ecuación se expresa

en la forma
N(x− αy) = d/a. (1.5)

Por lo tanto, la solución de una ecuación diofántica de la forma (1.4) se
reduce (salvo casos triviales) a encontrar elementos de la forma x − αy con
norma igual a d/a.

Pensar en encontrar elementos de un cuerpo con una norma determinada en
lugar de en encontrar pares de enteros que cumplan una ecuación determinada es
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un cambio de perspectiva muy importante. Con todo, el problema no es simple.
Buena muestra de ello es que la menor solución de la ecuación x2− 61y2 = 1 es
la dada por x = 1.766.319.049, y = 226.153.980.

Lo que hemos ganado es que ahora podemos dar un tratamiento sistemático
al problema. Es prácticamente imposible trabajar en general con una ecuación
con coeficientes indeterminados, pero es muy cómodo teorizar sobre extensio-
nes de Galois. Más aún, un estudio directo de una ecuación de grado 2 seŕıa
dif́ıcilmente generalizable a ecuaciones de grados superiores, mientras que en
lugar de trabajar concretamente con ecuaciones del tipo (1.5), podemos con-
siderar ecuaciones similares definidas por normas de extensiones arbitrarias de
Q, sin que ello suponga apenas ningún esfuerzo adicional. Ello nos llevará a un
método para resolver una familia de ecuaciones diofánticas que incluye todas las
del tipo (1.4), pero también muchas otras de grados arbitrariamente grandes.
Vamos a plantear el problema en toda su generalidad:

Sea K una extensión finita de Q, es decir, K es un cuerpo tal que Q ⊂ K ⊂ C
y como espacio vectorial sobre Q tiene dimensión finita (en el caso anterior seŕıa
K = Q

(√
D

)
, que tiene dimensión 2 sobre Q). Un cuerpo en estas condiciones

se denomina cuerpo numérico.
La teoŕıa de Galois nos da que la extensión tiene un elemento primitivo,

es decir, existe un ζ ∈ K tal que K = Q(ζ) (en el caso anterior ζ =
√

D ).
Todo elemento de K es algebraico sobre Q, es decir, para cada α ∈ K existe un
único polinomio mónico irreducible p(x) ∈ Q[x] tal que p(a) = 0. Además p(x)
divide a cualquier polinomio de Q[x] que tenga a α por ráız. A este polinomio
lo llamaremos polinomio mı́nimo de α y lo abreviaremos por pol mı́nα.

En particular el grado de pol mı́n ζ es el grado de K, es decir, la dimensión
de K como Q-espacio vectorial. Llamémoslo n.

La teoŕıa de Galois nos da también que pol mı́n ζ tiene n ráıces distintas en
C, llamémoslas ζ1, . . . , ζn (con ζ = ζ1), aśı como que para i = 1, . . . , n existe un
isomorfismo σi : K −→ Q(ζi) tal que σi(ζ) = ζi. Es fácil ver que σ1, . . . , σn son
los únicos monomorfismos de K en C, luego no dependen de la elección de ζ.

(En el caso anterior los conjugados de
√

D son ±
√

D y los monomorfismos
son la identidad y la conjugación que env́ıa

√
D a −

√
D. De hecho son isomor-

fismos, aunque si K no es una extensión de Galois puede ocurrir que Q(ζi) no
esté contenido en K).

El cuerpo L = Q(ζ1, . . . , ζn) es la clausura normal de K, es decir, la menor
extensión de Galois sobre Q que contiene a K. Los monomorfismos σi son las
restricciones a K de los automorfismos de L.

Si σ es un automorfismo de L, entonces σi ◦ σ es un monomorfismo de K,
luego se trata de uno de los σj . Además si i �= j, entonces σi ◦ σ �= σj ◦ σ (pues
difieren sobre ζ). Por lo tanto la composición con σ permuta los monomorfismos
σi. El cuerpo K tiene asociada una norma N : K −→ Q definida por

N(α) = σ1(α) · · ·σn(α).

La norma de un número α es ciertamente un número racional, debido a que
cualquier automorfismo σ de L permuta los factores de N(α), y por consiguiente



14 Caṕıtulo 1. Introducción a la teoŕıa algebraica de números

σ
(
N(α)

)
= N(α). Si α1, . . . , αr son elementos no nulos de K definimos

N(x1α1+· · ·+xrαr) =
(
x1σ1(α1)+· · ·+xrσ1(αr)

)
· · ·

(
x1σn(α1)+· · ·+xrσn(αr)

)
Es claro que se trata de una forma de grado n (una forma es un polinomio

cuyos monomios tienen todos el mismo grado). Tener en cuenta que el producto
de formas es una forma y que los factores que definen N(x1α1 + · · ·+ xrαr) son
formas.

Al igual que ocurre con N(α), todo automorfismo σ de L permuta los factores
de N(x1α1 + · · ·+ xrαr), luego

σ
(
N(x1α1 + · · ·+ xrαr)

)
= N(x1α1 + · · ·+ xrαr).

La teoŕıa de Galois nos da entonces que N(x1α1+· · ·+xrαr) ∈ Q[x1, . . . , xr].
Si x1, . . . , xr ∈ Q, entonces N(x1α1 + · · · + xrαr) es simplemente la norma

de x1α1 + · · ·+ xrαr.
Un módulo M de K será un subgrupo de (K,+) generado por un conjunto

finito α1, . . . , αr de elementos de K, es decir,

M = 〈α1, . . . , αr〉Z = {a1α1 + · · ·+ arαr | a1, . . . , ar ∈ Z}.

Hemos visto que hallar las soluciones de una ecuación diofántica definida por
una forma cuadrática (1.4) con discriminante no cuadrado perfecto equivale a
encontrar las soluciones de (1.5), lo que a su vez equivale a encontrar los ele-
mentos del módulo M = 〈1, α〉 de norma d/a. En general, uno de los problemas
que resolveremos en este libro será el de determinar las soluciones enteras de
una ecuación del tipo

N(x1α1 + · · ·+ xrαr) = m,

lo cual equivale a su vez a encontrar los elementos del módulo M = 〈α1, . . . , αr〉Z
de norma m. El método que daremos puede considerarse una generalización de
la teoŕıa de Gauss sobre formas cuadráticas binarias. En la sección siguiente
damos algunos resultados adicionales que terminan de perfilar el planteamiento
del problema.

1.7 Ecuaciones definidas por formas

Cada forma F (x1, . . . , xr) con coeficientes enteros plantea dos problemas
básicos:

1. Determinar las soluciones de la ecuación diofántica F (x1, . . . , xr) = m,
para cada entero m.

2. Determinar qué enteros m están representados por F , es decir, admiten
una expresión del tipo F (x1, . . . , xr) = m para ciertos enteros x1, . . . , xr.
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La teoŕıa que vamos a desarrollar resolverá estos problemas para una familia
bastante amplia de formas. Para empezar, éstas habrán de admitir una repre-
sentación del tipo N(x1α1 + · · · + xrαr), y entonces los problemas indicados
se pueden reformular, tal y como vimos en la sección anterior, en términos del
módulo generado por los números algebraicos α1, . . . , αr.

Una técnica básica en la resolución de ecuaciones es transformarlas en otras
equivalentes, es decir, con las mismas soluciones, pero cada vez más sencillas.
Aunque esto no basta para resolver ecuaciones diofánticas, al menos nos da
cierta libertad para simplificar el problema lo más posible. En primer lugar no-
temos que al multiplicar una ecuación por una constante (racional) no nula, las
soluciones (enteras) no vaŕıan, por lo que en muchos casos podremos considerar
que una forma y uno cualquiera de sus múltiplos son ‘la misma forma’, en el
sentido de que podremos reemplazar una por otra. Esto supone que admitimos
trabajar con formas con coeficientes racionales, no necesariamente enteros.

Hay otro sentido en el que dos formas pueden ser mutuamente reemplazables:

Definición 1.4 Diremos que dos formas F (x1, . . . , xr), G(y1, . . . , ys) del mismo
grado son equivalentes (en sentido amplio) si cada una puede obtenerse de la otra
a partir de un cambio de variables lineal con coeficientes enteros. Diremos que
son equivalentes si r = s y la matriz del cambio de variables tiene determinante
±1 (con lo que tenemos dos cambios de variables mutuamente inversos).

Por ejemplo, las formas

x2 + 7y2 + z2 − 6xy + 6yz − 2xz y 2u2 − v2

son equivalentes (en sentido amplio), pues los cambios de variables

x = 3v u = −x + 2y + z
y = u + v v = x− y − z
z = −u + v

convierten una en otra.
Es claro que en esta situación una solución entera de una de las formas

da lugar a una solución entera de la otra mediante las fórmulas de cambio de
variables, luego sabemos resolver una si y sólo si sabemos resolver la otra.

Ejercicio: Probar que si los números algebraicos α1, . . . , αr y β1, . . . , βs generan un
mismo módulo de un cuerpo numérico K entonces las formas N(x1α1 + · · · + xrαr)
y N(x1β1 + · · · + xsβs) son equivalentes en sentido amplio, y si ambos son bases del
mismo módulo entonces son equivalentes.

Este ejercicio muestra que a cada módulo le podemos asociar una única
clase de equivalencia (en sentido amplio) de formas, aśı como que toda forma
es equivalente en sentido amplio a una forma N(x1α1 + · · · + xrαr), donde
α1, . . . , αr forman una base de un cierto módulo. (Notemos que todo módulo es
un Z-módulo finitamente generado y libre de torsión, luego es libre.)

El teorema siguiente muestra cómo la equivalencia de formas nos permite
pasar a formas con propiedades adicionales de interés:
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Teorema 1.5 Toda forma de grado n es equivalente a otra en la que la potencia
n-sima de una de las variables tiene coeficiente no nulo.

Demostración: Sea F (x1, . . . , xr) una forma de grado n. Probamos pri-
mero que existen enteros a2, . . . , ar tales que F (1, a2, . . . , ar) �= 0. Lo haremos
por inducción sobre r.

Si r = 1 entonces es F (x1) = Axn1 con A �= 0, luego F (1) �= 0.
Si es cierto para formas con r − 1 variables, escribimos F como

F = G0x
n
r + G1x

n−1
r + · · ·+ Gn,

donde cada Gi es 0 o una forma de grado i con r− 1 variables, pero no pueden
ser todas nulas, pues F tiene grado n. Por hipótesis de inducción existen enteros
a2, . . . , ar−1 tales que Gi(1, a2, . . . , ar−1) �= 0 para algún i.

El polinomio F (1, a2, . . . , ar−1, xr) no es nulo, luego existe un entero ar tal
que F (1, a2, . . . , ar−1, ar) �= 0.

Ahora hacemos el siguiente cambio de variables:

x1 = y1

x2 = a2y1 + y2

· · · · · · · · · · · ·
xr = ary1 + yr.

Con ello F se convierte en G(y1, . . . , yr) = F (y1, a2y1 + y2, . . . , ary1 + yr),
que es una forma equivalente (el cambio tiene determinante 1) y el coeficiente
de yn1 es G(1, 0, . . . , 0) = F (1, a2, . . . , ar) �= 0.

Ahora podemos dar una caracterización sencilla de las formas que admiten
una representación de tipo N(x1α1 + · · ·+ xrαr).

Definición 1.6 Una forma F (x1, . . . , xr) ∈ Q[x1, . . . , xr] es factorizable si exis-
te un cuerpo K (extensión de Q) tal que F se escinde en producto de factores
lineales de K[x1, . . . , xr].

Por definición, las formas N(x1α1 + · · ·+ xrαr) son factorizables. También
es evidente que si dos formas son equivalentes, una es factorizable si y sólo si lo
es la otra.

Ejercicio: Comprobar que la forma x2 + y2 + z2 no es factorizable (si lo fuera se
descompondŕıa en dos factores lineales).

Los razonamientos con formas cuadráticas binarias vistos en la sección an-
terior justifican que todas ellas son factorizables.

En general, una condición necesaria para poder abordar una ecuación diofán-
tica definida por una forma expresándola como norma en un módulo es que la
forma ha de ser factorizable. De hecho las formas N(x1α1+· · ·+xrαr) factorizan
en cuerpos numéricos, pero esto no es una restricción adicional:

Teorema 1.7 Toda forma factorizable factoriza en un cuerpo numérico.
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Demostración: Sea F = (α11x1 + · · · + α1rxr) · · · (αn1x1 + · · · + αnrxr)
una forma factorizable, donde los coeficientes αij están en un cierto cuerpo K.
Es obvio que si una forma factoriza en un cuerpo K, también lo hacen sus
equivalentes, luego podemos exigir que el coeficiente A de xn1 sea no nulo. En-
tonces todos los coeficientes ai1 son no nulos (su producto es A), luego podemos
extraerlos y escribir

F = A(x1 + β12x2 + · · ·+ β1rxr) · · · (x1 + βn2x2 + · · ·+ βnrxr).

Para 2 ≤ j ≤ r hacemos xj = 1 y las demás variables 0, con lo que queda

F (x1, 0, . . . , 1, . . . , 0) = A(x1 + β1j). . . (x1 + βnj),

y aśı tenemos un polinomio mónico con coeficientes racionales cuyas ráıces son
los elementos −βij , luego son algebraicos.

El cuerpo Q
(
{βij}

)
es una extensión finita de Q, luego podemos identificarlo

con un subcuerpo de C, es decir, con un cuerpo numérico, y F factoriza en él.

Una forma de tipo N(x1α1 + · · · + xrαr) no tiene por qué ser irreducible
en el anillo Q[x1, . . . , xr]. Por ejemplo, en el cuerpo K = Q

(√
2,
√

3
)

se tiene
que N

(
x
√

2 + y
√

3
)

= (2x2 − 3y2)2. Desgraciadamente poco podemos decir en
general sobre formas reducibles, pues sus factores se comportan independien-
temente y la teoŕıa de cuerpos no es de gran ayuda. Por ejemplo, de nuestro
análisis de las formas cuadráticas binarias en la sección anterior se deduce que
una forma cuadrática es reducible en Q[x, y] si y sólo si su discriminante es
cuadrado perfecto, y ese caso tuvo que ser estudiado aparte.

Nuestra teoŕıa se aplicará satisfactoriamente a formas factorizables irredu-
cibles, caracterizadas por estar definidas por generadores de K.

Teorema 1.8 Sea un cuerpo numérico K = Q(α2, . . . , αr). Entonces la forma
F (x1, . . . , xr) = N(x1 +x2α2 + · · ·+xrαr) es irreducible en Q[x1, . . . , xr] y toda
forma factorizable irreducible en Q[x1, . . . , xr] es equivalente a un múltiplo por
una constante de una forma de este tipo.

Demostración: Supongamos que F = GH, donde G,H ∈ Q[x1, . . . , xr].
Por definición

F =
(
x1 + x2σ1(α2) + · · ·+ xrσ1(αr)

)
· · ·

(
x1 + x2σn(α2) + · · ·+ xrσn(αr)

)
.

Cada forma Li = x1 +x2σi(α2)+ · · ·+xrσi(αr) divide a G o a H. Digamos
que L1 divide a G, o sea, G = L1M . Aplicando el monomorfismo σi y teniendo
en cuenta que G tiene los coeficientes racionales llegamos a que G = Liσi(M),
o sea, todas las formas Li dividen al polinomio G.

Como α2, . . . , αr generan K, si dos monomorfismos coinciden sobre ellos es
que son iguales. De aqúı se sigue que las formas Li son distintas dos a dos, y
como el coeficiente de x1 es 1 en todas ellas, no pueden diferenciarse en una
unidad, es decir, son primas entre śı. Consecuentemente su producto, o sea, F ,
divide a G. Esto implica que H es una constante, luego F es irreducible.
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Si F ∗(x1, . . . , xr) es una forma irreducible factorizable de grado n, por el
teorema 1.5 podemos suponer que el coeficiente de xn1 es no nulo, y entonces F ∗

factoriza como

F ∗ = A(x1 + β12x2 + · · ·+ β1rxr) · · · (x1 + βn2x2 + · · ·+ βnrxr).

Consideremos el cuerpo K = Q(β12, . . . , β1r) y la forma irreducible F =
N(x1 + β12x2 + · · ·+ β1rxr).

Tenemos que la forma (x1+β12x2+· · ·+β1rxr) divide a F y a F ∗. Aplicando
los monomorfismos de K obtenemos que todos los factores de F dividen a F ∗

y en la prueba de la parte anterior hemos visto que son primos entre śı, luego
F divide a F ∗. Como F ∗ es irreducible ha de ser un múltiplo de F por una
constante.

1.8 Conclusión

El resto de este libro está dedicado a desarrollar las técnicas algebraicas y
anaĺıticas que permiten abordar los distintos problemas que hemos citado en
este breve recorrido por la teoŕıa de números del siglo XIX. Encontraremos
un método para resolver las ecuaciones diofánticas del tipo estudiado en las
secciones anteriores, conoceremos la teoŕıa de Gauss sobre formas cuadráticas,
incluyendo la ley de reciprocidad, determinaremos los enteros que son sumas
de dos, tres y cuatro cuadrados, probaremos los resultados más importantes de
Kummer sobre el teorema de Fermat, aśı como el teorema de Dirichlet sobre
primos en progresiones aritméticas. Todo ello lo obtendremos desde el marco
de la teoŕıa general de cuerpos numéricos, que fue desarrollada por Dedekind
a finales del siglo XIX generalizando y unificando los razonamientos de sus
antecesores. Excepcionalmente haremos una incursión en la teoŕıa moderna.
Demostraremos el teorema de Hasse Minkowski sobre clasificación de formas
cuadráticas, con el que obtendremos, si no la última palabra, śı una visión
bastante profunda de la ley de reciprocidad cuadrática.

El último caṕıtulo contiene algunos resultados de la teoŕıa de números tras-
cendentes. Concretamente probamos el teorema de Lindemann–Weierstrass,
que generaliza las pruebas de trascendencia de e y π, y el teorema de Gelfond–
Schneider, que resuelve una parte del séptimo problema de Hilbert. La teoŕıa
de números trascendentes es mucho más ardua que la de números algebraicos,
y en muchas ocasiones requiere a ésta como herramienta a un nivel mucho más
elevado que el de este libro. Sirvan los ejemplos presentados como una pequeña
y parcial muestra de sus técnicas.



Caṕıtulo II

Cuerpos numéricos

El estudio de los cuerpos numéricos está en la base de la teoŕıa algebraica de
números. Toda la teoŕıa que vamos a desarrollar resulta especialmente sencilla y
elegante cuando se aplica al caso de los cuerpos cuadráticos, es decir, los cuerpos
numéricos de grado 2. Comencemos describiendo estos cuerpos.

Si K es un cuerpo cuadrático, la teoŕıa de Galois nos da que tiene un elemento
primitivo, es decir, existe un ζ ∈ K tal que K = Q(ζ). Entonces pol mı́n ζ tiene
grado 2. Multiplicándolo por una constante obtenemos un polinomio ax2+bx+c
con coeficientes enteros con ráız ζ y tal que a �= 0. Si llamamos D = b2 − 4ac,
entonces ζ = −b±

√
D

2a , y es claro que K = Q
(√

D
)
.

El número D no puede ser un cuadrado perfecto, o de lo contrario K = Q y
su grado seŕıa 1. Digamos que D = m2d, donde d es libre de cuadrados (quizá
d = −1). Entonces

√
D = m

√
d y es evidente que K = Q

(√
d

)
.

En resumen, todo cuerpo cuadrático es de la forma Q
(√

d
)

para un entero d

libre de cuadrados. Sus elementos son de la formaQ
(√

d
)

= {a+b
√

d | a, b ∈ Q}.
Pronto veremos que si d �= d′ en estas condiciones, entonces los cuerpos que

determinan son distintos.
En lo sucesivo, cuando digamos que Q

(√
d

)
es un cuerpo cuadrático se

sobrentenderá que d es un entero libre de cuadrados. Si d < 0 se entiende que√
d es el número complejo

√
−d i.

2.1 Enteros algebraicos

Puede considerarse que el primer paso en la construcción de la teoŕıa alge-
braica de números moderna lo dio Dedekind al definir los enteros algebraicos.
Éstos permiten desarrollar una teoŕıa general que recoja como casos particulares
los resultados clásicos sobre enteros cuadráticos (como son los enteros de Gauss)
o enteros ciclotómicos. En general, los enteros algebraicos juegan el mismo pa-
pel respecto a los números algebraicos que los enteros ordinarios respecto a los
números racionales.

19
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Definición 2.1 Un número complejo es un entero algebraico si y sólo si es la
ráız de un polinomio mónico con coeficientes enteros.

Llamaremos A al cuerpo de todos los números algebraicos y E al conjunto
de todos los enteros algebraicos (que, como pronto veremos, es un anillo). Cla-
ramente E ⊂ A.

Teorema 2.2 Un número algebraico a es un entero algebraico si y sólo si
pol mı́n a ∈ Z[x].

Demostración: Una implicación es obvia. Supongamos que a es un entero
algebraico y sea p(x) ∈ Z[x] un polinomio mónico tal que p(a) = 0. Sea q(x)
un factor irreducible de p(x) en Z[x] tal que q(a) = 0. Existe un polinomio
r(x) ∈ Z[x] tal que p(x) = q(x)r(x). Como el producto de los coeficientes
directores de q(x) y r(x) debe ser igual al coeficiente director de p(x) que es
1, el coeficiente director de q(x) debe ser ±1. Podemos exigir que sea 1 y
aśı q(x) es un polinomio mónico irreducible en Z[x] del que a es ráız. Por el
criterio de irreducibilidad de Gauss, q(x) también es irreducible en Q[x], luego
q(x) = pol mı́n a ∈ Z[x].

Como el polinomio mı́nimo de un número racional r es x− r, es obvio ahora
que un número racional es un entero algebraico si y sólo si es un entero. Las
propiedades básicas de los enteros algebraicos se deducen del teorema siguiente.

Teorema 2.3 Un número complejo c es un entero algebraico si y sólo si el
anillo Z[c] =

{
q(c)

∣∣ q(x) ∈ Z[x]
}

es un Z-módulo finitamente generado. En tal
caso dicho módulo es libre de rango |Q(c) : Q|.

Demostración: Supongamos que c es un entero algebraico. Entonces
p(c) = 0, donde p(x) es un polinomio mónico con coeficientes enteros y de
grado n. Veamos que

Z[c] = 〈cm | m = 1, . . . , n− 1〉 . (2.1)

Un elemento arbitrario de Z[c] es de la forma q(c), donde q(x) es un polinomio
con coeficientes enteros. Dividimos q(x) = p(x)u(x) + r(x), donde u y r tienen
ambos coeficientes enteros y el grado de r es menor que n. Entonces resulta que
q(c) = r(c), luego pertenece al miembro derecho de (2.1), y la otra inclusión es
obvia. De hecho el generador (1, c, . . . , cn−1) es una base, pues una combinación
lineal nula es de la forma r(c) = 0, con r(x) ∈ Z[x] de grado menor que n, luego
concluimos que r = 0.

Supongamos ahora que Z[c] es finitamente generado. Digamos que admite
n generadores v1, . . . , vn. Cada vi es un polinomio en c con coeficientes enteros.
Sea m mayor que el grado de cualquiera de dichos polinomios.

Entonces cm se expresa como combinación lineal con coeficientes enteros de
los vi, luego en definitiva cm = q(c), con q(x) ∈ Z[x] de grado menor que m. La
ecuación cm − q(c) = 0 justifica que c es un entero algebraico.

Con esto estamos en condiciones de probar lo que hab́ıamos anunciado:
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Teorema 2.4 El conjunto E de los enteros algebraicos es un subanillo de A.

Demostración: Sean c, d ∈ E. Hay que probar que c + d y cd están en E.
Sea {v1, . . . , vn} un generador de Z[c] y sea {w1, . . . , wm} un generador de Z[d].
Sea M el Z-módulo generado por los todos los productos viwj .

Todo cr se expresa como combinación lineal con coeficientes enteros de los
vi y todo ds se expresa como combinación lineal con coeficientes enteros de los
wj . Al multiplicar estas expresiones obtenemos una expresión de crds como
combinación lineal con coeficientes enteros de los generadores de M , luego cada
crds ∈M .

En particular, Z[cd] ⊂M , luego es un Z-módulo finitamente generado (todo
submódulo de un Z-módulo finitamente generado es finitamente generado). Por
el teorema anterior cd ∈ E.

Al desarrollar (c + d)k obtenemos una combinación lineal con coeficientes
enteros de elementos de la forma crds, que están en M , luego Z[c + d] ⊂ M y
también se cumple que c + d ∈ E.

Del mismo modo que todo número racional es cociente de dos números en-
teros, todo número algebraico es cociente de dos enteros algebraicos. En efecto:

Teorema 2.5 Para cada c ∈ A existe un entero no nulo m tal que mc ∈ E.

Demostración: Sea pol mı́n c = xn + an−1x
n−1 + · · ·+ a1x + a0. Sea m el

producto de los denominadores de todos los coeficientes no nulos de p(x).
Entonces mn(cn + an−1c

n−1 + · · ·+ a1c + a0) = 0, luego

(mc)n + an−1m(mc)n−1 + · · ·+ a1m
n−1(mc) + a0 = 0.

Por lo tanto, xn + an−1mxn−1 + · · · + a1m
n−1x + a0 es un polinomio mónico

con coeficientes enteros del cual es ráız mc.

Desde el punto de vista de la teoŕıa algebraica de números, los enteros usuales
son sólo un caso particular de los enteros algebraicos. Por ello es costumbre
reservar la palabra “entero” para referirse a los enteros algebraicos. Nosotros
seguiremos esta costumbre en lo sucesivo y por ello a los elementos de Z los
llamaremos “enteros racionales”, pues ciertamente son los enteros (algebraicos)
que además son números racionales.

Ejemplo Al trabajar con enteros algebraicos podemos permitirnos simplificar
los cálculos usando aproximaciones racionales sin más precaución que vigilar
que los errores de redondeo no lleguen a media unidad, con lo que pueden ser
compensados al final tomando el entero más próximo al resultado. Como ilus-
tración consideremos una ráız α del polinomio x3 + 4x + 1. Obviamente es un
entero, luego también lo es 2 + α2. Supongamos que queremos conocer el poli-
nomio mı́nimo de éste último. Una forma de hallarlo es buscar aproximaciones
racionales de los tres conjugados de α, a saber:

α1 = −0, 246266, α2 = 0, 123133 + 2, 01134 i, α3 = 0, 123133− 2, 01134 i,
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y después calcular

(x−2−α2
1)(x−2−α2

2)(x−2−α2
3) = x3+2, 00001x2−4x−9, 00003−2, 1684·10−19i.

Evidentemente el polinomio buscado es pol mı́n(2 + α2) = x3 + 2x2 − 4x − 9.
Podŕıamos haber llegado al mismo resultado mediante un cálculo algebraico
exacto, pero si disponemos de un ordenador esta técnica resulta mucho más
rápida y eficiente. Se puede emplear igual para calcular normas, trazas, etc.

2.2 Discriminantes

Completamos los requisitos algebraicos de nuestra teoŕıa estudiando los dis-
criminantes de bases de cuerpos numéricos. En general, si K es un cuerpo
numérico, la traza Tr : K −→ Q determina una forma bilineal simétrica

K ×K −→ Q
(α, β) 
→ Tr(αβ)

Dada una base {β1, . . . , βn} de K, la matriz de la forma en esta base es
A =

(
Tr(βiβj)

)
. Si llamamos σ1, . . . , σn a los monomorfismos de K, es decir, los

monomorfismos σ : K −→ C, esta matriz puede descomponerse como producto
A =

(
σk(βi)

)
ik

(
σk(βj)

)
kj

.

Definición 2.6 Llamaremos discriminante de una base B = {β1, . . . , βn} de
un cuerpo numérico K al número

∆[B] = ∆[β1, . . . , βn] = det
(
Tr(βiβj)

)
=

(
det

(
σi(βj)

))2

.

Notar que el cuadrado hace que el valor del discriminante no dependa del orden
de los elementos de la base o del de los monomorfismos.

En particular, si ζ es un elemento primitivo de K, las potencias 1, ζ, . . . , ζn−1

forman una base de K. Por brevedad escribiremos ∆[ζ] = ∆[1, ζ, . . . , ζn−1].

Los discriminantes constituyen una herramienta muy poderosa para traba-
jar con cuerpos numéricos. El teorema siguiente recoge sus propiedades más
importantes.

Teorema 2.7 Sean B y C dos bases de un cuerpo numérico K.

1. ∆[B] ∈ Q y ∆[B] �= 0.

2. Si DC
B es la matriz cuyas filas son las coordenadas de los elementos de B

respecto de la base C, entonces ∆[B] = |DC
B |2∆[C].

3. Si los elementos de B son enteros, ∆[B] ∈ Z y ∆[B] ≡ 0, 1 (mód 4).
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Demostración: La propiedad 2) es un hecho general sobre formas bilinea-
les. Es obvio que los discriminantes son números racionales. Para probar que
son no nulos basta verlo para una base en particular (con esto probamos que
la forma bilineal determinada por la traza es regular). Consideremos concreta-
mente {1, ζ, . . . , ζn−1}, donde ζ es un elemento primitivo de K. Para esta base
el determinante que aparece es un determinante de Vandermonde

∆[ζ] = det
(
σi(ζj−1)

)2 = det(σi(ζ)j−1)2 =
∏

1≤i<j≤n

(
σj(ζ)− σi(ζ)

)2
,

y como los n conjugados de ζ son distintos, el determinante es no nulo.

Es obvio que los conjugados de enteros son enteros, luego las trazas de los
enteros son enteros racionales, y aśı la primera parte de 3) es clara.

Sea B = {β1, . . . , βn}. Sea ρ uno de los monomorfismos de K. Llamemos
A =

(
σi(βj)

)
. El determinante de A es una suma de productos de la forma

±στ(1)(β1) · · ·στ(n)(βn),

donde τ ∈ Σn, el grupo de las permutaciones de n elementos. Si le aplicamos ρ
obtenemos un término de la forma

±ρ
(
στ(1)(β1)

)
· · · ρ

(
στ(n)(βn)

)
.

Ahora bien, cada monomorfismo σiρ ha de ser un σρ(i), para cierto ı́ndice ρ(i)
(y ahora estamos llamando ρ a una permutación de {1, . . . , n} inducida por el
automorfismo ρ). Por lo tanto la imagen por ρ del producto es

±σρ(τ(1))(β1) · · ·σρ(τ(n))(βn),

es decir, el sumando del determinante correspondiente a la permutación τρ.
Si (la permutación inducida por) ρ es una permutación par entonces ρ env́ıa

sumandos con signo positivo a sumandos con signo positivo y sumandos con
signo negativo a sumandos con signo negativo, mientras que si ρ es impar en-
tonces intercambia los sumandos positivos con los negativos. En otras palabras,
si llamamos respectivamente P y N a la suma de términos positivos y negativos
(sin el signo) del determinante de A, tenemos que detA = P − N y o bien
ρ(P ) = P y ρ(N) = N , o bien ρ(P ) = N y ρ(N) = P .

En cualquier caso ρ(P + N) = P + N y ρ(PN) = PN , para todo automor-
fismo ρ, luego concluimos que P +N , PN ∈ Q. Además son enteros algebraicos,
luego están en Z. Finalmente,

∆[B] = (P −N)2 = (P + N)2 − 4PN ≡ (P + N)2 ≡ 0, 1 (mód 4),

pues todo cuadrado es 0 o 1 módulo 4.

En la prueba anterior hemos visto que los discriminantes asociados a ele-
mentos primitivos son especialmente simples de manejar debido a que son el
cuadrado de un determinante de Vandermonde. Este hecho también simplifica
enormemente su cálculo práctico.
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Teorema 2.8 Sea K = Q(ζ) un cuerpo numérico y p(x) = pol mı́n ζ. Entonces

∆[ζ] = (−1)n(n−1)/2 N
(
p′(ζ)

)
,

donde p′(x) es la derivada formal de p(x) y n es el grado de K.

Demostración: Según hemos visto en la prueba del teorema anterior

∆[ζ] =
∏

1≤i<j≤n

(
σj(ζ)− σi(ζ)

)2
. (2.2)

Por otro lado, p(x) =
∏n

i=1

(
x − σi(ζ)

)
, y se demuestra fácilmente (por

inducción sobre n) que

p′(x) =
n∑
j=1

n∏
i=1
i �=j

(
x− σi(ζ)

)
,

luego

p′
(
σj(ζ)

)
=

n∏
i=1
i �=j

(
σj(ζ)− σi(ζ)

)
para j = 1, . . . , n.

Multiplicando todas estas ecuaciones obtenemos

N
(
p′(ζ)

)
=

n∏
j=1

σj
(
p′(ζ)

)
=

n∏
j=1

p′
(
σj(ζ)

)
=

n∏
i,j=1
i �=j

(
σj(ζ)− σi(ζ)

)
.

Agrupamos los pares
(
σj(ζ)−σi(ζ)

)(
σi(ζ)−σj(ζ)

)
= −

(
σj(ζ)−σi(ζ)

)2. El
número de factores (−1) que aparecen es n(n− 1)/2, luego teniendo en cuenta
(2.2) queda N

(
p′(ζ)

)
= (−1)n(n−1)/2∆[ζ], y de aqúı se sigue el teorema.

Ejercicio: Sea K = Q
(√
d
)

un cuerpo cuadrático. Calcular ∆
[
1,
√
d
]

directamente
y mediante el teorema anterior.

Ejercicio: Sea ω una ráız p-ésima primitiva de la unidad para un primo impar p.
Probar que ∆[ω] = (−1)(p−1)/2pp−2.

Ejemplo Si el polinomio f(x) = x3 + ax + b ∈ Q[x] es irreducible y α es una
ráız, entonces ∆[α] = −27b2 − 4a3.

En efecto, si α′ es cualquier conjugado de α, entonces

f ′(α′) = 3α′2 + a =
3α′2 + aα

α′ =
−2aα′ − 3b

α′ .

Multiplicamos para los tres conjugados de α, teniendo en cuenta que su
producto es −b. Aśı,

∆[α] = −
(
N f ′(α)

)
=

1
b

∏
α′

(−2aα′ − 3b) =
8a3

b

∏
α′

(
−3b
2a

− α′) =
8a3

b
f

(
− 3b

2a

)
.

Desde aqúı se llega a la fórmula indicada sin más que operar. (Hemos supuesto
a �= 0, pero si a = 0 es más sencillo.)
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Ejercicio: Probar que si x5 + ax + b ∈ Q[x] es irreducible y α es una ráız, entonces
∆[α] = 54b4 + 28a5.

Definición 2.9 En el teorema 2.7 hemos visto que la forma bilineal asociada a
la traza de un cuerpo numérico K es regular, por lo que induce un isomorfismo
entre K y su espacio vectorial dual. Concretamente, cada α ∈ K se corresponde
con la aplicación lineal K −→ Q dada por β 
→ Tr(αβ). Si B = {α1, . . . , αn} es
una base de K, podemos considerar su base asociada en el espacio dual de K, que
a través del isomorfismo citado se corresponde con una nueva base {α∗

1, . . . , α
∗
n}

de K. Esta base se llama base dual de B, y está caracterizada por que

Tr(αiα∗
j ) =

{
1 si i = j
0 si i �= j

Ejemplo Sea α una ráız del polinomio x3 +4x+1. Una base del cuerpo Q(α)
la forman obviamente los números {1, α, α2}. Vamos a calcular la matriz en
dicha base de la forma bilineal asociada a la traza. En la página 22 tenemos los
conjugados de α. Si por ejemplo queremos calcular Tr(α · α) calculamos

α2
1 + α2

2 + α2
3 = −8, 00001

con lo que Tr(α · α) = −8. Similarmente se calculan las demás trazas, y el
resultado es

A =


 3 0 −8

0 −8 3
−8 3 32


 .

El discriminante es ∆[α] = −283 y además

A−1 =
1

283


 265 24 64

24 −32 9
64 9 24


 .

Es fácil ver entonces que la base dual de la dada es

265
283

+
24
283

α +
64
383

α2,

24
283

− 32
283

α +
9

383
α2,

64
283

+
9

283
α +

24
383

α2.

2.3 Módulos y órdenes

Finalmente estamos en condiciones de estudiar de forma sistemática algunos
conceptos que nos surgieron en el caṕıtulo anterior, en relación con el estudio de
las ecuaciones definidas mediante formas. Recordemos la definición de módulo:
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Definición 2.10 Un módulo de un cuerpo numérico K es un subgrupo aditivo
de K finitamente generado.

Vimos en el caṕıtulo anterior que los módulos están asociados a clases
de equivalencia de formas: Si α1, . . . , αr generan un módulo M , entonces la
ecuación diofántica

N(x1α1 + · · ·+ xrαr) = c (2.3)

tiene por soluciones a (las coordenadas de) los elementos de M de norma c. Un
generador distinto da lugar a una forma equivalente.

Si M es un módulo, es obvio que para todo α ∈M y todo m ∈ Z, se cumple
mα = 0 si y sólo si m = 0 o α = 0, pero esto significa que M es libre de torsión,
y los Z-módulos finitamente generados libres de torsión son libres, o sea, tienen
base, y todas las bases tienen el mismo número de elementos, llamado rango de
M (rangM).

Es inmediato que un conjunto finito de elementos de K es independiente
sobre Q si y sólo si es independiente sobre Z (una combinación lineal en Q se
convierte en una combinación lineal en Z multiplicando por un entero no nulo).
Consecuentemente si M es un módulo de K, rangM ≤ n (el grado de K).

Los módulos de rango n se llaman módulos completos. Si M es un módulo
completo, entonces una base de M como módulo es también una Q-base de K.

Si B y B′ son dos bases de M , entonces la matriz de cambio de base tiene
coeficientes enteros, al igual que su inversa, luego su determinante ha de ser
±1. El teorema 2.7 nos da entonces que ∆[B] = ∆[B′], luego podemos definir
el discriminante de M como el discriminante ∆[M ] de cualquiera de sus bases.

Definición 2.11 Si M es un módulo de K y α ∈ K, α �= 0, definimos

αM = {αm | m ∈M},
que claramente es un módulo del mismo rango. Diremos que dos módulos M y
N son similares si existe un α ∈ K, α �= 0 tal que N = αM .

La similitud es una relación de equivalencia entre los módulos de K.

Ejercicio: Comprobar que si F es una forma asociada a un módulo de la forma αM ,
entonces F = N(α)F ′, donde F ′ es una forma asociada al módulo M .

Este ejercicio justifica que si estudiamos un módulo para resolver una deter-
minada ecuación diofántica de tipo (2.3) podemos sustituirlo por otro similar.

Observar que si α1, . . . , αr son no nulos y generan un módulo completo M ,
entonces los números 1, α2/α1, . . . , αr/α1 generan el módulo similar (1/α1)M
y, en particular,

K = Q(α2/α1, . . . , αr/α1).

Por el teorema 1.8, la forma asociada a este último generador es irreducible,
luego también lo es la forma N(x1α1+· · ·+xrαr), pues se diferencia de la anterior
en una constante. En resumen, las formas asociadas a módulos completos son
irreducibles. Llamaremos formas completas a las formas asociadas a módulos
completos. Éstas son exactamente las formas a las que la teoŕıa que vamos a
desarrollar se aplica con éxito.
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Ejemplo Consideremos la ecuación x2 + 5xy + 2y2 = 2. Siguiendo la técnica
del caṕıtulo anterior podemos factorizarla como

N

(
x− −5−

√
17

2
y

)
= 2.

Por lo tanto la ecuación está asociada al módulo completo

M =

〈
1,

5 +
√

17
2

〉
,

correspondiente al cuerpo numérico Q
(√

17
)
. Las soluciones de la ecuación se

corresponden con los elementos de M de norma 2. Por ejemplo, una solución es
evidentemente (x, y) = (0, 1), correspondiente al segundo generador.

Con esto no hemos hecho sino reformular el problema. Veamos una mı́nima
muestra de las ventajas del nuevo enfoque. Consideremos el número

ε = 33 + 8
√

17.

Sencillos cálculos nos dan que N(ε) = 1 y que εM ⊂M . Parte de la teoŕıa que
tenemos por delante dará cuenta de cómo se puede llegar a un número con estas
propiedades. De momento veamos el interés de estos hechos. Ahora es claro
que los números

εn
5 +

√
17

2
, para n = 1, 2, 3, . . .

están todos en M y tienen norma 2, luego nos proporcionan nuevas soluciones
de nuestra ecuación. Por ejemplo,

ε
5 +

√
17

2
=

301 + 73
√

17
2

= −32 + 73
5 +

√
17

2

nos lleva a la solución (x, y) = (−32, 73).
De este modo hemos encontrado infinitas soluciones de la ecuación. Esto es

un fragmento de la técnica que usaremos para resolver el caso general: veremos
que todas las soluciones pueden encontrarse de este modo a partir de un número
finito de soluciones básicas.

Planteando esto en general, una solución de (2.3) esta determinada por un
elemento m en un módulo M tal que N(m) = c. Si ε es un elemento de K tal
que εm ∈ M y N(ε) = 1, entonces N(εm) = c, luego εm es otra solución. Esto
nos lleva a la definición de coeficiente de un módulo.

Definición 2.12 Sea M un módulo completo de un cuerpo numérico K. Di-
remos que α ∈ K es un coeficiente de M si αM ⊂ M . Llamaremos OM al
conjunto de todos los coeficientes de M . Es claro que OM es un subanillo de K.
Lo llamaremos anillo de coeficientes de M .
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Notar que para que α sea un coeficiente de M basta con que αm ∈M cuando
m recorre una base de M .

En estos términos, los elementos de OM de norma 1 satisfacen las propiedades
que ped́ıamos a ε en el ejemplo anterior. Para localizarlos probaremos que las
unidades de OM son precisamente los elementos de norma ±1 y aśı el problema
se reducirá parcialmente al problema algebraico de determinar las unidades de
un anillo. Primero necesitamos el siguiente hecho básico sobre OM .

Teorema 2.13 Sea M un módulo completo de K. Entonces OM es también
un módulo completo.

Demostración: Si γ ∈ M es no nulo, entonces γOM ⊂ M y claramente
es un subgrupo abeliano de M , luego es un módulo. Aśı, OM = γ−1(γOM ) es
también un módulo. Veamos que es de rango máximo.

Sea m1, . . . ,mn una base de M . Si α ∈ K es no nulo existen números racio-
nales aij tales que αmi =

∑n
j=1 aijmj . Sea c el producto de los denominadores

de los aij . Entonces c es un entero racional no nulo y cada caij ∈ Z, luego
caijmj ∈M , y aśı cαmi ∈M . Como los elementos m1, . . . ,mn son una base de
M podemos concluir que cα ∈ OM .

Ahora aplicamos esto a una Q-base de K, digamos α1, . . . , αn, y encontramos
números racionales no nulos c1, . . . , cn tales que c1α1, . . . , cnαn ∈ OM , luego OM

contiene n elementos linealmente independientes, por lo que su rango es n.

Definición 2.14 Diremos que O es un orden de un cuerpo numérico K si es un
módulo completo de K que además es un anillo unitario.

El teorema anterior prueba que el anillo de coeficientes de un módulo com-
pleto de K es un orden de K. Todo orden es el anillo de coeficientes de un
módulo completo (al menos de śı mismo).

Los órdenes son módulos muy especiales. Por lo pronto su estructura de
anillo nos permite argumentar en términos de divisibilidad, unidades, ideales,
etc. Otra caracteŕıstica muy importante es que los elementos de un orden han de
ser enteros. Recogemos éste y otros hechos importantes en el próximo teorema.

Teorema 2.15 Sea O un orden de un cuerpo numérico K de grado n.

1. Si α ∈ O entonces α es un entero y N(α), Tr(α) son enteros racionales.
Por lo tanto tenemos aplicaciones N : O −→ Z y Tr : O −→ Z.

2. Si α, β ∈ O y α | β, entonces N(α) | N(β). En particular si α y β son
asociados N(α) = ±N(β).

3. Si a y b son enteros racionales, entonces a | b en Z si y sólo si a | b en O.

4. Si α ∈ O entonces α | N(α) (en O).

5. Un número ε ∈ O es una unidad si y sólo si N(ε) = ±1.
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Demostración: 1) Si α ∈ O, entonces Z[α] ⊂ O (porque O un anillo),
luego luego Z[α] es finitamente generado (porque O es un módulo), luego por el
teorema 2.3 concluimos que α es entero.

Los conjugados de enteros son enteros (porque tienen el mismo polinomio
mı́nimo) y por lo tanto N(α) y Tr(α) son enteros (son el producto o la suma de
los conjugados de α). Además son racionales.

2) Es evidente, por la propiedad multiplicativa de la norma.

3) Si a | b en O, entonces a/b es entero y racional.

4) Supongamos α �= 0 y consideremos el polinomio

p(x) =
(
x− σ1(α)

)
· · ·

(
x− σn(α)

)
.

Los automorfismos de la clausura normal de K permutan los factores de
p(x), luego sus coeficientes son números racionales. Como α y sus conjugados
son enteros, también lo serán los coeficientes de p(x), es decir, son enteros
racionales.

El polinomio p(x) es mónico y su término independiente es ±N(α). Por
lo tanto podemos despejar N(α)/α como combinación de potencias de α con
coeficientes enteros racionales. Consecuentemente N(α)/α ∈ O.

5) Si N(ε) = ±1 entonces ε | N(ε) = ±1, luego ε es una unidad. Si ε es una
unidad entonces ε−1 ∈ O, y N(ε) N(ε−1) = N(1) = 1, luego N(ε) = ±1 (pues los
dos factores son enteros racionales).

Profundicemos ahora en la relación entre un módulo y su anillo de coeficien-
tes. En primer lugar tenemos lo siguiente:

Teorema 2.16 Sea K un cuerpo numérico. Entonces:

1. Dos módulos completos similares tienen el mismo anillo de coeficientes.

2. Si M es un módulo completo, existe un m ∈ Z no nulo tal que mM ⊂ OM .

Demostración: 1) es evidente.
2) Sea m1, . . . ,mn una base de M y α1, . . . , αn una base de OM . Existen

números racionales aij tales que mi =
∑n

j=1 aijαj . Si m es el producto de los
denominadores de los aij se cumple que mmi ∈ OM , luego mM ⊂ OM .

Aśı pues, todo módulo es similar a otro contenido en su anillo de coeficientes,
pero es claro que si M ⊂ OM entonces M es un ideal de OM . Por lo tanto desde
un punto de vista teórico podemos limitarnos a trabajar con ideales de órdenes
en lugar de módulos. El rećıproco también es cierto: todos los ideales de un
orden son módulos completos.

Teorema 2.17 Sea O un orden de un cuerpo numérico K. Los ideales no nulos
de O son módulos completos (aunque su anillo de coeficientes no es necesaria-
mente O).
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Demostración: Sea I un ideal no nulo de O. Claramente I es un módulo
(todo Z-submódulo de un Z-módulo finitamente generado es finitamente gene-
rado). Sea α ∈ I no nulo. Entonces αO ⊂ I es un módulo similar al módulo
completo O, luego es un módulo completo. El rango de I ha de ser mayor o
igual que el de αO, que es el máximo, luego I es un módulo completo.

Volvamos al problema de las ecuaciones diofánticas definidas por formas com-
pletas. Ya sabemos que es equivalente a encontrar todos los elementos de una
norma dada c en un módulo completo M . También hemos visto que si tenemos
un m ∈ M con N(m) = c, entonces obtenemos nuevas soluciones considerando
números de la forma εm, donde, en los términos que hemos introducido, ε es
una unidad de OM de norma 1. Conviene introducir una definición:

Definición 2.18 Dos elementos x e y de un módulo completo M son asociados
si existe una unidad ε ∈ OM tal que x = εy.

Teniendo en cuenta que un orden es su propio anillo de coeficientes, resulta
que cuando M es un orden este concepto de asociación se corresponde con
el usual en teoŕıa de anillos: dos elementos de un anillo son asociados si se
diferencian en una unidad.

Aśı, resolver una ecuación diofántica asociada a una forma completa se re-
duce a encontrar un conjunto maximal de elementos no asociados de una norma
dada junto con todas las unidades de norma +1. El planteamiento es razonable
porque ahora probamos que tal conjunto maximal es siempre finito, es decir,
todos los números de una norma dada se pueden obtener a partir de un número
finito de ellos multiplicando por unidades de norma 1.

Teorema 2.19 Un módulo completo contiene sólo un número finito de elemen-
tos no asociados de una norma dada.

Demostración: Lo probamos primero para un orden O.
Sea α1, . . . , αn una base de O y sea c > 1 un número natural. Cada elemento

de O es congruente módulo c con un elemento de la forma

x1α1 + · · ·+ xnαn con 0 ≤ xi < c.

Por lo tanto |O/(c)| ≤ cn.

Si α ≡ β (mód c) y |N(α)| = |N(β)| = c, entonces α − β = cδ, para un
δ ∈ O, luego α/β = 1 + (c/β)δ ∈ O, por el teorema 2.15, pues β | N(β) = ±c.

Esto significa que β | α y análogamente α | β, luego α y β son asociados.
Aśı pues, en O hay a lo sumo cn elementos no asociados de norma c.

Los elementos de norma ±1 son unidades, luego todos son asociados.

Si M es un módulo completo, existe m ∈ Z no nulo tal que mM ⊂ OM . Si
α1, . . . , αr son elementos no asociados en M de norma c, entonces mα1, . . . ,mαr
son elementos no asociados en OM de norma mnc, luego no puede haber más
que un número finito de ellos.
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Es importante señalar que la prueba del teorema anterior no es constructiva,
es decir, no nos da un método para encontrar un conjunto maximal de elementos
no asociados de una norma dada. Más adelante daremos una versión efectiva
de este resultado. Por el momento hemos conseguido perfilar nuestro objetivo:

Para resolver el problema de las ecuaciones diofánticas determinadas
por formas completas hemos de dar un algoritmo para determinar un
conjunto maximal (finito) de elementos no asociados de una norma
dada en un módulo completo y otro para calcular un generador del
grupo de las unidades de norma +1 de un orden numérico (que
también veremos que es finito).

Terminamos la sección con un resultado fundamental a la hora de trabajar
con órdenes numéricos. Partimos de unas consecuencias elementales de 2.7.

Teorema 2.20 Sea K un cuerpo numérico.

1. Si O es un orden de K, entonces ∆[O] ∈ Z.

2. Si O ⊂ O′ son dos órdenes de K, entonces ∆[O] = m2∆[O′], para cierto
natural m. Además m = 1 si y sólo si O = O′.

Demostración: 1) es consecuencia inmediata del teorema 2.7.

2) Los elementos de una base de O se expresan como combinación lineal
de los elementos de una base de O′ con coeficientes enteros racionales. Por
lo tanto la matriz D de cambio de base tiene coeficientes enteros racionales
y su determinante es un entero racional. Por el teorema 2.7 concluimos que
∆[O] = |D|2∆[O′]. Además los órdenes coinciden si y sólo si D es de hecho una
matriz de cambio de base en O′, lo que sucede si y sólo si |D| = ±1.

El último apartado del teorema anterior implica que no es posible formar ca-
denas ascendentes de órdenes en un cuerpo numérico (esto es falso para módulos:
basta pensar en M ⊂ (1/2)M ⊂ (1/4)M ⊂ (1/8)M ⊂ · · ·).

Aśı pues, cada orden está contenido en un orden maximal por encima del
cual no hay más órdenes. Vamos a probar que de hecho todos los órdenes de
K están contenidos en un mismo orden maximal. El teorema anterior nos dice
también que dicho orden tendrá un discriminante menor que el de cualquier otro
orden, y éste va a ser el criterio con el que lo encontraremos.

Definición 2.21 Llamaremos orden (maximal) de un cuerpo numérico K al
conjunto OK = K ∩ E. Claramente es un anillo que contiene a todos los demás
órdenes de K.

No es evidente que OK sea él mismo un orden. Para probarlo notemos
primero que del teorema 2.5 se sigue inmediatamente que K es el cuerpo de
cocientes de OK , aśı como que existe un ζ ∈ OK tal que K = Q(ζ), es decir, que
siempre podemos tomar un elemento primitivo que sea entero. Las n primeras
potencias de este elemento primitivo constituyen una base de K formada por
enteros.
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Teorema 2.22 Si K es un cuerpo numérico, entonces OK es un orden de K
que contiene a todos los órdenes.

Demostración: Según acabamos de comentar, K tiene una base B for-
mada por enteros. Los discriminantes de estas bases son enteros racionales,
luego podemos tomar una base de K formada por enteros tal que el número
natural

∣∣∆[B]
∣∣ sea mı́nimo. Digamos B = {b1, . . . , bn}. Vamos a probar que

entonces B es una base de OK como módulo. Obviamente sus elementos son
linealmente independientes sobre Z, pues lo son sobre Q. Basta probar que
generan OK .

Supongamos, por el contrario, que existe un elemento d ∈ OK que no
pertenezca al submódulo generado por {b1, . . . , bn}. Como en cualquier caso
{b1, . . . , bn} es una base de K, se cumplirá que

d = a1b1 + · · ·+ anbn, (2.4)

para ciertos números racionales a1, . . . , an no todos enteros. Podemos suponer
que a1 /∈ Z. Sea a1 = a + r, donde a ∈ Z y 0 < r < 1. Sustituyendo en (2.4)
obtenemos que

rb1 + a2b2 + · · ·+ anbn = d− ab1 ∈ OK .

Si llamamos c1 a este elemento y ci = bi para i = 2, . . . , n obtenemos una nueva
base C de K formada por enteros tal que la matriz de cambio de base es

DB
C =




r a2 a3 · · · an
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


 .

Claramente
∣∣DB

C

∣∣ = r y en consecuencia∣∣∆[C]
∣∣ = r2

∣∣∆[B]
∣∣ <

∣∣∆[B]
∣∣,

en contra de la elección de B. Por lo tanto B es una base de OK como Z-módulo.

Definición 2.23 Llamaremos discriminante de K a ∆K = ∆[OK ] ∈ Z. Una
base entera de K es una base de OK como módulo.

Aśı, si α1, . . . , αn es una base entera de K, tenemos que

K = {a1α1 + · · ·+ anαn | a1, . . . , an ∈ Q},
OK = {a1α1 + · · ·+ anαn | a1, . . . , an ∈ Z}.

En otros términos, los enteros de K son los elementos cuyas coordenadas
son enteras.
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Es importante tener claro que una base de un cuerpo K formada por enteros
no es necesariamente una base entera. Basta pensar que si v1, . . . , vn es una
base entera de K, entonces 2v1, . . . , vn sigue siendo una base de K formada
por enteros, pero ya no es una base entera, pues v1 es un entero algebraico y no
tiene coordenadas enteras respecto a esta segunda base.

En general, si C es una base de K formada por enteros y B es una base
entera, entonces los mismos argumentos empleados en el teorema 2.20 nos dan
que ∆[C] = m2∆[B], para cierto número natural m, de manera que C es una
base entera si y sólo si m = 1. Esto nos da de nuevo que una base entera es
simplemente una base formada por enteros con discriminante mı́nimo, como de
hecho hemos visto en la prueba del teorema 2.22.

2.4 Determinación de bases enteras

Para encontrar una base entera de un cuerpo numérico K basta dar un
procedimiento para obtener a partir de una base formada por enteros otra base
formada por enteros con discriminante menor, siempre que exista, pues aśı,
partiendo de la base formada por las potencias de un elemento primitivo entero,
tras un número finito de pasos llegaremos a una base de discriminante mı́nimo,
que será una base entera según las últimas consideraciones de la sección anterior.

Antes de abordar el asunto en general veamos lo que ocurre con los cuerpos
cuadráticos.

Enteros cuadráticos En K = Q
(√

d
)

el elemento primitivo
√

d es obvia-
mente un entero, que da lugar al orden Z

[√
d

]
= {a + b

√
d | a, b ∈ Z}, una de

cuyas bases es
{
1,
√

d
}
. Su discriminante vale

∆
[√

d
]

=
∣∣∣∣ 1 1√

d −
√

d

∣∣∣∣
2

=
(
−2
√

d
)2 = 4d.

El teorema 2.20 nos da que ∆K se diferencia de 4d en un cuadrado. Como
d es libre de cuadrados, si Z

[√
d

]
no fuera el orden maximal éste tendŕıa que

tener discriminante d. Ahora bien, por el teorema 2.7 esto sólo puede ocurrir si
d ≡ 1 (mód 4), pues ciertamente, 4 � d.

Supongamos, pues, d ≡ 1 (mód 4). Entonces el número

α =
1 +

√
d

2

cumple

pol mı́nα = x2 − x +
1− d

4
∈ Z[x],

luego es un entero. El orden, Z[α] tiene discriminante

∆[α] =
∣∣∣∣ 1 1

1+
√
d

2
1−

√
d

2

∣∣∣∣
2

=
(
−
√

d
)2 = d.
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Como d es libre de cuadrados concluimos que Z[α] es en este caso el orden
de K.

Si llamamos α =
√

d en el caso en que d �≡ 1 (mód 4) hemos probado que
OK = Z[α] en cualquier caso. Es inmediato que para cada número natural m �= 0
el conjunto Om = Z[mα] = {a + bmα | a, b ∈ Z} es un orden de K. Además
∆[Om] = m2∆K , pues la matriz de cambio de base entre {1, α} y {1,mα} tiene
determinante m. Esto prueba que los órdenes Om son distintos dos a dos. Vamos
a ver que son todos los órdenes de K. Lo probamos en el teorema siguiente,
donde recogemos también los hechos que acabamos de demostrar.

Teorema 2.24 Sea K = Q
(√

d
)

un cuerpo cuadrático. Entonces

1. OK = Z[α], donde

α =

{ √
d si d �≡ 1 (mód 4)

1+
√
d

2 si d ≡ 1 (mód 4)
(2.5)

2. El discriminante de K es

∆K =
{

4d si d �≡ 1 (mód 4)
d si d ≡ 1 (mód 4)

3. Los órdenes de K son de la forma

Om = Z[mα] = {a + bmα | a, b ∈ Z}

y el discriminante de Om es ∆[Om] = m2∆K .

Demostración: Sólo falta probar que todos los órdenes de K son de la
forma descrita.

Si O es un orden de K, sea m el mı́nimo natural tal que existe un elemento
en O de la forma a+mα, con a ∈ Z. Como Z ⊂ O, tenemos que mα ∈ O, luego
Om ⊂ O.

Si a+ bα ∈ O, entonces existen enteros racionales c y r tales que b = mc+ r
y 0 ≤ r < m. Claramente (a + bα)− (a + cmα) = rα ∈ O, luego por definición
de m ha de ser r = 0, luego a + bα ∈ Om y se da la igualdad.

Una consecuencia del teorema anterior es que los cuerpos cuadráticos defini-
dos por diferentes valores de d son cuerpos distintos, pues tienen discriminantes
distintos.

Ejercicio: Probar que el único orden de Q es Z.

Ejercicio: Probar que, en un cuerpo cuadrático, el módulo 2O1 es un ideal de O2

cuyo anillo de coeficientes es O1.

Queda planteado el problema de decidir, dada una base de un cuerpo K
formada por enteros, si es una base entera o si por el contrario existen bases
con discriminantes menores. Una condición suficiente para el primer caso es,
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claramente, que el discriminante sea libre de cuadrados, pero esta condición
no es necesaria, como muestran los cuerpos cuadráticos. El teorema siguiente
proporciona un algoritmo para decidir cuál es el caso y obtener expĺıcitamente
una base con discriminante menor cuando ésta exista. Aśı siempre es posible
hallar el orden de un cuerpo en un número finito de pasos, si bien hay que
advertir que el proceso es demasiado laborioso para llevarlo a la práctica (por
lo menos sin la ayuda de un ordenador) en la mayoŕıa de los casos.

Teorema 2.25 Sea K un cuerpo numérico y M ⊂ OK un módulo completo
con base {α1, . . . , αn}. Si M �= OK , entonces existe un número primo p tal
que p2 | ∆[M ] y existen números naturales 1 ≤ t ≤ n y g1, . . . , gt−1 tales que
0 ≤ gi ≤ p− 1 de modo que

α∗
t = (g1α1 + · · ·+ gt−1αt−1 + αt)/p ∈ OK ,

y si α∗
t es un número cualquiera que cumpla esto, entonces

M∗ = 〈α1, . . . , αt−1, α
∗
t , αt+1, . . . , αn〉Z

es un módulo que contiene estrictamente a M y ∆[M∗] = ∆[M ]/p2.

Demostración: Sea {β1, . . . , βn} una base de OK . Sea αi =
∑n

j=1 mijβj ,
con mij ∈ Z. Sea m = det(mij). Entonces ∆[M ] = m2∆K y m �= ±1. Sea p un
primo que divida a m.

Claramente existen a1, . . . , an ∈ Z no todos nulos (mód p) de manera que∑n
i=1 aimij ≡ 0 (mód p). Sea t tal que at �≡ 0 (mód p) pero ai ≡ 0 (mód p)

para i > t.
Entonces γ =

∑t
i=1 aiαi =

∑t
i=1

∑n
j=1 aimijβj =

∑n
j=1

(∑t
i=1 aimij

)
βj .

Tenemos que p |
∑n

i=1 aimij y p |
∑n

i=t+1 aimij , luego p |
∑t

i=1 aimij y por
lo tanto γ = pβ para cierto β ∈ OK .

Sea a∗ ∈ Z tal que ata
∗ ≡ 1 (mód p). Definimos pα∗

t = a∗γ−pγ0, donde γ0 se
elige de modo que el coeficiente de αt se reduzca a 1 y los de los αi a sus mı́nimos
(mód p), es decir, α∗

t es de la forma indicada en el enunciado y la matriz de cam-
bio de base entre {α1, . . . , αn} y {α1, . . . , αt−1, α

∗
t , αt+1, . . . , αn} está formada

por una diagonal de unos excepto la fila i-ésima, que es ( g1p , . . . , gt−1
p , 1

p , 0, . . . , 0).
El determinante es 1/p, luego el discriminante de la segunda base es ∆[M ]/p2.

La prueba del teorema anterior muestra que en lugar de 0 ≤ gi ≤ p − 1
podemos exigir que los gi vaŕıen en cualquier conjunto de representantes de las
clases módulo p. A veces es cómodo tomarlos, por ejemplo, entre −(p− 1)/2 y
(p− 1)/2.

El ejemplo de Dedekind Como aplicación del teorema anterior veamos un
famoso ejemplo debido a Dedekind (después veremos por qué es famoso). Es
fácil ver que el polinomio x3 + x2 − 2x + 8 tiene una única ráız real que no es
entera (racional), y como es mónico concluimos que es irreducible en Q[x]. Sea ξ
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una de sus ráıces y consideremos el cuerpo cúbico K = Q(ξ). Vamos a calcular
el orden y el determinante de K.

Partimos del orden Z[ξ], cuyo discriminante vale, según el teorema 2.8,
∆[ξ] = −N(α), donde α = 3ξ2 + 2ξ − 2. Podemos hacer todos los cálculos
tomando aproximaciones racionales de los conjugados de ξ, pero esta vez vamos
a esbozar cómo se haŕıa un cálculo algebraico exacto. Fácilmente obtenemos
que

α2 = 7ξ2 − 74ξ − 20 y α3 = 49ξ2 − 518ξ + 1872.

Aśı pues, las coordenadas de los vectores 1, α, α2, α3 en la base ξ2, ξ, 1 son
respectivamente (0, 0, 1), (3, 2,−2), (7,−74,−20) y (49,−518, 1872).

Por lo tanto todo se reduce a resolver el sistema de ecuaciones

p(7,−74,−20) + q(3, 2,−2) + r(0, 0, 1) = (49,−518, 1872),

cuyas soluciones son p = 7, q = 0, r = 2012. Esto significa que α3 = 7α2 +2012,
luego pol mı́nα = x3 − 7x2 − 2012. El término independiente es el producto de
los tres conjugados de α cambiados de signo, luego N(α) = 2012 = 22 · 503.

Concluimos que ∆[ξ] = −22 ·503. Según el teorema anterior cabe la posibili-
dad de que el 2 pueda ser eliminado. Esto será aśı si alguno de los siete números
siguientes es entero:

1
2
,

ξ

2
,

1 + ξ

2
,

ξ2

2
,

ξ + ξ2

2
,

1 + ξ2

2
,

1 + ξ + ξ2

2
.

El lector puede demostrar que β = ξ+ξ2

2 es entero calculando su polinomio
mı́nimo por el mismo método con que hemos calculado el de α. Concretamente
se obtiene

pol mı́nβ = x3 − 2x2 + 3x− 10.

El teorema anterior nos dice que ∆
[
1, ξ, ξ+ξ

2

2

]
= −503, y como es libre

de cuadrados, ha de ser el discriminante de K, o sea, OK = Z
[
ξ, ξ+ξ

2

2

]
y

∆K = −503.

Ejercicio: Calcular el orden maximal y el discriminante del cuerpo Q(ζ), donde ζ es
una ráız del polinomio x3 − x− 1.

Ejercicio: Sean K1, K2 y K3 los cuerpos que resultan de adjuntar a Q una ráız de
los polinomios

x3 − 18x− 6, x3 − 36x− 78, o x3 − 54x− 150

respectivamente. Probar que los tres tienen discriminante ∆ = 22 · 35 · 23.
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Cuerpos cúbicos puros Introducimos ahora una nueva familia de cuerpos
numéricos, que proporcionan numerosos ejemplos de interés.

Definición 2.26 Un cuerpo cúbico puro es un cuerpo numérico de la forma
Q

(
3
√

m
)
, donde m es un entero racional que no sea un cubo perfecto (en par-

ticular distinto de 0 y de ±1).

Hay que señalar que, al contrario de lo que ocurre con los cuerpos cuadráti-
cos, no todo cuerpo cúbico es de este tipo. Por ejemplo el cuerpo que acabamos
de estudiar.

Tenemos que 3
√

m es un número real y pol mı́n 3
√

m = x3−m. Si llamamos ω
a una ráız cúbica primitiva de la unidad (una ráız de x2 +x+1) es claro que las
otras ráıces de x3−m son los números imaginarios ω 3

√
m y ω2 3

√
m. Esto significa

que los monomorfismos del cuerpo Q
(

3
√

m
)

son la identidad y las conjugaciones
dadas por σ1

(
3
√

m
)

= ω 3
√

m, σ2

(
3
√

m
)

= ω2 3
√

m. Observar que los conjugados
de 3
√

m no están en Q
(

3
√

m
)
, o equivalentemente, que los monomorfismos no

son automorfismos, o que la extensión no es de Galois.
Podemos exigir que m no sea divisible entre ningún cubo perfecto, pues un

factor cúbico puede extraerse de la ráız y eliminarse sin que el cuerpo generado
vaŕıe. Entonces, si p es un divisor primo de m, el exponente de p en m ha de
ser 1 o 2. Sea a el producto de los primos que dividen a m con exponente 1 y b
el producto de los primos que dividen a m con exponente 2. Entonces m = ab2,
(a, b) = 1 y a, b son libres de cuadrados.

Notar también que el signo de m es irrelevante, pues el −1 puede introducirse
y extraerse de la ráız, y al multiplicar el generador por −1 no variamos el cuerpo.
Por ello podŕıamos exigir que m, a y b fueran todos positivos, pero no vamos a
hacer tal cosa, sino que de momento dejaremos los signos indeterminados para
escogerlos más adelante del modo más conveniente para los cálculos.

Para calcular el orden maximal de un cuerpo cúbico partimos del orden
Z

[ 3
√

ab2
]
, con base 1, 3

√
ab2,

( 3
√

ab2
)2 = b

3
√

a2b, pero observamos inmediata-
mente que salvo en el caso b = ±1 no puede tratarse del orden del cuerpo, ya
que no contiene al entero 3

√
a2b.

Por ello pasamos a la base 1, θ1, θ2, donde θ1 = 3
√

ab2, θ2 = 3
√

a2b. Los
cálculos se simplifican bastante si observamos la simetŕıa entre θ1 y θ2, en el
sentido de que se cumple Q(θ1) = Q(θ2), θ2

1 = bθ2, θ2
2 = aθ1. Estas fórmulas

nos dan la acción de las conjugaciones sobre θ1 y θ2, a saber

σ1(θ1) = ωθ1, σ1(θ2) = ω2θ2, σ2(θ1) = ω2θ1, σ2(θ2) = ωθ2.

Con ello y un poco de paciencia podemos calcular

∆[1, θ1, θ2] =

∣∣∣∣∣∣
1 θ1 θ2

1 ω θ1 ω2θ2

1 ω2θ1 ω θ2

∣∣∣∣∣∣
2

= −27a2b2.

Teorema 2.27 Sea K = Q(θ1) = Q(θ2) un cuerpo cúbico puro según la de-
finición anterior. Entonces una base entera de K la forman θ0, θ1, θ2, donde
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θ0 = 1 si a �≡ ±b (mód 9) (y entonces ∆K = −27a2b2) y θ0 = (1 + θ1 + θ2)/3
si a ≡ ±b (mód 9) (y entonces ∆K = −3a2b2). En el segundo caso hay que
escoger los signos de a y b de manera que a ≡ b (mód 9) y su resto módulo 9
sea 1, 4 o 7.

Demostración: Vamos a aplicar el teorema 2.25 a la base 1, θ1, θ2. En
primer lugar demostraremos que no es posible eliminar ningún primo p que
divida a ab. Supongamos, por ejemplo, que p | a. Si p se pudiera eliminar
existiŕıa un entero de la forma α = (u + vθ1 + θ2)/p, o bien α = (u + θ1)/2,
donde u y v son enteros racionales entre 0 y p − 1. Trataremos la primera
posibilidad. La segunda es más sencilla.

Sea π = 3
√

p y L = K(π). Tenemos que ab2 = pk, para cierto entero racional
k, luego tomando ráıces θ1 = πβ, donde β = 3

√
k ∈ L y es un entero. Aśı pues,

π | θ1 en OL. El mismo argumento nos da que π2 | θ2 en OL, y por otro lado
π3α = u + vθ1 + θ2.

De aqúı se sigue que π | u en OL. Elevando al cubo, p | u3 en OL y el
cociente es entero y racional, o sea, p | u3 en Z, de donde p | u y ha de ser u = 0.

Consecuentemente π2 | vθ1 en OL, y como antes llegamos a que p2 | v3ab2

en Z, de donde haciendo uso de que p | a, (a, b) = 1 y que a y b son libres de
cuadrados, resulta que p | v, luego v = 0.

Ahora concluimos que p | θ2 en OL, luego p3 | a2b en Z, lo cual es contradic-
torio.

En consecuencia los primos que dividen a ab no pueden eliminarse. La
única posibilidad es eliminar el 3, para lo cual es necesario que no divida a ab.
Supongámoslo aśı. Según el teorema 2.25 hemos de comprobar los siguientes
números (para aprovechar la simetŕıa ordenamos la base en la forma θ1, θ2, 1):

θ1

3
,

θ2

3
,

±θ1 + θ2

3
,

1
3
,

±θ1 + 1
3

,
±θ2 + 1

3
,

±θ1 ± θ2 + 1
3

.

Hemos tomado como representantes de las clases módulo 3 los números −1,
0, 1 en lugar de 0, 1, 2 (ver el comentario tras el teorema 2.25).

Haciendo uso de la simetŕıa y de que podemos elegir el signo de a y b sin
cambiar de cuerpo, podemos limitarnos a estudiar los números

θ1

3
,

θ1 + θ2

3
,

1 + θ1

3
,

1 + θ1 + θ2

3
.

Por ejemplo, si (−θ1 + θ2)/3 pudiera ser entero, también lo seŕıa (θ1 + θ2)/3
(tomando −a en lugar de a), mientras que vamos a probar que (θ1 + θ2)/3 no
es entero para ningún valor de a y b, luego lo mismo ocurrirá con (−θ1 + θ2)/3.
De hecho vamos a ver que θ1/3, (θ1 + θ2)/3, (1 + θ1)/3 nunca son enteros.

Claramente pol mı́n(θ1/3) = x3 − ab2/3, y ab2/3 no es entero porque supo-
nemos que 3 � ab. Con un poco más de cálculo se llega a

pol mı́n
1 + θ1

3
= x3 − x2 +

1
3
x− 1 + ab2

27
,

pol mı́n
θ1 + θ2

3
= x3 − ab

3
x− ab2 + a2b

27
,

que obviamente no tienen coeficientes enteros.
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Aśı pues, todo depende de (1 + θ1 + θ2)/3. Se puede comprobar que

pol mı́n
1 + θ1 + θ2

3
= x3 − x2 +

1− ab

3
x− 1 + ab2 + a2b− 3ab

27
.

Demostraremos que los coeficientes pueden hacerse enteros (escogiendo sig-
nos) exactamente cuando a ≡ ±b (mód 9), de donde se concluye inmediatamente
el teorema.

Supongamos que a ≡ ±b (mód 9). Cambiando el signo a b si es preciso,
podemos exigir a ≡ b (mód 9). El resto no puede ser 0 ni ±3, pues en tal caso
3 dividiŕıa a (a, b) = 1. De aqúı se sigue que ab ≡ 1, 4, 7 (mód 9), y por lo tanto
3 | (1− ab).

Cambiando el signo a ambos enteros podemos exigir que su resto módulo 9
sea 1, 4 o 7, es decir, que a = 9k + i, b = 9r + i, donde i puede tomar el valor
1, 4 o 7. Sustituyendo en 1 + ab2 + a2b − 3ab se obtiene que es múltiplo de 27
en cualquiera de los tres casos.

Supongamos ahora que los coeficientes del polinomio mı́nimo son enteros, es
decir, que

3 | (1− ab), (2.6)
27 | (1 + ab2 + a2b− 3ab). (2.7)

De (2.6) se sigue que
a ≡ b ≡ ±1 (mód 3). (2.8)

El lector puede comprobar que los únicos valores posibles para los restos módulo
9 de a y b (salvo el orden, que por simetŕıa no importa) que incumplen la
condición a ≡ ±b (mód 9) pero que cumplen (2.8) son (1, 4), (1, 7), (2, 5), (2, 8),
(4, 7), (5, 8). En ninguno de estos casos se cumple (2.7).

La tabla siguiente resume el teorema:

Tabla 2.1: Tipos de cuerpos cúbicos puros

Condición ∆K θ0 θ1 θ2

Tipo I a �≡ ±b (mód 9) −27a2b2 1 3
√

ab2
3
√

a2b

Tipo II a ≡ b ≡ 1 + 3t (mód 9) −3a2b2 (1 + θ1 + θ2)/3
3
√

ab2
3
√

a2b

Ejercicio: Probar que el orden de Q
(

3
√

6
)

es Z
[

3
√

6
]
.

Ejercicio: Probar que el anillo de coeficientes del módulo M =
〈
4, 3

√
2, 3

√
4
〉

es igual

a
〈
1, 2 3

√
2, 2 3

√
4
〉
.
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Enteros ciclotómicos En el caṕıtulo anterior vimos algunos problemas im-
portantes relacionados con los cuerpos ciclotómicos y sus anillos de enteros.
Ciertamente hay muchas razones por las que estos anillos juegan un papel rele-
vante en la teoŕıa algebraica de números. Comenzamos a estudiarlos probando
que los que en el caṕıtulo anterior llamamos ‘enteros ciclotómicos’ son realmente
los enteros ciclotómicos en el sentido general, es decir, probaremos que si ω es
una ráız p-ésima primitiva de la unidad, donde p es primo, entonces el orden
de K = Q(ω) es Z[ω]. El resultado es cierto también si p no es primo, pero no
estamos en condiciones de probarlo. Comenzamos con algunas consideraciones
previas sobre trazas y normas:

Si p � i, entonces Tr(ωi) es la suma de los p− 1 conjugados de ωi, es decir,

Tr(ωi) = ω + ω2 + · · ·+ ωp−1 = −1.

Si a ∈ Q entonces Tr(a) = a + a + · · ·+ a = (p− 1)a. En resumen,

Tr(ωi) =
{

−1 si p � i
p− 1 si p | i

En general, si
∑p−1

i=0 aiω
i es un elemento cualquiera de Q(ω), entonces

Tr

(
p−1∑
i=0

aiω
i

)
=

p−1∑
i=0

ai Tr(ωi) = a0 Tr(1)−
p−1∑
i=1

ai

= (p− 1)a0 −
p−1∑
i=1

ai = pa0 −
p−1∑
i=0

ai.

Respecto a las normas, nos basta observar que si π = 1−ω, entonces N(π) =
p. En efecto, basta evaluar en 1 el polinomio

xp−1 + · · ·+ x + 1 = (x− ω)(x− ω2) · · · (x− ωp−1).

Teorema 2.28 Sea p un número primo impar y K = Q(ω), donde ω es una
ráız p-ésima primitiva de la unidad. Entonces OK = Z[ω].

Demostración: Sea α =
∑p−2

i=0 aiω
i un entero ciclotómico de orden p.

Hemos de probar que todos los coeficientes son enteros racionales. En principio
sabemos que la traza es un entero. Más aún, para cada 0 ≤ k ≤ p−2 tenemos que
Tr(αω−k) ∈ Z. Aśı tenemos la misma información sobre todos los coeficientes:

Tr(αω−k) = pak −
p−2∑
i=0

ai ∈ Z, para k �= p− 1

Tr(αω) = −
p−2∑
i=0

ai ∈ Z.

Por lo tanto pak ∈ Z para todo k = 0, . . . , p − 1. Llamemos bk = pak.
Hemos de probar que p | bk para todo k, con lo que los ak serán también
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enteros. Consideremos π = 1 − ω. Sustituyendo ω = 1 − π y desarrollando
obtenemos

pα =
p−2∑
i=0

biω
i =

p−2∑
i=0

ciπ
i,

donde

ci =
p−2∑
j=i

(−1)i
(
j

i

)
bj ∈ Z,

para i = 0, . . . , p− 2. Como π = 1− ω, por simetŕıa se cumple también

bi =
p−2∑
j=i

(−1)i
(
j

i

)
cj ,

para i = 0, . . . , p− 2.
Por lo tanto basta probar que p | cj para todo j, pues entonces estas fórmulas

implican que p también divide a los bi.
Lo probaremos por inducción. Suponemos que p | ci para cada i ≤ k − 1 y

vamos a probar que p | ck, donde 0 ≤ k ≤ p− 2.
La razón por la que hemos hecho el cambio de variable es que ω es una

unidad de OK , mientras que π cumple N(π) = p (veremos que esto implica que
π es primo en OK). Tenemos que

p = N(1− ω) =
p−1∏
i=1

(1− ωi) = (1− ω)p−1

p−1∏
i=1

(1 + ω + · · ·+ ωi−1) = πp−1δ,

para cierto δ ∈ OK .
En consecuencia p ≡ 0 (mód πk+1), es decir, módulo el ideal generado por

πk+1 en OK .
Por otro lado,

0 ≡ pα =
p−2∑
i=0

ciπ
i ≡ ckπ

k (mod πk+1),

pues los términos anteriores a ckπ
k son múltiplos de p por hipótesis de inducción

y los posteriores son múltiplos de πk+1 directamente.
Esto equivale a que ckπ

k = ηπk+1 para un cierto η ∈ OK , luego ck = ηπ.
Finalmente tomamos normas: cp−1

k = N(ck) = N(η) N(π) = pN(η), luego en
efecto p | ck.

El teorema 2.8 nos da ahora los discriminantes:

Teorema 2.29 Sea p un primo impar. El discriminante del cuerpo ciclotómico
de orden p es igual a (−1)(p−1)/2pp−2.
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Demostración: Sea ω una ráız p-ésima primitiva de la unidad. Como los
enteros ciclotómicos son el anillo Z[ω], una base entera de Q(ω) está formada
por 1, ω, . . . , ωp−1. El polinomio mı́nimo de ω es p(x) = xp−1

x−1 y su derivada
vale

p′(x) =
pxp−1(x− 1)− (xp − 1)

(x− 1)2
,

luego p′(ω) = pωp−1

ω−1 . Aśı pues,

N
(
p′(ω)

)
=

pp−1 · 1p−1

p
= pp−2.

Como p es impar, (−1)p(p−1)/2 = (−1)(p−1)/2 y por 2.8

∆[ω] = (−1)(p−1)/2pp−2.

Respecto a los cuerpos ciclotómicos de orden arbitrario, nos conformaremos
con el hecho siguiente:

Teorema 2.30 Sea K = Q(ω) el cuerpo ciclotómico de orden m (donde ω es
una ráız m-sima primitiva de la unidad). Si p es un primo que no divide a m,
entonces tampoco divide al discriminante ∆[ω].

Demostración: Sea n = φ(m). Según se observa en la prueba del teorema
2.7, se cumple que

∆[ω] =
∏

1≤i<j≤n

(
σi(ω)− σj(ω)

)2
, (2.9)

donde los números σi(ω) son las ráıces del polinomio ciclotómico p(x), es decir

p(x) =
n∏
i=1

(
x− σi(ω)

)
.

Sea O el orden maximal de K y sea p un ideal maximal de O que contenga a p.
Sea L = O/p. Entonces L es un cuerpo de caracteŕıstica p en el que el polinomio
ciclotómico factoriza como

p(x) =
n∏
i=1

(
x− [σi(ω)]

)
,

donde los corchetes [ ] indican clases módulo p. Tomando también clases en
(2.9) tenemos que

[∆] =
∏

1≤i<j≤n

(
[σi(ω)]− [σj(ω)

]
)2.

Ahora bien, como p � m, el polinomio xm − 1 tiene derivada mxm−1 �= 0
en L[x], luego tiene m ráıces distintas en L, y por consiguiente el polinomio
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ciclotómico tiene n ráıces distintas en L. Consecuentemente [∆] �= 0, es decir,
que ∆ /∈ p, luego ciertamente p � ∆.

Para terminar con el caso de los cuerpos ciclotómicos, estudiemos el cuerpo
ciclotómico octavo Q(ω). Su grado es 4 y, de hecho, pol mı́nω = x4 + 1. El
teorema 2.8 nos da que el discriminante del orden Z[ω] es 256. Hemos de probar
que no es posible eliminar ningún 2.

Según el teorema 2.25, aplicado a la base 1, ω, ω2, ω3, hemos de probar que
no son enteros un total de 15 números. Descartamos inmediatamente 1/2, ω/2,
ω2/2 y ω3/2, que tienen norma 1/4.

Si (ω + ω2)/2 = ω(1 + ω)/2 fuera entero también lo seŕıa (1 + ω)/2, luego
basta comprobar el segundo. Por este argumento eliminamos cuatro números
más, y nos quedan

1 + ω

2
,
1 + ω2

2
,
1 + ω3

2
,
1 + ω + ω2

2
,
1 + ω + ω3

2
,
1 + ω2 + ω3

2
,
1 + ω + ω2 + ω2

2
.

Notar que (1 + ω2)/2 = (1 + i)/2, luego no es entero. Para descartar a los
restantes observamos que x4 +1 = (x−ω)(x−ω3)(x−ω5)(x−ω7), y evaluando
en 1 concluimos que 1− ω y 1− ω3 tienen norma 2.

Ahora, si α = (1 + ω)/2 fuera entero, también lo seŕıa −ω3α = (1 − ω3)/2,
pero tiene norma 1/2. El número (1 + ω3)/2 es conjugado del anterior, luego
tampoco es entero.

Respecto a

1 + ω + ω2

2
=

ω3 − 1)
2(ω − 1)

y
1 + ω + ω2 + ω3

2
=

ω4 − 1
2(ω − 1)

= − 2
2(ω − 1)

,

vemos que también tienen norma fraccionaria.
Por último, si el número α = (1 + ω + ω3)/2 fuera entero, también lo seŕıa

ωα+1 = (1+ω +ω2)/2, que ya ha sido descartado, e igualmente se razona con
ω2(1 + ω2 + ω3)/2 + 1 + ω = (1 + ω + ω2)/2.

Enteros ciclotómicos reales Sea K = Q(ω) el cuerpo ciclotómico de orden
p. En el estudio de K resulta de gran ayuda considerar el cuerpo intermedio
K ′ = K ∩ R. Claramente K ′ es el cuerpo fijado por la conjugación compleja,
que es un automorfismo de orden 2, luego |K : K ′| = 2 y por consiguiente el
grado de K ′ es m = (p − 1)/2. Un entero de K ′ es en particular un entero de
K, luego se expresará como combinación lineal entera de ω, . . . , ωp−1. Como
ha de quedar fijo por la conjugación compleja es necesario que el coeficiente de
cada potencia ωi coincida con el de ω−i, lo que implica que los enteros de K ′

son combinaciones lineales enteras de los números ηi = ωi + ω−i. El rećıproco
es obvio, luego en definitiva el orden maximal de K ′ es el anillo Z[η1, . . . , ηm].

Vamos a calcular el discriminante ∆K′ = ∆[η1, . . . , ηm] = det
(
Tr(ηiηj)

)
.

Para ello notamos que

ηiηj = (ωi + ω−i)(ωj + ω−j) = ωi+j + ω−i−j + ωi−j + ωj−i = ηi+j + ηi−j ,
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donde usamos la notación ηi para todo i, no necesariamente entre 1 y m.
Por otra parte es claro que Tr(ηi) = η1 + . . . + ηm = −1 si p � i, mientras

que Tr(ηi) = Tr(2) = 2m = p− 1 si p | i.
Cuando i, j vaŕıan entre 1 y m observamos que i+ j nunca es divisible entre

p, mientras que p | i− j sólo cuando i = j. Por lo tanto

Tr(ηiηj) = −1 + Tr(ηi−j) =
{

p− 2 si i = j
−2 si i �= j

Hay que calcular el determinante de una matriz de orden (p−1)/2 que tiene
los coeficientes de la diagonal principal iguales a p−2 y los restantes iguales a −2.
Si sumamos todas las columnas a la primera hacemos que todos los coeficientes
de la primera columna valgan 1. Si restamos la primera fila de todas las demás
llegamos a una matriz diagonal cuya diagonal principal contiene los coeficientes
(1, p, . . . , p). El discriminante es, por lo tanto, ∆K′ = pm−1.

Como ejemplo concreto consideremos el caso p = 7. Entonces K ′ es un
cuerpo cúbico, y una base entera la forman los números η1, η2, η3. Puesto que
η1 + η2 + η3 = −1 podemos cambiarla por 1, η1, η2.

Además η2
1 = (ω + ω6)2 = ω2 + ω5 + 2 = η2 + 2. Por consiguiente, si

llamamos η = η1 tenemos que K ′ = Q(η) y que una base entera viene dada por
{1, η, η2 − 2}. (Notar que no sirve {1, η, η2})

Si tomamos ω = cos(2π/7) + i sen(2π/7), entonces η = 2 cos(2π/7), y sus
conjugados son 2 cos(4π/7) y 2 cos(6π/7). Aproximadamente valen

η1 = 1, 246979604,
η2 = −0, 4450418670,
η3 = −1, 801937736.

Con esto podemos calcular pol mı́n η = x3 + x2 − 2x− 1, la matriz asociada
a la traza: 

 3 −1 −1
−1 5 −2
−1 −2 5




y el discriminante de K, que, como ya sab́ıamos, es ∆K = 72.

Cuerpos cúbicos ćıclicos Según la teoŕıa de Galois, un cuerpo K = Q(α) es
normal si y sólo si los conjugados de α pertenecen a K. Si K es un cuerpo cúbico
esto implica que su grupo de Galois tiene tres elementos y es, por lo tanto, un
grupo ćıclico. En caso contrario la clausura normal de K ha de tener grado 6
sobre Q, y el grupo de Galois ha de ser isomorfo al grupo de permutaciones Σ3.
Es claro que el cuerpo cúbico del ejemplo anterior es ćıclico. Aqúı probaremos
un resultado general que los caracteriza:

Teorema 2.31 Un cuerpo cúbico es ćıclico si y sólo si su discriminante es un
cuadrado perfecto.
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Demostración: Sea K = Q(α) un cuerpo cúbico, donde α es un entero, y
sean α1, α2, α3 los conjugados de α. Observar que el discriminante de K será
un cuadrado perfecto si y sólo si lo es ∆ = ∆[α], pues ambos se diferencian en
un factor cuadrado perfecto. A su vez, éste será un cuadrado perfecto si y sólo
si
√

∆ = |αji | es (entero) racional.
Si K es ćıclico entonces

√
∆ ∈ K, luego Q

(√
∆

)
no puede ser un cuerpo

cuadrático (pues está contenido en K), y en consecuencia
√

∆ ∈ Q.
Si por el contrario K no es ćıclico, entonces el grupo de Galois de la clausura

normal de K contiene 6 automorfismos que permutan los conjugados de α de
todos los modos posibles. En particular existe un automorfismo σ que deja fijo
a α3 e intercambia α1 y α2. Es claro entonces que σ(

√
∆) = −

√
∆, pues σ

permuta dos columnas del determinante, con lo que
√

∆ /∈ Q.

2.5 Normas e Índices

Veamos ahora un par de conceptos adicionales de utilidad en el estudio de
los cuerpos numéricos.

Definición 2.32 Sea M un módulo completo en un cuerpo numérico K de
grado n y O su anillo de coeficientes. Sea B una base de M y C una base de O.
Sea DC

B la matriz cuyas filas son las coordenadas de B respecto de la base C.
El teorema 2.7 nos da entonces que ∆[M ] = (detDC

B)2∆[O].
Definimos la norma de M como

N(M) = |detDC
B | =

√
∆[M ]
∆[O]

.

De este modo N(M) es un número racional positivo tal que

∆[M ] = N(M)2∆[O]. (2.10)

Observar que los órdenes tienen todos norma 1. También es obvio que si
M está contenido en su anillo de coeficientes, entonces la matriz de cambio de
base tiene coeficientes enteros racionales, luego N(M) es un entero racional, y
de hecho todos los términos de la ecuación (2.10) son enteros racionales. En
este caso la norma tiene una interpretación algebraica importante.

Teorema 2.33 Sea M un módulo completo contenido en su anillo de coeficien-
tes O. Entonces N(M) = |O : M |.

Demostración: Es un hecho conocido (se ve al probar que todo submódulo
de un Z-módulo libre es libre) que existe una base C = {α1, . . . , αn} de O tal
que para ciertos enteros racionales ai se tiene que B = {a1α1, . . . , anαn} es una
base de M . La matriz DC

B es en este caso particular una matriz diagonal, luego
N(M) = |a1 · · · an|.
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El isomorfismo entre O y Zn que env́ıa C a la base canónica {e1, . . . , en}
de Zn, env́ıa la base B a la base {a1e1, . . . , anen}, luego env́ıa M al módulo
a1Z× · · · × anZ, y aśı

O/M ∼= (Z× · · · × Z)
/
(a1Z× · · · × anZ) ∼= (Z/a1Z)× · · · × (Z/anZ),

luego |O : M | = |(Z/a1Z)× · · · × (Z/anZ)| = |a1| · · · |an| = N(M).

Todo módulo es similar a uno en las condiciones del teorema anterior, y las
normas de los módulos similares están relacionadas del modo siguiente:

Teorema 2.34 Si M y αM son dos módulos completos similares, entonces
N(αM) = |N(α)|N(M).

Demostración: Sea {β1, . . . , βn} una base de M . Entonces {αβ1, . . . , αβn}
es una base de αM . Si σ1, . . . , σn son los monomorfismos de K, tenemos que

∆[αM ] = ∆[αβ1, . . . , αβn] = det
(
σi(αβj)

)2 = det
(
σi(α)σi(βj)

)2

= N(α)2 det
(
σi(βj)

)2 = N(α)2∆[β1, . . . , βn] = N(α)2∆[M ].

Como M y αM son similares, tienen el mismo anillo de coeficientes O, luego
N(αM)2∆[O] = ∆[αM ] = N(α)2∆[M ] = N(α)2 N(M)2∆[O], y consecuente-
mente N(αM) = |N(α)|N(M).

Ejercicio: Sea O el orden de un cuerpo numérico K y α ∈ O no nulo. Probar que
hay exactamente N(α) clases de congruencia módulo α en O.

Si las normas nos relacionan los módulos completos con sus anillos de coe-
ficientes, los ı́ndices, que definimos seguidamente, relacionan los órdenes con el
orden maximal.

Definición 2.35 Sea K un cuerpo numérico y sea OK su orden maximal. Si O

es cualquier orden de K, llamaremos ı́ndice de O al único número natural ı́ndO

tal que
∆[O] = (́ındO)2∆K . (2.11)

Concretamente ı́ndO es el valor absoluto del determinante de la matriz de
cambio de base entre una base de O y una base entera de K. El mismo argumento
empleado en la prueba del teorema 2.33 nos da que

ı́ndO = |OK : O|.

En particular, si K = Q(α) y α es entero, definimos ı́ndα = ı́ndZ[α].

Vamos a calcular los ı́ndices de los elementos de algunos cuerpos numéricos.
Para un cuerpo cuadrático Q

(√
d

)
, cuando d �≡ 1 (mód 4) tenemos que una base

del anillo Z
[
a + b

√
d

]
es 1, a + b

√
d, mientras que una base del orden maximal

es 1,
√

d, luego el determinante de la matriz del cambio de base es∣∣∣∣ 1 0
a b

∣∣∣∣ = b.
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Por lo tanto ı́nd
(
a + b

√
d

)
= |b|.

Si d ≡ 1 (mód 4) los enteros son de la forma
(
a+b

√
d

)
/2, con a ≡ b (mód 2),

y el ı́ndice vale igualmente

ı́nd

(
a + b

√
d

2

)
= abs

∣∣∣∣ 1 0
a−b
2 b

∣∣∣∣ = |b|.

Ahora consideramos un cuerpo cúbico puro Q
( 3
√

ab2
)
. Primeramente su-

pongamos que es de tipo I, es decir, a �≡ b (mód 9). Usamos la notación del
teorema 2.27. Una base del orden Z[x + yθ1 + zθ2] está formada por

1, x+yθ1+zθ2, (x+yθ1+zθ2)2 = x2+2yzab+(z2a+2xy)θ1+(y2b+2xz)θ2.

Aśı pues,

ı́nd(x + yθ1 + zθ2) = abs

∣∣∣∣∣∣
1 0 0
x y z

x2 + 2yzab z2a + 2xy y2b + 2xz

∣∣∣∣∣∣ = |by3 − az3|.

Si el cuerpo es de tipo II un entero es de la forma (x + yθ1 + zθ2)/3, donde
x ≡ y ≡ z (mód 3). El lector puede comprobar sin dificultad que ahora

ı́nd
(

x + yθ1 + zθ2

3

)
=

1
9
|by3 − az3|.

Los anillos de la forma Z[α] se llaman anillos numéricos (de aqúı procede el
uso de la palabra anillo en su sentido algebraico, haciendo referencia a que las
potencias de α se reducen ćıclicamente). Los órdenes maximales de los cuerpos
cuadráticos son anillos numéricos, pero no ocurre lo mismo en todos los cuerpos
numéricos. Por ejemplo, en Q

(
3
√

63
)

el orden maximal seŕıa de la forma Z[α] si
y sólo si ı́ndα = 1 para algún número α, pero es imposible que 3y3− 7z3 = ±1,
ya que no hay solución módulo 7.

Finalmente calculamos el ı́ndice de los enteros del ejemplo de Dedekind Q(ξ)
que hemos estudiado en la sección 2.4. El método que usaremos será el mismo.

Un entero arbitrario es de la forma α = x + yξ + z(ξ + ξ2)/2. Un simple
cálculo nos da que

α2 = x2 − 8yz − 2z2 + (2xy + xz − 3z2/2 + 2yz)ξ + (xz + y2 + z2/2)ξ2.

Tenemos las coordenadas de la base 1, α, α2 de Z[α] en la base 1, ξ, ξ2 de
Q(ξ), al igual que las de la base 1, ξ, (ξ + ξ2)/2 del orden maximal. Resolviendo
un sistema de tres ecuaciones lineales obtenemos la matriz del cambio de base,
que resulta ser

 1 0 0
x y z

x2 − 8yz − 2z2 2xy − 2z2 + 2yz − y2 2xz + 2y2 + z2


 ,

de donde ı́ndα = |2y3 + 2z3 − yz2 + zy2|.
Observamos que el orden maximal de Q(ξ) no es tampoco un anillo numérico,

pues el ı́ndice de cualquier entero es siempre un número par.





Caṕıtulo III

Factorización ideal

Vimos en el caṕıtulo I que la factorización única en un anillo puede tener
muchas consecuencias sobre los números enteros. Kummer investigó la factori-
zación única en los anillos de enteros ciclotómicos de orden primo en relación
con el último teorema de Fermat, y su trabajo le llevó a un descubrimiento im-
portant́ısimo. En primer lugar observó que todo primo ciclotómico deb́ıa dividir
a un primo racional, por lo que la factorización única se redućıa a probar que
todo primo racional se descompone en producto de primos, y se dedicó a buscar
factorizaciones expĺıcitas en casos concretos para ratificar o refutar la conjetura
sobre la unicidad. Para cada primo racional, Kummer encontró argumentos
que le permit́ıan predecir en cuántos primos ciclotómicos deb́ıa factorizar y con
qué multiplicidad y, para cada uno de los factores, encontró a su vez criterios
expĺıcitos que le determinaban a qué enteros ciclotómicos deb́ıa dividir. Sólo
le faltaba encontrar los primos mismos. Con la ayuda de estos criterios le fue
relativamente fácil encontrarlos hasta que se enfrentó con la factorización del 43
en el anillo de enteros ciclotómicos correspondientes a p = 23. Para este caso
probó que la existencia de los factores primos que su teoŕıa predećıa condućıa a
una contradicción. Sin embargo, en el tiempo que tardó en encontrar este ejem-
plo de factorización no única, su teoŕıa hab́ıa mostrado tal grado de coherencia
y de capacidad de predicción que Kummer confió más en sus razonamientos
que en la evidencia a la que hab́ıa llegado. Reforzando sus razonamientos para
no basarse en la hipotética factorización única, demostró que su teoŕıa sobre
factores primos era consistente con independencia de que los primos en cuestión
existieran o no, es decir, que pod́ıa asignar a cada entero ciclotómico una des-
composición en factores primos que satisfaćıa las propiedades formales que se
cumplen en todo dominio de factorización única, aunque a veces, tales factores
resultaran ser, en sus propios términos, ‘factores ideales’. Más tarde, Dedekind
simplificó la teoŕıa de divisores ideales de Kummer sustituyendo la construcción
formal axiomática por una construcción algebraica, en la que cada divisor ideal
era identificado con el conjunto de todos sus múltiplos ‘reales’. A su vez es-
tos conjuntos de múltiplos pod́ıan ser determinados mediante unas propiedades
muy simples: las que definen los ideales en el sentido moderno de la palabra. El
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enfoque de Dedekind teńıa la ventaja de que se pod́ıa aplicar sin ningún cambio
al orden maximal de cualquier cuerpo numérico. Comenzamos el caṕıtulo con
una exposición de la teoŕıa de Dedekind en términos del álgebra abstracta.

3.1 Dominios de Dedekind

Recordemos que si a y b son ideales de un anillo D, su producto es

ab =

{
n∑
i=1

piqi

∣∣∣ n ∈ N y pi ∈ a, qi ∈ b para i = 1, . . . , n

}
. (3.1)

En otras palabras, ab es el menor ideal que contiene a todos los productos
ab tales que a ∈ a y b ∈ b. Como a y b son ideales, estos productos están
contenidos en ambos, luego se cumple que ab ⊂ a ∩ b.

Definición 3.1 Un dominio ı́ntegro D es un dominio de Dedekind si todo ideal
propio de D (o sea, distinto de 0 y D) se descompone de forma única salvo el
orden en producto de ideales primos.

Vamos a probar que la factorización ideal es formalmente análoga a la fac-
torización real de los dominios de factorización única. Sin embargo tenemos
un obstáculo justo al principio, y es que hay un hecho obvio en todo dominio
ı́ntegro cuyo análogo ideal no es evidente: los elementos no nulos son simplifica-
bles. Para probar que los ideales no nulos son simplificables demostraremos que
el conjunto de los ideales de un dominio de Dedekind se puede sumergir en un
grupo, con lo que para simplificar un ideal en ambos miembros de una igualdad
bastará con multiplicar por su inverso en dicho grupo.

Definición 3.2 Sea D un dominio ı́ntegro y K su cuerpo de cocientes. Un ideal
fraccional de D es un D-submódulo no nulo a de K tal que existe un c ∈ D no
nulo de manera que ca ⊂ D (donde ca = {ca | a ∈ a} ).

Si a es un ideal fraccional de D, entonces ca es D-submódulo de K contenido
en D, luego es un D-submódulo de D, o también, b = ca es un ideal no nulo de
D y a = c−1b.

El rećıproco se prueba igualmente, luego, en definitiva, los ideales fracciona-
les de D son los conjuntos de la forma c−1b, donde b es un ideal no nulo de D
y c ∈ D es un elemento no nulo.

Tomando c = 1 deducimos que todos los ideales no nulos de D son ideales
fraccionales. Rećıprocamente, un ideal fraccional a es un ideal si y sólo si a ⊂ D
(por la propia definición).

Podemos definir el producto de dos ideales fraccionales por la misma fórmula
(3.1) que para ideales. Es fácil comprobar que efectivamente el producto de
ideales fraccionales es un ideal fraccional, aśı como que cumple la propiedad
asociativa.

Si c ∈ K es no nulo, llamaremos ideal fraccional principal generado por c al
ideal fraccional (c) = cD. Es fácil ver que (c)a = ca. En particular (c)(d) = (cd).
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Llamaremos 1 = (1) = D. Es claro que a 1 = a para todo ideal fraccional a.
Diremos que un ideal fraccional a es inversible si existe otro ideal fraccional b

tal que ab = 1. Es claro que si existe tal b entonces es único, y lo representaremos
por a−1.

Todo ideal fraccional principal es inversible, pues (c)−1 = (c−1).

Antes hemos visto que todo ideal fraccional es de la forma c−1b, para cierto
ideal b y cierto c ∈ D. En términos del producto de ideales fraccionales tenemos
que todo ideal fraccional es de la forma (c)−1b, o sea, una fracción de dos ideales.
Para probar que los ideales fraccionales de un dominio de Dedekind forman un
grupo necesitamos unos hechos sencillos válidos en cualquier dominio ı́ntegro.

Teorema 3.3 Sea D un dominio ı́ntegro.

1. Todo ideal fraccional principal de D es inversible.

2. Un producto de ideales no nulos de D es inversible si y sólo si lo es cada
factor.

3. Si un ideal inversible de D factoriza como producto de ideales primos,
entonces la descomposición es única salvo el orden.

Demostración: 1) Ya hemos comentado que (c)−1 = (c−1).

2) Es obvio que si cada factor es inversible el producto también lo es (su
inverso es el producto de los inversos). Si el producto es inversible entonces
el inverso de un factor es el inverso del producto multiplicado por los factores
restantes.

3) Supongamos que un mismo ideal no nulo se expresa de dos formas

p1 · · · pr = q1 · · · qs

como producto de ideales primos (necesariamente no nulos) . Podemos suponer
que r ≤ s.

Tomamos un factor (digamos p1) que no contenga estrictamente a ninguno
de los restantes. Por definición de ideal primo, y puesto que q1 · · · qs ⊂ p1, ha
de existir un ı́ndice i de modo que qi ⊂ p1. Reordenando podemos suponer que
q1 ⊂ p1. Igualmente ha de existir un ı́ndice j tal que pj ⊂ q1 ⊂ p1. Por la
elección de p1 ha de ser pj = q1 = p1. Tomando inversos podemos eliminarlos
de la factorización, hasta llegar a que D = qs−r · · · qs ⊂ qs, lo que contradice la
definición de ideal primo a no ser que r = s. Es claro que con esto el teorema
queda demostrado.

Teorema 3.4 Si D es un dominio de Dedekind, entonces los ideales fraccio-
nales de D forman un grupo. Además los ideales primos coinciden con los
maximales.
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Demostración: Basta probar que todo ideal primo (no nulo) tiene un
inverso y es maximal, pues entonces todo ideal no nulo será inversible por ser
producto de ideales primos (inversibles) y todo ideal fraccional será inversible
porque es de la forma (c)−1b, donde (c)−1 es ciertamente inversible y b es un
ideal, luego inversible también.

Vemos primero que todo ideal primo inversible es maximal. Sea p un ideal
primo. Hay que demostrar que si d ∈ D \ p entonces p + (d) = D. En caso
contrario existen ideales primos tales que p+(d) = p1 · · · pr y p+(d2) = q1 · · · qs.
Es fácil ver que(

p + (d)
)
/p =

(
p1/p

)
· · ·

(
pr/p

)
y

(
p + (d2)

)
/p =

(
q1/p

)
· · ·

(
qs/p

)
.

El ideal
(
p + (d)

)
/p =

(
[d]

)
es principal y D/p es un dominio ı́ntegro, luego

tiene inverso por el teorema anterior, el cual nos da también que todos los ideales
primos p1/p, . . . , pr/p tienen inverso como ideales de D/p.

Lo mismo ocurre con q1/p, . . . , qs/p. Igualamos:

(
q1/p

)
· · ·

(
qr/p

)
=

(
[d2]

)
=

(
[d]

)2 =
(
p1/p

)2 · · ·
(
ps/p

)2
.

Otra aplicación del teorema anterior nos da que s = 2r y que, ordenando
adecuadamente, pi/p = q2i/p = q2i−1/p. De aqúı se sigue que pi = q2i = q2i−1,
y de aqúı a su vez obtenemos que p + (d2) =

(
p + (d)

)2. Consecuentemente

p ⊂ p + (d2) =
(
p + (d)

)2 ⊂ p2 + (d).

Todo elemento de p es, pues, de la forma c + ad, con c ∈ p2 y a ∈ D, pero
como p es primo y d /∈ p, ha de ser a ∈ p, lo que prueba que p ⊂ p2 + p(d) ⊂ p,
es decir, p = p2 + p(d), y como p tiene inverso, 1 = p + (d), contradicción.

Finalmente, si p es cualquier ideal primo no nulo, sea c ∈ p, c �= 0. Como
D es un dominio de Dedekind podemos factorizar (c) = p1 · · · pr ⊂ p, donde los
ideales primos pi son todos inversibles (por el teorema anterior, ya que (c) lo es)
y en consecuencia maximales (por lo ya probado). Por definición de ideal primo,
algún ideal pi está contenido en p, luego por maximalidad p = pi es maximal y
tiene inverso.

Ahora ya podemos trabajar con dominios de Dedekind como si fueran do-
minios de factorización única.

Definición 3.5 Sea D un dominio de Dedekind. Diremos que un ideal b divide
a un ideal a si existe un ideal c tal que a = bc. Lo representaremos b | a. Notar
que en tal caso c = ab

−1. Claramente b | a si y sólo si ab
−1 es un ideal.

Observar que b | a si y sólo si a ⊂ b. En efecto, si b | a entonces a = bc ⊂ b

y si a ⊂ b la propia definición de producto nos da que ab
−1 ⊂ bb

−1 = 1 = D,
luego el ideal fraccional ab

−1 es de hecho un ideal y por lo tanto b | a.
Aśı un ideal p es primo si y sólo si p �= 1 y cuando p | ab entonces p | a o p | b,

es decir, el concepto de ideal primo en un dominio de Dedekind es formalmente
análogo al de primo real en un dominio de factorización única.
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Similarmente, un ideal p es maximal si y solo si p �= 1 y cuando a | p

entonces a = 1 o a = p, es decir, el concepto de ideal maximal en un dominio
de Dedekind es formalmente análogo al de elemento irreducible en un dominio
de factorización única (notar que en términos de ideales no hay ni unidades ni
asociados). Hemos probado que en un dominio de Dedekind ‘maximal’ equivale
a ‘primo’, lo cual es análogo al hecho de que en un dominio de factorización
única ‘irreducible’ equivale a ‘primo’.

Si c ∈ D escribiremos a | c o c = ab en lugar de a | (c) o (c) = ab. De este
modo los divisores ideales pueden dividir a elementos reales. Concretamente,
tenemos a | c si y sólo si (c) ⊂ a, si y sólo si c ∈ a, es decir, un ideal, como
conjunto, es el conjunto de todos sus múltiplos reales. Notar también que a | b
si y sólo si (a) | (b).

La factorización única ideal nos permite hablar de la multiplicidad de un
ideal primo en otro ideal (o en un elemento real) exactamente en el mismo
sentido que en un dominio de factorización única. Toda familia finita de ideales
tiene un máximo común divisor y un mı́nimo común múltiplo que se pueden
calcular del modo usual, aunque en realidad hay una caracterización más simple:
Teniendo en cuenta que a | b es lo mismo que b ⊂ a, resulta que el máximo
común divisor de una familia de ideales es el mayor ideal que los contiene, y el
mı́nimo común múltiplo es el mayor ideal contenido en ellos, o sea:

mcd(a1, . . . , ar) = a1 + · · ·+ ar,

mcm(a1, . . . , ar) = a1 ∩ · · · ∩ ar.

En particular (a, b) = (a) + (b) puede entenderse como el ideal generado por
a y b o como el máximo común divisor de (a) y (b). Es equivalente. Pode-
mos hablar de ideales primos entre śı, etc. con las propiedades usuales. Como
ilustración de la aritmética ideal vamos a probar el teorema chino del resto:

Teorema 3.6 (Teorema chino del resto) Sea D un dominio de Dedekind y
sean m1, . . . ,mn ideales de D primos entre śı dos a dos. Si m = m1 · · ·mn se
cumple

D/m ∼= (D/m1)× · · · × (D/mn)

y el isomorfismo viene dado por la aplicación [α] 
→
(
[α], . . . , [α]

)
.

Demostración: Es claro que la aplicación indicada es un monomorfismo de
anillos. Sólo hay que probar que es suprayectiva, es decir, que dados α1, . . . , αn
en D existe un α ∈ D tal que α ≡ αi (mód mi) para i = 1, . . . , n. Llamemos
m∗
i = m/mi. Entonces mi y m∗

i son primos entre śı, es decir, mi + m∗
i = 1 = D.

Por consiguiente αi = βi + γi, donde βi ∈ mi y γi ∈ m∗
i . Equivalentemente,

γi ≡ αi (mód mi) y γi ≡ 0 (mód mj) para j �= i. Es claro que α = γ1 + · · ·+ γn
es el buscado.

De aqúı deducimos un hecho técnico sobre dominios de Dedekind que es fácil
usar inadvertidamente, pues en los dominios de factorización única es trivial.
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Teorema 3.7 Sea D un dominio de Dedekind, sean p1, . . . , pr primos de D y
sean α y β ∈ D no nulos tales que la multiplicidad de cada pi en β sea menor
o igual que en α. Entonces α/β = γ/δ, para ciertos γ, δ ∈ D, de modo que
ningún pi divide a δ.

Demostración: Sea β = p
e1
1 · · · per

r a, donde a no es divisible entre ningún
pi. Por el teorema chino del resto existe un δ ∈ D tal que

δ ≡ 0 (mód a), δ ≡ 1 (mód pi), i = 1, . . . , r.

Esto implica que a | δ y no es divisible entre ningún pi. Por hipótesis β | αδ,
es decir, existe un γ ∈ D tal que αδ = βγ

Es fácil encontrar dominios de factorización única que no sean dominios de
Dedekind. Por ejemplo Z[x] no es un dominio de Dedekind ya que (x) es un ideal
primo no maximal. Rećıprocamente veremos que los órdenes maximales de todos
los cuerpos numéricos son dominios de Dedekind y muchos de ellos no tienen
factorización única. Por lo tanto la divisibilidad ideal no es una generalización
de la real, sino que ambas son paralelas. Las dos pueden darse simultáneamente.
Esto ocurre exactamente en los dominios de ideales principales:

Teorema 3.8 Un dominio ı́ntegro D es un dominio de ideales principales si y
sólo si es un dominio de Dedekind y un dominio de factorización única.

Demostración: Es sabido que si D es dominio de ideales principales en-
tonces tiene factorización única, y todo ideal propio de D es de la forma (c),
donde c no es 0 ni una unidad. Entonces c se descompone en producto de pri-
mos c = p1 · · · pn, con lo que (c) = (p1) · · · (pn) también es producto de ideales
primos. Rećıprocamente, una descomposición de (c) en ideales primos da lugar
a una factorización de c, de donde se sigue la unicidad.

Si D es a la vez un dominio de Dedekind y un dominio de factorización única
entonces dado un ideal primo p tomamos un c ∈ p no nulo y lo factorizamos
c = p1 · · · pn en producto de primos. Tenemos que p | c, luego p | pi para
algún i, luego (pi) ⊂ p y, como los ideales primos son maximales, p = (pi)
es principal, y todo ideal propio de D es principal por ser producto de ideales
primos principales.

El concepto de dominio de factorización única es muy útil en cuanto que
proporciona un gran control sobre los anillos que tienen esta propiedad, pero está
el inconveniente de que no es fácil determinar cuándo se da el caso. En cambio,
el concepto de dominio de Dedekind admite una caracterización algebraica muy
fácil de verificar en la práctica. Veámosla.

