Efficient Problem-Solving with Python

Python

Jfor Unix and Linux
System Administration

O’REILLY® Noah Gift & Jeremy M. Jones

Python for Unix and Linux System
Administration

Other resources from O'Reilly

Related titles

oreilly.com

Yﬁﬂw@ ‘REILLY
HADLANETWORK,

Conferences

O'REILLY N_ETWORK
Safari
Bookshelf

Essential System Mac OS X for Unix Geeks
Administration Programming Python

Learning Python Python Cookbook™

Linux NetWOEMking Python in a Nutshell
Cookbook

N Unix in a Nutshell
Linux Security Cookbook

oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Python for Unix and Linux System
Administration

Noah Gift and Jeremy M. Jones

O’REILLY"

Beijing - Cambridge - Farnham - KdIn - Sebastopol + Taipei - Tokyo

Python for Unix and Linux System Administration
by Noah Gift and Jeremy M. Jones

Copyright © 2008 Noah Gift and Jeremy M. Jones. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Julie Steele Cover Designer: Karen Montgomery
Production Editor: Loranah Dimant Interior Designer: David Futato
Production Services: nSight, Inc. lllustrator: Robert Romano
Printing History:

August 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Python for Unix and Linux System Administration, the image of a boa constrictor,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51582-9
(M]
1218651032

http://safari.oreilly.com

I dedicate this book to Dr. Joseph E. Bogen,
my mom, and my wife, Leah—three people who
have loved me and believed in me when it counted

the most.

—Noah

I dedicate this book to my wife, Debra, and my
children, Zane and Justus. You encouraged me,
bore with me with great patience, and gave me
many smiles along the journey of writing this
book. This book is as much yours as it is mine.

—Jeremy

Table of Contents

Forewordoooieee Xi
Preface ..o xiii
1. Introduction ... 1
Why Python? 1
Motivation 6
The Basics 8
Executing Statements in Python 8
Using Functions in Python 12
Reusing Code with the Import Statement 16
2 | 4 1171 21
Installing IPython 22
Basic Concepts 23
Help with Magic Functions 30
Unix Shell 34
Information Gathering 51
Automation and Shortcuts 64
Summary 69
T 1 A
Python Built-ins and Modules 71
Log Parsing 110
ElementTree 116
Summary 120
4. Documentationand Reportingcccovviiiiiiiiiiiiiiiiiiiiniinnen. 123
Automated Information Gathering 123
Manual Information Gathering 126
Information Formatting 135

vii

Information Distribution
Summary

Networkingcooviiniiiiiiiiii ittt iiieenenan,

Network Clients

Remote Procedure Call Facilities
SSH

Twisted

Scapy

Creating Scripts with Scapy

) .

Introduction

Using the OS Module to Interact with Data
Copying, Moving, Renaming, and Deleting Data
Working with Paths, Directories, and Files
Comparing Data

Merging Data

Pattern Matching Files and Directories
Wrapping Up rsync

Metadata: Data About Data

Archiving, Compressing, Imaging, and Restoring
Using tarfile Module to Create TAR Archives
Using a tarfile Module to Examine the Contents of TAR Files

SNMP e e

Introduction

Brief Introduction to SNMP

[Python and Net-SNMP

Discovering a Data Center

Retrieving Multiple-Values with Net-SNMP
Creating Hybrid SNMP Tools

Extending Net-SNMP

SNMP Device Control

Enterprise SNMP Integration with Zenoss

L0301

Introduction

Cross-Platform Unix Programming in Python
PyInotify

OSX

Red Hat Linux Systems Administration
Ubuntu Administration

141
145

147
147
158
164
167
173
175

177
177
178
179
181
185
187
193
195
197
199
199
201

205
205
205
208
211
214
220
222
224
225

227
227
228
238
240
245
245

viii |

Table of Contents

10.

1.

12.

Solaris Systems Administration
Virtualization
Cloud Computing

Using Zenoss to Manage Windows Servers from Linux

Package Managementccciiiiiiiiiiiiiiinn,

Introduction

Setuptools and Python Eggs
Using easy_install

easy_install Advanced Features
Creating Eggs

Entry Points and Console Scripts
Registering a Package with the Python Package Index
Distutils

Buildout

Using Buildout

Developing with Buildout
virtualenv

EPM Package Manager

Processesand CONCUITENCY ...ovvvvvvnvnnrnnrnnrnnrnnnns

Introduction

Subprocess

Using Supervisor to Manage Processes
Using Screen to Manage Processes
Threads in Python

Processes

Processing Module

Scheduling Python Processes
daemonizer

Summary

BuildingGUIScovvviniiiiiiii it iiiienenees

GUI Building Theory

Building a Simple PyGTK App

Building an Apache Log Viewer Using PyGTK
Building an Apache Log Viewer Using Curses
Web Applications

Django

Conclusion

Data Persistenceoovvviriviiiiii it

Simple Serialization

245
246
247
253

............... 257

257
258
258
261
266
270
271
273
275
276
279
279
283

................ 289

289
289
298
300
301
313
313
316
318
321

................ 323

323
324
326
330
334
335
354

............... 357

357

Table of Contents | ix

Relational Serialization 376

Summary 385

13. Commandlineoooiiiiiiiiiiiiiii 387
Introduction 387
Basic Standard Input Usage 388
Introduction to Optparse 389
Simple Optparse Usage Patterns 390
Unix Mashups: Integrating Shell Commands into Python Command-Line Tools

397

Integrating Configuration Files 402
Summary 404

14. PragmaticExamplescoiiiiiiiiiiii ittt i 405
Managing DNS with Python 405
Using LDAP with OpenL.DAP, Active Directory, and More with Python 406
Apache Log Reporting 408

FTP Mirror 415
Appendix: Callbacksvveniriii i i i e it e 419
INdeX ..o 423

x | Table of Contents

Foreword

I was excited to preview this book on using Python for system administration. I
remembered how I felt when I discovered Python after many years of programming in
other languages: it was like a breath of spring air and the warmth of the sun after a long
winter indoors. Code was suddenly easy and fun to write again, and I finished programs
much more quickly than before.

As a system administrator, most of my own Python use is for system and network
management tasks. I already knew how useful a good book focusing on system ad-
ministration with Python would be. I am happy to say that this is that book. Overall,
Noah and Jeremy have created an interesting, intelligent work on Python that is planted
firmly in the system administration sphere. I found the book both very useful and en-
joyable to read.

The two opening chapters are a great introduction to Python for system administrators
(and others) who are new to Python. I consider myself an intermediate Python pro-
grammer, and I learned a lot from the book. I suspect even Python wizards will come
across a few new tricks in here. I can especially recommend the chapters on networking
and managing network services, SNMP, and management of heterogeneous systems as
particularly useful and well focused on nontrivial, real-world tasks that system admin-
istrators face every day.

—leen Frisch, July 2008

Xi

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, in text to refer to program elements, such as variable or
function names, databases, data types, environment variables, statements, utilities,
keywords, utilities, and modules.
Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

W8
\
- This icon signifies a tip, suggestion, or general note.
L)
N
15)

This icon indicates a warning or caution.

=

Using Code Examples

This book is here to help you get your job done. In general, you may use the code that
is included in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission; selling or distributing a CD-ROM of examples from O’Reilly

Xiii

books does require permission. Answering a question by citing this book and quoting
example code does not require permission; incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN, for example: “Python for Unix and Linux System Admin-
istration by Noah Gift and Jeremy M. Jones. Copyright 2008 Noah Gift and Jeremy M.
Jones, 978-0-596-51582-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/9780596515829
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

xiv | Preface

http://safari.oreilly.com
http://www.oreilly.com/9780596515829
http://www.oreilly.com

Acknowledgments

Noah’s Acknowledgments

As I sit writing an acknowledgment for this book, I have to first mention Dr. Joseph E.
Bogen, because he made the single largest impact on me, at a time that it mattered the
most. [met Dr. Bogen while I was working at Caltech, and he opened my eyes to another
world giving me advice on life, psychology, neuroscience, math, the scientific study of
consciousness, and much more. He was the smartest person I ever met, and was some-
one I loved. I am going to write a book about this experience someday, and I am sad-
dened that he won’t be there to read it, his death was a big loss.

[want to thank my wife, Leah, who has been one of the best things to happen to me,
ever. Without your love and support, I never could have written this book. You have
the patience of a saint. I am looking forward to going where this journey takes us, and
I love you. I also want to thank my son, Liam, who is one and a half, for being patient
with me while I wrote this book. I had to cut many of our guitar, piano, and pushup
lessons short, so I owe you payback times two, little goat.

To my mom, I love you, and thank you for encouraging me throughout life.

Of course, I want to thank Jeremy M. Jones, my coauthor, for agreeing to write this
book with me. I think we were a great team with different, but complementary styles,
and we wrote a great book. You have taught me a lot about Python, and have been a
good partner and friend. Thanks!

Titus Brown, whom I suppose I have to call Dr. Brown now, was the person that got
me interested in Python to begin with, when I met him at Caltech. He is another ex-
ample of how one person can make a difference, and I am glad to consider him an “old”
friend, the kind money can’t buy. He kept asking me, “Why don’t you use Python?”
And then one day I did. If it wasn’t for Titus, I would certainly have continued down
the Java and Perl path. You can read his blog here: http://ivory.idyll.org/blog.

Shannon Behrens has a heart of solid gold, a mind as sharp as a razor, and a knowledge
of Python that is truly scary. I first met Shannon through Titus, ironic again, but he and
[became quick friends. Shannon is the real deal in every sense of the word, and has
taught me a tremendous amount about Python, in fact, staggering would be a better
word. His help with Python, and editing this book has been incredible, and I owe him
tremendously. I shudder to think of what it would have looked like without him. I can’t
ever imagine a company being foolish enough to let him get away, and I look forward
to helping him with his first book. Finally, he is just an incredible technical reviewer.
You can read his blog here: http://jjinux.blogspot.com/.

Doug Hellmann was our other star technical reviewer and was exceptionally productive
and helpful. Jeremy and I are extremely fortunate to get someone of his caliber to review
the book. He went above and beyond his call of duty, and is truly a force of efficiency

Preface | xv

http://ivory.idyll.org/blog
http://jjinux.blogspot.com/

to reckon with. He was also a great source of motivation while we worked together at
Racemi. You can read his blog here: http://blog.doughellmann.com/.

Thanks to Scott Leerseen for reviewing our book and giving us good advice along the
way. I also especially enjoyed our code review battles. Just remember, I am always right.

Thanks to Alfredo Deza for the work on making an Ubuntu virtual machine for the
book, your expertise was greatly appreciated.

A very large thanks to Liza Daly, for providing good feedback on some really early, and
rough, parts of our book. This was tremendously helpful.

Special thanks to Jeff Rush for his advice and reference material on Buildout, Eggs, and
Virtualenv.

Thanks to Aaron Hillegass who has given me some great advice and help along the way,
and who has a great training company, Big Nerd Ranch. He is a special person, who I
am lucky to have met. Thanks to Mark Lutz, who T had the pleasure of taking a Python
training course from, and who has written some great books on Python.

Thanks to the people in the Python community in Atlanta, and the members of PyAtl:
http://pyatl.org; you have all taught me a great deal. Rick Copeland, Rick Thomas,
Brandon Rhodes, Derek Richardson, Jonathan La Cour, a.k.a Mr. Metaclass, Drew
Smathers, Cary Hull, Bernard Matthews, Michael Langford, and many more I have
forgotten to mention. Brandon and Rick Copeland in particular have been very helpful
and are awesome Python programmers. You can read Brandon’s blog at http://rhodes
mill.org/brandon/.

Thanks to Grig Gheorghiu for giving us expert sysadmin and testing advice and for
giving us a kick in the butt when we needed one.

Thanks to my former employer Racemi, and the CTO/Founder, Charles Watt. I learned
a lot from you and was glad you knew which competitive buttons to push. Just re-
member [will kick your butt at writing code, a 26-mile run, or a 200-mile bike ride any
day, just tell me where and when.

Thanks to Dr. Nanda Ganesan, who was a great mentor in graduate school at CSULA.
You taught me a lot about information technology and life and encouraged me to think
big.

Thanks to Dr. Cindy Heiss, who was my professor for my undergraduate degree in
nutritional science. You got me started on web development, encouraged me to believe
in myself, and ultimately made an impact on my life, thanks!

Thanks to Sheldon Blockburger, who let me try out for Division I decathlon as a walk-
on at Cal Poly SLO. Even though I didn’t make the team, you showed me how to be a
fierce competitor and warrior, and taught me the self-discipline to run 200-meter in-
tervals by myself. I believe weekly 200-meter interval workouts make me a better soft-
ware engineer.

xvi | Preface

http://blog.doughellmann.com/
http://pyatl.org
http://rhodesmill.org/brandon/
http://rhodesmill.org/brandon/

There were many other people who helped tremendously along the way, including
Jennifer Davis, yet another friend from Caltech, who gave us some great feedback; some
of my friends and coworkers at Turner; Doug Wake, Wayne Blanchard, Sam Allgood,
Don Voravong; some of my friends and coworkers from Disney Feature animation,
including Sean Someroff, Greg Neagle, and Bobby Lea. Greg Neagle in particular taught
me a lot about OS X. Also, thanks to J.F. Panisset, who I met at Sony Imageworks, for
teaching me quite a bit about engineering in general. Although he is now a CTO, he is
another rare catch for any company.

I would like to thank a few others who made some important contributions: Mike
Wagner, Chris McDowell, and Shaun Smoot.

Thanks to Bruce J. Bell, who I worked with at Caltech. He taught me quite a bit about
Unix and programming over the years, and I owe him greatly for it. You can read his
material here: hitp://www.ugcs.caltech.edu/~brucel/.

Also thanks to Alberto Valez, my boss at Sony Imageworks, for being possibly the best
boss I ever had and giving me the chance to completely automate my job. Thanks to
film editor Ed Fuller, who helped with advice on the book, and was a good friend during
this process.

Thanks to many people in the Python community. First, thanks to Guido van Rossum
for writing a great language, for being a great leader, and for being patient with me
when I asked for advice on the book. There are so many rock stars in the Python com-
munity who crank out useful tools that I use everyday. They include Ian Bicking, Fer-
nando Perez and Villi Vainio, Mike Bayer, Gustavo Niemeyer, etc. Thanks! Thanks to
the great book by David Beazely, and his fantastic tutorial at PyCon 2008 on Genera-
tors. Thanks to other writers about Python and systems administration as well. You
can find links to their work here: http://wiki.python.org/moin/systems_administration.
Thanks also to the Repoze crew: Tres Seaver and Chris McDonough (http://repoze.org/
index.html).

Special thanks to the great tools, advice, and tolerance from Phillip J. Eby on the
setuptools section. Also, thanks to Jim Fulton who tolerated my questions about ZODB
and buildout, with a crazy schedule. Additional thanks to Martijn Fassen, who taught
me about ZODB and Grok. If you want to see the future of Python web development,
check out Grok: http://grok.zope.org/.

Thanks to Red Hat Magazine staff, Julie Bryce, Jessica Gerber, Bascha Harris, and Ruth
Suehle, for letting me try out ideas we used in this book in the form of articles. Also,
thanks to Mike McCrary at IBM Developerworks, for letting me write articles to try out
ideas we used in this book.

I want to thank the multitudes of people who told me at one point in my life that I
couldn’t do something. At almost every step, I have met discouraging people who told
me everything from I would never get into the college I wanted to to I would never learn
to program. Thank you for giving me the extra motivation to succeed at my dreams.

Preface | xvii

http://www.ugcs.caltech.edu/~bruce/
http://wiki.python.org/moin/systems_administration
http://repoze.org/index.html
http://repoze.org/index.html
http://grok.zope.org/

Humans can create their own reality if they truly believe in themselves, and T would
encourage everyone to give themselves a chance to do what they truly want to do.

Finally, thanks to O’Reilly and Tatiana Apandi, for believing in my original pitch for a
book on Python and Systems Administration. You took a chance and believed in me
and Jeremy, and I thank you for that. Although Tatiana left O’Reilly near the end of
our book to pursue her dreams, her impact was still felt. T also want to thank our new
editor Julie Steele, who has been supportive and helpful every step of the way. You have
really provided a sea of calm that I personally appreciated greatly. I look forward to
hearing great things in the future from Julie, and I'm excited to work with her again.

Jeremy’s Acknowledgments

After reading Noah’s list of thanks, it makes me feel both ungrateful, because I know
my list won’t be that long, and at a loss, because I think he covered nearly everyone
that I wanted to thank.

First, I must thank my God, through Whom I can do all things and without Whom, I
can do nothing.

First in an earthly sense, I thank my wife, Debra. You kept the children engaged with
other activities while I worked on the book. You enforced the so-often reapeated rule
“Don’t bother Daddy while he’s working on his book.” You encouraged me when I
needed it, and you also gave me a lot of space, which is what I needed most. Thank
you. I love you. I could not have written this book without you.

[also must thank my sweet children, Zane and Justus, for their patience through the
process of my writing this book. I missed out on a lot of trips to Stone Mountain with
you both. I still put one of you to bed most nights, but I missed out on staying in there
long enough to fall asleep with you, like [used to. I missed out on the last several weeks
of Kid’s Rock on Wednesday nights. I missed out on so much, but you bore it patiently.
So, thank you for your patience. And thank you for your excitement as you hear that
I’'m almost done with the book. I love you both.

[want to thank my parents, Charles and Lynda Jones, for their support through the
course of my writing this book. But more than that, I want to thank them for being a
living example of a strong work ethic, of earning everything you have, of working hard
to better yourself, and of spending money wisely. Those are lessons I hope to pass on
to Zane and Justus.

Thank you to Noah Gift, my coauthor, for getting me into this mess. It has been hard,
harder than I thought and definitely one of the hardest things I've ever done in my life.
[think it says a lot about a person when you work on something like this with him and
at the end, you can still think of him as your friend. Thanks, Noah. This book would
not have begun if not for you.

xviii | Preface

[want to thank our team of reviewers. I think that Noah has already thanked all of you,
but I want to thank everyone that I can: Doug Hellman, Jennifer Davis, Shannon JJ
Behrens, Chris McDowell, Titus Brown, and Scott Leerseen. You guys were awesome.
There were times when I thought that I had something spot-on and you readjusted my
thinking. Or you just brought a completely different perspective to the book and helped
me see my work through a different set of eyes. (That was mostly you, Jennifer. If the
text processing chapter is useful for sysadmins, it’s mostly because of you.) Thank you

all.

I also want to thank our editors, Tatiana Apandi and Julie Steele. You guys handled
the hard stuff, freeing us up to work on the book. You both eased our burden along
the way. Thank you.

I’d also like to thank Fernando Perez and Ville Vainio for your amazing feedback. I
hope I've done IPython justice. And thank you for IPython. I feel like I couldn’t live
without it.

Thank you Duncan McGreggor, for helping me get the Twisted code in better shape.
Your comments were extemely helpful. And thank you for working on Twisted. It is
an amazing framework. I hope to use it more, real soon now.

I thank Bram Moolenaar and everyone who has ever worked on the Vim editor. Almost
every word and XML tag that I wrote flowed through capabilities Vim. I picked up a
few tricks along the way that I'll incorporate into my daily editing habits. Vim made
me more productive. Thank you.

[also want to thank Linus Torvalds, the Debian folks, the Ubuntu folks, and anyone
else who has ever worked on Linux. Almost every word that I typed was done on Linux.
You made it incredibly simple to set up new environments and test different things.
Thank you.

Finally, but by no means least, I want to thank Guido van Rossum and everyone who
has ever done any work on Python. I have been benefitting from your work for a number
of years now. I was hired for my last two jobs because of Python. Python, the language,
and Python, the community, have been both a great joy for me since I started working
with it sometime around 2001-2002. Thank you. Python has been very good to me.

Preface | xix

CHAPTER 1
Introduction

Why Python?

If you are a system administrator, it is likely that you have encountered Perl, Bash, ksh,
or some other scripting language. You may have even used one or more yourself.
Scripting languages are often used to do repetitive, tedious work at a rate and with an
accuracy that far surpass what you could accomplish without them. All languages are
tools. They are simply a means to get work done. They have value only insofar as they
help you get your job done better. We believe that Python is a valuable tool, specifically
because it enables you to get your work done efficiently.

So is Python better than Perl, Bash, Ruby, or any other language? It’s really difficult to
put that sort of qualitative label on a programming language, since the tool is so closely
tied to the thought process of the programmer who is using it. Programming is a sub-
jective, deeply personal activity. For the language to be excellent, it must fit the person
usingit. So we’re not going to argue that Python is better, but we will explain the reasons
that we believe Python can be an excellent choice. We’ll also explain why it is a great
fit for performing sysadmin tasks.

The first reason that we think that Python is excellent is that it is easy to learn. If a
language can’t help you become productive pretty quickly, the lure of that language is
severely diminished. Why would you want to spend weeks or months studying a lan-
guage before you are able to write a program that does something useful? This is espe-
cially the case for sysadmins. If you are a sysadmin, your work can pile up faster than
you can unpile it. With Python, you can start writing useful scripts literally in hours
rather than in days or weeks. If you can’t learn a language quickly enough to start
writing scripts with it almost immediately, you should strongly question whether you
should be learning it.

However, a language that is easy to learn but doesn’t allow you to do fairly complex
tasks isn’t worth much either. So the second reason that we consider Python to be an
excellent programming language is that, while it lets you start simply, it also allows you
to perform tasks that are as complex as you can imagine. Do you need to read through
a logfile line by line and pull out some pretty basic information? Python can handle

that. Or do you need to parse through a logfile, extract every piece of information that
it provides, compare usage from each IP address in this logfile to usage in each logfile
(which are stored in a relational database, by the way) from the past three months, and
then store the results to a relational database? Sure, Python can do that as well. Python
is being used on some pretty complex problems, such as analysis of genomic sequences,
multithreaded web servers, and heavy duty statistical analysis. You may never have to
work on anything like that, but it’s nice to know that when you need to do complex
things, the language is able to work with you.

Additionally, if you are able to perform complex operations, but the maintainability of
your code suffers along the way, that isn’t a good thing. Python doesn’t prevent code
maintenance problems, but it does allow you to express complex ideas with simple
language constructs. Simplicity is a huge factor in writing code that is easy to maintain
later. Python has made it pretty simple for us to go back over our own code and work
on it after we haven’t touched it in months. It has also been pretty simple for us to work
on code that we haven’t seen before. So the language, that is the language’s syntax and
common idioms, are clear and concise and easy to work with over long periods of time.

The next reason we consider Python to be an excellent language is its readability.
Python relies on whitespace to determine where code blocks begin and end. The in-
dentation helps your eyes quickly follow the flow of a program. Python also tends to
be “word-based.” By that we mean that while Python uses its share of special characters,
features are often implemented as keywords or with libraries. The emphasis on words
rather than special characters helps the reading and comprehension of code.

Now that we’ve outlined a few of Python’s benefits, we’ll show some comparisons of
code examples in Python, Perl, and Bash. Along the way, we’ll also look at a few more
of Python’s benefits. Here is a simple example, in Bash, of showing all the combinations
of 1,2 and a, b:
#!/bin/bash
for a in 1 2; do
for b in a b; do
echo "$a $b"
done
done
And here is a comparable piece of Perl:
#!/usr/bin/perl
foreach $a ('1', '2') {

foreach $b ('a', 'b') {
print "$a $b\n";
}

}

This is a pretty simple nested loop. Let’s compare these looping mechanisms with a
for loop in Python:

2 | Chapter1: Introduction

#!/usr/bin/env python

for a in [1, 2]:
for b in ['a', 'b']:
print a, b
Next, we’ll demonstrate using conditionals in Bash, Perl, and Python. We have a simple
if/else condition check here. We’re just checking to see whether a certain file path is
a directory:

#!/bin/bash

if [-d "/tmp"] ; then
echo "/tmp is a directory"
else

echo "/tmp is not a directory"
fi

Here is the Perl equivalent of the same script:
#!/usr/bin/perl

if (-d "/tmp") {
print "/tmp is a directory\n";

else {
print "/tmp is not a directory\n";
}

And here is the Python equivalent of the script:
#!/usr/bin/env python

import os

if os.path.isdir("/tmp"):

print "/tmp is a directory”
else:

print "/tmp is not a directory"

Another point in favor of Python’s excellence is its simple support for object-oriented
programming (OOP). And, actually, the converse of that is that you don’t have to do
OOP if you don’t want to. But if you do, it’s dead simple in Python. OOP allows you
to easily and cleanly break problems apart and bundle pieces of functionality together
into single “things” or “objects.” Bash doesn’t support OOP, but both Perl and Python
do. Here is a module in Perl that defines a class:

package Server;
use strict;

sub new {
my $class = shift;
my $self = {}

$self->{IP} = shift;
$self->{HOSTNAME} = shift;
bless($self);

Why Python? | 3

return $self;

}

sub set_ip {
my $self = shift;
$self->{IP} = shift;
return $self->{IP};

}

sub set_hostname {
my $self = shift;
$self->{HOSTNAME} = shift;
return $self->{HOSTNAME};

}
sub ping {
my $self = shift;
my $external ip = shift;
my $self ip = $self->{IP};
my $self host = $self->{HOSTNAME};
print "Pinging $external ip from $self ip ($self host)\n";
return 0;
}
1;

And here is a piece of code that uses it:
#!/usr/bin/perl

use Server;

$server = Server->new('192.168.1.15"', 'grumbly');
$server->ping('192.168.1.20");

The code that makes use of the OO module is straightforward and simple. The OO
module may take a bit more mental parsing if you’re not familiar with OOP or with
the way that Perl tackles OOP.

A comparable Python class and use of the class looks something like this:

#!/usr/bin/env python

class Server(object):
def _init_ (self, ip, hostname):
self.ip = ip
self.hostname = hostname
def set_ip(self, ip):
self.ip = ip
def set_hostname(self, hostname):
self.hostname = hostname
def ping(self, ip_addr):
print "Pinging %s from %s (%s)" % (ip_addr, self.ip, self.hostname)

if name_ =="' main_':

4 | Chapter1: Introduction

server = Server('192.168.1.20', 'bumbly"')
server.ping('192.168.1.15")

Both the Perl and Python examples demonstrate some of the fundamental pieces of
OOP. The two examples together display the different flavors that each respective lan-
guage provides while reaching toward its respective goals. They both do the same thing,
but are different from one another. So, if you want to use OOP, Python supports it.
And it’s quite simple and clear to incorporate it into your programming,.

Another element of Python’s excellence comes not from the language itself, but from
the community. In the Python community, there is much consensus about the way to
accomplish certain tasks and the idioms that you should (and should not) use. While
the language itself may support certain phrasings for accomplishing something, the
consensus of the community may steer you away from that phrasing. For example,
from module import * at the top of a module is valid Python. However, the community
frowns upon this and recommends that you use either: import module or: from module
import resource. Importing all the contents of a module into another module’s name-
space can cause serious annoyance when you try to figure out how a module works,
what functions it is calling, and where those functions come from. This particular con-
vention will help you write code that is clearer and will allow people who work on your
code after you to have a more pleasant maintenance experience. Following common
conventions for writing your code will put you on the path of best practices. We con-
sider this a good thing.

The Python Standard Library is another excellent attribute of Python. If you ever hear
the phrase “batteries included” in reference to Python, it simply means that the standard
library allows you to perform all sorts of tasks without having to go elsewhere for
modules to help you get it done. For example, though it isn’t built-in to the language
directly, Python includes regular expression functionality; sockets; threads; date/time
functionality; XML parsers; config file parser; file and directory functionality; data
persistence; unit test capabilities; and http, ftp, imap, smpt, and nntp client libraries;
and much more. So once Python is installed, modules to support all of these functions
will be imported by your scripts as they are needed. You have all the functionality we
just listed here. It is impressive that all of this comes with Python without requiring
anything else. All of this functionality will help you out immensely as you write Python
programs to do work for you.

Easy access to numerous third-party packages is another real advantage of Python. In
addition to the many libraries in the Python Standard Library, there are a number of
libraries and utilities that are easily accessible on the internet that you can install with
a single shell command. The Python Package Index, PyPI (http://pypi.python.org), is a
place where anyone who has written a Python package can upload it for others to use.
At the time we are writing this book, there are over 3,800 packages available for down-
load and use. Packages include IPython, which we cover in the following chapter; Storm
(an object-relational mapper, which we cover in Chapter 12); and Twisted, a network
framework, which we cover in Chapter 5—just to name 3 of the over 3,800 packages.

Why Python? | 5

http://pypi.python.org

Once you start using PyPI, you’ll find it nearly indispensible for finding and installing
useful packages.

Many of the benefits that we see in Python stem from the central philosophy of Python.
When you type import this ata Python prompt, you will see The Zen of Python by Tim
Peters. Here it is:

In [1]: import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

This statement isn’t a dogmatic imperative that is strictly enforced at all levels of de-
velopment of the language, but the spirit of it seems to permeate much of what happens
in and with the language. And we have found this spirit to be a beautiful thing. This is
perhaps the essence of why we choose to use Python day after day. This philosophy
resonates within us as what we want and expect from a language. And if this resonates
with you, then Python is probably a good choice for you as well.

Motivation

If you justpicked up this book in a bookstore or are reading an introduction online
somewhere, you may be asking yourself, how hard it is going to be to learn Python and
if it is even worth it. Although Python is catching on like wildfire, there are many
sysadmins who have been exposed to Bash and Perl only. If you find yourself in this
category, you should take comfort in knowing that Python is very easy to learn. In fact,
although it is a matter of opinion, Python is considered by many to be the easiest lan-
guage to learn and teach, period!

If you already know Python, or are a programming guru in another language, you will
probably be able to jump right into any of the following chapters without reading this
intro and immediately start being productive using our examples. We made a

6 | Chapter1: Introduction

concerted effort to create examples that will actually help you get your job done. There
are examples of ways to discover and monitor subnets automatically with SNMP, to
convert to an interactive Python shell called IPython, to build data processing pipelines,
to write custom metadata management tools with object-relational mappers, to per-
form network programming, to write command-line tools, and much more.

Ifyou are coming from a shell programming/scripting background, though, don’t worry
atall. You, too, can learn Python quite easily. You need only motivation, curiosity, and
determination, the same factors that led you to pick up this book and look at the in-
troduction in the first place.

We sense there are still a few skeptics out there. Maybe some of the things you have
heard about programming have scared you. One common, and horribly false, miscon-
ception is that only some people can learn to program, and they are a mysterious and
elite few. The frank truth is that anyone can learn how to program. A second, equally
false, misconception is that earning a computer science degree is the only way a person
can truly become a software engineer. But some of the most prolific software developers
do not have engineering degrees. There are people with philosophy, journalism,
nutritional science, and English degrees who are competent Python programmers.
Having a degree in computer science is not a requirement to learn Python, although it
certainly doesn’t hurt.

Another funny, and false, misconception is that you must have started to program in
your teenage years, or you will never learn to program. While this makes people who
were lucky enough to have someone in their life that encouraged them to program at
a young age feel good, it is another myth. It is very helpful to have started learning
programming at a young age, but age is not a requirement to learn Python. Learning
Python is most certainly not a “young person’s game,” as we have heard some people
say. There are countless cases of developers who learned to program in their late 20s,
30s, 40s, and onward.

If you have gotten this far, we should point out that you, the reader, have an advantage
many people do not. If you decided to pick up a book on Python for Unix and Linux
system administration, then you most likely know something about how to execute
commands from a shell. This is a tremendous advantage to learning to become a Python
programmer. Having an understanding of the way to execute commands from a ter-
minal is all that is required for this introduction to Python. If you truly believe you will
learn how to program with Python, then read the next section immediately. If you don’t
believe it yet, then reread this section again, and convince yourself it really is just a
matter of getting your mind to understand you do have the power to learn how to
program in Python. It is really that simple; if you make this decision, it will change your

life.

Motivation | 7

The Basics

This introduction to Python is going to be very different from any other one we’ve seen,
as it will use an interactive shell called IPython and a regular Bash shell. You will need
to open two terminal windows, one with IPython and one with Bash. In every example,
we will compare what we do in Python with a Bash example. The first steps are to
download the correct version of IPython for your platform and install it. You can get a
copy at http:/fipython.scipy.org/moin/Download. If for some reason, you can’t get [Py-
thon to install you can also just use a regular Python shell. You can also download a
copy of the virtual machine that includes all of the software for the book, as we have a
copy of [Python preconfigured and ready to run. You just need to type in ipython, and
you will get a prompt.

Once you have installed IPython and have an IPython shell prompt, it should look
something like this:
[ngift@Macintosh-7][H:10679][J:0]# ipython

Python 2.5.1 (r251:54863, Jan 17 2008, 19:35:17)
Type "copyright", "credits" or "license" for more information.

IPython 0.8.2 -- An enhanced Interactive Python.
-> Introduction and overview of IPython's features.
/qulckref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object'. ?object also works, ?? prints more.

In [1]:

An IPython shell is quite a bit like a regular Bash shell and can execute commands such
as 1s, cd, and pwd, but you can read the next chapter for more of a scoop on IPython.
This chapter is about learning Python, so on to the tutorial.

In your Python terminal, type in the following:

In [1]: print "I can program in Python"
I can program in Python

In your Bash terminal, type in the following:

[ngift@Macintosh-7][H:10688][J:0]# echo "I can program in Bash"
I can program in Bash

In these two examples, there isn’t much of a difference in Python and Bash; we hope
it takes some of the mystery out of Python.

Executing Statements in Python

If you spend a lot of your day typing commands into a terminal, then you are used to
executing statements and, perhaps, redirecting the output to a file or to another Unix

8 | Chapter1: Introduction

http://ipython.scipy.org/moin/Download

command. Let’s look at the way we would execute a command in Bash and then com-
pare that to the way it works in Python. In the Bash terminal, type the following:
[ngift@Macintosh-7][H:10701][J:0]# 1s -1 /tmp/

total o
-rw-r--r-- 1 ngift wheel 0 Apr 7 00:26 file.txt

In the Python terminal, type the following:

In [2]: import subprocess

In [3]: subprocess.call(["1ls","-1 ","/tmp/"])

total 0

-rw-r--r-- 1 ngift wheel 0 Apr 7 00:26 file.txt

Out[3]: 0
The Bash example shouldn’t need any explanation as it is a simple 1s command, but
if you have never seen Python code before, the Python example probably looks a bit
strange. You might be thinking, “What the heck is this import subprocess thing?” One
of the powerful features of Python is its ability to import modules or other files that
contain code and reuse them in a new program. If you are familiar with “sourcing” a
file in Bash, then you will recognize some similarities. In this particular situation, all
that is important to know is that you import the subprocess and use it in the syntax
that is shown. We will get into the particulars of how subprocess and import work later,
but for now, ignore why it works and copy the code:

subprocess.call(["some_command", "some_argument", "another argument_or_ path"])

You can run any shell command in Python just as it would be run with Bash. Given
this bit of information, you can now create a Python version of 1s. Just open up your
favorite text editor in another terminal tab or window and place this in a file named
pyls.py, and make it executable by using chmod +x pyls.py. See Example 1-1.

Example 1-1. Python wrapper for Is command

#!/usr/bin/env python
#Python wrapper for the 1s command

import subprocess

subprocess.call(["1s","-1"])

Now if you run this script, you will get the exact same output that you would get if you
ran 1s -1s from the command line:
[ngift@Macintosh-7][H:10746][J:0]# ./pyls.py

total 8
-rwxr-xr-x 1 ngift staff 115 Apr 7 12:57 pyls.py

While this may seem silly, (and it is silly actually), it gives you a good idea of a common
use of Python in systems programming. Often, you use Python to “wrap” other scripts
or Unix commands. Given this new bit of information, you could happily start writing
some basic scripts if you just put one command after another in a file and ran it. Let’s

Executing Statementsin Python | 9

take a look at something pretty simple that does just that. To follow along from home,
either cut and paste the code in Example 1-2, or run the scripts pysysinfo.py and bash-
sysinfo.sh located in the source code that is included with this chapter. See Examples
1-2 and 1-3.

Example 1-2. System information script—Python

#!/usr/bin/env python
#A System Information Gathering Script
import subprocess

#Command 1
uname = “uname”
uname_arg = “-a
print "Gathering system information with %s command:\n" % uname
subprocess.call([uname, uname_arg])

»

#Command 2

diskspace = "df"

diskspace _arg = "-h"

print "Gathering diskspace information %s command:\n" % diskspace
subprocess.call([diskspace, diskspace arg])

Example 1-3. System information script—Bash

#!/usr/bin/env bash
#A System Information Gathering Script

#Command 1

UNAME="uname -a"

printf “Gathering system information with the $UNAME command: \n\n"
$UNAME

#Command 2

DISKSPACE="df -h"

printf "Gathering diskspace information with the $DISKSPACE command: \n\n"
$DISKSPACE

If we look at both of the scripts, we see that they look a lot a like. And if we run them,
we see that the output of each is identical. One quick note though: splitting the com-
mand from the argument is completely optional using subprocess.call. You can also
use this syntax:

subprocess.call("df -h", shell=True)

So far so good, but we still haven’t explained import and subprocess completely. In the
Python version of the script, we imported the subprocess module because it already
contained the code to make system calls in Python.

As we mentioned earlier, importing a module like subprocess is just importing a file
that contains code you can use. You can create your own module or file and reuse code
you have written in the same way you import subprocess. Importing is not magic at all,
it is just a file with some code in it. One of the nice things about the IPython shell that

10 | Chapter1: Introduction

you have open is its ability to inspect inside modules and files, and see the attributes
that are available inside them. In Unix terms, this is a lot like running the 1s command
inside of /usr/bin. If you happen to be on a new system such as Ubuntu or Solaris, and
you are used to Red Hat, you might do an 1s of /usr/bin to see if tools such as wget,
curl, or lynx are available. If you want to use a tool you find inside /usr/bin, you would
simply type /usr/bin/wget, for example.

Modules such as subprocess are very similar. With IPython you can use tab complete
to look at the tools that are available inside a module. Let’s walk through subprocess
using tab complete to look at the attributes available inside of it. Remember, a module
is just a file with some code in it. Here is what a tab complete looks like with the

subprocess module in IPython:

In [12]: subprocess.

subprocess.CalledProcessError subprocess. hash__ subprocess.call
subprocess.MAXFD subprocess.__init subprocess.check_call
subprocess.PIPE subprocess. name subprocess.errno
subprocess.Popen subprocess. new_ subprocess.fcntl
subprocess.STDOUT subprocess. reduce subprocess.list2cmdline
subprocess. all subprocess. reduce ex_ subprocess.mswindows
subprocess. builtins subprocess. repr subprocess.os
subprocess. class subprocess. setattr subprocess.pickle
subprocess. delattr subprocess. str subprocess.select
subprocess. dict subprocess. active subprocess.sys
subprocess. doc subprocess. cleanup subprocess.traceback
subprocess. file subprocess. demo_posix subprocess.types

subprocess. getattribute subprocess. demo_windows

To replicate this same behavior, you simply need to type:
import subprocess

and then type:

subprocess.

and press Tab to get a tab completion of the attributes available. In the third column
of our example, notice that you see subprocess.call. Now, to see more information
about how to use subprocess.call, type:

In [13]: subprocess.call?

Type: function

Base Class: <type 'function'>

String Form: <function call at 0x561370>

Namespace: Interactive

File: /System/Library/Frameworks/Python.framework/Versions/2.5/1ib/python2.5/
subprocess.py

Definition: subprocess.call(*popenargs, **kwargs)

Docstring:

Run command with arguments. Wait for command to complete, then
return the returncode attribute.

The arguments are the same as for the Popen constructor. Example:

Executing Statementsin Python | 11

retcode = call(["1s", "-1"])

Think of the special question mark syntax as a manpage query. If you want to know
how a tool works in Unix, simply type:

man name_of_tool

It is the same with an attribute located inside a module such as subprocess.call. In
[Python, when you type a question mark after the attribute you want to find information
about, the documentation that has been included with the attribute will print out. If
you do this on most attributes in the standard library, you should find some helpful
information to properly use them. Keep in mind that you can also refer to the Python
Standard Library documentation as well.

When we look at this documentation, “Docstring” is the official term, we see an ex-
ample of the way to use subprocess.call and a description of what it does.

Summary

You now have enough information to call yourself a Python programmer. You know
how to write a simple Python script, how to translate simple scripts from Bash and call
them with Python, and, finally, how to find documentation about new modules and
attributes. In the next section, you’ll see how to better organize these flat sequences
of commands into functions.

Using Functions in Python

In the previous section we went through executing statements one after another, which
is pretty useful, because it means we were able to automate something that we would
normally have to do manually. The next step to automating our code execution is to
create functions. If you are not already familiar with writing functions in Bash or an-
other language, then one way to think about functions is as miniscripts. A function
allows you to create blocks of statements that get called in groups that live inside of the
function. This is quite a bit like the Bash script we wrote in which there were two
commands enclosed in a script. One of the differences between a Bash script and a
function is that you can include many function scripts. Ultimately, you can have mul-
tiple functions that group statements together in a script, and then that group of state-
ments can be called to run a miniprogram at the proper time in your script.

At this point, we need to talk about the topic of whitespace. In Python, a uniform level
of indentation must be maintained in nesting code. In another language, like Bash,
when you define a function you put brackets around the code inside of a function. With
Python, you must indent the code inside of the bracket. This can trip up newcomers
to the language, at first, but after a while it will grow on you, and you will realize that
this encourages readable code. If you have trouble getting any of these examples to

12 | Chapter1: Introduction

work interactively, make sure you refer to the actual source code to see the proper
indentation level. The most common practice is to set a tab to indent exactly four
spaces.

Let’s take a look at how this works in Python and Bash. If you still have the IPython
shell open, you don’t need to create a Python script file, although you can if you like.
Just type the following into the interactive IPython prompt:

In [1]: def pyfunc():
.. print "Hello function"

In [2]: pyfunc
Out[2]: <function pyfunc at ox2d5070>

In [3]: pyfunc()
Hello function

In [4]: for i in range(5):
pyfunc()

Hello function
Hello function
Hello function
Hello function
Hello function

In this example, you can see that putting a print statement in a function allows you not
only to call the function later but also to call it as many times as we want. In line [4],
we use a programming idiom, or technique, that executes the function five times. If
you haven’t seen that technique before, understand that it calls the function five times.

We can do the same thing in a live Bash shell as well. Here is one way:

bash-3.2¢$ function shfunc()

> {

> printf "Hello function\n"
>}

bash-3.2% for ((i=0 ; 1 < 5 ; i++))
> do

> shfunc

> done

Hello function

Hello function

Hello function

Hello function

Hello function

In the Bash example, we created a simple function shfunc, and then called it five times,
just like we did with the Python function earlier. One thing to notice is that the Bash
example requires more “baggage” to do the same thing that Python does. Notice the
difference between the Bash for loop and the Python for loop. If this is your first

Using Functions in Python | 13

exposure to a function in Bash or Python, you should make some other functions in
your IPython window before you continue.

Functions are not magic, and writing multiple functions interactively is a great way to
take away the mystery if this is your first experience with them. Here are a couple of
examples of simple functions:

In [1]: def print_many():
print "Hello function"
print "Hi again function”
print "Sick of me yet"

In [2]: print_many()
Hello function

Hi again function
Sick of me yet

In [3]: def addition():

sum = 1+1
print "1 + 1 = %s" % sum

In [4]: addition()
1+1=2

Now we have a few silly examples under our belt, in addition to the silly examples that
you tried out on your own as well, right? So we can go back to the script we wrote that

prints system information and convert those statements into functions. See Exam-
ple 1-4.

Example 1-4. Converted Python system info script: pysysinfo_func.py

#!/usr/bin/env python
#A System Information Gathering Script
import subprocess

#Command 1
def uname_func():

uname = "uname"
uname_arg = "-a
print "Gathering system information with %s command:\n" % uname
subprocess.call([uname, uname_arg])

"

#Command 2
def disk_func():

diskspace = "df"

diskspace arg = "-h"

print "Gathering diskspace information %s command:\n" % diskspace
subprocess.call([diskspace, diskspace arg])

14 | Chapter1: Introduction

#Main function that call other functions
def main():

uname_func()

disk_func()

main()

Given our experiments with functions, this converted example of our previous script
that we simply placed these statements inside functions and then used the main func-
tion to call them all at once. If you are not familiar with this style, you might not have
known that it is common to create several functions inside a script and then call them
all with one main function. One of many reasons for this is that if you decide to reuse
this script for another program, you can either call the functions independently or
together with the main method. The key is that you decide after the module is
imported.

When there is no control flow, or main function, then all of the code gets executed
immediately when it is imported. This may be OK for a one-off script, but if you plan
to create reusable tools, and you should, then it is a good practice to create functions
that encapsulate specific actions, and then have a main function that executes the whole
program.

For comparison’s sake, let’s convert our previous Bash system information script to use
functions as well. See Example 1-5.

Example 1-5. Converted Bash system info script: bashsysinfo_func.sh

#!/usr/bin/env bash
#A System Information Gathering Script

#Command 1
function uname_func ()

UNAME="uname -a"
printf "Gathering system information with the $UNAME command: \n\n"
$UNAME

}

#Command 2

function disk func ()

{
DISKSPACE="df -h"
printf "Gathering diskspace information with the $DISKSPACE command: \n\n"
$DISKSPACE

}

function main ()

{
uname_func
disk_func

}

main

Using Functionsin Python | 15

Looking at our Bash example, you can see it has quite a bit in common with its Python
cousin. We created two functions and then called those two functions by calling the
main function. If this is your first experience with functions, then we would highly
recommend that you comment out the main method by placing a pound sign in front
of both the Bash and the Python scripts and running them again. You should get
absolutely nothing when you run both scripts, because the program should execute,
but won’t call the two functions inside.

At this point, you are now a programmer capable of writing simple functions in both
Bash and Python. Programmers learn by doing, though, so at this point we highly rec-
ommend that you change the system calls in these two Bash and Python programs and
make them your own. Give yourself some bonus points if you add several new functions
to the script and call them from a main function.

Reusing Code with the Import Statement

One problem with learning something new is that, if it is abstract, like calculus, for
example, it is hard to justify caring about it. When was the last time you used the math
you learned in high school at the grocery store? In our previous examples, we showed
you how to create functions as an alternative to executing shell commands one after
another in a script. We also told you that a module is really just a script, or some lines
of code in a file. It isn’t anything tricky, but it does need to be arranged in a particular
way so that it can be reused in another future program. Here is the point where we
show you why you should care. Let’s import the previous system information scripts
in both Bash and Python and execute.

Open the IPython and Bash windows if you closed them so that we can demonstrate
very quickly why functions are important for code reuse. One of the first scripts we
created in Python was a sequence of commands in a file named pysysinfo.py. In Python
because a file is a module and vice versa, we can import this script file into IPython.
Keep in mind that you never need to specify the .py portion of the file you are importing.
In fact if you do this, the import will not work. Here is what it looks like when we do
that on Noah’s Macbook Pro laptop:

In [1]: import pysysinfo
Gathering system information with uname command:

Darwin Macintosh-8.local 9.2.2 Darwin Kernel Version 9.2.2: /
Tue Mar 4 21:17:34 PST 2008; root:xnu-1228.4.31~1/RELEASE_1386 i386
Gathering diskspace information df command:

Filesystem Size Used Avail Capacity Mounted on
/dev/diskos2 93Gi 88Gi 4.2Gi 96%

devfs 110Ki 110Ki ~ OBi 100% /dev
fdesc 1.0Ki 1.0Ki ~ 0Bi 100% /dev

map -hosts oBi o0Bi 0Bi 100% /net

map auto_home 0Bi 0Bi 0Bi 100% /home

16 | Chapter1: Introduction

/dev/disk1s2 298Gi 105Gi 193Gi 36% /Volumes/Backup
/dev/disk2s3 466Gi 240Gi 225Gi 52% /Volumes/EditingDrive

Wow, that is pretty cool, right? If you import a file full of Python code it seems to runs
great. But, actually, there are a few problems with this. If you plan to run Python code,
it should always be executed from the command line as a part of a script or program
you write. Using import is to help with this “reusing code” idea we keep throwing
around. Here is the punch line: what if you only wanted to print the output of the
diskspace portion of the script? The answer is you can’t. That is why you use functions.
They allow you to control when and how parts of your program run so that they don’t
all run at once, as they do in this example. Don’t just take our word for it, though. If
you import the example of a script that puts these commands into functions, you’ll see
what we mean.

Here is the output from the IPython terminal:

In [3]: import pysysinfo_func
Gathering system information with uname command:

Darwin Macintosh-8.local 9.2.2 Darwin Kernel Version 9.2.2:
Tue Mar 4 21:17:34 PST 2008; root:xnu-1228.4.31~1/RELEASE_I386 1386
Gathering diskspace information df command:

Filesystem Size Used Avail Capacity Mounted on
/dev/diskos2 93Gi 88Gi 4.1Gi 96%

devfs 110Ki 110Ki OBi 100% /dev

fdesc 1.0Ki 1.0Ki 0Bi 100% /dev

map -hosts 0Bi 0Bi OBi 100% /net

map auto home 0Bi ~ OBi 0Bi 100% /home
/dev/diski1s2 298Gi 105Gi 193Gi 36% /Volumes/Backup
/dev/disk2s3 466Gi 240Gi 225Gi 52% /Volumes/EditingDrive

Now we get the exact same output that we get from script that doesn’t contain func-
tions. If you are puzzled, this is a good sign. To see the reason we get the same exact
output, we just need to look at the source code. If you are following along at home,
open up another terminal tab or window and look at the script pysysinfo_func:

#Main function that call other functions

def main():

uname_func()
disk_func()

main()

The problem is that main function we created at the end of the last chapter is coming
back to bite us. On one hand we want to be able to run our script on the command line
to get the output, but on the other hand when we import it we don’t want all of the
output all at once. Fortunately, the need to use a module as both a script that gets
executed from the command line and as a reusable module is very common in Python.
The solution is to change the way the main method gets called by replacing the last part
of the script to look like this:

Reusing Code with the Import Statement | 17

#Main function that call other functions
def main():

uname_func()

disk_func()

" "

if _name__ == "_main_":

main()
This is an “idiom,” a technique that is commonly used to solve a problem. Any code
that you indent underneath this statement gets run only when it is executed from the
command line. To see this, either replace this in your copy of the script or import the
fixed version of the script pysysinfo_func_2.py.

Now, if we go back to our IPython interpreter and import this new script, we should
see this:

In [1]: import pysysinfo func_2

This time, the main method is not called, because of the fix we made. So, to return to
our original point about reusable code, we have three functions that we can use in other
programs or use to interact with the IPython shell. Remember earlier we said how it
would be nice to call only the function that prints the disk usage without having to call
the function that calls the other commands, too. First, though, we need to review an
[Python trick that we showed you before. Remember that you can use Tab to complete

amodule, and it will show you all of the attributes that are available to use. Here’s what
that looks like:

In [2]: pysysinfo func_ 2.

pysysinfo func_2. builtins pysysinfo func_2.disk func
pysysinfo func 2. class pysysinfo func_2.main
pysysinfo func_2. delattr pysysinfo_func_2.py
pysysinfo func_2. dict pysysinfo_func_2.pyc
pysysinfo func_2. doc__ pysysinfo_func_2.subprocess
pysysinfo func_2. file pysysinfo_func_2.uname_func

pysysinfo func_2. getattribute

pysysinfo func_2. hash
In this example, we can ignore anything with double underscores, because these are
special methods that are beyond the scope of this introduction. Because IPython is also
a regular shell, it picks up the filename and the byte-compiled Python file with
the .pyc extension. Once we filter past all of those names, we can see that there is a
pysysinfo_func_2.disk_func. Let’s go ahead and call that function:

In [2]: pysysinfo_func_2.disk func()
Gathering diskspace information df command:

Filesystem Size Used Avail Capacity Mounted on
/dev/diskos2 93Gi 89Gi 4.1Gi 96%

devfs 111K1 111Ki 0Bi 100% /dev
fdesc 1.0Ki 1.0Ki 0Bi 100% /dev

map -hosts oBi 0Bi 0Bi 100% /net

map auto_home 0Bi 0Bi 0Bi 100% /home

18 | Chapter1: Introduction

/dev/disk1s2 298Gi 105Gi 193Gi 36% /Volumes/Backup
/dev/disk2s3 466Gi 240Gi 225Gi 52% /Volumes/EditingDrive

You might have realized by now that functions are always “called” or run by attaching
the “()” after the name. In this case, we ran just that one function inside of a file that
contained three functions: the function we just called disk func, the uname_func, and
finally the main function. Aha! We finally have our code reuse. We were able to import
something we wrote earlier and interactively run just the part of it we needed. Of course,
we can also run the other two functions we wrote separately. Let’s take a look at that:

In [3]: pysysinfo_func_2.uname_func()
Gathering system information with uname command:

Darwin Macintosh-8.local 9.2.2 Darwin Kernel Version 9.2.2:
Tue Mar 4 21:17:34 PST 2008; root:xnu-1228.4.31“1/RELEASE_1386 1386

In [4]: pysysinfo_func_2.main()
Gathering system information with uname command:

Darwin Macintosh-8.local 9.2.2 Darwin Kernel Version 9.2.2:
Tue Mar 4 21:17:34 PST 2008; root:xnu-1228.4.31”1/RELEASE_I386 1386
Gathering diskspace information df command:

Filesystem Size Used Avail Capacity Mounted on
/dev/diskos2 93Gi 89Gi 4.1Gi 96%

devfs 111Ki 111Ki 0Bi 100% /dev

fdesc 1.0Ki 1.0Ki OBi 100% /dev

map -hosts 0Bi 0Bi OBi 100% /net

map auto home O0Bi ~ OBi 0Bi 100% /home
/dev/disk1s2 298Gi 105Gi 193Gi 36% /Volumes/Backup
/dev/disk2s3 466Gi 240Gi 225Gi 52% /Volumes/EditingDrive

If you look carefully, you’ll see that we ran both of the other functions. Remember, the
main function runs everything at once.

Often, the point of writing a reusable module is so that you can take some of the code
and use it over and over again in a new script. So practice that by writing another script
that uses one of the functions. See Example 1-6.

Example 1-6. Reusing code with import: new_pysysinfo

#Very short script that reuses pysysinfo_func_2 code
from pysysinfo_func_2 import disk_func
import subprocess

def tmp_space():
tmp_usage = "du"
tmp_arg = "-h"
path = "/tmp"
print "Space used in /tmp directory"
subprocess.call([tmp_usage, tmp_arg, path])

def main():
disk func()

Reusing Code with the Import Statement | 19

tmp_space()

" "

if _name__ == "_main__":

main()

In this example, not only do we reuse the code we wrote earlier, but we use a special
Python syntax that allows us to import the exact function we need. What’s fun about
reusing code is that it is possible to make a completely different program just by im-
porting the function from our previous program. Notice that in the main method we
mix the function from the other module we created, disk_func(), and the new one we
just created in this file.

In this section, we learned the power of code reuse and how simple it really is. In a
nutshell, you put a function or two in a file and then, if you also want it to run as script,
place that special if _name__ =="_main_ ": syntax. Later you can either import those
functions into IPython or simply reuse them in another script. With the information
you have just learned, you are truly dangerous. You could write some pretty sophisti-
cated Python modules and reuse them over and over again to create new tools.

20 | Chapter1: Introduction

CHAPTER 2
IPython

One of Python’s strengths is its interactive interpreter, or shell. The shell provides a
way to quickly test ideas, test features and interfaces of modules you are working with,
and perform some one-off tasks for which you would otherwise have written a three
line script. The way that we tend to code is by simultaneously running a text editor and
a Python prompt (actually, an IPython prompt, but we’ll get to that in a moment),
frequently interacting with them both, switching back and forth between shell and
editor, and often pasting code from one to the other. This approach allows us to see
immediate results from Python about the way it handles code and to quickly get the
code in the text editor working the way we want it to.

Atits heart, IPython is a bundle of interactive Python goodness. It is an amazing Python
shell, far superior to the standard Python shell. It also provides the ability to create
highly customized console-based command environments; it allows for easy inclusion
of an interactive Python shell into any Python application; and it can even be used as
a system shell, with some level of success. This chapter will focus on using IPython to
improve your productivity on *nix-shell and Python-related tasks.

[Python also has an active, incredibly helpful community behind it. You can sign up
for the mailing list at http://lists.ipython.scipy.org/mailman/listinfo/ipython-user. There
is an excellent wiki at http://ipython.scipy.org/moin. And, as part of the wiki, there is a
cookbook at http://ipython.scipy.org/moin/Cookbook. So, you can read or contribute to
any of these resources as you wish. Another area that you can contribute to is the
development of IPython. IPython development recently switched to a distributed
source control system, so you can just branch their code and start hacking. And if you
do something that could benefit others, you can submit your changes to them.

21

http://lists.ipython.scipy.org/mailman/listinfo/ipython-user
http://ipython.scipy.org/moin
http://ipython.scipy.org/moin/Cookbook

CELEBRITY PROFILE: IPYTHON

Fernando Perez

Fernando Perez received his Ph.D. in physics and then worked on
numerical algorithm development at the Applied Mathematics De-
partment of the University of Colorado. He is currently a research
scientist at the Helen Wills Neuroscience Institute at the University
of California, Berkeley, focusing on the development of new analysis
methods for brain imaging problems and high-level scientific com-
puting tools. Toward the end of his graduate studies, he became
involved with the development of Python tools for scientific computing. He started the
open source [Python project in 2001, when he was looking for a more efficient inter-
active workflow for everyday scientific tasks. Thanks to the participation of a growing
community of collaborators, this project has grown over the years to be useful to other
programmers outside of scientific fields.

CELEBRITY PROFILE: IPYTHON

Ville Vainio

Ville Vainio received his B.Sc. degree in software engineering, in
2003, from Satakunta University of Applied Sciences, Pori Faculty
of Technology in Finland. As of this book’s writing, he is employed
as a software specialist in the Smartphone department of Digia Plc,
doing C++ development for Symbian OS platforms from Nokia and
UIQ. During his studies, he functioned as software engineer at Cim-
corp Oy, developing communications software, in Python, for in-
dustrial robots. Ville is a long-time [Python enthusiast, and the maintainer of the stable
branch (0.x series), since January 2006. His IPython work started with a series of
patches to make IPython behave better as a system shell on Windows, and the system
shell use case is still a strong personal focus. He lives with his fiancée in Pori, Finland,
and is doing his MSc thesis project at Tampere University of Technology’s Pori Unit,
on ILeo, the IPython-Leo bridge that makes Leo a full-fledged IPython notebook.

Installing IPython

There are a few options for installing IPython. The first and most rudimentary is source
distribution. The download page for IPython is located at http://ipython.scipy.org/
dist/. At the time of this writing, the latest IPython release was 0.8.2 and 0.8.3 was
nearing completion. To install from source, go to http://ipython.scipy.org/dist/ipy
thon-0.8.2.tar.gz and download the tar.gz file. You can unzip the downloaded file using
tar zxvf ipython-0.8.2.tar.gz. The unzipped directory will contain a setup.py file.
Call Python on the setup.py with an install paramater (e.g., python setup.py
install). This will install the libraries for IPython in your site-packages directory and

22 | Chapter2: IPython

http://ipython.scipy.org/dist/
http://ipython.scipy.org/dist/
http://ipython.scipy.org/dist/ipython-0.8.2.tar.gz
http://ipython.scipy.org/dist/ipython-0.8.2.tar.gz

create an ipython script in your scripts directory. On UNIXes, this is typically the same
directory that the python binary is located in. If you are using a python that was installed
with your system’s package manager, it (and consequently ipython) will likely be lo-
cated in /usr/bin. We’ve installed the source distribution of the latest development code
for IPython, so you will see 0.8.3 in some examples.

A second option for installing IPython is to use a package from your system’s package
management system. On Debian and Ubuntu, .deb packages are available to install.
Installation is simply apt-get install ipython. Ubuntu installs the IPython libraries to the
appropriate location (/usr/share/python-support/ipython with a tangle of .pth files and
symbolic links to make things work right). It also installs the ipython binary
to /usr/binfipython.

The third option for installing IPython is to use a Python package. You may be unaware
that such a thing as a Python package exists, but they do. Python packages are files
bundled together in a ZIP format, and the resulting file has a .egg extension. Eggs (as
they are often simply called) can be installed with the easy_install utility. One of the
cool features of easy install is that it checks a central repository of eggs and then
figures out what to install. There is a bit more to it behind the scenes, but as far as the
user is concerned, it is relatively easy.The repository is called the Python Package Index
or PyPI for short (though some affectionately call it the Python CheeseShop). To
easy_install IPython, simply log on as the user that has permissions to write to your
Python’s site-packages directory and easy_install ipython.

The fourth option is to use IPython without installing it at all. “What?” You might well
ask. Well, if you download the source distribution and just run ipython.py from the
root of that set of files, you will have a running instance of the [Python version that you
downloaded. That can be a pretty useful way to go if you don’t want to clutter up your
site-packages directory, but you’ll want to be aware of some limitations. If you run
[Python from the directory to which you untarred it and you don’t modify your
PYTHONPATH environment variable, you won’t be able to use it as a library.

Basic Concepts

After you’ve installed IPython, when you run ipython for the first time, you will see
something like this:

jmjones@dink:~$ ipython

Welcome to IPython. I will try to create a personal configuration directory
where you can customize many aspects of IPython's functionality in:

/home/jmjones/.ipython
Successful installation!

Please read the sections 'Initial Configuration' and 'Quick Tips' in the
IPython manual (there are both HTML and PDF versions supplied with the

Basic Concepts | 23

distribution) to make sure that your system environment is properly configured
to take advantage of IPython's features.

Important note: the configuration system has changed! The old system is
still in place, but its setting may be partly overridden by the settings in
"~/.ipython/ipy user_conf.py" config file. Please take a look at the file
if some of the new settings bother you.

Please press <RETURN> to start IPython.

After you hit the Return key, your cursor will be waiting for you at a prompt, and
I[Python will display the following text:
jmjones@dinkgutsy:stable-dev$ python ipython.py

Python 2.5.1 (r251:54863, Mar 7 2008, 03:39:23)
Type "copyright", "credits" or "license" for more information.

IPython 0.8.3.bzr.r96 -- An enhanced Interactive Python.
-> Introduction and overview of IPython's features.
/qulckref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object'. ?object also works, ?? prints more.

In [1]:

Interacting with IPython

It’s common to feel some helplessness when presented with a new shell prompt for the
very first time. It’s not at all obvious exactly what to do. Remember the first time you
logged into a Unix box and were presented with a (ba|k|c|z)sh prompt? Since you are
reading this book, we assume you have attained some level of familiarity over the Unix
shell. If that is the case, then gaining some level of mastery over IPython will be easy.

One of the reasons that it is unclear what you should do when you first see the IPython
prompt, is that what you can do is virtually unlimited. So it is more appropriate to think
in terms of what you want to do. All of the features of the Python language are available
to you from within the IPython prompt. Plus, there are a number of IPython “magic”
functions available to you. And you can easily execute any Unix shell command from
within IPython and then store the output into a Python variable. The next few examples
will demonstrate what you can expect from IPython with its default configuration.

Here are the input and output of a few simple assignment operations:
In [1]: a =1

In [2]: b

2
In [3]: c =3

This doesn’t look much different from what you would see if you entered the same
thing at a standard Python prompt. We simply assigned 1, 2, 3 to a, b, ¢, respectively.

24 | Chapter2: IPython

The biggest difference you’ll see between the IPython and standard Python shells is that
[Python gives you a numbered prompt.

Now that we have values (1, 2, and 3) stored in a few variables (a, b, and ¢, respectively),
we can see the values that those variables contain:

In [4]: print a
1

In [5]: print b
2

In [6]: print c
3

This is a contrived example. We just typed in the values, so we can, at worst, just scroll
up to see what the values were. Each variable that we displayed took six characters
more than was necessary to display its value. Here’s a slightly less verbose way of
showing the value:

In [7]: a
Out[7]: 1

In [8]: b
Out[8]: 2

In [9]: ¢

Out[9]: 3
While the outlook values look pretty much the same, there is a difference. The print
statements use the “unofficial” string representation, while the bare variable names use
the “official” string representation. This distinction is typically more important when
you are dealing with custom classes than when you are dealing with built-in classes.
Here is an example of the different string representations in use:

In [10]: class DoubleRep(object):

cealt def _str (self):

ceeel return "Hi, I'm a _ str

ceelt def repr (self):
ceedt return "Hi, I'm a _repr

In [11]: dr = DoubleRep()

In [12]: print dr
Hi, I'ma _ str__

In [13]: dr
Out[13]: Hi, I'm a _ repr_ _

We created the class DoubleRep with two methods, str and _repr , to demon-
strate the difference between printing an object and showing the “official” string rep-
resentation of it. The special method _str on an object will be called when the

Basic Concepts | 25

“unofficial” string representation is needed. The special method _repr on an object
will be called when the “official” representation is needed. After instantiating our
DoubleRep object and assigning the variable dr as its value, we printed out the value of
dr. The _str method was called. Next, we simply typed in the variable name and
the repr method was called. The point of all this is that when we simply type in
the name of a variable, the result that IPython displays is the “official” string represen-
tation. When we tell IPython to print the variable, we see the “unofficial” string rep-
resentation. In Python in general, _str__is what gets called when you call str(obj)
on an object or when it is used in a formatted string like this: "%s" % obj. When

repr(obj) gets called, or when it is used in a formatting string like this: "%r" % obj,
__repr__is what gets called.

This behavior isn’t particular to IPython, however. This is exactly how the standard
Python shell works. Here is the same DoubleRep example using the standard Python
shell:
>>> class DoubleRep(object):
def _str (self):
return "Hi, I'ma _ str _
def _repr (self):
return "Hi, I'ma _repr "

>>>

>>> dr = DoubleRep()

>>> print dr

Hi, I'ma _str

>>> dr

Hi, I'ma _repr
You may have noticed that the standard Python prompt and the [Python prompt look
different. The standard Python prompt consists of three greater-than signs (>>>),
whereas the [Python prompt consists of the word “In,” followed by a number in brack-
ets, followed by a colon (In [1]:). A likely reason for this is that IPython keeps track
of the commands that you input and stores them in a list named In. After you’ve as-
signed 1, 2,3 to a, b, ¢, in the previous example, here is what the In list would look like:

In [4]: print In

['\n', u'a =1\n", u'b = 2\n', u'c = 3\n', u'print In\n']
The output from the IPython prompt is different from the output from the standard
Python prompt as well. The [Python prompt seems to distinguish between two types
of output: written output and evaluated output. In reality, IPython really doesn’t dis-
tinguish between the two types. What happens is that print calls are a side effect of
computation; so IPython doesn’t see them, and so it can’t trap them. These print side
effects just wind up on stdout, which is where the calling process sent them. However,
as IPython executes user’s code, it checks return values. If the return value is not
None, it prints it at an Out [number]: prompt.

The standard Python prompt does not even appear to distinguish between these two
types of output. If a statement that you typed into an [Python prompt evaluates to some

26 | Chapter2: IPython

value other than None, IPython will write it to a line that starts with Out, followed by a
bracketed number, followed by a colon, and, finally, followed by the value that the
statement evaluated to (i.e., Out[1]: 1). Here is an example of what happens when
[Python assigns an integer to a variable, evaluates the variable, displays its value, and
then prints out that value. Note the differences among the tasks of assigning to the
variable, showing what the variable value evaluates to, and printing the value of the
variable. First, the [Python prompt:

In [1]: a =1

In [2]: a
Out[2]: 1

In [3]: print a
1

In [4]:

Next, the standard Python prompt:

>»>a=1
>»> a

1

>>> print a
1

>>>

There is really no difference between the way IPython and Python assign the integer,
[Python prompt, and the standard Python prompt. Both immediately returned an input
prompt to the user. But in showing the “official” string representation of a variable,
[Python and standard Python are different. IPython shows only an Out prompt, while
Python showed the output. For printing, there was no difference; both showed the
output with no prompt.

This In [some number]: and Out [some number]: business may have you wondering if
there is a deeper difference between IPython and standard Python, or if the difference
is purely cosmetic. The difference is definitely deeper. In fact, the difference represents
an area of functionality that places IPython into what seems to be a different category
of interactive shell from the standard Python shell.

There are two built-in variables that you will want to be aware of. They are In and
Out. The former is an IPython input list object and the latter is a dict object. Here is
what type says about the ins and outs of In and Out:

In [1]: type(In)
Out[1]: <class 'IPython.iplib.Inputlist'>

In [2]: type(Out)
Out[2]: <type 'dict'>

After you start using In and Out, this will make sense.

Basic Concepts | 27

So, what do these datatypes hold?

In [3]: print In
['\n', u'type(In)\n', u'type(Out)\n', u'print In\n']

In [4]: print Out

{1: <class 'IPython.iplib.InputList'>, 2: <type 'dict'>}
As you may expect, In and Out, respectively, hold the input that you typed in and the
output that non-None statements and expressions evaluated to. Since each line must
necessarily have input, it would seem to make sense to keep track of input in some sort
of list-like structure. But keeping track of the output in a list-like structure would result
in a number of empty fields or fields containing only None. So, since not every line will
have evaluatable non-None output, it makes sense to keep track of output in a
dictionary-like data structure or even a pure dict object.

Tab Completion

Another of the incredibly useful data-entry features of IPython is tab completion by
default. The standard Python shell has tab-completion capability if it is compiled with
readline support, but you have to do something like the following:

>>> import rlcompleter, readline
>>> readline.parse_and_bind('tab: complete')

This will give us functionality as follows:

>>> import os

>>> 0s.1is<TAB>

>>> os.listdir

>>> 0s.1i<TAB><TAB>

os.linesep o0s.link os.listdir

After importing rlcompleter and readline and setting the readline tab complete option,
we were able to import os, type in os.lis, hit the Tab key once, and have it complete
to os.listdir. We were also able to enter os.11, hit the Tab key twice, and get a list of
possible completions.

We get this same behavior with IPython for without any extra configuration necessary.
Well, it’s free with the standard Python shell as well, but with IPython, it’s the default
behavior. Here is the previous example run with IPython:

In [1]: import os

In [2]: o0s.1lis<TAB>

In [2]: os.listdir

In [2]: o0s.li<TAB>

os.linesep o0s.link os.listdir

Notice that we had to hit the Tab key only once on the last part of the example.

28 | Chapter2: IPython

The os.TAB example really only shows off the attribute lookup and completion func-
tionality of IPython, but another cool thing that IPython will complete on is module
imports. Open a new IPython shell so that you can see [Python help us find a module
to import:

In [1]: import o
opcode operator optparse os os2emxpath ossaudiodev

In [1]: import xm
xml xmllib xmlrpclib

Notice that all of the items that import completed on were modules, so this wasn’t
accidental behavior. This is a feature.

[Python exposes two types of completion: “complete” and “menu-complete.” The dif-
ference between the two is that “complete” expands the current “word” as far as it can
and then provides a list of alternatives, while “menu-complete” expands the word fully
to match one of the alternatives, and then each subsequent press of the Tab key morphs
the word into the next alternative. [Python’s default completion option is “complete.”
We'll get into configuring your IPython in just a bit.

Magic Edit

The last basic input and output topic we will cover is the “magic” edit function. (We
will go over magic functions in the next section.) Strictly line-oriented user interaction
with a shell has tremendous, but limited, usefulness. Since that statement sounds like
a contradiction, we’ll unpack it. Typing commands into a shell one line at a time is very
useful. You type in a command; the shell goes off and does its thing; you sometimes sit
and wait for it to return; you type in your next command. This is not a bad cycle. In
fact, it’s quite effective. But sometimes it would be nice to work with a block of lines
all at the same time. And it would be nice to work with them in your text editor of
choice, although readline support in IPython does improve its usefulness, in this re-
spect. We are aware of using a text editor to create Python modules, but that isn’t what
we're talking about here. We're talking about more of a compromise between line-
oriented input and text editor input to feed commands to the shell. If we can say that
adding support for working with blocks of lines of commands would be better, then
we can say that a strictly line-oriented interface is limited. So, we can say that a strictly
line-oriented interface is exceptionally useful but limited at the same time.

The magic edit function acts as the compromise we just mentioned between pure
command-line interaction with the Python shell and interaction using a text editor. The
benefit of the compromise is that you have the full power of both environments at your
fingertips. You have the benefit of the full-featured power of your text editor of choice.
You can easily edit blocks of code and change lines of code around within a loop or a
method or function. Plus, you have the nimbleness and agility that comes from directly
interacting with the shell. When you combine these two approaches to working with
code, a synergistic benefit emerges. You are able to maintain the environment you were

Basic Concepts | 29

working in directly from within your shell, and you can pause, edit, and execute code
from within an editor. When you resume working within your shell, you will see the
changes you just made in your editor.

Configuring IPython

The final “basic” information you need to know in order to begin is how to configure
[Python. If you didn’t assign a different location when you ran IPython for the first
time, it created an .ipython directory in your home directory. Inside the .ipython direc-
tory is a file called ipy_user_conf.py. This user file is simply a configuration file that uses
Python syntax. In order to help you give IPython the look and feel that you want it to
have, the config file contains a wide variety of elements that you can customize. For
example, you can choose the colors used in the shell, the components of the shell
prompt, and the text editor that will automatically be used use when you %edit text.
We won’t go into any more detail than that here. Just know that the config file exists,
and it is worth looking through to see if there are some elements you need to or want
to configure.

Help with Magic Functions

As we've already said, IPython is incredibly powerful. One reason for this power is that
there is an almost overwhelming number of built-in magic functions. Just what is a
magic function? The IPython documentation says:

[Python will treat any line whose first character is a % as a special call to a ‘magic’ func-
tion. These allow you to control the behavior of IPython itself, plus a lot of system-type
features. They are all prefixed with a % character, but parameters are given without
parentheses or quotes.

Example: typing ‘%cd mydir’ (without the quotes) changes your working directory to
‘mydir’, if it exists.

Two of the “magic” functions can help you wade through all of this functionality and
sort out what might be useful for you. The first magic help function that we’ll look at
is 1smagic. lsmagic gives a listing of all the “magic” functions. Here is the output of
running lsmagic:

In [1]: 1smagic

Available magic functions:

%Exit 7%Pprint J%Quit %alias %autocall Zautoindent ZXautomagic %bg
%bookmark %cd 7%clear %color_info Zcolors Z%cpaste J%debug %dhist Z%dirs
%doctest_mode %ed Zedit Z%env Zexit %hist J%history %logoff %logon
%logstart %logstate J%logstop %lsmagic Z%macro Z%magic %p Z%page %pdb
%pdef %pdoc %pfile %pinfo Z%popd %profile Z%prun %psearch %psource
%pushd %pwd %pycat %quickref %quit %r Z%rehash %rehashx %rep %reset
%run Z%runlog %save %sc J%store %sx %system verbose Z%time %timeit
%unalias Z%upgrade %who Z%who_1s Z%whos %xmode

Automagic is ON, % prefix NOT needed for magic functions.

30 | Chapter2: IPython

As you can see, there is an almost unwieldy number of functions for you to work with.
In fact, as of this writing, there are 69 magic functions for you to use. You may find it
helpful to list the magic functions like this:

In [2]: %<TAB>

%Exit %debug %Llogstop %psearch %save
%Pprint %dhist %Lsmagic %psource %sc
%Quit %dirs %macro %pushd %store
%alias %doctest_mode %magic Jopwd %SX
%autocall %ed %p %pycat %system_verbose
%autoindent %edit %page %quickref Jtime
%automagic %env %pdb %quit Jtimeit
%bg %exit %pdef % %unalias
%bookmark %hist %pdoc %rehash %upgrade
%cd %history %pfile %rehashx Jwho
%clear %logoff %pinfo Jrep Jwho_1s
%color_info %Logon %popd %reset Jwhos
%colors %logstart %profile Jrun J%xmode
%cpaste %logstate %prun %runlog

Typing %-TAB will give you a nicer view of all 69 magic functions. The point of using the
1smagic function and %-TAB is to see a quick rundown of all the available functions when
you’re looking for something specific. Or, you can use them to quickly browse through
all the functions to see what is available. But unless you see a description, the list isn’t
going to help you understand what each function does.

That is where magic, the next help function comes in. The name of this magic function
is itself “magic.” Running magic brings up a pageable help document that the program
uses for all of the built-in magic functions in IPython. The help format includes the
function name, the use of the function (where applicable), and a description of the way
the function works. Here is the help on the magic page function:

%page:
Pretty print the object and display it through a pager.

%page [options] OBJECT
If no object is given, use _ (last output).
Options:

-r: page str(object), don't pretty-print it.

Depending on your pager, you can search and scroll after executing the magic function.
This can come in handy if you know what function you need to look up and want to
jump right to it rather than scrolling around hunting for it. The functions are arranged
alphabetically, so that will help you find what you’re looking for whether you search
or scroll.

You can also use another help method that we will get to later in this chapter. When
you type in the name of the magic function for which you want help, followed by a

Help with Magic Functions | 31

question mark (?), it will give you almost the same information that %magic will give
you. Here is the output of %page ?:

In [1]: %page ?

Type: Magic function

Base Class: <type 'instancemethod'>

String Form: <bound method InteractiveShell.magic_page of
<IPython.iplib.InteractiveShell object at 0x2ac5429b8a10>>

Namespace: IPython internal

File: /home/jmjones/local/python/psa/lib/python2.5/site-packages/IPython/Magic.py

Definition: %page(self, parameter s='")

Docstring:

Pretty print the object and display it through a pager.
%page [options] OBJECT
If no object is given, use _ (last output).
Options:
-r: page str(object), don't pretty-print it.

And here is one final piece of IPython help that is great for generating a summary of
the way things work, as well as a summary of the magic functions themselves. When
you type in %quickref at an [Python prompt, you’ll see a paged reference that begins
this way:

IPython -- An enhanced Interactive Python - Quick Reference Card

obj?, obj?? : Get help, or more help for object (also works as
20bj, ??0bj).

?foo.*abc* : List names in 'foo' containing 'abc' in them.

%magic : Information about IPython's 'magic' % functions.

Magic functions are prefixed by %, and typically take their arguments without
parentheses, quotes or even commas for convenience.

Example magic function calls:

%alias d 1s -F : 'd' is now an alias for 'ls -F'

alias d 1s -F : Works if 'alias' not a python name

alist = %alias : Get list of aliases to 'alist'

cd /usr/share : Obvious. cd -<tab> to choose from visited dirs.
%cd?? : See help AND source for magic %cd

System commands:

lcp a.txt b/ : System command escape, calls os.system()

cp a.txt b/ : after %rehashx, most system commands work without !
cp ${f}.txt $bar : Variable expansion in magics and system commands
files = !ls /usr : Capture sytem command output

files.s, files.l, files.n: "a b c¢", ['a','b','c'], 'a\nb\nc'

and ends with this:

32 | Chapter2: IPython

%time:
Time execution of a Python statement or expression.
%timeit:
Time execution of a Python statement or expression
%unalias:
Remove an alias
%upgrade:
Upgrade your IPython installation
%who:
Print all interactive variables, with some minimal formatting.
%who_1s:
Return a sorted list of all interactive variables.
%whos :
Like %who, but gives some extra information about each variable.
%xmode:
Switch modes for the exception handlers.

The starting portion of %quickref is a reference to various usage scenarios for IPython.
The rest of %quickref is a minisummary of each of the %magic functions. The mini-
summaries in %quickref each contain the first line of the full help on each of the
%magic functions found elsewhere. For example, here is the full help description of %who:

In [1]: %who ?

Type: Magic function

Base Class: <type 'instancemethod'>

String Form: <bound method InteractiveShell.magic_who of
<IPython.iplib.InteractiveShell object at 0x2ac9f449da10>>

Namespace: IPython internal

File: /home/jmjones/local/python/psa/lib/python2.5/site-packages/IPython/
Magic.py

Definition: who(self, parameter s="")

Docstring:

Print all interactive variables, with some minimal formatting.

If any arguments are given, only variables whose type matches one of
these are printed. For example:

%who function str

will only list functions and strings, excluding all other types of
variables. To find the proper type names, simply use type(var) at a
command line to see how python prints type names. For example:

In [1]: type('hello"')
Out[1]: <type 'str'>

indicates that the type name for strings is 'str'.

Jwho always excludes executed names loaded through your configuration
file and things which are internal to IPython.

This is deliberate, as typically you may load many modules and the
purpose of %who is to show you only what you've manually defined.

Help with Magic Functions | 33

The help line for %who in the %quickref is identical to the first line of the Docstring that
is returned by %who ?.

Unix Shell

Working in a Unix shell certainly has its benefits (a unified approach to working
through problems, a rich set of tools, a fairly terse yet simple syntax, standard I/O
streams, pipes, and redirection to name a few), but it’s nice for us to be able to add a
touch of Python to this old friend. IPython has some features that make bridging the
two very valuable.

alias

The first feature of a Python/Unix shell bridge that we will look at is the alias magic
function. With alias you can create an IPython shortcut to execute system commands.
To define an alias, simply type alias followed by the system command (and any argu-
ments for that command). For example:

In [1]: alias nss netstat -lptn

In [2]: nss

(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

There are a few ways to get different input into an alias. One option is the do-nothing
approach. If all the extras you wanted to pass into your command can be lumped
together, the do-nothing approach may be for you. For example, if you wanted to
grep the results of the netstat command above for 80, you could do this:

In [3]: nss | grep 80

(Not all processes could be identified, non-owned process info

will not be shown, you would have to be root to see it all.)
tcp 0 0 0.0.0.0:80 0.0.0.0:%* LISTEN -

This isn’t passing in extra options, but for the sake of how things are happening, it
winds up being the same thing.

Next, there is the do-everything approach. It’s pretty similar to the do-nothing ap-
proach except that, by implicitly handling all arguments, you’re explicitly handling all
subsequent arguments. Here is an example that shows how to treat the subsequent
arguments as a single group:

In [1]: alias achoo echo "|%1|"

In [2]: achoo

34 | Chapter2: IPython

In [3]: achoo these are args
|these are args|

This demonstrates the %1 (percent sign followed by the letter “1”) syntax that is used to
insert the rest of the line into an alias. In real life, you would be most likely to use this
to insert everything after the alias somewhere in the middle of the implemented com-
mand that the alias is standing in for.

And here is the do-nothing example retooled to handle all arguments explicitly:
In [1]: alias nss netstat -lptn %1
In [2]: nss
(Not all processes could be identified, non-owned process info

will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

In [3]: nss | grep 80

(Not all processes could be identified, non-owned process info

will not be shown, you would have to be root to see it all.)

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

In this example, we really didn’t need to put the %1 in there at all. If we had just left it
out, we would have gotten up with the same result.

To insert different parameters throughout a command string, we would use the %s
substitution string. This example shows how to run the parameters:

In [1]: alias achoo echo first: "|%s|", second: "|%s|"

In [2]: achoo foo bar
first: |foo|, second: |bar|

This can be a bit problematic, however. If you supply only one parameter and two were
expected, you can expect an error:

In [3]: achoo foo
ERROR: Alias <achoo> requires 2 arguments, 1 given.

AttributeError Traceback (most recent call last)

On the other hand, providing more parameters than expected is safe:
In [4]: achoo foo bar bam
first: |foo|, second: |bar| bam

foo and bar are properly inserted into their respective positions, while bam is appended
to the end, which is where you would expect it to be placed.

You can also persist your aliases with the %store magic function, and we will cover how
to do that later in this chapter. Continuing with the previous example, we can persist
the achoo alias so that the next time we open [Python, we’ll be able to use it:

Unix Shell | 35

In [5]: store achoo
Alias stored: achoo (2, 'echo first: "|%s|", second: "|%s|"")

In [6]:
Do you really want to exit ([y]/n)?
(psa)jmjones@dinkgutsy:code$ ipython -nobanner

In [1]: achoo one two
first: |one|, second: |[twol|

Shell Execute

Another, and possibly easier, way of executing a shell command is to place an excla-
mation point (!) in front of it:

In [1]: !netstat -lptn

(Not all processes could be identified, non-owned process info

will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

You can pass in variables to your shell commands by prefixing them with a dollar sign
($). For example:

In [1]: user = 'jmjones'

In [2]: process = 'bash'

In [3]: !ps aux | grep $user | grep $process

jmjones 5967 0.0 0.4 21368 4344 pts/0 Ss+ April 0:01 bash
jmjones 6008 0.0 0.4 21340 4304 pts/1 Ss April 0:02 bash
jmjones 8298 0.0 0.4 21296 4280 pts/2 Ss+ April 0:04 bash
jmjones 10184 0.0 0.5 22644 5608 pts/3 Ss+ April 0:01 bash
jmjones 12035 0.0 0.4 21260 4168 pts/15 Ss Aprl5 0:00 bash
jmjones 12943 0.0 0.4 21288 4268 pts/5 Ss April 0:01 bash
jmjones 15720 0.0 0.4 21360 4268 pts/17 Ss 02:37 0:00 bash
jmjones 18589 0.1 0.4 21356 4260 pts/4 Ss+ 07:04 0:00 bash
jmjones 18661 0.0 0.0 320 16 pts/15 R+ 07:06 0:00 grep bash
jmjones 27705 0.0 0.4 21384 4312 pts/7 Ss+ Apri2 0:01 bash
jmjones 32010 0.0 0.4 21252 4172 pts/6 Ss+ Apri2 0:00 bash

This listed all bash sessions belonging to jmjones.

Here’s an example of the way to store the result of a | command:

In [4]: 1 = Ips aux | grep $user | grep $process
In [5]: 1

Out[5]: SList (.p, .n, .
0: jmjones 5967 0.0

1, .s, .grep(), .fields() available). Value:
0.
1: jmjones 6008 0.0 O.
0.
0.

21368 4344 pts/0 Ss+ Aprll 0:01 bash
21340 4304 pts/1 Ss Aprll 0:02 bash
21296 4280 pts/2 Ss+ April 0:04 bash
22644 5608 pts/3 Ss+ April 0:01 bash

2: jmjones 8298 0.0
3: jmjones 10184 0.0

(S

36 | Chapter2: IPython

4: jmjones 12035 0.0 0.4 21260 4168 pts/15 Ss Apri5 0:00 bash
5: jmjones 12943 0.0 0.4 21288 4268 pts/s Ss April 0:01 bash
6: jmjones 15720 0.0 0.4 21360 4268 pts/17 Ss 02:37 0:00 bash
7: jmjones 18589 0.0 0.4 21356 4260 pts/4 Ss+ 07:04 0:00 bash
8: jmjones 27705 0.0 0.4 21384 4312 pts/7 Ss+ Apri2 0:01 bash
9: jmjones 32010 0.0 0.4 21252 4172 pts/6 Ss+ Apri2 0:00 bash

You may notice that the output stored in the variable 1 is different from the output in
the previous example. That’s because the variable 1 contains a list-like object, while
the previous example showed the raw output from the command. We’ll discuss that
list-like object later in “String Processing.”

An alternative to ! is !'!, except that you can’t store the result in a variable as you are
running it, !'! does the same thing that ! does. But you can access it with the _ or
_[0-9]* notation that we’ll discuss later in “History results.”

Programming a quick ! or !'! before a shell command is definitely less work than cre-
ating an alias, but you may be better off creating aliases in some cases and using the !
or !l in others. For example, if you are typing in a command you expect to execute all
the time, create an alias or macro. If this is a one time or infrequent occurrence, then
justuse ! or !l.

rehash

There is another option for aliasing and/or executing shell commands from IPython:
rehashing. Technically, this is creating an alias for shell commands, but it doesn’t really
feel like thatis whatyou’re doing. The rehash “magic” function updates the “alias table”
with everything that is on your PATH. You may be asking, “What is the alias table?”
When you create an alias, [Python has to map the alias name to the shell command
with which you wanted it to be associated. The alias table is where that mapping occurs.

B
)

The preferred way of rehashing the alias table is to use the rehashx magic
~ function rather than rehash. We will present both to demonstrate the
s ways they work, and then we will describe their differences.

[Python exposes a number of variables that you have access to when running IPython,
such as In and Out, which we saw earlier. One of the variables that IPython exposes is
__IP, which is actually the interactive shell object. An attribute named alias_table
hangs on that object. This is where the mapping of alias names to shell commands takes
place. We can look at this mapping in the same way we would look at any other variable:

In [1]: __IP.alias_table

Out[1]:
{'cat': (0, 'cat'),
'clear': (0, 'clear'),

cp': (0, 'cp -i'),

Unix Shell | 37

'1c': (0, 'ls -F -0 --color'),
'1dir': (0, 'ls -F -o --color %1 | grep /$'),
'less': (0, 'less'),
'1f': (0, 'ls -F -0 --color %1 | grep ~-'),
'1k': (0, 'ls -F -0 --color %1 | grep ~1'),
'11': (o, 'ls -1F"),
"Irt': (0, 'ls -lart'),
'1s': (0, 'ls -F'),
'Ix': (0, 'ls -F -0 --color %1 | grep ~-..x"),
'mkdir': (o, 'mkdir'),
‘'mv': (0, 'mv -i'),
'rm': (0, 'rm -i'),
'rmdir': (0, 'rmdir')}
It looks like a dictionary:
In [2]: type(__IP.alias table)

Out[2]: <type 'dict'>
Looks can be deceiving, but they’re not this time.

Right now, this dictionary has 16 entries:
In [3]: len(__IP.alias_table)

Out[3]: 16

After we rehash, this mapping gets much larger:
In [4]: rehash

In [5]: len(__IP.alias_table)
Out[5]: 2314

Let’s look for something that wasn’t there before, but should be there now—the
transcode utility should be in the alias table now:

In [6]: _IP.alias table['transcode']
Out[6]: (0, 'transcode')

B
)

When you see a variable or attribute name that begins with a double
underscore (_), it usually means that the author of that code doesn’t
%l want you to change. We’re accessing __IP here, but it’s only to show
" you the internals structure. If we wanted to access the official API for
[Python, we would use the _ip object that is accessible at the IPython
prompt.

rehashx

Excepting that rehashx looks for things on your PATH that it thinks are executable to
add to the alias table, rehashx is similar to rehash. So, when we start a new [Python

38 | Chapter2: IPython

shell and rehashx, we would expect the alias table to be the same size as or smaller than
the result of rehash:

In [1]: rehashx
In [2]: len(__IP.alias_table)
Out[2]: 2307

Interesting; rehashx produces an alias table with seven fewer items than rehash. Here
are the seven differences:

In [3]: from sets import Set

In [4]: rehashx_set = Set(__IP.alias_table.keys())
In [5]: rehash

In [6]: rehash_set = Set(__IP.alias_table.keys())
In [7]: rehash_set - rehashx set

Out[7]: Set(['fusermount', 'rmmod.modutils', 'modprobe.modutils', 'kallsyms', 'ksyms', /
'1smod.modutils', 'X11'])

And if we look to see why rmmod.modutils didn’t show up when we ran rehashx but did
show up when we ran for rehash, here is what we find:

jmjones@dinkgutsy:Music$ slocate rmmod.modutils

/sbin/rmmod.modutils

jmjones@dinkgutsy:Music$ 1s -1 /sbin/rmmod.modutils

lrwxrwxrwx 1 root root 15 2007-12-07 10:34 /sbin/rmmod.modutils -> insmod.modutils

jmjones@dinkgutsy:Music$ 1s -1 /sbin/insmod.modutils

1s: /sbin/insmod.modutils: No such file or directory

So, you can see that rmmod.modutils is a link to insmod.modutils, and
insmod.modutils doesn’t exist.

cd

If you have the standard Python shell, you may have noticed that it can be hard to
determine which directory you’re in. You can use os.chdir() to change the directory,
but that isn’t very convenient. You could also get the current directory via
os.getcwd(), but that’s not terribly convenient either. Since you are executing Python
commands rather than shell commands with the standard Python shell, maybe it isn’t
that big of a problem, but when you are using IPython and have easy access to the
system shell, having comparably easy access to directory navigation is critical.

Enter cd magic. It seems like we’re making a bigger deal out of this than it warrants:
this isn’t a revolutionary concept; it’s not all that difficult. But just imagine if it were
missing. That would be painful.

Unix Shell | 39

In IPython, cd works mostly as it does in Bash. The primary usage is cd direc
tory name. That works as you would expect it to from your Bash experience. With no
arguments, cd takes you to your home directory. With a space and hyphen as an
argument, cd - takes you to your previous directory. There are three additional options
that Bash cd doesn’t give you.

The first is the -g, or quiet, option. Without this option, IPython will output the di-
rectory into which you just changed. The following example shows the ways to change
a directory both with and without the -q option:

In [1]: cd /tmp
/tmp

In [2]: pwd
Out[2]: '/tmp'

In [3]: cd -
/home/jmjones

In [4]: cd -q /tmp
In [5]: pwd
out[s]: '/tmp'
Using the -q prevented IPython from outputting the /tmp directory we had gone into.

Another feature that IPython’s cd includes is the ability to go to defined bookmarks.
(We'll explain how to create bookmarks soon.) Here is an example of how to change
a directory for which you have created a bookmark:

In [1]: cd -b t

(bookmark:t) -> /tmp

/tmp

This example assumes that we have bookmarked /tmp the name t. The formal syntax
to change to a bookmarked directory is cd -b bookmark_name, but, if a bookmark of
bookmark_name is defined and there is not a directory called bookmark_name in the
current directory, the -b flag is optional; IPython can figure out that you are intending
to go into a bookmarked directory.