Teorema 3.9 (Teorema de Dedekind) Sea D un dominio ı́ntegro y K su cuerpo
de cocientes. Entonces D es un dominio de Dedekind si y sólo si cumple las tres
propiedades siguientes:

1. D es noetheriano.

2. Los ideales primos no nulos de D son maximales.
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3. Si a ∈ K es ráız de un polinomio mónico con coeficientes en D, entonces
a ∈ D.

Demostración: Todo dominio de Dedekind es noetheriano, pues una ca-
dena de ideales estrictamente creciente significaŕıa una cadena decreciente de
divisores, lo cual es imposible. La propiedad 2) está probada en el teorema 3.4.
Es interesante notar que la prueba de 3) vale indistintamente para dominios de
Dedekind o para dominios de factorización única. En efecto:

Sea c = a
b , con a, b ∈ D. Si c /∈ D entonces b � a, luego existe un primo p

(ideal o real) tal que el exponente de p en a sea estrictamente menor que en b.
Sea p(x) =

∑n
i=0 dix

i, donde dn = 1. Entonces

an

bn
+ dn−1

an−1

bn−1
+ · · ·+ d1

a

b
+ d0 = 0.

Multiplicando por bn queda:

an = −dn−1ba
n−1 − · · · − d1b

n−1a− d0b.

Ahora bien, el exponente de p en el miembro izquierdo es exactamente n
veces el exponente en a, mientras que en el miembro derecho es estrictamente
mayor, con lo que tenemos una contradicción.

Supongamos ahora que un dominio ı́ntegro D cumple las tres propiedades
del enunciado y veamos que es un dominio de Dedekind. Dividimos la prueba
en varios pasos.

(i) Sea a �= 0 un ideal de D. Entonces existen ideales primos p1, . . . , pr de
manera que p1 · · · pr ⊂ a.

En caso contrario existe un ideal a tal que no existen ideales primos en las
condiciones pedidas y que es maximal entre los ideales para los que esto ocurre.

En particular a no puede ser primo, o cumpliŕıa (i) trivialmente. Tampoco
puede ser que a = D. Por lo tanto existen dos ideales b y c tales que bc ⊂ a,
pero no b ⊂ a o c ⊂ a.

Por la maximalidad de a, existen ideales primos p1, . . . , ps y ps+1, . . . , pr
tales que

p1 · · · ps ⊂ a + b, ps+1 · · · pr ⊂ a + c,

de donde p1 · · · pr ⊂ (a + b)(a + c) ⊂ aa + ab + ac + bc ⊂ a, contradicción.

(ii) Si a es un ideal no nulo de D, llamaremos a−1 = {x ∈ K | xa ⊂ D}.

Es claro que a−1 es un D-submódulo de K, y para cualquier c ∈ a no nulo
se cumple que ca−1 ⊂ D, luego a−1 es un ideal fraccional de D.

También es inmediato que D ⊂ a−1, luego a = aD ⊂ aa−1.
De la definición de a−1 se sigue que aa−1 = a−1a ⊂ D. Esto significa que el

ideal fraccional a−1a es de hecho un ideal de D.
Notar también que si a ⊂ b son dos ideales de D, entonces D ⊂ b−1 ⊂ a−1.
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(iii) Si a es un ideal propio, entonces D 	 a−1.

Sea p un ideal maximal de D tal que a ⊂ p. Entonces p−1 ⊂ a−1. Basta
probar que p−1 contiene estrictamente a D. Sea a ∈ p no nulo. Por (i), sea
r el menor natural tal que existen ideales primos para los que p1 · · · pr ⊂ (a).
Como (a) ⊂ p y p es primo, existe un ı́ndice i tal que pi ⊂ p. Reordenando
podemos suponer que p1 ⊂ p. Como p1 es maximal ha de ser p1 = p, y por
la minimalidad de r tenemos que p2 · · · pr no está contenido en (a). Tomamos,
pues, un elemento b ∈ p2 · · · pr \ (a).

Claramente bp ⊂ (a), luego ba−1p ⊂ a−1(a) = D y ba−1 ∈ p−1, pero por
otra parte b /∈ (a) = aD, luego ba−1 /∈ D. Aśı pues, p−1 �= D.

(iv) Si a es un ideal no nulo de D y S es un subconjunto de K tal que aS ⊂ a,
entonces S ⊂ D.

Sea s ∈ S. Como D es noetheriano tenemos que a = (a1, . . . , am) para
ciertos a1, . . . , am ∈ D. Por hipótesis ais ∈ a para i = 1, . . . ,m, luego existen
elementos bij ∈ D de manera que

ais =
m∑
j=1

bijaj para i = 1, . . . ,m.

Esto puede expresarse matricialmente mediante la ecuación s(aj)t = B(aj)t,
donde llamamos B = (bij). Equivalentemente, (B − sIm)(aj)t = 0. Por con-
siguiente la matriz B − sIm no puede ser regular, pues entonces multiplicando
por su inversa concluiŕıamos que (aj) = 0, lo cual es imposible. Por lo tanto
|B − sIm| = 0 y el polinomio p(x) = |B − xIm| ∈ D[x] es mónico, no nulo y
tiene por ráız a s. Por la hipótesis 3) tenemos que s ∈ D.

(v) Si p es un ideal maximal de D, entonces pp−1 = D.

Por (ii) sabemos que pp−1 es un ideal de D tal que p ⊂ pp−1 ⊂ D. Puesto
que p es maximal, ha de ser p = pp−1 o bien pp−1 = D. Si se diera el primer
caso, por (iv) tendŕıamos que p−1 ⊂ D, lo que contradice a (iii).

(vi) Si a �= 0 es un ideal, entonces aa−1 = D.

Supongamos lo contrario. Como D es noetheriano existe un ideal a maximal
entre los que incumplen (vi). Obviamente a �= D. Sea p un ideal maximal tal
que a ⊂ p.

Por (ii) D ⊂ p−1 ⊂ a−1, luego a ⊂ ap−1 ⊂ aa−1 ⊂ D. En particular el ideal
fraccional ap−1 es un ideal de D. No puede ocurrir que a = ap−1, pues entonces
(iv) implicaŕıa que p−1 ⊂ D en contradicción con (iii). Aśı pues, a 	 ap−1, luego
la maximalidad de a implica que ap−1 cumple (vi), es decir, ap−1(ap−1)−1 = D.
Por definición de a−1 esto significa que p−1(ap−1)−1 ⊂ a−1. Por consiguiente
D = ap−1(ap−1)−1 ⊂ aa−1 ⊂ D, de donde aa−1 = D, en contradicción con
nuestra hipótesis.
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(vii) Todo ideal propio de D es producto de ideales primos.

En caso contrario sea a un ideal propio maximal entre los que no pueden
expresarse como producto de ideales primos. En particular a no es primo. Sea
p un ideal maximal tal que a ⊂ p. Como en (vi) concluimos que a ⊂ ap−1 ⊂ D
y de nuevo por (iv) y (iii), la primera inclusión es estricta.

Por la maximalidad de a tenemos que ap−1 = p1 · · · pr para ciertos ideales
primos p1, . . . , pr. Por lo tanto a = p1 · · · prp, en contra de la elección de a.

(viii) La descomposición de un ideal en primos es única salvo el orden.

Supongamos que un mismo ideal propio se expresa de dos formas

p1 · · · pr = q1 · · · qs

como producto de ideales primos (necesariamente no nulos) . Podemos suponer
que r ≤ s.

Entonces, puesto que p1 es primo y q1 · · · qs ⊂ p1, ha de existir un ı́ndice i tal
que qi ⊂ p1. Reordenando podemos suponer que q1 ⊂ p1 y, por maximalidad,
de hecho q1 = p1. Multiplicando por el inverso tenemos p2 · · · pr = q2 · · · qs.
Repitiendo el proceso llegamos a que pi = qi para i = 1, . . . , r y (si r < s) a que
D = qs−r · · · qs, pero entonces D ⊂ qs, lo cual es imposible. Por lo tanto ha de
ser r = s.

Observar que la prueba del teorema anterior nos ha dado una expresión
expĺıcita para el inverso de un ideal en un dominio de Dedekind:

a−1 = {x ∈ K | xa ⊂ D}.

Terminamos nuestro estudio de los dominios de Dedekind en general con un
resultado técnico que en ocasiones es útil. Si a es un ideal no principal de un
dominio de Dedekind, entonces ningún múltiplo real de a es exactamente igual
a a, es decir, para cualquier α ∈ a se cumple que α divide estrictamente a a o, lo
que es lo mismo, que αa−1 �= 1. Vamos a probar que α puede tomarse de modo
que en este ‘exceso de divisores’ no aparezca un conjunto de primos prefijado.

Teorema 3.10 Sea D un dominio de Dedekind y a, b dos ideales no nulos de
D. Entonces existe un α ∈ a tal que αa−1 + b = 1.

Demostración: Hay que probar que α puede tomarse de modo que ninguno
de los primos que dividen a b divida a αa−1, o equivalentemente, que α /∈ ap

para todo p | b.
Sean p1, . . . , pr los primos distintos que dividen a b. Si r = 1 basta tomar

α ∈ a−ap1. Para r > 1 sea ai = ap
−1
i b. Si api ⊂ ai = ap

−1
i b entonces pi ⊂ p

−1
i b,

luego b | p2
i , luego seŕıa r = 1.

Por lo tanto podemos tomar números αi ∈ ai \ api para i = 1, . . . , r y
α = α1 + · · · + αr. Como cada αi ∈ ai ⊂ a, se cumple que α ∈ a. Si se
cumpliera que α ∈ api para algún i, entonces para j �= i tendŕıamos también
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que αj ∈ aj ⊂ api, luego despejando αi en la definición de α concluiŕıamos que
αi ∈ aipi, en contradicción con la elección que hemos hecho.

Una aplicación de este resultado nos permite probar que todo ideal de un
dominio de Dedekind está generado por a lo sumo dos elementos.

Teorema 3.11 Sea D un dominio de Dedekind y a un ideal no nulo de D. Sea
β ∈ a no nulo. Entonces existe un α ∈ a tal que a = (α, β).

Demostración: Sea b = βa−1. (como a | β, se cumple que b es un ideal).
Por el teorema anterior existe un α ∈ a tal que αa−1+b = 1, o equivalentemente
αa−1 + βa−1 = 1. Multiplicando por a queda que a = (α) + (β) = (α, β).

3.2 Divisibilidad ideal en órdenes numéricos

El teorema de Dedekind probado en la sección anterior nos permite probar
fácilmente que los órdenes maximales de los cuerpos numéricos tienen factori-
zación única ideal. La única propiedad que en estos momentos no es evidente
es la tercera condición. La probamos en un teorema aparte porque tiene interés
por śı misma.

Teorema 3.12 Si c ∈ A es ráız de un polinomio mónico p(x) ∈ E[x], entonces
c ∈ E.

Demostración: Sea p(x) = xn + an−1x
n−1 + · · ·+ a0, donde cada ai ∈ E.

Sea B = Z[a0, . . . , an−1]. Entonces B es un submódulo del orden maximal
de Q(a0, . . . , an−1), luego es un Z-módulo finitamente generado. Digamos que
B = 〈v1, . . . , vr〉. El mismo argumento empleado en el teorema 2.3 prueba ahora
que B[c] =

〈
1, c, . . . , cn−1

〉
B

(como B-módulo).
Sea N el Z-módulo generado por los elementos vi · ck, donde 1 ≤ i ≤ r,

0 ≤ k ≤ n− 1.
Aśı, un elemento de B[c] es una combinación lineal con coeficientes en B de

los ck y cada coeficiente es una combinación lineal con coeficientes enteros de
los vi.

Por lo tanto B ⊂ N y es, en consecuencia, un Z-módulo finitamente gene-
rado. Por el teorema 2.3 concluimos que c es un entero algebraico.

En particular, si K es un cuerpo numérico, O es su orden maximal y α ∈ K
es ráız de un polinomio mónico de O[x], entonces α es entero, luego α ∈ O.
Ahora es fácil probar:

Teorema 3.13 Si O es el orden maximal de un cuerpo numérico K, entonces
O es un dominio de Dedekind.

Demostración: Acabamos de probar que O cumple la propiedad 3) del
teorema de Dedekind. Los ideales no nulos de O son módulos completos (teorema
2.17. Por lo tanto son finitamente generados (como Z-módulos, luego también
como ideales). Esto significa que O es noetheriano y aśı tenemos 1).
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Por otra parte, los ideales tienen cocientes finitos (por 2.33, notar que su
anillo de coeficientes es necesariamente O), y los dominios ı́ntegros finitos son
cuerpos, luego los ideales primos son maximales (propiedad 2).

Ejercicio: Probar que un orden de un cuerpo numérico distinto del orden maximal
no puede tener factorización única, sea real o ideal.

Es costumbre hablar de ideales, unidades, etc. de un cuerpo numérico K
refiriéndose a los conceptos correspondientes de su orden maximal (todos estos
conceptos seŕıan triviales aplicados a K, por lo que no hay confusión posible).
En estos términos, los ideales fraccionales de K son simplemente los módulos
completos cuyo anillo de coeficientes es OK . En el caṕıtulo anterior definimos
una norma sobre estos ideales, y en éste hemos definido un producto. Vamos a
probar que la norma conserva los productos. Esto nos permitirá usar la norma
en el estudio de la divisibilidad ideal del mismo modo en que empleamos la
norma del cuerpo en el estudio de la divisibilidad real.

Teorema 3.14 Si a, b son ideales fraccionales de un cuerpo numérico K, en-
tonces N(ab) = N(a)N(b).

Demostración: Todo ideal fraccional es de la forma a = α−1b, donde
α ∈ OK y b es un ideal. Por el teorema 2.34 tenemos que N(a) = |N(α−1)|N(b),
luego basta probar que la norma es multiplicativa sobre ideales no nulos.

Por la unicidad de la factorización en primos e inducción sobre el número
de factores, basta probar que N(ap) = N(a)N(p) cuando p es un ideal primo (el
caso en que uno de los factores es 1 es obvio).

Consideremos los grupos abelianos finitos a/ap ≤ OK/ap. El tercer teorema
de isomorf́ıa implica que |OK/ap| = |OK/a| |a/ap|, o sea, N(ap) = N(a) |a/ap|.
Basta probar que |a/ap| = |OK/p|. Notemos que por la factorización única ap

no puede ser igual a p, luego ap 	 a, es decir, |a/ap| > 1.
Por el mismo motivo no pueden existir ideales b de OK tales que ap 	 b 	 a,

pues entonces a | b | ap, luego la descomposición en factores de b debe contener
a la de a y estar contenida en la de ap, luego b será igual a ap o a a según que
la multiplicidad de p en b sea la de ap o la de a.

Por lo tanto, si a ∈ a \ ap, entonces a = ap + (a) y a su vez esto implica que
la aplicación f : OK −→ a/ap dada por f(x) = [xa] es un epimorfismo de OK-
módulos con la propiedad de que p ⊂ N(f). Ahora, N(f) es un OK-submódulo
de OK , o sea, un ideal. Como p es maximal, ha de ser N(f) = p o N(f) = OK ,
pero el segundo caso implicaŕıa que a/ap ∼= OK/OK , con lo que |a/ap| = 1,
contradicción. Lo correcto es a/ap ∼= OK/p, y aśı |OK/p| = |a/ap|.

He aqúı los hechos más importantes en relación con normas y divisibilidad:

Teorema 3.15 Sean a, b ideales de un cuerpo numérico K.

1. Si a | b entonces N(a) | N(b).

2. a | N(a). En particular si N(a) = 1 entonces a = 1.
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3. Si N(a) es un número primo, entonces a es un ideal primo.

4. Si a es un ideal primo no nulo, entonces a divide a un único primo racional
p y se cumple que N(a) = pm para cierto natural m menor o igual que el
grado de K.

5. Si α ∈ OK entonces N
(
(α)

)
= |N(α)|.

6. Sólo un número finito de ideales pueden tener una misma norma.

Demostración: 1) es consecuencia inmediata del teorema 3.14.

2) Por definición, N(a) = |OK/a|. El anillo O/a es en particular un grupo
finito (con la suma) y el orden de cualquier elemento es divisible entre N(a).
Por lo tanto N(a)[1] = [0], lo que equivale a que N(a) ∈ a.

3) Un ideal de norma prima no puede descomponerse en primos (por 1 y 2),
luego ha de ser primo.

4) Como a | N(a) y a es primo, a debe dividir a uno de los primos racionales
que dividen a N(a). Digamos que a | p. Entonces N(a) | N(p) = pn, donde n es
el grado de K. Consecuentemente, N(a) = pm para un cierto m ≤ n.

Si a dividiera a otro primo q, el mismo argumento nos daŕıa que N(a) habŕıa
de ser potencia de q, lo cual es imposible salvo si q = p.

5) Por el teorema 2.34.

6) Por 2), los ideales de norma m dividen a m y el conjunto de divisores de
m es finito.

Este teorema contiene información relevante a la hora de estudiar los ideales
propios de un anillo de enteros. El apartado 4) nos dice que todo ideal primo
divide a un primo racional, por lo que factorizando los primos racionales se
encuentran todos los ideales primos. La unicidad de 4) implica que los primos
racionales (no asociados) son primos entre śı, de donde se sigue la existencia
de infinitos ideales primos en cada anillo de enteros (al menos uno distinto
para cada primo racional). El apartado 5) muestra que la norma ideal extiende
consistentemente a la norma real.

Ejemplo Consideremos de nuevo el caso de factorización no única (1.2) que
encontramos en el anillo Z

[√
−5

]
:

6 = 2 · 3 =
(
1 +

√
−5

)(
1 +

√
−5

)
.

Los cuatro factores son irreducibles, pero no son primos. Como N(2) = 4, el
ideal (2) sólo puede descomponerse en producto de dos ideales primos de norma
2, o sea, 2 = p1p2. Igualmente 3 ha de ser producto de dos ideales de norma 3,
digamos 3 = qr. Por otra parte, los factores de la derecha tienen los dos norma
6, luego han de descomponerse en producto de un ideal de norma 2 por otro de
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norma 3. La unicidad de la factorización obliga a que sea
(
1 +

√
−5

)
= p1q y(

1−
√
−5

)
= p2r, de modo que la factorización única de 6 es

6 = 2 · 3 = (p1p2)(qr) = (p1q)(p2r) =
(
1 +

√
−5

)(
1−

√
−5

)
.

Más aún, evidentemente p1 es el máximo común divisor de 2 y 1 +
√
−5, es

decir, que p1 =
(
2, 1 +

√
−5

)
.

Similarmente p2 =
(
2, 1−

√
−5

)
, q =

(
3, 1 +

√
−5

)
y r =

(
3, 1−

√
−5

)
.

Finalmente observamos que p1 = p2, pues 1 −
√
−5 = 2 −

(
1 +

√
−5

)
. Por

el contrario q �= r, pues en otro caso 1 = 3−
(
1 +

√
−5 + 1−

√
−5

)
∈ q, o sea,

q = 1.
Si llamamos p = p1 = p2, la factorización de 6 es, en definitiva, 6 = p2qr. Los

factores son ‘ideales’ porque no están en el anillo Z
[√
−5

]
, pero se comportan

como si lo estuviesen.

Veamos ahora cómo encontrar sistemáticamente factorizaciones como la del
ejemplo anterior. Nuestro teorema básico es el siguiente.

Teorema 3.16 Sea K = Q(ζ) un cuerpo numérico, donde ζ es entero y p
un primo racional tal que p � ı́nd ζ. Sea g(x) = pol mı́n ζ y ḡ(x) la imagen
de g(x) por el epimorfismo de Z[x] sobre (Z/pZ)[x]. Sea ḡ = ḡe11 · · · ḡer

r la
descomposición de ḡ en polinomios mónicos irreducibles en (Z/pZ)[x]. Entonces
los ideales pi =

(
p, gi(ζ)

)
, para i = 1, . . . , r son primos distintos en OK y la

descomposición de p en primos es p = p
e1
1 · · · per

r . Además N(pi) = pgrad gi .

Demostración: Para cada i = 1, . . . , r, sea ζi una ráız de ḡi(x) en una
extensión de Z/pZ. Entonces (Z/pZ)(ζi) es una extensión finita de Z/pZ y
ḡi = pol mı́n(ζi,Z/pZ).

Sea φi : Z[ζ] −→ (Z/pZ)(ζi) la aplicación dada por φi
(
q(ζ)

)
= q̄(ζi). Está

bien definida, pues si q(ζ) = r(ζ), entonces (q − r)(ζ) = 0, luego g|q − r, de
donde ḡ | q̄ − r̄, y también ḡi | q̄ − r̄, luego q̄(ζi)− r̄(ζi) = 0.

Obviamente φi es un epimorfismo, luego Z[ζ]/N(φi) ∼= (Z/pZ)(ζi), y el se-
gundo anillo es un cuerpo, de donde N(φi) es un ideal maximal de Z[ζ].

Llamemos qi al ideal generado por p y gi(ζ) en Z[ζ]. Claramente qi ⊂ N(φi)
(la imagen de p es [p] = 0). Veamos la otra inclusión. Si q(ζ) ∈ N(φi), entonces
q̄(ζi) = 0, luego q̄(x) = h̄(x)ḡi(x). El hecho de que q̄(x) − h̄(x)ḡi(x) = 0
significa que todos los coeficientes del polinomio q(x)− h(x)gi(x) son múltiplos
de p. Consecuentemente q(ζ) =

(
q(ζ) − h(ζ)gi(ζ)

)
+ h(ζ)gi(ζ) ∈ qi. Por lo

tanto, qi = N(φi) es un ideal maximal de Z[ζ].

Sea k = ı́nd ζ =
∣∣OK : Z[ζ]

∣∣. Claramente, si β ∈ OK , entonces kβ ∈ Z[ζ].

Veamos ahora que pi �= 1. En otro caso existiŕıan enteros β, γ ∈ OK tales
que 1 = βp + γgi(ζ). Entonces k = kβp + kγgi(ζ) y kβ, kγ ∈ Z[ζ], luego
k ∈ qi = N(φi), luego p | k, en contra de la hipótesis.

Tomemos un entero racional x tal que kx ≡ 1 (mód p). Dado cualquier
β ∈ OK , sea γ = kxβ. Entonces γ ∈ Z[ζ] y γ ≡ β (mód pi). Esto prueba que
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la inclusión Z[ζ] −→ OK/pi es suprayectiva, su núcleo contiene a qi y, como
éste es maximal, se da la igualdad, es decir, OK/pi ∼= Z[ζ]/qi ∼= (Z/pZ)(ζi). En
particular, pi es un ideal primo de OK .

Aplicando que, en general, (p, u)(p, v) ⊂ (p, uv) concluimos que

p
e1
1 · · · per

r ⊂
(
p, g1(ζ)e1 · · · gr(ζ)er

)
=

(
p, g(ζ)

)
= (p, 0) = (p).

Notar que la primera igualdad se debe a que g(ζ) y g1(ζ)e1 · · · gr(ζ)er se dife-
rencian en un entero múltiplo de p. Aśı pues, p | p

e1
1 · · · per

r . La igualdad la
obtendremos considerando las normas.

Por definición de norma, N(pi) = |OK/pi| =
∣∣(Z/pZ)(ζi)

∣∣ = pgrad gi . En
total

N(pe11 · · · per
r ) = pe1 grad g1+···+er grad gr = pn,

donde n es el grado de K. Aśı pues N(pe11 · · · per
r ) = N(p), lo que nos da que

p = p
e1
1 · · · per

r .

Los primos pi son distintos, pues si pi = pj , entonces gj(ζ) ∈ pi, de donde se
sigue fácilmente que kgj(ζ) ∈ qi, y a su vez ḡj

(
[ζ]

)
= 0. Aśı pues, los polinomios

ḡi y ḡj tienen la ráız [ζ] en común en Z[ζ]/qi, pero eso es imposible porque ambos
polinomios son irreducibles en Z/pZ[x], luego son primos entre śı.

Aśı tenemos un método práctico para factorizar cualquier primo de cualquier
cuerpo numérico salvo en un caso: salvo si un primo p divide a los ı́ndices de
todos los enteros de un cuerpo numérico K. Entonces se dice que p es un
divisor esencial de K. El ejemplo de Dedekind Q(ξ) que estudiamos en el
caṕıtulo anterior es precisamente un ejemplo de cuerpo con un divisor esencial:
el 2, según se ve en la expresión para el ı́ndice de un entero arbitrario que alĺı
obtuvimos:

ı́nd
(
x + y ξ + z

ξ + ξ2

2

)
= |2y3 + 2z3 − yz2 + zy2|.

Ésta es la razón por la que es famoso el ejemplo de Dedekind. Existen métodos
para determinar las descomposiciones en primos de los divisores esenciales, pero
no entraremos en ello. En la sección siguiente hallaremos la factorización del 2
para el caso particular del ejemplo de Dedekind.

Ejemplo Volvamos a obtener las factorizaciones de 2 y 3 en el anillo Z
[√
−5

]
.

En primer lugar, pol mı́n
√
−5 = x2 + 5. Su imagen en el cuerpo (Z/2Z)[x]

es x2 + 1 = (x + 1)2, luego 2 factoriza como 2 =
(
2, 1 +

√
−5

)2.

La imagen en (Z/3Z)[x] es x2 + 2 = x2 − 1 = (x + 1)(x− 1), lo que nos da
la factorización 3 =

(
3, 1 +

√
−5

)(
3,−1 +

√
−5

)
=

(
3, 1 +

√
−5

)(
3, 1−

√
−5

)
.

El teorema 3.16 puede refinarse cuando se aplica a extensiones de Galois
de Q. Ello se debe esencialmente a que los automorfismos obligan a que las
factorizaciones presenten un alto grado de simetŕıa. En efecto, ante todo, si K
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es una extensión finita de Galois de Q y σ ∈ G(K/Q), es claro que la imagen
σ[a] de un ideal fraccional cualquiera de K es de nuevo un ideal fraccional, que
será un ideal (entero) si y sólo si lo es a. Aśı pues, podemos extender a σ a un
automorfismo del grupo de los ideales fraccionales de K dado por σ(a) = σ[a].
Decimos ‘extender’ porque la acción sobre los ideales es consistente con la acción
sobre elementos reales en el sentido de que σ

(
(α)

)
=

(
σ(α)

)
, para todo α ∈ K

no nulo.
Diremos que dos ideales fraccionales a y b son conjugados si existe un auto-

morfismo σ ∈ G(K/Q) tal que σ(a) = b.

Teorema 3.17 Sea K una extensión de Galois de grado n sobre Q y sea p un
primo racional. Entonces la factorización de p en K es de la forma

p = (p1 · · · pr)e, (3.2)

donde los ideales pi son primos distintos, forman una clase de conjugación y
todos tienen la misma norma N(pi) = pf , para un cierto f tal que efr = n.

Demostración: Es obvio que si p | p, entonces todo conjugado de p cumple
lo mismo. Veamos que cualquier otro divisor q de p es un conjugado de p.
Supongamos, por reducción al absurdo, que σ(p) �= q para todo automorfismo
σ. Por el teorema chino del resto existe un α ∈ OK tal que

α ≡ 0 (mód q),
α ≡ 1 (mód σ(p)) para todo σ ∈ G(K/Q).

Pero entonces q | α | N(α), luego p | N(α), luego p | N(α) y por consiguiente
p | σ(α) para algún σ ∈ G(K/Q), de donde σ−1(p) | α, contradicción.

Es claro que el exponente de un primo p en la descomposición en primos de
p debe ser el mismo que el de todos sus conjugados. Como todos los divisores
primos de p son conjugados, de hecho todos tienen el mismo exponente e, luego
la factorización es del tipo (3.2). También es obvio que primos conjugados tienen
la misma norma, necesariamente potencia de p. La igualdad n = efr se sigue
de tomar normas en ambos miembros de (3.2).

En particular, el teorema anterior afirma que dos primos de un cuerpo
numérico normal son conjugados si y sólo si dividen al mismo primo racional,
si y sólo si tienen la misma norma. Otra consecuencia interesante es el teorema
siguiente:

Teorema 3.18 Sea K una extensión finita de Galois de Q y a un ideal frac-
cional de K. Entonces

N(a) =
∏
σ

σ(a), (3.3)

donde σ recorre los automorfismos de K.
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Demostración: Los dos miembros de (3.3) son multiplicativos, luego basta
probarlo para un ideal primo p. Sea N(p) = pf . La factorización de p es de la
forma (3.2), digamos que con p = p1.

Sea G = G(K/Q) y H = {σ ∈ G | σ(p1) = p1}. Es claro que H es un sub-
grupo de G, aśı como que los automorfismos que env́ıan p1 a pi son exactamente
los de Hσ, donde σ es un automorfismo fijo que cumpla esta propiedad. Por lo
tanto, en el miembro izquierdo de (3.3) (con p en lugar de a) cada conjugado
de p aparece el mismo número de veces, concretamente, |H| = n/r = ef veces.
Aśı pues, ∏

σ

σ(p) = (p1 · · · pr)ef = pf = N(p).

3.3 Ejemplos de factorizaciones ideales

Estudiemos ahora las descomposiciones de los primos racionales en algunos
de los cuerpos que venimos estudiando.

Cuerpos cuadráticos Sea K = Q
(√

d
)

un cuerpo cuadrático. Sabemos que
su orden maximal es Z[ζ], donde ζ es

√
d o bien

(
1 +

√
d

)
/2 según el resto

de d módulo 4. Según el caso, el polinomio mı́nimo de ζ será x2 − d o bien
x2 − x + 1−d

4 . Según el teorema 3.16, la factorización de un primo p en K
dependerá de la de estos polinomios en Z/pZ. Evidentemente, para el caso de
x2 − d, el polinomio tendrá una ráız doble, dos ráıces o ninguna según si d es
0 módulo p, es un cuadrado no nulo módulo p o no es un cuadrado módulo p.
En el caso del segundo polinomio llegamos a la misma conclusión estudiando
el discriminante (suponiendo p �= 2), que es también (−1)2 − 4(1 − d)/4 = d.
El caso p = 2 se analiza por separado sin dificultad. La tabla siguiente recoge
todos los casos. Los números e y f son los que aparecen en el teorema 3.16.

Tabla 3.1: Factorización en cuerpos cuadráticos

Casos Factorización e f

p | ∆ p = p2 2 1
p � ∆, x2 ≡ d (mód p) resoluble p = p1p2 1 1

o p = 2, d ≡ 1 (mód 8)
p � ∆ x2 ≡ d (mód p) no resoluble p = p 1 2

o p = 2, d ≡ 5 (mód 8)

Ejercicio: Probar que la ecuación x2 − 15y2 = 13 no tiene soluciones enteras.
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Cuerpos ciclotómicos El comportamiento de los primos racionales en los
cuerpos ciclotómicos se sigue del siguiente hecho elemental sobre extensiones
ciclotómicas de cuerpos finitos:

Teorema 3.19 Sea k = Z/pZ para un cierto primo p y sea ω una ráız m-sima
primitiva de la unidad sobre Z/pZ, donde p � m. Entonces |k(ω) : k| es igual al
orden de p módulo m.

Demostración: Sea n = |k(ω) : k|. Puesto que ω tiene orden m en el grupo
multiplicativo de k(ω), que tiene pn − 1 elementos, concluimos que m | pn − 1,
luego om(p) | n.

Por otra parte, todo elemento de k(ω) es de la forma h(ω), donde h(x) ∈ k[x].
Si llamamos r = om(p) es claro que h(ω)p

r

= h(ωp
r

) = h(ω), luego todos los
elementos de k(ω) son ráıces del polinomio xp

r − x, de donde se sigue que
pn ≤ pr, o sea, n ≤ om(p), y aśı tenemos la igualdad.

Teorema 3.20 Sea K = Q(ω) el cuerpo ciclotómico de orden m y p un primo
racional. Sea m = pim′, donde p � m′. Entonces la factorización de p en K es
de la forma (3.2), donde f = om′(p), e = φ(pi) y r = φ(m)/ef .

Demostración: Sea ωp = ωm
′

y ωm′ = ωp
i

, que son ráıces primitivas
de la unidad de orden pi y m′, respectivamente. Determinaremos primero las
factorizaciones de p en Q(ωp) y Q(ωm′).

Supongamos que i �= 0. Las ráıces pi-ésimas primitivas de la unidad son las
ráıces de xp

i − 1 que no lo son de xp
i−1 − 1, luego el polinomio ciclotómico es

xp
i − 1

xpi−1 − 1
= xp

i−1(p−1) + xp
i−1(p−2) + · · ·+ xp

i−1
+ 1.

Evaluando en 1 queda p =
∏
j

(1 − ωjp) = N(1 − ωp), donde j recorre los

números menores que pj no divisibles entre p. Ésta es la descomposición de p
en factores primos de Q(ωp). Veamos que todos los factores son asociados. En
efecto, como (1 − ωjp)/(1 − ωp) = 1 + ωp + · · · + ωj−1

p es entero y los dos son
primos, el cociente es de hecho una unidad, luego cada factor 1−ωjp es asociado
a 1− ωp.

Por consiguiente, la factorización de p es de la forma p = ε(1 − ωp)φ(pi),
donde ε es una unidad. El número 1− ωp no tiene por qué ser primo en Q(ω),
pero esto prueba al menos que e ≥ φ(pi).

Supongamos ahora que m′ �= 1. Por el teorema 2.30 p � ∆[ωm′ ], luego en
particular p � ı́ndωm′ . Podemos aplicar el teorema 3.16 al orden Z[ωm′ ]. El
polinomio xm

′ − 1 tiene ráıces simples módulo p, luego p se descompondrá en
primos distintos. Veamos que si p es uno de los divisores de p y N(p) = pt,
entonces t = om′(p).

Por 3.16 sabemos que t es el grado de uno de los factores irreducibles de
pol mı́nωm′ módulo p, que a su vez es el grado de la extensión ciclotómica
p-ésima de Z/pZ. Según el teorema anterior, t tiene el valor indicado.
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Comparando las normas concluimos que p se descompone en φ(m′)/t factores
primos distintos de norma pt.

Sea O el orden maximal de Q(ω), sea Om′ el orden maximal de Q(ωm′), sea
P un factor primo de p en Q(ω) y p = P ∩ Om′ . Es claro que p es un divisor
primo de p en Om′ , aśı como que la aplicación natural Om′/p −→ O/P es un
monomorfismo de cuerpos. El cardinal del primero es pt, y el del segundo pf ,
luego concluimos que f ≥ om′(p).

Sea g = φ(m′)/t. Veamos que p tiene al menos g factores distintos en Q(ω).
Sean p1, . . . , pg los divisores primos distintos de p en Q(ωm′). Para cada j sea

πj ∈ pj \
∏
l �=j

pl.

Entonces p | N(πj) (para la norma de Q(ωm′)/Q, luego también para la
norma de Q(ω)/Q). Sea Pj un divisor primo de p en Q(ω) que divida a πj .
Veamos que estos ideales son distintos dos a dos. En caso contrario uno de ellos,
digamos P dividiŕıa a dos números πj y πj′ . Por lo tanto el ideal p = P ∩ Om′

contiene a p, πj , πj′ . Pero entonces pj = p = pj′ , contradicción.

Esto prueba que r ≥ φ(m′)/t. Finalmente observamos que

φ(m) = efr ≥ φ(pi) t φ(m′)/t = φ(m),

luego las tres desigualdades han de ser igualdades.

Ejemplo Vamos a considerar el caso m = 23 y p = 47 en el teorema anterior.
Como p ≡ 1 (mód m), tenemos que f = om(p) = 1, luego 47 factoriza en 22
primos distintos de norma 47. Vamos a probar que en Z[ω] no hay elementos de
norma ±47, con lo que los factores primos de 47 serán ideales no principales, y
habremos probado que Z[ω] no tiene factorización única.

El discriminante del cuerpo es ∆ = −2321. Si llamamos σ1, . . . , σ22 a los
monomorfismos de Q(ω), como Q(ω)/Q es normal concluimos que todos los
conjugados σi(ωj) están en Q(ω), luego

√
∆ = 2310

√
−23 = det

(
σi(ωj)

)
∈

Q(ω), y de aqúı concluimos que Q
(√
−23

)
⊂ Q(ω).

Si en Q(ω) hubiera un entero de norma ±47, la norma de dicho entero
respecto a la extensión Q(ω)/Q

(√
−23

)
seŕıa un entero cuadrático de norma

±47 (necesariamente +47). Basta ver, pues, que en Q
(√
−23

)
no hay enteros

de norma 47.
Ahora bien, un entero de Q

(√
−23

)
es de la forma a + b 1+

√
−23

2 , con a, b
enteros racionales, y su norma es

N
(
a + b

1 +
√
−23

2

)
=

(
2a + b

2
+ b

√
−23
2

) (
2a + b

2
− b

√
−23
2

)

=
1
4
(
(2a− b)2 + 23b2

)
.
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Si hubiera un elemento de norma 47 tendŕıamos

188 = 47 · 4 = (2a− b)2 + 23b2,

pero 188 no es un cuadrado perfecto, ni 188 − 23 = 165, ni 188 − 23 · 4 = 96,
luego b no puede tomar los valores 0,±1,±2, y para valores mayores resulta que
(2a− b)2 + 23b2 > 188.

Éste fue el primer ejemplo de factorización no única en anillos de enteros
ciclotómicos que encontró Kummer.

Ejercicio: Probar que todo cuerpo cuadrático está contenido en uno ciclotómico.

Cuerpos cúbicos puros Consideremos ahora un cuerpo K = Q
( 3
√

ab2
)
. Sa-

bemos que el orden maximal es de la forma Z[θ0, θ1, θ2], donde θ0, θ1, θ2 son los
enteros descritos en el teorema 2.27.

En el caṕıtulo anterior también calculamos el ı́ndice de un entero arbitrario,
que resulta ser

ı́nd(x + yθ1 + zθ2) = |by3 − az3|
para los cuerpos de tipo I e

ı́nd
(

x + yθ1 + zθ2

3

)
=
|by3 − az3|

9

para los cuerpos de tipo II, donde x ≡ y ≡ z (mód 3).
En particular el ı́ndice de θ1 es b para los cuerpos de tipo I y 3b para los de

tipo II. Similarmente el ı́ndice de θ2 es a o 3a.
Como a y b son primos entre śı, para factorizar un primo p podemos aplicar

el teorema 3.16 con ζ = θ1 o bien ζ = θ2 excepto si p = 3 y el cuerpo es de
tipo II. Por simetŕıa, podemos suponer que si p divide a m = ab2 entonces p | a,
con lo cual podemos trabajar con θ1 salvo en el caso exceptuado.

El polinomio mı́nimo de θ1 es x3 − ab2. Hemos de estudiar sus ráıces
módulo p. Supongamos primero que p � 3ab.

Sea G = (Z/pZ)∗. Hemos de estudiar qué elementos de G tienen ráız cúbica
y cuántas tiene cada uno. El homomorfismo f : G −→ G dado por [u] 
→ [u]3

tiene por imagen al subgrupo H de todos los cubos. Claramente todos los
elementos de G/H tienen orden 3, luego |G/H| es potencia de 3 y por otra
parte |G/H| divide a |G| = p− 1.

Si p ≡ −1 (mód 3) entonces 3 � p − 1, luego G/H = 1, G = H y f es un
isomorfismo. Esto significa que cada elemento de G tiene una única ráız cúbica.

Si por el contrario p ≡ 1 (mód 3) entonces G tiene un elemento u de orden 3.
Es claro que 1, u, u2 están en el núcleo de f y de hecho son todo el núcleo, pues
el polinomio x3− 1 no puede tener más de tres ráıces en el cuerpo Z/pZ. Por lo
tanto |H| = |G|/3 y aśı, sólo la tercera parte de elementos tienen ráız cúbica, y
cada uno tiene tres distintas.

Esto se traduce en que si p ≡ −1 (mód 3) el polinomio x3 − ab2 tiene una
única ráız módulo p, luego se descompone en un factor de grado 1 y otro de
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Tabla 3.2: Factorización en cuerpos cúbicos puros

Casos

p � 3ab

p ≡ 1 (mód 3)

x3 ≡ ab2 (mód p) resoluble

x3 ≡ ab2 (mód p) no resoluble

p � 3ab p ≡ −1 (mód 3)

p | 3ab (excepto p = 3, tipo II)

p = 3 tipo II

Factorización

p = p1p2p3

p = p

p = p1p2

p = p3

3 = p1p
2
2

e

1

1

1

3

1/2

f

1

3

1/2

1

1

grado 2. La factorización de p es, por lo tanto, p = p1p2, donde N(p1) = p y
N(p2) = p2.

Si p ≡ 1 (mód 3) hay dos casos, según que la congruencia x3 ≡ ab2 (mód p)
tenga o no solución. Si la tiene, de hecho tiene tres soluciones distintas, y p
se descompone en producto de tres primos distintos p = p1p2p3, todos ellos de
norma p. Si no hay solución p se conserva primo.

Si p | ab (incluyendo p = 3), entonces x3 − ab2 ≡ x3 (mód p), luego p = p3,
salvo en el caso en que no podemos aplicar el teorema, es decir, si p = 3 y K es
de tipo II.

Si p = 3 � ab y K es de tipo I entonces x3−ab2 ≡ x3± 1 ≡ (x± 1)3 (mód 3),
luego p = p3.

Nos falta considerar p = 3 en los cuerpos de tipo II. Necesitamos encontrar
otro entero en K cuyo ı́ndice no sea divisible entre 3. Por ejemplo vemos que
ı́nd θ0 = |b− a|/9, luego si 27 � b− a podemos usar θ0. En caso contrario

ı́nd(θ0 − θ2) = ı́nd
(

1 + 1θ1 − 2θ2

3

)
=
|b + 8a|

9
,

y 27 � b + 8a.
Ahora sólo queda un cálculo laborioso que involucra calcular los polinomios

mı́nimos de estos dos enteros, reducirlos módulo 3 y factorizarlos.
Por ejemplo, en la prueba del teorema 2.27 vimos que

pol mı́n θ0 = x3 − x2 +
1− ab

3
x− 1 + ab2 + a2b− 3ab

27
.

Para eliminar los denominadores hacemos a = 9u+ 3t+ 1, b = 9v + 3t+ 1 y
al tomar clases módulo 3 queda x3 − x2 + tx− t2 + t3.

Sustituyendo t = 0, 1, 2, se ve que siempre hay una ráız doble y otra simple.
Igualmente,

pol mı́n(θ0 − θ2) = x3 − x2 +
1 + 2ab

3
x +

8ab2 − 6ab− a2b− 1
27

,
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y tras el cambio a = 9u + 3t + 1, b = 9v + 3t + 1 y la reducción módulo 3
llegamos a x3 − x2 + (t + 1)x + t3 − t2 + t, que también tiene exactamente dos
ráıces módulo 3 para t = 0, 1, 2.

Consecuentemente la factorización de 3 en este caso es 3 = p1p
2
2.

Notar que hemos probado que los cuerpos cúbicos puros no tienen divisores
esenciales. La tabla 3.2 resume los resultados que hemos obtenido.

Ejercicio: Sean K1, K2 y K3 los cuerpos definidos en la página 36. Considerar las
factorizaciones de 5 y 11 en cada uno de ellos para concluir que se trata efectivamente
de tres cuerpos distintos.

El ejemplo de Dedekind Ya hemos comentado que el ejemplo de Dedekind
Q(ξ), donde ξ es una ráız del polinomio x3 +x2− 2x+8, tiene a 2 como divisor
esencial, luego el teorema 3.16 no nos permite factorizar el 2. Si aproximamos
las ráıces del polinomio mı́nimo de ξ obtenemos los valores:

ξ1 = −2, 76734574086197. . .
ξ2 = 0, 883672870430983. . .+1, 4525766646443. . . i
ξ3 = 0, 883672870430983. . .−1, 4525766646443. . . i

Si desarrollamos(
a + bξ1 + c

ξ1 + ξ2
1

2

) (
a + bξ2 + c

ξ2 + ξ2
2

2

) (
a + bξ3 + c

ξ3 + ξ2
3

2

)

y redondeamos los coeficientes, obtenemos que la norma de un entero arbitrario
a + bξ + c ξ+ξ

2

2 vale

a3 − 8b3 + 10c3 − a2b− 2ab2 + 2a2c− 8b2c + 3ac2 + 2bc2 + 11abc.

Dando valores a (a, b, c) vemos que los enteros de coordenadas (8, 2,−1),
(−7, 1, 4), (1,−1, 1), (3,−3, 2), (4,−4, 3) tienen todos norma 2. Calculando los
cocientes respectivos se llega a que (8, 2,−1) es asociado a (4,−4, 3), y que
(−7, 1, 4) es asociado a (3,−3, 2), en ambos casos a través de la unidad

ε = 13 + 10ξ + 6
ξ + ξ2

2
,

mientras que los restantes son no asociados entre śı. A partir de aqúı es fácil
llegar a que

2 =
(

4− 4ξ + 3
ξ + ξ2

2

) (
−7 + ξ + 4

ξ + ξ2

2

) (
1− ξ +

ξ + ξ2

2

)
,

con lo que tenemos la factorización del único primo racional que nos faltaba.

El teorema siguiente, junto con la descomposición que acabamos de obtener,
proporciona una prueba alternativa de que el 2 es un divisor esencial:
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Teorema 3.21 Sea K un cuerpo numérico de grado n y p < n un primo racio-
nal. Si p se descompone en K como producto de n ideales distintos, entonces p
es un divisor esencial de K.

Demostración: En caso contrario existiŕıa un entero α ∈ K tal que
K = Q(α) y p � ı́ndα. Si f(x) = pol mı́nα el teorema 3.16 implica que f
se descompone en n factores distintos módulo p, lo cual es absurdo, pues los
factores habŕıan de ser lineales y p < n.

Enteros ciclotómicos reales La factorización en los anillos de enteros ci-
clotómicos reales de orden primo está determinada por el teorema siguiente:

Teorema 3.22 Sea K el cuerpo ciclotómico de orden p y sea K∗ = K ∩R, que
es un cuerpo numérico de grado m = (p− 1)/2. La factorización de p en K∗ es
de la forma p = pm, donde N(p) = p. Si q es un primo racional distinto de p,
y f = op(q), entonces q factoriza en K∗ de la forma

q = q1 · · · qr,

donde los primos qi son distintos dos a dos y N(qi) = qf si f es impar o bien
N(qi) = qf/2 si f es par.

Demostración: Sabemos que p = ε(ω − 1)p−1, donde ε es una unidad ci-
clotómica y N(ω−1) = p. Ahora tomamos normas respecto a la extensión K/K∗,
con lo que p2 = ε′πp−1, donde ε′ = N(ε) es una unidad de K∗ y π = N(ω − 1)
sigue teniendo norma p, luego es primo. En consecuencia p = ε′′π(p−1)/2, y el
resultado es claro.

Supongamos ahora que q �= p. En general, sabemos que q factoriza en la
forma descrita en el teorema 3.17. Hemos de probar que e = 1 y que f es el
indicado. Supongamos en primer lugar que e > 1. Tomemos un primo Q que
divida a p en K y sea q = Q ∩ K∗. Es claro que q es un ideal primo en K∗

que divide a q. Sea π ∈ q \ q2 tal que no sea divisible entre ningún otro divisor
primo de q (existe por 3.10). Entonces π = qa, donde a es un ideal primo con q.
Sea α ∈ ae \ (q). Entonces πe | qα en K∗, luego también en K, pero π ∈ q ⊂ Q,
luego Qe | pα, y como p � N(α), ha de ser Qe | p, lo que contradice a 3.20.

Sean Q y q como antes. Según el teorema 3.20 sabemos que N(Q) = qf .
Sea N(q) = f ′. Sea O el anillo de enteros ciclotómicos y O′ el anillo de enteros
de K∗. La aplicación O′/q −→ O/Q dada por [α] 
→ [α] es claramente un
monomorfismo de cuerpos, que nos permite identificar a O′/q con el conjunto
de clases de O/Q con un representante en O′, es decir, con un representante real.
Por definición de norma de un ideal tenemos que el grado de esta extensión es
precisamente f/f ′.

Es evidente que O/Q =
(
O′/q

)(
[ω]

)
, y [ω] es ráız de un polinomio de grado

2 con coeficientes en O′/q (el polinomio mı́nimo de ω sobre K ′ módulo q), luego
el grado de esta extensión de cuerpos de restos es a lo sumo 2. En particular, si
f es impar ha de ser f ′ = f . Supongamos ahora que f es par. Bastará probar
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que f �= f ′, o equivalentemente, que la extensión de cuerpos de restos no es
trivial.

El grupo de Galois de O/Q tiene orden f , luego contiene un automorfismo
de orden 2, digamos σ. Puesto que [ω] es ráız del polinomio ciclotómico módulo
Q, ha de ser σ

(
[ω]

)
= [ω]r, para cierto r primo con p. Como tiene orden 2, ha

de ser ωr
2 ≡ ω (mód Q), luego Q | ωr2 − ω y de aqúı que Q | ωr2−1 − 1. Ahora

bien, este número es primo y divide a p salvo que p | r2 − 1. Ésta es la única
posibilidad, luego r ≡ ±1 (mód p), y en consecuencia σ

(
[ω]

)
= [ω]±1. Como

σ tiene orden 2 el signo ha de ser negativo, y en general σ
(
[ωi]

)
= [ω−i]. Si

llamamos ηi = ωi + ω−i las clases de estos números generan O′/q y todas son
fijadas por σ, luego σ es la identidad en O′/q y no en O/Q. Los dos cuerpos son
distintos.

La demostración de este teorema se simplifica considerablemente en un con-
texto más adecuado. La hemos incluido aqúı porque estos cuerpos nos pro-
porcionarán ejemplos interesantes y éste era el único hecho cuya justificación a
nuestro nivel presentaba inconvenientes.

3.4 La función de Euler generalizada

Completamos nuestro estudio de los ideales de los cuerpos numéricos gene-
ralizando la función de Euler que nos permite calcular el número de unidades
módulo un ideal.

Definición 3.23 Sea K un cuerpo numérico. Llamaremos función de Euler
generalizada de K a la función que a cada ideal a de K le hace corresponder el
orden Φ(a) del grupo (OK/a)∗ de las unidades módulo a.

Es evidente que (OK/a)∗ está formado por las clases de los enteros α que
cumplen a + (α) = 1. El teorema siguiente nos permite calcular fácilmente la
función de Euler:

Teorema 3.24 Sea K un cuerpo numérico.

1. si a y b son ideales de K tales que (a, b) = 1 entonces Φ(ab) = Φ(a)Φ(b).

2. Si p es un ideal primo de K, entonces Φ(pe) =
(
N(p)− 1

)
N

(
p
)e−1.

Demostración: 1) es consecuencia inmediata del teorema chino del resto.

2) Sea π ∈ p \ p2. Si α recorre un conjunto de representantes de las N(pe)
clases módulo pe y β recorre un conjunto de representantes de las N(p) clases
módulo p, es claro que los elementos α+πeβ son no congruentes dos a dos módulo
pe+1, y como hay N(p)e+1 de ellos, concluimos que forman un conjunto de
representantes de las clases módulo pe+1. También es claro que (α+πeβ, π) = 1
si y sólo si (α, π) = 1.

Por lo tanto, para cada unidad [α] módulo pe hay N p unidades [α + πeβ]
módulo pe+1, es decir, se cumple Φ(pe+1) = N(p)Φ(pe). Ahora sólo queda notar
que Φ(p) = N(p)− 1 porque OK/p es un cuerpo.
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3.5 Factorización ideal en órdenes no maximales

Los órdenes no maximales de los cuerpos numéricos cumplen las propiedades
1 y 2 del teorema de Dedekind (por los mismos argumentos que los maxima-
les), pero incumplen la 3, lo que impide que tengan factorización única real o
ideal. Sin embargo los fallos de la factorización ideal son mı́nimos y pueden ser
‘acotados’, como vamos a ver aqúı.

Definición 3.25 Sea O el orden maximal de un cuerpo numérico K y O′ cual-
quier orden de K. Llamaremos conductor de O′ al conjunto

f = {α ∈ O′ | αO ⊂ O′}.

La ‘f’ proviene del alemán ‘Führer’. El teorema siguiente contiene algunas
propiedades y caracterizaciones sencillas sobre este concepto.

Teorema 3.26 Sea K un cuerpo numérico, sea O su orden maximal y sea O′

un orden de K de ı́ndice m. Sea f el conductor de O′. Entonces:

1. f es un ideal no nulo tanto de O como de O′. Además f | m.

2. Para todo α ∈ O, si α ≡ 1 (mód f) entonces α ∈ O′.

3. f es el máximo común divisor de todos los ideales a de O que cumplen la
propiedad anterior, y también el de los que cumplen a ⊂ O′.

Demostración: 1) Es claro que f es un ideal. Además, como |O/O′| = m,
tenemos que mα ∈ O′ para todo α ∈ O, luego m ∈ f.

2) Es evidente, al igual que la segunda parte de 3). Respecto a la primera
basta probar que un ideal a de O cumple a ⊂ O′ si y sólo si cumple la propiedad
2). En efecto, si a cumple 2) y α ∈ a, entonces α + 1 ≡ 1 (mód a), luego
α + 1 ∈ O′, luego α ∈ O′. La implicación opuesta es obvia.

Si O es un orden numérico y f es un ideal de O, definimos If(O) como el
conjunto de todos los ideales a de O tales que a + f = O.

Teorema 3.27 Sea K un cuerpo numérico, sea O su orden maximal y sea O′

un orden cualquiera de K de conductor f. Entonces:

1. La aplicación i : If(O′) −→ If(O) dada por i(a) = aO es biyectiva, y su
inversa viene dada por a 
→ a ∩ O′.

2. Las correspondencias anteriores conservan productos e inclusiones, y ha-
cen corresponder ideales primos con ideales primos.

3. Todo ideal de If(O′) se descompone de forma única salvo el orden como
producto de ideales primos (que de hecho son maximales).
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Demostración: Observemos en primer lugar que si a ∈ If(O′), entonces

O = O′O = (a + f)O = aO + fO = i(a) + f,

luego i(a) ∈ If(O). De modo similar se comprueba que el producto de elementos
de If(O′) está en If(O′) y que i conserva productos.

Para probar que i es inyectiva basta ver que a = i(a) ∩ O′. En efecto:

a ⊂ i(a) ∩ O′ = i(a) ∩ (a + f) = a + (i(a) ∩ f) = a + i(a)f = a + af = a.

Hemos usado que i(a) ∩ f = mcm(i(a), f) = i(a)f, porque los ideales son primos
entre śı, aśı como que i(a)f = (aO)f = a(Of) = af.

Para probar que i es suprayectiva y que su inversa es la indicada basta ver
que si a ∈ If(O) entonces a ∩ O′ ∈ If(O′) y que i(a ∩ O′) = a.

En efecto, la primera afirmación es inmediata, y en cuanto a la segunda
tenemos

a = aO′ = a
(
(a ∩ O′) + f

)
= a(a ∩ O′) + af = a(a ∩ O′) + af

= a(a ∩ O′) + (a ∩ f) = a(a ∩ O′) + (a ∩ O′) ∩ f = a(a ∩ O′) + (a ∩ O′)f
= (a + f)(a ∩ O′) = O(a ∩ O′) = i(a ∩ O′).

En la última igualdad de la segunda ĺınea hemos usado un hecho general: si
dos ideales a y b de un dominio A cumplen a + b = 1, entonces a ∩ b = ab. En
efecto:

a ∩ b = (a ∩ b)(a + b) = (a ∩ b)a + (a ∩ b)b ⊂ ab + ab = ab ⊂ a ∩ b.

El hecho de que las correspondencias de 1) hagan corresponder los ideales
primos es consecuencia inmediata de que para todo a ∈ If(O) se cumple

O′/(O′ ∩ a) ∼= O/a. (3.4)

En efecto, el homomorfismo natural O′ −→ O/a dada por α 
→ α + a tiene
núcleo O′ ∩ a, y el hecho de que O = a + f implica que es suprayectivo.

El apartado 3) es consecuencia inmediata de los dos anteriores, ya probados

El teorema anterior implica que podemos hablar de divisibilidad, exponente
de un primo en un ideal, máximo común divisor, mı́nimo común múltiplo, etc.
siempre y cuando nos restrinjamos a ideales de If(O′). Aśı mismo podemos
simplificar ideales no nulos, etc.

No podemos interpretar el isomorfismo (3.4) como que las correspondencias
entre ideales conservan las normas. Esto sólo es cierto sobre ideales de If(O′)
cuyo anillo de coeficientes sea precisamente O′. El teorema siguiente muestra
un caso particular de esta situación.

Teorema 3.28 Sea K un cuerpo numérico, sea O su orden maximal y sea O′

un orden de K de ı́ndice m. Sea f el conductor de O′. Entonces:



74 Caṕıtulo 3. Factorización ideal

1. Im(O′) ⊂ If(O′).

2. Im(O′) es el conjunto de los ideales a de O′ tales que (N(a),m) = 1.

3. Todos los ideales de Im(O′) tienen anillo de coeficientes O′.

4. La biyección del teorema anterior hace corresponder Im(O′) con Im(O) y
conserva normas.

Demostración: Por Im(O′) entendemos el conjunto de ideales a de O′ tales
que a +mO′ = O′ (es importante distinguir entre el ideal generado por m en O′

y en O). La propiedad 1) es evidente. Para probar 2) consideramos un ideal a

de O′ tal que a+(m) = O′. Sea O′′ su anillo de coeficientes. Entonces m es una
unidad de O′′/a. Si existiera un primo p que dividiera a N(a) y a m, entonces
p también seŕıa una unidad de O′′/a, pero por otra parte es un divisor de cero.
Aśı pues, (N(a),m) = 1. La otra implicación es clara, teniendo en cuenta que
N(a) ∈ a.

3) Sea a es un ideal de O′ tal que (N(a),m) = 1 y sea O′′ a su anillo de
coeficientes. Tenemos que a ⊂ O′ ⊂ O′′ ⊂ O. Llamemos k = |O′′ : O′|. Entonces
k divide a N(a) = |O′′ : a| y a m = |O : O′|, luego k = 1 y en consecuencia
O′′ = O′.

4) El isomorfismo (3.4) implica que la correspondencia i env́ıa ideales de
Im(O′) a ideales de Im(O), aśı como que conserva normas. Sólo falta añadir que
todo ideal de Im(O) tiene su antiimagen en Im(O′). Basta probarlo para ideales
primos, ahora bien, si p es un primo de norma prima con m, entonces la norma
de p∩O′ es potencia del único primo que contiene, que es el mismo que contiene
p, luego no divide a m.

En general no es fácil determinar el conductor de un orden numérico, pero el
teorema anterior nos determina un conjunto suficientemente grande de ideales
en el que tenemos asegurada la factorización única. Para los cuerpos cuadráticos
esto no supone ninguna restricción:

Teorema 3.29 Sea K = Q
(√

d
)

un cuerpo cuadrático y m un número natural
no nulo. Entonces el conductor del orden Om definido en 2.24 es f = mO.

Demostración: Según la definición de Om es obvio que Om ⊂ Z + (m).
Teniendo en cuenta además que (m) ⊂ f vemos que

f = f ∩
(
Z+ (m)

)
⊂ (f ∩ Z) + (m) = (m) + (m) = (m).

Hemos usado que si u ∈ f ∩ Z entonces uO ⊂ Om (por definición de f), y esto
sólo es posible si m | u.

Aśı, los teoremas 3.27 y 3.28 muestran que, en un cuerpo cuadrático, los
ideales de Im(O) se corresponden con los ideales de If(Om) y también con los de
Im(Om), luego ambos conjuntos —que en principio son distintos— coinciden.
Concluimos, pues, que en el orden Om tenemos factorización única exactamente
en el conjunto Im(Om) de los ideales de norma prima con m.
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Ejercicio: Probar que en el orden Z
[√

−3
]

los ideales
(
2
)
,
(
1−

√
−3

)
y

(
1 +

√
−3

)
son distintos, tienen norma 4, su anillo de coeficientes es Z

[√
−3

]
y los tres están

contenidos en un único ideal propio:
(
2, 1 +

√
−3

)
. El cuadrado de éste último tiene

ı́ndice 8 en Z
[√

−3
]
, luego ninguno de los tres ideales se descompone en producto de

primos.

Ejercicio: Probar que la ecuación x2 − 5y2 = 7 no tiene soluciones enteras.

3.6 El problema de la factorización única real

Aunque hasta ahora nos hemos preocupado tan sólo de describir el modo en
que se descomponen los primos racionales en un orden maximal, hemos de recor-
dar que el teorema 3.16 nos da expĺıcitamente los generadores de los primos que
aparecen. Por ejemplo, si queremos conocer los factores primos de 2 en el anillo
de enteros ciclotómicos de orden 7, puesto que o7(2) = 3, el teorema 3.20 nos
da que 2 ha de tener dos factores primos de norma 8. Para encontrarlos hemos
de factorizar módulo 2 el polinomio ciclotómico séptimo. Los únicos polinomios
de grado 3 que no tienen ráıces en Z/2Z (y que por tanto son irreducibles) son
x3 +x+1 y x3 +x2 +1. Como los factores han de ser distintos, la factorización
que buscamos es necesariamente (x3 + x + 1)(x3 + x2 + 1), y en consecuencia

2 = (2, ω3 + ω + 1)(2, ω3 + ω2 + 1). (3.5)

Sin embargo hay una pregunta importante que no sabemos resolver, y es
si los ideales que nos han aparecido son o no principales, lo que equivale a
preguntarse si el 2 puede descomponerse realmente en el anillo de enteros. Ob-
servar que un ideal a es principal si y sólo si existe un entero α ∈ a tal que
N(α) = N(a), y entonces a = (α). Por lo tanto el problema de determinar si
un ideal dado es principal es de la misma naturaleza que el de determinar si
una ecuación diofántica definida por una forma completa tiene solución. En el
próximo caṕıtulo los resolveremos conjuntamente.

Ejercicio: Probar que el segundo generador de cada factor de (3.5) tiene norma 8,
por lo que ambos factores son principales.

El interés determinar si un ideal dado es o no principal se debe, entre otras
razones, a que un orden maximal es un dominio de factorización única si y sólo
si todos sus ideales son principales. En el caṕıtulo siguiente veremos también
que el problema se puede reducir a determinar si un número finito de ideales
son o no principales.

Una forma rápida de resolver estos problemas en casos muy particulares es
probar que el orden considerado es un dominio eucĺıdeo. Una posible norma
eucĺıdea es el valor absoluto de la norma. La siguiente caracterización resulta
útil:

Teorema 3.30 Sea O el orden maximal de un cuerpo numérico K. Entonces O

es un dominio eucĺıdeo con norma eucĺıdea |N(x)| si y sólo si para todo α ∈ K
existe un β ∈ O tal que |N(α− β)| < 1.
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Demostración: La norma de un dominio eucĺıdeo ha de cumplir que
|N(α)| ≤ |N(αβ)|, para todo par de enteros no nulos α y β. Esto es evidente.

Por otra parte, dados ∆ y δ en O con δ �= 0, existe un β ∈ O tal que ρ = ∆
δ −β

tiene norma menor que 1, luego ∆ = δβ + δρ y |N(δρ)| < |N(δ)|, tal y como
exige el algoritmo eucĺıdeo. El rećıproco es similar.

Una muestra de la limitada aplicación de este hecho es el teorema siguiente:

Teorema 3.31 Si Q
(√

d
)

es un cuerpo cuadrático con d < −11 entonces
Q

(√
d

)
no es eucĺıdeo.

Demostración: Como d ha de ser libre de cuadrados, de hecho d ≤ −13.
Sea O el anillo de enteros. Observemos que si δ = (a/2) + (b/2)

√
d, donde a

y b son enteros, cumple |N(δ)| ≤ 3, entonces a2 − db2 ≤ 12, y como d ≤ −13,
necesariamente b = 0 y |a| ≤ 3, pero entonces δ = a/2 es entero y no puede ser
más que δ = 0, 1,−1. En particular las únicas unidades de O son ±1.

Si O fuera eucĺıdeo podŕıamos tomar un δ ∈ O de norma eucĺıdea mı́nima
entre los enteros no nulos ni unitarios, con lo que todo ∆ ∈ O se expresa como
∆ = δc + r, donde r = 0, 1,−1, por la elección de δ.

Esto significa que O/(δ) =
{
[0], [1], [−1]

}
, luego |N(δ)| ≤ 3 y, según hemos

visto, δ es nulo o unitario, en contra de la elección que hemos hecho.

Ejercicio: Probar que los únicos cuerpos eucĺıdeos Q
(√
d
)

con d ≤ −1 son los
correspondientes a d = −1,−2,−3,−7,−11.



Caṕıtulo IV

Métodos geométricos

En este caṕıtulo desarrollaremos las técnicas adecuadas para resolver los
problemas que hemos venido planteando en los caṕıtulos anteriores. Todos es-
tos problemas, resueltos originalmente por distintos métodos y autores, pueden
reducirse a un teorema general debido a Minkowski, y que pertenece a una rama
de la teoŕıa de números conocida como geometŕıa de los números. A modo de
primera aproximación podemos pensar en el anillo de los enteros de Gauss, Z[i].
Hasta aqúı hemos considerado a éste y otros anillos desde un punto de vista
puramente algebraico. Ahora nos fijamos en que este anillo está contenido en el
plano complejo y, más precisamente, sus elementos son los vértices de una red
de cuadrados de lado unidad que cubren todo el plano. Esta ‘representación
geométrica’, debidamente generalizada, da pie a una serie de argumentos que
aportan información valiosa sobre los órdenes numéricos. El primer problema
es que no tenemos una representación similar para anillos como Z

[√
2

]
. Si ve-

mos este anillo como subconjunto del plano complejo nos encontramos con un
subconjunto denso de la recta real, algo muy distinto al caso anterior y donde
no podemos aplicar directamente las técnicas que vamos a desarrollar. La dife-
rencia básica es que en el primer ejemplo números linealmente independientes
sobre Q son también linealmente independientes sobre R, mientras que en el
segundo todos los números son linealmente dependientes sobre R. Nuestro pri-
mer paso será ‘separar’ los elementos de un cuerpo numérico de modo que la
independencia lineal sobre Q se conserve sobre R.

4.1 La representación geométrica

Definición 4.1 Sea K un cuerpo numérico de grado n. Para cada monomor-
fismo σ : K −→ C definimos el conjugado de σ como la composición de σ con la
conjugación compleja, es decir, el monomorfismo dado por σ̄(α) = σ(α). Dire-
mos que σ es real si σ = σ̄ o, equivalentemente, si σ[K] ⊂ R. En caso contrario
diremos que σ es complejo.

77



78 Caṕıtulo 4. Métodos geométricos

Es evidente que el número de monomorfismos complejos de un cuerpo numé-
rico K ha de ser par. Llamaremos s al número de monomorfismos reales y 2t al
de complejos, de modo que si n es el grado de K tenemos la relación n = s+2t.
Además numeraremos los n monomorfismos de K de modo que σ1, . . . , σs serán
los reales y σs+1, σ̄s+1, . . . , σs+t, σ̄s+t serán los complejos.

Por ejemplo en el caso de los cuerpos cuadráticos tenemos s = 2, t = 0
para los cuerpos reales (de discriminante positivo) y s = 0, t = 1 para los
imaginarios (de discriminante negativo). Para el cuerpo ciclotómico de orden p
se tiene s = 0, t = (p− 1)/2. En los cuerpos cúbicos puros s = 1, t = 1, etc.

Ejercicio: Probar que el signo del discriminante de un cuerpo numérico es (−1)t.

La identificación usual C = R2, como espacios vectoriales, nos da una iden-
tificación natural Rs×Ct = Rn. Por ejemplo, si s = t = 1 identificamos la terna
(1, 2, 3) con el par (1, 2 + 3i).

Definimos Rst = Rs × Ct considerado como anillo con el producto definido
componente a componente (obviamente no es un dominio ı́ntegro). A los ele-
mentos de Rst los llamaremos vectores.

Llamaremos representación geométrica del cuerpo K a la aplicación que a
cada número α ∈ K le asigna el vector x(α) =

(
σ1(α), . . . , σs+t(α)

)
.

Es claro que esta representación es inyectiva y conserva sumas y productos.
Además si a es un número racional, x(aα) = ax(α).

Definimos en Rst la norma dada por

N(x1, . . . , xs+t) = x1 · · ·xs|xs+1|2 · · · |xs+t|2.

Aśı N(xy) = N(x)N(y), para x, y ∈ Rst y N
(
x(α)

)
= N(α), para todo α ∈ K.

Ahora probamos que esta la representación geométrica cumple el objetivo
que nos hab́ıamos propuesto:

Teorema 4.2 Sea K un cuerpo numérico. Si los números α1, . . . , αm de K
son linealmente independientes sobre Q, entonces los vectores x(α1), . . . , x(αm)
son linealmente independientes sobre R.

Demostración: Completando una base podemos suponer que tenemos n
números (donde n es el grado de K. Hemos de probar que el determinante

∣∣∣∣∣∣
σ1(α1) · · · σs(α1) Re σs+1(α1) Im σs+1(α1) · · · Re σs+t(α1) Im σs+t(α1)

..

.
..
.

..

.
..
.

..

.
..
.

σ1(αn) · · · σs(αn) Re σs+1(αn) Im σs+1(αn) · · · Re σs+t(αn) Im σs+t(αn)

∣∣∣∣∣∣
es no nulo. Ahora bien, sabemos que el determinante

∣∣∣∣∣∣
σ1(α1) · · · σs(α1) σs+1(α1) σ̄s+1(α1) · · · σs+t(α1) σ̄s+t(α1)

...
...

...
...

...
...

σ1(αn) · · · σs(αn) σs+1(αn) σ̄s+1(αn) · · · σs+t(αn) σ̄s+t(αn)

∣∣∣∣∣∣
es no nulo, pues su cuadrado es ∆[α1, . . . , αn].
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Si a la columna
(
σs+k(αi)

)
le sumamos la columna siguiente, se convierte en(

2 Reσs+k(αi)
)
, y si ahora a la columna siguiente le restamos la mitad de ésta,

se convierte en
(
−i Imσs+k(αi)

)
. Después sacamos los coeficientes y queda

el primer determinante multiplicado por (−2i)t. Por consiguiente el primer

determinante es, salvo signo,
√∣∣∆[α1, . . . , αn]

∣∣/2t �= 0.

4.2 Ret́ıculos

El último teorema que acabamos de obtener nos lleva a la definición siguiente:

Definición 4.3 Un ret́ıculo en Rn es un subgrupo generado por un conjunto
finito de vectores linealmente independientes, es decir, un conjunto de la forma

M = 〈v1, . . . , vm〉Z = {a1v1 + · · ·+ amvm | a1, . . . , am ∈ Z},

donde v1, . . . , vm son vectores linealmente independientes en Rn.

Obviamente los vectores v1, . . . , vm son también linealmente independientes
sobre Z, luego M es un Z-módulo libre de rango m. A este rango lo llamaremos
dimensión de M. La dimensión de un ret́ıculo de Rn es necesariamente menor o
igual que n. A los ret́ıculos de dimensión n los llamaremos ret́ıculos completos.

El teorema 4.2 implica que la imagen de un módulo a través de la represen-
tación geométrica es un ret́ıculo, que será completo si el módulo lo es.

Por ejemplo, he aqúı una imagen del ret́ıculo en R2 generado por los vectores
(1, 2) y (2, 1):

A la vista de la figura resulta natural definir el paraleleṕıpedo fundamental
de una base v1, . . . , vm de un ret́ıculo M como el conjunto

T = {a1v1 + · · ·+ amvm | 0 ≤ ai < 1}.
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El paraleleṕıpedo fundamental no está determinado por el ret́ıculo, sino que
cada base tiene uno distinto. Por ejemplo, los vectores (1, 2) y (1,−1) generan
el mismo ret́ıculo de la figura anterior y su paraleleṕıpedo fundamental es el que
muestra la figura siguiente:

Por ello, cuando digamos que T es un paraleleṕıpedo fundamental de un
ret́ıculo M querremos decir que es el asociado a una cierta base de M. De todos
modos, los paraleleṕıpedos fundamentales tienen una caracteŕıstica invariante:
su volumen. Llamaremos µ a la medida de Lebesgue en Rn. Se sobrentiende
que todos los conjuntos sobre los que apliquemos µ son medibles, por hipótesis
cuando sea necesario.

Teorema 4.4 Sea M = 〈v1, . . . , vn〉 un ret́ıculo completo en Rn, con vi = (aij).
Sea T el paraleleṕıpedo fundamental asociado. Entonces µ(T ) = |det(aij)|, y
este valor es independiente de la base escogida.

Demostración: Sea f : Rn −→ Rn el isomorfismo que tiene matriz (aij),
es decir, el isomorfismo que env́ıa la base canónica de Rn a la base v1, . . . , vn.

Es claro que T = f
[
[0, 1[n

]
, luego por las propiedades de la medida de

Lebesgue µ(T ) = |det(aij)|µ
(
[0, 1[n

)
= |det(aij)|.

Si cambiamos de base la nueva matriz (aij) se diferencia de la anterior en
una matriz de determinante ±1, luego el valor absoluto del determinante sigue
siendo el mismo.

Cada módulo completo en un cuerpo numérico tiene asociado un ret́ıculo
a través de su representación geométrica. La demostración del teorema 4.2
contiene el cálculo del volumen de su paraleleṕıpedo fundamental:

Teorema 4.5 Sea K un cuerpo numérico y M un módulo completo en K con
anillo de coeficientes O. La imagen de M por la representación geométrica es
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un ret́ıculo completo y el volumen de su paraleleṕıpedo fundamental es

cM =

√∣∣∆[M ]
∣∣

2t
=

√∣∣∆[O]
∣∣

2t N(M).

Para demostrar las propiedades elementales de los paraleleṕıpedos necesita-
remos algunos conceptos topológicos:

Consideraremos en Rn el producto escalar eucĺıdeo dado por

xy = x1y1 + · · ·+ xnyn.

Aśı mismo consideraremos la norma eucĺıdea ‖x‖ =
√

xx. Llamaremos Bn a
la bola unitaria (de centro 0 y radio 1) en Rn, y aśı rBn será la bola de centro
0 y radio r. Cuando no haya confusión suprimiremos el sub́ındice n.

Diremos que un subconjunto de Rn es discreto si no tiene puntos de acumu-
lación, es decir, si es cerrado y como espacio topológico es discreto. Equivalen-
temente, un conjunto es discreto si y sólo si corta a cada bola rB en un número
finito de puntos.

Si T es un paraleleṕıpedo fundamental de un ret́ıculo M de Rn y x ∈ M,
llamaremos trasladado de T por x al conjunto

Tx = x + T = {x + t | t ∈ T}.

Teorema 4.6 Sea M un ret́ıculo en Rn y sea T un paraleleṕıpedo fundamental
de M. Entonces

1. Si M es completo los conjuntos Tx con x ∈ M son disjuntos dos a dos y
cubren todo Rn.

2. El conjunto M es discreto.

3. Para cada r > 0 sólo un número finito de conjuntos Tx corta a la bola rB.

Demostración: 1) Sea v1, . . . , vn la base cuyo paraleleṕıpedo es T . Si
x ∈ Rn, entonces x se expresa de forma única como x = a1v1 + · · · + anvn,
donde a1, . . . , an son números reales. Podemos descomponer de forma única
ai = ki + ri, donde ki ∈ Z y 0 ≤ ri < 1. Llamando ahora u = k1v1 + · · ·+ knvn
y t = r1v1 + · · · + rnvn tenemos que x = u + t, con u ∈ M y t ∈ T , es decir,
x ∈ Tu. Si x ∈ Tv para un v ∈ M, entonces x = v + t′, donde t′ ∈ T es de la
forma s1v1 + · · · + snvn con 0 ≤ si < 1 y v es de la forma m1v1 + · · · + mnvn
con mi ∈ Z.

La unicidad de las coordenadas da que ki + ri = ai = mi + si. La unicidad
de la parte entera da que ki = mi y ri = si, luego u = v. Esto prueba que cada
vector pertenece a un único conjunto Tu.

2) Puesto que todo ret́ıculo puede sumergirse en un ret́ıculo completo y que
todo subconjunto de un conjunto discreto es discreto, podemos suponer que M

es completo. En tal caso la aplicación lineal que transforma la base canónica de
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Rn en una base de M es un homeomorfismo de Rn en śı mismo que transforma
Zn en M. Como Zn es discreto, lo mismo le sucede a M.

3) Sea v1, . . . , vm la base cuyo paraleleṕıpedo es T . Sea d = ‖v1‖+· · ·+‖vm‖.
Para todo u = a1v1+· · ·+amvm ∈ T tenemos ‖u‖ ≤ a1‖v1‖+· · ·+am‖vm‖ < d.

Si un vector x ∈ M cumple que Tx corta a rB, entonces hay un vector de
la forma x + u ∈ rB con u ∈ T . Entonces ‖x‖ ≤ ‖x + u‖ + ‖−u‖ < r + d,
y como M es discreto hay sólo un número finito de vectores x ∈ M tales que
‖x‖ ≤ r + d.

El resultado siguiente es importante porque da una caracterización topoló-
gica del concepto de ret́ıculo, que nosotros hemos introducido algebraicamente.

Teorema 4.7 Un subgrupo de Rn es un ret́ıculo si y sólo si es discreto.

Demostración: Una implicación está vista en el teorema anterior. Sea
ahora M un subgrupo discreto de Rn. Sea V el subespacio vectorial generado por
M en Rn. Sea m su dimensión. Sean v1, . . . , vm ∈M linealmente independientes.
Sea M0 ⊂ M el ret́ıculo que generan. Sea T el paraleleṕıpedo fundamental de
M0 asociado a {v1, . . . , vm}.

El mismo argumento del teorema anterior prueba que los conjuntos Tu con
u ∈ M0 constituyen una partición de V . Esto significa en particular que todo
vector x ∈ M se puede expresar en la forma x = u + z, donde u ∈ M0 y z ∈ T .
Como M es un subgrupo, también z ∈M, pero T es un conjunto acotado y M es
discreto, luego sólo hay un número finito de vectores z que puedan aparecer en
estas descomposiciones. Esto prueba que el grupo cociente M/M0 es finito. Sea
j = |M : M0|. Entonces jx ∈ M0 para todo x ∈ M, luego M ⊂ (1/j)M0, que
claramente es un ret́ıculo, y todo subgrupo de un grupo finitamente generado
es finitamente generado.

Consecuentemente existen vectores w1, . . . , wr que generan M, y r ≤ m.
Pero como M0 ⊂ M, los vectores linealmente independientes v1, . . . , vm son
combinación lineal de w1, . . . , wr, luego ha de ser r = m y éstos han de ser
linealmente independientes. Esto prueba que M es un ret́ıculo.

Finalmente caracterizamos la completitud de un ret́ıculo.

Teorema 4.8 Sea M un ret́ıculo en Rn. Entonces M es completo si y sólo si
existe un subconjunto acotado U de Rn tal que los trasladados x+U con x ∈M

cubren todo Rn.

Demostración: Si M es un ret́ıculo completo el resultado se sigue de 4.6
tomando como U un paraleleṕıpedo fundamental de M. Supongamos que M no
es completo y veamos que no puede existir un conjunto U como el del enunciado.

Sea V el subespacio de Rn generado por M. Como M no es completo V �= Rn,
luego existe un vector w ∈ Rn ortogonal a todos los vectores de V . Podemos
tomarlo de norma 1.

Sea r > 0 tal que ‖u‖ < r para todo vector u ∈ U . Por la hipótesis podemos
descomponer rw = x + u, con x ∈M y u ∈ U .
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Como w y x son ortogonales, tenemos que rww = uw, y aplicando la desi-
gualdad de Cauchy–Schwarz llegamos a una contradicción: r ≤ ‖u‖ ‖w‖ = ‖u‖.

Ejercicio: Probar que un ret́ıculo M es completo si y sólo si el grupo topológico Rn/M
es compacto (es topológicamente isomorfo a un producto de n veces la circunferencia
unidad).

4.3 El teorema de Minkowski

Demostramos ahora el teorema central de este caṕıtulo. Necesitamos un par
de conceptos geométricos adicionales: Un subconjunto A de Rn es convexo si
cuando a, b ∈ A y 0 ≤ λ ≤ 1, entonces λa + (1 − λ)b ∈ A. El conjunto X es
absolutamente convexo si es convexo y cuando a ∈ A, también −a ∈ A.

Teorema 4.9 (Teorema de Minkowski) Sea M un ret́ıculo completo en Rn

cuyo paraleleṕıpedo fundamental tenga medida c. Sea A un subconjunto abso-
lutamente convexo y acotado de Rn. Si µ(A) > 2nc, entonces A contiene al
menos un punto no nulo de M.

Demostración: La prueba se basa en el hecho siguiente:

Si Y es un subconjunto acotado de Rn con la propiedad de que los
trasladados Yx para cada x ∈ M son disjuntos dos a dos, entonces
µ(Y ) ≤ c.

Para probarlo consideramos los conjuntos Y ∩ T−x, donde T es un parale-
leṕıpedo fundamental de M y T−x = T − x. Como los trasladados de T cubren
todo el espacio y son disjuntos, es claro que

µ(Y ) =
∑
x∈M

µ(Y ∩ T−x)

(notar que sólo hay un número finito de sumandos no nulos).
Claramente x + (Y ∩ T−x) = Yx ∩ T , y como la medida es invariante por

traslaciones, tenemos que µ(Y ∩ T−x) = µ(Yx ∩ T ).
Aśı pues,

µ(Y ) =
∑
x∈M

µ(Yx ∩ T ).

Dado que los conjuntos Yx son disjuntos dos a dos y están contenidos en T ,
concluimos que µ(Y ) ≤ µ(T ) = c.

Consideremos el conjunto (1/2)A. Por las hipótesis del teorema tenemos que

µ

(
1
2
A

)
=

µ(A)
2n

> c,
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luego, según lo que hemos probado, los trasladados de (1/2)A no son disjuntos
dos a dos, sino que existen x, x′ ∈M tales que x �= x′ y

(
x +

1
2
A

)
∩

(
x′ +

1
2
A

)
�= ∅.

Existen vectores a, a′ ∈ A tales que x + (1/2)a = x′ + (1/2)a′, o equiva-
lentemente, x − x′ = (1/2)a − (1/2)a′. Este vector está en A porque A es
absolutamente convexo, y por otro lado es un elemento no nulo de M.

Observamos que una pequeña variante en la prueba nos da el siguiente re-
sultado que usaremos después.

Teorema 4.10 Sea M un ret́ıculo completo en Rn cuyo paraleleṕıpedo funda-
mental tenga medida c. Sea Y un subconjunto acotado de Rn cuyos trasladados
por puntos de M cubran todo Rn. Entonces µ(Y ) ≥ c.

Demostración: Razonando como en la primera parte de la prueba del
teorema de Minkowski, ahora los conjuntos Yx ∩ T cubren todo T (sin ser nece-
sariamente disjuntos), luego

µ(Y ) =
∑
x∈M

µ(Yx ∩ T ) ≥ µ(T ) = c.

Para aplicar el teorema de Minkowski a los cuerpos numéricos usaremos
el conjunto absolutamente convexo cuyo volumen calculamos a continuación.
Recordar la notación n = s + 2t introducida en 4.1.

Teorema 4.11 Para cada número real c > 0, el conjunto

Xst(c) =
{
x ∈ Rst

∣∣ |x1|+ · · ·+ |xs|+ 2|xs+1|+ · · ·+ 2|xs+t| < c
}

es absolutamente convexo y acotado, y

µ
(
Xst(c)

)
=

(2c)n

n!

(π

8

)t
.

Demostración: El conjunto Xst(c) es una bola para una norma en Rn,
luego es absolutamente convexo y acotado. Para calcular su medida conviene
expresarlo como subconjunto de Rn, o sea, en la forma

Xst(c) =
{
x ∈ Rn

∣∣ |x1|+· · ·+|xs|+2
√

x2
s+1 + y2

s+1+· · ·+2
√

x2
s+t + y2

s+t < c
}
.

Veámoslo primero para t = 0 por inducción sobre s. Claramente tenemos
que X10(c) = ]−c, c[ y su medida es 2c, como afirma la fórmula.

Ahora, por el teorema de Fubini,

µ
(
X(s+1)0(c)

)
=

∫ c

−c
µ(Xs0

(
c− |xs+1|)

)
dxs+1

=
2s

s!

∫ c

−c

(
c− |xs+1|

)s
dxs+1 =

(2c)s+1

(s + 1)!
.
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A continuación lo probamos para cualquier s, t por inducción sobre t. Lo
tenemos probado para t = 0. Si t = 1 y s = 0 no podemos aplicar la hipótesis
de inducción, pues el teorema no tiene sentido para (s, t) = (0, 0), pero es fácil
ver que µ(X01) tiene el valor requerido. En cualquier otro caso calculamos
µ
(
Xs(t+1)(c)

)
aplicando de nuevo el teorema de Fubini para separar las dos

últimas variables y cambiamos a coordenadas polares (ρ, θ), para lo cual hemos
de multiplicar por el determinante jacobiano del cambio, que es ρ. Con todo
esto queda:

µ
(
Xs(t+1)(c)

)
=

∫ c/2

0

∫ 2π

0

(
µ
(
Xst(c− 2ρ)

)
ρ dθ

)
dρ

= 2π
2s+2t

(s + 2t)!

(π

8

)t∫ c/2

0

(c− 2ρ)s+2tρ dρ.

La fórmula de integración por partes (u = ρ, dv = (c− 2ρ)s+2tdρ) nos da

µ
(
Xs(t+1)(c)

)
= 4

2s+2(t+1)

(s + 2t)!

(π

8

)t+1
∫ c/2

0

1
2

(c− 2ρ)s+2t+1

s + 2t + 1
dρ,

y de aqúı se llega sin dificultad al valor indicado por la fórmula.

He aqúı la primera consecuencia del teorema de Minkowski:

Teorema 4.12 Sea M un módulo completo en un cuerpo numérico K de grado
n = s + 2t. Entonces existe un número α ∈M no nulo tal que

|N(α)| ≤
(

4
π

)t
n!
nn

√∣∣∆[M ]
∣∣.

Demostración: Sea Xst(c) según el teorema anterior. Vamos a aplicarle el
teorema de Minkowski tomando como ret́ıculo la imagen de M por la represen-
tación geométrica de K, para lo cual se ha de cumplir que µ

(
Xst(c)

)
> 2s+2tk,

donde k es la medida del paraleleṕıpedo fundamental del ret́ıculo, que por el

teorema 4.5 vale k =
√∣∣∆[M ]

∣∣/2t.

En definitiva, se ha de cumplir que µ
(
Xst(c)

)
> 2s+t

√∣∣∆[M ]
∣∣. Por el teo-

rema anterior esto es

(2c)n

n!

(π

8

)t
> 2s+t

√∣∣∆[M ]
∣∣,

o sea, cn >
(

4
π

)t √∣∣∆[M ]
∣∣n!. Si c cumple esta condición, existe un α ∈ M no

nulo tal que x(α) ∈ Xst(c).
Usando que la media geométrica es siempre menor o igual que la media

aritmética concluimos que

n

√∣∣N(α)
∣∣ = n

√∣∣σ1(α) · · ·σs(α)σs+1(α)2 · · ·σs+t(α)2
∣∣

≤
∣∣σ1(α)

∣∣ + · · ·+
∣∣σs(α)

∣∣ + 2
∣∣σs+1(α)

∣∣ + · · ·+ 2
∣∣σs+t(α)

∣∣
n

<
c

n
.
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Aśı pues, |N(α)| < cn/nn.

Dado 0 < ε < 1, existe un cε > 0 tal que cnε =
(

4
π

)t
n!

√∣∣∆[M ]
∣∣ + ε, a partir

del cual obtenemos un αε ∈M no nulo tal que

|N(αε)| <
(

4
π

)t
n!
nn

√∣∣∆[M ]
∣∣ +

ε

nn
.

Ahora bien, el conjunto de todos los x(α) que cumplen esto para algún ε
está acotado (pues todos están en Xst(c1)) y además todos ellos están en un
ret́ıculo (discreto), por lo que sólo hay un número finito de posibles αε, luego
un mismo α (en M y no nulo) debe cumplir la desigualdad para todos los ε, o

sea, |N(α)| ≤
(

4
π

)t n!
nn

√∣∣∆[M ]
∣∣.

He aqúı una aplicación sencilla:

Teorema 4.13 (Minkowski) El discriminante de un cuerpo numérico (dis-
tinto de Q) no puede ser ±1.

Demostración: Si ∆K = ±1, tomando como módulo M el orden maximal
de K, el teorema anterior nos da la existencia de un entero no nulo α tal que

1 ≤
∣∣N(α)

∣∣ ≤ (
4
π

)t
n!
nn

,

donde n = s + 2t ≥ 2 es el grado de K. Veamos que esta desigualdad es
imposible.

Podemos considerar al miembro de la derecha como producto de t factores
4/π y n factores k/n, donde k vaŕıa entre 1 y n. Por otro lado t ≤ n/2, luego
podemos agrupar los primeros factores con los primeros del segundo tipo, de
modo que aśı nos quedan dos clases de factores: de tipo k/n y de tipo 4k/nπ
con k ≤ n/2.

Los primeros son obviamente menores que 1 (salvo n/n). Si probamos que
los del segundo tipo son también menores que 1, todo el producto cumplirá lo
mismo, y tendremos una contradicción.

Ahora bien, como 2 < π, resulta que n/2 < nπ/4, luego k < nπ/4 y aśı
4k/nπ < 1.

Ejercicio: Usar la fórmula de Stirling:

n! =
√

2πn
(
n

e

)n

e
θ

12n , 0 < θ < 1,

para probar que si ∆ es el discriminante de un cuerpo numérico de grado n entonces

|∆| >
(
π

4

)2t 1

2πn
e2n− 1

6n .

Deducir que el mı́nimo discriminante de un cuerpo de grado n tiende a infinito con n.
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Ejercicio: Aplicar el teorema de Minkowski a los conjuntos

A =
{
x ∈ R

st
∣∣ |x1| <

√
|∆|, |xi| < 1 (2 ≤ i ≤ s+ t)

}
si s �= 0

A =
{
x ∈ R

0t
∣∣ |Rex1| <

1

2
, | Imx1| <

√
|∆|, |xi| < 1 (2 ≤ i ≤ t)

}
si s = 0

para probar que todo cuerpo numérico contiene un elemento primitivo entero los coe-

ficientes de cuyo polinomio mı́nimo están acotados por una cantidad que depende sólo

de n y ∆. Concluir que hay un número finito de cuerpos numéricos con un mismo

discriminante dado (Teorema de Hermite). Observar que este argumento nos permite

obtener expĺıcitamente tales cuerpos.

El teorema 4.12 tiene una consecuencia más importante que las que acabamos
de obtener:

Teorema 4.14 Sea K un cuerpo numérico de grado n = s+2t y discriminante
∆. Entonces todo ideal de K es similar a otro ideal a tal que

N(a) ≤
(

4
π

)t
n!
nn

√
|∆|.

Demostración: Sea b un ideal de K. El ideal fraccional b−1 es de la forma
β−1c, para cierto entero β y cierto ideal c. Sea γ ∈ c tal que

∣∣N(γ)
∣∣ ≤ (

4
π

)t
n!
nn

√∣∣∆[c]
∣∣,

según el teorema 4.12.

Según la definición de norma de un módulo, tenemos
√∣∣∆[c]

∣∣ = N(c)
√
|∆|.

Como γ ∈ c se cumple que c | γ, luego (γ) = ca para cierto ideal a. Por lo tanto
a = γc−1 = γβ−1b, luego a es un ideal equivalente a b, y además

N(a) =
N

(
(γ)

)
N(c)

=

∣∣N(γ)|
√∣∣∆∣∣√∣∣∆[c]

∣∣ ≤
(

4
π

)t
n!
nn

√
|∆|.

El interés de esto reside en que, según el teorema 3.15, sólo hay un número
finito de ideales de una norma dada, luego hemos probado el conjunto de las
clases de similitud de ideales del orden maximal de un cuerpo dado es finito.
Dedicamos la próxima sección a analizar las implicaciones de este hecho.

4.4 El grupo de clases

Dado un cuerpo numérico K, consideremos el grupo abeliano de los idea-
les fraccionales de K. Recordemos que los ideales fraccionales no son sino los
módulos completos cuyo anillo de coeficientes es el orden maximal de K. Entre
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estos módulos tenemos definida la relación de similitud: Dos ideales fraccionales
a y b son similares si y sólo si existe un α ∈ K no nulo tal que b = αa. Podemos
expresar α = β/γ con β y γ enteros. Aśı, a y b son similares si y sólo si existen
dos enteros β y γ no nulos tales que βa = γb. Esta última ecuación puede
expresarse equivalentemente en términos de ideales como (β)a = (γ)b.

Los ideales principales generan un grupo en el grupo de todos los ideales
fraccionales. Sus elementos son de la forma (β)(γ)−1, y es evidente que la simi-
litud de módulos coincide con la congruencia módulo este subgrupo. Usaremos
la notación a ≈ b para representar la similitud de ideales fraccionales.

Definición 4.15 Llamaremos grupo de clases de K al cociente del grupo de
ideales fraccionales de K sobre el subgrupo generado por los ideales principales
no nulos de K. Dos ideales fraccionales determinan la misma clase si y sólo si
son similares.

Todo ideal fraccional es de la forma α−1a, donde α es un entero no nulo y a

es un ideal K. Evidentemente α−1a es similar a a, luego concluimos que toda
clase del grupo de clases se puede expresar como la clase [a] de un ideal. Más
aún, el teorema 4.14 afirma que toda clase de ideales tiene un representante de
norma menor o igual que cierta cota, y ya hemos observado que sólo hay un
número finito de ideales en tales condiciones. Por lo tanto el grupo de clases es
finito, y a su número de elementos h se le llama número de clases del cuerpo
numérico K.

Ahora observamos que si dos ideales son similares, entonces uno es principal
si y sólo si lo es el otro: En efecto, si b = αa y a = (γ), entonces αγ ∈ b, luego
es un entero y de hecho b = (αγ).

Esto significa que la clase [1] = [(1)] no contiene más ideales que los princi-
pales, luego el grupo de clases es trivial (h = 1) si y sólo si todos los ideales de
K son principales, si y sólo si K tiene factorización única.

Más en general, si a es cualquier ideal de K, se cumple que [a]h = 1, es decir,
ah es siempre un ideal principal.

Para aplicar el teorema 4.14 conviene definir las constantes de Minkowski

Mst =
(

4
π

)t
n!
nn

.

Su cálculo es independiente de los cuerpos numéricos, y en estos términos
el teorema 4.14 afirma que todo ideal de K es similar a otro de norma a lo
sumo Mst

√
|∆|. La tabla 4.1 contiene las primeras constantes de Minkowski

redondeadas hacia arriba en la última cifra para que las cotas que proporcionan
sean correctas.

Ejemplo El cuerpo ciclotómico de orden p tiene s = 0, t = (p − 1)/2. Para
p = 3 tenemos que todo ideal es similar a otro de norma a lo sumo M01

√
3 < 1, 2,

o sea, todo ideal es similar a un ideal de norma 1, o sea, a 1, y por lo tanto el
número de clases resulta ser h = 1 y el cuerpo tiene factorización única.
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Tabla 4.1: Constantes de Minkowski

n s t Mst

2 2 0 0, 5
2 0 1 0, 63662
3 3 0 0, 22223
3 1 1 0, 28295
4 4 0 0, 09375
4 2 1 0, 11937
4 0 2 0, 15199

Tomemos ahora p = 5. Se cumple que M02

√
53 < 1, 7 y de nuevo tenemos

factorización única.

Para el caso p = 7 resulta M03

√
75 < 4, 2. Observar que en realidad hay

factorización única si y sólo si todos los ideales primos son principales. Li-
mitándonos a ideales primos, cuya norma es siempre de la forma qm para un
primo racional q, sucede que las únicas normas posibles menores o iguales que
4 son 2, 3 y 4, es decir, sólo hemos de examinar los divisores primos de 2 y
3. Ahora bien, sus órdenes módulo 7 son 3 y 6 respectivamente, luego 2 se
descompone en dos factores primos de norma 8 y 3 se conserva primo. Por lo
tanto no hay ideales primos de norma menor o igual que 4 y todo ideal es, pues,
similar a 1. También en este caso tenemos factorización única.

Para p = 11 tenemos M05

√
119 < 58, 97. Vamos a estudiar los primos

menores que 58. La tabla siguiente muestra el resto módulo 11 de cada uno de
ellos, aśı como su orden f .

q 2 3 5 7 11 13 17 19 23 29
r 2 3 5 7 0 2 6 8 1 7
f 10 5 5 10 0 10 10 10 1 10
q 31 37 39 41 43 47 51 53 57
r 9 4 6 8 10 3 7 9 2
f 5 5 10 10 2 5 10 5 10

Para calcular la tabla rápidamente basta tener en cuenta que una ráız pri-
mitiva módulo 11 es 2, y que sus potencias son 1, 2, 4, 8, 5, 10, 9, 7, 3, 6.

Las normas de los divisores primos de un primo racional q son todas iguales
a qf . Como 210 > 58, descartamos los divisores de 2. Igualmente 35 > 58 y
432 > 58, luego los únicos primos de norma menor que 58 son los divisores de
11 y los de 23. Los divisores de 11 son los asociados de ω − 1, luego son todos
principales.

El 23 se descompone en producto de 10 ideales primos de norma 23. Hemos
de ver si son principales. Según el teorema 3.16 cada factor es de la forma
p = (23, ω − k), donde x − k es uno de los diez factores en que el polinomio
ciclotómico se descompone módulo 23. El número k es una ráız módulo 23 del
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polinomio ciclotómico o, equivalentemente, una ráız distinta de 1 de x11 − 1.
Los elementos de orden 11 módulo 23 son precisamente los cuadrados, como
52 = 2. Aśı pues, podemos tomar p = (23, ω− 2). Si probamos que es principal
el anillo de enteros ciclotómicos tendrá factorización única.

Ejercicio: Probar que N(ω − 2) = 211 − 1.

Hemos de encontrar un múltiplo de p de norma 23. La técnica que vamos a
emplear es esencialmente una de las que usaba Kummer para encontrar primos
ciclotómicos. En primer lugar observamos que ω ≡ 2 (mód p), luego los restos
módulo p de las potencias de ω son

ω ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

2 4 8 −7 9 −5 3 6 −11

Se trata de buscar un polinomio en ω cuyo resto módulo p sea nulo y con
coeficientes pequeños para que la norma no aumente demasiado. Una posibilidad
es aprovechar el 8−7 que se ve en la tabla y tomar p(ω) = ω4+ω3−1. Claramente
p | p(ω) y un cálculo rutinario nos da que N

(
p(ω)

)
= 23, luego efectivamente

p = (ω4 + ω3 − 1) y todos sus conjugados son principales. Esto prueba la
factorización única del undécimo cuerpo ciclotómico.

Observemos cómo los resultados que hemos desarrollado nos permiten re-
solver de una forma relativamente rápida un problema nada trivial, como es
determinar la factorización única de un cuerpo numérico. En principio el mismo
proceso es aplicable a los cuerpos ciclotómicos de orden 13, 17 y 19, aunque el
intervalo de primos a estudiar aumenta demasiado para que los cálculos sean
viables (para el tercer caso la cota es del orden de 460.000). Ya sabemos que
para p = 23 no hay factorización única.

Enteros ciclotómicos reales Veremos en el caṕıtulo XIII que el cálculo del
número de clases de un cuerpo ciclotómico K de orden primo p se puede reducir
al cálculo del número de clases del correspondiente cuerpo K ′ = K ∩R. Vamos
a probar que estos cuerpos tienen factorización única cuando p = 19 y p = 23.

Para p = 19 hemos de estudiar los primos menores que M90

√
198 < 122, 1.

Hay un total de 30 de ellos. La prueba del teorema 3.22 muestra que el divisor
de 19 es principal. Si q es cualquier otro primo, dicho teorema afirma que la
norma de cualquiera de sus divisores es qf , donde f es el orden de q módulo 19
si es impar o la mitad de dicho orden si es par. Las posibilidades para f son 1,
3, 9. Ahora bien, 3

√
122 < 4, 96, lo que implica que cualquier primo q > 3 cuyo

valor de f sea 3 o 9, tiene norma mayor que 122, luego no nos afecta. Por su
parte, 2 y 3 tienen f = 9, con lo que la norma de sus divisores excede también
a 122. En resumen, sólo hemos de estudiar los primos que tienen f = 1, que
se corresponden con primos cuyo orden módulo 19 es 1 o 2, es decir, primos
q ≡ ±1 (mód 19). Resulta que sólo hay dos primos en tales condiciones: el 37
y el 113.
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Si encontramos enteros ciclotómicos reales de norma 37 y 113, habremos
probado que K ′ tiene factorización única. Con ayuda de un ordenador un simple
tanteo basta para dar con ellos. Si calculamos la expresión

N(a0 + a1η1 + a2η2 + a3η3 + a4η4 + a5η5 + a6η6 + a7η7 + a8η8 + a9η9),

(por ejemplo aproximando ηk = 2 cos(2kπ/19) y redondeando el resultado) en-
contramos decenas de ejemplos sin dar a las variables más valores que ±1 y 0.
Por ejemplo

N(1 + η5 − η6) = −37 N(1 + η2 − η3) = −113.

Encontrarlos manualmente es más laborioso, pero no excede lo razonable.
Veamos una posibilidad para el 37. Quizá la parte más laboriosa sea encontrar
un factor irreducible del polinomio ciclotómico módulo 37. Por ejemplo sirve
x2 + 3x + 1. De este modo, si consideramos el ideal q = (37, ω2 + ω + 1) en K,
tenemos que ω2 ≡ −1− 3ω (mód q). Despejando, ω−1 ≡ −3−ω (mód q), luego
η1 = ω + ω−1 ≡ −3 (mód q). Ahora es fácil completar la tabla siguiente:

1 η1 η2 η3 η4 η5 η6 η7 η8 η9

1 −3 7 −18 10 −12 −11 8 −13 −6

En ella se muestran los restos módulo q de los números ηi, pero es claro que
éstos han de coincidir con los restos módulo q ∩K ′ en K ′. El resto es análogo
al estudio que hemos hecho antes sobre el cuerpo ciclotómico undécimo.

El análisis para p = 23 es similar. La cota es ahora 900, pero por el mismo
motivo que antes basta estudiar los primos q ≡ ±1 (mód 23) La lista siguiente
contiene todos los primos en estas condiciones junto con un entero de la norma
correspondiente. De nuevo vemos que basta buscar entre los enteros con coefi-
cientes ±1 y 0, por lo que no es dif́ıcil encontrar ejemplos rápidamente.

N(1 + η1 − η3) = 47 N(1− η2 − η3 − η5) = 461
N(1 + η1 + η7) = 137 N(1 + η3 + η5 + η7 − η8 + η11) = −599
N(1− η1 + η3) = 139 N(1− η5 + η7 − η8 + η10 + η11) = 643
N(1− η2 + η4 + η5 + η6) = 229 N(1− η1 − η4 + η5 + η6 + η9) = −827
N(1− η1 − η2) = −277 N(1− η5 + η7 − η8 − η10 + η11) = 829
N(1 + η5 + η7 − η10 + η11) = 367

N(1− η1 − η2 − η3 − η4 − η5 − η6 − η7 − η8 − η10) = 691

Esto prueba que el anillo de enteros ciclotómicos reales de orden 23 tiene
factorización única.

Ejercicio: Probar que Q
(

3
√

2
)

tiene factorización única.
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Ejemplo Para el ejemplo de Dedekind Q(ξ), tenemos s = t = 1 y ∆ = −503,
de donde concluimos fácilmente que todo ideal es similar a uno de norma menor
o igual que 6. Un primo de norma menor o igual que 6 debe dividir a 2, 3 o 5.
Ya vimos en el caṕıtulo anterior (página 69) que 2 se descompone en tres ideales
primos principales. Como ı́nd ξ = 2, para factorizar los demás primos podemos
considerar el polinomio x3 +x2− 2x+8, que es irreducible módulo 3, luego 3 es
primo en Q(ξ), mientras que dicho polinomio se descompone como (x+1)(x2+3)
módulo 5. Por lo tanto 5 se descompone en producto de un ideal de norma 25
y del ideal p = (5, 1 + ξ), de norma 5. Si probamos que p es principal entonces
todo ideal de norma menor o igual que 6 será producto de ideales principales, y
por lo tanto principal. Ahora bien, es fácil ver que N(1+ξ) = 10, lo que implica
que 1 + ξ factoriza como producto de p por un ideal (principal) de norma 2,
luego p también es principal, y aśı Q(ξ) tiene factorización única.

De momento aún no disponemos de las herramientas necesarias para calcular
números de clases en general. Ello supone ser capaz de decidir si dos ideales
dados son similares o no, lo que a su vez exige ser capaz de decidir si un ideal
dado es principal o no, y a su vez hemos visto que esto equivale a resolver las
ecuaciones diofánticas asociadas a los ideales. Ahora vamos a generalizar el
concepto de grupo de clases a órdenes numéricos arbitrarios.

Supongamos que O′ es un orden de un cuerpo numérico, f es su conductor y
O es el orden maximal. El teorema 3.27 establece una biyección entre los ideales
de O′ primos con f y los análogos en O. Esta correspondencia conserva todo
lo relacionado con la divisibilidad ideal, pero en general no conserva el carácter
principal de un ideal: si bien es obvio que la imagen en O de un ideal principal
de O′ es un ideal principal (con el mismo generador), bien puede ocurrir que
un ideal principal de O tenga asociado un ideal no principal de O′, debido a
que ninguno sus generadores pertenezca a O′. Por ello hemos de distinguir
entre ideales de O′ principales en O′ (luego también en O) de los que sólo son
principales en O. En particular, el hecho de que todos los ideales de O sean
principales no implica necesariamente que todos los ideales de O′ lo sean. Ni
siquiera los primos con el conductor. Ahora definiremos un grupo de clases de
ideales de O′ (primos con f) de modo que la clase trivial la formen precisamente
los ideales principales en O′, con lo que O′ tendrá factorización única real (para
números primos con f) si y sólo si el grupo de clases es trivial, en completa
analoǵıa con el caso que acabamos de estudiar para órdenes maximales.

Definición 4.16 Sea K un cuerpo numérico, sea O su orden maximal y sea O′

un orden cualquiera de K con conductor f. Llamaremos

I∗f (O) = {ab−1 | a, b ∈ If(O)},
es decir, I∗f (O) es el subgrupo generado por If(O) en el grupo de los ideales
fraccionales de K. Según el teorema 3.27, el semigrupo If(O′) puede identificarse
con If(O), luego podemos considerar a I∗f (O) como un ‘grupo de cocientes’ de
If(O′). Similarmente definimos

Pf(O′) = {α ∈ O′ | αO + f = 1
}
,

P ∗
f (O′) =

{
αOβ−1O | α, β ∈ Pf(O′)

}
.
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De este modo P ∗
f (O′) es el subgrupo de I∗f (O) generado por los ideales prin-

cipales de If(O′) (identificados con ideales de If(O)).

Llamaremos grupo de clases de O′ al grupo cociente H(O′) = I∗f (O)
/
P ∗

f (O′).

Todo a ∈ If(O′) cumple por definición a + f = O′, luego existen α ∈ a y
φ ∈ f tales que α + φ = 1, es decir, (α) ∈ If(O′). Por la factorización única
existe b ∈ If(O′) tal que ab = (α). Pasando a If(O) y tomando clases, esto se
traduce en que [a]−1 = [b]. Esto prueba que todas las clases de H(O′) tienen
un representante en If(O′), luego podemos considerarlas como clases de ideales
de If(O′).

Aśı mismo, si un ideal a ∈ If(O′) cumple [a] = 1, entonces existen números
β, γ ∈ Pf(O′) tales que (β)a = (γ). Existe un α ∈ a tal que γ = βα. El hecho de
que γ ∈ Pf(O′) implica que lo mismo vale para α y, por la factorización única,
a = (α). Aśı pues, un ideal de If(O′) es principal si y sólo si su clase es trivial.

Con esto hemos probado que el grupo de clases de un orden es exactamente
lo que queŕıamos que fuera. Ahora vamos a probar que es finito, a la vez que
calculamos su orden.

Teorema 4.17 Sea O el orden maximal de un cuerpo numérico K. Sea O′ un
orden de K de conductor f y sea h el número de clases de K. Entonces el grupo
de clases de O′ es finito, y su orden es

h′ =
Φ(f)

Φ′(f)e
h,

donde Φ(f) y Φ′(f) son, respectivamente, el número de unidades de O/f y de
O′/f, mientras que e es el ı́ndice del grupo de unidades de O′ en el grupo de
unidades de O. Además el cociente que aparece en la fórmula es entero, por lo
que h | h′.

Demostración: Sea H el grupo de clases de K. Consideremos el homo-
morfismo I∗f (O) −→ H dado por a 
→ [a].

Dado cualquier ideal a de K, existe un ideal b de manera que [a−1] = [b]. Por
el teorema 3.10 existe un ideal c = αb−1 tal que [c] = [a] y c+f = 1. Esto implica
que el homomorfismo anterior es suprayectivo. Su núcleo es evidentemente
P ∗

f (O). Aśı pues
I∗f (O)

/
P ∗

f (O) ∼= H.

Por el teorema de isomorf́ıa podemos concluir que

h′ = |P ∗
f (O) : P ∗

f (O′)| h,

supuesto que probemos que el ı́ndice es finito.

Sea ahora U el grupo de unidades del anillo O/f y consideremos la aplicación
U −→ P ∗

f (O)
/
P ∗

f (O′) dada por [α] 
→
[
(α)

]
. Veamos que está bien definida.

Si [α] = [β], entonces α ≡ β (mód f) y por ser unidades existe un γ ∈ O tal
que αγ ≡ βγ ≡ 1 (mód f). Como f ⊂ O′ esto implica que αγ, βγ ∈ O′, luego[
(α)

]
=

[
(α)(βγ)

]
=

[
(β)(αγ)

]
=

[
(β)

]
.
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Evidentemente se trata de un epimorfismo de grupos. Esto prueba ya la
finitud del grupo de clases. Vamos a calcular el núcleo. Si

[
(α)

]
= 1 entonces

(α) ∈ P ∗
f (O′), lo que significa que (α) = (β), donde β ∈ Pf(O′). A su vez esto

implica que α = εβ, para cierta unidad ε de O. Rećıprocamente, es claro que si
α es de esta forma entonces (α) está en el núcleo.

Llamemos E al grupo de unidades de O y E al subgrupo de U formado por
las clases con un representante en E. Similarmente, sea Pf(O′) el grupo de las
clases de U con representantes en Pf(O′). Hemos probado que el núcleo del
epimorfismo que estamos estudiando es E Pf(O′), de donde

|P ∗
f (O) : P ∗

f (O′)| = Φ(f)∣∣E Pf(O′)
∣∣ .

Claramente, ∣∣E Pf(O′)
∣∣ =

∣∣E : E ∩ Pf(O′)
∣∣ ∣∣Pf(O′)

∣∣.
Si llamamos E′ al grupo de las unidades de O′, es fácil comprobar el iso-

morfismo E/E′ ∼= E
/(

E ∩ Pf(O′)
)
. Finalmente, si llamamos U ′ al grupo de

las unidades de O′/f, también se ve fácilmente que U ′ ∼= Pf(O′). El teorema es
ahora inmediato.

Para el caso de órdenes cuadráticos la fórmula admite una ligera simplifi-
cación:

Teorema 4.18 Sea Om el orden de ı́ndice m en un cuerpo cuadrático K. Sea
h el número de clases de K y hm el número de clases de Om. Entonces

hm =
Φ(m)

φ(m)em
h,

donde Φ es la función de Euler generalizada, φ es la función de Euler usual y
em es el ı́ndice del grupo de las unidades de Om en el grupo de las unidades de
K.

Demostración: Sólo hay que recordar que el conductor de Om es (m) y
notar que Om/(m) ∼= Z/mZ.

Ejemplo Consideremos el orden Z
[√
−3

]
, de ı́ndice 2 en el orden maximal de

Q
(√
−3

)
. Es fácil ver que el número de clases de este cuerpo es 1, aśı como que

su grupo de unidades consta exactamente de las 6 ráıces sextas de la unidad (en
la sección siguiente obtendremos este hecho como consecuencia de resultados
generales), mientras que el grupo de unidades de Z

[√
−3

]
consta sólo de {±1}.

Por consiguiente, y según la notación del teorema anterior, e = 3.
Por otra parte, el 2 se conserva primo enQ

(√
−3

)
, luego Φ(2) = N(2)−1 = 3.

En total concluimos que el número de clases de Z
[√
−3

]
es h2 = 1. Como ya

sabemos, esto no significa que el anillo tenga factorización única. Un ejemplo
de factorización no única es el siguiente:

2 · 2 =
(
1 +

√
−3

)(
1−

√
−3

)
. (4.1)
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Vamos a probar que éste es en realidad el único caso posible. Consideremos un
número cualquiera a + b

√
−3 ∈ Z

[√
−3

]
.

Supongamos que 2 | N
(
a + b

√
−3

)
= a2 + 3b2. Entonces a y b son ambos

pares o ambos impares. En el primer caso a + b
√
−3 = 2

(
u + v

√
−3

)
, en el

segundo tenemos que a y b son ambos de la forma 4n ± 1. Por lo tanto bien
a+ b o bien a− b es múltiplo de 4, es decir, 4 | a± b, para una elección adecuada
del signo.

Trabajando en el orden maximal vemos que 2 es primo y 2 | N
(
a + b

√
−3

)
,

luego divide a a±b
√
−3. Como es invariante por conjugación, de hecho tenemos

que 2 | a+b
√
−3. Por otra parte 1±

√
−3

2 es una unidad, luego 1±
√
−3 es asociado

a 2 y también divide a a + b
√
−3. Digamos que

a + b
√
−3 =

(
1±

√
−3

)(
u + v

√
−3

)
,

donde u y v son enteros o semienteros. Entonces

u + v
√
−3 =

a± 3b + (a∓ b)
√
−3

4
,

luego eligiendo el signo podemos hacer que u y v sean ambos enteros.
Aśı en ambos casos (tanto si a y b son pares o impares) hemos llegado a una

factorización de la forma a+b
√
−3 = τβ, donde τ es 2 o 1±

√
−3 y β ∈ Z

[√
−3

]
.

Repitiendo el proceso podemos llegar a una factorización a+ b
√
−3 = τ1 · · · τrβ,

donde ahora N(β) es impar. Como el número de clases es 1, β se descompone
en producto de primos en Z

[√
−3

]
, digamos

a + b
√
−3 = τ1 · · · τrπ1 · · ·πs. (4.2)

Los factores τi son irreducibles de norma 4 y los factores πi son primos de norma
impar. Todos ellos son primos en el orden maximal.

Ejercicio: Probar que la descomposición (4.2) es única salvo signos y salvo las trans-
formaciones entre los τi que pueden hacerse a partir de (4.1). La factorización es única
salvo signos si exigimos que en la descomposición no aparezcan factores 1 ±

√
−3 con

signos opuestos.

Terminamos la sección con un último resultado de finitud:

Teorema 4.19 Si O es un orden numérico, existe un número finito de clases
de similitud de módulos cuyo anillo de coeficientes es O.

Demostración: El teorema 4.12 (teniendo en cuenta la definición de norma
de un módulo) proporciona una cota C que sólo depende del cuerpo y de O tal
que todo módulo M con anillo de coeficientes O contiene un elemento α �= 0 con
|N(α)| ≤ C N(M). Como αO ⊂M , también O ⊂ α−1M . Es fácil ver que

|α−1M : O| = N(α−1M)−1 = |N(α)|/N(M) ≤ C.

Aśı tenemos que todo módulo M es similar a otro M ′ tal que O ⊂ M ′ y
|M ′ : O| ≤ C. Sólo hay un número finito de naturales t tales que 1 ≤ t ≤ C
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y, para cada uno de ellos, sólo hay un número finito de módulos M ′ tales que
O ⊂M ′ y |M ′ : O| = t, pues estos módulos cumplen que M ′/O es un grupo finito
de orden t, con lo que tM ′ ⊂ O, y en consecuencia O ⊂M ′ ⊂ t−1O. Ahora bien,
los módulos intermedios entre O y t−1O están en correspondencia biuńıvoca con
los subgrupos del grupo cociente, que es finito porque ambos módulos son libres
del mismo rango.

En conclusión, hay un número finito de tales módulos M ′.

4.5 La representación logaŕıtmica

En esta sección obtendremos la estructura del grupo de unidades de un orden
numérico arbitrario. Este grupo es multiplicativo, mientras que el teorema de
Minkowski se aplica a ret́ıculos, que son grupos aditivos. Para relacionar unos
con otros usaremos logaritmos.

Definición 4.20 Recordemos que Rst = Rs × Ct. Llamaremos representación
logaŕıtmica de Rst a la aplicación l cuyo dominio lo forman los vectores x de Rst

cuyas componentes son todas no nulas (o sea, tales que N(x) �= 0) y dado por
l(x) =

(
l1(x), . . . , ls+t(x)

)
, donde

lk(x) =
{

log |xk| para k = 1, . . . , s,
log |xk|2 para k = s + 1, . . . , s + t.

Es inmediato que si N(x) �= 0 �= N(y), entonces l(xy) = l(x)+ l(y). También
es obvio por la definición de norma en Rst que

log
∣∣N(x)

∣∣ = l1(x) + · · ·+ ls+t(x). (4.3)

Si K es un cuerpo numérico llamaremos representación logaŕıtmica de K
a la aplicación l : K \ {0} −→ Rs+t dada por l(α) = l

(
x(α)

)
, donde x es la

representación geométrica de K.
Aśı pues,

l(α) =
(
log |σ1(α)|, . . . , log |σs(α)|, log |σs+1(α)|2, . . . , log |σs+t(α)|2).

El vector l(α) se llama representación logaŕıtmica del número α. El espacio
Rs+t se llama espacio logaŕıtmico de K.

Es claro que si α y β son números no nulos, entonces l(αβ) = l(α) + l(β).
De aqúı se sigue que l(α−1) = −l(α).

Por otro lado

log
∣∣N(α)

∣∣ = log
∣∣∣N(x

(
α)

)∣∣∣ = l1(α) + · · ·+ ls+t(α).

Un primer resultado elemental es el siguiente:

Teorema 4.21 Sea K un cuerpo numérico y O un orden cualquiera de K.
Entonces la restricción de la representación logaŕıtmica de K al grupo de las
unidades de O es un homomorfismo de grupos cuyo núcleo está formado por las
ráıces de la unidad en O y es un grupo ćıclico finito de orden par.
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Demostración: Sea W el núcleo indicado en el enunciado. Si α ∈ W
resulta que lk(α) = 0, luego |σk(α)| = 1 para k = 1, . . . , s + t. Esto implica que
el conjunto

{
x(α)

∣∣ α ∈ W
}

está acotado, y como sus elementos pertenecen a
un ret́ıculo, que es un conjunto discreto, necesariamente ha de ser finito, y como
la representación geométrica x es biyectiva concluimos que el subgrupo W es
finito.

En particular los elementos de W tienen orden finito, luego son ráıces de la
unidad. Rećıprocamente si un ω ∈ O cumple ωn = 1, entonces todos los conju-
gados de ω cumplen lo mismo, luego todos tienen módulo 1, y los logaritmos de
los módulos son 0, luego concluimos l(ω) = 0.

Aśı pues, W contiene exactamente a las ráıces de la unidad de O. En par-
ticular contiene al −1, de orden 2, luego W es un grupo abeliano finito de orden
par. Además es ćıclico porque todo subgrupo finito del grupo multiplicativo de
un cuerpo es un grupo ćıclico.

Ejercicio: Probar que si un cuerpo numérico cumple s > 1 entonces sus únicas ráıces
de la unidad son ±1.

Ahora ya podemos aplicar el teorema de Minkowski al estudio de las unida-
des.

Teorema 4.22 Sea K un cuerpo numérico y O un orden de K. Entonces la
imagen del grupo de las unidades de O a través de la representación logaŕıtmica
es un ret́ıculo de dimensión s + t− 1.

Demostración: Sea M dicha imagen. Obviamente M es un subgrupo del
espacio logaŕıtmico de K. Por el teorema 4.7, para demostrar que es un ret́ıculo
basta ver que es discreto. Sea r > 0 y vamos a probar que sólo hay un número
finito de unidades ε tales que ‖l(ε)‖ < r.

Para ello vemos que lk(ε) ≤ |lk(ε)| ≤ ‖l(ε)‖ < r, luego
∣∣σk(ε)∣∣ < er si

k = 1, . . . , s y
∣∣σk(ε)∣∣2 < er si k = s + 1, . . . , t. Esto significa que el conjunto

de los x(ε), cuando ε es una unidad con ‖l(ε)‖ < r, está acotado, pero los
vectores x(ε) forman parte de un ret́ıculo, luego son un número finito. Como
la representación geométrica es biyectiva, el número de unidades ε es también
finito.

Esto demuestra que M es un ret́ıculo en Rs+t. Si ε es una unidad de O,
sabemos que N(ε) = ±1, luego 0 = log

∣∣N(ε)
∣∣ = l1(ε) + · · ·+ ls+t(ε).

Por lo tanto el ret́ıculo M está contenido en el subespacio

V = {x ∈ Rs+t | x1 + · · ·+ xs+t = 0},

y su dimensión es a lo sumo s + t− 1.
Para probar que su dimensión es exactamente ésta basta demostrar que

existe un subconjunto acotado U de V tal que los trasladados de U por los
elementos de M cubren todo el espacio V . Esto puede probarse modificando
levemente la prueba del teorema 4.8 o bien aplicando el teorema 4.8 a la imagen
de M a través de un isomorfismo entre V y Rs+t−1.
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Es claro que todo vector de Rs+t es la imagen por la representación lo-
gaŕıtmica de un vector de Rst. Por (4.3) resulta que un vector x de Rst con
coordenadas no nulas cumple l(x) ∈ V si y sólo si N(x) = ±1. Sea S el conjunto
de todos los x ∈ Rst tales que N(x) = ±1. Aśı l[S] = V . Sea X ⊂ S un conjunto
acotado cualquiera.

Se cumple que l[X] está acotado, pues si un vector (x1, . . . , xs+t) cumple
|xk| < C para k = 1, . . . , s y |xk|2 < C para k = s + 1, . . . , s + t, entonces
lk(x) < logC y por lo tanto lk(x) = −

∑
i �=k li(x) > −(s + t − 1)C, con lo que

lk(X) está acotado.
Como la norma es multiplicativa, si ε es una unidad de O, se cumple que

x(ε)X ⊂ S, y si todos los trasladados x(ε)X cubren S, entonces los trasladados
l(ε)+ l[X] cubren V . Aśı pues, basta demostrar que existe un conjunto acotado
X ⊂ S tal que los trasladados x(ε)X cubren S.

Sea y = (x1, . . . , xs, y1 + iz1, . . . , yt + izt) ∈ S y sea f : Rst −→ Rst la
aplicación dada por f(x) = yx (el producto se calcula componente a componente
en Rst = Rs ×Ct). Si ahora consideramos Rst = Rs+2t la aplicación f es lineal
y el determinante de su matriz (por ejemplo en la base canónica) es

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1

. . .
xs

y1 z1

−z1 y1

. . .
yt zt
−zt yt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= N(y) = ±1.

Llamemos N ⊂ Rst a la imagen de O por la representación geométrica.
Las aplicaciones lineales de determinante ±1 conservan la medida, luego los
paraleleṕıpedos fundamentales de los ret́ıculos N e yN tienen la misma medida.
Llamémosla k (observar que k no depende de y).

Sea Q >
(

4
π

)t
k y sea c = s+t

√
Q. Llamemos A al conjunto de los puntos

x ∈ Rst tales que |xi| < c para i = 1, . . . , s, |xi|2 < c para i = s + 1, . . . , s + t.
Es fácil comprobar que A es absolutamente convexo y acotado, aśı como que
µ(A) = 2sπtcs+t > 2s+2tk (pues A es un producto de s intervalos de longitud
2c y t ćırculos de radio

√
c).

El teorema de Minkowski nos da un punto no nulo p ∈ A ∩ yN, es decir,
un punto de la forma p = yx(α) para cierto α ∈ O no nulo y de manera que
|N(p)| < cs+t = Q. Puesto que N(y) = ±1 también se cumple que |N(α)| =
|x(α)| = |N(p)| < Q.

Por el teorema 2.19 existe sólo un número finito de elementos α no asociados
y de O con norma menor que Q en módulo. Sean, pues, α1, . . . , αm ∈ O no nulos
tales que |N(αi)| < Q y de modo que cualquier otro entero en estas condiciones
sea asociado en O a uno de ellos. Notar que Q no depende de y, luego α1, . . . , αm
tampoco (podŕıamos haberlos tomado al principio de la prueba). Ahora el α
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que hab́ıamos encontrado se expresa como α = εαi para un cierto i y una cierta
unidad ε de O. Hemos demostrado que todo y ∈ S se puede expresar en la forma
y = px(α−1

i )x(ε).
Definimos X = S ∩

⋃m
i=1 x(α−1

i )A. Se trata claramente de un conjunto
acotado y tenemos que todo y ∈ S cumple y ∈ x(ε)X para cierta unidad ε de
O, tal y como queŕıamos probar.

Esto determina la estructura del grupo de las unidades de cualquier orden
de cualquier cuerpo numérico.

Teorema 4.23 (Teorema de Dirichlet) Sea O un orden de un cuerpo numé-
rico de grado n = s + 2t. Entonces existen unidades ε1, . . . , εr en O (donde
r = s + t − 1) tales que toda unidad ε ∈ O se expresa de forma única como
ε = ζεm1

1 · · · εmr
r , donde ζ ∈ O es una ráız de la unidad y m1, . . . ,mr son enteros

racionales.

Demostración: Sea U el grupo de las unidades de O. Basta tomar unida-
des ε1, . . . , εr ∈ U tales que l(ε1), . . . , l(εr) sean una base de l[U ].

Definición 4.24 Un conjunto de unidades ε1, . . . , εr en las condiciones de teo-
rema anterior se llama un sistema fundamental de unidades de O.

Los sistemas fundamentales de unidades de un orden pueden ser vaćıos. Esto
ocurre cuando r = s+t−1 = 0, lo cual sólo es posible si s = 1, t = 0 (y entonces
n = s + 2t = 1, o sea, K = Q), o bien s = 0, t = 1 (y entonces n = 2 y K es un
cuerpo cuadrático imaginario).

Esto demuestra que Q y los cuerpos cuadráticos imaginarios son los únicos
cuerpos con un número finito de unidades. Las unidades de Q son obviamente
±1. Las de los cuerpos cuadráticos imaginarios son las ráıces de la unidad que
contienen. Ahora bien, los únicos cuerpos ciclotómicos de grado 2 son Q(i)
(de orden 4) y Q

(√
−3

)
(de orden 3 y 6 a la vez). Aśı pues, las unidades de

cualquier otro cuerpo cuadrático imaginario son también {±1}, mientras que
las de Q(i) son {±1,±i} y las de Q

(√
−3

)
son las ráıces sextas de la unidad

{±1,±ω,±ω2}, donde ω =
(
−1 +

√
−3

)
/2.

Los sistemas fundamentales de los cuerpos cuadráticos reales y de los cúbicos
puros tienen un sólo miembro. En estos casos si ε es un sistema fundamental
de unidades se dice simplemente que es una unidad fundamental.

La prueba del teorema de Dirichlet no es constructiva, es decir, no nos per-
mite obtener en la práctica un sistema fundamental de unidades. Resolveremos
enseguida este problema, pero antes observemos lo siguiente:

Un sistema fundamental de unidades no es más que una base de un cierto
Z-módulo, luego no es único. Sin embargo podemos asociar a cada orden un in-
variante concerniente a sus sistemas fundamentales de unidades de forma similar
a como asociamos el discriminante a las bases de un módulo.

Sea ε1, . . . , εr un sistema fundamental de unidades de un orden O de un
cuerpo numérico. Entonces l(ε1), . . . , l(εr) forman una base del ret́ıculo l[U ],
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donde U es el grupo de las unidades de O. El vector l0 = 1√
s+t

(1, . . . , 1) es
unitario y ortogonal al subespacio V formado por los vectores cuyas coordenadas
suman 0.

Los vectores l0, l(ε1), . . . , l(εr) generan un ret́ıculo completo cuyo parale-
leṕıpedo fundamental tiene medida independiente de la elección del sistema
fundamental de unidades (pues un cambio de sistema da lugar a un cambio de
base del ret́ıculo).

Sabemos que esta medida k es igual al módulo del determinante de la matriz
que tiene por filas a l0, l(ε1), . . . , l(εr). Si sumamos todas las columnas a la
columna i-ésima y tenemos en cuenta que las componentes de l(ε1), . . . , l(εr)
suman 0, podemos desarrollar el determinante por dicha columna i-ésima y
concluir que k =

√
s + tR, donde R es el módulo de cualquiera de los menores

de orden r de la matriz que tiene por filas a l(ε1), . . . , l(εr).
Este valor R es independiente de la elección del sistema fundamental de uni-

dades y se llama regulador del orden O. El regulador de un cuerpo numérico es
el regulador de su orden maximal. Para Q y los cuerpos cuadráticos imaginarios
se define R = 1.

4.6 Cálculo de sistemas fundamentales de
unidades

El cálculo de un sistema fundamental de unidades (y por lo tanto del regu-
lador) de un cuerpo numérico dado es, a nivel práctico, uno de los problemas
más complicados de la teoŕıa algebraica de números, y conocer tales sistemas re-
sulta ser indispensable para tener un control satisfactorio del cuerpo en cuestión.
Desde un punto de vista teórico no hay dificultad. En esta sección probaremos
que siempre es posible encontrar un sistema fundamental en un número finito
de pasos. Un hecho clave en esta dirección es el teorema siguiente.

Teorema 4.25 Sea M un módulo completo de un cuerpo numérico K de grado
n. Sea {α1, . . . , αn} una base de M . Entonces existe una constante A tal que
todos los elementos α ∈ M que cumplen |σ1(α)| < c1, . . . , |σn(α)| < cn, para
ciertos números reales positivos c1, . . . , cn tienen sus coordenadas (en la base
dada) acotadas en módulo por A

∑n
j=1 cj.

Demostración: La matriz
(
Tr(αiαj)

)
puede ser calculada en la práctica y

con ella, resolviendo sistemas de ecuaciones lineales (o calculando su inversa),
podemos calcular la base dual {β1, . . . , βn} definida en 2.9.

Sea A > 0 tal que |σi(βj)| ≤ A para todo i, j. En el peor de los casos
podemos obtener A calculando los polinomios mı́nimos de los βj y aproximando
sus ráıces. Ahora, un número de M que cumpla lo pedido es de la forma

α = a1α1 + · · ·+ anαn, ai ∈ Z,
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donde

|ai| =
∣∣Tr(αβi)

∣∣ =
∣∣∣ n∑
j=1

σj(α)σj(βi)
∣∣∣ ≤ A

n∑
j=1

∣∣σj(α)
∣∣ < A

n∑
j=1

cj .

El próximo teorema contiene las ideas centrales del algoritmo para obtener
sistemas fundamentales de unidades de cuerpos numéricos.

Teorema 4.26 Sea M un ret́ıculo en Rm de dimensión r > 1, sea V el subes-
pacio generado por M, sea u ∈M no nulo, sea V ′ el subespacio de V ortogonal
a u y sea N la proyección de M en V ′. Entonces:

1. N es un ret́ıculo de dimensión r − 1.

2. Supongamos que u �= nv para todo v ∈ M y todo número natural n. Si
u2, . . . , ur ∈ M y sus proyecciones en V son una base de N, entonces
u, u2, . . . , ur son una base de M.

3. Todo elemento x′ ∈ N es la proyección de un x ∈M tal que

‖x‖ ≤
√
‖u‖2

4
+ ‖x′‖2.

Demostración: 1) Obviamente N es un subgrupo. El apartado 3) implica
que es discreto, luego es un ret́ıculo. Las proyecciones de r − 1 elementos de
M linealmente independientes de u son linealmente independientes, luego la
dimensión de N es r − 1.

2) Sean ui = aiu + u′
i, donde cada u′

i es ortogonal a u. Similarmente,
dado cualquier v ∈ M, sea v = au + v′, donde v′ es ortogonal a u. Entonces
v′ =

∑r
i=2 biu

′
i, para ciertos enteros racionales bi. Consecuentemente:

v =

(
a−

r∑
i=2

aibi

)
u +

r∑
i=2

biui.

De aqúı se sigue que el primer sumando del segundo miembro está en M y por
la hipótesis sobre u el coeficiente b1 = a −

∑r
i=2 aibi ha de ser un entero (los

elementos de M de la forma αu son claramente un ret́ıculo de base u). Esto
prueba lo pedido.

3) Sea x = αu+x′. Restando el oportuno tu, con t entero racional, podemos
exigir que |α| ≤ 1/2. Entonces

‖x‖2 = |α|2‖u‖2 + ‖x′‖2 ≤ ‖u‖2/4 + ‖x′‖2.

Veamos ahora cómo podemos calcular en la práctica un sistema fundamental
de unidades de un cuerpo numérico K. Por simplificar la notación supondre-
mos que r = 3, aunque el método es completamente general. En primer lugar
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calculamos una base entera de K, su base dual y la constante A del teorema
4.25 para el orden maximal de K.

Ordenando lexicográficamente las n-tuplas de enteros racionales podemos
enumerar los enteros de K. Eliminamos los que no tengan norma ±1 y aśı
tenemos una enumeración de las unidades de K. Cuando encontramos una
unidad calculamos su representación logaŕıtmica y si es nula pasamos a otra.
Seguimos hasta hacernos con r unidades cuyas representaciones logaŕıtmicas
sean linealmente independientes, digamos l1, l2, l3. Llamemos V1 al subespacio
de R4 formado por las cuádruplas cuyas coordenadas suman 0, sea l′1 = l1, sea
V2 el subespacio de V1 ortogonal a l′1, sea l′2 la proyección de l2 en V2, sea V3 el
subespacio de V2 ortogonal a l′2 y l′3 la proyección de l3 en V3. Aśı mismo, sea
M1 la imagen del grupo de unidades por la representación logaŕıtmica, sea M2

la proyección de M1 en V2 y sea M3 la proyección de M3 en V3.
Entonces M3 es un ret́ıculo de dimensión 1 que contiene al vector l′3. Si

éste no fuera una base, existiŕıa un vector x ∈ M3 tal que ‖x‖ ≤ ‖l′3‖/2. Por
el teorema anterior x seŕıa la proyección de un vector de M2 de norma menor
o igual que 1

2

√
‖l′2‖2 + ‖l′3‖2, que a su vez será la proyección de un vector de

M1 de norma menor o igual que ρ = 1
2

√
‖l′1‖2 + ‖l′2‖2 + ‖l′3‖2. Similarmente, si

l′2 es múltiplo de un elemento de M2, éste tendrá que ser la proyección de un
elemento de M1 de norma menor o igual que ρ.

Si una unidad ε cumple que ‖l(ε)‖ ≤ ρ, entonces log |σ(ε)| ≤ ρ si σ es real
y log |σ(ε)|2 ≤ ρ si σ es complejo. Por lo tanto |σ(ε)| ≤ eρ si σ es real y
|σ(ε)| ≤ eρ/2 si σ es complejo. Continuamos nuestra enumeración de unidades
hasta que el teorema 4.25 nos garantice que hemos pasado por todas las posibles
unidades ε. Cada vez que nos encontremos con una unidad hemos de comprobar
si su representación logaŕıtmica l es múltiplo de l′1 con norma menor, y si es aśı
sustituir l′1 por l. En caso contrario comprobamos si la proyección sobre V2 es
múltiplo de l′2 con norma menor. En tal caso sustituimos l2 por l, y en caso
contrario hacemos lo mismo con la proyección sobre V3. Al terminar el proceso
tendremos un sistema fundamental de unidades de K.

Ejemplo Consideremos el cuerpo K = Q(ξ), donde ξ es una ráız del polinomio
x3 + x2− 2x+ 8, es decir, el ejemplo de Dedekind del que ya hemos hablado en
otras ocasiones. Sabemos que una base entera de K la forman los números

α1 = 1, α2 = ξ, α3 =
ξ + ξ2

2
.

No es dif́ıcil calcular la matriz
(
Tr(αiαj)

)
, que resulta ser

 3 −1 2
−1 5 −13

2 −13 −2




Su inversa es
1

503


 179 28 −3

28 10 −37
−3 −37 −14



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Esto nos da la base dual

α∗
1 =

1
503

(
179 + 28 ξ − 3

ξ + ξ2

2

)
,

α∗
2 =

1
503

(
28 + 10 ξ − 37

ξ + ξ2

2

)
,

α∗
3 =

1
503

(
−3− 37 ξ − 14

ξ + ξ2

2

)
.

Sustituimos ξ por aproximaciones complejas de los tres conjugados de ξ (están
dadas en el caṕıtulo anterior) y calculamos el mayor módulo de los números
obtenidos. Éste resulta ser A = 0′42 (redondeado hacia arriba).

Si enumeramos los enteros de K y buscamos los de norma 1, el primero que
encontramos (aparte de ±1) es la unidad

ε = 13 + 10 ξ + 6
ξ + ξ2

2
.

Su representación logaŕıtmica es

l(ε) = (log |ε(ξ1)|, log |ε(ξ2)|2) = (−7′02735, 7′02735),

cuya norma es menor que 9′94, luego si ε no fuera una unidad fundamental de
K habŕıa otra unidad cuya representación logaŕıtmica tendŕıa norma menor que
9′94/2, y sus coordenadas en la base entera que estamos considerando estaŕıan
acotadas por A(e9′94/2+2e9′94/4) < 71. Si comprobamos todos los enteros cuyas
coordenadas son menores o iguales que 70 en módulo, veremos que no hay más
unidades, luego ε es una unidad fundamental y el regulador es R = 7′02735.

Ejercicio: Comprobar que 1− 6 3
√

6 + 3 3
√

36 es una unidad fundamental de Q
(

3
√

6
)
.

Ejemplo Vamos a calcular un sistema fundamental de unidades del cuerpo
ciclotómico séptimo. Para este cuerpo se cumple s = 0, t = 3, luego el sistema
consta de dos unidades.

En primer lugar probaremos un resultado general nos reducirá a la mitad el
grado del cuerpo a estudiar.

Teorema 4.27 (Lema de Kummer) Si Q(ω) es el cuerpo ciclotómico de or-
den p, entonces toda unidad de Z[ω] es el producto de una unidad real por una
potencia de ω.

Demostración: Sea ε = r(ω) una unidad de Z[ω]. Su conjugado complejo
es ε̄ = r(ω−1) = r(ωp−1), que también es una unidad. Consideremos la unidad
µ = ε/ε̄ ∈ Z[ω].

Todo conjugado de µ es de la forma σ(µ) = r(ωk)/r(ω−k). Como el deno-
minador es el conjugado (complejo) del numerador, concluimos que |σ(µ)| = 1.
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Esto significa que µ está en el núcleo de la representación logaŕıtmica, y según
el teorema 4.21 es una ráız de la unidad.

El grupo de las ráıces de la unidad de Q(ω) es ćıclico de orden un cierto
natural m. Sea ζ un generador. Puesto que ω está en dicho grupo, ha de ser
p | m. Digamos m = pix con i ≥ 1.

El cuerpo Q(ζ) es un cuerpo ciclotómico de grado φ(m), donde φ es la función
de Euler. Aśı pues, φ(m) = (p − 1)pi−1φ(x) | p − 1. Esto implica que i = 1 y
que φ(x) = 1, de donde x = 2 (ha de ser par), y aśı el grupo de las ráıces de la
unidad de Q(ω) tiene orden 2p, luego está formado por las unidades ±ωi.

Continuando nuestro razonamiento, µ = ±ωi para un entero racional i.
Supongamos que el signo fuera negativo. Entonces ε = −ωiε̄. Tomamos

congruencias en Z[ω] módulo el primo π = 1−ω. Observar que ω ≡ 1 (mód π).
Aśı, ε ≡ −ε̄ (mód π). Por otra parte, tomando congruencias en ε = r(ω) y
ε̄ = r(ω−1) llegamos a que tanto ε como ε̄ son congruentes módulo π con la
suma de los coeficientes de r(x), luego ε ≡ −ε (mód π), lo que implica que ε ≡ 0
(mód π), es decir, π | ε, lo cual es imposible porque π es un primo y ε una
unidad. En consecuencia ha de ser ε = ωiε̄.

Sea j un entero racional tal que 2j ≡ i (mód p). Entonces ε = ω2j ε̄, luego
ε/ωj = ε̄/ω−j = ε/ω−j ∈ R.

Observar que hemos demostrado que las únicas ráıces de la unidad de Q(ω)
son las potencias de ω y sus opuestas. Teniendo en cuenta que las únicas ráıces
de la unidad reales son ±1, esto está contenido en el enunciado del teorema
anterior.

Teorema 4.28 Sea K el cuerpo ciclotómico de grado p y sea K ′ = K ∩ R.
Entonces un sistema fundamental de unidades para K ′ es también un sistema
fundamental de unidades para K. Si R es el regulador de K y R′ el regulador
de K ′, entonces R = 2m−1R′, donde m = (p− 1)/2 es el grado de K ′.

Demostración: Sea ε1, . . . , εr un sistema fundamental de unidades de K ′.
Si ε es una unidad de K, por el teorema anterior ε = ωiη para una cierta unidad
real, o sea, una unidad de K ′.

Entonces η = ±εm1
1 · · · εmr

r , para ciertos enteros racionales m1, . . . , mr, luego
tenemos la descomposición ε = ±ωiεm1

1 · · · εmr
r tal y como exige el teorema de

Dirichlet. Falta ver que la expresión es única, pero si tenemos dos expresiones
±ωiεm1

1 · · · εmr
r = ±ωjεk1

1 · · · εkr
r entonces ωi−j es una ráız de la unidad real,

luego ωi−j = ±1 y aśı εm1
1 · · · εmr

r = ±εk1
1 · · · εkr

r .
Por la unicidad que nos da el teorema de Dirichlet, el signo ha de ser +1 y

los exponentes han de coincidir.

Sea ahora {ε1, . . . , εm−1} un sistema fundamental de unidades de K ′, luego
de K. Los automorfismos de K ′ son todos reales, luego el regulador R′ es el
módulo del determinante de uno cualquiera de los menores de orden m − 1 de
la matriz

(
log |σi(εj)|

)
. Por el contrario, los automorfismos de K son todos

complejos, (pero extienden a los de K ′) luego el regulador de K es un menor de
la matriz

(
log |σi(εj)|2

)
= (2 log |σi(εj)|

)
. Aśı pues, R = 2m−1R′.
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Volvamos, pues, al problema de hallar un sistema fundamental de unidades
de Q(ω), donde ω7 = 1. Sea η = ω + ω6. Podemos trabajar en el cuerpo
Q(η). En el caṕıtulo II (página 44) vimos que una base entera de este cuerpo es
{1, η, η2 − 2}. Mediante las aproximaciones racionales de η dadas alĺı también
obtenemos fácilmente la norma de un entero arbitrario:

N
(
a+bη+c(η2−2)

)
= a3 +b3 +c3−a2b−2ab2−a2c+3b2c−2ac2−4bc2 +3abc.

Aśı mismo podemos calcular la constante A = 0′68 del teorema 4.25.
Si comenzamos a enumerar los enteros para buscar unidades enseguida en-

contramos dos independientes, a saber η y 1 + η. Calculamos:

l(η) = (0′220724,−0′809587, 0′58886)
l(1 + η) = (0′809587,−0′58886,−0′220724)

Calculamos la proyección de l(1 + η) sobre el espacio ortogonal a l(η). Si la
llamamos x, ha de ser de la forma x = l(1+η)+λl(η), donde λ está determinado
por la ecuación

(
l(1 + η) + λl(η)

)
l(η) = 0. Calculando sale λ = −0′5 y

x = (0′699225,−0′184069,−0′515156).

Ahora calculamos ρ = 1
2

√
‖l(η)‖2 + ‖x‖2 = 0′68. Por lo tanto hemos de

comprobar todos los enteros cuyas coordenadas no superen en módulo la cota
A · 3 · eρ = 4′03.

Descartando duplicidades por el signo, hay 40 unidades a considerar. Puede
comprobarse que las representaciones logaŕıtmicas de todas ellas tienen coorde-
nadas enteras respecto a la base l(η) y l(1+η). Por ejemplo, una de las unidades
es 3−2η+(η2−2), cuya representación logaŕıtmica resulta ser 2l(η)−4l(1+η).
Aśı llegamos a que un sistema fundamental de unidades de Q(ω) es {η, 1 + η},
y por lo tanto cada unidad se expresa de forma única como

±ωi(ω + ω6)m(1 + ω + ω6)n,

donde i, m, n son enteros racionales (0 ≤ i < 7). El regulador de K ′ es

R′ =
∣∣∣∣ 0′220724 −0′809587

0′809587 −0′58886

∣∣∣∣ = 0′53.

El regulador de K es R = 4R′ = 2′12.

Tenemos, pues, resuelto el problema de encontrar las unidades de un cuerpo
numérico. Sin embargo para obtener nuevas soluciones de una ecuación diofán-
tica a partir de una dada necesitamos las unidades de norma +1. Vamos a ver
que un pequeño retoque nos permite obtener una expresión que genere exclusi-
vamente las unidades de norma positiva.

Sea K un cuerpo numérico y sea ε1, . . . , εr un sistema fundamental de uni-
dades de K.

Supongamos primero que el grado n de K es impar. Puesto que n = s + 2t,
se ha de cumplir s �= 0, luego K tiene un monomorfismo real y por lo tanto
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uno de los cuerpos conjugados de K está formado por números reales. Pero las
únicas ráıces de la unidad reales son ±1, luego dicho cuerpo conjugado tiene
sólo estas dos ráıces de la unidad, y consecuentemente K también.

Entonces toda unidad de K es de la forma ±εm1
1 · · · εmr

r . Si alguna de las
unidades εi cumple N(εi) = −1, entonces N(−εi) = (−1)n N(εi) = 1. Sustitu-
yendo εi por −εi tenemos un sistema fundamental de unidades todas ellas con
norma positiva.

Claramente, N(±εm1
1 · · · εmr

r ) = ±1, luego las unidades de norma 1 de K son
exactamente las de la forma εm1

1 · · · εmr
r .

Supongamos ahora que n es par. Si K contiene una ráız de la unidad distinta
de ±1, entonces lo mismo les ocurre a todos sus conjugados, luego ninguno de
ellos puede ser real, o sea, s = 0. Entonces la norma de cualquier elemento de
K se calcula como producto de pares de conjugados complejos, pero el producto
de un par de conjugados complejos es siempre un número real positivo y aśı
todas las normas son positivas.

Si K no contiene más ráıces de la unidad que ±1, entonces, como el grado
es par, concluimos que N(±1) = 1, y en cualquier caso tenemos que las ráıces
de la unidad de K tienen norma 1.

Supongamos que ε1, . . . , εk tienen norma positiva y que εk+1, . . . , εr la tienen
negativa. Entonces ε1, . . . , εk, εrεk+1, . . . , εrεr−1, εr es un sistema fundamental
de unidades donde sólo la última tiene norma negativa. En general, podemos
tomar un sistema fundamental de unidades ε1, . . . , εr donde todas tienen norma
positiva salvo quizá la última.

Si todas tienen norma positiva, entonces todas las unidades de K tienen
norma positiva y el problema está resuelto. Si N(εr) = −1 entonces es claro que
N(ωεm1

1 · · · εmr
r ) = (−1)mr .

Por lo tanto las unidades de norma positiva son las de la forma ωεm1
1 · · · ε2mr

r ,
luego las unidades ε1, . . . , εr−1, ε

2
r generan las unidades de norma positiva (junto

con una ráız primitiva de la unidad).

4.7 Cálculo del número de clases

En esta sección veremos cómo puede calcularse el número de clases de un
cuerpo numérico. El último problema que nos falta resolver para calcular
números de clases es determinar si un módulo completo contiene elementos
de una norma dada. Más en general, vamos a dar un método para encontrar
un conjunto finito de números con la norma deseada tal que cualquier otro sea
asociado a uno de ellos.

Partimos de un módulo completo M en un cuerpo numérico K. Sea O su
anillo de coeficientes. Sea ε1, . . . , εr un sistema fundamental de unidades de O.

Los vectores l(ε1), . . . , l(εr) junto con l0 = (1, . . . , 1) forman una base de
Rs+t.

Si µ ∈ M es no nulo, entonces l(µ) = αl0 +
∑r

i=1 αil(εi), donde los coefi-
cientes son números reales.



4.7. Cálculo del número de clases 107

Usando (4.3) tenemos que log
∣∣N(µ)

∣∣ = (s + t)α, o sea,

α =
log

∣∣N(µ)
∣∣

s + t
.

Podemos descomponer αi = ki + βi, con ki entero racional y |βi| ≤ 1/2.
El número µ′ = µε−k1

1 · · · ε−kr
r es asociado a µ y cumple que

l(µ′) = αl0 +
r∑
i=1

βil(εi).

Aśı pues, todo número de una norma dada en M tiene un asociado cuya
representación logaŕıtmica se encuentra en un cierto conjunto acotado. Sabemos
enumerar los elementos en estas condiciones y entre ellos obtener un sistema
maximal de números no conjugados.

Ejemplo Vamos a calcular el número de clases del cuerpo Q(α), donde α es
una ráız del polinomio x3+4x+1. Los cálculos de la página 25 muestran que una
base entera de K es 1, α, α2, pues el discriminante de esta base es ∆ = −283,
primo. Es fácil ver que la norma viene dada por

N(a + bα + cα2) = a2 − b3 + c3 + 4ab2 − 8a2c + 16ac2 − 4bc2 + 3abc.

Según el teorema 4.14, todo ideal de K es similar a uno de norma menor o
igual que M11

√
|∆| < 80′1. La tabla siguiente contiene todos los primos de K

de norma menor o igual que 80, obtenidos mediante el teorema 3.16.

p = (p, η) |N(η)| p = (p, η) |N(η)| p = (p, η) |N(η)|
(2, 1 + α) 22 (19, 3 + α) 2 · 19 (71, 12 + α) 52 · 71
(2, 1 + α+ α2) − (31,−7 + α) −22 · 3 · 31 (71, 26 + α) −
(3,−1 + α) 2 · 3 (37, 7 + α) 2 · 5 · 37 (71, 33 + α) −
(3,−1 + α+ α2) − (43,−11 + α) 25 · 43 (73, 21 + α) 27 · 73
(5, 2 + α) 3 · 5 (47,−17 + α) 2 · 47 · 53 (73,−16 + α) 3 · 19 · 73
(5,−2 − 2α+ α2) − (53,−17 + α) − (73,−5 + α) 2 · 73
(17,−2 + α) 17 (67,−32 + α) − (79, 4 + α) 79

También hemos calculado la norma de los segundos generadores de algunos
de ellos. Llamemos p = (2, 1 + α).

Claramente p | 1+α, y como no hay mas ideales de norma 2, necesariamente
1+α = p2. Esto implica que en el grupo de clases [p2] = 1, luego [p] = [p]−1. Por
otra parte, si q = (2, 1 + α + α2), entonces 2 = pq, con lo que [q] = [p]−1 = [p].

Similarmente, −1 + α = p(3,−1 + α), con lo que [(3,−1 + α)] = [p]−1 = [p].
Aśı mismo [(3,−1 + α + α2)] = [(3,−1 + α)]−1 = [p].

El mismo argumento justifica que los ideales de norma 5 y 25 son similares
a p. El ideal de norma 17 es principal. También son principales los ideales de
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norma 53 y 67, pues N(2+3α) = 53 y N(3+2α) = 67. Teniendo esto en cuenta,
todos los ideales de la segunda columna resultan ser similares a 1 o a p.

Respecto a la tercera columna, todos los ideales son claramente similares a
1 o a p salvo quizá el segundo y el tercero. Tanteando un poco observamos que
N(−1 + 3α2) = −2 · 71, luego uno de los tres ideales de norma 71 divide a este
número. Para saber cuál de los tres, notamos que α es congruente con −12,
−26 y −33 módulo cada uno de ellos, luego −1 + 3α2 sólo es congruente con
0 módulo el tercero. Aśı pues, −1 + 3α2 = p(71, 33 + α), luego (71, 33 + α) es
similar a p. Como el producto de los tres ideales es 71 y el primero es también
similar a p, concluimos que el segundo es principal.

En resumen, hemos probado que todo primo de norma menor que 80 es
similar a 1 o a p. Todo ideal de norma menor o igual que 80 es producto de
algunos de estos primos, luego es similar a una potencia de p, pero como la clase
de p tiene orden 2, de hecho es similar a 1 o a p. Por lo tanto el grupo de clases
tiene uno o dos elementos, según si p es principal o no lo es.

Puesto que p es el único ideal de norma 2, será principal si y sólo si existe un
entero de norma ±2. Vamos a probar que no es aśı, con lo que definitivamente,
el número de clases será h = 2. La constante del teorema 4.25 es menor que
A = 1.

Es fácil ver que α es una unidad fundamental de K: se cumple que l(α) =
(−1, 40138, 1, 40138) y su norma es menor que 2, luego si no fuera una unidad
fundamental, habŕıa otra de norma menor que 1, y sus coordenadas estaŕıan
acotadas en módulo por e + 2e1/2 = 6′02. Las únicas unidades que cumplen
estas cotas son ±1, ±α, ±α3 y ±α4.

Según hemos razonado antes, si existiera un entero de norma ±2, multipli-
cando por una unidad existiŕıa uno ξ cuya representación logaŕıtmica seŕıa de
la forma

l(ξ) =
log 2

2
(1, 1) + βl(α),

con |β| ≤ 1/2, lo que lleva a que los conjugados de ξ han de estar acotados por
e1′05 (el real) y e1′05/2 (los imaginarios). Según el teorema 4.25, las coordenadas
de ξ están acotadas por A(e1′5 + 2e1′5/2) < 7′4. Se comprueba sin dificultad
que no hay números de norma ±2 en ese rango.

Ejercicio: Mostrar un ejemplo de factorización no única en el cuerpo anterior.

En general, para saber si dos ideales dados a y b son o no similares factoriza-
mos N(b) en ideales primos y multiplicamos los factores diferentes de b, con lo
que obtenemos un ideal c tal que bc = N(b), y por lo tanto [c] = [b]−1. Entonces
[a] = [b] si y sólo si [ab

−1] = [ac] = 1, es decir, si y sólo si el ideal ac es principal,
si y sólo si éste contiene un número de norma N(ac). Esto nos permite calcular
expĺıcitamente el grupo de clases de un cuerpo numérico dado: se obtiene un
conjunto finito de representantes de las clases, se eliminan los redundantes y
para cada producto ab se calcula el ideal del conjunto de representantes al cual
es similar.
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En realidad nos falta algo para poder realizar en la práctica estos cálculos,
y es que en los algoritmos que hemos visto hasta ahora siempre hemos supuesto
que conocida una base de los módulos que hemos manejado. Esto es cierto en
general, excepto cuando el módulo es un ideal, en cuyo caso es frecuente que lo
que conozcamos sea un generador como ideal y no una base como módulo. En
lugar de describir en general el método para calcular bases (que seŕıa engorroso)
lo mostraremos con un ejemplo ilustrativo: Calcularemos una base del ideal
generado por ω3 + ω + 1 en el anillo de enteros ciclotómicos de orden 7.

Un elemento arbitrario de este ideal es de la forma

(aω5 + bω4 + cω3 + dω2 + eω + f)(ω3 + ω + 1) = (b− c + d)ω5 + (−a + b + e)ω4

+(−a + d + f)ω3 + (−a− c + d + e)ω2 + (−c + e + f)ω + (−a + b− c + f).

Como sólo nos interesa la estructura de módulo conviene escribir simplemente

(b− c + d,−a + b + e,−a + d + f,−a− c + d + e,−c + e + f,−a + b− c + f).

Si el ideal tuviera dos generadores llegaŕıamos a una expresión similar pero con
el doble número de parámetros. Llamemos M ⊂ Z6 a este módulo. Podemos
llegar a una expresión similar si partimos de un módulo dado por un conjunto
de generadores.

Igualamos a 0 la primera componente b− c + d = 0, con lo que b = c− d. Si
sustituimos llegamos a la expresión general de un elemento del módulo M2 =
M ∩ (0× Z× Z× Z× Z× Z), que es

(0,−a + c− d + e,−a + d + f,−a− c + d + e,−c + e + f,−a− d + f).

Restando ambas expresiones obtenemos (b − c + d, b − c + d, 0, 0, 0, b − c + d),
luego si llamamos v1 = (1, 1, 0, 0, 0, 1) ∈M , tenemos que M = 〈v1〉+ M2.

Igualamos a 0 la segunda componente de la expresión general de un elemento
de M2 y obtenemos a = c−d+ e. Sustituyendo obtenemos una expresión de un
elemento genérico de M3 = M ∩ (0× 0× Z× Z× Z× Z), que es

(0, 0,−c + 2d− e + f,−2c + 2d,−c + e + f,−c− e + f).

Al restar queda

(0,−a + c− d + e,−a + c− d + e,−a + c− d + e, 0,−a− c− d + e),

luego llamando v2 = (0, 1, 1, 1, 0, 1) ∈M2 resulta que M = 〈v1, v2〉+ M3.
Ahora c = 2d− e + f , la expresión de un elemento de M4 es

(0, 0, 0,−2d + 2e− 2f,−2d + 2e,−2d),

y al restar queda

(0, 0,−c + 2d− e + f,−2c + 4d− 2e + 2f,−c + 2d− e + f,−c + 2d− e + f),

luego haciendo v3 = (0, 0, 1, 2, 1, 1) ∈M3 llegamos a que M = 〈v1, v2, v3〉+ M4.
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Ahora d = e− f , luego los elementos de M5 son de la forma

(0, 0, 0, 0, 2f,−2e + 2f)

y la resta da (0, 0, 0,−2d+2e−2f,−2d+2e−2f,−2d+2e−2f), luego podemos
tomar v4 = (0, 0, 0, 2, 2, 2) ∈M4 y aśı M = 〈v1, v2, v3v4〉+ M5.

La siguiente ecuación es f = 0, que da (0, 0, 0, 0, 0,−2e) para los elementos
de M6 y v5 = (0, 0, 0, 0, 2, 2) ∈ M5. Claramente v6 = (0, 0, 0, 0, 0, 2) ∈ M6

completa un sistema generador de M , que por ser triangular es obviamente una
base. En resumen, una base del ideal (ω3 + ω + 1) la forman los enteros

{ω5 +ω4 + 1, ω4 +ω3 +ω2 + 1, ω3 + 2ω2 +ω + 1, 2ω2 + 2ω + 2, 2ω + 2, 2}

El método que hemos seguido tiene la ventaja de que se justifica a śı mismo
cada vez que se emplea, pero si el lector desea algo más rápido puede probar
que no es necesario restar las nuevas expresiones de las anteriores para obtener
los generadores, sino que basta asignar a los parámetros los valores adecuados
para que la primera componente no nula tome valor mı́nimo mayor que 0. Por
ejemplo, para obtener v1 basta hacer b = 1 y los demás parámetros nulos en la
expresión general de un elemento de M y quedarnos con v1 = (1, 1, 0, 0, 0, 1),
luego hacemos c = 1 en M2 y sale v2 = (0, 1, 0,−1,−1, 0). En la expresión de
M3 hacemos c = −1 y queda v3 = (0, 0, 1, 2, 1, 1). En M4 hacemos e = 1 y aśı
v4 = (0, 0, 0, 2, 2, 0). En M5 tomamos f = 1, con lo que v5 = (0, 0, 0, 0, 2, 2), y
finalmente v6 = (0, 0, 0, 0, 0, 2).

Es fácil ver que estos elementos generan el mismo módulo. De hecho, eli-
giendo adecuadamente los parámetros según este criterio, podŕıamos haber lle-
gado a la misma base.

El único inconveniente adicional que puede surgir es que no podamos des-
pejar ninguna variable en una ecuación porque todas tengan los coeficientes
distintos de ±1. En tal caso, puesto que igualamos a 0, tendremos siempre los
coeficientes primos entre śı (no necesariamente dos a dos), y no es dif́ıcil ver que
siempre es posible hacer un cambio de variables lineal de determinante 1 que
deje una variable con coeficiente 1.

Una aplicación del cálculo de bases es, por ejemplo, decidir si dos módulos
dados son o no el mismo módulo. Lo serán si la matriz de cambio de base tiene
determinante ±1.

Por último hemos de notar que, de acuerdo con las observaciones que hicimos
en la página 31, en este caṕıtulo hemos resuelto el problema de determinar las
soluciones de una ecuación diofántica definida por una forma completa.



Caṕıtulo V

Fracciones continuas

Entre los métodos conocidos a finales del siglo XVII para resolver ciertas
ecuaciones diofánticas se encuentran ciertos algoritmos que en términos moder-
nos lo que hacen es calcular unidades fundamentales de cuerpos cuadráticos,
de forma mucho más sencilla y rápida que con los métodos generales que ex-
plicamos en el caṕıtulo anterior. La forma más elegante y refinada de estos
algoritmos se expresa en términos de fracciones continuas. En este caṕıtulo ex-
pondremos los resultados básicos entorno a ellas y su aplicación al cálculo de
unidades fundamentales cuadráticas. En el siguiente veremos que también sim-
plifican considerablemente la determinación de si dos módulos (y en particular
dos ideales) son o no similares, con la consiguiente ventaja a la hora de calcular
los números de clases.

5.1 Propiedades básicas

Definición 5.1 Partamos de una sucesión de enteros racionales a0, a1, a2, . . .
todos positivos salvo quizá el primero. Llamaremos

[a0] = a0,

[a0, a1] = a0 +
1
a1

,

[a0, a1, a2] = a0 +
1

a1 + 1
a2

,

[a0, a1, a2, a3] = a0 +
1

a1 + 1

a2+ 1
a3

,

En general tenemos definido el número racional [a0, . . . , an] para todo n, que
es no nulo si n ≥ 1. Una definición formal se da por recurrencia de derecha a
izquierda, es decir: x0 = an, xi+1 = an−1−i + 1/xi, [a0, . . . , an] = xn.

Llamaremos rn = [a0, . . . , an] = pn/qn, donde pn y qn son enteros racionales
primos entre śı qn > 0 (convenimos que si a0 = 0, entonces p0 = 0, q0 = 1).
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La sucesión rn se llama fracción continua determinada por la sucesión an.
Los números racionales rn se llaman convergentes de la fracción continua.

Demostraremos que los convergentes realmente convergen a un cierto número
real. Para ello comenzamos obteniendo una relación recurrente para los nume-
radores y los denominadores pn y qn.

Teorema 5.2 Con la notación anterior:

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

Demostración: Los casos n = 0, 1, 2 se comprueban directamente. Hay
que probar que los valores dados por las fórmulas (en estos tres casos) son
realmente primos entre śı, pero esto se ve fácilmente por los métodos usuales.

Supongámoslo cierto para n − 1 ≥ 2 y probémoslo para n. Definimos los
enteros racionales primos entre śı

p′j
q′j

= [a1, . . . , aj+1], j = 0, 1, 2, . . .

Por la hipótesis de inducción aplicada a n− 1 se cumplen las fórmulas

p′n−1 = anp
′
n−2 + p′n−3, q′n−1 = anq

′
n−2 + q′n−3. (5.1)

Por otra parte
pj
qj

= a0 +
q′j−1

p′j−1

, luego

pj = a0p
′
j−1 + q′j−1, qj = p′j−1, (5.2)

donde se ha usado que si (p′j−1, q
′
j−1) = 1, los valores que dan estas fórmulas

también son primos entre śı.
Haciendo j = n en (5.2) y usando (5.1) obtenemos

pn = a0(anp′n−2 + p′n−3) + (anq′n−2 + q′n−3)
= an(a0p

′
n−2 + q′n−2) + a0p

′
n−3 + q′n−3,

qn = anq
′
n−2 + q′n−3.

Aplicando (5.2) con j = n− 1 y n− 2 se deduce

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

De estas relaciones se sigue en particular que la sucesión qn es creciente, y
si a0 > 0 entonces pn también lo es. Veamos otra consecuencia sencilla:

Teorema 5.3 Con la notación anterior, pnqn+1 − pn+1qn = (−1)n+1 o, lo que
es lo mismo: rn − rn+1 = (−1)n+1/qnqn+1.
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Demostración: Claramente

pnqn+1 − pn+1qn = pn(an+1qn + qn−1)− (an+1pn + pn−1)qn
= pnqn−1 − pn−1qn = −(pn−1qn − pnqn−1),

y como p0q1 − p1q0 = a0a1 − (a0a1 + 1) = −1, se cumple el teorema.

Con esto estamos en condiciones de demostrar la convergencia de las frac-
ciones continuas.

Teorema 5.4 Con la notación anterior, existe un único número real α tal que

r0 < r2 < r4 < r6 < · · ·α · · · < r7 < r5 < r3 < r1.

Escribiremos α = [a0, a1, a2, a3, . . . ].

Demostración: Los convergentes están ordenados como se indica, pues

rn+2 − rn = rn+2 − rn+1 + rn+1 − rn = (−1)n+1/qn+1qn+2 + (−1)n+1/qnqn+1,

luego la sucesión de los convergentes pares es creciente y la de los impares
decreciente. El teorema anterior nos da que cualquier convergente par es menor
que cualquier convergente impar, aśı como que sus distancias tienden a 0 (la
sucesión qnqn+1 tiende a infinito), luego rn converge a un número α, que es el
supremo de los convergentes pares y el ı́nfimo de los impares.

Teorema 5.5 Las fracciones continuas son números irracionales.

Demostración: Con la notación anterior, supongamos que α = p/q es un
número racional (con p y q primos entre śı).

Como la sucesión qn es creciente, existe un n tal que q < qn+1. Puesto que α
está entre rn y rn+1, se cumple que |α− rn| ≤ |rn− rn+1| = 1/qnqn+1 < 1/qnq.

Pero por otro lado |α − rn| = |p/q − pn/qn| = |pqn − qpn|/qnq ≥ 1/qnq,
puesto que p/q �= pn/qn, luego |pqn − qpn| ≥ 1, contradicción.

El resultado que da importancia a las fracciones continuas es el que garan-
tiza que todo número irracional positivo admite un único desarrollo en fracción
continua. En efecto:

Teorema 5.6 Sea α un número real cualquiera.

1. Si α es racional entonces α = [a0, . . . , an] para ciertos enteros racionales.

2. Si α es irracional entonces α = [a0, a1, a2, a3, . . . ] para ciertos enteros
racionales.

Además si α es irracional el desarrollo es único.
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Demostración: Definimos a0 = E(α) (la parte entera de α). Si α �= [a0],
entonces podemos escribir α = a0 + 1/α1 para un cierto número real positivo
α1. Tomamos a1 = E(α1). Si a1 = α1 entonces α = [a0, a1]. En otro caso
α1 = a1 + 1/α2 para cierto número real positivo α2.

Si el proceso termina es que α es un número racional. Veamos que si no
termina obtenemos una fracción continua que converge a α.

Por construcción se tiene que α = [a0, . . . , an, αn+1] (notar que el último
término no es un número natural, pero la definición vale igualmente).

Es fácil ver que la función [a0, . . . , an, x] es monótona creciente cuando n es
impar y monótona decreciente cuando n es par. Como an+1 = E(αn+1) < αn+1,
se cumple que α es mayor que todos los convergentes pares y menor que todos
los impares. Esto prueba que la fracción continua converge a α.

Para probar la unicidad supongamos que tenemos dos fracciones continuas
infinitas, tales que [a0, a1, . . . ] = [b0, b1, . . . ]. Entonces a0 ≤ [a0, a1, . . . ] ≤
a0 + 1 e igualmente con la otra fracción. Como el ĺımite es irracional no se dan
las igualdades, luego a0 = E

(
[a0, a1, . . . ]

)
= E

(
[b0, b1, . . . ]

)
= b0.

Restando a0 de ambas y tomando inversos resulta [a1, a2, . . . ] = [b1, b2, . . . ].
Siguiendo aśı llegamos a que todos los coeficientes coinciden.

Los números racionales admiten dos desarrollos en fracción continua, por
ejemplo, [2, 3, 1] = [2, 4].

El teorema 5.3 afirma que |rn − rn+1| = 1/qnqn+1 para cualquier par de
convergentes consecutivos de una fracción continua. Puesto que su ĺımite α se
halla entre ambos, tenemos que

|α− rn| < 1/qnan+1 < 1/q2
n.

Esto significa que los convergentes son buenas aproximaciones de sus ĺımites.
Podemos mejorar ligeramente este hecho observando que

|α− rn|+ |α− rn+1| = |rn − rn+1| = 1/qnqn+1.

Cualquier par de números reales distintos cumple xy < (x2 + y2)/2, concluimos
que

|α− rn|+ |α− rn+1| <
1

2q2
n

+
1

2q2
n+1

.

Esto prueba que de cada dos convergentes consecutivos de un número irra-
cional α, uno de ellos, p/q cumple |α− p/q| < 1/2q2. El resultado principal que
necesitamos es el rećıproco de este hecho.

Teorema 5.7 Si p, q son números naturales primos entre śı y |α−p/q| < 1/2q2,
entonces p/q es un convergente de α.

Demostración: Vamos a probar que si p y q son enteros cualesquiera
tales que 0 < q < qn+1, entonces |qα − p| ≥ |qnα − pn|. Esto significa que el
convergente n-simo es la mejor aproximación racional de α con denominador
menor que qn+1.
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En efecto, la matriz de los coeficientes del sistema de ecuaciones

p = upn + vpn+1

q = uqn + vqn+1

tiene determinante ±1, luego tiene una solución entera (u, v). Por la hipótesis
se ha de cumplir u �= 0 y en el caso en que v �= 0 entonces u y v tienen signos
opuestos, y aśı

|qα− p| = |(uqn + vqn+1)α− (upn + vpn+1)|
= |u(qnα− pn) + v(qn+1α− pn+1)| ≥ |qnα− pn|.

Ahora, en las hipótesis del teorema, tomamos un n tal que qn ≤ q < qn+1.
Entonces∣∣∣∣pq − pn

qn

∣∣∣∣ ≤
∣∣∣∣α− p

q

∣∣∣∣ +
∣∣∣∣α− pn

qn

∣∣∣∣ =
|αq − p|

q
+
|αqn − pn|

qn
≤

(
1
q

+
1
qn

)
|αq − p|.

Como q ≥ qn y |αq − p| < 1/2q, concluimos que

|pqn − qpn|
qqn

<
1

qqn
,

y como el numerador es entero, ha de ser 0, o sea, p/q es el convergente n-simo.

Probamos ahora un resultado sencillo pero útil en la manipulación de frac-
ciones continuas.

Teorema 5.8 Sea α = [a0, a1, a2, . . . ] y sea β = [an+1, an+2, an+3, . . . ], para
n ≥ 1. Entonces se cumple que

α =
βpn + pn−1

βqn + qn−1
.

Demostración: La prueba consiste simplemente en observar que en la
demostración del teorema 5.2 no se ha usado que los coeficientes an sean en-
teros salvo para probar que (pn, qn) = 1. Por lo tanto podemos aplicarlo a
α = [a0, . . . , an, β] y concluir que, aunque ahora pn+1 y qn+1 no sean números
racionales,

α =
pn+1

qn+1
=

βpn + pn−1

βqn + qn−1

Ejercicio: Probar que las fracciones continuas determinan un homeomorfismo entre
[0, 1]\Q y el producto de una cantidad numerable de copias de N (el espacio de Baire).
Deducir de aqúı que el espacio de Baire es homeomorfo a R \Q.
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5.2 Desarrollos de irracionales cuadráticos

La relación de las fracciones continuas con los cuerpos cuadráticos se basa
en que los desarrollos de los irracionales cuadráticos son periódicos, tal y como
probamos a continuación.

Teorema 5.9 Un número irracional α es cuadrático si y sólo si los coeficientes
de su fracción continua se repiten periódicamente a partir de un cierto término.

Demostración: Supongamos que los coeficientes de la fracción continua
de α se repiten a partir de un cierto término.

Puesto que [a0, a1, a2, . . . ] = a0 + 1/[a1, a2, . . . ], es claro que uno es cua-
drático si y sólo si lo es el otro, luego podemos suponer que los coeficientes de
α se repiten desde el primero (sin antepeŕıodo), o sea,

α = [a0, . . . an, a0, . . . an, a0, . . . an, . . . ].

El teorema anterior nos da entonces que

α =
αpn + pn−1

αqn + qn−1
.

Operando obtenemos un polinomio de segundo grado del cual es ráız α.
Observar que la fórmula anterior no vale si el peŕıodo tiene longitud 1, pero

en tal caso también podemos considerar que el peŕıodo tiene longitud 2.

Supongamos ahora que α es un irracional cuadrático. Digamos que α es
ráız del polinomio ax2 + bx + c, donde a, b, c son enteros racionales, a > 0 y
d = b2 − 4ac > 0.

Consideremos la forma cuadrática f(x, y) = ax2+bxy+cy2. Aśı f(α, 1) = 0.
El cambio de variables

x = pnx
′ + pn−1y

′,

y = qnx
′ + qn−1y

′

tiene determinante ±1, luego f es equivalente a la forma

fn(x, y) = f(pnx + pn−1y, qnx + qn−1y) = anx
2 + bnxy + cny

2.

Aśı, si llamamos αn = [an, an+1, . . . ], el teorema 5.8 nos da que

α =
pnαn+1 + pn−1

qnαn+1 + qn−1
,

luego

0 = f(α, 1) =
1

(qnαn+1 + qn−1)2
f(pnαn+1 + pn−1, qnαn+1 + qn−1)

=
1

(qnαn+1 + qn−1)2
fn(αn+1, 1),
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o sea, fn(αn+1, 1) = 0. También se cumple que an = fn(1, 0) = f(pn, qn),
cn = fn(0, 1) = f(pn−1, qn−1) = an−1 y b2n − 4ancn = d.

De f(α, 1) = 0 se sigue

an
q2
n

= f

(
pn
qn

,
qn
qn

)
− f(α, 1) = a

((
pn
qn

)2

− α2

)
+ b

(
pn
qn
− α

)
.

Sabemos que |α− pn/qn| < 1/q2
n, luego

|α2 − (pn/qn)2| < |α + pn/qn|
q2
n

<
2|α|+ 1

q2
n

.

Todo esto implica que |an| < |a|(2|α|+1)+ |b|, o sea, |an| satisface una cota
independiente de n. Las relaciones que hemos obtenido prueban que |bn| y |cn|
también están acotadas.

Por lo tanto los polinomios fn(x, 1) vaŕıan en un conjunto finito, al igual que
sus ráıces, entre las que se encuentran los números αn. En consecuencia existen
naturales n y k tales que αn = αn+k, y es claro que esto implica que am+k = am
para todo m ≥ n, o sea, los coeficientes de α se repiten periódicamente.

Ejemplo Consideremos el número α =
(
1 +

√
5
)
/2, que es ráız del polinomio

x2 − x − 1. Puesto que α2 = α + 1, resulta que α = 1 + 1/α, lo que implica
claramente que

1 +
√

5
2

= [1, 1, 1, . . . ].

En general, para calcular el desarrollo de un irracional cuadrático α vamos
calculando sus coeficientes an al mismo tiempo que los restos αn. Concretamente
an es la parte entera de αn y αn+1 = 1/(αn − an). Si tenemos la precaución
de expresar siempre αn en forma canónica, a + b

√
d, detectaremos cuándo αn

coincide con otro resto anterior, con lo que terminará el peŕıodo.

Ejemplo Desarrollemos
√

19:

α0 =
√

19, a0 = 4, α1 = 4+
√

19
3 , a1 = 2, α2 = 2+

√
19

5 , a2 = 1,
α3 = 3+

√
19

2 , a3 = 3, α4 = 3+
√

19
5 , a4 = 1, α5 = 2+

√
19

2 , a5 = 2,
α6 = 4 +

√
19, a6 = 8, α7 = 4+

√
19

3 , a7 = 2.

Aśı pues,
√

19 = [4, 2, 1, 3, 1, 2, 8], donde la barra indica el peŕıodo que se repite.
Este número tiene un antepeŕıodo de longitud 1. Enseguida veremos que esto
no es casual.

Una fracción continua es periódica pura si no tiene antepeŕıodo.

Teorema 5.10 Un irracional cuadrático α tiene fracción continua periódica
pura si y sólo si α > 1 y su conjugado ᾱ (es decir, la otra ráız de pol mı́nα)
cumple −1 < ᾱ < 0.
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Demostración: Recordemos que el desarrollo en fracción continua se cal-
cula partiendo de α0 = α y de aqúı an = E(αn), αn+1 = 1/(αn − an).

Por inducción es claro que −1 < ᾱn < 0. En efecto, ᾱn+1 = 1/(ᾱn − an)
y admitiendo −1 < ᾱn < 0, tenemos −1 − an < ᾱn − an < −an, con lo que
−1 < −1/(an + 1) < ᾱn+1 < −1/an < 0.

Ahora, despejando en αn+1 = 1/(αn−an), tenemos que −1/ᾱn+1 = an−ᾱn,
y como 0 < −ᾱn < 1, concluimos que an = E(an − ᾱn) = E(−1/ᾱn+1).

Por el teorema anterior sabemos que αm = αn para ciertos m < n, luego
también 1/ᾱm = 1/ᾱn, y aśı am−1 = an−1. Por lo tanto

αm−1 = am−1 + 1/αm = an−1 + 1/αn = αn−1.

Repitiendo el argumento llegamos a que α0 = αn−m, luego la fracción es
periódica pura.

Ahora supongamos que la fracción es periódica pura. Entonces a0 coincide
con un coeficiente posterior, luego α ≥ a0 ≥ 1. Por el teorema 5.8 resulta que

α =
pnα + pn−1

qnα + qn−1
,

luego α es ráız del polinomio f(x) = qnx
2 + (qn−1 − pn)x− pn−1.

Ahora bien, ᾱ también es ráız de este polinomio, y f(0) = −pn−1 < 0,
f(−1) = pn−pn−1 + qn− qn−1 > 0, por el teorema 5.2, luego −1 < ᾱ < 0.

Si d no es un cuadrado perfecto, entonces el conjugado de E
(√

d
)

+
√

d es
E

(√
d

)
−
√

d, que claramente está entre −1 y 0, luego E
(√

d
)

+
√

d tiene un
desarrollo periódico puro. Por lo tanto el desarrollo de

√
d tiene exactamente

una cifra de antepeŕıodo.

5.3 Transformaciones modulares

Seguidamente investigamos cuándo dos irracionales tienen fracciones conti-
nuas finalmente iguales. Veremos que esto sucede cuando son equivalentes en el
sentido siguiente:

Definición 5.11 Dos números α y β son equivalentes si existen enteros racio-
nales a, b, c, d tales que

α =
aβ + b

cβ + d
, ad− bc = ±1. (5.3)

Se comprueba enseguida que dos números racionales cualesquiera son equi-
valentes, y que un número racional nunca es equivalente a uno irracional, por
lo que podemos limitarnos a considerar números irracionales.

También es fácil ver que la fórmula anterior define una biyección sobre los
números irracionales. Las biyecciones de este tipo se llaman transformaciones
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modulares. Las inversas y la composición de transformaciones modulares son
de nuevo transformaciones modulares, por lo que la equivalencia de números
irracionales (y en general la de números reales) es una relación de equivalencia.

Los teoremas 5.3 y 5.8 nos dan que la transformación α = [a0, . . . , an, β] es
modular, dada concretamente por

α =
βpn + pn−1

βqn + qn−1
.

El teorema siguiente caracteriza las transformaciones modulares que se pueden
expresar de esta forma.

Teorema 5.12 Si una transformación modular (5.3) cumple c > d > 0 en-
tonces se puede expresar de la forma α = [a0, . . . , an, β] para ciertos enteros
racionales a0, . . . , an, todos positivos salvo quizá el primero.

Demostración: Hay que probar que existen a0, . . . , an tales que

pn = a, pn−1 = b, qn = c, qn−1 = d. (5.4)

Lo probaremos por inducción sobre d.
Si d = 1 tenemos que a = bc± 1. En el caso a = bc + 1 sirve α = [b, c, β]. Si

se cumple a = bc− 1, entonces α = [b− 1, 1, c− 1, β].

Supongamos ahora que d > 1. Aplicando el teorema 5.2, las ecuaciones (5.4)
equivalen a

pn−1 = b, pn−2 = a− anb, qn−1 = d, qn−2 = c− and. (5.5)

Se sigue cumpliendo b(c− and)− (a− anb)d = ±1 para cualquier an, y por
hipótesis de inducción (5.5) tendrá solución si garantizamos d > c− and > 0, o
equivalentemente, si c/d > an > (c− d)/d.

Notemos que c/d no puede ser entero, pues si c = kd entonces d | 1. Como
c/d− (c− d)/d = 1, podemos tomar un número natural an en estas condiciones
y aśı se cumple el teorema.

Teorema 5.13 Dos números irracionales α y β son equivalentes si y sólo si
sus desarrollos en fracción continua son finalmente iguales, es decir, si

α = [a0, . . . , am, c0, c1, . . . ], β = [b0, . . . , bn, c0, c1, . . . ].

Demostración: El teorema 5.8 nos da que en estas condiciones tanto α
como β son equivalentes al número [c0, c1, . . . ], luego son equivalentes entre śı.

Supongamos ahora que α y β son equivalentes. Digamos que

α =
aβ + b

cβ + d
, ad− bc = ±1.

Podemos suponer que cβ + d > 0. Sea β = [b0, . . . , bk−1, βk], donde βk =
[bk, bk+1, . . . ]. Entonces:

β =
β′
kpk−1 + pk−2

β′
kqk−1 + qk−2

.
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Componiendo las transformaciones modulares obtenemos que

α =
Pβ′

k + R

Qβ′
k + S

,

donde

P = apk−1 + bqk−1,

R = apk−2 + bqk−2,

Q = cpk−1 + dqk−1,

S = cpk−2 + dqk−2,

que son enteros racionales y cumplen PS −QR = ±1.

Por el teorema 5.3 y puesto que β se encuentra entre dos convergentes conse-
cutivos cualesquiera, |pk−1/qk−1− β| < 1/qk−1qk, o sea, |pk−1− βqk−1| < 1/qk.
Por lo tanto pk−1 = βqk−1 + δ/qk−1, e igualmente pk−2 = βqk−2 + δ′/qk−2, con
|δ|, |δ′| < 1.

De aqúı resulta que

Q = (cβ + d)qk−1 +
cδ

qk−1
, S = (cβ + d)qk−2 +

cδ′

qk−2
.

Teniendo en cuenta que cβ + d > 0, es claro que haciendo k suficientemente
grande podemos conseguir Q > S > 0. Aplicando el teorema anterior resulta
que α = [a0, . . . , am, βk], de donde se sigue el teorema.

5.4 Unidades de cuerpos cuadráticos

Recordemos que según el teorema 2.24 los órdenes de los cuerpos cuadráticos
Q

(√
d

)
son los de la forma Om = Z[mω] = {a+ bmω | a, b ∈ Z}, donde ω =

√
d

o bien ω =
(
1 +

√
d

)
/2 según el resto de d módulo 4.

Sabemos también que si d > 0, un sistema fundamental de unidades de Om

consta de una sola unidad ε, y es obvio que si ε es una unidad fundamental,
las unidades fundamentales son exactamente ±ε y ±1/ε. Por lo tanto hay una
única unidad fundamental ε > 1. En lo sucesivo, cuando hablemos de la unidad
fundamental de Om nos referiremos siempre a la unidad mayor que 1.

Si ε = x + ymω > 1 es cualquier unidad de Om, como N(ε) = εε̄ = ±1,
tenemos que ε̄ = ±1/ε, y en cualquier caso ε − ε̄ > 0, o sea, ym(ω − ω̄) > 0, y
como ω − ω̄ > 0, resulta que y > 0.

Por otro lado, ω̄ < −1 excepto en el caso d = 5. En efecto, en el caso
d �≡ 1 (mód 4) es ω̄ = −

√
d < −1, mientras que si d ≡ 1 (mód 4), entonces

ω̄ =
(
1 −

√
d

)
/2 < −1 si y sólo si

√
d > 3, si y sólo si d > 9, o sea, si y sólo si

d �= 5.
Claramente mω̄ < −1 excepto si m = 1, d = 5. Como |ε̄| = |x + ymω̄| < 1,

salvo en el caso exceptuado ha de ser x > 0.
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Hemos concluido que la unidad fundamental de Om es ε = x + ymω con
x, y > 0 salvo si d = 5, m = 1. En tal caso no es dif́ıcil comprobar que la unidad
fundamental es ω (o sea, x = 0, y = 1).

Ahora es fácil ver que εn = x′ + y′mω, con x′ > x e y′ > y. Por lo tanto la
unidad fundamental está caracterizada por que es de la forma ε = x+ ymω con
x, y > 0 mı́nimos entre los coeficientes de las unidades (salvo el caso exceptuado).

Puesto que N(ε) = (x + ymω)(x + ymω̄) = ±1, resulta∣∣∣∣xy + mω̄

∣∣∣∣ =
1

y(x + ymω)
.

En el caso d ≡ 1 (mód 4) (salvo el caso exceptuado)∣∣∣∣∣xy −m

√
d− 1
2

∣∣∣∣∣ =

(
y2

(
x

y
+ m

√
d + 1
2

))−1

<
1

2y2
,

pues m
√
d+1
2 > 2. En el caso restante,∣∣∣∣xy −m

√
d

∣∣∣∣ =
1

y
(
x + ym

√
d

) ≤ 1
y2

(√
d− 1 +

√
d

) <
1

2y2
,

donde hemos usado que N(ε) = x2−y2m2d = ±1, luego x2 ≥ dy2−1 ≥ y2(d−1),
y en consecuencia x ≥ y

√
d− 1.

En cualquier caso (salvo el exceptuado) llegamos a que∣∣∣∣xy − (−mω̄)
∣∣∣∣ <

1
2y2

,

lo que por el teorema 5.7 significa que x/y es uno de los convergentes de −mω̄
(notemos que (x, y) = 1, o de lo contrario ε no podŕıa tener norma unitaria).

Como el numerador y el denominador de los convergentes crece, tenemos
que el convergente x/y correspondiente a la unidad fundamental será el primero
que cumpla que la norma del entero asociado sea ±1.

Ejemplo Vamos a calcular la unidad fundamental del orden Z
[√

54
]
, es decir,

el orden O3 de Q
(√

6
)
. Hemos de calcular los convergentes de

√
54. Para ello

hallamos el desarrollo
√

54 = [7, 2, 1, 6, 1, 2, 1, 4] y mediante las fórmulas del
teorema 5.2 calculamos

an 7 2 1 6 1 2 1
pn 7 15 22 147 169 485 · · ·
qn 1 2 3 20 23 66 · · ·

p2
n − 54q2

n −8 9 −2 9 −5 1 · · ·

Con lo que la unidad fundamental buscada es 485 + 66
√

54.

Este método tiene su origen en un algoritmo para resolver la llamada ecua-
ción de Pell, que no es sino la ecuación diofántica x2 − dy2 = 1. Si d no
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es un cuadrado perfecto, una solución entera (x, y) de la ecuación de Pell se
corresponde con una unidad x + y

√
d del orden Z

[√
d

]
.

En el caso en que d < 0 el número de unidades (de soluciones) es finito, y
es igual a 2 (las correspondientes a ±1, esto es (±1, 0)) salvo si d = −1,−3, en
cuyo caso hay 4 y 6 soluciones respectivamente.

Si d > 0 entonces hay infinitas soluciones (x, y), que son de la forma

x + y
√

d = ±
(
u + v

√
d

)n
, para n ∈ Z,

donde u + v
√

d es la unidad fundamental del orden Z
[√

d
]
. La solución (u, v)

se llama solución fundamental.
Finalmente si d = k2 entonces la ecuación factoriza como (x+ky)(x−ky) = 1,

lo que implica x + ky = x− ky = 1, o bien x + ky = x− ky = −1, lo que lleva
a las soluciones triviales (±1, 0) (salvo si d = 0, en cuyo caso (±1, y) es siempre
solución).

Según los cálculos anteriores, la solución fundamental, o sea, la mı́nima
solución no trivial, de la ecuación x2 − 54y2 = 1 es (485, 66).

Si O es el orden maximal de un cuerpo cuadrático real K y ε es su unidad
fundamental, es fácil comprobar que la unidad fundamental de un orden cual-
quiera Om es εk, donde k es el menor número natural no nulo tal que εk ∈ Om.
De aqúı se deduce que el ı́ndice em del grupo de unidades de Om en el grupo de
unidades de O es precisamente k. Recordemos que dicho ı́ndice interviene en la
fórmula del teorema 4.18 para el cálculo del número de clases de los órdenes no
maximales.

Ejemplo Sea K = Q
(√

2
)
. Es fácil comprobar que la unidad fundamental de

K es ε = 1 +
√

2 y que su número de clases es h = 1. Si m = 2st, donde t es
impar y εm = a + b

√
2, entonces la potencia de 2 que divide a b es exactamente

2s (se prueba sin dificultad por inducción sobre s). Consecuentemente, e2s = 2s.
Por otra parte, 2 = p2 en K, donde p es un ideal de norma 2. Por lo tanto,

la fórmula de 4.18 nos da que el número de clases de O2s es

h2s =
Φ(p2k)
φ(2k)e2s

h =
22k−1

2k−12k
= 1.

Ejercicio: Sea K = Q
(√

5
)
. Probar que el número de clases de O5k es 1 y el número

de clases de O2k es 2, para k ≥ 3.

5.5 La fracción continua de e

Ya que hemos desarrollado la teoŕıa básica sobre fracciones continuas, dedica-
mos esta sección a ilustrar algunos resultados más avanzados. Nuestro objetivo
será obtener el desarrollo en fracción continua del número e, que es

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]



5.5. La fracción continua de e 123

Ninguno de los resultados de esta sección será necesario en los caṕıtulos
siguientes.

Fijemos un número natural m no nulo y para cada n ≥ 0 definamos

ψn =
∞∑
r=0

2r + 2n + 1
1 · 3 · 5 · · · (2r + 2n + 1)

2r + 2
2 · 4 · 6 · · · (2r + 2)

1
m2r

.

En primer lugar observamos que

ψ0 =
∞∑
r=0

1
(2r)!

1
m2r

=
1
2
(
e1/m + e−1/m

)
,

ψ1 =
∞∑
r=0

1
(2r + 1)!

1
m2r

=
m

2
(
e1/m − e−1/m

)
.

Comprobemos además que se cumple la relación

m2ψn = (2n + 1)m2ψn+1 + ψn+2, n = 0, 1, 2, . . . (5.6)

de donde se sigue en particular que todas las series convergen.
En efecto:

m2ψn−(2n+1)m2ψn+1 =
∞∑
r=0

(2r + 2n + 3)m22r
1 · 3 · 5 · · · (2r + 2n + 3)

2r + 2
2 · 4 · 6 · · · (2r + 2)

1
m2r

.

Si eliminamos el primer sumando, que es nulo, y cambiamos el ı́ndice r por r+1
obtenemos la expresión que define a ψn+2.

Es claro que ψn > 0 para todo número natural n. Por lo tanto podemos
definir

ωn =
mψn
ψn+1

, n = 0, 1, 2, . . .

Dividiendo entre mψn+1 en (5.6) llegamos a la fórmula siguiente:

ωn = (2n + 1)m +
1

ωn+1
, n = 0, 1, 2, . . .

de donde se sigue que ωn > 1 para todo n, y que el desarrollo en fracción
continua de ω0 es

ω0 = [m, 3m, 5m, . . . ].

Ahora bien,

ω0 =
mψ0

ψ1
=

e1/m + e−1/m

e1/m − e−1/m
=

e2/m + 1
e2/m − 1

,

con lo cual obtenemos en particular que

e + 1
e− 1

= [2, 6, 10, 14, . . . ].
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Puesto que las fracciones continuas (infinitas) representan números irraciona-
les, esto prueba que el número e no es racional. Más aún, que no es un irracional
cuadrático, pues la fracción continua que nos ha aparecido no es periódica.

Sea ahora

ξ =
e2/m + 1

2
= 1 +

1
ω0 − 1

.

Es inmediato que ξ = [1,m− 1, 3m, 5m, . . . ].

Para obtener el desarrollo en fracción continua de e necesitamos eliminar el
2 del denominador de ξ. Llamemos η = e2/m = 2ξ − 1. Vamos a exponer un
método general que permite calcular en muchos casos la fracción continua de
un número η a partir de la fracción continua de un número ξ cuando entre ellos
se da una relación del tipo

η =
uξ + v

w
,

donde u y w son números naturales no nulos y v es un número entero.
Antes de enunciar el resultado principal hemos de observar que si a > 1

entonces
[ . . . , a] = [ . . . , a− 1, 1],

por lo que un número racional admite siempre un desarrollo en fracción continua
de longitud par y otro de longitud impar.

También es útil notar que las fórmulas del teorema 5.2 son válidas para
n = 0, 1 si convenimos en que p−1 = 1, q−1 = 0, p−2 = 0, q−2 = 1.

Teorema 5.14 Sea ξ = [a0, a1, a2, . . . ] el desarrollo en fracción continua de un
irracional ξ. Sea pn/qn el convergente n-simo y ξn = [an, an+1, an+2, . . . ]. Sea
η = (uξ+v)/w, donde u, v, w son números enteros, u > 0, w > 0, uw = D > 1.
Para un ı́ndice cualquiera n ≥ 1 desarrollamos el número racional

u[a0, a1, . . . , an−1] + v

w
=

upn−1 + vqn−1

wqn−1
= [b0, b1, . . . , bm−1]

eligiendo el final de modo que m ≡ n (mód 2). Sea rj/sj el convergente j-ésimo
de este desarrollo, de modo que en particular se tiene

upn−1 + vqn−1

wqn−1
=

rm−1

sm−1
. (5.7)

Entonces existen números enteros u′, v′, w′ tales que(
u v
0 w

) (
pn−1 pn−2

qn−1 qn−2

)
=

(
rm−1 rm−2

sm−1 rm−2

) (
u′ v′

0 w′

)
,

u′ > 0, w′ > 0, u′w′ = D, −w′ ≤ v′ ≤ u′, y η = [b0, b1, . . . , bm−1, ηm], donde
ηm = (u′ξn + v′)/w′.



5.5. La fracción continua de e 125

Demostración: La ecuación matricial equivale al siguiente sistema de
ecuaciones:

upn−1 + vqn−1 = rm−1u
′, (5.8)

wqn−1 = sm−1u
′, (5.9)

upn−2 + vqn−2 = rm−1v
′ + rm−2w

′, (5.10)
wqn−2 = sm−1v

′ + sm−2w
′. (5.11)

Como rm−1 y sm−1 son enteros primos entre śı, de (5.7) se sigue que los
cocientes

upn−1 + vqn−1

rm−1
=

wqn−1

sm−1

son un mismo número entero u′ que satisface (5.8) y (5.9). Considerando el
segundo cociente concluimos que u′ > 0.

Las ecuaciones (5.10) y (5.11) forman un sistema de ecuaciones lineales de
determinante ±1, luego tiene solución entera v′, w′.

Tomando determinantes en la ecuación matricial llegamos a que

uw(−1)n−1 = (−1)m−1u′w′,

y puesto que m ≡ n (mód 2), podemos concluir que D = uw = u′w′. De aqúı
se deduce además que w′ > 0. De (5.11) se sigue que

v′ =
wqn−1 − sm−2w

′

sm− 1
≥ −sm−2

sm−1
w′ ≥ −w′,

y usando además (5.9)

v′ =
wqn−2 − sm−2w

′

sm−1
≤ w

sm−1
qn−2 =

u′

qn−1
qn−2 ≤ u′.

Por el teorema 5.8 tenemos

ξ =
pn−1ξn + pn−2

qn−1ξn + qn−2
.

Haciendo uso de esto y de las ecuaciones que definen a u′, v′, w′ llegamos a que

η =
uξ + v

w
=

(upn−1 + vqn−1)ξn + (upn−2 + vqn−2)
w(qn−1ξn + qn−2)

=
rm−1u

′ξn + rm−1v
′ + rm−2w

′

sm−1u′ξn + sm−1v′sm−2w′ ,

de donde, de acuerdo con la definición ηm = (u′ξn + v′)/w′, se concluye

η =
rm−1ηm + rm−2

sm−1ηm + sm−2
.

Consecuentemente η = [b0, b1, . . . , bm−1, ηm].
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Ahora observamos que en las hipótesis del teorema anterior se cumple

ηm = (u′ξn + v′)/w′ > v′/w′ ≥ −1.

Más aún, si an ≥ D, teniendo en cuenta que an es la parte entera de ξn, de
hecho

ηm = (u′ξn + v′)/w′ > (u′D + v′)/w′ ≥ (u′2w′ − w′)/w′ = u′2 − 1 ≥ 0,

y si an ≥ 2D entonces

ηm = (u′ξn + v′)/w′ > (u′2D + v′)/w′ ≥ 2u′2 − 1 ≥ 1.

Esto es importante porque cuando ηm > 1, la relación

η = [b0, b1, . . . , bm−1, ηm]

indica que los coeficientes de la fracción continua de ηm son la prolongación del
desarrollo de η en fracción continua, que comienza con [b0, b1, . . . , bm−1, . . . ].

Es fácil ver que esto sigue siendo cierto cuando ηm ≥ 0 si convenimos en que

[ . . . , a, 0, b, c, . . . ] = [ . . . , a + b, c, . . . ].

Nuestra intención es partir de un número irracional ξ0 y dividir su fracción
continua en secciones

ξ0 = [a0, . . . , an1−1 | an1 , . . . , an2−1 | an2 , . . . , an3−1 | an3 , . . . ],

a las que aplicar sucesivamente el teorema anterior.

Dado η0 = (u0ξ0 + v0)/w0 tal que u0, w0 > 0 y D = u0w0 > 1, el teo-
rema nos da números u1, v1, w1 en las mismas condiciones (con el mismo D) y
b0, . . . , bm1−1 tales que

η0 = [b0, . . . , bm1−1, ηm1 ] con ηm1 = (u1ξn1 + v1)/w1.

Ahora aplicamos el teorema a ξn1 = [an1 , . . . , an2 −1 | an2 , . . . , an3−1 | an3 , . . . ]
y obtenemos números u2, v2, w2 con el mismo D y bm1 , . . . , bm2−1 tales que

ηm1 = [bm1 , . . . , bm2−1, hm2 ] con ηm2 = (u2ξn1 + v2)/w2.

Suponiendo que bm1 ≥ 0 podemos enlazar ambos pasos y escribir

η0 = [b0, . . . , bm1−1, ηm1 ] = [b0, . . . , bm1−1 | bm1 , . . . , bm2−1, ηm2 ].

A continuación aplicamos el teorema a ξn2 , y aśı sucesivamente. De este modo
vamos obteniendo el desarrollo en fracción continua de η0, suponiendo que los
sucesivos bmi que vamos obteniendo no sean negativos. Una forma de garan-
tizarlo es partir la fracción original de modo que cada ani ≥ D, aunque no es
necesario.

Con la ayuda del teorema siguiente podremos garantizar que, con las hipó-
tesis adecuadas, al cabo de un número finito de pasos entraremos en un ciclo
que nos dará una fórmula general para el desarrollo completo de η0. Al mismo
tiempo nos dará una técnica útil para simplificar los cálculos.
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Teorema 5.15 En las hipótesis del teorema 5.14, si sustituimos a0 por otro
número congruente módulo D, digamos a0 + Dg (pero mantenemos los mismos
a1, . . . , an−1) entonces se obtienen los mismos números u′, v′, w′, aśı como los
mismos m y b1, . . . , bm−1. El número b0 se transforma en b0 + u2g.

Demostración: Claramente

u[a0 + Dg, a1, . . . , an−1] + v

w
=

u[a0, a1, . . . , an−1] + v

w
+

uDg

w

=
u[a0, a1, . . . , an−1] + v

w
+ u2g.

Según el teorema 5.14 el desarrollo de este número es [b0, b1, . . . , bm−1], luego
es inmediato que con el cambio todos los coeficientes quedan igual salvo el
primero que se incrementa en u2g.

Las relaciones recurrentes que determinan los denominadores de los con-
vergentes no dependen del primer término de la fracción continua, luego los
números qi y si permanecen invariantes.

La fórmula (5.9) nos da que u′ tampoco vaŕıa. Como u′w′ = D, también w′

permanece inalterado. Por último, la ecuación (5.11) garantiza la conservación
de v′.

Con esto tenemos en realidad un método general para calcular las fracciones
continuas de números η0 a partir de números ξ0, pero explicaremos mejor este
método aplicándolo al caso que nos interesa. Digamos sólo en general que si
aplicamos sucesivamente el teorema 5.14, las ternas (ui, vi, wi) que vamos ob-
teniendo vaŕıan en un conjunto finito (a causa de las restricciones que impone
el teorema), luego después de un número finito de pasos volveremos a la misma
terna.

Recordemos que si x0 = (e2/m + 1)/2 hab́ıamos calculado

ξ0 = [1,m− 1, 3m, 5m, . . . ]

y que η0 = e2/m = 2ξ0 − 1. En este caso u = 2, v = −1, w = 1. Como D = 2,
para obtener congruencias módulo 2 haremos m = 2t (y después estudiaremos
el caso m = 2t + 1). Dividimos la fracción de este modo:

ξ0 = [1 | 2t− 1 | 6t | 10t | 14t |. . . ].

Vamos a aplicar el teorema 5.14 a cada segmento. El teorema 5.15 nos
dice que podemos sustituir cada coeficiente por otro congruente módulo 2. Por
ejemplo podemos considerar

ξ∗0 = [1 | 1 | 0 | 0 | 0 |. . . ].

Ciertamente esto no tiene sentido como fracción continua, pero los cálculos
a realizar śı lo tienen porque cada uno de ellos sólo involucra a un segmento,
es decir a una fracción [1] o [0] que śı es correcta. Al hacer los cálculos obten-
dremos para cada segmento unos coeficientes | bmi

, . . . , bmi+1 − 1 |, que serán
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los que buscamos salvo el primero. A estos primeros coeficientes tendremos que
sumarles las cantidades 0, u2

1(t− 1), u2
2 3t, u2

3 5t, . . .
Aplicamos el teorema 5.14 al primer segmento:

1[1]− 1
1

= 1 = [1] = [b0], m = 1.

(
p0 p−1

q0 q−1

)
=

(
1 1
1 0

)
,

(
r0 r−1

s0 s−1

)
=

(
1 1
1 0

)
,

(
u0 v0

0 w0

)
=

(
2 −1
0 1

)
.

La ecuación matricial es(
2 −1
0 1

) (
1 1
1 0

)
=

(
1 2
1 0

)
=

(
1 1
1 0

) (
u1 v1

0 w1

)
,

y la solución: (
u1 v1

0 w1

)
=

(
1 0
0 2

)
.

Ahora aplicamos el teorema al segundo segmento [1]:

1[1] + 0
1

=
1
2

= [0, 1, 1] = [b2, b3, b4],

donde hemos tomado el desarrollo con tres cifras para que la longitud sea impar,
como la de [1]. Ahora (

r2 r1

s2 s1

)
=

(
1 1
2 1

)
,

(
1 0
0 2

) (
1 1
1 0

)
=

(
1 1
2 0

)
=

(
1 1
2 1

) (
u2 v2

0 w2

)
,

de donde (
u2 v2

0 w2

)
=

(
1 −1
0 2

)

Sólo hay que rectificar el valor de b2, que en realidad es u2
1(t−1) = t−1 ≥ 0,

luego por ahora tenemos que η0 = [1 | t− 1, 1, 1 |. . . ].
La siguiente aplicación del teorema es al segmento [0]:

1[0]− 1
2

= −1
2

= [−1, 1, 1] = [b5, b6, b7].

(
1 −1
0 2

) (
0 1
1 0

)
=

(
−1 1

2 0

) (
u3 v3

0 w3

)
,

y esta vez llegamos a que(
u3 v3

0 w3

)
=

(
1 −1
0 2

)
=

(
u2 v2

0 w2

)
,
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El valor corregido de b5 es b5 = −1 + u2
2 3t = 3t− 1 ≥ 0.

Tenemos, pues, que η0 = [1 | t− 1, 1, 1 | 3t− 1, 1, 1 |. . . ].

Ahora bien, para los cálculos relativos al cuarto segmento partimos exac-
tamente de los mismos datos que para el tercero (la fracción [0] y la terna
(u3, v3, w3) = (1,−1, 2)), luego llegaremos exactamente a los mismos coeficien-
tes [−1, 1, 1], y otra vez a la misma terna. Lo único que cambiará será la
corrección del primer coeficiente, que ahora será 5t, y después 7t, etc., dando
lugar siempre a coeficientes mayores que 0.

Consecuentemente tenemos la fracción continua de η0, que no es sino

η0 = [1, t− 1, 1, 1, 3t− 1, 1, 1, 5t− 1, 1, 1, 7t− 1, 1, 1, . . . ],

o más brevemente:

t
√

e = η0 = [1, (2k + 1)t− 1, 1]∞k=0.

En el caso t = 1 aparece un cero que debe ser cancelado:

e = [1, 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, . . . ] = [2, 1, 2, 1, 1, 4, 1, 1, 6, . . . ],

aśı, e = [2, 1, 2k, 1]∞k=0.
En general, este método puede ser aplicado siempre que la fracción continua

de ξ0 pueda ser dividida en segmentos que (por lo menos desde uno dado en
adelante) tengan todos la misma longitud y los mismos términos, salvo quizá el
primero, y de modo que los primeros términos de cada segmento sean mayores o
iguales que D (para que los coeficientes que obtenemos puedan ser enlazados) y
congruentes módulo D (para que podamos reducirlos a constantes por el teorema
5.15 y aśı llegar a un ciclo como ha ocurrido en el ejemplo).

Otra aplicación la tenemos cuando hacemos m = 2t + 1 en la expresión
original. Entonces queda

ξ0 = [1 | 2t | 6t + 3 | 10t + 5 | 14t + 7 |. . . ],

y con este método podemos calcular la fracción continua de e2/(2t+1). Para ello
reducimos módulo 2 a la fracción ξ∗0 = [1 | 0 | 1 | 1 | 1 |. . . ].

Esta vez se obtienen las ternas

(2,−1, 1), (1, 0, 2), (2, 0, 1), (1, 0, 2), (1,−1, 2), (2, 0, 1).

La primera repetición (u1, v1, w1) = (u3, v3, w3) no es significativa, pues los
primeros (y únicos) coeficientes de los segmentos primero y tercero son [0] y [1]
respectivamente, luego no son congruentes y por lo tanto no podemos garantizar
que comience un ciclo (y de hecho no comienza).

En cambio la repetición (u5, v5, w5) = (u2, v2, w2) śı cierra el proceso. La
fracción que se obtiene es

η∗0 = [1 | 0 | 2 | 0, 1, 1 | 0 | 2 | 0, 1, 1 | 0 | 2 | 0, 1, 1 | 0 | 2 | 0, 1, 1 |. . . ]
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Para corregir los primeros coeficientes observamos que al pasar de ξ0 a ξ∗0
hemos restado 2 · 0, 2t, 2(t+1), 2(5t+2), 2(7t+3), . . . aśı como que los valores
de ui son 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, . . .

Por lo tanto ahora hemos de sumar

0, t, 4(t + 1), 5t + 2, 7t + 3, 4(9t + 5), 11t + 7, 13t + 9, 4(15t + 11), . . .

Omitimos los detalles, pero no es dif́ıcil llegar a que la expresión final es

e2/(2t+1) = [1, (1 + 6k)t + 3k, (12 + 24k)t + 6 + 12k, (5 + 6k)t + 2 + 3k, 1, 1]

= [1, (1 + 6k)t + 3k, (12 + 24k)t + 6 + 12k, (5 + 6k)t + 2 + 3k, 1]∞k=0.

La fórmula se simplifica bastante en el caso t = 0, que nos da

e2 = [1, 3k, 6 + 12k, 2 + 3k, 1]∞k=0 = [1, 0, 6, 2 + 3k, 1, 1, 3 + 3k, 18 + 12k]∞k=0

= [7, 2 + 3k, 1, 1, 3 + 3k, 18 + 12k]∞k=0

Expĺıcitamente:

e2 = [7, 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, 1, 1, 12, 54, . . . ].
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Cuerpos cuadráticos

En los cuerpos cuadráticos, toda la sutileza de la teoŕıa algebraica de núme-
ros se muestra de la forma más simple posible. Esto los convierte en los modelos
idóneos para formular conjeturas y obtener primeras pruebas. Ciertamente, los
resultados más importantes de la teoŕıa algebraica de números han seguido este
proceso: primero fueron probados para cuerpos cuadráticos y sólo en una se-
gunda etapa fueron generalizados. Este proceso de generalización es a menudo
complicado y suele requerir ideas esencialmente nuevas. Tanto es aśı que aún
hoy existen hechos sobre cuerpos cuadráticos que plausiblemente debeŕıan co-
rresponderse con hechos generales sin que tan siquiera se sepa cómo abordar el
problema de formularlos adecuadamente.

Los resultados fundamentales que hemos probado hasta ahora (finitud del
número de clases, cálculo de unidades fundamentales, etc) fueron obtenidos
por Gauss en el caso cuadrático, aunque en términos muy diferentes a los que
nosotros hemos empleado. La teoŕıa de Gauss trata sobre formas cuadráticas
binarias, pero es equivalente a la teoŕıa de cuerpos cuadráticos debido a que la
relación entre módulos y formas que hemos estudiado puede refinarse en el caso
cuadrático hasta tal punto que permite traducir fielmente cualquier hecho sobre
formas a un hecho análogo sobre módulos y viceversa.

Sin embargo, hay un sentido en el que ambos enfoques no son equivalentes,
y es que mientras la mayor parte de la teoŕıa resulta más natural en términos
de módulos, lo cierto es que hay algunos conceptos de gran importancia teórica
que resultan completamente naturales en términos de formas y sin embargo hace
falta profundizar mucho en la teoŕıa para comprender completamente su sentido
en términos de módulos. Por ello resulta enriquecedor conocer ambos plantea-
mientos y la relación entre ambos. En este caṕıtulo nos limitaremos a exponer
la parte de la teoŕıa de Gauss sobre formas cuadráticas que se corresponde con
la teoŕıa que ya conocemos, a la vez que mostraremos las simplificaciones de la
teoŕıa general aplicada al caso cuadrático. Esto nos servirá de preparativo para
desarrollar en caṕıtulos posteriores el resto de dicha teoŕıa, cuya generalización
ha constituido uno de los problemas centrales de la teoŕıa desde la época de
Gauss hasta mediados del presente siglo.
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6.1 Formas cuadráticas binarias

Definición 6.1 Una forma cuadrática (binaria) es un polinomio de la forma
f(x, y) = ax2 + bxy + cy2, donde a, b, c son enteros racionales no todos nulos.

En lo sucesivo, y mientras no se indique lo contrario, cuando hablemos de
una forma f(x, y) entenderemos que a, b, c son sus coeficientes de acuerdo con
la fórmula anterior. Vamos a introducir algunos conceptos básicos sobre formas
cuadráticas.

En primer lugar recordemos de 1.4 que dos formas cuadráticas f(x, y) y
g(x, y) son equivalentes si f(x, y) = g(px + qy, rx + sy), donde p, q, r, s son
enteros racionales tales que ps−qr = ±1. En tal caso las soluciones enteras de la
ecuación f(x, y) = t están en correspondencia biuńıvoca con las de la ecuación
g(x, y) = t.

Esto se expresa mejor con notación matricial. La forma f(x, y) se puede
representar matricialmente como

f(x, y) = (x, y)
(

a b/2
b/2 c

) (
x
y

)
,

de modo que si una forma f tiene matriz A y otra forma g tiene matriz B,
entonces f y g son equivalentes si y sólo si existe una matriz C con coeficientes
enteros racionales y determinante ±1 tal que A = CBCt.

Determinante y discriminante En particular notamos que el determinante
de f , esto es, el número |B| = ac − b2/4 es invariante por equivalencia. El
discriminante de f se define como el entero racional b2 − 4ac. Puesto que no es
más que −4 veces el determinante, también es invariante por equivalencia.

Formas completas Todas las formas cuadráticas se descomponen en pro-
ducto de dos formas lineales. Dada una forma f(x, y), si se cumple a = c = 0 la
factorización es obvia. Supongamos ahora que a �= 0. Entonces consideramos el
polinomio f(x, 1) = ax2+bx+c = a(x+α)(x+β) y encontramos la factorización

f(x, y) = a(x + αy)(x + βy).

Observar que α y β son
(
b±

√
D

)
/2a, donde D es el discriminante de f . Si

D es cuadrado perfecto, el polinomio ax2 + bx+ c es se descompone en factores
lineales en Q[x], luego también en Z[x], y aśı la forma f(x, y) se descompone
en factores lineales en Z[x, y]. Por el contrario, si D no es cuadrado perfecto,
entonces D = m2d para ciertos enteros racionales m, d, con d libre de cuadrados,
luego α y β son elementos conjugados del cuerpo Q

(√
d

)
, y la factorización

puede expresarse como f(x, y) = aN(x + αy). En los términos del caṕıtulo II
esto significa que la forma f(x, y) es (salvo una constante) una forma completa.

En el caso a = c = 0 se cumple que D = b2 es cuadrado perfecto y por
otro lado la forma también factoriza en Z[x, y], luego concluimos que una forma
cuadrática factoriza en Z[x, y] si y sólo si su discriminante es cuadrado perfecto
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y, puesto que las formas completas son irreducibles en Q[x, y], una forma es
completa (salvo una constante) si y sólo si su discriminante no es cuadrado
perfecto. En lo sucesivo sólo consideraremos formas cuadráticas completas.

Signo El discriminante de una forma cuadrática determina su signo en el
sentido siguiente: Si f(x, y) tiene determinante D, entonces

4af(x, y) = (2ax + by)2 −Dy2,

luego si D < 0 el signo de f(x, y) es igual al signo de a para todos los valores
de x e y, mientras que si D > 0 la forma toma valores tanto positivos como
negativos.

De acuerdo con esto, diremos que f(x, y) es definida positiva si f(x, y) > 0
para todo par (x, y) �= (0, 0), lo cual ocurre cuando D < 0, a > 0.

Diremos que f(x, y) es definida negativa si f(x, y) < 0 cuando (x, y) �= (0, 0),
lo cual ocurre si D < 0, a < 0.

Y en otro caso, es decir, si D > 0, diremos que la forma es indefinida.

Observar que si D < 0, una forma definida negativa se transforma en definida
positiva (con el mismo discriminante) cambiando el signo a sus coeficientes, por
lo cual en la mayoŕıa de los casos no será restricción el trabajar sólo con formas
definidas positivas.

Por otro lado es obvio que si dos formas están relacionadas por un cambio
de variables entonces una toma sólo valores positivos si y sólo si lo mismo le
ocurre a la otra, es decir, dos formas equivalentes son ambas definidas positivas,
ambas definidas negativas o ambas indefinidas.

Formas principales El discriminante D = b2 − 4ac de una forma cuadrática
no puede ser cualquier número, sino que cumple D ≡ 0 (mód 4) si b es par y
D ≡ 1 (mód 4) si b es impar.

Si un entero racional D cumple estas condiciones siempre existen formas
cuadráticas de discriminante D. La más sencilla de todas recibe el nombre de
forma principal de discriminante D, definida como x2− D

4 y2 si D ≡ 0 (mód 4) y
x2 + xy + 1−D

4 y2 si D ≡ 1 (mód 4). Las formas principales están determinadas
por las condiciones a = 1 y b = 0 o 1, según sea el resto de D.

Módulos A continuación vamos a refinar la relación que ya conocemos en
general entre formas y módulos. Según vimos en el caṕıtulo II, a cada base de
un módulo completo le sabemos asociar una forma con coeficientes racionales.
Como ahora estamos trabajando con coeficientes enteros, multiplicaremos la
forma por el entero adecuado para que los coeficientes resulten enteros. La
forma resultante será única si exigimos que sus coeficientes a, b, c sean primos
entre śı.

Las formas cuadráticas con coeficientes primos entre śı se llaman formas
primitivas.
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La forma expĺıcita de asignar a cada base de un módulo completo su forma
primitiva resulta ser muy sencilla. Para obtenerla probamos primero un resul-
tado auxiliar:

Teorema 6.2 Sea γ una ráız irracional de un polinomio ax2 + bx + c con coe-
ficientes enteros racionales primos entre śı, a > 0. Entonces el anillo de coefi-
cientes del módulo 〈1, γ〉 es 〈1, aγ〉, el discriminante de este orden es b2 − 4ac
y la norma del módulo es 1/a.

Demostración: El número γ pertenecerá a un cuerpo cuadrático Q
(√

d
)
.

Todo elemento de Q
(√

d
)

es de la forma δ = x + yγ, donde x e y son números
racionales. Se cumplirá δ 〈1, γ〉 ⊂ 〈1, γ〉 si y sólo si δ ∈ 〈1, γ〉 y

δγ = xγ + yγ2 = −cy

a
+

(
x− by

a

)
γ ∈ 〈1, γ〉 .

O sea, δ es un coeficiente de 〈1, γ〉 si y sólo si x, y, cy/a, by/a son enteros.
Puesto que (a, b, c) = 1, esto ocurre si y sólo si x e y son enteros y a | y.

Ahora es fácil calcular la matriz de cambio de base de (1, γ) a (1, aγ), y
concluir que la norma de 〈1, γ〉 es 1/a.

El discriminante del orden es∣∣∣∣ 1 aγ
1 aγ̄

∣∣∣∣
2

= a(aγ2 + aγ̄2 − 2aγγ̄) = a(−bγ − c) + a(−bγ̄ − c)− 2ac

= −ab(γ + γ̄)− 2ac− 2ac = b2 − 4ac.

Sea ahora (α, β) una base (ordenada) de un módulo M de un cierto cuerpo
cuadrático Q

(√
d

)
. A esta base le asociamos la forma cuadrática

f(x, y) = N(αx + βy)
N(M)

= ax2 + bxy + cy2. (6.1)

Vamos a probar que los coeficientes a, b, c son enteros primos entre śı.
Llamemos γ = −β/α. Entonces γ es ráız de un único polinomio Ax2 + Bx + C
con coeficientes enteros racionales tales que (A,B,C) = 1 y A > 0. Aśı

A

(
x +

β

α

) (
x +

β̄

ᾱ

)
= Ax2 + Bx + C,

luego
A

N(α)
(xα + β)(xᾱ + β̄) = Ax2 + Bx + C,

de donde

N(αx + βy) = N(α)
A

(Ax2 + Bxy + Cy2).
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Por el teorema anterior, la norma de M = 〈α, β〉 = α 〈1, γ〉 es |N(α)|/A, y
por consiguiente

ax2 + bxy + cy2 = N(αx + βy)/N(M) = ±(Ax2 + Bxy + Cy2),

luego la forma que le hemos asignado a la base (α, β) según (6.1) es primitiva.
Más aún, el anillo de coeficientes de M = 〈α, β〉 es el mismo que el de

〈1, γ〉, es decir, el orden 〈1, Aγ〉, y, por el teorema anterior, su discriminante es
B2−4AC = b2−4ac. Esto significa que el discriminante del anillo de coeficientes
de M es el mismo que el de la forma cuadrática asociada.

Observamos además que a = N(α)/N(M), y por lo tanto si el discriminante
es negativo, o sea, si el cuerpo es imaginario, entonces a > 0, luego la forma es
definida positiva. En resumen:

Teorema 6.3 Para cada base ordenada (α, β) del módulo M , la forma cuadrá-
tica f(x, y) = N(αx + βy)/N(M) tiene coeficientes enteros, es primitiva, tiene
el mismo discriminante que el anillo de coeficientes de M y es definida positiva
cuando dicho discriminante es negativo.

Es fácil comprobar que, como ya observamos en el caṕıtulo II las formas
asociadas a dos bases de un módulo M son equivalentes, y los coeficientes del
cambio de variables son los mismos que los del cambio de base. En particular
el determinante del cambio de variables es el mismo que el determinante del
cambio de base. Esto significa que a cada módulo M le asignamos una clase de
equivalencia de formas. Al variar la base de M recorremos todas las formas de
la clase.

También comentamos en el caṕıtulo II que si M tiene asociada una forma f ,
entonces un módulo similar γM tiene asociada la forma N(γ)f . Sin embargo,
como ahora hemos modificado la correspondencia para trabajar sólo con formas
primitivas, la relación se simplifica:

Si γ �= 0, y f es la forma asociada a la base (α, β) de M , la forma asociada
a la base (γα, γβ) de γM es

N(γαx + γβy)
N(γM)

= N(γ)N(αx + βy)
|N(γ)|N(M)

= ±f(x, y),

donde el signo es el de N(γ).

Aśı, si la clase asociada a M es [f ], la clase asociada a γM es [±f ]. Cuando
N(γ) > 0 ambas clases son la misma, pero si N(γ) < 0 las formas f y −f no
son necesariamente equivalentes. En los cuerpos imaginarios, donde la norma
siempre es positiva, esto nos permite asociar a cada clase de similitud de módulos
una clase de equivalencia de formas, pero en los cuerpos reales puede haber clases
de similitud a las que correspondan dos clases de equivalencia.

Por otra parte, la correspondencia de módulos a clases de formas (primitivas
no definidas negativas) es siempre suprayectiva. En efecto, hemos visto que
toda forma factoriza como f(x, y) = aN(x + αy), luego la forma asociada al
módulo M = 〈1, α〉 se diferencia de f en el factor aN(M). Como ambas formas
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son primitivas el factor ha de ser ±1, concretamente el signo de a. Si a > 0 nos
sirve el módulo M . Si a < 0 el discriminante ha de ser positivo (o la forma seŕıa
definida negativa), luego existe un número γ de norma negativa y nos sirve el
módulo γM .

La correspondencia de módulos a clases de formas no es inyectiva por razones
obvias, desde el momento en que módulos similares M y γM con N(γ) > 0 tienen
asociada la misma clase, pero la situación es peor, en el sentido de que puede
haber también módulos no similares cuya clase asociada sea la misma. Veamos
en qué condiciones esto es posible:

Supongamos que a dos módulos M y M ′ les corresponde la misma clase de
formas. Escogiendo oportunamente las bases podemos suponer que M = 〈α, β〉,
M ′ = 〈α′, β′〉 y que la forma asociada a ambas bases es la misma. En la prueba
del teorema 6.3 hemos visto que γ = −β/α y γ′ = −β′/α′ son ráıces del mismo
polinomio, luego son iguales o conjugados. Puesto que M y M ′ son similares,
respectivamente, a 〈1, γ〉 y 〈1, γ′〉, concluimos que M es similar a M ′ o bien a
su conjugado.

Esto es todo lo que podemos decir: si dos módulos son conjugados, la forma
que les asignamos es la misma, y más adelante veremos ejemplos de módulos no
similares a sus conjugados, con lo que una misma clase de formas se corresponde
a veces con módulos no similares. En cualquier caso, una clase de formas nunca
se corresponde con más de dos clases de módulos similares.

En resumen tenemos que una clase de módulos similares puede correspon-
derse con dos clases de formas y que una clase de formas puede corresponderse
con dos clases de módulos similares. Esta situación tan poco satisfactoria se
puede arreglar completamente si refinamos las relaciones de equivalencia que
estamos considerando. Nos ocupamos de ello seguidamente.

6.2 Equivalencia y similitud estricta

Definición 6.4 Dos formas cuadráticas son estrictamente equivalentes si son
equivalentes mediante un cambio de variables de determinante +1. Dos módulos
M y N de un cuerpo cuadrático son estrictamente similares si M = αN para
un cierto número α de norma positiva.

Observar que dos formas que se diferencien en un cambio de variables de
discriminante negativo pueden ser pese a ello estrictamente equivalentes. Por
ejemplo, si una forma cumple a = c, entonces el cambio x = y, y = x produce
el mismo efecto (ninguno) que el cambio x = x, y = y.

También puede que dos formas sean equivalentes pero no estrictamente equi-
valentes, en cuyo caso su clase de equivalencia se parte en dos clases de equiva-
lencia estricta.

Lo mismo sucede con la similitud estricta de módulos, aunque aqúı podemos
precisar un poco más:
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Si el discriminante de un orden es negativo (el cuerpo es imaginario) todas
las normas son positivas, luego la similitud coincide con la similitud estricta
sobre los módulos de dicho orden.

Si el discriminante es positivo, entonces la similitud coincide con la similitud
estricta en los módulos del orden si y sólo si su unidad fundamental tiene norma
negativa.

En efecto, si ε es una unidad de norma negativa y tenemos M = αN con
N(α) < 0, entonces también M = εM = εαN , luego la similitud coincide con la
similitud estricta.

Rećıprocamente, si α es cualquier número que cumpla N(α) < 0 y M es
cualquier módulo del orden considerado, los módulos M y αM han de ser
estrictamente similares, luego existe un β de norma positiva de manera que
βM = αM , luego (α/β)M = M y por lo tanto N(M) = |N(α/β)|N(M), de
donde |N(α/β)| = 1 y, dados los signos de las normas de α y β, ha de ser
N(α/β) = −1. Claramente α/β es una unidad del orden de M y si una unidad
tiene norma −1 la unidad fundamental también.

Aśı pues, la similitud y la similitud estricta sólo difieren en los módulos
cuyos órdenes tienen unidades fundamentales de norma 1, y en este caso todas
las clases de similitud de módulos se dividen en dos clases de similitud estricta.

Finalmente vamos a refinar la correspondencia entre módulos y formas que
hemos descrito en la sección anterior de manera que induzca una biyección entre
clases de equivalencia y similitud estrictas.

Definición 6.5 Una base (α, β) de un módulo M de un cuerpo cuadrático
Q

(√
d

)
está orientada si el determinante

∆ =
∣∣∣∣ ᾱ β̄

α β

∣∣∣∣ ,
cumple ∆ > 0 para d > 0 y ∆/i > 0 para d < 0 (la barra indica la conjugación
compleja).