The final extra feature that cd offers in IPython is the ability to change into a specific
directory given a history of directories that have been visited. The following is an ex-
ample that makes use of this directory history:

/home/jmjones
/home/jmjones/local/Videos
/home/jmjones/local/Music
/home/jmjones/local/downloads
/home/jmjones/local/Pictures
/home/jmjones/local/Projects
/home/jmjones/local/tmp

ooV WN L O

40 | Chapter2: IPython

7: /[tmp
8: /home/jmjones

In [2]: cd -6

/home/jmjones/local/tmp
First, you see there is a list of all the directories in our directory history. We’ll get to
where it came from in a moment. Next, we pass the numerical argument -6. This tells
[Python that we want to go to the item in our history marked “6”, or /home/jmjones/
local/tmp. Finally, you can see that these are now in /home/jmjones/local/tmp.

bookmark

We just showed you how to use a cd option to move into a bookmarked directory. Now
we’ll show you how to create and manage your bookmarks. It deserves mentioning that
bookmarks persist across IPython sessions. If you exit IPython and start it back up,
your bookmarks will still be there. There are two ways to create bookmarks. Here is
the first way:

In [1]: cd /tmp

/tmp

In [2]: bookmark t

By typing in bookmark t while we’re in /tmp, abookmark named t is created and pointing
at /tmp. The next way to create a bookmark requires typing one more word:

In [3]: bookmark muzak /home/jmjones/local/Music

Here, we created a bookmark named muzak that points to a local music directory. The
first argument is the bookmark’s name, while the second is the directory the bookmark
points to.

The -1 option tells IPython to get the list of bookmarks, of which we have only two.
Now, let’s see a list of all our bookmarks:

In [4]: bookmark -1

Current bookmarks:

muzak -> /home/jmjones/local/Music
t -> [tmp

There are two options for removing bookmarks: remove them all, or remove one at a

time. In this example, we’ll create a new bookmark, remove it, and then remove all in
the following example:

In [5]: bookmark ulb /usr/local/bin

In [6]: bookmark -1

Current bookmarks:

muzak -> /home/jmjones/local/Music
t -> /tmp

ulb -> /usr/local/bin

Unix Shell | 41

In [7]: bookmark -d ulb

In [8]: bookmark -1

Current bookmarks:

muzak -> /home/jmjones/local/Music
t -> [tmp

An alternative to using bookmark -1 is to use cd -b:

In [9]: cd -b<TAB>
muzak t txt

And after a few backspaces, we’ll continue where we left off:

In [9]: bookmark -r

In [10]: bookmark -1
Current bookmarks:

We created a bookmark named ulb pointing to /usr/local/bin. Then, we deleted it with
the -d bookmark_name option for bookmark. Finally, we deleted all bookmarks with the
- option.

dhist

In the cd example above, we show a list of the directories we had visited. Now we’ll
show you how to view that list. The magic command is dhist, which not only saves the
session list, but also saves the list of directories across IPython sessions. Here is what
happens when you run dhist with no arguments:

In [1]: dhist

Directory history (kept in _dh)
0: /home/jmjones

1: /home/jmjones/local/Videos
2: /home/jmjones/local/Music
3: /home/jmjones/local/downloads
4: /home/jmjones/local/Pictures
5: /home/jmjones/local/Projects
6: /home/jmjones/local/tmp

7: /tmp

8: /home/jmjones

9: /home/jmjones/local/tmp

10: /tmp

A quick way to access directory history is to use cd -<TAB> like this:

In [1]: cd -

-00 [/home/jmjones] -06 [/home/jmjones/local/tmp]
-01 [/home/jmjones/local/Videos] -07 [/tmp]

-02 [/home/jmjones/local/Music] -08 [/home/jmjones]

-03 [/home/jmjones/local/downloads] -09 [/home/jmjones/local/tmp]
-04 [/home/jmjones/local/Pictures] -10 [/tmp]

-05 [/home/jmjones/local/Projects]

42 | Chapter2: IPython

There are two options that make dhist more flexible than cd -<TAB>. The first is that
you can provide a number to specify how many directories should be displayed. To
specify that we want to see only the last five directories that were visited, we would
input the following;:

In [2]: dhist 5

Directory history (kept in _dh)

6: /home/jmjones/local/tmp

7: /[tmp

8: /home/jmjones

9: /home/jmjones/local/tmp

10: /tmp

The second option is that you can specify a range of directories that were visited. For
example, to view from the third through the sixth directories visited, we would enter
the following;:

In [3]: dhist 3 7

Directory history (kept in _dh)

3: /home/jmjones/local/downloads

4: /home/jmjones/local/Pictures

5: /home/jmjones/local/Projects

6: /home/jmjones/local/tmp

Notice that the ending range entry is noninclusive, so you have to indicate the directory
immediately following the final directory you want to see.

pwd
A simple but nearly necessary function for directory navigation, pwd simply tells you
what your current directory is. Here is an example:

In [1]: cd /tmp
/tmp

In [2]: pwd

Out[2]: '/tmp'

Variable Expansion

The previous eight or so IPython features are definitely helpful and necessary, but the
next three features will give great joy to power users. The first of these is variable ex-
pansion. Up to this point, we’ve mostly kept shell stuff with shell stuff and Python stuff
with Python stuff. But now, we’re going to cross the line and mingle the two of them.
That is, we’re going to take a value that we get from Python and hand it to the shell:

In [1]: for i in range(10):
Idate > ${i}.txt

Unix Shell | 43

In [2]: 1s
o.txt 1.txt 2.txt 3.txt 4.txt 5.txt 6.txt 7.txt 8.txt 9.txt

In [3]: !cat o0.txt
Sat Mar 8 07:40:05 EST 2008

This example isn’t all that realistic. It is unlikely that you will want to create 10 text
files that all contain the date. But the example does show how to mingle Python code
and shell code. We iterated over a list created by the range() function and stored the
current item in the list in variable i. For each time through the iteration, we use the
shell execution ! notation to call out to the date command-line system utility. Notice
that the syntax we use for calling date is identical to the way we would call it if we had
defined a shell variable i. So, the date utility is called, and the output is redirected to
the file {current list item].txt. We list the files after creating them and even cat one out
to see that it contains something that looks like a date.

You can pass any kind of value you can come up with in Python into your system shell.
Whether it is in a database or in a pickle file, generated by computation, an XMLRPC
service, or data you extract from a text file, you can pull it in with Python and then pass
it to the system shell with the ! execution trick.

String Processing

Another incredibly powerful feature that IPython offers is the ability to string process
the system shell command output. Suppose we want to see the PIDs of all the processes
belonging to the user jmjones. We could do that by inputting the following;:

ps aux | awk '{if ($1 == "jmjones") print $2}'

This is pretty tight, succinct, and legible. But let’s tackle the same task using IPython.
First, let’s grab the output from an unfiltered ps aux:

In [1]: ps = !ps aux
In [2]:

The result of calling ps aux, which is stored in the variable ps, is a list-like structure
whose elements are the lines that were returned from the shell system call. It is list-like,
in this case, because we mean that it inherits from the built-in 1ist type, so it supports
all the methods of that type. So, if you have a function or method that expects a list,
you can pass one of these result objects to it as well. In addition to supporting the
standard list methods, it also supports a couple of very interesting methods and one
attribute that will come in handy. Just to show what the “interesting methods” do, we’ll
divert from our end goal of finding all processes owned by jmjones for just a moment.
The first “interesting method” we’ll look at is the grep() method. This is basically a
simple filter that determines which lines of the output to keep and which to leave off.
To see if any of the lines in the output match lighttpd, we would input the following:

44 | Chapter2: IPython

In [2]: ps.grep('lighttpd")

Out[2]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
0: www-data 4905 0.0 0.1........ 0:00 /usr/sbin/lighttpd -f /etc/lighttpd/1

We called the grep() method and passed it the regular expression 'lighttpd'. Remem-
ber, regular expressions passed to grep() are case-insensitive. The result of this
grep() call was a line of output that showed that there was a positive match for the
"lighttpd' regular expression. To see all records except those that match a certain
regular expression, we would do something more like this:

In [3]: ps.grep('Mar0o7', prune=True)

Out[3]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:

0: USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

1: jmjones 19301 0.0 0.4 21364 4272 pts/2 Ss+ 03:58 0:00 bash

2: jmjones 21340 0.0 0.9 202484 10184 pts/3 S1l+ 07:00 0:06 vim ipytho
3: jmjones 23024 0.0 1.1 81480 11600 pts/4 S+ 08:58 0:00 /home/jmjo
4: jmjones 23025 0.0 0.0 0 0 pts/4 Z+ 08:59 0:00 [sh] <defu
5: jmjones 23373 5.4 1.0 81160 11196 pts/0 R+ 09:20 0:00 /home/jmjo
6: jmjones 23374 0.0 0.0 3908 532 pts/0 R+ 09:20 0:00 /bin/sh -c
7: jmjones 23375 0.0 0.1 15024 1056 pts/0 R+ 09:20 0:00 ps aux

We passed in the regular expression 'Maro7' to the grep() method and found that most
of the processes on this system were started on March 7, so we decided that we wanted
to see all processes not started on March 7. In order to exclude all 'Mar07' entries, we
had to pass in another argument to grep(), this time a keyword argument:
prune=True. This keyword argument tells IPython, “Any records you find that match
the stated regular expression—throw them out.” And as you can see, there are no
records that match the 'Maro7' regex.

Callbacks can also be used with grep(). This just means that grep() will take a function
as an argument and call that function. It will pass the function to the item in the list
that it is working on. If the function returns True on that item, the item is included in
the filter set. For example, we could do a directory listing and filter out only files or
only directories:

In [1]: import os
In [2]: file list = !ls
In [3]: file list

Out[3]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
0: cho1.xml

1: code

2: ipython.pdf

3: ipython.xml

This directory listing shows four “files.” We can’t tell from this list which are files and
which are directories, but if we filter using the os.path.isfile() test, we can see which
ones are files:

Unix Shell | 45

In [4]: file list.grep(os.path.isfile)

Out[4]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
0: cho1.xml

1: ipython.pdf

2: ipython.xml

This left out the “file” named code, so code must not be a file at all. Let’s filter for
directories:

In [5]: file list.grep(os.path.isdir)

Out[s5]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
0: code

Now that we see that code is, in fact, a directory, another interesting method is
fields(). After (or, we guess, even before) you filter your result set down to the desired
level of specificity, you can display exactly the fields that you want to display. Let’s take
the non-Mar07 example that we just walked through and output the user, pid, and start
columns:

In [4]: ps.grep('Maro7', prune=True).fields(o, 1, 8)

0ut[4] SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
: USER PID START

jmjones 19301 03:58

jmjones 21340 07:00

jmjones 23024 08:58

jmjones 23025 08:59

jmjones 23373 09:20

jmjones 23374 09:20

jmjones 23375 09:20

\lO‘\LﬂbWNI—‘O

First, notice that whatever it is that fields() does, we’re doing it to the result of the
grep() method call. We are able to do this because grep() returns an object of the same
type as the ps object that we started with. And fields() itself returns the same object
type as grep(). Since that is the case, you can chain grep() and fields() calls together.
Now, on to what is going on here. The fields() method takes an indefinite number of
arguments, and these arguments are expected to be the “columns” from the output, if
the output lines were split on whitespace. You can think of this very much like the
default splitting that awk does to lines of text. In this case, we called fields() to view
columns 0, 1, and 8. These are, respectively, USERNAME, PID, and STARTTIME.

Now, back to showing the PIDs of all processes belonging to jmjones:

In [5]: ps.fields(0, 1).grep('jmjones').fields(1)

Out[s] Stist (.p, .n, .1, .s, .grep(), .fields() available). Value:
1 5385
5388
5423
5425
5429
5431

Ln.bwwl—\o

46 | Chapter2: IPython

6: 5437
7: 5440
8: 5444
<continues on...>

This example first trims the result set back to only two columns, 0 and 1, which are the
username and PID, respectively. Then, we take that narrower result set and grep() for
'jmjones'. Finally, we take that filtered result set and request the second field by calling
fields(1). (Remember, lists start at zero.)

The final piece of string processing that we want to showcase is the s attribute of the
object trying to directly access your process list. This object is probably not going to
give you the results you were looking for. In order to get the system shell to work with
your output, use the s attribute on your process list object:

In [6]: ps.fields(0, 1).grep('jmjones').fields(1).s

Out[6]: '5385 5388 5423 5425 5429 5431 5437 5440 5444 5452 5454 5457 5458 5468
5470 5478 5480 5483 5489 5562 5568 5593 5595 5597 5598 5618 5621 5623 5628 5632
5640 5740 5742 5808 5838 12707 12913 14391 14785 19301 21340 23024 23025 23373
23374 23375’

The s attribute gives us a nice space-separated string of PIDs that we can work with in
a system shell. We wanted to, we could store that stringified list in a variable called
pids and do something like kill $pids from within IPython. But that would send a
SIGTERM to every process owned by jmjones, and it would kill his text editor and his
[Python sessions.

Earlier, we demonstrated that we could accomplish the stated goals for our IPython
script with the following awk one-liner:

ps aux | awk '{if ($1 == "jmjones") print $2}'
We will be ready to accomplish this goal after we’ve introduced one more concept. The
grep() method takes a final optional parameter called field. If we specify a field

parameter, the search criteria has to match that field in order for that item to be included
in the result set:

In [1]: ps = !ps aux
In [2]: ps.grep('jmjones', field=0)

Out[2]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:

0: jmjones 5361 0.0 0.1 46412 1828 ? SL Apri1
0:00 /usr/bin/gnome-keyring-daemon -d

1: jmjones 5364 0.0 1.4 214948 14552 ? Ssl Aprii
0:03 x-session-manager

53: jmjones 32425 0.0 0.0 3908 584 ? S Apris
0:00 /bin/sh /usr/lib/firefox/run-mozilla.

54: jmjones 32429 0.1 8.6 603780 88656 ? S1 Apris

2:38 /Jusr/lib/firefox/firefox-bin

Unix Shell | 47

This matched the exact rows that we wanted, but printed out the whole row. To get at
just the PID, we’ll have to do something like this:

In [3]: ps.grep('jmjones', field=0).fields(1)

Out[3]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
0: 5361
1: 5364

53: 32425
54: 32429

And with that, we are able to meet the goal of performing that specific awk filter.

sh Profile

One IPython concept that we haven’t described yet is a profile. A profile is simply a set
of configuration data that is loaded when you start IPython. You can customize a num-
ber of profiles to make IPython perform in different ways depending on a session’s
needs. To invoke a specific profile, use the -p command-line option and specify the
profile you’d like to use.

The sh, or shell, profile is one of the built-in profiles for IPython. The sh profile sets
some configuration items so that IPython becomes a more friendly system shell. Two
examples of configuration values that are different from the standard IPython profile
are that sh displays the current directory and it rehashes your PATH so that you have
instant access to all of the same executables that you would have in, say, Bash.

In addition to setting certain configuration values, the sh profile also enables a few shell-
helpful extensions. For example, it enables the envpersist extension. The envpersist
extension allows you to modify various environment variables easily and persistently
for your IPython sh profile, and you don’t have to update a .bash_profile or .bashrc.

Here, is what our PATH looks like:

jmjones@dinkgutsy:tmp$ ipython -p sh

IPython 0.8.3.bzr.r96 [on Py 2.5.1]

[~/tmp]|2> import os

[~/tmp]|3> os.environ['PATH']
<3> '/home/jmjones/local/python/psa/bin:
/home/jmjones/apps/1b/bin:/home/jmjones/bin:
Jusr/local/sbin:/usr/local/bin:/usr/sbin:
/usr/bin:/sbin:/bin:/usr/games’

Now we add : /appended to the end of our current PATH:

[~/tmp]|4> env PATH+=:/appended

PATH after append = /home/jmjones/local/python/psa/bin:
/home/jmjones/apps/1b/bin: /home/jmjones/bin:
Jusr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games:/appended

and /prepended: to the beginning of our current PATH:

48 | Chapter2: IPython

[~/tmp]|5> env PATH-=/prepended:

PATH after prepend = /prepended:/home/jmjones/local/python/psa/bin:
/home/jmjones/apps/1b/bin: /home/jmjones/bin: /usr/local/sbin:
/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/appended

This shows the PATH environment variable using os.environ:
[~/tmp]|6> os.environ['PATH']
<6> '/prepended:/home/jmjones/local/python/psa/bin:
/home/jmjones/apps/1b/bin:/home/jmjones/bin:
Jusr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:
/bin:/usr/games:/appended’

Now we’ll exit our [Python shell:

[~/tmp]|7>
Do you really want to exit ([y]/n)?
jmjones@dinkgutsy:tmp$

Finally, we’ll open a new IPython shell to see what the PATH environment variable shows:

jmjones@dinkgutsy:tmp$ ipython -p sh

IPython 0.8.3.bzr.r96 [on Py 2.5.1]

[~/tmp]|2> import os

[~/tmp]|3> os.environ['PATH']
<3> '/prepended:/home/jmjones/local/python/psa/bin:
/home/jmjones/apps/1b/bin:/home/jmjones/bin: /usr/local/sbin:
/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/appended"

Interestingly, it shows our prepended and appended values, even though we didn’t
update any profile scripts. It persisted the change to PATH without any additional work
on our part. Now let’s display all persistent changes to environment variables:

[~/tmp]|4> env -p
<4> {'add': [('PATH', ':/appended')], 'pre': [('PATH', '/prepended:')], 'set': {}}

We can delete any persistent changes to PATH:

[~/tmp]|5> env -d PATH
Forgot 'PATH' (for next session)

and we can check to see the value of PATH:

[~/tmp]|6> os.environ['PATH']
<6> '/prepended:/home/jmjones/local/python/psa/bin:/home/jmjones/apps/1b/bin:
/home/jmjones/bin: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games:/appended"

Even after we’ve told IPython to remove the persistent entries for PATH, they are still
there. But that makes sense. That just means that IPython should remove the directive
to persist those entries. Note that the process started with certain values in an envi-
ronment variable will retain those values unless something changes them. The next
time the IPython shell starts, things should be different:

[~/tmp]|7>

Do you really want to exit ([y]/n)?

jmjones@dinkgutsy:tmp$ ipython -p sh

IPython 0.8.3.bzr.r96 [on Py 2.5.1]

Unix Shell | 49

[~/t
[~/t

mp]|2> import os

mp]|3> os.environ['PATH']
<3> '/home/jmjones/local/python/psa/bin:/home/jmjones/apps/1b/bin:
/home/jmjones/bin: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games’

And, just as we would expect, this is back to what it was before we started making

changes

to our PATH.

One other useful feature in the sh profile is mglob. mglob has a simpler syntax for a lot
of common uses. For example, to find all of the .py files in the Django project, we could
just do this:

[dja

H W N PR O

1103:
1104:
1105:
1106:
1107:

[dja
The rec

ngo/trunk]|3> mglob rec:*py
<3> SList (.p, .n, .1, .s, .grep(), .fields() available). Value:

./setup.py
./examples/urls.py
./examples/manage.py
./examples/settings.py
./examples/views.py

./django/conf/project_template/urls.py
./django/conf/project_template/manage.py
./django/conf/project_template/settings.py
./django/conf/project template/ init .py
./docs/conf.py

ngo/trunk] |4>

directive simply says to look recursively for the following pattern. In this case,

the pattern is *py. To show all directories in the Django root directory, we would issue

a comm
[dja

and like this:

ngo/trunk]|3> mglob dir:*
<3> SList (.p, .n, .1, .s, .grep(), .fields() available).
Value:

: examples

. tests

. extras

: build

: django

: docs

1 scripts
</3>

ooV WN KL O

The mglob command returns a Python list-like object, so anything we can do in Python,
we can do to this list of returned files or folders.

This wa

s just a taste of how the sh behaves. There are some sh profile features and

feature options that we didn’t cover.

50 | Chapter2: IPython

Information Gathering

[Python is much more than just a shell in which you can actively get work done. It also
works as a tool to gather up all sorts of information about the code and objects you are
working with. It can be such an asset in digging up information that it can feel like a
forensic or investigatory tool. This section will outline a number of the features that
can help you gather information.

page

If an object you are dealing with has too much of a representation to fit on one screen,
you may want to try the magic page function. You can use page to pretty print your
object and run it through a pager. The default pager on many systems is less, but yours
might use something different. Standard usage is as follows:

In [1]: p = !ps aux

['USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND',
'root 1 0.0 0.1 5116 1964 ? Ss Maro7 0:00 /sbin/init',

< ... trimmed result ... >

In [2]: page p

['USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND',
'root 1 0.0 0.1 5116 1964 ? Ss Maro7 0:00 /sbin/init',

< ... trimmed result ... >

Here, we stored the result of the system shell command ps aux in the variable p. Then,
we called page and passed the process result object to it. The page function then opened
less.

There is one option for page: -r. This option tells page not to pretty print the object,
but to run its string representation (result of str()) through the pager instead. For our
process output object, that would look like this:

In [3]: page -Tr p

ilus-cd-burner/mapping-d', 'jmjones 5568 0.0 1.0 232004 10608 ? S

Mar07 0:00 /usr/lib/gnome-applets/trashapplet --', 'jmjones 5593 0.0 0.9

188996 10076 ? S Mar07 0:00 /usr/lib/gnome-applets/battstat-apple',

'jmjones 5595 0.0 2.8 402148 29412 ? S Mar07 0:01 p
< ... trimmed result ... >

This non-pretty-printed result is not pretty, indeed. We recommend starting out with
the pretty printer and then working from there.

pdef

The magic pdef function prints the definition headers or the function signature of any
callable object. In this example, we create our own function with a docstring and return
statement:

Information Gathering | 51

In [1]: def myfunc(a, b, c, d):
ceat '"'return something by using a, b, c, d to do something'"'
return a, b, ¢, d

In [2]: pdef myfunc
myfunc(a, b, c, d)

The pdef function ignored our docstring and return statement, but printed out the
function signature portion of the function. You can use this on any callable function.
This function even works if the source code is not available as long as it has access to
either the .pyc file or the egg.

pdoc

The pdoc function prints the docstring of the function you pass to it. Here, we run the
same myfunc() function that we used in the pdef example through pdoc:

In [3]: pdoc myfunc
Class Docstring:

return something by using a, b, c, d to do something
Calling Docstring:

x._call (...) <==> x(...)

This one is pretty self-explanatory.

pfile

The pfile function will run the file that contains an object through the pager if it can
find the containing file:

In [1]: import os
In [2]: pfile os

r"""0S routines for Mac, NT, or Posix depending on what system we're on.

This exports:
- all functions from posix, nt, os2, mac, or ce, e.g. unlink, stat, etc.

< ... trimmed result ... >

This opened the os module and ran it through less. This can definitely be handy if you
are trying to understand the reason a piece of code is behaving in a particular way. It
will not work if the only access to the file is an egg or a .pyc file.

L)
)

You can see the same information from the ?? operator that you can
from the magic functions %pdef, %pdoc, and %pfile. The preferred meth-
v odis 22

52 | Chapter2: IPython

pinfo

The pinfo function and related utilities have become such a convenience for us that it’s
hard to imagine not having them. The pinfo function provides information such as
type, base class, namespace, and docstring. If we have a module that contains:

#!/usr/bin/env python

class Foo:
"""my Foo class
def _init_ (self):
pass

nun

class Bar:
"""my Bar class
def _init_ (self):
pass

nun

class Bam:
"""my Bam class
def _init_ (self):
pass

nun

then we can request information from the module itself:

In [1]: import some_module

In [2]: pinfo some_module

Type: module

Base Class: <type 'module’>

String Form: <module 'some_module' from ‘some_module.py'>
Namespace: Interactive

File: /home/jmjones/code/some_module.py

Docstring:

<no docstring>

We can request information from a class in the module:

In [3]: pinfo some_module.Foo

Type: classobj

String Form: some_module.Foo

Namespace: Interactive

File: /home/jmjones/code/some_module.py
Docstring:

my Foo class

Constructor information:
Definition: some_module.Foo(self)

We can request information from an instance of one of those classes:

In [4]: f = some_module.Foo()

In [5]: pinfo f
Type: instance
Base Class: some_module.Foo

Information Gathering | 53

String Form: <some_module.Foo instance at 0x86e9e0>
Namespace: Interactive
Docstring:

my Foo class

A question mark (?) preceeding or following an object name provides the same func-
tionality as pinfo:

In [6]: 2 f

Type: instance

Base Class: some_module.Foo

String Form: <some_module.Foo instance at 0x86e9e0>
Namespace: Interactive

Docstring:

my Foo class

In [7]: f?

Type: instance

Base Class: some_module.Foo

String Form: <some_module.Foo instance at 0x86e9e0>
Namespace: Interactive

Docstring:

my Foo class

But two question marks (??) preceeding or following an object name provides us with
even more information:

In [8]: some_module.Foo ??

Type: classobj

String Form: some_module.Foo

Namespace: Interactive

File: /home/jmjones/code/some_module.py
Source:

class Foo:

nun nun

my Foo class
def _init_ (self):

pass
Constructor information:
Definition: some_module.Foo(self)

The ?? notation provides us with all the information that pinfo provided us plus the
source code for the requested object. Because we only asked for the class, ?? gave us
the source code for this class rather than for the whole file. This is one of the features
of IPython that we find ourselves using more than nearly any other.

psource

The psource function shows the source code for the element you define, whether that’s
a module or something in a module, like a class or function. It runs the source code
through a pager in order to display it. Here is an example of psource for a module:

54 | Chapter2: IPython

In [1]: import some_other module

In [2]: psource some_other module
#!/usr/bin/env python

class Foo:
"""my Foo class
def _init_ (self):
pass

nun

class Bar:
"""my Bar class
def _init_ (self):
pass

nun

class Bam:
"""my Bam class
def _init (self):
pass

def baz():
"""my baz function
return None

Here is an example of psource for a class in a module:

In [3]: psource some_other module.Foo
class Foo:
"""my Foo class
def _init_ (self):
pass

nun

and here is an example of psource for a function in a module:

In [4]: psource some_other_module.baz
def baz():
"""my baz function
return None

nun

psearch

The psearch magic function will look for Python objects by name, with the aid of wild-
cards. We'll just briefly describe the psearch function here and if you want to know
more, you can find documentation on the magic functions by typingmagic at an [Python
prompt, and then searching within the alphabetical list for psearch.

Let’s start by declaring the following objects:

In [1]: a =1
In [2]: aa = "one"
In [3]: b =2

In [4]: bb = "two"

Information Gathering | 55

In [5]: c =3
In [6]: cc = "three"
We can search for all of the objects starting with a, b, or ¢ as follows:

In [7]: psearch a*
a

aa

abs

all

any

apply

In [8]: psearch b*
b

basestring
bb

bool
buffer

In [9]: psearch c*
d

callable

cc

chr
classmethod
cmp

coerce
compile
complex
copyright
credits

Notice all the objects that were found in addition to a, aa, b, bb, c, cc; those are built-ins.

There is a quick and dirty alternative to using psearch: the ? operator. Here’s an
example:

In [2]: import os

In [3]: psearch os.li*
os.linesep

os.link

os.listdir

In [4]: o0s.1i*?
os.linesep
os.link
os.listdir

Instead of psearch, we were able to use *?.

There is an option to search -s or exclude searching -e a given namespace built-in to
psearch. Namespaces include builtin, user, user global, internal, and alias. By

56 | Chapter2: IPython

default, psearch searches builtin and user. To explicitly search user only, we would
pass a -e builtin psearch option to exclude searching the builtin namespace. This is
a little counterintuitive, but it makes an odd sort of sense. The default search path for
psearchisbuiltinanduser,soif wespecifya-s user, searchingbuiltinand user would
still be what we’re asking it to do. In this example, the search is run again; notice that
these results exclude the built-ins:

In [10]: psearch -e builtin a*

a

aa

In [11]: psearch -e builtin b*
b
bb

In [12]: psearch -e builtin c*
d
cc

The psearch function also allows searching for specific types of objects. Here, we search
the user namespace for integers:

In [13]: psearch -e builtin * int

a

b
c

and here we search for strings:

In [14]: psearch -e builtin * string

__name__

aa

bb

cc
The _and ___ objects that were found are IPython shorthand for previous return
results. The _name__ object is a special variable that denotes the name of the module.
If name_is ' main_ ', it means that the module is being run from the interpreter

rather than being imported from another module.

who

[Python provides a number of facilities for listing all interactive objects. The first of
these is the who function. Here is the previous example, including the a, aa, b, bb, c,
cc variables, with the addition of the magic who function:

In [15]: who
a aa b bb C cc

That’s pretty straightforward; it returns a simple listing of all interactively defined ob-
jects. You can also use who to filter on types. For example:

Information Gathering | 57

In [16]: who int
a b c

In [17]: who str
aa bb cc

who_ls
Except that it returns a list rather than printing the names of the matching variables,
who_1s is similar to who. Here is an example of the who_1s function with no arguments:

In [18]: who_ls
Out[18]: ['a', 'aa', 'b", 'bb', 'c', 'cc']
and here is an example of filtering based on the types of objects:

In [19]: who_ls int
Out[19]: ['a', 'b', 'c']

In [20]: who_ls str
Out[20]: ['aa', 'bb', 'cc']

Since who_1s returns a list of the names, you can access the list of names using the _
variable, which just means “the last output.” Here is the way to iterate the last returned
list of matching variable names:
In [21]: for n in _
et print n

aa
bb
cc

whos

The whos function is similar to the who function except that whos prints out information
that who doesn’t. Here is an example of the whos function used with no command-line
arguments:

In [22]: whos

Variable Type Data/Info

a int 1

aa str one

b int 2

bb str two

C int 3

cc str three
n str cc

58 | Chapter2: IPython

And as we can with who, we can filter on type:

In [23]: whos int
Variable Type Data/Info

a int 1
b int 2
d int 3

In [24]: whos str
Variable Type Data/Info

aa str one

bb str two

cc str three

n str cc
History

There are two ways to gain access to your history of typed-in commands in IPython.
The first is readline-based; the second is the hist magic function.

Readline support

In IPython, you have access to all the cool features that you would expect to be in a
readline-enabled application. If you are used to searching your Bash history using Ctrl-
s, you won’t have a problem transitioning to the same functionality in IPython. Here,
we’ve defined a few variables, then searched back through the history:

In [1]: foo = 1

2

In [2]: bar
In [3]: bam = 3

In [4]: d = dict(foo=foo, bar=bar, bam=bam)

In [5]: dict2 = dict(d=d, foo=foo)

In [6]: <CTRL-s>

(reverse-i-search) fo': dict2 = dict(d=d, foo=foo)

<CTRL-1>

(reverse-i-search) fo': d = dict(foo=foo, bar=bar, bam=bam)

We typed Ctrl-r to start the search, then typed in fo as the search criteria. It brought
up the line we entered that is denoted by IPython as In [5]. Using readline’s search
functionality, we hit Ctrl-r and it matched the line we entered that is denoted by IPython
asIn [4].

Information Gathering | 59

There are many more things you can do with readline, but we’ll touch only briefly on
them. Ctrl-a will take you to the beginning of a line and Ctrl-e will take you to the end
of a line. Ctrl-f will move forward one character and Ctrl-b will move backward one
character. Ctrl-d deletes one character and Ctrl-h deletes one character backward
(backspace). Ctrl-p moves one line backward in the history and Ctrl-n moves one line
forward in your history. For more readline functionality, enter man readline on your
*nix system of choice.

hist command

In addition to providing access to the history functionality of the readline library, IPy-
thon also provides its own history function named history or hist for short. With no
parameters, hist prints a sequential list of the input commands received from the user.
By default, this list will be numbered. In this example, we set a few variables, change
the directory, and then run the hist command:

In [1]: foo = 1

In [2]: bar

n
N

In [3]: bam = 3

In [4]: cd /tmp
/tmp

In [5]: h
: foo
: bar
: bam = 3

: _ip.magic("cd /tmp")
¢ _ip.magic("hist ")

n n n
NP R

viphs WiN R

Items 4 and 5 in the history above are magic functions. Note that they have been modi-
fied by IPython and you can see what is going on under the covers through the IPython
magic() function call.

To suppress the line numbers, use the -n option. Here is an example using the -n option
for hist:

kIn [6]: hist -n
foo = 1
bar = 2
bam = 3

_ip.magic("cd /tmp")

_ip.magic("hist ")

_ip.magic("hist -n")
It is very helpful if you’ve been working in IPython and want to paste a section of your
[Python code into a text editor.

60 | Chapter2: IPython

The -t option returns a “translated” view of the history that shows the way IPython
sees the commands that have been entered. This is the default. Here is the history we’ve
built up so far run through with the -t flag:

In [7]: hist -t

~Nouvi s WN R

: foo =1
: bar = 2
: bam = 3

_ip.magic("hist "
_ip.magic("hist -
_ip.magic("hist -

_ip.magic("cd /tmp")

)
")
)

The “raw history,” or -1, flag will show you exactly what you typed. Here is the result
of the earlier example, adding the “raw history” flag:

8:

I
1
2
3
4:
5
6
7

n [8]: hist -r

: foo =1
: bar = 2
: bam = 3
cd /tmp
: hist

: hist -n
: hist -t
hist -r

[Python’s -g flag function also provides a facility to search through your history for a
specific pattern. Here is the earlier example with the -g flag used to search for hist:

In [9]: hist -g hist
0187: hist

0188: hist -n

0189: hist -g import
0190: hist -h

0191: hist -t

0192: hist -r

0193: hist -d

0213: hist -g foo
0219: hist -g hist

~shadow history ends, fetch by %rep <number> (must start with o)
=== start of normal

5
6
7 :
8
9

¢ _ip.magic("hist
_ip.magic("hist
_ip.magic("hist
¢ _ip.magic("hist
_ip.magic("hist

history ===
")

-n")

-t")

_I‘"

-g hist")

Notice that the term “shadow history” is returned in the previous example. “Shadow
history” is a history of every command you have ever entered. Those items are displayed
at the beginning of the result set and begin with a zero. History results from this session
are stored at the end of the result set and do not start with a zero.

Information Gathering | 61

History results

In both Python and IPython, you can access not only your history of the commands
you entered, but also access the history of your results. The first way to do this is using
the _flag, which means “the last output.” Here is an example of the way the _function
works in IPython:

In [1]: foo = "foo_string"
In [2]:

Outf[2]: "'

In [3]: foo

Out[3]: 'foo_string'

In [4]:

Out[4]: 'foo_string'
In [5]: a =

In [6]: a

Out[6]: 'foo_string'

When we defined foo in In [1], the _in In [2] returned an empty string. When we
output foo in In [3], we were able to use _ to get the result back in In [4]. And in In
[5], we were able to save it off to a variable named a.

Here is the same example using the standard Python shell:

>>> foo = "foo_string"

»>

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name ' ' is not defined

>>> foo

'foo_string'

»>

'foo_string'

>»>a = _

>>> a

'foo_string'

We see pretty much the same thing in the standard Python shell that we see in [Python,

except that trying to access _ before anything has been output results in a NameError
exception.

[Python takes this “last output” concept a step further. In the description of the “Shell
Execute” function, we described the ! and !! operators and explained that you can’t
store the results of !'! in a variable but can use it later. In a nutshell, you can access any

62 | Chapter2: IPython

result that was output using the syntax underscore (_) followed by a number_[0-9]*
syntax. The number must correspond to the Out [0-9]* result that you want to see.
To demonstrate this, we’ll first list files but not do anything with the output:

In [1]: !!ls apa*py

Out[1]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:

0: apache_conf_docroot replace.py

1: apache_log parser regex.py
2: apache_log parser split.py

In [2]: !lls e*py

Out[2]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
0: elementtree system profile.py
1: elementtree tomcat_users.py

In [3]: !lls t*py

Out[3]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
0: test apache_log parser regex.py
1: test_apache log parser split.py

We should have access to Out [1-3] by using 1, 2, and _3. So, we’ll attach a more
meaningful name to them:

In [4]: apache_list = _1
In [5]: element_tree list = _2
In [6]: tests = 3

Now, apache_list, element_tree list, and tests contain the same elements that were
output in Out [1], Out [2], and Out [3], respectively:

In [7]: apache_list

Out[7]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
0: apache_conf_docroot_replace.py

1: apache_log parser regex.py

2: apache_log parser split.py

In [8]: element_tree list

Out[8]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:
0: elementtree system profile.py

1: elementtree tomcat users.py

In [9]: tests

Out[9]: SList (.p, .n, .1, .s, .grep(), .fields() available). Value:

0: test apache log parser regex.py
1: test _apache log parser split.py

Information Gathering | 63

But the whole point of all this is that, in IPython, you can access previous output results
with either the naked _ special variable, or with an explicit numbered output reference
by using _ followed by a number.

Automation and Shortcuts

As if IPython hasn’t done enough to improve your productivity, it also provides a num-
ber of functions and features to help you automate your IPython tasks and usage.

alias

We'll first mention the alias “magic” command. We already covered this earlier in this
chapter, so we won’t rehash usage of it again. But we wanted to just point out here that
alias cannot only help you use *nix shell commands directly from within IPython, it
can help you automate tasks as well.

macro

The macro function lets you define a block of code that can be executed later inline with
whatever code you are working on. This is different from creating functions or methods.
The macro, in a sense, becomes aware of the current context of your code. If you have
a common set of processing steps you frequently execute on all your files, you can create
a macro to work on the files. To get a feel for the way a macro will work on a list of
files, look at the following example:

In [1]: dirlist = []

In [2]: for f in dirlist:
celt print "working on", f
print "done with", f
print "moving %s to %s.done" % (f, f)
print "*" * 40

In [3]: macro procdir 2
Macro ‘procdir’ created. To execute, type its name (without quotes).
Macro contents:
for f in dirlist:
print "working on", f
print "done with", f
print "moving %s to %s.done" % (f, f)
print "*" * 40

At the time that we created the loop in In [2], there were no items in dirlist for the
loop to walk over, but because we anticipated that future iterations would include items

in dirlist, we created a macro named procdir to walk over the list. The syntax for
creating a macro is macro macro_name range_of lines, where the range of lines is a list

64 | Chapter2: IPython

of the lines from your history that you want incorporated into the macro. The lines for
your macro list should be designated by a space-separated list of either numbers or
ranges of numbers (such as 1-4).

In this example, we create a list of filenames and store them in dirlist, then execute
the macro procdir. The macro will walk over the list of files in dirlist:

In [4]: dirlist = ['a.txt', 'b.txt', 'c.txt']

In [5]: procdir

------ > procdir()

working on a.txt

done with a.txt

moving a.txt to a.txt.done

working on b.txt
done with b.txt
moving b.txt to b.txt.done

working on c.txt
done with c.txt
moving c.txt to c.txt.done

Once you have a macro defined, you can edit it. This will open in your defined text
editor. This can be very helpful when you are tweaking a macro to make sure it is right
before you persist it.

store

You can persist your macros and plain Python variables with the store magic function.
The simple standard use of store is store variable. However, store also takes a number
of parameters that you may find useful: the -d variable function deletes the specified
variable from the persistence store; -z function deletes all stored variables; and the -r
function reloads all variables from the persistence store.

reset

The reset function deletes all variables from the interactive namespace. In the following
example, we define three variables, use whos to verify they are set, reset the namespace,
and use whos again to verify that they are gone:

In[1]: a =1
In[2]: b =2
In [3]: c=3
In [4]: whos

Variable Type Data/Info

Automation and Shortcuts | 65

a int 1
b int 2
d int 3

In [5]: reset
Once deleted, variables cannot be recovered. Proceed (y/[n])? vy

In [6]: whos
Interactive namespace is empty.

run

The run function executes the specified file in IPython. Among other things, this allows
you to work on a Python module in an external text editor and interactively test changes
you are making in it from within IPython. After executing the specified program, you
are returned back to the IPython shell. The syntax for using run is run options speci
fied file args.

The -n option causes the module’s _name__ variable to be setnot to ' _main__ ', but to
its own name. This causes the module to be run much as it would be run if it were
simply imported.

The -i option runs the module in [Python’s current namespace and, thereby, gives the
running module access to all defined variables.

The -e option causes IPython to ignore calls to sys.exit() and SystemExit exceptions.
If either of these occur, IPython will just continue.

The -t option causes IPython to print out information about the length of time it took
the module to run.

The -d option causes the specified module to be run under the Python debugger (pdb).

The -p option runs the specified module under the Python profiler.

save

The save function will save the specified input lines to the specified output file. Syntax
for using save is save options filename lines. The lines may be specified in the same
range format as is used for macro. The only save option is -r, which designates that raw
input rather than translated should be saved. Translated input, which is standard
Python, is the default.

rep

The final automation-enabling function is rep. The rep function takes a number of
parameters that you might find useful. Using rep without parameters takes the last
result that was processed and places a string representation of it on the next input line.
For example:

66 | Chapter2: IPython

In [1]: def format_str(s):
Lol return "str(%s)" % s

In [2]: format_str(1)
Out[2]: 'str(1)’

In [3]: rep

In [4]: str(1)

The rep call at In [3] causes the text you see to be placed on In [4]. This allows you
to programatically generate input for IPython to process. This comes in handy, partic-
ularly when you are using a combination of generators and macros.

A fairly common use case for rep without arguments is lazy, mouseless editing. If you
have a variable containing some value, you can edit that value directly. As an example,
assume that we are using a function that returns to the bin directory for specific installed
packages. We’ll store the bin directory in a variable called a:

In [2]: a = some_blackbox function('squiggly")
In [3]: a
Out[3]: '/opt/local/squiggly/bin’

If we type rep right here, we’ll see /opt/local/squiggly/bin on a new input line with a
blinking cursor expecting us to edit it:

In [4]: rep
In [5]: /opt/local/squiggly/bin<blinking cursor>

If we wanted to store the base directory of the package rather than the bin directory,
we can just delete the bin from the end of the path, prefix the path with a new variable
name, follow that with an equal sign and quotation marks, and suffix it with just a
quotation mark:

In [5]: new_a = '/opt/local/squiggly’

Now we have a new variable containing a string that is the base directory for this
package.

Sure, we could have just copied and pasted, but that would have been more work. Why
should you leave the comfort of your cozy keyboard to reach for the mouse? You can
now use new_a as a base directory for anything that you need to do regarding the squiggly
package.

When one number is given as an argument to rep, [Python brings up the input from
that particular line of history and places it on the next line, and then places the cursor
at the end of that line. This is helpful for executing, editing, and re-executing single
lines or even small blocks of code. For example:

Automation and Shortcuts | 67

In [1]: map = (("a', "1"), ('b", '2"), ('c’, '3"))

In [2]: for alph, num in map:
print alph, num

Nn o L
w N

Here, we edit In [2] and print the number value times 2 rather than a noncomputed
value. We could either type the for loop in again, or we can use rep:

In [3]: rep 2

In [4]: for alph, num in map:
print alph, int(num) * 2

Nn o L
AN

The rep function also takes ranges of numbers for arguments. The numeric range syntax
is identical to the macro numeric range syntax that we discussed elsewhere in this chap-
ter. When you specify a range for rep, the lines are executed immediately. Here is an
example of rep:

In [1]: i =1
In [2]: i +=1

In [3]: print i
2

In [4]: rep 2-3
lines [u'i += 1\nprint i\n']
3

In [7]: rep 2-3

lines [u'i += 1\nprint i\n']

4
We defined a counter incrementer and code that prints out the current count in In
[1] through In [3].In In [4] and In [7], we told rep to repeat lines 2 and 3. Notice
that 2 lines (5 and 6) are missing since they were executed after In [4].

The last option for rep that we’ll go over is passing in a string. This is more like “passing
in a word to rep” or even “passing in a nonquoted search string to rep.” Here is an
example:

In [1]: a

1
[y

In [2]: b

1
N

68 | Chapter2: IPython

In [3]: c =3
In [4]: rep a

In [5]: a=1

«,

We defined a few variables and told rep to repeat the last line that has an “a” in it. It
brought In [1] back to us to edit and re-execute.

Summary

[Python is one of the most well-worn tools in our toolbox. Having mastery of a shell is
like having mastery of a text editor: the more proficient you are, the more quickly you
can cut through the tedious parts of the task you are working on. When we started
working with IPython a few years ago, it was an amazingly powerful tool. Since then,
it has grown into even more. The grep function and the ability to do string processing
are just two of the things that come to mind when we think about the really useful,
powerful features that keep emerging from the IPython community. We highly rec-
ommend that you dig deeper into IPython. Mastering it is a time investment that you
won’t regret.

Summary | 69

CHAPTER 3
Text

Nearly every system administrator has to deal with text whether it is in the form of
logfiles, application data, XML, HTML, configuration files, or the output of some
command. Often, utilities like grep and awk are all you need, but sometimes a tool that
is more expressive and elegant is needed to tackle complex problems. When you need
to create files with data extracted from other files, redirecting text from the output of
a process (again, grep and awk come to mind) to a file is often good enough. But there
are also times when a tool that is more easily extensible is better-suited for the job.

As we explained in the “Introduction,” our experience has shown that that Python
qualifies as more elegant, expressive, and extensible than Perl, Bash, or other languages
we have used for programming. For more discussion of why we value Python more
highly than Perl or Bash (and you could make application to sed and awk), see Chap-
ter 1. Python’s standard library, language features, and built-in types are powerful tools
for reading text files, manipulating text, and extracting information from text files.
Python and its standard library contain a wealth of flexibility and functionality for text
processing using the string type, the file type, and the regular expression module. A
recent addition to the standard library, ElementTree, is immensely helpful when you
need to work with XML. In this chapter, we will show you how to effectively use the
standard library and built-in components that help with processing text.

Python Built-ins and Modules

str

A string is simply a sequence of characters. If you ever need to deal with textual data,
you’ll almost certainly need to work with it as a string object or a series of string objects.
The string type, str, is a powerful, flexible means for manipulating string data. This
section shows you how to create strings and what you can do with them once they’ve
been created.

n

Creating strings
The most common way to create a string is to surround the text with quotation marks:

In [1]: stringl = 'This is a string'

In [2]: string2 = "This is another string"

In [3]: string3 = This is still another string'''

In [4]: string4a = """And one more string

In [5]: type(stringl), type(string2), type(string3), type(string4)

Out[5]: (<type 'str'>, <type 'str'>, <type 'str'>, <type 'str'>)
Single, double, and triple quotation marks accomplish the same thing: they all create
an object of type str. Single and double quotation marks are identical in the creation
of strings; you can use them interchangeably. This is different from the way quotation
marks work in Unix shells, in which the marks cannot be used interchangeably. For
example:

jmjones@dink:~$ FOO=sometext

jmjones@dink:~$ echo "Here is $F00"

Here is sometext

jmjones@dink:~$ echo 'Here is $F00'
Here is $FOO

Perl also uses between single and double quotes in string creation. Here’s a comparable
example in a Perl script:

#!/usr/bin/perl

$FO0 = "some_text";
print "-- $FO0 --\n";
print '-- $FO0 --\n';

And here is the output from this simple Perl script:

jmjones@dinkgutsy:code$./quotes.pl
-- some_text --
-- $F00 --\njmjones@dinkgutsy:code$

This is a distinction that Python does not make. Python leaves the distinction to the
programmer. For example, if you needed to embed double quotation marks within the
string and did not want to have to escape them (with a backslash). Conversely, if you
needed to embed single quotes within the string and did not want to have to escape
them, you would use double quotes. See Example 3-1.

Example 3-1. Python single/double quote comparison
In [1]: s = "This is a string with 'quotes' in it"

In [2]: s
Out[2]: "This is a string with 'quotes' in it"

72 | Chapter3: Text

In [3]: s = 'This is a string with \'quotes\' in it'

In [4]: s
Out[4]: "This is a string with 'quotes' in it"

In [5]: s = 'This is a string with "quotes" in it'

In [6]: s
Out[6]: 'This is a string with "quotes" in it'

In [7]: s = "This is a string with \"quotes\" in it"

In [8]: s
Out[8]: 'This is a string with "quotes" in it'

Notice in lines 2 and 4 that embedding an escaped quote of the same type as the en-
closing quote coerces the enclosing quotation mark to the opposite quotation mark
type. (Actually, it’s just coercing the representation of the string to show the “right”
quotation mark types.)

There are times when you might want a string to span multiple lines. Sometimes em-
bedding \n in the string where you want line breaks solves the problem for you, but
this can get unwieldy. Another, often cleaner alternative is to use triples quotes, which
allow you to create multiline strings. Example 3-2 is an example of trying to use single
quotes for multiline strings and succeeding with triple quotes.

Example 3-2. Triple quotes

File "<ipython console>", line 1

s = "this is
N

SyntaxError: EOL while scanning single-quoted string

In [7]: s = '""'"this is a
: multiline string'"''

In [8]: s
Out[8]: 'this is a\nmultiline string'

And just to complicate matters, there is another way to denote strings in Python called
“raw” strings. You create a raw string by placing the letter r immediately before the
quotation mark when you are creating a string. Basically, the effect of creating a raw
string as opposed to a non-raw (would that be cooked?) string is that Python does not
interpret escape sequences in raw strings, whereas it does interpret escape sequences
in regular strings. Python follows a set of rules similar to those used by Standard C
regarding escape sequences. For example, in regular strings, \t is interpreted as a tab
character, \n as a newline, and \r as a line feed. Table 3-1 shows escape sequences in
Python.

Python Built-ins and Modules | 73

Table 3-1. Python escape sequences

Sequence Interpreted as

\newline

\
X

%
\a
\b
\f
\n

Ignored
Backslash
Single quote
Double quote
ASCII Bell

ASCII backspace
ASCII form feed
ASCll line feed

\N{name} Named character in Unicode database (Unicode strings only)

\r
\t

\UXXXX

ASCll carriage return
ASCll horizontal tab

Character with 16-bit hex value xxxx (Unicode only)

\Uxxxxxxxx — Character with 32-bit hex value xxxx (Unicode only)

\v
\ooo
\xhh

ASCll vertical tab
Character with octal value 0o

Character with hex value hh

Escape sequences and raw strings are useful to remember, particularly when you are
dealing with regular expressions, which we will get to later in this chapter. Exam-
ple 3-3 shows escape sequences used with raw strings.

Example 3-3. Escape sequences and raw strings

In [1]:

In [2]:
Out[2]:

In [3]:

In [4]:

In [5]:
Out[5]:

In [6]:

\t

In [7]:

In [8]:
Out[8]:

s = v\tv
s

I\tl

print s

s = r'\t'

s

I\\tl

print s

S = lll\tlll
s

I\tl

74 | Chapter3: Text

In [9]: print s

In [10]: s = r'""\t'"'

In [11]: s
Out[11]: "\\t'

In [12]: print s
\t

In [13]: s = r'\"’

In [14]: s
Out[14]: "\\'"

In [15]: print s

\'

When escape sequences are interpreted, \t is a tab character. When escape sequences
are not interpreted, \t is simply a string that contains the two characters \ and t. Strings
created with any of the quote characters, whether double or single, laid out individually
or three in a row, allow \t to be interpreted as a tab character. Any of those same strings
prefixed with an r allow \t to be interpreted as the two characters \ and t.

Another bit of fun from this example is the distinction between _repr and
__str__. When you type a variable name at an IPython prompt and hit enter, its
__repr__representation is displayed. When we type print followed by a variable name
and then hit enter, its _str__ representation is printed out. The print function inter-
prets the escape sequences in the string and displays them appropriately. For more
discussion on _repr__and _str__, see “Basic Concepts” in Chapter 2.

Built-in methods for str data extraction

Because strings are objects, they provide methods that can be called to perform oper-
ations. But by “method,” we don’t mean only those methods that the str type provides
for us; we mean all the ways that are available to extract data from an object of str
type. This includes all the str methods, and it also includes the in and not in text
operators you saw in our first example.

Technically, the in and not in test operators call a method on your str object,
__contains__ () in Example 3-1 (shown earlier). For more information on how this
works, see the Appendix. You can use both in and not in to determine if a string is a
part of another string. See Example 3-4.

Example 3-4. In and not in

In [1]: import subprocess

In [2]: res = subprocess.Popen(['uname', '-sv'], stdout=subprocess.PIPE)

Python Built-ins and Modules | 75

In [3]: uname = res.stdout.read().strip()
In [4]: uname

Out[4]: 'Linux #1 SMP Tue Feb 12 02:46:46 UTC 2008’
In [5]: 'Linux' in uname

Out[5]: True

In [6]: 'Darwin' in uname

Out[6]: False

In [7]: 'Linux' not in uname

Out[7]: False

In [8]: 'Darwin' not in uname

Out[8]: True

If string2 contains stringi, stringl in string2 returns True, otherwise, it returns
False. So, checking to see if "Linux" was in our uname string returned True, but checking
to see if "Darwin" was in our uname returned false. And we demonstrated not injust for
fun.

Sometimes you only need to know if a string is a substring of another string. Other
times, you need to know where in a string the substring occurs. find() and index() let
you do that. See Example 3-5.

Example 3-5. find() and index()

In [9]: uname.index('Linux")

Out[9]: o

In [10]: uname.find('Linux")

Out[10]: 0

In [11]: uname.index('Darwin')

Ctype 'exceptions.ValueFrror's Traceback (nost recent call last)
/home/jmjones/code/<ipython console> in <module>()

<type 'exceptions.ValueError'>: substring not found

In [12]: uname.find('Darwin")

Out[12]: -1

76 | Chapter3: Text

If stringl is in string2 (as in our previous example), string2.find(string1) returns
the index of the first character of string1, otherwise, it returns -1. (Don’t worry—we’ll
get into indexes in a moment.) Likewise, if stringl is in string2,
string2.index(string1) returns the index of the first character of string1, otherwise,
it raises a ValueError exception. In the example, the find() method found "Linux" at
the beginning of the string, so it returned 0 indicating that the index of the first character
of "Linux" was 0. However, the find() method couldn’t find "Darwin" anywhere, so it
returned -1. When Python was looking for Linux, the index() method behaved in the
same way the find() method does when looking for "Linux". However, when looking
for "Darwin", index() threw a ValueError exception, indicating that it could not find
that string.

So, what can you do with these “index” numbers? What good are they? Strings are
treated as lists of characters. The “index” that find() and index() return simply shows
which character of the larger string is the beginning of the match. See Example 3-6.
Example 3-6. String slice

In [13]: smp_index = uname.index('SMP')

In [14]: smp_index

Out[14]: 9

In [15]: uname[smp_index:]

Out[15]: 'SMP Tue Feb 12 02:46:46 UTC 2008'

In [16]: uname[:smp_index]

Out[16]: 'Linux #1 '

In [17]: uname

Out[17]: 'Linux #1 SMP Tue Feb 12 02:46:46 UTC 2008’

We were able to see every character from the index of finding "SMP" to the end of the
string with the slice syntax string[index:]. We were also able to see every character
from the beginning of the uname string to the index of finding "SMP" with the slice syntax
string[:index]. The slight variation between these two is which side of the index the
colon (:) finds itself on.

The point of this string slicing example, and of the in/not in tests, is to show you that
strings are sequences and so they behave in a way that is similar to the way that se-
quences such as lists work. For a more thorough discussion of the way sequences work,
see “Sequence Operations” in Chapter 4 of Python in a Nutshell (O’Reilly) by Alex
Martelli (also available online on Safari at http://safari.oreilly.com/0596100469/pytho
nian-CHP-4-SECT-6).

Python Built-ins and Modules | 77

http://safari.oreilly.com/0596100469/pythonian-CHP-4-SECT-6
http://safari.oreilly.com/0596100469/pythonian-CHP-4-SECT-6

Two other strings that are occasionally methods are startswith() and endswith(). As
their names imply, they can help you determine whether a string “starts with” or “ends
with” a particular substring. See Example 3-7.

Example 3-7. startswith() and endswith()

In [1]: some_string = "Raymond Luxury-Yacht"

In [2]: some_string.startswith("Raymond")
Out[2]: True

In [3]: some_string.startswith("Throatwarbler")
Out[3]: False

In [4]: some_string.endswith("Luxury-Yacht")
Out[4]: True

In [5]: some_string.endswith("Mangrove")
Out[5]: False

So, you can see that Python returns the information that the string “Raymond Luxury-
Yacht” begins with “Raymond” and ends with “Luxury-Yacht.” It does not begin with
“Throatwarbler,” nor does it end with “Mangrove.” It is pretty simple to achieve the
same result using slicing, but slicing is messy and can be tedious as well. See Exam-
ple 3-8.

Example 3-8. Startswith() endswith() replacement hack

In [6]: some_string[:len("Raymond")] == "Raymond"
Out[6]: True

In [7]: some_string[:len("Throatwarbler")] == "Throatwarbler"
Out[7]: False

In [8]: some_string[-len("Luxury-Yacht"):] == "Luxury-Yacht"
Out[8]: True

In [9]: some_string[-len("Mangrove"):] == "Mangrove"
Out[9]: False

N

A slice operation creates and returns a new string object rather than
modifying the string in line. Depending on how frequently you slice a
Qls" string in a script, there could be a noticable memory and performance
" impact. Even if there is no discernible performance impact, it’s probably
a good habit to refrain from using the slice operation in cases in which
startswith() and endswith() will do what you need to do.

We were able to see that the string “Raymond” appeared in some_string from its be-
ginning through however many characters are in the string “Raymond.” In other words,

78 | Chapter3: Text

we were able to see that some_string starts with the string “Raymond” without calling
the startswith() method. And likewise for ending with “Luxury-Yacht.”

Without any arguments, 1strip(), rstrip(), and strip() are methods that remove
leading, trailing, and both leading and trailing whitespace, respectively. Examples of
whitespace include tabs, space characters, carriage returns, and line feeds. Using
1strip() without arguments removes any whitespace that appears at the beginning of
a string and then returns a new string. Using rstrip() without arguments removes any
whitespace that appears at the end of a string and then returns a new string. Using
strip() without arguments removes all whitespace at the beginning or end of a string
and then returns a new string. See Example 3-9.

W N

- All of the strip() methods create and return new string objects rather
"‘:‘ than modifying the strings in line. This might never cause problems for
T Ua you, but it’s something to be aware of.

Example 3-9. Istrip(), rstrip(), and strip()

In [1]: spacious_string = "\n\t Some Non-Spacious Text\n \t\r"

In [2]: spacious_string
Out[2]: "\n\t Some Non-Spacious Text\n \t\r'

In [3]: print spacious string
Some Non-Spacious Text
In [4]: spacious_string.lstrip()
Out[4]: 'Some Non-Spacious Text\n \t\r'
In [5]: print spacious_string.lstrip()
Some Non-Spacious Text
In [6]: spacious_string.rstrip()
Out[6]: "\n\t Some Non-Spacious Text'
In [7]: print spacious_string.rstrip()
Some Non-Spacious Text

In [8]: spacious_string.strip()
Out[8]: 'Some Non-Spacious Text'

In [9]: print spacious_string.strip()
Some Non-Spacious Text

But strip(), rstrip(), and lstrip() all take one optional argument: a string whose
characters are to be appropriately stripped off of the string. This means that the

Python Built-ins and Modules | 79

strip()s don’t just remove whitespace; they’ll remove anything you tell them to
remove:

In [1]: xml_tag = "<some_tag>"
In [2]: xml_tag.lstrip("<")
Out[2]: 'some_tag>'

In [3]: xml _tag.lstrip(">")
Out[3]: '<some tag>'

In [4]: xml_tag.rstrip(">")
Out[4]: '<some_tag'

In [5]: xml tag.rstrip("<")
Out[5]: '<some_tag>'

Here, we stripped off the left and right angle brackets from an XML tag one at a time.
But what if we wanted to strip off both of them at the same time? Then we could do this:

In [6]: xml tag.strip("<").strip(">")
Out[6]: 'some_tag'

Since the strip()s return a string, we can call another string operation directly after a
strip() call. Here, we chained strip() calls together. The first strip() call took off the
starting character (the left angle bracket) and returned a string, and the second
strip() call took off the ending character (the right angle bracket) and returned the
string "some_tag". But there’s an easier way:

In [7]: xml_tag.strip("<>"
Out[7]: 'some_tag'

You might have assumed that the strip()s stripped off an exact occurrence of the string
you fed it, but the strips actually remove any sequential occurrence of the specified
characters from the appropriate side of the string. In that last example, we told
strip() to remove "<>". That doesn’t mean to exactly match "<>" and remove any
occurrences of those two characters that are adjacent to one another in that order; it

means remove any occurrences of "<" or ">" that are adjacent to one another on either
end of the string.

Here is perhaps a clearer example:

In [8]: gt 1t str = "<><><ogt It stred<><o"
In [9]: gt 1t str.strip("<>"

Out[9]: 'gt 1t str'

80 | Chapter3: Text

In [10]: gt 1t str.strip("><"

Out[10]: 'gt 1t str'

We stripped off any occurrences of "<" or ">" on either side of the string. So we wound
up with something that was just letters and spaces.

This still might not work exactly as you’re expecting. For example:
In [11]: foo_str = "<fooooooo>blah<foo>"
In [12]: foo_str.strip("<foo>")
Out[12]: 'blah'

You may have expected strip() to match and strip the right side but not the left. But

it matched and stripped the sequential occurrence of "<", "f", "o", and ">". And no,
we didn’t leave out an "o". Here is one final clarifying example for the strip():

In [13]: foo_str.strip("><of")
Out[13]: 'blah’
This stripped "<", "f", "0", even though the characters were not in that order.

The methods upper() and lower() are useful, particularly when you need to compare
two strings without regard to whether the characters are upper- or lowercase. The
upper () method returns a string, which is the uppercase of the original. The lower()
method returns a string, which is the lowercase of the original. See Example 3-10.

Example 3-10. upper() and lower()

In [1]: mixed case_string = "VOrpal BUnny"

In [2]: mixed case_string == "vorpal bunny"
Out[2]: False

In [3]: mixed case_string.lower() == "vorpal bunny"
Out[3]: True

In [4]: mixed_case_string == "VORPAL BUNNY"
Out[4]: False

In [5]: mixed case_string.upper() == "VORPAL BUNNY"
Out[5]: True

In [6]: mixed case_string.upper()
Out[6]: 'VORPAL BUNNY'

In [7]: mixed case_string.lower()
Out[7]: 'vorpal bunny’

If you need to extract a piece of a string based on some kind of delimiter, the split()
method may provide exactly what you are looking for. See Example 3-11.

Python Built-ins and Modules | 81

Example 3-11. split()

In [1]: comma_delim string = "posi,pos2,pos3"
In [2]: pipe_delim_string = "pipeposi|pipepos2|pipepos3"

In [3]: comma_delim string.split(',")
Out[3]: ['posi', 'pos2', 'pos3']

In [4]: pipe_delim_string.split('|")
Out[4]: ['pipeposi', 'pipepos2', 'pipepos3']

Typical use of the split() method is to pass in the string that you want to split. Often,
this is a single character such as a comma or pipe, but it can also be a string of more
than one character. We split comma_delim string on a comma and pipe_delim_string
on the pipe (|) character by passing the comma and the pipe characters to split(). The
return value of split() is a list of strings, each of which is a contiguous group of char-
acters that fell between the specified delimiters. When you need to split on a number
of characters rather than just a single character, the split() method accommodates
that, too. As we are writing this book, there is no character type in Python, so what we
passed in to split(), although it was a single character in both cases, was actually a
string. So when we pass several characters in to split(), it will work with them. See
Example 3-12.

Example 3-12. split() multiple delimiter example
In [1]: multi_delim string = "posiXXXpos2XXXpos3"

In [2]: multi_delim string.split("XXX")
Out[2]: ['posi', 'pos2', 'pos3']

In [3]: multi delim string.split("XX")
Out[3]: ['posi', 'Xpos2', 'Xpos3']

In [4]: multi delim string.split("X")
Out[4]: ['post’, ''; '', 'pos2', ', "', 'pos3']

Notice that we first specified "XXX" as the delimiting string for multi delim string. As
we expected, this returned ['pos1', 'pos2', 'pos3']. Next, we specified "XX" as the
delimiting string and split() returned ['pos1', 'Xpos2', 'Xpos3'].Split() looked for
the characters that appeared between each instance of the "XX" delimiter. "Pos1" ap-
peared from the beginning of the string to the first "XX" delimiter; "Xpos2" appeared
from the first occurrence of "XX" to the second appearance of it; and "Xpos3" appeared
from the second occurrence of "XX" to the end of the string. The last split() used a
single "X" character as the delimiting string. Notice that, in the positions where there
were adjacent "X" characters, there is an empty string ("") in the returned list. This
simply means that there is nothing between the adjacent "X" characters.

But what if you only want to split the string on the first “n” occurrences of the specified
delimiters? Split() takes a second parameter, called max_split. When an integer value

82 | Chapter3: Text

for max_split is passed in, split() will only split the string the number of times the
max_split argument dictates:

In [1]: two_field string = "8675309,This is a freeform, plain text, string"

In [2]: two_field string.split(',', 1)

Out[2]: ['8675309', 'This is a freeform, plain text, string']
We split on a comma and told split() to only split on the first occurrence of the
delimiter. Although there are multiple commas in this example, the string is split only
on the first one.

If you need to split on whitespace in order to retrieve, for example, words from a piece
of prose-like text, split() is an easy tool for accomplishing that:

In [1]: prosaic_string = "Insert your clever little piece of text here."

In [2]: prosaic_string.split()
Out[2]: ['Insert', 'your', 'clever', 'little', 'piece', 'of', '"text', 'here.']

Because no parameters have been passed in, split() defaults to splitting on whitespace.

Most of the time, you will probably see the results you expected to see. However, if you
have a multiline piece of text, you might see results that you were not expecting. Often,
when you have a multiline piece of text, you intend to deal with one line at a time. But
you might find that the program split on every word in the string:
In [1]: multiline_string = """This
:is
: a multiline
... piece of
 text"""

In [2]: multiline string.split()
Out[2]: ['This', 'is', 'a', 'multiline', 'piece', 'of', 'text']
In this case, splitlines() will get you closer to what you wanted:

In [3]: lines = multiline_string.splitlines()
In [4]: lines
Out[4]: ['This', 'is', 'a multiline', 'piece of', 'text']

Splitlines() returned a list of each line within the string and preserved groups of
“words.” From here, you can iterate over each line and split the line into words:

In [5]: for line in lines:
: print "START LINE::"
print line.split()
print "::END LINE"

START LINE::
['This']
::END LINE
START LINE::

Python Built-ins and Modules | 83

['is']

::END LINE

START LINE::

['a', 'multiline']

::END LINE

START LINE::

['piece’, 'of']

::END LINE

START LINE::

['text']

::END LINE
Sometimes you don’t want to pull a string apart or extract information from it; some-
times you need to piece a string together from data you already have. In these cases,
join() can help:

In [1]: some_list = ['one', 'two', 'three', 'four']

In [2]: ',".join(some list)
Out[2]: 'one,two,three,four’

In [3]: ', '.join(some_list)
Out[3]: 'one, two, three, four'

In [4]: "\t'.join(some list)
Out[4]: 'one\ttwo\tthree\tfour'

In [5]: ''.join(some list)

Out[5]: 'onetwothreefour'
Given the list some_list, we were able to assemble the strings 'one', "two', 'three’,
and 'four' into a number of variations. We joined the list some_list with a comma, a
comma and a space, a tab, and an empty string. Join() is a string method, so calling
join() onastring literal such as ', ' is perfectly valid. Join() takes a sequence of strings
as an argument. It packs the sequence of strings together into a single string so that
each item of the sequence appears in order, but the string on which you called join()
appears between each item in the sequence.

We have a word of warning regarding join() and the argument it expects. Note that
join() expects a sequence of strings. What happens if you pass in a sequence of integers?
Kaboom!

In [1]: some_list = range(10)

In [2]: some_list
Out[2]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [3]: ",".join(some_list)
exceptions.TypeError Traceback (most recent call last)

/Users/jmjones/<ipython console>

TypeError: sequence item 0: expected string, int found

84 | Chapter3: Text

The traceback to the exception that join() raises is pretty self-explanatory, but since
this is a common error, it is worth understanding. You can easily avoid this pitfall with
a simple list comprehension. Here we enlist the help of a list comprehension to convert
all the elements of some_list, all of which are integers, to strings:

In [4]: ",".join([str(i) for i in some_list])
OUt[4]: I0)1J2)3)4J5)6)7)8)9I

Or, you could use a generator expression:

In [5]: ",".join(str(i) for i in some_list)
OUt[S]: I0)1J2)3)4J5)6)7J819I

For more information on using list comprehensions, see the section “Control Flow
Statements” in Chapter 4 of Python in a Nutshell (also available online on Safari at
http://safari.oreilly.com/0596100469/pythonian-CHP-4-SECT-10).

The last method for creating or modifying strings of text is the replace() method.
Replace() takes two arguments: the string that is to be replaced and the string to replace
it with, respectively. Here is a simple replace() example:

In [1]: replacable_string = "trancendental hibernational nation"

In [2]: replacable string.replace("nation", "natty")

Out[2]: 'trancendental hibernattyal natty'
Notice that replace() doesn’t care if the string to replace is in the middle of a word or
if it is a full word. So, in cases in which you need to replace only a specific sequence of
characters with another specific sequence of characters, replace() is the tool to use.

However, there are times when you need a finer level of control, when replacing one
sequence of characters with another sequence of characters isn’t enough. Sometimes
you need to be able to specify a pattern of characters to find and replace. Patterns can
also help with searching for text from which to extract data. In cases in which using
patterns is more helpful, regular expressions can help. We’ll look at regular expressions
next.

N

Asslice operations and the strip() methods do, replace() creates a new
string rather than modify the string in line.

Unicode strings

So far, all of the examples of strings we’ve looked at have been exclusively of the built-
in string types (str), but Python has another string type with which you will want to
be familiar: Unicode. When you see any characters on a computer screen, the computer
is dealing with those characters internally as numbers. Until Unicode, there were many
different sets of number-to-character mappings, depending on the language and

Python Built-ins and Modules | 85

http://safari.oreilly.com/0596100469/pythonian-CHP-4-SECT-10

platform. Unicode is a standard that provides a single number-to-character mapping
regardless of the language, platform, or even the program that is dealing with the text.
In this section, we will introduce the concept of Unicode and the way that Python deals
with it. For a more in-depth explanation of Unicode, see A. M. Kuchling’s excellent
Unicode tutorial at http://www.amk.ca/python/howto/unicode.

Creating a Unicode string is as simple as creating a regular string:
In [1]: unicode string = u'this is a unicode string'

In [2]: unicode string
Out[2]: u'this is a unicode string'

In [3]: print unicode string
this is a unicode string

Or, you can use the built-in unicode() function:

In [4]: unicode('this is a unicode string')

Out[4]: u'this is a unicode string'
This doesn’t seem like it buys us much, particularly as it is just dealing with characters
from one language. But what if you have to deal with characters from multiple lan-
guages? Unicode will help you here. To create a character in a Unicode string with a

specific numerical value, you can use the \uXXXX or \uXXXXXXXX notation. For example,
here is a Unicode string that contains Latin, Greek, and Russian characters:

In [1]: unicode_string = u'abc_\u03a0\u03a3\u03a9_\u0414\u0424\u042F'

In [2]: unicode_string
Out[2]: u'abc_\uo3ao\uo3a3\uo3a9_ \u0414\uo424\uo42f"

Python generates a string (str) dependant on the encoding you use. On the Python that
comes standard with Mac, if you attempted to print the string from the previous ex-
ample, an error would be returned, printing:

UnicodeEncodeError Traceback (most recent call last)
/Users/jmjones/<ipython console> in <module>()

UnicodeEncodeError: 'ascii' codec can't encode characters in position 4-6:
ordinal not in range(128)
We have to give it an encoding that knows how to handle all the characters that we
give it:
In [4]: print unicode_string.encode('utf-8")
abc_ 1130 Iod

Here, we encoded the string that contained Latin, Greek, and Russian characters to
UTF-8, which is a common encoding for Unicode data.

86 | Chapter3: Text

http://www.amk.ca/python/howto/unicode

Unicode strings contain the same facilities, such as the in test, and methods that we’ve
already talked about for regular strings:

In [5]: u'abc' in unicode_string
Out[5]: True

In [6]: u'foo' in unicode string

Out[6]: False

In [7]: unicode string.split()

Out[7]: [u'abc_\u03a0\u03a3\u03a9 \u0414\uo424\uo42f"']

In [8]: unicode string.
unicode string. add
unicode string. class
unicode string. contains
unicode string. delattr
unicode string. doc
unicode string. eq
unicode string. ge

unicode string. getattribute

unicode string. getitem

unicode string. getnewargs

unicode string. getslice
unicode string. gt
unicode_string. hash
unicode_string. init
unicode string. le
unicode_string. len__
unicode string. 1t
unicode string. mod

unicode string.
unicode string.
unicode string.
unicode string.
unicode string.
unicode string.
unicode string.
unicode string.
unicode string.
unicode string.
unicode string.
unicode string.

unicode_string

unicode string.
unicode string.
unicode string.
unicode string.
unicode string.

expandtabs
find
index
isalnum
isalpha
isdecimal
isdigit
islower
isnumeric
isspace
istitle
isupper
.join
ljust
lower
lstrip
partition
replace

unicode_string. mul__ unicode_string.rfind
unicode_string._ne__ unicode_string.rindex
unicode_string._new__ unicode_string.rjust
unicode string. reduce unicode_string.rpartition
unicode_string. reduce ex unicode_string.rsplit

unicode_string. repr_
unicode_string._rmod__
unicode_string._rmul__
unicode string. setattr
unicode_string._ str__
unicode_string.capitalize
unicode_string.center

unicode string.
unicode string.
unicode string.
unicode_string.
unicode_string.
unicode_string.
unicode_string.

rstrip
split
splitlines
startswith
strip
swapcase
title

unicode_string.count unicode_string.translate
unicode_string.decode unicode_string.upper
unicode_string.encode unicode_string.zfill

unicode_string.endswith

You might not need Unicode right now. But it’s important that you become familiar
with it if you want to continue programming with Python.

Python Built-ins and Modules | 87

re

Since Python comes with “batteries included,” you might expect that it would include
a regular expression library. You won’t be disappointed. The emphasis in this section
will be on using Python to work with regular expressions rather than on the ins and
outs of regular expression syntax. So if you aren’t familiar with regular expressions, we
recommend that you pick up a copy of Mastering Regular Expressions (O’Reilly) by
Jeffrey E. F. Friedl (also available on Safari at http://safari.oreilly.com/0596528124).
This section will assume that you are comfortable with regular expressions, butif you’re
not, it will be helpful to have Friedl’s text at hand.

If you’re familiar with Perl, you’re probably used to using regular expressions with
=~. Python’s inclusion of regular expressions comes by way of a library rather than
syntactic features of the language. So, in order to work with regular expressions, you
first have to import the regular expression module re. Here is a basic example of the
way regular expressions are created and used. See Example 3-13.

Example 3-13. Basic regular expression usage

In [1]: import re
In [2]: re string = "{{(.*?)}}"

In [3]: some_string = "this is a string with {{words}} embedded in\
...t {{curly brackets}} to show an {{example}} of {{regular expressions}}"

In [4]: for match in re.findall(re_string, some_ string):
: print "MATCH->", match

MATCH-> words

MATCH-> curly brackets
MATCH-> example

MATCH-> regular expressions

The first thing we did was to import the re module. As you might have guessed, re
stands for “regular expression.” Next, we created a string, re_string, which is the pat-
tern we look for in the example. This pattern will match two consecutive open curly
brackets ({{) followed by any text (or no text) followed by two consecutive close curly
brackets (}}). Next, we created a string, some_string, which contains a mix of groups
of words enclosed in double curly brackets and words not enclosed in curly brackets.
Finally, we iterated over the results of the re module’s findall() function as it searched
some_string for the pattern found in re_string. And you can see, it printed out words,
curly brackets, example, and regular expressions, which are all the words enclosed
in double curly brackets.

There are two ways to work with regular expressions in Python. The first is to use the
functions in the re module directly, as in the previous example. The second is to create
a compiled regular expression object and use the methods on that object.

88 | Chapter3: Text

http://safari.oreilly.com/0596528124

So what is a compiled regular expression? It is simply an object that was created by
passing in a pattern to re.compile(); it contains a number of regular expression meth-
ods that were created by passing in a pattern to re.compile(). There are two primary
differences between using the compiled and noncompiled examples. First, instead of
keeping a reference to the regular expression pattern "{{(.*?)}}", we created a
compiled regular expression object and used the pattern to create it. Second, instead
of calling findall() on the re module, we called findall() on the compiled regular
expression object.

For more information on the re module’s contents, which includes available functions,
see the Module Contents section of the Python Library Reference, http://docs.py
thon.org/lib/node46.html. For more information on compiled regular expression ob-
jects, see the Regular Expression Objects section of the Python Library Reference, hitp://
docs.python.org/lib/re-objects.html.

Example 3-14 shows our double curly bracket example reworked to show how to use
a compiled regular expression object.

Example 3-14. Simple regular expression, compiled pattern

In [1]: import re
In [2]: re_obj = re.compile("{{(.*?)}}")

In [3]: some_string = "this is a string with {{words}} embedded in\
: {{curly brackets}} to show an {{example}} of {{regular expressions}}"

In [4]: for match in re_obj.findall(some_string):
celt print "MATCH->", match

MATCH-> words

MATCH-> curly brackets
MATCH-> example

MATCH-> regular expressions

The method that you choose to work with regular expressions in Python is partially a
matter of preference and expression. However, there can be performance implications
when you use the functions in the re module rather than creating a compiled regular
expression object. Those performance problems can be exacerbated if you are in some
kind of a loop that will repeat a lot, such as a loop that applies the regular expression
to each line of a text file with hundreds of thousands of lines. In the examples below,
we run a simple regex script using both compiled and noncompiled regular expressions,
against a file containing 500,000 lines of text. When we run the Unix timeit utility
against the results of each script test, you’ll be able to see the difference in performance.
See Example 3-15.

Python Built-ins and Modules | 89

http://docs.python.org/lib/node46.html
http://docs.python.org/lib/node46.html
http://docs.python.org/lib/re-objects.html
http://docs.python.org/lib/re-objects.html

Example 3-15. re no compile code performance test

#!/usr/bin/env python
import re

def run_re():
pattern = 'pDq'

infile = open('large re file.txt', 'r')
match_count = 0
lines = 0
for line in infile:

match = re.search(pattern, line)

if match:

match_count += 1

lines += 1

return (lines, match_count)

if name_ == " main_":
lines, match_count = run_re()
print 'LINES::', lines
print 'MATCHES::', match_count

The timeit utility executes a piece of code a number of times and reports back the time
of the best run. Here are the results from running the Python timeit utility within
[Python on this code:

In [1]: import re loop_nocompile

In [2]: timeit -n 5 re_loop_nocompile.run_re()
5 loops, best of 3: 1.93 s per loop

This example executed the run_re() function in three sets of five iterations each and
reported back that the best run took an average of 1.93 seconds per loop. The reason
timeit runs the same piece of code a number of times is to reduce the likelihood that
other processes running at the same time are affected by the test results.

And here are the results from running the Unix time utility against the same code:

jmjones@dink:~/code$ time python re_loop_nocompile.py
LINES:: 500000 MATCHES:: 242

real om2.113s
user om1.888s
Sys 0mo0.163s

Example 3-16 is the same regular expression example, except that we are using
re.compile() to create a compiled pattern object.

Example 3-16. re compile code performance test

#!/usr/bin/env python

import re

90 | Chapter3: Text

def run_re():

if name_ ==

pattern = 'pDq'
re_obj = re.compile(pattern)

infile = open('large_re file.txt',
match_count = 0
lines = 0
for line in infile:
match = re_obj.search(line)
if match:
match_count += 1
lines += 1
return (lines, match_count)

__main_ ":
lines, match_count = run_re()
print 'LINES::', lines

print 'MATCHES::', match_count

Irl)

Running this script through the Python timeit utility in IPython yields these results:

In [3]: import re loop_compile

In [4]: timeit -n 5 re_loop_compile.run_re()
5 loops, best of 3: 860 ms per loop

And running the same script through the Unix time utility yields these results:

jmjones@dink:”/code$ time python

re_loop_compile.py LINES:: 500000 MATCHES:: 242

real 0m0.996s
user 0mo. 836s
sys 0mo. 154s

The clear winner is the compiled version. It took half the time to run as measured by
both the Unix time and the Python timeit utilities. So we highly recommend that you
get into the habit of creating compiled regular expression objects.

As we discussed earlier in this chapter, raw strings can be used to denote strings that
do not interpret escape sequences. Example 3-17 shows raw strings used in regular
expressions.

Example 3-17. Raw strings and regular expressions

In

In

In

In

In

[1]: import re
[2]: raw_pattern = r'\b[a-z]+\b'

[3]: non_raw_pattern = '\b[a-z]+\b'

[4]: some string = 'a few little words'

[5]: re.findall(raw_pattern, some_string)

Python Built-ins and Modules | 91

Out[5]: ['a', 'few', 'little', 'words']
In [6]: re.findall(non_raw_pattern, some_string)
Out[6]: []

The regular expression pattern \b matches word boundaries. So in both the raw and
regular strings, we were looking for individual lowercase words. Notice that raw_pat
tern matched the word boundaries appropriately on some_string and
non_raw_pattern didn’t match anything at all. Raw_pattern recognized \b as two char-
acters rather than interpreting it as an escape sequence for the backspace character.
Non_raw_pattern interpreted the \b characters as an escape sequence representing the
backspace character. The regular expression function findall() was then able to use
the raw string pattern to find words. However, when findall() looked for the non-raw
pattern, it didn’t find any backspace characters.

For non_raw_pattern to match a string, we would have to put backspace characters
around it, as we did with “little” here:

In [7]: some_other string = 'a few \blittle\b words'

In [8]: re.findall(non_raw_pattern, some_other string)
out[8]: ['\x08little\x08']

Notice that findall() matched the hex notation “\x08” before and after the word “lit-
tle.” That hex notation corresponds to the backspace character that we inserted with
the escape sequence "\b".

So, as you can see, raw strings are helpful when you intend to use some of the back-
slashed special sequences such as "\b" for word boundaries, "\d" for digits, and "\w"
for alpha numeric characters. For a full listing of these backslashed special sequences,
see the Regular Expression Syntax section in the Python Library Reference at http://
docs.python.org/lib/re-syntax.html.

Examples 3-14 through 3-17 really were quite simple, both in the regular expression
used as well as the different methods we applied to it. Sometimes, this limited use of
the power of regular expressions is all you need. Other times, you’ll need to make use
of more of the power that is contained in the regular expression library.

The four primary regular expression methods (or functions) which are most likely to
be used often are findall(), finditer(), match(), and search(). You might also find
yourself using split() and sub(), but probably not as often as you will use the others.

Findall() will find all occurrences of the specified pattern in the search string. If
findall() matches the pattern, the type of data structure it will return will depend on
whether the pattern specified a group.

92 | Chapter3: Text

http://docs.python.org/lib/re-syntax.html
http://docs.python.org/lib/re-syntax.html

A quick reminder about regex: grouping allows you to specify text with-

in a regular expression that you want to extract from the result. See
4 “Common Metacharacters and Fields” in Friedl’s Mastering Regular
" Expressions for more information, or go online to http://safari.oreil

ly.com/0596528124/regex3-CHP-3-SECT-5?imagepage=137.

If you didn’t specify a group in the regular expression pattern but a match is found,
findall() will return a list of strings. For example:

In [1]: import re
In [2]: re obj = re.compile(r'\bt.*?e\b")

In [3]: re_obj.findall("time tame tune tint tire")

Out[3]: ['time', 'tame', 'tune', 'tint tire']
The pattern doesn’t specify any groups, so findall() returns a list of strings. An inter-
esting side point is that the last element of the returned list contains two words, tint
and tire. The regular expression was intended to match words that start with “t” and
end with “e”. But the .*? command matches anything, including whitespace.
Findall() matched everything it was supposed to. It found a word which started with
“t” (tint). It continued looking through the string until it found a word that ended with
“e” (tire). So, the match “tint tire” was appropriate. To exclude the whitespace, you
would use r'\bt\w*e\b':

In [4]: re_obj = re.compile(r'\bt\w*e\b")

In [5]: re_obj.findall("time tame tune tint tire")
Out[5]: ['time', 'tame', 'tune', 'tire']

The second type of data structure that could be returned is a list of tuples. If you did

specify a group and there was a match, then findall() returns a list of tuples. Exam-
ple 3-18 is a simple example of such a pattern and a string.

Example 3-18. Simple grouped group with findall()

In [1]: import re

In [2]: re_obj = re.compile(r"""(A\W+\b(big|small)\b\W+\b
...t (brown|purple)\b\W+\b(cow|dog)\b\W+\b(ran|jumped)\b\W+\b
..: (to|down)\b\W+\b(the)\b\W+\b(street|moon).*?\.)""",
: re.VERBOSE)

In [3]: re_obj.findall('A big brown dog ran down the street. \
...t A small purple cow jumped to the moon.")

Out[3]:
[('A big brown dog ran down the street.',
'big',
"brown’,
"dog",
'ran',

Python Built-ins and Modules | 93

http://safari.oreilly.com/0596528124/regex3-CHP-3-SECT-5?imagepage=137
http://safari.oreilly.com/0596528124/regex3-CHP-3-SECT-5?imagepage=137

"down"',
"the',
'street'),
"A small purple cow jumped to the moon.',
"small’,
'purple’,
"cow',
"jumped',
"to',
"the',
"moon")]

—~

Though it is simple, this example shows some important points. First, notice that this
simple pattern is ridiculously long and contains enough nonalphanumeric characters
to make your eyes bleed if you stare at it for too long. That seems to be a common
theme with many regular expressions. Next, notice that the pattern contains explicit
nested groups. The outer group should match all the characters beginning with the
letter “A” through to the ending period. The characters between the beginning A and
the ending period make up inner groups that should match “big or small,” “brown or
purple,” and so on. Next, the return value of findall() is a list of tuples. The elements
of those tuples are each of the groups we specified in the regular expression. The entire
sentence is the first element of the tuple as it is the largest, outermost group. Each of
the subgroups is a subsequent element of the tuple. Finally, notice that the last argu-
ment to re.compile() was re.VERBOSE. This allowed us to write the regular expression
string in verbose mode, which simply means that we were able to split the regular
expression across lines without the split interfering with the pattern matching. White-
space that fell outside of a class grouping was ignored. Though we chose not to do it
here, verbose also allows us to insert comments at the end of each line of regex to
document what each particular piece of a regular expression does. One of the difficulties
of regular expressions in general is that the description of the pattern that you want to
match often becomes huge and difficult to read. The re.VERBOSE function lets you write
simpler regular expressions, so it is a great tool for improving the maintenance of code
that includes regular expressions.

A slight variation of findall() is finditer(). Rather than returning a list of tuples as
findall()does, finditer() returns an iterator, as its name implies. Each item of the
iterator is a regular expression match object, which we’ll discuss later in this chapter.
Example 3-19 is the same simple example using finditer() rather than findall().

Example 3-19. finditer() example

In [4]: re_iter = re obj.finditer('A big brown dog ran down the street. \
...t A small purple cow jumped to the moon.")

In [5]: re_iter
Out[5]: <callable-iterator object at Oxa17ado>

In [6]: for item in re_ iter:

94 | Chapter3: Text

print item
print item.groups()

<_sre.SRE_Match object at ox9ff858>

('A big brown dog ran down the street.', 'big', 'brown', 'dog', 'ran',
"down', 'the', 'street')

<_sre.SRE_Match object at ox9ff940>

('A small purple cow jumped to the moon.', 'small', 'purple', 'cow',
'jumped', 'to', 'the', 'moon')

If you have never encountered iterators before, you can think of them as similar to lists
that are built as they are needed. One reason this definition is flawed is that you can’t
refer to a specific item in the iterator by its index, as you can some_list[3] for a list.
One consequence of this limitation is that you don’t have the ability to slice iterators,
as you can some_list[2:6] for a list. Regardless of this limitation, though, iterators are
lightweight and powerful, particularly when you only need to iterate over some se-
quence, because the entire sequence is not loaded up into memory but is retrieved on
demand. This allows an iterator to have a smaller memory footprint than its corre-
sponding list counterpart. It also means an iterator will start up with a shorter wait time
for accessing the items in the sequence.

Another reason to use finditer() rather than findall() is that each item of
finditer() is a match object rather than just a simple list of strings or list of tuples
corresponding to the text that matched.

Match() and search() provide similar functionality to one another. Both apply a regular
expression to a string; both specify where in the string to start and end looking for the
pattern; and both return a match object for the first match of the specified pattern. The
difference between them is that match() starts trying to match at the beginning of the
string at the place within the string where you specified it should start looking and does
not move to random places within the string, but search(), however, will try to match
the pattern anywhere in the string or from the place within the string that you tell it to
start, ending at the place within the string where you told it to finish. See Example 3-20.

Example 3-20. Comparison of match() and search()

In [1]: import re

In [2]: re obj = re.compile('F00")

In [3]: search string = ' FOO'

In [4]: re_obj.search(search_string)
Out[4]: < sre.SRE_Match object at 0xa22f38>
In [5]: re_obj.match(search_string)

In [6]:

Python Built-ins and Modules | 95

Even though search_string contains the pattern that match() was looking for, it failed
to turn up a match because the substring of search_string that would have turned up
a match didn’t start at the beginning of search_string. The search() call turned up a
match object.

Search() and match() calls accept start and end parameters that specify the places in a
string at which Python should start and end looking for a pattern. See Example 3-21.

Example 3-21. Start and end parameters for search() and maich()

In [6]: re obj.search(search string, pos=1)

Out[6]: <_sre.SRE Match object at Oxabe030>

In [7]: re_obj.match(search_string, pos=1)

Out[7]: <_sre.SRE_Match object at Oxabe098>

In [8]: re_obj.search(search_string, pos=1, endpos=3)
In [9]: re_obj.match(search_string, pos=1, endpos=3)
In [10]:

The parameter pos is an index that specifies the place in the string where Python should
look for the pattern. Specifying the start parameter pos for search() didn’t change any-
thing; but specifying pos for match() caused it to match the pattern it failed to match
without the pos parameter. Setting the end parameter endpos to 3 caused both
search() and match() to fail to match the pattern because the pattern begins after the
third character position.

As findall() and finditer() answer the question, “What did my pattern match?,” a
major question that search() and match() answer is, “Did my pattern match?”
Search() and match() also answer the question, “What first thing did my pattern
match?,” but often, the thing you really want to know is, “Did my pattern match?” For
example, let’s say you are writing code to read in logfiles and wrap each line in HTML
so that it displays nicely. You want all “ERROR?” lines to display in red, so you would
probably loop through each line in the file, check it against a regular expression, and,
if search() turned up a hit on its “ERROR” search, you would format the line to display
in red.

Search() and match() are beneficial, not only because they indicate whether a pattern
matched a piece of text; they also return a match() object. Match() objects contain
various pieces of data that can come in handy when you’re walking through pieces of
text. Particularly interesting match() methods include start(), end(), span(),
groups(), and groupdict().

Start(), end(), and span() specify the places in the searched string that the matched
pattern begins and ends. Start() returns an integer that identifies the position in the
string at which the pattern match begins. End() returns an integer that identifies the

96 | Chapter3: Text

position at which the pattern match ends. And span() returns a tuple containing the
beginning and end of the match.

Groups () returns a tuple of the match, each element of which is a group that the pattern
specified. This tuple is similar to each tuple in the list that findall() returns. Group
dict() returns a dictionary of named groups in which the names are found in the regular
expression itself using the (?P<group_name>pattern) syntax.

In summary, to use regular expressions effectively, it is important to get in to the habit
of using compiled regular expression objects. Use findall() and finditer() when you
want to see what elements your pattern matched in a piece of text. Remember that
finditer() is more flexible than findall() since it returns an iterator of match objects.
For a more detailed overview of the regular expression library, see Chapter 9 of Python
in a Nutshell by Alex Martelli (O’Reilly). To see regular expressions in action, see Data
Crunching by Greg Wilson (The Pragmatic Bookshelf).

Apache Config File Hacking

Now that you’ve been introduced to Python regular expressions, let’s work through an
Apache config file:

NameVirtualHost 127.0.0.1:80
<VirtualHost localhost:80>
DocumentRoot /var/www/
<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>
ErrorLog /var/log/apache2/error.log
LogLevel warn
CustomLog /var/log/apache2/access.log combined
ServerSignature On
</VirtualHost>
<VirtualHost local2:80>
DocumentRoot /var/www2/
<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>
ErrorLog /var/log/apache2/error2.log
LogLevel warn
CustomLog /var/log/apache2/access2.log combined
ServerSignature On
</VirtualHost>

This is a slightly modified config file from a stock Apache 2 installation on Ubuntu.
We created named virtual hosts so that we could have something to work with. We
also modified the /etc/hosts file so that it contains this line:

127.0.0.1 local2

Python Built-ins and Modules | 97

This allows us to point a browser on that box at local2 and have it resolve to 127.0.0.1,
which is alocalhost. So, what is the point of this? If you go to http://local2, your browser
will pass the hostname along in an HTTP request. Here is an HT TP request to local2:

GET / HTTP/1.1

Host: local2

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.13)
Gecko/20080325 Ubuntu/7.10 (gutsy) Firefox/2.0.0.13

Accept: text/xml,application/xml,application/xhtml+xml,text/html
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,%;9=0.7

Keep-Alive: 300

Connection: keep-alive

If-Modified-Since: Tue, 15 Apr 2008 17:25:24 GMT

If-None-Match: "ac5ea-53-44aecaf804900"

Cache-Control: max-age=0

Notice the line starting with Host:. When Apache gets this request, it routes it to the
virtual host that matches the local2 name.