Más expĺıcitamente, si α = p + q
√

d y β = r + s
√

d, entonces

∆ = 2(ps− qr)
√

d,

luego la orientación de la base (α, β) según la definición anterior equivale a
que su orientación es la misma que la de la base (1,

√
d) en el sentido usual en

espacios vectoriales. Los siguientes hechos se comprueban sin dificultad:

1. Si (α, β) no está orientada, entonces (β, α) śı lo está.

2. Si (α, β) está orientada, entonces (β̄, ᾱ) también lo está.

3. Si (α, β) está orientada, entonces (γα, γβ) lo está si y sólo si N(γ) > 0.

4. Un cambio de base conserva la orientación si y sólo si su determinante es
positivo.
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Como consecuencia, si recorremos las bases orientadas de un módulo M ,
las formas asociadas recorren una clase de equivalencia estricta. A módulos
estrictamente similares les corresponde la misma clase de equivalencia estricta
de formas.

Tenemos, pues, una correspondencia que a cada clase de equivalencia es-
tricta de módulos le asigna una clase de equivalencia estricta de formas (las
asociadas a las bases orientadas de los módulos de la clase). Esta corresponden-
cia sigue siendo suprayectiva (considerando sólo formas primitivas no definidas
negativas), pues si a una forma f(x, y) le corresponde una base (α, β) y ésta no
está orientada, podemos tomar la base (ᾱ, β̄), que da la misma forma y śı está
orientada.

Vamos a ver que también es inyectiva. Sean M y M ′ dos módulos que
tengan asignada la misma clase de formas. Escogiendo adecuadamente las bases
podemos suponer que M = 〈α, β〉, M ′ = 〈α′, β′〉 y que la forma asociada a ambas
bases es la misma.

En la prueba del teorema 6.3 hemos visto que N(α) tiene el mismo signo
que el coeficiente de x2 y lo mismo vale para la otra, luego N(α) y N(α′) tie-
nen el mismo signo. Por consiguiente las bases (1, β/α) y (1, β′/α′) están am-
bas orientadas o ninguna lo está, según el signo de N(α). Pero sabemos que
β/α y β′/α′ son iguales o conjugados, y no pueden ser conjugados porque la
conjugación invierte la orientación, aśı que son iguales. De aqúı se sigue que
M = α 〈1, β/α〉 = α 〈1, β′/α′〉 (α/α′)M ′, luego M y M ′ son estrictamente simi-
lares.

Vamos a reflexionar sobre cómo las relaciones estrictas resuelven los proble-
mas que nos aparećıan con las relaciones no estrictas. Consideremos primera-
mente el caso de los cuerpo reales, donde la situación era peor. Dado un módulo
M podemos considerar las clases estrictas [M ], [M ], [−M ] y −[M ], donde M es
el módulo conjugado de M y −[M ] representa a la clase de similitud estricta de
los módulos γM con N(γ) < 0.

Estas clases no son necesariamente distintas. Puede ocurrir que M = M (por
ejemplo si en un cuerpo cuadrático un primo factoriza como p = p2, entonces
M = p es su propio conjugado) y puede ocurrir [M ] = −[M ] (esto ocurre
exactamente cuando hay unidades de norma negativa). Por lo tanto tenemos
una, dos o cuatro clases estrictas.

Si a M le corresponde la forma f(x, y) = ax2 + bxy + cy2, entonces a M
le corresponde f(y, x) (porque al conjugar se invierte la orientación y hay que
cambiar el orden de la base), mientras que, según hemos probado, a −M le co-
rresponde la forma −f(x, y). Por simple estética podemos transformar f(y, x)
mediante el cambio x = −y, y = x y considerar la forma estrictamente equiva-
lente ax2 − bxy + cy2. Aśı, la biyección entre clases actúa como sigue:

[M ] ←→ [ax2 + bxy + cy2]
[M ] ←→ [ax2 − bxy + cy2]
−[M ] ←→ [−ax2 − bxy − cy2]
−[M ] ←→ [−ax2 + bxy − cy2].
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Al considerar relaciones no estrictas la biyección se estropea, porque M es
similar a −M y M es similar a −M , mientras que ax2 +bxy+cy2 es equivalente
a ax2 − bxy + cy2 (mediante el cambio x = x, y = −y) y −ax2 − bxy − cy2 es
equivalente a −ax2 + bxy − cy2.

En los cuerpos imaginarios sólo tenemos las clases [M ] y [M ] (que pueden
ser la misma o no) y las clases de formas [ax2 + bxy+ cy2], [ax2− bxy+ cy2] (las
dos restantes las eliminamos por definición). Aqúı el problema es más simple:
las clases de formas se convierten en la misma al considerar la equivalencia no
estricta, mientras que las clases de módulos pueden seguir siendo distintas.

Es importante recordar, pues, que módulos estrictamente similares se co-
rresponden con formas estrictamente equivalentes y viceversa, pero que esto es
falso si consideramos relaciones no estrictas.

6.3 Grupos de clases

Vamos a definir un producto de módulos que induzca una estructura de grupo
en los conjuntos de clases de similitud estricta y no estricta de los módulos de
un orden cuadrático dado. En el caso de la similitud no estricta veremos que el
grupo aśı obtenido es el mismo grupo de clases que definimos en 4.16.

Definición 6.6 Sean M y M ′ dos módulos completos de un cuerpo cuadrático.
Elijamos dos bases M = 〈α, β〉, M ′ = 〈α′, β′〉. Llamaremos módulo producto al
módulo

MM ′ = 〈αα′, αβ′, βα′, ββ′〉 .

La definición no depende de la elección de las bases, pues MM ′ es, de hecho,
el módulo generado por los productos mm′ con m ∈ M y m′ ∈ M ′ (es fácil
ver que el producto es un módulo completo). Observemos que el producto de
ideales es un caso particular del producto de módulos. El producto de módulos es
conmutativo y asociativo. Los hechos más importantes en torno a este producto
se deducen del teorema siguiente:

Teorema 6.7 Si M es un módulo completo con anillo de coeficientes O y M
es su conjugado, entonces MM = N(M)O.

Demostración: Supongamos primero que M = 〈1, γ〉. Entonces, con la
notación del teorema 6.2, tenemos que

MM = 〈1, γ, γ̄, γγ̄〉 =
〈

1, γ,−γ − b

a
,− c

a

〉
=

〈
1, γ,

b

a
,
c

a

〉
=

1
a
〈a, b, c, aγ〉 .

Puesto que (a, b, c) = 1, todo entero racional es combinación lineal entera de
ellos, luego MM = (1/a) 〈1, aγ〉 = N(M)O.

Si M es un módulo arbitrario, M = αM ′, donde M ′ tiene la forma anterior,
luego MM = αᾱM ′M

′
= N(α) N(M ′)O = |N(α)|N(M ′)O = N(M)O.
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De aqúı se siguen varias consecuencias. En primer lugar, si M y M ′ son
módulos de un mismo orden O y llamamos O′ al anillo de coeficientes del pro-
ducto MM ′, tenemos que

N(MM ′)O′ = MM ′MM
′
= N(M)ON(M ′)O = N(M)N(M ′)O.

Como dos órdenes distintos no pueden ser similares, resulta que O = O′, es
decir, el producto de módulos de un orden vuelve a ser un módulo del mismo
orden. Tomando ahora normas en N(MM ′)O = N(M)N(M ′)O concluimos
también que N(MM ′) = N(M)N(M ′).

Más aún, dado un módulo cualquiera M de un orden O, se cumple MO = M
y el módulo M ′ = M/N(M) tiene la propiedad de que MM ′ = O. En resumen:

Teorema 6.8 El conjunto de todos los módulos completos con anillo de coe-
ficientes igual a un orden cuadrático O es un grupo abeliano con el producto
definido en 6.6.

Ejercicio: Probar que en un cuerpo cuadrático se cumple que OmOm′ = O(m,m′),
para todo par de números naturales no nulos m, m′.

Ejercicio: Sea M =
〈
4, 3

√
2, 3

√
4
〉

un módulo de Q
(

3
√

2
)
. Probar que su anillo de coe-

ficientes es
〈
1, 2 3

√
2, 2 3

√
4
〉

mientras que el de M2 =
〈
2, 2 3

√
2, 3

√
4
〉

es el orden maximal〈
1, 3

√
2, 3

√
4
〉

(donde el producto se define análogamente a 6.6).

Si O es un orden cuadrático, la clase de similitud (estricta) de O está formada
por los módulos αO, donde α �= 0 (N(α) > 0). Claramente se trata de un
subgrupo del grupo de todos los módulos de O, y la similitud (estricta) es
precisamente la congruencia módulo este subgrupo, por lo que el conjunto de
clases de similitud es el grupo cociente. Estos grupos cociente se llaman grupo
de clases estrictas y grupo de clases no estrictas del orden considerado.

Vamos a probar que el grupo de clases no estrictas de un orden cuadrático
es el mismo definido en 4.16. Como la definición dada alĺı se basa en ideales,
necesitaremos el teorema siguiente, que caracteriza los módulos que son ideales
de su anillo de coeficientes.

Teorema 6.9 Sea K = Q
(√

d
)

un cuerpo cuadrático. Sea ω =
√

d o bien
ω =

(
1 +

√
d

)
/2 según el resto de d módulo 4. Entonces

1. Si a es un módulo de la forma a = k 〈a, b + mω〉, con a, b, k enteros
racionales, entonces a es un ideal de Om si y sólo si a | N(b + mω).

2. Todo ideal de Om puede expresarse de esta forma.

3. Si a es un ideal en estas condiciones y su anillo de coeficientes es Om,
entonces se cumple N(a) = k2|a|.
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Demostración: Sea a un módulo completo contenido en Om. Sea k el
mayor número natural que divida (en Om) a todos los elementos de a. Entonces
a = kM , donde M es un módulo completo contenido en Om tal que no hay
ningún natural mayor que 1 que divida a todos sus elementos. Obviamente a

será un ideal de Om si y sólo si lo es M .
Es fácil ver que M tiene una base de la forma M = 〈a, b + cmω〉, donde a,

b, c son enteros racionales, a > 0. En efecto, dada una base de M , podemos
sustituir una de sus componentes por la suma o resta de ambas, de manera que
el coeficiente de mω disminuya en valor absoluto. Tras un número finito de
pasos deberá hacerse nulo. El número a es el menor natural no nulo contenido
en M . Puesto que (a, b, c) divide a todos los elementos de M , se cumple que a,
b, c son primos entre śı.

Es claro que M será un ideal de Om si y sólo si amω,mω(b + cmω) ∈M .
La condición amω ∈M equivale a que existan enteros racionales u y v tales

que amω = ua + v(b + cmω).
Operando se llega a que v = a/c y a que u = −b/c. Consecuentemente,

amω ∈ M cuando y sólo cuando c | a y c | b, pero como (a, b, c) = 1, esto
equivale a que c = 1.

Admitiendo c = 1, la segunda condición se convierte en mω(b + mω) ∈ M ,
que a su vez equivale a (mTr(ω)−mω̄)(b+mω) ∈M (puesto que Tr(ω) = ω+ω̄).

Sumamos y restamos −b y la condición equivale a

(−b−mω̄)(b + mω) + (mTr(ω) + b)(b + mω) ∈M.

Como el segundo sumando es un múltiplo entero de un elemento de M , está
seguro en M , luego la condición se reduce a que (b + mω̄)(b + mω) ∈M , o sea,
N(b + mω) ∈M y en definitiva a que a | N(b + mω).

Para probar la última afirmación podemos suponer que a = 〈a, b + mω〉.
Notamos que mω ≡ −b (mód a), luego todo elemento de Om es congruente con
un entero módulo a. Por otra parte a es el menor número natural no nulo
contenido en a, luego |Om/a| = a. Si el anillo de coeficientes de a es Om,
entonces esta cantidad es precisamente N(a).

Ejercicio: Probar que si a = k 〈a, b+ ω〉 es un ideal del orden maximal de K en
las condiciones del teorema anterior y su norma es prima con m, entonces se cumple
a ∩ Om = k 〈a,mb+mω〉.

Ahora probamos un resultado técnico:

Teorema 6.10 Si ax2 + bxy + cy2 es una forma cuadrática primitiva y m es
un entero racional, existe una forma cuadrática a′x2 + b′xy+c′y2 estrictamente
equivalente a la dada y tal que (a′,m) = 1.

Demostración: Sea r el producto de los primos que dividen a m pero no a
c. Sea t el producto de los primos que dividen a m y a c pero no a a (se entiende
que valen 1 si no hay tales primos).

Entonces (r, t) = 1, luego existe un entero u tal que ur ≡ 1 (mód t). Sea
finalmente s = (ur − 1)/t. Aśı ru − ts = 1, luego el cambio de variables
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x = rx′ + sy′, y = tx′ + uy′ transforma la forma cuadrática dada en otra
propiamente equivalente en la que a′ = ar2 + brt + ct2.

Veamos que (a′,m) = 1. Sea p un divisor primo de m. Si p � c, entonces
p | r y p � t, luego p � a′.

Si p | c distinguimos dos casos: si p � a entonces p | t pero p � r, luego p � a′.
Si p | c y p | a, como (a, b, c) = 1 tenemos que p � b, p � r y p � t, luego p � a′.

Con esto podemos probar el resultado que necesitamos para relacionar las
dos definiciones que hemos dado del grupo de clases.

Teorema 6.11 Todo módulo completo M con anillo de coeficientes Om es es-
trictamente similar a un ideal de Om de norma prima con cualquier entero
prefijado n.

Demostración: Consideremos un módulo M cuyo anillo de coeficientes
sea Om. Éste tendrá asociada una forma cuadrática primitiva, y por el teorema
anterior podemos obtener otra propiamente equivalente ax2 + bxy + cy2 con
(a, n) = 1. Esta forma cuadrática puede expresarse como a(x + γy)(x + γ̄y),
donde −γ es una ráız del polinomio ax2 + bx + c, y por lo tanto la forma está
asociada al módulo 〈1, γ〉, o también al módulo estrictamente similar

〈a, aγ〉 =

〈
a,

b− t
√

d

2

〉
,

donde b2 − 4ac = t2d con d libre de cuadrados. Cambiando γ por su conjugado
si es preciso podemos suponer que las bases están orientadas.

Como formas equivalentes están asociadas a módulos similares, en realidad
este módulo es similar al módulo original M y en particular su anillo de coefi-
cientes sigue siendo Om.

Aśı mismo el discriminante de la forma ha de ser el de Om, es decir, o bien
t2d = m2d o bien t2d = m24d, según el resto de d módulo 4. Por lo tanto t = m
o bien t = 2m.

Observar que

N

(
b− t

√
d

2

)
= ac y Tr

(
b− t

√
d

2

)
= b,

luego se trata de un entero. En el caso d �≡ 1 (mód 4), el coeficiente b ha de
ser par, digamos b = 2b′, y t = 2m, y el módulo es

〈
a, b′ + m

√
d
〉
, que por el

teorema 6.9 es un ideal de Om de norma prima con n.
En el caso d ≡ 1 (mód 4) llegamos a lo mismo. En efecto, entonces el módulo

que hemos obtenido es 〈
a,

b + t

2
− tω

〉
,

pero t = m y el ideal tiene la misma forma que en el caso anterior.
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Recordemos que, si Om es un orden cuadrático, el grupo de clases que
hab́ıamos definido en 4.16 (teniendo en cuenta las observaciones tras 3.29) es
I∗m(O)/P ∗

m(Om), donde I∗m(O) es el grupo de los ideales fraccionales del orden
maximal O1 que se expresan como cocientes de ideales primos con m. El teorema
3.27 nos da un isomorfismo entre I∗m(O) y un subgrupo del grupo de los módulos
con anillo de coeficientes Om (los que se expresan como cociente de ideales de
norma prima con m). Al componerlo con la proyección en el grupo de clases
de similitud (que hemos definido en esta sección) obtenemos un homomorfismo
que es suprayectivo por el teorema anterior. Su núcleo está formado por los
cocientes de ideales a/b primos con m que, vistos como módulos de Om, son
(estrictamente) similares a Om, es decir, tales que existe un γ ∈ K∗ (de norma
positiva) de modo que α/β = γOm o, equivalentemente α = γβ. El teorema
siguiente prueba que (para la similitud no estricta) este núcleo es precisamente
P ∗
m(Om):

Teorema 6.12 Sea K un cuerpo cuadrático y a, b dos ideales de Im(Om) tales
que existe un γ ∈ K∗ (de norma positiva) de modo que a = γb. Entonces
γ = β/α, para ciertos α, β ∈ Om de norma (positiva) prima con m.

Demostración: Recordemos del caṕıtulo III (ver las observaciones tras el
teorema 3.29) que Im(Om) es el conjunto de los ideales de norma prima con m.

Expresemos γ = β/α, para ciertos α, β ∈ O1, el orden maximal de K.
Tenemos que αa = βb, en principio considerando a a y b como ideales de Om,
pero multiplicando por O1 podemos verlos como ideales de O1. Entonces, en
virtud de 3.27, los ideales a y b son primos con m, luego los primos que dividen a
m han de dividir a α y a β con la misma multiplicidad. Aplicando el teorema 3.7
podemos suponer que ninguno de ellos divide a β (y, por consiguiente, tampoco
a α).

En particular (α)+(m) = 1, luego existen α′, ξ ∈ K tales que αα′ = 1+ ξm.
Cambiando α y β por αα′ y βα′ se sigue cumpliendo que (α)+(m) = 1 (es decir,
α es primo con m luego β también), pero además ahora α ∈ 1 + (m) ⊂ Om.
Más aún (α) ∈ Im(Om) (pues su norma es prima con m).

Falta probar que también β ∈ Om. Por el teorema 3.27 podemos escribir
(α)a =

(
(β) ∩ Om

)
b, lo que prueba que (α)a ⊂ b (vistos como ideales en Om).

Ahora la relación αa = βb muestra que βb ⊂ b, es decir, que β es un coeficiente
de b, luego por 3.28 tenemos que β ∈ Om y, al igual que suced́ıa con α, también
(β) ∈ Im(Om).

Por último, si γ tiene norma positiva podemos exigir que α y β también la
tengan (cambiándolos si es preciso por αα y βα).

Aśı pues, tenemos que el grupo de clases de similitud no estricta de los
módulos cuyo anillo de coeficientes es el orden cuadrático Om es isomorfo al
grupo de clases H(Om) = I∗m(O)/P ∗

m(Om). En particular su orden viene dado
por el teorema 4.17.

Más aún, también podemos representar el grupo de clases de similitud es-
tricta de Om como un grupo de clases de ideales del orden maximal. Basta
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definir

P+
m(Om) =

{
(αO1)(βO1)−1 | α, β ∈ Pm(Om), N(α) > 0, N(β) > 0

}
.

(Observemos que Pm(Om) es simplemente el conjunto de los elementos de Om

de norma prima con m).
Hemos probado que el grupo de clases de similitud estricta es isomorfo a

I∗m(O)/P+
m(Om).

La biyección entre el grupo de clases estrictas y el conjunto de clases de
equivalencia estricta de formas determina en éste una estructura de grupo.
Gauss probó que esta estructura está inducida por una operación entre for-
mas cuadráticas que él describió y denominó composición de formas. No vamos
a describir esta composición, pero śı es importante observar qué clase de formas
es el elemento neutro del grupo.

Teorema 6.13 Las formas asociadas a los órdenes cuadráticos son las formas
principales.

Demostración: Dado un entero libre de cuadrados d, los órdenes de
Q

(√
d

)
son, según el teorema 2.24, los módulos Ok = 〈1, kω〉, donde ω es

√
d o(

1 +
√

d
)
/2, según el resto de d módulo 4.

Si d �≡ 1 (mód 4) la forma asociada a Ok es N(x + k
√

d y) = x2 − k2dy2, la
forma principal de discriminante 4k2d.

Si d ≡ 1 (mód 4) y k = 2k′ es par entonces Ok =
〈
1, k′√d

〉
, y la forma

asociada es, como antes la forma principal de discriminante k2d. Si k es impar

Ok =

〈
1,

k + k
√

d

2

〉
=

〈
1,

1 + k
√

d

2

〉
,

y en esta base

N

(
x + y

1 + k
√

d

2

)
= x2 + xy +

1− k2d

4
y2,

que también es la forma principal de discriminante k2d. Observar que todas las
bases que hemos considerado están orientadas.

Gauss llamó clase principal (estricta) de un discriminante dado D a la clase
de equivalencia (estricta) de la forma principal de discriminante D. Acabamos
de probar que los módulos asociados a las formas de la clase principal (estricta)
son exactamente los de la clase de similitud (estricta) del orden de discriminante
D. Por ello esta clase de similitud recibe también el nombre de clase principal
(estricta). En términos de ideales, la clase principal (estricta) está formada por
los ideales principales (generados por elementos de norma positiva). Éste es el
motivo por la que en la teoŕıa general de anillos los ideales generados por un
solo elemento reciben el nombre de ‘ideales principales’.
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Terminamos esta sección con unos breves comentarios sobre los grupos de
clases estrictas. Sabemos que éstos coinciden con los grupos de clases no estric-
tas en los órdenes de cuerpos imaginarios, por lo que podemos restringirnos a
cuerpos reales.

Si O es un orden cuadrático de discriminante D > 0, definimos −1 =
[√

D
]
.

Se trata de la clase estricta que contiene a todos los ideales principales de O

generados por números de norma negativa. Si llamamos 1 = [D] a la clase
principal, tenemos que 1 = −1 si y sólo si la unidad fundamental de O tiene
norma negativa. En cualquier caso se cumple que (−1)2 =

[√
D

]2 = [D] = 1.

Ahora, si
{
[M1], . . . , [Mh]

}
es el grupo de clases no estrictas, eso significa que

todo módulo es similar a uno de los módulos M1, . . . ,Mh, luego todo módulo
es estrictamente similar a uno de los módulos ±M1, . . . ,±Mh, donde −M =√

DM , y el grupo de clases estrictas es
{
±[M1], . . . ,±[Mh]

}
.

Esto implica que el grupo de clases no estrictas es isomorfo al cociente del
grupo de clases estrictas sobre el subgrupo {±1}, ahora bien, es importante
dejar claro que la estructura del grupo de clases estrictas no se deduce de la es-
tructura del grupo de clases no estrictas. Por ejemplo, si sabemos que tres clases
no estrictas cumplen [M ][N ] = [R], no podemos concluir que esto siga siendo
cierto si interpretamos las clases como clases estrictas. Entonces tendremos
que [M ][N ] = [±R], pero el signo concreto tendrá que ser verificado calculando
expĺıcitamente el coeficiente que hace similar a R con MN . En términos de
la teoŕıa de grupos, no es cierto en general que el grupo de clases estrictas sea
producto directo de {±1} por un grupo isomorfo al de clases no estrictas.

6.4 Ecuaciones diofánticas cuadráticas

Consideremos una forma cuadrática completa primitiva f(x, y) de discrimi-
nante D y que factorice en el cuerpo Q

(√
d

)
. Vamos a aplicar la teoŕıa que he-

mos expuesto para determinar las soluciones enteras de la ecuación f(x, y) = m.
Podemos suponer que m > 0 y que f no es definida negativa, o de lo contrario

cambiamos el signo a los dos miembros y obtenemos una ecuación equivalente.
Según hemos visto, la forma admite una representación del tipo

f(x, y) = N(αx + βy)
N(M)

,

donde (α, β) es una base orientada del módulo M . Las soluciones (x, y) de la
ecuación están en correspondencia biuńıvoca con los elementos ξ = αx+βy ∈M
de norma mN(M).

Sea O el anillo de coeficientes de M . Sea C la clase de equivalencia estricta
de M . La clase C está uńıvocamente determinada por f .

Si ξ ∈ M tiene norma mN(M), entonces el módulo a = ξM−1 cumple
aM = ξO ⊂ M , luego a ⊂ O, es decir, a es un ideal de O. Su norma es
N(a) = N(ξ)N(M)−1 = m y se cumple a ∈ C−1.
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Rećıprocamente, si a es un ideal de O contenido en la clase C−1 y de norma
m, existe un ξ de norma positiva tal que a = ξM−1, luego ξ ∈ aM ⊂ M y
N(ξ) = mN(M).

Tenemos, pues, una correspondencia entre los elementos ξ ∈ M de norma
mN(M) y los ideales en C−1 de norma m. Más aún, si tenemos dos parejas
(ξ, a), (ψ, b), entonces a = ξM−1, b = ψM−1, y por consiguiente a = ξψ−1b,
N(ξψ−1) = 1. Consecuentemente a = b si y sólo si ξψ−1 es una unidad de O

(de norma positiva), si y sólo si ξ y ψ son asociados.

Diremos que dos soluciones (x, y) son asociadas si sus números correspon-
dientes son asociados en el sentido de 2.18. Resumimos en un teorema lo que
hemos obtenido:

Teorema 6.14 Sea O un orden cuadrático de discriminante D. Sea f una
forma cuadrática de discriminante D y sea C la clase de similitud estricta de
ideales de O asociada a f . Entonces la ecuación f(x, y) = m tiene solución
entera, para un m > 0 si y sólo si la clase C−1 contiene ideales de norma m.

Ahora probaremos que es fácil encontrar los ideales de norma m. Nos faltará
un método para seleccionar los que están en C−1, o sea, los que son estrictamente
similares a M−1 (o equivalentemente a M).

Sea a un ideal del orden O de norma m (con anillo de coeficientes O). Sea k el
menor número natural no nulo contenido en a. Entonces a = 〈k, kγ〉 = k 〈1, γ〉.
El número γ está determinado salvo signo y adición de enteros racionales. Será
único si lo elegimos de forma que γ = x+y

√
d con y > 0, −1/2 < x ≤ 1/2. Con

la notación de 6.2 se cumple γ =
(
−b +

√
D

)
/2a con −a ≤ b < a.

Puesto que O = 〈1, aγ〉 y a ⊂ O, concluimos que a | k, o sea, k = as para un
entero racional s > 0.

Por otro lado m = N(a) = k2(1/a) = as2 y tenemos a = as 〈1, γ〉.
Vamos a probar que la representación a = as 〈1, γ〉 es única si exigimos que

a, s y γ cumplan las propiedades siguientes:

1. La parte imaginaria (o irracional) de γ es positiva.

2. La parte racional de γ está en ]−1/2, 1/2].

3. m = as2, a, s > 0.

En efecto, si a′, s′, γ′ determinan el mismo ideal a, o sea, si se cumple
as 〈1, γ〉 = a′s′ 〈1, γ′〉, entonces as = a′s′, pues ambos son el mı́nimo natural
contenido en a (usando 1). De aqúı que 〈1, γ〉 = 〈1, γ′〉 y por 1) y 2) γ = γ′.

Por 3) y usando as = a′s′ deducimos que s = s′, luego a = a′.

Ahora, dado m, tomemos a y s de modo que m = as2 (hay un número finito
de posibilidades). Con ellos buscamos b y c tales que b2−4ac = D, (a, b, c) = 1,
−a ≤ b < a y construimos γ =

(
−b +

√
D

)
/2a.

Es claro que a = as 〈1, γ〉 es un ideal de norma m de su anillo de coeficientes
O = 〈1, aγ〉, de discriminante D (sólo hay que notar que a ⊂ O). De este modo
los encontramos todos.
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En los órdenes maximales (o en órdenes cualesquiera cuando buscamos idea-
les de norma prima con el ı́ndice) es más fácil plantear todas las factorizaciones
posibles en ideales primos y encontrar tales primos factorizando los primos ra-
cionales.

Después hemos de plantear la igualdad a = ξM−1, descartar los ideales para
los que no hay solución y encontrar los valores de ξ cuando la hay. Esto es
precisamente lo que nos falta resolver.

Ejemplo Consideremos la ecuación 17x2 +32xy+14y2 = 9. Su discriminante
es D = 72 = 4 · 9 · 2, luego está asociada a un módulo del orden O3 de Q

(√
2

)
.

Para calcular este módulo factorizamos la forma cuadrática:

17x2 + 32xy + 14y2 =

(
x +

16 + 3
√

2
17

y

) (
x +

16− 3
√

2
17

y

)

=
1
17

(
17x +

(
16 + 3

√
2

)
y
)(

17x +
(
16− 3

√
2

)
y
)
.

Por lo tanto podemos tomar M =
〈
17, 16 + 3

√
2

〉
, de norma 17. Claramente

entonces

M−1 =
1
17

〈
17, 16− 3

√
2
〉

=

〈
1,

16− 2
√

2
17

〉
.

Ahora buscamos todos los ideales de O3 de norma 9. Esto significa buscar los
números (a, b, c) que cumplen 9 = as2, b2 − 4ac = 72, (a, b, c) = 1, −a ≤ b < a.

Las posibilidades para a son a = 1, 9. Si a = 1 ha de ser b = −1, 0. Vemos
que la ecuación 1− 4c = 72 es imposible, mientras que b = 0 da (1, 0,−18).

Si a = 9, de la ecuación b2 − 36c = 72 se sigue 6 | b, luego b = 6k con
k2 − c = 2, y k = −1, 0, 1.

En total obtenemos las soluciones (9,−6,−1), (9, 0,−2), (9, 6,−1).
Las soluciones halladas corresponden a los cuatro ideales

3
〈
1, 3
√

2
〉
, 9

〈
1,
±1 +

√
2

3

〉
, 9

〈
1,
√

2
3

〉
.

Sabemos, pues, que las soluciones (x, y) de la ecuación (salvo asociación) se
corresponden con los números

ξ = 17x +
(
16 + 3

√
2

)
y (6.2)

tales que a = ξM−1, donde a recorre los cuatro ideales que hemos obtenido.
Calcular los valores de ξ presupone decidir si existen, es decir, presupone un

algoritmo para determinar si dos módulos (a y M−1 en este caso) son estricta-
mente similares.

En esta dirección probamos el teorema siguiente:
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Teorema 6.15 Los módulos 〈1, γ〉 y 〈1, γ′〉 (correspondientes a un mismo orden
cuadrático real) son similares si y sólo si γ y γ′ son equivalentes en el sentido
de 5.11.

Demostración: Si existe un número ξ tal que 〈1, γ〉 = ξ 〈1, γ′〉, entonces
ξγ′ = pγ + q, ξ = rγ + s, donde p, q, r, s son enteros racionales tales que
ps− qr = ±1. Dividiendo ambas ecuaciones obtenemos

γ′ =
pγ + q

rγ + s
,

con ps− qr = ±1.
Rećıprocamente, si se cumple esto

〈1, γ′〉 =
1

rγ + s
〈rγ + s, pγ + q〉 =

1
rγ + s

〈1, γ〉 .

En el caṕıtulo anterior vimos que dos números reales son equivalentes si y sólo
si sus fracciones continuas son finalmente iguales, lo que resuelve completamente
el problema de la similitud de ideales y módulos de un cuerpo real. Notemos que
el teorema no nos dice si los módulos son estrictamente similares, pero esto se
comprueba calculando expĺıcitamente el número que da la similitud (si no hay
unidades de norma negativa y éste tiene norma negativa, entonces los módulos
no son estrictamente similares). Lo ilustramos continuando con nuestro ejemplo:

Calculamos la unidad fundamental del orden O3 = Z
[
3
√

2
]
. Para ello desa-

rrollamos 3
√

2 =
[
4, 4, 8

]
y la unidad fundamental resulta ser ε = 17 + 12

√
2,

de norma 1. Por lo tanto la similitud estricta no coincide con la no estricta.
Veamos ahora si los módulos 3

〈
1, 3
√

2
〉

y
〈
1, 16−3

√
2

17

〉
son similares. Calcu-

lamos:

3
√

2 =
[
4, 4, 8

]
,

16− 3
√

2
17

=
[
0, 1, 2, 4, 8

]
.

Como las fracciones son finalmente idénticas los números son equivalentes,
concretamente, si llamamos α =

[
4, 8

]
tenemos que 3

√
2 = [4, α] = 4 + 1/α

mientras
16− 3

√
2

17
= [0, 1, 2, α] =

1

1 +
1

2 +
1
α

.

A partir de aqúı se obtiene enseguida que

16− 3
√

2
17

=
3
√

2− 2
3
√

2− 1
,

y el teorema anterior nos da entonces que〈
1,

16− 3
√

2
17

〉
=

1
3
√

2− 1

〈
1, 3
√

2
〉
,
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luego 3
〈
1, 3
√

2
〉

= (9
√

2 − 3)M−1, pero el número ξ = 9
√

2 − 3 tiene norma
negativa, luego no da una solución.

Consideramos ahora el ideal 9
〈
1, 1+

√
2

3

〉
. En primer lugar calculamos

γ =
1 +

√
2

3
=

[
0, 1, 4, 8

]
.

De aqúı se sigue fácilmente que

16− 3
√

2
17

=
γ + 1
2γ + 1

,

luego

9

〈
1,

1 +
√

2
3

〉
= 9

(
2

1 +
√

2
3

+ 1

)
M−1 =

(
15 + 6

√
2

)
M−1.

El número ξ = 15 + 6
√

2 tiene norma 153, luego es válido y, según (6.2)
proporciona la solución (−1, 2).

Con el ideal 9
〈
1, 1−

√
2

3

〉
llegamos a ξ = 21 − 12

√
2, también de norma 153

y que proporciona la solución (5,−4). El último ideal se descarta igual que el
primero.

Con esto concluimos que las soluciones de la ecuación dada son de la forma
(xn, yn), de modo que

±
(
15 + 6

√
2

)(
17 + 12

√
2

)n = 17xn +
(
16 + 3

√
2

)
yn,

o bien
±

(
21− 12

√
2

)(
17 + 12

√
2

)n = 17xn +
(
16 + 3

√
2

)
yn,

para cada entero racional n.
Dado que los dos valores de ξ que hemos hallado tienen la misma norma,

resulta razonable investigar su cociente. Es fácil ver que

21− 12
√

2 =
(
3 + 2

√
2

)(
15 + 6

√
2

)
.

El número 3 + 2
√

2 es una unidad, pero no del orden O3, por lo que las dos
soluciones que hemos hallado no son asociadas.

Si observamos que 17 + 12
√

2 =
(
3 + 2

√
2

)2 resulta que podemos expresar
las soluciones de la ecuación como

±
(
15 + 6

√
2

)(
3 + 2

√
2

)2n = 17xn +
(
16 + 3

√
2

)
yn,

y
±

(
15 + 6

√
2

)(
3 + 2

√
2

)2n+1 = 17xn +
(
16 + 3

√
2

)
yn,

o más sencillamente,

±
(
15 + 6

√
2

)(
3 + 2

√
2

)n = 17xn +
(
16 + 3

√
2

)
yn,
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Nos falta resolver el problema de la similitud de módulos en cuerpos imagina-
rios. Una forma sencilla de abordarlo es en términos de formas cuadráticas. Las
formas que nos interesan son las definidas positivas. Sea, pues, ax2 + bxy + cy2

una forma definida positiva. Esto significa que a, c > 0 y D = b2 − 4ac < 0.
El cambio de variables x = y′, y = −x′ intercambia los coeficientes a y c

mientras que cambia b por −b, luego nos permite pasar a una forma equivalente
en la que a ≤ c.

Por otra parte, el cambio x = x′ ± y′, y = y′ la convierte en

ax2 + (b± 2a)xy + (a± b + c)y2,

con lo que aplicando varias veces este cambio podemos pasar a una forma equi-
valente en la que |b| ≤ a. Con ello podemos perder la condición a ≤ c, pero
podemos repetir el proceso nuevamente, y tras un número finito de pasos (puesto
que cada vez el valor de a se hace menor) llegamos a una forma equivalente a
la primera que cumple simultáneamente |b| ≤ a ≤ c. Más aún, si b = −a el
segundo cambio nos permite hacer b = a sin cambiar c, y si a = c entonces el
primer cambio nos permite obtener b ≥ 0. La definición y el teorema siguientes
recogen lo que hemos obtenido:

Definición 6.16 Una forma cuadrática definida positiva ax2 + bxy + cy2 está
reducida si cumple −a < b ≤ a < c o bien 0 ≤ b ≤ a = c.

Teorema 6.17 Toda forma cuadrática definida positiva es estrictamente equi-
valente a una forma reducida.

Más aún, tenemos un algoritmo para encontrar dicha forma. Observar que
las formas principales están reducidas. El teorema siguiente resuelve el problema
de la similitud de módulos en cuerpos imaginarios:

Teorema 6.18 Dos formas reducidas son estrictamente equivalentes si y sólo
si son iguales.

Demostración: Sea f(x, y) = ax2 + bxy + cy2 una forma reducida. Si
0 < |y| ≤ |x| entonces

f(x, y) ≥ ax2 − |bxy|+ cy2 = |x|(a|x| − |by|) + c|y|2

≥ |x|2(a− |b|) + c|y|2 ≥ a− |b|+ c.

Se obtiene el mismo resultado si suponemos 0 < |x| ≤ |y|.
Puesto que a− |b|+ c se alcanza en (1,±1), tenemos que esta cantidad es el

mı́nimo de f sobre pares (x, y) donde x �= 0, y �= 0.
Si consideramos tan sólo pares (x, y) de enteros primos entre śı, los únicos

que falta por considerar aparte de los que tienen componentes no nulas son
(1, 0) y (0, 1), donde f toma los valores a y c. Por lo tanto, el conjunto de las
imágenes que toma f sobre tales pares comienza con a ≤ c ≤ a− |b|+ c, . . .

Es fácil ver que un cambio de variables de determinante 1 biyecta los pares
de números enteros primos entre śı, luego si dos formas cuadráticas reducidas de
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coeficientes (a, b, c) y (a′, b′, c′) son estrictamente equivalentes, ambas alcanzan
el mismo mı́nimo sobre tales pares, es decir, a = a′.

Si a = b = c, entonces la primera forma toma el valor a al menos sobre tres
pares de enteros primos entre śı. Si a = c �= b (y entonces c < a−|b|+c) lo toma
sólo dos veces y si a < c lo toma sólo una vez. Lo mismo le ocurre a la segunda
forma, luego si a = b = c tenemos que a′ = b′ = c′ y ambas son la misma forma,
si a = c �= b tenemos a′ = c′ �= b′, y si a < c entonces también a′ < c′, y en este
último caso c y c′ son ambos iguales al mı́nimo valor distinto de a que toman
ambas formas sobre pares de enteros primos entre śı. En cualquier caso tenemos
c = c′.

Finalmente, si a = c �= b o bien a < c, concluimos por el mismo argumento
que también a− |b|+ c = a′ − |b′|+ c′, y aśı en cualquier caso b = ±b′.

Vamos a probar que si b = −b′ entonces b = 0. En el caso a = c es inmediato
por la definición de forma reducida (seŕıa, b ≥ 0, b′ ≥ 0), luego suponemos a < c.

No puede ser b = a porque entonces b′ = −a′, en contra de la definición
de forma reducida. Aśı pues, −a < b < a < c. Llamemos f a la primera
forma y f ′ a la segunda. Digamos que f(x, y) = f ′(px + qy, rx + sy). Entonces
a = f(1, 0) = f ′(p, r), pero f ′ sólo toma el valor a en (±1, 0), luego p = ±1 y
r = 0. Como ps− qr = 1, ha de ser s = ±1. Igualmente c = f(0, 1) = f ′(q, s),
luego q = 0. En definitiva, f(x, y) = f ′(±x,±y), de donde b = b′ = 0.

De este modo, para comprobar si dos módulos son similares basta reducir sus
formas cuadráticas asociadas y ver si coinciden. En la sección siguiente veremos
un ejemplo.

6.5 Cálculo de grupos de clases

Las técnicas que acabamos de desarrollar nos permiten calcular fácilmente
los grupos de clases cuadráticos. Veamos algunos casos:

Ejemplo Calculemos el grupo de clases no estrictas del orden maximal del
cuerpo Q

(√
82

)
. Como se trata de un orden maximal podemos aplicar el teo-

rema 4.14 y concluir que todo ideal es semejante a otro de norma a lo sumo 9.
Hemos de buscar todos los ideales de norma menor o igual que 9.

Buscaremos primero los ideales primos. Puesto que x2 − 82 ≡ x2 (mód 2),
el teorema 3.16 nos da la factorización 2 =

(
2,
√

82
)2, luego hay un único ideal

de norma 2.
Por otra parte, x2 − 82 ≡ x2 − 1 ≡ (x + 1)(x− 1) (mód 3), luego

3 = (3,
√

82− 1)(3,
√

82 + 1)

y por lo tanto hay dos ideales de norma 3.
Para el 5 resulta que x2 − 82 ≡ x2 − 2 (mód 5) es irreducible, luego 5 es

primo y no hay ideales de norma 5. Lo mismo ocurre con el 7.
En total hemos encontrado los siguientes ideales primos:

p =
(
2,
√

82
)
, q = (3,

√
82− 1), r = (3,

√
82 + 1).
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Con ellos se forman los ideales siguientes de norma menor o igual que 9:

1, p, p2, p3, q, q2, r, r2, pq, pr, qr.

Sin embargo sabemos que p2 = 2 es principal, aśı como qr = 3, luego la lista
de representantes de clases de similitud se reduce a

1, p, q, q2, r, r2, pq, pr.

Para estudiar las relaciones de similitud entre ellos necesitamos conocer ba-
ses. El teorema 6.9 nos da que

p =
〈
2,
√

82
〉

q =
〈
3, 1−

√
82

〉
, r =

〈
3, 1 +

√
82

〉
.

(estos ideales están contenidos en p, q y r y tienen la misma norma).
Aśı pues,

1 =
〈
1,
√

82
〉
, p = 2

〈
1,
√

82
2

〉
, q = 3

〈
1,

1−
√

82
3

〉
, r = 3

〈
1,

1 +
√

82
3

〉
.

Los desarrollos en fracción continua son
√

82 =
[
9, 18

]
,

√
82
2

=
[
4, 1, 1, 8

]
,

1−
√

82
3

=
[
−3, 3, 5, 1, 2

]
,

1 +
√

82
3

=
[
3, 2, 1, 5

]
.

Vemos, pues, que ningún par es similar. Estudiemos ahora q2, que es similar
a 〈

1,
1−

√
82

3
,
83− 2

√
82

3

〉
=

〈
1,

1−
√

82
9

〉
.

Calculamos
1−

√
82

9
=

[
−1, 9, 1, 1, 8

]
,

luego [q2] = [p].
Podŕıamos seguir estudiando los ideales, pero las reglas elementales de la

teoŕıa de grupos nos permiten acabar sin más cálculos. En efecto, puesto que
[p] tiene orden 2 y [q]2 = [p], concluimos que [q] tiene orden 4. Si eliminamos q2

de la lista de representantes nos quedan siete ideales, luego h ≤ 7, pero como
hay una clase de orden 4 ha de ser 4 | h, lo que obliga a que h = 4. Sabemos que
las cuatro clases [1], [p], [q], [r] son distintas, luego [q]3 = [r] y esto ya determina
el producto de cualquier par de clases. La unidad fundamental del orden tiene
norma negativa, luego el grupo de clases estrictas es el mismo.
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Ejemplo Calculamos el número de clases del cuerpo Q
(√
−17

)
. Éste coincide

con el número de formas reducidas de discriminante D = −56. Para hallarlas
todas notamos en general que −D = 4ac− b2 ≥ 3ac, luego a, |b|, c ≤ −D/3.

En este caso buscamos coeficientes menores o iguales que 18. Los únicos
valores posibles son (3,±2, 5), (2, 0, 7), (1, 0, 14), luego el número de clases es 4.

Ejemplo Vamos a calcular el grupo de clases asociado al orden maximal del
cuerpo Q

(√
−161

)
.

En general conviene observar que si tenemos un ideal en la forma indicada
por el teorema 6.9, es decir, a = 〈a, u + mω〉, donde a, u son enteros racionales
y N(u + mω) = av, entonces la forma asociada es

N(ax + (u + mω)y)
a

= ax2 + Tr(u + mω)xy + vy2.

Tenemos D = −644 y por el teorema 4.14 todo ideal es similar a uno de
norma menor o igual que 16. El comportamiento de los primos menores que 16
es el siguiente:

2 = 22
0, 3 = 31 32, 5 = 51 52, 7 = 71

0, 11 = 111 112.

Los ideales de norma menor o igual que 16 son (eliminando los que obvia-
mente son similares):

1, 20, 31, 32, 51, 52, 20 31, 20 32, 70, 32
1, 32

2, 20 51,

20 52, 111, 112, 20 70, 31 51, 31 52, 32 51, 32 52.

El ideal 1 corresponde a la forma principal x2 + 161y2.
El ideal 20 =

〈
2, 1 +

√
−161

〉
se corresponde con

N
(
2x +

(
1 +

√
−161

)
y
)
/2 = 2x2 + 2xy + 81y2,

que ya está reducida. Como no es la forma principal, el ideal 20 no es principal.
El orden de la clase [20] es obviamente 2.

Consideremos los ideales 31 =
〈
3, 1 +

√
−161

〉
, 32 =

〈
3,−1 +

√
−161

〉
, cuyas

formas asociadas son, respectivamente, 3x2 +2xy+54y2 y 3x2−2xy+54y2, que
ya están reducidas. Como no son la forma principal, ninguno de estos ideales
es principal.

Vamos a calcular el orden de [31]. Se comprueba fácilmente que

32
1 =

〈
9, 3 + 3

√
−161,−160 + 2

√
−161

〉
=

〈
9, 1 +

√
−161

〉
,

luego la forma asociada es 9x2 + 2xy + 18y2, que ya está reducida, por lo que el
ideal tampoco es principal.

Ahora 34
1 =

〈
81, 9 + 9

√
−161,−160 + 2

√
−161

〉
=

〈
81, 1 +

√
−161

〉
, y su

forma es 81x2 + 2xy + 2y2, que se reduce a 2x2 + 2xy + 81y2. Ésta es la forma
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asociada a 20, luego [31]4 = [20]. Por lo tanto [31]8 = [20]2 = 1 y el orden de
[31] resulta ser 8.

Como el número de clases es a lo sumo 20, en realidad ha de ser 8 o bien
16. Ahora bien, si estudiamos 70 =

〈
7,
√
−161

〉
vemos que su forma asociada

es 7x2 + 23y2, distinta de la principal y de la asociada a [20]. Por lo tanto [70]
es una clase de orden 2 que no es potencia de [31] (la única potencia de orden
2 es [20]). Por consiguiente el número de clases es 16 y el grupo de clases está
generado por [31] y [70].

Ejercicio: Calcular la tabla del grupo de clases del ejemplo anterior.

Ejemplo Consideremos ahora K = Q
(√
−14

)
. Vamos a calcular los grupos

de clases de los órdenes O1 y O3 de K, aśı como el epimorfismo del primero en
el segundo. Puesto que la mayor parte de las comprobaciones son mecánicas,
nos limitaremos a exponer los resultados y esbozar cómo pueden obtenerse.

x2 + 126y2 1 1 x2 + 14y2

9x2 + 14y2
(
23, 9 + 3

√
−14

) (
23, 3−

√
−14

)
7x2 + 18y2

(
7, 3
√
−14

) (
7,
√
−14

)
2x2 + 7y2

2x2 + 63y2
(
2, 3
√
−14

) (
2,
√
−14

)
5x2 − 4xy + 26y2

(
5, 3 + 3

√
−14

) (
5, 1 +

√
−14

)
3x2 + 2xy + 5y2

10x2 − 4xy + 13y2
(
13, 2− 3

√
−14

) (
13, 5−

√
−14

)
5x2 + 4xy + 26y2

(
5, 3− 3

√
−14

) (
5, 1−

√
−14

)
3x2 − 2xy + 5y2

10x2 + 4xy + 13y2
(
13, 2 + 3

√
−14

) (
13, 5 +

√
−14

)
Es fácil obtener todas las formas cuadráticas reducidas de discriminante

−4 · 14. Resultan ser las cuatro que aparecen en la última columna de la tabla.
Esto nos dice que el número de clases de Q

(√
−14

)
es h = 4. El teorema 4.18

nos da entonces que el número de clases de O3 es h3 = 8.
Seguidamente vamos factorizando primos. Consideremos el caso del 2:

• Claramente 2 = p2, donde p =
(
2,
√
−14

)
=

〈
2,
√
−14

〉
.

• La forma cuadrática asociada es 2x2 + 7y2, que ya está reducida, luego
situamos el ideal en la tercera columna, al lado de esta forma.

• Calculamos p ∩ O3 =
〈
2, 3
√
−14

〉
y lo situamos en la segunda columna.

• Calculamos la forma cuadrática asociada a este ideal, que ya está reducida
y es 2x2 + 63y2. La situamos en la primera columna.

Nos saltamos el 3, pues no podemos bajarlo a O3. Repetimos el proceso con
el 5, el 7 y el 13 (el 11 se conserva primo). Con ello completamos toda la tabla
salvo la segunda fila. Los primos siguientes nos dan formas ya calculadas en la
primera fila. Podemos seguir tanteando hasta encontrar el 23 o bien observar
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que necesitamos un ideal similar a 1, por lo que queremos un primo representable
por la forma x2 + 14y2. Entonces no es dif́ıcil pensar en 23.

Con esto hemos encontrado ocho ideales de O3 cuyas formas reducidas son
todas distintas, luego representan las ocho clases posibles. Cada uno se corres-
ponde con el ideal de O1 que está a su lado en la tercera columna. Éstos últimos
son similares por parejas y representan las cuatro clases de ideales de O1.

Ejercicio: Comprobar que el grupo de clases de O1 en el ejemplo anterior es ćıclico
y está generado por cualquiera de los divisores de 5. Aśı mismo, el grupo de clases de
O3 es de tipo C4 × C2, y dos generadores son un divisor de 5 y el divisor de 2.

Ejercicio: Comprobar que existen tres clases de equivalencia no estricta de formas
cuadráticas de discriminante −56.





Caṕıtulo VII

Números p-ádicos

En su trabajo sobre el último teorema de Fermat, en un momento dado Kum-
mer se encontró con una ecuación entre enteros ciclotómicos donde las incógnitas
estaban en los exponentes. Si se hubiera tratado de una ecuación ordinaria, lo
natural hubiera sido tomar logaritmos, de forma que se volviera lineal, pero esto
no teńıa sentido en el caso que le ocupaba. Sin embargo Kummer encontró un
artificio de cálculo que le dio un resultado similar. Básicamente se trataba de
considerar las derivadas logaŕıtmicas de ciertos polinomios mı́nimos. En ésta y
otras ocasiones, Kummer hab́ıa estado rozando un concepto muy profundo. To-
dos sus cálculos se expresan de forma clara y natural en términos de los números
p-ádicos, descubiertos más tarde por Kurt Hensel. A partir del trabajo de Hel-
mut Hasse, alumno de Hensel, los números p-ádicos se situaron en el núcleo de
la teoŕıa algebraica de números del siglo XX. Nosotros no entraremos a explicar
el porqué de su importancia a niveles más avanzados. Puesto que los vamos a
necesitar más adelante para exponer razonablemente los resultados de Kummer
sobre el último teorema de Fermat, los introducimos ahora y aśı aprovechamos
la ocasión para dar un enfoque moderno y elegante de la parte de la teoŕıa de
Gauss sobre formas cuadráticas que todav́ıa nos queda por estudiar.

Los números p-ádicos presentan caracteŕısticas comunes con los números
reales y los números racionales. Trataremos de motivar su definición mediante
un ejemplo. Consideremos la igualdad x2 = 2. No existe ningún número racional
que cumpla esta ecuación, pero podemos encontrar aproximaciones racionales
todo lo precisas que queramos:

1
1, 4
1, 41
1, 414
. . . . . .

Ahora fijamos un número primo, por ejemplo p = 7, y vamos a buscar
aproximaciones enteras “módulo 7”. Las soluciones de x2 ≡ 2 (mód 7) son
x0 = ±3. Quedémonos de momento con x0 = 3. El cuadrado de 3 no es 2,
pero “se parece” a 2 en el sentido de que 9 y 2 son congruentes módulo 7.

157
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Obtendremos una aproximación mejor si hacemos x2 ≡ 2 (mód 72). Puesto
que esta congruencia implica la anterior, una solución ha de ser de la forma
x1 = 3 + 7t. Se ha de cumplir además que

(3 + 7t)2 ≡ 2 (mód 72),
9 + 6 · 7t + 72t2 ≡ 2 (mód 72),

7(1 + 6t) ≡ 0 (mód 72),
(1 + 6t) ≡ 0 (mód 7)

t ≡ 1 (mód 7).

Aśı pues, x1 = 3 + 1 · 7 es una mejor aproximación a
√

2 módulo 7 en el
sentido de que su cuadrado es congruente con 2 módulo 7 y módulo 72.

El mismo razonamiento nos lleva a x2 = 3 + 1 · 7 + 2 · 72, cuyo cuadrado es
congruente con 2 módulo 73. Las aproximaciones se pueden afinar tanto como
se quiera. Los términos siguientes son

3 + 1 · 7 + 2 · 72 + 6 · 73 + 1 · 74 + 2 · 75 + 1 · 76 + 2 · 77 + 4 · 78 + · · ·
Nuestra intención es definir los números heptádicos de modo que esta serie
infinita sea uno de ellos, una ráız cuadrada de 2 heptádica, de modo que cada
suma parcial se parece a

√
2 en el sentido de que sus cuadrados son congruentes

con 2 módulo más potencias de 7 cada vez.
En términos topológicos, la idea subyacente es que queremos considerar

“próximos” dos números enteros si su diferencia es divisible entre muchas po-
tencias de 7.
Ejercicio: Calcular los primeros términos de una serie de potencias de 7 similar a la
anterior y que converja a la otra ráız cuadrada de 2 heptádica, la que comienza por 4.

Para tratar estas ideas en el contexto adecuado debemos introducir algunos
conceptos básicos.

7.1 Valores absolutos

Definición 7.1 Sea K un cuerpo. Un valor absoluto en K es una aplicación
| | : K −→ [0,+∞[ que cumpla las propiedades siguientes:

1. |α| = 0 si y sólo si α = 0,

2. |α + β| ≤ |α|+ |β|,
3. |αβ| = |α||β|.
Es obvio que el valor absoluto usual en Q, R o C es un valor absoluto en el

sentido de la definición anterior. En general, la restricción de un valor absoluto
a un subcuerpo es un valor absoluto en dicho subcuerpo.

Por otro lado todo cuerpo K admite al menos un valor absoluto: el llamado
valor absoluto trivial, dado por

|α|0 =
{

0 si α = 0
1 si α �= 0

Veamos ahora los hechos y conceptos básicos en torno a los valores absolutos:
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Propiedades elementales Las propiedades 1) y 3) de la definición 7.1 afir-
man que todo valor absoluto en un cuerpo K es un homomorfismo entre el
grupo multiplicativo K∗ de K y el grupo ]0,+∞[. En particular esto implica
que |1| = 1 y |α−1| = |α|−1. Por lo tanto, |−1|2 = |(−1)2| = 1, luego |−1| = 1.
Más en general, |−α| = |α|. El mismo argumento empleado en R con el valor
absoluto usual prueba en general que |α− β| ≥

∣∣|α| − |β|∣∣.
Ejercicio: Probar que un cuerpo finito no admite más valor absoluto que el trivial.

Cuerpos métricos Todo valor absoluto en un cuerpo induce en éste una
distancia (en el sentido topológico) dada por d(α, β) = |α − β|. Un cuerpo
métrico es un par (K,T), donde K es un cuerpo y T es una topoloǵıa en K
determinada por un valor absoluto.

Quizá el lector hubiera esperado que hubiéramos definido un cuerpo métrico
como un par formado por un cuerpo y un valor absoluto. Efectivamente, ésta
es la definición que adoptan muchos textos, pero preferimos la que hemos dado
porque enfatiza un hecho importante, y es que todos los conceptos que vamos
a introducir dependen exclusivamente de la topoloǵıa, y no del valor absoluto
que la induce. Dado un cuerpo métrico K, llamaremos valores absolutos de K
a los valores absolutos que inducen la topoloǵıa de K.

Los mismos argumentos que se emplean en el caso de los números reales
y complejos sirven para demostrar que la suma y el producto son aplicaciones
continuas en un cuerpo métrico, aśı como cualquiera de sus valores absolutos,
los polinomios, la función 1/x (salvo en 0), etc.

Equivalencia Diremos que dos valores absolutos en un mismo cuerpo K son
equivalentes si inducen la misma topoloǵıa en K. El teorema siguiente prueba
que dos valores absolutos equivalentes han de ser muy parecidos, lo que explica
por qué nunca necesitamos fijar un valor absoluto concreto.

Teorema 7.2 Sean | |1 y | |2 dos valores absolutos en un mismo cuerpo K.
Las afirmaciones siguientes son equivalentes:

1. | |1 y | |2 son equivalentes.

2. Para todo α ∈ K, se cumple |α|1 < 1 si y sólo si |α|2 < 1.

3. Para todo α, β ∈ K, se cumple |α|1 < |β|1 si y sólo si |α|2 < |β|2.

4. Existe un número real ρ > 0 tal que para todo α ∈ K, |α|1 = |α|ρ2.

Demostración: 1) ⇒ 2), pues |α| < 1 equivale a que ĺım
n

αn = 0.

2) ⇒ 3) es evidente. Para probar 3) ⇒ 1) observamos que el conjunto de
bolas abiertas

{B(α, |β|) | α, β ∈ K,β �= 0}
forman una base de K. En efecto, si K es trivial es inmediato, y si no lo es
existe un β ∈ K no nulo con |β| < 1 (existe un elemento no nulo que cumple
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|β| �= 1 y si es necesario tomamos su inverso), con lo que los radios |βn| son
arbitrariamente pequeños. La propiedad 3) implica entonces que las topoloǵıas
inducidas por los dos valores absolutos tienen una misma base.

4) ⇒ 2) es evidente. Sólo falta demostrar 4) a partir de las propiedades
anteriores.

Si ambos valores absolutos son el trivial no hay nada que probar. Supon-
gamos que el primero no es trivial, con lo que existe un α ∈ K no nulo tal
que |α|1 < 1. Sea β cualquier elemento no nulo de K que cumpla |β|1 < 1.
Un par de números naturales (m,n) cumple |αm|1 < |βn|1 si y sólo si cumple
|αm|2 < |βn|2. Pero |αm|1 < |βn|1 equivale a |α|m1 < |β|n1 , y a su vez a que

log |α|1
log |β|1

>
n

m
.

Como lo mismo vale para | |2 concluimos que todo número racional r cumple

r >
log |α|1
log |β|1

si y sólo si r >
log |α|2
log |β|2

,

La densidad de Q en R implica que los cocientes de logaritmos son iguales, luego
para todo β ∈ K con |β|1 < 1 se cumple

ρ =
log |α|1
log |α|2

=
log |β|1
log |β|2

,

donde ρ es una constante positiva, ya que |α|1 < 1 implica que |α|2 < 1. De
aqúı se sigue que |β|1 = |β|ρ2 para todo β de K con |β|1 < 1. Tomando inversos
también vale si |β|1 > 1, pero la equivalencia implica que si |β|1 = 1 también
|β|2 = 1, luego también se cumple la igualdad.

Es importante notar que la propiedad 4 del teorema anterior no afirma que
si | | es un valor absoluto en un cuerpo K y ρ > 0 entonces | |ρ sea un valor
absoluto equivalente. Lo será si de hecho es un valor absoluto, pero puede no
serlo. Las propiedades 1) y 3) de la definición se cumplen sin duda, pero la 2)
puede fallar. A este respecto es útil el resultado siguiente:

Teorema 7.3 Si | | es un valor absoluto en un cuerpo K y 0 < ρ ≤ 1, entonces
| |ρ es un valor absoluto equivalente al dado.

Demostración: La única propiedad no evidente es la desigualdad triangu-
lar, pero si |α| ≥ |β| > 0, entonces

|α + β|ρ = |α|ρ |1 + β/α|ρ ≤ |α|ρ
(
1 + |β/α|

)ρ
≤ |α|ρ

(
1 + |β/α|

)
≤ |α|ρ

(
1 + |β/α|ρ

)
= |α|ρ + |β|ρ.
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Isometŕıas e isomorfismos topológicos Sean k y K dos cuerpos dotados
de sendos valores absolutos | |k y | |K . Una isometŕıa de k en K respecto a
los valores absolutos indicados es un monomorfismo de cuerpos φ : k −→ K tal
que

∣∣φ(α)
∣∣
K

= |α|k, para todo α ∈ k.
Un isomorfismo topológico φ : k −→ K entre dos cuerpos métricos es una

aplicación que es a la vez isomorfismo y homeomorfismo. Dejamos al lector la
prueba del teorema siguiente:

Teorema 7.4 Sea φ : k −→ K un isomorfismo topológico entre dos cuerpos
métricos. Para cada valor absoluto de k existe un único valor absoluto de K
de modo que φ es una isometŕıa entre ambos. Esta correspondencia define una
biyección entre los valores absolutos de k y los de K.

La propiedad arquimediana Un principio básico del cálculo infinitesimal
es que si x e y son dos cantidades positivas existe un número natural n tal que
y < nx (o si se prefiere, tal que y/n < x). La primera referencia conocida de
esta propiedad data del siglo IV a.C. y se debe a Eudoxo. Sin embargo, hoy se
la conoce como propiedad arquimediana, por el uso sistemático que Arqúımedes
hizo de ella en su trabajo. La propiedad arquimediana puede expresarse en
términos de valores absolutos arbitrarios:

Un valor absoluto | | en un cuerpo K es arquimediano si para todo α ∈ K
no nulo y todo número real r > 0 existe un número natural n tal que |nα| > r.

La propiedad 4) del teorema 7.2 implica que un valor absoluto es arquime-
diano si y sólo si lo es cualquier otro equivalente a él. Por ello podemos decir que
un cuerpo métrico es arquimediano si lo es cualquiera de sus valores absolutos.

Puede probarse que los únicos cuerpos métricos arquimedianos son los sub-
cuerpos de C, por lo que la teoŕıa que estamos desarrollando sólo aporta cosas
nuevas cuando se aplica a cuerpos no arquimedianos. Aparentemente la mera
propiedad — puramente negativa — de no ser arquimediano es muy débil. Sin
embargo el teorema siguiente prueba lo errónea que resulta dicha impresión.

Teorema 7.5 Sea K un cuerpo métrico y | | cualquiera de sus valores absolu-
tos. Las afirmaciones siguientes son equivalentes:

1. K no es arquimediano.

2. Para todo número natural n, se cumple |n| ≤ 1.

3. Para todo α, β ∈ K, se cumple |α + β| ≤ máx
{
|α|, |β|

}
.

4. Para todo número real ρ > 0 se cumple que | |ρ es un valor absoluto
(equivalente al dado).

Demostración: 1) ⇔ 2) Si existe un número natural n tal que |n| > 1
entonces, para todo α no nulo |nkα| = |n|k |α| toma valores arbitrariamente
grandes. Rećıprocamente, si |n| ≤ 1 para todo natural n, entonces |nα| ≤ |α|
para todo n, luego K no es arquimediano.
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2) ⇒ 3) Para todo natural n se cumple

|α + β|n =
∣∣∣ n∑
k=0

(
n

k

)
αkβn−k

∣∣∣ ≤ n∑
k=0

|α|k|β|n−k

≤ (n + 1) máx
{
|α|, |β|

}n
.

Tomando ráıces n-simas queda |a + b| ≤ n
√

n + 1 máx
{
|α|, |β|

}
, y tomando

el ĺımite en n obtenemos la desigualdad buscada.

3) ⇒ 2) es inmediato por inducción.

3) ⇒ 4) Sólo hay que probar que | |ρ cumple la desigualdad triangular, pero
es fácil ver que si | | cumple 3) entonces | |ρ también cumple 3), aśı como que
3) implica la desigualdad triangular.

4)⇒ 3) Para cada ρ > 0, aplicando la desigualdad triangular de | |ρ tenemos

|α + β| =
(
|α + β|ρ

)1/ρ ≤
(
|α|ρ + |β|ρ

)1/ρ ≤ 21/ρ máx
{
|α|, |β|

}
,

y haciendo tender ρ a infinito obtenemos la desigualdad de 3).

La propiedad 2) del teorema anterior implica, entre otras cosas, que el
carácter arquimediano de un valor absoluto en un cuerpo K sólo depende de su
comportamiento sobre el cuerpo primo de K. En particular todo subcuerpo de
un cuerpo (no) arquimediano es (no) arquimediano. Por otra parte, la propie-
dad 3) — la desigualdad triangular fuerte — es la que confiere a los cuerpos no
arquimedianos sus propiedades más caracteŕısticas, como pronto veremos.

Ejercicio: Probar que todo valor absoluto en un cuerpo de caracteŕıstica prima es no
arquimediano.

Ejercicio: Probar que si K es un cuerpo no arquimediano y α, β ∈ K, |α| �= |β|
entonces |α+ β| = máx

{
|α|, |β|

}
.

Compleciones De acuerdo con la topoloǵıa general, una sucesión (αn) en un
cuerpo métrico es de Cauchy si para todo número real ε > 0 existe un número
natural r tal que si m,n ≥ r entonces |αm−αn| < ε. Notar que por el apartado
4) del teorema 7.2 esta propiedad no depende del valor absoluto considerado.

Es fácil ver que toda sucesión convergente es de Cauchy. Un cuerpo métrico
K es completo si todas sus sucesiones de Cauchy son convergentes. Es bien
sabido que R y C son cuerpos métricos completos, mientras que Q no lo es.

Las sucesiones de Cauchy tienen una caracterización sencilla en los cuerpos
no arquimedianos:

Teorema 7.6 Una sucesión (αn) en un cuerpo métrico no arquimediano es de
Cauchy si y sólo si ĺım

n
(αn − αn−1) = 0.
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Demostración: Supongamos que la sucesión cumple esta propiedad y sea
ε > 0. Por definición de ĺımite existe un r > 0 tal que si n ≥ r entonces
|αn − αn−1| < ε. Si tomamos r ≤ m ≤ n, entonces

|αn − αm| =
∣∣(αn − αn−1) + · · ·+ (αm+1 − αm)

∣∣ ≤ máx
m<i≤n

|αi − αi−1| < ε,

luego la sucesión es de Cauchy. El rećıproco es claro.

Como consecuencia inmediata:

Teorema 7.7 En un cuerpo métrico completo no arquimediano, la serie
∞∑
n=1

xn

es convergente si y sólo si ĺım
n

xn = 0.

El resultado fundamental sobre completitud es el siguiente:

Teorema 7.8 Si k es un cuerpo métrico, existe un cuerpo métrico completo
K tal que k es denso en K. Además K es único salvo isomorfismo topológico,
es decir, si K y K ′ son cuerpos métricos completos que contienen a k como
conjunto denso, entonces existe un isomorfismo topológico de K en K ′ que deja
fijos a los elementos de k.

Demostración: La prueba es formalmente idéntica a la conocida cons-
trucción de R mediante sucesiones de Cauchy. Por ello nos limitaremos a esbo-
zarla. Sea A el conjunto de todas las sucesiones de Cauchy de k. Claramente A
es un anillo con la suma y el producto definidos término a término. El conjunto
I formado por las sucesiones convergentes a 0 es un ideal de A (se comprueba
que las sucesiones de Cauchy están acotadas y de aqúı que el producto de una
sucesión de Cauchy por una convergente a 0 converge a 0).

Sea K el anillo cociente A/I. Se cumple que K es un cuerpo, pues si [xn] ∈ K
no es nulo, entonces la sucesión (xn) no converge a 0. Más aún, no tiene a 0 como
punto de acumulación, pues una sucesión de Cauchy converge a cualquiera de sus
puntos de acumulación. En particular, (xn) es finalmente no nula, y modificando
sus primeros términos podemos tomar otra equivalente (congruente módulo I)
de modo que todos sus términos sean no nulos. Entonces [1/xn] es la inversa de
[xn] (se comprueba fácilmente que la sucesión (1/xn) es de Cauchy).

Si [xn] ∈ K, se comprueba que la sucesión |xn| es una sucesión de Cauchy
en R, luego converge a un número

∣∣[xn]
∣∣ que depende exclusivamente de la clase

de equivalencia y no del representante. Es inmediato comprobar que esto define
un valor absoluto en K.

La aplicación que a cada x ∈ k le asigna la clase
[
(x)

]
∈ K (la clase de la

sucesión constantemente igual a x) es claramente un monomorfismo de cuerpos.
Si identificamos a k con su imagen, es claro que k es un subcuerpo de K y que
el valor absoluto que hemos definido en K extiende al dado en k.

Ahora, si [xn] ∈ K, la sucesión (xn), considerada como sucesión en K,
converge precisamente a [xn]. En efecto, dado ε > 0, existe un natural r tal
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que si m,n ≥ r entonces |xn − xm| < ε, luego ĺım
n
|xn − xm| ≤ ε, luego por

la definición del valor absoluto de K tenemos que
∣∣[(xn − xm)n]

∣∣ ≤ ε, o sea,∣∣[xn]− xm
∣∣ ≤ ε, para todo m ≥ r, luego la sucesión (xm) converge a [xn].

Esto implica que k es denso en K. Además K es completo, pues dada una
sucesión de Cauchy (yn) en K, para cada n existe un elemento xn ∈ k tal
que |yn − xn| < 1/n, de donde se sigue fácilmente que la sucesión (xn) es de
Cauchy en k, luego converge a un x ∈ K. Es inmediato que x es un punto de
acumulación de (yn), luego (yn) es convergente.

Falta probar la unicidad. Si K y K ′ son dos cuerpos completos que contienen
a k como conjunto denso, entonces cada x ∈ K es el ĺımite de una sucesión (xn)
en k, que será de Cauchy en K ′, luego convergerá a un elemento φ(x) ∈ K ′

independiente de la sucesión elegida.
Esto define una aplicación φ : K −→ K ′ y se comprueba sin dificultad que

se trata de una isometŕıa que fija a los elementos de k.

El cuerpo métrico K construido en el teorema anterior se llama compleción
del cuerpo k. Hemos probado que cada valor absoluto se k se extiende a su
compleción (de forma única por densidad).

Por ejemplo, R es la compleción de Q respecto al valor absoluto usual.

7.2 Cuerpos métricos discretos

Retomemos las ideas con las que comenzábamos el caṕıtulo. Nuestra in-
tención es definir un valor absoluto sobre los números racionales de forma que
dos números enteros estén próximos si su diferencia es divisible muchas veces
entre un primo prefijado p. Más en general:

Definición 7.9 Sea K un cuerpo numérico y O su orden maximal. Sea p un
ideal primo de O. Para cada α ∈ O definimos el valor p-ádico de α como el
exponente de p en la factorización ideal de α. Lo representaremos por vp(α).
Todo elemento no nulo de K se expresa como cociente de enteros, γ = α/β.
Definimos su valor p-ádico como vp(γ) = vp(α) − vp(β). Es claro que esta
definición depende sólo de γ y no de su representación como fracción.

De este modo tenemos definida una aplicación de K∗ = K \ {0} en Z.
Conviene recoger sus propiedades básicas en una definición general:

Definición 7.10 Una valoración es una aplicación v : K \ {0} −→ Z, donde K
es un cuerpo, tal que:

1. v es suprayectiva,

2. v(αβ) = v(α) + v(β), para α, β ∈ K \ {0}

3. v(α + β) ≥ mı́n
{
v(α), v(β)

}
, para α, β ∈ K \ {0}, α �= −β.
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Es fácil comprobar que las valoraciones p-ádicas que hemos definido antes
cumplen realmente estas propiedades. Las propiedades 2) y 3) se comprueban
primero sobre enteros y después sobre números arbitrarios. Para 1) considera-
mos un número π ∈ p \ p2, de modo que vp(π) = 1. Entonces vp(πn) = n.

Si v es una valoración en un cuerpo K, conviene definir v(0) = +∞. Si
acordamos las identidades n +∞ = +∞+∞ = +∞, entonces las propiedades
2) y 3) son válidas para todo α, β ∈ K. Dejamos al lector la prueba de las
siguientes propiedades adicionales:

1. v(±1) = 0,

2. v(−α) = v(α),

3. v(α/β) = v(α)− v(β),

4. Si v(α) �= v(β) entonces v(α + β) = mı́n
{
v(α), v(β)

}
.

En estos términos, queremos considerar que dos enteros algebraicos α y
β están más próximos respecto a un primo p cuanto mayor sea vp(α − β). Si
queremos reducir esta noción de proximidad a un valor absoluto, éste deberá ser
menor cuanto mayor sea vp. Además tenemos que transformar las propiedades
aditivas de las valoraciones en las propiedades multiplicativas de los valores
absolutos. La forma de hacerlo es obvia:

Si v es una valoración en un cuerpo K y 0 < ρ < 1, definimos |α| = ρv(α)

(entendiendo que |0| = ρ+∞ = 0). Es claro que | | aśı definido es un valor abso-
luto no arquimediano en K. Distintos valores de ρ dan lugar a valores absolutos
equivalentes, por lo que cada valoración dota a K de una única estructura de
cuerpo métrico.

Ejercicio: Probar que si un valor absoluto está determinado por una valoración,
entonces todos los valores absolutos equivalentes están definidos a partir de la misma
valoración tomando distintos valores de ρ.

Un cuerpo métrico K es discreto si sus valores absolutos vienen inducidos por
una valoración. En particular todo cuerpo métrico discreto es no arquimediano.

Ejercicio: Probar que un cuerpo métrico K no trivial es discreto si y sólo si la imagen
de K∗ por uno cualquiera de sus valores absolutos es un subgrupo discreto de R∗.

Ejercicio: Probar que los valores absolutos de un cuerpo métrico discreto están
inducidos por una única valoración (probar que ρ es necesariamente el mayor valor
absoluto menor que 1).

Notar que una valoración puede ser recuperada a partir de uno cualquiera
de los valores absolutos que induce mediante la relación v(α) = log |α|/ log ρ.
Puesto que − log : [0,+∞[ −→ R∪{+∞} es una aplicación continua, concluimos
que v : K −→ Z ∪ {+∞} también es continua.

Sea k un cuerpo métrico discreto y K su compleción. Dado α ∈ K \ {0},
existe una sucesión (αn) en k convergente a α. Por continuidad

(
|αn|

)
converge
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a |α| �= 0. Por la continuidad del logaritmo concluimos que
(
v(αn)

)
ha de

converger a log |α|/ log ρ, pero se trata de una sucesión de números enteros,
luego el ĺımite ha de ser entero. Aśı pues, si definimos v(α) = log |α|/ log ρ
tenemos una aplicación continua v : K \ {0} −→ Z que extiende a la valoración
de k. Es fácil ver que se trata de una valoración en K que induce los valores
absolutos de éste. Esto prueba que la compleción de un cuerpo métrico discreto
es discreta.

Como caso particular tenemos que cada ideal primo p en un cuerpo numérico
k dota a éste de una estructura de cuerpo métrico discreto. Representaremos
por | |p a cualquiera de los valores absolutos inducidos por la valoración p-ádica
(y lo llamaremos valor absoluto p-ádico).

Definición 7.11 Sea K un cuerpo numérico y p un ideal primo de K. Lla-
maremos cuerpo de los números p-ádicos Kp a la compleción de K respecto al
valor absoluto p-ádico. Llamaremos también vp y | |p a las extensiones a Kp

de la valoración y el valor absoluto p-ádicos.

Tenemos, pues, que Kp es un cuerpo métrico discreto completo.

Ejercicio: Probar que la sucesión (pn) converge a 0 en Qp, y que
∞∑

n=0

pn = 1/(1− p).

Las propiedades básicas de las compleciones que acabamos de definir pueden
probarse en general sobre cuerpos métricos discretos: Sea K un cuerpo métrico
discreto y sea v su valoración. Definimos

D = {α ∈ K | v(α) ≥ 0} =
{
α ∈ K

∣∣ |α| ≤ 1
}
,

U = {α ∈ K | v(α) = 0} =
{
α ∈ K

∣∣ |α| = 1
}
,

p = {α ∈ K | v(α) ≥ 1}.

Es inmediato comprobar que D es un anillo, U su grupo de unidades y p un
ideal primo de D. Diremos que D es el anillo de enteros de K y que U es el
grupo de unidades de K.

Ejercicio: Probar que los conjuntos α + βD, con α, β ∈ K, β �= 0 son abiertos y
cerrados y forman una base de K.

Fijemos un elemento π ∈ K tal que v(π) = 1. Para todo α ∈ K no nulo, si
v(α) = n, entonces ε = α/πn cumple v(ε) = 1, luego α = επn y ε ∈ U . Esta
descomposición es única, pues si επn = ε′πm, entonces

n = v(επn) = v(ε′πm) = m,

y simplificando las potencias de π llegamos a que ε = ε′.
En particular vemos que p = (π), con lo que π es primo, y la descomposición

que acabamos de obtener (cuando α es entero) es de hecho una descomposición
de α en factores primos. El teorema siguiente recoge todo lo que acabamos de
probar:
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Teorema 7.12 Sea K un cuerpo métrico discreto. Entonces su anillo de en-
teros D es un dominio de factorización única. Sus primos son exactamente los
elementos π que cumplen v(π) = 1. Todos son asociados, por lo que p es el único
ideal primo de D, y está generado por cualquiera de ellos. Fijado un primo π,
todo elemento no nulo de K se expresa de forma única como α = επn, donde
ε ∈ U y, necesariamente, n = v(α). En particular K es el cuerpo de cocientes
de D.

En realidad el anillo de enteros de un cuerpo discreto es mucho más que un
dominio de factorización única. Es trivialmente un dominio eucĺıdeo, tomando
como norma la propia valoración. Efectivamente, se cumple que v(α) ≤ v(αβ),
para α y β no nulos, y dados ∆, δ ∈ D con δ �= 0, la división eucĺıdea es
simplemente ∆ = δ · 0+∆ si v(∆) < v(δ) o bien ∆ = ∆

δ δ +0 en caso contrario.

En particular todos los ideales de D son principales, y teniendo en cuenta la
estructura aritmética de D son fáciles de determinar:

Teorema 7.13 Sea K un cuerpo métrico discreto. Entonces su anillo de ente-
ros es un dominio eucĺıdeo, y sus ideales son exactamente

0 ⊂ . . . ⊂ p3 ⊂ p2 ⊂ p ⊂ 1.

Ahora nos ocupamos mostrar la fuerte relación entre la aritmética de un
cuerpo numérico y la de sus compleciones.

Teorema 7.14 Sea K un cuerpo numérico y p un primo de K. Sea O el anillo
de enteros de K y Op el de Kp. Sea p∗ el único primo de Op. Entonces:

1. Op es la clausura de O.

2. pn∗ es la clausura de pn.

3. La aplicación [α] 
→ [α] determina un isomorfismo O/pn ∼= Op/p
n
∗ .

Demostración: 1) Como O ⊂ Op y Op es cerrado en Kp, tenemos que la
clausura de O está contenida en Op.

Tomemos ahora α ∈ Op y fijemos un número real 0 < ε < 1. Como K es
denso en Kp existe un β ∈ K tal que |α− β|p < ε. Entonces

|β|p = |α + (β − α)|p ≤ máx
{
|α|p, |β − α|p

}
≤ 1.

Sea β = a/b, donde a, b ∈ O. Por el teorema 3.7 podemos exigir que p � b. Si
x ∈ O, la desigualdad |x− β|p < ε equivale a que |bx− a|p < ε, lo que a su vez
equivale a que bx ≡ a (mód pn) para un n suficientemente grande. Puesto que b
es una unidad módulo p, siempre podemos encontrar un x en estas condiciones,
luego en total

|α− x|p ≤ máx
{
|α− β|p, |β − x|p

}
< ε.

Esto prueba que α está en la clausura de O.
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2) Por el apartado anterior, todo elemento de Op es de la forma α = ĺım
n

αn,

con αn ∈ O. Por la continuidad de la valoración, vp(α) = ĺım
n

vp(αn), luego
α ∈ pn∗ si y sólo si αn ∈ pn para todo n suficientemente grande.

3) Es claro que la aplicación está bien definida y es un homomorfismo. Ob-
servemos que α ≡ β (mód pn) equivale a vp(α − β) ≥ n, y lo mismo es válido
para p∗, luego la aplicación es inyectiva. Por último el apartado 1) implica que
para todo α ∈ Op existe un β ∈ O tal que vp(α − β) ≥ n, lo que se traduce
en que todo elemento de Op es congruente módulo pn∗ con un elemento de O, es
decir, que la aplicación es suprayectiva.

Según el teorema anterior, la congruencia de dos enteros de K módulo pn∗ es
equivalente a la congruencia módulo pn. Por ello en lo sucesivo suprimiremos el
asterisco, y ya no distinguiremos entre p y p∗.

Ejercicio: Sea K un cuerpo numérico y p un ideal primo de K. Determinar la
clausura en Kp de un ideal cualquiera de K.

Pasamos ahora a estudiar la topoloǵıa de los cuerpos discretos. En el caso
concreto de los cuerpos p-ádicos, la finitud de los cuerpos de restos se traduce en
una propiedad de compacidad análoga a la de los números reales y complejos.

Teorema 7.15 Sea K un cuerpo métrico discreto y completo, D su anillo de
enteros y p su ideal primo. Las afirmaciones siguientes son equivalentes:

1. El cuerpo de restos D/p es finito.

2. Un subconjunto de K es compacto si y sólo si es cerrado y acotado.

Demostración: Supongamos que D/p es finito. Sea F un conjunto de
representantes de las clases de equivalencia. Sea π un primo en D, de modo
que p = (π). Basta probar que D es compacto, pues entonces lo serán todas
las bolas cerradas y también todos los conjuntos cerrados y acotados. A su vez
basta ver que toda sucesión de enteros (αn) tiene una subsucesión convergente.

Tiene que haber infinitos términos de la sucesión congruentes módulo π con
un mismo x0 ∈ F . Sea, pues, (α1

n) una subsucesión tal que para todo número
natural n se cumpla α1

n ≡ x0 (mód π). Digamos α1
n = x0 + β1

nπ, con β1
n ∈ D.

Similarmente podemos tomar una subsucesión (α2
n) de (α1

n) tal que los co-
rrespondientes β2

n sean todos congruentes con un mismo x1 ∈ F módulo π. De
este modo α2

n = x0 + x1π + β2
n π2.

En general podemos ir obteniendo una sucesión de subsucesiones (αkn) (cada
cual subsucesión de la anterior) de modo que

αkn =
k−1∑
i=0

xiπ
i + βkn πk,

con xi ∈ F , βkn ∈ D. En particular,

αnn =
n−1∑
i=0

xiπ
i + βnn πn.
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Es claro que (αnn) es una subsucesión de la sucesión de partida. Claramente
las sucesiones (xiπi) y (βnn πn) convergen a 0, luego, teniendo en cuenta el
teorema anterior, existe

ĺım
n

αnn =
∞∑
i=0

xiπ
i,

pues la serie es convergente y βnn πn tiende a 0.

Rećıprocamente, si D/p es infinito, las clases de congruencia módulo p son
una partición de D (cerrado y acotado) en conjuntos abiertos, luego D no es
compacto.

La propiedad 2) del teorema anterior es simplemente la compacidad local.
Hemos visto, pues, que un cuerpo métrico discreto completo es localmente com-
pacto si y sólo si su cuerpo de restos es finito.

En la prueba del teorema anterior está contenida la mayor parte del resultado
siguiente:

Teorema 7.16 Sea K un cuerpo métrico discreto. Sea p su ideal primo y sea
F un conjunto de representantes de las clases módulo p tal que 0 ∈ F . Sea π
un primo de K. Entonces todo elemento α ∈ K no nulo se expresa de forma
única como

α =
∞∑
n=k

xn πn, (7.1)

donde xn ∈ F , k ∈ Z y xk �= 0. Además k = v(α). Si K es completo cada serie
de esta forma determina un elemento de K.

Demostración: Sea k = v(α). Aplicamos el proceso de la prueba del teo-
rema anterior a la sucesión constante igual al entero π−k α, con la particularidad
de que, al ser todos los términos iguales, no es necesario tomar subsucesiones ni
suponer que F es finito. El resultado es un desarrollo de tipo (7.1) para π−k α,
y multiplicando por πk obtenemos otro para α.

Observar que si en (7.1) multiplicamos ambos miembros por π−k obtenemos
una serie todos cuyos términos son enteros, luego el ĺımite también (el anillo
de enteros de K es claramente cerrado). De hecho, el resto módulo p de dicho
ĺımite es xk �= 0. Por lo tanto v(π−kα) = 0 y v(α) = k.

Si un mismo α admite dos desarrollos de tipo (7.1), ambos tendrán el mismo
k = v(α):

xkπ
k + xk+1π

k+1 + xk+2π
k+2 + · · · = ykπ

k + yk+1π
k+1 + yk+2π

k+2 + · · ·

Multiplicamos por π−k y obtenemos una igualdad de enteros:

xk + xk+1π + xk+2π
2 + · · · = yk + yk+1π + yk+2π

2 + · · ·

Claramente entonces xk ≡ yk (mód π), y como ambos están en F , necesaria-
mente xk = yk. Restando y dividiendo entre π queda

xk+1 + xk+2π + · · · = yk+1 + yk+2π + · · ·
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Del mismo modo concluimos que xk+1 = yk+1, e inductivamente llegamos a que
todos los coeficientes coinciden. La completitud de K implica la convergencia
de las series.

En particular, en las condiciones del teorema anterior, α es entero si y sólo
si k ≥ 0. Si no es aśı, α se descompone como

α =
−1∑
n=k

xnπ
n +

∞∑
n=0

xnπ
n,

es decir, el su desarrollo en serie de potencias tiene una parte fraccionaria finita
y una parte entera infinita, al contrario que el desarrollo decimal de los números
reales.

Ejercicio: Sea p un primo racional y considerar en el cuerpo Qp las representaciones
de la forma (7.1) con π = p y 0 ≤ xn < p. Probar que los números naturales se
caracterizan por que sus desarrollos son finitos, los números enteros tienen desarrollos
finalmente iguales a p− 1 y los números racionales se corresponden con las series con
coeficientes finalmente periódicos

Ejercicio: Probar que si K es un cuerpo métrico discreto localmente compacto,
entonces todos los anillos de restos D/pn son finitos.

Ahora ya podemos ver en la expresión
√

2 = 3 + 1 · 7 + 2 · 72 + 6 · 73 + 1 · 74 + 2 · 75 + 1 · 76 + 2 · 77 + 4 · 78 + · · ·

un ejemplo t́ıpico de número heptádico. . . supuesto que exista, es decir, no he-
mos garantizado que el proceso que nos va dando los coeficientes de la serie
pueda continuarse indefinidamente. Esto se sigue inmediatamente de un hecho
conocido sobre restos cuadráticos: un entero m es un resto cuadrático módulo
pr, donde p es un primo impar, si y sólo si m es un resto cuadrático módulo p.
Esto puede probarse estudiando con detalle los grupos de unidades módulo pr.
Nosotros lo deduciremos de las propiedades de los números p-ádicos. Dedicamos
la sección siguiente a esta clase de resultados de existencia.

7.3 Criterios de existencia de ráıces

Los teoremas siguientes garantizan en la existencia de ráıces de ciertos poli-
nomios en cuerpos métricos discretos y completos.

Teorema 7.17 Sea K un cuerpo métrico discreto completo. Sea D su anillo de
enteros y p su ideal primo. Sea F (x1, . . . , xn) ∈ D[x1, . . . , xn] y sean γ1, . . . , γn
enteros tales que para cierto i (1 ≤ i ≤ n) y cierto k ≥ 0 se cumpla:

F (γ1, . . . , γn) ≡ 0 (mód p2k+1),
F ′
i (γ1, . . . , γn) ≡ 0 (mód pk),

F ′
i (γ1, . . . , γn) �≡ 0 (mód pk+1),
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donde F ′
i representa la derivada parcial formal respecto a la indeterminada xi.

Entonces existen enteros δ1, . . . , δn tales que F (δ1, . . . , δn) = 0 y además para
cada j se cumple δj ≡ γj (mód pk+1).

Demostración: Consideremos el polinomio

f(x) = F (γ1, . . . , γi−1, x, γi+1, . . . , γn).

Basta encontrar un entero α tal que f(α) = 0 y α ≡ γi (mód pk+1). Por
simplificar la notación llamaremos γ = γi.

Vamos a construir una sucesión de enteros α0, α1, . . . , todos congruentes
con γ módulo pk+1 y de modo que f(αm) ≡ 0 (mód p2k+1+m). Por hipótesis
podemos partir de α0 = γ. Dados α0, . . . , αm−1 en estas condiciones, tenemos
en particular que

αm−1 ≡ γ (mód pk+1), f(αm−1) ≡ 0 (mód p2k+m).

Desarrollemos f(x) en potencias de x− αm−1:

f(x) = β0 + β1(x− αm−1) + β2(x− αm−1)2 + · · · ,

donde los coeficientes βj son enteros.
Aśı, β0 = f(αm−1) = π2k+mA, para un cierto entero A y un primo π, y

β1 = f ′(αm−1) ≡ f ′(γ) (mód pk+1), luego β1 = πkB para un cierto entero B no
divisible entre p.

Esta última condición nos asegura que existe un entero C de manera que
A + BC ≡ 0 (mód p). Si hacemos αm = αm−1 + πk+mC tenemos ciertamente
que αm ≡ αm−1 ≡ γ (mód pk+1) y además

f(αm) = π2k+mA + πkB(πk+mC) + β2(πk+mC)2 + · · ·
= π2k+m(A + BC) + β2(πk+mC)2 + · · · ≡ 0 (mód p2k+1+m),

puesto que para r ≥ 2 se cumple que kr + mr ≥ 2k + 1 + m.
Con esto queda justificada la existencia de la sucesión α0, α1, . . ., y de hecho,

según la construcción, αm = αm−1 + πk+mC, o sea, v(αm − αm−1) ≥ k + m,
luego por el teorema 7.6 resulta que existe α = ĺım

m
αm ∈ D. Puesto que la

sucesión (αm − γ)/πk+1 también está contenida en D, su ĺımite, (α− γ)/πk+1,
es un entero, luego se cumple que α ≡ γ (mód pk+1).

Además por construcción v
(
f(αm)

)
≥ 2k + 1 + m, luego ĺım

m
f(αm) = 0.

Como los polinomios son funciones continuas, f(α) = 0.

A menudo nos bastará aplicar el caso particular k = 0, que enunciamos a
continuación:

Teorema 7.18 Sea K un cuerpo métrico discreto completo. Sea D su anillo de
enteros y p su ideal primo. Sea F (x1, . . . , xn) ∈ D[x1, . . . , xn] y sean γ1, . . . , γn
enteros tales que para cierto i (1 ≤ i ≤ n) se cumpla:

F (γ1, . . . , γn) ≡ 0 (mód p),
F ′
i (γ1, . . . , γn) �≡ 0 (mód p).
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Entonces existen enteros δ1, . . . , δn tales que F (δ1, . . . , δn) = 0 y además para
cada j se cumple δj ≡ γj (mód p).

El teorema siguiente es menos práctico, porque reduce la existencia de ráıces
de un polinomio en un cuerpo métrico discreto y completo a la solubilidad de
infinitas congruencias, pero muestra de la forma más clara posible la relación
entre existencia de ráıces y congruencias. Dejamos la prueba a cargo del lector.

Teorema 7.19 Sea K un cuerpo métrico discreto completo. Sea D su anillo
de enteros y p su ideal primo. Sea F (x1, . . . , xn) ∈ D[x1, . . . , xn]. Entonces la
ecuación F (x1, . . . , xn) = 0 tiene solución en D si y sólo si las congruencias
F (x1, . . . , xn) ≡ 0 (mód pm) tienen solución para todo m.

Notar que si F es un polinomio mónico con una sola variable, la propiedad 3)
del teorema 3.9 nos da que la existencia de una ráız en D es de hecho equivalente
a la existencia de una ráız en K.

Por otro lado, el criterio de irreducibilidad de Eisenstein es aplicable a los
cuerpos métricos discretos, lo que nos da polinomios irreducibles de grado arbi-
trariamente grande. En particular la clausura algebraica de cualquiera de estos
cuerpos tiene grado infinito.

Ejercicio: Sea p un primo impar y c un resto cuadrático módulo p. Probar que existe√
c ∈ Qp. En particular c es un resto cuadrático módulo pm para todo m.

Ejercicio: Sea c un número impar. Probar que
√
c ∈ Q2 si y sólo si c ≡ 1 (mód 8).

Si p y q son primos impares, sea a un resto cuadrático módulo p y b un resto
no cuadrático módulo q. Tomamos c ≡ a (mód p), c ≡ b (mód q), de modo que
c tiene ráız cuadrada en Qp pero no en Qq. Más en general:

Ejercicio: Sean p y q dos números primos. Probar que los cuerpos Qp y Qq no son
isomorfos.

Terminamos con un caso particular sobre existencia de ráıces de la unidad.

Teorema 7.20 El cuerpo Qp contiene una ráız de la unidad de orden p− 1.

Demostración: Consideremos un entero racional c no divisible entre p. La
sucesión {cpn} converge en Zp, pues

cp
n+1 − cp

n

= cp
n

(c(p−1)pn − 1) = cp
n

(cφ(pn+1) − 1) y pn+1 | cφ(pn+1) − 1.

Esto prueba que cp
n+1−cp

n

tiende a 0, luego cp
n

es de Cauchy y por lo tanto
convergente a un número ζ ∈ Zp.

Ahora bien, en realidad hemos probado que c(p−1)pn − 1 tiende a 0, y por
otra parte esta sucesión converge a ζp−1 − 1, es decir, ζp−1 = 1.

Aśı mismo cp
n − c converge a ζ − c y p | cpn − c, o sea, vp(cp

n − c) ≥ 1. Por
continuidad vp(ζ − c) ≥ 1, o sea, ζ ≡ c (mód p).

Hemos probado que si 1 ≤ c < p − 1 existe un ζ ∈ Zp tal que ζp−1 = 1 y
ζ ≡ c (mód p). Por lo tanto hay al menos p− 1 ráıces p− 1-ésimas de la unidad
en Zp, luego tiene que haber ráıces primitivas.
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Ejercicio: Probar que si p es un primo impar el polinomio ciclotómico p-ésimo es
irreducible en Qp.

7.4 Series en cuerpos no arquimedianos

Para terminar con las propiedades generales de los cuerpos no arquimedianos
dedicamos esta sección al estudio de las series infinitas. El notable teorema 7.7
hace que éstas presenten un comportamiento especialmente simple, análogo al
de las series absolutamente convergentes en R o en C. El teorema siguiente es
un buen ejemplo de ello.

Teorema 7.21 La convergencia y la suma de una serie en un cuerpo completo
no arquimediano no se altera si se reordenan sus términos.

Demostración: Es claro que una sucesión de números reales tiende a cero
si y sólo si cualquier reordenación suya tiende a cero. Por el teorema 7.7, una

serie
∞∑
n=0

αn es convergente si y sólo si (αn) tiende a 0, si y sólo si
(
|αn|

)
tiende

a 0, y esto no depende de la ordenación.

Supongamos ahora que
∞∑
n=0

αn converge a S pero una reordenación suya
∞∑
n=0

βn converge a S′ �= S. Sea ε = |S − S′|.
Existe un k tal que si m ≥ k entonces∣∣∣∣∣

m∑
n=0

αn − S

∣∣∣∣∣ < ε.

También podemos exigir que |αn| < ε para n ≥ k. Sea k′ ≥ k tal que
{α1, . . . , αk} ⊂ {β1, . . . , βk′}. Entonces

|S − S′| =
∣∣∣∣(S −

k′∑
n=0

βn
)

+
( k′∑
n=0

βn − S′
)∣∣∣∣

=
∣∣∣∣(S −

k∑
n=0

αn

)
−R +

( k′∑
n=0

βn − S′
)∣∣∣∣,

donde R es la suma de los elementos de {β1, . . . , βk′} \ {α1, . . . , αk}, todos ellos
con valor absoluto menor que ε.

La desigualdad triangular no arquimediana nos da que |S − S′| < ε, en
contradicción con la elección de ε. Por lo tanto S = S′.

De aqúı se sigue que (en los cuerpos completos no arquimedianos) podemos
definir series de la forma

∑
i∈I

αi, donde I es un conjunto numerable, sin especificar

el orden de los sumandos. Bajo esta notación se incluyen las sumas finitas.
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Observar que si la serie es convergente, para todo ε > 0 existe un F0 ⊂ I
finito tal que para todo F0 ⊂ F ⊂ I finito se cumple |

∑
i∈I

αi −
∑
i∈F

αi| < ε. En

efecto, basta tomar F0 de modo que |αi| < ε/2 para i ∈ I \ F0, pues entonces
todas las sumas parciales de la serie

∑
i∈I\F

αi =
∑
i∈I

αi −
∑
i∈F

αi tienen valor

absoluto menor que ε/2, luego el ĺımite cumple |
∑
i∈I

αi −
∑
i∈F

αi| ≤ ε/2 < ε.

De hecho esto es una caracterización de la convergencia que no depende de
ninguna ordenación en particular.

También se cumple la asociatividad infinita:

Teorema 7.22 Sea (αi)i∈I una familia de elementos de un cuerpo completo

no arquimediano. Sea I =
∞⋃
i=0

In una división de I en partes disjuntas. Si

∑
i∈I

αi es convergente también lo son las series
∑
i∈In

αi y
∞∑
n=0

∑
i∈In

αi, y además

∑
i∈I

αi =
∞∑
n=0

∑
i∈In

αi.

Demostración: Las series
∑
i∈In

αi son convergentes porque son finitas o

bien los sumandos (ordenados de algún modo) forman una subsucesión de una
sucesión convergente a cero.

Dado ε > 0, todos los αj salvo un número finito cumplen que |αi| < ε,
luego todas las series

∑
i∈In

αi salvo quizá un número finito de ellas cumplen que

|
∑
i∈In

αi| ≤ ε (lo cumplen las sumas parciales y por continuidad el ĺımite), lo que

significa que el término general de la serie
∞∑
n=0

∑
i∈In

αi tiende a 0, luego la serie

es convergente.

Sea ahora ε > 0. Existe un número natural n0 tal que |
∞∑

n=n0+1

∑
i∈In

αi| < ε.

Para cada n ≤ n0 existe un conjunto finito Fn ⊂ In tal que si Fn ⊂ F ⊂ In,
entonces |

∑
i∈In

αi −
∑
i∈Fn

αi| < ε.

Sea F un conjunto finito que contenga a todos los Fn y de manera que
|
∑
i∈I

αi −
∑
i∈F

αi| < ε. Entonces

∣∣∣∣
∞∑
n=0

∑
i∈In

αi −
∑
i∈I

αi

∣∣∣∣

≤
∣∣∣∣( ∑

n=n0+1

∞
∑
i∈In

αi

)
+

( n0∑
n=0

∑
i∈In

αi −
∑
i∈F

αi

)
+

(∑
i∈F

αi −
∑
i∈I

αi

)∣∣∣∣ < ε.

Por lo tanto ambas sumas coinciden.
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Ejercicio: Probar que aunque las series
∑

i∈In

αi y
∞∑

n=0

∑
i∈In

αi converjan, la serie
∑
i∈I

αi

no tiene por qué converger.

Ahora es claro el teorema del producto de series, es decir,∑
(i,j)∈I×J

αiβj =
(∑
i∈I

αi

)(∑
j∈J

βj

)
,

donde la serie de la izquierda converge si convergen las dos series de la derecha.
En efecto, la convergencia es obvia, y aplicando el teorema anterior,∑
(i,j)∈I×J

αiβj =
∑
i∈I

(∑
j∈J

αiβj

)
=

∑
i∈I

(
αi

(∑
j∈J

βj

))
=

(∑
i∈I

αi

)(∑
j∈J

βj

)
.

Definición 7.23 Si A es un anillo, se llama A[[x]] al anillo de las series formales
de potencias sobre A, es decir, de las series de la forma

∞∑
n=0

anx
n an ∈ A.

Las operaciones en A[[x]] son
∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn)xn,

( ∞∑
n=0

anx
n
)( ∞∑

n=0

bnx
n
)

=
∞∑
n=0

( n∑
k=0

akbn−k
)
xn.

De este modo, si K es un cuerpo completo no arquimediano y dos series de
potencias convergen en un x ∈ K, entonces las series suma y producto en K[[x]]
convergen a la suma y el producto de los ĺımites respectivamente. Es conocido
que lo mismo es cierto para K = C.

Ejercicio: Probar que una serie de potencias en un cuerpo completo no arquimediano
K converge en todo K, o bien en un disco |x| < r o bien sólo en 0.

Ejercicio: Sea K un cuerpo y K((x)) el cuerpo de cocientes de K[[x]]. Para cada

serie formal de potencias no nula s =
∞∑

n=0

anx
n, sea v(s) el mı́nimo n tal que an �= 0.

Probar que v se extiende a una valoración en K((x)) con la que éste se convierte en
un cuerpo métrico discreto completo cuyo anillo de enteros es K[[x]]. Probar que todo

s ∈ K((x)) no nulo se expresa de forma única como s =
+∞∑
n=m

anx
n, con m ∈ Z, an ∈ K

y am �= 0, donde la serie ha de entenderse como ĺımite en K((x)) de la sucesión de
sumas parciales. Además entonces v(s) = m.

Podemos definir como sigue una sustitución en A[[x]]: Sean dos series

f(x) =
∞∑
n=0

anx
n y g(x) =

∞∑
n=1

bnx
n,

la segunda sin término independiente.
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Para cada natural n sea an g(x)n =
∞∑
k=n

cnkx
k. Entonces definimos

(g ◦ f)(x) = a0 +
∞∑
k=1

k∑
n=1

cnkx
k.

Si f y g son series de C[[x]] de modo que g no tiene término independiente,
g converge en un disco de centro 0 y f converge en la imagen por g de dicho
disco, entonces g ◦ f converge en el disco a la composición de g y f . En efecto,
la serie

a0 +
∞∑
n=1

∞∑
k=n

cnkx
k

converge a g ◦ f en un entorno de 0, su derivada r-ésima es

∞∑
n=1

∞∑
k=máx{n,r}

cnkk(k − 1) · · · (k − r + 1)xk−r,

y en 0 queda

r!
r∑

n=1

cnr,

luego su serie de Taylor es la que hemos definido como g ◦ f . Ahora vamos a
probar que el mismo resultado es válido en nuestro contexto.

Teorema 7.24 Sea K un cuerpo métrico discreto completo. Sean f y g dos
series de potencias en K tales que f(x) converja para v(x) ≥ r, g(y) tenga
término independiente nulo, converja para un cierto y ∈ K y v(bmym) ≥ r para
todo m ≥ 1 (siendo bm el coeficiente m-simo de g). Entonces (g◦f)(y) converge
a f

(
g(y)

)
.

Demostración: Siguiendo la notación que hemos empleado para definir
g ◦ f , consideremos la serie

∑
i,j

cijy
j . Por definición de cnm tenemos que

cnmym =
∑

t1,...,tn≥1
t1+···+tn=m

anbt1y
t1 · · · btnytn .

Sea N = mı́n
{
v(bmym)

}
≥ r. Entonces

v(cnmym) ≥ mı́n
{
v(anbt1y

t1 · · · btnytn)
}
≥ v(an) + nN.

Como N = v(x0) para un x0 y f(x0) converge, resulta que v(an)+nN = v(anxn0 )
tiende a infinito, luego lo mismo le ocurre a v(cnmym) (uniformemente en m).
Esto significa que v(cnmym) se hace arbitrariamente grande para todo n ≥ n0

y todo m. Para los n < n0 usamos que an g(y)n =
∞∑

m=n
cnmym converge, luego
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v(cnmym) tiende a infinito para cada n. En definitiva, existe un m0 tal que si
n ≥ n0 o m ≥ m0 entonces v(cnmym) es arbitrariamente grande. Esto garantiza
la convergencia de la serie doble

(g ◦ f)(y) = a0 +
∞∑
k=1

k∑
n=1

cnky
k

y, como entonces podemos reordenar los sumandos, resulta que

(g ◦ f)(y) =
∞∑
n=0

∞∑
k=n

cnky
k =

∞∑
n=0

an
(
g(y)

)n = f
(
g(y)

)
.

Ahora aplicamos los resultados que hemos obtenido al estudio de dos series
concretas muy importantes. Partamos de un cuerpo numérico K y p un ideal
primo de su anillo de enteros. Sea p el primo racional divisible entre p. Digamos
que p = pea, para cierto ideal a primo con p. Es claro entonces que se cumple
la relación vp(r) = evp(r) para todo número racional r.

Vamos a estudiar el comportamiento de las series de potencias en Kp

expx =
∞∑
n=0

xn

n!
, log(1 + x) =

∞∑
n=1

(−1)n+1

n
xn.

En primer lugar calcularemos su dominio de convergencia. Claramente

vp(n!) = E(n/p) + E(n/p2) + · · · ,

donde E denota la parte entera (observar que E(n/pi) es el número de múltiplos
de pi menores que n), luego

vp(n!) = e(E(n/p) + E(n/p2) + · · ·) < e(n/p + n/p2 + · · ·) =
en

p− 1
,

con lo que

vp

(
xn

n!

)
= nvp(x)− vp(n!) > n

(
vp(x)− e

p− 1

)
.

Si vp(x) > e/(p − 1), entonces vp(xn/n!) tiende a infinito y expx converge.
Por el contrario, si vp(x) ≤ e/(p− 1), para n = pm tenemos

vp

(
xn

n!

)
= nvp(x)− e(pm−1 + · · ·+ p + 1) = nvp(x)− e

n− 1
p− 1

= n

(
vp(x)− e

p− 1

)
+

e

p− 1
≤ e

p− 1
,

luego el término general de expx no converge a 0 y la serie diverge.
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Concluimos que la serie expx converge exactamente en pκ, siendo

κ = E

(
e

p− 1

)
+ 1.

La fórmula del producto de series nos da sin dificultad que para todo par de
elementos de pκ se cumple exp(x + y) = expx exp y.

Nos ocupamos ahora del logaritmo. Si vp(x) ≤ 0 es claro que el término
general de log(1 + x) no converge a 0. Si vp(x) ≥ 1 entonces para cada natural
n = pam se cumple que pa ≤ n y vp(n) = ea ≤ e(log n/ log p). Por lo tanto

vp

(
xn

n

)
= nvp(x)− vp(n) ≥ nvp(x)− e

log n

log p
,

y la expresión de la derecha tiende a infinito con n, lo que significa que el término
general de log(1 + x) tiende a 0 y en consecuencia la serie converge.

La conclusión es que log(1 + x) converge exactamente cuando vp(x) ≥ 1 o,
lo que es lo mismo, log x está definido en 1 + p. Probemos que si ε1, ε2 ∈ 1 + p,
entonces log ε1ε2 = log ε1 + log ε2.

En efecto, sea ε1 = 1 + x, ε2 = 1 + y. Supongamos que vp(y) ≥ vp(x), de
modo que y = tx, con vp(t) ≥ 0 (suponemos x �= 0, pues en caso contrario el
resultado es trivial).

Vamos a considerar paralelamente el caso en que t y x son números complejos
de módulo menor que 1. En cualquier caso se cumple

(1 + x)(1 + y) = 1 + (t + 1)x + tx2.

Consideramos (t + 1)x + tx2 como una serie de potencias en x. Puesto que
vp(x) ≥ 1, el teorema 7.24 nos da que

log ε1ε2 =
∞∑
k=1

ck(t)xk,

donde ck(t) es un cierto polinomio en t con coeficientes racionales. Esto también
es cierto (con el mismo polinomio) en el caso complejo.

También en ambos casos se cumple

log ε1 + log ε2 = log(1 + x) + log(1 + tx) =
∞∑
k=1

(−1)k+1

k
(1 + tk)xk.

Pero en el caso complejo sabemos que ambas series son iguales, luego

ck(t) =
(−1)k+1

k
(1 + tk)

para todo número complejo t tal que |t| < 1, pero esto implica que ambos
polinomios son idénticos, luego la igualdad es cierta también cuando t está en
K, y de aqúı se sigue la igualdad de las series en este caso último caso.

Con esto hemos demostrado el teorema siguiente:
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Teorema 7.25 Sea K un cuerpo métrico discreto completo de caracteŕıstica 0.
Supongamos que v(r) = evp(r) para todo número racional r y sea

κ = E

(
e

p− 1

)
+ 1.

Entonces las funciones

exp : pκ −→ K×
p , log : 1 + p −→ K+

p

son homomorfismos de grupos.

En general no es cierto que estas funciones sean una la inversa de la otra.
No obstante śı es cierto cuando restringimos el logaritmo a un dominio menor.

Teorema 7.26 En las condiciones del teorema anterior, exp : pκ −→ 1+ pκ es
un isomorfismo y su inversa es log : 1 + pκ −→ pκ.

Demostración: En primer lugar demostraremos que exp : pκ −→ 1 + pκ y
log : 1+pκ −→ pκ. Si 1+x ∈ 1+pκ entonces vp(x) ≥ κ. En el caso 1 ≤ n ≤ p−1
se cumple vp(xn/n) ≥ nκ ≥ κ, mientras que si 2 ≤ p ≤ n tenemos

vp

(
xn

n

)
− κ ≥ (n− 1)κ− vp(n) > (n− 1)

e

p− 1
− e

log n

log p

=
e(n− 1)

log p

(
log p

p− 1
− log n

n− 1

)
≥ 0,

(usando que la función log t/(t− 1) es monótona decreciente para t ≥ 2).
Aśı, todos los términos de la serie log(1+x) cumplen vp(xn/n) ≥ κ, y por la

continuidad de vp podemos concluir que vp

(
log(1+x)

)
≥ κ, o sea, log(1+x) ∈ A.

Sea ahora x ∈ A. Hemos de probar que vp(xn/n!) ≥ κ para n ≥ 1. Sea
ps ≤ n < ps+1. Aśı

vp(xn/n!)− κ ≥ (n− 1)κ− e
(
E(n/p) + E(n/p2) + · · ·+ E(n/ps)

)
≥ (n− 1)e

p− 1
− en

ps
ps − 1
p− 1

≥ 0.

Para probar que las dos aplicaciones son mutuamente inversas tomamos
x ∈ A y consideramos log expx = log

(
1 + (expx − 1)

)
. La serie expx − 1

tiene término independiente nulo y los razonamientos anteriores muestran que
podemos aplicar el teorema 7.24, con lo que log expx es la serie de potencias
que resulta de componer las series de ambas funciones.

Pero lo mismo es válido para las funciones complejas, y en este caso se cumple
que log expx = x, es decir, la composición formal de las series de potencias es
simplemente la serie x, por lo que log expx = x para todo x ∈ A. Igualmente
se razona con la composición en sentido inverso.

Para el caso concreto de los números p-ádicos, donde p es un primo impar,
se cumple κ = 1. Observar que los números de la forma 1+x tales que p | x son
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exactamente las unidades p-ádicas congruentes con 1 módulo p. A estas unidades
se las llama unidades principales de Qp. Aśı pues, las funciones exponencial y
logaŕıtmica p-ádicas son isomorfismos entre el grupo aditivo de los enteros p-
ádicos múltiplos de p y el grupo multiplicativo de las unidades principales. Si
p = 2 se cumple κ = 2, y en efecto el logaritmo no es biyectivo en todo su
dominio: log 1 = log(−1) = 0.



Caṕıtulo VIII

El teorema de
Hasse-Minkowski

En este caṕıtulo probaremos el teorema de Hasse-Minkowski, en el cual se
basará el tratamiento que daremos en el caṕıtulo siguiente a la teoŕıa de Gauss
sobre géneros de formas cuadráticas. Históricamente, este teorema fue la pri-
mera muestra relevante de la importancia de los números p-ádicos en la teoŕıa
algebraica de números. Para alcanzar nuestro objetivo conviene que exponga-
mos los hechos básicos sobre formas cuadráticas en un cuerpo arbitrario K.

8.1 Formas cuadráticas

En todo lo que sigue se entenderá que K es un cuerpo, del que tan sólo
supondremos que su caracteŕıstica es distinta de 2.

Definición 8.1 Una forma cuadrática sobre K es un polinomio homogéneo de
grado 2, es decir, una suma de monomios de grado 2.

Por ejemplo: 3x2−2y2 +6xz−12xy+5yz es una forma cuadrática sobre Q con
tres variables. En el caṕıtulo VI considerábamos tan sólo formas cuadráticas
binarias sobre el anillo Z. Observar que la forma anterior puede escribirse como

3x2 − 2y2 + 0z2 − 6xy − 6yx + 3xz + 3zx + (5/2)yz + (5/2)zy

= (x, y, z)


 3 −6 3
−6 −2 5/2

3 5/2 0





 x

y
z


 ,

y en general toda forma cuadrática se puede expresar de la forma

f(x1, . . . , xn) = (x1, . . . , xn)A(x1, . . . , xn)t,

donde A es una matriz simétrica en K uńıvocamente determinada por f .

181
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Se llama determinante de una forma f al determinante de la matriz A. Una
forma cuadrática es regular si su determinante es distinto de 0. En caso contrario
se dice que la forma cuadrática es singular.