So, what we want to do is to write a script that parses through an Apache config file,
like the one we just presented, finds a specified VirtualHost section, and replaces the
DocumentRoot for that VirtualHost. This script does just that:

#!/usr/bin/env python

from cStringIO import StringIO
import re

vhost_start = re.compile(r'<VirtualHost\s+(.*?)>")
vhost_end = re.compile(r'</VirtualHost")
docroot_re = re.compile(r'(DocumentRoot\s+)(\S+)")

def replace_docroot(conf_string, vhost, new_docroot):
""'yield new lines of an httpd.conf file where docroot lines matching
the specified vhost are replaced with the new_docroot
conf_file = StringIO(conf string)
in_vhost = False
curr_vhost = None
for line in conf_file:
vhost_start_match = vhost_start.search(line)
if vhost_start match:
curr_vhost = vhost_start_match.groups()[0]
in_vhost = True
if in_vhost and (curr_vhost == vhost):
docroot_match = docroot_re.search(line)
if docroot_match:
sub_line = docroot_re.sub(r'\1%s' % new_docroot, line)
line = sub_line
vhost_end_match = vhost_end.search(1line)
if vhost_end_match:
in_vhost = False
yield line

98 | Chapter3: Text

http://local2

if _name__ == '_main__':

import sys

conf_file = sys.argv[1]

vhost = sys.argv[2]

docroot = sys.argv([3]

conf_string = open(conf_file).read()

for line in replace_docroot(conf string, vhost, docroot):
print line,

This script initially sets up three compiled regular expression objects: one to match the
start of the VirtualHost, one to match the end of the VirtualHost, and one to match
the DocumentRoot line. We also created a function to do the dirty work for us. The
function is named replace_docroot() and it takes as its arguments the string body of
the config file, the name of the VirtualHost to match, and the DocumentRoot to which
we want to point the VirtualHost. The function sets up a state machine that checks to
see if we are in a VirtualHost section. It also keeps track of the VirtualHost in which it
is contained. When it is in the VirtualHost that the calling code specified, this function
looks for any occurrence of the DocumentRoot directive and changes that directive’s
directory to the one the calling code specified. As replace_docroot() iterates over each
line in the config file, it yields either the unmodified input line or the modified
DocumentRoot line.

We created a simple command-line interface to this function. It isn’t anything fancy
that uses optparse, nor does it do error checking on the number of arguments that you
give it, but it’s functional. Now we’ll run the script on the same Apache config file we
presented earlier, and change VirtualHost local2:80 to use /tmp as its VirtualHost. This
command-line interface prints out the lines from the function replace_docroot() rather
than writing them to a file:

jmjones@dinkgutsy:code$ python apache conf docroot replace.py
/etc/apache2/sites-available/psa
local2:80 /tmp
NameVirtualHost 127.0.0.1:80
<VirtualHost localhost:80>
DocumentRoot /var/www/
<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>
ErrorLog /var/log/apache2/error.log
LogLevel warn
CustomLog /var/log/apache2/access.log combined
ServerSignature On
</VirtualHost>
<VirtualHost local2:80>
DocumentRoot /tmp
<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>
ExrrorLog /var/log/apache2/error2.log

Python Built-ins and Modules | 99

LoglLevel warn
CustomLog /var/log/apache2/access2.log combined
ServerSignature On

</VirtualHost>

The only line that is different is the DocumentRoot line from the local2:80 VirtualHost
section. Here is a difference of the two after we redirected the output of the script to a

file:
jmjones@dinkgutsy:code$ diff apache conf.diff /etc/apache2/sites-available/psa

20c20
< DocumentRoot /tmp
> DocumentRoot /var/www2/

Modifying an Apache config file to change the DocumentRoot is a very simple task, but
if you have to change the document root often, or if you have many virtual hosts that
you need to vary, it’s worth writing a script like the one we just wrote. However, this
was a pretty simple script to create. It would be pretty simple to modify the script to
comment out a VirtualHost section, change the LogLevel directive, or change the place
to which the VirtualHost will log.

Working with Files

Learning to deal with files is key to processing textual data. Often, text that you have
to process is contained in a text file such as a logfile, config file, or application data file.
When you need to consolidate the data that you are analyzing, you often need to create
areport file of some sort or put it into a text file for further analysis. Fortunately, Python
contains an easy-to-use built-in type called file that can help you do all of those things.

Creating files

It may seem counterintuitive, but in order to read an existing file, you have to create a
new file object. But don’t confuse creating a new file object with creating a new file.
Writing to a file requires that you create a new file object and might require that you
create a new file on disk, so it may be less counterintuitive than creating a file object
for reading would be. The reason that you create a file object is so that you can interact
with that file on disk.

In order to create a file object, you use the built-in function open(). Here is an example
of code that opens a file for reading:

In [1]: infile = open("foo.txt", "r")

In [2]: print infile.read()
Some Random

Lines
of

Text.

100 | Chapter3: Text

Because open is built-in, you don’t need to import a module. Open() takes three pa-
rameters: a filename, the mode in which the file should be opened, and a buffer size.
Only the first parameter, filename, is mandatory. The most common values for mode,
are “r” (read mode; this is the default), “w” (write mode), and “a” (append mode). A
complementary mode that can be added to the other modes is “b,” or binary mode.
The third parameter, buffer size, directs the operating the way to buffer the file.

In the previous example, we specified that we would like to open() the “file foo.txt” in
read mode and be able to refer to that new readable file object with the variable
infile. Once we have infile, we are free to call the read() method on it, which reads
the entire contents of the file.

Creating a file for writing is very similar to the way we created the file for reading.

Instead of using an "r" flag, you use a "w" flag:
In [1]: outputfile = open("foo out.txt", "w")

In [2]: outputfile.write("This is\nSome\nRandom\nOutput Text\n")
In [3]: outputfile.close()

In this example, we specified that we would like to open() the file “foo_out.txt” in write
mode and be able to refer to that new writable file object with the variable output
file. Once we have outputfile, we can write() some text to it and close() the file.

While these are the simple ways of creating files, you probably want to get in the habit
of creating files in a more error-tolerant way. It is good practice to wrap your file
opens with a try/finally block, especially when you are using write() calls. Here is an
example of a writeable file wrapped in a try/finally block:
In [1]: try:
celt f = open('writeable.txt', 'w')
.. f.write('quick line here\n')
... finally:
. f.close()
This way of writing files causes the close() method to be called when an exception
happens somewhere in the try block. Actually, it lets the close() method be closed
even when no exception occurred in the try block. Finally blocks are executed after
try blocks complete, whether an exception is found or not.

A new idiom in Python 2.5 is the with statement, which lets you use context managers.
A context manager is simply an object with an _enter () and __exit_ (). When an
object is created in the with expression, the context manager’s __enter_ () method is
called. When the with block completes, even if an exception occurs, the context man-
ager’s _exit () is called. File objects have _enter () and _exit () methods
defined. On _exit_ (), the file object’s close() method is called. Here is an example
of the with statement:

In [1]: from _ future import with statement

Python Built-ins and Modules | 101

In [2]: with open('writeable.txt', 'w') as f:
ot f.write('this is a writeable file\n')

Even though we didn’t call close() on file object f, the context manager closes it after
exiting the with block:

In [3]: f
Out[3]: <closed file 'writeable.txt', mode 'w' at 0x1382770>

In [4]: f.write("this won't work")

ValueError Traceback (most recent call last)
/Users/jmjones/<ipython console> in <module>()

ValueError: I/0 operation on closed file

As we expected, the file object is closed. While it is a good practice to handle possible
exceptions and make sure your file objects are closed when you expect them to be,
for the sake of simplicity and clarity, we will not do so for all examples.

For a complete list of the methods available on file objects, see the File Objects section
of Python Library Reference at http://docs.python.org/lib/bltin-file-objects.html.

Reading files

Once you have a readable file object, which you opened with the r flag, there are three
common file methods that will prove useful for getting data contained in the file:
read(), readline(), and readlines().Read(), not surprisingly, reads data from an open
file object, returns the bytes that it has read, and returns a string object of those bytes.
Read() takes an optional bytes parameter, which specifies the number of bytes to read.
If no bytes are specified, read() tries to read to the end of the file. If more bytes are
specified than there are bytes in the file, read() will read until the end of the file and
return the bytes which it has read.

Given the following file:
jmjones@dink:~/some_random_directory$ cat foo.txt Some Random
Lines
of
Text.
Read() works on a file like this.
In [1]: f = open("foo.txt", "r")

In [2]: f.read()
Out[2]: 'Some Random\n Lines\nOf \n Text.\n'

Notice that the newlines are shown as a \n character sequence; that is the standard way
to refer to a newline.

102 | Chapter3: Text

http://docs.python.org/lib/bltin-file-objects.html

And if we only wanted the first 5 bytes of the file, we could do something like this:
In [1]: f = open("foo.txt", "r")

In [2]: f.read(5)

Out[2]: 'Some '
The next method for getting text from a file is the readline() method. The purpose of
readline() is to read one line of text at a time from a file. Readline() takes one optional
parameter: size. Size specifies the maximum number of bytes that readline() will read
before returning a string, whether it has reached the end of the line or not. So, in the
following example, the program will read the first line of text from the foo.txt, and
then it will read the first 7 bytes of text from the second line, followed by the remainder
of the second line:

In [1]: f = open("foo.txt", "r")

N

In [2]: f.readline()
Out[2]: 'Some Random\n'

In [3]: f.readline(7)
Out[3]: ' Lin'

w

In [4]: f.readline()
Out[4]: 'es\n'

The final file method that we will discuss for getting text out of a file is readlines().
Readlines() is not a typo, nor is it a cut-and-paste error from the previous example.
Readlines() reads in all of the lines in a file. Well, that is almost true. Readlines() has
a sizehint option that specifies the approximate total number of bytes to read in. In the
following example, we created a file, biglines.txt, that contains 10,000 lines, each of
which contains 80 characters. We then open the file, state that we want the first N lines
in the file, which will total about 1024 bytes (the number of lines and bytes that were
read) and then we read the rest of the lines in the file:

In [1]: f = open("biglines.txt", "r")
In [2]: lines = f.readlines(1024)

In [3]: len(lines)
Out[3]: 102

In [4]: len("".join(1lines))
Out[4]: 8262

In [5]: lines = f.readlines()

In [6]: len(lines)
out[6]: 9898

In [7]: len("".join(lines))
Out[7]: 801738

Python Built-ins and Modules | 103

Command [3] shows that we read 102 lines and command [4] shows that those lines
totaled 8,262 bytes. How is 1,024 the “approximate” number of bytes read if the actual
number of bytes read was 8,262? It rounded up to the internal buffer size, which is
about 8 KB. The point is that sizehint does not always do what you think it might, so
it’s something to keep in mind.

Writing files

Sometimes you have to do something with files other than just reading data in from
them; sometimes you have to create your own file and write data out to it. There are
two common file methods that you will need to know in order to write data to files.
The first method, which was demonstrated earlier, is write(). write() takes one pa-
rameter: the string to write to the file. Here is an example of data being written to a file
using the write() method:

In [1]: f = open("some_writable file.txt", "w")
In [2]: f.write("Test\nFile\n")

In [3]: f.close()

In [4]: g = open("some writable file.txt", "r")

In [5]: g.read()
Out[5]: 'Test\nFile\n'

In command [1], we opened the file with the w mode flag, which means writable. Com-
mand [2] writes two lines to the file. In command [4], we are using the variable name
g this time for the file object to cut down on confusion, although we could have used
f again. And command [5] shows that the data we wrote to the file is the same as what
comes out when we read() it again.

The next common data writing method is writelines(). Writelines() takes one man-
datory parameter: a sequence thatwritelines() will write to the open file. The sequence
can be any type of iterable object such as a list, tuple, list comprehension (which is a
list), or a generator. Here is an example of a generator expression writelines() used
with writelines to write data to a file:

In [1]: f = open("writelines outfile.txt", "w")

In [2]: f.writelines("%s\n" % i for i in range(10))
In [3]: f.close()

In [4]: g = open("writelines_outfile.txt", "r")

In [5]: g.read()

Out[5]: '0\n1\n2\n3\n4\n5\n6\n7\n8\n9\n'

104 | Chapter3: Text

And here is an example of a generator function being used to write data to a file (this
is functionally equivalent to the previous example, but it uses more code):
In [1]: def myRange(r):
et i=o0
while i < r:
yield "%s\n" % i
i+=1

In [2]: f = open("writelines generator function outfile", "w")
In [3]: f.writelines(myRange(10))

In [4]: f.close()

In [5]: g = open("writelines generator function outfile", "r")

In [6]: g.read()

Out[6]: '0\n1\n2\n3\n4\n5\n6\n7\n8\n9\n'
[tis important to note thatwritelines() does not write a newline (\n) for you; you have
to supply the \n in the sequence you pass in to it. It’s also important to know you don’t
have to use it only to write line-based information to your file. Perhaps a better name
would have been something like writeiter(). In the previous examples, we happened
to write text that had a newline, but there is no reason that we had to.

Additional resources

For more information on file objects, please see Chapter 7 of Learning Python by David
Ascher and Mark Lutz (O’Reilly) (also online in Safari at http://safari.oreilly.com/
0596002815/lpython2-chp-7-sect-2) or the File Objects section of the Python Library
Reference (available online at http://docs.python.org/lib/bltin-file-objects.html).

For more information on generator expressions, please see the “generator expressions”
section of the Python Reference Manual (available online at http://docs.python.org/ref/
genexpr.html). For more information on the yield statement, see the “yield statement”
section of the Python Reference Manual (available online at http://docs.python.org/ref/
yield.html).

Standard Input and OQutput

Reading text on a process’s standard input and writing to a process’s standard output
will be familiar to most system administrators. Standard input is simply data going into
a program that the program can read when it runs. Standard output is the output of a
program, written there by the program as it is running. A benefit of using standard
input and standard output is that it allows commands to be chained together with other
utilities.

Python Built-ins and Modules | 105

http://safari.oreilly.com/0596002815/lpython2-chp-7-sect-2
http://safari.oreilly.com/0596002815/lpython2-chp-7-sect-2
http://docs.python.org/lib/bltin-file-objects.html
http://docs.python.org/ref/genexpr.html
http://docs.python.org/ref/genexpr.html
http://docs.python.org/ref/yield.html
http://docs.python.org/ref/yield.html

The Python Standard Library contains a built-in module named sys that provides easy
access to standard input and standard output. The standard library provides access to
both standard input and output as file-like objects, even though they are not directly
connected to a file on disk. Since they are file-like objects, you can use the same methods
on them that you can use on files. You can treat them as though they were files on disk
and access the appropriate methods for doing so.

Standard input is accessed by importing the sys module and referring to its stdin at-
tribute (sys.stdin). Sys.stdin is a readable file object. Notice what happens when we
create a “real” file object by opening a file on disk called foo.txt and then compare
that open file object with sys.stdin:

In [1]: import sys
In [2]: f = open("foo.txt", "r")

In [3]: sys.stdin
Out[3]: <open file '<stdin>', mode 'r' at 0x14020>

In [4]: f
Out[4]: <open file 'foo.txt', mode 'r' at 0x12179b0>

In [5]: type(sys.stdin) == type(f)

Out[5]: True
The Python interpreter sees them as the same type, so they use the same methods. While
they are technically the same type and use the same methods, some of the methods will
behave differently on the file-like objects. For example, sys.stdin.seek() and
sys.stdin.tell() are available, but they raise an exception (specifically I0Error) when
you call them. The main point here, though, is that they are file-like objects and you
can pretty much just treat them the same as you would disk-based files.

Accessing sys.stdin is pretty much meaningless at a Python (or IPython) prompt. Im-
porting sys and doing sys.stdin.read() just blocks indefinitely. In order to show you
how sys.stdin works, we’ve created a script that reads from sys.stdin() and prints
each line back out with a corresponding line number. See Example 3-22.

Example 3-22. Enumerating sys.stdin.readline

#!/usr/bin/env python
import sys

counter = 1
while True:
line = sys.stdin.readline()
if not line:
break
print "%s: %s" % (counter, line)
counter += 1

106 | Chapter3: Text

In this example, we created the variable counter to keep track of the line it is on. It then
enters awhile loop and begins reading lines from standard input. For each line, it prints
out the line number and the line contents. As the program loops, this script deals with
all lines that come in, even if they seem to be blank. And blank lines aren’t totally blank,
of course; they consist of a newline (\n). When the script hits “end of file,” this script
breaks out of the loop.

Here is the output when who is piped through the previous script:

jmjones@dink:~/psabook/code$ who | ./sys stdin readline.py
1: jmjones console Jul 9 11:01

2: jmjones ttypl Jul 9 19:58

3: jmjones ttyp2 Jul 10 05:10

4: jmjones ttyp3 Jul 11 11:51

5: jmjones ttyp4 Jul 13 06:48

6: jmjones ttyps Jul 11 21:49

7: jmjones ttyp6 Jul 15 04:38
As a point of interest, the previous example could have been written much more simply
and shorter using the enumerate function. See Example 3-23.
Example 3-23. sys.stdin readline example

#!/usr/bin/env python
import sys

for i, line in enumerate(sys.stdin):
print "%s: %s" % (i, line)

Just as you access standard input by importing the sys module and then using the
stdin attribute, you access standard output by importing the sys module and referring
to the stdout attribute. And just as sys.stdin is a readable file object, sys.stdout is a
writable file object. And just as sys.stdin has the same type as a readable file object,
so sys.stdout has the same type as a writable file object:

In [1]: import sys
In [2]: f = open('foo.txt', 'w")

In [3]: sys.stdout
Out[3]: <open file '<stdout>', mode 'w' at 0x14068>

In [4]: f
Out[4]: <open file 'foo.txt', mode 'w' at 0x1217968>

In [5]: type(sys.stdout) == type(f)
Out[5]: True

Python Built-ins and Modules | 107

As a relevant aside, this last point is not unexpected since a readable file and a writable
file also share the same type:

In [1]: readable file = open('foo.txt', 'r')
In [2]: writable file = open('foo_writable.txt', 'w")

In [3]: readable file
Out[3]: <open file 'foo.txt', mode 'r' at 0x1243530>

In [4]: writable file
Out[4]: <open file 'foo writable.txt', mode 'w' at 0x1217968>

In [5]: type(readable file) == type(writable file)

Out[5]: True
The important thing to know about the type that sys.stdout has is that it can be treated
in pretty much the same way as a writable file can be treated, just as sys.stdin can be
treated as a readable file.

Stringl0

So, what happens if you have written a text munging function which knows how to
deal with a file object, but you stumble across a case in which data that you need to
process is available as a text string rather than a file? An easy solution is that you can
use import StringIO:

In [1]: from StringIO import StringIO

In [2]: file_like_string = StringIO("This is a\nmultiline string.\n
readline() should see\nmultiple lines of\ninput")

In [3]: file_like_string.readline()
Out[3]: 'This is a\n'

In [4]: file_like_string.readline()
Out[4]: 'multiline string.\n'

In [5]: file like string.readline()
Out[5]: 'readline() should see\n'

In [6]: file_like_string.readline()
Out[6]: 'multiple lines of\n'

In [7]: file_like_string.readline()

Out[7]: 'input’
In this example, we created a StringI0 object passing the string This is a\nmultiline
string. \nreadline() should see\nmultiple lines of\ninput into the constructor. We
were then able to call the readline() method on the StringI0 object. While read
line() was the only method we called, it is by no means the only file method available:

108 | Chapter3: Text

In [8]: dir(file like_string)

Out[8]:

['_doc__
_init__

'
)
'
)
'

_iter ',
' _module ',
'buf',
'buflist’,
'close’,
'closed’,
"flush',
'getvalue’,
'isatty’,
'len’,
"next’,
"pos’,

'read’,
'readline’,
'readlines’,
'seek’,
'softspace’,
"tell',
"truncate’,
'write',
'writelines']

To be sure there are differences, but the interface allows an easy transition between
files and strings. Here is a comparison of the methods and attributes on a file with the

methods and attributes on a StringI0 object:
In [9]: f = open("foo.txt", "r")

In [10]: from sets import Set

In [11]: sio_set = Set(dir(file like string))

In [12]: file_set = Set(dir(f))

In [13]: sio_set.difference(file_set)

Out[13]: Set([' module ', 'buflist', 'pos', 'len', 'getvalue', 'buf'])
In [14]: file_set.difference(sio_set)

Out[14]: Set(['fileno', ' setattr ', ' reduce ex_ ', ' new '

' _getattribute ', ' str ', ' reduce ', '
' _delattr_ ', 'mode', '__repr_ ', 'xreadlines',

"newlines'])

_class__ ", 'name',
'_hash__', 'readinto’,

, 'encoding',

So, as you can see, if you need to treat a string as a file, StringIO can be a huge help.

urllib

What if the file you are interested in reading happens to be on the interweb? Or, what
if you want to reuse a piece of code that you wrote which expects a file object? The
built-in file type doesn’t know about the interweb, but the urllib module can help.

Python Built-ins and Modules | 109

If all you want to do is read() a file from some web server somewhere,
urllib.urlopen() provides an easy solution. Here is a simple example:

In [1]: import urllib

In [2]: url_file = urllib.urlopen("http://docs.python.org/1ib/module-urllib.html")
In [3]: urllib docs = url file.read()

In [4]: url file.close()

In [5]: len(urllib_docs)
Out[5]: 28486

In [6]: urllib docs[:80]
Out[6]: '<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">\
n<html>\n<head>\n<1i'

In [7]: urllib docs[-80:]
Out[7]: 'nt...</i> for information on suggesting changes.\
n</address>\n</body>\n</html>\n"

First, we imported urllib. Next, we created a file-like object from urllib and named
it url file. Then, we read the contents of url_file into a string called urllib docs.
And just to show that we actually retrieved something that looks like it might have
come from the Internet, we sliced the first and last 80 characters from the retrieved
document. Notice that the urllib file object supported the read() and close() methods.
It also supports readline(), readlines(), fileno(), info(), and geturl().

If you need more power, such as the ability to use a proxy server, you can find more
information about urllib at http://docs.python.org/lib/module-urllib.html. Or if you
need even more power like digest authentication and cookies, check out urllib2 at
http://docs.python.org/lib/module-urllib2. html.

Log Parsing

No discussion of text processing from a sysadmin’s point of view would be complete
without addressing parsing a logfile, so here it is. We have laid the foundation for you
to be able to open a logfile, read in each line, and read the data in the way that works
best for you. Before we begin coding this example, we have to ask ourselves, “What do
we want this logfile reader to do?” Our answer is pretty simple: read in an Apache access
log and determine the number of bytes each unique client retrieved.

According to http://httpd.apache.org/docs/1.3/logs.html, the “combined” log format
looks something like this:
127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0"

200 2326 "http://www.example.com/start.html" "Mozilla/4.08 [en] (Win98; I
sNav)"

110 | Chapter3: Text

http://docs.python.org/lib/module-urllib.html
http://docs.python.org/lib/module-urllib2.html
http://httpd.apache.org/docs/1.3/logs.html

And this matched the data in our Apache logfile. The two pieces of information from
each line of the logfile that we will be interested in are the IP address of the client and
the number of bytes that were transferred. The IP address is the first field in the logfile;
in this case, the address is 127.0.0.1. The number of bytes that were transferred is the
second from the last field, right before the referrer; in this case 2326 bytes were trans-
ferred. So how do we get at the fields? See Example 3-24.

Example 3-24. Apache logfile parser—split on whitespace
#!/usr/bin/env python

nnn

USAGE:
apache_log parser split.py some log file

This script takes one command line argument: the name of a log file
to parse. It then parses the log file and generates a report which
associates remote hosts with number of bytes transferred to them.

nnn

import sys

def dictify logline(line):
""'return a dictionary of the pertinent pieces of an apache combined log file

Currently, the only fields we are interested in are remote host and bytes sent,
but we are putting status in there just for good measure.
split_line = line.split()
return {'remote_host': split_line[0],
"status': split_line[8],
'bytes_sent': split line[9],
}

def generate_log report(logfile):
""'return a dictionary of format remote_host=>[list of bytes sent]

This function takes a file object, iterates through all the lines in the file,
and generates a report of the number of bytes transferred to each remote host
for each hit on the webserver.
report_dict = {}
for line in logfile:
line_dict = dictify_logline(line)
print line dict
try:
bytes_sent = int(line_dict['bytes _sent'])
except ValueError:
##totally disregard anything we don't understand
continue
report_dict.setdefault(line_dict['remote_host'], []).append(bytes_sent)
return report dict

LogParsing | 111

" "

if _name__ == "_main_":
if not len(sys.argv) > 1:
print _ doc__
sys.exit(1)
infile _name = sys.argv[1]
try:
infile = open(infile_name, 'r')
except IOError:
print "You must specify a valid file to parse"
print _ doc__
sys.exit(1)
log report = generate_log report(infile)
print log_report
infile.close()

This example is pretty simple. The _main__ section does only a few things. First, it
does minimal checking on the command-line arguments to ensure that at least one
argument was passed in. If the user passed in no arguments on the command line, the
script prints a usage message and terminates. For a fuller discussion of how to better
handle command-line arguments and parameters, see Chapter 13. Next, _main__
attempts to open the specified logfile. If it fails to open the logfile, it prints a usage
message and terminates. Next, it passes the logfile to the generate log report() func-
tion and prints the results.

Generate_log report() creates a dictionary that serves as the report. It then iterates
over all the lines of the logfile and passes each line to dictify logline(), which returns
a dictionary that contains the information we needed. Then, it checks to see if the
bytes_sent value is an integer. If it is, it proceeds; if the bytes _sent value is not an
integer, it continues to the next line. After that, it updates the report dictionary with
the data that dictify logline() returned to it. Finally, it returns the report dictionary
to the _main__section.

Dictify logline() simply splits the log line on whitespace, pulls certain items from the
resulting list, and returns a dictionary with the data from the split line.

So, does it work? Mostly. Check out the unit test in Example 3-25.
Example 3-25. Unit test for Apache logfile parser—split on whitespace
#!/usr/bin/env python

import unittest
import apache_log_parser_split

class TestApachelogParser(unittest.TestCase):

def setUp(self):
pass

def testCombinedExample(self):
test the combined example from apache.org
combined_log_entry = '127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] '\

112 | Chapter3: Text

""GET /apache_pb.gif HTTP/1.0" 200 2326 "http://www.example.com/start.html" '\

'"Mozilla/4.08 [en] (Win98; I ;Nav)"'

self.assertEqual(apache_log parser split.dictify logline(combined log_entry),
{'remote_host': '127.0.0.1"', 'status': '200', 'bytes sent': '2326'})

def testCommonExample(self):
test the common example from apache.org
common_log_entry = '127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] '\
""GET /apache_pb.gif HTTP/1.0" 200 2326'
self.assertEqual(apache_log parser split.dictify logline(common_log_entry),
{'remote_host': '127.0.0.1', 'status': '200', 'bytes sent': '2326'})

def testExtraWhitespace(self):
test for extra whitespace between fields
common_log entry = '127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] '\
'""GET /apache pb.gif HTTP/1.0" 200 2326'
self.assertEqual(apache_log parser split.dictify logline(common log entry),
{'remote _host': '127.0.0.1', 'status': '200', 'bytes sent': '2326'})

def testMalformed(self):
test for extra whitespace between fields
common_log entry = '127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] '\
""GET /some/url/with white space.html HTTP/1.0" 200 2326'
self.assertEqual(apache log parser split.dictify logline(common log entry),
{'remote_host': '127.0.0.1', 'status': '200', 'bytes sent': '2326'})

if name_ =="' main_':
unittest.main()

It works with the combined and common log formats, but a slight modification of the
request field causes the unit test to fail. Here is the result of a test run:

jmjones@dinkgutsy:code$ python test apache_log parser split.py
...F

FAIL: testMalformed (__main__.TestApachelogParser)

Traceback (most recent call last):
File "test apache log parser split.py", line 38, in testMalformed
{'remote_host': '127.0.0.1', 'status': '200', 'bytes sent': '2326'})
AssertionError: {'status': 'space.html', 'bytes sent': 'HTTP/1.0"',
'remote_host': '127.0.0.1'} != {'status': '200', 'bytes sent': '2326',
'remote_host': '127.0.0.1'}

Ran 4 tests in 0.001s

FAILED (failures=1)

Because of one colon in the date field converted to a space, all the fields of this logfile
were shifted one place to the right. A healthy level of paranoia is a good thing. But based
on the specification for the logfile formats, you’re probably pretty safe extracting the
remote host and number of bytes that were transferred based on whitespace-separated
fields. However, Example 3-26 is the same example using regular expressions.

LogParsing | 113

Example 3-26. Apache logfile parser—regex
#!/usr/bin/env python

non

USAGE:
apache_log_parser regex.py some_log file

This script takes one command line argument: the name of a log file
to parse. It then parses the log file and generates a report which
associates remote hosts with number of bytes transferred to them.

non

import sys
import re
log line re = re.compile(r'''(?P<remote_host>\S+) #IP ADDRESS
\s+ #whitespace
\S+ #remote logname
\s+ #whitespace
\S+ #remote user
\s+ #whitespace
\[[PNNTT+\] #time
\s+ #whitespace
"[A"]+" #first line of request
\s+ #whitespace
(?P<status>\d+)
\s+ #whitespace
(?P<bytes_sent>-|\d+)
\s* #whitespace
""", re.VERBOSE)

def dictify logline(line):
""'return a dictionary of the pertinent pieces of an apache combined log file

Currently, the only fields we are interested in are remote host and bytes sent,
but we are putting status in there just for good measure.
m = log line_re.match(line)
if m:
groupdict = m.groupdict()
if groupdict['bytes sent'] == '-':
groupdict['bytes sent'] = '0'
return groupdict
else:
return {'remote_host': None,
'status': None,
'bytes_sent': "0",

}

def generate_log report(logfile):
""'return a dictionary of format remote_host=>[1list of bytes sent]

This function takes a file object, iterates through all the lines in the file,
and generates a report of the number of bytes transferred to each remote host
for each hit on the webserver.

114 | Chapter3: Text

report_dict = {}
for line in logfile:
line_dict = dictify_logline(line)
print line dict
try:
bytes_sent = int(line_dict['bytes_sent'])
except ValueError:
##totally disregard anything we don't understand
continue
report_dict.setdefault(line_dict['remote_host'], []).append(bytes_sent)
return report dict

if _name__ == "_main__":
if not len(sys.argv) > 1:
print _doc__
sys.exit(1)
infile name = sys.argv[1]
try:
infile = open(infile name, 'r')
except IOError:
print "You must specify a valid file to parse"
print _doc__
sys.exit(1)
log report = generate log report(infile)
print log report
infile.close()

The only function we changed from the regex example to the “split on whitespace”
example was dictify logline(). This implies that we left the return type for the func-
tion exactly as it was in the regex example. Rather than splitting the log line on white-
space, we used a compiled regular expression object, log line re, to match() the log
line. If it matched, we returned a potentially, slightly modified groupdict() in which
bytes_sent was set to 0 when the field contained - (because - means nothing). In the
case that nothing matched, we returned a dictionary with the same keys, but with
None and 0 for the values.

So, does the regular expression version work work better than the string splitting one?
Actually, it does. Here is a unit test for the new regex version of the Apache parsing
script:

#!/usr/bin/env python

import unittest
import apache log parser regex

class TestApachelogParser(unittest.TestCase):

def setUp(self):
pass

def testCombinedExample(self):
test the combined example from apache.org

Log Parsing | 115

combined log_entry = '127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] '\
""GET /apache_pb.gif HTTP/1.0" 200 2326 '\
""http://www.example.com/start.html" "Mozilla/4.08 [en] (Win98; I ;Nav)"'
self.assertEqual(apache_log parser regex.dictify logline(combined log_entry),
{'remote_host': '127.0.0.1"', 'status': '200', 'bytes sent': '2326'})

def testCommonExample(self):
test the common example from apache.org
common_log_entry = '127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] '\
""GET /apache_pb.gif HTTP/1.0" 200 2326'
self.assertEqual(apache_log parser regex.dictify logline(common_log_entry),
{'remote_host': '127.0.0.1"', 'status': '200', 'bytes sent': '2326'})

def testMalformedEntry(self):
test a malformed modification dereived from the example at apache.org
#malformed log entry = '127.0.0.1 - frank [10/0ct/2000 13:55:36 -0700] '\
#'"GET /apache_pb.gif HTTP/1.0" 200 2326 '\
#'"http://www.example.com/start.html" "Mozilla/4.08 [en] (Win98; I ;Nav)"'

malformed log entry = '127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] '\

""GET /some/url/with white space.html HTTP/1.0" 200 2326'

self.assertEqual(apache log parser regex.dictify logline(malformed log entry),
{'remote_host': '127.0.0.1', 'status': '200', 'bytes sent': '2326'})

if name_ =="' main_':
unittest.main()

And here is the result of the unit test:

jmjones@dinkgutsy:code$ python test apache log parser regex.py

Ran 3 tests in 0.001s

0K

ElementTree

If the text that you need to parse is XML, then you probably want to approach things
a bit differently than if it were, say, a line-oriented logfile. You probably don’t want to
read the file in line by line and look for patterns, and you probably don’t want to rely
too much on regular expressions. XML uses a tree-structure, so reading in lines prob-
ably isn’t what you want. And using regular expressions to build a tree data structure
will be a huge headache for any files larger than trivially tiny.

So, what can you use? There are typically two approaches to handling XML. There is
“simple API for XML,” or SAX. The Python Standard Library contains a SAX parser.
SAX is typically blazingly fast and doesn’t automatically grab a lot of memory as it is
parsing your XML. But it is callback-based, so in certain pieces of data, when it hits
sections of your XML document, like start and end tags, it just calls certain methods
and passes. This means that you have to set up handlers for your data and maintain
your own state, which can be a difficult. These two things make the “simple” in “simple

116 | Chapter3: Text

API for XML” seem a bit farfetched. The other approach for handling XML is to use a
Document Object Model, or DOM. The Python Standard Library also contains a DOM
XML library. DOM is typically slower and consumes more memory than SAX because
it reads the whole XML tree into memory and builds objects for each node in the tree.
The benefit of using DOM is that you don’t have to keep track of your own state, since
each node is aware of who its parents and children are. But the DOM API is cumber-
some at best.

A third option is ElementTree. ElementTree is an XML parsing library that has been
included in the standard library since Python 2.5. ElementTree feels like a lighter weight
DOM with a usable, indeed a friendly, API. In addition to the code usability, it is fast
and consumes little memory. We give ElementTree a hearty recommendation. If you
have XML parsing to do, try ElementTree first.

To start parsing an XML file using ElementTree, simply import the library and
parse() a file:

In [1]: from xml.etree import ElementTree as ET

In [2]: tcusers = ET.parse('/etc/tomcat5.5/tomcat-users.xml")

In [3]: tcusers

Out[3]: <xml.etree.ElementTree.ElementTree instance at Oxabb4do></xml>

So that we could save keystrokes as we use the library, we imported the ElementTree
module under the name ET so that we could save on keystrokes as we use the library.
Then, we told ElementTree to parse the users XML file from an installed Tomcat servlet
engine. We called the ElementTree object tcusers. The type of tcusers is xml.etree.Ele
mentTree.ElementTree.

We removed the license and a usage note, and the Tomcat users file that we just parsed
has the following content:
<?xml version="1.0" encoding="UTF-8"?>
<tomcat-users>
<user name="tomcat" password="tomcat" roles="tomcat" />
<user name="role1" password="tomcat" roles="role1" />
<user name="both" password="tomcat" roles="tomcat,role1" />
</tomcat-users>

When ElementTree parsed the Tomcat XML file, it created a tree object, which we
referred to as tcusers, that we could use to get at the various nodes in the XML file.
Two of the most interesting methods on this tree object are find() and findall().
Find() finds the first node that matches the query that you pass it and returns an
Element object based on that node. Findall() finds all occurrences of nodes matching
the query that you pass it and returns a list of Element objects based on those matching
nodes.

The type of pattern that both find() and findall() look for is a limited subset of XPath
expressions. Valid search criteria for ElementTree includes the tagname * to match all

ElementTree | 117

child elements, . to match the current element, and // to match all nodes that are
descendents of the search starting point. The slash (/) character can be used to separate
the match criteria. Using the Tomcat user file, we’ll use find() and a tagname to pull
out the first user node:

In [4]: first user = tcusers.find('/user')
In [5]: first_user
Out[5]: <Element user at abdd88>

We fed find() the search criteria '/user'. The leading slash character specified the
absolute path starting at the root node. The text 'user' specified the tagname to look
for. So, find() returned the first node with a tag of user. You can see that the object
we referred to as first_user is of type Element.

Some of the more interesting Element methods and attributes include Attrib, find(),
findall(), get(), tag, and text. attrib is a dictionary of the attributes of the Element
that it belongs to. find() and findall() work here the same way they do on Element
Tree objects. Get() is a dictionary method that retrieves the specified attribute or, if the
attribute is not defined, returns None. Both attrib and get() access the same dictionary
of attributes for the current XML tag. tag is an attribute that contains the tag name of
the current Element. text is an attribute that contains the text contained as a text node
in the current Element.
Here is the XML element ElementTree created for the first_user Element object:
<user name="tomcat" password="tomcat" roles="tomcat" />

Now we are going to call the methods of and reference the attributes of the tcusers
object:

In [6]: first_user.attrib

Out[6]: {'name': 'tomcat', 'password': 'tomcat', 'roles': 'tomcat'}
In [7]: first user.get('name")

Out[7]: 'tomcat'

In [8]: first user.get('foo')

In [9]: first_ user.tag

Out[9]: 'user'

In [10]: first_user.text

Now that you’ve seen some of the basics of what ElementTree will do, we’ll look at a
slightly more involved, more formal example. We will parse the Tomcat users file and
look for any user nodes where the name attribute matches the one we specify (in this
case, 'tomcat'). See Example 3-27.

118 | Chapter3: Text

Example 3-27. ElementTree parse of Tomcat users file

#!/usr/bin/env python

from xml.etree import ElementTree as ET

if _name__ == '_main__':
infile = '/etc/tomcat5.5/tomcat-users.xml'
tomcat_users = ET.parse(infile)
for user in [e for e in tomcat_users.findall('/user') if
e.get('name') == 'tomcat']:
print user.attrib

The only trick in this example is that we’ve used a list comprehension to match on the
name attribute. Running this example returns the following result:

jmjones@dinkgutsy:code$ python elementtree_ tomcat_users.py
{'password': 'tomcat', 'name': 'tomcat', 'roles': 'tomcat'}

Finally, here is an example of ElementTree used to extract some information from a
poorly written piece of XML. Mac OS X has a utility called system_profiler that will
display a bulk of information about your system. XML is one of two output formats
that system_profiler supports, but it appears that XML was an afterthought. The piece
of information that we want to extract is the operating system version and is contained
in a portion of the XML file that looks like this:

<dict>
<key>_dataType</key>
<string>SPSoftwareDataType</string>
<key>_detaillevel</key>
<integer>-2¢/integer>
<key>_items</key>
<array>
<dict>
<key>_name</key>
<string>os_overview</string>
<key>kernel version</key>
<string>Darwin 8.11.1</string>
<key>os_version</key>
<string>Mac 0S X 10.4.11 (852167)</string>
</dict>
</array>

So, why do we think this XML format is poorly written? There are no attributes on any
XML tags. The tag types are mainly data types. And elements such as alternating key
and string tags are under the same parent. See Example 3-28.

Example 3-28. Mac OS X system_profiler output parser
#!/usr/bin/env python
import sys

from xml.etree import ElementTree as ET
e = ET.parse('system profiler.xml")

ElementTree | 119

if _name__ == '_main__
for d in e.findall('/array/dict'):
if d.find('string').text == 'SPSoftwareDataType':
sp_data = d.find('array').find('dict")
break

else:
print "SPSoftwareDataType NOT FOUND"
sys.exit(1)

record = []
for child in sp_data.getchildren():
record.append(child.text)
if child.tag == 'string':
print "%-15s -> %s" % tuple(record)
record = []

Basically, the script looks for any dict tag that has a string child element whose text
value is 'SPSoftwareDataType'. The information that the script is looking for is under
that node. The only thing that we used in this example that we didn’t discuss previously
was the getchildren() method. This method simply returns a list of the child nodes of
a particular element. Other than that, this example should be pretty clear, even though
the XML might have been written better. Here is the output the script generates when
it is run on a laptop running Mac OS X Tiger:

dink:~/code jmjones$ python elementtree_system profile.py

_name -> os_overview
kernel version -> Darwin 8.11.1
os_version -> Mac 0S X 10.4.11 (852167)

ElementTree has been a great addition to the Python Standard Library. We have been
using it for quite a while now and have been happy with what it has done for us. You
can try out the SAX and DOM libraries in the Python Standard Library, but we think
you will come back to ElementTree.

Summary

This chapter outlined some of the fundamentals of handling text in Python. We dealt
with the built-in string type, regular expressions, standard input and output,
StringIO, and the urllib module from the standard library. We then pulled many of
these things together into two examples that parsed Apache logfiles. Finally, we dis-
cussed some of the essentials of the ElementTree library and showed two examples of
the way to use it in the real world.

120 | Chapter3: Text

It seems that when a lot of Unix folks think of wrangling text in a way that is beyond
what is comfortable to do with grep or awk, the only advanced alternative that they
consider is Perl. While Perl is an extremely powerful language, particularly in the area
of dealing with text, we think that Python has just as much to offer as Perl does. In fact,
if you look at the clean syntax and the ease with which you can go from procedural
code to object-oriented code, we think that Python has a distinct advantage over Perl,
even in the text handling arena. So, we hope that the next time you have a text handling
task to work on, you’ll reach for Python first.

Summary | 121

CHAPTER 4
Documentation and Reporting

As we do, you may find that one of the most tedious, least desirable aspects of your job
is to document various pieces of information for the sake of your users. This can either
be for the direct benefit of your users who will read the documentation, or perhaps it
may be for the indirect benefit of your users because you or your replacement might
refer to it when making changes in the future. In either case, creating documentation
is often a critical aspect of your job. But if it is not a task that you find yourself longing
to do, it might be rather neglected. Python can help here. No, Python cannot write your
documentation for you, but it can help you gather, format, and distribute the
information to the intended parties.

In this chapter, we are going to focus on: gathering, formatting, and distributing in-
formation about the programs you write. The information that you are interested in
sharing exists somewhere; it may be in a logfile somewhere; it may be in your head; it
may be accessible as a result of some shell command that you execute; it may even be
in a database somewhere. The first thing you have to do is to gather that information.
The next step in effectively sharing this information is to format the data in a way that
makes it meaningful. The format could be a PDF, PNG, JPG, HTML, or even plain
text. Finally, you need to get this information to the people who are interested in it. Is
it most convenient for the interested parties to receive an email, or visit a website, or
look at the files directly on a shared drive?

Automated Information Gathering

The first step of information sharing is gathering the information. There are two other
chapters in this book dedicated to gathering data: Text Processing (Chapter 3) and
SNMP (Chapter 7). Text processing contains examples of the ways to parse and extract
various pieces of data from a larger body of text. One specific example in that chapter
is parsing the client IP address, number of bytes transmitted, and HTTP status code
out of each line in an Apache web server log. And SNMP contains examples of system
queries for information ranging from amount of installed RAM to the speed of network
interfaces.

123

Gathering information can be more involved than just locating and extracting certain
pieces of data. Often, it can be a process that involves taking information from one
format, such as an Apache logfile, and storing it in some intermediate format to be used
at a later time. For example, if you wanted to create a chart that showed the number
of bytes that each unique IP address downloaded from a specific Apache web server
over the course of a month, the information gathering part of the process could involve
parsing the Apache logfile each night, extracting the necessary information (in this case,
it would be the IP address and “bytes sent” for each request), and appending the data
to some data store that you can open up later. Examples of such data stores include
relational databases, object databases, pickle files, CSV files, and plain-text files.

The remainder of this section will attempt to bring together some of the concepts from
the chapters on text processing and data persistence. Specifically, it will show how to
build on the techniques of data extraction from Chapter 3 and data storage from
Chapter 12. We will use the same library from the text processing. We will also use the
shelve module, introduced in Chapter 12, to store data about HTTP requests from
each unique HTTP client.

Here is a simple module that uses both the Apache log parsing module created in the
previous chapter and the shelve module:

#!/usr/bin/env python

import shelve
import apache_log parser regex

logfile = open('access.log', 'r')
shelve file = shelve.open('access.s")

for line in logfile:
d_line = apache_log parser regex.dictify logline(line)
shelve file[d line['remote host']] = \
shelve file.setdefault(d line['remote host'], 0) + \
int(d_line['bytes_sent'])

logfile.close()
shelve file.close()

This example first imports shelve and apache_log parser regex. Shelve is a module
from the Python Standard Library. Apache log parser regex is a module we wrote in
Chapter 3. We then open the Apache logfile, access.log, and a shelve file, access.s.
We iterate over each line in the logfile and use the Apache log parsing module to create
a dictionary from each line. The dictionary consists of the HTTP status code for the
request, the client’s IP address, and the number of bytes transferred to the client. We
then add the number of bytes for this specific request to the total number of bytes
already tallied in the shelve object for this client IP address. If there is no entry in the
shelve object for this client IP address, the total is automatically set to zero. After iter-
ating through all the lines in the logfile, we close the logfile and the shelve object. We’ll
use this example later in this chapter when we get into formatting information.

124 | Chapter4: Documentation and Reporting

Receiving Email

You may not think of receiving email as a means of information gathering, but it really
can be. Imagine that you have a number of servers, none of which can easily connect
to the other, but each of which has email capabilities. If you have a script that monitors
web applications on these servers by logging in and out every few minutes, you could
use email as an information passing mechanism. Whether the login/logout succeeds or
fails, you can send an email with the pass/fail information in it. And you can gather
these email messages for reporting or for the purpose of alerting someone if it’s down.

The two most commonly available protocols for retrieving email server are IMAP and
POP3. In Python’s standard “batteries included” fashion, there are modules to support
both of these protocols in the standard library.

POP3 is perhaps the more common of these two protocols, and accessing your email
over POP3 using poplib is quite simple. Example 4-1 shows code that uses poplib to
retrieve all of the email that is stored on the specified server and writes it to a set of files

on disk.

Example 4-1. Retrieving email using POP3
#!/usr/bin/env python

import poplib

username = 'someuser’
password = 'S3Cr37'

mail server = 'mail.somedomain.com'

p = poplib.POP3(mail server)
p.user(username)
p.pass_(password)
for msg_id in p.list()[1]:
print msg_id
outf = open('%s.eml’ % msg id, 'w')
outf.write('\n'.join(p.retr(msg_id)[1]))
outf.close()
p.quit()

As you can see, we defined the username, password, and mail_server first. Then, we
connected to the mail server and gave it the defined username and password. Assuming
that all is well and we actually have permission to look at the email for this account,
we then iterate over the list of email files, retrieve them, and write them to a disk. One
thing this script doesn’t do is delete each email after retrieving it. All it would take to
delete the email is a call to dele() after retr().

IMAP is nearly as easy as POP3, but it’s not as well documented in the Python Standard
Library documents. Example 4-2 shows IMAP code that does the same thing as the
code did in the POP3 example.

Automated Information Gathering | 125

Example 4-2. Retrieving email using IMAP
#!/usr/bin/env python

import imaplib

username
password

'some_user"'
'70P53Cr37'

mail_server = 'mail_server'

i = imaplib.IMAP4_SSL(mail server)

print i.login(username, password)

print i.select('INBOX")

for msg_id in i.search(None, 'ALL')[1][0].split():
print msg_id
outf = open('%s.eml' % msg id, 'w')
outf.write(i.fetch(msg id, '(RFC822)')[1][0][1])
outf.close()

i.logout()

As we did in the POP3 example, we defined the username, password, and mail server
at the top of the script. Then, we connected to the IMAP server over SSL. Next, we
logged in and set the email directory to INBOX. Then we started iterating over a search
of the entire directory. The search() method is poorly documented in the Python
Standard Library documentation. The two mandatory parameters for search() are
character set and search criterion. What is a valid character set? What format should
we put in there? What are the choices for search criteria? What format is required? We
suspect that a reading of the IMAP RFC could be helpful, but fortunately there is enough
documentation in the example for IMAP to retrieve all messages in the folder. For each
iteration of the loop, we write the contents of the email to disk. A small word of warning
is in order here: this will mark all email in that folder as “read.” This may not be a
problem for you, and it’s not a big problem as it may be if this deleted the messages,
but it’s something that you should be aware of.

Manual Information Gathering

Let’s also look at the more complicated path of manually gathering information. By
this, we mean information that you gather with your own eyes and key in with your
own hands. Examples include a list of servers with corresponding IP addresses and
functions, a list of contacts with email addresses, phone numbers, and IM screen names,
or the dates that members of your team are planning to be on vacation. There are
certainly tools available that can manage most, if not, all of these types of information.
There is Excel or OpenOftfice Spreadsheet for managing the server list. There is Outlook
or Address Book.app for managing contacts. And either Excel/OpenOffice Spreadsheet
or Outlook can manage vacations. This may be the solution for the situations that arise
when technologies are freely available and use an editing data format that is plain text

126 | Chapter4: Documentation and Reporting

and which provides output that is configurable and supports HTML (or preferably
XHTML).

CELEBRITY PROFILE: RESTLESS

Aaron Hillegass

Aaron Hillegass, who has worked for NeXT and Apple, is an expert
on developing applications for the Mac. He is the author of Cocoa
Programming for Mac OS X (Big Nerd Ranch) and teaches classes on
Cocoa programming at Big Nerd Ranch.

! Please download the full source for ReSTless from the book’s code
= repository at http://www.oreilly.com/9780596515829. Here is how
to call a Python script from a fancy Cocoa application:

#import "MyDocument.h"
@implementation MyDocument
- (id)init

if (![super init]) {

return nil;
}

// What you see for a new document
textStorage = [[NSTextStorage alloc] init];
return self;

- (NSString *)windowNibName

return @"MyDocument";

- (void)prepareEditView

// The layout manager monitors the text storage and
// layout the text in the text view
NSLayoutManager *1m = [editView layoutManager];

// Detach the old text storage
[[editView textStorage] removelayoutManager:1m];

// Attach the new text storage
[textStorage addLayoutManager:1m];

}

- (void)windowControllerDidLoadNib: (NSWindowController *) aController
[super windowControllerDidLoadNib:aController];
// Show the text storage in the text view

, [self prepareEditView];

Manual Information Gathering | 127

http://www.oreilly.com/9780596515829

#pragma mark Saving and Loading

// Saves (the URL is always a file:)

- (BOOL)writeToURL: (NSURL *)absoluteURL
ofType: (NSString *)typeName
error: (NSError **)outError;

{
return [[textStorage string] writeToURL:absoluteURL
atomically:NO
encoding:NSUTF8StringEncoding
error:outError];
}

// Reading (the URL is always a file:)
- (BOOL)readFromURL: (NSURL *)absoluteURL
ofType: (NSString *)typeName
error: (NSError **)outError

{
NSString *string = [NSString stringWithContentsOfURL:absoluteURL
encoding:NSUTF8StringEncoding
error:outError];
// Read failed?
if (!string) {
return NO;
}
[textStorage release];
textStorage = [[NSTextStorage alloc] initWithString:string
attributes:nil];
// Is this a revert?
if (editView) {
[self prepareEditView];
}
return YES;
}

#pragma mark Generating and Saving HTML

- (NSData *)dataForHTML

{
// Create a task to run rst2html.py
NSTask *task = [[NSTask alloc] init];

// Guess the location of the executable
NSString *path = @"/usr/local/bin/rst2html.py";

// Is that file missing? Try inside the python framework
if (![[NSFileManager defaultManager] fileExistsAtPath:path]) {
path = @"/Library/Frameworks/Python.framework/Versions/Current/bin/rst2html.py";

}

[task setLaunchPath:path];

// Connect a pipe where the ReST will go in
NSPipe *inPipe = [[NSPipe alloc] init];
[task setStandardInput:inPipe];

[inPipe release];

// Connect a pipe where the HMTL will come out

128 | Chapter4: Documentation and Reporting

NSPipe *outPipe = [[NSPipe alloc] init];
[task setStandardOutput:outPipe];
[outPipe release];

// Start the process
[task launch];

// Get the data from the text view
NSData *inData = [[textStorage string] dataUsingEncoding:NSUTF8StringEncoding];

// Put the data in the pipe and close it
[[inPipe fileHandleForWriting] writeData:inData];
[[inPipe fileHandleForWriting] closeFile];

// Read the data out of the pipe
NSData *outData = [[outPipe fileHandleForReading] readDataToEndOfFile];

// All done with the task
[task release];

return outData;

}
- (IBAction)renderRest: (id)sender

// Start the spinning so the user feels like waiting
[progressIndicator startAnimation:nil];

// Get the html as an NSData
NSData *htmlData = [self dataForHTML];

// Put the html in the main WebFrame
WebFrame *wf = [webView mainFrame];
[wf loadData:htmlData
MIMEType:@"text/html"
textEncodingName:@"utf-8"
baseURL:nil];

// Stop the spinning so the user feels done
[progressIndicator stopAnimation:nil];

// Triggered by menu item
- (IBAction)startSavePanelForHTML: (id)sender

// Where does it save by default?

NSString *restPath = [self fileName];

NSString *directory = [restPath stringByDeletinglLastPathComponent];

NSString *filename = [[[restPath lastPathComponent]
stringByDeletingPathExtension]
stringByAppendingPathExtension:@"html"];

// Start the save panel
NSSavePanel *sp = [NSSavePanel savePanel];
[sp setRequiredFileType:@"html"];

Manual Information Gathering | 129

[sp setCanSelectHiddenExtension:YES];
[sp beginSheetForDirectory:directory
file:filename
modalForWindow: [editView window]
modalDelegate:self
didEndSelector:@selector(htmlSavePanel:endedWithCode: context:)
contextInfo:NULL];

}

// Called when the save panel is dismissed
- (void)htmlSavePanel: (NSSavePanel *)sp
endedWithCode: (int)returnCode
context:(void *)context

{
// Did the user hit Cancel?
if (returnCode != NSOKButton) {
return;
}
// Get the chosen filename
NSString *savePath = [sp filename];
// Get the HTML data
NSData *htmlData = [self dataForHTML];
// Write it to the file
NSError *writeError;
BOOL success = [htmlData writeToFile:savePath
options:NSAtomichrite
error:&writeError];
// Did the write fail?
if (!success) {
// Show the user why
NSAlert *alert = [NSAlert alertWithError:writeError];
[alert beginSheetModalForWindow:[editView window]
modalDelegate:nil
didEndSelector:NULL
contextInfo:NULL];
return;
}
}

#pragma mark Printing Support

- (NSPrintOperation *)printOperationWithSettings:(NSDictionary *)printSettings
error: (NSError **)outError
{

// Get the information from Page Setup
NSPrintInfo *printInfo = [self printInfo];

// Get the view that displays the whole HTML document
NSView *docView = [[[webView mainFrame] frameView] documentView];

// Create a print operation
return [NSPrintOperation printOperationWithView:docView
printInfo:printInfo];

130 | Chapter4: Documentation and Reporting

@end

While there are a number of alternatives, the specific plain-text format that we’re going
to suggest here is reStructuredText (also referred to as reST). Here is how the
reStructured Text website describes it:

reStructuredText is an easy-to-read, what-you-see-is-what-you-get plaintext markup
syntax and parser system. It is useful for in-line program documentation (such as Python
docstrings), for quickly creating simple web pages, and for standalone documents. re-
StructuredText is designed for extensibility for specific application domains. The re-
Structured Text parser is a component of Docutils. reStructuredText is a revision and
reinterpretation of the StructuredText and Setext lightweight markup systems.

ReST is the preferred format for Python documentation. If you create a Python package
of your code and decide to upload it to the PyPI, reStructuredText is the expected
documentation format. Many individual Python projects are also using ReST as the
primary format for their documentation needs.

So why would you want to use ReST as a documentation format? First, because the
format is uncomplicated. Second, there is an almost immediate familiarity with the
markup. When you see the structure of a document, you quickly understand what the
author intended. Here is an example of a very simple ReST file:

This is just a simple
little subsection. Now,
we'll show a bulleted list:

- item one
- item two
- item three

That probably makes some sort of structured sense to you without having to read the
documentation about what constitutes a valid reStructured Text file. You might not be
able to write a ReST text file, but you can probably follow along enough to read one.

Third, converting from ReST to HTML is simple. And it’s that third point that we’re
going to focus on in this section. We won’t try to give a tutorial on reStructured Text
here. If you want a quick overview of the markup syntax, visit http://docutils.source
forge.net/docs/user/rst/quickref.html.

Using the document that we just showed you as an example, we’ll walk through the
steps converting ReST to HTML:

Manual Information Gathering | 131

http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

In [2]: import docutils.core

In [3]: rest = '''s======
...: Heading

: This is just a simple
..: little subsection. Now,
: we'll show a bulleted list:

: - item one
: - item two
: - item three

In [4]: html = docutils.core.publish string(source=rest, writer name='html')
In [5]: print html[html.find('<body>"') + 6:html.find('</body>")]

<div class="document" id="heading">
<h1 class="title">Heading</h1>

<h2 class="subtitle" id="subheading">SubHeading</h2>
<p>This is just a simple

little subsection. Now,

we'll show a bulleted list:</p>

<ul class="simple">

item one

item two

item three

</div>

This was a simple process. We imported docutils.core. Then we defined a string that
contained our reStructuredText, and ran the string through docutils.core.pub
lish_string(), and then told it to format it as HTML. Then we did a string slice and
extracted the text between the <body> and </body> tags. The reason we sliced this div
area is because docutils, the library we used to convert to HTML, puts an embedded
stylesheet in the generated HTML page so that it doesn’t look too plain.

Now that you see how simple it is, let’s take an example that is slightly more in the
realm of system administration. Every good sysadmin needs to keep track of the servers
they have and the tasks those servers are being used for. So, here’s an example of the
way to create a plain-text server list table and convert it to HTML:

In [6]: server list = ===
Server Name IP Address Function

: card 192.168.1.2 mail server

: vinge 192.168.1.4 web server

: asimov 192.168.1.8 database server
: stephenson 192.168.1.16 file server

: gibson 192.168.1.32 print server

132 | Chapter4: Documentation and Reporting

In [7]: print server list

Server Name IP Address Function
card 192.168.1.2 mail server
vinge 192.168.1.4 web server
asimov 192.168.1.8 database server
stephenson 192.168.1.16 file server
gibson 192.168.1.32 print server

In [8]: html = docutils.core.publish_string(source=server list,

writer name="html")

In [9]: print html[html.find('<body>') + 6:html.find('</body>")]

<div class="document">

<table border="1" class="docutils">
<colgroup>

<col width="33%" />

<col width="29%" />

<col width="38%" />
</colgroup>

<thead valign="bottom">
<tr><th class="head">Server Name</th>
<th class="head">IP Address</th>
<th class="head">Function</th>
</tr>

</thead>

<tbody valign="top">
<tr><td>card</td>
<td>192.168.1.2</td>

<td>mail server</td>

</tr>

<tr><td>vinge</td>
<td>192.168.1.4</td>

<td>web server</td>

</tr>

<tr><td>asimov</td>
<td>192.168.1.8</td>
<td>database server</td>

</tr>

<tr><td>stephenson</td>
<td>192.168.1.16</td>

<td>file server</td>

</tr>

<tr><td>gibson</td>
<td>192.168.1.32</td>
<td>print server</td>

</tr>

</tbody>

</table>

</div>

Manual Information Gathering | 133

Another excellent choice for a plain text markup format is Textile. According to its
website, “Textile takes plain text with *simple* markup and produces valid XHTML.
It’s used in web applications, content management systems, blogging software and
online forums.” So if Textile is a markup language, why are we writing about it in a
book about Python? The reason is that a Python library exists that allows you to process
Textile markup and convert it to XHTML. You can write command-line utilities to call
the Python library and convert Textile files and redirect the output into XHTML files.
Or you can call the Textile conversion module from within some script and program-
matically deal with the XHTML that is returned. Either way, the Textile markup and
the Textile processing module can be hugely beneficial to your documenting needs.

You can install the Textile Python module, with easy install textile. Or you can
install it using your system’s packaging system if it’s included. For Ubuntu, the package
name is python-textile, and you can install it with apt-get install python-textile.
Once Textile is installed, you can start using it by simply importing it, creating a
Textiler object, and calling a single method on that object. Here is an example of code
that converts a Textile bulleted list to XHTML:

In [1]: import textile

In [2]: t = textile.Textiler('''* item one
... ¥ item two
: * item three''')

In [3]: print t.process()

item one</1li>
item two</1i>
item three

We won’t try to present a Textile tutorial here. There are plenty of resources on the
Web for that. For example, http://hobix.com/textile/ provides a good reference for using
Textile. While we won’t get too in-depth into the ins and outs of Textile, we will look
at the way Textile works for one of the examples of manually gathered information we

described earlier—a server list with corresponding IP addresses and functions:
In [1]: import textile
In [2]: server list = '''| . Server Name| . IP Address| . Function]|
.1 |card|192.168.1.2|mail server|
: |vinge|192.168.1.4|web server|
.: |asimov|192.168.1.8|database server|
.: |stephenson|192.168.1.16|file server|
: |gibson|192.168.1.32|print server|''’

In [3]: print server list

. Server Name	. IP Address	. Function
card	192.168.1.2	mail server
vinge	192.168.1.4	web server
asimov	192.168.1.8	database server

134 | Chapter4: Documentation and Reporting

http://hobix.com/textile/

| stephenson|192.168.1.16|file server|
|gibson|192.168.1.32|print server|

In [4]: t = textile.Textiler(server_ list)

In [5]: print t.process()
<table>

<tr>

<th>Server Name</th>
<th>IP Address</th>
<th>Function</th>
</tr>

<tr>

<td>card</td>
<td>192.168.1.2</td>
<td>mail server</td>
</tr>

<tr>

<td>vinge</td>
<td>192.168.1.4</td>
<td>web server</td>
</tr>

<tr>

<td>asimov</td>
<td>192.168.1.8</td>
<td>database server</td>
</tr>

<tr>
<td>stephenson</td>
<td>192.168.1.16</td>
<td>file server</td>
</tr>

<tr>

<td>gibson</td>
<td>192.168.1.32</td>
<td>print server</td>
</tr>

</table>

So you can see that ReST and Textile can both be used effectively to integrate the
conversion of plain text data into a Python script. If you do have data, such as server
lists and contact lists, that needs to be converted into HTML and then have some action
(such as emailing the HTML to a list of recipients or FTPing the HTML to a web server
somewhere) taken upon it, then either the docutils or the Textile library could be a
useful tool for you.

Information Formatting

The next step in getting your information into the hands of your audience is formatting
the data into a medium that is easily read and understood. We think of that medium
as being something at least comprehensible to the user, but better yet, it can be some-
thing attractive. Technically, ReST and Textile encompass both the data gathering and

Information Formatting | 135

the data formatting steps of information sharing, but the following examples will focus
specifically on converting data that we’ve already gathered into a more presentable
medium.

Graphical Images

The following two examples will continue the example of parsing an Apache logtile for
the client IP address and the number of bytes that were transferred. In the previous
section, our example generated a shelve file that contained some information that we
want to share with other users. So, now, we will create a chart object from the shelve
file to make the data easy to read:

#!/usr/bin/env python

import gdchart
import shelve

shelve file = shelve.open('access.s")

items list = [(i[1], i[0]) for i in shelve file.items()]
items list.sort()

bytes sent = [i[0] for i in items list]

#ip addresses = [i[1] for i in items list]

ip addresses = ['XXX.XXX.XXX.XXX' for i in items list]

chart = gdchart.Bar()
chart.width = 400

chart.height = 400

chart.bg color = 'white'
chart.plot _color = 'black’
chart.xtitle = "IP Address"
chart.ytitle = "Bytes Sent"
chart.title = "Usage By IP Address"
chart.setData(bytes_sent)
chart.setlabels(ip_addresses)
chart.draw("bytes_ip bar.png")

shelve file.close()

In this example, we imported two modules, gdchart and shelve. We then opened the
shelve file we created in the previous example. Since the shelve object shares the same
interface as the builtin dictionary object, we were able to call the Items() method on
it. items() returns a list of tuples in which the first element of the tuple is the dictionary
key and the second element of the tuple is the value for that key. We are able to use the
items() method to help sort the data in a way that will make more sense when it is
plotted. We use a list comprehension to reverse the order of the previous tuple. Instead
of being tuples of (ip_address, bytes sent), it is now (bytes_sent, ip_addresses).
We then sort this list and since the bytes_sent element is first, the list.sort() method
will sort by that field first. We then use list comprehensions again to pull the
bytes_sent and the ip_addresses fields. You may notice that we’re inserting an

136 | Chapter4: Documentation and Reporting

Usage By IP Address

75000
70000
BEGO0
BOGO0
SEO00
"550000
& 45000
2 a0000
35000
[==]
FO000
ZEGO0
20000
15000
10000
BO00
I:)}C}C}C}C}C}C}C}C}C}C}C}C}C}C}C}C}C
Moo oMoHoOH oM oM oMoMoM oM oHoOHoOHX X
OoX X X O X O M oM XM X ¥ ¥ X X ¥ X
Moo oMoHoOH oM oM oMoMoM oM oHoOHoOHX X
OX X O XM X X M M XM XM ¥ ¥ M M ¥ X
e A A A A A A e A A A
HOoXH X XM M M O M oM XM XM X O X O M
P A e A A A e e e A A
HOXH X M M OH XK W MW M M M MK W WK MW
IP Address

Figure 4-1. Bar chart of bytes requested per IP address

obfuscated XXX.XXX.XXX. XXX for the IP addresses because we’ve taken these logfiles from
a production web server.

After getting the data that is going to feed the chart out of the way, we can actually start
using gdchart to make a graphical representation of the data. We first create a
gdchart.Bar object. This is simply a chart object for which we’ll be setting some at-
tributes and then we’ll render a PNG file. We then define the size of the chart, in pixels;
we assign colons to use for the background and foreground; and we create titles. We
set the data and labels for the chart, both of which we are pulling from the Apache log
parsing module. Finally, we draw() the chart out to a file and then close our shelve
object. Figure 4-1 shows the chart image.

Here is another example of a script for visually formatting the shelve data, but this time,
rather than a bar chart, the program creates a pie chart:

#!/usr/bin/env python

import gdchart
import shelve
import itertools

shelve file = shelve.open('access.s")

items list = [(i[1], i[0]) for i in shelve file.items() if i[1] > 0]
items list.sort()

bytes sent = [i[0] for i in items list]

#ip addresses = [i[1] for i in items list]

Information Formatting | 137

ip_addresses = ['XXX.XXX.XXX.XXX"' for i in items_list]

chart = gdchart.Pie()
chart.width = 800
chart.height = 800
chart.bg color = 'white'
color_cycle = itertools.cycle([0xDDDDDD, 0x111111, 0x777777])
color_list = []
for i in bytes sent:
color_list.append(color_cycle.next())
chart.color = color_list

chart.plot_color = 'black’
chart.title = "Usage By IP Address"
chart.setData(*bytes_sent)
chart.setlLabels(ip addresses)
chart.draw("bytes ip pie.png")

shelve file.close()

This script is nearly identical to the bar chart example, but we did have to make a few
variations. First, this script creates an instance of gdchart.Pie rather than
gdchart.Bar. Second, we set the colors for the individual data points rather than just
using black for all of them. Since this is a pie chart, having all data pieces black would
make the chart impossible to read, so we decided to alternate among three shades of
grey. We were able to alternate among these three choices by using the cycle() function
from the itertools module. We recommend having a look at the itertools module.
There are lots of fun functions in there to help you deal with iterable objects (such as
lists). Figure 4-2 is the result of our pie graph script.

The only real problem with the pie chart is that the (obfuscated) IP addresses get min-
gled together toward the lower end of the bytes transferred. Both the bar chart and the
pie chart make the data in the shelve file much easier to read, and creating each chart
was surprisingly simple. And plugging in the information was startlingly simple.

PDFs

Another way to format information from a data file is to save it in a PDF file. PDF has
gone mainstream, and we almost expect all documents to be able to convert to PDF.
As a sysadmin, knowing how to generate easy-to-read PDF documents can make your
life easier. After reading this section, you should be able to apply your knowledge to
creating PDF reports of network utilization, user accounts, and so on. We will also
describe the way to embed a PDF automatically in multipart MIME emails with
Python.

The 800 pound gorilla in PDF libraries is ReportLab. There is a free version and a
commercial version of the software. There are quite a few examples you can look at in
the ReportLab PDF library at http://www.reportlab.com/docs/userguide.pdf. In addition
to reading this section, we highly recommend that you read ReportLab’s official

138 | Chapter4: Documentation and Reporting

http://www.reportlab.com/docs/userguide.pdf

Usage By TP Address

. XE%(X SRR

K KKK KK LK

W KN AR LK
N LN XN KN

KRR LERR KAK R

K KRR L KEN K

REK KRN LR KR
W LR R W

Figure 4-2. Pie chart of the number of bytes requested for each IP address

documentation. To install ReportLab on Ubuntu, you can simply apt-get install
python-reportlab. If you’re not on Ubuntu, you can seek out a package for your oper-
ating system. Or, there is always the source distribution to rely on.

Example 4-3 is an example of a “Hello World” PDF created with ReportLab.

Example 4-3. “Hello World” PDF

#!/usr/bin/env python
from reportlab.pdfgen import canvas

def hello():
¢ = canvas.Canvas("helloworld.pdf")
c.drawString(100,100, "Hello World")
c.showPage()
c.save()

hello()

Information Formatting | 139

There are a few things you should notice about our “Hello World” PDF creation. First,
we creat a canvas object. Next, we use the drawString() method to do the equivalent
of file obj.write() to a text file. Finally, showPage() stops the drawing, and save()
actually creates the PDF. If you run this code, you will get a big blank PDF with the
words “Hello World” at the bottom.

If you’ve downloaded the source distribution for ReportLab, you can use the tests
they’ve included as example-driven documentation. That is, when you run the tests,
they’ll generate a set of PDFs for you, and you can compare the test code with the PDFs
to see how to accomplish various visual effects with the ReportLab library.

Now that you’ve seen how to create a PDF with ReportLab, let’s see how you can use
ReportLab to create a custom disk usage report. Creating a custom disk usage report
could be useful. See Example 4-4.

Example 4-4. Disk report PDF

#!/usr/bin/env python

import subprocess

import datetime

from reportlab.pdfgen import canvas
from reportlab.lib.units import inch

def disk_report():
p = subprocess.Popen("df -h", shell=True,
stdout=subprocess.PIPE)
return p.stdout.readlines()

def create_pdf(input,output="disk_report.pdf"):
now = datetime.datetime.today()
date = now.strftime("%h %d %Y %H:%M:%S")
¢ = canvas.Canvas(output)
textobject = c.beginText()
textobject.setTextOrigin(inch, 11*inch)
textobject.textLines('""
Disk Capacity Report: %s
""" % date)
for line in input:

textobject.textLine(line.strip())

c.drawText(textobject)
c.showPage()
c.save()

report = disk report()

create_pdf(report)

This code will generate a report that displays the current disk usage, with a datestamp
and the words, “Disk Capacity Report.” For such a small handful of lines of codes, this
is quite impressive. Let’s look at some of the highlights of this example. First, the
disk_report() function that simply takes the output of df -h and returns it as a list.
Next in the create pdf() function, let’s create a formatted datestamp. The most im-
portant part of this example is the textobject.

140 | Chapter4: Documentation and Reporting

The textobject function is used to create the object that you will place in a PDF. We
create a textobject by calling beginText(). Then we define the way we want the data
to pack into the page. Our PDF approximates an 8.5x11—-inch document, so to pack
our text near the top of the page, we told the text object to set the text origin at 11
inches. After that we created a title by writing out a string to the text object, and then
we finished by iterating over our list of lines from the df command. Notice that we used
line.strip() to remove the newline characters. If we didn’t do this, we would have
seen blobs of black squares where the newline characters were.

You can create much more complex PDFs by adding colors and pictures, but you can
figure that out by reading the excellent userguide associated with the ReportLab PDF
library. The main thing to take away from these examples is that the text is the core
object that holds the data that ultimately gets rendered out.

Information Distribution

After you've gathered and formatted your data, you need to get it to the people who
are interested in it. In this chapter, we’ll mainly focus on ways to email the documen-
tation to your recipients. If you need to post some documentation to a web server for
your users to look at, you can use FTP. We discuss using the Python standard FTP
module in the next chapter.

Sending Email

Dealing with email is a significant part of being a sysadmin. Not only do we have to
manage email servers, but we often to need come up with ways to generate warning
messages and alerts via email. The Python Standard Library has terrific support for
sending email, but very little has been written about it. Because all sysadmins should
take pride in a carefully crafted automated email, this section will show you how to use
Python to perform various email tasks.

Sending basic messages

There are two different packages in Python that allow you to send email. One low level
package, smtplib, is an interface that corresponds to the various RFC’s for the SMTP
protocol. It sends email. The other package, email, assists with parsing and generating
emails. Example 4-5 uses smtplib to build a string that represents the body of an email
message and then uses the email package to send it to an email server.

Example 4-5. Sending messages with SMTP
#!/usr/bin/env python
import smtplib

mail server = 'localhost’
mail_server port = 25

Information Distribution | 141

from_addr = 'sender@example.com’
to_addr = 'receiver@example.com’

from_header = 'From: %s\r\n' % from_addr
to_header = 'To: %s\r\n\r\n' % to_addr
subject_header = 'Subject: nothing interesting’

body = 'This is a not-very-interesting email.’
email message = '%s\n%s\n%s\n\n%s' % (from header, to_header, subject_header, body)

s = smtplib.SMTP(mail_server, mail server_ port)
s.sendmail(from addr, to addr, email message)
s.quit()

Basically, we defined the host and port for the email server along with the “to” and
“from” addresses. Then we built up the email message by concatenating the header
portions together with the email body portion. Finally, we connected to the SMTP
server and sent it to to_addr and from from_addr. We should also note that we specif-
ically formatted the From: and To: with \r\n to conform to the RFC specification.

See Chapter 10, specifically the section “Scheduling Python Processes,” for an example
of code that creates a cron job that sends mail with Python. For now, let’s move from
this basic example onto some of the fun things Python can do with mail.

Using SMTP authentication

Our last example was pretty simple, as it is trivial to send email from Python, but
unfortunately, quite a few SMTP servers will force you to use authentication, so it won’t
work in many situations. Example 4-6 is an example of including SMTP authentication.

Example 4-6. SMTP authentication

#!/usr/bin/env python

import smtplib

mail server = 'smtp.example.com’
mail server port = 465

from_addr = 'foo@example.com'
to_addr = 'bar@exmaple.com'

from_header = 'From: %s\r\n' % from addr

to_header = 'To: %s\r\n\r\n' % to_addr

subject _header = 'Subject: Testing SMTP Authentication'

body = 'This mail tests SMTP Authentication’

email message = '%s\n%s\n%s\n\n%s' % (from_header, to_header, subject header, body)
s = smtplib.SMTP(mail_server, mail_server port)

s.set_debuglevel(1)
s.starttls()

142 | Chapter4: Documentation and Reporting

s.login("fatalbert", "mysecretpassword")
s.sendmail(from_addr, to_addr, email message)
s.quit()

The main difference with this example is that we specified a username and password,
enabled a debuglevel, and then started SSL by using the starttls() method. Enabling
debugging when authentication is involved is an excellent idea. If we take a look at a
failed debug session, it will look like this:

$ python2.5 mail.py

send: 'ehlo example.com\r\n'

reply: '250-example.com Hello example.com [127.0.0.1], pleased to meet you\r\n'
reply: '250-ENHANCEDSTATUSCODES\r\n'

reply: '250-PIPELINING\r\n'

reply: '250-8BITMIME\r\n'

reply: '250-SIZE\r\n'

reply: '250-DSN\r\n'

reply: '250-ETRN\r\n'

reply: '250-DELIVERBY\r\n'

reply: '250 HELP\r\n'

reply: retcode (250); Msg: example.com example.com [127.0.0.1], pleased to meet you
ENHANCEDSTATUSCODES

PIPELINING

8BITMIME

SIZE

DSN

ETRN

DELIVERBY

HELP

send: 'STARTTLS\r\n'

reply: '454 4.3.3 TLS not available after start\r\n'

reply: retcode (454); Msg: 4.3.3 TLS not available after start

In this example, the server with which we attempted to initiate SSL did not support it
and sent us out. It would be quite simple to work around this and many other potential
issues by writing scripts that included some error handle code to send mail using a
cascading system of server attempts, finally finishing at localhost attempt to send
mail.

Sending attachments with Python

Sending text-only email is so passé. With Python we can send messages using the MIME
standard, which lets us encode attachments in the outgoing message. In a previous
section of this chapter, we covered creating PDF reports. Because sysadmins are
impatient, we are going to skip a boring diatribe on the origin of MIME and jump
straight into sending an email with an attachment. See Example 4-7.

Example 4-7. Sending a PDF attachment email

import email

from email .MIMEText import MIMEText

from email .MIMEMultipart import MIMEMultipart
from email .MIMEBase import MIMEBase

Information Distribution | 143

from email import encoders
import smtplib
import mimetypes

from_addr = 'noah.gift@gmail.com’

to_addr = 'jjinux@gmail.com'

subject_header = 'Subject: Sending PDF Attachemt'
attachment = 'disk_usage.pdf'

body = '’

This message sends a PDF attachment created with Report
Lab.

m = MIMEMultipart()

m["To"] = to_addr

m["From"] = from addr
m["Subject"] = subject header

ctype, encoding = mimetypes.guess type(attachment)
print ctype, encoding

maintype, subtype = ctype.split('/', 1)

print maintype, subtype

m.attach(MIMEText(body))

fp = open(attachment, 'rb')

msg = MIMEBase(maintype, subtype)

msg.set_payload(fp.read())

fp.close()

encoders.encode_base64(msg)

msg.add_header("Content-Disposition”, "attachment", filename=attachment)
m.attach(msg)

= smtplib.SMTP("localhost™)
.set_debuglevel(1)

.sendmail(from addr, to addr, m.as_string())
.quit()

" n n un

So, we used a little magic and encoded our disk report PDF we created earlier and
emailed it out.

Trac

Trac is a wiki and issue tracking system. It is typically used for software development,
but can really be used for anything that you would want to use a wiki or ticketing system
for, and it is written in Python. You can find the latest copy of the Trac documentation
and package here: http://trac.edgewall.org/. It is beyond the scope of this book to get
into too much detail about Trac, but it is a good tool for general trouble tickets as well.
One of the other interesting aspects of Trac is that it can be extended via plug-ins.

We’re mentioning it last because it really fits into all three of the categories that we’ve
been discussing: information gathering, formatting, and distribution. The wiki portion
allows users to create web pages through browsers. The information they put into those

144 | Chapter4: Documentation and Reporting

http://trac.edgewall.org/

passages is rendered in HTML for other users to view through browsers. This is the full
cycle of what we’ve been discussing in this chapter.

Similarly, the ticket tracking system allows users to put in requests for work or to report
problems they encounter. You can report on the tickets that have been entered via the
web interface and can even generate CSV reports. Once again, Trac spans the full cycle
of what we’ve discussed in this chapter.

We recommend that you explore Trac to see if it meets your needs. You might need
something with more features and capabilities or you might want something simpler,
but it’s worth finding out more about.

Summary

In this chapter, we looked at ways to gather data, in both an automated and a manual
way. We also looked at ways to put that data together into a few different, more dis-
tributable formats, namely HTML, PDF, and PNG. Finally, we looked at how to get
the information out to people who are interested in it. As we said at the beginning of
this chapter, documentation might not be the most glamorous part of your job. You
might not have even realized that you were signing up to document things when you
started. But clear and precise documentation is a critical element of system adminis-
tration. We hope the tips in this chapter can make the sometimes mundane task of
documentation a little more fun.

Summary | 145

CHAPTER 5
Networking

Networking often refers to connecting multiple computers together for the purpose of
allowing some communication among them. But, for our purposes, we are less inter-
ested in allowing computers to communicate with one another and more interested in
allowing processes to communicate with one another. Whether the processes are on
the same computer or different computers is irrelevant for the techniques that we’re
going to show.

This chapter will focus on writing Python programs that connect to other processes
using the standard socket library (as well as libraries built on top of socket) and then
interacting with those other processes.

Network Clients

While servers sit and wait for a client to connect to them, clients initiate connections.
The Python Standard Library contains implementations of many used network clients.
This section will discuss some of the more common and frequently useful clients.

socket

The socket module provides a Python interface to your operating system’s socket im-
plementation. This means that you can do whatever can be done to or with sockets,
using Python. In case you have never done any network programming before, this
chapter does provide a brief overview of networking. It should give you a flavor of what
kinds of things you can do with the Python networking libraries.

The socket module provides the factory function, socket(). The socket() function, in
turn, returns a socket object. While there are a number of arguments to pass to
socket () for specifying the kind of socket to create, calling the socket () factory function
with no arguments returns a socket object with sensible defaults—a TCP/IP socket:

In [1]: import socket

In [2]: s = socket.socket()

147

In [3]: s.connect(('192.168.1.15', 80))

In [4]: s.send("GET / HTTP/1.0\n\n")
out[4]: 16

In [5]: s.recv(200)

Out[5]: 'HTTP/1.1 200 OK\r\n\

Date: Mon, 03 Sep 2007 18:25:45 GMT\r\n\

Server: Apache/2.0.55 (Ubuntu) DAV/2 PHP/5.1.6\r\n\
Content-Length: 691\r\n\

Connection: close\r\n\

Content-Type: text/html; charset=UTF-8\r\n\

\r\n\

<!DOCTYPE HTML P’

In [6]: s.close()

This example created a socket object called s from the socket() factory function. It
then connected to a local default web server, indicated by port 80, which is the default
port for HTTP. Then, it sent the server the text string "GET / HTTP/1.0\n\n" (which is
simply an HTTP request). Following the send, it received the first 200 bytes of the
server’s response, which is a 200 0K status message and HTTP headers. Finally, we
closed the connection.

The socket methods demonstrated in this example represent the methods that you are
likely to find yourself using most often. Connect () establishes a communication channel
between your socket object and the remote (specifically meaning “not this socket ob-
ject”). Send() transmits data from your socket object to the remote end. Recv() receives
any data that the remote end has sent back. And close() terminates the communication
channel between the two sockets. This is a really simple example that shows the ease
with which you can create socket objects and then send and receive data over them.

Now we’ll look at a slightly more useful example. Suppose you have a server that is
running some sort of network application, such as a web server. And suppose that you
are interested in watching this server to be sure that, over the course of a day, you can
make a socket connection to the web server. This sort of monitoring is minimal, but it
proves that the server itself is still up and that the web server is still listening on some
port. See Example 5-1.

Example 5-1. TCP port checker
#!/usr/bin/env python

import socket
import re
import sys

def check_server(address, port):
#create a TCP socket
s = socket.socket()
print "Attempting to connect to %s on port %s" % (address, port)
try:

148 | Chapter5: Networking

s.connect((address, port))
print "Connected to %s on port %s" % (address, port)
return True
except socket.error, e:
print "Connection to %s on port %s failed: %s" % (address, port, e)
return False

if _name__ == '_main_':
from optparse import OptionParser
parser = OptionParser()

parser.add_option("-a", "--address", dest="address", default='localhost’',
help="ADDRESS for server", metavar="ADDRESS")

parser.add option("-p", "--port", dest="port", type="int", default=80,
help="PORT for server", metavar="PORT")

(options, args) = parser.parse args()

print 'options: %s, args: %s' % (options, args)
check = check server(options.address, options.port)
print 'check server returned %s' % check
sys.exit(not check)

All of the work occurs in the check server() function. Check server() creates a
socket object. Then, it tries to connect to the specified address and port number. If it
succeeds, it returns True. If it fails, the socket.connect() call will throw an exception,
which is handled, and the function returns False. The main section of the code calls
check_server(). This “main” section parses the arguments from the user and puts the
user requested arguments into an appropriate format to pass in to check_server(). This
whole script prints out status messages as it goes along. The last thing it prints out is
the return value of check server(). The script returns the opposite of the
check_server() return code to the shell. The reason that we return the opposite of this
return code is to make this script a useful scriptable utility. Typically, utilities like this
return 0 to the shell on success and something other than 0 on failure (typically some-
thing positive). Here is an example of the piece of code successfully connecting to the
web server we connected to earlier:

jmjones@dinkgutsy:code$ python port checker tcp.py -a 192.168.1.15 -p 80

options: {'port': 80, 'address': '192.168.1.15'}, args: []

Attempting to connect to 192.168.1.15 on port 80

Connected to 192.168.1.15 on port 80
check_server returned True

The last output line, which contains check_server returned True, means that the con-
nection was a success.

Here is an example of a connection call that failed:

jmjones@dinkgutsy:code$ python port checker tcp.py -a 192.168.1.15 -p 81
options: {'port': 81, 'address': '192.168.1.15'}, args: []

Attempting to connect to 192.168.1.15 on port 81

Connection to 192.168.1.15 on port 81 failed: (111, 'Connection refused')
check_server returned False

Network Clients | 149

The last log line, which contains check_server returned False, means that the con-
nection was a failure. In the penultimate output line, which contains Connection to
192.168.1.15 on port 81 failed, we also see the reason, 'Connection refused'. Justa
wild guess here, but it may have something to do with there being nothing running on
port 81 of this particular server.

We've created three examples to demonstrate how you can use this utility in shell
scripts. First, we give a shell command to run the script and to print out SUCCESS if the
script succeeds. We use the 8& operator in place of an if-then statement:

$ python port checker tcp.py -a 192.168.1.15 -p 80 && echo "SUCCESS"
options: {'port': 80, 'address': '192.168.1.15'}, args: []
Attempting to connect to 192.168.1.15 on port 80

Connected to 192.168.1.15 on port 80

check_server returned True

SUCCESS

This script succeeded, so after executing and printing status results, the shell prints
SUCCESS:

$ python port checker tcp.py -a 192.168.1.15 -p 81 && echo "FAILURE"
options: {'port': 81, 'address': '192.168.1.15'}, args: []

Attempting to connect to 192.168.1.15 on port 81

Connection to 192.168.1.15 on port 81 failed: (111, 'Connection refused')
check_server returned False

This script failed, so it never printed FAILURE:

$ python port_checker tcp.py -a 192.168.1.15 -p 81 || echo "FAILURE"
options: {'port': 81, 'address': '192.168.1.15'}, args: []

Attempting to connect to 192.168.1.15 on port 81

Connection to 192.168.1.15 on port 81 failed: (111, 'Connection refused')
check_server returned False

FAILURE

This script failed, but we changed the 8& to | |. This just means if the script returns a
failure result, print FAILURE. So it did.

The fact that a web server allows a connection on port 80 doesn’t mean that there is
an HTTP server available for the connection. A test that will help us better determine
the status of a web server is whether the web server generates HTTP headers with the
expected status code for some specific URL. Example 5-2 does just that.

Example 5-2. Socket-based web server checker

#!/usr/bin/env python

import socket
import re
import sys

def check webserver(address, port, resource):
#build up HTTP request string
if not resource.startswith('/'):

150 | Chapter5: Networking

resource = '/' + resource
request_string = "GET %s HTTP/1.1\r\nHost: %s\r\n\r\n" % (resource, address)
print 'HTTP request:'
print '|||%s|||"' % request_string

#create a TCP socket
s = socket.socket()
print "Attempting to connect to %s on port %s" % (address, port)
try:
s.connect((address, port))
print "Connected to %s on port %s" % (address, port)
s.send(request_string)
#we should only need the first 100 bytes or so
rsp = s.recv(100)
print 'Received 100 bytes of HTTP response’
print '[||%s|||" % rsp
except socket.error, e:
print "Connection to %s on port %s failed: %s" % (address, port, e)
return False
finally:
#be a good citizen and close your connection
print "Closing the connection"
s.close()
lines = rsp.splitlines()
print 'First line of HTTP response: %s' % lines[0]
try:
version, status, message = re.split(r'\s+', lines[0], 2)
print 'Version: %s, Status: %s, Message: %s' % (version, status, message)
except ValueError:
print 'Failed to split status line'
return False
if status in ['200', '301']:
print 'Success - status was %s' % status
return True
else:
print 'Status was %s' % status
return False

if _name__ == '_main_':
from optparse import OptionParser
parser = OptionParser()
parser.add option("-a", "--address", dest="address", default='localhost',
help="ADDRESS for webserver", metavar="ADDRESS")

parser.add option("-p", "--port", dest="port", type="int", default=80,
help="PORT for webserver", metavar="PORT")

parser.add option("-r", "--resource", dest="resource", default='index.html',
help="RESOURCE to check", metavar="RESOURCE")

(options, args) = parser.parse_args()

print 'options: %s, args: %s' % (options, args)

check = check_webserver(options.address, options.port, options.resource)
print 'check_webserver returned %s' % check

sys.exit(not check)

Network Clients | 151

Similar to the previous example where check server() did all the work, check web
server () does all the work in this example, too. First, check_webserver() builds up the
HTTP request string. The HTTP protocol, in case you don’t know, is a well-defined
way that HTTP clients and servers communicate. The HTTP request that check web
server() builds is nearly the simplest HTTP request possible. Next, check web
server() creates a socket object, connects to the server, and sends the HTTP request
to the server. Then, it reads back the response from the server and closes the connection.
When there is a socket error, check_webserver () returns False, indicating that the check
failed. It then takes what it read from the server, and extracts the status code from it.
If the status code is either 200 meaning “OK,” or 301, meaning “Moved Permanently,”
check_webserver() returns True, otherwise, it returns False. The main portion of the
script parses the input from the user and calls check_webserver (). After it gets the result
back from check_webserver(), it returns the opposite of the return value from check_web
server() to the shell. The concept here is similar to what we did with the plain socket
checker. We want to be able to call this from a shell script and see if it succeeded or
failed. Here is the code in action:

$ python web_server checker tcp.py -a 192.168.1.15 -p 80 -r apache2-default

options: {'resource': 'apache2-default', 'port': 80, 'address':

'192.168.1.15"}, args: []

HTTP request:

| ||GET /apache2-default HTTP/1.1
Host: 192.168.1.15

Attempting to connect to 192.168.1.15 on port 80

Connected to 192.168.1.15 on port 80

Received 100 bytes of HTTP response

| ||HTTP/1.1 301 Moved Permanently

Date: Wed, 16 Apr 2008 23:31:24 GMT

Server: Apache/2.0.55 (Ubuntu) |||

Closing the connection

First line of HTTP response: HTTP/1.1 301 Moved Permanently
Version: HTTP/1.1, Status: 301, Message: Moved Permanently
Success - status was 301

check_webserver returned True

The last four output lines show that the HTTP status code for /apache2-default on this
web server was 301, so this run was successful.

Here is another run. This time, we’ll intentionally specify a resource that isn’t there to
show what happens when the HTTP call is False:

$ python web_server_checker_tcp.py -a 192.168.1.15 -p 80 -r foo

options: {'resource': 'foo', 'port': 80, 'address': '192.168.1.15'}, args: []
HTTP request:

|| |GET /foo HTTP/1.1

Host: 192.168.1.15

Attempting to connect to 192.168.1.15 on port 80
Connected to 192.168.1.15 on port 80

152 | Chapter5: Networking

Received 100 bytes of HTTP response

| | [HTTP/1.1 404 Not Found

Date: Wed, 16 Apr 2008 23:58:55 GMT

Server: Apache/2.0.55 (Ubuntu) DAV/2 PH|||

Closing the connection

First line of HTTP response: HTTP/1.1 404 Not Found
Version: HTTP/1.1, Status: 404, Message: Not Found
Status was 404

check_webserver returned False

Just as the last four lines of the previous example showed that the run was successful,
the last four lines of this example show that it was unsuccessful. Because there is
no /foo on this web server, this checker returned False.

This section showed how to construct low-level utilities to connect to network servers
and perform basic checks on them. The purpose of these examples was to introduce
you to what happens behind the scenes when clients and servers communicate with
one another. If you have an opportunity to write a network component using a higher
library than the socket module, you should take it. It is not desirable to spend your
time writing network components using a low-level library such as socket.

httplib

The previous example showed how to make an HTTP request using the socket module
directly. This example will show how to use the httplib module. When should you
consider using the httplib module rather than the socket module? Or more generically,
when should you consider using a higher level library rather than a lower level library?
A good rule of thumb is any chance you get. Sometimes using a lower level library makes
sense. You might need to accomplish something thatisn’talready in an available library,
for example, or you might need to have finer-grained control of something already in
alibrary, or there might be a performance advantage. But in this case, there is no reason
not to use a higher-level library such as httplib over a lower-level library such as socket.

Example 5-3 accomplishes the same functionality as the previous example did with the
httplib module.

Example 5-3. httplib-based web server checker
#!/usr/bin/env python

import httplib
import sys

def check webserver(address, port, resource):
#create connection
if not resource.startswith('/'):
resource = '/' + resource
try:
conn = httplib.HTTPConnection(address, port)
print 'HTTP connection created successfully’

Network Clients | 153

#make request

req = conn.request('GET', resource)

print 'request for %s successful' % resource

#get response

response = conn.getresponse()

print 'response status: %s' % response.status
except sock.error, e:

print 'HTTP connection failed: %s' % e

return False
finally:

conn.close()

print 'HTTP connection closed successfully'
if response.status in [200, 301]:

return True
else:

return False

if name_ =="' main_':

from optparse import OptionParser

parser = OptionParser()

parser.add option("-a", "--address", dest="address", default='localhost',
help="ADDRESS for webserver", metavar="ADDRESS")

parser.add option("-p", "--port", dest="port", type="int", default=80,
help="PORT for webserver", metavar="PORT")

parser.add option("-r", "--resource", dest="resource", default='index.html',
help="RESOURCE to check", metavar="RESOURCE")

(options, args) = parser.parse args()

print 'options: %s, args: %s' % (options, args)

check = check webserver(options.address, options.port, options.resource)

print 'check webserver returned %s' % check

sys.exit(not check)

"

In its conception, this example follows the socket example pretty closely. Two of the
biggest differences are that you don’t have to manually create the HTTP request and
that you don’t have to manually parse the HTTP response. The httplib connection
object has a request() method that builds and sends the HTTP request for you. The
connection object also has a getresponse() method that creates a response object for
you. We were able to access the HTTP status by referring to the status attribute on the
response object. Even if it isn’t that much less code to write, it is nice to not have to go
through the trouble of keeping up with creating, sending, and receiving the HTTP
request and response. This code just feels more tidy.

Here is a run that uses the same command-line parameters the previous successful
scenario used. We're looking for / on our web server, and we find it:

$ python web_server checker httplib.py -a 192.168.1.15 -1 /

options: {'resource': '/', 'port': 80, 'address': '192.168.1.15'}, args: []
HTTP connection created successfully

request for / successful

response status: 200

HTTP connection closed successfully

check_webserver returned True

154 | Chapter5: Networking

And here is a run with the same command-line parameters as the failure scenario earlier.
We’re looking for /foo, and we don’t find it:

$ python web_server_checker httplib.py -a 192.168.1.15 -r /foo

options: {'resource': '/foo', 'port': 80, 'address': '192.168.1.15'}, args: []

HTTP connection created successfully

request for /foo successful

response status: 404

HTTP connection closed successfully

check webserver returned False

As we said earlier, any time you have a chance to use a higher-level library, you should
use it. Using httplib rather than using the socket module alone was a simpler, cleaner
process. And the simpler you can make your code, the fewer bugs you’ll have.

ftplib

In addition to the socket and httplib modules, the Python Standard Library also con-
tains an FTP client module named ftplib. ftplib is a full-featured FTP client library
that will allow you to programmatically perform any tasks you would normally use an
FTP client application to perform. For example, you can log in to an FTP server, list
files in a particular directory, retrieve files, put files, change directories, and logout, all
from within a Python script. You can even use one of the many GUI frameworks avail-
able in Python and build your own GUI FTP application.

Rather than give a full overview of this library, we’ll show you Example 5-4 and then
explain how it works.

Example 5-4. FTP URL retriever using ftplib
#!/usr/bin/env python

from ftplib import FTP

import ftplib

import sys

from optparse import OptionParser

parser = OptionParser()

parser.add option("-a", "--remote_host_address", dest="remote host_address",
help="REMOTE FTP HOST.",
metavar="REMOTE FTP HOST")

parser.add option("-r", "--remote_file", dest="remote_file",
help="REMOTE FILE NAME to download.",
metavar="REMOTE FILE NAME")

parser.add option("-1", "--local file", dest="local file",
help="LOCAL FILE NAME to save remote file to", metavar="LOCAL FILE NAME")

parser.add option("-u", "--username", dest="username",
help="USERNAME for ftp server", metavar="USERNAME")

Network Clients | 155

parser.add_option("-p", "--password", dest="password",
help="PASSWORD for ftp server", metavar="PASSWORD")

(options, args) = parser.parse_args()

if not (options.remote file and
options.local file and
options.remote_host_address):
parser.error('REMOTE HOST, LOCAL FILE NAME, ' \
'and REMOTE FILE NAME are mandatory')

if options.username and not options.password:
parser.error('PASSWORD is mandatory if USERNAME is present')

ftp = FTP(options.remote host address)
if options.username:
try:
ftp.login(options.username, options.password)
except ftplib.error perm, e:
print "Login failed: %s" % e
sys.exit(1)
else:
try:
ftp.login()
except ftplib.error perm, e:
print "Anonymous login failed: %s" % e
sys.exit(1)
try:
local file = open(options.local file, 'wb')
ftp.retrbinary('RETR %s' % options.remote file, local file.write)
finally:
local file.close()
ftp.close()

The first part of the working code (past all the command-line parsing) creates an FTP
object by passing the FTP server’s address to FTP’s constructor. Alternatively, we could
have created an FTP object by passing nothing to the constructor and then calling the
connect() method with the FTP server’s address. The code then logs into the FTP server,
using the username and password if they were provided, or anonymous authentication
if they were not. Next, it creates a file object to store the data from the file on the FTP
server. Then it calls the retrbinary() method on the FTP object. Retrbinary(), as the
name implies, retrieves a binary file from an FTP server. It takes two parameters: the
FTP retrieve command and a callback function. You might notice that our callback
function is the write method on the file object we created in the previous step. It is
important to note that we are not calling the write() method in this case. We are
passing the write method in to the retrbinary() method so that retrbinary() can call
write(). Retrbinary() will call whatever callback function we pass it with each chunk
of data that it receives from the FTP server. This callback function could do anything
with the data. The callback function could just log that it received N number of bytes
from the FTP server. Passing in a file object’s write method causes the script to write

156 | Chapter5: Networking

the contents of the file from the FTP server to the file object. Finally, it closes the
file object and the FTP connection. We did a little error handling in the process: we
set up a try block around retrieving the binary file from the FTP server and a finally
block around the call to close the local file and FTP connection. If anything bad hap-
pens, we want to clean up our files before the script terminates. For a brief discussion
of callbacks, see the Appendix.

urllib

Moving up the standard library modules to a higher-level library, we arrive at urllib.
When you think of urllib, it’s easy to think of HTTP libraries only and forget that FTP
resources also can be identified by URLs. Consequently, you might not have considered
using urllib to retrieve FTP resources, but the functionality is there. Example 5-5 is
the same as the ftplib example earlier, except it uses urllib.

Example 5-5. FTP URL retriever using urllib
#!/usr/bin/env python

nnn

url retriever
Usage:
url_retrieve urllib.py URL FILENAME

URL:

If the URL is an FTP URL the format should be:
ftp://[username[:password]@]hostname/filename

If you want to use absolute paths to the file to download,
you should make the URL look something like this:
ftp://user:password@host/%2Fpath/to/myfile.txt

Notice the '%2F' at the beginning of the path to the file.

FILENAME:
absolute or relative path to the filename to save downloaded file as

nnn

import urllib

import sys

if '-h" in sys.argv or '
print _ doc__
sys.exit(1)

--help' in sys.argv:

if not len(sys.argv) == 3:
print 'URL and FILENAME are mandatory'
print _ doc__
sys.exit(1)
url = sys.argv[1]
filename = sys.argv[2]
urllib.urlretrieve(url, filename)

Network Clients | 157

This script is short and sweet. It really shows off the power of urllib. There are actually
more lines of usage documentation than code in it. There is even more argument parsing
than code, which says a lot because there isn’t much of that, either. We decided to go
with a very simple argument parsing routine with this script. Since both of the “options”
were mandatory, we decided to use positional arguments rather than option switches.
Effectively, the only line of code in this example that performs work is this one:

urllib.urlretrieve(url, filename)

After retrieving the options with sys.argv, this line of code pulls down the specified
URL and saves it to the specified local filename. It works with HTTP URLs and FTP
URLs, and will even work when the username and password are included in the URL.

A point worth emphasizing here is that if you think that something should be easier
than the way you are doing it with another language, it probably is. There is probably
some higher-level library out there somewhere that will do what you need to do fre-
quently, and that library will be in the Python Standard Library. In this case, urllib did
exactly what we wanted to do, and we didn’t have to go anywhere beyond the standard
library docs to find out about it. Sometimes, you might have to go outside the Python
Standard Library, but you will find other Python resources such as the Python Package
Index (PyPI) at http://pypi.python.org/pypi.

urllib2

Another high level library is urllib2. Urllib2 contains pretty much the same function-
ality as urllib, but expands on it. For example, urllib2 contains better authentication
support and better cookie support. So if you start using urllib and think it isn’t doing
everything for you that it should, take a look at urllib2 to see if it meets your needs.

Remote Procedure Call Facilities

Typically, the reason for writing networking code is that you need interprocess com-
munication (IPC). Often, plain IPC, such as HTTP or a plain socket, is good enough.
However, there are times when it would be even more useful to execute code in a
different process or even on a different computer, as though it were in the same process
that the code you are working on is in. If you could, in fact, execute code remotely in
some other process from your Python program, you might expect that the return values
from the remote calls would be Python objects which you could deal more easily with
than chunks of text through which you have to manually parse. The good news is that
there are several tools for remote procedure call (RPC) functionality.

XML-RPC

XML-RPC exchanges a specifically formatted XML document between two processes
to perform a remote procedure call. But you don’t need to worry about XML part; you’ll

158 | Chapter5: Networking

http://pypi.python.org/pypi.

probably never have to know the format of the document that is being exchanged
between the two processes. The only thing you really need to know to get started using
XML-RPC is that there is an implementation of both the client and the server portions
in the Python Standard Library. Two things that might be useful to know are XML-
RPC is available for most programming languages, and it is very simple to use.

Example 5-6 is a simple XML-RPC server.

Example 5-6. Simple XML-RPC server
#!/usr/bin/env python

import SimpleXMLRPCServer
import os

def 1ls(directory):
try:
return os.listdir(directory)
except OSError:
return []

def 1s_boom(directory):
return os.listdir(directory)

def cb(obj):
print "OBJECT::", obj
print "OBJECT. class_ ::", obj.__class__
return obj.cb()

if _name__ == '_main__
s = SimpleXMLRPCServer.SimpleXMLRPCServer(('127.0.0.1"', 8765))
s.register_function(ls)
s.register_function(1ls_boom)
s.register_function(cb)
s.serve_forever()

This code creates a new SimpleXMLRPCServer object and binds it to port 8765 on
127.0.0.1, the loop back interface, which makes this accessible to processes only on
this particular machine. It then registers the functions 1s(), 1s_boom(), and cb(), which
we defined in the code. We'll explain the cb() function in a few moments. The Ls()
function will list the contents of the directory passed in using os.1listdir() and return
those results as a list. 1s() masks any 0SError exceptions that we may get. 1s_boom()
lets any exception that we hit find its way back to the XML-RPC client. Then, the code
enters into the serve_forever() loop, which waits for a connection it can handle. Here
is an example of this code used in an IPython shell:

In [1]: import xmlrpclib
In [2]: x = xmlrpclib.ServerProxy('http://localhost:8765")
In [3]: x.1s(".")

Out[3]:
['.svn',

Remote Procedure Call Facilities | 159

'web_server checker httplib.py',

'subprocess_arp.py',
'web_server_checker tcp.py']

In [4]: x.1s_boom('.")

Out[4]:

['.svn',
'web_server checker httplib.py',

'subprocess_arp.py',
'web_server checker tcp.py']

In [5]: x.1s('/foo")
out[s]: []

In [6]: x.1s boom('/foo")

<class 'xmlrpclib.Fault'> Traceback (most recent call last)

<<big nasty traceback>>

786 if self. type == "fault":

--> 787 raise Fault(**self. stack[0])
788 return tuple(self._stack)
789

<class 'xmlrpclib.Fault'>: <Fault 1: "<type 'exceptions.OSError'»>
:[Errno 2] No such file or directory: '/foo'">

First, we created a ServerProxy() object by passing in the address of the XML-RPC
server. Then, we called .1s("'.") to see which files were in the server’s current working
directory. The server was running in a directory that contains example code from this
book, so those are the files you see from the directory listing. The really interesting
thing is that on the client side, x.1s(".") returned a Python list. Had this server been
implemented in Java, Perl, Ruby, or C#, you could expect the same thing. The language
that implements the server would have done a directory listing; created a list, array, or
collection of filenames; and the XML-RPC server code would have then created an XML
representation of that list or array and sent it back over the wire to your client. We also
tried out 1s_boom(). Since 1s_boom() lacks the exception handling of 1s(), we can see
that the exception passes from the server back to the client. We even see a traceback
on the client.

The interoperability possibilities that XML-RPC opens up to you are certainly inter-
esting. But perhaps more interesting is the fact that you can write a piece of code to run
on any number of machines and be able to execute that code remotely whenever you
wish.

160 | Chapter5: Networking

XML-RPC is not without its limitations, though. Whether you think these limitations
are problematic or not is a matter of engineering taste. For example, if you pass in a
custom Python object, the XML-RPC library will convert that object to a Python dic-
tionary, serialize it to XML, and pass it across the wire. You can certainly work around
this, but it would require writing code to extract your data from the XML version of
the dictionary so that you could pass it back into the original object that was dictified.
Rather than go through that trouble, why not use your objects directly on your RPC
server? You can’t with XML-RPC, but there are other options.

Pyro

Pyro is one framework that alleviates XML-RPC shortcomings. Pyro stands for Python
Remote Objects (capitalization intentional). It lets you do everything you could do with
XML-RPC, but rather than dictifying your objects, it maintains their types when you
pass them across. If you do want to use Pyro, you will have to install it separately. It
doesn’t come with Python. Also be aware that Pyro only works with Python, whereas
XML-RPC can work between Python and other languages. Example 5-7 is an imple-
mentation of the same 1s() functionality from the XML-RPC example.

Example 5-7. Simple Pyro server

#!/usr/bin/env python

import Pyro.core
import os
from xmlrpc_pyro_diff import PSACB

class PSAExample(Pyro.core.ObjBase):

def 1s(self, directory):
try:
return os.listdir(directory)
except OSError:
return []

def 1s_boom(self, directory):
return os.listdir(directory)

def cb(self, obj):
print "OBJECT:", obj
print "OBJECT. class_ :", obj._class
return obj.cb()

if _name_ =="'_ main_ ':
Pyro.core.initServer()
daemon=Pyro.core.Daemon()
uri=daemon.connect (PSAExample(), "psaexample")

print "The daemon runs on port:",daemon.port
print "The object's uri is:",uri

Remote Procedure Call Facilities | 161

daemon.requestLoop()

The Pyro example is similar to the XML-RPC example. First, we created a PSAExample
class with 1s(), 1s_boom(), and cb() methods on it. We then created a daemon from
Pyro’sinternal plumbing. Then, we associated the PSAExample with the daemon. Finally,
we told the daemon to start serving requests.

Here we access the Pyro server from an [Python prompt:
In [1]: import Pyro.core
/usr/lib/python2.5/site-packages/Pyro/core.py:11: DeprecationWarning:
The sre module is deprecated, please import re.
import sys, time, sre, os, weakref

In [2]: psa = Pyro.core.getProxyForURI("PYROLOC://localhost:7766/psaexample")
Pyro Client Initialized. Using Pyro V3.5

In [3]: psa.ls(".")
Out[3]:
['pyro_server.py',

'subprocess_arp.py',
'web_server_checker tcp.py']
In [4]: psa.ls_boom('.")
Out[4]:
['pyro_server.py',

'subprocess_arp.py',
'web_server_checker tcp.py']

In [5]: psa.ls("/foo")
out[s]: []

In [6]: psa.ls _boom("/foo")

<type 'exceptions.OSError'> Traceback (most recent call last)

/home/jmjones/local/Projects/psabook/oreilly/<ipython console> in <module>()

<<big nasty traceback>>

--> 115 raise self.excObj
116 def _str (self):
117 s=self.excObj._class__._ name__

<type 'exceptions.OSError'>: [Errno 2] No such file or directory: '/foo'

Nifty. It returned the same output as the XML-RPC example. We expected as much.
But what happens when we pass in a custom object? We’re going to define a new class,

162 | Chapter5: Networking

create an object from it, and then pass it to the XML-RPC cb() function and the Pyro
cb() method from the examples above. Example 5-8 shows the piece of code that we
are going to execute.

Example 5-8. Differences between XML-RPC and Pyro

import Pyro.core
import xmlrpclib

class PSACB:

if

def _init_ (self):
self.some attribute = 1

def cb(self):
return "PSA callback"
_name__ == "'_main_ ":
cb = PSACB()

print "PYRO SECTION"

print "*" * 20

psapyro = Pyro.core.getProxyForURI("PYROLOC://localhost:7766/psaexample")
print "-->>", psapyro.cb(cb)

print "*" * 20

print "XML-RPC SECTION"

print "*" * 20

psaxmlrpc = xmlrpclib.ServerProxy('http://localhost:8765")
print "-->>", psaxmlrpc.cb(cb)

print "*" * 20

The call to the Pyro and XML-RPC implementation of the cb() function should both
call cb() on the object passed in to it. And in both instances, it should return the string
PSA callback. And here is what happens when we run it:

jmjones@dinkgutsy:code$ python xmlrpc_pyro diff.py
/usr/1lib/python2.5/site-packages/Pyro/core.py:11: DeprecationWarning:
The sre module is deprecated, please import re.

import sys, time, sre, os, weakref
PYRO SECTION

Pyro Client Initialized. Using Pyro V3.5
-->> PSA callback

XML-RPC SECTION

-=>>
Traceback (most recent call last):
File "xmlrpc_pyro_diff.py", line 23, in <module>
print "-->>", psaxmlrpc.cb(cb)
File "/usr/1ib/python2.5/xmlrpclib.py", line 1147, in _ call _
return self. send(self._ name, args)
File "/usr/1ib/python2.5/xmlrpclib.py", line 1437, in _ request
verbose=self. verbose
File "/usr/lib/python2.5/xmlrpclib.py", line 1201, in request

Remote Procedure Call Facilities | 163

return self. parse response(h.getfile(), sock)
File "/usr/lib/python2.5/xmlrpclib.py", line 1340, in _parse_response
return u.close()
File "/usr/1lib/python2.5/xmlrpclib.py", line 787, in close
raise Fault(**self. stack[0])
xmlrpclib.Fault: <Fault 1: "<type 'exceptions.AttributeError'>:'dict' object
has no attribute 'cb'">

The Pyro implementation worked, but the XML-RPC implementation failed and left
us a traceback. The last line of the traceback says that a dict object has no attribute of
cb. This will make more sense when we show you the output from the XML-RPC server.
Remember that the cb() function had some print statements in it to show some infor-
mation about what was going on. Here is the XML-RPC server output:

OBJECT:: {'some_attribute': 1}

OBJECT. class :: <type 'dict'>

localhost - - [17/Apr/2008 16:39:02] "POST /RPC2 HTTP/1.0" 200 -
In dictifying the object that we created in the XML-RPC client, some_attribute was
converted to a dictionary key. While this one attribute was preserved, the cb() method
was not.

Here is the Pyro server output:

OBJECT: <xmlrpc_pyro diff.PSACB instance at 0x9595a8>
OBJECT. class_ : xmlrpc_pyro diff.PSACB

Notice that the class of the object is a PSACB, which is how it was created. On the Pyro
server side, we had to include code that imported the same code that the client was
using. It makes sense that the Pyro server needs to import the client’s code. Pyro uses
the Python standard pickle to serialize objects, so it makes sense that Pyro behaves
similarly.

In summary, if you want a simple RPC solution, don’t want external dependencies, can
live with the limitations of XML-RPC, and think that interoperability with other lan-
guages could come in handy, then XML-RPC is probably a good choice. On the other
hand, if the limitations of XML-RPC are too constraining, you don’t mind installing
external libraries, and you don’t mind being limited to using only Python, then Pyro is
probably a better option for you.

SSH

SSH is an incredibly powerful, widely used protocol. You can also think of it as a tool
since the most common implementation includes the same name. SSH allows you to
securely connect to a remote server, execute shell commands, transfer files, and forward
ports in both directions across the connection.

If you have the command-line ssh utility, why would you ever want to script using the
SSH protocol? The main reason is that using the SSH protocol gives you the full power
of SSH combined with the full power of Python.

164 | Chapter5: Networking

The SSH2 protocol is implemented using the Python library called paramkio. From
within a Python script, writing nothing but Python code, you can connect to an SSH
server and accomplish those pressing SSH tasks. Example 5-9 is an example of con-
necting to an SSH server and executing a simple command.

Example 5-9. Connecting to an SSH server and remotely executing a command

#!/usr/bin/env

python

import paramiko

hostname = '192.168.1.15"

port = 22

username = 'jmjones’
password = 'xxxYYYxxx'

if __name__ ==

n n

_main__":

paramiko.util.log to file('paramiko.log")

s = paramiko.SSHClient()

s.load_system_host_keys()

s.connect(hostname, port, username, password)
stdin, stdout, stderr = s.exec_command('ifconfig")
print stdout.read()

s.close()

As you can see, we import the paramiko module and define three variables. Next, we
create an SSHClient object. Then we tell it to load the host keys, which, on Linux, come
from the “known_hosts” file. After that we connect to the SSH server. None of these
steps is particularly complicated, especially if you’re already familiar with SSH.

Now we’re ready to execute a command remotely. The call to exec_command() executes
the command that you pass in and returns three file handles associated with the exe-
cution of the command: standard input, standard output, and standard error. And to
show that this is being executed on a machine with the same IP address as the address
we connected to with the SSH call, we print out the results of ifconfig on the remote

Server:

jmjones@dinkbuntu:~/code$ python paramiko_exec.py

etho

lo

Link encap:Ethernet HWaddr XX:XX:XX:XX:XX:XX

inet addr:192.168.1.15 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: xx00::000:Xx0xX:XX0x:0x00/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:9667336 errors:0 dropped:0 overruns:0 frame:0

TX packets:11643909 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:1427939179 (1.3 GiB) TX bytes:2940899219 (2.7 GiB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:123571 errors:0 dropped:0 overruns:0 frame:0
TX packets:123571 errors:0 dropped:0 overruns:0 carrier:0

SSH | 165

collisions:0 txqueuelen:0
RX bytes:94585734 (90.2 MiB) TX bytes:94585734 (90.2 MiB)

It looks exactly as if we had run ifconfig on our local machine, except the IP address
is different.

Example 5-10 shows you how to use paramiko to SFTP files between a remote machine
and your local machine. This particular example only retrieves files from the remote
machine using the get() method. If you want to send files to the remote machine, use
the put() method.

Example 5-10. Retrieving files from an SSH server

#!/usr/bin/env python

import paramiko
import os

hostname = '192.168.1.15'

port = 22

username = 'jmjones'

password = "xxxYYYxxx'

dir_path = '/home/jmjones/logs’
if _name__ == "_main_":

t = paramiko.Transport((hostname, port))
t.connect(username=username, password=password)
sftp = paramiko.SFTPClient.from transport(t)
files = sftp.listdir(dir_path)
for f in files:
print 'Retrieving', f
sftp.get(os.path.join(dir_path, f), f)
t.close()

In case you want to use public/private keys rather than passwords, Example 5-11 is a
modification of the remote execution example using an RSA key.

Example 5-11. Connecting to an SSH server and remotely executing a command—private keys

enabled
#!/usr/bin/env python

import paramiko

hostname = '192.168.1.15"

port = 22

username = 'jmjones’

pkey file = '/home/jmjones/.ssh/id_rsa’
if _name__ == "_main_":

key = paramiko.RSAKey.from_private key file(pkey file)
s = paramiko.SSHClient()

s.load system_host keys()

s.connect(hostname, port, pkey=key)

stdin, stdout, stderr = s.exec_command('ifconfig')

166 | Chapter5: Networking

print stdout.read()
s.close()

And Example 5-12 is a modification of the sftp script using an RSA key.

Example 5-12. Retrieving files from an SSH server
#!/usr/bin/env python

import paramiko
import os

hostname = '192.168.1.15'

port = 22

username = 'jmjones’

dir_path = '/home/jmjones/logs’

pkey file = '/home/jmjones/.ssh/id_rsa’

if name_ == " main_":
key = paramiko.RSAKey.from private key file(pkey file)
t = paramiko.Transport((hostname, port))
t.connect(username=username, pkey=key)
sftp = paramiko.SFTPClient.from transport(t)
files = sftp.listdir(dir path)
for f in files:
print 'Retrieving', f
sftp.get(os.path.join(dir path, f), f)
t.close()

Twisted

Twisted is an event-driven networking framework for Python that can tackle pretty
much any type of network-related task you need it to. A comprehensive single solution
has a price of complexity. Twisted will begin to make sense after you’ve used it a few
times, but understanding it initially can be difficult. Further, learning Twisted is such
a large project that finding a beginning point to solve a specific problem can often be
daunting.

Despite that, though, we highly recommend that you become familiar with it and see
if it fits the way you think. If you can easily tailor your thinking to “the Twisted way,”
then learning Twisted will be likely to be a valuable investment. Twisted Network Pro-
gramming Essentials by Abe Fettig (O’Reilly) is a good place to get started. This book
helps to reduce the negative points we have mentioned.

Twisted is an event-driven network, meaning that rather than focusing on writing code
that initiates connections being made and dropped and low-level details of data recep-
tion, you focus on writing code that handles those happenings.

What advantage would you gain by using Twisted? The framework encourages, and at
times nearly requires, that you break your problems into small pieces. The network
connection is decoupled from the logic of what occurs when connections are made.

Twisted | 167

These two facts gain you some level of automatic re-usability from your code. Another
thing that Twisted gains for you is that you won’t have to worry so much about lower
level connection and error handling with network connections. Your part in writing
network code is deciding what happens when certain events transpire.

Example 5-13 is a port checker that we’ve implemented in Twisted. It is very basic, but
will demonstrate the event-driven nature of Twisted as we go through the code. But
before we do that, we’ll go over a few basic concepts that you’ll need to know. The
basics include reactors, factory, protocols, and deferreds. Reactors are the heart of a
Twisted application’s main event loop. Reactors handle event dispatching, network
communications, and threading. Factories are responsible for spawning new protocol
instances. Each factory instance can spawn one type of protocol. Protocols define what
to do with a specific connection. At runtime, a protocol instance is created for each
connection. And deferreds are a way of chaining actions together.

Twisted

Most folks who write code have a very strong intuition about the logical flow of a
program or script: it’s like water running down hill, complete with damns, shunts, etc.
As a result, such code is fairly easy to think about, both the writing and the debugging.
Twisted code is quite different. Being asynchronous, one might say it’s more like drop-
lets of water in a low-g environment than a river flowing downbhill, but there the analogy
really breaks down. A new component has been introduced: the event listener (reactor)
and friends. To create and debug Twisted code, one must abandon preconceptions
with a Zen-like attitude and begin building an intuition for a different logical flow.

Example 5-13. Port checker implemented in Twisted
#!/usr/bin/env python

from twisted.internet import reactor, protocol
import sys

class PortCheckerProtocol(protocol.Protocol):
def _init_ (self):
print "Created a new protocol"”
def connectionMade(self):
print "Connection made"
reactor.stop()

class PortCheckerClientFactory(protocol.ClientFactory):
protocol = PortCheckerProtocol
def clientConnectionFailed(self, connector, reason):
print "Connection failed because", reason
reactor.stop()
if _name__ == '_main_':
host, port = sys.argv[1].split(':")
factory = PortCheckerClientFactory()

168 | Chapter5: Networking

print "Testing %s" % sys.argv[1]
reactor.connectTCP(host, int(port), factory)
reactor.run()

Notice that we defined two classes (PortCheckerProtocol and PortCheckerClientFac
tory), both of which inherit from Twisted classes. We tied our factory, PortChecker
ClientFactory, to PortCheckerProtocol by assigning PortCheckerProtocol to PortCheck
erClientFactory’s class attribute protocol. If a factory attempts to make a connection
but fails, the factory’s clientConnectionFailed() method will be called. ClientConnec
tionFailed() is a method thatis common to all Twisted factories and is the only method
we defined for our factory. By defining a method that “comes with” the factory class,
we are overriding the default behavior of the class. When a client connection fails, we
want to print out a message to that effect and stop the reactor.

PortCheckerProtocol is one of the protocols we discussed earlier. An instance of this
class will be created once we have established a connection to the server whose port
we are checking. We have only defined one method on PortCheckerProtocol:
connectionMade(). This is a method that is common to all Twisted protocol classes. By
defining this method ourselves, we are overriding the default behavior. When a con-
nection is successfully made, Twisted will call this protocol’s connectionMade() meth-
od. As you can see, it prints out a simple message and stops the reactor. (We’ll get to
the reactor shortly.)

In this example, both connectionMade() and clientConnectionFailed() demonstrate
the “event-driven” nature of Twisted. A connection being made is an event. So also is
when a client connection fails to be made. When these events occur, Twisted calls the
appropriate methods to handle the events, which are referred to as event handlers.

In the main section of this example, we create an instance of PortCheckerClientFac
tory. We then tell the Twisted reactor to connect to the hostname and port number,
which were passed in as command-line arguments, using the specified factory. After
telling the reactor to connect to a certain port on a certain host, we tell the reactor to
run. If we had not told the reactor to run, nothing would have happened.

To summarize the flow chronologically, we start the reactor after giving it a directive.
In this case, the directive was to connect to a server and port and use PortChecker
ClientFactory to help dispatch events. If the connection to the given host and port fails,
the event loop will call clientConnectionFailed() on PortCheckerClientFactory. If the
connection succeeds, the factory creates an instance of the protocol,
PortCheckerProtocol, and calls connectionMade() on that instance. Whether the con-
nection succeeds or fails, the respective event handlers will shut the reactor down and
the program will stop running.

That was a very basic example, but it showed the basics of Twisted’s event handling
nature. A key concept of Twisted programming that we did not cover in this example
is the idea of deferreds and callbacks. A deferred represents a promise to execute the
requested action. A callback is a way of specifying an action to accomplish. Deferreds

Twisted | 169

can be chained together and pass their results on from one to the next. This point is
often difficult to really understand in Twisted. (Example 5-14 will elaborate on
deferreds.)

Example 5-14 is an example of using Perspective Broker, an RPC mechanism that is
unique to Twisted. This example is another implementation of the remote “Is” server
that we implemented in XML-RPC and Pyro, earlier in this chapter. First, we will walk
you through the server.

Example 5-14. Twisted Perspective Broker server

import os
from twisted.spread import pb
from twisted.internet import reactor

class PBDirLister(pb.Root):
def remote 1ls(self, directory):
try:
return os.listdir(directory)
except OSError:
return []

def remote_ls_boom(self, directory):
return os.listdir(directory)

if _name__ =="'_main_ ':
reactor.listenTCP(9876, pb.PBServerFactory(PBDirLister()))
reactor.run()

This example defines one class, PBDirLister. This is the Perspective Broker (PB) class
that will act as a remote object when the client connects to it. This example defines
only two methods on this class: remote 1s() and remote_1s boom().Remote 1s() is, not
surprisingly, one of the remote methods that the client will call. This remote_1s()
method will simply return a listing of the specified directory. And remote_1s_boom()
will do the same thing that remote_1s()will do, except that it won’t perform exception
handling. In the main section of the example, we tell the Perspective Broker to bind
to port 9876 and then run the reactor.

Example 5-15 is not as straightforward; it calls remote_1s().
Example 5-15. Twisted Perspective Broker client
#!/usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def handle_err(reason):
print "an error occurred", reason
reactor.stop()

def call 1s(def call obj):
return def call obj.callRemote('ls', '/home/jmjones/logs")

170 | Chapter5: Networking

def print_ls(print_result):
print print_result
reactor.stop()

if _name__ == '_main__':

factory = pb.PBClientFactory()

reactor.connectTCP("localhost", 9876, factory)

d = factory.getRootObject()

d.addCallback(call 1s)

d.addCallback(print_ls)

d.addErrback(handle_err)

reactor.run()

This client example defines three functions, handle_err(), call 1s(), and print_1s().
Handle err() will handle any errors that occur along the way. Call 1s() will initiate
the calling of the remote “Is” method. Print_1s() will print the results of the “Is” call.
This seems a bit odd that there is one function to initiate a remote call and another to
print the results of the call. But because Twisted is an asynchronous, event-driven net-
work framework, it makes sense in this case. The framework intentionally encourages
writing code that breaks work up into many small pieces.

The main section of this example shows how the reactor knows when to call which
callback function. First, we create a client Perspective Broker factory and tell the re-
actor to connect to localhost:9876, using the PB client factory to handle requests. Next,
we get a placeholder for the remote object by calling factory.getRootObject(). This is
actually a deferred, so we can pipeline activity together by calling addCallback() to it.

The first callback that we add is the call 1s() function call. Call 1s() calls the call
Remote() method on the deferred object from the previous step. CallRemote() returns
a deferred as well. The second callback in the processing chain is print_1s(). When
the reactor calls print_1s(), print 1s() prints the result of the remote call to
remote_1s() in the previous step. In fact, the reactor passes in the results of the remote
call into print_1s(). The third callback in the processing chain is handle_err(), which
is simply an error handler that lets us know if an error occurred along the way. When
either an error occurs or the pipeline reaches print_1s(), the respective methods shut
the reactor down.

Here is what running this client code looks like:
jmjones@dinkgutsy:code$ python twisted perspective broker client.py
['test.log']

The output is a list of files in the directory we specified, exactly as we would have
expected.

This example seems a bit complicated for the simple RPC example we laid out here.
The server side seems pretty comparable. Creating the client seemed to be quite a bit
more work with the pipeline of callbacks, deferreds, reactors, and factories. But this

Twisted | 171

was a very simple example. The structure that Twisted provides really shines when the
task at hand is of a higher level of complexity.

Example 5-16 is a slight modification to the Perspective Broker client code that we just
demonstrated. Rather than calling 1s on the remote side, it calls 1s_boom. This will show
us how the client and server deal with exceptions.

Example 5-16. Twisted Perspective Broker client—error

#!/usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def handle_err(reason):
print "an error occurred", reason
reactor.stop()

def call_ls(def _call obj):
return def_call_obj.callRemote('ls_boom', '/foo")

def print_ls(print_result):
print print_result
reactor.stop()

if _name__ == '_main__
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 9876, factory)
d = factory.getRootObject()
d.addCallback(call 1s)
d.addCallback(print_ls)
d.addErrback(handle_err)
reactor.run()

Here is what happens when we run this code:

jmjones@dinkgutsy:code$ python twisted perspective broker client boom.py an
error occurred [Failure instance: Traceback from remote host -- Traceback
unavailable

]

And on the server:

Peer will receive following PB traceback:
Traceback (most recent call last):

<more traceback>

state = method(*args, **kw)
File "twisted_perspective broker server.py", line 13, in remote_ls_boom
return os.listdir(directory)
exceptions.0SError: [Errno 2] No such file or directory: '/foo'

The specifics of the error were in the server code rather than the client. In the client,
we only knew that an error had occurred. If Pyro or XML-RPC had behaved like this,

172 | Chapter5: Networking

we would have considered that to be a bad thing. However, in the Twisted client code,
our error handler was called. Since this is a different model of programming from Pyro
and XML-RPC (event-based), we expect to have to handle our errors differently, and
the Perspective Broker code did what we would have expected it to do.

We gave a less-than-tip-of-the-iceberg introduction to Twisted here. Twisted can be a
bit difficult to get started with because it is such a comprehensive project and takes
such a different approach than what most of us are accustomed to. Twisted is definitely
worth investigating further and having in your toolbox when you need it.

Scapy

If you like writing network code, you are going to love Scapy. Scapy is an incredibly
handy interactive packet manipulation program and library. Scapy can discover net-
works, perform scans, traceroutes, and probes. There is also excellent documentation
available for Scapy. If you like this intro, you should buy the book for even more details
on Scapy.

The first thing to figure out about Scapy is that, as of this writing, it is kept in a single
file. You will need to download the latest copy of Scapy here: http://hg.secdev.org/scapy/
raw-file/tip/scapy.py. Once you download Scapy, you can run it as a standalone tool or
import it and use it as a library. Let’s get started by using it as an interactive tool. Please
keep in mind that you will need to run Scapy with root privileges, as it needs privileged
control of your network interfaces.

Once you download and install Scapy, you will see something like this:

Welcome to Scapy (1.2.0.2)
>>>

You can do anything you would normally do with a Python interpreter,and there are
special Scapy commands as well. The first thing we are going to do is run a Scapy
1s() function, which lists all available layers:

>>> 1s()

ARP . ARP

ASN1_Packet : None

BOOTP : BOOTP

CookedLinux : cooked linux

DHCP : DHCP options

DNS : DNS

DNSQR : DNS Question Record
DNSRR : DNS Resource Record
Dot11 : 802.11

Dot11ATIM : 802.11 ATIM

Dot11AssoReq : 802.11 Association Request
Dot11AssoResp : 802.11 Association Response
Dot11Auth : 802.11 Authentication

[snip]

Saapy | 173

http://hg.secdev.org/scapy/raw-file/tip/scapy.py
http://hg.secdev.org/scapy/raw-file/tip/scapy.py

We truncated the output as it is quite verbose. Now, we’ll perform a recursive DNS
query of www.oreilly.com using Caltech University’s public DNS server:

>>> sr1(IP(dst="131.215.9.49")/UDP()/DNS(rd=1,qd=DNSQR(gname="www.oreilly.com")))
Begin emission:
Finished to send 1 packets.

*
Received 4 packets, got 1 answers, remaining O packets
IP version=4L ihl=5L tos=0x0 len=223 id=59364 flags=DF

frag=oL tt1=239 proto=udp chksum=0xble src=131.215.9.49 dst=10.0.1.3 options=""
|UDP sport=domain dport=domain len=203 chksum=0x843
DNS 1id=0 qr=1L opcode=QUERY aa=OL tc=0L rd=1L ra=1ilL z=0L

rcode=ok qdcount=1 ancount=2 nscount=4 arcount=3 qd=
DNSQR gname="www.oreilly.com.' qtype=A qclass=IN |>

an=DNSRR rrname="www.oreilly.com.' type=A rclass=IN tt1=21600 rdata='208.201.239.36"
[snip]

Next, let’s perform a traceroute:

>>> ans,unans=sr(IP(dst="oreilly.com",
>>> ttl=(4,25),id=RandShort())/TCP(flags=0x2))
Begin emission:

Received 54 packets, got 22 answers, remaining 0 packets
>>> for snd, rcv in ans:
print snd.ttl, rcv.src, isinstance(rcv.payload, TCP)
[snip]
20 208.201.239.37 True
21 208.201.239.37 True
22 208.201.239.37 True
23 208.201.239.37 True
24 208.201.239.37 True
25 208.201.239.37 True

Scapy can even do pure packet dumps like tcpdump:

>>> sniff(iface="en0", prn=lambda x: x.show())
###[Ethernet]#i#
dst= ff:ff:ffiff:ff:ff
src= 00:16:cb:07:e4:58
type= IPv4

#H#[IP]#t#

version= 4L

ihl= 5L

tos= 0x0

len= 78

id= 27957

flags=

frag= oL

ttl= 64

proto= udp

chksum= 0xf668

src= 10.0.1.3

dst= 10.0.1.255

174 | Chapter5: Networking

options=
[snip]

You can also do some very slick network visualization of traceroutes if you install
graphviz and imagemagic. This example is borrowed from the official Scapy
documentation:

non non

>>> res,unans = traceroute(["www.microsoft.com","www.cisco.com","www.yahoo.com",
"www.wanadoo.fr", "www.pacsec.com"],dport=[80,443],maxtt1l=20,retry=-2)

Begin emission:

sk ok sk ok ok ok ok ok ok ok ok koK ok ok ok ok ok ok ok ok ok ok ok ok s ok sk ok ok sk ok ok sk sk sk sk sk sk ok ok sk sk ok sk ok sk ok ok sk ok sk sk ok sk sk ok ok sk ok ok ok ok ok ok ok ok
Finished to send 200 packets.

******************Begin emiSSiOn:

Fkokokkokkkkskkkkkkkkkokkkkkkxx*Einished to send 110 packets.
Skokokok sk sk sk sk sk sk skokosk sk sk sk sk ok ok kokosk sk ok degin emission:

Finished to send 5 packets.
Begin emission:
Finished to send 5 packets.

Received 195 packets, got 195 answers, remaining 5 packets

193.252.122.103:tcp443 193.252.122.103:tcp80 198.133.219.25:tcp443 198.133.219.25:tcp80
207.46.193.254:tcp443 207.46.193.254:tcp80 69.147.114.210:tcpad3 69.147.114.210:tcp80
72.9.236.58:tcp443 72.9.236.58:tcp80

You can now create a fancy graph from those results:

>>> res.graph()
>>> res.graph(type="ps",target="| 1p")
>>> res.graph(target="> /tmp/graph.svg")

Now that you’ve installed graphviz and imagemagic, the network visualization will
blow your mind!

The real fun in using Scapy, though, is when you create custom command-line tools
and scripts. In the next section, we will take a look at Scapy the library.

Creating Scripts with Scapy

Now that we can build something permanent with Scapy, one interesting thing to show
right off the bat is an arping tool. Let’s look at a platform-specific arping tool first:

#!/usr/bin/env python
import subprocess
import re

import sys

def arping(ipaddress="10.0.1.1"):
"""Arping function takes IP Address or Network, returns nested mac/ip list"""
#Assuming use of arping on Red Hat Linux
p = subprocess.Popen("/usr/sbin/arping -c 2 %s" % ipaddress, shell=True,
stdout=subprocess.PIPE)
out = p.stdout.read()
result = out.split()

Creating Scripts with Scapy | 175

#pattern = re.compile(":")
for item in result:

if ':' in item:
print item
if _name__ == '_main__':

if len(sys.argv) > 1:
for ip in sys.argv[1:]:
print "arping", ip
arping(ip)
else:
arping()

Now let’s look at how we can create that exact same thing using Scapy, but in a
platform-neutral way:

#!/usr/bin/env python
from scapy import srp,Ether,ARP,conf
import sys

def arping(iprange="10.0.1.0/24"):
"""Arping function takes IP Address or Network, returns nested mac/ip list"""

conf.verb=0
ans,unans=srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst=iprange),
timeout=2)

collection = []

for snd, rcv in ans:
result = rcv.sprintf(r"%ARP.psrc%h %Ether.src%").split()
collection.append(result)

return collection

if name_ =="' main_':
if len(sys.argv) > 1:
for ip in sys.argv[1:]:
print "arping", ip
print arping(ip)
else:
print arping()

As you can see, the information contained in the output is quite handy, as it gives us
the Mac and IP addresses of everyone on the subnet:
sudo python scapy_arp.py

[['10.0.1.1', '00:00:00:00:00:10'], ['10.0.1.7', '00:00:00:00:00:12'],
['10.0.1.30', '00:00:00:00:00:11"'], ['10.0.1.200', '00:00:00:00:00:13"]]

From these examples, you should get the impression of how handy Scapy is and how
easy it is to use.

176 | Chapter5: Networking

CHAPTER 6
Data

Introduction

The need to control dealing with data, files, and directories is one of the reasons IT
organizations need sysadmins. What sysadmin hasn’t had the need to process all of the
files in a directory tree and parse and replace text? And if you haven’t written a script
yet that renames all of the files in a directory tree, you probably will at some point in
the future. These abilities are the essence of what it means to be a sysadmin, or at least
to be a really good sysadmin. For the rest of this chapter, we’re going to focus on data,
files, and directories.

Sysadmins need to constantly wrangle data from one location to the next. The move-
ment of data on a daily basis is more prevelant in some sysadmin jobs than others. In
the animation industry, constantly “wrangling” data from one location to the next is
required because digital film production requires terabytes upon terabytes of storage.
Also, there are different disk I/O requirements based on the quality and resolution of
the image being viewed at any given time. If data needs to be “wrangled” to an HD
preview room so that it can be inspected during a digital daily, then the “fresh” un-
compressed, or slightly compressed, HD image files will need to be moved. Files need
to be moved because there are generally two types of storage in animation. There is
cheap, large, slow, safe, storage, and there is fast, expensive storage that is oftentimes
a JBOD, or “just a bunch of disks,” striped together RAID 0 for speed. A sysadmin in
the film industry who primarily deals with data is called a “data wrangler.”

A data wrangler needs to be constantly moving and migrating fresh data from location
to location. Often the workhorse of moving data is rsync, scp, cp, or mv. These simple
and powerful tools can be scripted with Python to do some incredible things.

Using the standard library, it is possible to do some amazing things without shelling
out once. The advantage of using the standard library is that your data moving script
will work just about anywhere, without having to depend on a platform-specific version
of, say, tar.

Let’s also not forget backups. There are many custom backup scripts and applications
that can be written with a trivial amount of Python code. We will caution that writing

177

extra tests for your backup code is not only wise, but necessary. You should make sure
you have both unit, and functional testing in place when you are depending on backup
scripts you have written yourself.

In addition, it is often necessary to process data at some point before, after, or during
amove. Of course, Python is great for this as well. Creating a deduplication tool, a tool
that finds duplicate files, and performs actions upon them can be very helpful for this,
so we’ll show you how to do it. This is one example of dealing with the constant flow
of data that a sysadmin often encounters.

Using the 0S Module to Interact with Data

If you have ever struggled with writing cross-platform shell scripts, you will appreciate
the fact that the OS module is a portable application programming interface (API) to
system services. In Python 2.5, the OS module contains over 200 methods, and many
of those methods deal with data. In this section, we will go over many of the methods
in that module that systems administrators care about when dealing with data.

Whenever you find yourself needing to explore a new module, IPython is often the right
tool for the job, so let’s start our journey through the OS module using IPython to
execute a sequence of actions that are fairly commonly encountered. Example 6-1
shows you how to do that.

Example 6-1. Exploring common OS module data methods

In [1]: import os

In [2]: os.getcwd()
Out[2]: '/private/tmp'

In [3]: os.mkdir("/tmp/os_mod_explore")

In [4]: os.listdir("/tmp/os_mod_explore")
out[4]: []

In [5]: os.mkdir("/tmp/os_mod_explore/test_diri")

In [6]: os.listdir("/tmp/os_mod_explore")
Out[6]: ['test diri']

In [7]: os.stat("/tmp/os_mod_explore")
Out[7]: (16877, 6029306L, 234881026L, 3, 501, 0, 102L,
1207014425, 1207014398, 1207014398)

In [8]: os.rename("/tmp/os_mod explore/test dir1",
"/tmp/os_mod_explore/test diri renamed")

In [9]: os.listdir("/tmp/os_mod_explore")
Out[9]: ['test dirl renamed']

In [10]: os.rmdir("/tmp/os_mod explore/test diri renamed")

178 | Chapter6: Data

In [11]: os.rmdir("/tmp/os_mod_explore/")

Asyou can see, after we imported the OS module, in line [2] we get the current working
directory, then proceed to make a directory in line [3]. We then use os.listdir in line
[4] to list the contents of our newly created directory. Next, we do an os.stat, which
is very similar to the stat command in Bash, and then rename a directory in line [8].
In line [9], we verify that the directory was created and then we proceed to delete what
we created by using the os.rmdir method.

This is by no means an exhaustive look at the OS module. There are methods to do
just about anything you would need to do to the data, including changing permissions
and creating symbolic links. Please refer to the documentation for the version of Python
you are using, or alternately, use IPython with tab completion to view the available
methods for the OS module.

Copying, Moving, Renaming, and Deleting Data

Since we talked about data wrangling in the introduction, and you now also have a bit
of an idea about how to use the OS module, we can jump right into a higher-level

module, called shutil that deals with data on a larger scale. The shutil module has
methods for copying, moving, renaming, and deleting data just as the OS module does,
but it can perform actions on an entire data tree.

Exploring the shutil module with IPython is a fun way to get aquainted with it. In the
example below, we will be using shutil.copytree, but shutil has many other methods
that do slightly different things. Please refer to the Python Standard Library documen-
tation to see the differences between shutil copy methods. See Example 6-2.

Example 6-2. Using the shutil module to copy a data tree

In [1]: import os

In [2]: os.chdir("/tmp")
In [3]: os.makedirs("test/test subdiri/test subdir2")

In [4]: 1s -1R
total o
drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test/

./test:
total o
drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test_subdiri/

./test/test_subdiri:
total 0
drwxr-xr-x 2 ngift wheel 68 Mar 31 22:27 test_subdir2/

./test/test_subdiri/test_subdir2:

Copying, Moving, Renaming, and Deleting Data | 179

In [5]: import shutil
In [6]: shutil.copytree("test", "test-copy")

In [19]: 1s -1IR

total 0

drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test/
drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test-copy/

./test:
total 0
drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test_subdiri/

./test/test_subdiri:
total o
drwxr-xr-x 2 ngift wheel 68 Mar 31 22:27 test subdir2/

./test/test_subdiri/test subdir2:

./test-copy:
total o
drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test subdiri/

./test-copy/test_subdiri:
total o
drwxr-xr-x 2 ngift wheel 68 Mar 31 22:27 test_subdir2/

./test-copy/test_subdiri/test subdir2:

Obviously, this is quite simple, yet incredibly useful, as you can quite easily wrap this
type of code into a more sophisticated cross-platform, data mover script. The imme-
diate use for this kind of code sequence that pops into our heads is to move data from
one filesystem to another on an event. In an animation environment, it is often necessary
to wait for the latest frames to be finished to convert them into a sequence to edit.

[I3)

We could write a script to watch a directory for “x” number of frames in a cron job.
When that cron job sees that the correct number of frames has been reached, it could
then migrate that directory into another directory where the frames could be processed,
or even just moved so that they are on a faster disk with I/O quick enough to handle
playback of uncompressed HD footage.

The shutil module doesn’t just copy files though, it also has methods for moving and
deleting trees of data as well. Example 6-3 shows a move of our tree, and Exam-
ple 6-4 shows how to delete it.

Example 6-3. Moving a data tree with shutil

In [20]: shutil.move("test-copy", "test-copy-moved")

In [21]: 1s -1R
total 0
drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test/

180 | Chapter6: Data

drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test-copy-moved/

./test:
total 0
drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test_subdirl/

./test/test_subdiri:
total 0
drwxr-xr-x 2 ngift wheel 68 Mar 31 22:27 test_subdir2/

./test/test_subdiri/test_subdir2:

./test-copy-moved:
total o
drwxr-xr-x 3 ngift wheel 102 Mar 31 22:27 test subdiri/

./test-copy-moved/test_subdiri:
total o
drwxr-xr-x 2 ngift wheel 68 Mar 31 22:27 test subdir2/

./test-copy-moved/test_subdiri/test subdir2:

Example 6-4. Deleting a data tree with shutil

In [22]: shutil.rmtree("test-copy-moved")

In [23]: shutil.rmtree("test-copy")
In [24]: 11

Moving a data tree is a bit more exciting than deleting a data tree, as there is nothing
to show after a delete. Many of these simple examples could be combined with other
actions in more sophisticated scripts. One kind of script that might be useful is to write
a backup tool that copies a directory tree to cheap network storage and then creates a
datestamped archive. Fortunately, we have an example of doing just thatin pure Python
in the backup section of this chapter.

Working with Paths, Directories, and Files

One can’t talk about dealing with data without taking into account paths, directories,
and files. Every sysadmin needs to be able to, at the very least, write a tool that walks
a directory, searches for a condition, and then does something with the result. We are
going to cover some interesting ways to do just that.

As always, the Standard Library in Python has some killer tools to get the job done.
Python doesn’t have a reputation for being “batteries included” for nothing. Exam-
ple 6-5 shows how to create an extra verbose directory walking script with functions
that explicitly return files, directories, and paths.

Working with Paths, Directories, and Files | 181

Example 6-5. Verbose directory walking script

import os
path = "/tmp"

def enumeratepaths(path=path):
"""Returns the path to all the files in a directory recursively
path_collection = []
for dirpath, dirnames, filenames in os.walk(path):
for file in filenames:
fullpath = os.path.join(dirpath, file)
path_collection.append(fullpath)

nun

return path_collection

def enumeratefiles(path=path):
"""Returns all the files in a directory as a list
file collection = []
for dirpath, dirnames, filenames in os.walk(path):
for file in filenames:
file collection.append(file)

return file collection

def enumeratedir(path=path):
"""Returns all the directories in a directory as a list
dir collection = []
for dirpath, dirnames, filenames in os.walk(path):
for dir in dirnames:
dir collection.append(dir)

return dir collection

n "

if _name_ == " main_":
print "\nRecursive listing of all paths in a dir:"
for path in enumeratepaths():

print path
print "\nRecursive listing of all files in dir:"
for file in enumeratefiles():

print file
print "\nRecursive listing of all dirs in dir:"
for dir in enumeratedir():

print dir

On a Mac laptop, the output of this script looks like this:
[ngift@Macintosh-7][H:12022][J:0]# python enumarate file dir path.py

Recursive listing of all paths in a dir:
/tmp/.aksusb

/tmp/ARD_ABIMMRT

/tmp/com.hp.launchport

/tmp/error.txt

/tmp/liten.py
/tmp/LitenDeplicationReport.csv
/tmp/ngift.liten.log

182 | Chapter6: Data

/tmp/hsperfdata_ngift/58920
/tmp/launch-h360kI/Render
/tmp/launch-qy1S9C/Listeners
/tmp/launch-RTIzTw/:0
/tmp/launchd-150.wDvOD1/sock

Recursive listing of all files in dir:
.aksusb

ARD_ABJMMRT
com.hp.launchport
error.txt

liten.py
LitenDeplicationReport.csv
ngift.liten.log

58920

Render

Listeners

:0

sock

Recursive listing of all dirs in dir:
.X11-unix

hsperfdata ngift

launch-h360kI

launch-qy1S9C

launch-RTJzTw

launchd-150.wDvOD1

ssh-YcE2t6Pfn0

A note about the previous code snippet—os.walk returns a generator object, so if you
call pass a value to os.walk, you can walk a tree yourself:

In [2]: import os

In [3]: os.walk("/tmp")
Out[3]: [generator object at 0x508e18]

This is what it looks like when it is run from IPython. You will notice using a generator
gives us the ability to call path.next(). We won’t get into the nitty gritty details about
generators, but it is important to know that os.walk returns a generator object. Gen-
erators are tremendously useful for systems programming. Visit David Beazely’s web-
site (http://www.dabeaz.com/generators/) to find out all you need to know about them.

In [2]: import os

In [3]: os.walk("/tmp")
Out[3]: [generator object at 0x508e18]

In [4]: path = os.walk("/tmp")

In [5]: path.

path._ class__ path.__init__ path.__repr__ path.gi_running
path. delattr _ path. iter path. setattr path.next

path. doc__ path. new path. str path.send

path. getattribute path._ reduce_ path.close path.throw

Working with Paths, Directories, and Files | 183

http://www.dabeaz.com/generators/

path.__hash__ path. reduce_ex path.gi_frame

In [5]: path.next()
Out[s5]:

("/tmp',
['.X11-unix",
"hsperfdata_ngift',
'launch-h360kI',
'launch-qy1S9C’',
'launch-RTJzTw',
'launchd-150.wDvOD1",
'ssh-YcE2t6Pfn0'],
['.aksusb',
"ARD_ABJIMMRT',
"com.hp.launchport’,
‘error.txt',
'liten.py',
'LitenDeplicationReport.csv',
'ngift.liten.log'])

In a bit, we will look at generators in more detail, but let’s first make a cleaner module
that gives us files, directories, and paths in a clean APL

Now that we have walked a very basic directory, let’s make this an object-oriented
module so that we can easily import and reuse it again. It will take a small amount of
work to make a hardcoded module, but a generic module that we can reuse later will
certainly make our lives easier. See Example 6-6.

Example 6-6. Creating reusable directory walking module

import os

class diskwalk(object):
"""API for getting directory walking collections
def _init_ (self, path):

self.path = path

nun

def enumeratePaths(self):
"""Returns the path to all the files in a directory as a list"""
path_collection = []
for dirpath, dirnames, filenames in os.walk(self.path):
for file in filenames:
fullpath = os.path.join(dirpath, file)
path_collection.append(fullpath)

return path_collection

def enumerateFiles(self):
"""Returns all the files in a directory as a list
file collection = []
for dirpath, dirnames, filenames in os.walk(self.path):
for file in filenames:
file collection.append(file)

return file collection

184 | Chapter6: Data

def enumerateDir(self):
"""Returns all the directories in a directory as a list"""
dir_collection = []
for dirpath, dirnames, filenames in os.walk(self.path):
for dir in dirnames:
dir_collection.append(dir)

return dir_collection

As you can see, with a few small modifications, we were able to make a very nice
interface for future modifications. One of the nice things about this new module is that
we can import it into another script.

Comparing Data

Comparing data is quite important to a sysadmin. Questions you might often ask
yourself are, “What files are different between these two directories? How many copies
of this same file exist on my system?” In this section, you will find the ways to answer
those questions and more.

When dealing with massive quantities of important data, it often is necessary to com-
pare directory trees and files to see what changes have been made. This becomes critical
if you start writing large data mover scripts. The absolute doomsday scenario is to write
a large data move script that damages critical production data.

In this section, we will first explore a few lightweight methods to compare files and
directories and then move on to eventually exploring doing checksum comparisons of
files. The Python Standard Library has several modules that assist with comparisons
and we will be covering filecmp and os.listdir.

Using the filecmp Module

The filecmp module contains functions for doing fast and efficient comparisons of files
and directories. The filecmp module will perform a os.stat on two files and return a
True if the results of os. stat are the same for both files or a False if the results are not.
Typically, os.stat is used to determine whether or not two files use the same inodes
on a disk and whether they are the same size, but it does not actually compare the
contents.

In order to fully understand how filecmp works, we need to create three files from
scratch. To do this on computer, change into the /tmp directory, make a file called
fileO.txt, and place a “0” in the file. Next, create a file called filel.txt, and place a “1”
in that file. Finally, create a file called file00.txt, and place a “0” in it. We will use these
files as examples in the following code:

In [1]: import filecmp

ComparingData | 185

In [2]: filecmp.cmp("fileo.txt", "file1l.txt")
Out[2]: False

In [3]: filecmp.cmp("fileo.txt", "fileoo.txt")
Out[3]: True

As you can see, the cmp function returned True in the case of fileO.txt and file00.txt, and
False when filel.txt was compared with file0.txt.

The dircmp function has a number of attributes that report differences between direc-
tory trees. We won’t go over every attribute, but we have created a few examples of
useful things you can do. For this example, we created two subdirectories in the /tmp
directory and copied the files from our previous example into each directory. In dirB,
we created one extra file named filel1.txt, into which we put “11”:

In [1]: import filecmp

In [2]: pwd
Out[2]: '/private/tmp'

In [3]: filecmp.dircmp("dirA", "dirB").diff files
out[3]: []

In [4]: filecmp.dircmp("dirA", "dirB").same files
Out[4]: ['file1.txt', 'fileoo.txt', 'fileo.txt']

In [5]: filecmp.dircmp("dirA", "dirB").report()

diff dirA dirB

Only in dirB : ['filell.txt']

Identical files : ['fileo.txt', 'fileoo.txt', 'file1.txt']

You might be a bit surprised to see here that there were no matches for diff_files even
though we created a filel1.txt that has unique information in it. The reason is that
diff _files compares only the differences between files with the same name.

Next, look at the output of same_files, and notice that it only reports back files that
are identical in two directories. Finally, we can generate a report as shown in the last
example. It has a handy output that includes a breakdown of the differences between
the two directories. This brief overview is just a bit of what the filecmp module can do,
so we recommend taking a look at the Python Standard Library documentation to get
a full overview of the features we did not have space to cover.

Using os.list

Another lightweight method of comparing directories is to use os.listdir. You can
think of os.listdir as an 1s command that returns a Python list of the files found.
Because Python supports many interesting ways to deal with lists, you can use os.1list
dir to determine differences in a directory yourself, quite simply by converting your list
into a set and then subtracting one set from another. Here is an example of what this
looks like in IPython:

186 | Chapter6: Data

In [1]: import os
In [2]: dirA = set(os.listdir("/tmp/dirA"))

In [3]: dirA
Out[3]: set(['filel.txt', 'fileoo.txt', 'fileo.txt'])

In [4]: dirB = set(os.listdir("/tmp/dirB"))

In [5]: dirB
Out[5]: set(['filel.txt', 'fileoo.txt', 'file1l1.txt', 'fileo.txt'])

In [6]: dirA - dirB
Out[6]: set([])

In [7]: dirB-dirA

Out[7]: set(['file11l.txt'])
From this example, you can see that we used a neat trick of converting two lists into
sets and then subtracting the sets to find the differences. Notice that line [7] returns
file11.txt because dirB is a superset of dirA, but in line [6] the results are empty
because dirA contains all of the same items as dirB. Using sets makes it easy to create
a simple merge of two data structures as well, by subtracting the full paths of one
directory against another and then copying the difference. We will discuss merging data
in the next section.

This approach has some very large limitations though. The actual name of a file is often
misleading, as it is possible to have a file that is Ok that has the same name as a file with
200 GBs. In the next section, we cover a better approach to finding the differences
between two directories and merging the contents together.

Merging Data

What can you do when you don’t want to simply compare data files, but you would
like to merge two directory trees together? A problem often can occur when you want
to merge the contents of one tree into another without creating any duplicates.

You could just blindly copy the files from one directory into your target directory, and
then deduplicate the directory, but it would be more efficient to prevent the duplicates
in the first place. One reasonably simple solution would be to use the filecmp module’s
dircmp function to compare two directories, and then copy the unique results using the
os.listdir technique described earlier. A better choice would be to use MD5 check-
sums, which we explain in the next section.

MD5 Checksum Comparisons

Performing a MD5 checksum on a file and comparing it to another file is like going
target shooting with a bazooka. It is the big weapon you pull out when you want to be

Merging Data | 187

sure of what you are doing, although a byte-by-byte comparison is truly 100 percent
accurate. Example 6-7 shows how the function takes in a path to a file and returns a
checksum.

Example 6-7. Performing an MDS5 checksum on files
import hashlib

def create_checksum(path):

nun

Reads in file. Creates checksum of file line by line.
Returns complete checksum total for file.

nun

fp = open(path)
checksum = hashlib.mds()
while True:
buffer = fp.read(8192)
if not buffer:break
checksum.update(buffer)
fp.close()
checksum = checksum.digest()
return checksum

Here is an iterative example that uses this function with IPython to compare two files:

In [2]: from checksum import createChecksum
In [3]: if createChecksum("image1") == createChecksum("image2"):
print "True"
True
In [5]: if createChecksum("image1") == createChecksum("image unique"):
print "True"

In that example, the checksums of the files were manually compared, but we can use
the code we wrote earlier that returns a list of paths to recursively compare a directory
tree full of files and gives us duplicates. One of the other nice things about creating a
reasonable AP is that we can now use IPython to interactively test our solution. Then,
if it works, we can create another module. Example 6-8 shows the code for finding the
duplicates.

Example 6-8. Performing an MDS5 checksum on a directory tree to find duplicates

In [1]: from checksum import createChecksum
In [2]: from diskwalk_api import diskwalk
In [3]: d = diskwalk('/tmp/duplicates_directory")

In [4]: files = d.enumeratePaths()

188 | Chapter6: Data

In [5]: len(files)
Out[5]: 12

In [6]: dup = []
In [7]: record = {}

In [8]: for file in files:
compound_key = (getsize(file),create_checksum(file))
if compound_key in record:
dup.append(file)
else:

record[compound key] = file

In [9]: print dup
['/tmp/duplicates directory/image2']

The only portion of this code that we haven’t looked at in previous examples is found
on line [8]. We create an empty dictionary and then use a key to store the checksum
we generate. This can serve as a simple way to determine whether or not that checksum
has been seen before. If it has, then we toss the file into a dup list. Now, let’s separate
this into a piece of code we can use again. After all that is quite useful. Example 6-9
shows how to do that.

Example 6-9. Finding duplicates

from checksum import create checksum
from diskwalk api import diskwalk
from os.path import getsize

def findDupes(path = '/tmp'):
dup = []
record = {}
d = diskwalk(path)
files = d.enumeratePaths()
for file in files:
compound _key = (getsize(file),create_checksum(file))
if compound_key in record:
dup.append(file)
else:
#print "Creating compound key record:", compound key
record[compound_key] = file
return dup

n "

if _name__ == "_ main_":
dupes = findDupes()
for dup in dupes:

print “Duplicate: %s” % dup

When we run that script, we get the following output:

Merging Data | 189

[ngift@Macintosh-7][H:10157][J:0]# python find_dupes.py
Duplicate: /tmp/duplicates_directory/image2

We hope you can see that this shows what even a little bit of code reuse can accomplish.
We now have a generic module that will take a directory tree and return a list of all the
duplicate files. This is quite handy in and of itself, but next we can take this one step
further and automatically delete the duplicates.

Deleting files in Python is simple, as you can use os.remove (file). In this example, we
have a number of 10 MB files in our /tmp directory; let’s try to delete one of them using
os.remove (file):

In [1]: import os

In [2]: os.remove("10
10mbfile.0 210mbfile.1 10mbfile.2 210mbfile.3 10mbfile.4
10mbfile.5 210mbfile.6 10mbfile.7 210mbfile.8

In [2]: os.remove("10mbfile.1")

In [3]: os.remove("10
10ombfile.o0 10mbfile.2 10mbfile.3 10mbfile.4 10mbfile.5
10mbfile.6 210mbfile.7 10mbfile.8

Notice that tab completion in IPython allows us to see the matches and fills out the
names of the image files for us. Be aware that the os.remove (file) method is silent and
permanent, so this might or might not be what you want to do. With that in mind, we
can implement an easy method to delete our duplicates, and then enhance it after the
fact. Because it is so easy to test interactive code with IPython, we are going to write a
test function on the fly and try it:

In [1]: from find dupes import findDupes
In [2]: dupes = findDupes("/tmp")

In [3]: def delete(file):
import os
print "deleting %s" % file
os.remove(file)

In [4]: for dupe in dupes:
delete(dupe)

In [5]: for dupe in dupes:
delete(dupe)

deleting /tmp/10mbfile.2
deleting /tmp/10mbfile.3
deleting /tmp/10mbfile.4
deleting /tmp/10mbfile.5

190 | Chapter6: Data

deleting /tmp/10mbfile.6
deleting /tmp/10mbfile.7
deleting /tmp/10mbfile.8

In this example, we added some complexity to our delete method by including a print
statement of the files we automatically deleted. Just because we created a whole slew
of reusable code, it doesn’t mean we need to stop now. We can create another module
that does fancy delete-related things when it is a file object. The module doesn’t even
need to be tied to duplicates, it can be used to delete anything. See Example 6-10.

Example 6-10. Delete module

#!/usr/bin/env python
import os

class Delete(object):
"""Delete Methods For File Objects"""

def _init_ (self, file):
self.file = file

def interactive(self):

interactive deletion mode

input = raw_input("Do you really want to delete %s [N]/Y" % self.file)
if input.upper():
print "DELETING: %s" % self.file
status = os.remove(self.file)
else:
print "Skipping: %s" % self.file
return
def dryrun(self):
"""simulation mode for deletion"""
print "Dry Run: %s [NOT DELETED]" % self.file
return

def delete(self):

"""performs a delete on a file, with additional conditions

nnn

print "DELETING: %s" % self.file
try:

status = os.remove(self.file)
except Exception, err:

print err

return status

if _name__ == "_main__":

from find_dupes import findDupes
dupes = findDupes('/tmp")

for dupe in dupes:
delete = Delete(dupe)

Merging Data | 191

#delete.dryrun()
#delete.delete()
#delete.interactive()

In this module, you will see three different types of deletes. The interactive delete
method prompts the user to confirm each file he is going to delete. This can seem a bit
annoying, but it is good protection when other programmers will be maintaining and
updating the code.

The dry run method simulates a deletion. And, finally, there is an actual delete method
that will permanently delete your files. At the bottom of the module, you can see that
there is a commented example of the ways to use each of these three different methods.
Here is an example of each method in action:

* Dryrun

ngift@Macintosh-7][H:10197][J:0]# python delete.py
Dry Run: /tmp/i0ombfile.1 [NOT DELETED]

Dry Run: /tmp/i0ombfile.2 [NOT DELETED]

Dry Run: /tmp/i0ombfile.3 [NOT DELETED]
Dry Run: /tmp/i0ombfile.4 [NOT DELETED]
Dry Run: /tmp/i0ombfile.5 [NOT DELETED]
Dry Run: /tmp/i0ombfile.6 [NOT DELETED]
Dry Run: /tmp/i0ombfile.7 [NOT DELETED]
Dry Run: /tmp/i0ombfile.8 [NOT DELETED]

* [nteractive

ngift@Macintosh-7][H:10201][J:0]# python delete.py
Do you really want to delete /tmp/10mbfile.1 [N]/YY
DELETING: /tmp/10mbfile.1
Do you really want to delete /tmp/10mbfile.2 [N]/Y
Skipping: /tmp/10mbfile.2
Do you really want to delete /tmp/10mbfile.3 [N]/Y

¢ Delete

[ngift@Macintosh-7][H:10203][J:0]# python delete.py
DELETING: /tmp/10mbfile.1

DELETING: /tmp/10mbfile.
DELETING: /tmp/10mbfile.
DELETING: /tmp/10mbfile.
DELETING: /tmp/10mbfile.
DELETING: /tmp/10mbfile.
DELETING: /tmp/10mbfile.
DELETING: /tmp/10mbfile.

o~ OV AW N

You might find using encapsulation techniques like this very handy when dealing with
data because you can prevent a future problem by abstracting what you are working
on enough to make it nonspecific to your problem. In this situation, we wanted to
automatically delete duplicate files, so we created a module that generically finds file-
names and deletes them. We could make another tool that generically takes file objects
and applies some form of compression as well. We are actually going to get to that
example in just a bit.

192 | Chapter6: Data

Pattern Matching Files and Directories

So far you have seen how to process directories and files, and perform actions such as
finding duplicates, deleting directories, moving directories, and so on. The next step
in mastering the directory tree is to use pattern matching, either alone or in combination
with these previous techniques. As just about everything else in Python, performing a
pattern match for a file extension or filename is simple. In this section, we will dem-
onstrate a few common pattern matching problems and apply the techniques used
earlier to create simple, yet powerful reusable tools.

A fairly common problem sysadmins need to solve is that they need to track down and
delete, move, rename, or copy a certain file type. The most straightforward approach
to doing this in Python is to use either the fnmatch module or the glob module. The
main difference between these two modules is that fnmatch returns a True or False for
a Unix wildcard, and glob returns a list of pathnames that match a pattern. Alterna-
tively, regular expressions can be used to create more sophisticated pattern matching
tools. Please refer to Chapter 3 to get more detailed instructions on using regular ex-
pressions to match patterns.

Example 6-11 will look at how fnmatch and glob can be used. We will reuse the code
we’ve been working on by importing diskwalk from the diskwalk api module.

Example 6-11. Interactively using fnmatch and glob to search for file matches

In [1]: from diskwalk_api import diskwalk
In [2]: files = diskwalk("/tmp")
In [3]: from fnmatch import fnmatch
In [4]: for file in files:
if fnmatch(file,"*.txt"):
print file
piile. tx
In [5]: from glob import glob
In [6]: import os
In [7]: os.chdir("/tmp")

In [8]: glob("*")
Out[8]: ['file.txt', 'image.iso', 'music.mp3']

In the previous example, after we reused our previous diskwalk module, we received a
list of all of the full paths located in the /tmp directory. We then used fnmatch to de-
termine whether each file matched the pattern “*.txt”. The glob module is a bit different,
in that it will literally “glob,” or match a pattern, and return the full path. Glob is a much

Pattern Matching Files and Directories | 193

higher-level function than fnmatch, but both are very useful tools for slightly different
jobs.

The fnmatch function is particularly useful when it is combined with other code to create
a filter to search for data in a directory tree. Often, when dealing with directory trees,
you will want to work with files that match certain patterns. To see this in action, we
will solve a classic sysadmin problem by renaming all of the files that match a pattern
in a directory tree. Keep in mind that it is just as simple to rename files as it is to delete,
compress, or process them. There is a simple pattern here:

1. Get the path to a file in a directory.

2. Perform some optional layer of filtering; this could involve many filters, such as
filename, extension, size, uniqueness, and so on.

3. Perform an action on them; this could be copying, deleting, compressing, reading,
and so on. Example 6-12 shows how to do this.

Example 6-12. Renaming a tree full of MP3 files to text files
In [1]: from diskwalk_api import diskwalk

In [2]: from shutil import move
In [3]: from fnmatch import fnmatch
In [4]: files = diskwalk("/tmp")

In [5]: for file in files:
if fnmatch(file, "*.mp3"):
#here we can do anything we want, delete, move, rename...hmmm rename
move(file, "%s.txt" % file)
In [6]: 1s -1 /tmp/
total 0
-rw-r--r-- 1 ngift wheel 0 Apr
-rw-r--r-- 1 ngift wheel 0 Apr
-rw-r--r-- 1 ngift wheel 0 Apr
-rw-r--r-- 1 ngift wheel 0 Apr
-rw-r--r-- 1 ngift wheel 0 Apr
-rw-r--r-- 1 ngift wheel 0 Apr

21:50 file.txt
21:50 image.iso
21:50 music.mp3.txt
22:45 musicl.mp3.txt
22:45 music2.mp3.txt
22:45 music3.mp3.txt

PR R R PRR

Using code we already wrote, we used four lines of very readable Python code to rename
a tree full of mp2 files to text files. If you are one of the few sysadmins who has not read
at least one episode of BOFH, or Bastard Operator From Hell, it might not be imme-
diately obvious what we could do next with our bit of code.

Imagine you have a production file server that is strictly for high-performance disk
/O storage, and it has a limited capacity. You have noticed that it often gets full because
one or two abusers place hundreds of GBs of MP3 files on it. You could put a quota on
the amount of file space each user can access, of course, but often that is more trouble
than it is worth. One solution would be to create a cron job every night that finds these
MP3 files, and does “random” things to them. On Monday it could rename them to

194 | Chapter6: Data

text files, on Tuesday it could compress them into ZIP files, on Wednesday it could
move them all into the /tmp directory, and on Thursday it could delete them, and send
the owner of the file an emailed list of all the MP3 files it deleted. We would not suggest
doing this unless you own the company you work for, but for the right BOFH, the
earlier code example is a dream come true.

Wrapping Up rsync

As you might well already know, rsync is a command-line tool that was originally
written by Andrew Tridgell and Paul Mackerra. Late in 2007, rsync version 3 was re-
leased for testing and it includes an even greater assortment of options than the original
version.

Over the years, we have found ourselves using rsync as the primary tool to move data
from point A to point B. The manpage and options are staggering works, so we rec-
ommend that you read through them in detail. Rsync may just be the single most useful
command-line tool ever written for systems administrators.

With that being said, there are some ways that Python can help control, or glue rsync’s
behavior. One problem that we have encountered is ensuring that data gets copied at
a scheduled time. We have been in many situations in which we needed to synchronize
TBs of data as quickly as possible between one file server and another, but we did not
want to monitor the process manually. This is a situation in which Python really makes
a lot of sense.

With Python you can add a degree of artificial intelligence to rsync and customize it to
your particular needs. The point of using Python as glue code is that you make Unix
utilities do things they were never intended to do, and so you make highly flexible and
customizable tools. The limit is truly only your imagination. Example 6-13 shows a
very simple example of how to wrap rsync.

Example 6-13. Simple wrap of rsync

#!/usr/bin/env python

#wraps up rsync to synchronize two directories
from subprocess import call

import sys

source = "/tmp/sync_dir A/" #Note the trailing slash
target = "/tmp/sync_dir B"

rsync = "rsync"
arguments = "-a
cmd = "%s %s %s %s" % (rsync, arguments, source, target)

def sync():

ret = call(cmd, shell=True)
if ret !=0:

Wrapping Uprsync | 195

print "rsync failed"
sys.exit(1)
sync()

This example is hardcoded to synchronize two directories and to print out a failure
message if the command does not work. We could do something a bit more interesting,
though, and solve a problem that we have frequently run into. We have often found
that we are called upon to synchronize two very large directories, and we don’t want
to monitor data synchronization overnight. But if you don’t monitor the synchroniza-
tion, you can find that it disrupted partway through the process, and quite often the
data, along with a whole night, is wasted, and the process needs to start again the next
day. Using Python, you can create a more aggressive, highly motivated rsync command.

What would a highly motivated rsync command do exactly? Well, it would do what
you would do if you were monitoring the synchronization of two directories: it would
continue trying to synchronize the directories until it finished, and then it would send
an email saying it was done. Example 6-14 shows the rsync code of our little over
achiever in action.

Example 6-14. An rsync command that doesn’t quit until the job is finished

#!/usr/bin/env python

#wraps up rsync to synchronize two directories
from subprocess import call

import sys

import time

this motivated rsync tries to synchronize forever

source = "/tmp/sync_dir A/" #Note the trailing slash
target = "/tmp/sync_dir B"

rsync = "rsync"
arguments = "-av
cmd = "%s %s %s %s" % (rsync, arguments, source, target)

def sync():

while True:
ret = call(cmd, shell=True)
if ret !=0:

print "resubmitting rsync"
time.sleep(30)
else:
print "rsync was succesful"
subprocess.call("mail -s 'jobs done' bofh@example.com", shell=True)
sys.exit(0)
sync()

</literallayout>
</example>

This is overly simplified and contains hardcoded data, but it is an example of the kind
of useful tool you can develop to automate something you normally need to monitor

196 | Chapter6: Data

manually. There are some other features you can include, such as the ability to set the
retry interval and limit as well as the ability to check for disk usage on the machine to
which you are connecting and so on.

Metadata: Data About Data

Most systems administrators get to the point where they start to be concerned, not just
about data, but about the data about the data. Metadata, or data about data, can often
be more important than the data itself. To give an example, in film and television, the
same data often exists in multiple locations on a filesystem or even on several filesys-
tems. Keeping track of the data often involves creating some type of metadata man-
agement system.

[tis the data about how those files are organized and used, though, that can be the most
critical to an application, to an animation pipeline, or to restore a backup. Python can
help here, too, as it is easy to both use metadata and write metadata with Python.

Let’s look at using a popular ORM, SQLAlchemy, to create some metadata about a
filesystem. Fortunately, the documentation for SQLAlchemy is very good, and
SQLAIchemy works with SQLite. We think this is a killer combination for creating
custom metadata solutions.

In the examples above, we walked a filesystem in real time and performed actions and
queries on paths that we found. While this is incredibly useful, it is also time-consuming
to search a large filesystem consisting of millions of files to do just one thing. In Ex-
ample 6-15, we show what a very basic metadata system could look like by combining
the directory walking techniques we have just mastered with an ORM.

Example 6-15. Creating metadata about a filesystem with SQLAlchemy

#!/usr/bin/env python

from sqlalchemy import create_engine

from sqlalchemy import Table, Column, Integer, String, MetaData, ForeignKey
from sqlalchemy.orm import mapper, sessionmaker

import os

#path
path = " /tmp"

#Part 1: create engine
engine = create engine('sqlite:///:memory:', echo=False)

#Part 2: metadata
metadata = MetaData()

filesystem table = Table('filesystem', metadata,
Column('id', Integer, primary key=True),
Column('path', String(500)),
Column('file', String(255)),

)

Metadata: Data About Data | 197

metadata.create_all(engine)

#Part 3: mapped class
class Filesystem(object):

def _init_ (self, path, file):
self.path = path
self.file = file

def _repr_ (self):
return "[Filesystem('%s','%s')]" % (self.path, self.file)

#Part 4: mapper function
mapper (Filesystem,filesystem table)

#Part 5: create session
Session = sessionmaker(bind=engine, autoflush=True, transactional=True)
session = Session()

#Part 6: crawl file system and populate database with results
for dirpath, dirnames, filenames in os.walk(path):
for file in filenames:
fullpath = os.path.join(dirpath, file)
record = Filesystem(fullpath, file)
session.save(record)

#Part 7: commit to the database
session.commit()

#Part 8: query

for record in session.query(Filesystem):
print "Database Record Number: %s, Path: %s , File: %s " \
% (record.id,record.path, record.file)

It would be best to think about this code as a set of procedures that are followed one
after another. In part one, we create an engine, which is really just a fancy way of
defining the database we are going to use. In part two, we define a metadata instance,
and create our database tables. In part three, we create a class that will map to the tables
in the database that we created. In part four, we call a mapper function that puts the
ORM,; it actually maps this class to the tables. In part five, we create a session to our
database. Notice that there are a few keyword parameters that we set, including
autoflush and transactional.

Now that we have the very explicit ORM setup completed, in part six, we do our usual
song and dance, and grab the filenames and complete paths while we walk a directory
tree. There are a couple of twists this time, though. Notice that we create a record in
the database for each fullpath and file we encounter, and that we then save each newly
created record as it is created. We then commit this transaction to our “in memory”
SQLite database in part seven.

198 | Chapter6: Data

Finally, in part eight, we perform a query, in Python, of course, that returns the results
of the records we placed in the database. This example could potentially be a fun way
to experiment with creating custom SQLAlchemy metadata solutions for your company
or clients. You could expand this code to do something interesting, such as perform
relational queries or write results out to a file, and so on.

Archiving, Compressing, Imaging, and Restoring

Dealing with data in big chunks is a problem that sysadmins have to face every day.
They often use tar, dd, gzip, bzip, bzip2, hdiutil, asr, and other utilities to get their jobs
done.

Believe it or not, the “batteries included” Python Standard Library has built-in support
for TAR files, zlib files, and gzip files. If compression and archiving is your goal, then
you will not have any problem with the rich tools Python has to offer. Let’s look at the
grandaddy of all archive packages: tar; and we we’ll see how the standard library
implements tar.

Using tarfile Module to Create TAR Archives

Creating a TAR archive is quite easy, almost too easy in fact. In Example 6-16, we create
a very large file as an example. Note, the syntax is much more user friendly than even
the tar command itself.

Example 6-16. Create big text file

In [1]: f = open("largeFile.txt", "w")

In [2]: statement = "This is a big line that I intend to write over and over again."
In [3]: x=0

ceeat X +=1
ceaat f.write("%s\n" % statement)

In [4]: 1s -1
-rw-r--r-- 1 root root 1236992 Oct 25 23:13 largeFile.txt

OK, now that we have a big file full of junk, let’s TAR that baby up. See Example 6-17.

Example 6-17. TAR up contents of file
In [1]: import tarfile

In [2]: tar = tarfile.open("largefile.tar", "w")
In [3]: tar.add("largeFile.txt")

In [4]: tar.close()

Archiving, Compressing, Imaging, and Restoring | 199

In [5]: 11

-rw-r--r-- 1 root root 1236992 Oct 25 23:15 largeFile.txt
-rw-r--r-- 1 root root 1236992 Oct 26 00:39 largefile.tar

So, as you can see, this makes a vanilla TAR archive in a much easier syntax than the
regular tar command. This certainly makes the case for using the IPython shell to do
all of your daily systems administration work.

While it is handy to be able to create a TAR file using Python, it is almost useless to
TAR up only one file. Using the same directory walking pattern we have used numerous
times in this chapter, we can create a TAR file of the whole /tmp directory by walking
the tree and then adding each file to the contents of the /tmp directory TAR. See Ex-
ample 6-18.

Example 6-18. TAR up contents of a directory tree
In [27]: import tarfile

In [28]: tar = tarfile.open("temp.tar", "w")
In [29]: import os

In [30]: for root, dir, files in os.walk("/tmp"):
ceeel for file in filenames:

KeyboardInterrupt

In [30]: for root, dir, files in os.walk("/tmp"):
for file in files:

ceedt fullpath = os.path.join(root,file)
ceedt tar.add(fullpath)

In [33]: tar.close()

It is quite simple to add the contents of a directory tree by walking a directory, and it
is a good pattern to use, because it can be combined with some of the other techniques
we have covered in this chapter. Perhaps you are archiving a directory full of media
files. It seems silly to archive exact duplicates, so perhaps you want to replace duplicates
with symbolic links before you create a TAR file. With the information in this chapter,
you can easily build the code that will do just that and save quite a bit of space.

Since doing a generic TAR archive is a little bit boring, let’s spice it up a bit and add
bzip2 compression, which will make your CPU whine and complain at how much you
are making it work. The bzip2 compression algorithm can do some really funky stuff.
Let’s look at an example of how impressive it can truly be.

Then get real funky and make a 60 MB text file shrink down to 10 K! See Example 6-19.

200 | Chapter6: Data

Example 6-19. Creating bzip2 TAR archive

In [1: tar = tarfile.open("largefilecompressed.tar.bzip2", "w|bz2")
In [2]: tar.add("largeFile.txt")

In [3]: 1s -h
fool.txt fooDir1l/ largeFile.txt largefilecompressed.tar.bzip2*
foo2.txt fooDir2/ largefile.tar

1n [4]: tar.close()
In [5]: 1s -1h

-rw-r--r-- 1 root root 61M Oct 25 23:15 largeFile.txt
-rw-r--r-- 1 root root 61M Oct 26 00:39 largefile.tar
-Twxr-xr-x 1 root root 10K Oct 26 01:02 largefilecompressed.tar.bzip2*

What is amazing is that bzip2 was able to compress our 61 M text file into 10 K, al-
though we did cheat quite a bit using the same data over and over again. This didn’t
come at zero cost of course, as it took a few minutes to compress this file on a dual core
AMD system.

Let’s go the whole nine yards and do a compressed archive with the rest of the available
options, starting with gzip next. The syntax is only slightly different. See Example 6-20.

Example 6-20. Creating a gzip TAR archive

In [10]: tar = tarfile.open("largefile.tar.gzip", "w|gz")
In [11]: tar.add("largeFile.txt")

1n [12]: tar.close()

In [13]: 1s -1h

-Iw-r--r-- 1 root root 61M Oct 26 01:20 largeFile.txt

-rw-r--r-- 1 root root 61M Oct 26 00:39 largefile.tar
-rwxr-xr-x 1 root root 160K Oct 26 01:24 largefile.tar.gzip*

A gzip archive is still incredibly small, coming in at 160 K, but on my machine it was
able to create this compressed TAR file in seconds. This seems like a good trade-off in
most situations.

Using a tarfile Module to Examine the Contents of TAR Files

Now that we have a tool that creates TAR files, it only makes sense to examine the TAR
file’s contents. It is one thing to blindly create a TAR file, but if you have been a systems
administrator for any length of time, you have probably gotten burned by a bad backup,
or have been accused of making a bad backup.

Using a tarfile Module to Examine the Contents of TAR Files | 201

To put this situation in perspective and highlight the importance of examining TAR
archives, we will share a story about a fictional friend of ours, let’s call it The Case of
the Missing TAR Archive. Names, identities, and facts, are fictional; if this story resem-
bles reality, it is completely coincidental.

OUr friend worked at a major television studio as a systems administrator and was
responsible for supporting a department led by a real crazy man. This man had a rep-
utation for not telling the truth, acting impulsively, and well, being crazy. If a situation
arose where the crazy man was at fault, like he missed a deadline with a client, or didn’t
produce a segment according to the specifications he was given, he would gladly just
lie and blame it on someone else. Often times, that someone else was our friend, the
systems administrator.

Unfortunately, our friend, was responsible for maintaining this lunatic’s backups. His
first thought was it was time to look for a new job, but he had worked at this studio
for many years, and had many friends, and didn’t want to waste all that on this tem-
porarily bad situation. He needed to make sure he covered all of his bases and so
instituted a logging system that categorized the contents of all of the automated TAR
archives that were created for the crazy man, as he felt it was only a matter of time
before he would get burned when the crazy man missed a deadline, and needed an
excuse.

One day our friend, William, gets a call from his boss, “William I need to see you in
my office immediately, we have a situation with the backups.” William, immediately
walked over to his office, and was told that the crazy man, Alex, had accused William
of damaging the archive to his show, and this caused him to miss a deadline with his
client. When Alex missed deadlines with his client, it made Alex’s boss Bob, very upset.

William was told by his boss that Alex had told him the backup contained nothing but
empty, damaged files, and that he had been depending on that archive to work on his
show. William then told his boss, he was certain that he would eventually be accused
of messing up an archive, and had secretly written some Python code that inspected
the contents of all the TAR archives he had made and created extended information
about the attributes of the files before and after they were backed up. It turned out that
Alex had never created a show to begin with and that there was an empty folder being
archived for months.

When Alex was confronted with this information, he quickly backpeddled and looked
for some way to shift attention onto a new issue. Unfortunately for Alex, this was the
last straw and a couple of months later, he never showed up to work. He may have
either left or been fired, but it didn’t matter, our friend, William had solved, The Case
of the Missing TAR Archive.

The moral of this story is that when you are dealing with backups, treat them like
nuclear weapons, as backups are fraught with danger in ways you might not even
imagine.

202 | Chapter6: Data

Here are several methods to examine the contents of the TAR file we created earlier:
In [1]: import tarfile

[T

In [2]: tar = tarfile.open("temp.tar","r")

In [3]: tar.list()

-rw-1--1-- ngift/wheel
-rw-r--1-- ngift/wheel
-rw-1--1-- ngift/wheel
-tw-1--1-- ngift/wheel
-tw-1--1-- ngift/wheel
-tw-1--1-- ngift/wheel
-rw-1--1-- ngift/wheel
-rw-1--1-- ngift/wheel
-rw-1--1-- ngift/wheel
-rw-1--1-- ngift/wheel

2008-04-04 15:17:14 tmp/file0o.txt
2008-04-04 15:15:39 tmp/filel.txt
2008-04-04 20:50:57 tmp/temp.tar
2008-04-04 16:19:07 tmp/dirA/file0.txt
2008-04-04 16:19:07 tmp/dirA/file0o.txt
2008-04-04 16:19:07 tmp/dirA/filel.txt
2008-04-04 16:19:52 tmp/dirB/fileo.txt
2008-04-04 16:19:52 tmp/dirB/file00.txt
2008-04-04 16:19:52 tmp/dirB/filel.txt
2008-04-04 16:21:50 tmp/dirB/file1l.txt

W NNNNNNONN

In [4]: tar.name
Out[4]: '/private/tmp/temp.tar’

In [5]: tar.getnames()
Out[5]:
["tmp/fileoo.txt',
"tmp/filel.txt’',
"tmp/temp.tar',
"tmp/dirA/fileo.txt",
"tmp/dirA/file0o.txt",
"tmp/dirA/filel.txt",
"tmp/dirB/fileo.txt",
"tmp/dirB/file0o.txt",
"tmp/dirB/filel.txt",
"tmp/dirB/file11.txt"]

In [10]: tar.members

Out[10]:

[<TarInfo '"tmp/fileco.txt' at ox109effo>,
<TarInfo "tmp/filel.txt' at 0x109ef30>,
<TarInfo '"tmp/temp.tar' at 0x10a4310>,
<TarInfo 'tmp/dirA/fileo.txt' at 0x10a4350>,
<TarInfo 'tmp/dirA/fileco.txt' at 0x10a43bo>,
<TarInfo '"tmp/dirA/filei.txt' at 0x10a4410>,
<TarInfo 'tmp/dirB/fileo.txt' at 0x10a4470>,
<TarInfo 'tmp/dirB/file0o.txt' at 0x10a44do>,
<TarInfo 'tmp/dirB/filei.txt' at 0x10a4530>,
<TarInfo '"tmp/dirB/file1l.txt' at 0x10a4590>]

Those examples show how to examine the names of the files in the TAR archive, which
could be validated in data verification script. Extracting files is not much more work.
If you want to extract a whole TAR archive to the current working directory, you can
simply use the following:

In [60]: tar.extractall()

drwxrwxrwx 7 ngift wheel 238 Apr 4 22:59 tmp/

Using a tarfile Module to Examine the Contents of TAR Files | 203

If you are extremely paranoid, and you should be, then you could also include a step
that extracts the contents of the archives and performs random MDS35 checksums on
files from the archive and compare them against MD5 checksums you made on the file
before it was backed up. This could be a very effective way to monitor whether the
integrity of the data is what you expect it to be.

No sane archiving solution should just trust that an archive was created properly. At
the very least, random spot checking of archives needs to be done automatically. At
best, every single archive should be reopened and checked for validity after it has been
created.

204 | Chapter6: Data

CHAPTER 7
SNMP

Introduction

SNMP can change your life as a sysadmin. The rewards of using SNMP are not as
instantaneous as writing a few lines of Python to parse a logfile, for example, but when
an SNMP infrastructure has been setup, it is amazing to work with.

In this chapter, we will be covering these aspects of SNMP: autodiscovery, polling/
monitoring, writing agents, device control, and finally enterprise SNMP integration.
Of course, all of these things are going to be done with Python.

If you are unfamiliar with SNMP or need to brush up on SNMP, we highly recommend
reading Essential SNMP by Douglas Mauro and Kevin Schmidt (O’Reilly), or at least
keeping it handy. A good SNMP reference book is essential to truly understanding
SNMP and what it can do. We will go over a few of the basics of SNMP in the next
section, but going into much detail is beyond the scope of this book. In fact, there is
more than enough material for a complete book on using Python with SNMP.

Brief Introduction to SNMP

SNMP Overview

The 10,000 foot view of SNMP is that it is a protocol for managing devices on an IP
network. Typically, this is done via UDP ports 161 and 162, although it is possible,
but rare, to use TCP as well. Just about any modern device in a data center supports
SNMP; this means it is possible to manage not only switches and routers, but servers,
printers, UPSs, storage, and more.

The basic use for SNMP is to send UDP packets to hosts and to wait for a response.
This is how monitoring of devices occurs on a very simple level. It is also possible to
do other things with the SNMP protocol, though, such as control devices and write
agents that respond to conditions.

205

Some typical things you would do with SNMP are monitor the CPU load, disk usage,
and free memory. You may also use it to manage and actually control switches, perhaps
even going so far as to reload a switch configuration via SNMP. It is not commonly
known that you can monitor software as well, such as web applications and databases.
Finally, there is support for Remote Monitoring in the RMON MIB, which supports
“flow-based” monitoring; this is different than regular SNMP monitoring, which is
“device-based.”

Because we have mentioned the acronym MIB, it is about time to bring this up. SNMP
is just a protocol, and it makes no assumptions about the data. On devices that are
being monitored, they run an agent, snmpd, that has a list of objects that it keeps track
of. The actual list of objects is controlled by MIBs, or management information bases.
Every agent implements at least one MIB, and that is MIB-II, which is defined in REC
1213. One way of thinking of an MIB is as a file that translates names to numbers, just
like DNS, although it is slightly more complicated.