Diremos que una forma cuadrática f representa un elemento α ∈ K si existe
un cierto X ∈ Kn tal que f(X) = α. En este sentido, toda forma cuadrática
representa a 0. Es útil convenir en que una forma cuadrática representa 0 en K
si y sólo si se tiene f(X) = 0 para un cierto X �= 0.

A la hora de estudiar si un elemento está representado o no por una forma
cuadrática, resulta de gran ayuda el concepto de equivalencia de formas:

Dos formas cuadráticas f y g son equivalentes si una se obtiene de la otra a
partir de un cambio de variables lineal de determinante no nulo.

Es claro que dos formas cuadráticas equivalentes representan a los mismos
elementos de K.

En otras palabras, si f(X) = XAXt, las formas equivalentes a f son las que
se obtienen haciendo X = Y C, donde C es una matriz cuadrada con determi-
nante no nulo, es decir, son las formas del tipo g(Y ) = f(Y C) = Y CACt Y t.
En resumen:

Dos formas cuadráticas f(X) = XAXt, g(X) = XBXt, son equivalentes si
y sólo si existe una matriz regular C tal que B = CACt.

Observar que si A es una matriz simétrica, una matriz del tipo CACt siempre
es simétrica. Notar también que si dos formas cuadráticas son equivalentes,
una es regular si y sólo si lo es la otra. En el caṕıtulo VI exiǵıamos que la
matriz de cambio de variables tuviera determinante ±1. Ello se deb́ıa a que
estábamos considerando formas cuadráticas sobre Z, y al definir la equivalencia
en un anillo hay que exigir que la matriz de cambio tenga inversa en el anillo.
Aśı pues, al hablar de formas cuadráticas con coeficientes enteros habremos
de distinguir entre equivalencia entera y equivalencia racional. Obviamente la
primera implica la segunda.

Es claro que una condición necesaria para que dos formas cuadráticas sean
equivalentes sobre un cuerpo K es que sus determinantes difieran en un factor
que sea un cuadrado en K.

Vamos a buscar en cada clase de equivalencia de formas un representante lo
más sencillo posible. Para ello nos basaremos en el teorema siguiente.

Teorema 8.2 Si una forma cuadrática f(x1, . . . , xn) representa a un α �= 0
entonces es equivalente a una forma del tipo αx2

1 + g(x2, . . . , xn), donde g es
una forma cuadrática con n− 1 variables.

Demostración: Sea A la matriz de f . Consideremos el espacio vectorial
Kn y sea v ∈ Kn de manera que f(v) = α, o sea, vAvt = α. Claramente v �= 0.

Sea W = {w ∈ Kn | vAwt = 0}. Es fácil comprobar que se trata de un
subespacio vectorial de Kn. Dado cualquier x ∈ Kn, la ecuación vA(x−λv)t = 0
tiene siempre solución λ = (vAxt)/α, es decir, para este valor de λ se cumple
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que w = x − λv ∈ W , y aśı hemos probado que todo x ∈ Kn se expresa como
x = λv + w, con λ ∈ K y w ∈W .

Aśı pues, Kn = 〈v〉 + W , y obviamente la suma es directa, luego podemos
tomar una base de Kn de la forma v1, . . . , vn con v1 = v y v2, . . . , vn ∈W .

Sea e1, . . . , en la base canónica de Kn y C la matriz de cambio de base, es
decir, tal que para todo i se cumple vi = eiC.

La matriz B = CACt determina una forma cuadrática g equivalente a la
dada. La primera fila de esta matriz es e1CACt = vACt, y el coeficiente i-
ésimo de este vector es vACteti = vAvti = 0 si i �= 1 (pues entonces vi ∈ W ),
mientras que para i = 1 queda vAvt = α. En resumen, la primera fila de B es
(α, 0, . . . , 0). Lo mismo ocurre con la primera columna porque la matriz B es
simétrica.

Es claro entonces que la expresión expĺıcita de g como g(X) = XBXt no
contiene más monomios con x1 que αx2

1, luego g tiene la forma indicada en el
enunciado.

Aplicando repetidas veces el teorema anterior obtenemos lo siguiente:

Teorema 8.3 Toda forma cuadrática f(x1, . . . , xn) es equivalente a otra del
tipo α1x

2
1 + · · ·+ αnx

2
n.

A estas formas cuadráticas se les llama formas diagonales, pues son aque-
llas cuya matriz asociada es diagonal. Observar que el determinante de una
forma diagonal es el producto de sus coeficientes (de la diagonal), por lo que es
regular si y sólo si todos son no nulos. El teorema anterior simplifica muchas
demostraciones, por ejemplo la siguiente:

Teorema 8.4 Si una forma cuadrática regular representa 0 en un cuerpo K,
entonces representa a todos los elementos de K.

Demostración: Puesto que las formas equivalentes representan a los mis-
mos elementos, podemos suponer que la dada es del tipo f = α1x

2
1 + · · ·+αnx

2
n,

donde por ser regular todos los coeficientes son no nulos. Supongamos que

α1a
2
1 + · · ·+ αna

2
n = 0

es una representación de 0 en K. Podemos suponer que a1 �= 0. Sea γ cualquier
elemento de K. Tomemos un cierto t ∈ K que determinaremos después. Si
calculamos

f
(
a1(1 + t), a2(1− t), . . . , an(1− t)

)
= α1a

2
1 + · · ·+ αna

2
n + t2(α1a

2
1 + · · ·+ αna

2
n)

+2α1a
2
1t− 2α2a

2
2t− · · · − 2αna2

nt = 4α1a
2
1t,

vemos que basta hacer t = γ/4α1a
2
1 para que

f
(
a1(1 + t), a2(1− t), . . . , an(1− t)

)
= γ.
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De aqúı deducimos que el problema de si una forma cuadrática regular re-
presenta a un elemento se puede reducir siempre al problema de si una forma
cuadrática representa 0. En efecto:

Teorema 8.5 Una forma cuadrática regular f(x1, . . . , xn) representa un ele-
mento γ �= 0 en un cuerpo K si y sólo si la forma −γx2

0 + f(x1, . . . , xn) repre-
senta 0.

Demostración: Es obvio que si f(a1, . . . , an) = γ para ciertos valores
(a1, . . . , an), entonces −γ12 + f(a1, . . . , an) = 0 es una representación de 0.

Supongamos ahora que −γa2
0 + f(a1, . . . , an) = 0, donde no todos los ai son

nulos. Si es a0 �= 0, entonces γ = −f(a1/a0, . . . , an/a0). Si por el contrario
a0 = 0 entonces tenemos que la forma f(x1, . . . , xn) representa 0 en K, luego
por el teorema anterior representa también a γ.

El comportamiento de las formas cuadráticas binarias (que son las que más
nos van a interesar) es especialmente simple. Los teoremas siguientes lo ponen
de manifiesto:

Teorema 8.6 Todas las formas cuadráticas binarias regulares que representan
0 en un cuerpo K son equivalentes.

Demostración: Si una forma f(x, y) representa 0, por el teorema 8.4
también representa a 1, luego por el teorema 8.2 la forma f es equivalente a una
forma del tipo x2 + αy2, donde α �= 0. Existen u, v ∈ K tales que u2 + αv2 = 0
con u �= 0 o v �= 0, pero de hecho esto implica que ambos son no nulos. Aśı,
α = −(u/v)2. Haciendo el cambio x = x′, y = (v/u)y′ llegamos a que f es
equivalente a la forma x2 − y2.

Teorema 8.7 Una forma cuadrática binaria regular f con determinante d re-
presenta 0 en un cuerpo K si y sólo si −d es un cuadrado en K.

Demostración: Si f representa 0 entonces por el teorema anterior es equi-
valente a la forma x2 − y2 de determinante −1, luego los determinantes d y −1
se diferencian en un factor que es un cuadrado en K.

Si el determinante de f (cambiado de signo) es un cuadrado en K, lo mismo
le sucede a los determinantes de todas las formas equivalentes. En particular f
es equivalente a una forma del tipo g(x, y) = ax2 + by2, donde −ab = α2 �= 0.

Entonces g(α, a) = −a2b + ba2 = 0 es una representación de 0.

Teorema 8.8 Dos formas cuadráticas binarias regulares de K son equivalentes
si y sólo si sus determinantes difieren en un factor que es un cuadrado en K y
existe un elemento no nulo de K representado por ambas.

Demostración: Las condiciones son claramente necesarias. Si tenemos dos
formas regulares que representan a un mismo elemento α �= 0, entonces por el
teorema 8.2 son equivalentes respectivamente a las formas f(x, y) = αx2 + βy2,
g(x, y) = αx2 + γy2. Como los determinantes αβ y αγ difieren en un cuadrado,
β = γδ2, luego el cambio de variables x = x′, y = δy′ transforma g en f , y por
lo tanto las formas son equivalentes.
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8.2 Formas cuadráticas sobre cuerpos p-ádicos

Nuestro siguiente objetivo es estudiar las formas cuadráticas sobre los cuer-
pos p-ádicos. Para estudiar las formas cuadráticas sobre un cuerpo K es im-
portante conocer sus cuadrados. El conjunto K∗2 =

{
x2 | x ∈ K \ {0}

}
es

claramente un subgrupo del grupo multiplicativo K∗ = K \ {0}.
Por ejemplo, en el caso del cuerpo C es claro que C∗2 = C∗, lo cual tiene como

consecuencia que todas las formas cuadráticas regulares (con el mismo número
de variables) son equivalentes. En efecto, toda forma regular es equivalente a
una del tipo

a2
1x

2
1 + · · ·+ a2

nx
2
n,

y haciendo el cambio yi = aixi, resulta equivalente a la forma x2
1 + · · ·+ x2

n.
El caso de los números reales también es sencillo. Aqúı R∗2 = ]0,+∞[,

y el grupo cociente R∗/R∗2 tiene orden 2. Un conjunto de representantes de
las clases es ±1. En términos más simples, todo número real no nulo es de la
forma ±α2. El mismo razonamiento que en el caso complejo nos lleva ahora a
que toda forma cuadrática regular de n variables es equivalente a una del tipo
±x2

1±. . .±x2
n. Aśı pues, hay a lo sumo n + 1 clases de equivalencia de formas

regulares, según el número de signos negativos que aparezcan. De hecho no es
dif́ıcil probar que hay exactamente n + 1 clases.

Nos interesa obtener resultados similares para los cuerpos p-ádicos Qp. Lla-
maremos Zp al anillo de los enteros p-ádicos. Hemos de estudiar los grupos Q∗2

p

aśı como los cocientes Q∗
p/Q

∗2
p .

La primera observación es que los cuadrados p-ádicos no nulos son de la
forma (εpn)2 = ε2p2n, donde ε es una unidad de Zp y n es un número entero.
Aśı pues, caracterizar los cuadrados de Qp equivale a caracterizar las unidades
de Zp que son cuadrados en Zp. Por el criterio de irreducibilidad de Gauss un
entero p-ádico es un cuadrado en Zp si y sólo si lo es en Qp.

Si llamamos Up al grupo de las unidades de Zp, concluimos que estudiar el
grupo Q∗2

p se reduce a estudiar el grupo U2
p . Cuando p es un primo impar la

situación es la siguiente:

Teorema 8.9 Sea p un primo impar. Entonces una unidad ε =
∞∑
n=0

cnp
n (con

0 ≤ cn < p) es un cuadrado si y sólo si c0 es un resto cuadrático módulo p.

Demostración: Si ε = η2, para una cierta unidad η, entonces existe un
entero racional 0 < d < p tal que η ≡ d (mód p) (d es el término independiente
del desarrollo de η en serie de potencias, y no es 0 porque η es una unidad).
Entonces c0 ≡ ε ≡ d2 (mód p).

Rećıprocamente, si c0 ≡ d2 (mód p) para un cierto d (no divisible entre p),
consideremos el polinomio F (x) = x2 − ε. Tenemos que F (d) ≡ 0 (mód p)
mientras que F ′(d) = 2d �≡ 0 (mód p). El teorema 7.18 nos da que existe un
η ∈ Zp tal que ε = η2.
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Definición 8.10 Definimos el śımbolo de Legendre extendido de una unidad
ε ∈ Up respecto a un primo impar p como

(
ε

p

)
=

{
1 si ε ∈ U2

p

−1 si ε /∈ U2
p

El teorema anterior implica que este śımbolo de Legendre extiende al usual.
De hecho (ε/p) depende sólo del resto de ε módulo p (que con la notación del
teorema es c0), de donde se concluye inmediatamente que sigue siendo multipli-
cativo.

El śımbolo de Legendre (extendido) es un epimorfismo del grupo Up en el
grupo {±1} cuyo núcleo es precisamente U2

p . Aśı pues, |Up : U2
p | = 2.

Teorema 8.11 Si p es un primo impar, entonces |Q∗
p : Q∗2

p | = 4.

Demostración: Sea ε una unidad que no sea un cuadrado. Entonces
Up/U

2
p =

{
[1], [ε]

}
, luego toda unidad es de la forma η2 o bien εη2. Todo

elemento de Q∗
p es de la forma η2p2n+i o bien εη2p2n+i, con i = 0, 1, luego

Q∗
p/Q

∗2
p =

{
[1], [ε], [p], [pε]

}
. Es claro que estas cuatro clases son distintas.

Ahora nos ocupamos del caso p = 2.

Teorema 8.12 Una unidad diádica ε es un cuadrado en Q2 si y sólo si se
cumple que ε ≡ 1 (mód 8).

Demostración: Si ε = η2, entonces η ≡ 1 (mód 2) y por otro lado existe
un entero racional k tal que η ≡ k (mód 8). Por la condición anterior k es impar
y además ε ≡ k2 (mód 8).

Es fácil probar que el cuadrado de un número impar siempre es congruente
con 1 módulo 8 (basta verlo para 1, 3, 5, 7).

Supongamos ahora que ε ≡ 1 (mód 8). Tomamos F (x) = x2− ε y vemos que
F (1) ≡ 0 (mód 8), F ′(1) = 2 ≡ 0 (mód 2) y F ′(1) = 2 �≡ 0 (mód 4). El teorema
7.17 nos da que ε es un cuadrado.

Toda unidad diádica ε es congruente módulo 8 con un número impar, o sea,
con una de las unidades u = 1, 3, 5 o 7. Entonces εu−1 ≡ 1 (mód 8), luego es un
cuadrado. Aśı pues toda unidad diádica es de la forma ε = uη2, donde u toma
uno de los cuatro valores citados. Esto significa que U2/U

2
2 =

{
[1], [3], [5], [7]

}
y

todas las clases son distintas, porque ningún cociente entre ellas es congruente
con 1 módulo 8.

Teorema 8.13 Se cumple que |Q∗
2 : Q∗2

2 | = 8.

Demostración: Razonando como en el teorema 8.11 se llega a que

Q∗
2/Q

∗2
2 =

{
[1], [3], [5], [7], [2 · 1], [2 · 3], [2 · 5], [2 · 7]

}
y a que las ocho clases son distintas.
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Ahora podemos razonar como hemos hecho antes con las formas cuadráticas
sobre R y sobre C (eliminando los cuadrados) hasta concluir que toda forma
cuadrática regular sobre Qp es equivalente a una de la forma α1x

2
1 + · · ·+αnx

2
n,

donde cada αi es una unidad de Up (o más precisamente un miembro de un
conjunto fijo de representantes de las clases de congruencia de Up/U

2
p ).

Agrupando las variables adecuadamente tenemos que toda forma cuadrática
regular es equivalente a una forma F del tipo

F = F0 + pF1 = (ε1x2
1 + · · ·+ εrx

2
r) + p(εr+1x

2
r+1 + · · ·+ εnx

2
n), (8.1)

donde ε1, . . . , εn son unidades.
Para estudiar la representación de cero por una forma F podemos suponer

r ≥ n− r, pues pF es claramente equivalente a F1 + pF0 y las formas F y pF ,
aunque no son equivalentes, representan cero ambas o ninguna. Nuestro primer
resultado es el siguiente:

Teorema 8.14 Con la notación anterior, sea p �= 2, 0 < r < n. Entonces la
forma F representa 0 en Qp si y sólo si lo hace una de las formas F0 o F1.

Demostración: Una implicación es obvia. Supongamos que F representa
0, es decir,

(ε1a2
1 + · · ·+ εra

2
r) + p(εr+1a

2
r+1 + · · ·+ εna

2
n) = 0 (8.2)

para ciertos números p-ádicos a1, . . . , an no todos nulos. Multiplicando por
la potencia de p adecuada podemos suponer que todos son enteros y que al
menos uno de ellos no es divisible entre p. Supongamos primeramente que entre
a1, . . . , ar hay alguno no divisible entre p, digamos ai. Entonces

F0(a1, . . . , ar) ≡ 0 (mód p) y (F0)′i(a1, . . . , ar) = 2εiai �≡ 0 (mód p).

Por el teorema 7.18 la forma F0 representa 0.
Si por el contrario a1, . . . , ar son todos divisibles entre p, entonces podemos

sacar factor común p en (8.2) y concluir que F1(ar+1, . . . , an) ≡ 0 (mód p),
donde alguno de los números ar+1, . . . , an no es divisible entre p. Razonando
como en el caso anterior concluimos ahora que F1 representa 0.

En realidad en la demostración anterior no se ha usado la igualdad (8.2),
sino tan sólo la congruencia

(ε1a2
1 + · · ·+ εra

2
r) + p(εr+1a

2
r+1 + · · ·+ εna

2
n) ≡ 0 (mód p2).

Teniendo esto en cuenta podemos afirmar lo siguiente:

Teorema 8.15 Con la notación anterior, si p �= 2, la forma F representa 0 en
Qp si y sólo si la congruencia F ≡ 0 (mód p2) tiene una solución en Zp en la
que no todos los números sean divisibles entre p.
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Por otra parte el teorema 8.14 reduce el problema de la representación de
0 por una forma arbitraria a la representación de 0 por una forma del tipo
f = ε1x

2
1 + · · · + εrx

2
r, donde ε1, . . . , εr son unidades p-ádicas (siempre con

p �= 2). Además, aplicando el teorema 7.18 como lo hemos hecho en el teorema
8.14 obtenemos el criterio siguiente para este tipo de formas:

Teorema 8.16 Sean ε1, . . . , εr unidades p-ádicas. Entonces la forma cuadrática
f = ε1x

2
1+· · ·+εrx

2
r representa 0 en Qp si y sólo si la congruencia f ≡ 0 (mód p)

tiene una solución en la que no todos los números son divisibles entre p.

Notar que todo entero p-ádico es congruente con un entero racional módulo
p y módulo p2, luego las congruencias f ≡ 0 (mód p) y F ≡ 0 (mód p2) pueden
reducirse a congruencias de formas con coeficientes enteros racionales, y pueden
resolverse en la práctica porque las soluciones posibles forman un conjunto finito.

Ahora resolvemos el caso p = 2.

Teorema 8.17 Con la notación anterior, para p = 2, la forma F representa
0 en Q2 si y sólo si la congruencia F ≡ 0 (mód 16) tiene una solución donde
alguna de las variables toma valor impar.

Demostración: De nuevo, una implicación es obvia. Supongamos que
F (a1, . . . , an) ≡ 0 (mód 16) donde alguno de los enteros ai es impar. Si esto
sucede para i ≤ r, entonces tenemos que

F (a1, . . . , an) ≡ 0 (mód 8), F ′
i (a1, . . . , an) = 2εiai �≡ 0 (mód 4),

luego el teorema 7.17 nos da que F representa 0.
Si los números a1, . . . , ar son todos pares, digamos ai = 2bi, entonces tene-

mos que

4(ε1b21 + · · ·+ εrb
2
r) + 2(εr+1a

2
r+1 + · · ·+ εna

2
n) ≡ 0 (mód 16),

luego
2(ε1b21 + · · ·+ εrb

2
r) + (εr+1a

2
r+1 + · · ·+ εna

2
n) ≡ 0 (mód 8),

y como en el caso anterior podemos concluir que la forma 2F0 + F1 representa
0 en Q2, luego lo mismo le ocurre a la forma 4F0 + 2F1, que es equivalente a F .

En la prueba anterior hemos obtenido el criterio siguiente:

Teorema 8.18 Con la notación anterior, si F ≡ 0 (mód 8) tiene una solución
en la que alguna variable x1, . . . , xr toma valor impar, entonces F representa 0
en Q2.

Ahora probamos un hecho elemental sobre congruencias del que sacaremos
muchas aplicaciones al tema que nos ocupa.

Teorema 8.19 Sean a, b, c enteros racionales y p un primo impar. Entonces
la congruencia ax2 + by2 + cz2 ≡ 0 (mód p) tiene una solución no trivial (es
decir, donde no todas las variables son múltiplos de p).
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Demostración: Si algún coeficiente es nulo módulo p es evidente. En otro
caso podemos dividir entre uno de ellos y probar que la ecuación ax2 + by2 = z2

tiene soluciones no nulas. Esto es lo mismo que probar que la forma ax2 + by2

representa a un cuadrado no nulo en Z/pZ. Como el número de no cuadrados
es (p−1)/2, basta probar que ax2 + by2 toma más de (p−1)/2 valores no nulos,
pues entonces alguno de ellos será un cuadrado. El número de valores no nulos
que toma esta forma (para a, b genéricos) es el mismo que el de los que toma la
forma x2 + ay2 (para a genérico). Si a no es un cuadrado módulo p entonces la
forma x2+ay2 representa a todos los elementos de Z/pZ: los cuadrados haciendo
y = 0 y los no cuadrados haciendo x = 0. Si a es un cuadrado, entonces la forma
x2 + ay2 representa a los (p − 1)/2 cuadrados (con y = 0) y basta probar que
también representa a algún no cuadrado. Como ay2 recorre todos los cuadrados,
basta probar que la suma de dos cuadrados (mód p) no siempre es un cuadrado
(mód p), pero esto es obvio, ya que todo elemento de Z/pZ se expresa como
suma de unos, y si la suma de cuadrados fuera siempre un cuadrado, todos los
elementos de Z/pZ seŕıan cuadrados.

Teorema 8.20 Toda forma cuadrática con cinco o más variables representa 0
en cualquier cuerpo p-ádico.

Demostración: Las formas singulares siempre representan 0, luego pode-
mos suponer que tenemos una forma regular del tipo F0 + pF1, según (8.1), y
de acuerdo con la observación posterior a (8.1) podemos suponer que r ≥ n− r,
luego r ≥ 3.

Supongamos primero p �= 2. Basta probar que F0 representa 0, y por el
teorema 8.16 basta probar que la congruencia F0 ≡ 0 (mód p) tiene una solución
no trivial. La forma F0 es congruente (mód p) a otra del tipo a1x

2
1 + · · ·+ arx

2
r,

donde los ai son enteros racionales y r ≥ 3. El teorema anterior nos da lo
pedido.

Suponemos ahora que p = 2 y 3 ≤ r < n. Consideramos la forma

f = ε1x
2
1 + ε2x

2
2 + ε3x

2
3 + 2εnx2

n.

Es claro que si f representa 0 lo mismo le ocurrirá a F . Al ser unidades, los
coeficientes son congruentes con 1 módulo 2, luego ε1 + ε2 = 2α para un cierto
entero diádico α. Entonces

ε1 + ε2 + 2εnα2 = 2α + 2εnα2 = 2α(1 + εnα) ≡ 0 (mód 4),

y aśı ε1 + ε2 + 2εnα2 = 4β, donde β es un entero diádico. Entonces:

ε1 · 12 + ε2 · 12 + ε3 · (2β)2 + 2εnα2 = 4β + ε3 · 4β2 = 4β(1 + ε3β) ≡ 0 (mód 8).

Por el teorema 8.18 resulta que f representa 0.

En el caso en que r = n ≥ 5 tomamos f = ε1x
2
1 + ε2x

2
2 + ε3x

2
3 + ε4x

2
4 + ε5x

2
5

y de nuevo basta probar que f representa 0.
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Los cinco coeficientes son congruentes con ±1 (mód 4) y, como hay cinco,
debe haber dos pares congruentes (mód 4), digamos

ε1 ≡ ε2 (mód 4) y ε3 ≡ ε4 (mód 4).

Entonces ε1 + ε2 ≡ ε3 + ε4 ≡ 2 (mód 4), luego ε1 + ε2 + ε3 + ε4 = 4γ, donde γ
es un entero diádico. Tomando x1 = x2 = x3 = x4 = 1, x5 = 2γ resulta que

f(x1, x2, x3, x4, x5) = 4γ + ε54γ2 = 4γ(1 + ε5γ) ≡ 0 (mód 8)

y se concluye como en el caso anterior.

El teorema 8.5 nos da la siguiente consecuencia inmediata:

Teorema 8.21 Toda forma cuadrática regular con cuatro o más variables re-
presenta a todos los números p-ádicos no nulos.

Otra consecuencia importante del teorema 8.19 (junto con el teorema 8.16)
es la siguiente:

Teorema 8.22 Si ε1, . . . , εr son unidades p-ádicas con p �= 2 y r ≥ 3, entonces
la forma cuadrática ε1x

2
1 + · · ·+ εrx

2
r representa 0 en Qp.

8.3 Formas binarias en cuerpos p-ádicos

Ahora nos ocupamos de las formas cuadráticas binarias. El problema de si
una forma binaria regular representa un número p-ádico dado se reduce, pasando
a una forma equivalente y dividiendo entre un coeficiente, a si una forma del
tipo x2 − αy2 representa a un cierto número p-ádico, con α �= 0. Llamemos
Nα al conjunto de los números p-ádicos no nulos representados por esta forma.
Teniendo en cuenta el teorema 8.5

β ∈ Nα ⇔ x2 − αy2 representa β ⇔ αx2 + βy2 − z2 representa 0.

Observemos que si α no es un cuadrado en Qp entonces

x2 − αy2 =
(
x− y

√
α

)(
x + y

√
α

)
= N

(
x + y

√
α

)
,

donde N es la norma de la extensión Qp

(√
α

)
/Qp, con lo que Nα es la imagen

por la norma del grupo multiplicativo de Qp

(√
α

)
. En particular es un subgrupo

de Q∗
p. Si por el contrario α es un cuadrado en Qp entonces la forma x2 − αy2

representa 0 y en consecuencia a todos los números p-ádicos, por lo que Nα = Q∗
p.

De hecho en este caso la extensión Qp

(√
α

)
/Qp es trivial, y Nα sigue siendo el

grupo de las normas no nulas de la extensión.

Puesto que la forma x2 − αy2 representa todos los cuadrados, tenemos las
inclusiones Q∗2

p ⊂ Nα ⊂ Q∗
p. Los teoremas 8.11 y 8.13 prueban que el ı́ndice

|Q∗
p : Nα| es finito. Ya hemos dicho que si α es un cuadrado entonces Nα = Q∗

p.
En el caso contrario tenemos:

Teorema 8.23 Si α ∈ Q∗
p no es un cuadrado, entonces |Q∗

p : Nα| = 2.
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Demostración: Supongamos primero que p �= 2. Veamos que Nα �= Q∗2
p .

En efecto, como −α ∈ Nα, esto es cierto si −α no es un cuadrado. Si lo es
entonces la forma x2 − αy2 es equivalente a x2 + y2, y por el teorema 8.5 esta
forma representa a toda unidad ε (incluyendo a las que no son cuadrados), pues
según el teorema 8.22 la forma x2 + y2 − εz2 representa 0. Por lo tanto Nα

contiene a todas las unidades y en consecuencia Nα �= Q∗2
p .

Ahora probamos que Nα �= Q∗
p. Sea ε una unidad que no es un cuadrado.

Hemos de probar que la forma αx2 + βy2 − z2 no representa a 0 para todo
valor de β, ahora bien, si multiplicamos α por un cuadrado no nulo, la forma
resultante representa 0 en los mismos casos, luego podemos suponer que α es ε,
p o pε (por la prueba del teorema 8.11). Ahora bien, si α = ε y β = p o si α = p,
pε y β = ε, el teorema 8.14 implica que la forma αx2 + βy2 − z2 no representa
0, luego en cualquier caso existe un β que no está en Nα.

Puesto que |Q∗
p : Q∗2

p | = 4, necesariamente |Q∗
p : Nα| = 2.

Nos queda el caso en que p = 2. Ahora |Q∗
2 : Q∗2

2 | = 8 y como representantes
de las clases podemos tomar 1, 3, 5, 7, 2, 6, 10, 14. Vamos a comprobar que
cuando α y β vaŕıan en este conjunto de representantes la forma αx2 +βy2− z2

representa 0 en los casos indicados con un + en la tabla siguiente:

1 3 5 7 2 6 10 14
1 + + + + + + + +
3 + + + +
5 + + + +
7 + + + +
2 + + + +
6 + + + +
10 + + + +
14 + + + +

Una vez probado esto, la tabla indica que cuando α �= 1, o sea, cuando α
no es un cuadrado perfecto, la forma αx2 + βy2 − z2 representa 0 para todos
los β que pertenecen a cuatro de las ocho clases posibles, luego |Nα : Q∗2

p | = 4.
Puesto que |Q∗

p : Q∗2
p | = 8 se concluye que |Q∗

p : Nα| = 2.
Supongamos primero que α = 2ε, β = 2η, donde ε, η son unidades (1, 3, 5

o 7). Si se cumple que 2εx2 + 2ηy2 − z2 = 0, podemos suponer que x, y, z son
enteros p-ádicos no todos pares. Claramente z es par, pero x e y son ambos
impares, pues si uno de ellos fuera par, digamos y, entonces 2εx2 seŕıa divisible
entre 4, luego x también seŕıa par.

Haciendo z = 2t la ecuación se reduce a εx2 +ηy2−2t2 = 0. Tenemos, pues,
que la forma 2εx2 + 2ηy2 − z2 representa 0 si y sólo si la forma εx2 + ηy2 − 2t2

representa 0 (y entonces x e y pueden tomarse impares). Por el teorema 8.18
esto equivale a que la congruencia εx2+ηy2−2t2 ≡ 0 (mód 8) tenga solución con
x e y impares. El cuadrado de un impar es siempre congruente con 1 (mód 8),
mientras que 2t2 puede ser congruente con 0 o con 2 (mód 8). Consecuentemente
la congruencia tiene solución si y sólo si ε + η ≡ 2 (mód 8) o ε + η ≡ 0 (mód 8).
Esto da los valores del cuadrante inferior derecho de la tabla.
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Ahora sea α = 2ε, β = η. En la ecuación 2εx2 + ηy2 − z2 = 0 podemos
suponer que x, y, z son enteros p-ádicos no todos pares. Pero de hecho y, z han
de ser ambos impares, pues si uno de ellos es par, digamos y, entonces 2 | z,
luego 4 | 2εx2 luego los tres seŕıan pares.

Por el argumento anterior esto equivale a que 2εx2 + ηy2 − z2 ≡ 0 (mód 8)
tenga solución con y, z impares, y a su vez a que 2ε + η ≡ 1 (mód 8) o bien
η ≡ 1 (mód 8). Esto nos da el cuadrante superior derecho de la tabla y por
simetŕıa el inferior izquierdo.

Finalmente sea α = ε, β = η. Ahora en εx2 + ηy2 − z2 = 0 se cumple que
entre x, y, z hay exactamente un par y dos impares.

Si z es par εx2 + ηy2 ≡ ε+ η ≡ 0 (mód 4), luego o bien ε ≡ 1 (mód 4) o bien
η ≡ 1 (mód 4).

Si z es impar entonces εx2 + ηy2 ≡ 1 (mód 4), y como entre x, y hay un par
y un impar, llegamos otra vez a que ε ≡ 1 (mód 4) o bien η ≡ 1 (mód 4).

Rećıprocamente, si se cumple, digamos, ε ≡ 1 (mód 4), entonces ha de ser
ε ≡ 1 (mód 8) o bien ε ≡ 5 (mód 8). En el primer caso εx2+ηy2−z2 ≡ 0 (mód 8)
tiene solución (1, 0, 1), en el segundo (1, 2, 1). Esto implica que εx2 + ηy2 − z2

representa 0. En resumen la condición es ε ≡ 1 (mód 4) o η ≡ 1 (mód 4), o sea,
ε = 5 o η = 5, lo que nos da el resto de la tabla.

Como consecuencia, si α no es un cuadrado, el grupo cociente Q∗
p/Nα es

isomorfo al grupo {±1}. Componiendo la proyección en el cociente con este
isomorfismo obtenemos un homomorfismo de Q∗

p en {±1} cuyo núcleo es exac-
tamente Nα. Si α es un cuadrado entonces Nα = Q∗

p y dicho homomorfismo
también existe trivialmente. En definitiva estamos hablando que la aplicación
que asigna a cada β un signo ±1 según si β está o no en Nα. A este homomor-
fismo llegaron independientemente Hasse y Hilbert, el primero siguiendo más o
menos nuestra ĺınea de razonamientos en términos de representación de números
p-ádicos por formas binarias, el segundo estudiando los grupos de normas de las
extensiones cuadráticas de los cuerpos p-ádicos.

Definición 8.24 Para cada par de números p-ádicos no nulos α y β se define
el śımbolo de Hilbert como

(α, β)p =
{

1 si β ∈ Nα

−1 si β /∈ Nα

Teniendo en cuenta la definición de Nα y el teorema 8.5, tenemos las equi-
valencias siguientes:

1. (α, β)p = 1

2. x2 − αy2 representa a β en Qp,

3. αx2 + βy2 − z2 representa 0 en Qp

4. αx2 + βy2 representa 1 en Qp.
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Si sabemos calcular śımbolos de Hilbert, estamos en condiciones de determi-
nar si cualquier forma cuadrática binaria representa o no a un número p-ádico
dado. El cálculo del śımbolo de Hilbert es muy sencillo a partir de las propie-
dades que recogemos en el teorema siguiente.

Teorema 8.25 Sea p un número primo, sean α, β, α′, β′ números p-ádicos no
nulos y sean ε, η unidades p-ádicas. Entonces

1. (α, β)p = (β, α)p.

2. (α, ββ′)p = (α, β)p(α, β′)p, (αα′, β)p = (α, β)p(α′, β)p.

3. Si α o β es un cuadrado en Qp entonces (α, β)p = 1.

4. (α,−α)p = 1, (α, α)p = (α,−1)p.

5. Si p �= 2 entonces (p, ε)p = (ε/p) (śımbolo de Legendre), (ε, η)p = 1.

6. (2, ε)2 = 1 si y sólo si ε ≡ ±1 (mód 8),
(ε, η)2 = 1 si y sólo si ε ≡ 1 (mód 4) o bien η ≡ 1 (mód 4).

Demostración: 1) Es inmediato.
2) Por la observación previa a la definición anterior: el śımbolo de Hilbert

para un α fijo y como función de β es el homomorfismo de Q∗
p en {±1} con

núcleo Nα.
3) Si α = γ2 entonces (α, β)p = (γ, β)2p = 1.
4) La ecuación αx2 − αy2 − z2 = 0 tiene solución (1, 1, 0).
Por 2) 1 = (α,−α)p = (α, α)p(α,−1)p, luego (α, α)p = (α,−1)p.
5) Por el teorema 8.14, la forma px2 + εy2 − z2 representa 0 si y sólo si la

forma εy2 − z2 representa 0, lo cual sucede si y sólo si ε es un cuadrado.
Por el teorema 8.22, la forma εx2 + ηy2 − z2 siempre representa 0.
6) En la tabla construida en la prueba del teorema 8.23 vemos que la forma

2εx2 + ηy2 − z2 representa 0 si y sólo si 2ε + η ≡ 1 (mód 8) o η ≡ 1 (mód 8).
En particular, para ε = 1 tenemos que 2x2 + ηy2 − z2 representa 0 si y sólo si
η ≡ ±1 (mód 8).

También alĺı hemos probado que la forma εx2 + ηy2 − z2 representa 0 si y
sólo si ε ≡ 1 (mód 4) o bien η ≡ 1 (mód 4).

Notar que una consecuencia de 2) y 3) es que

(α−1, β)p = (α, β)p (α, β−1)p = (α, β)p.

Para calcular un śımbolo de Hilbert arbitrario (pkε, plη)p usando el teorema
anterior, en primer lugar 1) y 2) y 3) nos lo reducen a los casos (ε, η)p, (pε, η)p,
(p, p)p. El último caso se reduce a los anteriores por 4) y éstos se resuelven
mediante 5) y 6).
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Ejemplo Consideremos la forma 2x2 − 5y2. No es fácil a priori determinar
qué números están representados por ella. Por ejemplo, 53 = 2 ·72−5 ·33 śı está
representado en Q, mientras que 47 no lo está. Para probarlo basta ver que no
está representado en Q2. En efecto:

2x2 − 5y2 = 47⇔ x2 − 5
2
y2 =

47
2

y la última ecuación tiene solución en Q2 si y sólo si (5/2, 47/2)2 = 1. Ahora
bien,

(5/2, 47/2)2 = (5, 47)2 (2, 47)2 (5, 2)2 (2, 2)2 = 1 · 1 · (−1) · 1 = −1.

Por otro lado, la forma śı representa a 47 en Q5. En efecto, al igual que
antes esto equivale a que (5/2, 47/2)5 = 1, y ahora

(5/2, 47/2)5 = (5, 47)5 (2, 47)5 (5, 2)5 (2, 2)5 = (−1) · 1 · (−1) · 1 = 1.

Si queremos una representación concreta observamos que 47 ≡ 2 (mód 5),
luego 47/2 ≡ 1 (mód 5) (en Q5) y por el teorema 8.9 existe

√
47/2 ∈ Q5. Aśı

2

√
47
2

2

− 5 · 02 = 47.

Ejercicio: Determinar qué primos p cumplen que la forma anterior representa a 47
en Qp. Determinar también los números representados por dicha forma en Q5.

Ahora veremos cómo decidir si dos formas cuadráticas dadas son equivalentes
en Qp.

Teorema 8.26 Sea f una forma cuadrática binaria con coeficientes en Qp y
determinante d �= 0. Entonces (α,−d)p toma el mismo valor sobre todos los
números p-ádicos α �= 0 representados por f .

Demostración: Si αx2+βy2 es una forma equivalente a f , su determinante
se diferencia del de f en un cuadrado, luego

(α,−d)p = (α,−αβ)p = (α, β)p,

y este śımbolo vale 1 si y sólo si αx2 +βy2 representa 1, si y sólo si f representa
1. Esta condición no depende de α.

Definición 8.27 Sea f una forma cuadrática binaria regular con coeficientes
en Qp. Llamaremos d(f) al determinante de f y ψp(f) =

(
α,−d(f)

)
p
, donde α

es cualquier número p-ádico no nulo representado por f .

Según hemos visto, ψp(f) = 1 si y sólo si f representa 1 en Qp.
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Teorema 8.28 Sean f y g dos formas cuadráticas binarias regulares sobre Qp.
Entonces f y g son equivalentes si y sólo si d(f)/d(g) ∈ Q∗2

p y ψp(f) = ψp(g).

Demostración: Las condiciones son claramente necesarias. Suponiendo
estas condiciones vamos a ver que f y g representan los mismos números. Sea
γ �= 0 un número representado por g. Podemos suponer que f es del tipo
αx2 + βy2. Entonces

(α,−αβ)p = ψp(f) = ψp(g) =
(
γ,−d(γ)

)
p

= (γ,−αβ)p,

luego (γα−1,−αβ)p = 1, y la ecuación γα−1x2 − αβy2 − z2 = 0 tiene una
solución no trivial.

Si x = 0 entonces −αβ es un cuadrado, luego por el teorema 8.7 las dos
formas representan 0 y consecuentemente a todos los números p-ádicos. Si
x �= 0 entonces

γ = α
( z

x

)2

+ β
(αy

x

)2

,

luego f también representa a γ. En cualquier caso, las formas f y g son equi-
valentes por el teorema 8.8.

Hemos visto cómo la representación de números y la equivalencia de formas
binarias sobre los cuerpos Qp se rigen por reglas sencillas y relativamente fáciles
de obtener. En el núcleo de los resultados que hemos obtenido se halla el
teorema 7.17, que permite encontrar fácilmente soluciones de ecuaciones y cuya
prueba es esencialmente topológica. Con los cuerpos p-ádicos sucede lo mismo
que con el cuerpo R, que la topoloǵıa (más exactamente la completitud) permite
demostrar fácilmente que ciertas ecuaciones tienen solución.

De hecho todos los resultados que hemos obtenido son todav́ıa más sencillos
en el caso de R: Para cada número real α no nulo podemos definir Nα exac-
tamente igual a como hemos hecho para los números p-ádicos, y es inmediato
que Nα = R∗ si α > 0 o bien Nα = ]0,+∞[ si α < 0. Por lo tanto sigue siendo
cierto que el ı́ndice |R∗ : Nα| vale siempre 1 o 2 y es posible definir el śımbolo
de Hilbert:

Definición 8.29 Si α y β son números reales no nulos definimos

(α, β)∞ =
{

1 si x2 − α y2 repesenta a β en R,
−1 en caso contrario.

Las propiedades de (α, β)∞ son las mismas que sobre los cuerpos p-ádicos,
aunque las comprobaciones son mucho más sencillas. Respecto al cálculo expĺı-
cito, es fácil comprobar que (α, β)∞ = 1 si y sólo si α > 0 o β > 0.

Ejercicio: Interpretar el invariante ψ∞(f) y comprobar que determina la equivalencia
de formas cuadráticas binarias en R exactamente igual que en el caso p-ádico.

En la definición anterior hemos introducido por primera vez un convenio
que tiene su explicación en el desarrollo posterior de la teoŕıa, y que aqúı no
podŕıamos justificar debidamente. Se trata del uso del sub́ındice ∞ para hacer
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referencia a los números reales. En esta misma ĺınea, llamaremos Q∞ = R y
representaremos por | |∞ al valor absoluto usual en R. En la práctica esto
nos permitirá englobar a R y los cuerpos p-ádicos bajo la expresión común Qp,
si entendemos que p recorre los números primos incluyendo p = ∞. Como
acabamos de decir, existe una base teórica para hablar de un ‘primo infinito’
en Q en estrecha analoǵıa con los primos finitos usuales, pero no estamos en
condiciones de entrar en ello.

8.4 El teorema de Hasse-Minkowski

Por fin estamos en condiciones de abordar el teorema central de este caṕıtulo:

Teorema 8.30 (Teorema de Hasse-Minkowski) Una forma cuadrática con
coeficientes racionales representa 0 en Q si y sólo si representa 0 en todos los
cuerpos Qp, para todo primo p, incluido p =∞.

Aplicando el teorema 8.5 tenemos la siguiente consecuencia inmediata:

Teorema 8.31 Una forma cuadrática con coeficientes racionales representa a
un número racional r en Q si y sólo si representa a r en todos los cuerpos Qp,
para todo primo p, incluido p =∞.

Aśı pues, el problema de si un número racional está representado en Q por
una forma cuadrática se reduce al mismo problema sobre los cuerpos p-ádicos,
donde la solución es mucho más sencilla gracias esencialmente a la completitud.
De hecho los problemas de representación de números por formas cuadráticas
en cuerpos p-ádicos pueden resolverse sistemáticamente. Nosotros sólo hemos
expuesto la teoŕıa completa para formas binarias, pero se pueden dar resultados
generales. Un ataque directo del problema en Q es inviable en general y termina
siempre en comprobaciones laboriosas en cada caso particular.

Pero aparte del interés del teorema de Hasse-Minkowski para la teoŕıa de
ecuaciones diofánticas, podemos ver en él un indicio de un principio alrededor
del cual gira la teoŕıa algebraica de números moderna. Vagamente puede ser
enunciado como sigue: Los resultados ‘globales’, referentes a la aritmética de Q
o de cualquier cuerpo numérico pueden descomponerse en resultados análogos
‘locales’ en torno a las compleciones del cuerpo respecto todos sus primos (y
aqúı hay que incluir ciertos ‘primos infinitos’ asociados a valores absolutos ar-
quimedianos), de tal forma que la totalidad de los resultados locales equivale
al correspondiente resultado global. Este principio de localización, conjeturado
por Hensel y puesto de manifiesto por Hasse, se aplica igualmente al cálculo
de discriminantes, a la determinación de las descomposiciones en primos y al
trabajo con muchos conceptos adicionales de la teoŕıa de números que nosotros
no tocaremos. Añadamos tan sólo que Hensel descubrió los números p-ádicos
mientras investigaba los exponentes de los primos que dividen al discriminante
de un cuerpo numérico y, efectivamente, este problema puede reducirse a estu-
diar los discriminantes de extensiones locales asociadas, cada uno de los cuales
es divisible únicamente entre un primo.
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En esta sección demostraremos el teorema de Hasse-Minkowski para formas
de hasta tres variables, con lo que el teorema 8.31 estará probado para formas
binarias. El resto de la prueba requerirá consideraciones adicionales que incluyen
la ley de reciprocidad cuadrática (que probaremos en el caṕıtulo siguiente) y el
teorema de Dirichlet sobre primos en progresiones aritméticas, que probaremos
en el caṕıtulo XI. Por otra parte, en lo sucesivo sólo necesitaremos los casos que
vamos a probar aqúı.

Demostración: (del Ta
¯ 8.30 para formas de hasta 3 variables)

Como observación general podemos suponer que la forma cuadrática con-
siderada es regular, porque las formas singulares representan 0 en todos los
cuerpos. Además una implicación es inmediata.

Cuando el número n de variables es 1 el teorema es trivial: una forma con
una variable nunca representa 0.

Para n = 2 la prueba es muy sencilla: Sea f una forma cuadrática binaria con
coeficientes racionales. Sea d su discriminante. Por el teorema 8.7, f representa
0 en un cuerpo K si y sólo si −d es un cuadrado en K. Como f representa 0 en R,
tenemos −d > 0. Sea −d = pk1

1 · · · pkr
r , donde p1, . . . , pr son primos (naturales)

distintos y k1, . . . , kr son enteros racionales. Como −d es un cuadrado en cada
Qpi

resulta que cada exponente ki es par, luego −d es un cuadrado en Q.

Observar que los casos n = 1, 2 no aportan nada, pues disponemos de cri-
terios directos para decidir si una forma con una o dos variables representa 0 o
no en Q. En cambio el caso n = 3 śı aporta información relevante y la prueba
ya no es tan simple.

Pasando a una forma equivalente y multiplicando por un entero racional si
es preciso, podemos suponer que la forma considerada es del tipo ax2+by2+cz2

con coeficientes enteros (esto no modifica la representación de 0).
Observar que para aquellos primos p que no dividan a abc los coeficientes

son unidades p-ádicas, y por el teorema 8.22 la forma representa 0 en Qp. Esto
significa que las condiciones del teorema para la representación de 0 en Q son en
realidad un número finito (y esto es válido para formas con cualquier número de
variables). El teorema de Hasse-Minkowski nos da, pues, un criterio expĺıcito
y verificable en un número finito de pasos para saber si una forma cuadrática
representa o no 0 en Q. Para el caso n = 3 tal criterio (en otros términos que
no involucran números p-ádicos) era ya conocido por Legendre.

Puesto que la forma ax2 + by2 + cz2 representa 0 en R, no puede ocurrir que
los tres coeficientes sean del mismo signo. Multiplicando por −1 si es preciso
podemos suponer que dos son positivos y uno negativo. Mediante un cambio de
variables podemos eliminar todos los cuadrados, con lo que podemos suponer
que a, b, c son libres de cuadrados y primos entre śı. Más aún, si dos de ellos
tienen un factor común p, digamos p | a, p | b, entonces multiplicando por p
y eliminando el cuadrado pasamos a una forma con coeficientes a/p, b/p, pc.
Repitiendo este proceso llegamos a una forma ax2 + by2 − cz2 donde a, b, c son
números naturales libres de cuadrados y primos entre śı dos a dos.
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Sea p un divisor primo impar del coeficiente c. Como f representa 0 en Qp,
por el teorema 8.14 la forma ax2 +by2 también representa 0 en Qp y, claramente
entonces, la congruencia ax2 + by2 ≡ 0 (mód p) tiene una solución no trivial,
digamos (x0, y0) con y0 �≡ 0 (mód p). Esto nos da la factorización

ax2 + by2 ≡ ay−2
0 (xy0 + yx0)(xy0 − yx0) (mód p).

Como c es 0 módulo p en realidad tenemos una factorización de la forma
original:

ax2 + by2 − cz2 ≡ Lp(x, y, z)Mp(x, y, z) (mód p),

donde Lp y Mp son formas lineales con coeficientes enteros. Lo mismo vale para
los divisores primos impares de a y b. Para p = 2 también es cierto, aunque no
necesitamos las hipótesis:

ax2 + by2 − cz2 ≡ (ax + by − cz)2 (mód p).

Si para cada primo p | abc tomamos rp ∈ Z de modo que rp ≡ 1 (mód p),
rp ≡ 0 (mód abc/p) y sumamos las formas rpL

p(x, y, z), por una parte y por
otra las formas rpM

p(x, y, z), obtenemos formas lineales L(x, y, z), M(x, y, z)
con coeficientes enteros tales que

L(x, y, z) ≡ Lp(x, y, z) (mód p), M(x, y, z) ≡Mp(x, y, z) (mód p)

para todos los divisores primos de abc. Claramente entonces

ax2 + by2 − cz2 ≡ L(x, y, z)M(x, y, z) (mód abc)

Podemos ignorar el caso a = b = c = 1, pues la forma x2 +y2−z2 representa
0 en Q, luego no hay nada que probar.

Ahora daremos valores enteros a las variables (x, y, z) de modo que

0 ≤ x <
√

bc, 0 ≤ y <
√

ac, 0 ≤ z <
√

ab. (8.3)

Puesto que a, b, c son libres de cuadrados y primos entre śı dos a dos, los
números

√
bc,

√
ac,

√
ab no son enteros. El número de ternas que cumplen

8.3 es el producto de las partes enteras por exceso de
√

bc,
√

ac,
√

ab, que es
estrictamente mayor que √

bc
√

ac
√

ab = abc.

Como L(x, y, z) sólo puede tomar abc valores módulo abc, han de existir dos
ternas distintas (x1, y1, z1) y (x2, y2, z2) tales que

L(x1, y1, z1) ≡ L(x2, y2, z2) (mód abc).

Llamando (x0, y0, z0) a la diferencia de ambas ternas, la linealidad de L implica
que L(x0, y0, z0) ≡ 0 (mód abc). Aśı,

ax2
0 + by2

0 − cz2
0 ≡ L(x0, y0, z0)M(x0, y0, z0) ≡ 0 (mód abc).
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Además tenemos que |x0| <
√

bc, |y0| <
√

ac, |z0| <
√

ab, de donde se sigue que
−abc < ax2

0 + by2
0 − cz2

0 < 2abc.
Esto sólo es posible si ax2

0 + by2
0 − cz2

0 = 0 o bien ax2
0 + by2

0 − cz2
0 = abc. En

el primer caso ya tenemos que ax2 + by2 − cz2 representa 0 en Q (pues la terna
(x0, y0, z0) no es nula). En el segundo caso se comprueba que

a(x0z0 + by0)2 + b(y0z0 − ax0)2 − c(z2
0 + ab)2 = 0.

Si z2
0 + ab �= 0 tenemos que ax2 + by2 − cz2 representa 0 en Q. Si −ab = z2

0 ,
entonces la forma ax2+by2 representa 0 (por el teorema 8.7), luego ax2+by2−cz2

también.

El teorema de Hasse-Minkowski también nos permite reducir la equivalencia
de formas cuadráticas en Q a la equivalencia en los cuerpos p-ádicos. Para verlo
necesitamos un resultado general:

Definición 8.32 Si f y g son dos formas cuadráticas sobre un cuerpo K con
m y n variables respectivamente, llamaremos suma directa de f y g a la forma
cuadrática dada por

(f ⊕ g)(x1, . . . , xm+n) = f(x1, . . . , xm) + g(xm+1, . . . , xm+n).

Claramente la suma directa de formas cuadráticas regulares es de nuevo una
forma cuadrática regular (su determinante es el producto de los determinantes).

Teorema 8.33 (Teorema de Witt) Sean f , g, h formas cuadráticas regula-
res en un cuerpo K. Si f ⊕ g es equivalente a f ⊕ h, entonces g es equivalente
a h.

Demostración: Si cambiamos f por una forma equivalente sigue cum-
pliéndose la hipótesis, luego podemos suponer que f es diagonal. De aqúı se
sigue que es suficiente probar el teorema para el caso en que f(x) = ax2 con
a �= 0. Sean A y B las matrices de g y h. Entonces las matrices de f ⊕g y f ⊕h
son respectivamente (

a 0
0 A

)
y

(
a 0
0 B

)
,

donde 0 representa en cada caso a una fila o a una columna de ceros.
Como ax2 ⊕ g y ax2 ⊕ h son equivalentes, sus matrices verifican la relación(

γ T ′

S′ Q′

) (
a 0
0 A

) (
γ S
T Q

)
=

(
a 0
0 B

)
,

para una cierta matriz regular. Esto equivale a las ecuaciones

γ2a + T ′AT = a,

γaS + T ′AQ = 0,
S′aS + Q′AQ = B.
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Sea M = Q + kTS para un cierto k ∈ K. Vamos a ver que eligiendo k
adecuadamente se cumplirá que M es regular y M ′AM = B, con lo que g y h
serán equivalentes. Tenemos

M ′AM = (Q′+kS′T ′)A(Q+kTS) = Q′AQ+kS′T ′AQ+kQ′ATS+k2S′T ′ATS

= Q′AQ−kγaS′S−kγaS′S+k2(a−γ2a)S′S = Q′AQ+a
(
(1−γ2)k2−2kγ

)
S′S.

Esto será igual a B si (1− γ2)k2 − 2kγ = 1, o sea, si k2 − (γk + 1)2 = 0.
Basta tomar k de modo que k = γk + 1, es decir, k = 1/(1 − γ) salvo

que γ = 1, en cuyo caso la ecuación se reduce a −2k = 1 y sirve k = −1/2
(suponemos siempre que la caracteŕıstica de K es impar).

Aśı pues, para el k adecuado, tenemos M ′AM = B, y como B es regular,
M también ha de serlo.

Teorema 8.34 Dos formas cuadráticas regulares con coeficientes racionales
son racionalmente equivalentes si y sólo si son equivalentes en Qp para todo
primo p, incluido p =∞.

Demostración: Por inducción sobre el número n de variables. Si n = 1 dos
formas ax2 y bx2 son equivalentes en un cuerpo si y sólo si a/b es un cuadrado.
Pero, como hemos visto en la prueba del teorema 8.30 para n = 1, si a/b es un
cuadrado en todos los cuerpos Qp entonces es un cuadrado en Q.

Supongamos que n > 1. Sean dos formas f y g según las hipótesis. Sea r
un número racional no nulo representado por f . Como f y g son equivalentes
en los cuerpos Qp, tenemos que g representa a r en todos estos cuerpos, y por
el teorema 8.31 resulta que g representa a r en Q.

Por el teorema 8.2 tenemos que f y g son equivalentes a formas rx2 ⊕ f ′ y
rx2 ⊕ g′. Por el teorema anterior f ′ y g′ son equivalentes en todos los cuerpos
Qp, luego por hipótesis de inducción tenemos que f ′ y g′ son equivalentes en Q,
con lo que f y g también lo son.

Observar que con la prueba del teorema de Hasse-Minkowski para formas de
hasta tres variables tenemos probado el teorema anterior para formas cuadrá-
ticas binarias. Para este caso, podemos dar condiciones mucho más simples en
términos de los invariantes definidos en 8.27.

Definición 8.35 Sea f una forma cuadrática binaria sobre Q. Entonces el
determinante de f se expresa de forma única como d(f) = δ(f)c2, donde δ(f)
es un número racional libre de cuadrados. Es claro que δ(f) es un invariante,
es decir, si f y g son formas equivalentes, entonces δ(f) = δ(g).

Para cada primo p tenemos definido ψp(f) =
(
r,−δ(f)

)
p
, donde r es cual-

quier número racional no nulo representado por f (definición 8.27).
También es obvio que si f y g son (racionalmente) equivalentes también son

equivalentes en Qp, y entonces ψp(f) = ψp(g). Todo esto se cumple trivialmente
en el caso p =∞.

Combinando los teoremas 8.28 y 8.34 (junto con sus versiones para ∞) ob-
tenemos:
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Teorema 8.36 Dos formas cuadráticas binarias f y g sobre Q son (racional-
mente) equivalentes si y sólo si δ(f) = δ(g) y ψp(f) = ψp(g) para todo primo p,
incluido p =∞.

Para calcular ψp(f) podemos tomar una forma equivalente, luego podemos
suponer que f es del tipo ax2 + by2. Se cumplirá que ψp(f) = 1 si y sólo si
ax2 + by2 − z2 representa 0 en Qp. Por el teorema 8.22 esto se cumple siempre
que p es impar y no divide a ab. Por lo tanto las condiciones en el teorema
anterior se reducen a un número finito y son decidibles en la práctica.

8.5 La ley de reciprocidad cuadrática

Observemos que en la demostración del teorema 8.30 para formas de tres
variables no se ha usado la hipótesis de que la forma represente 0 en Q2. Como
consecuencia resulta que si una forma cuadrática de tres variables representa
0 en todos los cuerpos Qp, incluido p = ∞, salvo quizá para p = 2, entonces
representa 0 en Q, y por lo tanto también en Q2. La causa de este fenómeno se
encuentra en la ley de reciprocidad cuadrática, que enunciamos en el caṕıtulo I
(sección 1.4). Ahora vamos a presentarla en una versión equivalente que muestra
con elegancia su conexión con la teoŕıa de formas cuadráticas.

Teorema 8.37 La ley de reciprocidad cuadrática es equivalente a la siguiente
afirmación: para todos los números racionales no nulos a y b se cumple∏

p

(a, b)p = 1,

donde p recorre todos los primos, incluido p =∞.

Demostración: Observar que el producto es finito, en el sentido de que
casi todos sus factores son iguales a 1. Concretamente, si p �= 2 y p no divide
al numerador ni al denominador de ab, entonces de acuerdo con las propiedades
de los śımbolos de Hilbert, (a, b)p = 1.

Por estas mismas propiedades, todo producto de este tipo se descompone en
un número finito de productos similares donde a y b están en uno de los casos
siguientes:

1. a = b = −1.

2. a = q (primo), b = −1.

3. a = q, b = q′ (primos distintos).

Basta, pues, considerar productos asociados a pares en uno de estos casos.

1) En cualquier caso se cumple∏
p

(−1,−1)p = (−1,−1)2(−1,−1)∞ = (−1)(−1) = 1.
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2) Igualmente:∏
p

(2,−1)p = (2,−1)2(2,−1)∞ = 1 · 1 = 1.

La primera ley suplementaria se cumple si y sólo si

∏
p

(q,−1)p = (q,−1)2(q,−1)q = (−1)(q−1)/2

(−1
q

)
= 1.

3) La segunda ley suplementaria se cumple si y sólo si

∏
p

(2, q)p = (2, q)2(2, q)q = (−1)(q
2−1)/8

(
2
q

)
= 1.

Y la ley de reciprocidad principal se cumple si y sólo si

∏
p

(q, q′)p = (q, q′)2(q, q′)q(q, q′)q′ = (−1)(q−1)(q′−1)/4

(
q

q′

) (
q′

q

)
= 1.

En el próximo caṕıtulo demostraremos la fórmula del producto de los śım-
bolos de Hilbert y con ella tendremos probada la ley de reciprocidad cuadrática.
Observar que esta fórmula explica por qué en el teorema 8.30 no era necesaria
la hipótesis de que la forma cuadrática representara 0 en Q2: a efectos de
representación de 0 toda forma f con tres variables puede expresarse como
ax2 + by2 − z2 (tomando una equivalente diagonal y dividiendo entre el tercer
coeficiente). Entonces, (a, b)p = 1 equivale a que f represente 0 en Qp, y la
fórmula del producto implica que si esto sucede para todos los primos salvo
quizá uno (incluido p =∞) también ha de cumplirse para éste último.

8.6 Conclusión de la prueba

Para completar la prueba del teorema 8.30 necesitaremos el siguiente hecho
auxiliar:

Teorema 8.38 Sea K un cuerpo de caracteŕıstica distinta de 2 y con más de
cinco elementos. Si una forma cuadrática diagonal representa 0 en K, entonces
tiene una representación de 0 en la que ninguna variable toma el valor 0.

Demostración: Primeramente demostramos que si ax2 = c �= 0, entonces
para todo b �= 0 existen elementos no nulos α y β tales que aα2 + bβ2 = c. Para
ello consideramos la identidad

(t− 1)2

(t + 1)2
+

4t
(t + 1)2

= 1.
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Multiplicamos por ax2 = c y queda

a

(
x

t− 1
t + 1

)2

+ at

(
2x

t + 1

)2

= c.

Existe un γ ∈ K tal que γ �= 0 y t = bγ2/a �= ±1. Esto se debe a que las
ecuaciones bγ2 = ±1 tienen a lo sumo dos soluciones cada una, y K contiene al
menos un sexto elemento, aparte de las posibles cuatro soluciones y el 0.

Para este valor de t se cumple

a

(
x

t− 1
t + 1

)2

+ b

(
2xγ
t + 1

)2

= c,

tal y como queŕıamos.
Sea ahora a1x

2
1 + · · · + anx

2
n = 0 una representación de 0 de una forma

cuadrática diagonal sobre K.
Podemos ordenar las variables de modo que sean todas no nulas hasta xr

mientras que xr+1 = · · · = xn = 0. Obviamente r ≥ 2. Según lo probado,
existen α y β no nulos en K tales que arx

2
r = arα

2 + ar+1β
2.

Esto nos da una representación de 0 donde el número de variables no nulas ha
aumentado en una unidad. Repitiendo el proceso se llega a una representación
sin variables nulas.

Conclusión de la prueba de 8.30:

Consideremos ahora una forma con cuatro variables

aw2 + bx2 + cy2 + dz2,

donde, como en el caso n = 3, podemos suponer que los coeficientes son enteros
libres de cuadrados. Además, como la forma representa 0 en R, no todos los
coeficientes tienen el mismo signo. Podemos suponer que a > 0 y d < 0.

Consideraremos también las formas g = aw2 +bx2 y h = −cy2−dz2. Vamos
a demostrar que g y h representan en Q a un mismo entero racional no nulo,
con lo que tendremos una representación de 0 en Q de la forma dada.

Sean p1, . . . , ps los primos impares distintos que dividen a los coeficientes a,
b, c, d. Para cada uno de estos primos, aśı como para p = 2, podemos encontrar
una representación de 0 en Qp de la forma aw2 + bx2 + cy2 + dz2 = 0 donde
ninguna de las variables sea nula. Además podemos exigir que todas tomen
valores enteros y que uno de ellos no sea divisible entre p.

Sea bp = aw2 + bx2 = −cy2 − dz2 ∈ Zp. Podemos exigir que bp �= 0, pues si
el aśı obtenido es 0, las formas g y h representan 0 en Qp, luego representan a
todos los números p-ádicos y podemos tomar cualquier otro.

Además podemos exigir que p2 � bp, pues si p2k | bp podemos cambiar bp por
bp/p

2k, w por w/pk, x por x/pk, etc.
Consideremos el sistema de congruencias

t ≡ b2 (mód 16),
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t ≡ bp1 (mód p2
1), (8.4)

...
...

t ≡ bps (mód p2
s).

Podemos sustituir cada bp por un número entero congruente respecto al
módulo indicado y aplicar el teorema chino del resto para obtener un entero t
que satisfaga estas ecuaciones, y que estará uńıvocamente determinado módulo
m = 16 p2

1 · · · p2
2.

Para cada ı́ndice i tenemos que vpi(t) = vpi(bpi), luego bpit
−1 es una unidad,

y además bpit
−1 ≡ 1 (mód pi). Por el teorema 8.9 tenemos que bpit

−1 es un
cuadrado en Qpi . Igualmente, b2t

−1 es una unidad y b2t
−1 ≡ 1 (mód 8), luego

por el teorema 8.12 también es un cuadrado.
Aśı pues, para p = 2, p1, . . . , ps se cumple que bpt

−1 es un cuadrado en Qp,
luego las formas −tx2

0 ⊕ g y −tx2
0 ⊕ h representan 0 en Qp. Podemos tomar

t > 0 y entonces, puesto que a > 0 y d < 0, tenemos que −tx2
0 ⊕ g y −tx2

0 ⊕ h
también representan 0 en R.

Si p es cualquier otro primo que además no divida a t, como no divide a
ninguno de los coeficientes de g y de h, todos los coeficientes de las formas
−tx2

o ⊕ g y −tx2
0 ⊕ h son unidades en Qp, luego por el teorema 8.22 ambas

formas representan 0.
Vamos a probar que podemos elegir t de modo que a lo sumo haya un único

primo q que divida a t y sea distinto de 2, p1, . . . , ps. Entonces tendremos que las
formas −tx2

0 ⊕ g y −tx2
o ⊕ h representan 0 en todos los cuerpos Qp, incluyendo

p = ∞, salvo quizá para el primo q. Usando la fórmula del teorema 8.37 (aún
no demostrada) resulta que también representan 0 en el caso exceptuado (ver la
observación tras el teorema). Por el teorema 8.30 para formas de tres variables
resulta que −tx2

0 ⊕ g y −tx2
0 ⊕ h representan 0 en Q. Por el teorema 8.5 las

formas g y h representan ambas a t y el teorema quedará probado (para cuatro
variables).

Sea t cualquier entero que cumpla las congruencias (8.4). En su lugar pode-
mos tomar cualquier otro número de la forma t+ km. Veamos que uno de éstos
nos sirve.

Sea d el máximo común divisor de t y m. Sean t′ = t/d y m′ = m/d.
Entonces t′ y m′ son primos entre śı. Ahora usamos el teorema de Dirichlet
sobre primos en progresiones aritméticas (ver el caṕıtulo I), que nos garantiza
la existencia de un primo de la forma q = t′ + km′. Entonces t∗ = t + km = dq
sólo es divisible entre un primo distinto de 2, p1, . . . , ps, tal y como queŕıamos.

Probamos ahora el teorema para formas con cinco variables:

av2 + bw2 + cx2 + dy2 + ez2.

Como en los casos anteriores podemos suponer que los coeficientes son ente-
ros y libres de cuadrados. Si esta forma representa 0 en R entonces no todos los
coeficientes tienen el mismo signo. Digamos a > 0, e < 0. Sea g = av2 + bw2,
h = −cx2 − dy2 − ez2.
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Razonamos exactamente igual como en el caso n = 4 (usando el teorema
de Dirichlet) para probar que existe un número natural t representado por las
formas g y h en todos los cuerpos Qp, incluyendo p = ∞, salvo quizá para un
primo impar q que no divide a los coeficientes a, b, c, d, e.

Igualmente se prueba que la forma g representa a t también en Qq, luego en
Q. Para la forma h usamos otro argumento: por el teorema 8.22 representa 0
en Qq, luego por el teorema 8.4 también representa a t. Con esto concluimos
que g y h representan a t en Q y la prueba termina.

Observar que por el teorema 8.20 toda forma cuadrática con cinco o más
variables representa 0 en todos los cuerpos p-ádicos, luego lo que hemos probado
es que una forma con cinco variables representa 0 en Q si y sólo si representa 0
en R, y lo mismo hay que probar para formas de más de cinco variables. Ahora
bien, toda forma con más de cinco variables es equivalente a una forma diagonal,
y si representa 0 en R no todos los coeficientes tendrán el mismo signo, luego
podemos ordenar las variables de modo que los dos primeros coeficientes tengan
signos distintos, y aśı la forma dada se descompone como f ⊕ g, donde f es una
forma diagonal con cinco variables que representa 0 en R y g es cualquier forma.
Por el caso n = 5 tenemos que f representa 0 en Q, luego f ⊕ g también.

Vamos a acabar el caṕıtulo con una aplicación interesante del teorema de
Hasse-Minkowski. Nos apoyaremos en el teorema siguiente.

Teorema 8.39 Sea f una forma cuadrática con coeficientes enteros definida
positiva (es decir, f(x) ≥ 0 para todo x ∈ Qn y f(x) = 0 si y sólo si x = 0) y
supongamos que para todo x ∈ Qn existe un x′ ∈ Zn tal que f(x− x′) < 1. En-
tonces todos los números naturales representados por f en Q son representados
también en Z.

Demostración: Sea A la matriz simétrica asociada a f , es decir, la matriz
que cumple f(x) = xAxt para todo x ∈ Qn. Los coeficientes de A son enteros
o semienteros.

Para cada par de n-tuplas x, y ∈ Qn definimos g(x, y) = xAyt. La aplicación
g es una forma bilineal simétrica y f(x) = g(x, x). Además g toma valores
enteros o semienteros sobre los números enteros.

Sea n un número natural representado racionalmente por f . Entonces existe
un x ∈ Zn tal que f(x) = t2n para cierto número natural t > 0, que podemos
tomar mı́nimo. Basta probar que t = 1.

Por hipótesis existe un y ∈ Zn tal que z = x/t− y cumple g(z, z) < 1.
Si fuera g(z, z) = 0 entonces z = 0 (porque f no representa cero) y aśı resulta

que x/t = y + z tiene coeficientes enteros. Como f(x/t) = n la minimalidad de
t implica que t = 1.

Si g(z, z) �= 0 sean

a = g(y, y)− n, b = 2
(
nt− g(x, y)

)
, t′ = at + b, x′ = ax + by.

Entonces a, b, t′ son enteros y

tt′ = at2 + bt = t2g(y, y)− nt2 + 2nt2 − 2t g(x, y)
= t2 g(y, y)− 2t g(x, y) + g(x, x) = g

(
(ty − x), (ty − x)

)
= t2 g(z, z).
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Aśı pues, t′ = tg(z, z) y, como 0 < g(z, z) < 1, resulta que 0 < t′ < t. Por
otra parte,

g(x′, x′) = a2 g(x, x) + 2ab g(x, y) + b2 g(y, y)
= a2t2n + ab(2nt− b) + b2(n + a) = n(a2t2 + 2abt + b2) = t′2n,

lo que contradice la minimalidad de t

Teorema 8.40 (Gauss) Un número natural es suma de tres cuadrados si y
sólo si no es de la forma 4n(8m− 1).

Demostración: La forma cuadrática f(x, y, z) = x2 + y2 + z2 está en
las hipótesis del teorema anterior, pues sin duda es definida positiva y, dada
una terna (x, y, z) de números racionales, siempre podemos encontrar una terna
(x′, y′, z′) de números enteros tales que

|x− x′| < 1/2, |y − y′| < 1/2, |z − z′| < 1/2,

con lo que f(x−x′, y−y′, z−z′) ≤ 1/4+1/4+1/4 = 3/4 < 1. Por lo tanto basta
probar que un número natural está representado racionalmente por f si y sólo
si no es de la forma indicada. Por el teorema 8.31 los números representados
racionalmente por f son los representados por f en R y en todos los cuerpos
p-ádicos.

Obviamente los números racionales representados por f en R son exacta-
mente los mayores que 0 y por el teorema 8.22 f representa 0 en todos los
cuerpos Qp con p �= 2, luego también a cualquier número racional.

Concluimos que un número natural a es suma de tres cuadrados si y sólo si
está representado por f en Q2.

Ahora bien, f representa a a en Q2 si y sólo si la forma x2 + y2 + z2 − at2

representa 0 (teorema 8.5) y a su vez esto equivale a que exista un número
diádico no nulo u tal que x2 + y2 represente a u y z2 − at2 represente a −u (en
principio u podŕıa ser 0, pero en tal caso ambas formas binarias representan 0
y podemos tomar cualquier u.

De nuevo por el teorema 8.5 esto equivale a que exista un número diádico u
tal que las formas x2 + y2 − uw2 y z2 − at2 + uw2 representen 0, y en términos
del śımbolo de Hilbert esto se expresa como que (−1, u)2 = 1 = (a,−u)2.

Esta condición depende sólo de las clases de a y de u módulo Q∗2
2 . Un

conjunto de representantes de estas clases es 1, 3, 5, 7, 2, 6, 10, 14. La condición
(−1, u)2 = 1 la cumplen los números congruentes con 1, 5, 2, 10 (observar que −1
es congruente con 7 y considerar la tabla calculada en la prueba de 8.23). Los
valores de −u son, pues, 7, 3, 14, 6. La misma tabla nos da que para cualquier
a podemos encontrar un −u entre estos cuatro que haga (a,−u)2 = 1 salvo si
a ≡ 7 (mód Q∗2

2 ).
Por lo tanto los números naturales n representados por f son todos excepto

los que cumplen a ≡ 7 (mód Q∗2
2 ), o equivalentemente, −a ≡ 1 (mód Q∗2

2 ), o
sea, excepto los que cumplen que −a es un cuadrado en Q2.

Por el teorema 8.12 esto equivale a que −a sea de la forma 4n(8m + 1), o
equivalentemente, a que a sea de la forma 4n(8m− 1).
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Teorema 8.41 (Legendre) Todo número natural es suma de cuatro cuadra-
dos.

Demostración: Todo número natural a es de la forma a = 4nm, donde m
no es divisible entre 4. Si m es congruente con 1, 2, 3, 5, 6, módulo 8 entonces
a es suma de tres cuadrados. En caso contrario m ≡ 7 (mód 8) y por lo tanto
m− 1 ≡ 6 (mód 8) śı es suma de tres cuadrados.

Aśı pues, si m− 1 = x2 + y2 + z2, tenemos que

a = 4nm = (2nx)2 + (2ny)2 + (2nz)2 + (2n)2.

Ejercicio: Probar que un número natural a es suma de dos cuadrados si y sólo śı los
primos impares que lo dividen con exponente impar son congruentes con 1 módulo 4.





Caṕıtulo IX

La teoŕıa de los géneros

Finalmente estamos en condiciones de abordar, desde el punto de vista que
pretend́ıamos, la parte más profunda e interesante de la teoŕıa de Gauss sobre
formas cuadráticas binarias, la teoŕıa de los géneros. Como es habitual, noso-
tros la trataremos tanto en términos de formas cuadráticas como en términos
de módulos e ideales de órdenes cuadráticos. En este caṕıtulo, y mientras no
se indique lo contrario, la expresión ‘forma cuadrática’ tendrá el sentido que le
dábamos en el caṕıtulo VI, es decir, el de forma cuadrática binaria con coefi-
cientes enteros, regular y primitiva (y definida positiva si su discriminante es
negativo).

Ya conocemos un método para determinar si una forma cuadrática dada
representa o no a un entero dado. Sin embargo el método es demasiado complejo,
en el sentido de que se trata de una serie de cálculos que nos dan la respuesta en
cada caso particular, pero no nos dicen nada sobre qué enteros son representables
en general por una forma dada. Por ejemplo, con las técnicas del caṕıtulo
anterior es fácil ver que la forma x2 + y2 representa a un primo impar p si y
sólo si p ≡ 1 (mód 4). Las técnicas del caṕıtulo VI nos permiten probar que
5 está representado por dicha forma, aśı como que 7 no lo está, pero no nos
son de ninguna ayuda para llegar hasta esta sencilla caracterización. Por otra
parte, resultados de este tipo eran conocidos desde la época de Fermat, aunque
las pruebas requeŕıan argumentos espećıficos en cada caso particular.

La teoŕıa de los géneros śı proporciona esta clase de resultados. Gauss descu-
brió que existen condiciones necesarias, muy sencillas de enunciar y de manejar,
para que un número esté representado por una forma cuadrática. En ocasiones
estas condiciones son también suficientes, con lo que el problema de determi-
nar los números representados por la forma considerada tiene una respuesta
particularmente simple. Cuando no son suficientes, al menos proporcionan in-
formación relevante sobre el problema. Una parte de la teoŕıa era ya conocida
por Legendre, con anterioridad al trabajo de Gauss.

El punto de partida de la teoŕıa de géneros es el hecho evidente de que
para que la ecuación f(x, y) = m tenga soluciones enteras, donde f es una
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forma cuadrática, es necesario que las congruencias f(x, y) ≡ m (mód n) tengan
solución para todo número natural n. Dedicamos la primera sección a estudiar
este problema.

9.1 Equivalencia modular

Del mismo modo que en el estudio de la representabilidad de números por
formas cuadráticas es imprescindible el concepto de equivalencia, para estudiar
la representabilidad módulo un natural n hemos de introducir la equivalencia
módulo n:

Definición 9.1 Diremos que dos formas cuadráticas f y g son equivalentes
módulo un natural n > 1 si existen enteros a, b, c, d tales que

f(x, y) ≡ g(ax + by, cx + dy) (mód n) (ad− bc, n) = 1.

Al exigir que el determinante del cambio de variables sea primo con n ga-
rantizamos que tenga inverso módulo n, de modo que dos formas equivalentes
módulo n representan los mismos números módulo n. Es obvio que la equivalen-
cia módulo n es una relación de equivalencia en el sentido usual del término, aśı
como que dos formas equivalentes (en Z) son equivalentes módulo cualquier na-
tural n. El teorema siguiente nos indica que es suficiente estudiar la equivalencia
módulo potencias de primos.

Teorema 9.2 Sean m y n dos números naturales primos entre śı. Entonces
dos formas cuadráticas son equivalentes módulo mn si y sólo si son equivalentes
módulo m y módulo n.

Demostración: Si tenemos que f(x, y) ≡ g(a1x+a2y, a3x+a4y) (mód m)
y f(x, y) ≡ g(b1x + b2y, b3x + b4y) (mód n), donde los determinantes de los
cambios son primos con m y n respectivamente, por el teorema chino del resto
podemos encontrar enteros ci tales que ci ≡ ai (mód m) y ci ≡ bi (mód n).
Entonces f(x, y) es congruente con g(c1x + c2y, c3x + c4y) módulo m y módulo
n, luego también módulo mn, y es fácil ver que el determinante de este cambio
es también primo con mn, luego f y g son equivalentes módulo mn. El rećıproco
es obvio.

Para estudiar la equivalencia módulo una potencia de primo pn vamos a
buscar formas equivalentes a una dada lo más sencillas posibles. Supongamos
primero p �= 2. Dada una forma f(x, y) de discriminante D, el teorema 6.10 nos
da otra forma equivalente ax2 + bxy + cy2 tal que p � a. El cambio de variables

x = x′ − by′

y = 2ay′

la transforma en
a(x2 −Dy2). (9.1)
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Para simplificar aún más la expresión, notemos que si Upn representa al
grupo de las unidades de Z/pnZ y U2

pn al subgrupo de los cuadrados, entonces
|Upn : U2

pn | = 2. En efecto, basta ver que la aplicación x 
→ x2 tiene núcleo
{±1}, pero si x2 ≡ 1 (mód pn), entonces pn | x2 − 1 = (x + 1)(x − 1), y no
puede ocurrir simultáneamente que p | x + 1 y p | x − 1, pues restando saldŕıa
que p | 2. Por lo tanto pn | x + 1 o pn | x− 1, con lo que x ≡ ±1 (mód pn).

Tomemos un resto no cuadrático cualquiera módulo p, digamos r. Obvia-
mente r tampoco es un cuadrado módulo pn, con lo que Upn = U2

pn ∪ rU2
pn .

En particular, el número a de (9.1) se escribirá módulo pn como a = u2 o bien
a = ru2, para un cierto entero u (primo con p). El cambio x′ = ux, y′ = uy nos
transforma (9.1) en una de las dos formas

x2 −Dy2 o r(x2 −Dy2), (9.2)

donde, recordemos, r es cualquier resto no cuadrático módulo p que fijemos de
antemano. Ahora distinguimos dos casos:

Si p | D, entonces las formas (9.2) son congruentes módulo p con x2 y
rx2 respectivamente, que se caracterizan por que una representa sólo restos
cuadráticos módulo p y la otra sólo restos no cuadráticos módulo p. En resumen:

Teorema 9.3 Si p | D, toda forma cuadrática f de discriminante D es equiva-
lente módulo pn con una de las formas (9.2) y sólo con una. Concretamente, f
es equivalente a la primera si y sólo si representa restos cuadráticos módulo p
y es equivalente a la segunda en caso contrario.

De acuerdo con esto, Gauss dio la definición siguiente

Definición 9.4 Sea f una forma cuadrática de discriminante D y p un primo
impar tal que p | D. Diremos que f tiene carácter positivo módulo p si f
representa restos cuadráticos módulo p. En caso contrario se dice que f tiene
carácter negativo módulo p. Equivalentemente, definimos el carácter módulo p
de f como

χp(f) =
(

a

p

)
,

donde a es cualquier número representado por f que sea primo con p.

Las consideraciones anteriores prueban que χp(f) no depende de la elección
de a, aśı como que formas equivalentes módulo pn tienen el mismo carácter
módulo p. En particular, si C es una clase de equivalencia (estricta o no es-
tricta) de formas cuadráticas de discriminante D, podemos definir χp(C) como
el carácter de cualquiera de sus miembros. También hemos probado que dos
formas f y g de discriminante D son equivalentes módulo pn si y sólo si tienen
el mismo carácter módulo p.

Examinemos ahora el segundo caso, es decir, p � D. Entonces es claro que
los polinomios x2 y r−Dy2 toman cada uno (p+ 1)/2 valores distintos módulo
p, luego ha de haber enteros u e v que den la misma imagen, es decir, tales que
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r ≡ u2 −Dv2 (mód p). Entonces, u2 −Dv2 es un resto no cuadrático módulo
p, y si elegimos a éste precisamente como r, tenemos la igualdad r = u2 −Dv2.
El cambio de variables

x = ux′ + Dvy′

y = vx′ + uy′

transforma la forma de la izquierda de (9.2) en la forma de la derecha, luego
ambas son equivalentes módulo pn y, en definitiva, todas las formas cuadráticas
de discriminante D son equivalentes módulo pn. Para extender a este caso las
conclusiones anteriores definimos el carácter módulo p de una forma f (cuando
p es impar y no divide al discriminante) como χp(f) = 1. Definimos igualmente
el carácter de una clase de fórmulas.

De este modo sigue siendo cierto que dos formas cuadráticas de discriminante
D son equivalentes módulo pn, con p impar, si y sólo si tienen el mismo carácter
módulo p, lo cual se cumple siempre si p � D.

Nos falta estudiar el caso p = 2. Si una forma cuadrática tiene discriminante
D = b2−4ac, entonces D es impar si y sólo si b lo es, y entonces D ≡ 1 (mód 8)
si y sólo si 2 | ac. Ocupémonos primero del caso impar.

Teorema 9.5 Toda forma cuadrática de discriminante impar D es equivalente
módulo 2n a una de las dos formas

xy o x2 + xy + y2.

Concretamente, una forma es equivalente a la primera si y sólo si D ≡ 1 (mód 8)
y es equivalente a la segunda en caso contrario.

Demostración: Toda forma con discriminante D ≡ 1 (mód 8) es equi-
valente a una forma ax2 + bxy + 2cy2 con a impar. Con el cambio y′ = by
podemos hacer b = 1. Por otra parte, si aplicamos a xy el cambio de variables
x = x′ + 2uy, y = ax′ + vy (con v impar) obtenemos la forma

ax2 + (v + 2au)xy + 2uvy2.

Para que ésta sea congruente con la dada se han de cumplir las congruencias

v + 2au ≡ 1 (mód 2n) (9.3)
uv ≡ c (mód 2n). (9.4)

Como v es una unidad módulo 2n, podemos despejar u en (9.4) y sustituirlo en
(9.3). Aśı obtenemos v + 2acv−1 ≡ 1 (mód 2n), o equivalentemente:

v(v − 1) ≡ −2ac (mód 2n)

Si demostramos que esta congruencia tiene solución v impar, entonces (9.3) nos
permitirá calcular u, y tendremos probado que xy es equivalente a cualquier
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forma con discriminante D ≡ 1 (mód 8). Ahora bien, es fácil ver que la con-
gruencia v2 − v − 2k ≡ 0 (mód 8) tiene solución para todo k, y el teorema 7.17
implica que existe un entero diádico v tal que v2 − v − 2k = 0. Tomando clases
módulo 2n obtenemos la solución buscada.

Consideremos ahora el caso D �≡ 1 (mód 8). En primer lugar probamos que
si a, b, c y r son impares entonces la congruencia

ax2 + bxy + cy2 ≡ r (mód 2n) (9.5)

tiene solución. Dividiendo entre r podemos suponer a = 1. Aśı nos queda la
forma f(x, y) = x2 + bxy + (2k + 1)y2. Observamos que

f(1, 0) = 1, f(1, 2) = 2b + 5, f(−1, 2) = −2b + 5 y f(1, 4) = 1 + 4b

son cuatro impares distintos módulo 8, luego uno de ellos es congruente con
r módulo 8, es decir, se cumple (9.5) módulo 8. Además en cualquiera de los
cuatro casos la derivada f ′

y(x, y) ≡ ±b (mód 4), luego el teorema 7.17 nos da
que (9.5) tiene solución en Z2 y por consiguiente también módulo 2n.

En particular existen enteros u y v tales que au2 + buv + cv2 ≡ 1 (mód 2n).
Uno de los dos ha de ser impar. Supongamos que es u. El cambio de variables
x = ux′, y = vx′ + y nos convierte la forma de partida en otra equivalente con
a = 1. El cambio y′ = by nos hace b = 1, luego toda forma en el caso que estamos
estudiando es equivalente módulo 2n a una de la forma x2 + xy + (2k + 1)y2.

Vamos a probar que la forma x2 + xy + y2 se puede transformar en ésta
mediante un cambio adecuado. Concretamente hacemos x = x′ + uy′, y = vy′,
(con v impar) con lo que llegamos a x2 + (2u+ v)xy + (u2 + uv + v2)y2. Hemos
de conseguir

2u + v ≡ 1 (mód 2n)
u2 + uv + v2 ≡ 2k + 1 (mód 2n)

Al despejar v en la primera congruencia y sustituir en la segunda llegamos a
la misma congruencia que antes, a saber: u2 − u ≡ impar (mód 2n), que ya
sabemos que tiene solución.

Por último notamos que las dos formas del enunciado no son equivalentes
módulo 2n, pues evidentemente xy representa a todos los enteros, mientras que
x2 + xy + y2 �≡ 2 (mód 4).

En particular el teorema anterior prueba que todas las formas cuadráticas
con discriminante impar son equivalentes módulo 2n. Al igual que hemos hecho
con los primos impares, definimos el carácter módulo 2 de una forma f con
discriminante impar como χ2(f) = 1. Aśı sigue siendo cierto en este caso que
dos formas con el mismo discriminante son equivalentes módulo pn si y sólo si
tienen el mismo carácter módulo p.

Ya sólo nos queda el caso en que 2 divide al discriminante. Este caso presenta
diferencias relevantes respecto al de los primos impares, debidas esencialmente
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a que el ı́ndice del subgrupo de los cuadrados en U2n no es 2, sino 4. En
efecto, dado un entero impar a, del teorema 8.12 se sigue que a se expresa como
a = rε2, donde r = ±1,±5 y ε es una unidad diádica. Tomando restos módulo
2n obtenemos que a ≡ rk2 (mód 2n) para cierto entero impar k.

Teniendo esto en cuenta, procedemos como en el caso de los primos impares.
Dada una forma cuadrática ax2+2bxy+cy2, pasando a otra equivalente podemos
suponer que a es impar. El cambio x = x′ − by, y = ay′ la transforma en
a(x2 − D′y2), donde D′ = D/4. Por último, expresando a ≡ rk2 (mód 2n) y
haciendo el cambio x′ = kx, y′ = ky llegamos a una forma equivalente a una de
las cuatro formas

r(x2 −D′y2), r = ±1,±5. (9.6)

Ahora vamos a ver que si x2 − D′y2 representa r módulo 8, entonces es
equivalente con la correspondiente forma de (9.6) módulo 2n. En efecto, supo-
nemos que existen enteros u, v tales que A = u2−D′v2 ≡ r (mód 8). El cambio
x = ux′+D′vy′, y = vx′+uy′ nos transforma x2−D′y2 en A(x2−D′y2). Ahora
expresamos A ≡ r′k2 (mód 2n), donde r′ = ±1,±5, y al tomar restos módulo 8
queda que r′ = r, con lo que el cambio x′ = kx, y′ = ky nos lleva a una forma
equivalente a (9.6) para el r considerado.

En vista de esto estudiamos los impares representados módulo 8 por la forma
x2 − D′y2. Son los indicados en la tabla siguiente, en función del resto de D′

módulo 8:
D′ 0 1 2 3 4 5 6 7
r 1 ±1 ±1 1 1 ±1 1 1

±5 5 5 ±5 −5 5

La tabla se interpreta como sigue:

• Si D/4 ≡ 1, 5 (mód 8) entonces x2 − D′y2 representa todos los impares
módulo 8, luego es equivalente a todas las formas (9.6) y aśı, todas las
formas de discriminante D son equivalentes módulo 2n.

• Si D/4 ≡ 3, 4, 7 (mód 8) entonces las formas x2−D′y2 y 5(x2−D′y2) son
equivalentes, de donde se sigue que −(x2−D′y2) y −5(x2−D′y2) también
lo son. Por lo tanto toda forma de discriminante D es equivalente a
±(x2−D′y2), y estas dos no son equivalentes entre śı, pues una representa
sólo los impares congruentes con 1, 5 módulo 8, y obviamente, la otra sólo
representa los congruentes con −1,−5 módulo 8.

• Si D/4 ≡ 2 (mód 8) tenemos que ±(x2 −D′y2) son equivalentes, y por lo
tanto ±5(x2 −D′y2) también lo son. Toda forma de discriminante D es
equivalente a x2−D′y2 si los impares que representa son congruentes con
±1 módulo 8 y es equivalente a 5(x2−D′y2) si los impares que representa
son congruentes con ±5 (mód 8).

• Si D/4 ≡ 6 (mód 8) llegamos a una conclusión similar.
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• Si D/4 ≡ 0 (mód 8) entonces cada forma de (9.6) sólo representa a los
impares congruentes con r módulo 8, luego determinan cuatro clases de
formas diferentes.

Estas conclusiones se pueden expresar también en términos de caracteres,
sólo que ahora hemos de distinguir entre cuatro clases módulo los cuadrados
y no entre dos. El análogo al śımbolo de Legendre serán ahora las funciones
siguientes:

Definición 9.6 Las funciones δ y ε, definidas sobre los enteros impares, son las
dadas por

δ(k) = (−1)(k−1)/2 =
{

1 si k ≡ 1 (mód 4)
−1 si k ≡ −1 (mód 4)

ε(k) = (−1)(k
2−1)/8 =

{
1 si k ≡ ±1 (mód 8)
−1 si k ≡ ±5 (mód 8)

Podemos considerar a δ y ε como funciones en U8, y entonces δ distingue a
{1, 5} de {−1,−5}, mientras que ε distingue a {1,−1} de {5,−5} y su producto
εδ distingue a {1,−5} de {−1, 5}.

Si f es una forma cuadrática de discriminante par D y a es cualquier número
impar representado por f , definimos el carácter módulo 2 de f como

χ2(f) =




1 si D/4 ≡ 1, 5 (mód 8)
ε(a) si D/4 ≡ 2 (mód 8)
δ(a) si D/4 ≡ 3, 4, 7 (mód 8)
δ(a)ε(a) si D/4 ≡ 6 (mód 8)

Si D/4 ≡ 0 (mód 8) definimos tres caracteres de f módulo 2, dados por

χ21(f) = δ(a), χ22(f) = ε(a), χ23(f) = δ(a)ε(a).

Hemos demostrado que estos caracteres no dependen de la elección de a aśı
como que formas equivalentes módulo pn tienen el mismo carácter (o los mismos
caracteres 1) módulo p, para todo primo p, por lo que tiene sentido hablar del
carácter de una clase de equivalencia de formas. Además tenemos el resultado
siguiente:

Teorema 9.7 Si p es primo, dos formas cuadráticas de discriminante D son
equivalentes módulo pn si y sólo si tienen el mismo carácter módulo p. Esto
ocurre siempre que p � D.

Para tratar unificadamente todos los casos en la medida de lo posible, con-
viene observar que para cada discriminante D y para cada primo p tenemos
definida una función χ∗

p : Up −→ {±1} si p es impar, o χ∗
2 : U8 −→ {±1} si

1En lo sucesivo, cuando hablemos del carácter de una forma módulo un primo p habremos
de recordar que si p = 2 puede haber en realidad tres caracteres, si bien no lo indicaremos
expĺıcitamente en cada ocasión para evitar constantes y monótonas salvedades como ésta.
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p = 2, de manera que para cada forma cuadrática f de discriminante D se cum-
ple que χp(f) = χ∗

p

(
[a]

)
, donde a es cualquier número primo con p representado

por f .
La función χ∗

p es constante igual a 1 si p � D, es el śımbolo de Legendre de
p si p | D es impar y es una de las funciones 1, δ, ε, εδ si p = 2. Es importante
notar que cualquiera de ellas es multiplicativa, es decir, χ∗

p(xy) = χ∗
p(x)χ∗

p(y),
aśı como que χ∗

p(x) sólo depende del resto de x módulo D (si D es par pero
8 � D, entonces χ∗

2 = 1, δ, y en realidad depende del resto de x módulo 4).

9.2 Géneros de formas y módulos

Definición 9.8 Diremos que dos formas cuadráticas de un mismo discriminante
D son del mismo género si tienen los mismos caracteres.

Esto completa la clasificación de las formas cuadráticas binarias: éstas se
dividen en órdenes según su discriminante, las formas de cada orden se dividen
a su vez en géneros según sus caracteres, y las formas de un mismo género se dis-
tribuyen en clases de equivalencia (en Z). Por último cada clase de equivalencia
puede dividirse en dos clases de equivalencia estricta.

Según los teoremas 9.2 y 9.7, dos formas son del mismo género si y sólo si
representan los mismos enteros módulo cualquier número natural n > 1.

Ejemplo En el caṕıtulo VI calculamos las formas cuadráticas reducidas de
discriminante D = −504 = −23 · 32 · 7. Para este discriminante tenemos tres
caracteres no triviales, χ2, χ3 y χ7. El carácter módulo 2 viene inducido por
χ∗

2 = ε. La tabla siguiente contiene todas las formas reducidas de discriminante
D junto con su sistema de caracteres. Vemos que las ocho clases de equivalencia
se reparten en cuatro géneros, a dos clases por género.

Forma χ2 χ3 χ7

x2 + 126y2 + + +
7x2 + 18y2 + + +

9x2 + 14y2 + − +
2x2 + 63y2 + − +

10x2 + 4xy + 13y2 − + −
10x2 − 4xy + 13y2 − + −
5x2 + 4xy + 26y2 − − −
5x2 − 4xy + 26y2 − − −

En particular notamos que, aunque tres caracteres podŕıan definir ocho
géneros, de hecho sólo aparecen cuatro. Concretamente sucede que χ2 = χ7.

Todas las regularidades que se aprecian en este ejemplo pueden ser explicadas
teóricamente. Para ello conviene reformular la teoŕıa de los géneros en términos
de ideales, donde tenemos una estructura de grupo.
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En el caṕıtulo VI definimos una correspondencia biuńıvoca entre las clases
de equivalencia estricta de formas cuadráticas de discriminante D y las cla-
ses de similitud estricta de los módulos cuyo anillo de coeficientes es el orden
cuadrático de discriminante D. A través de esta correspondencia podemos de-
finir los caracteres y el género de una clase de similitud estricta de módulos
C como los caracteres y el género de su clase de formas asociada. Aśı mismo
definimos los caracteres y el género de un módulo en particular como los de su
clase de similitud estricta.

Conviene tener presente que dos módulos similares no son necesariamente
del mismo género. Para ver ejemplos de esta situación consideramos un orden
numérico de discriminante D > 0. Siguiendo la notación que introdujimos
en el caṕıtulo VI, llamamos 1 y −1 a las clases de similitud estricta de los
ideales principales generados respectivamente por números de norma positiva
o negativa. Sabemos que una forma asociada a 1 es la forma principal, que
representa a 1, y por lo tanto todos sus caracteres son positivos. Al estudiar
la relación entre módulos y formas vimos también que a −1 le corresponde la
forma principal cambiada de signo, que representa a −1. Si, por ejemplo, D es
divisible entre un primo impar p tal que (−1/p) = −1, entonces, dado cualquier
módulo M del orden considerado, el módulo

√
DM es similar a M pero tiene

carácter distinto módulo p.

Notemos que hemos probado lo siguiente:

Teorema 9.9 En un orden cuadrático real, χp(−1) = χ∗
p(−1), para número

primo p.

Recordemos ahora el teorema 6.11, en virtud del cual si O es un orden cuadrá-
tico, toda clase de similitud estricta de módulos de O admite como representante
a un ideal de norma prima con cualquier entero prefijado n. Cuando hablemos
de un ideal de un orden cuadrático O, sobrentenderemos siempre que su norma
es prima con el ı́ndice de O en su orden maximal. Los resultados del caṕıtulo 3
nos garantizan que estos ideales heredan el buen comportamiento de los de los
órdenes maximales a través de la correspondencia descrita en el teorema 3.27.
Teniendo esto en cuenta, el teorema siguiente nos permite calcular los caracteres
de una clase sin necesidad de pasar por la clase de formas asociada.

Teorema 9.10 Sea O un orden cuadrático, a un ideal de O y p un primo que
no divida a N(a). Entonces χp(a) = χ∗

p

(
N(a)

)
.

Demostración: Hemos de calcular el carácter de cualquier forma cuadrá-
tica asociada a a. Según el caṕıtulo VI, tomamos una base orientada de a,
digamos (α, β), y una tal forma es la dada por f(x, y) = N(αx + βy)/N(a).

Ahora bien, sabemos que a | N(a), es decir, N(a) ∈ a, luego existen enteros
racionales u, v tales que N(a) = αu + βv. Entonces

f(u, v) = N
(
N(a)

)
/N(a) = N(a),

luego efectivamente, χp(a) = χp(f) = χ∗
p

(
N(a)

)
.
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Este teorema tiene muchas consecuencias. La más importante es que, en
términos de módulos, los caracteres son homomorfismos de grupos:

Teorema 9.11 Si M y N son módulos de un mismo orden cuadrático O y p
es un primo, entonces χp(MN) = χp(M)χp(N). En términos algebraicos, los
caracteres son homomorfismos del grupo de los módulos de O (o del grupo de
clases estrictas de O) en el grupo {±1}.

Demostración: Sean a y b ideales de O estrictamente similares a M y N
respectivamente y con normas primas con p. Entonces

χp(MN) = χp(ab) = χ∗
p

(
N(a) N(b)

)
= χ∗

p

(
N(a)

)
χ∗
p

(
N(b)

)
= χp(a)χp(b) = χp(M)χp(N).

Si O es un orden cuadrático, χ1, . . . , χm son sus caracteres, H es su grupo
de clases estrictas y llamamos C2 = {±1}, entonces tenemos un homomorfismo
de grupos

χ : H −→ C2

m veces
× · · ·×C2

que a cada clase le hace corresponder su sistema de caracteres. Dos clases de H
son del mismo género si y sólo si tienen la misma imagen por χ. En particular
el núcleo de χ es el género formado por las clases cuyos caracteres son todos
positivos. A este género lo llamaremos género principal G0. Los géneros son las
clases del grupo cociente H/G0. A este grupo lo llamaremos grupo de géneros
del orden O. Su orden es potencia de 2 (de hecho, divide a 2m). También
es obvio ahora que todos los géneros contienen el mismo número de clases de
similitud estricta.

Ejemplo En el caṕıtulo VI calculamos el grupo de clases de Q
(√
−161

)
. Vi-

mos que tiene orden 16, y está generado por las clases σ = [31], de orden 8, y
τ = [70], de orden 2. Sus formas cuadráticas asociadas son 3x2 + 2xy + 54y2 y
7x2 + 23y2, respectivamente. Por otro lado, el discriminante es ∆ = −4 · 7 · 23
y los caracteres a considerar son χ2 (que se calcula con χ∗

2 = δ), χ7 y χ23. De
aqúı obtenemos inmediatamente que los caracteres de σ son (−−+) y los de τ
son (−+−). Los restantes se calculan mediante el teorema 9.11:

1 + + + σ4 + + + τ −+− τσ4 −+−
σ −−+ σ5 −−+ τσ +−− τσ5 +−−
σ2 + + + σ6 + + + τσ2 −+− τσ6 −+−
σ3 −−+ σ7 −−+ τσ3 +−− τσ7 +−−

Vemos que aparecen cuatro géneros: (+ + +), (− − +), (− + −), (+ − −) y
que hay exactamente cuatro clases de cada género.

La única propiedad que observamos y que todav́ıa no sabemos justificar es
por qué el número de géneros siempre es la mitad del número máximo posible.
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La explicación hay que buscarla en los géneros del orden maximal de un cuerpo
cuadrático y en su relación con los géneros de sus otros órdenes. Conviene
introducir algunas definiciones.

Definición 9.12 Diremos que un número entero D es un discriminante funda-
mental si es el discriminante del orden maximal de un cuerpo cuadrático.

Si D es el discriminante de un orden cuadrático arbitrario, entonces D se
descompone de forma única como D = m2D0, donde m es un número natural
(el ı́ndice del orden) y D0 es un discriminante fundamental.

Llamaremos caracteres fundamentales del orden cuadrático de discriminante
D a los caracteres χp correspondientes a primos p que dividen al discriminante
fundamental D0.

En el caso en que haya tres caracteres módulo 2, sólo consideraremos funda-
mental a uno de ellos, al único que cumple el teorema siguiente:

Teorema 9.13 Sea O un orden cuadrático de discriminante D y sea χp un
carácter fundamental de O. Entonces

1. Si f es una forma cuadrática de discriminante D,

χp(f) = (a,D)p = ψp(f),

donde a es cualquier número racional representado racionalmente por f y
ψp(f) es el invariante definido en 8.27.

2. Si M es un módulo de O, entonces χp(M) = (N(M), D)p.

Demostración: 1) Supongamos en primer lugar que p es impar y que a es
primo con p. Como D0 es libre de cuadrados (salvo una posible potencia de 2)
se cumple que el exponente de p en D = m2D0 es impar. Aśı pues, teniendo en
cuenta las propiedades del śımbolo de Hilbert (teorema 8.25)

χp(f) =
(

a

p

)
= (a, p)p = (a,D)p.

Si p = 2 (y a es impar) distinguimos casos según el resto de D/4 módulo 8.
Observar que en general (a,D)2 = (a,D/4)2.

• Si D/4 ≡ 1 (mód 4) entonces (a,D/4)2 = 1 = χ2(f).

• Si D/4 ≡ −1 (mód 4) entonces (a,D/4)2 = δ(a) = χ2(a).

• Si D/4 ≡ 2 (mód 8) entonces D/4 = 2u, donde u ≡ 1 (mód 4) y aśı

(a,D/4)2 = (a, 2)2 (a, u)2 = (a, 2)2 = ε(a) = χ2(f).

• Si D/4 ≡ 6 (mód 8) entonces D/4 = 2u, donde u ≡ −1 (mód 4) y

(a,D/4)2 = (a, 2)2 (a, u)2 = ε(a)δ(a) = χ2(f).
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• Si D/4 ≡ 0 (mód 8) entonces tenemos tres caracteres módulo 2. Vamos a
ver que uno de ellos es (a,D/4)2 (el mismo para toda forma f y todo a).
Sea D/4 = 2iu, donde u es impar. Entonces (a,D/4) = (a, 2i)2 (a, u)2. El
primer factor es 1 o ε(a), según si i es par o impar. El segundo factor es
1 o δ(a) según el resto de u módulo 4. No pueden ser ambos iguales a 1,
pues si i es par, entonces D0 = 4d (pues 2 | D0 por definición de carácter
fundamental) y como D0 es un discriminante maximal d ≡ −1 (mód 4).
Aśı pues, (a,D)2 es uno de los tres caracteres δ(a), ε(a), δ(a)ε(a).

Por otra parte, el discriminante D y el determinante d de la forma f satis-
facen la relación d = −D/4, por lo que ψp(f) = (a,D/4)p = (a,D)p. Pero el
teorema 8.26 nos da que ψ(f) se puede calcular en realidad con cualquier número
p-ádico representado por f . En particular con cualquier número racional.

2) Sea (α, β) una base orientada de M . Una forma asociada a M es

f(x, y) = N(αx + βy)
N(M)

.

Como (α, β) es una Q-base del cuerpo cuadrático al que pertenece M , existen
números racionales α, β tales que αx+βy = N(M). Entonces, f(α, β) = N(M),
es decir, f representa racionalmente a N(M), y concluimos por el apartado
anterior.

De aqúı se siguen muchas consecuencias importantes. Por ejemplo, si Hm es
el grupo de clases de un orden Om y H es el grupo de clases del orden maximal
O, entonces tenemos un epimorfismo α entre ellos dado por α

(
[a]

)
= [a]. Si χp

es un carácter fundamental de Om, trivialmente lo es de O también, y por el
teorema anterior se cumple

χp

(
α
(
[a]

))
= (N(a), D0)p = (N(a),m2D0)p = χp

(
[a]

)
.

Esto significa que los caracteres de α
(
[a]

)
se obtienen sin más que suprimir los

caracteres no fundamentales de [a]. En particular α env́ıa clases del mismo
género a clases del mismo género.

Ejemplo En el caṕıtulo VI calculamos el epimorfismo entre el grupo de clases
del orden de discriminante D = −504 = −8 · 9 · 7 y el de su orden maximal, de
discriminante D0 = −56 = −8 · 7. La tabla siguiente muestra los géneros de
ambos grupos de clases:

x2 + 126y2 + + + x2 + 14y2 + +
9x2 + 14y2 +−+

7x2 + 18y2 + + + 2x2 + 7y2 + +
2x2 + 63y2 +−+

5x2 − 4xy + 26y2 −−− 3x2 + 2xy + 5y2 −−
10x2 − 4xy + 13y2 −+−
5x2 + 4xy + 26y2 −−− 3x2 − 2xy + 5y2 −−
10x2 + 4xy + 13y2 −+−
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Los caracteres fundamentales son χ2 y χ7. Por ello los caracteres del orden
maximal se obtienen eliminando el signo central.

Para órdenes maximales el teorema 9.13 puede mejorarse.

Teorema 9.14 Sea O un orden cuadrático maximal de discriminante D y sea
χp cualquier carácter de O. Entonces

1. Si f es una forma cuadrática de discriminante D,

χp(f) = (a,D)p = ψp(f),

donde a es cualquier número racional representado racionalmente por f .

2. Si M es un módulo de O, entonces χp(M) = (N(M), D)p.

Demostración: El teorema 9.13 prueba estos hechos en el caso en que
p | D. Si p � D sabemos que χp(f) = 1 para toda forma de discriminante
D. Por otro lado, a puede tomarse primo con p y entonces, si p es impar,
ψp(f) = (a,D)p = 1 (pues p divide a D con multiplicidad 1). Si p = 2 enton-
ces podemos tomar a impar, y necesariamente D ≡ 1 (mód 4), luego también
ψ2(f) = (a,D)2 = 1.

La versión en términos de módulos se deduce de la de formas como en el
teorema 9.13.

Ahora podemos comprender por qué el número de géneros es siempre la mi-
tad del que a priori podŕıa ser. En un orden maximal, el número de caracteres
negativos de un género ha de ser par, como consecuencia del teorema 8.37 (ad-
mitiendo la ley de reciprocidad cuadrática). En efecto, la fórmula producto que
aparece en dicho teorema tiene como caso particular que∏

p

χp(M) =
∏
p

(N(M), D)p = 1.

(Falta el factor (N(M), D)∞, pero siempre vale 1, porque N(M) > 0.) De hecho
vamos a probar que esta propiedad equivale a la ley de reciprocidad cuadrática,
y nos basaremos en ello para demostrarla.

Teorema 9.15 Las siguientes afirmaciones son equivalentes:

1. La ley de reciprocidad cuadrática.

2. Si M es un módulo de un orden cuadrático maximal de discriminante D,
entonces ∏

p

χp(M) = 1,

es decir, el número de caracteres negativos de M es par.

3. Si D es un discriminante fundamental y m es el número de primos dis-
tintos que dividen a D, entonces el número de géneros g del orden de
discriminante D cumple g ≤ 2m−1.
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Demostración: Acabamos de probar que 1) implica 2).
2) implica 3) es evidente, pues de los 2m géneros posibles, la mitad de ellos

tendŕıan un número impar de caracteres negativos, luego según 2) no se dan.
Vamos a probar que 3) implica la ley de reciprocidad cuadrática.

1. Si p es un primo p ≡ −1 (mód 4) entonces (−1/p) = −1.

Consideremos K = Q
(√
−1

)
, D = −4, m = 1. Entonces hay un solo

género, el principal. Si fuera (−1/p) = (−4/p) = 1, entonces p se des-
compone como producto de dos primos de norma p. Si p es uno de estos
primos,

χ2(p) = (p,−4)2 = (p,−1)2 = −1,

con lo que el género de p no seŕıa el principal, contradicción.

2. Si p es un primo p ≡ 1 (mód 4) entonces (−1/p) = 1.

Consideramos K = Q
(√

p
)
, D = p, m = 1, g = 1. Como el único género

es el principal, aplicando 9.9 tenemos que 1 = χp
(
−1

)
= (−1/p).

Las afirmaciones 1) y 2) prueban la primera ley suplementaria.

3. Si p es un primo p ≡ 1 (mód 8) entonces (2/p) = 1.

Consideramos K = Q
(√

p
)
, D = p, m = 1, g = 1. Entonces

(
1 +

√
p

)
/2

tiene norma par, pero no es divisible entre 2, lo que prueba que 2 se
descompone en producto de dos primos de norma 2. Si q es uno de estos
primos, 1 = χp(q) = (2, p)p = (2/p).

4. Si p es un primo p ≡ 3, 5 (mód 8) entonces (2/p) = −1.

Tomamos K = Q
(√

2
)
, D = 8, m = 1, g = 1. Si (2/p) = 1 entonces p

se descompone en dos factores de norma p. Si p es uno de estos factores
1 = χ2(p) = (p, 8)2 = (p, 2)2 = −1, contradicción.

5. Si p ≡ 7 (mód 8) entonces (−2/p) = −1.

TomamosK = Q
(√
−2

)
, D = −8, m = 1, g = 1 y razonamos igual que en

el caso anterior.

6. Si p ≡ 7 (mód 8) entonces por 1) y 5)

(2/p) = (−1/p)(−2/p) = (−1)(−1) = 1.

Las afirmaciones 3), 4) y 6) prueban la segunda ley suplementaria.

7. Si p y q son primos impares p ≡ 1 (mód 4) y (q/p) = −1, entonces también
(p/q) = −1.

Tomamos K = Q
(√

p
)
, D = p, m = 1, g = 1. Si (p/q) = 1, entonces q

se escinde en dos primos de norma q. Si q es uno de ellos, 1 = χp(q) =
(q, p)p = (q/p).
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8. Si p y q son primos impares p ≡ −1 (mód 4) y (q/p) = −1, entonces
(−p/q) = −1.

Tomamos K = Q
(√−p

)
, D = −p, m = 1, g = 1 y razonamos igual que

en el caso anterior.

Por 1) y 2), tenemos (−1/q) ≡ q (mód 4), luego 8) implica que (p/q) = −1
si q ≡ 1 (mód 4) y (p/q) = 1 si q ≡ −1 (mód 4).

9. Si p y q son primos impares p ≡ 1 (mód 4) y (q/p) = 1, entonces (p/q) = 1.

Si q ≡ 1 (mód 4), entonces (p/q) = −1 implicaŕıa (q/p) = −1 por 7).

Si q ≡ −1 (mód 4), entonces (p/q) = −1 implicaŕıa (q/p) = −1 por el
comentario posterior a 8).

Los apartados 7) y 9) prueban la mitad de la ley de reciprocidad.

10. Si p y q son primos p, q ≡ −1 (mód 4) y (q/p) = 1, entonces (p/q) = −1.

Tomamos K = Q
(√

pq
)
, D = pq, m = 2, g ≤ 2. Entonces χp(−1) =

(−1/p) = −1 por 1), e igualmente χq(−1) = −1, luego g = 2 y los géneros
son (++), (−−).

Claramente p = p2, q = q2, para ciertos ideales p, q. Como N(
√

pq) = −pq
ha de ser

(√
pq

)
= pq, luego [pq] = −1, [p]2 = 1, [q]2 = 1. Esto implica

que [p] = −[q].

Ahora bien, χp
(
−[q]

)
= −χp

(
[q]

)
= −(q/p) = −1 y χq

(
[p]

)
= (p/q).

Como ambos caracteres han de ser iguales, χq
(
[p]

)
= −1.

La afirmación 10) y la observación tras 8) completan la prueba.

Ejercicio: Admitiendo la ley de reciprocidad cuadrática, probar que el número de
géneros de cualquier orden cuadrático es a lo sumo 2m−1, donde m es el número de
caracteres. Si hay tres caracteres módulo 2, el número de géneros es a lo sumo 2m−2.

Dedicaremos la sección siguiente a demostrar la ley de reciprocidad cuadrá-
tica. Ahora seguiremos extrayendo consecuencias de los teoremas 9.13 y 9.14.

El teorema siguiente es inmediato si tenemos en cuenta 8.36.

Teorema 9.16 Si D es un discriminante fundamental, entonces dos formas
cuadráticas de discriminante D son racionalmente equivalentes si y sólo si son
del mismo género. Si D no es fundamental, dos formas del mismo género son
racionalmente equivalentes, pero el rećıproco es falso en general.

Ejercicio: Sea D un discriminante fundamental y f , g dos formas de discriminante
D. Si f representa un número a y g representa un número b2a, entonces f y g son del
mismo género. El rećıproco es cierto aunque el orden no sea maximal.

Una consecuencia inmediata del teorema 9.14 es que en un orden maximal, el
género de un módulo depende sólo de su norma. Más exactamente, la situación
es ésta:
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Teorema 9.17 Si dos módulos M y M ′ del orden Om de un cuerpo cuadrático
K son del mismo género, entonces existe un γ ∈ K de norma positiva tal que
N(M) = N(γ)N(M ′). Si el orden es el maximal (m = 1) entonces el rećıproco
también es cierto.

Demostración: Sea M = 〈u, v〉, M ′ = 〈u′, v′〉. Las formas asociadas a
estos módulos son

f(x, y) = N(ux + vy)
N(M)

y g(x, y) = N(u′x + v′y)
N(M ′)

.

Si módulos son del mismo género entonces las formas f y g son racionalmente
equivalentes (y el rećıproco es cierto si el orden es maximal). Por el teorema
8.8, esto ocurre si y sólo si ambas formas representan racionalmente a un mismo
número, es decir, si y sólo si existen números racionales no nulos r, s, r′, s′ tales
que N(ur + vs)/N(M) = N(u′r′ + v′s′)/N(M ′) o, en otros términos, si y sólo si
existen elementos no nulos ξ y ξ′ en K tales que N(ξ)/N(M) = N(ξ′)/N(M ′)
o, equivalentemente N(M) = N(M ′)N(ξ/ξ′). Entonces γ = ξ/ξ′ cumple el
teorema.

Ejercicio: Probar que, en un orden cuadrático arbitrario, dos ideales con la misma
norma son del mismo género (tener en cuenta que dos ideales primos con la misma
norma son conjugados, y que dos ideales conjugados son del mismo género).

9.3 El número de géneros

En esta sección demostraremos la ley de reciprocidad cuadrática contando
el número de géneros. De acuerdo con el teorema 9.15 es suficiente probar que
en un orden maximal el número de géneros g es a lo sumo 2m−1, donde m es el
número de primos que dividen al discriminante.

Para ello nos basaremos en la siguiente observación trivial: Si C es una clase
de similitud estricta (no necesariamente de un orden maximal), entonces C2

pertenece al género principal, pues para cualquier carácter se cumple χp(C2) =
χp(C)2 = 1. Aśı, si llamamos H al grupo de clases, H2 al subgrupo de los
cuadrados y G0 al género principal, tenemos que g = |H : G0| ≤ |H : C2|, luego
basta probar que este último ı́ndice es a lo sumo 2m−1.

En realidad el número de géneros es géneros es exactamente igual a 2m−1, y
este hecho tiene interés teórico por śı mismo. Para probarlo necesitamos probar
a su vez que el género principal coincide con el grupo de los cuadrados. Esto
se conoce como teorema de duplicación de Gauss. Demostramos primero un
resultado técnico que podemos evitar si nos restringimos a órdenes maximales
(el único caso necesario para determinar el número de géneros y probar la ley
de reciprocidad).

Teorema 9.18 Sea K un cuerpo cuadrático y m un número natural. Si existe
un γ ∈ K no nulo cuya norma es positiva y se expresa como cociente de enteros
primos con m, entonces γ puede escogerse de la forma γ = α/β, donde α y β
son enteros de norma positiva prima con m.
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Demostración: Sea γ = α/β, donde α y β son enteros en K. Sean
p1, . . . , pr los primos que dividen a m y que en K se descomponen como pi = piqi,
donde pi �= qi. Sean ai y a′i los exponentes de pi y qi en α. Sean bi y b′i
los exponentes en β. Por hipótesis ha de ser ai + a′i = bi + b′i. Llamemos
ci = ai − bi = b′i − a′i. Para cada i, sea πi ∈ pi \ p2

i . Por el teorema chino del
resto existe un entero ζ ∈ K tal que

ζ ≡ πci
i (mód p

ci+1
i ),

ζ ≡ 1 (mód q
ci+1
i ).

De este modo, pi divide a ζ con exponente ci, mientras que qi no divide a
ζ. Sea ζ ′ el conjugado de ζ. Claramente ζ y ζ ′ tienen la misma norma, luego
γ∗ = (ζ ′α)/(ζβ) tiene la misma norma que γ. Ahora, el exponente de pi tanto
en ζ ′α como en ζβ es ai, y el exponente de qi en ζ ′α y en ζβ es b′i.

Aśı pues, todo divisor primo de m divide a ζ ′α y en ζβ con la misma mul-
tiplicidad (para otros divisores distintos de los que hemos tratado —ver la ta-
bla 3.1— se sigue inmediatamente de la hipótesis). Podemos aplicar el teorema
3.7 para concluir que γ∗ = α∗/β∗, donde ningún primo que divida a m divide
a β∗ (luego tampoco a α∗). Por consiguiente, α∗ y β∗ tienen norma prima con
m. Si no es positiva los multiplicamos por α∗.

Teorema 9.19 (Teorema de duplicación) El género principal de un orden
cuadrático Om está formado por los cuadrados del grupo de clases.

Demostración: Consideremos una clase [a] del género principal. Por el
teorema 6.11 podemos suponer que a es un ideal de norma prima con m. El
teorema 9.17 nos da que N(a) = N(γ) para un cierto γ con N(γ) > 0. Por el
teorema anterior podemos tomar γ = α/β, donde α, β ∈ O tienen norma positiva
prima con m. Entonces [a] = [βa] y N(βa) = N(α). Esto significa que podemos
suponer que γ ∈ O. Ahora veremos que podemos tomarlo en Om. En efecto,
existen u y v enteros en K tales que uγ+vm = 1. Aśı uγ ∈ 1+(m) ⊂ Om y sigue
siendo primo con m. Lo mismo vale para (uγ)2. Además N(u2γa) = N

(
(uγ)2

)
y tanto u2γ como (uγ)2 tienen norma positiva. Por consiguiente [a] = [u2γa] y
podemos sustituir γ por (uγ)2.

Descompongamos en ideales primos de Om:

a =
∏
i

p
ai
i q

bi
i

∏
j

r
cj

j , γ =
∏
i

p
ui
i q

vi
i

∏
j

r
wj

j ,

donde hemos distinguido entre los primos pi de norma pi tales que pi = piqi

con pi �= qi y los primos restantes rj de norma r
tj
j (tj = 1, 2) tales que rj = r2j

o bien rj = rj .
Al igualar las normas y teniendo en cuenta que la factorización es única,

resulta que ai + bi = ui + vi y cj = wj . Tomando clases estrictas tenemos

[a] = [γ−1a] =
∏
i

[pi]ai [qi]bi [pi]−ui [qi]−vi ,
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Pero [1] = [pi] = [pi][qi], luego [qi] = [pi]−1 y aśı

[a] =
∏
i

[pi]ai−ui+vi−bi =
∏
i

[pi]2(ai−ui) =
[∏

i

p
ai−ui
i

]2

.

El grupo de clases de un orden cuadrático se descompone en producto de gru-
pos ćıclicos de órdenes potencias de primos (los llamados divisores elementales).
Digamos que

H = 〈c1〉 × · · · × 〈cr〉 × 〈d1〉 × · · · × 〈ds〉 , (9.7)

donde c1, . . . , cr tienen orden 2ti y d1, . . . , ds tienen orden impar. Por consi-
guiente el género principal es

G0 =
〈
c21

〉
× · · · ×

〈
c2r

〉
×

〈
d2
1

〉
× · · · ×

〈
d2
2

〉
.

Pero di =
(
d2
i

)(t−1)/2, donde t es el orden de di, luego
〈
d2
i

〉
= 〈di〉, y aśı

G0 =
〈
c21

〉
× · · · ×

〈
c2r

〉
× 〈d1〉 × · · · × 〈ds〉 .

Esto nos da la siguiente expresión para el grupo de géneros:

G = H/G0 =
(
〈c1〉 /

〈
c21

〉)
× · · · ×

(
〈cr〉 /

〈
c2r

〉)
.

Resulta, pues, que el número de géneros es g = 2n, donde n es el número de
divisores elementales pares de H. Puesto que cada clase c2

ti−1

i tiene orden 2, el
grupo

A =
〈
c2

t1−1

1

〉
× · · · ×

〈
c2

tr−1

r

〉
≤ H

es isomorfo al grupo de géneros.
Pero por otro lado A = {C ∈ H | C2 = 1} (teniendo en cuenta (9.7), un

elemento de H tiene orden 2 si y sólo si todos sus factores tienen orden 2, si y
sólo si está en A).

Definición 9.20 Una clase C del grupo de clases estrictas H es ambigua si
cumple C2 = 1.

Hemos probado que el grupo de géneros es isomorfo al grupo de clases am-
biguas. Gauss demostró la ley de reciprocidad cuadrática contando el número
de clases ambiguas, que es lo que vamos a hacer a continuación. En lo sucesivo
consideraremos únicamente clases de similitud estricta en un orden cuadrático
maximal (trabajar en el caso general no aprovechaŕıa para nada).

Si C es una clase de H, llamaremos C a la clase conjugada de C, es decir,
la formada por los módulos conjugados de los módulos de C. Si a es un ideal
y ā es su conjugado, entonces aā =

(
N(a)

)
, luego para toda clase C se cumple

que CC = 1. Por lo tanto C es una clase ambigua si y sólo si C = C.

Un ideal a es ambiguo si a = ā y no es divisible entre enteros racionales no
unitarios.



9.3. El número de géneros 227

Consideremos un ideal ambiguo a �= 1 y descompongámoslo en factores pri-
mos. Si p es uno de los primos de a, según probamos en el caṕıtulo III (ver
tabla 3.1) hay tres posibilidades: o bien p = p es un primo racional, o bien
N(p) = p = pq, con q �= p (y entonces q = p̄, por el teorema 3.17), o bien
N(p) = p = p2.

Descartamos la primera posibilidad por definición de ideal ambiguo. El
segundo caso tampoco puede darse, pues como p | a, también p̄ | ā = a, luego
p = pp̄ | a, en contra de la definición de ideal ambiguo.

Esto prueba que los únicos factores primos posibles de los ideales ambiguos
son los primos p tales que N(p) = p2, y éstos son exactamente los que dividen al
discriminante D del orden que estamos considerando. Más aún, la multiplicidad
de p en a tiene que ser 1, o de lo contrario N(p) = p2 dividiŕıa a a.

Rećıprocamente, si a es un ideal formado por productos de divisores primos
de D con multiplicidad 1, es claro que a es un ideal ambiguo. Si llamamos m al
número de divisores primos de D, tenemos que el número de ideales ambiguos
es 2m (incluyendo al ideal 1, que no tiene factores primos).

Si demostramos que cada clase ambigua contiene exactamente dos ideales
ambiguos habremos demostrado que hay exactamente 2m−1 clases ambiguas,
luego también 2m−1 géneros, tal y como queremos demostrar.

La clave de la prueba es un sencillo resultado debido a Gauss y a Kummer,
que Hilbert generalizó hasta lo que ahora se conoce como el teorema 90 de
Hilbert.

Teorema 9.21 Sea K = Q
(√

d
)

un cuerpo cuadrático y O su orden maximal.
Si α ∈ K cumple que N(α) = 1, entonces existe un ρ ∈ O tal que α = ρ/ρ̄.
Además ρ es único salvo múltiplos por números racionales.

Demostración: Si α = −1 basta tomar ρ =
√

d. En otro caso se cumple
que α = (1 + α)/(1 + ᾱ). Multiplicando por un entero racional podemos exigir
que el numerador esté en O, y se cumple lo pedido.

Si ρ/ρ̄ = σ/σ̄ entonces ρσ̄ = ρ̄σ = r ∈ Q, pues r es invariante por conju-
gación. Por lo tanto

ρ =
r

σ̄
=

rσ

σσ̄
=

r

N(σ)
σ = sσ,

con s ∈ Q.

Teorema 9.22 Cada clase ambigua de un orden cuadrático maximal O contiene
exactamente dos ideales ambiguos. Por lo tanto O tiene exactamente 2m−1

clases ambiguas, luego también 2m−1 géneros, donde m es el número de divisores
primos del discriminante de O.

Demostración: Veamos en primer lugar que toda clase ambigua contiene
al menos un ideal ambiguo. Toda clase ambigua contiene un ideal a. Que la
clase sea ambigua significa que [a] = [ā], es decir, que ā = αa para un cierto
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número α de norma positiva. Como a y ā tienen la misma norma ha de ser
N(α) = 1, luego por el teorema anterior ā = (ρ/ρ̄)a, con ρ ∈ O. Por lo tanto
ρa = ρa.

Si N(ρ) < 0 hacemos
√

dρa = −
√

dρa =
√

dρa y N(
√

dρ) > 0. De este modo
tenemos un ideal b estrictamente similar a a y tal que b = b̄. Si b es divisible
entre enteros racionales hacemos b = mc, donde c ya no es divisible entre enteros
racionales. Entonces c es estrictamente similar a a y es claro que se trata de un
ideal ambiguo.

Ahora basta probar que la clase principal contiene exactamente dos idea-
les ambiguos, pues si (1) y (α) son los únicos ideales estrictamente principales
ambiguos, toda clase contiene al menos dos ideales ambiguos: el que ya hemos
probado que existe, digamos a y el ideal αa. Por otro lado, si una clase contu-
viera tres ideales ambiguos, digamos a, βa y γa, con N(β), N(γ) > 0, entonces
los ideales (1), (β), (γ) estaŕıan en la clase principal y seŕıan ambiguos.

Supongamos que (α) es un ideal ambiguo con N(α) > 0 y veamos qué po-
sibilidades hay. Tenemos que (α) = (ᾱ), luego α/ᾱ = ε es una unidad de O de
norma +1.

Si d �= −1,−3, d < 0, entonces ε = ±1, y si α = a + b
√

d (con a, b enteros o
semienteros) la condición α = ±ᾱ nos da α = a o bien α = b

√
d (con lo que a

y b han de ser enteros). Como además (α) no ha de ser divisible entre enteros
racionales, las únicas posibilidades son (1) y

(√
d

)
.

Si d = −1,−3 no es necesario hacer cálculos: en ambos casos el número de
clases es 1 y m = 1, luego el número de ideales ambiguos es 2 y, efectivamente,
hay dos ideales en la clase principal. Con esto tenemos probado el teorema para
cuerpos imaginarios.

Supongamos ahora que d > 0 y que la unidad fundamental tiene norma
negativa. Como N(ε) > 0, necesariamente, ±ε ha de ser una potencia par de
la unidad fundamental, luego ε = ±η2 para una cierta unidad η. Tenemos que
α = ±η2. Multiplicando por η̄ queda αη̄ = ±ηᾱ.

Sea αη̄ = a + b
√

d. Este número tiene la propiedad de que su conjugado es
él mismo o su simétrico. Esto lleva a que αη̄ = a o bien αη̄ = b

√
d, luego (α)

ha de ser (a) o
(
b
√

d
)

y, como no ha de ser divisible entre enteros, sólo hay dos
posibilidades: (1) y

(√
d

)
.

Nos queda el caso en que d > 0 y la unidad fundamental η tiene norma
positiva. Por el teorema anterior, η = ρ/ρ̄ para un cierto entero ρ. Podemos
suponer que N(ρ) > 0, pues en caso contrario cambiamos ρ por

√
dρ, y η por

−η (que es también una unidad fundamental). También podemos suponer que
ρ no es divisible entre enteros racionales.

Notar que ρ no es una unidad, o de lo contrario η = ρ2, lo cual es imposible
dado que η es una unidad fundamental. Por lo tanto los ideales (1) y (ρ) son
distintos y claramente son ambiguos. Vamos a probar que no hay ninguno más.

Si (α) es un ideal ambiguo (con N(α) > 0) tenemos que α = εᾱ para una
unidad ε, que será de la forma ε = ±ηt = ±ρt/ρ̄t. Entonces αρ̄t = ±ᾱρt.
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Expresando este número como a + b
√

d (con a, b enteros o semienteros), esta
ecuación conduce a que αρ̄t = a o bien αρ̄t = b

√
d (con a, b enteros). Teniendo

en cuenta los signos de las normas, el segundo caso es imposible, luego αρ̄t = a.
Digamos que t = 2k + u, donde u = 0, 1. Se cumple que ρ̄2 = N(ρ)/η, luego

podemos escribir αρ̄u/ηk = a/N(ρ)k. El primer miembro es entero y el segundo
es racional, luego αρ̄u/ηk = a′ ∈ Z.

Si u = 0 queda (α) = (a′) = (1), puesto que (α) no es divisible entre enteros
racionales. Supongamos finalmente que u = 1, de modo que (α) = (a′/ρ̄).

Tenemos que ρ | a′. El hecho de que (ρ) sea ambiguo implica que los factores
primos de (ρ) son todos distintos dos a dos y, si p es uno de ellos, entonces p2 = p
para un cierto primo p tal que p | N(ρ) | N(a′), luego p | a′ y aśı concluimos que
N(ρ) | a′.

Consecuentemente a′/ρ̄ = a′ρ/N(ρ) = a′′ρ, para un cierto entero racional
a′′, y nos queda (α) = (a′′ρ) = (ρ).

Con esto queda demostrada la ley de reciprocidad cuadrática. Notemos que,
sin el teorema 9.19, el teorema anterior prueba que |H : H2| = 2m−1, lo cual es
suficiente para probar la ley de reciprocidad. Todav́ıa no hemos probado que el
número de géneros es exactamente la mitad del número de géneros posibles en
órdenes no maximales. Esto lo veremos más tarde. Terminamos la sección con
algunas consecuencias inmediatas del teorema anterior:

• Hay cuerpos cuadráticos (tanto reales como imaginarios) con un número
de clases arbitrariamente grande, pues si llamamos n al número de clases
en cada género, tenemos la relación h′ = gn = 2m−1n, y basta tomar
determinantes divisibles entre muchos primos.

• El número de clases estrictas h′ es impar si y sólo si el discriminante D es
divisible por un único primo (pues el número de géneros es el número de
divisores elementales pares del grupo de clases).

• En particular, una condición necesaria para que un cuerpo tenga facto-
rización única (h = 1) es que el discriminante sea divisible por un solo
primo en el caso de los cuerpos imaginarios o cuerpos reales con unidades
de norma negativa, y que el discriminante sea divisible por a lo sumo dos
primos en el caso de cuerpos reales sin unidades de norma negativa.

9.4 El carácter de un cuerpo cuadrático

La ley de reciprocidad cuadrática tiene muchas repercusiones sobre los cuer-
pos cuadráticos. En esta sección veremos que determina unas reglas muy sen-
cillas sobre el tipo de factorización de los primos racionales. Ya hemos usado
en varias ocasiones que un primo racional p puede factorizar de tres formas
distintas en un cuerpo cuadrático:

Definición 9.23 Sea K un cuerpo cuadrático y p un primo racional. Diremos
que p se escinde en K si p = pq, donde p y q son dos primos distintos de K.
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Diremos que p se ramifica en K si p = p2, para un cierto primo p de K. Diremos
que p se conserva en K si p es primo en K.

Llamaremos carácter de K a la aplicación χK : Z −→ {−1, 0, 1} dada por

χK(a) =

{ ∏
p|∆K

(a,∆K)p si (a,∆K) = 1

0 si (a,∆K) �= 1

Seguidamente probamos que χK determina el carácter de los primos respecto
a K (si se ramifican, se escinden o se conservan):

Teorema 9.24 Sea K un cuerpo cuadrático y q un primo racional. Entonces

χK(q) =




0 si q se ramifica en K,
1 si q se escinde en K,
−1 si q se conserva en K,

Demostración: El caso de los primos que se ramifican es claro. Suponga-
mos que q se escinde. Entonces existe un ideal q tal que N(q) = q.

χK(q) =
∏
p|∆K

(q,∆K)p =
∏
p|∆K

(N(q),∆K)p =
∏
p|∆K

χp(q) = 1.

Rećıprocamente, supongamos que χK(q) =
∏

p|∆K

(q,∆K)p = 1. El teorema

8.37 nos da que ∏
p

(q,∆K)p = 1, (9.8)

cuando p recorre todos los primos incluido p = ∞. Si p � ∆K , p �= q se cumple
que (q,∆K)p = 1, pues si p es impar es inmediato y si p = 2 entonces tenemos
que ∆K ≡ 1 (mód 4), con lo que también se cumple. Además (q,∆K)∞ = 1, ya
que q > 0. Esto implica que si eliminamos el factor (q,∆K)q en 9.8 el producto
sigue dando 1, luego (q,∆K)q = 1.

Si q es impar (q,∆K)q = (∆K/q) = 1, luego q se escinde en K. Si q = 2 la
condición (2,∆K)2 = 1 equivale a que D ≡ ±1 (mód 8), y puesto que entonces
∆K es impar, ∆K ≡ 1 (mód 4), luego ha de ser de hecho ∆K ≡ 1 (mód 8), y
esto implica que 2 se escinde.

Esto tiene interés porque las propiedades del śımbolo de Hilbert prueban que
χK tiene un comportamiento muy satisfactorio:

Teorema 9.25 Sea K un cuerpo cuadrático de discriminante ∆ y sean m y n
enteros racionales.

1. χK(mn) = χK(m)χK(n).

2. Si m ≡ n (mód ∆), entonces χK(m) = χK(n).

3. χK toma los tres valores −1, 0, 1.
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4. χK(−1) = ∆/|∆|.

Demostración: 1) Es inmediato a partir de la definición de χK y de las
propiedades del śımbolo de Hilbert.

2) Si m y n no son primos con ∆, entonces χK(m) = χK(n) = 0. En caso
contrario es claro que

χK(m) =
∏
p|∆

χ∗
p(m),

y las funciones χ∗
p(m) dependen sólo del resto de m módulo ∆.

3) Obviamente χK toma el valor 0 y χK(1) = χK(12) = χK(1)2 = 1. Hay
que probar que también toma el valor −1.

El discriminante ∆ sólo es potencia de 2 cuando ∆ = ±8, ∆ = −4. En estos
casos podemos encontrar expĺıcitamente un primo que se conserve en el cuerpo
en cuestión. Supongamos, pues que ∆ es divisible entre un primo impar q.

Sea ∆ = qm, donde (q,m) = 1, puesto que salvo potencias de 2 se cumple
que ∆ es libre de cuadrados. Por el teorema chino del resto existe un entero r
tal que r es un resto no cuadrático módulo q y r ≡ 1 (mód 8m). Entonces, si
p | ∆, p �= q tenemos que (r,∆)p = (r, p)p = (r/p) = 1 si p es impar, y también
si p = 2, usando que r ≡ 1 (mód 8). Por consiguiente

χK(r) = (r,∆)q = (r/q) = −1.

4) Sea ∆ = 2im, donde m es impar libre de cuadrados. Para cada primo
p | m tenemos que (−1,∆)p = (−1, p)p = (−1/p) ≡ p (mód 4).

Por otra parte (−1,∆)2 = (−1, 2)i2 (−1,m)2 = (−1,m)2 ≡ m (mód 4).
Al multiplicar todas las congruencias queda χK(−1) ≡ m |m| (mód 4). No-

tar que si ∆ es impar hemos incluido un factor de más, pero no importa, pues
en tal caso (−1,∆)2 ≡ m ≡ 1 (mód 4).

Claramente entonces χK(−1) = m/|m| = ∆/|∆|.

Definición 9.26 Sea K un cuerpo cuadrático de discriminante ∆. Sea U∆ el
grupo de las unidades del anillo de restos módulo |∆|, esto es, el formado por
las clases [m] tales que (m,∆) = 1.

El teorema anterior permite considerar χK : U∆ −→ {±1}, y vista aśı es un
epimorfismo de grupos.

Llamaremos clases de escisión de K a las clases cuya imagen por χK es 1.

Las clases de escisión forman el núcleo de χK , luego son un subgrupo de
U∆ que contiene exactamente a la mitad de las clases. Teniendo en cuenta que
χ2
K = 1 es evidente que las clases que son cuadrados son de escisión.

El apartado 4) del teorema anterior nos dice que si ∆ > 0 entonces [m] es
una clase de escisión si y sólo si lo es [−m], mientras que si ∆ < 0 entonces [m]
es una clase de escisión si y sólo si [−m] no lo es.

Estas propiedades permiten determinar fácilmente las clases de escisión.
Según el teorema 9.24, un primo p � ∆ se escinde en K si y sólo si [p] es
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una clase de escisión (y se conserva en caso contrario). Notar que el teorema de
Dirichlet asegura que todas las clases de U∆ contienen infinitos números primos,
si bien hemos podido definir el concepto de clase de escisión sin necesidad de
este hecho.

Todas estas propiedades de la factorización de los primos en cuerpos cuadrá-
ticos eran ya conocidas por Euler, aunque fue Gauss el primero en demostrarlas
gracias a la ley de reciprocidad cuadrática.

Ejemplo Vamos a calcular el carácter de Q
(√

15
)
, o sea, ∆ = 60. El grupo

U60 es
{
[1], [7], [11], [13], [17], [19], [23], [29], [31], [37], [41], [43], [47], [49], [53], [59]

}
Comenzamos con χ(59) = χ(−1) = χ(1) = 1.
χ(7) = (60/7) = (4/7) = (2/7)2 = 1, luego χ(49) = 1, χ(53) = χ(−7) = 1,

χ(11) = χ(−49) = 1.
χ(13) = (60/13) = (8/13) = (2/13) = −1, luego χ(47) = −1.
χ(17) = (60/17) = (9/17) = 1, luego χ(43) = 1.
Como ya tenemos ocho clases de escisión, las hemos encontrado todas, a

saber: {
[1], [7], [11], [17], [43], [49], [53], [59]

}
.

Ahora podemos probar calcular el número de géneros de los órdenes no
maximales.

Teorema 9.27 Sea O un orden cuadrático con m caracteres. Entonces una
combinación de caracteres se corresponde con un género de O si y sólo si el
número de caracteres fundamentales negativos es par y, en caso de que haya
tres caracteres módulo 2, el número de caracteres negativos módulo 2 es par.

Demostración: Sea K el cuerpo cuadrático al que pertenece O. Puesto
que los valores de χ∗

p(x) dependen sólo del resto de x módulo p (o módulo 8), el
teorema chino del resto nos da un entero m primo con el discriminante ∆ de O

tal que χ∗
p(m) toma cualquier juego de valores prefijado, y m está determinado

módulo ∆ (aqúı se usa la restricción sobre los caracteres módulo 2). Si probamos
que O tiene un ideal de norma m, evidentemente su género tendrá la combinación
de caracteres prefijada.

No es fácil probar la existencia de tal ideal, aśı que simplificaremos el
problema haciendo uso del teorema de Dirichlet sobre primos en progresiones
aritméticas (que probaremos en el caṕıtulo XI). La sucesión m + k∆ contiene
un primo q, de modo que podemos razonar con q en lugar de m. Ahora basta
observar que

χK(q) =
∏
p|∆K

χ∗
p(q) = 1,
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por hipótesis, y esto significa que q se escinde en K, luego existe un primo q de
norma 1, y como (q,∆) = 1, la correspondencia entre los ideales de O y los de
K implica que O también tiene un primo de norma q

El carácter de un cuerpo cuadrático nos da una expresión sencilla para el
número de ideales de una norma dada:

Teorema 9.28 Sea K un cuerpo cuadrático. El número de ideales de K de
norma k es igual a

∑
r|k

χK(r).

Demostración: Descompongamos k = ps11 · · · pst
t como producto de facto-

res primos. Teniendo en cuenta la propiedad multiplicativa de χK se cumple
que ∑

r|k
χK(r) =

s1∑
i=0

χK(p1)i · · ·
st∑
i=0

χK(pt)i.

Si χK(pj) = 0 entonces
sj∑
i=0

χK(pj)i = 1, luego estos factores no influyen.

Si χK(pj) = −1 entonces
sj∑
i=0

χK(pj)i vale 1 si sj es par y 0 si es impar.

Por lo tanto la suma total es igual a 0 cuando alguno de los exponentes sj
correspondientes a primos que se conservan es impar. Ciertamente, cuando esto
ocurre no hay ideales de norma k.

Si todos estos exponentes son pares entonces el sumatorio se reduce a los
factores correspondientes a los primos que se escinden. Supongamos que son
p1, . . . , pa. Entonces ∑

r|k
χK(r) = (s1 + 1) · · · (sa + 1). (9.9)

Hay que probar que éste es el número de ideales de norma k. Ahora bien, si a

es un ideal de norma k y p es un primo que divide a un pj que se ramifica o se
conserva, entonces el exponente de p en a ha de ser 2sj si pj se ramifica o sj si
pj se conserva.

La única variación puede darse en los exponentes de los ideales que dividen
a primos racionales que se escinden pj = pq, donde los exponentes de p y q

han de cumplir únicamente que su suma sea sj . Por lo tanto el exponente de p

puede ser cualquiera entre 0 y sj , y éste determina el exponente de q. Aśı pues,
cada primo pj que se escinde da lugar a sj+1 variaciones en la factorización de
a, luego el número de ideales de norma k es el dado por (9.9).

Terminamos esta sección con una variante de la fórmula del teorema 4.18 en
la que sustituimos la función de Euler por el carácter del cuerpo cuadrático.

Teorema 9.29 Sea K un cuerpo cuadrático, sea h su número de clases y hm
el número de clases del orden Om. Sea em el ı́ndice del grupo de las unidades
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de Om en el grupo de las unidades del orden maximal. Entonces

hm =
m

em

∏
p|m

(
1− χK(p)

p

)
h.

Demostración: Por las propiedades de la función de Euler generalizada,

Φ(m) =
∏
p|m

Φ(pkp),

donde kp es el exponente de p en m.
Si χK(p) = 1 entonces p = p1p2, con N(p1) = N(p2) = p, luego

Φ(pkp) = Φ(pkp

1 )Φ(pkp

2 ) =
(
pkp−1(p− 1)

)2
.

Si χK(p) = 0 entonces p = p2, con N(p) = p.

Φ(pkp) = Φ(p2kp) = p2kp−1(p− 1).

Si χ(p) = −1 entonces N(p) = p2 y Φ(pkp) = p2kp−2(p2 − 1).
Es fácil comprobar que los tres casos se reúnen en la fórmula

Φ(pkp) = p2kp−1(p− 1)− p2kp−2(p− 1)χK(p) = φ(pkp)pkp

(
1− χK(p)

p

)
.

Multiplicando sobre p obtenemos Φ(m) = mφ(m)
∏
p|m

(
1− χK(p)

p

)
. Sustitu-

yendo en la fórmula del teorema 4.18 obtenemos la expresión buscada.

Ejercicio: Usar la fórmula del teorema anterior para calcular el número de clases del
orden O3 de Q

(√
−2

)
.

9.5 Representaciones por formas cuadráticas

Hemos iniciado el caṕıtulo explicando que nuestra intención al estudiar los
géneros era buscar condiciones suficientes para que un entero esté representado
por una forma cuadrática, pero pronto nos hemos desviado hacia consideraciones
teóricas sobre los géneros. Ahora estudiaremos la parte práctica. Como punto
de partida, consideremos el teorema 6.14, según el cual una forma representa
un número natural m si y sólo si la clase inversa de su clase de ideales asociada
contiene un ideal de norma m. Usando la factorización única es fácil determinar
si existen o no ideales con una norma dada. El problema es decidir a qué clase
pertenecen si existen. Si eliminamos esa parte de la conclusión obtenemos este
enunciado más débil: si O es un orden cuadrático de discriminante D, un número
natural m está representado por alguna forma cuadrática de discriminante D si
y sólo si O tiene ideales de norma m. Ahora reformulamos la condición sobre la
existencia de ideales.
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Teorema 9.30 Sea K un cuerpo cuadrático con discriminante ∆ y sean m, k
números naturales primos entre śı. Las afirmaciones siguientes son equivalentes:

1. k está representado por una forma cuadrática de discriminante m2∆.

2. Los primos p que dividen a k y tales que χK(p) = −1 tienen exponente
par.

3. (k,∆)p = 1 para todo primo p � ∆.

Demostración: Sabemos que una forma f de discriminante m2∆ repre-
senta a k si y sólo si el orden Om tiene ideales de norma k. Como k es primo con
m esto equivale a que el orden maximal de K tenga ideales de norma k. Todo
ideal de K se descompone en producto de ideales primos que tendrán norma p
(para los primos p tales que χK(p) �= −1) o p2 (cuando χK(p) = −1).

Es claro entonces que K tiene un ideal de norma k si y sólo si los primos que
cumplen χK(p) = −1 aparecen en k con exponente par. Esto nos da primera
equivalencia.

Respecto a la segunda, notemos que si p � ∆ y k = prn (quizá con r = 0),
entonces para p �= 2 se cumple

(k,∆)p = (n,∆)p (pr,∆)p = (∆/p)r = χK(p)r.

Si p = 2, entonces ∆ es impar, luego ∆ ≡ 1 (mód 4).

(k,∆)2 = (n,∆)2 (2r,∆)2 = (2,∆)r2 = χK(2)r.

Aśı pues, para todo primo p � ∆ se cumple (k,∆)p = χK(p)r, con lo que la
tercera afirmación equivale a las anteriores.

Notar que la afirmación 3) impone sólo un número finito de restricciones, ya
que si p es un primo que no divida a ∆ ni a k, entonces (k,∆)p = 1.

También es interesante notar que k está representado por una forma de
discriminante m2∆ si y sólo si lo está su parte libre de cuadrados, si y sólo
si lo están los primos que dividen a ésta. Aśı mismo, si p es primo y p � m,
entonces la representabilidad de p por una forma del determinante considerado
sólo depende de su resto módulo ∆.

Todo esto es especialmente útil en los cuerpos cuadráticos con una sola clase
de similitud. Si todas las formas cuadráticas son equivalentes, entonces todas
representan a los mismos números, luego un número es representado por una
forma cuadrática (cualquiera) de discriminante D si y sólo si es representado
por una forma cuadrática particular con dicho discriminante, y las condiciones
que proporciona el teorema son condiciones necesarias y suficientes para que
una forma dada represente a un número.

Ejemplos ¿Qué números naturales se pueden expresar como suma de dos
cuadrados?

La forma x2 + y2 es la forma principal de discriminante −4 y el cuerpo
asociado tiene una sola clase de similitud. El grupo U4 está formado por las
clases

{
±[1]

}
, y como χK(1) = 1, ha de ser χK(−1) = −1.
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Concluimos que los números de la forma x2 + y2 son aquellos cuya parte
libre de cuadrados no contiene primos congruentes con −1 módulo 4 (o equi-
valentemente, está formada por primos congruentes con 1 módulo 4 más el 2).

El mismo análisis vale para los números de la forma x2+2y2. Ahora D = −8
y U8 =

{
[1], [3], [5], [7]

}
. Como (−8/3) = (1/3) = 1, tenemos χK(3) = 1, luego

χK(5) = χK(7) = −1.
Los números de la forma x2 +2y2 son aquellos cuya parte libre de cuadrados

no contiene más primos que 2 y los congruentes con 1 o 3 módulo 8.

Para x2 + 3y2 el discriminante es D = −22 · 3, luego la forma está asociada
al orden O2 de Q

(√
−3

)
. El teorema anterior nos da que los números impares

de la forma x2 +3y2 son aquellos cuya parte libre de cuadrados no contiene más
primos que 3 y los congruentes con 1 módulo 3. Es claro que todo número en
estas condiciones es de la forma x2 + 3y2 aunque sea par. Por otra parte, 2 es
primo en Q

(√
−3

)
y debe dividir a los dos conjugados x± y

√
−3 con la misma

multiplicidad, luego la multiplicidad de 2 en x2+3y2 =
(
x+y

√
−3

)(
x−y

√
−3

)
ha de ser par. Aśı, si un primo p divide a la parte libre de cuadrados de x2+3y2,
necesariamente p es impar y se corresponde con un primo de norma p en la
factorización de x2 + 3y2, luego es 3 o congruente con 1 módulo 3, es decir, la
condición vale en realidad para todos los números, pares o impares.

La forma x2 + 4y2 tiene discriminante −16, y está asociada al orden O2 de
Q(i). El teorema anterior nos da que si k es impar entonces esta forma representa
a k si y sólo si su parte libre de cuadrados consta de primos congruentes con
1 módulo 4. Si k es par entonces x2 + 4y2 = 2r implica que x es par, luego
k = 4x2 + 4y2, luego un número par está representado por esta forma si y sólo
si es múltiplo de 4 y al dividirlo entre 4 está representado por x2 + y2.

En resumen: Los números representados por x2+4y2 son aquellos cuya parte
libre de cuadrados consta de primos congruentes con 1 módulo 4 y el 2, pero
con la condición de que si aparece el 2 su multiplicidad en k sea mayor que 1.

Muy diferente es el caso de la forma x2 +5y2. Se trata de la forma principal
de discriminante −20, asociada a Q

(√
−5

)
, pero el número de clases de este

cuerpo es 2. Esto significa que hay otra forma no equivalente con el mismo
discriminante. Es fácil ver que se trata de 2x2 + 2xy + 3y2.

Aśı pues, las condiciones del teorema anterior son necesarias y suficientes
para que un número k esté representado por una de las dos formas,

f(x, y) = x2 + 5y2 o g(x, y) = 2x2 + 2xy + 3y2.

Más aún, ningún número puede estar representado a la vez por las dos formas,
o de lo contrario ambas seŕıan del mismo género, pero como −20 es divisible
entre dos primos, el cuerpo tiene dos géneros y las dos clases son de géneros
diferentes.

Por ejemplo, g(1, 0) = 2 y g(0, 1) = 3, mientras que f(1, 1) = 6. Vemos aśı
que f representa a un número libre de cuadrados pero no representa a ninguno
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de los primos que lo componen (mientras que en los ejemplos anteriores, f
representaba a un número si y sólo si representaba a todos los primos de su
parte libre de cuadrados).

Veamos de todos modos cuáles son las condiciones del teorema anterior.
Consideramos

U20 =
{
[1], [3], [7], [9], [11], [13], [17], [19]

}
.

Los cuadrados son [1] y [9], luego ambos tienen carácter positivo. Calculamos
por ejemplo χK(3) = (−20/3) = (1/3) = 1, y 1 = χK(3)χK(9) = χK(7), luego
las clases de escisión son

{
[1], [3], [7], [9]

}
.

Sabemos que un número está representado por una de las formas f o g si y
sólo si su parte libre de cuadrados consta de primos congruentes con 1, 3, 7, 9
módulo 20 además del 2 y el 5.

Esto lo cumplen ciertamente los números 2, 3 y 6, pero nada nos dice cómo
distinguir cuándo la forma que los representa es f y cuándo es g. La respuesta
nos la proporciona la teoŕıa de géneros:

Teorema 9.31 Sea K un cuerpo cuadrático con discriminante ∆, sean m y k
números naturales primos entre śı y sea G un género del orden Om. Entonces k
está representado por una forma de género G si y sólo si (k,∆)p = χp(G) para
todo primo p.

Demostración: La condición es necesaria por la propia definición de χp.
Si un número k cumple esta condición, en particular cumple que (k,∆)p = 1
para todos los primos p � ∆, luego por el teorema 9.30 sabemos que k está
representado por una forma f de discriminante m2∆. Entonces

χp(f) = (k,∆)p = χp(G),

luego la forma es de género G.

Notar que la representabilidad de un primo que no divide a m por una forma
de género G depende sólo de su resto módulo m2∆.
Ejercicio: Probar que k está representado por una forma de género G si y sólo si G
(visto como conjunto de ideales) contiene un ideal de norma k.

Con esto podemos resolver el problema que teńıamos planteado. Las formas
f y g son de géneros distintos, concretamente f es de género (++) y g es de
género (−−) (los caracteres relevantes son χ2 y χ5).

Un número k que cumpla las condiciones del teorema 9.30 estará represen-
tado por la forma f si además cumple (k,−20)2 = (k,−20)5 = 1. En realidad
sabemos que los dos signos han de coincidir en cualquier caso, luego la condición
se puede reducir a (k,−20)5 = 1.

Si k = 5ir esto equivale a

(k,−20)5 = (5, 5)i5(5,−4)i5(r, 5)5 = (5,−1)i5(5,−1)i5(r, 5)5 = (r/5) = 1.

Aśı, si k es representado por una de las formas f o g, será representado por
f si y sólo si el número r que resulta de eliminar el 5 en la descomposición en
primos de k cumple r ≡ ±1 (mód 5). Esto confirma que es g quien representa
a 2 y 3, pero es f quien representa a 6.
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Ejemplos Veamos ahora un par de ejemplos de discriminante positivo. Con-
sideremos la forma x2 − 2y2. Observar que en los casos anteriores, en último
extremo, decidir si una de las formas consideradas representaba a un número
dado pod́ıa resolverse en un número finito de pasos dando valores a x e y, pues
los valores posibles estaban acotados. Con esta forma hay infinitas posibilidades.

El discriminante es 8 y el número de clases estrictas es 1 (porque la unidad
fundamental tiene norma negativa). U8 =

{
[1], [3], [5], [7]

}
.

Se cumple χK(1) = χK(7) = 1 (porque ∆ > 0), luego un número natural
k es de la forma x2 − 2y2 si y sólo si su parte libre de cuadrados consta de los
primos 2 y los congruentes con ±1 módulo 8.

En realidad ésta es la condición para que cualquier número natural k esté re-
presentado por cualquier forma de discriminante 8, en particular para que k esté
representado por la forma −x2 + 2y2, o sea, para que −k esté representado por
x2−2y2. Por lo tanto la condición vale para números enteros no necesariamente
positivos.

Vamos a calcular los primos de la forma p = x2 − 3y2. El discriminante es
12 y corresponde al orden maximal de Q

(√
3

)
(es la forma principal). Ahora la

unidad fundamental tiene norma positiva, por lo que hay dos clases de formas
cuadráticas no equivalentes. Un representante de la otra clase es 3x2−y2 (si una
forma representa un primo p no puede representar a −p, o habŕıa una unidad
de norma negativa). Además hay dos géneros, luego buscamos las condiciones
para que un entero p esté representado por el género principal.

La condición del teorema 9.30 es que p = 2, 3 o p ≡ ±1 (mód 12). Para que
p esté representado por una forma del género principal hace falta además que
(p, 12)3 = (p, 3)3 = 1. Esto lo cumplen sólo los primos p ≡ 1 (mód 12).

Ejercicio: Determinar los primos de la forma p = 3x2 + 2xy + 5y2. ¿Qué podemos
decir de los primos de la forma p = x2 + 14y2 ?

En vista de los resultados que hemos obtenido, la teoŕıa de los géneros es
especialmente útil al estudiar formas asociadas a órdenes en los que cada género
contiene una única clase de similitud de ideales. La tabla 9.1 contiene los pri-
meros discriminantes negativos con esta propiedad junto con los coeficientes
(a, b, c) de formas cuadráticas representantes de cada clase.

El teorema 9.28 nos da el número de representaciones que admite un entero
por formas de un discriminante dado:

Teorema 9.32 Sea O un orden cuadrático y k un número natural primo con
el ı́ndice de O. Sea F un conjunto completo de representantes de las clases de
similitud estricta de formas cuadráticas con anillo de coeficientes O. Entonces
el número de representaciones no asociadas de k por formas cuadráticas de F
es exactamente

∑
r|k

χK(r), donde K es el cuerpo cuadrático asociado a O.

En particular, si el orden es imaginario, el número total de soluciones de las
ecuaciones f(x, y) = k cuando f recorre F es u

∑
r|k

χK(r), donde u es el número
de unidades de O.
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Tabla 9.1: Algunos discriminantes negativos para los que cada género contiene
una única clase de similitud de ideales.

−D a, b, c −D a, b, c −D a, b, c −D a, b, c −D a, b, c
3 1, 1, 1 52 1, 0, 13 115 1, 1, 29 187 1, 1, 47 288 1, 0, 72
4 1, 0, 1 2, 2, 7 5, 5, 7 7, 3, 7 4, 4, 19
7 1, 1, 2 60 1, 0, 15 120 1, 0, 30 192 1, 0, 48 8, 0, 9
8 1, 0, 2 3, 0, 5 2, 0, 15 3, 0, 16 8, 8, 11

11 1, 1, 3 64 1, 0, 16 3, 0, 10 4, 4, 13 312 1, 0, 78
12 1, 0, 3 4, 4, 5 5, 0, 6 7, 2, 7 2, 0, 39
15 1, 1, 4 67 1, 1, 17 123 1, 1, 31 195 1, 1, 49 3, 0, 26

2, 1, 2 72 1, 0, 18 3, 3, 11 3, 3, 17 6, 0, 13
16 1, 0, 4 2, 0, 9 132 1, 0, 33 5, 5, 11 315 1, 1, 79
19 1, 1, 5 75 1, 1, 19 2, 2, 17 7, 1, 7 5, 5, 17
20 1, 0, 5 3, 3, 7 3, 0, 11 228 1, 0, 57 7, 7, 13

2, 2, 3 84 1, 0, 21 6, 6, 7 2, 2, 29 9, 9, 11
24 1, 0, 6 2, 2, 11 147 1, 1, 37 3, 0, 19 340 1, 0, 85

2, 0, 3 3, 0, 7 3, 3, 13 6, 6, 11 2, 2, 43
27 1, 1, 7 5, 4, 5 148 1, 0, 37 232 1, 0, 58 5, 0, 17
28 1, 0, 7 88 1, 0, 22 2, 2, 19 2, 0, 29 10, 10, 11
32 1, 0, 8 2, 0, 11 160 1, 0, 40 235 1, 1, 59 352 1, 0, 88

3, 2, 3 91 1, 1, 23 4, 4, 11 5, 5, 13 4, 4, 23
35 1, 1, 9 5, 3, 5 5, 0, 8 240 1, 0, 60 8, 0, 11

3, 1, 3 96 1, 0, 24 7, 6, 7 3, 0, 20 8, 8, 13
36 1, 0, 9 3, 0, 8 163 1, 1, 41 4, 0, 15 372 1, 0, 93

2, 2, 5 4, 4, 7 168 1, 0, 42 5, 0, 12 2, 2, 47
40 1, 0, 10 5, 2, 5 2, 0, 21 267 1, 1, 67 3, 0, 31

2, 0, 5 99 1, 1, 25 3, 0, 14 3, 3, 23 6, 6, 17
43 1, 1, 11 5, 1, 5 6, 0, 7 280 1, 0, 70
48 1, 0, 12 100 1, 0, 25 180 1, 0, 45 2, 0, 35

3, 0, 4 2, 2, 13 2, 2, 23 5, 0, 14
51 1, 1, 13 112 1, 0, 28 5, 0, 9 7, 0, 10

3, 3, 5 4, 0, 7 7, 4, 7

Este teorema es especialmente útil cuando se aplica a los órdenes en los que
cada género contiene una sola clase de similitud de ideales. Entonces dos formas
cuadráticas representan a un mismo entero si y sólo si son equivalentes. Aśı, en
los términos del teorema anterior, si una forma f de F representa a k, ninguna
otra forma de F lo representa, por lo que la fórmula da el número de soluciones
no asociadas de una ecuación f(x, y) = k para una forma fija f cuando k es
primo con el ı́ndice del orden asociado y supuesto que la ecuación tenga al menos
una solución.

De aqúı se deduce un criterio de primalidad:

Teorema 9.33 Sea f(x, y) una forma cuadrática asociada a un orden de dis-
criminante ∆ < −4 en el que cada género contenga una única clase de similitud
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estricta de ideales. Sea p un número natural primo con ∆ que se expresa exac-
tamente de cuatro formas distintas como p = f(x, y) con (x, y) = 1. Entonces
p es primo.

Demostración: El orden de f tendrá exactamente dos unidades, luego el
teorema anterior junto con 9.28 nos da que su cuerpo cuadrático tiene exac-
tamente dos ideales de norma p. Más aún, en la demostración de 9.28 se ve
que el número de ideales de norma p viene dado por la fórmula 9.9, de donde
se sigue que p es divisible entre un único primo que se escinde y además con
multiplicidad 1. Basta ver que p no es divisible entre primos que se conservan o
se ramifican. Ciertamente, p no es divisible entre primos que se ramifican, pues
por hipótesis es primo con el discriminante del cuerpo. Supongamos que q es
un primo que se conserva y divide a p.

Consideremos un módulo asociado a la forma f . Podemos exigir que sea un
ideal de norma prima con q. Más aún, según el teorema 6.9 podemos tomarlo
de la forma a = 〈a, b + mω〉, donde N(a) = a. Cambiando f por una forma
estrictamente equivalente, podemos suponer que

p = f(x, y) = N(ax + (b + mω)y)
a

.

Notar que si (x, y) = 1 y aplicamos un cambio de variables lineal de determinante
1, las imágenes siguen cumpliendo lo mismo. El numerador es un entero racional,
luego tenemos que q | N(ax + (b + mω)y), y como q es primo en el orden
cuadrático, también q | ax + (b + mω)y. Esto implica que q | ax + by, q | my,
con lo que q | y y q | ax, lo cual es imposible.

Un caso particular de este teorema era ya conocido por Euler, quien lo usó
para encontrar primos grandes. Concretamente, Euler definió un número idóneo
(o conveniente) como un número natural n tal que —en nuestros términos— el
orden de discriminante −4n tiene una sola clase de similitud estricta de ideales
en cada género. Entonces se cumple:

Si n es un número idóneo y p es un número impar que se expresa de
forma única como p = x2 + ny2, para ciertos números naturales x,
y tales que (x, ny) = 1, entonces p es primo.

Las cuatro representaciones de las que habla el teorema anterior son entonces
(±x,±y). Euler encontró los siguientes números idóneos:

Tabla 9.2: Los números idóneos de Euler

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40,

42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165,

168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462,

520, 760, 840, 1.320, 1.365, 1.848.

No se conoce ninguno más, y de hecho se conjetura que no los hay.

Ejercicio: Probar que 3.049 = 72 + 120 · 52 es primo.
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Ejemplo El mayor número primo que encontró Euler con ayuda de los núme-
ros convenientes es p = 18.518.809 = 1972 + 1.848 · 1002. Vamos a esbozar un
argumento (debido a Gauss) que lo demuestra. Un cálculo directo obligaŕıa a
comprobar que p no es divisible entre los primeros 590 primos.

Hemos de probar que la única solución de la ecuación

p = x2 + 1.848 y2 (9.10)

es x = 197, y = 100. Una tal solución cumple x2 ≡ 1 (mód 1.848). Como
1.848 = 8 · 3 · 7 · 11, esto es equivalente a que x2 ≡ 1 (mód 8), x2 ≡ 1 (mód 3),
x2 ≡ 1 (mód 7), x2 ≡ 1 (mód 11), o a que x ≡ 1 (mód 2), x ≡ ±1 (mód 3, 7, 11).

Por el teorema chino del resto, x ≡ ±1,±43,±155 ± 197 (mód 462) (notar
que 462 = 2 · 3 · 7 · 11). Puesto que x <

√
p, esto nos da 76 posibilidades para x:

1 + 462k 0 ≤ k ≤ 9,
−1 + 462k 1 ≤ k ≤ 9,
43 + 462k 0 ≤ k ≤ 9,
−43 + 462k 1 ≤ k ≤ 9,
155 + 462k 0 ≤ k ≤ 9,
−155 + 462k 1 ≤ k ≤ 9,

197 + 462k 0 ≤ k ≤ 9,
−197 + 462k 1 ≤ k ≤ 9.

Hay que descartarlas todas menos x = 197. La mayoŕıa de ellas se eli-
minan tomando congruencias. Por ejemplo, consideremos el primo 5. Al to-
mar congruencias módulo 5 en la ecuación (9.10) queda x2 + 3y2 ≡ 4 (mód 5).
Como y2 ≡ 0, 1, 4 (mód 5), resulta x2 ≡ 1, 2, 4 (mód 5), pero 2 no es un resto
cuadrático módulo 5, y por consiguiente x2 ≡ 1, 4 (mód 5). Esto equivale a que
x �≡ 0 (mód 5).

Si consideramos, por ejemplo x = 1 + 462k ≡ 1 + 2k (mód 5), la condición
es 2k �≡ −1 (mód 5), o también k �≡ 2 (mód 5), lo que nos elimina los casos
k = 2, 7. Del mismo modo eliminamos un par de casos de cada una de las ocho
sucesiones.

Repitiendo el proceso con el primo 13 eliminamos los valores k = 0, 4, 5, 9 de
la primera sucesión.

Cuando el primo que usamos divide a 1.848 hemos de tomar congruencias
módulo una potencia, para evitar identidades triviales. Por ejemplo, si usamos
el 3 hemos de plantear x2 + 3y2 ≡ 4 (mód 9). Como y2 ≡ 0, 1 (mód 3), ha de
ser 3y2 ≡ 0, 3 (mód 9), luego x2 ≡ 1, 4 (mód 9). Si lo aplicamos a la primera
sucesión obtenemos

(1 + 462k)2 ≡ (1 + 3k)2 ≡ 1 + 6k ≡ 1, 4 (mód 9),

de donde 6k ≡ 0, 3 (mód 9), 2k ≡ 0, 1 (mód 3), k ≡ 0, 2 (mód 3), lo cual nos
descarta el valor k = 3.
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Tomando congruencias módulo 9, 5, 49, 121, 13, 17, 19 y 23 descartamos
todos los casos excepto −43 + 3 · 462, −155 + 6 · 462 y 197. Los dos primeros
pueden descartarse directamente, despejando y2 de (9.10) y comprobando que
el número que obtenemos no es realmente un cuadrado.

9.6 Grupos de clases y unidades

Dos de los invariantes más caóticos en la teoŕıa de cuerpos cuadráticos son
el número de clases y, en el caso de los cuerpos reales, el signo de la unidad
fundamental. A su vez éste último interviene en la relación entre la similitud
estricta y la no estricta y por lo tanto en la relación entre el número h′ de clases
estrictas y el número h de clases no estrictas. La teoŕıa de los géneros aporta
algunos datos sobre ambos invariantes. El teorema siguiente nos muestra un
ejemplo sencillo:

Teorema 9.34 Si K es un cuerpo cuadrático real y su discriminante es divisible
entre un primo p ≡ −1 (mód 4), entonces la unidad fundamental de K cumple
N(ε) = 1.

Demostración: Por el teorema 9.9, χp(−1) = (−1/p) = −1, luego la clase
de similitud estricta −1 no coincide con la clase 1, es decir, los ideales generados
por elementos de norma negativa no son estrictamente similares a los generados
por elementos de norma positiva, aunque evidentemente śı son similares. Según
vimos en el caṕıtulo VI, la similitud estricta difiere de la no estricta sólo si la
unidad fundamental tiene norma positiva.

Una forma concisa de expresar la hipótesis del teorema es ∆K �= x2 + y2.
Ahora estamos en condiciones de precisar la relación entre la similitud estricta
y la no estricta en un cuerpo cuadrático real. Más en general, conviene clasificar
los cuerpos cuadráticos en los cuatro tipos siguientes:

Tabla 9.3: Clasificación de los cuerpos cuadráticos

Tipo Discriminante χp(−1) N(ε) h′ H ′

I ∆K < 0 — — h H ′ = H

II ∆K = x2 + y2 Todos + 1 −1 h H ′ = H

III 0 < ∆K �= x2 + y2 Alguno − 1 +1 2h H ′ ∼= H × {±1}
IV ∆K = x2 + y2 Todos + 1 +1 2h H ′ �∼= H × {±1}

Los cuerpos cuadráticos de tipo I son los cuerpos imaginarios. Los de tipo
II son los cuerpos reales cuya unidad fundamental tiene norma negativa. Aca-
bamos de ver que esto implica que ∆K = x2 + y2 o, equivalentemente, que
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χp(−1) = 1 para todos los caracteres. En ambos casos la similitud estricta coin-
cide con la no estricta. Los cuerpos reales con unidad fundamental de norma
positiva son de tipo III o de tipo IV según si ∆K es divisible o no entre un primo
p ≡ −1 (mód 4) o, equivalentemente, si χp(−1) = −1 para algún primo p. La
razón de esta distinción es que de ella depende que el grupo de clases no estrictas
H se pueda representar como factor directo del grupo de clases estrictas H ′, en
el sentido preciso indicado en el teorema siguiente.

Teorema 9.35 Sea K un cuerpo cuadrático de tipo III. Entonces existe un
subgrupo H del grupo de clases estrictas H ′ de K, de modo que la aplicación
[x] 
→ [x] es un isomorfismo de H en el grupo de clases no estrictas de K, y
H ′ = H × {±1}. Si K es de tipo IV no existe tal subgrupo.

Demostración: Sea p un primo tal que χp(−1) = −1 Como el número
de signos negativos ha de ser par, podemos suponer que p es impar. Sea H
el conjunto de todas las clases x tales que χp(x) = 1, o sea, el núcleo de χp.
Claramente H es un subgrupo de ı́ndice 2 en H ′. Basta probar que la aplicación
[x] 
→ [x] es inyectiva en H, pues ciertamente es un homomorfismo de grupos
y su imagen tiene el mismo número de elementos de H. Si [M ], [M ′] son dos
clases de H con la misma imagen, es decir, si M y M ′ son similares, entonces
existe un α ∈ K tal que M = αM ′, luego χp(M) = χp

(
(α)

)
χp(M ′), lo que

implica que χp
(
(α)

)
= 1. Por lo tanto

[
(α)

]
�= −1, es decir, N(α) = 1, luego

M y M ′ son estrictamente similares y [M ] = [M ′]. Como −1 /∈ H, es claro que
H ′ = H × {±1}.

Si K es de tipo IV entonces −1 está en el género principal, luego el teorema
9.19 nos da que −1 = x2 para cierta clase x ∈ H ′. Si H ′ = H × {±1} para
cualquier subgrupo H (sin más hipótesis) entonces tendŕıamos que ±x ∈ H para
una elección adecuada del signo, luego −1 = (±x)2 ∈ H, lo cual es imposible.

Aśı pues, la extensión H ′/H no es trivial en los cuerpos de tipo IV. El hecho
de que existan tales cuerpos equivale a decir que el rećıproco del teorema 9.34
es falso. Sirvan como ejemplos Q

(√
34

)
(el menor de todos) y Q

(√
221

)
.

Un rećıproco parcial al teorema 9.34 es que si ∆K > 0 es divisible entre un
solo primo, entonces N(ε) = −1. En efecto, en tal caso K tiene un solo género,
luego una sola clase ambigua, pero −1 y 1 son ambiguas, luego 1 = −1.

Ejercicio: Si ∆K es divisible entre un solo primo, entonces h es impar

Ejercicio: Si ∆K = x2 + y2 y cada género contiene un número impar de clases
estrictas, entonces N(ε) = 1, es decir, K es de tipo IV.

Una consecuencia obvia de la teoŕıa de géneros es que predice la presencia
de potencias de 2 en el número de clases. No se conoce nada parecido para
otros primos. El menor cuerpo cuadrático imaginario cuyo número de clases
es divisible entre un primo impar al cuadrado es Q

(√
−2.299

)
. El grupo de

clases contiene un factor C3 × C3. El menor cuerpo cuadrático real en estas
condiciones es Q

(√
62.501

)
(con idéntico factor). Respecto a la presencia de
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primos impares en el número de clases, terminamos el caṕıtulo con un resultado
elemental sobre la cuestión. Notar que no requiere teoŕıa de géneros.

Teorema 9.36 Supongamos que d = r2− 4gp < 0 es libre de cuadrados, donde
g y p son primos y r es impar. Supongamos además que |d| > 4g. Entonces p
divide al número de clases de Q

(√
d

)
.

Demostración: Notar que d ≡ 1 (mód 4). Sea

α =
r − 1

2
+

1 +
√

d

2
.

Claramente N(α) = gp. Por lo tanto α = pp, donde p | g (no puede haber dos
primos distintos, pues seŕıan los divisores conjugados de g, y entonces g | α,
pero α no es divisible entre enteros racionales).

Basta probar que p no es principal, pues entonces [p] tendrá orden p en el
grupo de clases. A su vez, basta probar que no hay números de norma g. En
caso contrario existiŕıan a y b enteros o semienteros de modo que

g = N
(

a

2
+

b

2

√
d

)
=

a2 − bd2

4
,

pero a2 − bd2 = 4g implica (teniendo en cuenta la hipótesis) que b = 0, luego
g = (a/2)2, contradicción.

Esta situación es relativamente frecuente. Por ejemplo:

−15 = 12 − 4 · 22, −23 = 32 − 4 · 23, −31 = 12 − 4 · 23,

−47 = 92 − 4 · 25, −71 = 212 − 4 · 27, −79 = 72 − 4 · 25,

−271 = 892 − 4 · 211.
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Tabla 9.4: Grupos de clases de cuerpos cuadráticos imaginarios
Los valores de d marcados con un asterisco son los congruentes con 1 módulo 4.
El número α es el indicado en 2.5.

d ∆ h Clases Relaciones Caracteres

−1 −22 1 (1) 1 +

−2 −23 1 (1) 1 +

−3∗ −3 1 (1) 1 +

−5 −22 · 5 2 (1) A2 ++
(2, 1 + α) A −−

−6 −23 · 3 2 (1) A2 ++
(2, α) A −−

−7∗ −7 1 (1) 1 +

−10 −23 · 5 2 (1) A2 ++
(2, α) A −−

−11∗ −11 1 (1) 1 +

−13 −22 · 13 2 (1) A2 ++
(2, 1 + α) A −−

−14 −23 · 7 4 (1) L4 ++
(3, 2 + α) L3 −−

(2, α) L2 ++
(3, 1 + α) L −−

−15∗ −3 · 5 2 (1) A2 ++
(2, 1 + α) A −−

−17 −22 · 17 4 (1) L4 ++
(3, 2 + α) L3 −−
(2, 1 + α) L2 ++
(3, 1 + α) L −−

−19∗ −19 1 (1) 1 +

−21 −22 · 3 · 7 4 (1) A2B2 + + +
(5, 3 + α) AB −− +

(3, α) B − + −
(2, 1 + α) A + −−

−22 −23 · 11 2 (1) A2 ++
(2, α) A −−

−23∗ −23 3 (1) L3 +
(2, 1 + α) L2 +

(2, α) L +

−26 −23 · 13 6 (1) L6 ++
(5, 3 + α) L5 −−
(3, 1 + α) L4 ++

(2, α) L3 −−
(3, 2 + α) L2 ++
(5, 2 + α) L −−

−29 −22 · 29 6 (1) L6 ++
(3, 2 + α) L5 −−
(5, 4 + α) L4 ++
(2, 1 + α) L3 −−
(5, 1 + α) L2 ++
(3, 1 + α) L −−
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d ∆ h Clases Relaciones Caracteres

−30 −23 · 3 · 5 4 (1) A2B2 + + +
(2, α) AB −− +
(3, α) B + −−
(5, α) A − + −

−31∗ −31 3 (1) L3 +
(2, α) L2 +

(2, 1 + α) L +

−33 −22 · 3 · 11 4 (1) A2B2 + + +
(2, 1 + α) AB −− +

(3, α) B − + −
(6, 3 + α) A + −−

−34 −23 · 17 4 (1) L4 ++
(5, 4 + α) L3 −−

(2, α) L2 ++
(5, 1 + α) L −−

−35∗ −5 · 7 2 (1) A2 ++
(5, 2 + α) A −−

−37 −22 · 37 2 (1) A2 ++
(2, 1 + α) A −−

−38 −23 · 19 6 (1) L6 ++
(3, 2 + α) L5 −−
(7, 2 + α) L4 ++

(2, α) L3 −−
(7, 5 + α) L2 ++
(3, 1 + α) L −−

−39∗ −3 · 13 4 (1) L4 ++
(2, 1 + α) L3 −−
(3, 1 + α) L2 ++

(2, α) L −−
−41 −22 · 41 8 (1) L8 ++

(3, 2 + α) L7 −−
(5, 3 + α) L6 ++
(7, 6 + α) L5 −−
(2, 1 + α) L4 ++
(7, 1 + α) L3 −−
(5, 2 + α) L2 ++
(3, 1 + α) L −−

−42 −23 · 3 · 7 4 (1) A2B2 + + +
(7, α) AB − + −
(3, α) B −− +
(2, α) A + −−

−43∗ −43 1 (1) 1 +

−46 −23 · 23 4 (1) L4 ++
(5, 3 + α) L3 −−

(2, α) L2 ++
(5, 2 + α) L −−

−47∗ −47 5 (1) L5 +
(2, α) L4 +

(3, 2 + α) L3 +
(3, α) L2 +

(2, 1 + α) L +

−51∗ −3 · 17 2 (1) A2 ++
(3, 1 + α) A −−
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d ∆ h Clases Relaciones Caracteres

−53 −22 · 53 6 (1) L6 ++
(3, 2 + α) L5 −−
(9, 8 + α) L4 ++
(2, 1 + α) L3 −−
(9, 1 + α) L2 ++
(3, 1 + α) L −−

−55∗ −5 · 11 4 (1) L4 ++
(2, 1 + α) L3 −−
(5, 2 + α) L2 ++

(2, α) L −−
−57 −22 · 3 · 19 4 (1) A2B2 + + +

(2, 1 + α) AB −− +
(3, 1 + α) B − + −
(6, 3 + α) A + −−

−58 −23 · 29 2 (1) A2 ++
(2, α) A −−

−59∗ −59 3 (1) L3 +
(3, 2 + α) L2 +

(3, α) L +

−61 −22 · 61 6 (1) L3 ++
(5, 3 + α) L2 ++
(5, 2 + α) L ++
(7, 5 + α) AL2 −−
(7, 3 + α) AL −−
(2, 1 + α) A −−

−62 −23 · 31 8 (1) L8 ++
(3, 2 + α) L7 −−
(7, 1 + α) L6 ++
(11, 2 + α) L5 −−

(2, α) L4 ++
(11, 9 + α) L3 −−
(7, 6 + α) L2 ++
(3, 1 + α) L −−

−65 −22 · 5 · 13 8 (1) L4 + + +
(3, 2 + α) L3 − + −
(9, 4 + α) L2 + + +
(3, 1 + α) L − + −

(11, 10 + α) AL3 + −−
(2, 1 + α) AL2 −− +
(11, 1 + α) AL + −−

(5, α) A −− +

−66 −23 · 3 · 11 8 (1) L4 + + +
(5, 3 + α) L3 − + −

(3, α) L2 + + +
(5, 2 + α) L − + −
(7, 2 + α) AL3 + −−
(11, α) AL2 −− +

(7, 5 + α) AL + −−
(2, α) A −− +

−67∗ −67 1 (1) 1 +
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d ∆ h Clases Relaciones Caracteres

−69 −22 · 3 · 23 8 (1) L4 + + +
(7, 6 + α) L3 + −−
(6, 3 + α) L2 + + +
(7, 1 + α) L + −−
(5, 1 + α) AL3 −− +

(3, α) AL2 − + −
(5, 4 + α) AL −− +
(2, 1 + α) A − + −

−70 −23 · 5 · 7 4 (1) A2B2 + + +
(7, α) AB −− +
(5, α) B + −−
(2, α) A − + −

−71∗ −71 7 (1) L7 +
(2, 1 + α) L6 +
(5, 3 + α) L5 +
(3, 2 + α) L4 +

(3, α) L3 +
(5, 1 + α) L2 +

(2, α) L +

−73 −22 · 73 4 (1) L4 ++
(7, 5 + α) L3 −−
(2, 1 + α) L2 ++
(7, 2 + α) L −−

−74 −23 · 37 10 (1) L5 ++
(11, 6 + α) L4 ++
(3, 1 + α) L3 ++
(3, 2 + α) L2 ++
(11, 5 + α) L ++
(5, 4 + α) AL4 −−
(6, 4 + α) AL3 −−
(6, 2 + α) AL2 −−
(5, 1 + α) AL −−

(2, α) A −−
−77 −22 · 7 · 11 8 (1) L4 + + +

(3, 2 + α) L3 − + −
(14, 7 + α) L2 + + +
(3, 1 + α) L − + −
(6, 5 + α) AL3 −− +

(7, α) AL2 + −−
(6, 1 + α) AL −− +
(2, 1 + α) A + −−

−78 −23 · 3 · 13 4 (1) A2B2 + + +
(2, α) AB −− +
(13, α) B + −−
(3, α) A − + −

−79∗ −79 5 (1) L5 +
(2, α) L4 +

(5, 4 + α) L3 +
(5, α) L2 +

(2, 1 + α) L +

−82 −23 · 41 4 (1) L4 ++
(7, 4 + α) L3 −−

(2, α) L2 ++
(7, 3 + α) L −−
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d ∆ h Clases Relaciones Caracteres

−83∗ −83 3 (1) L3 +
(3, 2 + α) L2 +

(3, α) L +

−85 −22 · 5 · 17 4 (1) A2B2 + + +
(5, α) AB −− +

(10, 5 + α) B + −−
(2, 1 + α) A − + −

−86 −23 · 43 10 (1) L10 ++
(3, 2 + α) L9 −−
(9, 2 + α) L8 ++
(5, 2 + α) L7 −−

(17, 13 + α) L6 ++
(2, α) L5 −−

(17, 4 + α) L4 ++
(5, 3 + α) L3 −−
(9, 7 + α) L2 ++
(3, 1 + α) L −−

−87∗ −3 · 29 6 (1) L6 ++
(2, 1 + α) L5 −−
(7, 2 + α) L4 ++
(3, 1 + α) L3 −−
(7, 4 + α) L2 ++

(2, α) L −−
−89 −22 · 89 12 (1) L12 ++

(3, 2 + α) L11 −−
(17, 9 + α) L10 ++
(7, 3 + α) L9 −−
(5, 4 + α) L8 ++
(6, 1 + α) L7 −−
(2, 1 + α) L6 ++
(6, 5 + α) L5 −−
(5, 1 + α) L4 ++
(7, 4 + α) L3 −−
(17, 8 + α) L2 ++
(3, 1 + α) L −−

−91∗ −7 · 13 2 (1) A2 ++
(7, 3 + α) A −−

−93 −22 · 3 · 31 4 (1) A2B2 + + +
(6, 3 + α) AB −− +

(3, α) B + −−
(2, 1 + α) A − + −

−94 −22 · 47 8 (1) L8 ++
(5, 4 + α) L7 −−
(7, 5 + α) L6 ++
(11, 4 + α) L5 −−

(2, α) L4 ++
(11, 7 + α) L3 −−
(7, 2 + α) L2 ++
(5, 1 + α) L −−
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d ∆ h Clases Relaciones Caracteres

−95∗ −5 · 19 1 (1) L8 ++
(2, α) L7 −−
(4, α) L6 ++

(3, 2 + α) L5 −−
(5, 2 + α) L4 ++

(3, α) L3 −−
(4, 3 + α) L2 ++
(2, 1 + α) L −−

−97 −22 · 97 1 (1) L4 ++
(7, 6 + α) L3 −−
(2, 1 + α) L2 ++
(7, 1 + α) L −−

Tabla 9.5: Grupos de clases de cuerpos cuadráticos reales

Los valores de d marcados con un asterisco son los congruentes con 1 módulo
4. El número α es el indicado en 2.5. Se indica también la fracción continua de√

α y una unidad fundamental ε.

d ∆ h
√

α ε N(ε) Clases Caract.

2 23 1
[
1, 2

]
1 + α −1 (1) +

3 22 · 3 1
[
1, 1, 2

]
2 + α +1 (1) +

5∗ 5 1
[
1
]

α −1 (1) ++

6 23 · 3 1
[
2, 2, 4

]
5 + 2α +1 (1) +

7 22 · 7 1
[
2, 1, 1, 1, 4

]
8 + 3α +1 (1) ++

10 23 · 5 2
[
3, 6

]
3 + α −1 (1) ++

(2, α) −−
11 22 · 11 1

[
3, 3, 6

]
10 + 3α +1 (1) ++

13∗ 13 1
[
2, 3

]
1 + α −1 (1) +

14 22 · 7 1
[
3, 1, 2, 1, 6

]
15 + 4α +1 (1) ++

15 22 · 3 · 5 2
[
3, 1, 6

]
4 + α +1 (1) + + +

(2, 1 + α) −− +

17∗ 17 1
[
2, 1, 1, 3

]
3 + 2α −1 (1) +

19 22 · 19 1
[
4, 2, 1, 3, 1, 2, 8

]
170 + 39α +1 (1) ++

21∗ 3 · 7 1
[
2, 1, 3

]
2 + α +1 (1) ++

22 23 · 11 1
[
4, 1, 2, 4, 2, 1, 8

]
197 + 42α +1 (1) ++

23 22 · 23 1
[
4, 1, 3, 1.8

]
24 + 5α +1 (1) ++

26 23 · 13 2
[
5, 10

]
5 + α −1 (1) ++

(2, α) −−
29∗ 29 1

[
3, 5

]
2 + α −1 (1) +

30 23 · 3 · 5 2
[
5, 2, 10

]
11 + 2α +1 (1) + + +

(2, α) + −−
31 22 · 31 1

[
5, 1, 1, 3, 5, 3, 1, 1, 10

]
1.520 + 273α +1 (1) ++

33∗ 3 · 11 1
[
3, 2, 1, 2, 5

]
19 + 8α +1 (1) ++

34 23 · 17 2
[
5, 1, 4, 1, 10

]
35 + 6α +1 (1) ++

(3, 1 + α) −−
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d ∆ h
√

α ε N(ε) Clases Caract.

35 22 · 5 · 7 2
[
5, 1, 10

]
6 + α +1 (1) + + +

(2, 1 + α) − + −
37∗ 37 1

[
3, 1, 1, 5

]
5 + 2α −1 (1) +

38 23 · 19 1
[
6, 6, 12

]
37 + 6α +1 (1) ++

39 22 · 3 · 13 2
[
6, 4, 12

]
25 + 4α +1 (1) + + +

(2, 1 + α) −− +

41∗ 41 1
[
3, 1, 2, 2, 1, 5

]
27 + 10α −1 (1) +

42 23 · 3 · 7 2
[
6, 2, 12

]
13 + 2α +1 (1) + + +

(2, α) + −−
43 22 · 43 1

[
6, 1, 1, 3, 1, 5, 3.482 + 531α +1 (1) ++

1, 3, 1, 1, 12
]

46 23 · 23 1
[
6, 1, 3, 1, 1, 2, 6 24.335 + 3.588α +1 (1) ++

2, 1, 1, 3, 1, 12
]

47 22 · 47 1
[
6, 1, 5, 1, 12

]
48 + 7α +1 (1) ++

51 22 · 3 · 17 2
[
7, 7, 14

]
50 + 7α +1 (1) + + +

(3, α) − + +

53∗ 53 1
[
4, 7

]
3 + α −1 (1) +

55 22 · 5 · 11 2
[
7, 2, 2, 2, 14

]
89 + 12α +1 (1) + + +

(2, 1 + α) −− +

57∗ 3 · 19 1
[
4, 3, 1, 1, 1, 3, 7

]
131 + 40α +1 (1) ++

58 23 · 29 2
[
7, 1, 1, 1, 1, 1, 1, 14

]
99 + 13α −1 (1) ++

(2, α) −−
59 22 · 59 1

[
7, 1, 2, 7, 2, 1, 14

]
530 + 69α +1 (1) ++

61∗ 61 1
[
4, 2, 2, 7

]
17 + 5α −1 (1) +

62 23 · 31 1
[
7, 1, 6, 1, 14

]
63 + 8α +1 (1) ++

65∗ 5 · 13 2
[
4, 1, 1, 7

]
7 + 2α −1 (1) ++

(5, 2 + α) −−
66 23 · 3 · 11 2

[
8, 8, 16

]
65 + 8α +1 (1) + + +

(3, α) + −−
67 22 · 67 1

[
8, 5, 2, 1, 1, 7, 1, 48.842 + 5.967α +1 (1) ++

1, 2, 5, 16
]

69∗ 3 · 23 1
[
4, 1, 1, 1, 7

]
11 + 3α +1 (1) ++

70 23 · 5 · 7 2
[
8, 2, 1, 2, 1, 2, 16

]
251 + 30α +1 (1) ++

(2, α) −− +

71 22 · 71 1
[
8, 2, 2, 1, 7, 1, 3.480 + 413α +1 (1) ++

2, 2, 16
]

73∗ 73 1
[
4, 1, 3, 2, 1, 1, 943 + 250α −1 (1) +

2.3.1.7
]

74 23 · 37 2
[
8, 1, 1, 1, 1, 16

]
43 + 5α −1 (1) ++

(2, α) −−
77∗ 7 · 11 1

[
4, 1, 7

]
4 + α +1 (1) ++

78 23 · 3 · 13 2
[
8, 1, 4, 1, 16

]
53 + 6α +1 (1) + + +

(2, α) −− +
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d ∆ h
√

α ε N(ε) Clases Caract.

79 22 · 79 3
[
8, 1, 7, 1, 16

]
80 + 9α +1 (1) ++

(3, 2 + α) −−
(3, 1 + α) −−

82 23 · 41 4
[
9, 18

]
9 + α −1 (1) ++

(3, 1 + α) −−
(2, α) ++

(3, 2 + α) −−
83 22 · 83 1

[
9, 9, 18

]
82 + 9α +1 (1) ++

85∗ 5 · 17 2
[
5, 9

]
4 + α −1 (1) ++

(5, 2 + α) −−
86 23 · 43 1

[
9, 3, 1, 1, 1, 8, 10.405 + 1.122α +1 (1) ++

1, 1, 1, 3, 18
]

87 22 · 3 · 29 2
[
9, 3, 18

]
28 + 3α +1 (1) + + +

(2, 1 + α) −− +

89∗ 89 1
[
5, 4, 1, 1, 1, 447 + 106α −1 (1) +

1, 4, 9
]

91 22 · 7 · 13 2
[
9, 1, 1, 5, 1, 5, 1.574 + 165α +1 (1) + + +

1, 1, 18
]

(2, 1 + α) + −−
93∗ 3 · 31 1 13 + 3α +1 (1) ++

94 23 · 47 1
[
9, 1, 2, 3, 1, 1, 2.143.295 + 221.064α +1 (1) ++

5, 1, 8, 1, 5, 1,

1, 3, 2, 1, 18
]

95 22 · 5 · 19 2
[
9, 1, 2, 1, 18

]
39 + 4α +1 (1) + + +

(2, 1 + α) −− +

97∗ 97 1
[
5, 2, 2, 1, 4 5.035 + 1.138α −1 (1) +

4, 1, 2, 2, 9
]



Caṕıtulo X

El Último Teorema de
Fermat

En los caṕıtulos anteriores hemos aplicado la teoŕıa de los cuerpos numéricos
al estudio de la teoŕıa de Gauss, que éste desarrolló enteramente en términos
de formas cuadráticas. El lector se hará idea, sin duda, de la enorme ventaja
que supone sustituir las formas por ideales en los resultados principales. Sin
embargo, hemos de recordar que la teoŕıa de ideales no surgió de aqúı, sino
del trabajo de Kummer en torno al último teorema de Fermat, por lo que es
ilustrativo ahondar en su relación con este problema. En el caṕıtulo I vimos
ya los precedentes. Según dijimos, el primer resultado al respecto, después
del teorema 1.1, es la prueba de Euler para el caso p = 3. Conviene que nos
detengamos en ella.

10.1 El caso p = 3

Teorema 10.1 No existen enteros no nulos x, y, z tales que x3 + y3 = z3.

Demostración: Vamos a seguir la prueba del teorema 1.1. Para empe-
zar suponemos que existen números (x, y, z) que cumplen x3 + y3 = z3. Di-
vidiéndolos entre su m.c.d. podemos suponer que son primos entre śı y, al cum-
plir la ecuación, han de ser primos entre śı dos a dos. Es obvio que a lo sumo
uno de los tres números puede ser par, pero si x, y son impares entonces z es
par, luego exactamente uno de ellos es par.

Por simetŕıa podemos suponer que x e y son impares. Entonces x+ y, x− y
son pares, digamos x + y = 2p, x− y = 2q. Aśı x = p + q, y = p− q.

Ahora consideramos la factorización siguiente:

x3 + y3 = (x + y)(x2 − xy + y2).

Sustituyendo obtenemos

x3 + y3 = 2p
(
(p + q)2 − (p + q)(p− q) + (p− q)2

)
= 2p(p2 + 3q2).

253
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Además podemos afirmar que p y q son primos entre śı (un factor común
lo seŕıa de x e y) y tienen paridades opuestas (porque x = p + q es impar).
Cambiando el signo de x, y, z si es necesario podemos suponer que x + y > 0,
luego p > 0 e, intercambiando x con y si es necesario, también q > 0 (no puede
ser que x = y, pues q seŕıa 0, y como (x, y) = 1 habŕıa de ser x = y = 1, y
entonces z3 = 2, lo cual es imposible).

En resumen, si existe una solución (x, y, z) con x e y impares, entonces
existen números naturales no nulos p y q de paridad opuesta, primos entre śı
tales que el número 2p(p2 + 3q2) es un cubo.

El análogo en la prueba del teorema 1.1 era la factorización x2 = 4ab(a2+b2),
que nos daba que ab(a2 +b2) deb́ıa ser un cuadrado. Igualmente nosotros hemos
de justificar que los números 2p y p2 + 3q2 son primos entre śı, con lo que cada
uno de ellos será un cubo.

En realidad esto no tiene por qué ser cierto, pero poco falta. Notemos
primero que, como p y q tienen paridad opuesta, p2 +3q2 es impar, de donde se
sigue claramente que (2p, p2 + 3q2) = (p, p2 + 3q2) = (p, 3q2) y como (p, q) = 1
el único factor común de p y 3q2 es 3. En otras palabras, si 3 � p, entonces
(2p, p2 + 3q2) = 1. Supongamos que es aśı.

Entonces, según lo dicho, 2p y p2 + 3q2 son cubos. Ahora necesitamos un
resultado que juegue el papel de la clasificación de las ternas pitagóricas en la
prueba de 1.1. Se trata del hecho siguiente que demostraremos después:

(∗) Si los enteros p, q, r cumplen p2 + 3q2 = r3, (p, q) = 1 y r
es impar, entonces existen enteros a y b tales que p = a3 − 9ab2,
q = 3a2b− 3b3, r = a2 + 3b2.

Admitiendo esto, p = a(a− 3b)(a + 3b), q = 3b(a− b)(a + b). Claramente a
y b son primos entre śı y tienen paridades opuestas (o si no p y q seŕıan pares).

Por otra parte 2p = 2a(a − 3b)(a + 3b) es un cubo. Veamos de nuevo que
los factores 2a, a− 3b y a+ 3b son primos entre śı dos a dos, con lo que los tres
serán cubos.

Como a y b tienen paridades opuestas, a− 3b y a+3b son impares, luego un
factor común de 2a y a± 3b es un factor de a y a± 3b, luego también un factor
común de a y 3b. Igualmente un factor común de a+3b y a− 3b lo es de a y 3b,
luego basta probar que (a, 3b) = 1. Puesto que (a, b) = 1, lo contrario obligaŕıa
a que 3 | a, pero entonces p | 3 y estamos suponiendo lo contrario.

Aśı pues, 2a = u3, a−3b = v3, a+3b = w3, luego v3+w3 = 2a = u3. Nuestro
objetivo es encontrar una solución de la ecuación de Fermat con z3 par y menor
(en valor absoluto) que el valor del que hemos partido. Aśı podremos concluir
que no pueden existir tales soluciones ya que no puede haber una mı́nima.
Hemos de reordenar la terna (u, v, w) para dejar en tercer lugar la componente
par. Como u3v3w3 = 2a(a−3b)(a+3b) = 2p | z3, lo cierto es que la componente
par, sea cual sea, es menor en módulo que z3.

Falta llegar a la misma conclusión si 3 | p. Supongamos que p = 3s y que
3 � q. Entonces nuestro cubo es 2p(p2 + 3q2) = 32 · 2s (3s2 + q2) y los números
32 · 2s y 3s2 + q2 son primos entre śı, pues (s, q) = 1 obliga a que los únicos
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divisores comunes posibles sean 2 y 3, pero 3s2 + q2 es impar (luego 2 no sirve)
y 3 � q, (luego tampoco sirve).

Consecuentemente 32 · 2s = u3 y 3s2 + q2 = v3. Aplicando (∗) llegamos a
que q = a(a− 3b)(a + 3b), s = 3b(a− b)(a + b).

Por otro lado 32 · 2s = 33 · 2b(a− b)(a+ b) es un cubo, luego 2b(a− b)(a+ b)
también lo es. El resto es prácticamente igual al caso anterior.

Nos falta demostrar (∗). Euler supuso la factorización única en el anillo
Z

[√
−3

]
. Aunque esto es falso, en el caṕıtulo IV probamos que su número

de clases es 1, lo que se traduce en que sus elementos de norma impar śı se
descomponen de forma única como producto de primos, y esto basta. En efecto,
como (p, q) = 1 el número p + q

√
−3 no es divisible entre enteros no unitarios,

es decir, no es divisible entre primos que se conservan, y si un primo p = π1π2 se
escinde y π1 | p+q

√
−3, entonces π2 � p+q

√
−3. Por lo tanto la descomposición

en primos es
p + q

√
−3 = πn1

1 · · ·πnr
r ,

donde N(πi) = pi son primos distintos dos a dos. Tomando normas queda que

r3 = p2n1
1 · · · p2nr

r ,

luego 3 | ni para todo i, lo que implica que p + q
√
−3 es un cubo en Z

[√
−3

]
.

Por consiguiente

p + q
√
−3 =

(
a + b

√
−3

)3 = a3 − 9ab2 + (3a2b− 3b3)
√
−3,

y esto prueba (∗).

Ejercicio: Probar que, aunque 42 + 3 · 42 = 83, no es cierto que p = q = 4 tengan la
forma indicada en (∗).

Ejercicio: Probar (∗) sin suponer que r sea impar.

10.2 El teorema de Kummer

Según explicamos en el caṕıtulo I, Kummer siguió la idea de Lamé de con-
siderar la factorización

xp + yp = (x + y)(x + ωy) · · · (x + ωp−1y), (10.1)

donde ω es una ráız p–ésima de la unidad. Kummer creyó haber probado el
teorema de Fermat completo hasta que Dirichlet le hizo notar que su prueba
supońıa la factorización única de los anillos de enteros ciclotómicos. Ello le
llevó a investigar si dicha factorización única era cierta, para completar aśı su
prueba. Como ya sabemos, la conclusión fue que en general es falsa, pero al
mismo tiempo descubrió la factorización única en ideales. El paso siguiente era
determinar si el argumento que probaba el teorema de Fermat suponiendo la
factorización única real segúıa siendo válido usando únicamente la factorización
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única ideal. El resultado fue que haćıan falta algunas hipótesis adicionales.
Vamos a describir el problema con más detalle. Según lo dicho, partimos de
la factorización 10.1. Siguiendo el esquema de la prueba de Euler, hemos de
estudiar si los monomios x + ωiy son primos entre śı.

Como en el caso p = 3, si la ecuación xp + yp = zp tiene solución, podemos
suponer que x, y, z son primos entre śı dos a dos.

Si dos monomios x + ωiy, x + ωjy (digamos con i < j) tienen un factor en
común, entonces este factor divide a

(x + ωjy)− (x + ωiy) = ωj−i(ωi − 1)y = unidad (ω − 1)y, (10.2)

aśı como a
(x + ωjy)− ωj−i(x + ωiy) = unidad (ω − 1)x.

(En la prueba de 3.20 vimos que los números ωi−1, donde p � i son conjugados.)
Como x e y son primos entre śı, el único factor común que pueden tener dos

de los monomios es ω − 1. De hecho, las ecuaciones anteriores muestran que si
ω− 1 divide a uno de los monomios, en realidad los divide a todos. Esto sucede
si y sólo si ω − 1 | z, lo que equivale a que p | z.

Observar que como p es impar y no exigimos que x, y, z sean positivos, los
tres son intercambiables, es decir, la ecuación xp + yp = zp puede expresarse
también como (−z)p + yp = (−x)p, etc. Por lo tanto si p divide a uno de los
tres números x, y, z podemos exigir que divida a z, y el caso contrario es que p
no divida a ninguno de ellos. Ésta es la distinción tradicional en el teorema de
Fermat:

Caso I xp + yp = zp donde x, y, z son enteros no nulos primos entre śı dos a
dos y primos con p.

Caso II xp + yp = zp donde x, y, z son enteros no nulos primos entre śı dos a
dos y además p | z.

Notar que en la prueba de Euler también hemos tratado por separado los
casos I y II.

En la prueba del caso I para p = 3 hemos usado que como los dos factores
eran primos entre śı y su producto era un cubo, ambos teńıan que ser cubos.
Lo que tenemos ahora es que si α y β son enteros ciclotómicos primos entre śı
tales que αβ = γp para un tercer entero ciclotómico γ, entonces los ideales (α)
y (β) son potencias p-ésimas. Digamos que (α) = ap. Sin embargo, para que el
argumento de Kummer funcione es necesario que α = δp, para cierto entero δ.
Esto nos lleva al problema siguiente:

Si α es un entero ciclotómico tal que (α) = ap para un cierto ideal
a, ¿bajo qué condiciones podemos garantizar que α es una potencia
p-ésima?

En primer lugar es necesario que el ideal a sea principal. Esto puede ga-
rantizarse a partir de un resultado sencillo sobre grupos: supongamos que p no
divide al número de clases h del cuerpo ciclotómico. Entonces al tomar clases se
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cumple que [a]p =
[
(α)

]
= 1, luego el orden de [a] divide a p, pero dicho orden

ha de dividir también al orden h del grupo de clases, luego ha de ser 1, es decir,
[a] = 1 y el ideal a ha de ser principal, digamos a = (δ).

Aśı pues (α) = (δp), pero esto no garantiza que α sea una potencia p-ésima,
sino tan sólo que α = εδp para una cierta unidad ciclotómica ε. Nos falta
justificar de algún modo que ε es también una potencia p-ésima. Observemos
que una condición necesaria para que un entero ciclotómico cualquiera sea una
potencia p-ésima es que sea congruente con un entero racional módulo p. En
efecto, si ε = ηp y η = a0 + a1ω + · · · + ap−1ω

p−1, al tomar clases módulo p
queda que [ε] = [a0]p + [a1]p + · · ·+ [ap−1]p.

Esta condición no es en general suficiente, y el rećıproco completa las hipó-
tesis de Kummer:

Definición 10.2 Un primo impar p es regular si cumple:

A) p no divide al número de clases del cuerpo ciclotómico de orden p.

B) Si ε es una unidad ciclotómica, entonces ε es una potencia p-ésima si y sólo
si ε es congruente con un entero racional módulo p.

Con esto podemos demostrar el resultado de Kummer:

Teorema 10.3 (Kummer) El último teorema de Fermat es cierto para expo-
nentes regulares.

Demostración: Según las observaciones anteriores, si p es un primo regular
y suponemos que existen enteros no nulos tales que xp + yp = zp, de hecho
podemos suponer que x, y, z son primos entre śı dos a dos y que o bien p no
divide a ninguno de ellos (caso I) o bien p divide a z (caso II). En cualquier caso
tenemos la factorización

zp = xp + yp = (x + y)(x + ωy) · · · (x + ωp−1y),

En el caso I los factores son primos entre śı. En el caso II su único factor
común es el primo ω − 1.

Consideremos en primer lugar el caso I. Por la factorización única en ideales,
cada ideal (x + ωiy) es una potencia p-ésima, luego por la propiedad A) de la
definición de primo regular podemos concluir que x+ωy = εβp, para una cierta
unidad ε y un entero ciclotómico β (ver las explicaciones previas a la definición).

Vamos a llegar a una contradicción tan sólo a partir de aqúı, sin necesidad
de usar la condición B). Para ello aplicamos la conjugación que env́ıa ω a ω−1

(que no es sino la conjugación compleja). Aśı obtenemos que x + ω−1y = ε̄β̄p.

Del teorema 4.27 se sigue que ε/ε̄ = ωr, donde 0 ≤ r < p. Por otra parte
hemos visto que toda potencia p-ésima es congruente módulo p con un entero
racional, luego β̄p ≡ m (mód p), de donde se sigue que βp ≡ β̄p (mód p). Reu-
niendo todo esto vemos que

x + ω−1y = ε̄β̄p = ω−rεβ̄p ≡ ω−rεβp = ω−r(x + ωy) (mód p).
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Equivalentemente:

xωr + yωr−1 − yω − x ≡ 0 (mód p). (10.3)

Notemos que si p divide a un entero ciclotómico α y tenemos una expresión
de α como combinación lineal entera de p − 1 potencias de ω, como éstas son
una base entera, es necesario que p divida a cada uno de los coeficientes. Usa-
remos esto para probar que r = 1 descartando cualquier otra posibilidad (notar
también que podemos suponer p ≥ 5, ya que el caso p = 3 está probado).

Si r = 0 la congruencia (10.3) se convierte en yω−1− yω ≡ 0 (mód p), luego
p | y, contradicción.

Si r = 2 queda xω2 − x ≡ 0 (mód p), luego p | x, contradicción.

Si r > 2 todas las potencias de ω que aparecen en (10.3) son distintas, y
como sólo hay 4 < p− 1, concluimos igualmente que p | x.

Aśı pues, ha de ser r = 1, y entonces (10.3) es (x− y)ω + y−x ≡ 0 (mód p),
con lo que concluimos que x ≡ y (mód p).

Ahora bien, si escribimos la ecuación de Fermat como xp + yp + zp = 0, el
caso I es simétrico respecto a tres variables x, y, z luego intercambiando los
papeles podemos llegar igualmente a que x ≡ y ≡ z (mód p).

Pero 0 = xp + yp + zp ≡ x + y + x ≡ 3x (mód p), y como p > 3, llegamos
una vez más a la contradicción p | x.

Supongamos ahora que p | z (caso II). Sustituyamos z por pkz, donde ahora
z es primo con p. Tenemos entonces que xp + yp = pkpzp, donde x, y, z son
enteros primos con p.

En el anillo de enteros ciclotómicos, p factoriza como p = η(ω−1)p−1, donde
η es una unidad. La ecuación se convierte en

xp + yp = ε(ω − 1)pmzp, (10.4)

donde ε es una unidad y m = k(p− 1) > 0.
Hemos de probar que esta ecuación no tiene soluciones enteras primas con

ω− 1. Para ello probaremos más en general que no existen enteros ciclotómicos
x, y, z primos con ω − 1 que satisfagan (10.4). Supongamos por reducción al
absurdo que existen enteros ciclotómicos que cumplan (10.4) con el menor valor
posible para m. Factorizando el miembro izquierdo de (10.4) tenemos

(x + y)(x + ωy) · · · (x + ωp−1y) = ε(ω − 1)pmzp. (10.5)

Sabemos que en el caso II el primo ω − 1 divide de hecho a todos los factores
de la izquierda. Más aún, la ecuación (10.2) implica que (ω− 1)2 no divide a la
diferencia de dos cualesquiera de estos factores. Equivalentemente, los números

x + ωiy

1− ω
, i = 0, . . . , p− 1,

son no congruentes dos a dos módulo ω − 1.
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Como N(ω − 1) = p, estos números forman un conjunto completo de repre-
sentantes de las clases de congruencia módulo ω − 1.

En particular existe un único i entre 0 y p− 1 tal que (ω − 1)2 | x + ωiy. Si
llamamos y a ωiy, se sigue cumpliendo (10.4) y ahora (ω− 1)2 | x+ y, mientras
que los factores restantes x+ωiy son divisibles entre ω−1 pero no entre (ω−1)2.

En consecuencia el miembro izquierdo de (10.5) es divisible entre (ω−1)p+1,
y en particular ha de ser m > 1.

Sea m = (x, y). Como x e y son primos con ω − 1, lo mismo le ocurre a m.
Por lo tanto si i �= 0 tenemos que (x + ωiy) = (ω − 1)mci, mientras que x + y
ha de ser divisible entre los p(m− 1) + 1 factores ω− 1 restantes que dividen el
miembro derecho de (10.5), es decir,

(x + y) = (ω − 1)p(m−1)+1mc0.

Los ideales ci, para i = 0, . . . , p − 1, son primos entre śı dos a dos, pues si
un primo p divide a dos de ellos, entonces mp divide a dos números x + ωiy,
x + ωjy, luego también divide a su suma y a su diferencia, es decir, a (ω − 1)y,
(ω − 1)x, luego a m = (x, y), pero esto es imposible.

La ecuación dada queda ahora del modo siguiente:

mp(ω − 1)pmc0c1 · · · cp−1 = (ω − 1)pm(z)p.

Puesto que los ci son primos entre śı, todos han de ser potencias p-ésimas.
Digamos que ci = b

p
i , con lo que

(x + y) = (ω − 1)p(m−1)+1mb
p
0,

(x + ωiy) = (ω − 1)mb
p
i , i = 1, . . . , p− 1.

Despejamos m en la primera ecuación y lo sustituimos en la segunda:

(ω − 1)p(m−1)b
p
0(x + ωiy) = (x + y)bpi , i = 1, . . . , p− 1. (10.6)

Esto implica que los ideales b
p
0 y b

p
i son similares, luego (bib̄0)p es principal,

donde b̄0 = N(b0)/b0. Por la propiedad A de la definición de primo regular
concluimos que el ideal bib̄0 también es principal, digamos bib̄0 = (αi). Multi-
plicando por b0 queda N(b0)bi = (αi)b0. Notar que tanto N(b0) como (αi) son
primos con ω − 1. Elevamos a p y sustituimos en (10.6):

(ω − 1)p(m−1) N(b0)p(x + ωiy) = (x + y)(αi)p, i = 1, . . . , p− 1.

Eliminando los ideales queda

(ω − 1)p(m−1) N(b0)p(x + ωiy) = εi(x + y)αpi ,

donde εi es una unidad, o equivalentemente

(ω − 1)p(m−1)(x + ωiy) = εi(x + y)γpi , (10.7)

donde γi = αi/N(b0).
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Nuestro objetivo es combinar estas ecuaciones para llegar a una ecuación
similar a (10.4) pero con un valor menor para m. Una forma rápida de hacerlo
es partir de la identidad

(x + ωy)(1 + ω)− (x + ω2y) = ω(x + y).

Si la multiplicamos por (ω − 1)p(m−1) y usamos (10.7) para i = 1, 2 obtenemos

(x + y)γp1ε1(1 + ω)− (x + y)γp2ε2 = (x + y)ω(ω − 1)p(m−1).

Como 1 + ω es una unidad, esta ecuación se puede poner en la forma

γp1 + γp2ε = η(ω − 1)p(m−1),

donde ε y η son unidades. Multiplicando por N(b0)p queda una ecuación de tipo

αp + εβp = η(ω − 1)p(m−1)γp,

donde α, β y γ son enteros ciclotómicos primos con ω − 1. Esta ecuación será
de tipo (10.4) si ε es una potencia p-ésima. Lo probaremos usando la propiedad
B de la definición de primo regular.

En efecto, basta observar que p(m−1) ≥ p, pues hemos probado que m > 1,
luego

αp + εβp ≡ 0 (mód p).

Despejando ε (lo cual es posible porque β es primo con p) vemos que es con-
gruente con una potencia p-ésima módulo p, luego es congruente con un entero
racional módulo p, luego es una potencia p-ésima (por la propiedad B).

Este teorema no aporta información alguna en ausencia de un criterio para
reconocer qué primos son regulares. Kummer formuló dos conjeturas sobre los
primos regulares:

1. La propiedad A implica la propiedad B, de modo que un primo p es regular
si y sólo si p � h, donde h es el número de clases del cuerpo ciclotómico de
orden p.

2. Existen infinitos primos regulares.

Admitiendo la primera conjetura, el problema de decidir si un primo es
regular se reduce al cálculo del número de clases del cuerpo ciclotómico corres-
pondiente, lo cual no es cosa fácil, pues h aumenta muy rápidamente con p.
Pocos meses después de probar el teorema anterior, Kummer demostró la con-
jetura 1 y halló un método sorprendentemente simple de decidir si se cumple
la propiedad A sin necesidad de calcular expĺıcitamente el número de clases h.
Ambos resultados se obtienen a partir de una técnica común que desarrollare-
mos en los próximos caṕıtulos. Respecto a la segunda conjetura, nunca ha sido
demostrada ni refutada, pero Kummer se retractó de ella cuando dispuso de
más datos. En realidad no hay evidencias de que sea falsa.
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Según comentábamos en el caṕıtulo anterior, Kummer buscaba una carac-
terización práctica de los primos regulares, lo que supone ser capaz de decidir
si un primo p divide o no al número de clases del cuerpo ciclotómico de orden
p. Al abordar el problema se dio cuenta de que pod́ıa aprovechar el trabajo de
Dirichlet sobre los primos en progresiones aritméticas, que a su vez se basaban
en su propia teoŕıa de factorización ideal en los cuerpos ciclotómicos. Los resul-
tados de Dirichlet y Kummer sobre cuerpos ciclotómicos fueron generalizados
por Dedekind a cuerpos numéricos arbitrarios, y es en este contexto general en
el que los expondremos aqúı. El punto de partida es el siguiente resultado de
Euler: ∞∑

n=1

1
ns

=
∏
p

1
1− 1

ps

,

donde p recorre los números primos y s > 1.
Esta fórmula puede considerarse como la primera piedra de la teoŕıa anaĺıtica

de números. En ella se relacionan una serie y un producto infinito (objetos
anaĺıticos) con la sucesión de los números primos. La demostración utiliza por
una parte resultados anaĺıticos sobre convergencia de series y por otra el teorema
fundamental de la aritmética.

Gauss estudió más a fondo la fórmula de Euler y definió la que hoy se conoce
como función dseta de Riemann:

ζ(s) =
∞∑
n=1

1
ns

, para s > 1.

Su convergencia es fácil de probar. Sólo hay que observar que
∫ n+1

n

dx

xs
<

1
ns

<

∫ n

n−1

dx

xs
,
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para n ≥ 1 en la desigualdad de la izquierda y n ≥ 2 en la desigualdad de la
derecha. De aqúı ∫ N+1

1

dx

xs
<

N∑
n=1

1
xs

< 1 +
∫ N

1

dx

xs
,

para todo número natural N > 1. Integrando y tomando ĺımites en N queda

1
s− 1

≤ ζ(s) ≤ 1 +
1

s− 1
, s > 1.

Más aún, multiplicando por s− 1 y tomando ĺımites en s obtenemos

ĺım
s→1+

(s− 1)ζ(s) = 1. (11.1)

Euler notó que esto implica la existencia de infinitos números primos. En
efecto, (11.1) implica que el miembro izquierdo de la fórmula de Euler tiende a
infinito cuando s tiende a 1, pero el miembro derecho estaŕıa acotado si el pro-
ducto fuera finito. Por supuesto la existencia de infinitos primos puede probarse
por medios mucho más elementales (ya hay una prueba en los Elementos, de
Euclides), sin embargo, tras intentar sin éxito generalizar la prueba de Euclides
para demostrar que toda sucesión aritmética contiene números primos, Dirichlet
se planteó la posibilidad de lograrlo mediante el argumento de Euler.

Dirichlet conoćıa los resultados de Kummer, en particular el teorema 3.20,
según el cual el tipo de factorización de un primo p en un cuerpo ciclotómico de
orden m depende del resto de p módulo m, y por lo tanto de la clase de p en
Um. Dirichlet conjeturó que una fórmula similar a la de Euler donde la suma
se haga sobre los ideales del cuerpo ciclotómico m-simo y el producto sobre los
correspondientes primos ciclotómicos, tal vez podŕıa utilizarse para probar que
toda progresión mx + n con [n] ∈ Um contiene números primos.

Ejercicio: Probar que la función dseta de Riemann converge uniformemente en los
subconjuntos compactos de ]1,+∞[. Deducir que es continua en dicho intervalo.

Resultados básicos sobre series y productos infinitos Para comodidad del
lector, enunciamos aqúı los resultados anaĺıticos más importantes que vamos a utilizar.

Criterio de mayoración de Weierstrass Si {fn} es una sucesión de funciones
definidas en A ⊂ C y {an} es una sucesión en R de modo que |fn(z)| ≤ an para todo z ∈ A y∑

n
an < +∞, entonces la serie funcional

∑
n

fn(z) converge uniformemente en su dominio.

Criterio de comparación Si {an} y {bn} son dos sucesiones en C tales que existe
ĺımn |an|/|bn| entonces la serie

∑
n

an converge absolutamente si y sólo si lo hace
∑

n
bn.

Productos infinitos Un producto infinito
∏

n
(1+an) de números complejos converge

(absolutamente) si y sólo si la serie
∑

n
an converge (absolutamente). En tal caso la serie∑

n
log(1 + an) converge a un logaritmo del producto.
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11.1 Convergencia de la función dseta

Definición 11.1 Sea K un cuerpo numérico. Se llama función dseta de Dede-
kind de K a la función

ζK(s) =
∑

a

1
N(a)s

,

donde a recorre todos los ideales no nulos de K.

Observar que la función dseta de Q es precisamente la función dseta de
Riemann.

Nuestro primer problema es demostrar que esta serie converge para s > 1.
Si llamamos h al número de clases de K podemos descomponerla en suma de h
series como sigue:

ζK(s) =
∑
C

∑
a∈C

1
N(a)s

,

donde C recorre las clases de similitud de ideales de K.
Para probar la convergencia de la serie completa es suficiente probar la de

las series

ζC(s) =
∑
a∈C

1
N(a)s

.

En primer lugar las reescribimos para que el conjunto de ı́ndices sea el de
los números naturales, como es habitual. Para ello llamamos fC(n) al número
de ideales de C de norma n, con lo que

ζC(s) =
∞∑
n=1

fC(n)
ns

.

La convergencia la obtendremos a partir de una estimación de la sucesión
de coeficientes. En realidad estimaremos la función jC(r) que da el número de
ideales de C de norma menor o igual que r.

Fijamos un ideal b perteneciente a la clase inversa C−1 en el grupo de clases.
Entonces para cada ideal a ∈ C el producto ab está en la clase principal, es decir,
es un ideal principal ab = (α). La aplicación que a cada ideal a ∈ C le asigna el
ideal ab es una biyección entre los ideales de C y los ideales principales (α) de
K divisibles entre b. Además N(a)N(b) = |N(α)|, luego jC(r) es el número de
ideales principales de K divisibles entre b y de norma menor o igual que r N(b).

En lugar de contar ideales principales contaremos enteros α ∈ b tales que
|N(α)| ≤ r N(b), pero para no contar varias veces—infinitas, de hecho— el
mismo ideal, hemos de considerar sólo un representante de cada clase de equi-
valencia respecto a la asociación.

El proceso de selección de los representantes lo llevaremos a cabo con la
ayuda de los métodos geométricos desarrollados en el caṕıtulo IV. Conservamos
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la notación que introdujimos alĺı. Concretamente σ1, . . . , σs serán los mono-
morfismos reales de K, mientras que σs+1, σ̄s+1, . . . , σs+t, σ̄s+t serán los mono-
morfismos complejos. Aśı, el grado de K será n = s + 2t. La representación
geométrica de un número α ∈ K es

x(α) =
(
σ1(α), . . . , σs+t(α)

)
∈ Rst.

En Rst se define la norma N(x1, . . . , xs+t) = x1 · · ·xs|xs+1|2 · · · |xs+t|2, de
modo que N(xy) = N(x) N(y) y N

(
x(α)

)
= N(α).

Los elementos x ∈ Rst con N(x) �= 0 tienen asignada la representación
logaŕıtmica dada por l(x) =

(
l1(x), . . . , ls+t(x)

)
, donde

lk(x) =
{

log |xk| para k = 1, . . . , s,
log |xk|2 para k = s + 1, . . . , s + t.

Sea ε1, . . . , εr un sistema fundamental de unidades de K. Sabemos que los
vectores l(ε1), . . . , l(εr) forman una base del subespacio

V = {x ∈ Rs+t | x1 + · · ·+ xs+t = 0},

de dimensión r = s + t− 1.
Si a estos vectores les añadimos l∗ = (1, s). . ., 1, 2, t). . ., 2) obtenemos una base

de Rs+t. Aśı, la representación logaŕıtmica de cada vector x ∈ Rst de norma no
nula se expresa de forma única como l(x) = ξl∗ + ξ1l(ε1) + · · ·+ ξrl(εr), donde
ξ, ξ1, . . . , ξr son números reales.

Por último, sea m el número de ráıces de la unidad contenidas en K.

Definición 11.2 Con la notación anterior, un subconjunto X de Rst es un
dominio fundamental de K si es el conjunto de los puntos x que cumplen las
condiciones siguientes:

1. N(x) �= 0,

2. l(x) = ξl∗ + ξ1l(ε1) + · · ·+ ξrl(εr), con 0 ≤ ξi < 1.

El dominio fundamental de K está uńıvocamente determinado si fijamos un
sistema fundamental de unidades de K. El teorema siguiente prueba que todo
entero de K tiene un único asociado en el dominio fundamental salvo ráıces de
la unidad, es decir, en realidad tiene m asociados. Podŕıamos haber dado una
definición ligeramente más restrictiva de modo que sólo hubiera un asociado,
pero esto complicaŕıa ligeramente las pruebas, y a la hora de contar ideales no
importa que cada uno aparezca repetido m veces, pues basta dividir entre m el
resultado final.

Teorema 11.3 Cada elemento no nulo de K tiene exactamente m asociados
cuya representación geométrica se encuentra en el dominio fundamental de K.

Para probarlo demostramos primero lo siguiente:
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Teorema 11.4 Si y ∈ Rst y N(y) �= 0, entonces y admite exactamente m repre-
sentaciones de la forma y = xx(ε), donde x pertenece al dominio fundamental
de K y ε es una unidad de K.

Demostración: Sea l(y) = γl∗ + γ1l(ε1) + · · ·+ γrl(εr). Para j = 1, . . . , r
descompongamos γj = kj + ξj , donde kj es un entero racional y 0 ≤ ξj < 1.

Sea ε = εk1
1 · · · εkr

r y x = y x(ε−1). Entonces y = xx(ε), N(x) = N(y) �= 0 y
l(x) = l(y)+ l(ε−1) = l(y)−k1l(ε1)−· · ·−krl(εr) = γl∗ + ξ1l(ε1)+ · · ·+ ξrl(εr),
luego x está en el dominio fundamental de K.

Por otra parte, si xx(ε) = x′ x(ε′), entonces l(x) + l(ε) = l(x′) + l(ε′). Las
coordenadas de l(ε) y l(ε′) en la base l(ε1), . . . , l(εr) son enteros racionales, y las
de l(x) y l(x′) están entre 0 y 1. La unicidad de la parte entera de un número
real nos da que l(ε) = l(ε′). Consecuentemente ε′ = εω, donde ω es una ráız m-
sima de la unidad, y por lo tanto las representaciones de y en la forma indicada
son exactamente y = xx(ε)x(ω), donde x y ε son fijos y ω recorre las m ráıces
de la unidad de K.

Demostración (del teorema 11.3): Si β ∈ K es no nulo entonces por el
teorema anterior existen m representaciones distintas x(β) = xx(ε) con x ∈ X
y ε una unidad de K. Los números βε−1 son m asociados de β que cumplen
x(βε−1) = x ∈ X.

Rećıprocamente, cada asociado de βε tal que x = x(β)x(ε) ∈ X da lugar a
una representación distinta x(β) = xx(ε−1), luego hay exactamente m.

Antes de seguir con el problema de la convergencia de las funciones dseta
observamos una propiedad importante de los dominios fundamentales:

Si ξ > 0 es un número real y x ∈ Rst tiene norma no nula, entonces

lk(ξx) = log |ξxk| = log ξ + lk(x), para 1 ≤ k ≤ s,

lj(ξx) = log |ξxj |2 = 2 log ξ + lk(x), para 1 ≤ j ≤ t.

En consecuencia, l(ξx) = log ξ l∗ + l(x) y las coordenadas ξ1, . . . , ξr de los
vectores l(ξx) y l(x) en la base l∗, l(ε1), . . . , l(εr) son las mismas.

Todo esto implica que si el dominio fundamental de K contiene a un vector
x, también contiene a todos sus múltiplos positivos. Los subconjuntos de Rst

con esta propiedad se llaman conos.

Recordemos que estamos buscando una estimación de la función jC(r), que
puede calcularse como el número de ideales principales (α) tales que α ∈ b

y |N(α)| ≤ r N(b). Si llamamos M a la imagen de b por la representación
geométrica, que es un ret́ıculo completo de Rn, cada ideal tiene exactamente
m generadores en el dominio fundamental X, luego mjC(r) es el número de
vectores x ∈M ∩X que cumplen |N(x)| ≤ r N(b).

Llamemos T = {x ∈ X | |N(x)| ≤ 1}. Teniendo en cuenta que si r > 0 es
un número real entonces N(rx) = rn N(x) (donde n es el grado de K), aśı como
que X es un cono, resulta que

{x ∈ X | |N(x)| ≤ r} =
{

n
√

r

(
x

n
√

r

)
∈ X |

∣∣∣∣N
(

x
n
√

r

)∣∣∣∣ ≤ 1
}

= n
√

r T,
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luego mjC(r) es también el número de puntos de M ∩ n
√

N(b) r T y nuestro
problema se reduce a estimar el número de puntos de un ret́ıculo completo
en un determinado conjunto. Para resolverlo daremos un teorema general que
requiere algunos conceptos nuevos:

Definición 11.5 Un cubo en Rk es un producto cartesiano de k intervalos ce-
rrados y acotados. Si todos ellos son iguales a [0, 1] tenemos el cubo unitario.