Inside this file is where the definitions of these managed objects live. Every object has
three attributes: name, type and syntax, and encoding. Of these, name is the one you
will need to know the most about. Name is often referred to as an OID, or object
identifier. This OID is how you tell the agent what you want to get. The names come
in two forms: numeric and “human-readable.” Most often you want to use the human-
readable OID name, as the numeric name is very long and difficult to remember. One
of the most common OIDs is sysDescr. If you use the command-line tool snmpwalk to
determine the value of the sysDescr OID, you can do it by name or number:
[root@rhel][H:4461][J:0]# snmpwalk -v 2c -c public localhost .1.3.6.1.2.1.1.1.0

SNMPv2-MIB: :sysDescr.0 = STRING: Linux localhost
2.6.18-8.1.15.el5 #1 SMP Mon Oct 22 08:32:04 EDT 2007 1686

[root@rhel][H:4461][J:0]# snmpwalk -v 2c -c public localhost sysDescr
SNMPv2-MIB: :sysDescr.0 = STRING: Linux localhost
2.6.18-8.1.15.el5 #1 SMP Mon Oct 22 08:32:04 EDT 2007 1686

At this point, we have dropped a pile of acryonyms, and an RFC, so fight the urge to
get up and walk away or fall asleep. We promise it gets better very soon, and you will
be writing code in a few minutes.

SNMP Installation and Configuration

For simplicity’s sake, we will only be dealing with Net-SNMP and the corresponding
Python bindings to Net-SNMP. This does not discount some of the other Python-based
SNMP libraries out there though, including PySNMP, which both TwistedSNMP and
Zenoss utilize. In both Zenoss and TwistedSNMP, PySNMP is used in an asynchronous
style. It is a very valid approach, and it is worth looking at as well; we just don’t have
room to cover both in this chapter.

In terms of Net-SNMP itself, we will be dealing with two different APIs. Method one
is to use the subprocess module to wrap up Net-SNMP command-line tools, and

206 | Chapter7: SNMP

method two is to use the new Python bindings. Each method has advantages and dis-
advantages depending on what environment they are implemented in.

Finally, we also discuss Zenoss, which is an impressive all-Python, open source,
enterprise SNMP monitoring solution. With Zenoss, you can avoid having to write an
SNMP management solution from scratch and can instead communicate with it via its
public APIs. It is also possible to write plug-ins for Zenoss, contribute patches, and
finally extend Zenoss itself.

In order to do anything useful with SNMP, specifically Net-SNMP, you must actually
have it installed. Fortunately, most Unix and Linux operating systems already come
installed with Net-SNMP, so if you need to monitor a device, usually it just involves
adjusting the snmpd.conf file to fit your needs and starting the daemon. If you plan on
developing with Net-SNMP with Python bindings, which is what we cover in this
chapter, you will need to compile from source to install the Python bindings. If you just
plan on wrapping up Net-SNMP command-line tools—such as snmpget, snmpwalk,
snmpdf, and others—then you don’t need to do anything if Net-SNMP is already
installed.

One option is to download a virtual machine with the source code for this book in it
at http://www.oreilly.com/9780596515829. You can also refer to www.py4sa.com, the
companion site for the book, as it will have the latest information on how to run ex-
amples in this section.

We have also configured this virtual machine with Net-SNMP and the Python bindings
installed. You can then run all of the examples just by using this virtual machine. If you
have beefy enough hardware at your disposal, you can also make a few copies of the
virtual machine and simulate some of the other code in this chapter that talks to many
machines at the same time.

If you do decide to install the Python bindings, you will need to download the Net-
SNMP from sourceforge.net and get a version of Net-SNMP of 5.4.x or higher. The
bindings are not built by default, so you should carefully follow the build instructions
in the Python/README directory. In a nutshell though, you will first need to compile
this version of Net-SNMP and then run the setup.py script in the Python directory. We
have found the least painful installation method is on Red Hat, and there is a source
RPM available. If you decide to compile, you might want to first try it out on Red Hat
to see what a successful build looks like, and then venture out to AIX, Solaris, OS X,
HPUX, etc. Finally, if you get stuck, just use the virtual machine to run the examples
and figure out how to get it to compile later.

One final note on compiling yourself: make sure you run the Python setup.py build
and the python setup.py test. You should find out right away if Net-SNMP works with
Python. One tip if you have trouble compiling with Python is to manually run ldcon
fig like this:

ldconfig -v /usr/local/lib/

Brief Introduction to SNMP | 207

http://www.oreilly.com/9780596515829

In terms of configuration, if you happen to be installing Net-SNMP on a client you
want to monitor, you should compile Net-SNMP with the Host Resources MIB. Typ-
ically, you can do this as follows:

./configure -with-mib-modules=host

Note that when you run configure, it attempts to run an auto-configure script. You
don’t need to do this if you don’t want. Often, it is much easier to just create a custom
configuration file yourself. The configuration file on Red-Hat-based systems usually
lives in /etc/snmp/snmpd.conf, and it can be as simple as this:

syslocation "0'Reilly"

syscontact bofh@oreilly.com
rocommunity public

Just this simple configuration file is enough for the rest of this chapter, and non-
SNMPv3 queries. SNMPv3 is a bit tougher to configure and slightly out of scope for
most of this chapter, although we do want to mention that for device control in a
production environment, it is highly recommended to use SNMPv3, as v2 and vl
transmit in the clear. For that matter, you should never do SNMP v2 or v1 queries across
the Internet, as you may have traffic intercepted. There have been some high-profile
break-ins that have occurred as a result of doing just this.

IPython and Net-SNMP

If you haven’t done any SNMP development before, you may have gotten the impres-
sion that it is a bit nasty. Well, to be honest, it is. Dealing with SNMP is a bit of a pain,
as itinvolves a very complex protocol, lots of RFCs to read, and a high chance for many
things to go wrong. One way to diminish much of the initial pain of getting started with
development is to use IPython to explore the SNMP code you will write and to get
comfortable with the API.

Example 7-1 is a very brief snippet of live code to run on a local machine.
Example 7-1. Using IPython and Net-SNMP with Python bindings
In [1]: import netsnmp
In [2]: oid = netsnmp.Varbind('sysDescr")
In [3]: result = netsnmp.snmpwalk(oid,
velt Version = 2,
DestHost="localhost",
Community="public")

Out[4]: ('Linux localhost 2.6.18-8.1.14.el5 #1 SMP Thu Aug 27 12:51:54 EDT 2008 i686',)

Using tab completion when exploring a new library is very refreshing. In this example,
we made full use of I[Python’s tab completion capabilities and then made a basic SNMP

208 | Chapter7: SNMP

v2 query. As a general note, sysDescr, as we mentioned earlier, is a very important OID
query to perform some basic level of identification on a machine. In the output of this
example, you will see that it is quite similar, if not identical, to the output of uname -a.

As we will see later in this chapter, parsing the response from a sysDescr query is an
important part of initially discovering a data center. Unfortunately, like many parts of
SNMP, it is not an exact science. Some equipment may not return any response, some
may return something helpful but not complete like “Fibre Switch,” and others will
return a vendor identification string. We don’t have space to get into too much detail
in solving this problem, but dealing with these differences in responses is where the big
boys earn their money.

As you learned in the IPython chapter, you can write out a class or function to a file
while inside of IPython by switching to Vim, by typing the following:

ed some_filename.py

Then when you quit Vim, you will get that module’s attributes in your namespace, and
you can see them by typing in who. This trick is very helpful for working Net-SNMP, as
iterative coding is a natural fit for this problem domain. Let’s go ahead and write this
code below out to a file named snmp.py by typing the following;:

ed snmp.py

Example 7-2 shows a simple module that allows us to abstract away the boilerplate
code associated with creating a session with Net-SNMP.

Example 7-2. Basic Net-SNMP session module

#!/usr/bin/env python
import netsnmp

class Snmp(object):
"""A basic SNMP session
def _init_ (self,
oid = "sysDescr",
Version = 2,
DestHost = "localhost",
Community = "public"):
self.oid = oid
self.version = Version
self.destHost = DestHost
self.community = Community

wnn

def query(self):
"""Creates SNMP query session
try:
result = netsnmp.snmpwalk(self.oid,
Version = self.version,
DestHost = self.destHost,
Community = self.community)

nnn

except Exception, err:
print err

IPython and Net-SNMP | 209

result = None
return result

When you save this file in IPython and type in who, you will see something like this:

In [2]: who
Snmp netsnmp

Now that we have an object-oriented interface to SNMP, we can begin using it to query
our local machine:

In [3]: s = snmp()

In [4]: s.query()
Out[4]: ('Linux localhost 2.6.18-8.1.14.el5 #1 SMP Thu Sep 27 18:58:54 EDT 2007 i686',)

In [5]: result = s.query()

In [6]: len(result)
Out[6]: 1

As you can tell, it is quite easy to get results using our module, but we are basically just
running a hardcoded script, so let us change the value of the OID object to walk the
entire system subtree:

In [7]: s.oid
Out[7]: 'sysDescr'

In [8]: s.oid = ".1.3.6.1.2.1.1"
In [9]: result = s.query()

In [10]: print result
('Linux localhost 2.6.18-8.1.14.el5 #1 SMP Thu Sep 27 18:58:54 EDT 2007 i686',
'.1.3.6.1.4.1.8072.3.2.10"', '121219', 'me@localhost.com', 'localhost’', '"My Local Machine"',
‘o', '.1.3.6.1.6.3.10.3.1.1", '.1.3.6.1.6.3.11.3.1.1", '.1.3.6.1.6.3.15.2.1.1",
'.1.3.6.1.6.3.1",
'.1.3.6.1.2.1.49', '.1.3.6.1.2.1.4', '.1.3.6.1.2.1.50', '.1.3.6.1.6.3.16.2.2.1",
'The SNMP Management Architecture MIB.',
'The MIB for Message Processing and Dispatching.', 'The management information definitions
for the SNMP User-based Security Model.',
'The MIB module for SNMPv2 entities', 'The MIB module for managing TCP implementations',
'The MIB module for managing IP and ICMP implementations', 'The MIB module for
managing UDP [snip]’',
'View-based Access Control Model for SN™MP.', ‘o', 'o', ‘o', 'o0', '0', '0', '0', '0")
This style of interactive, investigative programming makes dealing with SNMP quite
pleasant. At this point, if you feel inclined, you can start investigating various queries
with other OIDs, or you can even walk a full MIB tree. Walking a full MIB tree can take
quite some time though, as queries will need to occur for the multitude of OIDs; so
often, this is not the best practice in a production environment, as it will consume
resources on the client machine.

210 | Chapter7: SNMP

Remember that MIB-II is just a file full of OIDs, and it is included with
most systems that support SNMP. Other vendor-specific MIBs are ad-
% ditional files that an agent can refer to and give responses to. You will
need to look up vendor-specific documentation to determine what OID
in what MIB to query if you want to take this to the next level.

Next, we are going to use an IPython-specific feature that lets you send jobs to the
background:

In [11]: bg s.query()
Starting job # 0 in a separate thread.

In [12]: jobs[o0].status
Out[12]: 'Completed'

In [16]: jobs[0].result

Out[16]:

("Linux localhost 2.6.18-8.1.14.el5 #1 SMP Thu Sep 27 18:58:54 EDT 2007 i686",
'.1.3.6.1.4.1.8072.3.2.10", '121219', 'me@localhost.com', 'localhost’,

My Local Machine"',
'0', '.1.3.6.1.6.3.10.3.1.1", '.1.3.6.1.6.3.11.3.1.1", '.1.3.6.1.6.3.15.2.1.1",
.3.6.1.6.3.1",

1.2

'The SNMP Management Architecture MIB.', 'The MIB for Message Processing and
Dispatching.’,

'The management information definitions for the SNMP User-based Security Model.',

'The MIB module for SNMPv2 entities', 'The MIB module for managing TCP implementations',

'The MIB module for managing IP and ICMP implementations', 'The MIB module for

managing UDP implementations’,

'View-based Access Control Model for SN™MP.', ‘o', 'o', ‘o', '0', '0', '0', '0', '0")
Before you get too excited, let us tell you that while background threading works like
a charm in IPython, it only works with libraries that support asynchronous threading.
The Python bindings for Net-SNMP are synchronous. In a nutshell, you cannot write
multithreaded code as the underlying C code blocks waiting for a response.

Fortunately, as you found out in the processes and concurrency chapter, it is trivial to
use the processing module to fork processes that handle parallel SNMP queries. In the
next section, we will address this when we write a sample tool to automatically discover
a data center.

Discovering a Data Center

One of the more useful things SNMP is used for is discovery of a data center. In sim-
plistic terms, discovery gathers an inventory of devices on a network and information
about those devices. More advanced forms of discovery can be used to make
correlations about the data gathered, such as the exact Mac address that a server lives
in on a Cisco switch, or what the storage layout is for a Brocade fibre switch.

Discovering a Data Center | 211

In this section, we will create a basic discovery script that will gather valid IP addresses,
Mac addresses, basic SNMP information, and place that in a record. This can serve as
a useful base to implement data center discovery applications at your facility. We will
be drawing on information we covered in other chapters to accomplish this.

There are a few different discovery algorithms that we have come across, but we will
present this one, as it is one of the more simple. A one-sentence description of the
algorithm: send out a bunch of ICMP pings; for each device that responds, send out a
basic SNMP query; parse that output; and then do further discovery based on the re-
sults. Another algorithm could involve just sending out SNMP queries in a shotgun
style and then having another process just collect the responses, but, as we mentioned,
we will be focusing on the first algorithm. See Example 7-3.

W
- Just a note about the code below: because the Net-SNMP library is syn-
"‘:‘ chronous, we are forking a call to subprocess. call. This gets us around
T WUy the blocking that occurs. For the ping portion we could have just used

subprocess.Popen, but to keep the code consistent, we are using the same
pattern for SNMP and ping.

Example 7-3. Basic data center discovery

#!/usr/bin/env python

from processing import Process, Queue, Pool
import time

import subprocess

import sys

from snmp import Snmp

q = Queue()

oq = Queue()

#ips = IP("10.0.1.0/24")

ips = ["192.19.101.250", "192.19.101.251", "192.19.101.252","192.19.101.253",
"192.168.1.1"]

num_workers = 10

class HostRecord(object):
"""Record for Hosts
def _ init_ (self, ip=None, mac=None, snmp_response=None):
self.ip = ip
self.mac = mac
self.snmp_response = snmp_response
def _repr_ (self):
return "[Host Record('%s','%s"','%s')]" % (self.ip,
self.mac,
self.snmp_response)

nnn

def f(i,q,0q):
while True:
time.sleep(.1)
if q.empty():
sys.exit()

212 | Chapter7: SNMP

print "Process Number: %s Exit" % i
ip = q.get()
print "Process Number: %s" % i
ret = subprocess.call("ping -c 1 %s" % ip,
shell=True,
stdout=open('/dev/null', 'w'"),
stderr=subprocess.STDOUT)

if ret == o0:
print "%s: is alive" % ip
0q.put(ip)
else:
print "Process Number: %s didn’t find a response for %s " % (i, ip)
pass

def snmp_query(i,out):
while True:
time.sleep(.1)
if out.empty():
sys.exit()
print "Process Number: %s" % i
ipaddr = out.get()
s = Snmp()
h = HostRecord()
h.ip = ipaddr
h.snmp_response = s.query()
print h
return h
try:
q.putmany(ips)

finally:
for i in range(num_workers):
p = Process(target=f, args=[i,q,0q])
p.start()
for i in range(num_workers):
pp = Process(target=snmp_query, args=[1i,oq])
pp.start()

print "main process joins on queue"
p-join()

#while not og.empty():

print “validated", oq.get()

print "Main Program finished"

If we run this script, we get output that looks something like this:

[root@giftcsllco2][H:4849][J:0]> python discover.py
Process Number: 0

192.19.101.250: is alive

Process Number: 1

192.19.101.251: is alive

Process Number: 2

Process Number: 3

Process Number: 4

Discovering a Data Center | 213

main process joins on queue

192.19.101.252: is alive

192.19.101.253: is alive

Main Program finished

[Host Record('192.19.101.250", 'None', "' ('Linux linux.host 2.6.18-8.1.15.el5
#1 SMP Mon Oct 22 08:32:04 EDT 2007 i686',)"')]

[Host Record('192.19.101.252","'None’, " ('Linux linux.host 2.6.18-8.1.15.el5
#1 SMP Mon Oct 22 08:32:04 EDT 2007 i686',)"')]

[Host Record('192.19.101.253",'None’, "' ('Linux linux.host 2.6.18-8.1.15.el5
#1 SMP Mon Oct 22 08:32:04 EDT 2007 i686',)"')]

[Host Record('192.19.101.251","'None’, "' ('Linux linux.host 2.6.18-8.1.15.el5
#1 SMP Mon Oct 22 08:32:04 EDT 2007 i686',)")]

Process Number: 4 didn't find a response for 192.168.1.1

Looking at the output of this code, we see the beginnings of an interesting algorithm
to discover a data center. There are a few things to fix, like adding a Mac address to the
Host Record object, and making the code more object-oriented, but that could turn into
a whole other book. In fact, that could turn into a whole company. On that note we
turn to the next section.

Retrieving Multiple-Values with Net-SNMP

Getting just one value from SNMP is toy code, although it can be very useful to test
out responses or to perform an action based on a specific value, like the OS type of a
machine. In order to do something more meaningful, we need to get a few values and
do something with them.

A very common task is to do an inventory of your data center, or department, to figure
out some set of parameters across all of your machines. Here is one hypothetical sit-
uation: you are preparing for a major software upgrade, and you have been told all
systems will need to have at least 1 GB of RAM. You seem to remember that most of
the machines have at least 1 GB of RAM, but there are a few of the thousands of ma-
chines you support that do not.

You obviously have some tough decisions to make. Let’s go over some of the options:

Option 1
Physically walk up to every one of your machines and check how much RAM is
installed by running a command, or opening the box. This is obviously not a very
appealing option.

Option 2
Shell into every box and run a command to determine how much RAM it has.
There are quite a few problems with this approach, but at least it could be theo-
retically scripted via ssh keys. One of the obvious problems is that a cross-platform
script would need to be written, as every OS is slightly different. Another problem
is that this method depends on knowing where all of the machines live.

214 | Chapter7: SNMP

Option 3
Write a small script that travels and asks every device on your network how much
memory it has via SNMP.

Using option 3 via SNMP, it is easy to generate an inventory report, which shows just
the machines that do not have at least 1 GB of RAM. The exact OID name we will need
to query is “hrMemorySize.” SNMP is something that can always benefit from being
concurrent, but it is best not to optimize until it is absolutely necessary. On that note,
let’s dive right into something quick.

We can reuse our code from the earlier example to run a very quick test.

Getting memory value from SNMP:

In [1]: run snmpinput

In [2]: who
netsnmp Snmp

In [3]: s = Snmp()

In [4]: s.DestHost = "10.0.1.2"
In [5]: s.Community = "public"
In [6]: s.oid = "hrMemorySize"

In [7]: result = int(s.query()[0])
hrMemorySize = None (None)

In [27]: print result
2026124

As you can see, this is a very straightforward script to write. The result comes back as
atuple, in line [6], so we extracted the index 0 and converted it to an integer. The result
is now an integer consisting of KB. One thing to keep in mind is that different machines
will calculate RAM in different ways. It is best to account for this by using rough pa-
rameters and not hardcoding an absolute value, as you may get results that are different
than what you expect. For example you may want to look for a range of value that is
slightly below 1 GB of RAM, say 990 MB.

In this case, we can do the math in our heads to estimate that this corresponds to roughly
2 GB of RAM. Having this information, you are now informed by your boss that you
need to determine which machines in your data center contain under 2 GBs of RAM,
as a new application will need to be installed that requires at least 2 GBs of RAM.

With that bit of information, we can now automate determining memory. What makes
the most sense is to query each machine and figure out if it does not contain 2 GBs of
RAM and then to put that information into a CSV file so that it can easily be imported
into Excel or Open Office Calc.

Retrieving Multiple-Values with Net-SNMP | 215

Next you can write a command-line tool that takes a subnet range as input and an
optional OID keyword value but will default to using “hrMemorySize.” We will also
want to iterate a range of IP addresses in a subnet.

As always, as a sysadmin writing code, you are faced with some tough decisions. Should
you spend a few hours, or a day, writing a really long script that you can reuse for other
things, because it is object-oriented, or should you just whip out something quick and
dirty? We think in most cases it is safe to say you can do both. If you use IPython, you
can log scripts you write and then later turn them into more polished scripts. In general
though, it is a good idea to write reusable code, as it becomes like a snowball and soon
reaches its own inertia.

Hopefully you now understand the power of SNMP if you didn’t already. Let’s go write
our script...

Finding Memory

In this next example, we write a command-line tool to calculate the memory installed
on machines via SNMP:

#!/usr/bin/env python
#A command line tool that will grab total memory in a machine

import netsnmp
import optparse
from IPy import IP

class SnmpSession(object):
"""A Basic SNMP Session
def _init_ (self,
oid="hrMemorySize",
Version=2,
DestHost="localhost",
Community="public"):

nnn

self.oid = oid
self.Version = Version
self.DestHost = DestHost
self.Community = Community

def query(self):
"""Creates SNMP query session
try:
result = netsnmp.snmpwalk(self.oid,
Version = self.Version,
DestHost = self.DestHost,
Community = self.Community)

nnn

except:
#Note this is toy code, but let's us know what exception is raised
import sys
print sys.exc_info()

216 | Chapter7: SNMP

result = None
return result

class SnmpController(object):
"""Uses optparse to Control SnmpSession"""
def run(self):
results = {} #A place to hold and collect snmp results
p = optparse.OptionParser(description="A tool that determines
memory installed",
prog="memorator",
version="memorator 0.1.0a",
usage="%prog [subnet range] [options]")
p.add_option('--community', '-c',help='community string',
default="public")
p.add_option('--oid', '-o', help='object identifier’',
default="hrMemorySize")
p.add_option('--verbose', '-v', action=’store true',
help="increase verbosity")
p.add_option('--quiet', '-q', action="store true',help=’
suppresses most messages')
p.add_option('--threshold', '-t', action=’store', type="int",
help="a number to filter queries with"')

options, arguments = p.parse args()
if arguments:
for arg in arguments:

try:
ips = IP(arg) #Note need to convert instance to str

except:
if not options.quiet:

print 'Ignoring %s, not a valid IP address' % arg

continue

for i in ips:
ipAddr = str(i)
if not options.quiet:
print 'Running snmp query for: ', ipAddr

session = SnmpSession(options.oid,
DestHost = ipAddr,
Community = options.community)

if options.oid == "hrMemorySize":
try:
memory = int(session.query()[0])/1024
except:
memory = None
output = memory

else:
#Non-memory related SNMP query results
output = session.query()

Retrieving Multiple-Values with Net-SNMP | 217

if not options.quiet:
print "%s returns %s" % (ipAddr,output)

#Put everything into an IP/result dictionary
#But only if it is a valid response
if output != None:
if options.threshold: #ensures a specific threshold
if output < options.threshold:
results[ipAddr] = output
#allow printing to standard out
if not options.quiet:
print "%s returns %s" % (ipAddr,output)

else:
results[ipAddr] = output
if not options.quiet:
print output

print "Results from SNMP Query %s for %s:\n" % (options.oid,
arguments), results

else:
p.print_help() #note if nothing is specified on the
command line, help is printed

def main():

Runs memorator.

nun

start = SnmpController()

start.run()
if __name__ =='_main__':
try:
import IPy
except:
print "Please install the IPy module to use this tool"
_main()

OK, let’s step through this code a bit and see what it does. We took the whole class
from the previous example and placed it into a new module. We next made a controller
class that handles option handling via the optparse module. The IPy module, which
we refer to over and over again, handles the IP address arguments automatically. We
can now place several IP addresses or a subnet range, and our module will look for an
SNMP query and return the result as a collected dictionary of IP addresses and SNMP
values.

One of the trickier things we did was to create some logic at the end that does not return
empty results, and which additionally listens to a threshold number. This means that
we set it to return only values under a specific threshold. By using a threshold we can

218 | Chapter7: SNMP

return meaningful results for us and allow for some discrepancies with how different
machines handle memory calculations.

Let’s look at an example of the output of this tool in action:

[ngift@ng-lep-lap][H:6518][J1:0]> ./memory tool netsnmp.py 10.0.1.2 10.0.1.20
Running snmp query for: 10.0.1.2
hrMemorySize = None (None)
1978
Running snmp query for: 10.0.1.20
hrMemorySize = None (None)
372
Results from SNMP Query hrMemorySize for ['10.0.1.2', '10.0.1.20']:
{'10.0.1.2"': 1978, '10.0.1.20': 372}

As you can see, the results come back from machines on the 10.0.1.0/24 subnet. Let’s
now use the threshold flag to simulate looking for machines that do not contain at least
2 GBs of RAM. As we mentioned earlier, there are some differences in how machines
calculate RAM, so let’s be safe and put in the number 1800, which would correspond
roughly to 1800 MBs of RAM. If a machine does not contain at least 1800 MBs or
roughly 2GBs of RAM, we will get this in our report.

Here is the output from that query:

[ngift@ng-lep-lap][H:6519][J:0]>
./memory_tool netsnmp.py --threshold 1800 10.0.1.2 10.0.1.20

Running snmp query for: 10.0.1.2

hrMemorySize = None (None)
Running snmp query for: 10.0.1.20

hrMemorySize = None (None)
10.0.1.20 returns 372
Results from SNMP Query hrMemorySize for ['10.0.1.2", '10.0.1.20']:
{'10.0.1.20": 372}

Although our script does its job, there are a couple of things we can do to optimize the
tool. If you need to query thousands of machines, then this tool might take a day to
run or more. This might be OK, but if you need the results quickly, you will need to
add concurrency and fork each query using a third-party library. The other improve-
ment we could make is to generate a CSV report automatically from our dictionary.

Before we get to automating those tasks, let me show you one additional benefit that
you may not have noticed. The code was written in a way to allow any OID to be
queried, not just one specific to memory calculation. This comes in very handy because
we now have both a tool that calculates memory and a general-purpose tool to perform
SNMP queries.

Let’s take a look at an example of what we mean:

[ngift@ng-lep-lap][H:6522][J:0]> ./memory tool netsnmp.py -o sysDescr 10.0.1.2 10.0.1.20
Running snmp query for: 10.0.1.2
sysDescr = None (None)
10.0.1.2 returns ('Linux cent 2.6.18-8.1.14.el5 #1 SMP
Thu Sep 27 19:05:32 EDT 2007 x86_64',)
('Linux cent 2.6.18-8.1.14.el5 #1 SMP Thu Sep 27 19:05:32 EDT 2007 x86_64",)

Retrieving Multiple-Values with Net-SNMP | 219

Running snmp query for: 10.0.1.20
sysDescr = None (None)

10.0.1.20 returns ('Linux localhost.localdomain 2.6.18-8.1.14.el5 #1 SMP
Thu Sep 27 19:05:32 EDT 2007 x86_64',)
('Linux localhost.localdomain 2.6.18-8.1.14.el5 #1 SMP

Thu Sep 27 19:05:32 EDT 2007 x86_64',)
Results from SNMP Query sysDescr for ['10.0.1.2', '10.0.1.20']:
{'10.0.1.2": ('Linux cent 2.6.18-8.1.14.el5 #1 SMP
Thu Sep 27 19:05:32 EDT 2007 x86_64',), '10.0.1.20":
('Linux localhost.localdomain 2.6.18-8.1.14.el5 #1 SMP

Thu Sep 27 19:05:32 EDT 2007 x86_64',)}

It is good to keep this fact in mind when writing what could be a one-off tool. Why not
spend an extra 30 minutes and make it generic? As a result, you may have a tool that
you find yourself using over and over again, and that 30 minutes becomes a drop in the
bucket compared to how much time you saved in the future.

Creating Hybrid SNMP Tools

Since we have shown a few examples of separate tools, it’s good to note that these
techniques can be combined to create some very sophisticated tools. Let’s start by
creating a whole slew of one-off tools, and then later we can make sure of these in bigger
scripts.

There is a useful tool called snmpstatus that grabs a few different snmp queries and
combines them into a “status”:

import subprocess

class Snmpdf(object):
"""A snmpstatus command-line tool"""
def _init_ (self,
Version="-v2c",
DestHost="localhost",
Community="public",
verbose=True):

self.Version = Version
self.DestHost = DestHost
self.Community = Community
self.verbose = verbose

def query(self):
"""Creates snmpstatus query session
Version = self.Version
DestHost = self.DestHost
Community = self.Community
verbose = self.verbose

nnn

try:
snmpstatus = "snmpstatus %s -c %s %s" % (Version, Community, DestHost)
if verbose:
print "Running: %s" % snmpstatus

220 | Chapter7: SNMP

p = subprocess.Popen(snmpstatus,
shell=True,
stdout=subprocess.PIPE)

out = p.stdout.read()
return out

except:
import sys
print >> sys.stderr, "error running %s" % snmpstatus

def _main():
snmpstatus = Snmpdf()
result = snmpstatus.query()
print result
if name_ =="
_main()

__main_":

We hope you are paying attention to the fact that this script has very few differences
from the snmpdf command, with the exception of things being named differently. This
is a perfect example of when it becomes a good idea to create another level of abstraction
and then resuse common components. If we created a module to handle all of the
boilerplate code, our new script would be only a few lines long. Keep this in mind; we
will revist this later.

Another tool, related to SNMP, is ARP, which uses the ARP protocol. By using ARP
protocol, it is possible to obtain Mac addresses of devices based on their IP address if
you are physically located on the same network. Let’s write one of those tools too. This
one-off tool will come in handy a little later.

ARP is so easy to wrap up into a script that it is better to just show an example by using
[Python interactively. Go ahead and fire up IPython, and try this out:

import re
import subprocess

#some variables

ARP = "arp"

IP = "10.0.1.1"

CMD = "%s %s " % (ARP, IP)
macPattern = re.compile(":")

def getMac():

p = subprocess.Popen(CMD, shell=True, stdout=subprocess.PIPE)

out = p.stdout.read()

results = out.split()

for chunk in results:

if re.search(macPattern, chunk):
return chunk

if _name__ == "_main__":

macAddr = getMac()

print macAddr

Creating Hybrid SNMP Tools | 221

This snippet of code is not a reusable tool yet, but you could easily take this idea and
use it as part of a general data center discovery library.

Extending Net-SNMP

Aswe have discussed earlier, Net-SNMP is installed as an agent on most *nix machines.
There is a default set of information that an agent can return, but it is also possible to
extend an agent on a machine. It is reasonably straightforward to write an agent that
collects just about anything and then returns the results via the SNMP protocol.

The EXAMPLE.conf file is one of the best sources for information on extending Net-
SNMP, and it is included with Net-SNMP. Doing a man on snmpd. conf is also useful
for more verbose information that documents the API. Both of these would be good
sources of information to reference if you are interested in further study on extending
native agents.

For a Python programmer, extending Net-SNMP is one of the most exciting aspects of
working with SNMP, as it allows a developer to write code to monitor whatever they
see fit, and to additionally have the agent internally respond to conditions that you have
assigned to it.

Net-SNMP offers quite a few ways to extend its agent, but to get started we are going
to write a Hello World program that we will query from snmp. The first step is to create
a very simple snmpd.conf file that executes our Hello World program in Python. Ex-
ample 7-4 shows what that looks like on a Red Hat machine.

Example 7-4. SNMP configuration file with Hello World

syslocation "0'Reilly"

syscontact bofh@oreilly.com

rocommunity public

exec helloworld /usr/bin/python -c "print 'hello world from Python'"

Next we need to tell snmpd to re-read the configuration file. We can do that three
different ways. On Red Hat you can use:
service snmpd reload
or you can also do:
ps -ef | grep snmpd
root 12345 1 0 Apri4 ?
00:00:30 /usr/sbin/snmpd -Lsd -Lf /dev/null -p /var/run/snmpd.pid -a
Then you can send it:

kill -HUP 12345

Finally, the snmpset command can assign an integer (1) to UCD-SNMP-
MIB::versionUpdateConfig.0, which will tell snmpd to reread the configuration file.

222 | Chapter7: SNMP

Now that we have modified the snmpd.conf file and told snmpd to reread the configu-
ration file, we can go ahead and query our machine by using either the snmpwalk com-
mand-line tool or the Net-SNMP binding with IPython. Here is what it looks like from
the snmpwalk command:

[root@giftcsl1lco2][H:4904][J:0]> snmpwalk -v 1 -c public localhost .1.3.6.1.4.1.2021.8
UCD-SNMP-MIB: :extIndex.1 = INTEGER: 1
UCD-SNMP-MIB: :extNames.1 = STRING: helloworld
UCD-SNMP-MIB: :extCommand.1 = STRING: /usr/bin/python
-c "print 'hello world from Python'"
UCD-SNMP-MIB: :extResult.1 = INTEGER: 0
UCD-SNMP-MIB: :extOutput.1 = STRING: hello world from Python
UCD-SNMP-MIB: :extErrFix.1 = INTEGER: noError(0)
UCD-SNMP-MIB: :extErrFixCmd.1 = STRING:

This query bears some explanation, as the observant reader may wonder where we got
it. 1.3.6.1.4.1.2021.8 from. This OID is the ucdavis.extTable. When you create an
extension to snmpd.conf, it will assign it to this OID. Things get slightly more compli-
cated if you would like to query a custom OID that you create. The proper way to do
this is to fill out a request with iana.org and to get an enterprise number. You can then
use that number to create custom queries to an agent. The main reason for this is to
keep a uniform namespace that avoids collisions with other future vendor numbers you
may run into.

Getting output from one-liners isn’t really Python’s strength, and it is kind of silly. Here
is an example of a script that parses the total number of Firefox hits in an Apache log
and then returns the number for a custom enterprise number. Let’s start backward this
time and see what it looks like when we query it:

snmpwalk -v 2c -c public localhost .1.3.6.1.4.1.2021.28664.100
UCD-SNMP-MIB: :ucdavis.28664.100.1.1 = INTEGER: 1

UCD-SNMP-MIB: :ucdavis.28664.100.2.1 = STRING: "FirefoxHits"
UCD-SNMP-MIB: :ucdavis.28664.100.3.1 = STRING:

"/usr/bin/python /opt/local/snmp_scripts/agent_ext logs.py"
UCD-SNMP-MIB: :ucdavis.28664.100.100.1 = INTEGER: 0
UCD-SNMP-MIB: :ucdavis.28664.100.101.1 = STRING:

"Total number of Firefox Browser Hits: 15702"
UCD-SNMP-MIB: :ucdavis.28664.100.102.1 = INTEGER: 0
UCD-SNMP-MIB: :ucdavis.28664.100.103.1 = ""

If you look at the value of 100.101.1, you will see the output of a script that uses a
generator pipeline to parse an Apache log and look for all Firefox hits in the log. It then
sums them and returns the output via SNMP. Example 7-5 is the script that gets run
when we query this OID.

Example 7-5. Generator pipeline to look for total firefox hits in Apache logfile
import re

nnn

"""Returns Hit Count for Firefox

def grep(lines,pattern="Firefox"):

Extending Net-SNMP | 223

pat = re.compile(pattern)
for line in lines:
if pat.search(line): yield line

def increment(lines):
num = 0
for line in lines:
num += 1
return num

wwwlog = open("/home/noahgift/logs/noahgift.com-combined-log")
column = (line.rsplit(None,1)[1] for line in wwwlog)

match = grep(column)

count = increment(match)

print "Total Number of Firefox Hits: %s" % count

In order for our query to work in the first place, we needed to tell snmpd. conf about this
script, and here is what that section looks like:

syslocation "0'Reilly"

syscontact bofh@oreilly.com

rocommunity public

exec helloworld /usr/bin/python -c "print 'hello world from Python'"

exec .1.3.6.1.4.1.2021.28664.100 FirefoxHits /usr/bin/python

/opt/local/snmp_scripts/agent_ext_logs.py

The magic portion is the last line, in which .1.3.6.1.4.1.2021 is the ucdavis enterprise
number, 28664 our enterprise number, and 100 is some contrived value that we decided
we wanted to use. It is really important to follow best practices and use your our en-
terprise number if you plan on extending SNMP. The main reason is that you will avoid
causing havoc if you decide to use a range already occupied by someone else and then
make changes via snmpset.

We would like to close with the fact that this is one of the more exciting topics in the
book, and SNMP is still a very untouched playground. There are many things that
customizing Net-SNMP can be useful for, and if you are careful to use SNMP v3, you
can do some incredible things that are most easily accomplished through the SNMP
protocol; and that ssh or sockets would be the most natural choice.

SNMP Device Control

One of the more interesting things SNMP can do is control a device through the SNMP
protocol. Obviously, this creates a significant advantage over using something like
Pyexpect (http://sourceforge.net/projects/pexpect/) to control a router, as it is much more
straightforward.

For brevity’s sake, we will only cover SNMP v1 in the example, but if you are commu-
nicating with a device over an insecure network, it should be done via SNMP v3. For
this section, it would be good to reference Essential SNMP and Cisco IOS Cookbook by
Kevin Dooley and Ian J. Brown (O’Reilly) if you have a Safari account or have bought

224 | Chapter7: SNMP

http://sourceforge.net/projects/pexpect/

those books. They include some excellent information about both talking to Cisco
devices via SNMP and basic configuration.

Because reloading a Cisco configuration via SNMP is plain cool, it seems like a perfect
choice to talk about device control. For this example it is necessary to have a running
TFTP server from which the router will pull the IOS file, and the router must be con-
figured to allow read/write access for SNMP. Example 7-6 is what the Python code
looks like.

Example 7-6. Upload new switch configuration Cisco router

import netsnmp

vars = netsnmp.Varbind(netsnmp.VarList(netsnmp.Varbind(".1.2.6.1.4.1.9.2.10.6.0", "1"),
(netsnmp.Varbind("cisco.example.com.1.3.6.1.4.1.9.2.10.12.172.25.1.1",
"iso-config.bin")

result = netsnmp.snmpset(vars,
Version = 1,
DestHost="cisco.example.com',
Community="'readWrite")

In this example, we used Net-SNMP’s VarList to assign the instruction to first erase the
flash for the switch and second load a new I0S image file. This could be the basis for
a script that upgrades the I0S of every switch at once in a data center. As with all code
in this book, you should test this out in a nonproduction environment before just seeing
what happens.

One final thing to point out is that SNMP is often not thought of in terms of device
control, but it is a powerful way to programmatically control devices in a data center,
as it serves as a uniform specification for device control that has been under develop-
ment since 1988. The future probably holds a very interesting story for SNMP v3.

Enterprise SNMP Integration with Zenoss

Zenoss is a fascinating new option for enterprise SNMP management systems. Not only
is Zenoss a completely open source application, it is also written in pure Python. Zenoss
is a new breed of enterprise application that is both incredibly powerful and extendable
via an XML-RPC or ReST APIL. For more information on ReST, take a look at RESTful
Web Services by Leonard Richardson and Sam Ruby (O’Reilly).

Finally, if you want to help develop Zenoss, you can contribute patches.

Zenoss API

For the latest information on the Zenoss AP, please visit http://www.zenoss.com/com
munity/docs/howtos/send-events/.

Enterprise SNMP Integration with Zenoss | 225

http://www.zenoss.com/community/docs/howtos/send-events/
http://www.zenoss.com/community/docs/howtos/send-events/

Using Zendmd

Not only does Zenoss come with a robust SNMP monitoring and discovery system, it
also includes a high-level API called zendmd. You can open up a customized shell and
run commands directly against Zenoss.

Using zendmd:

>>> d = find('build.zenoss.loc")

>>> d.os.interfaces.objectIds()

['etho', 'eth1', 'lo', 'sito', ‘vmnet1', 'vmnet8']
>>> for d in dmd.Devices.getSubDevices():

>>> print d.id, d.getManageIp()

Device API

You can also communicate directly with Zenoss via an XML-RPC API and add or
remove devices. Below are two examples.

Using ReST:

[zenos@zenoss $]

wget 'http://admin:zenoss@MYHOST:8080/zport/dmd

/ZenEventManager/manage_addEvent?device=MYDEVICE&component=MYCOMPONENT&summary="~+
MYSUMMARY&severity=48eclass=EVENTCLASS&eventClassKey=EVENTCLASSKEY

Using XML-RPC:

>>> from xmlrpclib import ServerProxy

>>> serv = ServerProxy('http://admin:zenoss@MYHOST:8080/zport/dmd/ZenEventManager")
>>> evt = {'device':'mydevice', 'component':'etho’,

"summary':'etho is down','severity':4, 'eventClass':'/Net'}

>>> serv.sendEvent(evt)

226 | Chapter7: SNMP

CHAPTER 8
0S Soup

Introduction

Being a sysadmin often means that you get thrown to the wolves. Rules, a predictable
schedule, or even choice of an operating system is often out of your control. To be even
a marginally effective sysadmin nowadays, you need to know it all, and we mean all
the operating systems. From Linux, to Solaris, to OS X, to FreeBSD, it needs to be in
your toolbelt. Although only time will tell, it does seem as if the proprietary operating
systems, such as AIX and HP-UX, won’t last forever, but they still are necessary to know
for many people.

Fortunately, Python comes to the rescue yet again—we hope you are noticing a trend
here—by offering a mature standard library that has just about anything a multi-OS
systems administrator needs. Python’s massive standard library has a module that deals
with just about anything a sysadmin could want to do, from tarring up a directory, to
comparing files and directories, to parsing config files. Python’s maturity, coupled with
its elegance and readability, is why it is the 800 pound gorilla of systems administration.

Many complex systems administration facilities, such as animation pipelines and data
centers, are switching away from Perl to Python because it offers much more readable
and elegant code. While Ruby is an interesting language that shares many of the positive
features of Python, when one compares the standard library and maturity of the lan-
guage, Ruby lacks in comparison to Python for a systems administration language.

Since this chapter is going to be a mixture of many different operating systems, we
won’t have time to explore any of them in great depth, but we will explore them enough
to demonstrate how Python can act in as both a generic, cross-platform scripting lan-
guage and a unique weapon for each operating system. Finally, there is a new “operating
system” on the horizon, and it comes in the form of a data center. Some people refer
to this new platform as Cloud Computing, and we will talk about Amazon’s and Goo-
gle’s offerings.

Enough of the idle banter, something smells delicious in the kitchen...is that OS soup?

227

Cross-Platform Unix Programming in Python

While there are some significant differences between *nix operating systems, there is
much more in common that not. One way to bring the different versions of *nix back
together is to write cross-platform tools and libraries that bridge the divide between
the operating system differences. One of the most basic ways to accomplish this is to
write conditional statements that check for the operating systems, platform, and ver-
sion in code that you write.

Python takes the “batteries included” philosophy quite seriously, and includes a tool
for just about any problem you could think of. For the problem of determing what
platform your code is running on, there is the platform module. Let’s look at the
essentials of using the platform module.

An easy way to get comfortable with the platform module is to create a tool the prints
out all available information about a system. See Example 8-1.

Example 8-1. Using the platform module to print a system report

#!/usr/bin/env python
import platform

profile = [
platform.architecture(),
platform.dist(),
platform.1libc_ver(),
platform.mac_ver(),
platform.machine(),
platform.node(),
platform.platform(),
platform.processor(),
platform.python build(),
platform.python_compiler(),
platform.python_version(),
platform.system(),
platform.uname(),
platform.version(),

]

for item in profile:
print item

Here is the output of that script on OS X Leopard 10.5.2:
[ngift@Macintosh-6][H:10879][J:0]% python cross platform.py

('32bit", ')

(IIJ I') 'I)

¢

('10.5.2', (*', '', '), 'i386')

Macintosh-6.local
Darwin-9.2.0-1386-32bit
i386

228 | Chapter8: 0SSoup

('r251:54863', 'Jan 17 2008 19:35:17')

GCC 4.0.1 (Apple Inc. build 5465)

2.5.1

Darwin

('Darwin', 'Macintosh-6.local', '9.2.0', 'Darwin Kernel Version 9.2.0:

Tue Feb 5 16:13:22 PST 2008; root:xnu-1228.3.13~1/RELEASE_I386', 'i386', 'i386')
Darwin Kernel Version 9.2.0: Tue Feb 5 16:13:22 PST 2008;
root:xnu-1228.3.13~1/RELEASE_I386

This gives us some idea of the kind of information we can gather. The next step on the
road to writing cross-platform code is to create a fingerprint module that will “finger-
print” which platform and version we are running on. In this example, we will finger-
print the following operating systems: Mac OS X, Ubuntu, Red Hat/Cent OS, FreeBSD,
and SunOS. See Example 8-2.

Example 8-2. Fingerprinting an operating system type

#!/usr/bin/env python
import platform

nun

Fingerprints the following Operating Systems:

* Mac 0S X

* Ubuntu

* Red Hat/Cent 0S
* FreeBSD

* Sun0S

nnn

class OpSysType(object):
"""Determins 0S Type using platform module"""
def _getattr (self, attr):
if attr == "osx":
return "osx"
elif attr == "rhel":
return "redhat"
elif attr == "ubu":
return "ubuntu"
elif attr == "fbsd":
return "FreeBSD"

elif attr == "sun":
return "SunOS"

elif attr == "unknown_linux":
return "unknown_linux"

elif attr == "unknown":
return "unknown"

else:

raise AttributeError, attr

def linuxType(self):
"""Uses various methods to determine Linux Type

if platform.dist()[0] == self.rhel:

Cross-Platform Unix Programming in Python | 229

return self.rhel

elif platform.uname()[1] == self.ubu:
return self.ubu

else:
return self.unknown_linux

def query0S(self):

if platform.system() == "Darwin":
return self.osx

elif platform.system() == "Linux":
return self.linuxType()

elif platform.system() == self.sun:
return self.sun

elif platform.system() == self.fbsd:

return self.fbsd

def fingerprint():
type = OpSysType()
print type.query0S()

if name_ == " main_":

fingerprint()
Let’s take a look at this output when we run it on the various platforms.

Red Hat:

[root@localhost]/# python fingerprint.py
redhat

Ubuntu:

root@ubuntu: /# python fingerprint.py
ubuntu

Solaris 10 or SunOS:

bash-3.00# python fingerprint.py
Sun0S

FreeBSD

python fingerprint.py
FreeBSD

While the output of the command is not tremendously interesting, it does do a very
powerful thing for us. This simple module allows us to write cross-platform code, as
we can, perhaps, query a dictionary for these operating system types, and if they match,
run the appropriate platform-specific code. One of the ways the benefits of cross-
platform APIs are most tangible is writing scripts that manage a network via ssh keys.
Code can run simultaneously on many platforms yet provide consistent results.

230 | Chapter8: 0SSoup

Using SSH Keys, NFS-Mounted Source Directory, and Cross-Platform Python
to Manage Systems

One way to manage a diverse infrastructure of *nix machines is to use a combination
of ssh keys, a commonly shared NFS-mounted src directory, and cross-platform Python
code. Breaking this process into steps will make it clearer.

Step 1: create a public ssh key on the system from which you will manage machines.
Note that this can vary by platform. Please consult your operating system documen-
tation or do a man on ssh for details. See Example 8-3.

W

o One thing to point out in the example below is that for demonstration

we are creating ssh keys for the root user, but perhaps a better security

918y strategy would be to create a user account that has sudo privileges to
" run only this script.

Example 8-3. Creating a public ssh key

[ngift@Macintosh-6][H:11026][J:0]% ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa.

Your public key has been saved in /root/.ssh/id_rsa.pub.

The key fingerprint is:

6c:2f:6e:16:b7:b8:4d:17:05:99:67:26:1c:b9:74:11 root@localhost.localdomain
[ngift@Macintosh-6][H:11026][J:0]%

Step 2: SCP the public key to the host machines and create an authorized_keys file. See
Example 8-4.

Example 8-4. Distributing ssh key

[ngift@Macintosh-6][H:11026][1:0]% scp id leop lap.pub root@10.0.1.51:~/.ssh/
root@®10.0.1.51°s password:
id leop lap.pub

100% 403 0.4KB/s 00:00
[ngift@Macintosh-6][H:11027][J:0]% ssh root@10.0.1.51
root@®10.0.1.51°s password:
Last login: Sun Mar 2 06:26:10 2008
[root@localhost]~# cd .ssh
[root@localhost]~/.ssh# 11
total 8
-Iw-r--r-- 1 root root 403 Mar 2 06:32 id leop lap.pub
-rw-r--r-- 1 root root 2044 Feb 14 05:33 known_hosts
[root@localhost]~/.ssh# cat id leop lap.pub > authorized keys
[root@localhost]~/.ssh# exit

Connection to 10.0.1.51 closed.
[ngift@Macintosh-6][H:11028][J:0]% ssh root@10.0.1.51

Cross-Platform Unix Programming in Python | 231

Last login: Sun Mar 2 06:32:22 2008 from 10.0.1.3
[root@localhost]~#

Step 3: mount a common NFS src directory that contains the modules you need clients
to run. Often, the easiest way to accomplish this is to use autofs and then make a
symbolic link. Alternately, this could be done via a version control system, in which a
command is issued via ssh to tell the remote hosts to update their local svn repository
full of code. Next, the script would run the newest module. For example, on a Red Hat-
based system, you might do something like this:

1n -s /net/nas/python/src /src

Step 4: write a dispatcher to run code against a network of machines. This is a fairly
simple task now that we have ssh keys and a common NFS-mounted src directory, or
version control-monitored src directory. As usual, let’s start with the simplest possible
example of a ssh-based dispatch system. If you have never done this before, you will
slap yourself thinking how easy it is to do incredibly powerful things. In Exam-
ple 8-5, we run a simple uname command.

Example 8-5. Simple ssh-based dispatcher

#!/usr/bin/env python
import subprocess

A ssh based command dispatch system

machines = ["10.0.1.40",
"10.0.1.50",
"10.0.1.51",
"10.0.1.60",
"10.0.1.80"]

cnd = "uname”
for machine in machines:
subprocess.call("ssh root@%s %s" % (machine, cmd), shell=True)

Running that script on those five IP addresses, which are a mixture of CentOS 5,
FreeBSD 7, Ubuntu 7.1, and Solaris 10, gives the following:

[ngift@Macintosh-6][H:11088][J:0]% python dispatch.py

Linux

Linux

Linux

Sun0S

FreeBSD

Since we wrote a more accurate operating system fingerprint script, let’s use that to get
xx a more accurate description of the host machines to which we’re dispatching com-
mands in order to temporarily create src directory on the remote machines and copy
our code to each machine. Of course, since we have a dispatch script, it is becoming

232 | Chapter8: 0SSoup

painfully obvious we need a robust CLI to our tool, as we have to change the script
each time we want to do anything different such as the following;:

cmd = "mkdir /src"

or:

cmd = "python /src/fingerprint.py"

or even:

subprocess.call("scp fingerprint.py root@%s:/src/" % machine, shell=True)

We will change that right after we get our fingerprint.py script to run, but let’s look
at the new cmd first:

#!/usr/bin/env python
import subprocess

nnn

A ssh based command dispatch system

nun

machines = ["10.0.1.40",
"10.0.1.50",
"10.0.1.51",
"10.0.1.60",
"10.0.1.80"]

cmd = "python /src/fingerprint.py"
for machine in machines:
subprocess.call("ssh root@%s %s" % (machine, cmd), shell=True)

Now, let’s look at the new output:

[ngift@Macintosh-6][H:11107][J:0]# python dispatch.py
redhat

ubuntu

redhat

Sun0S

FreeBSD

This is much better thanks to our fingerprint.py module. Of course, our few lines of
dispatch code need a major overhaul to be considered useful, as we have to change
things by editing the script. We need a better tool, so let’s make one.

Creating a Cross-Platform, Systems Management Tool

Using ssh keys with a simple ssh-based dispatch system was marginally useful, but
hardly extensible or reusable. Let’s make a list of problems with our previous tool, and
then a list of requirements to fix those problems. Problems: the list of machines is
hardcoded into our script; the command we dispatch is hardcoded into our script; we
can only run one command at a time; we have to run the same list of commands to all
machines, we cannot pick and choose; and our dispatch code blocks waiting for each
command to respond. Requirements: we need a command-line tool that reads in a
config file with IP addresses and commands to run; we need a CLI interface with options

Cross-Platform Unix Programming in Python | 233

to send a command(s) to machine(s); and we need to run dispatch in a separate thread
pool so the processes do not block.

It seems like we can get away with creating a very basic configuration file syntax to
parse, with a section for machines, and a section for commands. See Example 8-6.

Example 8-6. Dispatch config file

[MACHINES]

CENTOS: 10.0.1.40

UBUNTU: 10.0.1.50

REDHAT: 10.0.1.51

SUN: 10.0.1.60

FREEBSD: 10.0.1.80

[COMMANDS]

FINGERPRINT : python /src/fingerprint.py

Next, we need to write a function that reads the config file and splits the MACHINES
and COMMANDS up so we can iterate over them one at a time. See Example 8-7.

B
)

One thing to note is that our commands will be imported from the config
file randomly. In many cases, this is a showstopper, and it would be
Wls better to just write a Python file and use that as a configuration file.

Example 8-7. Advanced ssh dispatcher

#!/usr/bin/env python
import subprocess
import ConfigParser

nnn

A ssh based command dispatch system

nnn

def readConfig(file="config.ini"):
"""Extract IP addresses and CMDS from config file and returns tuple
ips = []
cnds = []
Config = ConfigParser.ConfigParser()
Config.read(file)
machines = Config.items("MACHINES")
commands = Config.items("COMMANDS")
for ip in machines:
ips.append(ip[1])
for cmd in commands:
cmds . append(cmd[1])
return ips, cmds

nun

ips, cmds = readConfig()

#For every ip address, run all commands

234 | Chapter8: 0SSoup

for ip in ips:
for cmd in cmds:
subprocess.call("ssh root@%s %s" % (ip, cmd), shell=True)

This trivial piece of code is fun to use. We can arbitrarily assign a list of commands and
machines and run them at once. If we look at the output of the command, we can see
if it looks the same:

[ngift@Macintosh-6][H:11285][J:0]# python advanced dispatchi.py
redhat

redhat

ubuntu

Sun0S

FreeBSD

Even though we have a fairly sophisticated tool, we still have not met our original
requirements specification of running dispatched commands in a separate thread pool.
Fortunately, we can use some of the tricks from the processes chapter to create a thread
pool for our dispatcher quite easily. Example 8-8 shows what adding threading can do.

Example 8-8. Multithreaded command dispatch tool

#!/usr/bin/env python

import subprocess

import ConfigParser

from threading import Thread

from Queue import Queue

import time

A threaded ssh-based command dispatch system

nnn

start = time.time()
queue = Queue()

def readConfig(file="config.ini"):

"""Extract IP addresses and CMDS from config file and returns tuple

ips =[]

cnds = []

Config = ConfigParser.ConfigParser()

Config.read(file)

machines = Config.items("MACHINES")

commands = Config.items("COMMANDS")

for ip in machines:
ips.append(ip[1])

for cmd in commands:
cmds.append(cmd[1])

return ips, cmds

nnn

def launcher(i,q, cmd):
"""Spawns command in a thread to an ip
while True:
#grabs ip, cmd from queue
ip = q.get()
print "Thread %s: Running %s to %s" % (i, cmd, ip)

nun

Cross-Platform Unix Programming in Python | 235

subprocess.call("ssh root@%s %s" % (ip, cmd), shell=True)
q.task_done()

#grab ips and cmds from config
ips, cmds = readConfig()

#Determine Number of threads to use, but max out at 25
if len(ips) < 25:

num_threads = len(ips)
else:

num_threads = 25

#Start thread pool
for i in range(num_threads):
for cmd in cmds:
worker = Thread(target=launcher, args=(i, queue,cmd))
worker . setDaemon(True)
worker.start()

print "Main Thread Waiting"
for ip in ips:
queue.put(ip)
queue.join()
end = time.time()
print "Dispatch Completed in %s seconds" % end - start

If we look at the output of our new threaded dispatch engine, we can see that the
commands were dispatched and returned in about 1.2 seconds. To really see the speed
difference, we should add a timer to our original dispatcher and compare the results:

[ngift@Macintosh-6][H:11296][J:0]# python threaded dispatch.py
Main Thread Waiting

Thread 1: Running python /src/fingerprint.py to 10.0.1.51
Thread Running python /src/fingerprint.py to 10.0.1.40
Thread Running python /src/fingerprint.py to 10.0.1.50
Thread Running python /src/fingerprint.py to 10.0.1.60
Thread Running python /src/fingerprint.py to 10.0.1.80
redhat

redhat

ubuntu

Sun0S

FreeBSD

Dispatch Completed in 1 seconds

w phON

By adding some simple timing code to our original dispatcher, we get this new output:

[ngift@Macintosh-6][H:11305][J:0]# python advanced dispatchi.py
redhat

redhat

ubuntu

Sun0S

FreeBSD

Dispatch Completed in 3 seconds

236 | Chapter8: 0SSoup

From this sample test, we can tell our threaded version is roughly three times quicker.
If we were using our dispatch tool to monitor a network full of machines, say 500
machines, and not 5, it would make a substantial difference in performance. So far, our
cross-platform systems management tool is proceeding nicely, so let’s step it up another
notch and use it to create a cross-platform build network.

W

We should note that another, perhaps even better, solution would be
to implement this using the parallel version of IPython. See http://ipy
Us' thon.scipy.org/moin/Parallel_Computing.

Creating a Cross-Platform Build Network

Since we know how to distribute jobs in parallel to a list full of machines, identify what
operating system they are running, and finally, create a uniform manifest with EPM
that can create a vendor-specific package, doesn’t it make sense to put all of this to-
gether? We can use these three techniques to quite easily build a cross-platform build
network.

With the advent of virtual machines technology, it is quite easy to create a virtual
machine for any nonproprietary *nix operating system, such as Debian/Ubuntu, Red
Hat/CentOS, FreeBSD, and Solaris. Now, when you create a tool you need to share to
the world, or just the people at your company, you can quite easily create a “build
farm,” perhaps even running on your laptop, in which you run a script, and then in-
stantly create a vendor package for it.

So how would that work? The most automated way to accomplish this would be to
create a common NFS-mounted package build tree, and give all of your build servers
access to this mount point. Then, use the tools we created earlier to have the build
servers spawn package builds into the NFS-mounted directory. Because EPM allows
you to create a simple manifest or “list” file, and because we have created a “fingerprint”
script, all the hard work is done. OK, let’s write that code to do just that.

Here is an example of what a build script could look like:

#!/usr/bin/env python
from fingerprint import fingerprint
from subprocess import call

os = fingerprint()

#Gets epm keyword correct
epm_keyword = {"ubuntu":"dpkg", "redhat":"rpm", "Sun0S":"pkg",

" non

osx":"osx"

try:
epm_keyword[os]
except Exception, err:
print err

Cross-Platform Unix Programming in Python | 237

http://ipython.scipy.org/moin/Parallel_Computing
http://ipython.scipy.org/moin/Parallel_Computing

subprocess.call("epm -f %s helloEPM hello_epm.list" % platform cmd, shell=True)

Now, with that out of the way, we can edit our config.ini file and change it to run our
new script.

[MACHINES]

CENTOS: 10.0.1.40

UBUNTU: 10.0.1.50

REDHAT: 10.0.1.51

SUN: 10.0.1.60

FREEBSD: 10.0.1.80

[COMMANDS]

FINGERPRINT = python /src/create_package.py

Now, we just run our threaded version distribution tool, and eureka, we have packages
built for CentOS, Ubuntu, Red Hat, FreeBSD, and Solaris in seconds. This example
isn’t what we could consider production code, as there needs to be error handling in
place, butitis a great example of what Python can whip up in a matter of a few minutes
or a few hours.

Pylnotify

If you have the privilege of working with GNU/Linux platforms, then you will appre-
ciate PyInotify. According to the documentation, it is “a Python module for watching
filesystem changes.” The official project page is here: http://pyinotify.sourceforge.net.

Example 8-9 shows how it could work.

Example 8-9. Event-monitoring Pyinotify script

import os
import sys
from pyinotify import WatchManager, Notifier, ProcessEvent, EventsCodes

class PClose(ProcessEvent):

nun

Processes on close event

nun

def _init_ (self, path):
self.path = path
self.file = file

def process IN CLOSE(self, event):
process 'IN CLOSE *' events
can be passed an action function
path = self.path
if event.name:
self.file = "%s" % os.path.join(event.path, event.name)
else:

238 | Chapter8: 0SSoup

http://pyinotify.sourceforge.net

self.file = "%s" % event.path
print "%s Closed" % self.file
print "Performing pretend action on %s...." % self.file
import time
time.sleep(2)
print "%s has been processed" % self.file

class Controller(object):

def __init_ (self, path="/tmp'):
self.path = path

def run(self):
self.pclose = PClose(self.path)
PC = self.pclose
only watch these events
mask = EventsCodes.IN CLOSE_WRITE | EventsCodes.IN CLOSE_NOWRITE

watch manager instance
wm = WatchManager ()
notifier = Notifier(wm, PC)

print 'monitoring of %s started' % self.path

added flag = False
read and process events
while True:
try:
if not added flag:
on first iteration, add a watch on path:
watch path for events handled by mask.
wm.add watch(self.path, mask)
added flag = True
notifier.process_events()
if notifier.check events():
notifier.read events()
except KeyboardInterrupt:
...until c”c signal
print 'stop monitoring...'
stop monitoring
notifier.stop()
break
except Exception, err:
otherwise keep on watching
print err

def main():
monitor = Controller()
monitor.run()

if _name__ == '_ main_':
main()

If we run this script, it will “pretend” to do things when something is placed in
the /tmp directory. This should give you some idea of how to actually do something

Pylnotify | 239

useful, such as adding a callback that performs an action. Some of the code in the data
section could be useful for doing something that finds duplicates and deletes them
automatically, or performs a TAR archive if they match a fnmatch expression you de-
fined. All in all, it is fun and useful that the Python module works on Linux.

0SX

OS X is a weird beast to say the least. On one hand, it has, arguably, the world’s finest
user interface in Cocoa; on the other hand, as of Leopard, it has a completely POSIX-
compliant Unix operating system. OS X accomplished what every Unix operating sys-
tem vendor tried to do and failed: it brought Unix to the mainstream. With Leopard,
OS Xincluded Python 2.5.1, Twisted, and many other Python goodies.

OS X also follows a somewhat strange paradigm of offering a server and regular version
of its operating system. For all the things Apple has done right, it might need to rethink
that dinosaur-era thinking, but we can get into the one-OS, one-price discussion later.
The server version of the operating system offers some better command-line tools for
administration, and a few Apple-specific goodies, such as the ability to NetBoot ma-
chines, run LDAP Directory Servers, and more.

Scripting DSCL or Directory Services Utility

DSCL stands for Directory Services Command Line, and it is a convenient hook into
OS X’s directory services API. DSCL will let you read, create and delete records, so
Python is a natural fit. Example 8-10 shows using IPython to script DSCL to read Open
Directory attributes and their values.

B
)

Note in the example we read only attributes, but it easy enough to mod-
ify them as well using the same technique.

\

ey

Example 8-10. Getting user record interactively with DSCL and IPython

In [42]: import subprocess

In [41]: p = subprocess.Popen("dscl . read /Users/ngift", shell=True,stdout=subprocess.PIPE)
In [42]: out = p.stdout.readlines()

In [43]: for line in out:

line.strip().split()

Out[46]: ['NFSHomeDirectory:', '/Users/ngift']
Out[46]: ['Password:"', '¥¥¥¥xxxx!]
Out[46]: ['Picture:']

240 | Chapter8: 0SSoup

Out[46]: ['/Library/User', 'Pictures/Flowers/Sunflower.tif']
Out[46]: ['PrimaryGroupID:', '20']
Out[46]: ['RealName:', 'ngift']
Out[46]: ['RecordName:', 'ngift']
Out[46]: ['RecordType:', 'dsRecTypeStandard:Users']
Out[46]: ['UniqueID:', '501']
1: U

Out[46]: ['UserShell:', '/bin/zsh']

Itis good to point out that Apple has centralized both local and LDAP/Active Directory
account management to use the dscl command. The dscl utility is a wonderful breath
of fresh air when dealing with it in comparison to other LDAP management tools, even
if you take Python out of the equation. Although we don’t have the space to go into
the details, it is quite easy to script the dscl utility with Python to programatically
manage accounts either on alocal database or a LDAP database such as Open Directory,
and the previous code should give you an idea of where to start if you choose to do this.

0S X Scripting APIs

Often, with OS X it is a requirement for a sysadmin to know a bit about high-level
scripting that interacts with the actual Ul itself. With OS X Leopard, Python, and Ruby,
we’re given first-class access to the Scripting Bridge. Refer to this documentation for
more information: http://developer.apple.com/documentation/Cocoa/Conceptual/Ruby
PythonCocoal/Introduction/Introduction.html.

One of the options for accessing the OSA, or Open Scripting Architecture, is
py-appscript, which has a project page here: http://sourceforge.net/projects/appscript.

Using py-appscript is quite fun and powerful, as it gives Python the ability to interact
with the very rich OSA architecture. Before we dig into it, though, let’s build a simple
osascript command-line tool that shows you how the scripting API works. With Leop-
ard, it is now possible to write osascript command-line tools and execute them like
Bash or Python scripts. Let’s build this script below, call it bofh.osa, and then make it
executable. See Example 8-11.

Example 8-11. Hello, Bastard Operator From Hell osascript
#!/usr/bin/osascript

say "Hello, Bastard Operator From Hell" using "Zarvox"

If we run this from the command line, an alien-sounding voice says hello to us. This
was a bit silly, but hey, this is OS X; you are supposed to do things like this.

Now, let’s dig into using appscript to access this same API, in Python, but let’s do this
with IPython interactively. Here is an interactive version of an example included with
the source code of appscript that prints out all of the running processes in alphabetical
order:

In [4]: from appscript import app

In [5]: sysevents = app('System Events')

0sX | 241

http://developer.apple.com/documentation/Cocoa/Conceptual/RubyPythonCocoa/Introduction/Introduction.html
http://developer.apple.com/documentation/Cocoa/Conceptual/RubyPythonCocoa/Introduction/Introduction.html
http://sourceforge.net/projects/appscript

In [6]: processnames = sysevents.application_processes.name.get()
In [7]: processnames.sort(lambda x, y: cmp(x.lower(), y.lower()))

In [8]: print '\n'.join(processnames)
Activity Monitor

AirPort Base Station Agent
AppleSpell

Camino

DashboardClient
DashboardClient

Dock

Finder

Folder Actions Dispatcher
GrowlHelperApp

GrowlMenu

iCal

iTunesHelper
JavaApplicationStub
loginwindow

mdworker

PandoraBoy

Python

quicklookd

Safari

Spotlight

System Events
SystemUIServer

Terminal

TextEdit

TextMate

If you happen to need to perform work-flow automation tasks with OS X-specific ap-
plications, appscript can be a godsend, as it can also do things in Python that were
commmonly done via Applescript. Noah wrote an article that goes into some of this:
http://www.macdevcenter.com/pub/a/mac/2007/05/08/using-python-and-applescript-
to-get-the-most-out-of-your-mac.html.

Some of the things that a sysadmin might do are script Final Cut Pro and create batch
operations that interact with, say, Adobe After Effects. One final point of advice is that
a very quick-and-dirty way to create GUIs in Python on OS X can be done through
Applescript Studio and calls via “do shell script” to Python. A little-known fact is that
the original versions of Carbon Copy Cloner were written in Applescript Studio. If you
have some time, it is worth exploring.

Automatically Re-Imaging Machines

Yet another revolutionary tool OS X has developed that is ahead of its time is the ASR
command-line tool. This tool is a key component in a very popular freeware cloning
utility called Carbon Copy Cloner, and it has played a role in automating many

242 | Chapter8: 0SSoup

http://www.macdevcenter.com/pub/a/mac/2007/05/08/using-python-and-applescript-to-get-the-most-out-of-your-mac.html
http://www.macdevcenter.com/pub/a/mac/2007/05/08/using-python-and-applescript-to-get-the-most-out-of-your-mac.html

environments. Noah used the asr utility in tandom with Netboot to automatically re-
image machines; in fact, he fully automated at one place he worked. A user would just
need to reboot his machine and hold down the “N” key for a netboot, and it was “game
over,” or the machine would fix itself.

Please don’t tell anyone, though, as they still think he works there. Here is a hardcoded
and simplistic version of an automated startup script that could be run on a netboot
image to automatically re-image a machine, or alternately, it could be run from a second
partition on a hard drive. In terms of setup, the /Users directory and any other important
directory should be symbolically linked to another partition or should live on the net-
work, which is even better. See Example 8-12.

Example 8-12. Automatically re-image a partition on OS X and show progress with WXPython
progress widget

#!/usr/bin/env pythonw
#automatically reimages partition

import subprocess

import os

import sys

import time

from wx import PySimpleApp, ProgressDialog, PD_APP_MODAL, PD_ELAPSED TIME

#commands to rebuild main partition using asr utility
asr = '/usr/sbin/asr -source '

#path variables

os_path = '/Volumes/main’

ipath = '/net/server/image.dmg '

dpath = '-target /Volumes/main -erase -noprompt -noverify &'
reimage_cmd = "%s%s%s" % (asr,ipath, dpath)

#Reboot Variables
reboot = ‘reboot’
bless = '/usr/sbin/bless -folder /Volumes/main/System/Library/CoreServices -setOF'

#wxpython portion

application = PySimpleApp()

dialog = ProgressDialog ('Progress', 'Attempting Rebuild of Main Partition',
maximum = 100, style = PD_APP_MODAL | PD_ELAPSED TIME)

def boot2main():
"""Blesses new partition and reboots
subprocess.call(bless, shell=True)
subprocess.call(reboot, shell=True)

nnn

def rebuild():
"""Rebuilds Partition"""
try:
time.sleep(5) #Gives dialog time to run
subprocess.call(reimage cmd)
except OSError:

0SX | 243

print "CMD: %s [ERROR: invalid path]" % reimage cmd
sys.exit(1)
time.sleep(30)
while True:
if os.path.exists(os_path):
X =0
wxSleep(1)
dialog.Update (x + 1, "Rebuild is complete...\n rebooting to main partition\n
...in 5 seconds..")
wxSleep(5)
print "repaired volume.." + os_path
boot2main() #calls reboot/bless function
break
else:
X =0
wxSleep(1)
dialog.Update (x + 1, 'Reimaging.... ')

def main():
if os.path.exists(os_path):
rebuild()
else:
print "Could not find valid path...FAILED.."
sys.exit(1)
if name_ =="
main()

__main__":

Toreview the code, the script attempts to re-image a partition and pops up a WXPython
progress bar. If the path is set correctly, and there are no errors, it then proceeds to re-
image the hard drive with the ASR command and a self-updating progress bar, “blesses”
the partition that was re-imaged to become the boot volume again, and then tells the
machine to reboot.

This script could quite easily become the basis for an enterprise software distribution
and management system, as it could be told to distribute different images based on a
fingerprint of the hardware, or even by looking at the “old” name of the hard drive.
Next, software packages could be distributed programatically using OS X’s package
management system, or using the open source tool radmind. One interesting scenario
in which Noah has deployed OS X was to first automatically re-image a fresh installation
of OS X with a base operating system, and then to finish of the rest of the installation
with radmind.

If you are doing any serious OS X systems administration, it would be worth taking a
look at radmind. Radmind is a type of tripwire system that detects changes in a file-
system and is able to restore machines based on this changeset. You can refer to http://
rsug.itd.umich.edu/software/radmind/ if you would like more information. Although
radmind is not written in Python, it can be scripted in Python quite easily.

244 | Chapter8: 0SSoup

http://rsug.itd.umich.edu/software/radmind/
http://rsug.itd.umich.edu/software/radmind/

Managing Plist Files from Python

In Chapter 3, we parsed an XML stream generated from the system_profiler with

ElementTree, but Python on OS X comes bundled with plistlib, which allows you to
parse and create Plist files. The name of the module itself is plistlib. We won’t have
time to get into a use case for it, but it is worth exploring on your own.

Red Hat Linux Systems Administration

Red Hat is doing a whole slew of things with Python as a company and as an operating
system. Some of the most interesting new uses of Python at Red Hat are coming from
the Emerging Technologies group: http://et.redhat.com/page/Main_Page. Here is a list
of some of the projects using Python:

* Libvert, the virtualization API virtual machine manager
* A Python + PyGTK management application built with libvirt VirtInst
* A Python library for simplifying provisioning of guest VMs with libvirt

* Cobbler, which sets up fully automated network boot servers for PXE and
virtualization

* Virt-Factory: web-based virtualization management with an application focus
e FUNC (Fedora Unified Network Controller)

Ubuntu Administration

Of all of the mainstream Linux distributions, you could say that Ubuntu is perhaps the
one most enamored with Python. Part of this could be that Mark Shuttleworth, the
founder, is a long-time Python hacker, going back to the early ’90s. One good source
for Python packages on Ubuntu is Launchpad: https:/launchpad.net/.

Solaris Systems Administration

From the late *90s to the early 2000s Solaris was a preferred, “Big Iron” distribution of
Unix. Linux’s metioric rise in the early 2000s rapidly cut into Solaris’ and Sun was in
some real trouble. However, recently, a lot of sysadmins, developers, and enterprises
are talking about Sun again.

Some of the interesting developments in Sun’s future are a 6-month release cycle, just
like Ubuntu, with a 18-month support window. It is also copying the single CD ap-
proach of Ubuntu as well and ditching the big DVD distribution. Finally, it is mixing
some of the ideas from Red Hat and Fedora by having a community-developed version
of Solaris mixed. You can know download a live CD or order one here: http://www.open
solaris.com.

Red Hat Linux Systems Administration | 245

http://et.redhat.com/page/Main_Page
https://launchpad.net/
http://www.opensolaris.com
http://www.opensolaris.com

What does all this mean for a sysadmin who uses Python? Sun is suddently exciting,
and it has a slew of interesting technologies from ZFS, to Containers, to LDOMs which
are equivalent to VMware virtual machines in some respects. There is even a correlation
to this book. Python works just fine on Solaris, and it is even used quite heavily in its
developing package management system.

Virtualization

On August 14, 2007, VMware went public in an IPO that raised billions of dollars and
solidified “virtualization” as the next big thing for data centers and systems adminis-
trators everywhere. Predicting the future is always a dicey bet, but the words “data
center operating system,” are being tossed around by large companies, and everyone
from Microsoft to Red Hat to Oracle are jumping on the virtualization bandwagon. It
is safe to say that virtualization is going to completely change the data center and the
job of systems administration. Virtualization is a no-brainer example of the often over-
used phrase, “distruptive technology.”

Virtualization is a double-edged sword for systems administrators, as on one hand, it
creates the ability to easily test configurations and applications, but on the other hand,
it dramatically increases the complexity of administration. No longer does one machine
hold one operating system, one machine could hold a hold small business, or a large
chunk of a data center. All of the efficiency has to come at some cost, and it does, right
out of the hide of the average systems administrator.

You might be at home reading this right now thinking: what could this possibly have
to do with Python? Well, quite a bit. Noah’s recent employer Racemi has written a
comprehensive data center management application in Python that deals with virtual-
ization. Python can and does interact with virtualization in a very fundamental way,
from controlling virtual machines, to moving physical machines to virtual machines
via Python APIs. Python is right at home in this new virtualized world, and it is a safe
bet it will play a big role in whatever future the data center operating system has.

VMware

VMware as, we mentioned earlier, is the current powerhouse in virtualization. Having
full control programatically over a virtual machine is obviously the Holy Grail. Luckily,
there are several APIs to look at: Perl, XML-RPC, Python, and C. As of this writing,
some of the Python implementations are somewhat limited, but that could change. The
new direction for VMware appears to be in terms of the XML-RPC APL

VMware has a few different products with a few different APIs. Some of the products
you may want to consider scripting are VMware Site Recovery Manager, VMware ESX
Server, VMware Server, and VMware Fusion.

246 | Chapter8: 0SSoup

We won’t have room to cover scripting these technologies, as they fall outside the scope
of this book, but it would pay to closely monitor these products and examine what role
Python will play.

Cloud Computing

Just when the buzz was settling from virtualization, suddenly cloud computing is rais-
ing the buzz yet again. Simply put, “cloud computing” is about using resources that
respond on demand to workload requirements. The two big players in cloud computing
are Amazon and Google. Google just literally dropped the “C” bomb just a few weeks
before this book went to the publisher. Google offered an interesting twist in it that
only currently supports Python. This being a book on Python programming, we are
sure this doesn’t disappoint you too much. For some reason, this whole ordeal with
Google offering only Python reminds us of an American Express commercial.

In this section, we go into some of the available APIs that you may need to deal with
for both Amazon and Google App Engine. Finally, we talk about how this may impact
systems administration.

Amazon Web Services with Boto

An exciting option for dealing with Amazon’s cloud computing infrastructure is Boto.
With Boto, you can do the following things: Simple Storage Service, Simple Queue
Service, Elastic Compute Cloud, Mechanical Turk, SimpleDB. Because this is a very
new yet powerful API, we recommend that you just take a look at the project home
page yourself: hitp://code.google.com/p/boto/. This will give you the latest information
better than we can give you in dead tree format.

Here is a brief example though of how it works with SimpleDB:
Initial connection:

In [1]: import boto
In [2]: sdb = boto.connect_sdb()

Create a new domain:

In [3]: domain = sdb.create_domain('my_domain')
Adding a new item:

In [4]: item = domain.new_item('item')

This is the feel for how the API works currently, but you should take a look at the tests
in svn repository to get a real idea of how things work: http://code.google.com/p/boto/
source/browse. On a side note, looking at tests is one of the best ways to understand
how a new library works.

Cloud Computing | 247

http://code.google.com/p/boto/
http://code.google.com/p/boto/source/browse
http://code.google.com/p/boto/source/browse

Google App Engine

Google App Engine was released as a beta service, and it was massively buzzworthy
from the day it was announced. It lets you run your application on Google’s infra-
structure for free. App Engine applications have a strictly Python API for now, but that
could change at some point. One of the other interesting things about App Engine is
that it also integrates with Google’s other services.

CELEBRITY PROFILE: GOOGLE APP ENGINE TEAM

Kevin Gibbs

Kevin Gibbs is the technical lead for Google App Engine. Kevin
joined Google in 2004. Prior to his work on Google App Engine,
Kevin worked for a number of years in Google’s systems infrastruc-
ture group, where he worked on the cluster management systems
that underlie Google’s products and services. Kevin is also the crea-
tor of Google Suggest, a product which provides interactive search
suggestions as you type. Prior to joining Google, Kevin worked with
the Advanced Internet Technology group at IBM, where he focused on developer tools.

One of the ways this affects a systems administrator is that it is increasingly becoming
feasible to host major portions of what used to live in your data center into another
data center. Knowing how to interact with Google App Engine could be the killer new
skill for sysadmins, so it makes sense to investigate it a bit.

We interviewed several people from the App Engine Team and talked to them about
how this would affect a systems administrator. They mentioned the following tasks:

1. Bulk Data Uploader: http://code.google.com/appengine/articles/bulkload.html.

Sysadmins often deal with moving large chunks of data around, and this is a tool
for doing that in the context of an app on Google App Engine.

2. Logging: http://code.google.com/appengine/articles/logging. html.

3. Mail APL: send_mail_to_admins() function: http://code.google.com/appengine/
docs/mail/functions.html.
In a sysadmin context, this could be useful for monitoring. For important excep-
tions or key actions, you could automatically send an email to the app’s admins.

4. Cron jobs for regular tasks.
This is something that is not directly a part of Google App Engine, but you could
use cron on your own servers to send requests to your app at regular intervals. For
example, you could have a cron job that hit http://yourapp.com/emailsummary ev-
ery hour, which triggered an email to be sent to admins with a summary of im-
portant events over the last hour.

248 | Chapter8: 0SSoup

http://code.google.com/appengine/articles/bulkload.html
http://code.google.com/appengine/articles/logging.html
http://code.google.com/appengine/docs/mail/functions.html
http://code.google.com/appengine/docs/mail/functions.html
http://yourapp.com/emailsummary

5. Version management: http://code.google.com/appengine/docs/configuringa
napp.html#Required_Elements.

One of the required fields you set for your app is the “version.” Each time you
upload an app with the same version ID, it replaces it with the new code. If you
change the version ID, you can have multiple versions of your app running in
production and use the admin console to select which version receives life traffic.

Building a sample Google App Engine application

To get started with building a Google App Engine application, you will need to first
download the SDK for Google app engine here: hitp://code.google.com/appengine/down
loads.html. You also might do well to go through the excellent tutorial for Google App
Engine: hitp://code.google.com/appengine/docs/gettingstarted/.

In this section, we offer a reverse tutorial on Google App Engine, as there is already an
excellent tutorial. If you go to http://greedycoin.appspot.com/, you can test out a running
version of what we are going to cover, along with the latest version of the source code.
The application takes change as an input, stores it in the database, and then returns
proper change. It also has the ability to log in via Google’s authentication API and
perform a recent actions query. See Example 8-13.

Example 8-13. Greedy coin web application

#!/usr/bin/env python2.5
#Noah Gift

import decimal
import wsgiref.handlers
import os

from google.appengine.api import users

from google.appengine.ext import webapp

from google.appengine.ext import db

from google.appengine.ext.webapp import template

class ChangeModel(db.Model):
user = db.UserProperty()
input = db.IntegerProperty()
date = db.DateTimeProperty(auto now_add=True)

class MainPage(webapp.RequestHandler):
""Main Page View"""

def get(self):
user = users.get current user()

if users.get current user():
url = users.create logout url(self.request.uri)
url_linktext = ‘Logout’

else:
url = users.create login url(self.request.uri)

Cloud Computing | 249

http://code.google.com/appengine/docs/configuringanapp.html#Required_Elements
http://code.google.com/appengine/docs/configuringanapp.html#Required_Elements
http://code.google.com/appengine/downloads.html
http://code.google.com/appengine/downloads.html
http://code.google.com/appengine/docs/gettingstarted/
http://greedycoin.appspot.com/

url linktext = ‘Login’

template_values = {

‘url’: url,
‘url_linktext’: url linktext,
}

path = os.path.join(os.path.dirname(__file), “index.html")
self.response.out.write(template.render(path, template values))

class Recent(webapp.RequestHandler):
"""Query Last 10 Requests"""

def get(self):

#collection

collection = []

#grab last 10 records from datastore
query = ChangeModel.all().order('-date")
records = query.fetch(limit=10)

#formats decimal correctly
for change in records:
collection.append(decimal.Decimal(change.input)/100)

template values = {
"inputs': collection,
'records': records,

}

path = os.path.join(os.path.dirname(__file), 'query.html")
self.response.out.write(template.render(path,template values))

class Result(webapp.RequestHandler):
"""Returns Page with Results"""
def _init_ (self):
self.coins = [1,5,10,25]
self.coin lookup = {25: "quarters", 10: "dimes", 5: "nickels", 1: "pennies"}

def get(self):
#Just grab the latest post
collection = {}

#select the latest input from the datastore
change = db.GgqlQuery("SELECT * FROM ChangeModel ORDER BY date DESC LIMIT 1")
for ¢ in change:

change_input = c.input

#coin change logic
coin = self.coins.pop()
num, rem = divmod(change input, coin)
if num:
collection[self.coin_lookup[coin]] = num
while rem > o:
coin = self.coins.pop()
num, rem = divmod(rem, coin)

250 | Chapter8: 0SSoup

if num:
collection[self.coin_lookup[coin]] = num

template_values = {
"collection': collection,
"input': decimal.Decimal(change_input)/100,

}

#render template
path = os.path.join(os.path.dirname(__file_), 'result.html')
self.response.out.write(template.render(path, template values))

class Change(webapp.RequestHandler):

def post(self):

"""Printing Method For Recursive Results and While Results

model = ChangeModel()

try:
change_input = decimal.Decimal(self.request.get('content"))
model.input = int(change_input*100)
model.put()
self.redirect('/result")

except decimal.InvalidOperation:
path = os.path.join(os.path.dirname(_file), 'submit error.html')
self.response.out.write(template.render(path,None))

def main():
application = webapp.WSGIApplication([('/", MainPage),
("/submit_form', Change),
('/result', Result),
('/recent', Recent)],
debug=True)
wsgiref.handlers.CGIHandler().run(application)

n "

if _name__ == "_main_":

main()

As a reverse tutorial, let’s start by looking at the version running at http://greedy
coin.appspot.com/, or your development version at http://localhost:8080/. There is a
pumpkin-colored theme that has two floating boxes; on the left is a form that lets you
input change, and on the right there is a navigation box. These pretty, or ugly, colors
and layout are just a combination of Django templating and CSS. The Django templates
can be found in the main directory, and the CSS we used is found in stylesheets. This
really has little to do with Google App Engine, so we will just refer you to the Django
templating reference material for more: http://www.djangoproject.com/documentation/
templates/.

Now that we have covered this, let’s actually get into some Google App Engine specifics.
If you notice the “Login” link in the right navigation box, it is made possible by the
clever user authentication API. Here is what that actual code looks like:

class MainPage(webapp.RequestHandler):
"Main Page View"""

Cloud Computing | 251

http://greedycoin.appspot.com/
http://greedycoin.appspot.com/
http://localhost:8080/
http://www.djangoproject.com/documentation/templates/
http://www.djangoproject.com/documentation/templates/

def get(self):
user = users.get_current_user()

if users.get current_user():
url = users.create_logout_url(self.request.uri)
url linktext = 'Logout’

else:
url = users.create login url(self.request.uri)
url_linktext = 'Login'

template_values = {
'url': url,
'url linktext': url linktext,

}
path = os.path.join(os.path.dirname(_ file), 'index.html')
self.response.out.write(template.render(path, template values))

There is a class that inherits from webapp.RequestHandler, and if you define a get
method, you can make a page that checks to see if a user is logged in or not. If you
notice the few lines at the bottom, you will see that the user information gets tossed
into the template system and then gets rendered to the Django template file in
dex.html. What is incredibly powerful is that it is trivial to leverage the Google User
Accounts database to create authorization for pages. If you look at the previous code,
it is as simple as saying;:

user = users.get current user()
if users.get current user():

At this point, we would suggest fiddling around with this code and trying to add code
that only shows up for authenticated users. You don’t even need to understand how
things work; you could just use the existing conditional statements to do something.

Now that we have a vague understanding of authentication, let’s get into the powerful
stuff. The datastore API lets you store persistent data and then retrieve it throughout
your application. In order to do this, you need to import the datastore, as shown in the
previous code, and then also define a model like this:
class ChangeModel(db.Model):
user = db.UserProperty()

input = db.IntegerProperty()
date = db.DateTimeProperty(auto_now_add=True)

With that simple class, we can now create and use persistent data. Here is a class in
which we use Python API to the datastore to retrieve the last 10 changes made to the
database, and then display them:

class Recent(webapp.RequestHandler):
"""Query Last 10 Requests"""

def get(self):

#collection

252 | Chapter8: 0SSoup

collection = []

#grab last 10 records from datastore
query = ChangeModel.all().order('-date")
records = query.fetch(limit=10)

#formats decimal correctly
for change in records:
collection.append(decimal.Decimal(change.input)/100)

template_values = {
"inputs': collection,
'records': records,

}

path = os.path.join(os.path.dirname(_file), 'query.html')
self.response.out.write(template.render(path,template values))

The two most important lines are:

query = ChangeModel.all().order('-date")
records = query.fetch(limit=10)

These pull the results out of the datastore and then “fetch” 10 records in a query. At
this point, a simple thing to do for fun would be to experiment with this code and to
try to fetch more records, or to sort them in a different way. This should give you some
immediate and fun feedback.

Finally, if we look closely at the code below, we might be able to guess that each of the
URLs corresponds to a class we defined in our change.py file. At this point, we would
recommend trying to tweak the names of URLs by changing the parts of the application
that depend on a URL; this will give you a good idea of how things get routed around.
def main():
application = webapp.WSGIApplication([('/", MainPage),

('/submit_form', Change),

('/result', Result),

('/recent', Recent)],

debug=True)
wsgiref.handlers.CGIHandler().run(application)

This is the end of this reverse tutorial on Google App Engine, but it should give you
some ideas on how you could implement a more sysadmin-like tool on your own. If
you are interested in writing more applications, you should also take a look a Guido’s
source code for his Google App Engine application: http://code.google.com/p/rietveld/
source/browse.

Using Zenoss to Manage Windows Servers from Linux

If you have the unfortunate task of managing one or more Windows servers, the task
just became a little less unpleasant. Zenoss is an amazing tool that will help us out here.
We talk about Zenoss in the Chapter 7, SNMP. In addition to being an industry-leading
SNMP tool, Zenoss also provides the tools to talk to a Windows server via WMI—from

Using Zenoss to Manage Windows Servers from Linux | 253

http://code.google.com/p/rietveld/source/browse
http://code.google.com/p/rietveld/source/browse

Linux! We still get the giggles when thinking about the practical implications of this as
well as the technology used to make it possible. From a discussion that we had with
the good folks at Zenoss, they push WMI messages down to Samba (or possibly CIFS
now) on a Linux box and send them over to your Windows server. And possibly the
most interesting part of this (at least for readers of this book, anyway) is that you can
script this WMI connection with Python.

W

A discussion of the syntax and features of WMI is beyond the scope of
this book.

Currently, the Zenoss documentation is pretty light on the WMI-from-Linux-using-
Python functionality. However, the examples that we are about to review should pro-
vide a good foundation for you to build on. First off, let’s look at a non-Python tool for
talking WMI to a Windows server from Linux. wmic. wmic is a simple command-line
utility that takes username, password, server address, and WMI query as command-
line parameters, connects to the appropriate server with the given credentials, passes
the query to the server, and displays the result to standard output. The syntax for using
the utility is something like this:

wmic -U username%password //SERVER IP_ADDRESS OR_HOSTNAME "some WMI query"

And here is an example of connecting to a server with an IP address of 192.168.1.3 as
Administrator and asking for its event logs:

wnic -U Administrator%password //192.168.1.3 "SELECT * FROM Win32 NTLogEvent"

And here is part of the result of running that command:

CLASS: Win32_NTLogEvent

Category | CategoryString|ComputerName |Data|EventCode |EventIdentifier|
EventType|InsertionStrings|Logfile|Message |RecordNumber | SourceName |
TimeGenerated|TimeWritten|Type|User

|3|DCOM|20080320034341.000000+000 | 20080320034341.000000+000 | Information| (null)

0] (null) |[MACHINENAME |NULL | 6005 |2147489653|3|(,,,,14,0,0)|System|The Event log
service was started.

| 2| EventLog|20080320034341.000000+000 | 20080320034341.000000+000 | Information|(null)
0| (null) [MACHINENAME |NULL|6009 | 2147489657 |3 (5.02.,3790,Service Pack
2,Uniprocessor Free)|System|Microsoft (R) Windows (R) 5.02. 3790 Service Pack 2
Uniprocessor Free.

|1]|EventLog|20080320034341.000000+000 | 20080320034341.000000+000 | Information|(null)

In order to write a similar Python script, we first have to set up our environment. For
the following examples, we used the Zenoss v2.1.3 VMware appliance. In this appli-
ance, some of the Zenoss code is located in the home directory of the zenoss user. The
biggest part of that is to add the directory where the wmiclient.py module lives to your
PYTHONPATH. We prepended the directory to our already existing PYTHONPATH like
this:

254 | Chapter8: 0SSoup

export PYTHONPATH=~/Products/ZenWin: $PYTHONPATH

Once we have access to the needed libraries in Python, we can execute a script some-
thing like the following:

#!/usr/bin/env python

from wmiclient import WMI

if name_ =="' main_':
W = WMI('winserver', '192.168.1.3', 'Administrator', passwd='foo')
w.connect()
q = w.query('SELECT * FROM Win32 NTLogEvent')
for 1 in q:
print "l.timewritten::", l.timewritten
print "l.message::", l.message

Rather than printing out all fields as the wmic example did, this script prints only out
the timestamp and the body of the log message. This script connects to the server
192.168.1.3 as Administrator with the password foo. Then, it executes the WMI query
"SELECT * FROM Win32_ NTLogEvent'. It then iterates over the results of the query and
prints the timestamp and the log message body. It really couldn’t get much easier than
that.

Here is some of the output from running this script:

l.timewritten:: 20080320034359.000000+000
l.message:: While validating that \Device\Seriall was really a serial port, a
fifo was detected. The fifo will be used.

l.timewritten:: 20080320034359.000000+000
l.message:: While validating that \Device\Serialo was really a serial port, a
fifo was detected. The fifo will be used.

l.timewritten:: 20080320034341.000000+000

l.message:: The COM sub system is suppressing duplicate event log entries for a
duration of 86400 seconds. The suppression timeout can be controlled by a
REG_DWORD value named SuppressDuplicateDuration under the following registry
key: HKLM\Software\Microsoft\Ole\EventLog.

l.timewritten:: 20080320034341.000000+000
l.message:: The Event log service was started.

l.timewritten:: 20080320034341.000000+000
l.message:: Microsoft (R) Windows (R) 5.02. 3790 Service Pack 2 Uniprocessor
Free.

But how did we know to use the timewritten and message attributes for these records?
It took just a bit of hacking to find that information. Here is a script that we ran to help
us find which attributes we needed to use:

#!/usr/bin/env python

from wmiclient import WMI

Using Zenoss to Manage Windows Servers from Linux | 255

if _name__ == '_main__
W = WMI('winserver', '192.168.1.3', 'Administrator', passwd='foo')
w.connect()
q = w.query('SELECT * FROM Win32_NTLogEvent')
for 1 in q:
print "result set fields::->", 1.Properties_.set.keys()
break

You may notice that this script looks quite similar to the other WMI script. The two
differences between this script and the other WMI script are rather than printing out
the timestamp and the log message body, this script prints out
1.Properties_.set.keys(), and this script breaks after the first result. The set object
that we call keys() on is actually a dictionary. (Which makes sense, because keys() is
a dictionary method.) Each resulting record from the WMI query should have a set of
attributes that correspond to these keys. So, here is the output from running the script
that we just discussed:
result set fields::-> ['category', 'computername', 'categorystring',
'eventidentifier', 'timewritten', 'recordnumber', 'eventtype', 'eventcode’,
'timegenerated', 'sourcename', 'insertionstrings', 'user', 'type', 'message’,
'logfile', 'data']
The two attributes that we chose to pull from in the first WMI script, 'message’ and
"timewritten', are both in this list of keys.