Si S ⊂ Rk, una función φ : S −→ Rn tiene la propiedad de Lipschitz si existe
una constante C tal que para todo x, y ∈ S se cumple ‖φ(x)−φ(y)‖ ≤ C‖x−y‖.

Usando el teorema del valor medio es fácil ver que toda función de clase C1

tiene la propiedad de Lipschitz en compactos.

Un subconjunto D ⊂ Rn es parametrizable Lipschitz de grado k si existe
un número finito de funciones de Lipschitz con dominio [0, 1]k cuyas imágenes
cubren a D.

Dadas tres funciones f , g, h : ]0,+∞[ −→ R, diremos que

f(r) = g(r) + O
(
h(r)

)
si la función

(
f(r)− g(r)

)
/h(r) está acotada.

Teorema 11.6 Sea T un subconjunto acotado de Rn medible Lebesgue cuya
frontera sea parametrizable Lipschitz de grado n−1, sea M un ret́ıculo completo
en Rn, sea V la medida de su paraleleṕıpedo fundamental, sea v = µ(T ) y sea
u ∈ Rn. Si n(r) es el número de puntos de u + M contenidos en rT , entonces

n(r) =
v

V
rn + O(rn−1),

donde la cota en O depende sólo de M, de n y de las constantes de Lipschitz.

Demostración: Sea P el paraleleṕıpedo fundamental de M. Sea m(r) el
número de puntos x ∈ u+M tales que x+P está contenido en el interior de rT
y sea f(r) el número de puntos x ∈ u + M tales que x + P corta a la frontera
de rT . Claramente m(r) ≤ n(r) ≤ m(r) + f(r).

Los m(r) trasladados de P son disjuntos y están contenidos en rT , que a
su vez está contenido en la unión de los m(r) + f(r) trasladados de P , también
disjuntos. Tomando medidas queda m(r)V ≤ rnv ≤ m(r)V + f(r)V , luego

m(r) ≤ v

V
rn ≤ m(r) + f(r).

Aśı pues, |n(r)− (v/V )rn| ≤ f(r), y sólo hay que probar que f(r) ≤ Crn−1.
Para ello nos apoyaremos en el hecho siguiente: el número de puntos x ∈ u+M

tales que x + P corta a un conjunto de diámetro dado d está acotado por una
cantidad que sólo depende de M y de d, pero no del conjunto. En efecto,
mediante una traslación podemos suponer que u = 0 y que uno de tales puntos
es el 0, y entonces dichos puntos están contenidos en la bola de centro 0 y radio
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la suma de d más el diámetro de P , y el conjunto de puntos de M en esta bola
es la constante buscada.

Sea φ : [0, 1]n−1 −→ Rn una función de Lipschitz que cubra una porción
de la frontera de T . Entonces rφ sigue siendo de Lipschitz y cubre la porción
correspondiente de la frontera de rT . Sea [r] la parte entera de r.

Si dividimos el intervalo [0, 1] en [r] segmentos de longitud 1/[r], el cubo
unidad queda dividido en [r]n−1 cubos cuyas imágenes por φ tienen diámetro
a lo sumo C0/[r], donde C0 depende sólo de n y de la constante de φ, luego
la imagen por rφ de cada uno de estos cubos tiene diámetro a lo sumo C1

(independiente de r).
El número de puntos x ∈ u + M tales que x + P corta a esta imagen está

acotado por una cantidad C2 que sólo depende de M, de n y de la constante de
φ, luego el número de puntos x ∈ u + M tales que x + P corta a la imagen de
rφ es a lo sumo C2[r]n−1 ≤ C2r

n−1.
Como toda la frontera está cubierta por un número finito de tales imágenes,

concluimos que f(r) ≤ Crn−1, para una cierta constante C.

Ahora hemos de aplicar este teorema cuando M es la imagen del ideal b por
la representación geométrica, u = 0 y

T =
{
x ∈ X

∣∣ |N(x)| ≤ 1
}
.

Ejercicio: Representar gráficamente el conjunto T para un cuerpo cuadrático real y
para un cuerpo cuadrático imaginario.

Hemos visto que, en términos de la función n(r) la función jC es

jC(r) =
n
(

n
√

r N(b)
)

m
. (11.2)

Para aplicar el teorema hemos de probar que T satisface las hipótesis. Esto
nos lleva a un cálculo bastante largo:

Todo x ∈ Rst de norma no nula cumple

l(x) = ξl∗ + ξ1l(ε1) + · · ·+ ξrl(εr), (11.3)

donde ξ, ξ1, . . . , ξr son números reales. El conjunto T está formado por los
vectores x que cumplen:

1. 0 <
∣∣N(x)

∣∣ ≤ 1,

2. 0 ≤ ξi < 1.

En la prueba del teorema 4.22 observamos que la aplicación de Rst en Rst

que a cada x le asigna yx (para un cierto y ∈ Rst fijo) es lineal (considerando a
Rst como espacio vectorial sobre R) y que su determinante es N(y).

Sea T ′ el conjunto de los puntos de T cuyas s coordenadas reales sean po-
sitivas. Si fijamos un conjunto de s signos δ1, . . . , δs = ±1, entonces la multi-
plicación por el punto (δ1, . . . , δs, 1, . . . , 1) es una aplicación lineal de determi-
nante ±1. En total hay 2s aplicaciones de este tipo, que transforman el conjunto
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T ′ en 2s conjuntos disjuntos de la misma medida y cuya unión es T . Basta pro-
bar que T ′ es acotado, medible y que su frontera es parametrizable Lipschitz de
grado n−1, pues entonces T también será medible y acotado, µ(T ) = µ(T ′)2s y
su frontera será parametrizable Lipschitz de grado n− 1 (ya que está contenida
en la unión de las fronteras de las 2s imágenes de T ′).

Representemos las coordenadas de un punto x ∈ Rst como

x = (x1, . . . , xs, y1 + iz1, . . . , yt + izt).

Estamos identificando Rst con Rn, con lo que x se identifica con la n-tupla

(x1, . . . , xs, y1, z1, . . . , yt, zt).

Según la ecuación (4.3), las componentes de l(x) suman log
∣∣N(x)

∣∣, pero
sumando en el miembro derecho de (11.3) y teniendo en cuenta que las compo-
nentes de l(εi) suman log 1 = 0, tenemos que log

∣∣N(x)
∣∣ = ξ(s + 2t) = nξ.

Por lo tanto (11.3) se convierte en

l(x) =
1
n

log
∣∣N(x)

∣∣l∗ + ξ1l(ε1) + · · ·+ ξrl(εr). (11.4)

Ahora hacemos el cambio de variables

xi = ρi, i = 1, . . . , s,
yj = ρs+j cos θj , j = 1, . . . , t,
zj = ρs+j sen θj , j = 1, . . . , t.

Se comprueba fácilmente que el determinante jacobiano es ρs+1 · · · ρs+t. Vea-
mos cuál es la expresión de T ′ en estas coordenadas.

En primer lugar, si x ∈ T ′, entonces N(x) =
s+t∏
i=1

ρei
i , donde ei = 1 para

i = 1, . . . , s y ei = 2 para i = s + 1, . . . , t, y li(x) = log ρei
i . La ecuación (11.4)

equivale al sistema de ecuaciones

log ρ
ej

j =
ej
n

log
s+t∏
i=1

ρei
i +

r∑
k=1

ξklj(εk). (11.5)

Por lo tanto el conjunto T ′ está formado por los puntos de coordenadas

(ρ1, . . . , ρs+t, θ1, . . . , θt)

tales que

1. 0 <
s+t∏
i=1

ρei
i ≤ 1, 0 ≤ θ1, . . . , θt < 2π.

2. En (11.5) se cumple 0 ≤ ξk < 1.
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Para probar que T ′ está acotado basta ver que lo están las coordenadas ρi
de todos sus puntos. Ahora observamos que las ecuaciones

log ρ
ej

j =
ej
n

log ξ +
r∑

k=1

ξklj(εk). (11.6)

definen un cambio de variables

(ρ1, . . . , ρs+t, θ1, . . . , θt) 
→ (ξ, ξ1, . . . , ξr, θ1, . . . , θt)

y, respecto a éstas últimas, el conjunto F ′ está definido por las condiciones

0 < ξ ≤ 1, 0 ≤ ξk < 1, 0 ≤ θj < 2π. (11.7)

En efecto, las ecuaciones (11.6) pueden escribirse también como

log ρj =
1
n

log ξ +
r∑

k=1

ξk log |σj(εk)|, j = 1, . . . , s + t,

o también

ρj = ξ1/n exp

(
r∑

k=1

ξk log |σj(εk)|
)

, j = 1, . . . , s + t. (11.8)

Esto nos da (ρ1, . . . , ρs+t, θ1, . . . , θt) a partir de (ξ, ξ1, . . . , ξr, θ1, . . . , θt). Para
la transformación inversa notamos que al sumar las ecuaciones (11.6) queda

ξ =
s+t∏
i=1

ρei
i y las coordenadas ξi están determinadas por un sistema de r ecua-

ciones lineales con determinante no nulo (notar que la determinación de ξ hace
que se cumpla la suma de las s+ t ecuaciones, luego si los ξi se escogen de modo
que cumplan las s + t− 1 primeras, la última se cumple automáticamente).

Ahora ya es claro que T ′ está acotado. Para calcular el determinante jaco-
biano comprobamos que

∂ρj
∂ξ

=
ρj
nξ

,
∂ρj
∂ξk

=
ρj
ej

lj(εk).

Por consiguiente el jacobiano es

J =

∣∣∣∣∣∣∣∣∣

ρ1

nξ

ρ1

e1
l1(ε1) · · · ρ1

e1
l1(εr)

...
...

...
ρs+t
nξ

ρs+t
es+t

ls+t(ε1) · · · ρs+t
es+t

ls+t(εr)

∣∣∣∣∣∣∣∣∣
=

ρ1 · · · ρs+t
nξ 2t

∣∣∣∣∣∣∣
e1 l1(ε1) · · · l1(εr)
...

...
...

es+t ls+t(ε1) · · · ls+t(εr)

∣∣∣∣∣∣∣ .
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En el último determinante sumamos todas las filas a la primera, con lo que
ésta se convierte en (n, 0, . . . , 0). Desarrollando el determinante y recordando
la definición del regulador R de K dada en el caṕıtulo 4 obtenemos que el
determinante jacobiano vale

J =
ρ1 · · · ρs+t

ξ 2t
R =

R

2tρs+1 · · · ρs+t
.

Recordemos que el primer cambio de variables teńıa jacobiano ρs+1 · · · ρs+t,
luego el jacobiano de la composición es R/2t.

Puesto que T ′ se obtiene de un cubo mediante un cambio de variables de
clase C1, podemos concluir que T ′ es medible y su medida es (R/2t)(2π)t = πtR.
Por consiguiente µ(T ) = 2sπtR.

Falta probar que la frontera de T ′ es parametrizable Lipschitz. Ahora bien,
cambiando ξ1/n por ξ, el cambio de coordenadas (11.8) se transforma en

ρj = ξ exp

(
r∑

k=1

ξk log |σj(εk)|
)

, j = 1, . . . , s + t,

que, compuesto con el cambio a polares, nos da una aplicación h de clase C1

que biyecta el cubo ]0, 1]× [0, 1[r × [0, 2π[t con el conjunto T ′. Con un cambio
de variables obvio podemos sustituir este cubo por ]0, 1]× [0, 1[r+t.

Ahora bien, esta aplicación está definida de hecho en todo Rn, y la imagen del
cubo [0, 1]n es un compacto que contiene a la clausura de T ′. Por consiguiente
los puntos de la frontera de T ′ deben ser imagen de puntos de la frontera del
cubo.

Esta frontera es la unión de las 2n caras formadas por las n-tuplas con
una coordenada constante igual a 0 o a 1. Las 2n funciones que resultan de
sumergir Rn−1 en Rn fijando una coordenada igual a 0 o a 1 son de clase C1 y
las imágenes del cubo [0, 1]n−1 cubren la frontera del cubo unitario en Rn, por
lo que al componerlas con h obtenemos 2n funciones de clase C1 tales que la
frontera de T ′ está cubierta por las imágenes del cubo unitario. Como son de
clase C1, las restricciones al cubo unitario tienen la propiedad de Lipschitz.

Recapitulando, podemos aplicar el teorema 11.6, y las constantes que apa-
recen son

v = µ(T ) = 2sπtR

y, según el teorema 4.5, la medida del paraleleṕıpedo fundamental de la imagen
del ideal b por la representación geométrica es

V =

√
|∆K |
2t N(b),

donde ∆K es el discriminante de K. La conclusión es que

n(r) =
2s+tπtR√
|∆K |N(b)

rn + O(rn−1).

Teniendo en cuenta la relación (11.2) hemos probado el teorema siguiente:
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Teorema 11.7 Sea K un cuerpo numérico de discriminante ∆, sea R el re-
gulador de K, sea m el número de ráıces de la unidad contenidas en K y sea
C una clase de similitud de ideales de K. Entonces la función jC(r), definida
como el número de ideales en C de norma menor o igual que r, verifica

jC(r) =
2s(2π)tR
m

√
|∆K |

r + O(r1−1/n).

Observar que en particular se cumple

ĺım
r→+∞

jC(r)
r

=
2s(2π)tR
m

√
|∆K |

,

y hay que destacar que este ĺımite no depende de la clase C. De aqúı se sigue
precisamente la conexión entre las funciones dseta y el número de clases de K.
Veámoslo.

Teorema 11.8 Con la notación del teorema anterior, se cumple

1. La función ζC(s) converge uniformemente en los compactos de ]1,+∞[ y
existe

ĺım
s→1+

(s− 1)ζC(s) =
2s(2π)tR
m

√
|∆K |

,

2. La función ζK(s) converge uniformemente en los compactos de ]1,+∞[ y

ĺım
s→1+

(s− 1)ζK(s) =
2s(2π)tR
m

√
|∆K |

h, (11.9)

donde h es el número de clases de K.

Demostración: El segundo apartado es consecuencia clara del primero.
Para probar éste consideremos la sucesión {xn} que comienza con tantos unos
como ideales tiene C de norma 1, seguido de tantos doses como ideales tiene C
de norma 2, etc. Entonces

ζC(s) =
∑
a∈C

1
N(a)s

=
∞∑
n=1

1
xsn

.

Claramente, jC(xn) es el número de términos de la sucesión menores o iguales
que xn, luego claramente jC(xn − 1) < n ≤ jC(xn). Por lo tanto:(

xn − 1
xn

)
jC(xn − 1)

xn − 1
<

n

xn
≤ jC(xn)

xn
.

Es obvio que xn tiende a infinito, luego al tomar ĺımites en n queda

ĺım
n

n

xn
=

2s(2π)tR
m

√
|∆K |

.
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Llamemos L a este ĺımite. Entonces, dado ε > 0, existe un n0 tal que si n ≥ n0

entonces
L− ε <

n

xn
< L + ε,

luego

(L− ε)s
1
ns

<
1
xsn

< (L + ε)s
1
ns

.

Todo compacto contenido en ]1,+∞[ está contenido en un intervalo [s0, s1],
donde 1 < s0, y vemos entonces que la serie ζC(s) está mayorada en dicho
compacto por la serie convergente

∞∑
n=n0

(L + ε)s1
1

ns0
,

luego converge uniformemente. Más aún,

(L− ε)s
∞∑

n=n0

1
ns
≤

∞∑
n=n0

1
xsn
≤ (L + ε)s

∞∑
n=n0

1
ns

.

Llamemos r1(s) y r2(x) a las sumas de los n0 − 1 primeros términos de las
funciones ζ(s) y ζC(s) (que son funciones continuas en todo R). Aśı

(L− ε)sζ(s)− (L− ε)sr1(s) ≤ ζC(s)− r2(s) ≤ (L + ε)sζ(s)− (L + ε)sr1(s).

Multiplicando por s− 1 y tomando ĺımites cuando s tiende a 1 queda

L− ε ≤ ĺım inf
s→1+

ζC(s) ≤ ĺım sup
s→1+

ζC(s) ≤ L + ε.

Como ε es arbitrario concluimos que existe

ĺım
s→1+

(s− 1)ζC(s) = L =
2s(2π)tR
m

√
|∆K |

.

Vemos aśı que la función dseta de Dedekind de un cuerpo K es un objeto
anaĺıtico que contiene información algebraica importante sobre K precisamente
donde no está definida: en el 1. Aunque no entraremos en ello, puede probarse
que ζK se extiende a una función holomorfa con un polo simple en 1, por lo que
el miembro derecho de (11.9) es precisamente el residuo en 1 de ζK .

11.2 Productos de Euler

Ahora demostramos la generalización de la fórmula de Euler citada al co-
mienzo del tema. Ésta presenta la ventaja de que depende sólo de los ideales
primos de K. Los resultados más importantes que vamos a obtener se basan en
esta igualdad.
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Teorema 11.9 Sea K un cuerpo numérico. Para cada s > 1 se cumple

ζK(s) =
∏
p

1
1− 1

N(p)s

,

donde p recorre los ideales primos de K. La convergencia del producto es abso-
luta.

Demostración: Para probar que el producto converge absolutamente ob-
servamos que ∏

p

1
1− 1

N(p)s

=
∏
p

(
1 +

1
N(p)s − 1

)
,

y entonces es suficiente probar que la serie

∑
p

1
N(p)s − 1

converge (absolutamente).
Ahora bien, la convergencia de esta serie se sigue inmediatamente de la

convergencia de
∑
p

1
N(p)s , que a su vez es consecuencia de la convergencia de∑

a

1
N(a)s (donde ahora a recorre todos los ideales no nulos de K).

Para cada ideal primo p se cumple que

1
1− 1

N(p)s

=
∞∑
k=0

1
N(p)ks

.

Sea N un número natural y sean p1, . . . , pr los primos de K de norma menor
o igual que N . Multiplicando las series anteriores para estos primos obtenemos

∏
N(p)≤N

1
1− 1

N(p)s

=
∞∑

k1,...,kr=0

1

N(pk1
1 · · · pkr

r )s
=

∑
a

1
N(a)s

,

donde a recorre los ideales no divisibles entre primos de norma mayor que N .
Aśı pues, ∣∣∣∣∣∣

∏
N(p)≤N

1
1− 1

N(p)s

− ζK(s)

∣∣∣∣∣∣ <
∑

N(a)>N

1
N(a)s

,

pero esta última expresión tiende a 0 con N , luego se tiene la igualdad buscada.

Según explicábamos, la fórmula anterior es el punto de partida del argumento
de Dirichlet que le permitió demostrar el teorema sobre primos en progresiones
aritméticas. A su vez, la presencia del factor h en el residuo de la función dseta
fue aprovechada por Kummer para caracterizar de forma práctica sus primos
regulares. Aún estamos lejos de llegar a estos resultados, pero podemos probar
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hechos más simples igualmente importantes y que dan idea del papel que juega
la fórmula de Euler generalizada en los problemas que nos ocupan.

Por ejemplo, Gauss utilizó la fórmula de Euler para probar que la serie∑
1
p es divergente, donde p recorre los números primos, lo que no sólo implica

la existencia de infinitos primos, sino que, en cierto sentido, los primos son
relativamente abundantes entre los números naturales. El argumento de Gauss
se generaliza sin dificultad a cuerpos numéricos arbitrarios. Mas aún, permite
probar que existen infinitos primos de norma prima.

Teorema 11.10 Todo cuerpo numérico tiene infinitos primos de norma prima.
De hecho, si p1 recorre los primos de norma prima de un cuerpo numérico,
entonces ∑

p1

1
N(p1)

= +∞.

Demostración: Si en la fórmula del teorema anterior tomamos logaritmos
nos queda

log ζK(s) = −
∑

p

log
(

1− 1
N(p)s

)
,

y usando el desarrollo de Taylor

log(1 + x) =
∞∑
m=1

(−1)m

m
xm, para |x| < 1,

obtenemos

log ζK(s) =
∑

p

∞∑
m=1

1
mN(p)ms

(11.10)

(notar que todas las series convergen absolutamente). Sea

P (s) =
∑
p1

1
N(p1)s

,

donde p1 recorre los primos de norma prima de K, y sea G(s) la suma de los
términos restantes de (11.10), es decir,

G(s) =
∑
p1

∞∑
m=2

1
mN(p1)ms

+
∑

q

∞∑
m=1

1
mN(q)ms

,

donde q recorre los primos tales que N(q) = qf con f > 1. Para cada uno de
estos primos

∞∑
m=1

1
mN(q)ms

<

∞∑
m=1

1
q2ms

=
1

q2s − 1
≤ 2

q2s
.

Por otra parte
∞∑
m=2

1
mN(p1)ms

<

∞∑
m=2

1
pms

=
1

ps(ps − 1)
≤ 2

p2s
.
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Si el grado de K es n, entonces el número de primos que dividen a un mismo
primo racional p es a lo sumo n, luego

G(s) < 2n
∑
p

1
p2s

< 2n
∞∑
m=1

1
m2s

= 2nζ(2s).

Esto implica que la función G(s) está acotada en el intervalo ]1, 2]. Pero por
otra parte log ζK(s) = P (s) + G(s) y el logaritmo tiende a infinito cuando s
tiende a 1, luego la función P (s) no puede estar acotada en ]1, 2]. Sin embargo,
si la serie del enunciado convergiera, como N(p1) ≤ N(p1)s, llegaŕıamos a que

P (s) =
∑
p1

1
N(p1)s

≤
∑
p1

1
N(p1)

,

para todo s > 1.

La prueba del teorema de Dirichlet se basa en un argumento similar al an-
terior, pero hay que separar los primos según la clase de similitud a la que
pertenecen, y esto requiere un análisis más fino de la fórmula de Euler, lo cual
a su vez requiere algunos conceptos nuevos. Sin embargo, śı estamos en condi-
ciones de exponer los resultados análogos para cuerpos cuadráticos, lo que nos
servirá de orientación para el caso ciclotómico, un poco más complicado.

Consideremos la fórmula de Euler generalizada para un cuerpo cuadrático
K y en ella agrupemos los primos que dividen a un mismo primo racional, es
decir,

ζK(s) =
∏
p

∏
p|p

1
1− 1

N(p)s

.

Para cada primo p, el producto asociado puede ser de tres tipos:

1
1− 1

ps

1
1− 1

ps

si p se escinde,

1
1− 1

p2s

=
1

1− 1
ps

1
1 + 1

ps

si p se conserva,

1
1− 1

ps

si p se ramifica.

Ahora observamos que los tres casos se engloban en la fórmula

1
1− 1

ps

1

1− χK(p)
ps

.

Por lo tanto

ζK(s) =
∏
p

1
1− 1

ps

∏
p

1

1− χK(p)
ps

= ζ(s)
∏
p

1

1− χK(p)
ps

,
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donde hemos usado la fórmula de Euler para la función dseta de Riemann (la
función dseta de Q). Llamemos

L(s, χK) =
∞∑
n=1

χK(n)
ns

, para s > 1. (11.11)

Es claro que la serie converge absolutamente (está mayorada por la función
dseta) y el mismo argumento que prueba la fórmula de Euler para Q permite
probar la relación

L(s, χK) =
∏
p

1

1− χK(p)
ps

,

sin más que sustituir la función constante 1 por la función χK (notar que ya te-
nemos garantizada la convergencia absoluta del producto). En definitiva hemos
factorizado la función dseta de K como

ζK(s) = ζ(s)L(s, χK).

Multiplicamos ambos miembros por (s− 1) y tomamos ĺımites cuando s tiende
a 1. El teorema 11.8 nos da que existe

ĺım
s→1+

L(s, χK) =
2s+tπtR
m

√
|∆K |

h.

Por lo tanto podemos definir L(1, χK) como este ĺımite y aśı la función L es
continua en [1,+∞[. Puesto que estamos considerando un cuerpo cuadrático,
la expresión de L(1, χK) se simplifica considerablemente:

Teorema 11.11 Sea K un cuerpo cuadrático de discriminante ∆. Entonces el
número de clases de K viene dado por

h =




√
∆

2 log ε
L(1, χK) si ∆ > 0 y ε > 1 es la unidad fundamental de K,

m
√
−∆

2π
L(1, χK) si ∆ < 0 y m es el número de unidades de K.

El análisis de las funciones L se puede llevar más lejos hasta obtener resul-
tados más operativos. Por ejemplo, la serie (11.11) converge en realidad para
s > 0, lo que permite calcular L(1, χK) sumando la serie directamente (sin
necesidad de tomar ĺımites). No obstante, antes de entrar en ello conviene ge-
neralizar los conceptos que estamos manejando, para que los resultados sean
aplicables a cuerpos numéricos no necesariamente cuadráticos, especialmente a
los ciclotómicos.

Terminamos esta sección demostrando una versión débil del teorema de Di-
richlet. La prueba contiene las ideas esenciales de la demostración general.
Vamos a probar que en un cuerpo cuadrático K hay infinitos primos que se
escinden e infinitos primos que se conservan. El teorema 11.10 ya prueba la
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existencia de infinitos primos que se escinden, pero no vamos a usar este hecho
para no ocultar la idea principal.

Consideramos los dos factores de la función ζK(s), es decir, las funciones
ζ(s) y L(s, χK). El argumento del teorema 11.10 es aplicable a ambas, lo que
nos da las ecuaciones

log ζ(s) =
∑
p

1
ps

+ G1(s),

logL(s, χK) =
∑
p

χK(p)
ps

+ G2(s),

donde G1 y G2 son funciones acotadas en ]1, 2].
Llamemos A y B a los conjuntos de primos que se escinden y conservan,

respectivamente. Entonces A y B cubren todos los primos salvo un número finito
de ellos. Si en la primera ecuación separamos los sumandos 1/p correspondientes
a éstos y los incorporamos a G1(s), tenemos

log ζ(s) =
∑
p∈A

1
ps

+
∑
p∈B

1
ps

+ G1(s),

logL(s, χK) =
∑
p∈A

1
ps
−

∑
p∈B

1
ps

+ G2(s),

Sumando y restando ambas ecuaciones concluimos ninguna de las dos series
está acotada cuando s tiende a 1, y por lo tanto las dos series

∑
p∈A

1
p

y
∑
p∈B

1
p

son divergentes.
Si llamamos m al valor absoluto del discriminante de K, el carácter χK divide

las clases de Um en dos conjuntos. Lo que hemos probado es que hay infinitos
primos en cada uno de los dos grupos de clases. Para probar el teorema de
Dirichlet hemos de refinar el argumento para distinguir cada una de las clases
de Um. Esto lo lograremos sustituyendo los cuerpos cuadráticos por cuerpos
ciclotómicos.

Notemos que en la prueba anterior no interviene la función dseta de K,
sino tan sólo las funciones ζ y L, que sólo involucran números enteros y el
carácter χK . Esto puede hacer pensar que la prueba no depende de la teoŕıa
de cuerpos cuadráticos. En efecto, la mayor parte de la prueba anterior (aśı
como la del teorema de Dirichlet) puede basarse en argumentos sobre series de
carácter elemental. El único punto no trivial, que nosotros hemos justificado
con ayuda de la función ζK , es que L(1, χK) �= 0. Esto también puede probarse
mediante técnicas anaĺıticas, pero ya no es trivial. Es necesario usar la teoŕıa de
funciones holomorfas. Aún aśı, la prueba anaĺıtica del teorema de Dirichlet es
más elemental que la que nosotros daremos, pero ésta es la original de Dirichlet
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y en la que se ven más claramente las ideas subyacentes. Además se generaliza
más fácilmente a otros resultados de gran importancia en el desarrollo de la
teoŕıa algebraica de números.

11.3 Caracteres de grupos abelianos

En su estudio de la función dseta de los cuerpos ciclotómicos, Dirichlet se
encontró con unas funciones que juegan el mismo papel que el carácter de un
cuerpo cuadrático. Introducimos el concepto en el contexto general de los grupos
abelianos finitos:

Definición 11.12 Sea G un grupo abeliano finito. Un carácter de G es un
homomorfismo χ : G −→ C∗.

Los caracteres de ideales o de formas cuadráticas en el sentido de Gauss son
esencialmente caracteres del grupo de clases estrictas, o también del grupo de
géneros, en el sentido de esta definición. El carácter de un cuerpo cuadrático
K es un carácter del grupo U|∆| de las unidades módulo |∆|, donde ∆ es el
discriminante de K. Las funciones δ, ε, δε definidas en 9.6 inducen caracteres
en el grupo U8.

En todos estos casos los caracteres tomaban tan sólo los valores±1, ahora ad-
mitimos que tomen valores complejos cualesquiera. De todos modos un carácter
no puede tomar cualquier valor: Si g es un elemento de un grupo abeliano
G de orden n, entonces gn = 1, luego cualquier carácter de G cumplirá que
χ(g)n = χ(gn) = χ(1) = 1. Por lo tanto los caracteres de un grupo de orden n
sólo toman valores en el grupo de las ráıces n-simas de la unidad.

Llamaremos G∗ al conjunto de todos los caracteres de G. Es claro que G∗

es un grupo abeliano si definimos el producto de dos caracteres χ y ψ como el
carácter determinado por (χψ)(g) = χ(g)ψ(g) para todo g ∈ G.

El elemento neutro de G∗ es el llamado carácter principal de G, dado por
1(g) = 1 para todo g ∈ G. El grupo G∗ se llama grupo dual de G.

Examinemos en primer lugar cómo son los caracteres de los grupos ćıclicos.
Sea G un grupo ćıclico de orden n. Sea g un generador de G y sea ω ∈ C una
ráız n-sima primitiva de la unidad.

Entonces los grupos G = 〈g〉 y 〈ω〉 son ćıclicos de orden n, luego son iso-
morfos. Un isomorfismo entre ellos es, por ejemplo, la aplicación χ : G −→ 〈ω〉
dada por χ(gm) = ωm. Claramente χ es un carácter de G con la propiedad de
que χ(g) = ω.

Para cada m = 0, . . . , n− 1 se cumple que χm(g) = χ(g)m = ωm, y como ω
es una ráız primitiva de la unidad concluimos que los caracteres χm son distintos
dos a dos.

Por otro lado, si ψ ∈ G∗ se tiene que cumplir que ψ(g) es una ráız n-sima de
la unidad, o sea, ψ(g) = ωm = χm(g) para un cierto m, y si dos homomorfismos
coinciden sobre un generador, han de ser iguales, es decir, se cumple ψ = χm

para m = 0, . . . , n− 1.
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Esto prueba que G∗ es un grupo ćıclico de orden n generado por χ. En
particular tenemos que G∗ es isomorfo a G.

Vamos a ver que esto es cierto para todo grupo G aunque no sea ćıclico.
Para ello nos basaremos en que todo grupo abeliano finito se descompone en
producto cartesiano de grupos ćıclicos y aplicaremos el teorema siguiente.

Teorema 11.13 Sean G y H grupos abelianos finitos. Entonces si χ ∈ G∗ y
ψ ∈ H∗, la aplicación χ×ψ : G×H −→ C dada por (χ×ψ)(g, h) = χ(g)ψ(h) es
un carácter del grupo G×H y además la aplicación f : G∗ ×H∗ −→ (G×H)∗

dada por f(χ, ψ) = χ× ψ es un isomorfismo de grupos.

La prueba es inmediata. La dejamos a cargo del lector.

Teorema 11.14 Si G es un grupo abeliano finito, G∗ es isomorfo a G.

Demostración: El grupo G se descompone en producto cartesiano de
grupos ćıclicos y por el teorema anterior G∗ es isomorfo al producto cartesiano
de los grupos de caracteres de sus factores, que según hemos visto son ćıclicos
del mismo orden. Aśı pues G y G∗ se descomponen en producto de grupos
ćıclicos de los mismos órdenes, luego son isomorfos.

Observar que no existe un isomorfismo canónico entre G y G∗, es decir, un
isomorfismo que asigne a cada elemento un carácter construido a partir de él.
El isomorfismo depende de la estructura del grupo G.

Por el contrario śı es posible definir un isomorfismo canónico entre G y su
bidual G∗∗, concretamente, si llamamos ε(g) : G∗ −→ C a la aplicación dada
por ε(g)(χ) = χ(g) para todo χ ∈ G∗, se ve fácilmente que ε : G −→ G∗∗ es un
isomorfismo.

Ahora vamos a relacionar los caracteres de un grupo con los de sus subgrupos.

Teorema 11.15 Sea G un grupo abeliano finito y H un subgrupo de G. En-
tonces todo carácter de H se extiende a un carácter de G, y el número de
extensiones es igual al ı́ndice |G : H|.

Demostración: La aplicación G∗ −→ H∗ que cada carácter de G lo res-
tringe a H es obviamente un homomorfismo de grupos. Sea N el núcleo de este
homomorfismo. Un carácter χ está en N si y sólo si χ(h) = 1 para todo h ∈ H.
Esto significa que H está contenido en el núcleo de χ, luego χ induce un carácter
χ′ : G/H −→ C dado por χ′([g]) = χ(g).

La aplicación N −→ (G/H)∗ dada por χ 
→ χ′ es también un homomorfismo
de grupos. Es fácil ver que de hecho es un isomorfismo. En efecto, si χ′ = 1
entonces obviamente χ = 1, y si tomamos ψ ∈ (G/H)∗, entonces ψ define el
carácter χ(g) = ψ

(
[g]

)
, que claramente está en N y χ′ = ψ.

Consecuentemente |N | = |(G/H)∗| = |G : H| y por lo tanto la imagen de la
restricción tiene orden |G∗ : N | = |H|, por lo que la restricción es un epimorfismo
y cada carácter de H∗ tiene exactamente |N | = |G : H| antiimágenes, o sea,
extensiones.

El teorema siguiente es fundamental a la hora de trabajar con caracteres.
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Teorema 11.16 (relaciones de ortogonalidad) Sea G un grupo abeliano de
orden n. Sea χ ∈ G∗ y g ∈ G. Entonces∑

g∈G
χ(g) =

{
n si χ = 1
0 si χ �= 1

∑
χ∈G∗

χ(g) =
{

n si χ = 1
0 si χ �= 1

Demostración: La primera relación es obvia para χ = 1. Si χ �= 1 entonces
existe un x ∈ G tal que χ(x) �= 1. Por consiguiente

χ(x)
∑
g∈G

χ(g) =
∑
g∈G

χ(xg) =
∑
g∈G

χ(g),

(pues cuando g recorre G, xg también recorre G). Por lo tanto

(χ(x)− 1)
∑
g∈G

χ(g) = 0,

de donde ∑
g∈G

χ(g) = 0.

La segunda relación se deduce de la primera aplicándola al grupo G∗ y al
carácter dado por ε(g)(χ) = χ(g).

El nombre de relaciones de ortogonalidad proviene de la interpretación si-
guiente, que nos va a ser útil en algunas ocasiones. Sea G un grupo abeliano
de orden n y sea V el conjunto de todas las aplicaciones de G en C. Clara-
mente V es un espacio vectorial de dimensión n sobre C. Una biyección de G
con {1, . . . , n} induce de forma natural un isomorfismo entre V y Cn. La base
canónica de Cn se identifica con la base formada por las funciones {fu}u∈G
dadas por

fu(t) =
{

1 si t = u
0 si t �= u

Definimos el producto en V dado por

(f, g) =
1
n

∑
t∈G

f(t)g(t),

donde la barra indica la conjugación compleja. La aplicación ( , ) es lo que se
llama un producto sesquilineal, es decir, es lineal en la primera componente y
semilineal en la segunda (conserva la suma y además (f, αg) = ᾱ(f, g)).

Ahora, si χ y ψ son dos caracteres de G, el teorema anterior nos da que

(χ, ψ) =
1
n

∑
t∈G

χ(t)ψ(t) =
1
n

∑
t nG

(χψ−1)(t) =
{

1 si χ = ψ
0 si χ �= ψ

Esto significa que los caracteres son ortogonales respecto al producto ( , ).
De la ortogonalidad se sigue que los caracteres son linealmente indepen-

dientes, pues si C es una combinación lineal nula de los caracteres, entonces
(C,χ) = 0, y por otro lado es igual al coeficiente de χ en C. Esto a su vez
implica que los caracteres forman una base de V , una base ortonormal.
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11.4 Caracteres modulares

Estudiamos ahora con más detalle los caracteres de los grupos de unidades
módulo un número natural m. Tal y como hemos hecho hasta ahora en los
casos particulares que hemos manejado, conviene considerar a estos caracteres
definidos sobre Z.

Definición 11.17 Un carácter módulo m es una aplicación χ : Z −→ C que
cumple las condiciones siguientes:

1. Para todo a ∈ Z se cumple χ(a) = 0 si y sólo si (a,m) �= 1.

2. Si a ≡ a′ (mód m), entonces χ(a) = χ(a′).

3. Si a, b ∈ Z, entonces χ(ab) = χ(a)χ(b).

Obviamente todo carácter χ módulo m define un carácter χ′ del grupo de
unidades Um mediante χ′([a]

)
= χ(a) y, rećıprocamente, todo carácter de Um

está inducido por un único carácter módulo m. En la práctica identificaremos
los caracteres módulo m con los caracteres de Um. En general, los caracteres
módulo m para un módulo cualquiera se llaman caracteres modulares. Por
ejemplo, es claro que el śımbolo de Legendre (x/p) es un carácter módulo p.

Notar que si χ es un carácter modular χ(−1)2 = χ
(
(−1)2

)
= χ(1) = 1, luego

χ(−1) = ±1. Si χ(−1) = 1 se dice que χ es un carácter par, y si χ(−1) = −1 se
dice que χ es impar. Los caracteres pares cumplen en general que χ(−n) = χ(n),
mientras que los impares cumplen χ(−n) = −χ(n).

Si m | m′ entonces todo carácter χ módulo m determina un carácter módulo
m′ dado por

χ′(a) =
{

χ(a) si (a,m′) = 1,
0 si (a,m′) �= 1.

Llamaremos a χ′ el carácter inducido por χ. Observar que el valor de χ′(a)
depende en realidad del resto de a módulo m y no del resto módulo m′.

En términos de caracteres ordinarios la interpretación es la siguiente: si
m | m′ entonces existe un homomorfismo f : Um′ −→ Um dado por f

(
[a]

)
= [a].

Si χ es un carácter de Um entonces χ′ es la composición de χ con f .

En realidad f es un epimorfismo, pues si (a,m) = 1, por el teorema chino
del resto existe un a′ que cumple a′ ≡ a (mód m) y a′ ≡ 1 (mód p) para todo
primo p que divida a m′ pero no a m. Entonces (a′,m′) = 1 y f

(
[a′]

)
= [a]. A

f lo llamaremos epimorfismo canónico de Um′ en Um.

Visto aśı es claro que el carácter inducido χ′ determina a χ, pues χ
(
[a]

)
se

puede calcular como χ′([b]), donde [b] es una antiimagen de [a] por f .
También es claro que si m | n | r, χ es un carácter módulo m y χ′ es

el carácter que induce módulo n, entonces χ y χ′ inducen el mismo carácter
módulo r. En efecto, tenemos

Ur
f−→ Un

g−→ Um
χ−→ C,
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de modo que χ′ = g◦χ y los caracteres que χ y χ′ inducen módulo r son (f ◦g)◦c
y f ◦ (g ◦ c) respectivamente.

Teorema 11.18 Si un carácter χ módulo m está inducido por un carácter χ1

módulo m1 y por un carácter χ2 módulo m2 entonces también está inducido por
un carácter módulo d = (m1,m2).

Demostración: Sea m′ el mı́nimo común múltiplo de m1 y m2. Tenemos
la situación siguiente:

Um1

χ1−→ C
↗ ↘

Um −→ Um′ Ud

↘ ↗
Um2

χ2−→ C

donde todas las flechas sin nombre son los epimorfismos canónicos.
Por hipótesis χ1 y χ2 inducen el mismo carácter χ módulo m, pero los

caracteres inducidos por χ1 y χ2 módulo m′ también inducen el carácter χ,
luego han de coincidir. Sea pues χ′ el carácter inducido por χ1 y χ2 módulo m′.

Sean N1 y N2 los núcleos de los epimorfismos canónicos de Um′ en Um1 y
Um2 , es decir,

N1 =
{
[a] ∈ Um′ | a ≡ 1 (mód m1)

}
y N2 =

{
[a] ∈ Um′ | a ≡ 1 (mód m2)

}
.

Por el teorema de isomorf́ıa sus órdenes son φ(m′)/φ(m1) y φ(m′)/φ(m2) respec-
tivamente. Es obvio que ambos están contenidos en el núcleo N del epimorfismo
canónico de Um′ en Ud, que es N =

{
[a] ∈ Um′ | a ≡ 1 (mód d)

}
y tiene orden

φ(m′)/φ(d).
También es claro que N1 ∩N2 = 1, luego |N1N2| = |N1||N2| = |N |, pues la

última igualdad equivale a que φ(m′)φ(d) = φ(m1)φ(m2), lo cual se demuestra
sin dificultad para toda función aritmética multiplicativa. Como N1N2 ≤ N , de
hecho se tiene la igualdad N = N1N2.

Para todo [a] ∈ Um′ se cumple que χ′(a) = χ1(a) = χ2(a), luego χ′(a) = 1
tanto si [a] ∈ N1 como si [a] ∈ N2, luego χ′(a) = 1 siempre que [a] ∈ N , es
decir, para todas las clases [a] que cumplen a ≡ 1 (mód d). De aqúı se sigue
que si a ≡ a′ (mód d) entonces χ′(a) = χ′(a′).

Dado [a] ∈ Ud existe un [a′] ∈ Um′ tal que a′ ≡ a (mód d) (por la supra-
yectividad del epimorfismo canónico). Podemos definir ψ(a) = χ′(a′) sin que
importe la elección de a′ (por lo que acabamos de probar). Claramente ψ es un
carácter módulo d que induce a χ′ y por lo tanto a χ.

Si un carácter ψ está inducido por un carácter χ, entonces ψ ‘contiene menos
información’ que χ, en el sentido de que ambos coinciden sobre los números
primos con el módulo de ψ, mientras que ψ se anula sobre algunos números en
los que χ no lo hace. Por eso tiene mucha importancia el concepto siguiente:

Definición 11.19 Un carácter modular es primitivo si no está inducido por un
carácter de módulo menor.
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Del teorema anterior se desprende que todo carácter modular χ está indu-
cido por un único carácter primitivo. En efecto, basta tomar un carácter que lo
induzca χ′ de módulo mı́nimo. Entonces χ′ no puede estar inducido por ningún
carácter de módulo menor porque tal carácter también induciŕıa a χ en contra-
dicción con la elección de χ. La unicidad se debe a que si χ estuviera inducido
por dos caracteres primitivos χ1 y χ2 de módulos m1 y m2, entonces por el teo-
rema anterior ambos seŕıan inducidos por un carácter de módulo d = (m1,m2).
Por ser primitivos ha de ser d = m1 = m2, y de aqúı que χ1 = χ2.

Dado un carácter χ, llamaremos χ0 al carácter primitivo que lo induce. El
módulo de χ0 se llama conductor de χ.

El teorema siguiente es útil para reconocer caracteres primitivos.

Teorema 11.20 Un carácter χ módulo m es primitivo si y sólo si para todo
divisor propio d de m existe un entero x tal que (x,m) = 1, x ≡ 1 (mód d) y
χ(x) �= 1.

Demostración: Si χ no es primitivo está inducido por un carácter χ0

módulo d, donde d es un divisor propio de m. Si x ≡ 1 (mód d) entonces
(x,m) = 1 y χ(x) = χ0(x) = χ0(1) = 1.

Rećıprocamente, si existe un divisor d de m tal que para todo x ≡ 1 (mód d),
(x,m) = 1 se cumple χ(x) = 1, entonces si x ≡ x′ (mód d) y x, x′ son primos
con m se cumple χ(x) = χ(x′). De aqúı que podamos definir un carácter ψ
módulo d mediante ψ(a) = χ(x), para cualquier x tal que (x,m) = 1 y x ≡ a
(mód d). Existe tal x por la suprayectividad del epimorfismo canónico de Um

en Ud. Claramente ψ induce a χ.

Para terminar vamos a caracterizar los caracteres de los cuerpos cuadráticos.
Obviamente, una condición necesaria para que un carácter modular χ sea el
carácter de un cuerpo cuadrático es que sólo tome los valores 1, 0,−1. Supuesto
esto, la condición necesaria y suficiente para que χ sea realmente el carácter de
un cuerpo cuadrático es que sea primitivo.

Definición 11.21 Un carácter modular χ es un carácter cuadrático si y sólo si
no es el carácter principal y sólo toma los valores 0 y ±1.

El teorema 9.25 afirma que los caracteres de los cuerpos cuadráticos reales
son pares, mientras que los de los cuerpos imaginarios son impares.

Teorema 11.22 Los caracteres de los cuerpos cuadráticos son primitivos. Todo
carácter cuadrático primitivo es el carácter de un único cuerpo cuadrático.

Demostración: Sea K un cuerpo cuadrático de discriminante ∆ y sea p
un divisor primo de ∆. Para probar que χK es primitivo basta ver que existe
un entero x tal que (x,∆) = 1, x ≡ 1 (mód |∆|/p) y χ(x) = −1.

Supongamos primero que p �= 2. Sea s un resto no cuadrático módulo p.
Como p tiene exponente 1 en ∆, existe un entero x tal que

x ≡ s (mód p), x ≡ 1 (mód 2|∆|/p).
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Entonces χ(x) = (x/p) = (s/p) = −1.

Supongamos ahora que p = 2. Sea K = Q
(√

d
)
. Si d ≡ −1 (mód 4) entonces

∆ = 4d y basta tomar x tal que x ≡ −1 (mód 4), x ≡ 1 (mód |d|), con lo que
χ(x) = −1. Observar que de hecho se cumple x ≡ 1 (mód 2|d|), tal y como se
requiere.

Si d = 2d′, entonces ∆ = 8d′ y tomamos x ≡ 5 (mód 8), x ≡ 1 (mód |d′|).
Entonces x ≡ 1 (mód 4|d′|) y χ(x) = −1.

Investiguemos ahora para qué naturales m existen caracteres cuadráticos
primitivos módulo m. Supongamos primero que m = pn, donde p es un primo
impar.

Es claro que un carácter cuadrático de Upn está determinado por su núcleo
(toma el valor 1 en el núcleo y −1 en el complementario). Pero el grupo Upn

es ćıclico, luego tiene un único subgrupo de ı́ndice 2, luego un único carácter
cuadrático. El carácter cuadrático de Upn ha de coincidir con el carácter indu-
cido por el carácter cuadrático de Up, luego el único caso en que es primitivo
es cuando n = 1. De hecho el carácter en cuestión es el śımbolo de Legendre
χ(a) = (a/p).

Consideremos ahora m = 2n. El grupo U2 es trivial, luego no tiene carac-
teres cuadráticos. El grupo U4 es ćıclico de orden 2, y tiene un único carácter
cuadrático, que será primitivo porque no hay módulos menores que lo puedan
inducir. Claramente se trata del carácter δ(a) = (−1)(a−1)/2.

El grupo U8 tiene cuatro caracteres, de los cuales uno es el principal (que
no es cuadrático), otro es el inducido por el carácter cuadrático módulo 4 (que
no es primitivo) y los dos restantes tienen que ser primitivos a falta de módulos
menores que los induzcan. De hecho se trata de los caracteres ε y δε definidos
en 9.6.

En general, el grupo U2n es el producto de un grupo ćıclico de orden 2 por
un grupo ćıclico de orden 2n−2. Sea a un elemento de U2n de orden 2n−2. Si
H ≤ U2n tiene ı́ndice ı́ndice 2 entonces

|H 〈a〉 | = |H| | 〈a〉 |
|H ∩ 〈a〉 | ≤ 2n−1,

de donde |H ∩ 〈a〉 | ≥ 2n−3, luego
〈
a2

〉
≤ H y aśı

H/
〈
a2

〉
≤ U2n/

〈
a2

〉 ∼= C2 × C2.

Esto da sólo tres posibilidades para H, con lo que U2n tiene exactamente tres
caracteres cuadráticos, que coinciden con los inducidos por los tres caracteres
no principales módulo 8.

Supongamos ahora que m > 1 es cualquier número natural y χ es un carácter
cuadrático primitivo módulo m. Descomponemos m en producto de potencias de
primos distintos. Entonces el grupo Um factoriza en el producto de los grupos de
unidades correspondientes a dichas potencias y, por el teorema 11.13, el carácter
χ factoriza en producto de caracteres de módulos potencias de primo. Todos los
factores son caracteres primitivos, pues basta que uno de ellos pueda inducirse
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desde un módulo menor para que lo mismo le ocurra a χ. Además, como χ tiene
orden 2, todos sus factores tienen orden 2 (el orden de χ es el mı́nimo común
múltiplo de estos órdenes, y ninguno de los factores puede tener orden 1 porque
son primitivos).

Todo esto implica que m ha de ser un número natural impar d libre de
cuadrados, o bien 4d o bien 8d. Más aún, si m = d o m = 4d hay un único
carácter cuadrático primitivo módulo m, el producto de los únicos caracteres
cuadráticos primitivos módulo los primos p | m y módulo 4 en su caso (en
realidad hemos probado que hay a lo sumo uno, pero esto basta). Si m = 8d
hay a lo sumo dos caracteres, pues puede variar el carácter módulo 8.

En todos estos casos existe un cuerpo cuadrático K de discriminante ∆
de manera que m = |∆|. En efecto, si m = d y d ≡ 1 (mód 4), entonces
K = Q

(√
d

)
, y si d ≡ −1 (mód 4), entonces K = Q

(√
−d

)
. De hecho hay

un único cuerpo K con discriminante ±m, y su carácter es primitivo, luego
ciertamente hay un único carácter primitivo módulo m en correspondencia con
un único cuerpo cuadrático.

Si m = 4d tomamos K = Q
(√
−d

)
si d ≡ 1 (mód 4) y K = Q

(√
d

)
si

d ≡ −1 (mód 4), con lo que la situación es análoga.
Finalmente, si m = 8d entonces los cuerpos Q

(√
±2d

)
tienen ambos dis-

criminante ±m, pero sus caracteres son distintos, ya que uno es par y el otro
impar. Por lo tanto también hay exactamente dos caracteres cuadráticos primi-
tivos módulo m en correspondencia con dos cuerpos cuadráticos.

11.5 La función dseta en cuerpos ciclotómicos

La teoŕıa de caracteres nos permitirá desarrollar la función dseta de los
cuerpos ciclotómicos de manera análoga a como hemos hecho con los cuerpos
cuadráticos. Sea, pues, Q(ω) el cuerpo ciclotómico de orden m. En la fórmula
de Euler agrupamos los factores que dividen a un mismo primo racional p:

ζK(s) =
∏
p

∏
p|p

1
1− 1

N(p)s

,

donde p recorre los primos racionales.
Si p es un primo y m = pim′, el teorema 3.20 nos da que p tiene φ(m)/fp

factores primos, donde fp es el orden de p en Um′ , y la norma de cada factor es
igual a pfp . Por lo tanto

ζK(s) =
∏
p

(
1− 1

pfps

)−φ(m)/fp

. (11.12)

Para simplificar esta expresión consideramos

ωp = cos(2π/fp) + i sen(2π/fp),
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es decir, una ráız fp-ésima primitiva de la unidad. Entonces

xfp − 1 =
fp−1∏
k=0

(x− ωkp),

de donde, sustituyendo x = ps y dividiendo entre pfps,

1− 1
pfps

=
fp−1∏
k=0

(
1−

ωkp
ps

)
. (11.13)

Entonces el producto

fp−1∏
k=0

(
1−

ωkp
ps

)φ(m)/fp

=
(

1− 1
pfps

)φ(m)/fp

tiene φ(m) factores, de los cuales φ(m)/fp son iguales a 1−ωkp/p
s para cada k,

pero el número total de factores es independiente de p.
Si χ es un carácter módulo m′, puesto que pfp ≡ 1 (mód m′), se cumple que

χ(p)fp = χ(pfp) = χ(1) = 1,

luego χ(p) = ωkp , para un cierto k.
Rećıprocamente, si partimos de un cierto ωkp , existe un único carácter ψ

del subgrupo ćıclico generado por [p] en Um′ que cumple ψ
(
[p]

)
= ωkp y, por

el teorema 11.15, este carácter se extiende a exactamente φ(m′)/fp caracteres
distintos de Um′ , o sea, existen exactamente φ(m′)/fp caracteres módulo m′

que cumplen χ(p) = ωkp o, dicho de otro modo, si χ recorre todos los caracteres
módulo m′, entonces χ(p) recorre φ(m′)/fp veces cada ráız de la unidad.

Llamemos χ0 al carácter primitivo que induce a un carácter dado χ. De
nuevo por 11.15 cada carácter módulo m′ induce φ(pi) caracteres módulo m,
luego cuando χ recorre los caracteres módulo m cuyo conductor divide a m′,
la expresión χ0(p) recorre φ(m)/fp veces cada ráız fp-ésima de la unidad. Los
restantes caracteres módulo m tienen conductor múltiplo de p, luego para ellos
χ0(p) = 0. Estos cálculos prueban que

(
1− 1

pfps

)φ(m)/fp

=
∏
χ

(
1− χ0(p)

ps

)
,

donde χ recorre los caracteres módulo m.
Aśı la fórmula (11.12) se convierte en

ζK(s) =
∏
p

∏
χ

1

1− χ0(p)
ps

.

Finalmente invertimos el orden de los productos, con lo que obtenemos el
teorema siguiente:
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Teorema 11.23 Sea K el cuerpo ciclotómico de orden m. Entonces

ζK(s) =
∏
χ

L(s, χ), para todo s > 1

donde,

L(s, χ) =
∞∑
n=1

χ0(n)
ns

=
∏
p

1

1− χ0(p)
ps

. (11.14)

La función L(s, χ) se conoce como la función L de Dirichlet asociada a χ.

Demostración: Sólo queda justificar la convergencia de los dos miembros
de (11.14), la igualdad entre la serie y el producto se demuestra por el mismo
argumento empleado en el teorema 11.9.

La serie converge absolutamente (y uniformemente en los compactos) para
s > 1, porque está mayorada por la función dseta de Riemann. El producto
converge como consecuencia de la convergencia de ζK(s), pero de hecho conviene
observar que la convergencia es absoluta. En efecto, podemos expresarlo como∏

p

(
1 +

χ0(p)
ps − χ0(p)

)
,

y la convergencia absoluta del producto es, por definición, la de la serie∑
p

χ0(p)
ps − χ0(p)

.

Ésta se comprueba fácilmente comparando los módulos con 1/ps.

De ahora en adelante, para simplificar la notación, siempre que χ sea un
carácter modular sobrentenderemos que χ(n) representa en realidad a χ0(n).
Por ejemplo, si 1 es el carácter principal módulo m, entonces 10 es el carácter
principal módulo 1, por lo que entenderemos que 1(n) = 1 incluso cuando
(n,m) �= 1. Esto implica que

L(s, 1) =
∞∑
n=0

1
ns

= ζ(s).

En particular L(s, 1) tiende a infinito en 1. Para los caracteres no principales
la situación es muy diferente, como se deduce del teorema que sigue.

Teorema 11.24 Sea {an} una sucesión de números complejos tal que las sumas

Ak =
k∑

n=1
an estén acotadas. Entonces la serie

∞∑
n=1

an
ns

converge para todo número real s > 0. Para todo δ > 0 la convergencia es
uniforme en el intervalo [δ,+∞[, luego la suma es continua en ]0,+∞[.
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Demostración: Dado ε > 0, sea n0 tal que 1/nδ < ε para n ≥ n0. Aśı
1/ns < ε para todo s ≥ δ y todo n ≥ n0. Sea M > N > n0. Entonces

M∑
k=N

ak
ks

=
M∑
k=N

Ak −Ak−1

ks
=

M∑
k=N

Ak

ks
−

M−1∑
k=N−1

Ak

(k + 1)s

= −AN−1

Ns
+

M−1∑
k=N

(
Ak

ks
− Ak

(k + 1)s

)
+

AM

Ms
,

luego si, según la hipótesis, se cumple que |Ak| ≤ C para todo k, entonces∣∣∣∣∣
M∑
k=N

ak
ks

∣∣∣∣∣ ≤ C

Ns
+ C

M−1∑
k=N

(
1
ks
− 1

(k + 1)s

)
+

C

Ms
=

2C
Ns

< 2Cε

para todo s en el intervalo [δ,+∞[.

Teorema 11.25 Si χ es un carácter modular no principal la serie

L(s, χ) =
∞∑
n=1

χ(n)
ns

converge para todo número real s > 0 y la convergencia es uniforme en cada
intervalo [δ,+∞[. En particular la función L(s, χ) es continua en ]0,+∞[.

Demostración: Es una consecuencia inmediata del teorema anterior pues,
si m es el conductor de χ, el teorema 11.16 nos da que

∑
n

χ(n) = 0 cada vez que

n recorre un conjunto completo de representantes de las clases módulo m. De
aqúı se sigue inmediatamente que todas las sumas finitas están acotadas.

Es importante tener presente que la expresión de L(s, χ) como producto sólo
es válida en ]1,+∞[ y que la convergencia de la serie no es absoluta en ]0, 1].

En particular tenemos que

L(1, χ) =
∞∑
n=1

χ(n)
n

, para χ �= 1 (11.15)

Ahora que sabemos que L(s, χ) converge en 1 podemos llevar más lejos el
teorema 11.23 y obtener de la fórmula que necesitaba Kummer para caracterizar
los primos regulares.

Teorema 11.26 Sea K el cuerpo ciclotómico de orden 2m, sea ∆ su discrimi-
nante y R su regulador. Entonces, el número de clases de K es

h =
2m

√
|∆|

(2π)φ(2m)/2 R

∏
χ�=1

L(1, χ),

donde χ recorre los caracteres no principales módulo m.
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Demostración: Notar que si m es impar, entonces el cuerpo ciclotómico
de orden m es el mismo que el de orden 2m. En cualquier caso, el cuerpo
ciclotómico de orden 2m tiene 2m ráıces de la unidad.

Por el teorema 11.23 tenemos que

ĺım
s→1+

(s− 1)ζK(s) = ĺım
s→1+

(s− 1)ζ(s)
∏
χ�=1

L(s, χ) =
∏
χ�=1

L(1, χ).

Ahora basta aplicar el teorema 11.8.

Una consecuencia inmediata del teorema anterior es que si χ es un carácter
modular no principal, entonces L(1, χ) �= 0. Esto es exactamente lo que necesi-
tamos para probar el teorema de Dirichlet.

Teorema 11.27 (Dirichlet) Si m y n son números naturales primos entre śı,
entonces la sucesión mk + n, para k = 1, 2, 3, . . . contiene infinitos primos.

Demostración: Consideremos el logaritmo complejo que extiende al real
alrededor de 1. Su desarrollo de Taylor es

log(1 + z) =
∞∑
n=1

(−1)n+1

n
zn para |z| < 1.

Sea ahora un carácter modular χ. Entonces

− log
(

1− χ(p)
ps

)
=

∞∑
n=1

χ(p)n

npns

para todo primo p y todo s > 1. La convergencia absoluta del producto (11.14)
implica que la serie

logL(s, χ) =
∑
p

∞∑
n=1

χ(p)n

npns

converge a un logaritmo del producto para s > 1. Observar que logL(s, 1) es
simplemente la composición de la función real L(s, 1) con la función logaritmo
real. Descomponemos

logL(s, χ) =
∑
p

χ(p)
ps

+ R(s, χ),

donde

R(s, χ) =
∑
p

∞∑
n=2

χ(p)n

npns
.

Ahora observamos que

|R(s, χ)| ≤
∑
p

∞∑
n=2

1
pns

=
∑
p

1
ps(ps − 1)

≤
∑
p

1
p(p− 1)

≤
∞∑
n=2

1
n(n− 1)

= 1

(la última serie es telescópica).
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Si hacemos variar C en Um tenemos

logL(s, χ) =
∑
C

χ(C)
∑
p∈C

1
ps

+ R(s, χ).

Podemos ver estas ecuaciones como un sistema de φ(m) ecuaciones lineales
en el que las incógnitas son las series sobre los primos de las clases de Um.
Vamos a despejar una de ellas, digamos la correspondiente a la clase A, para lo
cual multiplicamos por χ(A−1) y sumamos todas las ecuaciones:∑

χ

χ(A−1) logL(s, χ) =
∑
C

(∑
χ

χ(CA−1)
) ∑
p∈C

1
ps

+ RA(s),

donde

|RA(s)| =
∣∣∣∑
χ

χ(A−1R(s, χ)
∣∣∣ ≤∑

χ

|R(s, χ)| ≤ φ(m), para todo s > 1.

Por las relaciones de ortogonalidad de los caracteres la ecuación se reduce a∑
χ

χ(A−1) logL(s, χ) = φ(m)
∑
p∈A

1
ps

+ RA(s). (11.16)

Ahora tomaremos ĺımites cuando s → 1+. Debemos detenernos en el com-
portamiento de logL(s, χ). Puesto que L(1, χ) (para χ no principal) es un
número complejo no nulo, es conocido que en un entorno de L(1, χ) existe
una determinación continua del logaritmo. Componiéndola con L(s, χ) obte-
nemos una función continua log′ L(s, χ) definida en un entorno de 1, digamos
]1− ε, 1 + ε[. La función logL(s, χ) − log′ L(s, χ) es continua en el intervalo
]1, 1 + ε[ y sólo puede tomar los valores 2kπi, para k entero, luego por conexión
k ha de ser constante en ]1, 1 + ε[ y consecuentemente existe

ĺım
s→1+

logL(s, χ) = log′ L(1, χ) + 2kπi.

Agrupamos todos los sumandos acotados en (11.16) junto con RA(s) y queda

logL(s, 1) = φ(m)
∑
p∈A

1
ps

+ TA(s),

donde TA(s) es una función acotada en un entorno de 1.
Por otro lado L(s, 1) tiende a infinito cuando s tiende a 1, luego lo mismo

le ocurre a logL(s, 1). Esto implica que la función
∑
p∈A

1
ps no está acotada en

un entorno de 1, lo que sólo es posible si tiene infinitos sumandos. Más aún, es
claro que esto sólo es posible si ∑

p∈A

1
p

= +∞.

Como A es una clase cualquiera de Um, digamos A = {km + n | k ∈ Z} con
(m,n) = 1, esto prueba el teorema.
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11.6 El cálculo de L(1, χ)

Una vez probado el teorema de Dirichlet, nuestro interés por las funcio-
nes L se centra ahora en encontrar una expresión lo más simple posible para
los números L(1, χ), de modo que las fórmulas de los teoremas 11.11 y 11.26
nos permitan calcular lo más eficientemente posible el número de clases de los
cuerpos cuadráticos y ciclotómicos. Ciertamente, las expresiones que vamos
a obtener para las funciones L serán completamente satisfactorias, pero en la
fórmula de 11.26 interviene también el regulador del cuerpo, cuyo cálculo in-
volucra determinar un sistema fundamental de unidades, y esto no es sencillo.
Pese a ello, dicha fórmula nos permitirá obtener resultados cualitativos sobre h
que serán suficientes para caracterizar de forma efectiva a los primos regulares.

La única expresión con que contamos para calcular L(1, χ) es (11.15), pues
el producto de Euler diverge en 1. Aunque no es el camino que vamos a seguir,
es interesante notar que en el caso de caracteres cuadráticos las series L(1, χ)
pueden calcularse directamente por técnicas elementales en cada caso particular.

Ejemplo Sea K = Q
(√

5
)
. Vamos a calcular directamente

L(1, χK) =
1
1
− 1

2
− 1

3
+

1
4

+
1
6
− 1

7
− 1

8
+

1
9

+
1
11
− 1

12
− 1

13
+

1
14

+ · · · (11.17)

Para ello observamos que

L(1, χK) =
∫ 1

0

(1− x− x2 + x3 + x5 − x6 − x7 + x8 + · · · ) dx. (11.18)

En efecto: para justificar el cambio de la integral y la suma podemos agrupar
los términos en la forma∫ 1

0

(
(1− x− x2) + (x3 + x5 − x6 − x7) + (x8 + x10 − x11 − x12) + · · ·

)
dx,

con lo que podemos aplicar el teorema de la convergencia monótona de Lebesgue,
según el cual la integral coincide con(

1
1
− 1

2
− 1

3

)
+

(
1
4

+
1
6
− 1

7
− 1

8

)
+

(
1
9

+
1
11
− 1

12
− 1

13

)
+ · · ·

Las sumas parciales de esta serie son una subsucesión de las de (11.17), luego
el ĺımite es el mismo. De (11.18) obtenemos

L(1, χK) =
∫ 1

0

(1− x− x2 + x3)(1 + x5 + x10 + · · · ) dx

=
∫ 1

0

(1− x− x2 + x3)
1

1− x5
dx

=
∫ 1

0

1− x2

x4 + x3 + x2 + x + 1
dx
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Esta integral puede calcularse por las técnicas habituales. No obstante, el
truco siguiente proporciona un camino más rápido: hacemos y = x + 1/x, con
lo que dy = (1− 1/x2) dx.

L(1, χK) = −
∫ 1

0

1− 1/x2

x2 + x + 1 + 1/x + 1/x2
dx =

∫ +∞

2

dy

y2 + y − 1

=
∫ +∞

5/2

dz

z2 − 5/4
=

[
− 1√

5
log

z +
√

5/2
z −

√
5/2

]+∞

5/2

=
2√
5

log
1 +

√
5

2
.

El teorema 11.11 nos da que el número de clases de Q
(√

5
)

es h = 1.

Este método puede emplearse para evaluar cualquier función L asociada a
un cuerpo cuadrático. Si en lugar de calcular formalmente la integral usamos
un ordenador que la aproxime con precisión suficiente, el resultado es una forma
muy rápida de calcular números de clases (los errores de cálculo se cancelan al
aplicar el teorema 11.11 porque sabemos que el resultado ha de ser entero).1

Ejercicio: Sea K = Q(i). Probar que L(1, χK) = π/4. Se trata de la famosa fórmula
de Leibniz para el cálculo de π.

Ejemplo Vamos a calcular el número de clases del cuerpo ciclotómico octavo
mediante la fórmula del teorema 11.26.

Sea ω una ráız octava primitiva de la unidad. En el caṕıtulo II vimos que el
anillo de enteros de Q(ω) es Z[ω], y que su discriminante es 256.

Más delicado es el cálculo del regulador. Vamos a probar que Q(ω) tiene
una unidad fundamental real, con lo que ésta será la unidad fundamental de
Q(ω) ∩ R = Q

(√
2

)
, es decir, ε = 1 +

√
2.

En efecto, sea ε una unidad fundamental. Si σ es cualquier automorfismo
del cuerpo, entonces σ(ε/ε̄) = σ(ε)/σ(ε), luego |σ(ε/ε̄)| = 1. Esto significa que
ε/ε̄ está en el núcleo de la representación logaŕıtmica, luego es una ráız de la
unidad, ε = ω2k+iε̄, donde i = 0, 1. Si cambiamos ε por ωkε tenemos una unidad
fundamental que cumple ε = ωiε̄. Basta probar que i = 1 es imposible.

Sea ε = a + bω + cω2 + dω3. Entonces igualdad ε = ωε̄ nos da que

a + bω + cω2 + dω3 = ω(a− dω − cω2 − bω3) = b + aω − dω2 − cω3,

de donde a = b y c = −d, luego ε = a(1 + ω) + c(ω2 − ω3).
Ahora bien, π = ω−1 es primo (tiene norma 2) y ω ≡ 1 (mód π), por lo que

ε ≡ 0 (mód π), lo cual es imposible porque es una unidad.
1Puede probarse en general que el cambio de la serie y la integral siempre es ĺıcito, aunque

este punto es delicado: una forma de probarlo es integrar entre 0 y t < 1, donde el cambio
es posible por la convergencia uniforme, y después aplicar la continuidad de la integral en un
miembro y el teorema de Fatou en el otro, según el cual si una serie de potencias tiene radio
de convergencia 1, sus coeficientes tienden a 0 y converge a una función holomorfa definida
en 1, entonces la serie converge también en 1 a dicha función.
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Según lo dicho, esto prueba que una unidad fundamental es ε = 1 +
√

2,
luego el regulador es

R = log
(
1 +

√
2

)2 = 2 log
(
1 +

√
2

)
.

Por último, los caracteres no principales módulo 8 son los tres caracteres
cuadráticos δ, ε, δε definidos en 9.6, y que se corresponden respectivamente con
los cuerpos Q(i), Q

(√
2

)
y Q

(√
−2

)
. Según 11.26, el número de clases que

buscamos es

h =
8 · 16

(2π)2 · 2 log
(
1 +

√
2

)L(1, δ)L(1, ε)L(1, δε).

Por otra parte, la fórmula del teorema 11.11 nos permite calcular fácilmente

L(1, δ) =
π

4
, L(1, ε) =

log
(
1 +

√
2

)
√

2
, L(1, δε) =

π√
8
.

Concluimos que h = 1.

Ejercicio: Llegar al mismo resultado por las técnicas del caṕıtulo IV.

Veamos ahora una técnica mucho más eficiente para el cálculo de funciones L
en 1. Dado un carácter modular no principal χ, que podemos suponer primitivo,
en primer lugar agrupamos los sumandos de la serie L(s, χ) según las clases de
Um, donde m es el conductor de χ. Trabajamos con s > 1, de modo que la serie
converge absolutamente y las reordenaciones son ĺıcitas:

L(s, χ) =
∞∑
n=1

χ(n)
ns

=
∑
C

χ(C)
∞∑
n=1

an
ns

,

donde

an =
{

1 si n ∈ C
0 si n /∈ C

Ahora consideramos el carácter ψ de Z/nZ determinado por ψ(1) = ω, donde
ω = cos(2π/m)+i sen(2π/m), y notamos que por las relaciones de ortogonalidad

(ψr, 1) =
1
m

m−1∑
k=0

ωrk =
{

1 si m | r
0 si m � r

Por consiguiente

an =
1
m

m−1∑
k=0

ω(r−n)k,

donde r ∈ C y, volviendo a la función L,

L(s, χ) =
∑
r

χ(r)
∞∑
n=1

1
m

m−1∑
k=0

ω(r−n)k 1
ns

=
1
m

m−1∑
k=0

( ∑
r

χ(r)ωrk
) ∞∑
n=1

ω−nk

ns
,

donde r vaŕıa en un conjunto completo de representantes de las clases de Um.

Con esto nos hemos encontrado un concepto famoso en la teoŕıa de números:
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Definición 11.28 Sea m un número natural y a un número entero, sea χ un
carácter módulo m y ω = cos(2π/m) + i sen(2π/m). Se llama suma de Gauss
de χ a la expresión

Ga(χ) =
∑
r

χ(r)ωar,

donde r recorre un conjunto completo de representantes de las clases de Um.
Escribiremos G(χ) en lugar de G1(χ).

En términos de las sumas de Gauss, la expresión que hemos obtenido para
L(1, χ) es

L(s, χ) =
1
m

m−1∑
k=1

Gk(χ)
∞∑
n=1

ω−nk

ns
. (11.19)

Dedicaremos el caṕıtulo siguiente al estudio de estas sumas. Aqúı probaremos
el único resultado en torno a ellas que nos hace falta de momento:

Teorema 11.29 Sea χ un carácter primitivo. Entonces

Ga(χ) = χ(a)G(χ),

donde la barra denota la conjugación compleja.

Demostración: Sea d = (a,m) y sea m = td. Entonces ωa es una ráız
t-ésima primitiva de la unidad y ωau = ωa siempre que u ≡ 1 (mód t). Si d �= 1
entonces t es un divisor propio de m y por el teorema 11.20 existe un entero u
tal que u ≡ 1 (mód t), (u,m) = 1 y χ(u) �= 1.

Cuando r recorre un conjunto completo de representantes de las clases de
Um lo mismo le sucede a ur, luego

Ga(χ) =
∑
r

χ(ur)ωaur = χ(u)
∑
r

χ(r)ωar = χ(u)Ga(χ).

Puesto que χ(u) �= 1 ha de ser Ga(χ) = 0. Aśı mismo, χ(a) = 0, luego se cumple
la igualdad.

Por el contrario, si (a,m) = 1, cuando r recorre un conjunto completo de
representantes de las clases de Um lo mismo le sucede a ar, luego

χ(a)Ga(χ) =
∑
r

χ(ar)ωar =
∑
r

χ(r)ωr = G(χ),

y multiplicando por χ(a) = χ(a)−1 obtenemos la igualdad.

Sabiendo esto, la fórmula (11.19) se simplifica:

L(s, χ) =
G(χ)
m

∑
k

χ(k)
∞∑
n=1

ω−nk

ns
,

donde ahora k recorre un conjunto de representantes de las clases de Um (siempre
suponiendo que χ es primitivo o, equivalentemente, que m es el conductor del
carácter χ).
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El paso siguiente es notar que las sumas
N∑
n=1

ω−nk se anulan cada vez que

m | N por las relaciones de ortogonalidad) y en consecuencia toman un número
finito de valores. Podemos aplicar el teorema 11.24 y concluir que la serie

∞∑
n=1

ω−nk

ns

converge para s > 0 a una función continua. Ahora hacemos que s tienda a 1 y
resulta que

L(1, χ) =
G(χ)
m

∑
k

χ(k)
∞∑
n=1

ω−nk

n
.

La última serie se simplifica si tenemos presente que la serie de Taylor

− log(1− z) =
∞∑
n=1

zn

n

converge en realidad siempre que |z| ≤ 1, excepto en z = 1. Con ello tenemos
probado el teorema siguiente:

Teorema 11.30 Sea m un número natural, sea χ un carácter primitivo módulo
m no principal y sea ω = cos(2π/m) + i sen(2π/m). Entonces

L(1, χ) = −G(χ)
m

∑
k

χ(k) log(1− ω−k),

donde k recorre un conjunto de representantes de las clases de Um y el logaritmo
tiene parte imaginaria en ]−π/2, π/2[.

Lo importante de esta fórmula es que la serie infinita ha sido absorbida por
el logaritmo. Pronto veremos que podemos reducir los logaritmos complejos a
logaritmos reales, pero quizá sea clarificador considerar un caso concreto antes
de seguir:

Ejemplo Vamos a aplicar el teorema anterior al carácter ε(n) = (−1)(m
2−1)/8.

Para calcular la suma de Gauss hemos de considerar la ráız octava de la
unidad

ω =
√

2
2

+
√

2
2

i.

Claramente
G(ε) = ω − ω3 − ω5 + ω7 =

√
2 +

√
2 =

√
8.

Por consiguiente

L(1, ε) =
−1√

8

(
log(1− ω−1)− log(1− ω−3)− log(1− ω−5) + log(1− ω−7)

)
=

−1√
8

log
|1− ω |2
|1− ω3|2 =

1√
8

log
2 +

√
2

2−
√

2

=
1√
8

log
(
1 +

√
2

)2 =
log

(
1 +

√
2

)
√

2
.



296 Caṕıtulo 11. La función dseta de Dedekind

Ejercicio: Comprobar que las sumas Ga(ε) cumplen el teorema 11.29.

Ejercicio: Calcular las sumas de Gauss correspondientes al carácter δε.

Los cálculos del ejemplo y el ejercicio anterior se pueden seguir fácilmente
en general. En las condiciones del teorema 11.30 tenemos que

1− ω−k = 2 sen
kπ

m

(
cos

(
π

2
− kπ

m

)
+ i sen

(
π

2
− kπ

m

))
.

(basta desarrollar el miembro derecho usando la trigonometŕıa).

Si 0 < k < m entonces −π/2 < π/2− kπ/m < π/2, luego

log(1− ω−k) = log |1− ω−k|+ iπ

(
1
2
− k

m

)
,

(recordar que tomamos el logaritmo con parte imaginaria entre −π/2 y π/2).
Como 1− ω−k y 1− ωk son conjugados se cumple también

log(1− ωk) = log |1− ωk| − iπ

(
1
2
− k

m

)
.

Supongamos ahora que el carácter χ es par. Según el teorema 11.30

L(1, χ) = −G(χ)
m

∑
k

χ(k) log(1− ω−k),

L(1, χ) = −G(χ)
m

∑
k

χ(k) log(1− ω−k).

Sumando ambas expresiones

2L(1, χ) = −G(χ)
m

∑
k

χ(k)
(
log(1− ω−k) + log(1− ω−k)

)

= −2
G(χ)
m

∑
k

χ(k) log |1− ωk| = −2
G(χ)
m

∑
k

χ(k) log 2 sen
kπ

m
.

Si el carácter χ es impar obtenemos

2L(1, χ) = −G(χ)
m

∑
k

χ(k)
(
log(1− ω−k) + log(1− ω−k)

)

= −2
G(χ)
m

∑
k

χ(k) iπ
(

1
2
− k

m

)
.

Finalmente, por las relaciones de ortogonalidad se cumple
∑
k

χ(k) = 0, lo

que nos permite simplificar ambas fórmulas. Recogemos su forma definitiva en
el teorema siguiente:
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Teorema 11.31 Sea χ un carácter primitivo módulo m.

1. Si χ es par entonces

L(1, χ) = −G(χ)
m

∑
k

χ(k) log |1− ωk| = G(χ)
m

∑
k

χ(k) log sen
kπ

m
.

2. Si χ es impar

L(1, χ) =
iπG(χ)

m2

∑
k

χ(k) k.

En ambos casos k recorre los números 0 < k < m primos con m.

El estudio de las sumas de Gauss que llevaremos a cabo en el caṕıtulo si-
guiente nos permitirá simplificar aún más estas fórmulas, especialmente en el
caso de los caracteres cuadráticos.

11.7 Enteros ciclotómicos reales

Por último estudiamos la función dseta de los cuerpos K∗ = K ∩ R, donde
K es el cuerpo ciclotómico de orden p. Razonamos exactamente igual que como
hemos hecho para el cuerpo ciclotómico. En primer lugar agrupamos los factores
del producto de Euler correspondientes a un mismo primo racional:

ζK∗(s) =
∏
q

∏
q|q

1
1− 1

N(q)s

.

Ahora tenemos en cuenta el teorema 3.22, que nos da el número de divisores
primos de cada primo racional y la norma de cada uno. Separamos el factor
correspondiente a p, para el que tenemos un único ideal de norma p. Para los
primos restantes q, hay (p − 1)/2fq ideales de norma qfq , donde fq es op(q) o
bien op(q)/2. Según esto

ζK∗(s) =
1

1− 1
ps

∏
q �=p

(
1− 1

qfq

)− p−1
2fq

.

Ahora tomamos ωq = cos(2π/fq)+ i sen(2π/fq) y usamos la fórmula (11.13),
en virtud de la cual podemos afirmar

(
1− 1

qfq

) p−1
2fq

=
fq−1∏
k=0

(
1−

ωkq
qs

) p−1
2fq

.

El número total de factores es (p−1)/2 y por otra parte hay p−1 caracteres
módulo p, de los cuales la mitad son pares y la mitad impares. Veamos que

fq−1∏
k=0

(
1−

ωkq
qs

) p−1
2fq

=
∏

χ(1)=1

(
1− χ(q)

qs

)
.
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Supongamos primero que op(q) es impar. Entonces [−1] no pertenece al
subgrupo generado por [q] en Up. Dado un k, existe un único carácter ψ de 〈[q]〉
tal que ψ

(
[q]

)
= ωkq , que se extiende exactamente a dos caracteres del grupo

〈[q], [−1]〉, de los cuales uno será par y el otro impar (si ambos coincidieran sobre
[−1] coincidiŕıan en todo el grupo).

El carácter par se extiende a (p − 1)/2fq caracteres pares módulo p. Por
lo tanto cuando χ vaŕıa entre los caracteres pares módulo p tenemos que χ(q)
toma (p−1)/2fq veces el valor ωk para cada k entre 0 y fq−1. De aqúı se sigue
lo pedido en este caso.

Supongamos ahora que op(q) es par y por tanto fq = op(q)/2. En este caso,
el carácter ψ de 〈[q]〉 que cumple ψ

(
[q]

)
= ωkq , cumple también que

ψ
(
[−1]

)
= ψ

(
[q]fq

)
= (ωkp)

fq = 1k = 1.

Por lo tanto ψ se extiende a (p− 1)/2fq caracteres módulo p, todos ellos pares,
y de nuevo cuando χ vaŕıa entre los caracteres pares módulo p se cumple que
χ(q) toma (p− 1)/2fq veces el valor ωpq para cada k entre 0 y fq − 1.

Con esto tenemos que

ζK∗(s) =
1

1− 1
ps

∏
q �=p

∏
χ(1)=1

1

1− χ(q)
qs

.

Si entendemos, como siempre, que el carácter principal toma el valor 1 incluso
sobre p, vemos que el producto de la derecha para q = p coincide con el factor
de la izquierda, luego en realidad

ζK∗(s) =
∏
q

∏
χ(1)=1

1

1− χ(q)
qs

=
∏

χ(1)=1

L(s, χ).

Recogemos esto y su consecuencia inmediata sobre el número de clases en el
teorema siguiente:

Teorema 11.32 Sea K el cuerpo ciclotómico de orden p y K∗ = K ∩ R. Sea
m = (p− 1)/2 el grado de K∗ y R∗ su regulador. Entonces

1. La función dseta de K∗ factoriza como

ζK∗(s) =
∏

χ(1)=1

L(s, χ),

donde χ recorre los caracteres pares módulo p.

2. El número de clases h∗ de K∗ viene dado por

h∗ =
√

pm−1

2m−1R∗

∏
χ(1)=1

χ�=1

L(1, χ).



Caṕıtulo XII

Sumas de Gauss

Las sumas de Gauss nos han aparecido en el caṕıtulo anterior al evaluar
las funciones L, pero lo cierto es que estas sumas ya hab́ıan sido estudiadas
mucho antes de que Kummer y Dirichlet se las encontraran como nosotros nos
las hemos encontrado. Como su nombre indica, estas sumas fueron introducidas
por Gauss, quien obtuvo importantes resultados sobre y mediante ellas.

En este caṕıtulo trataremos de explicar el motivo de su interés y aśı mismo
obtendremos los resultados que necesitamos para acabar de perfilar el análisis
de las funciones L.

12.1 Propiedades básicas

En primer lugar recordamos la definición de las sumas de Gauss:

Definición 12.1 Sea m un número natural y a un número entero, sea χ un
carácter módulo m y ω = cos(2π/m) + i sen(2π/m). Se llama suma de Gauss
de χ a la expresión

Ga(χ) =
∑
r

χ(r)ωar,

donde r recorre un conjunto completo de representantes de las clases de Um.

En el caṕıtulo anterior probamos además que si χ es un carácter primitivo
entonces

Ga(χ) = χ(a)G(χ), (12.1)

donde G(χ) = G1(χ), luego podemos limitarnos a estudiar esta suma, que recibe
el nombre de suma principal.

Ejemplo Consideremos el carácter χ módulo 5 dado por

χ(1) = 1, χ(2) = i, χ(3) = −i, χ(4) = −1.

Vamos a calcular G(χ).

299
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Sea
ω = cos

2π
5

+ i sen
2π
5

.

Las relaciones (ω +ω4) + (ω2 +ω3) = (ω +ω4)(ω2 +ω3) = −1 implican que
ω + ω4 y ω2 + ω3 son las ráıces del polinomio x2 + x− 1, de donde

ω + ω4 =
−1 +

√
5

2
, ω2 + ω3 =

−1−
√

5
2

.

De aqúı que ω y ω4 son ráıces del polinomio x2− −1+
√

5
2 x+ 1, mientras que ω2

y ω3 lo son de x2 − −1−
√

5
2 x + 1, por lo que

ω =
−1 +

√
5

4
+

√
5 +

√
5

8
, ω2 =

−1−
√

5
4

+

√
5−

√
5

8
,

ω3 =
−1−

√
5

4
+

√
5−

√
5

8
, ω4 =

−1 +
√

5
4

+

√
5 +

√
5

8
.

Ahora un simple cálculo nos da que

G(χ) = ω + iω2 − iω3 − ω4 = −

√
5−

√
5

2
+

√
5 +

√
5

2
i.

Observar que |G(χ)| =
√

5.

Ejercicio: Sea χ el carácter definido por el śımbolo de Legendre χ(n) = (n/5). Probar
que G(χ) =

√
5.

Ejercicio: Usar el ejemplo anterior para sumar las series

1 − 1

4
+

1

6
− 1

9
+

1

11
− 1

14
+

1

16
− 1

19
+ · · ·

y
1

2
− 1

3
+

1

7
− 1

8
+

1

12
− 1

13
+

1

17
− 1

18
+ · · ·

Aunque el valor de una suma de Gauss no es predecible en general, su módulo
está perfectamente determinado. Lo calculamos en el teorema siguiente, cuya
prueba contiene una interesante interpretación algebraica de las sumas de Gauss

Teorema 12.2 Todo carácter primitivo χ módulo m cumple |G(χ)| = √m.

Demostración: Consideremos el conjunto V formado por todas las apli-
caciones f : Z/mZ −→ C. Según explicamos en el caṕıtulo anterior, V es un
espacio vectorial sobre C que tiene como base a los caracteres de Z/mZ. Para
cada k ∈ Z/mZ sea fk el carácter determinado por fk(1) = ω−k. Las aplicacio-
nes f1, . . . , fm son todos los caracteres de Z/mZ. Es importante notar que no
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son caracteres modulares, pues éstos son los caracteres del grupo multiplicativo
Um, mientras que aquéllos son los caracteres del grupo aditivo Z/mZ.

También sabemos que en V está definido el producto sesquilineal

(f, g) =
1
m

m∑
k=1

f(k)g(k),

respecto al cual los caracteres fk son una base ortonormal. Puesto que χ ∈ V ,
podemos expresarlo como combinación lineal

χ =
m∑
k=1

αkfk, αk ∈ C.

Los coeficientes se pueden calcular como

αa = (χ, fa) =
1
m

m∑
k=1

χ(k)ωak =
Ga(χ)

m
.

Vemos, pues, que salvo el factor (1/m) las sumas de Gauss de χ son las coorde-
nadas del carácter multiplicativo χ en la base de los caracteres aditivos módulo
m. Expĺıcitamente:

χ =
G(χ)
m

m∑
k=1

χ(k)fk,

Usando la sesquilinealidad del producto y la ortonormalidad de la base ob-
tenemos

(χ, χ) =
|G(χ)|2

m2

m∑
k, r=1

χ(k)χ(r)(fk, fr) =
|G(χ)|2

m2
φ(m),

pero por otra parte, usando la definición del producto sesquilineal,

(χ, χ) =
1
m

m∑
k=1

χ(k)χ(k) =
1
m

m∑
k=1

|χ(k)|2 =
1
m

φ(m).

Comparando los dos resultados concluimos que |G(χ)|2 = m.

12.2 Sumas de Gauss y la ley de reciprocidad

Para entender cómo llegó Gauss al estudio de las sumas que llevan su nombre
hemos de remontarnos al trabajo de Euler en torno a la ley de reciprocidad
cuadrática. Euler la descubrió emṕıricamente, pero sólo pudo probar la primera
ley suplementaria y parte de la segunda. Respecto a la primera se basó en el
hecho siguiente:
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Teorema 12.3 Sea p un primo impar y a un entero primo con p. Entonces(
a

p

)
≡ a(p−1)/2 (mód p).

Demostración: Si (a/p) = 1 entonces a ≡ r2 (mód p), de donde se sigue
que a(p−1)/2 ≡ rp−1 ≡ 1 (mód p). Por otro lado, el polinomio x(p−1)/2 − 1 no
puede tener más de (p− 1)/2 ráıces módulo p, luego sus ráıces son exactamente
los (p− 1)/2 restos cuadráticos módulo p.

Si (a/p) = −1, entonces (a(p−1)/2)2 = ap−1 ≡ 1 (mód p), luego ha de ser
a(p−1)/2 ≡ ±1 (mód p), y como no es congruente con 1, ha de serlo con −1

Haciendo a = −1 se obtiene que (−1/p) ≡ (−1)(p−1)/2 (mód p), y como
ambos miembros son ±1 y 1 �≡ −1 (mód p), la congruencia ha de ser de hecho
una igualdad, lo que prueba la primera ley suplementaria.

Respecto a la segunda ley suplementaria, Euler sólo probó que si p es un
primo p ≡ 1 (mód 8), entonces 2 es un resto cuadrático módulo p. Para ello
se basó en la existencia de una ráız primitiva de la unidad módulo p (de lo
cual sólo teńıa una evidencia emṕırica y fue demostrado más tarde por Gauss).
Tomemos una ráız primitiva u módulo p. Sea ω = [u(p−1)/8]. Entonces ω8 = 1,
y 8 es el menor exponente que cumple esto, luego ω4 = −1, ω2 = −ω−2 y aśı
ω2 + ω−2 = 0. Esto implica que

(ω + ω−1)2 = ω2 + 2 + ω−2 = 2,

como queŕıamos probar.

Si p �≡ 1 (mód 8) el argumento anterior es aparentemente inviable, pero
en realidad la idea puede aprovecharse si contamos con el álgebra moderna,
concretamente con la teoŕıa de cuerpos finitos. En esencia, lo que nos impide
empezar el razonamiento es que necesitamos una ráız octava de la unidad en
Z/pZy puede que no la haya, pero podemos obtenerla en un cuerpo mayor.

Sea p un primo impar cualquiera y sea ω una ráız octava primitiva de la
unidad en una extensión K de Z/pZ. Si llamamos γ = ω + ω−1, el mismo
argumento de antes prueba que γ2 = 2, pero esto no significa que 2 sea un resto
cuadrático módulo p, ya que γ no tiene por qué estar en Z/pZ (no hay que
olvidar que al fin y al cabo 2 no tiene por qué ser un resto cuadrático).

Tenemos que (2/p) = 1 si y sólo si γ ∈ Z/pZ (pues en K no puede haber
más ráıces cuadradas de 2 que ±γ, pero los elementos de Z/pZ son exactamente
los elementos de K que cumplen xp = x. Calculamos, pues, γp = ωp + ω−p.
Para ello observamos que, como ω8 = 1, se cumple

ωp + ω−p = ω + ω−1 = γ si p ≡ ±1 (mód 8),
ωp + ω−p = ω3 + ω−3 = −(ω + ω−1) = −γ si p ≡ ±3 (mód 8).

O sea, γp = (−1)(p
2−1)/8γ, con lo que γp = γ si y sólo si (−1)(

p2−1)/8 = 1 y,
según lo visto, esto equivale a que (2/p) = (−1)(p

2−1)/8.
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Como ya hemos advertido, esta técnica es demasiado moderna, pero Gauss
encontró un argumento intermedio que proporciona una prueba ligeramente
más larga, pero que da cuenta del caso general, al contrario de lo que ocurre
con el argumento de Euler. No es dif́ıcil imaginar de qué se trata: en lugar de
considerar una ráız octava de la unidad en un cuerpo de caracteŕıstica p, Gauss
tomó una ráız octava de la unidad en C y consideró congruencias módulo p. Sea

ω = cos(2π/8) + i sen(2π/8) =
√

2
2

+
√

2
2

i.

Entonces es claro que γ = ω + ω−1 =
√

2, y en particular γ2 = 2. Conviene
observar que aunque la prueba de γ2 = 2 es ahora inmediata, podŕıamos haber
obtenido esto mismo por medios puramente algebraicos sin más que repetir el
argumento anterior (esto indica que no se trata de una mera casualidad y hace
plausible que el argumento pueda ser generalizado).

Ahora tomamos congruencias en Z[ω] y usamos el teorema 12.3:

γp−1 = (γ2)(p−1)/2 = 2(p−1)/2 ≡
(

2
p

)
(mód p).

De aqúı que γp ≡ (2/p)γ (mód p). Como el cociente módulo p es un anillo
de caracteŕıstica p tenemos que γp = (ω+ω−1)p ≡ ωp+ω−p (mód p) y podemos
concluir como antes que

(−1)(p
2−1)/8γ ≡

(
2
p

)
γ (mód p).

Multiplicamos por γ ambos miembros y queda

(−1)(p
2−1)/8 2 ≡

(
2
p

)
2 (mód p),

luego (−1)(p
2−1)/8 ≡ (2/p) (mód p), y aśı (−1)(p

2−1)/8 = (2/p).

La clave de la prueba ha sido la fórmula (γ + γ−1)2 = 2. Gauss se planteó
el encontrar relaciones similares para primos impares con las que obtener una
prueba más simple de la ley de reciprocidad cuadrática en toda su generalidad.
Aśı es como llegó a las sumas de Gauss y, más exactamente, al siguiente caso
particular:

Definición 12.4 Sea p un primo impar. Llamaremos sumas cuadráticas de
Gauss módulo p a las sumas

Ga(p) =
p−1∑
r=1

(
r

p

)
ωar,

donde ω = cos 2π/p + i sen 2π/p.
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Claramente Ga(p) = Ga(χ), donde χ es el carácter módulo p determinado
por el śımbolo de Legendre. En particular llamaremos G(p) = G1(p).

La relación (12.1) implica que si p � a entonces Ga(p) = (a/p)G(p).

En realidad Gauss definió

Ga(p) =
p−1∑
x=0

ωax
2
. (12.2)

Es fácil ver que se trata de una definición equivalente: podemos descomponer
Ga(p) = R −N , donde R y N son las sumas de las potencias de ωa con expo-
nentes respectivamente restos y no restos cuadráticos. Entonces 1+N +R = 0,
pues se trata de la suma de todas las potencias de ω (repetidas varias veces si a
no es primo con m), y en consecuencia R−N = 2R+1, que coincide con (12.2),
pues x2 recorre dos veces los restos cuadráticos más el cero. De hecho, Gauss
estudió las sumas Ga(b) definidas de este modo para todo b, no necesariamente
primo. De todos modos la sumas asociadas a primos son las únicas relevantes
en el problema que nos ocupa.

Como consecuencia del teorema 12.2 sabemos que |G(p)| = √
p, pero Gauss

probó algo más fuerte:

Teorema 12.5 Sea p un primo impar. Entonces

G(p)2 = (−1)(p−1)/2p.

Demostración: Aplicando la conjugación compleja a la definición de G(p)
resulta

G(p) =
p−1∑
r=1

(
r

p

)
ω−r = G−1(p) =

(−1
p

)
G(p).

Aśı pues, si (−1/p) = 1 tenemos que G(p) = G(p), luego G(p) ∈ R y
G(p)2 > 0. Por el teorema 12.2 ha de ser G(p)2 = p.

Por el contrario, si (−1/p) = −1. entonces G(p) = −G(p), lo que implica
que G(p) es imaginario puro, y aśı G(p)2 < 0. El teorema 12.2 nos da que
G(p)2 = −p.

En resumen queda que G(p)2 = (−1/p)p = (−1)(p−1)/2p.

Ejercicio: Usar el teorema 11.30 para probar en general que si χ es un carácter
cuadrático primitivo módulo m, entonces G(χ)2 = χ(−1)m.

Veamos ahora cómo la relación que proporciona el teorema anterior permite
probar fácilmente la ley de reciprocidad.

Sean p y q primos impares distintos. Sea p′ = (−1)(p−1)/2p. Consideraremos
congruencias módulo q en el anillo ciclotómico p-ésimo y usamos el teorema de
Euler 12.3.

G(p)q−1 = (G(p)2)(q−1)/2 = p′(q−1)/2 ≡
(

p′

q

)
(mód q).
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Por otra parte, si consideramos la definición de G(p) tenemos

G(p)q =

(
p−1∑
r=1

(
r

p

)
ωr

)q

≡
p−1∑
r=1

(
r

p

)
ωqr = Gq(p) =

(
q

p

)
G(p) (mód q).

Combinando las dos congruencias queda(
p′

q

)
G(p) ≡ G(p)q ≡

(
q

p

)
G(p) (mód q).

Multiplicamos por G(p) y aśı (p′/q)p′ ≡ (q/p)p′ (mód q), de donde concluimos

(
q

p

)
=

(
p′

q

)
=

(−1
q

)(p−1)/2 (
p

q

)
= (−1)(q−1)(p−1)/4

(
p

q

)
.

Al igual que ocurre con el caso del 2, la demostración se simplifica si usamos
cuerpos finitos en lugar de congruencias. Para esta prueba necesitamos la versión
del teorema 12.5 en cuerpos finitos. De hecho el argumento que presentamos es
válido en cualquier cuerpo, lo que prueba que se trata de una relación puramente
algebraica.

Sean p y q primos impares distintos y sea ω una ráız p-ésima primitiva de la
unidad en una extensión de Z/qZ. Definimos la suma de Gauss

γ =
p∑

x=1

ωx
2
.

Veamos que γ2 = (−1)(p−1)/2p. En principio tenemos

γ2 =
p∑

x y=1

ωx
2+y2

. (12.3)

Es fácil ver que la forma cuadrática x2 + y2 representa todas las clases
módulo p. Esto se sigue de los resultados vistos en caṕıtulos anteriores, pero un
argumento elemental es el siguiente: dado, r, los polinomios x2 e r − y2 toman
(p + 1)/2 valores distintos módulo p, luego ha de haber un x y un y tales que
x2 = r − y2. Sea

G =
{
(x, y) ∈ Z/pZ× Z/pZ

∣∣ x2 + y2 �= 0
}
.

Es claro que G es un grupo con el producto dado por

(x, y)(x′, y′) = (xx′ − yy′, xy′ + x′y).

El inverso de un par se calcula por la misma fórmula que el de un número
complejo. Además la aplicación (x, y) 
→ x2 +y2 es un epimorfismo de G en Up.
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De aqúı concluimos que la forma x2 + y2 representa el mismo número de veces
cada clase no nula módulo p.

Si (−1/p) = −1, entonces x2 + y2 = 0 sólo sucede cuando x = y = 0. Por
lo tanto, de los p2 sumandos de (12.3), hay uno igual a ω0 = 1 y los p2 − 1
restantes se reparten entre las p − 1 potencias no triviales de ω, de modo que
cada una aparece p + 1 veces. Por consiguiente

γ2 = 1 + (p + 1)
p−1∑
r=1

ωr = 1 + (p− 1)(−1) = −p =
(−1

p

)
p.

Si (−1/p) = 1 entonces para cada clase x ∈ Up, la ecuación x2 +y2 = 0 tiene
exactamente dos soluciones, luego en total hay 2(p− 1)+1 representaciones del
0, que se corresponden con otros tantos sumandos iguales a 1 en (12.3). Queda
un total de p2 − 2p + 1 = (p− 1)2 sumandos, con lo que cada potencia de ω no
trivial aparece p− 1 veces. Aśı pues,

γ2 = 2p− 1 + (p− 1)
p−1∑
r=1

ωr = 2p− 1 + (p− 1)(−1) = p =
(−1

p

)
p.

Por otra parte,

γq =
p∑

x=0

ωqx
2

=
(

q

p

)
γ,

pues si (q/p) = 1 entonces q ≡ u2 (mód p), luego qx2 ≡ (ux)2 (mód p) y cuando
x recorre las clases módulo p lo mismo vale para ux. Por lo tanto en este caso
γq = γ. En cambio, si (q/p) = −1 los exponentes de γq recorren dos veces los
restos no cuadráticos módulo p (más el cero), mientras que los de γ recorren
dos veces los restos cuadráticos (más el cero). Claramente entonces γ + γq = 0,
pues es dos veces la suma de todas las potencias de ω.

Con esto tenemos que γq−1 = (q/p). Ahora bien, γ2 ∈ Z/qZ y será un resto
cuadrático módulo q si y sólo si γ ∈ Z/qZ, si y sólo si γq−1 = γ. Por consiguiente

(
q

p

)
=

(
γ2

q

)
=

(−1
q

)(p−1)/2 (
p

q

)
= (−1)(p−1)(q−1)/4

(
p

q

)
.

12.3 El signo de las sumas cuadráticas

Una de las caracteŕısticas de Gauss era su extremada meticulosidad. En sus
trabajos no dejaba de discutir el menor aspecto de cualquier problema, y aśı,
a pesar de que la fórmula del teorema 12.5 era suficiente para demostrar la ley
de reciprocidad cuadrática, quedaba planteado el problema de calcular el valor
exacto de G(p).
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Por 12.5 podemos afirmar que

G(p) =

{
±√p si p ≡ 1 (mód 4)
±√p i si p ≡ −1 (mód 4)

(12.4)

La cuestión era determinar el signo. El caso es que los cálculos expĺıcitos
muestran que siempre aparece el signo positivo, pero Gauss tardó tres años
en encontrar una prueba de ello. Con sus propias palabras: “. . . este estudio,
que a primera vista parece muy sencillo, conduce directamente a dificultades
inesperadas, y su desarrollo, que ha llegado hasta aqúı sin obstáculos, requiere
métodos completamente nuevos.”. Vamos a dar una prueba debida a Shur.

Teorema 12.6 Sea p un primo impar. Entonces

G(p) =

{ √
p si p ≡ 1 (mód 4)

√
p i si p ≡ −1 (mód 4)

Demostración: Sea ω = cos(2π/p) + i sen(2π/p). Consideremos la matriz
A = (ωxy), donde x, y vaŕıan entre 0 y p− 1. La expresión (12.2) para la suma
G(p) prueba que ésta es la traza de la matriz A. Sean λ1, . . . , λp los valores
propios de A. Entonces G(p) = λ1 + · · · + λp, y todo se reduce a calcular los
valores propios de A. Calculamos ahora A2. El coeficiente x, y de A2 es

p∑
t=1

ωt(x+y) =
{

p si x + y ≡ 0 (mód p)
0 si x + y �≡ 0 (mód p)

Es obvio que los valores propios de A2 son los cuadrados de los valores
propios de A, pero el polinomio caracteŕıstico de A2 es fácil de calcular:

pol carA2 = (t− p)(p+1)/2(t + p)(p−1)/2.

(Esbozamos el cálculo: el determinante de tI − A2 puede desarrollarse por
la primera fila, de modo que queda (t− p)|B|, donde B es una matriz de orden
p − 1 que tiene a t en toda la diagonal principal y −p en la otra diagonal.
Desarrollando este determinante por la primera fila queda (t− p)(t|C|+ p|D|),
y los dos determinantes pueden desarrollarse por la última fila para llegar a

(t− p)(t2|B′| − p2|B′|) = (t− p)(t2 − p2)|B′|,

donde B′ es como B pero con dos filas y columnas menos).

Aśı pues, los valores propios de A2 son (p + 1)/2 números iguales a p y
(p − 1)/2 números iguales a −p, luego cada valor propio de A es de la forma
±√p o ±i

√
p. Más aún, si llamamos a, b, c, d a las multiplicidades de los valores

propios
√

p, −√p, i
√

p, −i
√

p, ha de cumplirse

a + b = (p + 1)/2, c + d = (p− 1)/2. (12.5)
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Además tenemos
G(p) =

(
a− b + (c− d)i

)√
p. (12.6)

Comparando con (12.4) concluimos que

a− b = ±1, c = d cuando p ≡ 1 (mód 4),
c− d = ±1, a = b cuando p ≡ −1 (mód 4). (12.7)

Calculemos por otro lado el determinante de A. Para ello observamos que

|A2| = (−1)p(p−1)/2pp,

luego |A| = ±ip(p−1)/2pp/2. Nos falta determinar el signo. Para ello observamos
que |A| es un determinante de Vandermonde. Sea η = cos(π/p) + i sen(π/p).
Entonces

|A| =
∏

0≤r<s≤p−1

(ωs − ωr) =
∏

0≤r<s≤p−1

(η2s − η2r)

=
∏

0≤r<s≤p−1

ηr+s(ηs−r − η−(s−r))
∏

0≤r<s≤p−1

ηr+s
(

2i sen
(s− r)π

p

)
.

El primer producto del último término es η elevado a 1

∑
0≤r<s≤p−1

(r + s) =
p−1∑
r=1

r−1∑
s=0

(r + s) =
p−1∑
r=1

(
r2 +

r(r − 1)
2

)
= 2p

(
p− 1

2

)2

.

Como el orden de η es 2p, dicho producto es 1 y queda

|A| = ip(p−1)/22p(p−1)/2
∏

0≤r<s≤p−1

sen
(s− r)π

p
,

donde todos los senos son positivos. Comparando las dos expresiones que hemos
obtenido llegamos a que |A| = ip(p−1)/2pp/2.

Por otro lado |A| es el producto de los valores propios de A, o sea,

|A| = (−1)bic(−i)dpp/2 = i2b+c−dpp/2.

De aqúı obtenemos que 2b + c − d ≡ p(p − 1)/2 (mód 4). Uniendo esto a
(12.5) y (12.7) resulta que si p ≡ 1 (mód 4) entonces c = d, y

a− b = a + b− 2b =
p + 1

2
− 2b ≡ p + 1

2
− p− 1

2
≡ p ≡ 1 (mód 4),

luego a− b = 1, y si p ≡ −1 (mód 4) entonces a = b y

c− d ≡ −(p− 1)/2− 2b = −p− 1
2

− p + 1
2

≡ −p ≡ 1 (mód 4),

luego c− d = 1. En ambos casos (12.6) nos da el resultado.

1Usamos aqúı la fórmula de Bernoulli:
∑m

k=1
k2 =

m(m+1)(2m+1)
6

. La probaremos en el
caṕıtulo siguiente, p. 323.
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Las sumas de Gauss tienen aplicaciones muy diversas en teoŕıa de números.
Entre otras cosas, permiten calcular el número de soluciones de ciertas congruen-
cias, permiten obtener generalizaciones de la ley de reciprocidad cuadrática y
tienen importancia en el estudio de los cuerpos ciclotómicos. Ahora nos dedica-
remos a obtener los resultados adicionales que nos hacen falta para completar
nuestra evaluación de las funciones L. Para el caso cuadrático debemos extender
el teorema anterior a sumas de caracteres de módulo no necesariamente primo.
Todas las dificultades de cálculo las hemos superado ya. Lo que queda es fácil.
La clave es el teorema siguiente:

Teorema 12.7 Sean χ1, . . . , χn caracteres módulo m1, . . . ,mn respectivamente,
donde los números mi son primos entre śı dos a dos. Sea χ = χ1 × · · · × χn y
m = m1 ×mn. Entonces

Ga(χ) = Ga(χ1) · · ·Ga(χn)χ1(m/m1) · · ·χn(m/mn).

Demostración: Basta probarlo cuando n = 2 y el caso general se sigue
por inducción. Concretamente hemos de ver que

Ga(χ1 × χ2) = Ga(χ1)Ga(χ2)χ1(m2)χ2(m1).

Para ello observamos que la aplicación Um1 × Um2 −→ Um definida como(
[u], [v]

)

→ [um2+vm1] es biyectiva (aunque no es un homomorfismo). Además,

si ω = cos(2π/m) + i sen(2π/m), entonces

ωm2 = cos(2π/m1) + i sen(2π/m1) y ωm1 = cos(2π/m2) + i sen(2π/m2).

Por lo tanto,

Ga(χ1)Ga(χ2)χ1(m2)χ2(m1) =
(∑
u,v

χ1(u)χ2(v)ωm2au+m1av
)
χ1(m2)χ2(m1)

=
∑
u,v

χ1(m2u)χ2(m1v)ωa(m2u+m1v)

=
∑
u,v

χ1(m2u + m1v)χ2(m2u + m1v)ωa(m2u+m1v) =
∑
r

χ1(r)χ2(r)ωar

=
∑
r

χ(r)ωar = Ga(χ),

donde u vaŕıa en Um1 , v vaŕıa en Um2 y r en Um.

Con esto podemos probar:

Teorema 12.8 Sea χ un carácter cuadrático primitivo módulo m. Entonces

G(χ) =

{ √
m si χ(−1) = 1

i
√

m si χ(−1) = −1
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Demostración: Por el teorema 11.22 sabemos que m ha de ser el discrimi-
nante de un cuerpo cuadrático, es decir, que existe un número impar r libre de
cuadrados de modo que m = r, m = 4r o m = 8r. Digamos que r = p1 · · · ps.
Llamemos ri = r/pi.

Sea χi el único carácter cuadrático módulo pi, es decir, el determinado por
χi(a) = (a/pi) para (a, pi) = 1. Sea ψ = χ1 × · · · × χs. Por el teorema anterior

G(ψ) = G(χ1) · · ·G(χs)χ1(r/p1) · · ·χs(r/ps).

Sea t el número de primos pi congruentes con −1 módulo 4. Entonces el
teorema 12.6 nos da que

G(ψ) = it
√

r

(
r1

p1

)
· · ·

(
rs
ps

)
= it

√
r
∏
i �=j

(
pi
pj

) (
pj
pi

)

= it
√

r (−1)t(t−1)/2 = it
2√

r =

{ √
r si t es par

i
√

r si t es impar

Por otra parte, χi(−1) = −1 si y sólo si pi ≡ −1 (mód 4), luego ψ(−1) = 1
si y sólo si t es par. Esto prueba el teorema cuando m = r.

Supongamos ahora que m = 4r. Entonces χ = δ × ψ, donde δ es el carácter
primitivo módulo 4. Es fácil comprobar que G(δ) = i − (−i) = 2i. Por el
teorema anterior G(χ) = G(δ)G(ψ)δ(r)ψ(4) = 2iG(ψ)δ(r).

Si r ≡ 1 (mód 4) entonces t es par y δ(r) = 1, luego G(χ) = 2i
√

r = i
√

m, y
por otra parte χ(−1) = δ(−1)ψ(−1) = −1, luego se cumple el teorema.

Si r ≡ −1 (mód 4) entonces t es impar y δ(r) = −1, de donde llegamos a
que G(χ) = 2i · i√r(−1) =

√
m, y por otra parte χ(−1) = δ(−1)ψ(−1) = 1.

Esto completa la prueba para el caso m = 4r.

En el caso m = 8r se razona igualmente, con la única diferencia de que ahora
tenemos que considerar dos posibilidades para el carácter módulo 8, a saber, los
caracteres ε y δε.

12.4 El número de clases en cuerpos cuadráticos

Si en las fórmulas del teorema 11.11 evaluamos la función L mediante las
fórmulas del teorema 11.31 y en éstas evaluamos la suma de Gauss, obtenemos
el teorema siguiente:

Teorema 12.9 Sea K un cuerpo cuadrático de discriminante ∆ y sea h su
número de clases. Entonces

1. Si K es real y ε > 1 es su unidad fundamental,

h = − 1
log ε

∑
k

χK(k) log sen
kπ

∆
,

donde k recorre los números naturales 0 < k < ∆/2, (k,∆) = 1.
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2. Si K es imaginario y ∆ < −4,

h = − 1
|∆|

∑
k

χ(k)k,

donde k recorre los números 0 < k < |∆|, (k,∆) = 1.

Notar que en el caso real k debeŕıa variar entre 0 y ∆ y faltaŕıa un factor
1/2, pero claramente el sumando correspondiente a ∆− k es igual al sumando
correspondiente a k, luego podemos reducir a la mitad el número de sumandos y
simplificar el 2. En el caso imaginario suponemos ∆ < −4 para evitar distinguir
el número de unidades. Los casos exceptuados tienen h = 1.

La fórmula para cuerpos imaginarios puede simplificarse más todav́ıa. Sea
m = |∆| y supongamos primero que m es par.

Observemos que χK(k + m/2) = −χK(k). En efecto, con la notación del
teorema 12.8 es evidente que ψ(k+m/2) = ψ(k). Si m = 4r entonces χK = δ×ψ,
y es claro que δ(k + 2) = −δ(k). Si m = 8r entonces χK = ε × ψ o bien
χK = δε × ψ, y también es claro que ε(k + 4) = −ε(k), de donde se sigue la
relación.

En las sumas siguientes k recorre sólo los números primos con m en los
rangos indicados:

hm = −
∑
k

χK(k)k = −
m/2∑
k=1

χK(k)k −
m/2∑
k=1

χK

(
k +

m

2

) (
k +

m

2

)
=

= −
m/2∑
k=1

χK(k)k +
m/2∑
k=1

χK(k)
(
k +

m

2

)
=

m

2

m/2∑
k=1

χK(k),

luego

h =
1
2

m/2∑
k=1

χK(k).

Si por el contrario m es impar, entonces

hm = −
∑
k

χK(k)k = −
m/2∑
k=1

χK(k)k −
m/2∑
k=1

χK(m− k)(m− k)

= −
m/2∑
k=1

χK(k)k +
m/2∑
k=1

χK(k)(m− k)

= −2
m/2∑
k=1

χK(k)k + m

m/2∑
k=1

χK(k). (12.8)

Por otra parte separamos los sumandos pares de los impares:

hm = −
∑
k

χK(k)k = −
m/2∑
k=1

χK(2k)2k −
m/2∑
k=1

χK(m− 2k)(m− 2k)
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= −2χK(2)
m/2∑
k=1

χK(k)k +
m/2∑
k=1

χK(2k)(m− 2k)

= −4χK(2)
m/2∑
k=1

χK(k)k + mχK(2)
m/2∑
k=1

χK(k).

Por lo tanto

hmχK(2) = −4
m/2∑
k=1

χK(k)k + m

m/2∑
k=1

χK(k). (12.9)

Multiplicamos (12.8) por 2 y le restamos (12.9):

hm
(
2− χK(2)

)
= m

m/2∑
k=1

χK(k).

Finalmente observamos que la ecuación obtenida en el caso m par es ésta
misma, puesto que entonces χK(2) = 0. En resumen:

Teorema 12.10 Sea K un cuerpo cuadrático de discriminante ∆ < −4. En-
tonces el número de clases de K viene dado por la fórmula

h =
1

2− χ(2)

|∆|/2∑
k=1

χ(k),

donde k recorre los números primos con ∆.

Esta fórmula, ya simple de por śı, se simplifica aún más cuando se aplica a
cuerpos de discriminante primo. Concretamente tendrán que ser cuerpos de la
forma K = Q

(√−p
)
, donde p ≡ −1 (mód 4). Entonces el carácter de K es el

śımbolo de Legendre y χ(2) depende del resto de p módulo 8. El enunciado es
claramente:

Teorema 12.11 Sea p ≡ −1 (mód 4) un primo racional y sean respectivamente
R y N el número de restos cuadráticos y restos no cuadráticos módulo p en el
intervalo [0, p/2]. Entonces el número de clases de Q

(√−p
)

viene dado por

h =

{
R−N si p ≡ 7 (mód 8)

1
3 (R−N) si p ≡ 3 (mód 8)

Ejercicio: Probar que en las condiciones del teorema anterior h es impar. (Esto lo
sab́ıamos ya como consecuencia de la teoŕıa de géneros.)

El teorema anterior implica en particular que R > N . No se conoce ninguna
prueba elemental de este hecho. Nuestra prueba depende—entre otras cosas—de
la determinación del signo de las sumas de Gauss cuadráticas.
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Ejemplo Vamos a calcular el número de clases de Q
(√
−23

)
. La tabla si-

guiente indica el śımbolo de Legendre de los números necesarios:

1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 −1 1 −1 1 1 −1 −1

(Notar que sólo hace falta calcular los valores para 2, 3, 5, 7 y 11. Los restantes
se deducen de éstos.)

Por consiguiente h = 7− 4 = 3.

En el caso real no hay fórmulas tan simple, pero vamos a encontrar una
variante interesante de la fórmula del teorema 12.9.

Consideremos

θ =

∏
b

sen(πb/∆)∏
a

sen(πa/∆)
,

donde a y b recorren los números entre 0 y ∆/2 primos con ∆ y tales que
χK(a) = 1, χK(b) = −1. Entonces la fórmula del teorema 12.9 es

h =
1

log ε
log θ,

de donde θ = eh log ε = εh. En particular θ es una unidad de K.
La fórmula θ = εh tiene interés entre otros motivos porque no existe ninguna

demostración puramente aritmética de este hecho. Ni siquiera se conoce una
prueba elemental de que θ > 0.

Los resultados que hemos obtenido se aplican también a los cuerpos ci-
clotómicos, pero nos ocuparemos de ello en el próximo tema.





Caṕıtulo XIII

Cuerpos ciclotómicos

En este caṕıtulo obtendremos la fórmula anaĺıtica para el número de clases
de los cuerpos ciclotómicos de orden primo y de su análisis obtendremos la
caracterización de Kummer de los primos regulares.

13.1 La fórmula del número de clases

Sea p un primo impar. Sea K = Q(ω) el cuerpo ciclotómico de grado p y
sea K∗ = K ∩ R. Sea m = (p− 1)/2 el grado de K∗. Partimos de las fórmulas
que obtuvimos en el caṕıtulo XI para el número de clases de ambos cuerpos
(teoremas 11.26 y 11.32):

h =
√

p p

2m−1πmR

∏
χ�=1

L(1, χ), h∗ =
√

pm−1

2m−1R∗

∏
χ(1)=1

χ�=1

L(1, χ).

El teorema 4.28 nos da además la relación R = 2m−1R∗ entre los reguladores,
lo que nos permite expresar h en la forma

h =
√

pm+2

2m−1πm

∏
χ(1)=−1

L(1, χ) h∗.

Puesto que h y h∗ son números naturales las fórmulas no se alteran si sus-
tituimos las funciones L por sus módulos (recordemos que en sus desarrollos
aparecen sumas de Gauss, de las que sólo conocemos los módulos). Vamos usar
la notación clásica introducida por Kummer, según la cual el número de clases
se descompone como h = h1h2, donde

h1 =
√

pm+2

2m−1πm

∏
χ(1)=−1

|L(1, χ)|, h2 =
√

pm−1

2m−1R∗

∏
χ(1)=1

χ�=1

|L(1, χ)|.
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Los números h1 y h2 reciben el nombre de primer y segundo factor del
número de clases. Vemos, pues, que el segundo factor es el número de clases de
K∗, por lo que en particular es un número natural. Probaremos que h1 también
lo es, y aśı los dos factores serán divisores del número de clases.

Ahora conviene hacer unas observaciones generales sobre caracteres de gru-
pos abelianos que nos permitirán simplificar las expresiones de ambos factores.

Sea G un grupo abeliano finito y V el conjunto de todas las aplicaciones de
G en C. Vimos en el caṕıtulo XI que V es un espacio vectorial que tiene por
base a los caracteres de G. Para cada g ∈ G sea Tg : V −→ V la aplicación
dada por Tg(f)(t) = f(gt). Claramente Tg es una aplicación lineal y si χ es
un carácter de G se cumple Tg(χ) = χ(g)χ, es decir, los caracteres son vectores
propios de Tg.

Sea ahora v ∈ V y consideremos T =
∑
g∈G

v(g)Tg. La aplicación T también

es lineal y tiene a los caracteres por vectores propios. En efecto,

T (χ)(t) =
∑
g∈G

v(g)Tg(χ)(t) =
∑
g∈G

v(g)χ(g)χ(t),

luego
T (χ) =

(∑
g∈G

v(g)χ(g)
)
χ.

Por lo tanto la matriz de T en la base formada por los caracteres es una
matriz diagonal y su determinante vale

detT =
∏
χ

∑
g∈G

v(g)χ(g).

Calculemos por otro lado el determinante de T en la base canónica de V ,
esto es, en la base {fs}s∈G formada por las funciones

fs(t) =
{

1 si t = s
0 si t �= s

El coeficiente (s, t) de la matriz es

T (fs)(t) =
∑
g∈G

v(g)Tg(fs)(t) =
∑
g∈G

v(g)fs(tg) = v(st−1).

Con esto hemos probado el teorema siguiente:

Teorema 13.1 Sea G un grupo abeliano finito y v : G −→ C. Entonces la
expresión ∏

χ

∑
g∈G

v(g)χ(g),

donde χ recorre los caracteres de G, es igual al determinante de
(
v(st−1)

)
s, t∈G.



13.2. El primer factor del número de clases 317

Notemos que la matriz simétrica
(
v(st)

)
s, t∈G se diferencia de la indicada en

el teorema tan sólo en el orden de las columnas (alterado según la permutación
t 
→ t−1), luego, salvo signo, los determinantes coinciden.

Fijamos ahora la notación que seguiremos en todo el análisis del número de
clases. Sea ζ una ráız de la unidad de orden p − 1 y sea g una ráız primitiva
módulo p, es decir, un generador del grupo Up. Sea χ el carácter de Up deter-
minado por χ(g) = ζ−1. Es claro que 1, χ, . . . , χp−2 son todos los caracteres
módulo p. Además χk es par si y sólo si k es par.

13.2 El primer factor del número de clases

Investigamos ahora el factor h1 del número de clases. Hemos de probar que
es un número natural, y además daremos una fórmula práctica para calcularlo.

En la fórmula de h1 intervienen los caracteres impares. Aplicamos el teorema
11.31 evaluando la suma de Gauss mediante 12.2:

|L(1, χ2r+1)| = π
√

p

p2

∣∣∣∣
p−1∑
k=1

χ̄2r+1(k) k
∣∣∣∣.

Llamemos gk al menor resto positivo módulo p de gr. Aśı

|L(1, χ2r+1)| = π
√

p

p2

∣∣∣∣
p−2∑
k=0

χ̄2r+1(gk) gk

∣∣∣∣ =
π
√

p

p2

∣∣∣∣
p−2∑
k=0

gkζ
(2r+1)k

∣∣∣∣.
Si llamamos

F (x) =
p−2∑
k=0

gkx
k,

tenemos que

|L(1, χ2r+1)| = π
√

p

p2
|F (ζ2r+1)|.

Recordando que en la definición de h1 aparecen m = (p−1)/2 factores, conclui-
mos que

h1 =
1

(2p)m−1
|F (ζ)F (ζ3) · · ·F (ζp−2)|. (13.1)

Observemos ahora que ζm = −1, por lo que

F (ζ2r+1) =
m−1∑
k=0

(gk − gm+k)ζ(2r+1)k =
m−1∑
k=0

(gk − gm+k)ζk ζ2rk.

Vamos a aplicar el teorema 13.1 tomando como G = Z/mZ. Sea ψ el carácter
determinado por ψ(k) = ζ2k. Es claro que las potencias de ψ recorren todos los
caracteres de G y la expresión anterior es

F (ζ2r+1) =
m−1∑
k=0

(gk − gm+k)ζk ψr(k).
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Notemos que la función f(k) = (gk − gm+k)ζk depende sólo del resto de k
módulo m, pues

f(k + m) = (gk+m − g2m+k)ζk+m = (gk+m − gk)(−1)ζk = f(k).

Por consiguiente la fórmula (13.1) se escribe equivale a

h1 =
1

(2p)m−1

∣∣∣∣∣
m−1∏
r=0

∑
k∈G

f(k)ψr(k)

∣∣∣∣∣ .
Aplicando el teorema 13.1 (y la observación posterior)

h1 =
1

(2p)m−1

∣∣det
(
(gs+t − gm+s+t)ζs+t

)∣∣,
donde s, y t vaŕıan entre 0 y m − 1. Más aún, el determinante que aparece en
la fórmula anterior es, por definición,

∑
σ∈Σm

sig σ

m−1∏
s=0

(gs+σ(s) − gm+s+σ(s))ζs+σ(s).

Al agrupar las potencias de ζ de cada factor obtenemos ζ elevado al expo-
nente 2(1+2+ · · ·m− 1) = m(m− 1), es decir, (−1)m−1. Este signo sale factor
común de todos los sumandos y se cancela con el valor absoluto que rodea al
determinante. En definitiva hemos probado lo siguiente:

Teorema 13.2 El primer factor del número de clases viene dado por la fórmula

h1 =
1

(2p)m−1

∣∣det(gs+t − gm+s+t)
∣∣,

donde s y t vaŕıan entre 0 y m − 1, y gn es el menor resto positivo módulo p
de gn.

Esta expresión involucra sólo números enteros y no presenta por tanto ningún
problema para su cálculo efectivo. Por ejemplo, si p = 23 una ráız primitiva es
g = 5. Hemos de calcular

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
gn 1 5 2 10 4 20 8 17 16 11 9 22 18 21 13 19 3 15 6 7 12 14

gn − g11+n −21 −13 −19 −3 −15 17 −7 11 9 −1 −5 21 13 19 3 15 −17 7 −11 −9 1 5

y de aqúı

h1 =
1

4610

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−21 −13 −19 −3 −15 17 −7 11 9 −1 −5
−13 −19 −3 −15 17 −7 11 9 −1 −5 21
−19 −3 −15 17 −7 11 9 −1 −5 21 13
−3 −15 17 −7 11 9 −1 −5 21 13 19

−15 17 −7 11 9 −1 −5 21 13 19 3
17 −7 11 9 −1 −5 21 13 19 3 15
−7 11 9 −1 −5 21 13 19 3 15 −17
11 9 −1 −5 21 13 19 3 15 −17 7
9 −1 −5 21 13 19 3 15 −17 7 −11

−1 −5 21 13 19 3 15 −17 7 −11 −9
−5 21 13 19 3 15 −17 7 −11 −9 1
21 13 19 3 15 −17 7 −11 −9 1 5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Un ordenador calcula este determinante en fracciones de segundo. El resul-
tado es 127.262.242.448.329.728, de donde h1 = 3. La tabla siguiente contiene
el valor de h1 para primos p < 100. Vemos que aumenta rápidamente. De
hecho puede probarse que a partir de 23 siempre es mayor que 1, con lo que los
únicos cuerpos ciclotómicos de orden primo con factorización única son los siete
correspondientes a p < 23.

Tabla 13.1: Primer factor del número de clases de los cuerpos ciclotómicos

p h1 p h1 p h1

3 1 29 23 61 41 · 1.861
5 1 31 32 67 67 · 12.739
7 1 37 37 71 72 · 79.241
11 1 41 112 73 89 · 134.353
13 1 43 211 79 5 · 53 · 377.911
17 1 47 5 · 139 83 3 · 279.405.653
19 1 53 4.889 89 113 · 118.401.449
23 3 59 3 · 59 · 233 97 577 · 3.457.206.209

La tabla muestra también que los primos 37, 59 y 67 son irregulares.

Todav́ıa no hemos probado que, como hace ver la tabla, el número h1 es un
número natural. El determinante de la expresión del teorema 13.2 es claramente
un entero racional. Hay que probar que es divisible entre 2m−1 y entre pm−1.
El caso del 2 es muy simple. Notamos que

gk + gk+m ≡ gk + gk+m = gk(1 + gm) = 0 (mód p),

luego gk + gk+m = p y por consiguiente uno de ellos es par y el otro impar.
Por lo tanto, la matriz (gs+t − gm+s+t) tiene todas sus coordenadas impares.
Sumando una fila a todas las restantes obtenemos otra matriz con el mismo
determinante y m−1 filas formadas por números pares, de donde extraemos un
factor 2m−1.

Falta probar que este mismo determinante es divisible entre pm−1. Para ello
usaremos la expresión equivalente que aparece en (13.1). Sea

B = F (ζ)F (ζ3) · · ·F (ζp−2).

El número B es, salvo el signo, el determinante del teorema 13.2, luego es un
entero racional. La clave es que cada factor es una suma geométrica módulo p:

F (ζr) =
p−2∑
k=0

gkζ
rk ≡

p−2∑
k=0

(gζr)k (mód p).

Para sumarla multiplicamos por la razón menos 1:

F (ζr)(gζr − 1) ≡ (gζr)p−1 − 1 ≡ 0 (mód p),

es decir, p | F (ζr)(gζr − 1).
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Ahora hemos de estudiar la posibilidad de que divisores primos de p en Q(ζ)
dividan al factor de la derecha. Puesto que p ≡ 1 (mód p− 1), el teorema 3.20
nos da que p se descompone en φ(p− 1) factores primos de norma p.

Si p es uno de estos factores, el polinomio xp−1 − 1 tiene todas sus ráıces
distintas módulo p (es primo con su derivada), luego las potencias de ζ recorren
las p − 1 clases no nulas módulo p. En particular existe un r tal que ζ−r ≡ g
(mód p), luego p | gζr − 1.

Notemos que como g tiene orden p− 1 módulo p, lo mismo le ha de ocurrir
a ζ−r, para lo cual es necesario que (r, p − 1) = 1. Además p no puede dividir
a otro gζs − 1, pues entonces gζs ≡ 1 ≡ gζr (mód p), luego ζs ≡ ζr (mód p) y,
suponiendo 0 ≤ r, s < p− 1, ha de ser r = s.

En resumen, cada uno de los φ(p − 1) divisores primos de p divide exacta-
mente a uno de los φ(p− 1) números gζr − 1 con (r, p− 1) = 1.

Llamamos pr al único divisor primo de p que divide a gζr − 1. Entonces
tenemos que

p =
∏

(r,p−1)=1

pr.

(Convenimos en que la definición de pr vale para todo entero primo con p− 1,
de modo que pr = pr+p−1. Si r no es primo con p− 1 tomamos pr = 1).

Sabiendo todo esto, la relación p | F (ζr)(gζr − 1) implica que p p−1
r | F (ζr),

luego multiplicando para todos los r impares hasta p− 2 obtenemos que

pmp−1
1 p

−1
3 · · · p−1

p−2 | F (ζ)F (ζ3) · · ·F (ζp−2),

luego pm−1 | B, como hab́ıa que probar.

Esta técnica que hemos empleado para probar que h1 es entero puede re-
finarse para obtener un criterio sencillo de cuándo p | h1, lo cual tiene interés
porque una de las condiciones de la definición de primo regular es que p � h, y
en particular ha de ser p � h1.

En primer lugar, p dividirá a h1 si y sólo si divide a B/pm−1, y como éste
es un entero racional, esto ocurrirá si y sólo si uno cualquiera de los primos pr,
por ejemplo p−1, divide a B/pm−1. Ahora bien, sabemos que

B

pm−1
=

F (ζ)p1

p

F (ζ3)p3

p
· · · F (ζp−2)pp−2

p
,

donde cada factor de la derecha es un ideal (entero). Por consiguiente p | h1 si
y sólo si p−1 divide a uno de los ideales F (ζr)pr p−1, para r = 1, 3, . . . , p − 2.
Esto equivale a su vez a que p2

−1 | F (ζr)pr para algún r.
Ahora bien, p2

−1 en ningún caso puede dividir a F (ζ−1)p−1. En efecto,
tenemos que gζ−1 ≡ 1 (mód p1), de donde

F (ζ−1) ≡
p−2∑
k=0

(gζ−1)k ≡
p−2∑
k=0

1 ≡ −1 (mód p−1),
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luego, p−1 � F (ζ−1). Aśı pues, p | h1 si y sólo si p2
−1 | F (ζr)pr para algún

r = 1, 3, . . . , p− 4, lo que a su vez equivale a que p2
−1 | F (ζr).

Hasta aqúı todo es válido para cualquier elección de la ráız primitiva g. Dada
una ráız primitiva cualquiera h módulo p, podemos tomar g = hp, con lo que
tenemos una ráız primitiva que además cumple gp−1 = hp(p−1) ≡ 1 (mód p2),
pues φ(p2) = p(p− 1).

Con esta elección de g y teniendo en cuenta la factorización

xp−1 − yp−1 = (x− y)(x− yζ) · · · (x− yζp−2),

vemos que
p−2∏
r=0

(1− gζk) = 1− gp−1 ≡ 0 (mód p2),

y, dado que p−1 no puede dividir a otro factor que no sea 1− gζ−1, concluimos
que p2

−1 | 1− gζ−1, es decir, ζ ≡ g (mód p2
−1).

Esto nos permite eliminar a ζ de la condición que hemos obtenido, pues

F (ζr) =
p−2∑
k=0

gkζ
kr ≡

p−2∑
k=0

gkg
kr (mód p2

−1),

luego p2
−1 | F (ζr) si y sólo si

p2
−1 |

p−2∑
k=0

gkg
kr, si y sólo si p2 |

p−2∑
k=0

gkg
kr.

Con esto tenemos ya una condición en términos de números enteros, pero se
puede simplificar mucho más. El razonamiento que sigue es incorrecto, pero se
puede arreglar:

p−2∑
k=0

gkg
kr ≡

p−2∑
k=0

gkgkr ≡
p−2∑
k=0

gk(r+1) ≡
p−2∑
k=0

gr+1
k ≡

p−1∑
n=1

nr+1 (mód p2). (13.2)

El problema es, por supuesto, que en principio las congruencias son ciertas
sólo módulo p, no p2. Si pese a ello logramos justificarlas habremos eliminado
los gk de la condición.

Para arreglarlo expresamos gk = gk + pak, para cierto entero ak. Tomamos
congruencias módulo p2 y elevamos a r + 1:

gr+1
k ≡ gk(r+1) + (r + 1)gkrpak ≡ gk(r+1) + (r + 1)gkr(gk − gk) (mód p2),

o sea,
gr+1
k ≡ (r + 1)gkgkr − kgk(r+1) (mód p2). (13.3)

Si no estuviera el último término y teniendo en cuenta que nos interesa r < p−1,
esta fórmula nos aseguraŕıa que p2 divide al primer término de (13.2) si y sólo
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si divide al cuarto, con lo que el problema estaŕıa resuelto. Afortunadamente,
el sumando molesto desaparece al sumar respecto a k:

p−2∑
k=0

gk(r+1) =
g(p−1)(r+1) − 1

gr+1 − 1
≡ 0 (mód p2),

ya que gp−1 ≡ 1 (mód p2) y p � gr+1 − 1 para r + 1 < p− 1.

Por lo tanto al sumar en (13.3) obtenemos

p−2∑
k=0

gr+1
k ≡ (r + 1)

p−2∑
k=0

gkg
kr (mód p2),

y como p � k + 1, llegamos a que

p2 |
p−2∑
k=0

gkg
kr si y sólo si p2 |

p−2∑
k=0

gr+1
k =

p−1∑
n=1

nr+1.

Hemos demostrado el teorema siguiente:

Teorema 13.3 Se cumple que p divide al primer factor de h si y sólo si p2

divide a alguno de los números

Sr =
p−1∑
n=1

nr, para r = 2, 4, . . . , p− 3.

Aunque esta condición puede parecer completamente satisfactoria, lo cierto
es que admite una reformulación más simple, que no sólo tiene interés práctico,
sino que es relevante para estudiar cuándo p divide al segundo factor de h. Nos
ocupamos de ella en la sección siguiente.

13.3 Los números de Bernoulli

Hay fórmulas para calcular las sumas de potencias 1k + 2k + · · · + mk. La
correspondiente a k = 1 es sobradamente conocida:

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

Fue Jacques Bernoulli quien obtuvo la generalización de esta fórmula a expo-
nentes superiores, y sus resultados eran bien conocidos en la época de Kummer.
Básicamente Bernoulli demostró que existe un único polinomio de grado n, hoy
llamado polinomio de Bernoulli, Bn(x), tal que

xn =
∫ x+1

x

Bn(x) dx.
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Por ejemplo, si planteamos

x2 =
∫ x+1

x

(ax2 + bx + c) dx =
[
ax3

3
+

bx2

2
+ cx

]x+1

x

= ax2 + (a + b)x +
1
3
a +

1
2
b + c,

al igualar los coeficientes llegamos a que B2(x) = x2 − x + 1/6, de donde

m∑
k=1

k2 =
∫ m+1

1

B2(x) dx =
m(m + 1)(2m + 1)

6
.

Para obtener los resultados generales sobre los polinomios de Bernoulli que
vamos a necesitar conviene introducirlos desde un contexto diferente, relacio-
nado con las investigaciones de Euler sobre las series

ζ(k) =
∞∑
n=1

1
nk

.

Definición 13.4 Llamaremos polinomios de Bernoulli a las funciones Bk(x)
determinadas por

zexz

ez − 1
=

∞∑
k=0

Bk(x)
k!

zk.

Observar que la función de la izquierda tiene una singularidad evitable en 0,
por lo que se trata de una función entera y la serie de potencias de la derecha
converge en todo el plano complejo.

Se llama números de Bernoulli a los números Bk = Bk(0).

El teorema siguiente demuestra que las funciones Bk(x) son efectivamente
polinomios, aśı como que están determinados por los números de Bernoulli.

Teorema 13.5 Se cumple que Bn(x) =
n∑

k=0

(
n
k

)
Bk xn−k.

Demostración: En efecto:
∞∑
n=0

Bn(x)
n!

zn =
z

ez − 1
exz =

( ∞∑
n=0

Bn

n!
zn

)( ∞∑
n=0

xn

n!
zn

)

=
∞∑
n=0

∞∑
k=0

Bk

k!
xn−k

(n− k)!
zn.

Comparando coeficientes queda

Bn(x) =
n∑

k=0

n!
Bk

k!
xn−k

(n− k)!
=

n∑
k=0

(
n

k

)
Bk xn−k.
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Una regla para recordar esta fórmula es

Bn(x) = (B + x)n,

donde las “potencias” Bk que aparecen al aplicar el teorema del binomio han
de entenderse como los números de Bernoulli Bk.

Ahora veremos que los polinomios que hemos definido se corresponden con
los polinomios estudiados por Bernoulli. Ello es consecuencia del teorema que
sigue.

Teorema 13.6 Para todo n ≥ 1 se cumple

dBn+1(x)
dx

= (n + 1)Bn(x).

Demostración: Por el teorema anterior Bn+1(x) =
n+1∑
k=0

(
n+1
k

)
Bkx

n+1−k.

Por lo tanto

dBn+1(x)
dx

=
n∑

k=0

(n + 1)!
k!(n + 1− k)!

Bk(n + 1− k)xn−k

= (n + 1)
n∑

k=0

(
n

k

)
Bkx

n−k = (n + 1)Bn(x).

El teorema siguiente recoge las propiedades más importantes de los números
y polinomios de Bernoulli:

Teorema 13.7 Para todo n ≥ 0 se cumple:

1. Bn+1(x + 1) − Bn+1(x) = (n + 1)xn. En particular, para n ≥ 2 tenemos
que Bn(0) = Bn(1).

2. Como consecuencia,

xn =
Bn+1(x + 1)−Bn+1(x)

n + 1
=

∫ x+1

x

Bn(x) dx.

3. Esto a su vez implica

m∑
k=1

kn =
∫ m+1

1

Bn(x) dx =
Bn+1(m + 1)−Bn+1

n + 1
.

Demostración: La identidad siguiente se comprueba sin esfuerzo:

z
e(x+1)z

ez − 1
− z

exz

ez − 1
= zexz.
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Desarrollando en serie ambos miembros queda

∞∑
n=0

Bn(x + 1)−Bn(x)
n!

zn =
∞∑
n=0

xn

n!
zn+1.

Igualando los coeficientes obtenemos el resultado.

Teniendo en cuenta que Bn = Bn(0) = Bn(1), el teorema 13.5 nos da la
relación siguiente.

Teorema 13.8 Para n ≥ 2 se cumple que Bn =
n∑

k=0

(
n
k

)
Bk.

Podemos expresar esta fórmula como Bn = (B + 1)n. Observar que Bn

figura en ambos miembros de la igualdad, por lo que se simplifica. Esta fórmula
aplicada a n+1 expresa a Bn en función de los números anteriores y en particular
demuestra que los números de Bernoulli son números racionales. Teniendo en
cuenta que B0 = 1 podemos calcular fácilmente los restantes. Por ejemplo:

B2 = B0 + 2B1 + B2, luego B1 = −1/2.
B3 = B0 + 3B1 + 3B2 + B3, luego B2 = 1/6.

Los números de Bernoulli de ı́ndice impar distinto de 1 son todos nulos. Lo
demostraremos enseguida. Los siguientes números de ı́ndice par son

B4 = − 1
30

, B6 =
1
42

, B8 = − 1
30

, B10 =
5
66

, B12 = − 691
2.730

,

B14 =
7
6
, B16 = −3.617

510
, B18 =

43.867
798

, B20 = −174.611
330

, . . .

Los numeradores y denominadores de los números B2n crecen muy rápida-
mente. Por ejemplo, Euler calculó hasta

B30 =
8.615.841.276.005

14.322
.

Los primeros polinomios de Bernoulli son

B0(x) = 1,

B1(x) = x− 1
2
,

B2(x) = x2 − x +
1
6
,

B3(x) = x3 − 3
2
x2 +

1
2
x,

B4(x) = x4 − 2x3 + x2 − 1
30

,

B5(x) = x5 − 4
2
x4 +

5
3
x3 − 1

6
x.
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Del teorema 13.7 se siguen ahora fácilmente los casos particulares

m∑
k=1

k =
m(m + 1)

2
,

m∑
k=1

k2 =
m(m + 1)(2m + 1

6
,

m∑
k=1

k3 =
m2(m + 1)2

4
.

Respecto a los números de Bernoulli de ı́ndice impar, observemos que, por
la definición y teniendo en cuenta que B0 = 1, B1 = −1/2,

f(z) =
z

ez − 1
− 1 +

z

2
=

∞∑
k=2

Bk

k!
zk,

y f(z) es par, pues

f(z)− f(−z) =
z

ez − 1
+

z

2
+

z

e−z − 1
+

z

2
= z

(
1 +

−2 + ez + e−z

2− ez − e−z

)
= 0.

Esto implica que B2k+1 = 0, para k ≥ 1, tal y como hab́ıamos afirmado.

Nuestro interés en los números de Bernoulli se debe a que proporcionan
fórmulas para calcular las sumas Sr que aparecen en el teorema 13.3. El teorema
siguiente nos permitirá reformular la condición de dicho teorema en términos
de los números B2n. Para enunciarlo definamos un p-entero como un número
racional r tal que p no divide al denominador de su fracción irreducible. Es
claro que el conjunto de los p-enteros es un anillo cuyo único primo es p (de
hecho es precisamente Q ∩ Zp).

Teorema 13.9 (Teorema de von Staudt) Sea m un número par y exprese-
mos Bm = Cm/Dm con (Cm, Dm) = 1. Entonces

1. Dm es libre de cuadrados.

2. Para cada primo p se cumple que p | Dm si y sólo si p− 1 | m.

3. Si un primo p cumple que p | Dm, entonces pBm ≡ −1 (mód p) en el
anillo de los p-enteros.

Demostración: Probaremos el teorema por inducción sobre m. Sea p un

primo cualquiera. Llamemos Sm(p) =
p−1∑
k=1

km. Entonces los teoremas 13.5 y

13.7 nos dan que

(m + 1)Sm(p) = Bm+1(p)−Bm+1 =
m∑
k=0

(
m + 1

k

)
Bk pm+1−k.

Equivalentemente

pBm = Sm(p)−
m−1∑
k=0

1
m + 1

(
m + 1

k

)
pm−kpBk. (13.4)



13.3. Los números de Bernoulli 327

Vamos a probar que todos los números en el sumatorio son p-enteros múltiplos
de p. Por hipótesis de inducción los números pBk son p-enteros (porque son
nulos o bien p divide al denominador de Bk con multiplicidad a lo sumo 1).
Basta probar que los números

1
m + 1

(
m + 1

k

)
pm−k

son p-enteros múltiplos de p.
Si p = 2 es inmediato, puesto que m + 1 es impar y el número combinatorio

es un entero. Supongamos que p es impar. Entonces

1
m + 1

(
m + 1

k

)
pm−k =

m(m− 1) · · · (k + 1)
(m− k + 1)!

pm−k.

Si r = m− k + 1, entonces el exponente de p en r! es a lo sumo

E(r/p) + E(r/p2) + · · · < r

p
+

r

p2
+ · · · = r

p− 1
≤ r

2
≤ r − 1 = m− k,

donde E denota la parte entera (observar que E(r/pi) es el número de múltiplos
de pi menores que r). De aqúı se sigue lo pedido.

Con esto hemos probado que pBm es p-entero para todo primo p, lo que
prueba que Dm es libre de cuadrados. Más aún, la fórmula (13.4) implica ahora
que

pBm ≡ Sm(p) (mód p).

Si p− 1 | m entonces km ≡ 1 (mód p) para 1 ≤ k ≤ p− 1, luego

Sm(p) =
p−1∑
k=1

km ≡ p− 1 ≡ −1 (mód p),

mientras que si p− 1 � m, tomando una ráız primitiva g módulo p tenemos

Sm(p) =
p−1∑
k=1

km ≡
p−2∑
r=0

gmr =
g(p−1)m − 1

gm − 1
≡ 0 (mód p),

pues p � gm − 1 pero p | g(p−1)m − 1.
Resulta, pues, que pBm ≡ −1, 0 (mód p) según si p− 1 divide o no a m. En

el primer caso p � pBm, luego p | Dm. En el segundo p | pBm, luego p � Dm.

Más aún, en la prueba hemos visto que todos los términos del sumatorio que
aparece en la fórmula (13.4) son p-enteros. Si además suponemos que m ≤ p−1
entonces p − 1 � k, para todo k < m, luego p | pBk y todos los términos del
sumatorio son múltiplos de p2. Por lo tanto tenemos:

Teorema 13.10 Si p es un primo, m es par y m ≤ p− 1, entonces

pBm ≡ Sm(p) (mód p2).
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Esto nos permite reformular como sigue el teorema 13.3:

Teorema 13.11 Sea p un primo impar. Entonces p no divide al primer factor
del número de clases del cuerpo ciclotómico p-ésimo si y sólo si p no divide a
los numeradores de los números de Bernoulli B2, B4, . . . , Bp−3.

Demostración: La condición equivalente que proporciona el teorema 13.3
es que p2 no ha de dividir a las sumas Sk(p) para k = 2, 4, . . . , p − 3. Por el
teorema anterior esto equivale a que p2 no divida a pBk en el anillo de los p-
enteros, y como p no divide a los denominadores de los Bk, esto equivale a que
p no divida a los numeradores de los Bk.

13.4 El segundo factor del número de clases

El segundo factor del número de clases contiene el regulador del cuerpo
ciclotómico, lo que impide encontrar una expresión sencilla para calcularlo. Sin
embargo su relación con las unidades a través del regulador nos dará información
vital para probar que la condición A de la definición de primo regular implica
la condición B.

Para desarrollarlo hemos de evaluar en 1 las funciones L correspondientes a
los caracteres pares χ2r, para lo que empleamos de nuevo los teoremas 11.31 y
12.2:

|L(1, χ2r)| = |G(χ2r)|
p

∣∣∣∣∣
p−2∑
k=0

χ̄2r(gk) log |1− ωg
k |

∣∣∣∣∣ =
1√
p

∣∣∣∣∣
p−2∑
k=0

ζ2rk log |1− ωg
k |

∣∣∣∣∣.
En la última serie cada sumando se repite dos veces. En efecto, para cada

0 ≤ k < m se cumple que

ζ2r(m+k) log |1− ωg
m+k | = ζ2rk log |1− ω−gk | = ζ2rk log |1− ωg

s |,

(el último paso es porque 1− ω−gk

y 1− ωg
k

son conjugados).
Aśı pues,

|L(1, χ2r)| = 2√
p

∣∣∣∣∣
m−1∑
k=0

ζ2rk log |1− ωg
k |

∣∣∣∣∣,
lo que nos lleva a esta expresión para el segundo factor:

h2 =
1
R∗

m−1∏
r=1

∣∣∣∣∣
m−1∑
k=0

ζ2rk log |1− ωg
k |

∣∣∣∣∣.
Al igual que hemos hecho con el primer factor, vamos a aplicar el teorema

13.1 para obtener una expresión mucho más simple. Por abreviar llamaremos
ak = log |1 − ωg

k |. Como ya hemos comentado, 1 − ωg
m+k

es el conjugado de
1− ωg

k

, por lo que ak sólo depende del resto de k módulo m.
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Consideramos de nuevo G = Z/mZ y el carácter ψ(k) = ζ2k, de modo que

h2 =
1
R∗

∣∣∣∣∣
m−1∏
r=1

∑
k∈G

ak ψr(k)

∣∣∣∣∣. (13.5)

No podemos aplicar 13.1 porque falta el carácter principal. El factor que
le correspondeŕıa seŕıa a0 + · · · + am−1. Vamos a calcularlo. Factorizando el
polinomio ciclotómico obtenemos que p = (1 − ω) · · · (1 − ωp−1). Tomando
módulos y teniendo en cuenta que gk recorre todas las clases de Up cuando k

vaŕıa entre 0 y p − 1 resulta que |1 − ωg
0 | · · · |1 − ωg

p−1 | = p. Usando una vez
más que |1− ωg

k+m | = |1− ωg
k | queda

m−1∏
k=0

|1− ωg
k |2 = p.

Por último, tomando logaritmos:

a0 + · · ·+ am−1 = log
√

p.

Ahora multiplicamos y dividimos por log
√

p en (13.5) de modo que ya apa-
recen todos los caracteres de G:

h2 =
1

R∗ log
√

p

∣∣∣∣∣
m−1∏
r=0

∑
k∈G

ak ψr(k)

∣∣∣∣∣.
El teorema 13.1 nos permite concluir que

h2 =
1

R∗ log
√

p
|det(ai+j)|,

donde i, j vaŕıan de 0 a m− 1.
La primera fila de la matriz (ai+j) (para i = 0) es (a0, a1, . . . , am−1), y

las demás son permutaciones ćıclicas de ésta. Si sumamos todas las columnas
a una fija obtenemos una columna con todos los coeficientes iguales a log

√
p.

Esta constante se simplifica con la que aparece en el denominador y queda una
columna de unos. Restamos la primera fila a las filas restantes y desarrollamos
el determinante por la columna fijada. El resultado es que

h2 =
|A|
R∗ ,

donde A es cualquiera de los menores de orden m−1 de la matriz B = (ai+j−aj),
donde i vaŕıa entre 1 y m− 1 y j vaŕıa entre 0 y m− 1.

Vamos a calcular los coeficientes ai+j − aj . En principio tenemos

ai+j − aj = log
|1− ωg

i+j |
|1− ωgj | .
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Para simplificar esta expresión consideramos el número

ρ = −ω(p+1)/2 = cos(π/p) + i sen(π/p) ∈ K.

Entonces ω = ρ2, de donde

1− ωk

1− ω
=

1− ρ2k

1− ρ2
= ρk−1 ρk − ρ−k

ρ− ρ−1
= ρk−1 sen(kπ/p)

sen(π/p)
.

Si p � k entonces 1−ω y 1−ωk son asociados, luego el término de la izquierda
es una unidad de K. Obviamente ρ también lo es, luego los números

θk =
sen(kπ/p)
sen(π/p)

= ρ1−k 1− ωk

1− ω
, para p � k, (13.6)

son también unidades de K. De hecho son reales y positivas, luego son unidades
de K∗.

Sea ı̄ el valor absoluto del menor resto módulo p de gi situado en [−m,m].
Entonces

1− ωg
i

1− ω
= ρg

i−1θgi = ±ρg
i−1θı̄.

Los números ω, ωg, . . . , ωg
m−1

son no conjugados dos a dos (el conjugado
de ωg

i

es ωg
i+m

). Por lo tanto los automorfismos de K dados por σj(ω) = ωg
j

(j = 0, . . . , m− 1) son no conjugados dos a dos. Aplicamos σj y queda

1− ωg
i+j

1− ωgj = ±σj(ρ)g
i−1σj(θı̄).

Tomando módulos y logaritmos:

ai+j − aj = log |σj(θı̄)|.

Ahora veamos que cuando i vaŕıa entre 1 y m − 1, entonces ı̄ vaŕıa entre 2
y m. Para ello observamos que si gi ≡ ±gj (mód p) con 1 ≤ i ≤ j ≤ m − 1
entonces gj−i ≡ ±1 (mód p) y 0 ≤ j − i ≤ (p− 3)/2, pero esto sólo es posible si
i = j. Por lo tanto los valores de ı̄ cuando i vaŕıa entre 1 y m− 1 son distintos
dos a dos. Por definición ı̄ vaŕıa entre 1 y m, pero ±gi ≡ 1 (mód p) es imposible
cuando i vaŕıa entre 1 y m−1 (±1 se obtiene elevando g a 0 y a m). Aśı pues, ı̄
vaŕıa entre 2 y m, y como ha de tomar m− 2 valores distintos, los toma todos.

Llamemos C =
(
log |σj(θi)|

)
, para 2 ≤ i ≤ m, 0 ≤ j ≤ m− 1. Acabamos de

probar que las columnas de C son salvo el orden las mismas que las de la matriz
B = (ai+j − aj). Por lo tanto el valor de detA que buscamos es (salvo signo,
que no importa) cualquiera de los menores de orden m− 1 de la matriz C.

Sea ahora ε1, . . . , εm−1 un sistema fundamental de unidades de K∗. Podemos
tomarlas todas positivas. Cada unidad θi se expresará como

θi =
m−1∏
k=1

εcik

k ,

para ciertos enteros cik (no hay que anteponer un signo negativo porque θi > 0).
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Entonces

log |σj(θi)| =
m−1∑
k=1

cik log |σj(εk)|.

Esto significa que C es el producto de la matriz (cik) por (log |σj(εk)|) o,
más precisamente, que cualquier menor de orden m− 1 de C es el producto de
(cik) por el menor correspondiente de (log |σj(εk)|).

Tomando determinantes queda |detA| = |det(cik)|R∗, luego h2 = |det(cik)|.
Pero (cik) es la matriz de las coordenadas de las unidades θi en la base

ε1, . . . , εm−1. Éstas últimas son una base del grupo de las unidades reales y po-
sitivas de K, luego las primeras son una base de un cierto subgrupo. Es conocido
que el determinante de la matriz que relaciona ambas bases es precisamente el
ı́ndice del subgrupo. En resumen, hemos probado el teorema siguiente:

Teorema 13.12 El segundo factor del número de clases coincide con el ı́ndice
en el grupo de las unidades reales y positivas de K del subgrupo generado por
las unidades

θk =
sen(kπ/p)
sen(π/p)

, para k = 2, . . . ,m.

En términos equivalentes, podemos hablar del ı́ndice del grupo generado por
las unidades θi en el grupo de las unidades de K∗ (con ello añadimos un factor
C2 a los dos grupos indicados en el teorema). En particular, si h2 = 1 resulta
que las unidades θi son un sistema fundamental de unidades de K.

Ejemplo Si p = 7 sabemos que h = 1 y por lo tanto también h2 = 1. Esto
implica que un sistema fundamental de unidades está constituido por

θ2 = ρ−1 1− ω2

1− ω
= −ω−4(1 + ω) = −ω3 − ω4 = −η3 = 1 + η1 + η2,

θ3 = ρ−2 1− ω3

1− ω
= −ω−1(ω2 + ω + 1) = ω6 + ω + 1 = 1 + η1.

Si llamamos η = η1 (y entonces η2 = η2 − 2) tenemos que θ2 = η2 + η − 1 y
θ3 = 1 + η.

Ejercicio: En el caṕıtulo IV probamos que un sistema fundamental de unidades para
p = 7 era η, 1 + η. Calcular la representación logaŕıtmica de θ2 y deducir de ella que
θ2 = η−1(1 + η).

El paso siguiente para llegar a la caracterización de los primos regulares es
estudiar bajo qué condiciones podemos garantizar que p no divide a h2. El punto
de arranque será el siguiente: si p | h2, entonces el grupo cociente determinado
por los grupos de unidades considerados en el teorema anterior tiene un elemento
de orden p, es decir, existe una unidad ε > 0 en K tal que

εp =
m∏
k=2

θck

k , (13.7)

para ciertos enteros ck, pero tal que ε no es de esta forma.
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A su vez, que ε no sea de esta forma equivale a que algún ck no sea divisible
entre p, pues si dos unidades positivas ε y δ cumplen que εp = δp, entonces ε/δ
es una ráız p-ésima de la unidad positiva, lo que sólo es posible si ε = δ.

Si logramos probar que cuando ε cumple (13.7) todos los exponentes ck son
múltiplos de p, tendremos garantizado que p no divide divide a h2. La idea
de la demostración es tomar logaritmos para convertir la igualdad anterior en
una ecuación lineal en log θk y probar una cierta independencia lineal de estos
logaritmos que nos dé las divisibilidades (algo análogo a cuando decimos que si
p | a + b

√
2 entonces p | a y p | b).

Sin embargo este argumento depende fuertemente de propiedades algebrai-
cas y es completamente inviable usando logaritmos habituales. En su lugar
habremos de usar logaritmos p-ádicos. Kummer no conoćıa los números p-
ádicos cuando realizó estos cálculos, pero éstos estaban impĺıcitos en su trabajo
y fueron definidos poco después por Hensel. En realidad Kummer trabajó con
derivadas logaŕıtmicas. La idea es que el cuerpo ciclotómico se puede identificar
con el cociente de Q[x] sobre el ideal generado por el polinomio ciclotómico. La
derivada logaŕıtmica de un polinomio p(x) es p′(x)/p(x).

13.5 Numeros p-ádicos ciclotómicos

Sea p el único divisor primo de p en el cuerpo ciclotómico K. Consideramos
la valoración p-ádica vp según la definición 7.9, la cual induce a su vez el valor
absoluto

|α|p = ρvp(α), 0 < ρ < 1.

Llamaremos Kp al cuerpo de los números p-ádicos, es decir, a la compleción
de K respecto a este valor absoluto (teorema 7.8) Claramente Q ⊂ K ⊂ Kp.
Llamaremos Op al anillo de los enteros de p-ádicos, que según 7.14 es la clausura
en Kp de Z[ω]. Según dicho teorema tenemos también que Op/p ∼= Z[ω]/p ∼=
Z/pZ. En particular todo entero p-ádico es congruente módulo p con un entero
racional.

Puesto que p = pp−1, se cumple vp(r) = (p − 1)vp(r), para todo r ∈ Q no
nulo. Por consiguiente

|r|p = ρvp(r)/(p−1) = |r|p,

donde definimos el valor absoluto p-ádico tomando como base ρ1/(p−1). Esto
significa que el valor absoluto p-ádico extiende al valor absoluto p–ádico. Por
consiguiente, la clausura de Q en Kp es una compleción de Q respecto al valor
absoluto p-ádico, y según el teorema 7.8 es topológicamente isomorfa a Qp. En
vista de esto podemos considerar Qp ⊂ Kp. En particular Zp ⊂ Op.

El teorema siguiente nos da la relación fundamental entre Kp y Qp.

Teorema 13.13 Sea π un primo de Kp. Entonces {1, π, π2, . . . , πp−2} es una
base de Kp sobre Qp y también una base de Op sobre Zp.
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Demostración: Veamos en primer lugar que 1, π, π2, . . . , πp−2 son lineal-
mente independientes sobre Qp (con lo que también lo serán sobre Zp). Consi-
deremos una combinación lineal nula

α0 + α1π + α2π
2 + · · ·+ αp−2π

p−2 = 0.

Si no todos los coeficientes son nulos, multiplicando por una potencia adecuada
de p podemos conseguir otra combinación con no todos los coeficientes nulos y
tal que todos son enteros p-ádicos y al menos uno de ellos es una unidad. Sea i
el menor ı́ndice tal que αi sea una unidad. Para todo j < i tenemos que

vp(αjπj) = j + vp(αj) = j + (p− 1)vp(αj) ≥ p− 1 ≥ i + 1.

Si j > i concluimos igualmente que

vp(αjπj) = j + vp(αj) ≥ j ≥ i + 1,

es decir, pi+1 divide a todos los términos de la combinación lineal salvo quizá
a αiπ

i, pero esto implica que también divide a éste, luego p | αi, y esto es
contradictorio, pues vp(αi) = (p− 1)vp(αi) = 0.

Ahora basta probar que todo α ∈ Op se expresa como combinación lineal de
estos números con coeficientes en Zp.

Teniendo en cuenta el teorema 7.16, α se puede expresar como

α = a0,0 + a0,1π + · · ·+ a0,p−2π
p−2 + βπp−1,

donde 0 ≤ a0,i ≤ p− 1 y β ∈ Op.
Puesto que p = επp−1, para cierta unidad ε, tenemos de hecho que

α = a0,0 + a0,1π + · · ·+ a0,p−2π
p−2 + γ1p,

con γ1 ∈ Op.
Igualmente γ1 = a1,0 + a1,1π + · · ·+ a1,p−2π

p−2 + γ2p, con lo que

α = (a0,0 + a1,0p) + (a0,1 + a1,1p)π + · · ·+ (a0,p−2 + a1,p−2p)πp−2 + γ2p
2.

Tras n + 1 pasos obtenemos

α =

(
n∑
i=0

ai,0p
i

)
+

(
n∑
i=0

ai,1p
i

)
π + · · ·+

(
n∑
i=0

ai,p−2p
i

)
πp−2 + γnp

n.

Es obvio que todas las series convergen y γnp
n tiende a 0, luego

α =

( ∞∑
i=0

ai,0p
i

)
+

( ∞∑
i=0

ai,1p
i

)
π + · · ·+

( ∞∑
i=0

ai,p−2p
i

)
πp−2.

Finalmente, todo elemento de Kp puede expresarse como pnα, con α ∈ Op y
n ∈ Z. De aqúı se sigue inmediatamente que 1, π, π2, . . . , πp−2 es un generador
de Kp sobre Qp.
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Si aplicamos el teorema anterior al primo π = ω − 1 concluimos que

Kp = Qp(1, π, π2, . . . πp−2) = Qp(π) = Qp(ω),

luego Kp es la extensión ciclotómica de orden p de Qp. Además tiene grado p−1,
luego el grupo de Galois es ćıclico de orden p− 1, todas las ráıces de la unidad
distintas de 1 son conjugadas y losQp-automorfismos Kp están determinados por
σi(ω) = ωi, para i = 1, . . . , p−1. A su vez esto implica que losQp-automorfismos
de Kp son extensiones de los Q-automorfismos de K, y por consiguiente la norma
y la traza de Kp/Qp extienden también a las de K/Q.

Dado un automorfismo σ y un α ∈ Op, por definición vp

(
σ(α)

)
es la multi-

plicidad de π en σ(α), que coincide con la multiplicidad de σ(π) en σ(α) (pues
σ(π) también es primo y todos los primos de Kp son asociados), que a su vez
coincide con la multiplicidad de π en α. Es decir, vp

(
σ(α)

)
= vp(α). De aqúı

se sigue esto mismo para todo α ∈ Kp, luego |σ(α)|p = |α|p, es decir, que los
automorfismos son isometŕıas. En particular son homeomorfismos.

Esto implica que un Qp-automorfismo de Kp deja fijos los elementos de un
subcuerpo L de K si y sólo si deja fijos a los elementos de la clausura de L
en Kp. Teniendo en cuenta el teorema de Galois resulta que la aplicación que
a cada subcuerpo L de K le asigna su clausura en Kp es una biyección entre
los subcuerpos de K y los subcuerpos de Kp que contienen a Qp. Además esta
biyección conserva los grados.

En particular el cuerpo K
∗

= K ∩ R tiene grado m = (p− 1)/2 sobre Qp. A
los elementos de este cuerpo los llamaremos números p-ádicos reales.

Finalmente notamos que según el teorema 7.25 tenemos definida una función
logaritmo exactamente sobre los enteros p-ádicos de la forma ε = 1 + x, con
vp(x) ≥ 1, es decir, en las unidades ε ≡ 1 (mód p). A estas unidades las
llamaremos unidades principales. Sin embargo, el logaritmo sólo es biyectivo
restringido a un dominio menor, a saber, sobre el conjunto de las unidades que
cumplen ε ≡ 1 (mód p2). Si ε es una unidad de este tipo, entonces el teorema
7.26 garantiza además que log(ε) es un entero múltiplo de p2 (en efecto,con la
notación del caṕıtulo VII tenemos e = p− 1 y κ = 2).

Ejercicio: Probar que logω = 0.

Recordemos que nuestra intención es tomar logaritmos en la ecuación (13.7),
pero sucede que las unidades involucradas no tienen por qué ser principales.
Ahora bien, puesto que Op/p ∼= Z/pZ, es claro que εp−1 ≡ 1 (mód p) para toda
unidad p-ádica ε, o sea εp−1 es siempre una unidad principal. Podemos, pues,
elevar la ecuación a p− 1 y tomar logaritmos:

p log εp−1 =
m∑
k=2

ck log θp−1
k . (13.8)

Ahora observamos que las unidades que aparecen son enteros ciclotómicos
reales, luego los logaritmos son números p-ádicos reales (el logaritmo es una serie
de potencias y cada suma parcial está en K∗, luego la suma está en la clausura
de este cuerpo). No es evidente, pero también probaremos que son enteros.
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Si demostráramos que los números log θp−1
k forman una Zp-base del anillo

de los enteros p-ádicos reales, necesariamente los números ck/p seŕıan enteros
p-ádicos, con lo que todos los ck seŕıan múltiplos de p, que es lo que queremos
probar. No obstante es fácil ver que dicho anillo tiene rango m, mientras que
sólo tenemos m− 1 logaritmos log θp−1

k . Por lo tanto hemos de refinar nuestro
plan.

Ahora bien, si σ es un automorfismo de Kp y ε es una unidad principal, es
obvio que σ(ε) es también una unidad principal (pues vp(σ(ε)− 1) = vp

(
ε− 1)

)
,

y por la continuidad σ(log ε) = log σ(ε), luego

Tr(log ε) =
∑
σ

σ(log ε) =
∑
σ

log σ(ε) = log
∏
σ

σ(ε) = log N(ε).

Si además ε es una unidad de K, como es el caso, entonces N(ε) = 1, luego
la traza de log ε es nula. Sea V el conjunto de los números p-ádicos reales de
traza nula. Claramente V es un espacio vectorial de dimensión m− 1 sobre Qp

y si ε es una unidad real de K tenemos que log εp−1 ∈ V .

Nuestra intención es probar que los números log θp−1
k forman una Zp-base

del módulo formado por los enteros de V . Para ello buscaremos una base de
este módulo y estudiaremos si el determinante de la matriz de coordenadas de
los logaritmos en dicha base es una unidad de Zp. Esta base la obtendremos a
partir de la que nos proporciona el teorema 13.13, pero primero escogeremos un
primo π adecuado.

Veamos que existe un único primo π ∈ Op tal que

p = −πp−1 y π ≡ 1− ω (mód p2). (13.9)

Factorizando el polinomio ciclotómico y evaluando en 1 tenemos que

p = (1− ω)(1− ω2) · · · (1− ωp−1),

de donde

(1 + ω)(1 + ω + ω2) · · · (1 + ω + · · ·+ ωp−2) =
p

(1− ω)p−1
.

Teniendo en cuenta la expresión de la izquierda, este número es un entero
p-ádico. Tomamos congruencias módulo p en Op.

α =
−p

(1− ω)p−1
≡ −2 · 3 · · · (p− 1) ≡ 1 (mód p),

donde hemos usado el teorema de Wilson: (p− 1)! ≡ −1 (mód p) (la prueba es
elemental: el polinomio xp−1− 1 tiene por ráıces a todos los elementos no nulos
de Z/pZ, luego su término independiente −1 es el producto de todos ellos).

Aplicamos el teorema 7.18 al polinomio f(x) = xp−1 − α. Tenemos que

f(1) ≡ 0 (mód p) y f ′(1) = p− 1 �≡ 0 (mód p).
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Por consiguiente existe un entero p-ádico γ tal que γp−1 = −p/(1 − ω)p−1 y
γ ≡ 1 (mód p).

Por la segunda condición, γ es una unidad p-ádica, luego π = γ(1 − ω) es
un primo. Claramente cumple la primera condición de (13.9) y π − (1 − ω) =
(γ − 1)(1− ω) es divisible entre p2, luego también cumple la segunda.

Para probar la unicidad observamos que si un primo ρ cumple (13.9) entonces
(ρ/π)p−1 = 1, luego ρ = ζπ, para una cierta ráız (p − 1)-ésima de la unidad
ζ. Puesto que ζπ ≡ π (mód p2), resulta que ζ ≡ 1 (mód p). Si fuera ζ �= 1
entonces x− ζ dividiŕıa al polinomio xp−2 + xp−3 + · · ·+ x + 1, y evaluando en
1 tendŕıamos 1− ζ | p− 1, luego p | p− 1, lo cual es imposible. Por consiguiente
ζ = 1 y ρ = π.

Veamos ahora las ventajas del primo que acabamos de construir. Sea σ el
automorfismo de Kp de orden 2, esto es, el dado por σ(ω) = ω−1. Puesto que
π y σ(π) son ambos ráıces del polinomio xp−1 + p, es claro que σ(π) = ζπ, para
cierta ráız (p − 1)-ésima de la unidad ζ. Según el teorema 7.20 tenemos que
ζ ∈ Qp, luego aplicando σ de nuevo queda que π = ζ2π, con lo que ζ2 = 1, o sea,
ζ = ±1. No puede ser ζ = 1 porque entonces σ(π) = π y σ seŕıa la identidad
(por 13.13). Consecuentemente σ(π) = −π.

Los números p-ádicos reales son precisamente los números fijados por σ,
pero si expresamos un número arbitrario de Kp como combinación lineal de
1, π, . . . , πp−2, observamos que los números fijados por σ son los que tienen
nulas las coordenadas asociadas a las potencias impares, luego una base del
cuerpo de los números p-ádicos reales es {1, π2, π4, . . . , πp−2}, o sea, este cuerpo
es Qp(π2).

A su vez de aqúı se deriva otra consecuencia notable: Si ε es una unidad
principal real, entonces ε es de la forma ε = a0 + a2π

2 + · · ·+ ap−2π
p−2, donde

los coeficientes son enteros p-ádicos por 13.13. Además 1 ≡ ε ≡ a0 (mód p),
luego

1 ≤ vp(a0 − 1) = (p− 1)vp(a0 − 1),

con lo que en realidad 2 ≤ p− 1 ≤ vp(a0 − 1) y de aqúı que ε ≡ 1 (mód p2).
Esto significa que las unidades principales reales están en realidad en el

dominio donde el logaritmo es inyectivo, y en particular el teorema 7.26 implica
que el logaritmo de una unidad principal real es un entero p-ádico, que es uno de
los resultados que necesitábamos. Recojámoslo en un teorema junto con otros
hechos que hemos probado:

Teorema 13.14 Si ε es una unidad ciclotómica real, entonces log εp−1 es un
entero p-ádico real de traza nula. Más aún,

log εp−1 ≡ 0 (mód p2).

Ya tenemos una base para los números p-ádicos reales. Ahora hemos de
quedarnos con los que tienen traza nula. Para ello calculamos Tr(πi). Observar
que si ζ es una ráız de la unidad de orden p− 1 entonces los números ζjπ para
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j = 0, . . . , p− 2 son todos ráıces del polinomio xp−1 + p. Por lo tanto cuando σ
recorre los Qp-automorfismos de Kp tenemos que σ(π) recorre los números ζjπ
y σ(πi) recorre los números ζijπi, es decir

Tr(πi) =
p−1∑
j=0

ζijπi.

Ahora las relaciones de ortogonalidad de caracteres implican que Tr(πi) = 0
para i = 1, . . . , p− 2, mientras que obviamente Tr(1) = p− 1. Por consiguiente
la traza de un número p-ádico real arbitrario es

Tr(a0 + a2π
2 + · · ·+ ap−2π

p−2) = (p− 1)a0.

Con esto tenemos probado el teorema siguiente:

Teorema 13.15 Si π es un primo p-ádico que cumple las condiciones (13.9),
los números π2, π4, . . . , πp−2 son una Qp-base del espacio vectorial V de los
números p-ádicos reales de traza nula, aśı como una Zp-base del módulo de los
enteros de V .

La última afirmación es consecuencia inmediata del teorema 13.13.

13.6 La caracterización de los primos regulares

Con los resultados de la sección anterior estamos en condiciones de estudiar
la divisibilidad del segundo factor del número de clases entre el primo p. Por el
teorema 13.14 sabemos que los números log θp−1

k son enteros p-ádicos de traza
nula, luego por 13.15 se pueden expresar en la forma

log θp−1
k =

m−1∑
i=1

bkiπ
2i, 2 ≤ k ≤ m, (13.10)

donde los coeficientes bki son enteros p-ádicos.
Según ya hemos explicado, queremos probar que estos números son una base

del módulo de todos los enteros p-ádicos de traza nula, lo cual equivale a que
el determinante de la matriz (bki) sea una unidad de Zp, es decir, que no sea
divisible entre p.

Observemos que si α ∈ V es un entero múltiplo de p, entonces α/p es un
entero p-ádico obviamente real y que sigue cumpliendo Tr(α/p) = Tr(α)/p = 0,
luego α/p ∈ V . Esto implica que las coordenadas de α en la base {π2i} serán las
de α/p (que son enteras) multiplicadas por p. En resumen, los enteros de V son
múltiplos de p si y sólo si sus coordenadas son múltiplos de p. A su vez de aqúı
deducimos que si dos enteros de V son congruentes módulo p, sus coordenadas
en la base {π2i} también lo son.

Como consecuencia, si sustituimos cada log θp−1
k por otro entero de V con-

gruente con él módulo p, el determinante de la matriz de coordenadas corres-
pondiente será congruente módulo p con el de (bki), luego nos servirá igualmente
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para determinar si éste es o no múltiplo de p. Esto nos permite truncar las series
de potencias que definen los logaritmos.

Consideremos el polinomio

L(1 + x) = x− x2

2
+ · · ·+ (−1)p−2 xp−1

p− 1
.

Si n ≥ p y vp(α) ≥ 2 entonces

vp

(
αn

n

)
≥ 2n− vp(n) ≥ 2n− (p− 1)

log n

log p

≥ p + (n− p) + n− n(p− 1)
n− 1

log n

log p

≥ p + (n− p) +
(p− 1)n

log p

(
log p

p− 1
− log n

n− 1

)
≥ p,

(donde usamos que la función t/(t− 1) es monótona decreciente para t ≥ 2).

Esto significa que la diferencia entre log(1 + α) y L(1 + α) es una suma de
múltiplos de πp, es decir, log(1 + α) ≡ L(1 + α) (mód πp). Esto es aplicable a
las unidades principales reales, luego

log(θp−1
k ) ≡ L(θp−1

k ) (mód πp). (13.11)

Comenzaremos probando que los logaritmos truncados tienen las mismas
propiedades algebraicas que los logaritmos usuales si trabajamos módulo πp.
Usaremos también la exponencial truncada

E(x) = 1 +
x

1!
+

x2

2!
+ · · ·+ xp−1

(p− 1)!
. (13.12)

Notemos que si ε ≡ 1 (mód π) entonces L(ε) ≡ 0 (mód π) y, rećıprocamente,
si α ≡ 0 (mód π) entonces E(α) ≡ 1 (mód π). Veamos ahora otros hechos
elementales:

Teorema 13.16 Se cumplen las propiedades siguientes:

1. Si ε ≡ 1 (mód π) entonces E(L(ε)) ≡ ε (mód πp).

2. Si α ≡ 0 (mód π) entonces L(E(α)) ≡ α (mód πp).

3. Si α1 ≡ α2 ≡ 0 (mód π), entonces

E(α1 + α2) ≡ E(α1)E(α2) (mód πp).

4. Si ε1 ≡ ε2 ≡ 1 (mód π), entonces

L(ε1ε2) ≡ L(ε1) + L(ε2) (mód πp).
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Demostración: Consideramos la igualdad de series de potencias formales
exp(log(1 + x)) = 1 + x. Un examen de la definición de composición de series
formales muestra que el coeficiente de xk en la composición depende únicamente
de los coeficientes de grado menor o igual que k de las series compuestas. Por
lo tanto, el polinomio E(L(1 + x)) coincide con la serie 1 + x hasta el término
de grado p−1, es decir, E(L(1+x)) = 1+x+p(x), donde p(x) es un polinomio
de grado mayor o igual que p, y ciertamente tiene coeficientes enteros p-ádicos.
Por consiguiente se cumple la primera relación.

La segunda relación se prueba razonando del mismo modo con la composición
de series log

(
1 + (exp(x)− 1)

)
= x.

Es claro que
(x + y)k

k!
=

k∑
r=0

xr

r!
yk−r

(k − r)!
.

De aqúı se sigue que E(x + y) = E(x) + E(y) + G(x, y), donde G(x, y) es el
polinomio formado por la suma de los productos de monomios de E(x) y E(y)
al menos uno de los cuales tiene grado mayor o igual que p. Claramente los
coeficientes de G son enteros p–ádicos, luego se tiene la tercera propiedad.

La cuarta propiedad la deducimos de las anteriores:

L(ε1ε2) ≡ L
(
E

(
L(ε1)

)
E

(
L(ε2)

))
≡ L

(
E

(
L(ε1) + L(ε2)

))
≡ L(ε1) + L(ε2) (mód πp).

Además de estas propiedades, vamos a necesitar un hecho más delicado:

Teorema 13.17 Si el primo π cumple (13.9) entonces

E(π) ≡ ω (mód πp) y L(ω) ≡ π (mód πp).

Demostración: Probemos en primer lugar que

E(p)p ≡ 1 (mód π2p−1). (13.13)

Sea E(x) = 1 + xg(x), donde g(x) es un polinomio con coeficientes enteros
(p-ádicos). Entonces

E(x)p = 1+
(
p

1

)
xg(x)+· · ·+

(
p

p− 1

)(
xg(x)

)p−1+xpg(x)p = 1+ph(x)+xpg(x)p,

donde h(x) tiene coeficientes enteros (notar que p divide a los números combi-
natorios).

En la prueba del teorema 13.16 hemos visto que E(x)E(y) = E(xy)+G(x, y),
donde G(x, y) es un polinomio con coeficientes enteros (p-ádicos) con todos los
términos de grado ≥ p. Inductivamente se llega a que E(x)p = E(px)+xpM(x),
donde M tiene coeficientes enteros. Aśı pues,

1 + ph(x) + xpg(x)p = E(px) + xpM(x),
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luego

ph(x) =
px

1!
+

(px)2

2!
+ · · ·+ (px)p−1

(p− 1)!
+ xpH(x), (13.14)

donde H(x) = M(x)− g(x)p tiene coeficientes enteros. Despejando xpH(x) en
(13.14) vemos que los coeficientes de H(x) son todos múltiplos de p. Dividimos
entre p y nos queda que

h(x) = x +
px2

2!
+ · · ·+ pp−2xp−1

(p− 1)!
+ xpG(x),

donde G(x) tiene coeficientes enteros. Hacemos x = π y aśı vemos que

h(π) ≡ π (mód πp).

(tener presente que πp−1 | p). De aqúı que ph(π) ≡ pπ (mód π2p−1).
Por otro lado g(π) ≡ 1 (mód π), luego

πp | (g(π)− 1)p = g(π)p − 1 +
p−1∑
k=1

(
p

k

)
(−1)p−kg(π)k,

de donde g(π)p ≡ 1 (mód πp−1) (pues p divide a los números combinatorios) y
πpg(π)p ≡ πp (mód π2p−1). Reuniendo todo esto llegamos a que

E(π)p ≡ 1 + ph(π) + πpg(π)p ≡ 1 + pπ + πp ≡ 1 (mód π2p−1),

pues pπ + πp = 0 por (13.9).

Por definición de E y por (13.9) se cumple E(π) ≡ 1 + π ≡ ω (mód π2).
Sea ω−1E(π) = 1 + π2γ, donde γ es un entero p-ádico. Elevando a p y usando
(13.13) obtenemos

(1 + π2γ)p = 1 + γ

p∑
k=1

(
p

k

)
γk−1π2k ≡ 1 (mód π2p−1)

El número que multiplica a γ es divisible exactamente entre πp+1 (pues el
primer sumando es pπ2), luego γ ≡ 0 (mód πp−2).

Aśı pues, ω−1E(π) = 1 + π2γ ≡ 1 (mód πp), lo que nos da la primera
afirmación del enunciado. La segunda es consecuencia inmediata del teorema
anterior.

Con esto estamos en condiciones de calcular L(θp−1
k ). Teniendo en cuenta

(13.6) vemos que
θpk = (1 + ω + · · ·+ ωk−1)(−1)1−k.

Por (13.9) tenemos que ω ≡ 1 (mód π), luego 1 + ω + · · ·+ ωk−1 ≡ k (mód π),
y usando una vez más que πp−1 divide a los números combinatorios,

(1 + ω + · · ·+ ωk−1)p ≡ kp ≡ k (mód πp−1).
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Aśı pues,

θp−1
k ≡ θ−1

k k (−1)1−k ≡ k
ω − 1
ωk − 1

(−ρ)k−1

=
ω − 1

π

(
ωk − 1

kπ

)−1

ω(k−1)(p+1)/2 (mód πp−1).

Notar que todos los factores del último miembro son unidades principales.
Ciertamente ω lo es, de π ≡ ω − 1 (mód π2) se sigue que (ω − 1)/π también lo
es, y el factor central lo es también por serlo θp−1

k .
Esto nos permite aplicar L y separar los factores por el teorema 13.16:

L(θp−1
k ) ≡ L

(
ω − 1

π

)
− L

(
ωk − 1

kπ

)
+

k − 1
2

L(ω) (mód πp−1).

Por el teorema anterior y 13.16, ωk ≡ E(kπ) (mód πp), de donde

ωk − 1
kπ

≡ E(kπ)− 1
kπ

(mód πp−1).

Lo mismo es válido para (ω − 1)/π, con lo que

L(θp−1
k ) ≡ L

(
E(π)− 1

π

)
− π

2
− L

(
E(kπ)− 1

kπ

)
+

kπ

2
(mód πp−1). (13.15)

Esta expresión nos lleva a estudiar el polinomio

L

(
E(x)− 1

x

)
− x

2
.

Para ello consideramos la función

log
(

exp(x)− 1
x

)
− x

2
= log(exp(x)− 1)− log x− x

2
. (13.16)

Si la consideramos como función de variable compleja, al derivarla se convierte
en

ex

ex − 1
− 1

x
− 1

2
=

1
ex − 1

+
1
2
− 1

x
=

1
x

x

ex − 1
+

1
2
− 1

x
.

Hemos multiplicado y dividido entre x porque aśı podemos aplicar la definición
de los números de Bernoulli 13.4 (aśı como que los de ı́ndice impar son nulos
salvo B1 = −1/2 y que B0 = 1):

x

ex − 1
=

∞∑
k=0

Bk

k!
xk = 1− x

2
+ x

∞∑
i=1

B2i

(2i)!
x2i−1.

Por consiguiente la derivada de 13.16 es

∞∑
i=1

B2i

(2i)!
x2i−1,
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e integrando llegamos a que

log
(

exp(x)− 1
x

)
− x

2
=

∞∑
i=1

B2i

(2i)(2i)!
x2i

(notar que la función de la izquierda vale 0 en 0).
Esta igualdad sobre funciones de variable compleja implica esta misma igual-

dad cuando el primer término se interpreta como la composición en Q[[x]] de la
serie de la función (exp(x)− 1)/x− 1 con la serie de la función log(1 + x). Por
otra parte, en el cálculo del coeficiente de xk de la composición de dos series, sólo
usamos sus coeficientes de grado menor o igual que k, y si truncamos la expo-
nencial según (13.12) estamos conservando los coeficientes de (exp(x)−1)/x−1
hasta el de grado p− 2, luego

L

(
E(x)− 1

x

)
− x

2
=

m−1∑
i=1

B2i

(2i)(2i)!
x2i + xp−1R(x),

donde R(x) ∈ Q[[x]] tiene coeficientes enteros p-ádicos (pues la composición de
dos polinomios con coeficientes enteros tiene coeficientes enteros).

Ahora llevamos esta expresión a (13.15), que junto con (13.11) nos da

log(θp−1
k ) ≡ L(θp−1

k ) ≡
m−1∑
i=1

B2i

(2i)(2i)!
(1− k2i)π2i (mód πp−1).

Recordemos que, según hemos razonado al comienzo de la sección, esto im-
plica que los coeficientes bki que aparecen en (13.10) han de cumplir

bki ≡
B2i

(2i)(2i)!
(1− k2i) (mód p), 2 ≤ k ≤ m, 1 ≤ i ≤ m− 1,

luego

det(bki) ≡
m−1∏
i=1

(−1)m−1B2i

(2i)(2i)!
det(k2i − 1) (mód p).

Observemos que

det(k2i − 1) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 22 24 · · · 2p−3

1 32 34 · · · 3p−3

...
...

...
...

1 m2 m4 · · · mp−3

∣∣∣∣∣∣∣∣∣∣∣
(restando la primera columna a todas las demás y desarrollando por la primera
fila se obtiene el determinante de la izquierda).

El determinante de la derecha es de Vandermonde, por lo que en definitiva

det(bki) ≡
m−1∏
i=1

(−1)m−1B2i

(2i)(2i)!

∏
1≤r<s≤m

(s2 − r2) (mód p).
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Claramente p � s2 − r2 = (s + r)(s − r). Aśı mismo p � (2i)(2i)!. Por el
teorema 13.9 p tampoco divide a los denominadores de los números B2i. Por
lo tanto, una condición suficiente para que p no divida a det(bki) es que p no
divida a los numeradores de los números de bernoulli B2, · · · , Bp−3. Teniendo
en cuenta los teoremas 13.11 y 13.15 llegamos a la conclusión siguiente:

Teorema 13.18 Si p no divide al primer factor h1 del número de clases del
cuerpo ciclotómico p-ésimo, entonces los números log θp−1

k , k = 2, . . . ,m son
una Zp-base del módulo de los enteros p-ádicos reales de traza nula.

Con esto llegamos finalmente al teorema que persegúıamos:

Teorema 13.19 (Kummer) Sea p un primo impar. Las afirmaciones siguien-
tes son equivalentes:

1. p es regular.

2. p no divide al número de clases h del cuerpo ciclotómico p-ésimo.

3. p no divide al primer factor h1 del número de clases del cuerpo ciclotómico
p-ésimo.

4. p no divide los numeradores de los números de Bernoulli B2, B4, . . . , Bp−3.

Demostración: La prueba de que 3) implica 2) está diseminada en los
razonamientos precedentes, pero la repetimos por claridad. Hay que probar que
si p � h1 entonces p � h2.

El teorema 13.12 nos da que h2 es orden del grupo cociente de las unidades
reales positivas del cuerpo ciclotómico p-ésimo sobre el subgrupo generado por
las unidades θk, con k = 2, . . . ,m = (p− 1)/2.

Si p divide a este orden, entonces el grupo cociente tiene un elemento de
orden p, o sea, existe una unidad ciclotómica ε > 0 tal que εp cumple (13.7)
para ciertos enteros ck, pero ε no es de esa forma.

Que ε no sea de esa forma equivale a que algún ck no sea divisible entre p,
pues en caso contrario seŕıa εp = δp, para una cierta unidad δ de la forma (13.7),
pero entonces ε/δ seŕıa una ráız p-ésima de la unidad positiva, lo que sólo es
posible si ε = δ.

Como Op/p es el cuerpo de p elementos, se cumple que εp−1 ≡ 1 (mód p)
para toda unidad ε, o sea εp−1 es una unidad principal y está definido log εp−1.
Elevamos a p−1 la ecuación (13.7) y tomamos logaritmos, con lo que obtenemos
(13.8).

Por el teorema 13.14 tenemos que log εp−1 es un entero p-ádico de traza nula,
luego por el teorema 13.18 se expresa de forma única como combinación lineal
de log θp−1

k con coeficientes en Zp, pero por (13.8) estos coeficientes han de ser
los números ck/p, luego son enteros p-ádicos, de donde p divide a todos los ck
en Zp, y también en Z.

Con esto tenemos la equivalencia entre 2), 3) y 4), y por la definición de
primo regular 1) implica 2). Vamos a probar que 2) implica 1). Sólo hay
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que ver que si ε es una unidad ciclotómica congruente con un entero módulo p
entonces ε es una potencia p-ésima.

Digamos que ε ≡ a (mód p). Por el teorema 4.27 ha de ser ε = ωkη, para
una cierta unidad real η. Entonces η se expresa como combinación lineal con
coeficientes enteros (p-ádicos) de los números 1, π2, π4, . . . , πp−2, luego existe un
entero p-ádico b (el coeficiente de 1) tal que η ≡ b (mód π2). Como todo entero
p-ádico es congruente con un entero racional módulo p, podemos suponer que
b ∈ Z.

Por (13.9) tenemos que ω ≡ 1 + π (mód π2), luego ωk ≡ 1 + kπ (mód π2).
Por lo tanto tenemos que

a ≡ b(1 + kπ) (mód π2). (13.17)

De aqúı se sigue que a ≡ b (mód π), y como son enteros ha de ser a ≡ b (mód p),
luego a ≡ b (mód π2). Entonces (13.17) implica que bkπ ≡ 0 (mód π2) y aśı
π | bk, pero π � b, ya que en caso contrario tendŕıamos π | η. Consecuentemente
π | k, luego p | k y aśı ωk = 1, o sea, ε = η es una unidad real.

Como (−1)p = −1 podemos suponer que ε > 0 (si −ε es una potencia p-
ésima también lo es ε). Por el teorema 13.14 está definido log εp−1. Más aún,
puesto que εp−1 ≡ ap−1 ≡ 1 (mód p), de la definición de logaritmo se sigue que
log εp−1 ≡ 0 (mód p).

También por 13.14 tenemos que log εp−1/p es un entero p-ádico real de traza
nula, luego por 13.18 podemos expresar

log εp−1 =
m∑
k=2

pck log θp−1
k , (13.18)

para ciertos enteros p-ádicos ck.
Por otra parte, el grupo generado por los números θk tiene ı́ndice finito

(teorema 13.12) en el grupo de las unidades reales positivas. En consecuencia
existe un número natural a �= 0 tal que

εa =
m∏
k=2

θdk

k , (13.19)

para ciertos enteros dk. Podemos suponer que los números a, d2, . . . , dm son
primos entre śı, pues si tuvieran un factor común c, tendŕıamos dos unidades
reales positivas α y β tales que αc = βc, luego α/β seŕıa una ráız de la unidad
real y positiva, luego α = β. Esto significa que c podŕıa ser eliminado de ambos
miembros dando lugar a una ecuación análoga.

Elevamos a p− 1 y tomamos logaritmos:

a log εp−1 =
m∑
k=2

dk log θp−1
k .

Comparando con (13.18) concluimos que dk = pack, para k = 2, . . . ,m, es decir,
p | dk (en Zp y por lo tanto en Z), con lo que ha de ser (a, p) = 1.
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Ahora (13.19) implica que εa es la potencia p-ésima de otra unidad, εa = δp.
Sean u y v enteros tales que au + vp = 1. Entonces

ε = (εa)u(εv)p = (δp)u(εv)p = (δuεv)p,

luego efectivamente es una potencia p-ésima.

Con esto hemos llegado al resultado de Kummer sobre el teorema de Fermat
en su forma definitiva. En particular, hemos demostrado que el último teorema
de Fermat es cierto para todos los exponentes menores que 100 salvo quizá
para 37, 59, 67 y 74. Las estad́ısticas indican que la proporción de primos
regulares es mayor que la de primos irregulares. Por ejemplo, de los 549 primos
impares menores que 4.000 hay 334 primos regulares, lo que supone un 61%
aproximadamente. Pese a ello no se sabe si el número de primos regulares
es finito o infinito. Por el contrario se puede probar que hay infinitos primos
irregulares.

Tabla 13.2: Primos irregulares menores que 1.000.

Se indica también el menor ı́ndice 2i tal que p divide al numerador de B2i.

p 2i p 2i p 2i p 2i p 2i p 2i p 2i

37 32 257 164 379 100 491 292 613 522 683 32 811 544
59 44 263 100 389 200 523 400 617 20 691 12 821 744
67 58 271 84 401 382 541 86 619 428 727 378 827 102

101 68 283 20 409 126 547 270 631 80 751 290 839 66
103 24 293 156 421 240 557 222 647 236 757 514 877 868
131 22 307 88 433 366 577 52 653 48 761 260 881 162
149 130 311 292 461 196 587 90 659 224 773 732 887 418
157 62 347 280 463 130 593 22 673 408 797 220 929 520
233 84 353 186 467 94 607 592 677 628 809 330 963 156

971 166

(Hay un total de 168 primos menores que 1.000. El porcentaje de primos regulares en
este intervalo es del 61, 9%).





Caṕıtulo XIV

Números trascendentes

Dedicamos este último caṕıtulo a dar una pequeña muestra de las aplicacio-
nes de la teoŕıa algebraica de números a las pruebas de trascendencia. Éstas
son esencialmente anaĺıticas, pero requieren conceptos algebraicos elementales,
como la teoŕıa de Galois (o al menos la teoŕıa sobre polinomios simétricos) y los
enteros algebraicos. En realidad, los últimos avances en la teoŕıa de números
trascendentes hacen uso de un aparato algebraico mucho más sofisticado, pero
no vamos a entrar en ello. Aqúı probaremos dos resultados clásicos, el teorema
de Lindemann-Weierstrass, que data del siglo pasado, y el teorema de Gelfond-
Schneider, de 1934.

14.1 El teorema de Lindemann-Weierstrass

En 1873 Hermite demostró la trascendencia del número e. Anteriormente
ya se hab́ıa probado que e no era racional. De hecho era conocido su desarrollo
en fracción continua, visto en el tema anterior. En 1882 Lindemann consiguió
generalizar el argumento de Hermite y demostró la trascendencia de π. Linde-
mann afirmó que sus técnicas permit́ıan probar de hecho un resultado mucho
más general. La primera prueba detallada de este resultado fue publicada por
Weierstrass y constituirá el contenido de esta sección junto con sus consecuencias
inmediatas. Necesitaremos dos resultados auxiliares.

Teorema 14.1 Sean fi(x) ∈ Z[x], i = 1, . . . , r polinomios no constantes de
grado ki y para cada i sean β1i, . . . , βkii las ráıces de fi(x). Supongamos que
son no nulas. Sean ai ∈ Z para i = 0, . . . , r tales que a0 �= 0. Entonces

a0 +
r∑
i=1

ai

ki∑
k=1

eβki �= 0.

Demostración: Supongamos que se cumple la igualdad. Vamos a expresar
cada eβki como

eβki =
Mki + εki

M0
, k = 1, . . . , ki, i = 1, . . . , r,

347
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donde M0 ∈ Z, M0 �= 0. Entonces, sustituyendo en la igualdad obtendremos
que

a0M0 +
r∑
i=1

ai

ki∑
k=1

Mki +
r∑
i=1

ai

ki∑
k=1

εki = 0, (14.1)

con a0M0 �= 0.
Vamos a encontrar un primo p tal que a0M0 no sea divisible entre p, mientras

que la suma
r∑
i=1

ai

ki∑
k=1

Mki

será un número entero múltiplo de p. Por otra parte se cumplirá que∣∣∣∣∣
r∑
i=1

ai

ki∑
k=1

εki

∣∣∣∣∣ < 1, (14.2)

con lo que tendremos una contradicción, pues en (14.1) los dos primeros suman-
dos son un entero no divisible entre p, luego no nulo, mientras que el tercero
tiene módulo menor que 1.

Para conseguir todo esto definimos primeramente

f(z) =
r∏
i=1

fi(z) = b0 + b1z + · · ·+ bNzN = bN

r∏
i=1

ki∏
k=1

(z − βki),

donde N =
r∑
i=1

ki y b0 �= 0, ya que las ráıces son no nulas. Podemos suponer

que bN > 0. Sea

M0 =
∫ +∞

0

b
(N−1)p−1
N zp−1fp(z)e−z

(p− 1)!
dz,

donde p es un número primo y la integración se realiza sobre el semieje real
positivo.

Vamos a probar que la integral es finita y que, si p es suficientemente grande,
se trata de un número entero no divisible entre p. Notar que

b
(N−1)p−1
N zp−1fp(z) = b

(N−1)p−1
N bp0z

p−1 +
(N+1)p∑
s=p+1

cs−1z
s−1,

para ciertos coeficientes cs ∈ Z, y bNb0 �= 0. Por lo tanto

M0 =
b
(N−1)p−1
N bp0
(p− 1)!

∫ +∞

0

zp−1e−z dz +
(N+1)p∑
s=p+1

cs−1

(p− 1)!

∫ +∞

0

zs−1e−z dz

= b
(N−1)p−1
N bp0 +

(N+1)p∑
s=p+1

(s− 1)!
(p− 1)!

cs−1 = b
(N−1)p−1
N bp0 + pC,
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para un cierto C ∈ Z. Hemos hecho uso de la conocida identidad de Euler

n! =
∫ +∞

0

zne−z dz,

que se demuestra sin dificultad por inducción sobre n integrando por partes.
Aśı, cualquier primo p mayor que |a0|, bN , |b0| hace que M0 sea un entero

racional y que p � a0M0.
Ahora definimos

Mki = eβki

∫ +∞

βki

b
(N−1)p−1
N zp−1fp(z)e−z

(p− 1)!
dz, k = 1, . . . , ki, i = 1, . . . , r,

εki = eβki

∫ βki

0

b
(N−1)p−1
N zp−1fp(z)e−z

(p− 1)!
dz, k = 1, . . . , ki, i = 1, . . . , r,

donde los caminos de integración son los indicados en la figura siguiente:

✲
M0

✁
✁
✁
✁
✁
✁

βki

✁
✁
✁✕ εki

✲Mki

La finitud de Mki se debe a que, puesto que el integrando es una función
entera, por el teorema de Cauchy sabemos que la integral a lo largo de una
trayectoria como la de la figura siguiente es nula para todo R suficientemente
grande:

✛
M0

✁
✁
✁
✁
✁
✁

βki

✁
✁
✁✕ εki

✲Mki

❄

R

Ahora bien, es fácil ver que la integral sobre el segmento vertical tiende a
0 con R, luego la integral que define Mki es finita y al sumarle la integral que
define a εki da exactamente M0. Aśı pues, Mki + εki = eβkiM0, y tenemos la
descomposición buscada.
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Si en la definición de Mki descomponemos en factores el polinomio f(z)
obtenemos

Mki =
∫ +∞

βki

bNp−1
N zp−1

r∏
j=1

kj∏
t=1

(z − βtj)pe−z+βki

(p− 1)!
dz.

El camino de integración es z = u + βki, luego dz = du. Al hacer el cambio
la integral se convierte en

Mki =
∫ +∞

0

bNp−1
N (u + βki)p−1upe−u

r∏
j=1

kj∏
t=1

∗(u + βki − βtj)p

(p− 1)!
du,

donde el asterisco en el producto indica que falta el factor (t, j) = (k, i), que
hemos extráıdo como up. Podemos redistribuir los coeficientes bN :

Mki =
∫ +∞

0

(bNu + bNβki)p−1upe−u
r∏

j=1

kj∏
t=1

∗(bNu + bNβki − bNβtj)p

(p− 1)!
du.

Es fácil ver que, puesto que bN es el coeficiente director de un polinomio
cuyas ráıces son los βij , los números αij = bNβij son enteros algebraicos. Con
esta notación:

Mki =
∫ +∞

0

(bNu + αki)p−1upe−u
r∏

j=1

kj∏
t=1

∗(bNu + αki − αtj)p

(p− 1)!
du.

Sumando obtenemos que

r∑
i=1

ai

ki∑
k=1

Mki =
∫ +∞

0

upΦ(u)e−u

(p− 1)!
du,

donde

Φ(u) =
r∑
i=1

ai

ki∑
k=1

(bNu + αki)p−1
r∏

j=1

kj∏
t=1

∗(bNu + αki − αtj)p.

Si consideramos una extensión finita de Galois K de Q que contenga a todos
los αij , resulta que un automorfismo de K permuta los números α1i, . . . , αkii,
y se ve claramente que entonces deja invariante a Φ(u). Esto significa que
Φ(u) ∈ Q[u], y como los αij son enteros, en realidad Φ(u) ∈ Z[u]. Digamos que

upΦ(u) =
(N+1)p∑
s=p+1

ds−1u
s−1.
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Entonces

r∑
i=1

ai

ki∑
k=1

Mki =
(N+1)p∑
s=p+1

ds−1

(p− 1)!

∫ +∞

0

us−1e−u du =
(N+1)p∑
s=p+1

ds−1
(s− 1)!
(p− 1)!

= pC,

para un C ∈ Z. Sólo queda demostrar (14.2).
Sea R tal que todos los números βij estén contenidos en el disco de centro 0

y radio R. Llamemos

gki = máx
|z|≤R

|bN−2
N f(z)e−z+βki |, g = máx

|z|≤R
|bN−1
N zf(z)|,

y sea g0 el máximo de todos los números gki. Entonces

|εki| =

∣∣∣∣∣
∫ βki

0

b
(N−1)p−1
N zp−1fp(z)e−z+βki

(p− 1)!
dz

∣∣∣∣∣
≤ 1

(p− 1)!
|βki| |bN−2

N f(z)e−z+βki | |bN−1
N zf(z)|p−1 ≤ g0R

gp−1

(p− 1)!
.

Puesto que la última expresión tiende a 0 con p, eligiendo p suficientemente
grande podemos garantizar que se cumple (14.2).

Teorema 14.2 Consideremos números
ki∑
k=1

Akie
αki , donde ki ≥ 1, i = 1, . . . , r,

r ≥ 2, Aki ∈ C \ {0} y α1i, . . . , αkii son números complejos distintos para cada
i. Si operamos el producto

r∏
i=1

ki∑
k=1

Akie
αki =

N∑
i=1

Bie
βi ,

donde β1, . . . , βN son distintos dos a dos (es decir, los coeficientes Bi se obtienen
multiplicando un Aki para cada i y después sumando todos los productos que
acompañan a un mismo exponente), se cumple que alguno de los coeficientes Bi

es no nulo.

Demostración: Ordenemos los números α1i, . . . , αkii según el crecimiento
de sus partes reales y, en caso de igualdad, según el crecimiento de sus partes
imaginarias. Entonces el número α11 + · · ·+ α1r no puede alcanzarse mediante
otra combinación αj11 + · · · + αjrr, pues la parte real de una cualquiera de
estas sumas será mayor o igual que la de la primera, y en caso de igualdad
la parte imaginaria será mayor. Consecuentemente existe un i de modo que
βi = α11 + · · ·+ α1r y el coeficiente Bi será exactamente A11 · · ·A1r �= 0.

Teorema 14.3 (Teorema de Lindemann-Weierstrass) Si α1, . . . , αn son
números algebraicos distintos (n ≥ 2) y c1, . . . , cn son números algebraicos no
todos nulos, entonces

c1e
α1 + · · ·+ cne

αn �= 0.
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Demostración: Supongamos, por el contrario, que

c1e
α1 + · · ·+ cne

αn = 0. (14.3)

Podemos suponer que todos los coeficientes ci son no nulos. Multiplicando la
ecuación por un número natural suficientemente grande podemos suponer que
de hecho son enteros algebraicos. Veremos en primer lugar que podemos suponer
también que son enteros racionales.

Sean ci1, . . . , ciki
los conjugados de cada ci. Entonces

k1∏
i1=1

· · ·
kn∏
in=1

(c1i1e
α1 + · · ·+ cnine

αn) = 0,

pues entre los factores se encuentra (14.3). Operemos el polinomio

k1∏
i1=1

· · ·
kn∏
in=1

(c1i1z1 + · · ·+ cninzn) =
∑

ch1,...,hnz
h1
1 · · · zhn

n ,

donde el último sumatorio se extiende sobre todas las n-tuplas (h1, . . . , hn) de
números naturales tales que h1 + · · ·+ hn = N = k1 + · · ·+ kn.

Si consideramos una extensión finita de Galois K de Q que contenga a to-
dos los números cij , resulta que todo automorfismo de K permuta los números
ci1, . . . , ciki

, luego deja invariante a este polinomio, lo que implica que sus coe-
ficientes ch1,...,hn

son números racionales. Como además son enteros, tenemos
que ch1,...,hn ∈ Z.

Sustituimos zi = eαi y nos queda

k1∏
i1=1

· · ·
kn∏
in=1

(c1i1e
α1 + · · ·+ cnine

αn) =
∑

ch1,...,hn
eh1α1+···+hnαn =

M∑
i=1

bie
βi ,

donde los coeficientes bi son enteros racionales obtenidos sumando los ch1,...,hn

que acompañan a un mismo exponente, es decir, según las hipótesis del teorema
anterior, por lo que alguno de ellos es no nulo (y claramente ha de haber al
menos dos no nulos). Los números bi son números algebraicos distintos, luego
tenemos una expresión como la original pero con coeficientes enteros.

A partir de ahora suponemos (14.3) con ci ∈ Z y donde α1, . . . , αn son
números algebraicos distintos.

Sea f(x) ∈ Q[x] el producto de los polinomios mı́nimos de los números αi
(sin repetir dos veces el mismo factor). Sea m ≥ n el grado de f , sean γ1, . . . , γm
todas las ráıces de f . Llamemos µ = m(m − 1). . . (m − n + 1), al número de
n-tuplas posibles (i1, . . . , in) de números distintos comprendidos entre 1 y m.
Entonces ∏

(c1eγi1 + · · ·+ cne
γin ) = 0,

donde el producto recorre las µ citadas n-tuplas. El producto es 0 porque entre
sus factores se encuentra (14.3).
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Consideremos el polinomio∏
(c1zi1 + · · ·+ cnzin) =

∑
Bh1,...,hm

zh1
1 · · · zhm

m ,

donde la suma se extiende sobre las m-tuplas (h1, . . . , hm) de números naturales
que suman µ y los coeficientes Bh1,...,hm

son enteros racionales.
La expresión de la izquierda es claramente invariante por permutaciones de

las indeterminadas z1, . . . , zm, luego los coeficientes Bh1,...,hm
son invariantes

por permutaciones de h1, . . . , hm. Consecuentemente podemos agrupar aśı los
sumandos:

∏
(c1zi1 + · · ·+ cnzin) =

r∑
k=1

Bk

∑
zhk1
k1

. . . zhkm

km
,

donde r es el número de elementos de un conjunto de m-tuplas (hk1, . . . , hkm)
de números naturales que suman µ sin que haya dos que se diferencien sólo
en el orden, y el segundo sumatorio vaŕıa en un conjunto Pk de permutaciones
(k1, . . . , km) de (1, . . . ,m) que dan lugar, sin repeticiones, a todos los monomios
posibles zhk1

k1
. . . zhkm

km
. Sustituimos las indeterminadas por exponenciales y queda

∏
(c1eγi1 + · · ·+ cne

γin ) =
r∑

k=1

Bk

∑
ehk1γk1+···+hkmγkm = 0.

La definición del conjunto Pk hace que el polinomio∏(
x− (hk1zk1 + · · ·+ hkmzkm

)
)

sea invariante por permutaciones de z1, . . . , zm, luego

Fk(x) =
∏(

x− (hk1γk1 + · · ·+ hkmγkm)
)
∈ Q[x].

Si llamamos γ1k, . . . , γtkk a las ráıces de Fk(x) (repetidas con su multiplicidad),
nuestra ecuación puede escribirse como

∏
(c1eγi1 + · · ·+ cne

γin ) =
r∑

k=1

Bk(eγ1k + · · ·+ eγtkk) = 0.

Sean si(x) ∈ Q[x], i = 1, . . . , q los distintos factores mónicos irreducibles de los
polinomios Fk(x). Aśı cada Fk(x) se expresa como

Fk(x) =
q∏
i=1

spik

i (x),

para ciertos números naturales pik.
Sean β1i, . . . , βtii las ráıces de si(x) (todas son simples, porque el polinomio

es irreducible). Entonces el polinomio Fk(x) tiene pik veces cada ráız βji, luego

Bk(eγ1k + · · ·+ eγtkk) =
q∑
i=1

pikBk(eβ1i + · · ·+ eβtii).
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Sumando resulta

∏
(c1eγi1 + · · ·+ cne

γin ) =
r∑

k=1

Bk(eγ1k + · · ·+ eγtkk)

=
q∑
i=1

Ai(eβ1i + · · ·+ eβtii) = 0,

donde

Ai =
r∑

k=1

pikBk ∈ Z.

Notemos que todos los números βij son distintos, pues son ráıces de polino-
mios irreducibles distintos. Por construcción, los exponentes βij son todas las
sumas distintas de exponentes γij que aparecen al efectuar el producto de la
izquierda de la ecuación. Podemos aplicar el teorema anterior y concluir que
alguno de los coeficientes Ai es no nulo. Eliminando los nulos podemos suponer
que ninguno lo es. En resumen tenemos

q∑
i=1

Ai(eβ1i + · · ·+ eβtii) = 0,

donde los coeficientes son enteros racionales no nulos y los exponentes de cada
sumando son familias de números conjugados correspondientes a polinomios
irreducibles distintos si(x) de grado ti. Distinguimos dos casos:

1) Algún βki = 0. Pongamos por ejemplo i = 1. Esto significa que s1(x) = x,
luego además t1 = 1 y la ecuación se reduce a

A1 +
q∑
i=2

Ai(eβ1i + · · ·+ eβtii) = 0,

donde los exponentes son todos no nulos, y esto contradice al teorema 14.1.
2) Todos los βki son distintos de 0. Dividimos la ecuación entre eβk1 para

k = 1, . . . , t1, con lo que obtenemos las ecuaciones

q∑
i=1

Ai

ti∑
t=1

eβti−βk1 = 0, k = 1, . . . , t1.

Las sumamos y queda

q∑
i=1

Ai

t1∑
k=1

ti∑
t=1

eβti−βk1 = 0.

En el sumando i = 1, los sumandos con k = t valen todos 1. Los separamos:

t1A1 + A1

∑
k �=t

eβti−βk1 +
q∑
i=2

Ai

t1∑
k=1

ti∑
t=1

eβti−βk1 = 0,

donde en el primer sumatorio k y t vaŕıan entre 1 y t1.



14.1. El teorema de Lindemann-Weierstrass 355

El polinomio
g1(x) =

∏
k �=t

(
x− (βt1 − βk1)

)
es invariante por permutaciones de los conjugados βk1, luego sus coeficientes
son racionales. Igualmente ocurre con los polinomios

gi(x) =
t1∏
k=1

ti∏
t=1

(
x− (βti − βk1)

)
para i = 2, . . . , q. Además todos tienen las ráıces no nulas.

Llamando A0 = t1A1 �= 0, k1 = t1(t1 − 1), ki = t1ti para i = 2, . . . , q y
α1i, . . . , αkii a las ráıces de gi(x), la ecuación se convierte en

A0 +
q∑
i=1

Ai

ki∑
k=1

eαki = 0,

que contradice al teorema 14.1.

Ejercicio: Probar que si α1, . . . , αn son números algebraicos linealmente indepen-
dientes sobre Q entonces eα1 , . . . , eαn son algebraicamente independientes sobre Q, es
decir, no son ráıces de ningún polinomio P (x1, . . . , xn) ∈ Q[x1, . . . , xn] no nulo.

Algunas consecuencias inmediatas son las siguientes:

1. Si α �= 0 es un número algebraico, entonces eα es un número trascendente.
En particular el número e es trascendente.

En efecto, si c = eα fuera algebraico, tendŕıamos eα − ce0 = 0, en contra-
dicción con el teorema de Lindemann-Weierstrass.

2. El número π es trascendente.

Si π fuera algebraico también lo seŕıa iπ, y el número eiπ = −1 seŕıa
trascendente.

3. Si α �= 1 es un número algebraico, entonces logα es trascendente.

Si β = logα �= 0 fuera algebraico, entonces α = eβ seŕıa trascendente.

4. Si α �= 0 es un número algebraico, entonces senα, cosα, tanα son núme-
ros trascendentes.

Si β = senα = (eiα − e−iα)/2i fuera algebraico, entonces

eiα − e−iα − 2iβe0 = 0,

en contradicción con el teorema de Lindemann-Weierstrass. Igualmente
con el coseno.

Si β = tanα = (eiα − e−iα)/(eiα + e−iα) fuera algebraico, entonces

(β − 1)eiα + (β + 1)e−iα = 0,

en contradicción con el teorema de Lindemann-Weierstrass.
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Ejercicio: Probar que las funciones arcsen, arccos y arctan toman valores trascen-
dentes sobre números algebraicos (salvo casos triviales).

14.2 El teorema de Gelfond-Schneider

Entre los famosos problemas planteados por Hilbert a principios de siglo, el
séptimo consist́ıa en determinar el carácter algebraico o trascendente de ciertos
números concretos, tales como la constante de Euler. Entre otras cosas Hil-
bert preguntaba si en general αβ es un número trascendente cuando α y β son
números algebraicos, α �= 0, 1 y β es irracional (en los casos exceptuados αβ

es obviamente algebraico). Por αβ se entiende eβ logα, donde logα es cualquier
logaritmo complejo de α. Esta parte del séptimo problema fue demostrada in-
dependientemente por Gelfond y Schneider en 1934. De este hecho se sigue en
particular que los números 2

√
2 o eπ = (−1)−i son trascendentes.

Sea K un cuerpo numérico de grado h y β1, . . . , βh una base entera de K.
Si α ∈ K llamaremos α(i), para i = 1, . . . , h, a los conjugados de α en un cierto
orden. Llamaremos |α| = máx

1≤i≤h
|α(i)|.

Si γ1, . . . , γh es la base dual de β1, . . . , βh entonces, todo entero α de K
se expresa en forma única como α = a1β1 + · · · + ahβh, para ciertos enteros
racionales ai tales que

|ai| = |Tr(αγi)| = |α(1)γ
(1)
i + · · ·+ α(h)γ

(h)
i | ≤ máx

1≤i≤h
|γ(i)| |α|.

Aśı pues, existe una constante c que depende sólo de K y de la base β1, . . . , βh
tal que para todo entero α ∈ K se cumple

α = a1β1 + · · ·+ ahβh con |ai| ≤ c, i = 1, . . . , h.

Probamos dos teoremas previos:

Teorema 14.4 Sea (ajk) una matriz M×N con coeficientes enteros racionales
tal que M < N y de modo que todos los coeficientes estén acotados por A ≥ 1.
Entonces el sistema de ecuaciones lineales

aj1x1 + · · ·+ ajNxN = 0, 1 ≤ j ≤M,

tiene una solución entera no trivial tal que |xk| ≤ E
(
(NA)M/(N−M)

)
, para

1 ≤ k ≤ N (donde E denota la parte entera).

Demostración: Para cada N -tupla de enteros racionales (x1, . . . , xN ) con-
sideremos la M -tupla de enteros racionales (y1, . . . , yM ) dada por

yj = aj1x1 + · · ·+ ajNxN , 1 ≤ j ≤M.

Sea H = E
(
(NA)M/(N−M)

)
. De este modo, (NA)M/(N−M) < H + 1, luego

NA < (H +1)(N−M)/M , NAH +1 ≤ NA(H +1) < (H +1)N/M , luego tenemos
que (NAH + 1)M < (H + 1)N .
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Sea (x1, . . . , xN ) tal que 0 ≤ xk ≤ H para 1 ≤ k ≤ N . Sea −Bj la suma de
los ajk negativos y Cj la suma de los ajk positivos. Entonces

Bj + Cj = |aj1|+ · · ·+ |ajN | ≤ NA,

y claramente −BjH ≤ yj ≤ CjH.
Ahora bien, el número de N -tuplas (x1, . . . , xN ) tales que 0 ≤ xk ≤ H

es (H + 1)N , mientras que sus M -tuplas asociadas (y1, . . . , yM ) vaŕıan en un
conjunto de a lo sumo (CjH + BjH + 1)M ≤ (NAH + 1)M elementos. Como
(NAH + 1)M < (H + 1)N , ha de haber dos N -tuplas distintas con la misma
imagen. Su diferencia cumple el teorema.

Teorema 14.5 Sea (αkl) una matriz p × q con coeficientes enteros en K tal
que p < q y de modo que |αkl| ≤ A. Entonces el sistema de ecuaciones lineales

αk1ξ1 + · · ·+ αkqξq = 0, 1 ≤ k ≤ p,

tiene una solución entera (en K) no trivial tal que |ξl| ≤ c(1 + (cqA)p/(q−p)),
para 1 ≤ l ≤ q, donde c es una constante que depende de K y de la base
β1, . . . , βh, pero no de la matriz.

Demostración: : Para cualquier q-tupla (x1, . . . , xq) de enteros de K
consideremos sus coordenadas

ξl = xl1β1 + · · ·+ xlhβh, 1 ≤ l ≤ q,

donde xl1, . . . , xlh son enteros racionales. Aśı mismo sea

αklβr = aklr1β1 + · · ·+ aklrhβh, 1 ≤ k ≤ p, 1 ≤ l ≤ q, 1 ≤ r ≤ h.

Entonces

q∑
l=1

αklξl =
q∑
l=1

αkl

h∑
r=1

xlrβr =
h∑

r=1

q∑
l=1

xlr

h∑
u=1

aklruβu

=
h∑

u=1

(
h∑

r=1

q∑
l=1

aklruxlr

)
βu,

luego (ξ1, . . . , ξq) será solución del sistema de ecuaciones si y sólo si las coorde-
nadas (xl1, . . . , xlh) son solución del sistema de M = hp ecuaciones con N = hq
incógnitas

h∑
r=1

q∑
l=1

aklruxlr = 0, 1 ≤ u ≤ h, 1 ≤ k ≤ p.

Según hemos observado al comienzo de la sección, existe una constante c′

tal que
|aklru| ≤ c′ |αklβr| ≤ c′ máx

1≤i≤h
|βi|A = c′′A.
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Por el teorema anterior este sistema de ecuaciones tiene una solución entera no
trivial tal que

|xlr| ≤ E
(
(hqc′′A)p/(q−p)

)
≤ 1 + (hqc′′A)p/(q−p), 1 ≤ l ≤ q, 1 ≤ r ≤ h.

Los (ξ1, . . . , ξq) con estas coordenadas son enteros de K no todos nulos que
cumplen el sistema de ecuaciones y además

|ξl| ≤ |xl1| |β1|+ · · ·+ |xlh| |βh| ≤ máx
1≤i≤h

|βi|(|xl1|+ · · ·+ |xlh|)

≤ hc′′(1 + (hqc′′A)p/(q−p)) = c(1 + (cqA)p/(q−p)).

Teorema 14.6 (Gelfond-Schneider) Si α y β son números algebraicos tales
que α �= 0, 1 y β es irracional, entonces el número αβ es trascendente.

Demostración: Fijemos un valor para logα y supongamos que γ = eβ logα

es algebraico. Sea K un cuerpo numérico de grado h que contenga a α, β y γ.
Sean m = 2h + 2 y n = q2/(2m), donde t = q2 es un múltiplo de 2m.

Observar que podemos tomar valores para n arbitrariamente grandes en estas
condiciones. En lo sucesivo las letras c, c1, c2, . . . representarán constantes que
dependerán de K, de una base entera de K prefijada y de α, β, γ, pero nunca
de n.

Sean ρ1, . . . , ρt los números (a+bβ) logα, con 1 ≤ a ≤ q, 1 ≤ b ≤ q. Observar
que como β es irracional, los números 1 y β son linealmente independientes,
luego los números ρ1, . . . , ρt son distintos dos a dos.

Sean η1, . . . , ηt números complejos en K arbitrarios. Consideremos la función
holomorfa en C dada por R(z) = η1e

ρ1z + · · · + ηte
ρtz. Consideremos las mn

ecuaciones lineales con t = 2mn incógnitas (η1, . . . , ηt)

(logα)−kRk)(l) = 0, 0 ≤ k ≤ n− 1, 1 ≤ l ≤ m.

Los coeficientes de la ecuación (k, l) son los números

(logα)−kρki e
ρil = (logα)−k

(
(a + bβ) logα)kel(a+bβ) logα = (a + bβ)kαalγbl ∈ K,

con 1 ≤ l ≤ m, 1 ≤ a, b ≤ q, 0 ≤ k ≤ n− 1.

Sea c1 un número natural no nulo tal que c1α, c1β y c1γ sean enteros en K.
En cada coeficiente, al desarrollar el binomio (a + bβ)k aparecen monomios de
α, β y γ con grado a lo sumo

k + al + bl ≤ n− 1 + mq + mq ≤ n + 4m2n = (4m2 + 1)n,

luego si multiplicamos cualquiera de los coeficientes por c
4(m2+1)n
1 = cn2 obtene-

mos un entero de K.
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El módulo de los conjugados de los coeficientes multiplicados por cn2 es a lo
sumo

|cn2 (a + bβ(i))k(α(i))al(γ(i))bl| ≤ cn2 (a + b|β|)k |α|al |γ|bl

≤ cn2 (q + q|β|)n−1 |α|mq |γ|mq ≤ cn2
(√

2m
√

n +
√

2m
√

n |β|
)n−1|α|2m

2n |γ|2m
2n

≤ cn2
(√

2m +
√

2m |β|
)n|α|2m2n |γ|2m

2n√
n
n−1 = cn3 n(n−1)/2.

Podemos aplicar el teorema anterior, que nos garantiza que η1, . . . , ηt pue-
den elegirse de modo que sean enteros en K, no todos nulos, satisfagan las 2t
ecuaciones (multiplicadas o no por cn2 , da igual) y además

|ηk| ≤ c
(
1 + (c 2t cn3 n(n−1)/2)

)
≤ 4ct cn3 n(n−1)/2

≤ 8mcn cn3 n(n−1)/2 ≤ cn4 n(n+1)/2, (14.4)

para 1 ≤ k ≤ t.
A partir de ahora consideramos la función R(z) para estos η1, . . . , ηt. En

primer lugar, R(z) no puede ser idénticamente nula, pues desarrollándola en
serie de Taylor en el origen resultaŕıa entonces que

η1ρ
k
1 + · · ·+ ηtρ

k
t = 0, para k = 0, 1, 2, 3, . . .

pero las t primeras ecuaciones son un sistema de ecuaciones lineales en η1, . . . , ηt
cuyo determinante es de Vandermonde, luego es no nulo, puesto que ρ1, . . . , ρt
son distintos dos a dos. Esto implica que η1 = · · · = ηt = 0, lo cual es falso.

En resumen tenemos que la función entera R(z) es no nula pero tiene sus
n− 1 primeras derivadas nulas en los puntos l = 1, . . . ,m.

Existe, pues, un natural r ≥ n tal que Rk)(l) = 0 para 0 ≤ k ≤ r − 1,
1 ≤ l ≤ m y Rr)(l0) �= 0 para un cierto l0 tal que 1 ≤ l0 ≤ m.

Llamemos ρ = (logα)−rRr)(l0) �= 0. El mismo análisis que hemos realizado
antes sobre los coeficientes del sistema nos da ahora que ρ ∈ K y que cr+2mq

1 ρ
es un entero en K.

Aśı pues, 1 ≤ |N(cr+2mq
1 ρ)| = |N(ρ)|, luego

|N(ρ)| ≥ c
−h(r+2mq)
1 > c−r5 . (14.5)

Por otro lado tenemos que ρ es una suma de t términos, cada uno de los
cuales es el producto de un ηk, para el que tenemos la cota (14.4), y de un
coeficiente de la forma (a + bβ)rαal0γbl0 , cuyos conjugados están acotados por

(a + b|β|)r |α|al0 |γ|bl0 ≤ (q + q|β|)r |α|mq |γ|mq ≤ (c6q)rc
q
7.

Consecuentemente |ρ| ≤ t cn4 n(n+1)/2(c6q)rc
q
7.

Ahora acotamos t = q2 = 2mn ≤ 2mr, n ≤ r, q ≤
√

2m
√

n ≤
√

2mr1/2 y
llegamos a

|ρ| ≤ 2mr cr4 r(r+1)/2 cr6
(√

2m
)r

rr/2c2mr
7 ≤ cr8 rr+3/2. (14.6)
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Vamos a obtener una cota más fina para |ρ|. Para ello aplicaremos la fórmula
integral de Cauchy a la función

S(z) = r!
R(z)

(z − l0)r

m∏
k=1
k �=l0

(
l0 − k

z − k

)r

.

Puesto que las derivadas anteriores al orden r son nulas en 1, . . . ,m, la
función S es entera. Además

ρ = (logα)−rRr)(l0) = (logα)−rS(l0) = (logα)−r
1

2πi

∫
C

S(z)
z − l0

dz,

donde C es la circunferencia |z| = m(1 + r/q), que contiene a los números
1, . . . ,m, en particular a l0. Para los puntos z ∈ C tenemos las cotas

|R(z)| ≤ t cn4 n(n+1)/2 exp
(
(q + q|β|) |logα|m(1 + r/q)

)
≤ t cn4 n(n+1)/2 cr+q9 ≤ cr10 r(r+3)/2,

|z − k| ≥ |z| − |k| ≥ m(1 + r/q)−m = mr/q, para k = 1, . . . ,m,

∣∣∣∣∣(z − l0)−r
m∏
k=1
k �=l0

(
l0 − k

z − k

)r
∣∣∣∣∣ ≤

( q

mr

)r m∏
k=1
k �=l0

mr
( q

mr

)r
= c11

(q

r

)mr

,

|S(x)| ≤ r! cr10 r(r+3)/2 cr11

(q

r

)mr

≤ rrcr10 r(r+3)/2cr11
(√

2m
)mr

r−mr/2 = cr12 r(3r+3−mr)/2.

Acotando la integral llegamos a que

|ρ| ≤ 1
2π
|(logα)−r|2π

(
1 +

r

q

)
cr12 r(3r+3−mr)/2

( q

mr

)

= | logα|−r
(

q

mr
+

1
m

)
cr12 r(3r+3−mr)/2

≤ | logα|−r(q + 1)rcr12 r(3r+3−mr)/2 = cr13 r(3r+3−mr)/2.

Ahora vamos a acotar |N(ρ)|, que es el producto de los módulos de los
conjugados de ρ, usando la cota anterior para |ρ| y la cota (14.6) para los h− 1
conjugados restantes. Concretamente

|N(ρ)| ≤ cr13r
(3r+3−mr)/2(cr8r

r+3/2)h−1 = cr14 r(3r+3−mr)/2+(h−1)(r+3/2).

Si sustituimos m = 2h + 2 la expresión se simplifica hasta

|N(ρ)| ≤ r(3h−r)/2.
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Pero combinando esto con (14.5) resulta c−r5 < cr14 r(3h−r)/2, o lo que es lo
mismo, r(r−3h)/2 < cr14 cr5 = cr15. Tomando logaritmos es fácil llegar a que(

1
2
− 3h

2r

)
log r < log c15.

Hemos probado que esto se cumple para una constante c15 y para valores de
r arbitrariamente grandes (pues r ≥ n), pero esto es claramente contradictorio,
pues el miembro de la izquierda tiende a +∞ cuando r tiende a +∞.
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13.2 Primos irregulares menores que 1.000. . . . . . . . . . . . . . . . 345

365
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