While we aren’t huge fans of working with Windows, we recognize that sometimes the
job dictates the technology that we use. This tool from Zenoss can make that task a lot
less painful. Plus, it’s just cool to be able to run a WMI query from Linux. If you have
to do much work with Windows, then Zenoss could easily find a prominent place in
your toolbox.

256 | Chapter8: 0SSoup

CHAPTER9
Package Management

Introduction

Package management is a one of the most critical factors in the success of a software
development project. Package management can be thought of as the shipping company
in an e-commerce business, such as Amazon. If there were no shipping companies,
Amazon would not exist. Likewise, if there is not a functional, simple, robust package
management system for an operating system or language, then it will be limited to some
degree.

When we mention “package management,” your first thoughts are probably drawn
toward .rpm files and yum, or .deb files and apt or some other operating system level
package management system. We’ll get into that in this chapter, but the primary focus
is on packaging and managing Python code and your Python environment. Python has
always had ways to make Python code universally accessible to the entire system. Re-
cently, though, there have been some projects which have improved the flexibility and
usability of packaging, managing, and deploying Python code.

Some of these recent projects include setuptools, Buildout, and virtualenv. Buildout,
setuptools, and virtualenv are often about development, development libraries, and
dealing with development environments. But at their heart, they are mostly about using
Python to deploy Python code in operating system-agnostic ways. (Note that we did
say “mostly” here.)

Another deployment scenario involves creating operating system-specific packages and
deploying them to an end user’s machine. Sometimes, these are two completely differ-
ent problems, although there is some degree of overlap. We will be discussing an open
source tool called EPM that generates native platform packages for AIX, Debian/
Ubuntu, FreeBSD, HP-UX, IRIX, Mac OS X, NetBSD, OpenBSD, Red Hat, Slackware,
Solaris, and Tru64 Unix.

Package mangement isn’t good just for software developers. It is critical for system
administrators as well. In fact, a system administrator is often the person with whom
the buck stops for package management. Understanding the latest techniques in

257

package management for Python and for other operating systems is one way to make
yourself an invaluable resource. Hopetully, this chapter will help you in that regard. A
very valuable reference for the topics we cover in this chapter can also be found here:
http://wiki.python.org/moin/buildout/pycon2008_tutorial.

Setuptools and Python Eggs

According the official documentation, “setuptools is a collection of enhancements to
the Python distutils (for Python 2.3.5 on most platforms, although 64-bit platforms
require a minimum of Python 2.4) that allow you to more easily build and distribute
packages, especially ones that have dependencies on other packages.”

Until the creation of setuptools, distutils was the primary way of creating installable
Python packages. setuptools is a library that enhances distutils. “Eggs” refers to the
final bundle of Python packages and modules, much like an .rpm or .deb file. They are
typically distributed in a zipped format and installed in either the zipped format or are
unzipped so that you can navigate the package contents. Eggs is a feature of the setup-
tools library that works with easy_install. According to the official documentation,
“Easy Install is a python module (easy install) bundled with setuptools that let’s you
automatically download, build, install and manage Python packages.” While it is a
module, it is most often thought of and interacted with as a command-line tool. In this
section, we will cover and explain setuptools, easy install, and eggs, and clear up any
confusion about what each provides.

We'll outline what we feel are the most useful features of setuptools and easy_install
in this chapter. However, to get the full set of documentation on them, you can visit
http://peak.telecommunity.com/DevCenter/setuptools —and hitp://peak.telecommuni
ty.com/DevCenter/Easylnstall, respectively.

Complex tools that do amazing things are often hard to understand. Parts of setup
tools are difficult to grasp as a direct result of the amazing things it can do. With this
section acting as a quickstart guide, and then later referring to the manual, you should
be able to get a handle on using setuptools, easy_install, and Python eggs as a user and
developer.

Using easy_install

The basics of understanding and using easy_install are very easy to grasp. The majority
of people reading this book have very likely used rpm, yum, apt-get, fink, or a similar
package management tool at some point. The phrase “Easy Install,” often refers to the
use of a command-line tool named easy_install to do similar things as yum on Red Hat-
based systems, and apt-get on Debian-based systems, but for Python packages.

The easy install tool can be installed by running a “bootstrap” script named
ez_setup.py with the version of Python you wish easy install to work with.

258 | Chapter9: Package Management

http://wiki.python.org/moin/buildout/pycon2008_tutorial
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall

ez_setup.py grabs the latest version of setuptools and then automatically installs
easy_install as a script to the default “scripts” location, which on *nixes is typically
the same directory that your python binary lives in. Let’s take a look at how “easy” that
is. See Example 9-1.

Example 9-1. Bootstrapping easy_install

$ curl http://peak.telecommunity.com/dist/ez_setup.py
> ez_setup.py

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 9419 100 9419 0 0 606 0 0:00:15 0:00:15 --:--:-- 83353
$ 1s

ez_setup.py

$ sudo python2.5 ez_setup.py

Password:

Searching for setuptools

Reading http://pypi.python.org/simple/setuptools/

Best match: setuptools 0.6c8

Processing setuptools-0.6c8-py2.5.egg

setuptools 0.6c8 is already the active version in easy-install.pth
Installing easy install script to /usr/local/bin

Installing easy install-2.5 script to /usr/local/bin

Using /Library/Python/2.5/site-packages/setuptools-0.6c8-py2.5.egg
Processing dependencies for setuptools
Finished processing dependencies for setuptools

$

In this situation, easy_install was placed into /usr/local/bin under two different names.

$ 1s -1 /usr/local/bin/easy install*
-rwxr-xr-x 1 root wheel 364 Mar 9 18:14 /usr/local/bin/easy install
-rwxr-xr-x 1 root wheel 372 Mar 9 18:14 /usr/local/bin/easy install-2.5

This has been a convention that Python itself has used for quite a while: when installing
an executable, install one with a version number denoting the version of Python and
one without the version number. This means that the one that doesn’t have the version
number will be used by default when a user doesn’t explicitly reference the versioned
script. This also means that the last-installed version will become the default. It is con-
venient, though, that the older version still sticks around.

Here are the contents of the newly installed /usr/local/bin/easy_install:

#!/System/Library/Frameworks/Python.framework/Versions/2.5/Resources/Python.app/
Contents/Mac0S/Python

EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==0.6c8"','console scripts','easy install'

__requires = 'setuptools==0.6c8’

import sys

from pkg resources import load entry point

sys.exit(
load_entry point('setuptools==0.6c8"', 'console scripts', 'easy install')()

Using easy_install | 259

The main point here is that when you install setuptools, it installs a script for you named
easy_install that you can use to install and manage Python code. A secondary point
here that we were making by showing the contents of the easy_install script is that
thisis the type of script thatis automatically created for you when you use “entry points”
when defining packages. Don’t worry right now about the contents of this script or
entry points or how to create scripts like this. We’ll get to all of that later in this chapter.

Now that we have easy_install, we can install any package that s located in the central
repository for uploaded Python Modules, commonly referred to as PyPI (Python Pack-
age Index), or the “Cheeseshop”: http://pypi.python.org/pypi.

To install [Python, the shell we use exclusively in examples throughout the book, we
can just issue this command:

sudo easy install ipython

Notice that easy_install required sudo privileges in this setup, as it installed packages
to the global Python site-pacakges directory. It also placed scripts in the default scripts
directory of the operating system, which is the same directory that the python executable
lives in. Basically, easy _installing a package requires permissions to write files to the
site-packages directory and the script directory for you Python installation. If this is a
problem, you should refer to the section of this chapter where we discuss using virtua-
lenv and setuptools. Alternatively, you could even compile and install Python in a di-
rectory that you own, such as your home directory.

Before we get into advanced use of the easy_install tool, here’s a quick summary for
basic use of easy_install:

1. Download the ez_setup.py bootstrap script.

2. Run ez_setup.py with the version of Python you wish to install packages with.

3. Explicitly run easy_install with the version of python that installed it if you have
several versions of Python running on your system.

CELEBRITY PROFILE: EASY INSTALL

Phillip J. Eby

Phillip J. Eby has been responsible for numerous Python Enhance-
ment Proposals, the WSGI standard, setuptools, and more. He was
featured in the book Dreaming in Code (Three Rivers Press). You can
read his programming blog at: http://dirtsimple.org/programming/.

260 | Chapter9: Package Management

http://pypi.python.org/pypi
http://dirtsimple.org/programming/

easy_install Advanced Features

For most casual users, using easy_install and passing it only one command-line ar-
gument without any additional options will fit all of their needs. (By the way, giving
easy_install only one argument, a package name, will simply download and install
that package, as in the previous example with I[Python.) There are cases, though, where
it is nice to have more power under the hood to do various things other than just
download eggs from the Python Package Index. Fortunately, easy_install has quite a
few tricks up its sleeve and is flexible enough to do a whole assortment of advanced
miscellanea.

Search for Packages on a Web Page

As we saw earlier, easy_install can automatically search the central repository for
packages and automatically install them. It can also install packages in just about any
way you can think of. Following is an example of how to search a web page and install
or upgrade package by name and version:

$ easy install -f http://code.google.com/p/liten/ liten

Searching for liten

Reading http://code.google.com/p/liten/

Best match: liten 0.1.3

Downloading http://liten.googlecode.com/files/liten-0.1.3-py2.4.egg
[snip]

In this situation, there is a Python2.4 and a Python2.5 egg at http://code.google.com/p/
liten/. easy_install -f specifies a location to look for eggs. It found both eggs and then
installed the Python2.4 egg, as it was the best match. Obviously, this is quite powerful,
as easy_install not only found the egg link to begin with, but also found the correct
egg version.

Install Source Distribution from URL

Now, we’ll automatically install a source distribution from a URL:

% easy_install http://superb-west.dl.sourceforge.net/sourceforge
/sqlalchemy/SQLAlchemy-0.4.3.tar.gz

Downloading http://superb—west.dl.sourceforge.net/sourceforge

/sqlalchemy/SQLAlchemy-0.4.3.tar.gz

Processing SQLAlchemy-0.4.3.tar.gz

Running SQLAlchemy-0.4.3/setup.py -q bdist_egg --dist-dir
/var/folders/LZ/LZFo5h8JEW4Izy+ydkXfI++++TI/-Tmp-/
easy_install-Gw2Xq3/SQLAlchemy-0.4.3/egg-dist-tmp-Mf4jir

zip_safe flag not set; analyzing archive contents...

sqlalchemy.util: module MAY be using inspect.stack

sqlalchemy.databases.mysql: module MAY be using inspect.stack

Adding SQLAlchemy 0.4.3 to easy-install.pth file

easy_install Advanced Features | 261

http://code.google.com/p/liten/
http://code.google.com/p/liten/

Installed /Users/ngift/src/py24ENV/1ib/python2.4/site-packages/SQLAlchemy-0.4.3-py2.4.egg

Processing dependencies for SQLAlchemy==0.4.3
Finished processing dependencies for SQLAlchemy==0.4.3

We passed the URL of a gzipped tarball to easy_install. It was able to figure out that
it should install this source distribution without being explicitly told to do so. This is
a neat trick, but the source must include a setup.py file at the root level for it to work.
For example, at the time of this writing, if someone nested their package several levels
deep into empty folders, then this will fail.

Install Egg Located on Local or Network Filesystem

Here is an example of how to install an egg located on a filesystem or NFS-mounted
storage:

easy_install /net/src/eggs/convertWindowsToMacOperatingSystem-py2.5.egg

You can also install eggs from an NFS-mounted directory or a local partition. This can
be a very efficient to distribute packages in a *nix environment, especially across a
number of machines you’d like to keep in sync with one another regarding the versions
of code they are running. Some of the other scripts in this book could help with creating
a polling daemon. Each client could run such a daemon to check for updates to the
centralized repository of eggs. If there is a new version, then it could automatically
update itself.

Upgrading Packages

Another way of using easy_install is by getting it to upgrade packages. In the next few
examples, we’ll walk through installing and then upgrading the CherryPy package.

First, we’ll install version 2.2.1 of CherryPy:

$ easy install cherrypy==2.2.1
Searching for cherrypy==2.2.1
Reading http://pypi.python.org/simple/cherrypy/

Best match: CherryPy 2.2.1
Downloading http://download.cherrypy.org/cherrypy/2.2.1/CherryPy-2.2.1.tar.gz

Processing dependencies for cherrypy==2.2.1
Finished processing dependencies for cherrypy==2.2.1

Now, we’ll show you what happens when you try to easy_install something that has
already been installed:

$ easy_install cherrypy

Searching for cherrypy

Best match: CherryPy 2.2.1

Processing CherryPy-2.2.1-py2.5.egg

CherryPy 2.2.1 is already the active version in easy-install.pth

Using /Users/jmjones/python/cherrypy/lib/python2.5/site-packages/CherryPy-2.2.1-py2.5.egg

262 | Chapter9: Package Management

Processing dependencies for cherrypy
Finished processing dependencies for cherrypy

After you’ve installed some version of a package, you can upgrade to a newer version
of the same package by explicitly declaring which version to download and install:
$ easy_install cherrypy==2.3.0 Searching for

cherrypy==2.3.0
Reading http://pypi.python.org/simple/cherrypy/

Best match: CherryPy 2.3.0
Downloading http://download.cherrypy.org/cherrypy/2.3.0/CherryPy-2.3.0.zip

Processing dependencies for cherrypy==2.3.0
Finished processing dependencies for cherrypy==2.3.0

Notice that we didn’t use the --upgrade flag in this particular example. You only really
ever need to use --upgrade if you already have some version of a package installed and
want to update it to the latest version of that package.

Next, we upgrade to CherryPy 3.0.0 using the --upgrade flag. Here, --upgrade was
purely unnecessary:
$ easy _install --upgrade cherrypy==3.0.0

Searching for cherrypy==3.0.0
Reading http://pypi.python.org/simple/cherrypy/

Best match: CherryPy 3.0.0
Downloading http://download.cherrypy.org/cherrypy/3.0.0/CherryPy-3.0.0.zip

Processing dependencies for cherrypy==3.0.0
Finished processing dependencies for cherrypy==3.0.0

Giving the - -upgrade flag without specifying a version upgrades the package to the latest
version. Notice that this is different from specifying easy install cherrypy. With
easy_install cherrypy, there already existed some version of the CherryPy package,
so no action was taken. In the following example, CherryPy will be upgraded to the
most current version:

$ easy_install --upgrade cherrypy

Searching for cherrypy
Reading http://pypi.python.org/simple/cherrypy/

Best match: CherryPy 3.1.0beta3
Downloading http://download.cherrypy.org/cherrypy/3.1.0beta3/CherryPy-3.1.0beta3.zip

Processing dependencies for cherrypy
Finished processing dependencies for cherrypy

Now, CherryPy is at 3.1.0b3. If we specify to upgrade to something greater than 3.0.0,
no action will be taken, since it is already there:

$ easy install --upgrade cherrypy>3.0.0
$

easy_install Advanced Features | 263

Install an Unpacked Source Distribution in Current Working Directory

Although this looks trivial, it can be useful. Rather than going through the python
setup.py install routine, you can just type the following (it’s a few less characters to
type, so it’s definitely a tip for the lazy):

easy install

Extract Source Distribution to Specified Directory

You can use the following example to find either a source distribution or checkout URL
for a package and then either extract it or check it out to a specified directory:

easy install --editable --build-directory ~/sandbox liten

This is handy, as it allows easy_install to take a source distribution and put it in the
directory you specify. Since installing a package with easy_install doesn’t always in-
stall everything (such as documentation or code examples), this is a good way to look
at everything included in the source distribution. easy_install will only pull down the
package source. If you need to install the package, you will need to run easy_install
again.

Change Active Version of Package

This example assumes that you have liten version 0.1.3 and some other version of
liten installed. It also assumes that the other version is the “active version.” This is
how you would reactivate 0.1.3:

easy install liten=0.1.3

This will work whether you need to downgrade to an older package or if you need to
get back to a more current version of a package.

Changing Standalone .py File into egg

Here is how you convert a regular standalone Python package into an egg (note the
-f flag):

easy_install -f "http://svn.colorstudy.com/virtualenv/
trunk/virtualenv.pyffegg=virtualenv-1.0" virtualenv

This is useful when you want to package a single .py file as an egg. Sometimes, using
this method is your best choice if you want to use a previously unpackaged standalone
Python filesystem-wide. Your other alternative is to set your PYTHONPATH whenever you
want to use that standalone module. In this example, we are packaging the virtua
lenv.py script from that project’s trunk and putting our own version and name label
on it. In the URL string, the #egg=virtualenv-1.0 simply specifies the package name
and version number we are choosing to give this script. The argument that we give after
the URL string is the package name we are looking for. It makes sense to use the

264 | Chapter9: Package Management

consistent names between the URL string and the standalone package name argument,
because we are telling easy_install to install a package with the same name as what
we just created. While it makes sense to keep these two in sync, you shouldn’t feel
constrained to keep the package name in sync with the name of the module. For
example:

easy_install -f "http://svn.colorstudy.com/virtualenv/
trunk/virtualenv.py#egg=foofoo-1.0" foofoo

This does exactly the same thing as the previous example, except that it creates a pack-
age named foofoo rather than virtualenv. What you choose to name these types of
packages is entirely up to you.

Authenticating to a Password Protected Site

There may be cases where you need to install an egg from a website that requires au-
thentication before allowing you to pull down any files. In that case, you can use this
syntax for a URL to specify a username and password:

easy_install -f http://uid:passwd@example.com/packages

You may have a secret skunkworks project you are developing at work that you don’t
want your coworkers to find out about. (Isn’t everyone doing this?) One way to dis-
tribute your packages to coworkers “behind the scenes,” is to create a sim-
ple .htaccess file and then tell easy_install to do an authenticated update.

Using Configuration Files

easy_install has yet another trick for power users. You can specify default options
using config files that are formatted using .ini syntax. For systems administrators, this
is a godsend of a feature, as it allows a declarative configuration of clients who use
easy_install. easy install will look for config files in the following places, in this
order: current_working_directory/setup.cfg, ~/.pydistutils.cfg, and distutils.cfg in the dis-
tutils package directory.

So, what can you put in this configuration file? Two of the most common items to set
are a default intranet site(s) for package downloads, and a custom install directory for
the packages. Here is what a sample easy_install configuration file could look like:

[easy install]

#Where to look for packages
find_links = http://code.example.com/downloads

#Restrict searches to these domains
allow hosts = *.example.com

#Where to install packages. Note, this directory has to be on the PYTHONPATH
install dir = /src/lib/python

easy_install Advanced Features | 265

This configuration file, which we could call ~/.pydistutils.cfg, defines a specific URL to
search for packages, allows only searches for packages to come from example.com (and
subdomains), and finally places packages into a custom python package directory.

Easy Install Advanced Features Summary

This was not meant to be a replacement for the comprehensive official documentation
for easy_install, but it was meant to highlight some of the key features of the tool for
power users. Because easy_install is still in active development, it would be a good
idea to frequently check http://peak.telecommunity.com/DevCenter/Easylnstall for up-
dates to the documentation. There is also a mailing list called the distutils-sig (sig stands
for special interest group) that discusses all things Python distribution-related. Sign up
at http://mail.python.org/mailman/listinfo/distutils-sig, and you can report bugs and get
help for easy_install there, too.

Finally, by doing a simple easy _install --help, you will find even more options that
we did not discuss. Chances are very good that something you want to do has already
been included as a feature in easy_install.

Creating Eggs

We mentioned earlier that an egg is a bundle of Python modules, but we didn’t give a
much better definition at the time than that. Here is a definition of “egg” from the
setuptools website:

Python Eggs are the preferred binary distribution format for Easylnstall, because they
are cross-platform (for “pure” packages), directly importable, and contain project met-
adata including scripts and information about the project’s dependencies. They can be
simply downloaded and added to sys.path directly, or they can be placed in a directory
on sys.path and then automatically discovered by the egg runtime system.

And we certainly didn’t give any reason why a system administrator would be interested
in creating eggs. If all that you do is write one-off scripts, eggs won’t help you much.
But if you start to recognize patterns and common tasks you find your self reinventing
frequently, eggs could save you a lot of trouble. If you create a little library of common
tasks that you use, you could bundle them as an egg. And if you do that, you’ve not
only saved yourself time in writing code by reusing it, but you’ve also made it easy to
install on multiple machines.

Creating Python eggs is an incredibly simple process. It really involves just four steps:
1. Install setuptools.
2. Create the files you want to be in your egg.

3. Create a setup.py file.
4. Run.

266 | Chapter9: Package Management

http://peak.telecommunity.com/DevCenter/EasyInstall
http://mail.python.org/mailman/listinfo/distutils-sig

python setup.py bdist egg

We already have setuptools installed, so we’ll go ahead and create the files we want in
our egg:

$ cd /tmp

$ mkdir egg-example
$ cd egg-example

$ touch hello-egg.py

In this case, it will only contain an empty Python module named hello-egg.py.

Next, create the simplest possible setup.py file:

from setuptools import setup, find_packages
setup(

name = "HelloWorld",

version = "0.1",

packages = find_packages(),

Now, we can create the egg:

$ python setup.py bdist_egg

running bdist_egg

running egg info

creating HelloWorld.egg-info

writing HelloWorld.egg-info/PKG-INFO

writing top-level names to HelloWorld.egg-info/top level.txt

writing dependency links to HelloWorld.egg-info/dependency links.txt

writing manifest file 'HelloWorld.egg-info/SOURCES.txt'

reading manifest file 'HelloWorld.egg-info/SOURCES.txt'

writing manifest file 'HelloWorld.egg-info/SOURCES.txt'

installing library code to build/bdist.macosx-10.5-1386/egg

running install lib

warning: install lib: 'build/lib' does not exist -- no Python modules to install
creating build

creating build/bdist.macosx-10.5-1386

creating build/bdist.macosx-10.5-1386/egg

creating build/bdist.macosx-10.5-1386/egg/EGG-INFO

copying HelloWorld.egg-info/PKG-INFO -> build/bdist.macosx-10.5-1386/egg/EGG-INFO
copying HelloWorld.egg-info/SOURCES.txt -> build/bdist.macosx-10.5-1386/egg/EGG-INFO
copying HelloWorld.egg-info/dependency links.txt -> build/bdist.macosx-10.5-1386/egg/EGG-INFO
copying HelloWorld.egg-info/top level.txt -> build/bdist.macosx-10.5-1386/egg/EGG-INFO
zip_safe flag not set; analyzing archive contents...

creating dist

creating 'dist/HelloWorld-0.1-py2.5.egg' and adding 'build/bdist.macosx-10.5-i386/egg' to it
removing 'build/bdist.macosx-10.5-i386/egg' (and everything under it)

$11
total 8
drwxr-xr-x 6 ngift wheel 204 Mar 10 06:53 HelloWorld.egg-info
drwxr-xr-x 3 ngift wheel 102 Mar 10 06:53 build
drwxr-xr-x 3 ngift wheel 102 Mar 10 06:53 dist
-rw-r--r-- 1 ngift wheel 0 Mar 10 06:50 hello-egg.py
-rw-r--r-- 1 ngift wheel 131 Mar 10 06:52 setup.py
Install the egg:

(reating Eggs | 267

$ sudo easy_install HelloWorld-o0.1-py2.5.egg

sudo easy install HelloWorld-0.1-py2.5.egg

Password:

Processing HelloWorld-0.1-py2.5.egg

Removing /Library/Python/2.5/site-packages/HelloWorld-0.1-py2.5.egg
Copying HelloWorld-0.1-py2.5.egg to /Library/Python/2.5/site-packages
Adding HelloWorld 0.1 to easy-install.pth file

Installed /Library/Python/2.5/site-packages/HelloWorld-0.1-py2.5.egg
Processing dependencies for HelloWorld==0.1
Finished processing dependencies for HelloWorld==0.1

As you can see, creating an egg is extremly simple. Because this egg was really a blank
file, though, we’ll create a Python script and go into building an egg in a little more
detail.

Here is a very simple Python script that shows the files in a directory that are symlinks,
where their corresponding real file is, and whether the real file exists or not:

#!/usr/bin/env python

import os
import sys

def get dir tuple(filename, directory):
abspath = os.path.join(directory, filename)
realpath = os.path.realpath(abspath)
exists = os.path.exists(abspath)
return (filename, realpath, exists)

def get_links(directory):
file_list = [get dir tuple(f, directory) for f in os.listdir(directory)
if os.path.islink(os.path.join(directory, f))]
return file list

def main():
if not len(sys.argv) == 2:
print 'USAGE: %s directory' % sys.argv[0]
sys.exit(1)
directory = sys.argv[1]
print get links(directory)
if _name__ == '_main_':
main()

Next, we’ll create a setup.py that uses setuptools. This is another minimal setup.py file
as in our previous example:

from setuptools import setup, find_packages
setup(

name = "symlinkator",

version = "0.1",

packages = find_packages(),

entry points = {

"console_scripts': [
'linkator = symlinkator.symlinkator:main',

268 | Chapter9: Package Management

B
1
)

This declares that name of the package is “symlinkator”, that it is at version 0.1, and
that setuptools will try to find any appropriate Python files to include. Just ignore the
entry points section for the moment.

Now, we’ll build the egg by running python setup.py bdist egg:

$ python setup.py bdist egg

running bdist egg

running egg info

creating symlinkator.egg-info

writing symlinkator.egg-info/PKG-INFO

writing top-level names to symlinkator.egg-info/top level.txt

writing dependency links to symlinkator.egg-info/dependency links.txt

writing manifest file 'symlinkator.egg-info/SOURCES.txt"

writing manifest file 'symlinkator.egg-info/SOURCES.txt"

installing library code to build/bdist.linux-x86_64/egg

running install lib

warning: install lib: 'build/lib' does not exist -- no Python modules to install
creating build

creating build/bdist.linux-x86_64

creating build/bdist.linux-x86_64/egg

creating build/bdist.linux-x86_64/egg/EGG-INFO

copying symlinkator.egg-info/PKG-INFO -> build/bdist.linux-x86_64/egg/EGG-INFO
copying symlinkator.egg-info/SOURCES.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying symlinkator.egg-info/dependency links.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying symlinkator.egg-info/top level.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
zip_safe flag not set; analyzing archive contents...

creating dist

creating 'dist/symlinkator-0.1-py2.5.egg' and adding 'build/bdist.linux-x86 64/egg' to it
removing 'build/bdist.linux-x86_64/egg' (and everything under it)

Verify the egg contents. Let’s go into the dist directory that was created and verify there
is an egg located in there:

$ 1s -1 dist
total 4
-Iw-r--r-- 1 jmjones jmjones 825 2008-05-03 15:34 symlinkator-0.1-py2.5.egg

Now, we’ll install the egg:

$ easy_install dist/symlinkator-0.1-py2.5.egg
Processing symlinkator-0.1-py2.5.egg

Processing dependencies for symlinkator==0.1
Finished processing dependencies for symlinkator==0.1

Next, let’s fire up IPython, import, and use our module:

In [1]: from symlinkator.symlinkator import get links

In [2]: get links('/home/jmjones/logs/")
Out[2]: [('fetchmail.log.old', '/home/jmjones/logs/fetchmail.log.3"', False),
('fetchmail.log', '/home/jmjones/logs/fetchmail.log.0", True)]

(reating Eggs | 269

Justin case you’re interested, here is the directory that we ran the get_links() function
on:

$ 1s -1 ~/logs/

total o

lrwxrwxrwx 1 jmjones jmjones 15 2008-05-03 15:11 fetchmail.log -> fetchmail.log.o

-Iw-r--r-- 1 jmjones jmjones 0 2008-05-03 15:09 fetchmail.log.o

-Iw-r--r-- 1 jmjones jmjones 0 2008-05-03 15:09 fetchmail.log.1

lrwxrwxrwx 1 jmjones jmjones 15 2008-05-03 15:11 fetchmail.log.old -> fetchmail.log.3

Entry Points and Console Scripts

From the setuptools documentation page:

Entry points are used to support dynamic discovery of services or plugins provided by a
project. See Dynamic Discovery of Services and Plugins for details and examples of the
format of this argument. In addition, this keyword is used to support Automatic Script
Creation.

The only kinds of entry points that we’ll cover in this book are the console script variety.
setuptools will automatically create a console script for you given just a couple of pieces
of information that you place in your setup.py. Here is the relevant section from the
setup.py in the previous example:

entry points = {

"console_scripts': [
"linkator = symlinkator.symlinkator:main',
1

b

In this example, we specified that we wanted to have a script named "linkator" and
that when the script was executed, we wanted it to call the main() function in the
symlinkator.symlinkator module. When we installed the egg, this linkator script was
placed in the same directory with our python binary:

#!/home/jmjones/local/python/scratch/bin/python

EASY-INSTALL-ENTRY-SCRIPT: 'symlinkator==0.1','console scripts','linkator'

__requires__ = 'symlinkator==0.1'

import sys

from pkg resources import load_entry point

sys.exit(
load_entry point('symlinkator==0.1"', 'console_scripts', 'linkator"')()

)

Everything that you see was generated by setuptools. It’s really not important to un-
derstand everything that’s in this script. Actually, it’s probably not important at all to
understand anything in this script. The important thing to know is that when you define
aconsole_scripts entry point in your setup.py, setuptools will create a script that calls
your code into the place that you designated. And here is what happens when we call
this script in a comparable manner to calling it in a previous example:

270 | Chapter9: Package Management

$ linkator ~/logs/
[('fetchmail.log.old', '/home/jmjones/logs/fetchmail.log.3", False),
('fetchmail.log', '/home/jmjones/logs/fetchmail.log.0', True)]

There are some complex aspects to understand about entry points, but on a very high
level, it is only important to know that you can use an entry point to “install” your
script as a command-line tool in the user’s path. In order to do this, you only need to
follow the syntax listed above and define a function that runs your command-line tool.

Registering a Package with the Python Package Index

If you write a cool tool or useful module, naturally, you want to share it with other
people. This is one of the most enjoyable parts of open source software development.
Thankfully, it is a relatively simple process to upload a package to the Python Package
Index.

The process is only slightly different from creating an egg. Two things to pay attention
to are to remember to include a ReST, reStructuredText, formatted description in the
long_description, and to provide a download url value. We talked about ReST for-
matting in Chapter 4.

Although we discussed ReST formatting earlier, we should emphasize here that it is a
good idea to format your documentation as ReST because it will be converted to HTML
when it is uploaded to the cheeseshop. You can use the tool Aaron Hillegass created,
ReSTless, to preview the formatted text to insure it is properly formatted while you
preview it. One caveat to look out for is to make sure that you properly format your
ReST. If you do not have properly formatted ReST, the text will display as plain text,
and not HTML, when you upload your documentation.

See Example 9-2 for a look at a working setup.py for a command-line tool and library
that Noah created.

Example 9-2. Sample setup.py for upload to Python Package Index
#!/usr/bin/env python

liten 0.1.4.2 -- deduplication command-line tool
#
Author: Noah Gift
try:
from setuptools import setup, find packages
except ImportError:
from ez_setup import use setuptools
use_setuptools()
from setuptools import setup, find packages
import os,sys

version = '0.1.4.2'
f = open(os.path.join(os.path.dirname(_file), 'docs', 'index.txt'))
long description = f.read().strip()

Registering a Package with the Python Package Index | 271

f.close()
setup(

name="liten’,

version='0.1.4.2",

description="a de-duplication command line tool',

long_description=long_description,

classifiers=[
'Development Status :: 4 - Beta',
"Intended Audience :: Developers',
"License :: OSI Approved :: MIT License’,

1
author="Noah Gift',
author_email="noah.gift@gmail.com',
url="http://pypi.python.org/pypi/liten’,
download url="http://code.google.com/p/liten/downloads/list",
license="MIT',
py_modules=['virtualenv'],
zip safe=False,
py_modules=["'liten'],
entry points="""
[console scripts]
liten = liten:main

nun
)

)

Using this setup.py file, we can now “automatically” register a package with the Python
Package Index by issuing this command:

$ python setup.py register

running register

running egg info

writing liten.egg-info/PKG-INFO

writing top-level names to liten.egg-info/top level.txt

writing dependency links to liten.egg-info/dependency links.txt

writing entry points to liten.egg-info/entry points.txt

writing manifest file 'liten.egg-info/SOURCES.txt'

Using PyPI login from /Users/ngift/.pypirc

Server response (200): OK

This setup.py adds some additional fields compared to the symlinkator example. Some
of the additional fields include description, long description, classifiers, author,
and download url. The entry point, as we discussed earlier, allows the tool to be run
from the command line and installed into the default scripts directory.

The download _url is critical because it tells easy_install where to search for your pack-
age. You can include a link to a page and easy install is smart enough to find the
package or egg, but you can also explicitly create the link to an egg you created.

The long_description reuses documentation that exists in a /doc relative directory that
was created with an index.txt file in it. The index.txt file is formatted as ReST, and then
the setup.py script reads that information in, and puts it into the field as it is registered
with the Python Package Index.

272 | Chapter9: Package Management

Where Can | Learn More About ...

The following are important resources:

Easy install
http://peak.telecommunity.com/DevCenter/Easylnstall

Python eggs
http://peak.telecommunity.com/DevCenter/PythonEggs

The setuptools module
http://peak.telecommunity.com/DevCenter/setuptools

The package resources module
http://peak.telecommunity.com/DevCenter/PkgResources

Architectural overview of pkg_resources and Python eggs in general
Architectural Overview of pkg_resources and Python Eggs in General

And don’t forget the Python mailing list at hitp://mail.python.org/pipermail/distutils-
sig/.

Distutils

As of the time of this writing, setuptools is the preferred way of creating packages and
distributing them for many people, and it seems possible that parts of the setuptools
library will make it into the standard library. That being said, it is still important to
know how the distutils package works, what setuptools enhances, and what it doesn’t.

When distutils has been used to create a package for distribution, the typical way to
install the package will be to run:

python setup.py
install

Regarding building packages for distribution, we will be covering four topics:

* How to write a setup script, which is a setup.py file
* Basic configuration options in the setup.py file
* How to build a source distribution

* Creating binaries such as rpms, Solaris, pkgtool, and HP-UX swinstall
The best way to demonstrate how distutils works is to just jump in feet first.

Step 1: create some code. Let’s use this simple script as an example to distribute:

#!/usr/bin/env python
#A simple python script we will package
#Distutils Example. Version 0.1

class DistutilsClass(object):
"""This class prints out a statement about itself."""

Distutils | 273

http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/PkgResources
http://mail.python.org/pipermail/distutils-sig/
http://mail.python.org/pipermail/distutils-sig/

def _init_ (self):
print "Hello, I am a distutils distributed script." \
"All I do is print this message."

if _name__ == '_main__':
DistutilsClass()

Step 2: make a setup.py in the same directory as your script.

#Installer for distutils example script
from distutils.core import setup

setup(name="distutils example",
version="0.1",
description="A Completely Useless Script That Prints",
author="Joe Blow",
author_email = "joe.blow@pyatl.org",
url = "http://www.pyatl.org")

Notice that we’re passing setup() several keyword arguments that can later identify
this package by this metadata. Please note this is a very simple example, as there are
many more options, such as dealing with multiple dependencies, etc. We won’t get
into more advanced configurations, but we do recommend reading more about them
in the official Python online documentation.

Step 3: create a distribution.

Now that we have a very basic setup.py script, we can create a source distribution
package very easily by running this command in the same directory as your script,
README and setup.py file:

python setup.py sdist

You will get the following output:

running sdist
warning: sdist: manifest template 'MANIFEST.in' does not exist
(using default file list)
writing manifest file 'MANIFEST'
creating distutils_example-0.1
making hard links in distutils_example-o0.1...
hard linking README.txt distutils example-0.1
hard linking setup.py distutils example-0.1
creating dist
tar -cf dist/distutils example-0.1.tar distutils example-0.1
gzip -f9 dist/distutils example-0.1.tar
removing 'distutils example-0.1' (and everything under it)

Asyou can tell from the output, now all someone has to do is unpack and install using:
python setup.py install

If you would like to build binaries, here are a few examples. Note that they rely on the
underlying operating system to do the heavy lifting, so you cannot build an rpm on,
say, OS X. With the plethora of virtualization products around, though, this shouldn’t

274 | Chapter9: Package Management

be a problem for you. Just keep a few virtual machines laying around that you can
activate when you need to do builds.

To build an rpm:
python setup.py bdist rpm

To build a Solaris pkgtool:
python setup.py bdist pkgtool

To build a HP-UX swinstall:
python setup.py bdist sdux

Finally, when you distribute the package you make, you may want to customize the
installation directory when you get around to installing your package. Normally, the
build and installation processes happen all at once, but you may want to select a cus-
tomized build direction like the following:

python setup.py build --build-base=/mnt/python_src/ascript.py

When you actually run the install command, it copies everything in the build directory
to an installation directory. By default, the installation directory is the site-packages
directory in the Python environment in which you execute the command, but you can
also specify a custom installation directory, such as an NFS mount point, as shown in
the previous example.

Buildout

Buildout is a tool created by Jim Fulton of Zope Corporation to manage “building out”
new applications. These applications can be Python programs or other programs, such
as Apache. One of the main goals of Buildout is to allow buildouts to become repeatable
across platforms. One of the author’s first experiences using Buildout was to deploy a
Plone 3.x site. Since then, he realized this was just the tip of the iceberg.

Buildout is one of the more buzz-worthy new package management tools that Python
has to offer, as it allows complex applications that have complex dependencies to
bootstrap themselves if they have a bootstrap.py and a config file. In the coming sec-
tions, we will separate our discussion into two pieces: using Buildout and developing
with Buildout. We would also recommend you read the Buildout manual at http://
pypi.python.org/pypi/zc.buildout, as it is an invaluable resource for the latest informa-
tion about Buildout. In fact, this documentation is about as comprehensive as it gets
for Buildout, and is a must-read for any Buildout user.

Buildout | 275

http://pypi.python.org/pypi/zc.buildout
http://pypi.python.org/pypi/zc.buildout

CELEBRITY PROFILE: BUILDOUT

Jim Fulton

Jim Fulton is the creator and one of the maintainers of the Zope Object Database. Jim
is also one of the creators of the Zope Object Publishing Environment and the CTO at
Zope Corporation.

Using Buildout

Although many people that deal with Zope technologies are aware of Buildout, it has
been a secret for the rest of the Python world. Buildout is the recommended mechanism
by which Plone is deployed. If you are not familiar with Plone, it is an enterprise-grade
content management system with a tremendous development community behind it.
Plone used to be extremely complex to install until the invention of Buildout. Now
Buildout makes Plone installation trivial.

What many people do not know is that you can use Buildout to manage a Python
environment as well. Buildout is a very clever piece of software because it requires only
two things:

* The latest copy of bootstrap.py. You can always download it here: http://
svn.zope.org/*checkout*/zc.buildout/trunk/bootstrap/bootstrap.py.

* A buildout.cfg file, with the names of the “recipes” or “eggs” to install.

The best way to demonstrate Buildout is to use it to install something. Noah has written
ade-duplication command-line tool called liten that is available from the central Python
repository, PyPl. We are going to use Buildout to “bootstrap” a Python environment
to run this tool.

Step 1: download the bootstrap.py script.

mkdir -p ~/src/buildout_demo
curl http://svn.zope.org/*checkout*/zc.buildout/trunk/
bootstrap/bootstrap.py > ~/src/buildout_demo/bootstrap.py

Step 2: define a simple buildout.cfg. As we stated earlier, Buildout requires a build
out.cfg file to be present. If we tried to run the bootstrap.py script without the build
out.cfg file, we would get the output below:

$ python bootstrap.py

While:

Initializing.

Error: Couldn't open /Users/ngift/src/buildout_demo/buildout.cfg

For example, we will create the configuration file shown in Example 9-3.

276 | Chapter9: Package Management

http://svn.zope.org/*checkout*/zc.buildout/trunk/bootstrap/bootstrap.py
http://svn.zope.org/*checkout*/zc.buildout/trunk/bootstrap/bootstrap.py

Example 9-3. Example Buildout configuration file

[buildout]

parts = mypython
[mypython]

recipe = zc.recipe.egg
interpreter = mypython
eggs = liten

If we save that file as buildout.cfg and then run the bootstrap.py script again, we will
get the output shown in Example 9-4.

Example 9-4. Poking the buildout environment with a stick

$ python bootstrap.py

Creating directory '/Users/ngift/src/buildout_demo/bin’.

Creating directory '/Users/ngift/src/buildout_demo/parts’.
Creating directory '/Users/ngift/src/buildout_demo/eggs’.
Creating directory '/Users/ngift/src/buildout_demo/develop-eggs'.
Generated script '/Users/ngift/src/buildout_demo/bin/buildout’.

If we poke around these newly created directories, we will find executables, including
a custom Python interpreter inside of the bin directory:

$ 1s -1 bin

total 24

-rwxr-xr-x 1 ngift staff 362 Mar 4 22:17 buildout
-rwxr-xr-x 1 ngift staff 651 Mar 4 22:23 mypython

Now that we finally have a Buildout tool installed, we can run it and our egg we defined
earlier will work. See Example 9-5.

Example 9-5. Running Buildout and testing installation

$ bin/buildout

Getting distribution for 'zc.recipe.egg'.

Got zc.recipe.egg 1.0.0.

Installing mypython.

Getting distribution for 'liten’.

Got liten 0.1.3.

Generated script '/Users/ngift/src/buildout demo/bin/liten’.
Generated interpreter '/Users/ngift/src/buildout_demo/bin/mypython'.
$ bin/mypython

>>>

$ 1s -1 bin

total 24

-Twxr-xr-x 1 ngift staff 362 Mar 4 22:17 buildout
-rwxr-xr-x 1 ngift staff 258 Mar 4 22:23 liten
-rwxr-xr-x 1 ngift staff 651 Mar 4 22:23 mypython
$ bin/mypython

>>> import liten

Using Buildout | 277

Finally, because the “liten” was created with an entry point, which we discussed earlier
in this chapter, the egg is able to automatically install a console script in addition to
the module inside of the local Buildout bin directory. If we take a look at that, we will
see the following output:

$ bin/liten
Usage: liten [starting directory] [options]

A command-line tool for detecting duplicates using md5 checksums.

Options:

--version show program's version number and exit
-h, --help show this help message and exit

-c, --config Path to read in config file

-s SIZE, --size=SIZE File Size Example: 10bytes, 10KB, 10MB,10GB,10TB, or
plain number defaults to MB (1 = 1MB)

-q, --quiet Suppresses all STDOUT.

-r REPORT, --report=REPORT

Path to store duplication report. Default CWD

-t, --test Runs doctest.

$ pwd

/Users/ngift/src/buildout_demo

That is a very powerful and simple example of how Buildout can be used to create an
isolated environment and automatically deploy the correct dependencies for a project
or environment. To really show the power of Buildout, though, we should look at
another aspect of Buildout. Buildout has complete “control” of the directory in which
it is run, and everytime that Buildout runs, it reads the buildout.cfg file to look for
instructions. This means that if we remove the egg we listed, it will effectively remove
the command-line tool and the library. See Example 9-6

Example 9-6. Stripped-down Buildout configuration file

[buildout]
parts =

Now, here is a rerunning of Buildout with the egg and interpreter removed. Note that
Buildout has quite a few command-line options, and in this case, we are selecting -N,
which will only modify changed files. Normally, Buildout will rebuild everything from
scratch each time it is rerun.

$ bin/buildout -N
Uninstalling mypython.

When we look inside of the bin directory, the interpreter and the command-line tool
are gone. The only item left is the actual Buildout command-line tool:

$ 1s -1 bin/

total 8

-rwxr-xr-x 1 ngift staff 362 Mar 4 22:17 buildout

If we look inside of the eggs directory, though, the egg is installed but not activated.
But we couldn’t run it, as it doesn’t have an interpreter:

278 | Chapter9: Package Management

$ 1s -1 eggs

total 640

drwxr-xr-x 7 ngift staff 238 Mar 4 22:54 liten-0.1.3-py2.5.egg
-rw-r--r-- 1 ngift staff 324858 Feb 16 23:47 setuptools-0.6c8-py2.5.egg
drwxr-xr-x 5 ngift staff 170 Mar 4 22:17 zc.buildout-1.0.0-py2.5.egg
drwxr-xr-x 4 ngift staff 136 Mar 4 22:23 zc.recipe.egg-1.0.0-py2.5.egg

Developing with Buildout

Now that we have gone through a simple example of creating and destroying a Buildout-
controlled environment, we can now go a step further and create a Buildout-controlled
development environment.

One of the most common scenarios where Buildout is used is quite simple. A developer
may work on an individual package that lives in version control. The developer then
checks out her project into a top-level src directory. Inside of her src directory, she
would then run Buildout as described earlier, with an example configuration file such
as this:

[buildout]

develop = .
parts = test

[python]
recipe = zc.recipe.egg

interpreter = python

eggs = ${config:mypkgs}
[scripts]

recipe = zc.recipe.egg:scripts
eggs = ${config:mypkgs}

[test]

recipe = zc.recipe.testrunner
eggs = ${config:mypkgs}

virtualenv

“virtualenv is a tool to create isolated Python environments,” according to the docu-
mentation on the Python Package Index page. The basic problem that virtualenv solves
is to eliminate problems with conflicting packages. Often, one tool will require one
version of a package, and another tool will require a different version of a package. This
can create a dangerous scenario in which a production web application could be broken
because someone “accidentally” modifies the global site-packages directory to run a
different tool by upgrading a package.

Alternately, a developer may not have write access to a global site-packages directory,
and can use virtualenv to keep a separate virtualenv that is isolated from the system
Python. virtualenv is a great way to eliminate problems before they start, as it allows

Developing with Buildout | 279

for the creation of new sandbox that can be, optionally, completely isolated from the
global site-packages directory.

virtualenv can also “bootstrap” a virtual environment by allowing a developer to pre-
populate a virtual environment with a custom environment. This is very similar to what
Buildout does, although Buildout uses a declarative config file. We should note that
Buildout and virtualenv both extensively use setuptools, of which Phillip J. Eby is the
current maintainer.

CELEBRITY PROFILE: VIRTUALENV

lan Bicking

lan Bicking is responsible for so many Python packages it is often
hard to keep track. He has written Webob, which is part of Google
App Engine, Paste, virtualenv, SQLODbject, and much more. You can
read his famous blog here: http://blog.ianbicking.org/.

So, how do you use virtualenv? The most straightforward approach is to use
easy_install to install virtualenv:

sudo easy install virtualenv

If you plan on using virtualenv with only one version of Python, this approach works
quite well. If you have several versions of Python installed on your machine, such as
Python 2.4, Python 2.5, Python 2.6, and perhaps Python 3000, and they share the same
main bin directory, such as /usr/bin, then an alternate approach could work best, as
only one virtualenv script can be installed at a time in the same scripts directory.

One way to create several virtualenv scripts that work with multiple versions of Python
is to just download the latest version of virtualenv and create an alias to each Python
version. Here are the steps to do that:

1. curl http://svn.colorstudy.com/virtualenv/trunk/virtualenv.py > virtualenv.py

2. sudo cp virtualenv.py fusr/local/bin/virtualenv.py

3. Create two aliases in your Bash or zsh:

alias virtualenv-py24="/usr/bin/python2.4 /usr/local/bin/virtualenv.py"
alias virtualenv-py25="/usr/bin/python2.5 /usr/local/bin/virtualenv.py"
alias virtualenv-py26="/usr/bin/python2.6 /usr/local/bin/virtualenv.py"

With a multi-script environment behind us, we can go ahead and create several vir-
tualenv containers for each version of Python we need to deal with. Here is an example
of what that looks like.

Creating a Python2.4 virtual environment:

280 | Chapter9: Package Management

http://blog.ianbicking.org/
http://svn.colorstudy.com/virtualenv/trunk/virtualenv.py > virtualenv.py

$ virtualenv-py24 /tmp/sandbox/py24ENV

New python executable in /tmp/sandbox/py24ENV/bin/python

Installing setuptools................. done.

$ /tmp/sandbox/py24ENV/bin/python

Python 2.4.4 (#1, Dec 24 2007, 15:02:49)

[GCC 4.0.1 (Apple Inc. build 5465)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

$ 1s /tmp/sandbox/py24ENV/

bin/ 1ib/

$ 1s /tmp/sandbox/py24ENV/bin/

activate easy_install* easy install-2.4* python* python2.4@

Creating a Python2.5 virtual environment:

$ virtualenv-py25 /tmp/sandbox/py25ENV

New python executable in /tmp/sandbox/py25ENV/bin/python

Installing setuptools......cevvviiinneennnnnnns done.

$ /tmp/sandbox/py25ENV/bin/python

Python 2.5.1 (r251:54863, Jan 17 2008, 19:35:17)

[GCC 4.0.1 (Apple Inc. build 5465)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

$ 1s /tmp/sandbox/py25ENV/

bin/ 1ib/

$ 1s /tmp/sandbox/py25ENV/bin/

activate easy install* easy install-2.5* python* python2.5@

If we look at the output of the commands, we can observe that virtualenv creates a
relative bin directory and a relative lib directory. Inside the bin directory is a python
interpretor that uses the lib directory as its own local site-packages directory. Another
great feature is the prepopulated easy install script that allows an easy install of
packages into the virtual environment.

Finally, it is important to take note that there are two ways to work with the virtual
environment you create. You can always explicitly call the full path to a virtual
environment:

$ /src/virtualenv-py24/bin/python2.4

Alternately, you can use the activate script located in the bin directory of your virtualenv
to set your environment to use that “sandbox” without typing in a full path. This is an
optional tool you can use, but it is not necessary, as you can always type in the full path
to your virtualenv. Doug Hellmann, one of the reviewers for the book, created a clever
hack you can find here: http://www.doughellmann.com/projects/virtualenvwrapper/. It
uses activate with a Bash wrapper menu that let’s you select which sandbox to work
on at a time.

Creating a Custom Bootstrapped Virtual Environment

The release of virtualenv 1.0, which is current as of the writing of this book, includes
support to create bootstrap scripts for virtualenv environments. One method of doing

virtualenv | 281

http://www.doughellmann.com/projects/virtualenvwrapper/

that is to call virutalenv.create bootstrap script(text). What this does is create a
bootstrap script, which is like virtualenv, but with additional features to extend option
parsing, adjust_options, and use after_install hooks.

Let’s go over how easy it is to create a custom bootstrap script that will install virtualenv
and a custom set of eggs into a new environment. Going back to the liten package as
an example, we can use virtualenv to create a brand new virtual environment and pre-
populate it with liten. Example 9-7 shows exactly how to create a custom bootstrap
script that installs liten.

Example 9-7. Bootstrap creator example

import virtualenv, textwrap
output = virtualenv.create bootstrap script(textwrap.dedent(
import os, subprocess
def after_install(options, home_dir):

etc = join(home_dir, 'etc')

if not os.path.exists(etc):

os.makedirs(etc)
subprocess.call([join(home_dir, 'bin', 'easy_install'),
'liten'])

"))

f = open('liten-bootstrap.py', 'w').write(output)

nun

This example was adapted from the virtualenv documentation, and the last two lines
are the important lines to pay attention to:

subprocess.call([join(home dir, 'bin', 'easy install'),

'liten'])

"))

f = open('liten-bootstrap.py', 'w').write(output)
In a nutshell, this tells our after_install function to write a new file in the current
working directory called liten-bootstrap.py and then include a custom easy_install of
the module liten. It is important to note that this snippet of code will create a
bootstrap.py, and then this bootstrap.py file will need to be run. After running this script,
we will have a liten-bootstrap.py file that can be distributed to a developer or end user.

If we run liten-bootstrap.py without any options, we get the following output:

$ python liten-bootstrap.py
You must provide a DEST_DIR
Usage: liten-bootstrap.py [OPTIONS] DEST_DIR

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-v, --verbose Increase verbosity
-q, --quiet Decrease verbosity
--clear Clear out the non-root install and start from scratch

--no-site-packages Don't give access to the global site-packages dir to the
virtual environment

When we actually run this tool with a destination directory, we get this output:

282 | Chapter9: Package Management

$ python liten-bootstrap.py --no-site-packages /tmp/liten-ENV
New python executable in /tmp/liten-ENV/bin/python

Installing setuptools........covviiueviiiinnnn, done.

Searching for liten

Best match: liten 0.1.3

Processing liten-0.1.3-py2.5.egg

Adding liten 0.1.3 to easy-install.pth file

Installing liten script to /tmp/liten-ENV/bin

Using /Library/Python/2.5/site-packages/liten-0.1.3-py2.5.egg
Processing dependencies for liten
Finished processing dependencies for liten

Our clever bootstrap script automatically creates an environment with our module. So,
if we run the full path to the virtualenv on our the liten tool, we get the following:

$ /tmp/liten-ENV/bin/liten
Usage: liten [starting directory] [options]

A command-line tool for detecting duplicates using md5 checksums.

Options:

--version show program's version number and exit
-h, --help show this help message and exit

-c, --config Path to read in config file

-s SIZE, --size=SIZE File Size Example: 10bytes, 10KB, 10MB,10GB,10TB, or
plain number defaults to MB (1 = 1MB)

-q, --quiet Suppresses all STDOUT.

-r REPORT, --report=REPORT

Path to store duplication report. Default CWD

-t, --test Runs doctest.

This is a great trick to know about, as it allows a completely isolated and bootstrapped
virtual environment.

We hope it is clear from this section on virtualenv that one of its core strengths is how
simple it is to use and understand. More than anything, virtualenv respects the sacred
rule of KISS, and that alone is reason enough to consider using it to help manage isolated
development environments. Be sure to visit the virtualenv mailing list at http:/
groups.google.com/group/python-virtualenv/ if you have more questions about it.

EPM Package Manager

Because EPM creates native packages for each operating system, it will need to be
installed on each “build” system. Due to the incredible advances in virtualization in the
past few years, it is trivial to get a few build virtual machines set up. I created a small
cluster of virtual machines running in the equivalent of Red Hat run level init 3, with
a minimal allocation of RAM, to test out the code examples in this book.

A coworker and contributor to EPM first introduced me to what EPM can do. I was
looking for a tool that would allow me to create operating system-specific software

EPM Package Manager | 283

http://groups.google.com/group/python-virtualenv/
http://groups.google.com/group/python-virtualenv/

packages for a tool I had developed, and he mentioned EPM. After reading through
some of the online documentation at http://www.epmhome.org/epm-book.html, 1 was
pleasantly suprised at how painless the process was. In this section, we are going to
walk through the steps involved to create a software package ready for installation on
multiple platforms: Ubuntu, OS X, Red Hat, Solaris, and FreeBSD. These steps can
easily be applied to other systems that EPM supports, such as AIX or HP-UX.

Before we jump into the tutorial, here is a little background on EPM. According to the
official documentation for EPM, it was designed from the beginning to build a binary
software distribution using a common software specification format. Because of this
design goal, the same distribution files work for all operating systems and all distribu-
tion formats.

EPM Package Manager Requirements and Installation

EPM requires only a Bourne type shell, a C compiler, the make program and gzip. These

utilities are easily obtained on almost every *nix system, if they are not already installed.

After downloading the source for EPM, it is necessary to run the following:
./configure

make
make install

Creating a Hello World Command-Line Tool to Distribute

To get started with building packages for almost every *nix operating system made, we
need something to actually distribute. In the spirit of tradition, we are going to create
a simple command-line tool called hello_epm.py. See Example 9-8.

Example 9-8. Hello EPM command-line tool
#!/usr/bin/env python

import optparse

def main():
p = optparse.OptionParser()
p.add_option('--o0s', '-o', default="*NIX")
options, arguments = p.parse_args()
print 'Hello EPM, I like to make packages on %s' % options.os
if _name__ == ' main_ ':
main()

If we run this tool, we get the following output:

$ python hello_epm.py
Hello EPM, I like to make packages on *NIX

284 | Chapter9: Package Management

http://www.epmhome.org/epm-book.html

$ python hello epm.py --os RedHat
Hello EPM, I like to make packages on RedHat

Creating Platform-Specific Packages with EPM

The “basics,” are so simple that you may wonder why you never used EPM to package
cross-platform software before. EPM reads a “list” file(s) that describe your software
package. Comments begin with a # character, directives begin with a % character, var-
iables start with a $ character, and finally, file, directory, init script, and symlink lines
start with a letter.

It is possible to create a generic cross-platform install script as well as platform-specific
packages. We will focus on creating vendor package files. The next step to creating
platform-specific packages is to create a manifest or “list” that describes our package.
Example 9-9 is a template we used to create packages for our hello_epm command-line
tool. It is general enough that you could get away with changing it slightly to create
your own tools.

Example 9-9. “List” template for EPM

#EPM List File Can Be Used To Create Package For Any Of These Vendor Platforms
#epm -f format foo bar.list ENTER
#The format option can be one of the following keywords:

#aix - AIX software packages.

#bsd - FreeBSD, NetBSD, or OpenBSD software packages.
#depot or swinstall - HP-UX software packages.

#dpkg - Debian software packages.

#inst or tardist - IRIX software packages.

#native - "Native" software packages (RPM, INST, DEPOT, PKG, etc.) for the platform.
#osx - MacOS X software packages.

#pkg - Solaris software packages.

#iportable - Portable software packages (default).
#rpm - Red Hat software packages.

#setld - Tru64 (setld) software packages.

#slackware - Slackware software packages.

Product Information Section

%product hello_epm

%copyright 2008 Py4SA

%vendor 0’Reilly

%license COPYING

%readme README

%description Command Line Hello World Tool
%version 0.1

Autoconfiguration Variables

$prefix=/usr
$exec_prefix=/usr

EPM Package Manager | 285

$bindir=${exec_prefix}/bin
$datadir=/usr/share
$docdir=¢{datadir}/doc/
$libdir=/usr/lib
$mandir=/usr/share/man
$srcdir=.

Executables

%system all
f 0555 root sys ${bindir}/hello_epm hello_epm.py

Documentation

%subpackage documentation

f 0444 root sys ${docdir}/README $srcdir/README

f 0444 root sys ${docdir}/COPYING $srcdir/COPYING

f 0444 root sys ${docdir}/hello_epm.html $srcdir/doc/hello_epm.html

Man pages

%subpackage man
%description Man pages for hello epm
f 0444 root sys ${mandir}/mani/hello_epm.1 $srcdir/doc/hello_epm.man

If we examine this file, which we will call hello_epm.list, you will notice that we define
the $srcdir variable as the current working directory. In order to create packages on
any platform, we now just need to create the following in our current working directory:
a README file, a COPYING file, a doc/hello_epm.html file, and a doc/hello_epm.man
file, and our script hello_epm.py has to be in this same directory.

If we wanted to “cheat” for our hello_epm.py tool, and just place blank files in our
packaging directory, we could do this:

$ pwd
/tmp/release/hello_epm

$ touch README

$ touch COPYING

$ mkdir doc

$ touch doc/hello_epm.html
$ touch doc/hello_epm.man

Looking inside of our directory, we have this layout:

$ 1s -1IR

total 16

-rw-r--r-- 1 ngift wheel 0 Mar 10 04:45 COPYING
-rw-r--r-- 1 ngift wheel 0 Mar 10 04:45 README
drwxr-xr-x 4 ngift wheel 136 Mar 10 04:45 doc

-rw-r--r-- 1 ngift wheel 1495 Mar 10 04:44 hello epm.list
-rw-r--r--@ 1 ngift wheel 278 Mar 10 04:10 hello_epm.py
./doc:

total o

286 | Chapter9: Package Management

-rw-r--r-- 1 ngift wheel 0 Mar 10 04:45 hello_epm.html
-rw-r--r-- 1 ngift wheel 0 Mar 10 04:45 hello_epm.man

Making the Package

Now, we have a directory with a “list” file that contains generic directives that will work
on any platform EPM supports. All that is left is to run the epm -f command appended
with what platform we are on and the name of our list file. Example 9-10 shows what
it looks like on OS X.

Example 9-10. Creating a native OS X installer with EPM

$ epm -f osx hello epm hello_epm.list
epm: Product names should only contain letters and numbers!

~C

$ epm -f osx helloEPM hello_epm.list

$11

total 16

-rw-r--r-- 1 ngift wheel 0 Mar 10 04:45 COPYING
-rw-r--r-- 1 ngift wheel 0 Mar 10 04:45 README
drwxr-xr-x 4 ngift wheel 136 Mar 10 04:45 doc

-rw-r--r-- 1 ngift wheel 1495 Mar 10 04:44 hello_epm.list

-rw-r--r--@ 1 ngift wheel 278 Mar 10 04:10 hello_epm.py
drwxrwxrwx 6 ngift staff 204 Mar 10 04:52 macosx-10.5-intel

Notice the warning when the package name had an underscore in it. As a result, we
renamed the package without an underscore and ran it again. It then creates a
macosx-10.5-intel directory that contains the following.

$ 1s -la macosx-10.5-intel

total 56

drwxrwxrwx 4 ngift staff 136 Mar 10 04:54 .

drwxr-xr-x 8 ngift wheel 272 Mar 10 04:54 ..

-rw-r--r--@ 1 ngift staff 23329 Mar 10 04:54 helloEPM-0.1-macosx-10.5-intel.dmg
drwxr-xr-x 3 ngift wheel 102 Mar 10 04:54 helloEPM.mpkg

This is convenient, as it makes both a .dmg image archive that is native to OS X and
contains our installer and the native OS X installer.

If we run the installer, we will notice that OS X will install our blank man pages and
documentation and show our blank license file. Finally, it places our tool exactly where
we told it to and creates the custom name we gave it the following;:

$ which hello_epm

/usr/bin/hello_epm

$ hello_epm

Hello EPM, I like to make packages on *NIX
$ hello_epm -h

Usage: hello epm [options]

Options:
-h, --help show this help message and exit

EPM Package Manager | 287

-0 0S, --0s=0S
$

EPM Summary: It Really Is That Easy

If we scp -1 the /tmp/release/hello epm to a Red Hat, Ubuntu, or Solaris machine,
we can run the exact same command, except with the platform-specific name, and it
will “just work.” In Chapter 8, we examined how to create a build farm using this
technique so that you can instantly create cross-platform packages by running a script.
Please note that all of this source code is available for download along with the example
package created. You should be able to slightly modify it and create your own cross-
platform packages in minutes.

There are quite a few additional advanced features that EPM has to offer, but going
into those is beyond the scope of this book. If you are curious about creating packages
that handle dependencies, run pre- and post-install scripts, etc., then you owe it to
yourself to read EPM’s official documentation, which covers all of these scenarios and
more.

288 | Chapter9: Package Management

CHAPTER 10
Processes and Concurrency

Introduction

Dealing with processes as a Unix/Linux systems administrator is a fact of life. You need
to know about startup scripts, run levels, daemons, cron jobs, long-running processes,
concurrency, and a host of other issues. Fortunately, Python makes dealing with pro-
cesses quite easy. Since Python 2.4, Subprocess has been the one-stop shop module
that allows you to spawn new processes and talk to standard input, standard output,
and standard error. While talking to a processes is one aspect of dealing with processes,
it is also import to understand how to deploy and manage long-running processes as
well.

Subprocess

With Python 2.4 came subprocess, which takes the place of several older modules:
0s.system, os.spawn, os.popen, and popen2 commands. Subprocess is a revolutionary
change for systems administrators and developers who need to deal with processes and
“shelling out.” It is now a one-stop shop for many things dealing with processes and it
may eventually include the ability to manage a flock of processes.

Subprocess mightjust be the single most important module for a systems administrator,
as it is the unified API to “shelling out.” Subprocess is responsible for the following
things in Python: spawning new processes connecting to standard input, connecting
to standard output, connecting to error streams, and listening to return codes.

To whet your appetite, let’s use the KISS principle (Keep It Simple Stupid), and do the
absolute simplest possible thing we can with Subprocess and make a trivial system call.
See Example 10-1.

Example 10-1. Simplest possible use of Subprocess

In [4]: subprocess.call('df -k', shell=True)
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/diskos2 97349872 80043824 17050048 83% /

289

devfs 106 106 0 100% /dev
fdesc 1 1 0 100% /dev
map -hosts 0 0 0 100% /net
map auto_home 0 0 0 100% /home
Out[4]: 0

Using that same simple syntax it is possible to include shell variables as well. Exam-
ple 10-2 is an example of finding out the summary of the space used in our home
directory.

Example 10-2. Summary of disk usage

In [7]: subprocess.call('du -hs $HOME', shell=True)
28G /Users/ngift
Out[7]: 0

One interesting trick to point out with Subprocess is the ability to suppress standard
out. Many times, someone is just interested in running a system call, but is not con-
cerned about the stdout. In these cases, it is often desirable to suprocess the stdout of
subprocess.call. Fortunately, there is a very easy way to do this. See Example 10-3.

Example 10-3. Suppressing stdout of subprocess.call

In [3]: import subprocess

In [4]: ret = subprocess.call("ping -c 1 10.0.1.1",
shell=True,
stdout=open('/dev/null', 'w'),
stderr=subprocess.STDOUT)

There are a few things to point out about these two examples and subprocess.call in
general. You typically use subprocess.call when you do not care about the ouptut of
the shell command and you just want it to run. If you need to capture the output of a
command, then you will want to use subprocess.Popen. There is another sizable dif-
ference between subprocess.call and subprocess.Popen. Subprocess.call will block
waiting for a response, while subprocess.Popen will not.

Using Return Codes with Subprocess

One interesting thing to note about subprocess.call is that you can use return codes to
determine the success of your command. If you have experience with programming in
C or Bash, you will be quite at home with return codes. The phrases “exit code” and
“return code” are often used interchangeably to describe the status code of a system
process.

Every process will have a return code when it exits, and the status of the return code
can be used to determine what actions a program should take. Generally, if a program
exits with a code of anything but zero, it is an error. The obvious use of a return code
for a developer is to determine that if a process it needs to use return with an exit code
of anything but zero, then it was a failure. The not-so-obvious use of return codes has

290 | Chapter10: Processesand Concurrency

many interesting possibilities. There are special return codes for a program not being
found, a program not being executable, and a program being terminated by Ctrl-C. We
will explore the use of these return codes in Python programs in this section.

Let’s look at a list of common return codes with special meaning:

0

Success
1

General errors
2

Misuse of shell built-ins
126

Command invoked cannot execute
127
Command not found

128
Invalid argument to exit

Fatal error signal “n”
g

130
Script terminated by Ctrl-C 255 Exit status out of range

The most useful scenario where this may come into play is with the use of return codes
0 and 1, which generally signifies success or failure of a command you just ran. Let’s
take a look at some common examples of this with subprocess.call. See Example 10-4.

Example 10-4. Failure return code with subprocess.call

In [16]: subprocess.call("ls /foo", shell=True)
1s: /foo: No such file or directory
Out[16]: 1

Because that directory did not exist, we received a return code of 1 for failure. We can
also capture the return code and use it to write conditional statements. See Exam-
ple 10-5.

Example 10-5. Conditional statements based on return code true/false with subprocess.call

In [25]: ret = subprocess.call("ls /foo", shell=True)
1s: /foo: No such file or directory

In [26]: if ret ==
print "success"”

ceedt print "failure"

Subprocess | 291

failure

Here is an example of a “command not found” return code, which is 127. This might
be a useful way to write a tool that attempted to run several similar shell commands
based on what was available. You might first try to run rsync, but if you get a return
code of 127, then you would move on to scp -r. See Example 10-6.

Example 10-6. Conditional statements based on return code 127 with subprocess.call

In [28]: subprocess.call("rsync /foo /bar", shell=True)
/bin/sh: rsync: command not found
Out[28]: 127

Let’s take the previous example and make it less abstract. Often, when writing cross-
platform code that needs to run on a variety of *nix boxes, you may find yourself in a
situation in which you need to accomplish something that requires a different system
program depending on which OS the program is run. HP-UX, AIX, Solars, FreeBSD,
and Red Hat could each have a slightly different utility that does what you want. A
program could listen to the return code of the first program it attemps to call via sub-
process and if return code 127 is given, then the next command could be tried, etc.

Unfortunately, exit codes can vary from OS to OS, so if you are writing a cross-platform
script, you may want to only rely a zero or nonzero exit code. To give you an example,
this is an exit code on Solaris 10 for the exact same command we ran earlier on Red
Hat Enterprise Linux 5:

ash-3.00# python

Python 2.4.4 (#1, Jan 9 2007, 23:31:33) [C] on sunos5

Type "help", "copyright", "credits" or "license" for more information.

>>> import subprocess

>>> subprocess.call("rsync", shell=True)

/bin/sh: rsync: not found
1

We could still use a specific exit code, but we might first want to determine what the
operating system is. After we have determined the operating system, then we could
check for the platform-specific command’s existence. If you find yourself writing this
type of code, then it is a good idea to become intimately familiar with the platform
module. The process module is talked about in detail in Chapter 8, so you can refer to
that chapter for more information.

Let’s look at Example 10-7 to see how to use the platform module interactively in
[Python to determine what to pass to subprocess.call.
Example 10-7. Using platform and Subprocess module to determine command execution on Solaris 10

In [1]: import platform
In [2]: import subprocess
In [3]: platform?

Namespace: Interactive

292 | Chapter10: Processes and Concurrency

File: /usr/1lib/python2.4/platform.py

Docstring:

This module tries to retrieve as much platform-identifying data as
possible. It makes this information available via function APIs.

If called from the command line, it prints the platform
information concatenated as single string to stdout. The output
format is useable as part of a filename.

In [4]: if platform.system() == 'Sun0S':
ceedt print "yes"

In [5]: if platform.release() == '5.10':
ceedt print "yes"

In [6]: if platform.system() == 'Sun0S':
ret = subprocess.call('cp /tmp/foo.txt /tmp/bar.txt', shell=True)
if ret ==
print "Success, the copy was made on %s %s " % (platform.system(),
platform.release())

Success, the copy was made on SunOS 5.10

As you can see, using the platform module with subprocess.call can be an effective
weapon in writing cross-platform code. Please refer to Chapter 8 for detailed informa-
tion on using the platform module to write cross-platform *nix code. See Example 10-8.

Example 10-8. Capturing standard out with Subprocess

In [1]: import subprocess
In [2]: p = subprocess.Popen("df -h", shell=True, stdout=subprocess.PIPE)
In [3]: out = p.stdout.readlines()

In [4]: for line in out:
print line.strip()

Filesystem Size Used Avail Capacity Mounted on
/dev/diskos2 93Gi 78Gi 15Gi 85%

devfs 107Ki 107Ki ~ 0Bi 100% /dev

fdesc 1.0Ki 1.0Ki ~ 0Bi 100% /dev

map -hosts oBi 0Bi 0Bi 100% /net

map auto_home 0Bi 0Bi 0Bi 100% /home

Note that readlines() returns a list with newline characters. We had to use
line.strip() to remove the newlines. Subprocess also has the ability to communicate
with stdin and stdout to create pipes. Here is a simple example of communicating to

Subprocess | 293

the standard input of a process. One interesting thing we can do with Python that would
be horrendous in Bash is to create a piping factory. With a trivial few lines of code, we
have arbitrary commands that get created and printed depending on the number of
arguments. See Example 10-9.

Example 10-9. Subprocess piping factory

def multi(*args):
for cmd in args:
p = subprocess.Popen(cmd, shell=True, stdout = subprocess.PIPE)
out = p.stdout.read()
print out

Here is an example of this simple function in action:
In [28]: multi("df -h", "1s -1 /tmp", "tail /var/log/system.log")

Filesystem Size Used Avail Capacity Mounted on
/dev/diskos2 93Gi 80Gi 13Gi 87%

devfs 107Ki 107Ki OBi 100% /dev

fdesc 1.0Ki 1.0Ki OBi 100% /dev

map -hosts 0Bi 0Bi OBi 100% /net

map auto home 0Bi ~ OBi O0Bi 100% /home

lrwxr-xr-x@ 1 root admin 11 Nov 24 23:37 /tmp -> private/tmp

Feb 21 07:18:50 dhcp126 /usr/sbin/ocspd[65145]: starting

Feb 21 07:19:09 dhcp126 login[65151]: USER_PROCESS: 65151 ttys000
Feb 21 07:41:05 dhcp126 login[65197]: USER_PROCESS: 65197 ttysoo1i
Feb 21 07:44:24 dhcp126 login[65229]: USER_PROCESS: 65229 ttys002

Due to the power of python and *args, we can arbitrarily run commands using our
function as a factory. Each command gets popped off a list starting at the beginning
due to the args.pop(0) syntax. If we used args.pop(), it would have popped the argu-
ments in reverse order. Since this may be confusing, we can also write the same com-
mand factory function using a simple iteration for loop:
def multi(*args):
for cmd in args:
p = subprocess.Popen(cmd, shell=True, stdout = subprocess.PIPE)

out = p.stdout.read()
print out

Sysadmins quite frequently need to run a sequence of commands, so creating a module
that simplifies this process could make quite a bit of sense. Let’s take a look at how we
could do that with a simple example of inheritance. See Example 10-10.

Example 10-10. Creating a module around Subprocess

#!/usr/bin/env python

from subprocess import call
import time

import sys

294 | Chapter10: Processes and Concurrency

"""Subtube is module that simplifies and automates some aspects of subprocess

class BaseArgs(object):

"""Base Argument Class that handles keyword argument parsing

def _init_ (self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
if self.kwargs.has_key("delay"):

nnn

nun

self.delay = self.kwargs["delay"]

else:
self.delay = 0

if self.kwargs.has_key("verbose"):
self.verbose =

else:
self.verbose = False

def run (self):

raise NotImplementedError

class Runner(BaseArgs):

self.kwargs["verbose"]

You must implement a run method"""

Simplifies subprocess call and runs call over a sequence of commands

Runner takes N positional arguments, and optionally:

[optional keyword parameters]

delay=1, for time delay in seconds
verbose=True for verbose output

Usage:

cmd = Runner("ls -1", "df -h", verbose=True, delay=3)

cmd. run()

nnn

def run(self):
for cmd in self.args:
if self.verbose:

print "Running %s with delay=%s" % (cmd, self.delay)

time.sleep(self.delay)
call(emd, shell=True)

Let’s take a look at how we would actually use our newly created module:

In [8]: from subtube import Runner
In [9]: r = Runner("df -h", "du -h

In [10]: r.run()

Filesystem Size Used Avail
/dev/diskos2 93Gi 80Gi 13Gi
devfs 108Ki 108Ki 0Bi
fdesc 1.0Ki 1.0Ki 0Bi
map -hosts OBi OBi 0Bi
map auto_home OBi 0Bi 0Bi
4.0k /tmp

/tmp")

Capacity Mounted on

87%
100% /dev
100% /dev
100% /net
100% /home

Subprocess | 295

In [11]: r = Runner("df -h", "du -h /tmp", verbose=True)

In [12]: r.run()
Running df -h with delay=0

Filesystem Size Used Avail Capacity Mounted on
/dev/diskos2 93Gi 80Gi 13Gi 87% /

devfs 108Ki 108Ki OBi 100% /dev

fdesc 1.0Ki 1.0Ki OBi 100% /dev

map -hosts 0Bi 0Bi OBi 100% /net

map auto_home 0Bi 0Bi OBi 100% /home
Running du -h /tmp with delay=0
4.0K /tmp

If we had ssh keys set up on all of our systems, we could easily code something like this:

machines = ["homer', 'marge','lisa', 'bart']

for machine in machines:
r = Runner("ssh " + machine + "df -h", "ssh " + machine + "du -h /tmp")
r.run()

This is a crude example of a remote command runner, but the idea is a good one,
because the Red Hat Emerging Technology group has a project that facilitates wholesale
scripting of large clusters of machines in Python. According to the Func website,
“Here’s an interesting and contrived example—rebooting all systems that are running
httpd. It’s contrived, yes, but it’s also very simple, thanks to Func.” We got into more
detailed use of Func in Chapter 8, and we covered a home-brew “dispatching” system
that works on any *nix platform.

results = fc.Client("*").service.status("httpd")

for (host, returns) in results.iteritems():

if returns ==
fc.Client(host).reboot.reboot()

Because subprocess is a unified API for “shelling out,” we can quite easily write to stdin.
In Example 10-11, we will tell the word count utility to listen to standard in, and then
we will write a string of characters for word count to process.

Example 10-11. Communicating to standard in with Subprocess

In [35]: p = subprocess.Popen("wc -c", shell=True, stdin=subprocess.PIPE)
In [36]: p.communicate("charactersinword")
16
The equivalent Bash is the following:
> echo charactersinword | wc -c
Let’s emulate Bash this time and redirect a file to the standard input. First, we need to

write something to a file, so let’s do that with the new Python 2.6 syntax. Remember
that if you are using Python 2.5, you must you the future import idiom:

In [5]: from _ future__ import with_statement

296 | Chapter10: Processesand Concurrency

In [6]: with open('temp.txt', 'w') as file:
Lt file.write('charactersinword')

We can reopen the file the classic way and read the file in as a string assigned to f:
In [7]: file = open('temp.txt")

In [8]: f = file.read()

Then we “redirect” the file output to our waiting process:

In [9]: p = subprocess.Popen("wc -c", shell=True, stdin=subprocess.PIPE)
In [10]: p.communicate(f)

In [11]: p.communicate(f)
16
In Bash, this would be equivalent to the following sequence of commands:

% echo charactersinword > temp.txt
% wc -c < temp.txt
16

Next, let’s take a look at actually piping several commands together as we would do in
a typical shell scenario. Let’s take a look at a series of commands piped together in Bash
and then the same series of commands piped together in Python. A realistic example
that we encounter quite often is when dealing with logfiles. In Example 10-12, we are
looking for the successful logins to the screensaver on a Macintosh laptop.

Example 10-12. Chaining commands with Subprocess

In Bash here is a simple chain:

[ngift@Macintosh-6][H:10014][J:0]> cat /etc/passwd | grep 0:0 | cut -d ':' -f 7
/bin/sh

Here is the same chain in Python:

In [7]: p1 = subprocess.Popen("cat /etc/passwd", shell=True, stdout=subprocess.PIPE)

In [8]: p2 = subprocess.Popen("grep 0:0", shell=True, stdin=pl.stdout, stdout=subprocess.PIPE)

In [9]: p3 = subprocess.Popen("cut -d ': ' -f 7", shell=True, stdin=p2.stdout,
stdout=subprocess.PIPE)

In [10]: print p3.stdout.read()
/bin/sh

Just because we can do something using subprocess piping, it doesn’t mean we have
to. In the previous example, we grabbed the shell of the root user by piping a series of
commands. Python has a built-in module that does this for us, so it is important to
know that sometimes you don’t even need to use Subprocess; Python might have a
built-in module that does the work for you. Many things you might want to do in the
shell, such as tar or zip, Python can also do. It is always a good idea to see if Python

Subprocess | 297

has a built-in equivalent if you find yourself doing a very complex shell pipeline using
Subprocess. See Example 10-13.

Example 10-13. Using pwd, the password database module instead of Subprocess
In [1]: import pwd

In [2]: pwd.getpwnam('root")
Out[2]: ('root', "kwiskxik! o, 0, 'System Administrator', '/var/root', '/bin/sh")

In [3]: shell = pwd.getpwnam('root')[-1]

In [4]: shell
Out[4]: '/bin/sh'

Subprocess can also handle sending input and receiving output at the same time, and
also listening to standard error. Let’s take a look at an example of that.

Note that inside of [Python we use the “ed upper.py” feature to automatically switch
to Vim when we want to write a snippet of code that may block such as the one in
Example 10-14.

Example 10-14. Sending input and receiving output and standard error

import subprocess

p = subprocess.Popen("tr a-z A-Z", shell=True,stdin=subprocess.PIPE,
stdout=subprocess.PIPE)

output, error = p.communicate("translatetoupper")

print output

So when we exit Vim inside of IPython, it automatically runs this snippet of code and
we get the following:

done. Executing edited code...
TRANSLATETOUPPER

Using Supervisor to Manage Processes

As a sysadmin, you often need to manage and deal with processes. When the web
developers find out that their sysadmin is a Python expert, they are going to be very
excited because many Python web frameworks do not offer an elegant way to tempo-
rarily manage long-running processes. Supervisor can help these situations by manag-
ing how a long process is controlled and ensuring it starts back up in the case of a reboot
of the system.

Supervisor does quite a bit more than just help web applications get deployed; it has
much more general applications. Supervisor can act as cross-platform controller to
manage and interact with processes. It can start, stop, and restart other programs on a
*nix system. It can also restart crashed processes, which can come in quite handy. The
coauthor of Supervisor, Chris McDonough, tells us that it can also help manage “bad”

298 | Chapter10: Processes and Concurrency

processes, too. This could include processes that consume too much memory or hog
the CPU, for example. Supervisor does remote control via XML-RPC XML-RPC Inter-
face Extensions Event Notification System.

Most *nix systems administrators will mainly be concerned with “supervisord,” which
is the daemon program that runs designed programs as child processes, and “supervi-
sorctl,” which is a client program that can view the logs and control the processes from
a unified session. There is a web interface as well, but well, this is a book on *nix, so
let’s move right along.

As of this writing, the latest version of Supervisor is 3.0.x. The latest version of the
manual can always be found at hitp://supervisord.org/manual/current/. Installing Su-
pervisor is a piece of cake, thanks to the fact that you can easy_install it. Assuming
you have used virtualenv to create a virtual Python installation directory, you can use
the following command to easy_install supervisor:

bin/easy install supervisor

This will install Supervisor into your bin directory. If you did an easy install to your
system Python, then it will be installed in something like /usr/local/bin, or your system
scripts directory.

The next step to getting a very basic Supervisor daemon running is to create a very
simple script that prints, sleeps for 10 seconds, and then dies. This is the exact opposite
of a long-running process, but it shows one of the more powerful aspects of Supervisor,
the ability to auto-restart and daemonize a program. Now, we can simply echo out a
supervisord.conf file somewhere by using a special supervisor command called
echo_supervisord_conf. In this example, we will just echo this out to /etc/supervi
sord.conf. It is good to note that the Supervisor config file can live anywhere, as the
supervisord daemon can be run with an option to specify the location of a config file.

echo_supervisord_conf > /etc/supervisord.conf

With those few basic steps out of the way, we are ready to create a very simple example
of a process that will die after a few seconds. We will use the upervisor autostart feature
to keep this process alive. See Example 10-15.

Example 10-15. Simple example of Supervisor restarting a dying process
#!/usr/bin/env python

import time

print "Daemon runs for 3 seconds, then dies"

time.sleep(3)
print "Daemons dies"

As we mentioned earlier, in order to actually run a child program inside of supervisord,
we need to edit the configuration file, and add our application. Let’s go ahead and add
a couple lines to /etc/supervisord.conf:

Using Supervisor to Manage Processes | 299

http://supervisord.org/manual/current/

[program:daemon]
command=/root/daemon. py ; the program (relative uses PATH, can take args)
autorestart=true ; retstart at unexpected quit (default: true)

Now, we can start supervisord and then use the supervisorectl to watch and start the
process:

[root@localhost]~# supervisord

[root@localhost]~# supervisorctl

daemon RUNNING pid 32243, uptime 0:00:02
supervisor>

At this point, we can run the help command to see what options are available for
supervisorctl:

supervisor> help

Documented commands (type help topic):

EOF exit maintail quit restart start stop version
clear help open reload shutdown status tail

Next, let’s start our process which we called daemon in the config file and then tail it
to watch it while it dies, then reawakens magically, in an almost Frankenstein-like
way...mwahahaha. It’s alive, then dead, and then alive again.

supervisor> stop daemon

daemon: stopped

supervisor> start daemon
daemon: started

And for the final part in our play, we can interactively tail the stdout of this program:

supervisor> tail -f daemon
== Press Ctrl-C to exit ==
for 3 seconds, then die
I just died
I will run for 3 seconds, then die

Using Screen to Manage Processes

An alternate approach to manage long-running processes is to use the GNU screen
application. As a sysadmin, if you do not use screen, it is worth knowing even if you
will not be managing Python programs with it. One of the core features of screen that
makes it so useful is its ability to allow you to detach from a long-running process and
come back to it. This is so useful, we would consider it an essential Unix skill to know.

Let’s take a look at a typical scenario in which we want to detach from a long-running
web application such as trac. There are a few ways to configure trac, but one of the
most simple is to just detach from the standalone trac process with screen.

300 | Chapter10: Processesand Concurrency

All that is necessary to run a process is screen the append screen to the front of the long-
running process, Ctrl-A, and then Ctrl-D to detach. To reattach to that process, you
just need to type in screen and then press Ctrl-A again.

In Example 10-16, we tell tracd to run within screen. Once the process starts, we can
then simply detach using Ctrl-A, then Curl-D, if we ever want to reattach.

Example 10-16. Running Python processes in screen

screen python2.4 /usr/bin/tracd --hostname=trac.example.com --port 8888
-r --single-env --auth=*
,/home/noahgift/trac-instance/conf/password,tracadminaccount /home/example/trac-instance/

If I ever need to reattach I can run:

[root@cent ~]# screen -r

There are several suitable screens on:

4797.pts-0.cent (Detached)

24145.pts-0.cent (Detached)

Type “screen [-d] -r [pid.]tty.host” to resume one of them.

This approach might not be the best to use in a production environment, but while
doing development work, or for personal use, it certaintly has its advantages.

Threads in Python

Threads could be described as a necessary evil to some people, although many people
dislike threads, to solve many problems that require dealing with multiple things at
once. Threads are different than processes because they all run inside of the same proc-
ess and share state and memory. That is both the thread’s greatest advantage and dis-
advantage. The advantage is that you can create a data structure that all threads can
access without creating an IPC, or interprocess communication mechanism.

There are also hidden complexities in dealing with threads. Often, a trivial program of
just a few dozens lines of code can become extremely complex with the introduction
of threads. Threads are difficult to debug without adding extensive tracing and even
then it is complex, as the output of the tracing can become confusing and overwhelm-
ing. While one of the authors was writing an SNMP discovery system that discovered
data centers, the sheer magnitude of threads that needed to be spawned was very dif-
ficult to handle.

There are strategies to deal with threads, however, and often implementing a robust
tracing library is one of them. That said, they can become a very handy tool in solving
a complex problem.

For systems administrators, knowing some of the basics of programming with threads
may be useful. Here are some of the ways that threads are useful for everyday sysadmin
tasks: autodiscovering a network, fetching multiple web pages at the same time, stress-
testing a server, and performing network-related tasks.

Threads in Python | 301

In keeping with our KISS theme, let’s use one of the most basic threading examples
possible. Itis good to note that threading a module requires an understanding of object-
oriented programming. This can be a bit of a challenge, and if you have not had much,
or any, exposure to object-oriented programming (OOP), then this example may be
somewhat confusing. We would recommend picking up a copy of Mark Lutz’s Learning
Python (O’Reilly) to understand some of the basics of OOP, although you can also refer
to our Introduction and practice some of the techniques there. Ultimately, practicing
OOP programming is the best way to learn it.

Because this book is about pragmatic Python, let’s get right into a threading example
using the simplest possible threading example we could think of. In this simple thread-
ing script, we inherit from threading. Thread, set a global count variable, and then
override the run method for threading. Finally, we launch five threads that explicitly
print their number.

In many ways, this example is overly simplistic and has a bad design because we are
using a global count so that multiple threads can share state. Often, it is much better
to use queues with threads, as they take care of the complexity of dealing with shared
state for you. See Example 10-17.

Example 10-17. KISS example of threading

#subtly bad design because of shared state
import threading
import time
count = 1
class KissThread(threading.Thread):
def run(self):
global count
print “Thread # %s: Pretending to do stuff” % count
count += 1
time.sleep(2)
print “done with stuff”
for t in range(5):
KissThread().start()

[ngift@Macintosh-6][H:10464][J:0]> python threadi.py
Thread # 1: Pretending to do stuff
Thread # 2: Pretending to do stuff
Thread # 3: Pretending to do stuff
Thread # 4: Pretending to do stuff
Thread # 5: Pretending to do stuff
done with stuff

done with stuff

done with stuff

done with stuff

done with stuff

#common. py
import subprocess
import time

302 | Chapter10: Processesand Concurrency

IP_LIST = ['google.com',
'yahoo.com",

'yelp.com',
"amazon.com',

'freebase.com’,
"clearink.com’,

"ironport.com’]

cmd_stub = 'ping -c 5 %s'

def do_ping(addr):
print time.asctime(), "DOING PING FOR", addr
cmd = cmd_stub % (addr,)

return subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)

from common import IP _LIST, do ping

import time

Z =

(]

#for i in range(0, len(IP_LIST)):
for ip in IP_LIST:

p = do_ping(ip)

z.append((p, ip))

for p, ip in z:
print time.asctime(), "WAITING FOR", ip
p.wait()
print time.asctime(), ip, "RETURNED", p.returncode

jmjones@dinkgutsy:thread discuss$ python nothread.py

Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat

Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr

19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19

06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:

45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
45:
46:

43
43
43
43
43
43
43
43
47
47
47
47
47
47
57
57
57
57
57
57
58

2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008
2008

DOING
DOING
DOING
DOING
DOING
DOING
DOING

PING
PING
PING
PING
PING
PING
PING

FOR
FOR
FOR
FOR
FOR
FOR
FOR

google.com
yahoo.com
yelp.com
amazon.com
freebase.com
clearink.com
ironport.com

WAITING FOR google.com
google.com RETURNED O
WAITING FOR yahoo.com
yahoo.com RETURNED 0
WAITING FOR yelp.com
yelp.com RETURNED 0
WAITING FOR amazon.com
amazon.com RETURNED 1
WAITING FOR freebase.com
freebase.com RETURNED O
WAITING FOR clearink.com
clearink.com RETURNED 0
WAITING FOR ironport.com
ironport.com RETURNED O

Threads in Python | 303

As a disclaimer for the following threading examples, note that they are
somewhat complex examples, because the same thing can be done using
subprocess.Popen. subprocess.Popen is a great choice if you need to
launch a bunch of processes and then wait for a response. If you need
to communicate with each process, then using subprocess.Popen with a
thread would be appropriate. The point in showing multiple examples
is to highlight that concurrency is often full of choices with trade-offs.
It is often difficult to say one model fits all, whether it be threads, or
processes, or asynchronous libraries such as stackless or twisted. The
following is the most efficient way to ping a large pool of IP addresses.

Now that we have the equivalent of Hello World out of the way for threading, let’s
actually do something a real systems administrator would appreciate. Let’s take our
example and slightly modify it to create a small script to ping a network for responses.
This is a starter kit for a general network tool. See Example 10-18.

Example 10-18. Threaded ping sweep

#!/usr/bin/env python

from threading import Thread
import subprocess

from Queue import Queue

num_threads = 3
queue = Queue()
ips = ["10.0.21.1", "10.0.1.3", "10.0.1.11", "10.0.1.51"]
def pinger(i, q):
"""Pings subnet"""
while True:
ip = q.get()
print "Thread %s: Pinging %s" % (i, ip)
ret = subprocess.call("ping -c 1 %s" % ip,
shell=True,
stdout=open('/dev/null', 'w'),
stderr=subprocess.STDOUT)
if ret == o:
print "%
else:
print "%s: did not respond" % ip
q.task_done()

s: is alive" % ip

for i in range(num_threads):
worker = Thread(target=pinger, args=(i, queue))
worker . setDaemon(True)
worker.start()

for ip in ips:
queue.put(ip)

print "Main Thread Waiting"

304 | Chapter10: Processesand Concurrency

queue.join()
print "Done"

When we run this reasonably simple piece of code, we get this output:

[ngift@Macintosh-6][H:10432][J:0]# python ping thread basic.py
Thread 0: Pinging 10.0.1.1
Thread 1: Pinging 10.0.1.3
Thread 2: Pinging 10.0.1.11
Main Thread Waiting
10.0.1.1: is alive

Thread 0: Pinging 10.0.1.51
10.0.1.3: is alive
10.0.1.51: is alive
10.0.1.11: did not respond
Done

This example deserves to be broken down into understandable pieces, but first a little
explanation is in order. Using threads to develop a ping sweep of a subnet is about as
good of an example of using threads as it gets. A “normal” Python program that did
not use threads would take up to N * (average response time per ping). There are two
ping states: a response state and a timeout state. A typical network would be a mixture
of responses and timeouts.

This means that if you wrote a ping sweep application that sequentially examined a
Class C network with 254 addresses, it could take up to 254 * (~ 3 seconds). That
comes out to 12.7 minutes. If you use threads, we can reduce that to a handful of
seconds. That is why threads are important for network programming. Now, let’s take
this one step further and think about a realistic environment. How many subnets exist
in a typical data center? 20? 30? 50? Obviously, this sequential program becomes un-
realistic very quickly, and threads are an ideal match.

Now, we can revisit our simple script and look at some of the implementation details.
The first thing to examine are the modules that were imported. The two to look at in
particular are threading and queue. As we mentioned in the very first example, using
threading without queues makes it more complex than many people can realistically
handle. It is a much better idea to always use the queuing module if you find you need
to use threads. Why? Because the queue module also alleviates the need to explicitly
protect data with mutexes because the queue itself is already protected internally by a
mutex.

Imagine you are a farmer/scientist living in the Middle Ages. You have noticed that a
group of crows, commonly referred to as a “murder,” (please consult Wikipedia for the
reasons why), attack your crops in groups of 20 or more.

Because these crows are quite smart, it is almost impossible to scare them all away by
throwing rocks, as you can throw, at most, a rock every 3 seconds, and the group of
crows numbers, at times, up to 50. To scare away all of the crows, it can take up to
several minutes, at least, by which time significant damage is done to your crops. As a
student of math and science, you understand that the solution to this problem is simple.

Threads in Python | 305

You need to create a queue of rocks in a basket, and then allocate several workers to
grab rocks out of this basket and throw them at the crows all at once.

Using this new strategy, if you allocated 30 workers to pull rocks from the basket and
throw rocks at the crows, you could throw a rock at 50 crows in less than 10 seconds.
This is the basic formula for threads and queuing in Python as well. You give a pool of
workers something to do, and when the queue is empty, the job is over.

Queues act as a way to delegate a task to a “pool” of workers in a centralized manner.
One of the most important parts of our simple program is the join(). If we look at the
docstring, we see that queue. join() states the following:

Namespace: Interactive

File: /System/Library/Frameworks/Python.framework/Versions/2.5/1ib/python2.5/
Queue.py

Definition: Queue.Queue. join(self)

Docstring:

Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

A join is a way to control the main thread from exiting the program before the other
threads get a chance to finish working on items in a queue. To go back to our farmer
metaphor, it would be like the farmer dropping his basket of rocks and leaving while
the workers lined up ready to throw rocks. In our example, if we comment out the
queue.join() line, we can see the negative repercussions of our actions: First, we com-
ment out the queue.join line:

print "Main Thread Waiting"

#By commenting out the join, the main program exits before threads have a chance

to run
#queue. join()
print "Done"

Next, we watch our nice script barf. See Example 10-19.

Example 10-19. Example of main thread exiting before worker threads

[ngift@Macintosh-6][H:10189][J:0]# python ping thread basic.py
Main Thread Waiting

Done

Unhandled exception in thread started by

Error in sys.excepthook:

Original exception was:

With that background theory on threads and queue out of the way, here is the walk-
through of that code step by step. In this portion, we hardcode values that would
normally be passed into a more generic program. The num_threads is the number of

306 | Chapter10: Processesand Concurrency

worker threads, the queue is an instance of queue, and finally, the ips, are a list of IP
addresses that we will eventually place into a queue:
num_threads = 3

queue = Queue()
ips = ["10.0.1.1", "10.0.1.3", "10.0.1.11", "10.0.1.51"]

This is the function that does all of the work in the program. This function is run by
each thread everytime an “ip” is pulled from the queue. Notice that a new IP address
is popped off a stack just like it is in a list. Doing this allows us to take an item until
the queue is empty. Finally, notice that q.task_done() is called at the end of this
while loop; this is significant because it tells the join() that it has completed what it
pulled from the queue. Or, in plain English, it says the job is done. Let’s look at the
docstring for Queue.Queue.task_done:

File: /System/Library/Frameworks/Python.framework/Versions/2.5/1ib/python2.5/
Queue.py

Definition: Queue.Queue.task_done(self)

Docstring:

Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

From the docstring, we can see that there is a relationship between q.get(),
q-task_done(), and finally, q.join(). It is almost like a start, a middle, and an end to a
story:

def pinger(i, q):
"""Pings subnet"""
while True:
ip = q.get()
print "Thread %s: Pinging %s" % (i, ip)
ret = subprocess.call("ping -c 1 %s" % ip,
shell=True,
stdout=open('/dev/null', 'w'"),
stderr=subprocess.STDOUT)
if ret == o0:
print "%s: is alive" % ip
else:
print "%s: did not respond" % ip
q.task_done()

If we look below, we are using a simple for loop as a controller that is orchestrating
the spawning of a thread pool. Notice that this thread pool will just sit and “block,” or

Threads in Python | 307

wait, until something is placed in the queue. It is not until the next section that anything
even happens.

There is one subtle suprise lurking in our program that will be sure to catch you off
guard. Notice the use of the setDaemon(True). If this is not set before the start method
is called, our program will hang indefinitely.

Thereason is fairly subtle, and that is because a program will only exit if daemon threads
are running. You may have noticed that in the pinger function, we used an infinite loop.
Since threads never die, it’s imperative to declare them as daemon threads. To see this
happen, just comment out the worker.start() line and see what happens. To cut to the
chase, the program will hang around indefinitely without the setting of the threads to
a daemonic flag. You should test this out for yourself, as it will take away part of the
magic of the process:
for i in range(num_threads):
worker = Thread(target=pinger, args=(i, queue))

worker. setDaemon(True)
worker.start()

By this point in our program, we have an angry pool of three threads waiting to do our
bidding. They just need to have items placed in their queue, as that sends a signal to
our threads to grab an item and do what we told it, in this case, ping an IP address:

for ip in ips:

queue.put(ip)

Finally, this one critical line sandwiched in the middle of two print statements is what
ultimately has control of the program. Calling join on a queue, as we discussed earlier,
will cause the main thread of the program to wait until the queue is empty. This is why
threads and queue are like chocolate and peanut butter. Each is great alone, but to-
gether, they make an especially tasty treat.

print "Main Thread Waiting"

queue.join()

print "Done"
To really understand threads and queues, we need to take our example a step further
and create another thread pool and another queue. In our first example, we ping a list
of TP addresses that a thread pool grabs from a queue. In this next example, we will
have our first pool of threads place valid IP addresses that respond to a ping into a
second queue.

Next, our second pool of threads will take the IP addresses from the first queue and
then perform an arping and return the IP address along with the Mac address if it can
find it. Let’s see how this looks. See Example 10-20.

Example 10-20. Multiple queues with multiple thread pools

#!/usr/bin/env python
#This requires Python2.5 or greater
from threading import Thread

308 | Chapter10: Processesand Concurrency

import subprocess
from Queue import Queue
import re

num_ping_threads = 3

num_arp_threads = 3

in_queue = Queue()

out_queue = Queue()

ips = ["10.0.21.1", "10.0.1.3", "10.0.1.11", "10.0.1.51"]

def pinger(i, iq, oq):
"""pings subnet"""
while True:
ip = iq.get()
print "Thread %s: Pinging %s" % (i, ip)
ret = subprocess.call("ping -c 1 %s" % ip,
shell=True,
stdout=open('/dev/null’, 'w'"),
stderr=subprocess.STDOUT)
if ret == o:
#print "%s: is alive" % ip
#place valid ip address in next queue
0q.put(ip)
else:
print "%s: did not respond" % ip
iq.task_done()

def arping(i, oq):
"""grabs a valid IP address from a queue and gets macaddr
while True:

ip = og.get()

p = subprocess.Popen("arping -c 1 %s" % ip,
shell=True,
stdout=subprocess.PIPE)

out = p.stdout.read()

nnn

#match and extract mac address from stdout
result = out.split()
pattern = re.compile(":")
macaddr = None
for item in result:

if re.search(pattern, item):

macaddr = item

print "IP Address: %s | Mac Address: %s " % (ip, macaddr)
0q.task_done()

#Place ip addresses into in queue
for ip in ips:
in_queue.put(ip)

#spawn pool of ping threads
for i in range(num_ping_threads):

worker = Thread(target=pinger, args=(i, in_queue, out_queue))
worker . setDaemon(True)

Threads in Python | 309

worker.start()

#spawn pool of arping threads
for i in range(num_arp_threads):

worker = Thread(target=arping, args=(i, out_queue))
worker . setDaemon(True)
worker.start()

print "Main Thread Waiting"

#ensures that program does not exit until both queues have been emptied
in_queue.join()

out_queue.join()

print "Done"

If we run this code, here is what the output looks like:

python2.5 ping thread basic_2.py

Main Thread Waiting

Thread 0: Pinging 10.0.1.1

Thread 1: Pinging 10.0.1.3

Thread 2: Pinging 10.0.1.11

Thread 0: Pinging 10.0.1.51

IP Address: 10.0.1.1 | Mac Address: [00:00:00:00:00:01]
IP Address: 10.0.1.51 | Mac Address: [00:00:00:80:E8:02]
IP Address: 10.0.1.3 | Mac Address: [00:00:00:07:E4:03]
10.0.1.11: did not respond

Done

To implement this solution, we only slightly extended the behavior of our first example
by adding another pool of threads and queue. This is an important technique to have
in your own personal toolkit, as using the queue module makes using threads a lot
easier and safer. Arguably, it could even be called necessary.

Timed Delay of Threads with threading.Timer

Python has another threading feature that comes in handy for systems administration
tasks. It is quite trivial to run the timed execution of a function inside of a thread by
using threading. Timer. Example 10-21 is contrived.

Example 10-21. Thread timer

#!/usr/bin/env python

from threading import Timer
import sys

import time

import copy

#simple error handling

if len(sys.argv) != 2:
print "Must enter an interval"
sys.exit(1)

310 | Chapter10: Processesand Concurrency

#our function that we will run
def hello():
print "Hello, I just got called after a %s sec delay" % call time

#we spawn our time delayed thread here

delay = sys.argv[1]

call time = copy.copy(delay) #iwe copy the delay to use later
t = Timer(int(delay), hello)

t.start()

#we validate that we are not blocked, and that the main program continues
print "waiting %s seconds to run function" % delay
for x in range(int(delay)):

print "Main program is still running for %s more sec" % delay

delay = int(delay) - 1

time.sleep(1)

And if we run this code, we can see that the main thread, or program, continues to run,
while a timed delay has been triggered for our function:
[ngift@Macintosh-6][H:10468][J:0]# python thread timer.py 5
waiting 5 seconds to run function
Main program is still running for 5 more sec
Main program is still running for 4 more sec
Main program is still running for 3 more sec
Main program is still running for 2 more sec
Main program is still running for 1 more sec
Hello, I just got called after a 5 sec delay

Threaded Event Handler

Because this is a book about systems administration, let’s use our previous technique
for a realistic application. In this example, we take our delayed thread trick and mix in
an event loop that watches two directories for changes in filenames. We could get really
sophisticated and examine file modification times, but in the spirit of keeping examples
simple, we will look at how this event loop looks for a registered event, and if the event
is triggered, then an action method is called in a delayed thread.

This module could be abstracted quite easily into a more generic tool, but for now,
Example 10-22 is hardcoded to keep two directories in sync if they fall out of sync by
using rsync -av --delete in a delayed background thread.

Example 10-22. Threaded directory synchronization tool

#!/usr/bin/env python

from threading import Timer
import sys

import time

import copy

import os

from subprocess import call

class EventLoopDelaySpawn(object):

Threads in Python | 311

"""An Event Loop Class That Spawns a Method in a Delayed Thread"""

def _init_ (self, poll=10,
wait=1,
verbose=True,
dir1="/tmp/dir1",
dir2="/tmp/dir2"):

self.poll = int(poll)
self.wait = int(wait)
self.verbose = verbose
self.dir1l = dir1
self.dir2 = dir2

def poller(self):
"""Creates Poll Interval"""
time.sleep(self.poll)
if self.verbose:
print "Polling at %s sec interval" % self.poll

def action(self):
if self.verbose:
print "waiting %s seconds to run Action" % self.wait
ret = call("rsync -av --delete %s/ %s" % (self.diri, self.dir2), shell=True)

def eventHandler(self):
#if two directories contain same file names
if os.listdir(self.dir1) != os.listdir(self.dir2):
print os.listdir(self.dir1)
t = Timer((self.wait), self.action)
t.start()
if self.verbose:
print "Event Registered"
else:
if self.verbose:
print "No Event Registered"

def run(self):
"""Runs an event loop with a delayed action method"""
try:
while True:
self.eventHandler()
self.poller()

except Exception, err:
print "Error: %s " % err

finally:
sys.exit(0)

E = EventLoopDelaySpawn()
E.run()

312 | Chapter10: Processes and Concurrency

The observant reader may be thinking that the delay is not strictly necessary, and this
is true. The delay can create some added benefit, however. If you add a delay for, say,
five seconds, you could tell the thread to cancel if you discovered another event, such
asif your master directory was accidentally deleted. A thread delay is a great mechanism
to create conditional future operations that can still be canceled.

Processes

Threads are not the only way to deal with concurrency in Python. In fact, processes
have some advantages to threads in that they will scale to multiple processors, unlike
threads in Python. Because of the GIL, or global interpreter lock, only one thread can
truly run at one time, and it is limited to a single processor. However, to make heavy
use of the CPU with Python code, threads are not a good option. In such cases, it’s
better to use separate processes.

If a problem requires the use of multiple processors, then processes are a fine choice.
Additionally, there are many libraries that just will not work with threads. For example,
the current Net-SNMP library for Python is synchronous, so writing concurrent code
requires the use of forked processes.

While threads share global state, processes are completely independent, and commu-
nication with a process requires a bit more effort. Talking to processes through pipes
can be a little difficult; fortunately, however, there is a processing library that we will
discuss in great detail here. There has been some talk of integrating the processing
library into the standard library in Python, so it would be useful to understand.

In an earlier note, we mentioned an alternate method of using subprocess.Popen to
spawn multiple processes. For many situations, this an excellent and very simple choice
to execute code in parallel. If you refer to Chapter 13, you can take a look at an example
of where we did this in creating a tool that spawned many dd processes.

Processing Module

So what is this processing module we have hinted at, anyway? As of the printing of this
book, “processing is a package for the Python language which supports the spawning
of processes using the API of the standard library’s threading module...” One of the
great things about the processing module is that it maps to the threading API, more or
less. This means that you don’t have to learn a new API to fork processes instead of
threads. Visit http://pypi.python.org/pypi/processing to find out more about the pro-
cessing module.

Processes | 313

http://pypi.python.org/pypi/processing

As we mentioned earlier, things are never simple with concurrency. This
example could be considered inefficient as well, because we could have
5+ just used subprocess. Popen, instead of forking with the processing mod-
" ule, and then running subprocess.call. In the context of a larger appli-
cation, however, there are some benefits to using the queue type API,
and as such, it serves as a reasonable comparison to the threading ex-
ample earlier. There is some talk of merging the processing module into
Subprocess, as Subprocess currently lacks the ability to manage a flock
of processes like the processing module does. This request was made in
the original PEP, or Python Enhancement Proposal, for Subprocess:
http://www.python.org/dev/peps/pep-0324/.

Now that we have some background on the processing module, let’s take a look at
Example 10-23.

Example 10-23. Introduction to processing module

#!/usr/bin/env python
from processing import Process, Queue
import time

def f(q):
x = q.get()
print "Process number %s, sleeps for %s seconds" % (x,x)
time.sleep(x)
print "Process number %s finished" % x
q = Queue()
for i in range(10):
q.put(i)
i = Process(target=f, args=[q])
i.start()

print "main process joins on queue"
i.join()
print "Main Program finished"

If we look at the output, we see the following:

[ngift@Macintosh-7][H:11199][J:0]# python processingl.py
Process number 0, sleeps for 0 seconds

Process number 0 finished

Process number 1, sleeps for 1 seconds
Process number 2, sleeps for 2 seconds
Process number 3, sleeps for 3 seconds
Process number 4, sleeps for 4 seconds
main process joins on queue

Process number 5, sleeps for 5 seconds
Process number 6, sleeps for 6 seconds
Process number 8, sleeps for 8 seconds
Process number 7, sleeps for 7 seconds
Process number 9, sleeps for 9 seconds

314 | Chapter10: Processesand Concurrency

http://www.python.org/dev/peps/pep-0324/

Process
Process
Process
Process
Process
Process
Process
Process
Process

number
number
number
number
number
number
number
number
number

1
2
3
4
5
6
7
8

9

finished
finished
finished
finished
finished
finished
finished
finished
finished

Main Program finished

All this program does is tell each process to sleep as long as the number of the processes.

As you can see, it is a clean and straightforward API.

Now that we have the equivalent of a Hello World out of the way for the processing
module, we can do something more interesting. If you remember in the threading sec-
tion, we wrote a simple threaded subnet discovery script. Because the processing API
is very similar to the threading API, we can implement an almost identical script using
processes instead of threads. See Example 10-24.

Example 10-24. Processed-based ping sweep

#!/usr/bin/env python
from processing import Process, Queue, Pool

import time

import subprocess
from IPy import IP

import sys
q = Queue()
ips = IP("10.0.1.0/24")
def f(i,q):
while True:
if q.empty():
sys.exit()
print "Process Number: %s" % i
ip = q.get()

ret = subprocess.call("ping -c 1 %s" % ip,

if ret == o:

print "%s:

else:
print "Process Number: %s didn’t find a response for %s " % (i, ip)

for ip in ips:
q-put(ip)

#q.put("192.168.1.1")

for i in range(50):
p = Process(target=f, args=[i,q])
p.start()

shell=True,
stdout=open('/dev/null’,
stderr=subprocess.STDOUT)

is alive" % ip

w'),

Processing Module | 315

print "main process joins on queue"
p.join()
print "Main Program finished"

This code looks remarkably similar to the threaded code we reviewed earlier. If we take
a look at the output, we will see something similar as well:

[snip]

10.0.1.255: is alive

Process Number: 48 didn't find a response for 10.0.1.216

Process Number: 47 didn't find a response for 10.0.1.217

Process Number: 49 didn't find a response for 10.0.1.218

Process Number: 46 didn't find a response for 10.0.1.219

Main Program finished

[snip]

[ngift@Macintosh-7][H:11205][J:0]#
This snippet of code bears some explanation. Even though the APIis similar, itis slightly
different. Notice that each process runs inside of a infinite loop, grabbing items from
the queue. In order to tell the processes to “go away” with the processing module, we
create a conditional statement that looks at whether the queue is empty. Each of the
50 threads first checks to see if the queue is empty, and if it is, then it “poisons” itself,
by running sys.exit.

If the queue still has things in it, then the process happily grabs the item, in this case,
an IP address, and goes along with the job it was assigned, in this case, pinging the IP
address. The main program uses a join, just like we do in a threading script, and joins
on the queue until it is empty. After all of the worker processes die and the queue is
empty, the next print statement gets run, stating the program is finished.

With an API as simple to use as the processing module, forking instead of threading is
a relative no-brainer. In Chapter 7, we discussed a practical implementation of using
the processing module with Net-SNMP, which has synchronous bindings to Python.

Scheduling Python Processes

Now that we have covered the gamut of ways to deal with processes in Python, we
should talk about ways to schedule these processes. Using good old-fashioned cron is
highly suitable for running processes in Python.

One of the nice new features of cron in many POSIX systems is the advent of scheduled
directories. This is the only way we use cron anymore, as it is very convenient to just
drop a python script in one of the four default directories: /etc/cron.daily, /fetc/cron.hour
ly, Jetc/cron.monthly, and /etc/cron.weekly.

Quite a few sysadmins have, at one point in their life, written the good-old-fashioned
disk usage email. You place a Bash script in /etc/cron.daily and it looks something like
this:

df -h | mail -s "Nightly Disk Usage Report" staff@example.com

316 | Chapter10: Processesand Concurrency

You then put that script in /etc/cron.daily/diskusage.sh and the email looks something
like this.

From: guru-python-sysadmin@example.com

Subject: Nightly Disk Usage Report

Date: February 24, 2029 10:18:57 PM EST

To: staff@example.com

Filesystem Size Used Avail Use% Mounted on
/dev/hda3 72G 16G 52G 24% /
/dev/hda1 99M 20M 75M 21% /boot
tmpfs 1010M 0 1010M 0% /dev/shm

There is a better way than this. Even cron jobs can benefit from Python scripts instead
of Bash or Perl. In fact, cron and Python go quite well together. Let’s take our Bash
example and “Pythonize” it. See Example 10-25.

Example 10-25. Cron-based disk report email Python

import smtplib
import subprocess
import string

p = subprocess.Popen("df -h", shell=True, stdout=subprocess.PIPE)
MSG = p.stdout.read()
FROM = "guru-python-sysadmin@example.com"
TO = "staff@example.com"
SUBJECT = "Nightly Disk Usage Report"
msg = string.join((
"From: %s" % FROM,
"To: %s" % TO,
"Subject: %s" % SUBJECT,

"

MSG), "\r\n")
server = smtplib.SMTP('localhost")
server.sendmail(FROM, TO, msg)
server.quit()

This is a trivial recipe to create an automated cron-based disk report, but for many
tasks, it should work just fine. Here is a walk through of what this handful of Python
does. First, we use subprocess.Popen to read the stdout of df. Next, we create variables
for From, To, and Subject. Then, we join those strings together to create the message.
That is the most difficult part of the script. Finally, we set the outgoing smtp mail server
to use localhost, and then pass the variables we set earlier into server.sendmail().

A typical way to use this script would be to simply place it in /etc/cron.daily/night
ly_disk_report.py.

If you are new to Python, you may want to use this script as boilerplate code to get
something fun working rather quickly. In Chapter 4, we went into even greater detail
on creating email messages, so you should refer to that chapter for more advice.

Scheduling Python Processes | 317

daemonizer

Dealing with daemons is a given for anyone who has spent more than a cursory amount
of time on Unix. Daemons do everything from handling requests to sending files to a
printer (such as 1pd), fielding HTTP requests, and serving up files (such as Apache’s
httpd).

So, what is a daemon? A daemon is often thought of as a background task that doesn’t
have a controlling terminal. If you are familiar with Unix job control, you may think
that running a command with an & at the end of it will make it a daemon. Or perhaps
starting a process and then hitting Ctrl-z and then issuing the bg command will make
a daemon. Both of these will background the process, but neither of them breaks the
process free from your shell process and disassociates them from the controlling ter-
minal (probably of your shell process as well). So, these are the three signs of a daemon:
running in the background, being dislocated from the process that started it, and having
no controlling terminal. Backgrounding a process with normal shell job control will
only accomplish the first of these.

Following is a piece of code that defines a function named daemonize() that causes the
calling code to become a daemon in the sense that we discussed in the previous para-
graph. This function was extracted from the “Forking a Daemon Process on Unix”
recipe in David Ascher’s Python Cookbook, Second Edition, pages 388—-389 (O’Reilly).
This code follows pretty closely to the steps that Richard Stevens laid out in his book
UNIX Network Programming: The Sockets Networking API (O’Reilly) for the “proper”
way of daemonizing a process. For anyone not familiar with the Stevens book, it is
typically regarded as the reference for Unix network programming as well as how to
make a daemon process under Unix. See Example 10-26.

Example 10-26. Daemonize function

import sys, os
def daemonize (stdin='/dev/null’, stdout='/dev/null’, stderr='/dev/null'):
Perform first fork.
try:
pid = os.fork()
if pid > o:
sys.exit(0) # Exit first parent.
except OSError, e:
sys.stderr.write("fork #1 failed: (%d) %s\n" % (e.errno, e.strerror))
sys.exit(1)
Decouple from parent environment.
os.chdir("/")
os.umask(0)
os.setsid()
Perform second fork.
try:
pid = os.fork()
if pid > 0:
sys.exit(0) # Exit second parent.
except OSError, e:

318 | Chapter10: Processes and Concurrency

sys.stderr.write("fork #2 failed: (%d) %s\n" % (e.errno, e.strerror))
sys.exit(1)

The process is now daemonized, redirect standard file descriptors.

for f in sys.stdout, sys.stderr: f.flush()

si = file(stdin, 'r'")

so = file(stdout, 'a+')

se = file(stderr, 'a+', 0)

os.dup2(si.fileno(), sys.stdin.fileno())

os.dup2(so.fileno(), sys.stdout.fileno())

os.dup2(se.fileno(), sys.stderr.fileno())

The first thing that this code does is to fork() a process. fork()ing makes a copy of
the running process where the copy is considered the “child” process and the original
is considered the “parent” process. When the child process forks off, the parent is free
to exit. We check for what the pid is after the fork. If the pid is positive, it means that
we’re in the parent process. If you have never fork()ed a child process, this may seem
a bit odd to you. After the call to os.fork() completes, there will be two copies of the
same process running. Both then check the return code of the fork() call, which returns
0in the child and the process ID in the parent. Whichever process has a non-zero return
code, which will only be the parent, exits. If an exception occurs at this point, the
process exits. If you called this script from an interactive shell (such as Bash), you would
now have your prompt back because the process you started would have just termina-
ted. But the child process of the process you started (i.e., the grandchild process) lives
on.

The next three things the process does is to change directory to / (os.chdir("/"), set
its umask to 0 (os.umask(0), and create a new session (os.setsid()). Changing directory
to / puts the daemon process in a directory that will always exist. An added benefit of
changing to / is that your long-running process won’t tie up your ability to unmount
a filesystem if it happens to be in a directory of a filesystem you are trying to unmount.
The next thing that the process does is to change its file mode creation mask to most
permissive. If the daemon needs to create files with group-read and group-write per-
missions, an inherited mask with more restrictive permissions might have ill effects.
The last of these three actions (os. setsid()) is perhaps the least familiar to most people.
The setsid call does a number of things. First, it causes the process to become a session
leader of a new session. Next, it causes the process to become a process group leader
of a new process group. Finally, and perhaps most important for the purposes of dae-
monization, it causes the process to have no controlling terminal. The fact that it has
no controlling terminal means that the process cannot fall victim to unintentional (or
even intentional) job control actions from some terminal. This is important to having
an uninterrupted, long-running process like a daemon.

But the fun doesn’t stop there. After the call to os.setsid(), there is another forking
that takes place. The first fork and setsid set the stage for this second fork; they detach
from any controlling terminal and set the process as a session leader. Another fork
means that the resulting process cannot be a session leader. This means that the process
cannot acquire a controlling terminal. This second fork is not necessary, but is more

daemonizer | 319

of a precaution. Without the final fork, the only way that the process could acquire a
controlling terminal is if it directly opened a terminal device without using a 0_NOCTTY
flag.

The last thing that happens here is some file cleanup and readjustment. Standard output
and error (sys.stdout and sys.stderr) are flushed. This ensures that information in-
tended for those streams actually make it there. This function allows the caller to specity
files for stdin, stdout, and stderr. The defaults for all three are /dev/null. This code
takes either the user specified or default stdin, stdout, and stderr and sets the process’s
standard input, output, and error to these files, respectively.

So, how do you use this daemonizer? Assuming the daemonizer code is in a module
named daemonize.py, Example 10-27 is a sample script to use it.

Example 10-27. Using a daemonizer

from daemonize import daemonize
import time
import sys

def mod_5_watcher():
start_time = time.time()
end_time = start_time + 20
while time.time() < end_time:
now = time.time()
if int(now) % 5 == 0:
sys.stderr.write('Mod 5 at %s\n' % now)
else:
sys.stdout.write('No mod 5 at %s\n' % now)
time.sleep(1)

if _name__ == '_main__':
daemonize(stdout="/tmp/stdout.log’, stderr='/tmp/stderr.log")
mod_5_watcher()

This script first daemonizes and specifies that /tmp/stdout.log should be used for stand-
ard output and /tmp/stderr.log should be used for standard error. It then watches the
time for the next 20 seconds, sleeping 1 second in between checking the time. If the
time, denoted in seconds, is divisible by five, we write to standard error. If the time is
not divisible by five, we write to standard output. Since the process is using /tmp/
stdout.log for standard output and /tmp/stderr.log for standard error, we should be able
to see the results in those files after running this example.

After running this script, we immediately saw a new prompt silently appear:

jmjones@dinkgutsy:code$ python use_daemonize.py
jmjones@dinkgutsy:code$

And here are the result files from running the example:

jmjones@dinkgutsy:code$ cat /tmp/stdout.log
No mod 5 at 1207272453.18
No mod 5 at 1207272454.18

320 | Chapter10: Processesand Concurrency

No mod 5 at 1207272456.18
No mod 5 at 1207272457.19
No mod 5 at 1207272458.19
No mod 5 at 1207272459.19
No mod 5 at 1207272461.2
No mod 5 at 1207272462.2
No mod 5 at 1207272463.2
No mod 5 at 1207272464.2
No mod 5 at 1207272466.2
No mod 5 at 1207272467.2
No mod 5 at 1207272468.2
No mod 5 at 1207272469.2
No mod 5 at 1207272471.2
No mod 5 at 1207272472.2

jmjones@dinkgutsy:code$ cat /tmp/stderr.log
Mod 5 at 1207272455.18
Mod 5 at 1207272460.2
Mod 5 at 1207272465.2
Mod 5 at 1207272470.2

This is a really simple example of writing a daemon, but hopefully it gets the basic
concepts across. You could use this daemonizer to write directory watchers, network
monitors, network servers, or anything else you can imagine that runs for a long (or
unspecified amount of) time.

Summary

Hopefully, this chapter demonstrated just how mature and powerful Python is at deal-
ing with processes. Python has an elegant and sophisticated threading API, but it is
always good to remember about the GIL. If you are I/O bound, then often this is not
an issue, but if you require multiple processors, then using processes is a good choice.
Some people think processes are better than using threads even if the GIL did not exist.
The main reason for this is that debugging threaded code can be a nightmare.

Finally, it would be a good idea to get familiar with the Subprocess module if you are
not already. Subprocess is a one-stop shop for dealing with, well, subprocesses.

Summary | 321

CHAPTER 11

Building GUIs

When informed people consider the duties of a system administrator, building GUI
applications probably does not come to mind at all. However, there are times when
you will need to build a GUI application, or by building a GUI app your life will be
easier than if you didn’t. We’re using GUI in the broad sense here to mean both tradi-
tional GUI applications using toolkits such as GTK and QT, as well as web-based
applications.

This chapter will focus on PyGTK, curses, and the Django web framework. We’ll start
off with the basics of GUI building, then move on to creating a fairly simple application
using PyGTK, then the same app using curses and Django. Finally, we’ll show you how
Django can, with very little code, work as a fairly polished frontend to a database.

GUI Building Theory

When you write a console utility, you often expect it to run and complete without user
intervention. This is definitely the case when scripts are run from cron and at, anyway.
But when you write a GUI utility, you expect that a user will have to provide some input
in order to make things happen and exercise your utility. Think for a moment about
your experiences with GUI applications such as web browsers, email clients, and word
processors. You run the application somehow. The application performs some sort of
initialization, perhaps loading some configuration and putting itself into some known
state. But then, in general, the application just waits for the user to do something. Of
course, there are examples of applications executing seemingly on their own, such as
Firefox automatically checking for updates without the explicit request or consent of
the user, but that’s another story.

What is the application waiting for? How does it know what to do when the user does
something? The application is waiting for an event to happen. An event s just something
that happens within the application, specifically to one of the GUI components such
as a button being pressed or a checkbox being selected. And the application “knows”
what to do when these events happen because the programmer associated certain events
with certain pieces of code. The “pieces of code” that are associated with certain events,

323

are referred to as event handlers. One of the jobs of a GUI toolkit is to call the right
event handler when the associated event occurs. To be a little more precise, the GUI
toolkit provides an “event loop” that quietly loops around, waits for events to happen,
and when they do, it handles them appropriately.

Behavior is event driven. When you code your GUI application, you decide how you
want your application to behave when a user does certain things. You set up event
handlers that the GUI toolkit calls when the user triggers events.

That describes the behavior of an application, but what about the form? Meaning, how
do you get the buttons, text fields, labels, and checkboxes on an application? The an-
swer to this question can vary a bit. There may be a GUI builder for the GUI toolkit
that you choose. A GUI builder lays out the various components such as buttons, labels,
checkboxes, etc. for a GUI application. For example, if you are working on a Mac and
choose to write a Cocoa app, Interface Builder is available to lay the GUI components
out for you. Or, if you are using PyGTK on Linux, you can use Glade. Or, if you are
using PyQT, you can use QT Designer.

GUI builders can be helpful, but sometimes you may want more control of your GUI
than the builder offers. In those cases, it is not difficult to lay out a GUI “by hand” by
writing a little code. In PyGTK, each type of GUI component corresponds to a Python
class. For example, a window is an object of the class gtk.Window. And a button is an
object of the class gtk.Button. In order to create a simple GUI app that has a window
and a button, you instantiate objects of classes gtk.Window and gtk.Button and add the
button to the window. If you want the button to do something when it is clicked, you
have to specify an event handler for the “clicked” event for the button.

Building a Simple PyGTK App

We'll create a simple piece of code which uses the already-mentioned gtk.Window and
gtk.Button classes. Following is a simple GUI application that doesn’t do anything
useful except show some of the basic tenets of GUI programming.

Before being able to run this example or write your own PyGTK app, you’ll have to
install PyGTK. This is pretty simple if you’re running a relatively modern Linux distri-
bution. It even looks pretty easy for Windows. If you’re running Ubuntu, it should
already be installed. If there isn’t a binary distribution for your platform, you can expect
pain. See Example 11-1.

Example 11-1. Simple PyGTK application with one window and one button
#!/usr/bin/env python

import pygtk

import gtk

import time

class SimpleButtonApp(object):

324 | Chapter11: Building GUIs

"""This is a simple PyGTK app that has one window and one button.
When the button is clicked, it updates the button's label with the current time.

nun

def _init_ (self):
#the main window of the application
self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)

#this is how you "register" an event handler. Basically, this
#tells the gtk main loop to call self.quit() when the window "emits"
#the "destroy" signal.

self.window.connect("destroy”, self.quit)

#a button labeled "Click Me"
self.button = gtk.Button("Click Me")

#another registration of an event handler. This time, when the
#button "emits" the "clicked" signal, the 'update button label’
#method will get called.

self.button.connect("clicked", self.update button label, None)

#The window is a container. The "add" method puts the button
#inside the window.
self.window.add(self.button)

#This call makes the button visible, but it won't become visible
#until its container becomes visible as well.
self.button.show()

#Makes the container visible
self.window.show()

def update button label(self, widget, data=None):
"""set the button label to the current time

This is the handler method for the 'clicked' event of the button

nnn

self.button.set_label(time.asctime())

def quit(self, widget, data=None):
"""stop the main gtk event loop

When you close the main window, it will go away, but if you don't
tell the gtk main event loop to stop running, the application will
continue to run even though it will look like nothing is really
happening.

nnn

gtk.main_quit()

def main(self):
"""start the gtk main event loop
gtk.main()

nnn

" "

if _name__ == "_main_":

Building a Simple PyGTK App | 325

s = SimpleButtonApp()
s.main()

The first thing you probably noticed in this example is that the main class inherits from
object rather than some GTK class. Creating a GUI application in PyGTK is not nec-
essarily an object-oriented exercise. You will certainly have to instantiate objects, but
you don’t have to create your own custom classes. However, for anything more than a
trivial example such as what we are creating, we strongly recommend creating your
own custom class. The main benefit to creating your own class for a GUI application
is that all your GUI components (windows, buttons, checkboxes) wind up all attached
to the same object, which allows easy access to those components from elsewhere in
the application.

Since we chose to create a custom class, the first place to look to start understanding
what is going on is in the constructor (the _init () method). In fact, in this example,
you can see what is going on by focusing on the constructor. This example is pretty
well commented, so we won’t duplicate an explanation of everything here, but we will
give a recap. We created two GUI objects: a gtk.Window and a gtk.Button. We put the
button in the window, since the window is a container object. We also created event
handlers for the window and the button for the destroy and clicked events, respec-
tively. If you run this code, it will display a window with a button labeled “Click Me.”
Every time you click the button, it will update the button’s label with the current time.
Figures 11-1 and 11-2 are screenshots of the application before and after clicking the
button.

Click Me

fm P ETPYGTRIS PP Py P e

Figure 11-1. Simple PyGTK app—Dbefore clicking the button

e TPy G T aP PPy = P 1o X
‘ ‘ Wed Apr 23 19:42:32 2008 ‘

Figure 11-2. Simple PyGTK app—after clicking the button

Building an Apache Log Viewer Using PyGTK

Now that we have covered the basics of GUI building in general and of using PyGTK
specifically, the following is an example of building something a little more useful with
PyGTK; we’re going to walk through creating an Apache logfile viewer. The function-
ality we are going to include in this application is as follows:

326 | Chapter11: Building GUIs

* Select and open specified logfile
* View line number, remote host, status, and bytes sent at a glance

* Sort loglines by line number, remote host, status, or bytes sent

This example builds on the Apache log parsing code that we wrote in Chapter 3.
Example 11-2 is the source code for the logtfile viewer.

Example 11-2. PyGTK Apache log viewer
#!/usr/bin/env python

import gtk
from apache _log parser regex import dictify logline

class ApachelogViewer (object):
"""Apache log file viewer which sorts on various pieces of data"""
def _ init_ (self):
#the main window of the application
self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)
self.window.set_size request(640, 480)
self.window.maximize()

#stop event loop on window destroy
self.window.connect("destroy", self.quit)

#a VBox is a container that holds other GUI objects primarily for layout
self.outer_vbox = gtk.VBox()

#toolbar which contains the open and quit buttons
self.toolbar = gtk.Toolbar()

#create open and quit buttons and icons

#add buttons to toolbar

#associate buttons with correct handlers

open_icon = gtk.Image()

quit_icon = gtk.Image()

open_icon.set_from_stock(gtk.STOCK_OPEN, gtk.ICON_SIZE LARGE_TOOLBAR)
quit_icon.set_from_stock(gtk.STOCK_QUIT, gtk.ICON_SIZE_LARGE_TOOLBAR)
self.open_button = gtk.ToolButton(icon_widget=open_icon)
self.quit_button = gtk.ToolButton(icon_widget=quit_icon)
self.open_button.connect("clicked", self.show file_chooser)
self.quit_button.connect("clicked", self.quit)
self.toolbar.insert(self.open_button, 0)
self.toolbar.insert(self.quit_button, 1)

#a control to select which file to open
self.file chooser = gtk.FileChooserWidget()
self.file chooser.connect("file_ activated", self.load logfile)

#a ListStore holds data that is tied to a list view

#this ListStore will store tabular data of the form:

#line numer, remote host, status, bytes sent, logline
self.loglines store = gtk.ListStore(int, str, str, int, str)

Building an Apache Log Viewer Using PyGTK | 327

#associate the tree with the data...

self.loglines_tree = gtk.TreeView(model=self.loglines_store)
#...and set up the proper columns for it
self.add_column(self.loglines_tree, 'Line Number', 0)
self.add_column(self.loglines_tree, 'Remote Host', 1)
self.add_column(self.loglines tree, 'Status', 2)
self.add_column(self.loglines tree, 'Bytes Sent', 3)
self.add_column(self.loglines tree, 'Logline', 4)

#make the area that holds the apache log scrollable
self.loglines_window = gtk.ScrolledWindow()

#pack things together

self.window.add(self.outer vbox)

self.outer vbox.pack start(self.toolbar, False, False)
self.outer vbox.pack start(self.file chooser)
self.outer vbox.pack start(self.loglines window)
self.loglines window.add(self.loglines tree)

#make everything visible
self.window.show_all()

#but specifically hide the file chooser
self.file chooser.hide()

def add_column(self, tree view, title, columnId, sortable=True):
column = gtk.TreeViewColumn(title, gtk.CellRendererText() , text=columnId)
column.set_resizable(True)
column.set_sort _column_id(columnId)
tree_view.append_column(column)

def show_file chooser(self, widget, data=None):
"""make the file chooser dialog visible
self.file chooser.show()

nnn

def load logfile(self, widget, data=None):
"""load logfile data into tree view"""
filename = widget.get filename()
print "FILE-->", filename
self.file chooser.hide()
self.loglines_store.clear()
logfile = open(filename, 'r')
for i, line in enumerate(logfile):
line_dict = dictify_logline(line)
self.loglines store.append([i + 1, line_ dict['remote host'],
line dict['status'], int(line_dict['bytes sent']), line])
logfile.close()

def quit(self, widget, data=None):
"""stop the main gtk event loop
gtk.main_quit()

wun

def main(self):
"""start the gtk main event loop

nnn

328 | Chapter11: Building GUIs

gtk.main()

" "

if _name__ == "_main__":
1 = ApachelogViewer()
1.main()

In the PyGTK Apache Log Viewer example, the main class, ApacheLogViewer, only de-
rives from object. There is nothing special about our main object; it just happens to be
where we are hanging all of the pieces and actions of the GUI.

Next, and jumping to the __init_ () method, we create a window object. Something
a little different about this example from the previous, “simple” example is that we
specify sizing requirements for this window. We initially specify that this window
should be displayed at 640x480 and then specify that it should be maximized. Setting
the sizing parameters twice was intentional. 640x480 is a reasonable starting, so this
isn’t a bad default. While 640x480 is a fine size, bigger is better, so we maximized the
window. It turns out that setting 640x480 (or some other size of your preference) first
is probably a good practice. According to the PyGTK documentation, the window
manager may not honor the maximize() request. Also, the user can unmaximize the
window after it is maximized, so you may want to specify the size when it is
unmaximized.

After creating and sizing the window, we create a VBox. This is a “vertical box,” which
is simply a container object. GTK has the concept of using vertical (VBox) and horizontal
(HBox) boxes for laying out widgets on a window. The idea behind these boxes is that
you “pack” them with widgets relative either to their beginning (which is the top for
VBoxes and left for HBoxes) or their end. If you don’t know what a widget is, it’s simply
a GUI component such as a button or text box. By using these boxes, you can lay out
the widgets on a window pretty much any way you can imagine. Since boxes are con-
tainers, they can contain other boxes, so feel free to pack one box into another.

After adding the VBox to the window, we add the toolbar and tool buttons. The toolbar
itself is another container and provides methods for adding components to itself. We
create the icons for the buttons, create the buttons, and attach the event handlers to
the buttons. Finally, we add the buttons to the toolbar. Just as with pack_start() on
VBox, we use insert() on the ToolBar to add widgets.

Next, we create a file chooser widget that we use to navigate to the logfile to process
and then associate it with an event handler. This part is very straightforward, but we
will readdress it in a moment.

After creating the file chooser, we create the list component that will contain the log-
lines. This component comes in two pieces: the data piece (which is a ListStore), and
the piece you interact with (which is a TreeView). We create the data piece first by
defining what data types we want in which columns. Next, we create the display com-
ponent and associate the data component with it.

Building an Apache Log Viewer Using PyGTK | 329

After creating the list component, we create one final container, a scrollable window,
and then pack everything together. We pack the toolbar, file chooser, and the scrollable
window into the VBox we created earlier. We put the list piece, which will contain the
loglines, into the scrollable window so that if there are more than a handful of lines,
we can scroll through them.

Finally, we make things visible and invisible. We make the main window visible with
the show_all() call. This call also makes all children visible. Given how we have created
this GUI application, we want the file chooser to be invisible until we click the “open”
button. So, we make the file chooser control invisible when it is created.

When you launch this application, you can see that it meets our initial requirements.
We are able to select and open specified logfiles. Each of the line number, remote host,
status, and bytes pieces of data have their own columns in the list control, so we can
easily surmise those pieces of data just by glancing at each line. And, we can sort on
any of those columns by simply clicking on the corresponding column header.

Building an Apache Log Viewer Using Curses

curses is a library that facilitates the creation of interactive text-based applications.
Unlike GUI toolkits, curses does not follow an event handling and callback approach.
You are responsible for getting input from the user and then doing something with it,
whereas in GTK, the widget handles getting input from the user and the toolkit calls a
handler function when an event occurs. Another difference between curses and GUI
toolkits is that with GUI toolkits you are adding widgets to some container and letting
the toolkit deal with drawing and refreshing the screen. With curses, you are typically
painting text directly on the screen.

Example 11-3 is the Apache log viewer again, implemented using the curses module
from the Python Standard Library.

Example 11-3. curses Apache log viewer

#!/usr/bin/env python

curses based Apache log viewer

Usage:

curses_log viewer.py logfile

This will start an interactive, keyboard driven log viewing application. Here
are what the various key presses do:

u/d - scroll up/down

t - go to the top of the log file
q - quit

b/h/s - sort by bytes/hostname/status

330 | Chapter11: Building GUIs

r - restore to initial sort order

non

import curses

from apache_log_parser regex import dictify logline
import sys

import operator

class CursesLogViewer(object):
def _init_ (self, logfile=None):
self.screen = curses.initscr()
self.curr_topline = 0
self.logfile = logfile
self.loglines = []

def page_up(self):
self.curr topline = self.curr topline - (2 * curses.LINES)
if self.curr topline < 0:
self.curr topline = 0
self.draw_loglines()

def page_down(self):
self.draw_loglines()

def top(self):
self.curr topline = 0
self.draw_loglines()

def sortby(self, field):
#self.loglines = sorted(self.loglines, key=operator.itemgetter(field))
self.loglines.sort(key=operator.itemgetter(field))
self.top()

def set logfile(self, logfile):
self.logfile = logfile
self.load loglines()

def load loglines(self):
self.loglines = []
logfile = open(self.logfile, 'r')
for i, line in enumerate(logfile):
line_dict = dictify_logline(line)
self.loglines.append((i + 1, line_dict['remote host'],
line_dict['status'], int(line dict['bytes sent']), line.rstrip()))
logfile.close()
self.draw_loglines()

def draw_loglines(self):
self.screen.clear()
status_col = 4
bytes_col = 6
remote_host _col = 16
status_start = 0
bytes start = 4

Building an Apache Log Viewer Using Curses | 331

remote_host_start = 10
line_start = 26
logline_cols = curses.COLS - status_col - bytes col - remote_host col - 1
for i in range(curses.LINES):
c = self.curr_topline
try:
curr_line = self.loglines[c]
except IndexError:
break
self.screen.addstr(i, status_start, str(curr_line[2]))
self.screen.addstr(i, bytes start, str(curr_line[3]))
self.screen.addstr(i, remote_host_start, str(curr_line[1]))
#self.screen.addstr(i, line_start, str(curr_line[4])[logline_cols])
self.screen.addstr(i, line start, str(curr line[4]), logline cols)
self.curr topline += 1
self.screen.refresh()

def main_loop(self, stdscr):
stdscr.clear()
self.load loglines()
while True:
c = self.screen.getch()
try:
¢ = chr(c)
except ValueError:
continue
if ¢ == 'd":
self.page down()
elif c == 'u":
self.page up()
elif c == 't":
self.top()
elif ¢ == 'b":
self.sortby(3)
elif c == 'h":
self.sortby(1)
elif c == 's":
self.sortby(2)
elif c == 'r':
self.sortby(0)
elif c == 'q":
break
if _name__ == "'_main_':
infile = sys.argv[1]
c = CurseslLogViewer(infile)
curses.wrapper(c.main_loop)

In Example 11-3, we created a single class, CursesLogViewer, in order to structure our
code. In the constructor, we create a curses screen and initialize a few variables. We
instantiate CursesLogViewer in the “main” of our program and pass in the logfile that
we want to view. We could have set an option in the application for browsing to a file
and selecting it, but it would have been considerably more effort than the file browser
in the PyGTK implementation of the log viewer. Besides, since users will be at a shell

332 | Chapter11: Building GUIs

to run this application, it won’t be abnormal to expect them to navigate to the file from
the command line and pass it in as they start the application. After instantiating Curse
sLogViewer, we pass its main_loop() method to the curses function wrapper(). The cur-
ses function wrapper () sets the terminal to a state that makes it ready for a curses ap-
plication to use it, calls the function, then sets the terminal back to normal before
returning.

The main_loop() method acts as a rudimentary event loop. It sits waiting for a user to
enter input at the keyboard. When a user enters input, the loop dispatches the proper
method (or at least to the proper behavior). Pressing the u or d keys will scroll up or
down, respectively, by calling the page_up() or page_down() methods, respectively. The
page_down() method simply calls draw_loglines(), which paints the loglines on the
terminal, starting with the current top line. As each line is drawn to the screen, the
current top line moves to the next log line. Since draw_loglines() only draws as many
loglines as will fit on the screen, the next time it is called, it will start drawing the next
log line on the top line of the screen. So, repeatedly calling draw_loglines() will have
the visual effect of scrolling down through a logfile. The page_up() method will set the
current top line two pages up and then redraw the loglines by calling draw_log
lines(). This has the visual effect of scrolling up through a logfile. The reason that we
set the current top line two pages up in page_up() is that when we draw a page, the
current top line is really at the bottom of the screen. This is really set this way in
anticipation of scrolling down.

The next class of behavior for our application is sorting. We have built functionality in
to sort by hostname, status, and number of bytes sent in a request. Invoking any of the
sort behaviors results in a call to sortby(). The sortby() method sorts the loglines list
for our CursesLogViewer object on the specified field, and then calls the top() method.
The top() method sets the current top line to the first line in the loglines list, and then
draws the next page of loglines (which will be the first page).

The final event handler for our application is quit. The quit method simply breaks out
of the “event loop” and lets the main_loop() method return to the curses wrapper()
function for further terminal cleanup.

While the number of lines of code for the PyGTK app and the curses app are compa-
rable, the curses app felt like more work. Perhaps it was having to create our own event
loop. Or perhaps it was having to, in a sense, create our own widgets. Or perhaps it
was “painting” text directly on the terminal screen that made it feel like more work.
However, there are times when knowing how to put together a curses app will benefit
you.

Figure 11-3 shows the curses log viewer sorting records by bytes transferred.

One improvement we could have made on this application is the ability to reverse the
sort order of whichever sort method is currently active. This would be a very simple
change to make, but we’ll leave that to the reader. Another improvement would be to

Building an Apache Log Viewer Using Curses | 333

H
H
H
H
H
H
H
H
H
H
H
H
H

NEIE -

Figure 11-3. Apache log listing

view the entire contents of a log line as we scroll past it. This should also be a moderately
simple change to make, but we’ll leave it as an exercise for the reader as well.

Web Applications

Tosay that the Web is huge is an understatement. The Web is teeming with applications
that people rely on daily. Why are there so many applications available on the Web?
First, a web application is potentially universally accessible. This means that when a
web application is deployed, anyone with access to it can just point their browser at a
URL and use it. Users don’t have to download and install anything except for the
browser (which they likely already have installed) unless you are using browser plug-
ins like Flash. The primary appeal of this point s for the user. Second, web applications
are potentially unilaterally upgradeable for the whole user base. This means that one
party (the owner of the application) can upgrade the entire user base without the other
party (the user) having to do anything. This is really only true when you are not relying
on features that may not be in the user’s current environment. For example, if your
upgrade relies on a feature in a newer version of Flash than what the current user base
is required to install, this benefit may fly right out the window. But, when it works, this
point is appealing to both parties, although the users are less likely to be as conscious
of it. Third, the browser is pretty much a universal deployment platform. There are
some cross-browser compatibility issues, but for the most part, if you are not using
special plug-ins, a web application that works in one browser on one operating system
will mostly work in another browser on another operating system. This point is ap-
pealing to both parties as well. Just a little more work on the development side will get

334 | Chapter11: Building GUIs

the application working in multiple browser environments. And the user enjoys using
the application where he chooses.

So how is this relevant for you as a system administrator? All the reasons that we have
posited regarding building GUIs in general apply to building web applications. One
benefit of web applications for system administrators is that the web application can
have access to the filesystem and process table of the machine on which it runs. This
particular property of web applications makes a web application an excellent solution
for system, application, and user monitoring and reporting mechanisms. And that class
of problems is in the domain of the system administrator.

Hopefully, you can see the benefit, though it may be useful for you only occasionally,
of building a web application for yourself or your users. But what can you use to build
a web application? Since this is a book on Python, we will, of course, recommend a
Python solution. But which one? One of the criticisms of Python is that it has as many
different web application frameworks as a year has days. At the moment, the four
dominant choices are TurboGears, Django, Pylons, and Zope. Each of these four has
its own benefits, but we felt that Django fit the subject of this book particularly well.

Django

Django is a full-stack web application framework. It contains a templating system,
database connectivity by way of an object-relational mapper, and, of course, Python
itself for writing the logic pieces of the application. Related to being a “full stack”
framework, Django also follows a Model-View-Template (MVT) approach. This
Model-View-Template approach is similar, if not identical, to a common approach
called Model-View-Controller (MVC). Both are ways of developing applications so that
the pieces of the application are not unnecessarily comingled. The database code is
separated into an area referred to in both approaches as the “model.” The business
logic is separated into an area referred to as the “view” in MVT and the “controller” in
MVC. And the presentation is separated into an area referred to as the “template” in
MVT and the “view” in MVC.

Apache Log Viewer Application

In the following example, which consists of several pieces of code, we will create an-
other implementation of the Apache log viewer similar to the PyGTK implementation.
Since we are going to be opening logfiles to allow a user to view and sort them, we really
won’t need a database, so this example is devoid of any database connectivity. Before
we walk through the example code, we will show you how to set up a project and
application in Django.

You can download the Django code from http://www.djangoproject.com/. At the time
of this writing, the latest release was 0.96. The recommended version to install, how-
ever, is from the development trunk. Once you’ve downloaded it, just install with the

Django | 335

http://www.djangoproject.com/

normal python setup.py install command. Afterinstallation, you will have the Django
libraries in your site-packages directory and a script django-admin.py in your scripts
directory. Typically, on *nix systems, the scripts directory will be the same directory
that your python executable file lives in.

Afterinstalling Django, you need to create a project and an application. Projects contain
one or more applications. They also act as the center for configuration for the overall
web application (not to be confused with the Django application) that you are building.
Django applications are smaller pieces of functionality that can be reused in different
projects. For our Apache log viewing application, we created a project called
“dj_apache” by running django-admin.py startproject dj_apache. This step created a
directory and a handful of files. Example 11-4 is a tree view of the new project.

Example 11-4. Tree view of a Django project
jmjones@dinkbuntu:~/code$ tree dj apache
dj_apache

[-- _init_ .py

|-- manage.py

|-- settings.py

T-- urls.py

0 directories, 4 files

Now that we have a project, we can give it an application. We first navigate into the
dj_apache directory, and then create an application with django-admin.py startapp
logview. This will create a logview directory in our dj_apache directory and a few files.
Example 11-5 is a tree view of all the files and directories we now have.

Example 11-5. Tree view of a Django application

jmjones@dinkbuntu:~/tmp$ tree dj_apache/
dj_apache/

[-- _init__.py

|-- logview

| |-- _init_ .py
| |-- models.py

| -- views.py
|-- manage.py

|-- settings.py

T-- urls.py

You can see that the application directory (logview) contains models.py and views.py.
Django follows the MVT convention, so these files help break the overall application
up into its corresponding components. The file models. py contains the database layout,
so it falls into the model component of the MVT acronym. The views.py contains the
logic behind the application, so it falls into the view component of the acronym.

That leaves us without the template component of the acronym. The template com-
ponent contains the presentation layer of the overall application. There are a few ways

336 | Chapter11: Building GUIs

we can get Django to see our templates, but for Example 11-6, we will create a
templates directory under the logview directory.

Example 11-6. Adding a templates directory

jmjones@dinkbuntu:~/code$ mkdir dj apache/logview/templates
jmjones@dinkbuntu:~/code$ tree dj apache/

dj_apache/

[-- __init_ .py

|-- logview

| |-- _init_.py
| |-- models.py

| |-- templates

| “-- views.py
|-- manage.py

|-- settings.py

T-- urls.py

2 directories, 7 files

Now, we are ready to start fleshing out the application. The first thing we will do is
decide how we want our URLs to work. This is a pretty basic application, so the URLs
will be pretty straightforward. We want to list the logfiles and view them. Since our
functionality is so simple and limited, we will let “/” list the logfiles to open and
"/viewlog/some_sort method/some log file" view the specified logfile using the speci-
fied sort method. In order to associate a URL with some activity, we have to update
the urls.py file in the project top-level directory. Example 11-7 is the urls.py for our
log viewer application.

Example 11-7. Django URL config (urls.py)

from django.conf.urls.defaults import *

urlpatterns = patterns('’,
(r'~$', 'dj_apache.logview.views.list_files'),
(r'~viewlog/(?P<sortmethod>.*?)/(?P<filename>.*?)/$",
'dj_apache.logview.views.view_log'),

The URL config file is pretty clear and fairly simple to figure out. This config file relies
heavily on regular expressions to map URLs that match a given regular expression to
a view function that exactly matches a string. We are mapping the URL “/” to the
function "dj_apache.logview.views.list files". We are also mapping all URLs
matching the regular expression '*viewlog/(?P<sortmethod>.*?)/(?P<filename>.*?)/
$' to the view function "dj apache.logview.views.view log". When a browser con-
nects to a Django application and sends a request for a certain resource, Django looks
through urls.py for an item whose regular expression matches the URL, then dis-
patches the request to the matching view function.

The source file in Example 11-8 contains both of the view functions for this application
along with a utility function.

Django | 337

Example 11-8. Django view module (views.py)

Create your views here.
from django.shortcuts import render to_response

import os
from apache_log_parser regex import dictify logline
import operator

log_dir = '/var/log/apache2'

def get_log dict(logline):
1 = dictify logline(logline)
try:
1['bytes _sent'] = int(1['bytes sent'])
except ValueError:
bytes sent = 0
1['logline'] = logline
return 1

def list files(request):
file list = [f for f in os.listdir(log dir) if
os.path.isfile(os.path.join(log dir, f))]
return render to response('list files.html', {'file list': file list})

def view log(request, sortmethod, filename):
logfile = open(os.path.join(log dir, filename), 'r')
loglines = [get log dict(1l) for 1 in logfile]
logfile.close()
try:
loglines.sort(key=operator.itemgetter(sortmethod))
except KeyError:
pass
return render to response('view logfile.html', {'loglines': loglines,
"filename': filename})

The list_files() function lists all files in the directory specified by log_dir and passes
that list to the list files.html template. That’s really all that happens in
list_files(). This function is configurable by changing the value of log_dir. Another
option for configuring this is to put the log directory in the database somehow. If we
put the value of the log directory in the database, we could change the value without
having to restart the application.

The view_log() function accepts as arguments the sort method and the logfile name.
Both of these parameters were extracted from the URL by way of regular expression in
the urls.py file. We named the regular expression groups for the sort method and file-
name in urls.py, but we didn’t have to. Arguments are passed into the view function
from the URL in the same sequence that they are found in their respective groups. It is
good practice, though, to use named groups in the URL regular expression so you can
easily tell what parameters you are extracting from a URL as well as what a URL should
look like.

338 | Chapter11: Building GUIs

The view_log() function opens the logfile whose filename comes in from the URL. It
then uses the Apache log parsing library from earlier examples to convert each log line
into a tuple in the format of status, remote host, bytes sent, and the log line itself.
Then view log() sorts the list of tuples based on the sort method that was passed in
from the URL. Finally, view_log() passes this list into the view logfile.html template
for formatting.

The only thing left is to create the templates that we have told the view functions to
render to. In Django, templates can inherit from other templates, thereby improving
code reuse and making it simple to establish a uniform look and feel among pages. The
first template we’ll build is a template the two other templates will inherit from. This
template will set a common look and feel for the other two templates in the application.
That’s why we are starting with it. This is base.html. See Example 11-9.

Example 11-9. Django base template (base.html)

<html>
<head>
<title>{% block title %}Apache Logviewer - File Listing{% endblock %}</title>
</head>
<body>
<div>Log Directory</div>
{% block content %}Empty Content Block{% endblock %}
</body>
</html>

This is a very simple base template. It is perhaps the simplest HTML page you can get.
The only items of interest are the two “block” sections: “content” and “title.” When
you define a “block” section in a parent template, a child template can override the
parent block with its own content. This allows you to set default content on a part of
a page and allow the child template to override that default. The “title” block allows
the child pages to set a value which will show up in their page’s title tag. The “content”
block is a common convention for updating the “main” section of a page while allowing
the rest of the page to remain unchanged.

Example 11-10 is a template that will simply list the files in the specified directory.

Example 11-10. Django file listing template (list_files.html)
{% extends "base.html" %}

{% block title %}Apache Logviewer - File Listing{% endblock %}

{% block content %}

{% for f in file_list %}
{{ f }}</1i>
{% endfor %}

{% endblock %}

Django | 339

'8 06 Apache Logviewer - File Listing

@ E] A hrep://192.168.205.139:8080/ ~(Q- Google

[I] Saved Tabs= Apple(85) Amazon News (145)v brg o'reilly blogs weather

Log Directory

error.log.1
access.Jog.1
error.log
access? log
access2 log.1
access.log
error2 log

e« s & s s 8

Figure 11-4. Apache log listing
Figure 11-4 shows what the file listing page looks like.

In this template, we state that we are extending “base.html.” This allows us to get
everything defined in “base.html” and plug in code into any defined code blocks and
override their behavior. We do exactly that with the “title” and “content” blocks. In
the “content” block, we loop over a variable file list that was passed into the tem-
plate. Foreach itemin file_list, we create a link that will result in opening and parsing

the logfile.

The template in Example 11-11 is responsible for creating the pages that the link in the
previous Example 11-10 takes the user to. It displays the detail of the specified logfile.

Example 11-11. Django file listing template (view_log file.html)
{% extends "base.html" %}

{% block title %}Apache Logviewer - File Viewer{% endblock %}

{% block content %}
<table border="1">
<tr>
<td>Status</td>
<td>Remote Host</td>
<td>Bytes Sent</td>
<td>Line</td>
</tr>
{% for 1 in loglines %}
<tr>
<td>{{ l.status }}</td>
<td>{{ l.remote host }}</td>
<td>{{ 1.bytes_sent }}</td>
<td><pre>{{ 1.logline }}</pre></td>
</tr>
{% endfor %}
</table>
{% endblock %}

340 | Chapter11: Building GUIs

Apache Logviewer - File Viewer

n @ . Ghitp //192.168.205.139:8080/viewlog/linesort/access.log.1/ @ 2(Q~ Google Y
E Eﬂ Saved Tabs = Apple (B5)v Amazon News (145)v brg o'reilly blogs weather

Log Directory

Slams%om i%m

200 le"f.().o.l 89 127.0.0.1 = = [15/Apr/2008:13:27:09 =0400) "GET / BTTB/1.1" 200 89 "-" "Mozilla/5.0
[404 [[127.00.1]283 |[127.0.0.1 - - [15/Apr/2008:13:27:09 -0400) "GET /favicon.ico HTTP/1.1" 404 283 "-"
|200 |‘l2‘.".0.0.l||83 le].ﬂ.ﬂ.l - - [15/Apr/2008:13:27:13 -0400] "GET / ETTPF/1.1" 200 83 "-" "Mozilla/5.0
|404 HlZ‘.".0.0.l”ZSO Hu?.o.o.l - - [15/Apr/2008:13:27:13 -0400] "GET /favicon.ico HTTP/1.1" 404 280 "-"
[200 |12700.1)83 |[127.0.0.1 - - [15/Apr/2008:14:17:33 -0400] "GET / HTTR/1.1" 200 83 "-" "Mozilla/5.0
[304 |12700.1)0 |[127.0.0.1 - - [15/Apr/2008:14:17:39 -0400] "GET / HTTR/L.1" 304 - "-" "Mozilla/5.0
[200 |12700.1]89 |[127.0.0.1 - - [15/Apr/2008:14:21:00 -0400] "GET / HTTR/1.1" 200 89 "-" "Mozilla/5.0
[200 |12700.1)83 |[127.0.0.1 - - [15/Apr/2008:14:21:07 -0400] "GET / HTTR/1.1" 200 83 "-" "Mozilla/5.0
[200 |12700.1[44 |[127.0.0.1 - - (15/Apr/2008:17:11:47 -0400] "GET /apache2-default/ ETTR/1.1" 200 44
[200 |[127.0.0.1][2326 [127.0.0.1 - - [15/Apr/2008:17:12:26 -0400] "GET /apache2-default/apache_pb.gif HTTP
[200][127.00.1g9 [[127.0.0.1 - - [16/Rpr/2008:19:07:03 -0400) "GET /index.html ETTR/1.1" 200 89 "-" "-
[200][12700.1[89 [[127.0.0.1 - - [16/Rpr/2008:19:15:39 -0400] "GET /index.html HTTR/1.1" 200 89 "-" "-
[200 [[127.00.1[89 [[127.0.0.1 - - [16/Rpr/2008:19:16:20 -0400) "GET /index.html HTTR/1.1" 200 89 "-" "-
[400 |12700.1]300 |[127.0.0.1 - - [16/Apr/2008:20:44:17 -0400] "GET index.html BTTR/1.1" 400 300 "-" "-
[— 3 e

Figure 11-5. Django Apache log viewer—line order

The template in Example 11-11 inherits from the base template mentioned earlier and
creates a table in the “content” area. The table header details the contents of each
column: status, remote host, bytes sent, and the log line itself. In addition to detailing
the column contents, the header allows users to specify how to sort the logfile. For
example, if a user clicks on the “Bytes Sent” column header (which is simply a link),
the page will reload and the code in the view will sort the loglines by the “bytes sent”
column. Clicking on any column header except for “Line” will sort the loglines by that
column in ascending order. Clicking on “Line” will put the loglines back in their original
order.

Figure 11-5 shows the application viewed in Line order, and Figure 11-6 shows the
application viewed in Bytes Sent order.

This was a very simple web application built using Django. And actually, this is a pretty
atypical application as well. Most Django applications are going to be connected to a
database of some sort. Improvements that could have been made include sorting all
fields in reverse order, filtering loglines based on a specific status code or remote host,
filtering loglines based on greater than or less than criteria for bytes sent, combining
filters with one another, and putting AJAXy touches on it. Rather than walking through
any of those improvements, we’ll just leave that as an exercise for the willing reader.

Django | 341

i:Xala) Apache Logviewer - File Viewer

_ @ @ http://192.168.205.139:8080/viewlog/ bytes_sent/access.log.1/ @ [2(Q- Google

=E Saved Tabs = Apple (85)¥ Amazon News (145)¥ brg o'reilly blogs weather

Log Directory

Remote (Bytes| .
Stafus| Host Sent Line
304 [127001p r27.0.0.1 -

[200][127.00.1]44 [[127.0.0.
[200][127.00.1]83 [[127.0.0.

[15/Apr/2008:14:17:39 -0400] "GET / HTTP/1.1" 304 - "=" "Mozilla/5.0

=}
=}
-
1
[

[15/Apr/2008:17:11:47 -0400] "GET /apache2-default/ BTTP/1.1" 200 44

=3
o
=
1
[

[15/Apr/2008:13:27:13 -0400] "GET / HTTP/1.1" 200 B3 "-" "Mozilla/5.0

|X)O H127.0.0.1||83 ||127.u.0.1 - - [15/Apr/2008:14:17:33 -0400] "GET / HTTP/1.1" 200 83 "-" "Mozilla/S5.0
[200 |12700.1]83 |[127.0.0.1 - - [15/Apr/2008:14:21:07 -0400] "GET / HTTP/1.1" 200 83 "-" "Mozilla/5.0
[200 |[12700.1)89 |[127.0.0.1 - - [15/Apr/2008:13:27:09 -0400] "GET / BTTP/1.1" 200 89 "-" "Mozilla/5.0
[200][127.00.189 |127.0.0.1 - - [15/Apr/2008:14:21:00 -0400] "GET / HTTF/1.1" 200 89 "-" "Mozilla/5.0
[200][127.00.189 |127.0.0.1 - - [16/Apr/2008:19:07:03 -0400] "GET /index.html BETTB/1.1" 200 89 "-" "-
[200 |12700.185 [127.0.0.1 - - [16/Apr/2008:19:15:39 -0400] "GET /index.html ETTP/1.1" 200 89 "-" "
[200 [[127.00.1]/89 [[127.0.0.1 - - [16/Apr/2008:19:16:20 -0400] "GET /index.html HTTR/1.1" 200 B9 "-" "=
[404][127.00.1][280 [[127.0.0.1 - - [15/Apr/2008:13:27:13 -0400] "GET /favicon.ica HITR/1.1" 404 280 "-"
[404 |12700.1]283 [[127.0.0.1 - - [15/Apr/2008:13:27:09 -0400] "GET /favicon.ico BTTR/1.1" 404 283 "-"
[400][127.0.0.1]300 [[127.0.0.1 - - [16/Apr/2008:20:44:17 -0400] "GET index.html ETTE/1.1" 400 300 "=" "=
[200 |[127.0.0.1][2326 |[127.0.0.1 - - [15/Apr/2008:17:12:26 -0400] "GET /apache2-default/apache_pb.gif HITP

= i)
Open “hitp://192.168.205.139: 8080 /viewlog/bytes_sent/access.log.1/" in a new 1ab

)

4

Figure 11-6. Django Apache log viewer—Dbytes sent order

Simple Database Application

We mentioned that the previous Django example varied from the norm of Django
applications in that it did not use a database. While the following example will be more
in line with how people are using Django, the focus will be slightly different. When
people build a Django application that connects to a database, they often write tem-
plates to display data from a database, as well as forms to validate and process user
input. This example will show how to create a database model using Django’s object-
relational mappers and how to write templates and views to display that data, but the
data entry will rely on Django’s built-in admin interface. The purpose of taking this
approach is to show you how quickly and easily you can put together a database with
a usable frontend to enter and maintain the data.

The application that we are going to walk through creating is an inventory management
app for computer systems. Specifically, this application is geared to allow you to add
computers to the database with a description of the computer, associate IP addresses
with it, state what services are running on it, detail what hardware constitutes the server,
and more.

We'll follow the same steps to create this Django project and application as in the
previous Django example. Following are the commands to create the project and the
application using the django-admin command-line tool:

342 | Chapter11: Building GUIs

jmjones@dinkbuntu:~/code$ django-admin startproject sysmanage
jmjones@dinkbuntu:~/code$ cd sysmanage
jmjones@dinkbuntu:~/code/sysmanage$ django-admin startapp inventory
jmjones@dinkbuntu:~/code/sysmanage$

This created the same sort of directory structure as our Django-based Apache log view-
er. Following is a tree view of the directories and files that were created:
jmjones@dinkbuntu:~/code/sysmanage$ cd ../
jmjones@dinkbuntu:~/code$ tree sysmanage/
sysmanage/
|-- _init_ .py
|-- inventory
| |-- _init_.py
| |-- models.py
| “-- views.py
|-- manage.py
|-- settings.py
T-- urls.py

After creating the project and app, we need to configure the database we want to con-
nect to. SQLite is a great option, especially if you are testing or developing an app and
not rolling it out to production. If more than a few people were going to be hitting the
application, we would recommend considering a more robust database such as Post-
greSQL. In order to configure the application to use a SQLite database, we change a
couple of lines in the settings.py file in the project main directory. Here are the lines we
change to configure the database:

DATABASE_ENGINE = 'sqlite3’
DATABASE_NAME = os.path.join(os.path.dirname(_ file), 'dev.db')

We set “sqlite3” as our database engine. The line configuring the location of the data-
base (the DATABASE_NAME option) does something worth noting. Rather than specifying
an absolute path to the database file, we configure the database such that it will always
be in the same directory as the settings.py file. _file holds the absolute path to the
settings.py file. Calling os.path.dirname(_file) gives us the directory that the
settings.py file is in. Passing the directory that the file is in and the name of the database
file we want to create to os.path.join() will give us the absolute path of the database
file that is resilient to the application living in different directories. This is a useful idiom
to get into the habit of using for your settings files.

In addition to configuring our database, we need to include the Django admin interface
and our inventory application among the applications for this project. Here is the rel-
evant portion of the settings.py file:

INSTALLED_APPS = (
'django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes’,
'django.contrib.sessions’,
'django.contrib.sites’,
'sysmanage.inventory',

Django | 343

We added the django.contrib.admin and sysmanage.inventory to the list of installed
apps. This means that when we tell Django to create the database for us, it will create
tables for all included projects.

Next, we will change the URL mapping so that the this project includes the admin
interface. Here is the relevant line from the URL config file:

Uncomment this for admin:
(r'~admin/", include('django.contrib.admin.urls")),

The tool that created the urls.py created it with a line to include the admin interface,
but the line needs to be uncommented. You can see that we have simply removed the
character from the beginning of the line to include the admin URLs config file.

Now that we have configured a database, added the admin and inventory applications,
and added the admin interface to the URLs config file, we are ready to start defining
the database schema. In Django, each application has its own schema definition. In
each application directory, “inventory” in this case, there is a file named models.py that
contains definitions for the tables and columns that your application will use. With
Django, as well as many other web frameworks that rely on ORMs, it is possible to
create and use a database without having to write a single SQL expression. Django’s
ORM turns classes into tables and class attributes into columns on those tables. For
example, following is a piece of code that defines a table definition in the configured
database (this piece of code is part of the larger example that we’ll get into shortly):
class HardwareComponent(models.Model):

manufacturer = models.CharField(max_length=50)

#types include video card, network card...

type = models.CharField(max_length=50)

model = models.CharField(max_length=50, blank=True, null=True)

vendor_part_number = models.CharField(max_length=50, blank=True, null=True)
description = models.TextField(blank=True, null=True)

Notice that the HardwareComponent class inherits from a Django model class. This means
that the HardwareComponent class is of the Model type and will behave appropriately. We
have given our hardware component a number of attributes: manufacturer, type, model,
vendor part number, and description. Those attributes are coming from Django. Not
that Django supplies some listing of hardware manufacturers, but it does provide the
CharField type.

This class definition in the inventory application will create an inventory hardwarecom
ponent table with six columns: id, manufacturer, type, model, vendor_part_number,
and description. This mostly corresponds with the class definition for the ORM. Ac-
tually, it consistently corresponds to the class definition for the ORM. When you define
a model class, Django will create a corresponding table the name of which is the ap-
plication name (lowercased), followed by an underscore, followed by the lowercased
class name. Also, if you do not specify otherwise, Django will create an id column on
your table that will act as the primary key. Following is the SQL table creation code
that corresponds to the HardwareComponent model:

344 | Chapter11: Building GUIs

CREATE TABLE "inventory hardwarecomponent” (
"id" integer NOT NULL PRIMARY KEY,
"manufacturer"” varchar(50) NOT NULL,
"type" varchar(50) NOT NULL,

"model" varchar(50) NULL,
"vendor_part_number" varchar(50) NULL,
"description” text NULL

)

If you ever want to see the SQL that Django uses to create your database, simply run,
in your project directory, python manage.py sql myapp, where myapp corresponds to the
name of your application.

Now that you have been exposed to Django’s ORM, we’ll walk through creating the
database model for our system inventory application. Example 11-12 is the model.py
for the inventory application.

Example 11-12. Database layout (models.py)

from django.db import models
Create your models here.

class OperatingSystem(models.Model):
name = models.CharField(max_length=50)
description = models.TextField(blank=True, null=True)

def _str_ (self):
return self.name

class Admin:
pass

class Service(models.Model):
name = models.CharField(max_length=50)
description = models.TextField(blank=True, null=True)

def _str (self):
return self.name

class Admin:
pass

class HardwareComponent(models.Model):
manufacturer = models.CharField(max_length=50)
#types include video card, network card...
type = models.CharField(max_length=50)
model = models.CharField(max_length=50, blank=True, null=True)
vendor part number = models.CharField(max_length=50, blank=True, null=True)
description = models.TextField(blank=True, null=True)

def _str (self):
return self.manufacturer

class Admin:

Django | 345

pass

class Server(models.Model):
name = models.CharField(max_length=50)
description = models.TextField(blank=True, null=True)
os = models.ForeignKey(OperatingSystem)
services = models.ManyToManyField(Service)
hardware_component = models.ManyToManyField(HardwareComponent)

def _str (self):
return self.name

class Admin:
pass

class IPAddress(models.Model):
address = models.TextField(blank=True, null=True)
server = models.ForeignKey(Server)

def _str (self):
return self.address

class Admin:
pass

We defined five classes for our model: OperatingSystem, Service, HardwareComponent,
Server, and IPAddress. The OperatingSystem class will allow us to define, as needed,
different operating systems for the servers in which we are taking inventory. We defined
this class with a name and description attribute, which is all we really need. It would
be better to create an OperatingSystemVendor class and link to it from the OperatingSys
tem class, but in the interest of simplicity and explicability, we will leave the vendor
relation out of it. Each server will have one operating system. We will show you that
relationship when we get to the Server.

The Service class allows us to list all potential services that can run on a server. Ex-
amples include Apache web server, Postfix mail server, Bind DNS server, and OpenSSH
server. As with the OperatingSystem class, this class holds a name and a description
attribute. Each server may have many services. We will show you how these classes
relate to one another in the Server class.

The HardwareComponent class represents a list of all hardware components that our
servers may contain. This will only be interesting if you have either added hardware to
the system your vendor supplied you with or if you built your own server from indi-
vidual components. We defined five attributes for HardwareComponent: manufacturer,
type, model, vendor part number, and description. As with the vendor for Operating
System, we could have created other classes for the hardware manufacturer and type
and created relationships to them. But, again, for the sake of simplicity, we chose not
to create those relationships.

The Server class is the heart of this inventory system. Each Server instance is a single
server that we are tracking. Server is where we tie everything together by establishing

346 | Chapter11: Building GUIs

relationships to the three previous classes. First of all, we have given each Server a
name and description attribute. These are identical to the attributes that we have given
the other classes. In order to link to the other classes, we had to specify what kind of
relationship Server had to them. Each Server will have only one operating system, so
we created a foreign key relationship to OperatingSystem. As virtualization becomes
more common, this type of relationship will make less sense, but for now, it serves its
purpose. A server may have many services running on it and each type of service may
run on many servers, so we created a many to many relationship between Server and
Service. Likewise, each server may have many hardware components and each type of
hardware component may exist on multiple servers. Therefore, we created another
many to many relationship from Server to HardwareComponent.

Finally, IPAddress is a listing of all IP addresses on all servers that we are tracking. We
listed this model last to emphasize the relationship that IP addresses have with servers.
We gave IPAddress one attribute and one relationship. The address is the attribute and
should by convention be in the XXX. XXX. XXX XXX format. We created a foreign key
relationship from IPAddress to Server because one IP address should belong to only
one server. Yes, again, this is simplistic, but it serves the purpose of demonstrating how
to establish relationships between data components in Django.

Now we are ready to create the sqlite database file. Running python manage.py
syncdb in your project directory will create any uncreated tables for all applications you
included in your settings.py file. It will also prompt you to create a superuser if it creates
the auth tables. Following is the (truncated) output from running python manage.py
syncdb:

jmjones@dinkbuntu:~/code/sysmanage$ python manage.py syncdb
Creating table django_admin_log
Creating table auth_message

Creating many-to-many tables for Server model
Adding permission 'log entry | Can add log entry'
Adding permission 'log entry | Can change log entry’
Adding permission 'log entry | Can delete log entry’

You just installed Django's auth system, which means you don't have any
superusers defined.

Would you like to create one now? (yes/no): yes

Username (Leave blank to use 'jmjones'): E-mail address: none@none.com
Password:

Password (again): Superuser created successfully.

Adding permission 'message | Can add message'

Adding permission 'service | Can change service'
Adding permission 'service | Can delete service'
Adding permission 'server | Can add server'
Adding permission 'server | Can change server'
Adding permission 'server | Can delete server'

Django | 347

'-8 a8 Log in | Django site admin

(¢ hup://192.168.205.139:8080/ admin/ ~(Q~ Google

Saved Tabs = Apple (91)v Amazon News (181} brg o'reilly blogs weather
d Tabs | b 'reilly bl h

Django administration

Username: ||

Password:

Log in

Figure 11-7. Django admin login

We are now ready to start the Django development server and explore the admin
interface. Following is the command to start the Django development server and the
output that command generates:

jmjones@dinkbuntu:~/code/sysmanage$ python manage.py runserver 0.0.0.0:8080

Validating models...
0 errors found

Django version 0.97-pre-SVN-unknown, using settings 'sysmanage.settings'
Development server is running at http://0.0.0.0:8080/
Quit the server with CONTROL-C.

Figure 11-7 shows the login form. Once we log in, we can add servers, hardware, op-
erating systems, and the like. Figure 11-8 shows the Django admin main page and
Figure 11-9 shows the “add hardware” form. There is benefit to having a database tool
to store and display your data in a consistent, simple, usable manner. Django does a
fantastic job of providing a simple, usable interface to a set of data. And if that is all
that it did, it would be a useful tool. But that’s just the start of what Django can do. If
you can think of a way that a browser can display data, you can very likely get Django
to do it. And it is typically not very difficult.

For example, if we wanted one page with every type of operating system, hardware
component, service, etc., we could do it. And if we wanted to be able to click on each
one of those individual items and display a page containing nothing but servers with
those individual characteristics, we could do that, too. And if we wanted to be able to
click on each one of those servers in the list and have it display detailed information
about the server, we could do that as well. Actually, let’s do that. We’ll use those
“suggestions” for requirements that we will go by for this application.

348 | Chapter11: Building GUIs

Site administration | Django site admin

 hup://192.168.205.139:8080/admin/

oF Q- Google

Apple (91)v Amazon

Django administration

Site administration

News (181) v brg o'reilly blogs

weather

Welcome, jmjones. Documentation / Change password / Log out

Groups deadd o Change My Actions
Users dhAdd ¢ Change None available
Sites dhadd o Change

Hardware components dhAdd & Change

Ip addresss drAdd #Change

Operating systems deAdd o Change

Servers dpadd o Change

Services deadd o Change

B

Recent Actions

Figure 11-8. Django admin main page

First, Example 11-13 is an updated urls.py.

Example 11-13. URL mapping (urls.py)

from django.conf.urls.defaults import *

urlpatterns = patterns('’,
Example:

(r'~sysmanage/', include('sysmanage.foo.urls')),

Uncomment this for admin:
(r'~admin/', include('django.contrib.admin.urls")),

(r'~$', 'sysmanage.inventory.views.main'),
(r'~categorized/(?P<category>.*?)/(?P<category id>.*?)/$',

'sysmanage. inventory.views.categorized'),
(r'~server_detail/(?P<server_id>.*?)/$',

'sysmanage.inventory.views.server_ detail'),

)

We added three new lines mapping non-admin URLs to functions. There is really
nothing different to see here from what was in the Apache log viewer app. We are
mapping regular expressions of URLs to functions and using a little bit of regular ex-

pression groupings as well.

Django | 349

Add hardware component | Django site admin

m_

n @ . A http://192.168.205.139:8080/admin/inventory/ hardwarecomponent) & = ~(a- GCoogle

__I Apple (91) Amazon News (181} brg o'reilly blogs weather

Welcome, jmjones. Documentation / Change password [Log out

Home » Hardware components » Add hardware compon

Add hardware component

Manufacturer: 3Com

Type: nic
Model: P
Vendor part

number:

Description:

A

Save and add another | Save and continue editing |

|

= =

Figure 11-9. Django admin add hardware component

The next thing we will do is to add functions to the views module that we declared in
the URL mapping file. Example 11-14 is the views module.

Example 11-14. Inventory views (views.py)

Create your views here.

from django.shortcuts import render to response
import models

def main(request):
os_list = models.OperatingSystem.objects.all()
svc_list = models.Service.objects.all()
hardware list = models.HardwareComponent.objects.all()
return render to response('main.html’, {'os list': os list,
"svc_list': svc_list, 'hardware list': hardware list})

def categorized(request, category, category id):
category dict = {'os': 'Operating System',
'svc': 'Service', 'hw': 'Hardware'}
if category == :
server list = models.Server.objects.filter(os_ exact=category id)
category name = models.OperatingSystem.objects.get(id=category id)
elif category == 'svc':
server list =\
models.Server.objects.filter(services exact=category id)

350 | Chapter11: Building GUIs

category name = models.Service.objects.get(id=category id)
elif category == 'hw':
server list =\
models.Server.objects.filter (hardware_component__exact=category id)
category _name = models.HardwareComponent.objects.get(id=category id)
else:
server list = []
return render_to_response('categorized.html', {'server list': server list,
'category': category dict[category], 'category name': category name})

def server_detail(request, server_id):
server = models.Server.objects.get(id=server_id)
return render_to_response('server detail.html', {'server': server})

Just as we added three URL mappings to the urls.py file, so we also added three func-
tions to the views.py file. The first is main(). This function simply takes a list of all the
different OSes, hardware components, and services and passes them into the main.html
template.

In Example 11-14, we created a templates directory in the application folder. We will
do the same thing here:

jmjones@dinkbuntu:~/code/sysmanage/inventory$ mkdir templates
jmjones@dinkbuntu:~/code/sysmanage/inventory$

Example 11-15 is the “main.html” template that the main() view function is passing
data into.

Example 11-15. Main Template (main.html)
{% extends "base.html" %}

{% block title %}Server Inventory Category View{% endblock %}

{% block content %}

<div>
<h2>Operating Systems</h2>

{% for o in os_list %}

{{ o.name }}</1i>

{% endfor %}

</div>

<div>
<h2>Services</h2>

{% for s in svc_list %}

{{ s.name }}</1li>

{% endfor %}

</div>

<div>
<h2>Hardware Components</h2>

{% for h in hardware list %}

Django | 351

{{ h.manufacturer }}
{% endfor %}

</div>
{% endblock %}

This template is pretty straightforward. It divides up the page into three parts, one for
each category that we want to see. For each category, it itemizes the entries that the
category has along with a link to see all servers that have the specified category item.

When a user clicks on one of those links, it will take them to the next view function,
categorized().

The main template passes a category (being one of os for Operating System, hw for
Hardware Component, and svc for Service) and a category ID (i.e., the specific component
that the user clicked on, such as “3Com 905b Network Card”) into the
categorized() view function. The categorized() function takes these arguments and
retrieves a list of all servers from the database that have the selected component. After
querying the database for the proper information, the categorized() function passes
its information on to the “categorized.html” template. Example 11-16 shows the con-
tents of the “categorized.html” template.

Example 11-16. Categorized Template (categorized.html)
{% extends "base.html" %}

{% block title %}Server List{% endblock %}

{% block content %}
<h1>{{ category }}::{{ category name }}</h1>
<div>

{% for s in server list %}
{{ s.name }}</1li>
{% endfor %}

</div>
{% endblock %}

The “categorized.html” template displays a list of all the servers that categorized()
passed in to it.

The user can then click on a link to individual servers, which will take her to the
server detail() view function. The server detail() view function takes a server id
parameter, retrieves data about that server from the database, and passes that data on
to the “server_detail.html” template.

The “server_detail.html” template shown in Example 11-17 is perhaps the longest of
the templates, but it is very simple. Its job is to display the individual pieces of data for
the server, such as what OS the server is running, what pieces of hardware the server
has, what services are running on the server, and what IP addresses the server has.

352 | Chapter11: Building GUIs

Example 11-17. Server detail template (server_detail.html)
{% extends "base.html" %}

{% block title %}Server Detail{% endblock %}

{% block content %}
<div>
Name: {{ server.name }}
</div>
<div>
Description: {{ server.description }}
</div>
<div>
0S: {{ server.os.name }}
</div>
<div>
<div>Services:</div>

{% for service in server.services.all %}
<1i>{{ service.name }}
{% endfor %}

</div>
<div>
<div>Hardware:</div>

{% for hw in server.hardware component.all %}
{{ hw.manufacturer }} {{ hw.type }} {{ hw.model }}</1li>
{% endfor %}

</div>
<div>
<div>IP Addresses:</div>

{% for ip in server.ipaddress set.all %}
{{ ip.address }}
{% endfor %}

</div>
{% endblock %}

And that is an example of how to build a pretty simple database application using
Django. The admin interface provides a friendly means of populating the database and
with just a few more lines of code, we were able to create custom views of sorting and
navigating the data, as shown in Figures 11-10, 11-11, and 11-12.

Django | 353

ﬁ ¢ | @ htep://192.168.

Category List

Operating Systems

e CentOS 5.1 GNU/Linux
e Ubuntu GNU/Linux

Services
» PostgreSQL
» Posifix
« Apache
Hardware Components

« 3Com

Figure 11-10. System management application main page

Jels = Serverlist
€S [€3 I) CEETED

o e N i e el

Category List

Operating System::CentOS 5.1 GNU/Linux

o gershwin
« joplin
¢ bach
+ felemann
 _____ ————————— B

Figure 11-11. System management application CentOS category

354 | Chapter11: Building GUIs

'-8 @ls) Server Detail

@ € http://192.168.205.139:8080/ server_detail/1/ @ 2O~ Google

[saved Tabs= Apple(91)v Amazon News (185)v brg o'reilly blogs weather

Category List
Name: gershwin
Description: Web Server
OS: CentOS 5.1 GNU/Linux
Services:
« Apache
Hardware:
IP Addresses:

* 192.168.1.11

Figure 11-12. System management application server detail

Conclusion

While building GUI applications doesn’t seem to fit the traditional responsibilities of
a system administrator, it can prove to be an invaluable skill. Sometimes, you may
need to build some simple application for one of your users. Other times, you may
need to build a simple application for yourself. Still other times, you may realize that
you don’t need it, but it might make some task go along just a little bit more smoothly.
Once you’re comfortable building GUT applications, you may be surprised at how often
you find yourself building them.

Conclusion | 355

CHAPTER 12
Data Persistence

Data persistence, in a simple, generic sense, is saving data for later use. This implies
that the data, once saved for later, will survive if the process that saved it terminates.
This is typically accomplished by converting the data to some format and then writing
that data to disk. Sometimes, the format is human readable, such as XML or YAML.
Other times, the format is not usable directly by humans, such as a Berkeley DB file

(bdb) or a SQLite database.

What kind of data might you need to save for later? Perhaps you have a script that keeps
track of the last modified date of the files in a directory and you need to run it occa-
sionally to see which files have changed since the last time you ran it. The data about
the files is something you want to save for later, where later is the next time you run
the script. You could store this data in some kind of persistent data file. In another
scenario, you have one machine that has potential network issues and you decide to
run a script every 15 minutes to see how quickly it pings a number of other machines
on the network. You could store the ping times in a persistent data file for later use.
Later in this case has more to do with when you plan on examining the data, rather
than when the program that gathered the data needs access to it.

We will be breaking this discussion of serialization into two categories: simple and
relational.

Simple Serialization

There are a number of ways of storing data to disk for later use. We are calling “simple
serialization” the process of saving data to disk without saving the relationships be-
tween the pieces of data. We’ll discuss the difference between simple and relational in
the relational section.

Pickle

The first, and perhaps the most basic “simple serialization” mechanism for Python is
the standard library pickle module. If you think of pickling in the agricultural or

357

culinary sense, the idea is to preserve a food item, put it into a jar, and use it later. The
culinary concept translates nicely to what happens with the pickle module. With the
pickle module, you take an object, write it to disk, exit your Python process, come
back later, start your Python process again, read your object back from disk, and then
interact with it.

What can you pickle? Here is a list taken from the Python Standard Library documen-
tation on pickle that lists types of objects that are pickleable:

¢ None, true, and false

* Integers, long integers, floating-point numbers, complex numbers

* Normal and Unicode strings

* Tuples, lists, sets, and dictionaries containing only pickleable objects

* Functions defined at the top level of a module

* Built-in functions defined at the top level of a module

* C(Classes that are defined at the top level of a module

* Instances of such classes whose _dict__ or _setstate_ () is pickleable

Here is how to serialize your object to disk using the pickle module:

In [1]: import pickle

In [2]: some_dict = {'a': 1, 'b': 2}

In [3]: pickle_file = open('some_dict.pkl', 'w")
In [4]: pickle.dump(some_dict, pickle file)

In [5]: pickle file.close()

And here is what the pickled file looks like:

jmjones@dinkgutsy:~$ 1s -1 some_dict.pkl

-Iw-r--r-- 1 jmjones jmjones 30 2008-01-20 07:13 some_dict.pkl
jmjones@dinkgutsy:~$ cat some_dict.pkl

(dpo

S'a’

pl

I1

sS'b'

p2

I2

You could learn the pickle file format and create one manually, but we wouldn’t rec-
ommend it.

Here is how to unpickle a pickle file:
In [1]: import pickle

In [2]: pickle file = open('some dict.pkl', 'r')

358 | Chapter12: Data Persistence

In [3]: another_name_for_some_dict = pickle.load(pickle_file)
In [4]: another_name_for_ some_dict
Out[4]: {'a': 1, 'b': 2}

Notice that we didn’t name the object that we unpickled the same thing that we named
it before it was pickled. Remember that a name is just a way of referring to an object.

It’s interesting to note that there need not be a one-to-one relationship between your
objects and your pickle files. You can dump as many objects to a single pickle file as
you have hard drive space for or your filesystem allows, whichever comes first. Here is
an example of dumping a number of dictionary objects to a single pickle file:

In [1]: 1list of dicts = [{str(i): i} for i in range(5)]

In [2]: 1list of dicts

out[2]: [{'0': 0}, {'1': 1}, {'2": 2}, {'3": 3}, {'4': 4}]
In [3]: import pickle

In [4]: pickle file = open('list_of dicts.pkl', 'w")

In [5]: for d in list of dicts:
pickle.dump(d, pickle file)

In [6]: pickle file.close()

We created a list of dictionaries, created a writable file object, iterated over the list of
dictionaries, and serialized each one to the pickle file. Notice that this is the exact same
method that we used to write one object to a pickle file in an earlier example, only
without the iterating and the multiple dump() calls.

Here is an example of unpickling and printing the objects from the pickle file that
contains multiple objects:

In [1]: import pickle
In [2]: pickle_file = open('list_of dicts.pkl', 'r'")

In [3]: while 1:
try:

print pickle.load(pickle_file)
except EOFError:

print "EOF Error"

break

;.0}

;2}
. 3}

P Nan Ran Nan)

w N B O

Simple Serialization | 359

{'a': 4}

EOF Error
We created a readable file object pointing at the file created in the previous example
and kept trying to load a pickle object from the file until we hit an EOFError. You can
see that the dictionaries that we got out of the pickle file are the same (and in the same
order) as the files we stuffed into the pickle file.

Not only can we pickle simple built-in types of objects, but we can also pickle objects
of types that we ourselves have created. Here is a module that we’ll use for the next
two examples. This module contains a custom class that we’ll be pickling and
unpickling:

#!/usr/bin/env python

class MyClass(object):
def _init (self):
self.data = []
def _str (self):
return "Custom Class MyClass Data:: %s" % str(self.data)
def add_item(self, item):
self.data.append(item)

Here is a module that imports the module with the custom class and pickles a custom
object:

#!/usr/bin/env python

import pickle
import custom class

my obj = custom_class.MyClass()
my obj.add item(1)
my obj.add item(2)
my obj.add _item(3)

pickle file = open('custom class.pkl', 'w")

pickle.dump(my obj, pickle file)

pickle_file.close()
In this example, we imported the module with the custom class, instantiated an object
from the custom class, added a few items to the object, then serialized it. Running this
module gives no resulting output.

Here is a module that imports the module with the custom class and then loads the
custom object from the pickle file:

#!/usr/bin/env python
import pickle
import custom class

pickle _file = open('custom class.pkl', 'r'")
my_obj = pickle.load(pickle_file)

360 | Chapter12: Data Persistence

print my obj
pickle file.close()

Here is the output from running the unpickling file:

jmjones@dinkgutsy:~/code$ python custom_class_unpickle.py
Custom Class MyClass Data:: [1, 2, 3]

[t is not necessary for the unpickling code to explicitly import the custom class you are
unpickling. However, it is necessary for the unpickling code to be able to find the
module that the custom class is in. Following is a module that doesn’t import the
custom class module:

#!/usr/bin/env python

import pickle
##import custom_class ##commented out import of custom class

pickle file = open('custom class.pkl', 'r'")
my_obj = pickle.load(pickle file)

print my_obj

pickle file.close()

Here is the output from running the nonimporting module:

jmjones@dinkgutsy:~/code$ python custom class unpickle noimport.py
Custom Class MyClass Data:: [1, 2, 3]

And here is the output from running the same module after copying it (and the pickle
file) to another directory and running from there:

jmjones@dinkgutsy:~/code/cantfind$ python custom class unpickle noimport.py
Traceback (most recent call last):
File "custom class unpickle noimport.py"”, line 7, in <module>
my obj = pickle.load(pickle file)
File "/usr/1lib/python2.5/pickle.py", line 1370, in load
return Unpickler(file).load()
File "/usr/1lib/python2.5/pickle.py", line 858, in load
dispatch[key](self)
File "/usr/1lib/python2.5/pickle.py", line 1090, in load global
klass = self.find _class(module, name)
File "/usr/1lib/python2.5/pickle.py", line 1124, in find class
__import_ (module)
ImportError: No module named custom class

The last line of this traceback shows an import error because pickle failed to load our
custom module. Pickle will try to find the module that your custom class is in and
import it so that it can return you an object of the same type as you initially pickled.

All of the previous examples on pickle work fine, but there is an option that we haven’t
mentioned yet. pickle uses the default protocol when pickling an object-like
pickle.dump(object_to_pickle, pickle file). The protocolis the format specification
for how the file is serialized. The default protocol uses the almost human readable
format that we showed earlier. Another protocol choice is a binary format. You may
want to consider using the binary protocol if you notice that pickling your objects is

Simple Serialization | 361

taking a substantial amount of time. Here is a comparison of using the default protocol
and the binary protocol:

In [1]: import pickle

In [2]: default_pickle file = open('default.pkl', 'w')
In [3]: binary pickle_file = open('binary.pkl', 'wb")
In [4]: d = {'a': 1}

In [5]: pickle.dump(d, default pickle file)

In [6]: pickle.dump(d, binary pickle file, -1)

In [7]: default_pickle file.close()

In [8]: binary pickle file.close()

The first pickle file we created (named default.pkl) will contain the pickle data in its
default nearly human-readable format. The second pickle file we created (named
binary.pkl) will contain the pickle data in a binary format. Notice that we opened
default.pkl in normal write mode ('w'), but we opened binary.pkl in binary writable
mode (‘wb"'). The only difference between the call to dump between these objects is the
call to the binary dump has one more argument: a -1 that signifies that the “highest”
protocol, which currently is a binary protocol, will be used.

Here is a hex dump of the binary pickle file:

jmjones@dinkgutsy:~/code$ hexcat binary.pkl
00000000 - 80 02 7d 71 00 55 01 61 71 01 4b 01 73 2e ..}q.U.aq.K.s.

And here is a hex dump of the default pickle file:

jmjones@dinkgutsy:~/code$ hexcat default.pkl
00000000 - 28 64 70 30 0a 53 27 61 27 0a 70 31 0a 49 31 0a (dpo.S'a'.p1.I1.
00000010 - 73 2e S.

Thatis really unnecessary since we can just cat it out and will be able to read the contents
of the file. Here are the plain contents of the default pickle file:

jmjones@dinkgutsy:~/code$ cat default.pkl

(dpo

S'a’

p1

I1

S.

cPickle

In the Python Standard Library, there is another implementation of the Pickle library
that you should consider using. It is called cPickle. As the name implies, cPickle was
implemented in C. As with our suggestion regarding using binary files, if you notice

362 | Chapter12: Data Persistence

that pickling your objects is taking a while, you may want to consider trying the
cPickle module. The syntax is identical for cPickle as for “regular” pickle.

shelve

Another persistence option is the shelve module. shelve provides an easy, usable
interface to object persistence that simplifies multiple object persistence. By that we
mean storing multiple objects in the same persistent object store and then easily getting
them back. Storing objects in the shelve persistent data store is similar to simply using
a Python dictionary. Here is an example of opening a shelve file, serializing data to it,
then reopening it and accessing its contents:

In [1]: import shelve
In [2]: d = shelve.open('example.s"')

In [3]: d
Out[3]: {}

In [4]: d['key'] = 'some value'
In [5]: d.close()
In [6]: d2 = shelve.open('example.s")

In [7]: d2

Out[7]: {'key': 'some value'}
One difference between using shelve and using a plain dictionary is that you create a
shelve object by using shelve.open() rather than instantiating the dict class or using
curly braces ({}). Another difference is that with shelve, when you are done with your
data, you need to call close() on the shelve object.

Shelve has a couple of tricky points. We already mentioned the first: you have to call
close() when you are done with the operation you are working on. If you don’t
close() your shelve object, any changes you made to it won’t be persisted. Following
is an example of losing your changes by not closing your shelve object. First, we’ll just
create and persist our shelve object and exit [Python:

In [1]: import shelve
In [2]: d = shelve.open('lossy.s")
In [3]: d['key'] = "this is a key that will persist'

In [4]: d
Out[4]: {'key': "this is a key that will persist'}

In [5]: d.close()

In [6]:
Do you really want to exit ([y]/n)?

Simple Serialization | 363

Next, we’ll start [Python again, open the same shelve file, create another item, and exit
without explicitly closing the shelve object:

In [1]: import shelve
In [2]: d = shelve.open('lossy.s")

In [3]: d
Out[3]: {'key': 'this is a key that will persist'}

In [4]: d['another_key'] = 'this is an entry that will not persist’

In [5]:
Do you really want to exit ([y]/n)?

Now, we’ll start IPython again, reopen the same shelve file, and see what we have:
In [1]: import shelve
In [2]: d = shelve.open('lossy.s")

In [3]: d
Out[3]: {'key': 'this is a key that will persist'}

So, make sure you close() any shelve objects that you have changed and whose data
you would like to save.

Another tricky area is around changing mutable objects. Remember that mutable ob-
jects are objects whose value can be changed without having to reassign the value to
the variable. Here, we create a shelve object, create a key that contains a mutable object
(in this case, a 1list), change the mutable object, then close the shelve object:

In [1]: import shelve

In [2]: d = shelve.open('mutable lossy.s')
In [3]: d['key'] =[]

In [4]: d['key'].append(1)

In [5]: d.close()

In [6]:
Do you really want to exit ([y]/n)?

Since we called close() on the shelve object, we might expect that the value for
"key' is the list [1]. But we would be wrong. Here is the result of opening the previous
shelve file and deserializing it:

In [1]: import shelve
In [2]: d = shelve.open('mutable lossy.s")

In [3]: d
out[3]: {'key': [1}

364 | Chapter12: Data Persistence

This isn’t odd or unexpected behavior at all. In fact, it’s in the shelve documentation.
The problem is that inline changes to persistent objects aren’t picked up by default.
But there are a couple of ways to work around this behavior. One is specific and tar-
geted, and the other is broad and all-encompassing. First, in the specific/targeted ap-
proach, you can just reassign to the shelve object like this:

In [1]: import shelve

In [2]: d = shelve.open('mutable_nonlossy.s")
In [3]: dl'key'] = []

In [4]: temp_list = d['key']

In [5]: temp_list.append(1)

In [6]: d['key'] = temp_list

In [7]: d.close()

In [8]:
Do you really want to exit ([y]/n)?

When we deserialize our shelved object, here is what we get:

In [1]: import shelve
In [2]: d = shelve.open('mutable nonlossy.s"')

In [3]: d
Out[3]: {'key': [1]}

The list that we created and appended to has been preserved.

Next, the broad and all-encompassing approach: changing the writeback flag for the
shelve object. The only parameter we demonstrated passing in to shelve.open() was
the filename of the shelve file. There are a few other options, one of which is the
writeback flag. If the writeback flag is set to True, any entries of the shelve object that
have been accessed are cached in memory and then persisted when close() is called on
the shelve object. This can be useful for the case of dealing with mutable objects, but
it does have a trade-off. Since the accessed objects will all be cached and then persisted
upon close (whether changed or not), memory usage and file sync time will grow pro-
portionately to the number of objects you are accessing on the shelve object. So, if you
have a large number of objects you are accessing on a shelve object, you may want to
consider not setting the writeback flag to True.

In this next example, we will set the writeback flag to True and manipulate a list inline
without reassigning it to the shelve object:

In [1]: import shelve

In [2]: d = shelve.open('mutable nonlossy.s', writeback=True)

Simple Serialization | 365

In [3]: d['key'] =[]
In [4]: d['key'].append(1)
In [5]: d.close()

In [6]:
Do you really want to exit ([y]/n)?

Now, let’s see if our change was persisted.

In [1]: import shelve
In [2]: d = shelve.open('mutable_nonlossy.s")

In [3]: d
out[3]: {'key': [1]}

It was persisted as we hoped it would be.

Shelve offers an easy way to work with persistent data. There are a couple of gotchas
along the way, but overall, it’s a useful module.

YAML

Depending on who you ask, YAML stands for “YAML ain’t markup language” or “yet
another markup language.” Either way, it is a data format that is often used to store,
retrieve, and update pieces of data in a plain text layout. This data is often hierarchical.
Probably the easiest way to start working with YAML in Python is to easy_install
PyYAML. But why use YAML when you have to install it and pickle is built-in? There are
two attractive reasons for choosing YAML over pickle. These two reasons don’t make
YAML the right choice in all situations, but for certain cases, it can make a lot of sense.
First, YAML is human-readable. The syntax feels similar to a config file. If you have
cases where editing a config file is a good option, YAML may be a good choice for you.
Second, YAML parsers have been implemented in many other languages. If you need
to get data between a Python application and an application written in another lan-
guage, YAML can be a good intermediary solution.

Once you easy_install PyYAML, you can serialize and deserialize YAML data. Here is
an example of serializing a simple dictionary:

In [1]: import yaml

In [2]: yaml file = open('test.yaml', 'w")

In [3]: d = {"foo': 'a', 'bar': 'b', 'bam': [1, 2,3]}

In [4]: yaml.dump(d, yaml file, default flow_style=False)

In [5]: yaml_file.close()

366 | Chapter12: Data Persistence

This example is pretty easy to follow, but let’s walk through it anyway. The first thing
we do is import the YAML module (named yaml). Next, we create a writable file that
we will later use to store the YAML in. Next, we create a dictionary (named d) that
contains the data that we want to serialize. Then, we serialize the dictionary (named
d) using the dump() function from the yaml module. The parameters that we pass to
dump() are the dictionary that we are serializing, the YAML output file, and a parameter
that tells the YAML library to write the output in block style rather than the default
style, pieces of which look like a string conversion of the data object that we are
serializing.

Here is what the YAML file looks like:

jmjones@dinkgutsy:~/code$ cat test.yaml
bam:

-1

-2

-3

bar: b

foo: a

If we want to deserialize the file, we perform the inverse operations as what we per-
formed in the dump() example. Here is how we get the data back out of the YAML file:

In [1]: import yaml
In [2]: yaml file = open('test.yaml', 'r')

In [3]: yaml.load(yaml file)
Out[3]: {'bam': [1, 2, 3], 'bar': 'b', 'foo': 'a'}

As with the dump() example, we first have to import the YAML module (yaml). Next
we create a YAML file. This time, we create a readable file object from the YAML file
on disk. Finally, we call the load() function from the yaml module. load() then returns
back a dictionary that is equivalent to the input dictionary.

When using the yaml module, you will probably find yourself cyclically creating data,
dumping it to disk, then loading it back up, and so on.

You may not need to dump your YAML data out to a human-readable format, so let’s
walk through serializing the same dictionary from the previous example in non-block
mode. Here is how to dump the same dictionary as before in nonblock mode:

In [1]: import yaml

In [2]: yaml_file = open('nonblock.yaml', 'w")

In [3]: d = {'foo': 'a', 'bar': 'b', 'bam': [1, 2,3]}
In [4]: yaml.dump(d, yaml file)

In [5]: yaml_file.close()

Simple Serialization | 367

Here is what the YAML file looks like: jmjones@dinkgutsy:~/code$ cat nonblock.yaml
bam: [1, 2, 3] bar: b foo: a. This looks pretty similar to the block-mode format except
for the list value for bam. The differences appear when there is some level of nesting and
some array-like data structure like a list or dictionary. Let’s compare a couple of ex-
amples to show those differences. But before we do, it will be easier to walk through
these examples if we don’t have to keep showing the output of catting the YAML files.
The file argument in the dump() function of the yaml module is optional. (Actually, the
PyYAML documentation refers to the “file” object as a “stream” object, but doesn’t
really matter much.) If you leave out the “file” or “stream” argument, dump() will write
the serialized object to standard out. So, in the following example, we will leave out
the file object and print out the YAML results.

Here is a comparison of a few data structures using the block style serialization and
non-block style serialization. The examples that have default_flow_style use the block
formatting and the examples that don’t have default_flow_style do not use the block
formatting:

In [1]: import yaml
In [2]: d = {'first': {'second': {'third': {'fourth': 'a'}}}}

In [3]: print yaml.dump(d, default flow style=False)
first:
second:
third:
fourth: a

In [4]: print yaml.dump(d)
first:
second:
third: {fourth: a}

In [5]: d2 = [{'a': "a'}, {"b": 'b'}, {'c': "c'}]

In [6]: print yaml.dump(d2, default flow style=False)
-a:a
-b:b

cc

In [7]: print yaml.dump(d2)
- {a: a}
- {b: b}
- {c: ¢}

In [8]: d3 = [{"a": "a'}, {"b": 'b'}, {'c": [1, 2, 3, 4, 5]}]

In [9]: print yaml.dump(d3, default flow style=False)
-ara

368 | Chapter12: Data Persistence

]
viph WN R

In [10]: print yaml.dump(d3)
- {a: a}

- {b: b}

- [1) 2, 3, 4, 5]

Whatif you want to serialize a custom class? The yaml module behaves nearly identically
to the pickle regarding custom classes. The following example will even use the same
custom class module that we used in the pickle custom class example.

Here is a Python module that imports the custom_class module, creates an object from

MyClass, adds some items to the object, and then serializes it:

#!/usr/bin/env python

import yaml
import custom class

my obj = custom_class.MyClass()
my obj.add item(1)
my obj.add item(2)
my obj.add_item(3)

yaml file = open('custom class.yaml', 'w')
yaml.dump(my obj, yaml file)
yaml file.close()

When we run the previous module, here is the output we see:

jmjones@dinkgutsy:~/code$ python custom class yaml.py
jmjones@dinkgutsy:~/code$

Nothing. That means that everthing went well.
Here is the inverse of the previous module:

#!/usr/bin/env python

import yaml
import custom_class

yaml_file = open('custom class.yaml', 'r')
my_obj = yaml.load(yaml file)

print my obj

yaml_file.close()

Simple Serialization | 369

This script imports the yaml and custom_class modules, creates a readable file object
from the YAML file created previously, loads the YAML file into an object, and prints
the object.

When we run it, we see the following;:

jmjones@dinkgutsy:~/code$ python custom_class_unyaml.py
Custom Class MyClass Data:: [1, 2, 3]

This is identical to the output from the unpickling example that we ran earlier in this
chapter, so the behavior is what we would expect to see.

Z0DB

Another option for serializing data is Zope’s ZODB module. ZODB stands for “Zope
Object Database.” Simple usage of ZODB feels pretty similar to serializing to pickle or
YAML, but ZODB has the ability to grow with your needs. For example, if you need
atomicity in your operations, ZODB provides transactions. And if you need a more
scalable persistent store, you can use ZEO, Zope’s distributed object store.

ZODB could have possibly gone into the “relational persistence” section rather than
the “simple persistence” section. However, this object database doesn’t exactly fit the
mold of what we’ve come to recognize as a relational database over the years even
though you can easily establish relationships among objects. Also, we’re only displaying
some of the more basic features of ZODB, so in our examples, it looks more like
shelve than a relational database. So, we decided to keep ZODB in the “simple persis-
tence” section.

Regarding installation of ZODB, it is as simple of a matter as doing easy_install
Z0DB3. The ZODB module has a number of dependencies but easy_install resolves
them well, downloads everything it needs, and installs them.

For an example of simple use of ZODB, we’ll create a ZODB storage object and add a
dictionary and a list to it. Here is the code for serializing the dictionary and list:

#!/usr/bin/env python

import ZODB
import ZODB.FileStorage
import transaction

filestorage = ZODB.FileStorage.FileStorage('zodb_filestorage.db')
db = ZODB.DB(filestorage)
conn = db.open()

root = conn.root()
root['list'] = ['this', 'is', 'a', 'list']
root['dict'] = {'this': 'is', 'a': 'dictionary'}

transaction.commit()
conn.close()

370 | Chapter12: Data Persistence

ZODB requires a couple more lines of code to start working with it than we’ve seen
with pickle or YAML, but once you have a persistent store created and initialized, usage
is pretty similar to the other options. This example is pretty self-explanatory, especially
given the other examples of data persistence. But we’ll walk through it quickly, anyway.

First, we import a couple of ZODB modules, namely Z0DB, ZODB.FileStorage, and
transaction. (We’ll engage in just a little hair splitting at this point. Providing a module
for import that does not contain an identifying prefix seems awkward. It seems to us
that the transaction module that we import above should be prefixed by Z0DB.
Regardless, this is how it is, so you’ll just want to be aware of that. Now we’ll move
on.) Next, we create a FileStorage object by specifying the database file to use for it.
Then, we create a DB object and connect it to the FileStorage object. Then we open()
the database object and get root node of it. From there, we can update the root object
with our data structures, which we do with an impromptu list and dictionary. We then
commit the changes we have made with transaction.commit() and then close the
database connection with conn.close().

Once you’ve created a ZODB data storage container (such as the file storage object in
this example) and have committed some data to it, you may want to get that data back
out. Here is an example of opening the same database up, but reading the data rather
than writing it:

#!/usr/bin/env python

import ZODB
import ZODB.FileStorage

filestorage = ZODB.FileStorage.FileStorage('zodb filestorage.db')
db = ZODB.DB(filestorage)
conn = db.open()

root = conn.root()
print root.items()

conn.close()

And if we run this code after running the code that populates the database, here is the
output we would see:

jmjones@dinkgutsy:~/code$ python zodb_read.py

No handlers could be found for logger "ZODB.FileStorage"

[('list', ['this', 'is', 'a’, 'list']), (‘dict', {'this': 'is', 'a': 'dictionary'})]
Just as we’ve shown how to serialize custom classes for other data persistence frame-
works, we’ll show how to do so with ZODB. We will diverge, however, from using the
same MyClass example (and we’ll explain why later). Just as with the other frameworks,
you just define a class, create an object from it, and then tell the serialization engine to
save it to disk. Here is the custom class that we’ll be using this time:

#!/usr/bin/env python

Simple Serialization | 371

import persistent

class OutOfFunds(Exception):
pass

class Account(persistent.Persistent):

def _init_ (self, name, starting_balance=0):

self.name = name

self.balance = starting balance
def _str_ (self):

return "Account %s, balance %s" % (self.name, self.balance)
def _repr_ (self):

return "Account %s, balance %s" % (self.name, self.balance)
def deposit(self, amount):

self.balance += amount

return self.balance
def withdraw(self, amount):

if amount > self.balance:

raise OutOfFunds
self.balance -= amount
return self.balance

This is a very simple account class for managing financial funds. We defined an
OutOfFunds exception that we will explain later. The Account class subclasses persis
tent.Persistent. (Regarding persistent, we could go into the same rant about the
propriety of providing a meaningful prefix to a module that people are going to be
using. How does a glance at this code inform the reader that Z0DB code is being used
here? It doesn’t. But we won’t go into that rant again.) Subclassing from persistent.Per
sistent does some magic behind the scenes to make it easier for ZODB to serialize this
data. In the class definition, we created custom _str _and _repr _ string converters.
You’ll get to see those in action later. We also created deposit() and withdraw() meth-
ods. Both methods update the object attribute balance positively or negatively, de-
pending on which method was called. The withdraw() method checks if there is enough
money in the balance attribute before it subtracts funds. If there is not enough money
in balance, the withdraw() method will raise the OutOfFunds exception that we men-
tioned earlier. Both deposit() and withdraw return the resulting balance after either
adding or subtracting funds.

Here is a bit of code that will serialize the custom class that we just walked through:

#!/usr/bin/env python

import ZODB

import ZODB.FileStorage
import transaction
import custom class_zodb

filestorage = ZODB.FileStorage.FileStorage('zodb filestorage.db')
db = ZODB.DB(filestorage)
conn = db.open()

root = conn.root()

372 | Chapter12: Data Persistence

noah = custom_class_zodb.Account('noah', 1000)
print noah

root['noah'] = noah

jeremy = custom_class_zodb.Account('jeremy', 1000)
print jeremy

root['jeremy'] = jeremy

transaction.commit()
conn.close()

This example is nearly identical to the previous ZODB example in which we serialized
a dictionary and a list. However, we are importing our own module, creating two ob-
jects from a custom class, and serializing those two objects to the ZODB database.
Those two objects are a noah account and a jeremy account, both of which are created
with a balance of 1000 (presumably $1,000.00 USD, but we didn’tidentify any currency
units).

Here is this example’s output:

jmjones@dinkgutsy:~/code$ python zodb custom class.py
Account noah, balance 1000
Account jeremy, balance 1000

And if we run the module that displays the contents of a ZODB database, here is what
we see:
jmjones@dinkgutsy:~/code$ python zodb_read.py

No handlers could be found for logger "ZODB.FileStorage"
[('jeremy', Account jeremy, balance 1000), ('noah', Account noah, balance 1000)]

Our code not only created the objects as we expected, but it also saved them to disk
for later use.

How do we open the database up and change data for different accounts? This code
would be pretty useless if it didn’t allow us to do that. Here is a piece of code that will
open the database previously created and transfer 300 (presumably dollars) from the
noah account to the jeremy account:

#!/usr/bin/env python

import ZODB

import ZODB.FileStorage
import transaction
import custom_class_zodb

filestorage = ZODB.FileStorage.FileStorage('zodb_filestorage.db')
db = ZODB.DB(filestorage)
conn = db.open()

root = conn.root()

noah = root['noah']

print "BEFORE WITHDRAWAL"
print "================="
print noah

Simple Serialization | 373

jeremy = root['jeremy']
print jeremy
print "---------ooooooo-

transaction.begin()
noah.withdraw(300)
jeremy.deposit(300)
transaction.commit()

print "AFTER WITHDRAWAL"
print "s===============
print noah

print jeremy

print "---------oo-o-o-
conn.close()

Here is the output from running this script:

jmjones@dinkgutsy:~/code$ python zodb withdraw 1.py
BEFORE WITHDRAWAL

Account noah, balance 1000
Account jeremy, balance 1000

Account noah, balance 700
Account jeremy, balance 1300

And if we run our ZODB database printint script, we can see if the data was saved:

jmjones@dinkgutsy:~/code$ python zodb read.py
[('jeremy', Account jeremy, balance 1300), ('noah', Account noah, balance 700)]

The noah account went from 1000 to 700 and the jeremy account went from 1000 to
1300.

The reason that we wanted to diverge from the MyClass custom class example was to
show a little bit about transactions. One of the canonical examples for demonstrating
how transactions work is with a bank account. If you want to be able to ensure that
funds are successfully transfered from one account to another without losing or gaining
funds, transactions are probably the first approach to look at. Here is a code example
that uses transactions in a loop in order to show that no money is lost:

#!/usr/bin/env python

import ZODB

import ZODB.FileStorage
import transaction
import custom class_zodb

filestorage = ZODB.FileStorage.FileStorage('zodb_filestorage.db')
db = ZODB.DB(filestorage)

374 | Chapter12: Data Persistence

conn = db.open()

root = conn.root()

noah = root['noah']
print "BEFORE TRANSFER"

print noah

jeremy = root['jeremy']
print jeremy

print "---------oo-ooo--

while True:

try:
transaction.begin()
jeremy.deposit(300)
noah.withdraw(300)
transaction.commit()

except custom_class_zodb.OutOfFunds:
print "OutOfFunds Error"
print "Current account information:'
print noah
print jeremy
transaction.abort()
break

print "AFTER TRANSFER"
print "s=============
print noah

print jeremy

n n

print "---------oo-o-o-

conn.close()

This is a slight modification of the previous transfer script. Instead of only transferring
once, it transfers 300 from the noah account to the jeremy account until there isn’t
enough money left to transfer. At the point that there are insufficient funds to transfer,
it will print out a notice that an exception has occurred and the current account infor-
mation. It will then abort() the transaction and break from the loop. The script also
prints account information before and after the transaction loop. If the transactions
worked, both the before and after account details should total 2000, since both ac-
counts started with 1000 each.

Here is a result of running the script:

jmjones@dinkgutsy:~/code$ python zodb_withdraw 2.py
BEFORE TRANSFER

Account noah, balance 700
Account jeremy, balance 1300
OutOfFunds Error

Current account information:
Account noah, balance 100
Account jeremy, balance 2200

Simple Serialization | 375

AFTER TRANSFER

Account noah, balance 100
Account jeremy, balance 1900

In the “before” snapshot, noah has 700 and jeremy has 1300 for a total of 2000. When
the OutOfFunds exception occurs, noah has 100 and jeremy has 2200 for a total of 2300.
In the “after” snapshot, noah has 100 and jeremy has 1900 for a total of 2000. So during
the exception, before the transaction.abort(), there was an additional 300 that would
have been unexplained. But aborting the transaction fixed that problem.

ZODB feels like a solution between the simple and the relational. It is straightforward
in its approach. An object that you serialize to disk corresponds to an object in memory
both before serialization and after deserialization. But, it has some advanced features
like transactions. ZODB is an option worth considering if you want the straightfor-
wardness of simple object mapping, but you may need to grow into more advanced
features later.

In summary of simple persistence, sometimes all you need is to simply save and store
Python objects for later use. All the options we laid out here are excellent. Each one
has its strengths and weaknesses. If you need this at some point, you will have to in-
vestigate which one will work best for you and your project.

Relational Serialization

Sometimes simple serialization isn’t enough. Sometimes you need the power of rela-
tional analysis. Relational serialization refers to either serializing Python objects and
relationally connecting them with other Python objects or storing relational data (for
example, in a relational database) and providing a Python object-like interface to that
data.

SQLite

Sometimes it’s helpful to store and deal with data in a more structured and relational
way. What we’re talking about here is the family of information stores referred to as
relational databases, or RDBMSs. We assume that you have used a relational database
such as MySQL, PostgreSQL, or Oracle before. If so, you should have no problem with
this section.

According to the SQLite website, SQLite “is a software library that implements a self-
contained, serverless, zero-configuration, transactional SQL database engine.” So what
does all that mean? Rather than the database running in a separate server process from
your code, the database engine runs in the same process as your code and you access
it as a library. The data lives in a file rather than in multiple directories scattered across
multiple filesystems. And rather than having to configure which hostname, port,

376 | Chapter12: Data Persistence

username, password, etc. to connect to, you just point your code at the database file
that the SQLite library creates. This statement also means that SQLite is a fairly fea-
tureful database. In a nutshell, the statement identifies two main benefits of using
SQLite: it’s easy to use and it will do much of the same work that a “real” database will
do. Another benefit is that it is ubiquitous. Most major operating systems and pro-
gramming languages offer support for SQLite.

Now that you know why you may want to consider using it, let’s look at how to use it.
We pulled the following table definitions from the Django example in Chapter 11.
Assume we have a file named inventory.sql that contains the following data:

BEGIN;

CREATE TABLE "inventory ipaddress" (
"id" integer NOT NULL PRIMARY KEY,
"address" text NULL,

"server id" integer NOT NULL

)

)

CREATE TABLE "inventory hardwarecomponent” (
"id" integer NOT NULL PRIMARY KEY,
"manufacturer"” varchar(50) NOT NULL,
"type" varchar(50) NOT NULL,

"model" varchar(50) NULL,
"vendor_part_number" varchar(50) NULL,
"description” text NULL

)

)

CREATE TABLE "inventory operatingsystem" (
"id" integer NOT NULL PRIMARY KEY,
"name" varchar(50) NOT NULL,
"description” text NULL

)

)

CREATE TABLE "inventory service" (
"id" integer NOT NULL PRIMARY KEY,
"name" varchar(50) NOT NULL,
"description” text NULL

)

)
CREATE TABLE "inventory server"
"id" integer NOT NULL PRIMARY KEY,
"name" varchar(50) NOT NULL,
"description" text NULL,
"os_id" integer NOT NULL REFERENCES "inventory operatingsystem" ("id")
)
)
CREATE TABLE "inventory server services" (
"id" integer NOT NULL PRIMARY KEY,
"server_id" integer NOT NULL REFERENCES "inventory server" ("id"),
"service_id" integer NOT NULL REFERENCES "inventory service" ("id"),
UNIQUE ("server_id", "service id")

)

)
CREATE TABLE "inventory server hardware_component” (

Relational Serialization | 377

"id" integer NOT NULL PRIMARY KEY,
"server_id" integer NOT NULL REFERENCES "inventory server" ("id"),
"hardwarecomponent_id" integer
NOT NULL REFERENCES "inventory_ hardwarecomponent" ("id"),
UNIQUE ("server_id", "hardwarecomponent_id")

)
5
COMMIT;
We can create a SQLite database with the following command-line argument:

jmjones@dinkgutsy:~/code$ sqlite3 inventory.db < inventory.sql

Assuming, of course, that you have SQLite installed. With Ubuntu and Debian systems,
installing is as easy as apt-get install sqlite3. On Red Hat systems, all you have to
doisyum install sqlite. Forotherdistributions of Linux that may not have itinstalled,
other UNIXes, or for Windows, you can download source and precompiled binaries at
http://www.sqlite.org/download. html.

Assuming you have SQLite installed and have a database created, we’ll proceed with
“connecting” to the database and populating it with some data. Here is all it takes to
connect to a SQLite database:

In [1]: import sqlite3
In [2]: conn = sqlite3.connect("'inventory.db")

All we had to do was import the SQLite library and then call connect() on the
sqlite3 module. Connect() returns a connection object, which we referred to as conn
and which we will use in the remainder of the example. Next, we execute a query on
the connection object to insert data into the database:

In [3]: cursor = conn.execute("insert into inventory operatingsystem (name,
description) values ('Linux', '2.0.34 kernel');")

The execute() method returns a database cursor object, so we decided to refer to it as
cursor. Notice that we only provided values for the name and description fields and left
out a value for the id field, which is the primary key. We’ll see in a moment what value
it gets populated with. Since this is an insert rather than a select, we would not expect

a result set from the query, so we’ll just look at the cursor and fetch any results it may
be holding:

In [4]: cursor.fetchall()
out[4]: []

Nothing, as we expected. Now, we’ll commit and move on:
In [5]: conn.commit()
In [6]:

Really, we shouldn’t have to commit this insert. We would expect this change to flush
when we close the database connection at the latest. But it never hurts to explicitly
commit() a change when you know that you want it committed.

378 | Chapter12: Data Persistence

http://www.sqlite.org/download.html

Now that we can create and populate a database using SQLite, let’s get that data back
out. First, we’ll fire up an IPython prompt, import sqlite3, and create a connection to
our database file:

In [1]: import sqlite3
In [2]: conn = sqlite3.connect('inventory.db")

Now, we’ll execute a select query and get a cursor to the results:

In [3]: cursor = conn.execute('select * from inventory operatingsystem;")

Finally, we’ll fetch the results from the cursor:

In [4]: cursor.fetchall()
Out[4]: [(2, u'Linux', u'2.0.34 kernel')]

This is the data that we plugged in above. Both the name and the description fields are
unicode. And the id field is populated with an integer. Typically, when you insert data
into a database and do not specify a value for the primary key, the database will populate
it for you and automatically increment the value with the next unique value for that

field.

Now that you are familiar with the basic methods of dealing with a SQLite database,
doing joins, updating data, and doing more complex things becomes mostly an aca-
demic exercise. SQLite is a great format in which to store data, especially if the data is
only going to be accessed by one script at a time, or only a few users at a time. In other
words, the format is great for fairly small uses. However, the interface that the sqlite3
module provides is arcane.

Storm ORM

While a plain SQL interface to a database is all you really need to retrieve, update,
insert, and delete data from a database, it is often convenient to have access to the data
without diverting from the simplicity of Python. A trend regarding database access over
the last few years has been to create an object-oriented representation of the data that
is stored within a database. This trend is called an Object-RelationalMapping (or
ORM). An ORM is different from merely providing an object-oriented interface to the
database. In an ORM, an object in the programming language can correspond to a
single row for a single table of a database. Tables connected with a foreign key rela-
tionship can even be accessed as an attribute of that object.

Storm is an ORM that was recently released as open source by Canonical, the company
responsible for the creation of the Ubuntu distribution of Linux. Storm is a relative
newcomer to the database arena for Python, but it has already developed a noticeable
following and we expect it to become one of the front-running Python ORMs.

We will now use Storm to access the data in the database defined earlier in the
“SQLite” section. The first thing we have to do is to create a mapping to the tables of

Relational Serialization | 379

which we are interested. Since we’ve already accessed the inventory operatingsystem
table and added an entry to it, we’ll continue accessing only that table. Here is what a
mapping in Storm looks like:

import storm.locals

class OperatingSystem(object):
__storm_table_ = 'inventory operatingsystem'
id = storm.locals.Int(primary=True)
name = storm.locals.Unicode()
description = storm.locals.Unicode()

Thisis a pretty normal class definition. There doesn’t appear to be weird, magical things
going on. There is no subclass other than the built-in object type. There are a number
of class-level attributes being defined. The one slightly odd-looking thing is the class
attribute of __storm table . This lets Storm know which table that objects of this type
should be accessing. While it seems pretty simple, straightforward, and non-magical,
there is at least a little bit of magic in the mix. For example, the name attribute is mapped
to the name column of the inventory operatingsystem table and the description attrib-
ute is mapped to the description column of the inventory operatingsystem table.
How? Magic. Any attribute that you assign to a Storm mapping class is automatically
mapped to a column that shares its name in the table designated by the
__storm table attribute.

What if you don’t want the description attribute of your object mapped to the descrip
tion column? Simple. Pass in a name keyword argument to the storm.locals.Type that
you are using. For example, changing the description attribute to this: dsc =
storm.locals.Unicode(name="description') connects OperatingSystem objects to the
same columns (namely, name and description). However, rather than referring to the
description as mapped_object.description, you would refer to it as mapped_object.dsc.

Now that we have a mapping of a Python class to a database table, let’s add another
row to the database. To go along with our ancient Linux distribution with a 2.0.34
kernel, we’ll add Windows 3.1.1 to the operating system table:

import storm.locals
import storm model
import os

operating system = storm_model.OperatingSystem()
operating system.name = u'Windows'
operating system.description = u'3.1.1'

db = storm.locals.create database('sqlite:///%s' % os.path.join(os.getcwd(),
"inventory.db'))

store = storm.locals.Store(db)
store.add(operating_system)
store.commit()

380 | Chapter12: Data Persistence

In this example, we imported the storm.locals, storm_model, and os modules. Then,
we instantiated an OperatingSystem object and assigned values to the name and
description attributes. (Notice that we used unicode values for these attributes.) Then
we created a database object by calling the create_database() function and passing it
the path to our SQLite database file, inventory.db. While you might think that the
database object is what we would use to add data to the database, it isn’t, at least not
directly. We first had to create a Store object by passing the database into its construc-
tor. After we did that, we were able to add the operating_system object to the store
object. Finally, we called commit() on the store to finalize the addition of this
operating_system to the database.

We also want to see that the data we inserted does in fact find its way into the database.
Since this is a SQLite database, we could just use the sqlite3 command-line tool. If we
did that, we would have less reason to write code to retrieve data from the database
using Storm. So, here is a simple utility to retrieve all records from the inventory oper
atingsystem table and print it out (albeit in rather ugly fashion):

import storm.locals

import storm_model
import os

db = storm.locals.create database('sqlite:///%s' % os.path.join(os.getcwd(),
"inventory.db'))

store = storm.locals.Store(db)

for o in store.find(storm model.OperatingSystem):
print o.id, o.name, o.description

The first several lines of code in this example are strikingly similar to the first several
lines of the previous example. Part of the reason for that is that we copied and pasted
the code from one file to the other. Never mind that, though. The bigger reason is that
both examples require some common setup steps before they can “talk” to the database.
We have the same import statements here as in the previous example. We have a db
object that was returned from the create_database() function. We have a store object
created by passing the db object to the Store constructor. But now, rather than adding
an object to the store, we’re calling the find() method of the store object. This par-
ticular call to find() (i.e., store.find(storm model.OperatingSystem)) returns a result
set of all storm_model.0OperatingSystem objects. Because we mapped the OperatingSys
tem class to the inventory operatingsystem table, Storm will look up all the relevant
records in the inventory operatingsystem table and create OperatingSystem objects
from them. For each OperatingSystem object, we print out the id, name, and descrip
tion attributes. These attributes map to the column values in the database that share
the same names for each record.

We should have one record already in the database from the earlier example in the
“SQLite” section. Let’s see what happens when we run the retrieve script. We would

Relational Serialization | 381

expectit to display one record even though that record was not inserted using the Storm
library:

jmjones@dinkgutsy:~/code$ python storm retrieve os.py
1 Linux 2.0.34 kernel

This is exactly what we expected to happen. Now, what happens when we run the add
script and then the retrieve script? It should show the old entry that was in the database
from earlier (the 2.0.34 Linux kernel) as well as the newly inserted entry (Windows
3.1.1):

jmjones@dinkgutsy:~/code$ python storm add_os.py
jmjones@dinkgutsy:~/code$ python storm_retrieve os.py
1 Linux 2.0.34 kernel

2 Windows 3.1.1

Again, this was exactly what we expected.

But what if we want to filter the data? Supposed we only want to see operating system
entries that started with the string “Lin.” Here is a piece of code to do just that:
import storm.locals

import storm_model
import os

db = storm.locals.create database('sqlite:///%s' % os.path.join(os.getcwd(),
"inventory.db'))

store = storm.locals.Store(db)

for o in store.find(storm model.OperatingSystem,
storm model.OperatingSystem.name.like(u'Lin%")):
print o.id, o.name, o.description

This example is identical to the previous example that uses store.find() except that
this one passes in a second parameter to store.find(): a search criteria.
Store.find(storm model.OperatingSystem,storm model.OperatingSys
tem.name.like(u'Lin%")) tells Storm to look for all OperatingSystem objects that have
a name that starts with the unicode value Lin. For each value that is in the result set, we
print it out identically to the previous example.

And when you run it, you will see something like this:

jmjones@dinkgutsy:~/code$ python storm retrieve os filter.py
1 Linux 2.0.34 kernel

This database still has the “Windows 3.1.1” entry, but it was filtered out because
“Windows” does not begin with “Lin.”

SQLAIchemy ORM

While Storm is gaining an audience and building a community, SQLAlchemy appears
to be the dominate ORM in Python at the moment. Its approach is similar to that of

382 | Chapter12: Data Persistence

Storm. That could probably be better said as, “Storm’s approach is similar to that of
SQLAIlchemy,” since SQLAlchemy was first. Regardless, we’ll walk through the same
inventory operatingsystem example for SQLAlchemy that we finished for Storm.

Here is the table and object definition for the inventory operatingsystem table:

#!/usr/bin/env python

import os

from sqlalchemy import create engine

from sqlalchemy import Table, Column, Integer, Text, VARCHAR, MetaData
from sqlalchemy.orm import mapper

from sqlalchemy.orm import sessionmaker

engine = create _engine('sqlite:///%s' % os.path.join(os.getcwd(),
"inventory.db'))

metadata = MetaData()

os_table = Table('inventory operatingsystem', metadata,
Column('id', Integer, primary key=True),
Column('name', VARCHAR(50)),
Column('description’, Text()),

)

class OperatingSystem(object):
def _init_ (self, name, description):
self.name = name
self.description = description

def _repr (self):
return "<OperatingSystem('%s','%s')>" % (self.name, self.description)

mapper (OperatingSystem, os_table)
Session = sessionmaker(bind=engine, autoflush=True, transactional=True)
session = Session()

The biggest difference between our Storm and SQLAlchemy example table definition
code is that SQLAlchemy uses an additional class other than the table class and then
maps the two together.

Now that we have a definition of our table, we can write a piece of code to query all
records from that table:

#!/usr/bin/env python
from sqlalchemy_inventory definition import session, OperatingSystem

for os in session.query(OperatingSystem):
print os

And if we run it now, after populating some data from the previous examples, we’ll see
this:

Relational Serialization | 383

$ python sqlalchemy inventory query all.py <OperatingSystem('Linux','2.0.34 kernel')>
<OperatingSystem('Windows','3.1.1")>
</OperatingSystem></OperatingSystem>
If we want to create another record, we can easily do so by just instantiating an
OperatingSystem object and adding it to the session:

#!/usr/bin/env python
from sqlalchemy inventory definition import session, OperatingSystem

ubuntu_710 = OperatingSystem(name='Linux', description='2.6.22-14 kernel')
session.save(ubuntu_710)
session.commit()

That will add another Linux kernel to the table, this time a more current kernel. Run-
ning our query all script again gives us this output:

$ python sqlalchemy inventory query all.py

<OperatingSystem('Linux','2.0.34 kernel')>

<OperatingSystem('Windows','3.1.1")>

<OperatingSystem('Linux','2.6.22-14 kernel')>
Filtering results is pretty simple in SQLAlchemy as well. For example, if we wanted to
filter out all the OperatingSystems whose names start with “Lin,” we could write a script
like this:

#!/usr/bin/env python
from sqlalchemy_inventory definition import session, OperatingSystem

for os in session.query(OperatingSystem).filter(OperatingSystem.name.like('Lin%")):
print os

And we would see output like this:

$ python sqlalchemy_inventory query filter.py
<OperatingSystem('Linux','2.0.34 kernel')>
<OperatingSystem('Linux','2.6.22-14 kernel')>

This was just a brief overview of what SQLAlchemy can do. For more information on
using SQLAlchemy, visit the website at http://www.sqlalchemy.org/. Or you can check
out Essential SQLAlchemy by Rick Copeland (O’Reilly).

384 | Chapter12: Data Persistence

http://www.sqlalchemy.org/

CELEBRITY PROFILE: SQLALCHEMY

Mike Bayer

Michael Bayer is a NYC-based software contractor with a decade of
experience dealing with relational databases of all shapes and sizes.
After writing many homegrown database abstraction layers in such
languages as C, Java and Perl, and finally, after several years of prac-
tice working with a huge multi-server Oracle system for Major Lea-
gue Baseball, he wrote SQLAlchemy as the “ultimate toolset” for
generating SQL and dealing with databases overall. The goal is to
contribute toward a world-class one-of-a-kind toolset for Python, helping to make Py-
thon the universally popular programming platform it deserves to be.

|

Summary

In this chapter, we addressed a number of different tools that allow you to store your
data for later use. Sometimes you’ll need something simple and lightweight like the
pickle module. Other times, you’ll need something more full-featured like the
SQLAlchemy ORM. As we’ve shown, with Python, you have plenty of options from
very simple to complex and powerful.

Summary | 385

CHAPTER 13
Command Line

Introduction

The command line has a special relationship with the sysadmin. No other tool carries
the same level of significance or prestige as the command line. A complete mastery of
the art of the command line is a rite of passage for most systems administrators. Many
sysadmins think less of other sysadmins that use a “GUI” and call GUI administration
a crutch. This may not be completely fair, but it is a commonly held belief for true
mastery of the art of system’s administration.

For the longest time, Unix systems embraced the philosophy that the command line
interface (CLI) was far superior to any GUI that could be developed. In a recent turn
of events, it seems like Microsoft has also gotten back to its roots. Jeffrey Snover, ar-
chitect of Windows Powershell, said, “It was a mistake to think that GUIs ever would,
could, or even should, eliminate CLIs.”

Even Windows, which has had the poorest CLI of any modern OS for decades, now
recognizes the value of the CLI in its current Windows PowerShell implementation.
We will not be covering Windows in this book, but it is a very interesting fact that
cements just how important mastering the command line and command-line tool cre-
ation really is.

There is more to the story, though, than just mastering prebuilt Unix command-line
tools. To really become a master at the command line, you need to create your own
tools, and this may be the sole reason you picked up this book in the first place. Don’t
worry, this chapter won’t dissapoint you. After finishing it, you will be a master of
creating command-line tools in Python.

It was a purposeful decision to make the last chapter of the book focus on creating
command-line tools. The reason for this was to first expose you to a wide assortment
of techniques in Python, and then to finally teach you how to harness all of these skills
to summon your full power to create command-line tool masterpieces.

387

Basic Standard Input Usage

The simplest possible introduction to creating a command-line tool revolves around
knowing that the sys module is able to process command-line arguments via sys.argv.
Example 13-1 shows quite possibly the simplest command-line tool.

Example 13-1. sysargv.py

#!/usr/bin/env python

import sys
print sys.argv

These two lines of code return to standard out, whatever you type on the command
line after executing the command:

./sysargv.py

['./sysargv.py']
and

./sysargv.py foo
returns to standard out

['./sysargv.py', 'test']
and

./sysargv.py foo bad for you
returns to standard out

['./sysargv.py', 'foo', 'bad', 'for', 'you']
Let’s be a little more specific and slightly change the code to count the number of
command-line arguments in Example 13-2.
Example 13-2. sysargv.py
#!/usr/bin/env python

import sys

#Python indexes start at Zero, so let's not count the command itself which is
#sys.argv[0]

num_arguments = len(sys.argv) - 1
print sys.argv, "You typed in ", num_arguments, "arguments"

You might be thinking, “Wow, this is pretty easy, all I have to do now is reference
sys.argv arguments by number and write some logic to connect them.” Well, you’re
right, it is pretty easy to do that. Let’s add some features to our command-line appli-
cation. One final thing we can do is send an error message to standard out if there are
no arguments passed to the command line. See Example 13-3.

388 | Chapter13: Command Line

Example 13-3. sysargv-step2.py

#!/usr/bin/env python
import sys

num_arguments = len(sys.argv) - 1

#If there are no arguments to the command, send a message to standard error.
if num_arguments == 0:
sys.stderr.write('Hey, type in an option silly\n')

else:
print sys.argv, "You typed in ", num_arguments, "arguments"

Using sys.argv to create command-line tools is quick and dirty but is often the wrong
choice. The Python Standard Library includes the optparse module, which handles all
of the messy and uncomfortable parts of creating a quality command-line tool. Even
for tiny “throwaway” tools, it is a better choice to use optparse than sys.argv, as often
“throwaway” tools have a habit of growing into production tools. In the coming sec-
tions, we will explore why, but the short answer is that a good option parsing module
handles the edge cases for you.

Introduction to Optparse

As we mentioned in the previous section, even small scripts can benefit from using
optparse to handle option handling. A fun way to get started with optparse is to code
up a “Hello World” example that handles options and arguments. Example 13-4 is our
Hello World example.

Example 13-4. Hello World optparse

#!/usr/bin/env python
import optparse

def main():
p = optparse.OptionParser()
p.add option('--sysadmin', '-s', default="BOFH")
options, arguments = p.parse_args()
print 'Hello, %s' % options.sysadmin

if name_ =="' main_':

main()
When we run this, we the get the following different kinds of outputs:

$ python hello world optparse.py
Hello, BOFH

$ python hello world optparse.py --sysadmin Noah
Hello, Noah

$ python hello world optparse.py --s Jeremy
Hello, Jeremy

Introduction to Optparse | 389

$ python hello world optparse.py --infinity Noah
Usage: hello world optparse.py [options]

hello world optparse.py: error: no such option: --infinity

In our small script, we saw that we could set both short -s, and long --sysadmin options,
as well as default values. Finally, we saw the power of the built-in error handling that
optparse delivers when we wrongly entered an option, readability, that did not exist
for Perl.

Simple Optparse Usage Patterns

No Options Usage Pattern

In the previous section, we mentioned that even for small scripts optparse can be useful.
Example 13-5 is a simple optparse usage pattern in which we don’t even take options
but still take advantage of the power of optparse.

Example 13-5. Is command clone

#!/usr/bin/env python
import optparse
import os

def main():
p = optparse.OptionParser(description="Python 'ls' command clone",
prog="pyls",
version="0.1a",
usage="%prog [directory]")
options, arguments = p.parse_args()
if len(arguments) == 1:
path = arguments[0]
for filename in os.listdir(path):
print filename

else:
p.print_help()
if _name_ =="'_ main_ ':
main()

In this example, we reimplement the 1s command in Python, except we only take an
argument, the path to perform the 1s on. We don’t even use options, but can still utilize
the power of optparse, by relying on it to handle the flow of our program. First we
provide some implementation deals this time when we make an instance of optparse,
and add a usage value that instructs the potential user of our tool how to execute it
properly. Next, we check to make sure the number of arguments is exactly one; if there
are more or less arguments than one, we use the built-in help message
p.print_help() to display the instructions on how to use the tool again. Here is what

« »,

it looks like when run correctly first by running it against our current directory or “.”:

390 | Chapter13: Command Line

$ python no_options.py .
.svn
hello_world_optparse.py
no_options.py

Next we look at what happens when we don’t enter any options:

$ python no_options.py
Usage: pyls [directory]

Python 'ls' command clone

Options:
--version show program's version number and exit
-h, --help show this help message and exit

What is interesting about this is we defined this behavior with the p.print_help() call
if the arguments were not exactly one. This is exactly the same as if we entered --help:

$ python no_options.py --help
Usage: pyls [directory]

Python 'ls' command clone

Options:
--version show program's version number and exit
-h, --help show this help message and exit

And because we defined a --version option, we can see that output as well:

$ python no options.py --version
0.1a

In this example, optparse was helpful even on simple “throwaway” scripts that you
might be tempted to toss.

True/False Usage Pattern

Using an option to set a True or False statement in your program is quite useful. The
classic example of this involves setting both a --quiet, which supresses all standard
out, and a --verbose, which triggers extra output. Example 13-6 is what this looks like.

Example 13-6. Adding and subtracting verbosity

#!/usr/bin/env python
import optparse
import os

def main():
p = optparse.OptionParser(description="Python 'ls' command clone",
prog="pyls",
version="0.1a",
usage="%prog [directory]")
p.add_option("--verbose", "-v", action="store true",
help="Enables Verbose Output",default=False)

Simple Optparse Usage Patterns | 391

options, arguments = p.parse_args()
if len(arguments) == 1:
if options.verbose:
print "Verbose Mode Enabled"
path = arguments[0]
for filename in os.listdir(path):
if options.verbose:
print "Filename: %s
elif options.quiet:

"

% filename

pass
else:
print filename
else:
p.print_help()
if name_ =="' main_':
main()

By using a --verbose, we have effectively set levels of verbosity for stdout. Let’s take a
look at each level of verbosity in action. First, here is the normal way:

$ python true_false.py /tmp
.aksusb

alm.log

amt.log

authTokenData

FLEXnet

helloworld

hsperfdata_ngift

ics10003

ics12158

ics13342

icssuis501
MobileSync.lock.f9e26440fe5adbbbbc42d7bf8f87c1e5fc61a7fe
summary.txt

Next, here is our --verbose mode:

$ python true_false.py --verbose /tmp
Verbose Mode Enabled

Filename: .aksusb

Filename: alm.log

Filename: amt.log

Filename: authTokenData

Filename: FLEXnet

Filename: helloworld

Filename: hsperfdata_ngift

Filename: ics10003

Filename: ics12158

Filename: ics13342

Filename: icssuis501

Filename: MobileSync.lock.f9e26440fe5adbb6bc42d7bf8f87c1e5fc61a7fe
Filename: summary.txt

When we set the --verbose option, it makes options.verbose become True, and as a
result, our conditional statement gets executed that prints “Filename:” in front of the

392 | Chapter13: Command Line

actual filename. Notice in our script that we set default=False and
action="store_true", this effectively says in English, by default be False, but if someone
specifies this --option, set the option value to become True. This is the essence of using
True/False options with optparse.

Counting Options Usage Pattern

In a typical Unix command-line tool, for example, tcpdump, if you specify -vvv, you will
get extra verbose output as opposed to just using -v or -vv. You can do the same thing
with optparse by adding a count for each time an option is specified. For example, if
you wanted to add the same level of verbosity in your tool, it would look like Exam-
ple 13-7.

Example 13-7. Counting Options Usage pattern

#!/usr/bin/env python
import optparse
import os

def main():
p = optparse.OptionParser(description="Python 'ls' command clone",
prog="pyls",
version="0.1a",
usage="%prog [directory]")
p.add_option("-v", action="count", dest="verbose")
options, arguments = p.parse_args()
if len(arguments) == 1:
if options.verbose:
print "Verbose Mode Enabled at Level: %s" % options.verbose
path = arguments[0]
for filename in os.listdir(path):
if options.verbose == 1:
print "Filename: %s
elif options.verbose ==2 :
fullpath = os.path.join(path,filename)
print "Filename: %s | Byte Size: %s" % (filename,
os.path.getsize(fullpath))

"

% filename

else:
print filename
else:
p.print_help()
if _name__ == '_main__':
main()

By using an auto-incremented count design pattern, we can make sure of just one op-
tion, yet do three different things. The first time we call -v, it sets options.verbose to
1, and if we use --v it sets options.verbose to 2. In our actual program, with no options
we just print out the filename, with -v we print out the word Filename with the filename,
and then finally, whew, with -vv we print out the byte size as well as the filename. This
is our output with -wv specified:

Simple Optparse Usage Patterns | 393

$ python verbosity levels count.py -vv /tmp
Verbose Mode Enabled at Level: 2

Filename: .aksusb | Byte Size: 0

Filename: alm.log | Byte Size: 1403
Filename: amt.log | Byte Size: 3038
Filename: authTokenData | Byte Size: 32
Filename: FLEXnet | Byte Size: 170
Filename: helloworld | Byte Size: 170
Filename: hsperfdata ngift | Byte Size: 102
Filename: ics10003 | Byte Size: 0

Filename: ics12158 | Byte Size: 0

Filename: ics13342 | Byte Size: 0

Filename: ics14183 | Byte Size: 0

Filename: icssuis501 | Byte Size: 0
Filename: MobileSync.lock.f9e26440fe5adbbbbc42d7bf8f87c1e5fco1a7fe | Byte Size: 0
Filename: summary.txt | Byte Size: 382

Choices Usage Pattern

Sometimes it’s just easier to present a few choices for an option. In our last example,
we created options for - -verbose and --quiet, but we could also just make them choices
that get selected from a --chatty option. Using our previous example, Example 13-8
is what it looks like when it is reworked to use options.

Example 13-8. Choices Usage pattern

#!/usr/bin/env python
import optparse
import os

def main():

p = optparse.OptionParser(description="Python 'ls' command clone",
prog="pyls",
version="0.1a",
usage="%prog [directory]")

p.add_option("--chatty", "-c", action="store", type="choice",

dest="chatty",
choices=["normal", "verbose", "quiet"],
default="normal")

options, arguments = p.parse_args()

print options

if len(arguments) ==

if options.chatty == "verbose":
print "Verbose Mode Enabled"
path = arguments[0]
for filename in os.listdir(path):
if options.chatty == "verbose":
print "Filename: %s " % filename
elif options.chatty == "quiet":
pass
else:
print filename
else:
p.print_help()

394 | Chapter13: Command Line

if _name__ == '_main_ ':
main()

If we run this command without an option like we did in the previous example, we get
this error:

$ python choices.py --chatty
Usage: pyls [directory]

pyls: error: --chatty option requires an argument

And if we give the wrong argument to the option, we get another error that tells us the
available options:

$ python choices.py --chatty=nuclear /tmp
Usage: pyls [directory]

pyls: error: option --chatty: invalid choice: 'nuclear' (choose from 'normal’,
'verbose', 'quiet')

One of the handy aspects of using choices is that it prevents relying on the user to enter
the correct argument for your command. The user can only select from choices you
have determined. Finally, here is what the command looks like when run correctly:

$ python choices.py --chatty=verbose /tmp
{'chatty': 'verbose'}

Verbose Mode Enabled

Filename: .aksusb

Filename: alm.log

Filename: amt.log

Filename: authTokenData

Filename: FLEXnet

Filename: helloworld

Filename: hsperfdata_ngift

Filename: ics10003

Filename: ics12158

Filename: ics13342

Filename: ics14183

Filename: icssuis501

Filename: MobileSync.lock.f9e26440fe5adbbbbc42d7bf8f87c1e5fc61a7fe
Filename: summary.txt

If you notice, the output at the top has “chatty” as the key and “verbose” as the value.
In our example above, we put a print statement for options to show you what they look
like to our program. Finally, here is one final example of using --chatty with a quiet
choice:

$ python choices.py --chatty=quiet /tmp
{'chatty': 'quiet'}

Simple Optparse Usage Patterns | 395

Option with Multiple Arguments Usage Pattern

By default, an option with optparse can only take one argument, but it is possible to
set the number to something else. Example 13-9 is a contrived example in which we
make a version 1s that displays the output of two directories at once.

Example 13-9. Listing of two directories

#!/usr/bin/env python
import optparse
import os

def main():

p = optparse.OptionParser(description="Lists contents of two directories",
prog="pymultils",
version="0.1a",
usage="%prog [--dir diri dir2]")

p.add_option("--dir", action="store", dest="dir", nargs=2)

options, arguments = p.parse_args()

if options.dir:

for dir in options.dir:
print "Listing of %s:\n" % dir
for filename in os.listdir(dir):
print filename

else:
p.print_help()
if name_ =="' main_':
main()

If we look at the output of this command with the only argument for the --dir option,
we get this error:

[ngift@Macintosh-8][H:10238][J:0]# python multiple option_args.py --dir /tmp =
Usage: pymultils [--dir dir1l dir2]

pymultils: error: --dir option requires 2 arguments

With the correct number of arguments for our --dir option, we get this:

pymultils: error: --dir option requires 2 arguments

[ngift@Macintosh-8][H:10239][J:0]# python multiple option_args.py --dir /tmp
/Users/ngift/Music

Listing of /tmp:

.aksusb

FLEXnet
helloworld
hsperfdata_ngift
ics10003
ics12158
ics13342
ics14183
ics15392
icssuis501
MobileSync.lock.f9e26440fe5adbbbbc42d7bf887c1e5fc61a7fe

396 | Chapter13: Command Line

summary.txt
Listing of /Users/ngift/Music:

.DS_Store
.localized
iTunes

Unix Mashups: Integrating Shell Commands into Python
Command-Line Tools

In Chapter 10, we looked at many of the common ways to use the subprocess module.
Creating new command-line tools by either wrapping existing command-line tools with
Python and changing their API, or mixing one or more Unix command-line tools with
Python offers an interesting approach to examine. It is trivial to wrap an existing com-
mand-line tool with Python and change the behavior to meet your specific needs. You
may choose to integrate a configuration file that holds some of the arguments for some
of the options you use, or you may choose to create defaults for others. Regardless of
the requirement, you can use subprocess and optparse to change a native Unix tools
behavior without much trouble.

Alternately, mixing a command-line tool with pure Python can lead to interesting tools
that are not easily created in C or Bash. How about mixing the dd command with threads
and queues, tcpdump with Python’s regular expression library, or perhaps a customized
version of rsync? These Unix 2.0 “mashups” are very similar to their Web 2.0 cousins.
By mixing Python with Unix tools, new ideas are created, and problems are solved in
different ways. In this section, we explore some of these techniques.

Kudzu Usage Pattern: Wrapping a Tool in Python

Sometimes you find yourself using a command-line tool that isn’t exactly what you
want it to be. It might require too many options, or the argument order is reversed from
the way you want to use it. With Python, it is trivial to change the behavior of a tool
and make it do whatever you really want it to do. We like to call this the “Kudzu” design
pattern. If you are not familiar with Kudzu, it was a fast-growing vine imported from
Japan to the southern United States. Kudzu often engulfs and surrounds natural habit
and creates an alternate landscape. With Python, you can do the same to your Unix
environment if you so choose.

For this example, we are going to wrap the snmpdf command with Python to simplify
its use. First let’s take a look at what it looks like when we run snmpdf normally:

[ngift@Macintosh-8][H:10285][J:0]# snmpdf -c public -v 2c example.com

Description size (kB) Used Available Used%
Memory Buffers 2067636 249560 1818076 12%
Real Memory 2067636 1990704 76932 96%
Swap Space 1012084 64 1012020 0%

74594112 17420740 57173372 23%

Unix Mashups: Integrating Shell Commands into Python Command-Line Tools | 397

/sys 0 0 0o 0%
/boot 101086 20041 81045 19%

If you are not familiar with the snmpdf, it is meant to be run remotely on a system that
has SNMP enabled and configured to allow access to the disk section of the MIB tree.
Often, command-line tools that deal with the SNMP protocol have many options,
which make them difficult to use. To be fair, the tool creators had to design something
that would work with SNMP versions 1, 2, and 3, plus a whole assortment of other
issues. What if you don’t care about this, though, and you are a very lazy person. You
want to make your own “Kudzu” version of snmpdf that takes only a machine as an
argument. Sure, we can do that; Example 13-10 is what it looks like.

W

Often, when you wrap a Unix tool in Python to alter the behavior of the
tool, it becomes more lines of code than if you altered it with Bash.
o5 Ultimately, though, we feel this is a win because it allows you to use the
richer Python toolset to extend this tool as you see fit. In addition, you
can test this code the same way you test the rest of the tools you write,
so often this extra code is the right way to go for the long haul.

Example 13-10. Wrapping SNMPDF command with Python

#!/usr/bin/env python
import optparse
from subprocess import call

def main():
p = optparse.OptionParser(description="Python wrapped snmpdf command",
prog="pysnmpdf",
version="0.1a",
usage="%prog machine")
p.add_option("-c", "--community", help="snmp community string")
p.add option("-V", "--Version", help="snmp version to use")
p.set_defaults(community="public",Version="2c")
options, arguments = p.parse_args()
SNMPDF = "snmpdf"
if len(arguments) == 1:
machine = arguments[0]
#Our new snmpdf action
call([SNMPDF, "-c", options.community, "-v",options.Version, machine])

else:
p.print_help()
if name_ =="' main_':
main()

This script runs in at about twenty lines of code, yet it makes our life much easier. Using
some of the magic of optparse to help us, we created options that had default arguments
that matched out needs. For example, we set a SNMP version option to be version 2
by default, as we know our data center uses only version 2 right now. We also set the
community string to “public,” because that is what it is set to in our research and
development lab, for example. One of the nice things about doing it with optparse and

398 | Chapter13: Command Line

not a hardcoded script is that we have the flexibility to change our options without
changing the script.

Notice that the default arguments were set using the set_defaults method, which al-
lows us to set all defaults for a command-line tool in one spot. Also, notice the use of
subprocess.call. We embedded the old options, such as -c, and then wrapped the new
values that come in from optparse, or options.community in this case, to fill things in.
Hopefully, this technique highlights some of the “Kudzu” power of Python to engulf a
tool and change it to meet our needs.

Hybrid Kudzu Design Pattern: Wrapping a Tool in Python, and Then
Changing the Behavior

In our last example, we made snmpdf quite a bit easier to use, but we didn’t change the
basic behavior of the tool. The output of both tools was identical. Another approach
we can use is to not only engulf a Unix tool, but to then change the basic behavior of
the tool with Python as well.

In the next example, we use Python’s generators in a functional programming style to
filter the results of our snmpdf command to search for critical information, and then
append a "CRITICAL" flag to it. Example 13-11 shows what it looks like.

Example 13-11. Altering the SNMPDF command with generators

#!/usr/bin/env python

import optparse

from subprocess import Popen, PIPE
import re

def main():
p = optparse.OptionParser(description="Python wrapped snmpdf command",
prog="pysnmpdf",
version="0.1a",
usage="%prog machine")
p.add_option("-c", "--community", help="snmp community string")
p.add option("-V", "--Version", help="snmp version to use")
p.set_defaults(community="public",Version="2c")
options, arguments = p.parse_args()
SNMPDF = "snmpdf"
if len(arguments) ==
machine = arguments[0]

#We create a nested generator function
def parse():
"""Returns generator object with line from snmpdf"""
ps = Popen([SNMPDF, "-c", options.community,
"-v",options.Version, machine],
stdout=PIPE, stderr=PIPE)
return ps.stdout

#Generator Pipeline To Search For Critical Items

Unix Mashups: Integrating Shell Commands into Python Command-Line Tools | 399

pattern = "9[0-9]%"

outline = (line.split() for line in parse()) #remove carriage returns
flag = (" ".join(row) for row in outline if re.search(pattern, row[-1]))
#patt search, join strings in list if match

for line in flag: print "%s CRITICAL" % line

#Sample Return Value

#Real Memory 2067636 1974120 93516 95% CRITICAL

else:
p.print_help()
if _name__ == '_main__':
main()

If we run our new “altered” version of snmpdf we get this output on test machine:

[ngift@Macintosh-8][H:10486][J:0]# python snmpdf alter.py localhost
Real Memory 2067636 1977208 90428 95% CRITICAL

We now have a completely different script that will only generate output if a value in
snmpdf is 90 percent or higher, which we have signified as critical. We could run this
in a cron job nightly against a few hundred machines, and then send an email if there
is a return value from our script. Alternately, we could extend this script a little further
and search for usage levels of 80 percent, 70 percent, and generate warnings if they
reach those levels as well. It would also be trivial to integrate this with Google App
Engine, for example, so that you could create a web application that monitors the disk
usage in an infrastructure.

In looking at the code itself, there are a few things to point out that make it different
than our previous example. The first difference is the use of subprocess.Popen instead
of using subprocess.call. If you find yourself wanting to parse the output of a Unix
command-line tool, then subprocess.Popen is what you want to do. Note also, that we
used stdout.readlines(), which returns a list instead of a string. This is important later
on when we take this output and funnel it through a series of generator expressions.

In the Generator pipeline section, we funnel our generator objects into two expressions
to find a match for the critical search criteria we set. As we stated before, we could
easily add a couple more generator lines similar to the flag expression, to get results for
thresholds in 70 percent and 80 percent ranges.

This tool is perhaps more complex than you would want to implement
into a production tool. A better idea might be to break it down into
s several smaller generic pieces that you import. That being said, it works
to illustrate our example.

400 | Chapter13: Command Line

Hybrid Kudzu Design Pattern: Wrapping a Unix Tool in Python to Spawn
Processes

Our last example was reasonably cool, but another interesting way to change the be-
havior of existing Unix tools is to make them spawn multiple copies in an efficient way.
Sure, it is a little freaky, but hey, sometimes you need to be creative to get your job
done. This is one of the parts of being a sysadmin that is fun, sometimes you have to
do crazy things to solve a problem in production.

In the data chapter, we created a test script that created image files using the dd com-
mand running in parallel. Well, let’s take that idea and run with it, and make a per-
manent command-line tool we can reuse over and over again. At the very least, we will
have something to hammer disk I/O time when we are testing a new file server. See
Example 13-12.

Exampl

from su
import
import

class I

nun

def

def

def

e 13-12. Multi dd command

bprocess import Popen, PIPE
optparse
sys

mageFile():
Created Image Files Using dd"""

__init_ (self, num=None, size=None, dest=None):
self.num = num

self.size = size

self.dest = dest

createImage(self):
"""creates N 10mb identical image files
value = "%sMB " % str(self.size/1024)
for i in range(self.num):
try:
cmd = "dd if=/dev/zero of=%s/file.%s bs=1024 count=%s"\
% (self.dest,i,self.size)
Popen(cmd, shell=True, stdout=PIPE)
except Exception, err:
sys.stderr.write(err)

nnn

controller(self):
"""Spawn Many dd Commands
p = optparse.OptionParser(description="Launches Many dd",
prog="Many dd",
version="0.1",
usage="%prog [options] dest")
p.add_option('-n', '--number', help='set many dd',
type=int)
p.add_option('-s', '--size', help='size of image in bytes',
type=int)
p.set_defaults(number=10,
size=10240)
options, arguments = p.parse_args()
if len(arguments) == 1:

wnn

Unix Mashups: Integrating Shell Commands into Python Command-Line Tools | 401

self.dest = arguments[0]
self.size = options.size
self.num = options.number
#runs dd commands
self.createImage()

def main():
start = ImageFile()
start.controller()

" "

if _name__ == "_main_":

main()

Now if we run our multi dd command, we can set the byte size of the file, the path, and
the total number of files/processes. Here is what it looks like:
$./subprocess_dd.py /tmp/
$ 10240+0 records in
10240+0 records out
10485760 bytes transferred in 1.353665 secs (7746199 bytes/sec)
10240+0 records in
10240+0 records out
10485760 bytes transferred in 1.793615 secs (5846160 bytes/sec)
10240+0 records in
10240+0 records out
10485760 bytes transferred in 2.664616 secs (3935186 bytes/sec)

...output supressed for space....

One immediate use for this hybrid tool would be in testing the disk I/O performance
of a high-speed Fibre SAN, or NAS device. With a bit of work, you could add hooks
for generation of PDF reports, and email the results. It would be good to point out that
the same thing could be accomplished with threads as well, if threads seemed to fit the
problem you needed to solve.

Integrating Configuration Files

Integrating a configuration file into a command-line tool can make all the difference
in terms of usability and future customization. It is a bit odd to talk about usability and
the command line, because often it is only brought up for GUI or web tools. This is
unfortunate, as a command-line tool deserves the same attention to usability that a GUI
tool does.

A configuration file can also be a useful way to centralize the way a command-line tool
runs on multiple machines. The configuration file could be shared out via an NFS
mount, and then hundreds of machines could read this configuration file from a generic
command-line tool you created. Alternately, you may have some sort of configuration
management system in place, and you could distribute configuration files to tools you
created as well.

402 | Chapter13: Command Line

The Python Standard Library has an excellent module, ConfigParser, for reading and
writing configuration files using the .ini syntax. It turns out that the .ini format is a nice
medium to read and write simple configuration data, without having to resort to XML,
and without locking the person editing the file into knowing the Python language.
Please refer to the previous chapter for a more detailed look at using the
ConfigParser module as well.

W

Be sure that you do not get in the habit of depending on the order of
items in the config file. Interally, the ConfigParser module uses a dic-
Wis: tionary, and as such you will need to refer to it in this way to correctly
" obtain a mapping,.

To get started with integrating configuration files into a command-line tool, we are
g g g g

going to create a “hello world” configuration file. Name the file hello_config.ini and
paste this inside:

[Section A]
phrase=Config

Now that we have a simple config file, we can integrate this into our previous Hello
World command-line tool in Example 13-13.

Example 13-13. Hello config file command-line tool

#!/usr/bin/env python
import optparse
import ConfigParser

def readConfig(file="hello config.ini"):

Config = ConfigParser.ConfigParser()

Config.read(file)

sections = Config.sections()

for section in sections:
#uncomment line below to see how this config file is parsed
#print Config.items(section)
phrase = Config.items(section)[0][1]
return phrase

def main():
p = optparse.OptionParser()
p.add option('--sysadmin', '-s')
p.add option('--config', '-c', action="store true")
p.set_defaults(sysadmin="BOFH”)

options, arguments = p.parse_args()
if options.config:
options.sysadmin = readConfig()
print 'Hello, %s' % options.sysadmin
if _name__ == '_main_':
main()

Integrating Configuration Files | 403

If we run this tool without any options, we get a default value of BOFH just like the
original “hello world” program:

[ngift@Macintosh-8][H:10543][J:0]# python hello config optparse.py
Hello, BOFH

If we select --config file, though, we parse our configuration file and get this response:

[ngift@Macintosh-8][H:10545][J:0]# python hello_config optparse.py --config
Hello, Config

N

Most of the time you will probably want to set a default path for a --
config option and allow someone to customize the location where the
~ 9l file gets read. You can do that as follows instead of just storing the option
" to be default_true:

p.add_option('--config', '-c',
help='Path to read in config file')

If this was a bigger, and actually useful program, we could turn it over to someone
without knowledge of Python. It would allow them to customize it by changing the
value to parser=Config to be something else without having to touch the code. Even if
they do have knowledge of Python, though, it is often nice to not have to enter the same
options over and over on the command line, yet keep the tool flexible.

Summary

The standard library Optparse and ConfigParser modules are very easy to work with
and have been around for quite some time, so they should be available on most systems
you run into. If you find yourself needing to write a lot of command-line tools, it might
be worth exploring on your own some of the advanced abilities of optparse, such as
using callbacks and extending optparse itself. You also might be interested in looking
at a few related modules that do not appear in the standard library such as:
CommandLineApp (http://www.doughellmann.com/projects/CommandLineApp/), Arg-
parse (http://pypi.python.org/pypilargparse), and ConfigObj (http://pypi.python.org/py
pi/ConfigObj).

404 | Chapter13: Command Line

http://www.doughellmann.com/projects/CommandLineApp/
http://pypi.python.org/pypi/argparse
http://pypi.python.org/pypi/ConfigObj
http://pypi.python.org/pypi/ConfigObj

CHAPTER 14
Pragmatic Examples

Managing DNS with Python

Managing a DNS server is a fairly straightforward task compared to, say, an Apache
configuration file. The real problem that afflicts data centers and web hosting providers,
though, is performing programatic large-scale DNS changes. It turns out that Python
does quite a good job in this regard with a module called dnspython. Note there is also
also another DNS module named PyDNS, but we will be covering dnspython.

Make sure you refer to the official documentation: http://www.dnspython.org/. There
is also a great article on using dnspython here: http://vallista.idyll.org/~grig/articles/.

To get started using dnspython, you will only need to do an easy_install as the package
is listed in the Python Package Index.

ngift@Macintosh-8][H:10048][J:0]# sudo easy install dnspython
Password:

Searching for dnspython

Reading http://pypi.python.org/simple/dnspython/

[output supressed]

Next, we explore the module with IPython, like many other things in the book. In this
example, we get the A and MX records for oreilly.com:

In [1]: import dns.resolver

In [2]: ip = dns.resolver.query("oreilly.com","A")
[3]: mail = dns.resolver.query("oreilly.com","MX")
[4]: for i,p in ip,mail:

ceeld print i,p

208.201.239.37 208.201.239.36
20 smtpi.oreilly.com. 20 smtp2.oreilly.com.

In Example 14-1, we assign the “A” record results to ip and the “MX” records to mail.
The “A” results are on top, and the “MX” records are on the bottom. Now that we have
some idea how it works, let’s write a script that collects the “A” records of a collection
of hosts.

405

http://www.dnspython.org/
http://vallista.idyll.org/~grig/articles/

Example 14-1. Query a group of hosts

import dns.resolver
hosts = ["oreilly.com", "yahoo.com", "google.com", "microsoft.com", "cnn.com"]

def query(host_list=hosts):
collection = []
for host in host_list:
ip = dns.resolver.query(host,"A”)
for i in ip:
collection.append(str(i))
return collection

" "

if _name__ == "_main__":
for arec in query():
print arec

If we run this script, we get all of the “A” records for these hosts, and it looks like this:

[ngift@Macintosh-8][H:10046][J1:0]# python query dns.py
208.201.239.37
208.201.239.36
216.109.112.135
66.94.234.13
64.233.167.99
64.233.187.99
72.14.207.99
207.46.197.32
207.46.232.182
64.236.29.120
64.236.16.20
64.236.16.52
64.236.24.12

One obvious problem this solves is programmatically testing whether all of your hosts
have the correct “A” record that you have on file.

There is quite a bit more that dnspython can do: it can manage DNS zones and perform
more complex queries than what we described here. If you are interested in seeing even
more examples, please see the URLs referenced earlier.

Using LDAP with OpenLDAP, Active Directory, and More with
Python

LDAP is a buzzword at most corporations, and one of the authors even runs an LDAP
database to manage his home network. If you are not familiar with LDAP, it stands for
Lightweight Directory Access Protocol. One of the best definitions we have heard of
LDAP comes from Wikipedia, “an application protocal for querying and modifying
directory services running over TCP/IP.” One example of a service is authentication,
which is by far the most popular use for the protocol. Examples of directory dervers

406 | Chapter14: Pragmatic Examples

that support the LDAP protocol are Open Directory, Open LDAP, Red Hat Directory
Server, and Active Directory. The python-ldap API suports communication with both
OpenLDAP and Active Directory.

There is a Python API to LDAP called python-ldap, and it includes in its API support
an object-oriented wrapper with OpenLDAP 2.x. There is also support for other LDAP-
related items, including processing LDIF files and LDAPv3. To get started, you will
need to download the package from the python-ldap sourceforge project here: http://
python-ldap.sourceforge.net/download.shtmi.

After you install python-ldap, you will want to first explore the library in IPython. Here
is what an interactive session looks like in which we perform both a succesful bind to
a public ldap server and then an unsuccesful bind. Getting into the specifics of setting
up and configuring LDAP is beyond the scope of this book, but we can start testing the
python-ldap API using the University of Michigan’s public LDAP server.

In [1]: import ldap
In [2]: 1 = ldap.open("ldap.itd.umich.edu")

In [3]: 1l.simple_bind()
Out[3]: 1

That simple bind tells us we are successful, but let’s look at a failure and see what that
looks like as well:

In [5]: try:
1 = 1dap.open("127.0.0.1")
....: except Exception,err:
. print err

SERVER_DOWN Traceback (most recent call last)
/root/&1t;ipython console>

/usr/lib/python2.4/site-packages/ldap/ldapobject.py in simple bind(self, who, cred,
serverctrls, clientctrls)
167 simple_bind([who="" [,cred=""']]) -> int
168 win
--> 169 return self. ldap_call(self. l.simple_bind,who,cred,EncodeControlTuples
(serverctrls),EncodeControlTuples(clientctrls))
170
171 def simple_bind_s(self,who="'",cred="",serverctrls=None,clientctrls=None):

/usr/lib/python2.4/site-packages/1ldap/ldapobject.py in ldap_call(self, func, *args,

*kkwargs)
92 try:
93 try:
---> 94 result = func(*args,**kwargs)
95 finally:

Using LDAP with OpenLDAP, Active Directory, and More with Python | 407

http://python-ldap.sourceforge.net/download.shtml
http://python-ldap.sourceforge.net/download.shtml

96 self. ldap_object lock.release()
SERVER DOWN: {'desc': "Can't contact LDAP server"}

As we can see, in this example, there is not an LDAP server running, and our code blew
up.

Importing an LDIF File

Making a simple bind to a public LDAP directory is not very useful to help you get your
job done. Here is an example of doing an asynchronous LDIF import:

import ldap
import ldap.modlist as modlist

1dif = "somefile.ldif"

def create():
1 = ldap.initialize("ldaps://localhost:636/")
1.simple bind_s("cn=manager,dc=example,dc=com","secret")
dn="cn=root, dc=example,dc=com"

rec = {}

rec['objectclass'] = ['top', 'organizationalRole','simpleSecurityObject']
rec['cn'] = 'root'

rec['userPassword'] = 'SecretHash'

rec['description'] = 'User object for replication using slurpd'

1dif = modlist.addModlist(attrs)

l.add _s(dn,1dif)

1.unbind_s()
Going over this example, we initialize to a local LDAP server first, then create an object
class that will map to the LDAP database when we do a mass asynchronous import of
an LDIF file. Note that 1.add_s is what shows us that we are making an ansynchronous
call to the APIL.

These are the basics for using Python and LDAP together, but you should refer to the
resources given at the beginning of the chapter for further information about using
python-ldap. Specifically, there are examples that detail LDAPv3; Create, Read, Up-
date, Delete (CRUD); and more.

One final thing to mention is that there is a tool aptly named web2ldap, and it is a
Python, web-based frontend for LDAP by the same author of python-ldap. You might
consider trying it out as well as an alternative to some of the other web-based manage-
ment solutions for LDAP. Go to http://www.web2ldap.de/ for the official documenta-
tion. It is highly structured around LDAPv3 support.

Apache Log Reporting

Currently, Apache is the web server for approximately 50 percent of the domains on
the Internet. The following example is intended to show you an approach for reporting
on your Apache logfiles. This example will focus only on one aspect of the information

408 | Chapter14: Pragmatic Examples

http://www.web2ldap.de/

available in your Apache logs, but you should be able to take this approach and apply
it to any type of data that is contained in those logs. This approach will also scale well
to large data files as well as large numbers of files.

In Chapter 3, we gave a couple of examples of parsing an Apache web server log to
extract some information from it. In this example, we’ll reuse the modules we wrote
for Chapter 3 to show how to generate a human-readable report from one or more
logfiles. In addition to handling all of the logfiles that you specify separately, you can
tell this script to consolidate the logfiles together and generate one single report. Ex-
ample 14-2 shows the code for the script.

Example 14-2. Consolidated Apache logfile reporting
#!/usr/bin/env python

from optparse import OptionParser

def open_files(files):
for f in files:
yield (f, open(f))

def combine lines(files):
for f, f_obj in files:
for line in f_obj:

yield line

def obfuscate_ipaddr(addr):
return ".".join(str((int(n) / 10) * 10) for n in addr.split('."))

if _name__ == '_main__
parser = OptionParser()
parser.add option("-c", "--consolidate", dest="consolidate", default=False,
action="store_true', help="consolidate log files")
parser.add option("-r", "--regex", dest="regex", default=False,

action="store_true', help="use regex parser")

(options, args) = parser.parse_args()
logfiles = args

if options.regex:

from apache_log parser regex import generate log report
else:

from apache_log parser_split import generate_log report

opened_files = open_files(logfiles)

if options.consolidate:
opened files = (('CONSOLIDATED', combine lines(opened files)),)

for filename, file obj in opened files:
print "*" * 60
print filename
print "-" * 60
print "%-20s%s" % ("IP ADDRESS", "BYTES TRANSFERRED")

Apache Log Reporting | 409

print "-" * 60
report_dict = generate_log report(file obj)
for ip_addr, bytes in report_dict.items():
print "%-20s%s" % (obfuscate_ipaddr(ip_addr), sum(bytes))
print "=" * 60

At the top of the script, we define two functions: open_files() and combine lines().
Later in the script, both of these functions allow us later to use some mild generator-
chaining to simplify the code just a bit. open_files() is a generator function that takes
a list (actually, any iterator) of filenames. For each of those filenames, it yields a tuple
of the filename and a corresponding open file object. combine_lines() takes an iterable
of open file objects as its only argument. It iterates over the file objects with a for loop.
For each of those files, it iterates over the lines in the file. And it yields each line that
it iterates over. The iterable that we get from combine_lines() is comparable to how
file objects are commonly used: iterating over the lines of the file.

Next, we use optparse to parse the command-line arguments from the user. We’re only
accepting two arguments, both of them Boolean: consolidate logfiles and use regular
expression library. The consolidate option tells the script to treat all the files as one
file. In a sense, we wind up concatenating the files together if this option is passed in.
But we’ll get to that momentarily. The regex option tells the script to use the regular
expression library that we wrote in Chapter 3 rather than the “split” library. Both should
offer identical functionality, but the “split” library is faster.

Next, we check whether the regex flag was passed in. If it was, we use the regex module.
If not, we use the split module. We really included this flag and import condition to
compare the performance of the two libraries. But, we’ll get to the running and per-
formance of this script later.

Then, we call open_files() on our list of file names passed in by the user. As we’ve
already mentioned, open_files() is a generator function and yields file objects from
the list of filenames that we pass in to it. This means that it doesn’t actually open the
file until it yields it back to us. Now that we have an iterable of open file objects, we
can do a couple of things with it. We can either iterate over all of the files that we have
generated and report on each file, or we can somehow combine the logfiles together
and report on them as one file. This is where the combine lines() function comes in.
If the user passed in the “consolidate” flag, the “files” that will be iterated over are
actually just a single file-like object: a generator of all the lines in all the files.

So, whether it is a real or combined file, we pass each file to the appropriate
generate_log report() function, which then returns a dictionary of IP addresses and
bytes sent to that IP. For each file, we print out some section breaking strings and
formatted strings containing the results of generate_log report(). The output fora run
on a single 28 KB logfile looks like this:

access.log

410 | Chapter 14: Pragmatic Examples

IP ADDRESS BYTES TRANSFERRED

190.40.10.0 17479
200.80.230.0 45346
200.40.90.110 8276
130.150.250.0 0
70.0.10.140 2115
70.180.0.220 76992
200.40.90.110 23860
190.20.250.190 499
190.20.250.210 431
60.210.40.20 27681
60.240.70.180 20976
70.0.20.120 1265
190.20.250.210 4268
190.50.200.210 4268
60.100.200.230 0
70.0.20.190 378
190.20.250.250 5936

The output for three logfiles (actually, the same logfile three times with the same log
data duplicated over and over) looks like this:

access.log

IP ADDRESS BYTES TRANSFERRED
190.40.10.0 17479
200.80.230.0 45346

<snip>

70.0.20.190 378
190.20.250.250 5936

access_big.log

IP ADDRESS BYTES TRANSFERRED
190.40.10.0 1747900
200.80.230.0 4534600

<snip>

70.0.20.190 37800
190.20.250.250 593600

access_bigger.log

IP ADDRESS BYTES TRANSFERRED
190.40.10.0 699160000
200.80.230.0 1813840000

<snip>

70.0.20.190 15120000

Apache Log Reporting | 411

190.20.250.250 237440000

And the output of all three consolidated together looks like this:

kokokokskok sk sk ok kokok
CONSOLIDATED
IP ADDRESS BYTES TRANSFERRED
190.40.10.0 700925379
200.80.230.0 1818419946
<snip>
190.20.250.250 238039536

So, how well does this script perform? And what does memory consumption look like?
All benchmarks in this section were run on an Ubuntu Gutsy server with an AMD
Athlon 64 X2 5400+ 2.8 GHz, 2 GB of RAM, and a Seagate Barracuda 7200 RPM SATA
drive. And we were using a roughly 1 GB file:

jmjones@ezr:/data/logs$ 1s -1 access*log
-IW-r--r-- 1 jmjones jmjones 1157080000 2008-04-18 12:46 access_bigger.log

Here are the run times.

$ time python summarize logfiles.py --regex access bigger.log

access_bigger.log

IP ADDRESS BYTES TRANSFERRED
190.40.10.0 699160000

<snip>

190.20.250.250 237440000

real om46.296s
user 0m45.547s
sys 0mo.744s

jmjones@ezr:/data/logs$ time python summarize logfiles.py access_bigger.log
koK ok ok ok ok ok sk sk sk ok ok ok ok sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk ok skosk sk sk sk sk sk ok sk skoskok ok sk sk ok ok koo

access_bigger.log

IP ADDRESS BYTES TRANSFERRED
190.40.10.0 699160000

<snip>

190.20.250.250 237440000

real 0m34.261s
user 0m33.354s
Sys 0mo0.896s

412 | Chapter 14: Pragmatic Examples

For the regular expression version of the data extraction library, it took about 46 sec-
onds. For the version that uses string.split(), it took about 34 seconds. But memory
usage was abysmal. It ran up to about 130 MB of memory. The reason for this is that
the generate log report() keeps a list of bytes transferred for each IP address in the
logtile. So, the larger the file, the more memory this script will consume. But we can
do something about that. Here is a less memory-hungry version of the parsing library:

#!/usr/bin/env python

def

def

dictify logline(line):
""'return a dictionary of the pertinent pieces of an apache combined log file

Currently, the only fields we are interested in are remote host and bytes sent,
but we are putting status in there just for good measure.
split line = line.split()
return {'remote host': split line[o0],
'status': split line[8],
'bytes sent': split line[9],
}

generate_log report(logfile):
""'return a dictionary of format remote host=>[list of bytes sent]

This function takes a file object, iterates through all the lines in the file,
and generates a report of the number of bytes transferred to each remote host
for each hit on the webserver.
report_dict = {}
for line in logfile:
line dict = dictify logline(line)
host = line dict['remote_host']
#print line_dict
try:
bytes sent = int(line_dict['bytes sent'])
except ValueError:
##totally disregard anything we don't understand
continue
report_dict[host] = report dict.setdefault(host, 0) + bytes sent
return report dict

Basically, this one tallies the bytes_sent as it goes rather than making the calling func-
tion tally it. Here is a slightly modified summarize logfiles script with a new option to
import the less memory-hungry version of the library:

#!/usr/bin/env python

from optparse import OptionParser

def

def

open_files(files):
for f in files:
yield (f, open(f))

combine_lines(files):

Apache Log Reporting | 413

for f, f_obj in files:
for line in f_obj:
yield line

def obfuscate_ipaddr(addr):
return ".".join(str((int(n) / 10) * 10) for n in addr.split('.'))

if _name__ == '_main_':
parser = OptionParser()
parser.add_option("-c", "--consolidate", dest="consolidate", default=False,
action="store_true', help="consolidate log files")
parser.add_option("-r", "--regex", dest="regex", default=False,
action="store_true', help="use regex parser")
parser.add option("-m", "--mem", dest="mem", default=False,

action="'store true', help="use mem parser")

(options, args) = parser.parse args()
logfiles = args

if options.regex:

from apache log parser regex import generate log report
elif options.mem:

from apache log parser split mem import generate log report
else:

from apache log parser split import generate log report

opened files = open files(logfiles)

if options.consolidate:
opened_files = (('CONSOLIDATED', combine lines(opened files)),)

for filename, file obj in opened files:
print "*" * 60
print filename
print "-" * 60
print "%-20s%s" % ("IP ADDRESS", "BYTES TRANSFERRED")
print "-" * 60
report dict = generate log report(file obj)
for ip_addr, bytes in report dict.items():
if options.mem:
print "%-20s%s" % (obfuscate ipaddr(ip_addr), bytes)
else:
print "%-20s%s" % (obfuscate_ipaddr(ip_addr), sum(bytes))
print "=" * 60

And this actually wound up being a bit faster than the more memory-hungry version:

jmjones@ezr:/data/logs$ time ./summarize logfiles mem.py --mem access_bigger.log

sk sk sk sk 3k ok ok kK

access_bigger.log

IP ADDRESS BYTES TRANSFERRED
190.40.10.0 699160000

<snip>

190.20.250.250 237440000

414 | Chapter 14: Pragmatic Examples

real 0m30.508s
user 0m29.866s
Sys 0mo0.636s

Memory consumption held steady at about 4 MB for the duration of this run. This
script will handle about 2 GB of logfiles per minute. Theoretically, the file sizes could
be indefinite and memory wouldn’t grow like it did with the previous version. However,
since this is using a dictionary and each key is a unique IP address, the memory usage
will grow with unique IP addresses. If memory consumption becomes a problem, how-
ever, you could swap out the dictionary with a persistent database, either relational or
even a Berkeley DB.

FTP Mirror

This next example shows how to connect to an FTP server and recursively retrieve all
the files on that server starting with some user-specified directory. It also allows you to
remove each file after you have retrieved it. You may be wondering, “What is the point
of this script? Doesn’t rsync handle all of that?” And the answer is, “Yes, it does.”
However, what if rsync is not installed on the server you are working on and you aren’t
permitted to install it? (This is unlikely for you as a sysadmin, but it happens.) Or, what
if you don’t have SSH or rsync access to the server you’re trying to pull from? It helps
to have an alternative. Here is the source code for the mirror script:

#!/usr/bin/env python

import ftplib
import os

class FTPSync(object):
def _init_ (self, host, username, password, ftp base dir,
local base dir, delete=False):

self.host = host
self.username = username
self.password = password
self.ftp base dir = ftp base dir
self.local_base dir = local_base dir
self.delete = delete

self.conn = ftplib.FTP(host, username, password)
self.conn.cwd(ftp_base_dir)
try:
os.makedirs(local_base_dir)
except OSError:
pass
os.chdir(local_base_dir)
def get_dirs_files(self):
dir res = []
self.conn.dir('."', dir_res.append)
files = [f.split(None, 8)[-1] for f in dir_res if f.startswith('-')]

FTP Mirror | 415

dirs = [f.split(None, 8)[-1] for f in dir res if f.startswith('d')]
return (files, dirs)
def walk(self, next_dir):
print "Walking to", next_dir
self.conn.cwd(next_dir)
try:
os.mkdir(next_dir)
except OSError:
pass
os.chdir(next_dir)

ftp_curr_dir = self.conn.pwd()
local _curr_dir = os.getcwd()

files, dirs = self.get dirs files()
print "FILES:", files
print "DIRS:", dirs
for f in files:
print next dir, ':', f
outf = open(f, 'wb')
try:
self.conn.retrbinary('RETR %s' % f, outf.write)
finally:
outf.close()
if self.delete:
print "Deleting", f
self.conn.delete(f)
for d in dirs:
os.chdir(local curr dir)
self.conn.cwd(ftp_curr dir)
self.walk(d)

def run(self):
self.walk('.")

if _name__ == '_main_':

from optparse import OptionParser

parser = OptionParser()

parser.add option("-o0", "--host", dest="host",
action="store', help="FTP host")

parser.add option("-u", "--username", dest="username",
action="store', help="FTP username")

parser.add option("-p", "--password", dest="password",
action="store', help="FTP password")

parser.add option("-r", "--remote dir", dest="remote dir",
action='store', help="FTP remote starting directory")

parser.add option("-1", "--local dir", dest="local dir",
action="store', help="Local starting directory")

parser.add option("-d", "--delete", dest="delete", default=False,
action="store_true', help="use regex parser")

(options, args) = parser.parse_args()
f = FTPSync(options.host, options.username, options.password,

416 | Chapter14: Pragmatic Examples

options.remote_dir, options.local dir, options.delete)
f.run()

This script was a little easier to write by using a class. The constructor takes a number
of parameters. To connect and log in, you have to pass it host, username, and
password. To get to the appropriate places on the remote server and your local server,
you have to pass in ftp_base _dir and local base dir. delete isjust a flag that specifies
whether to delete the file from the remote server once you’ve downloaded it—you can
see in the constructor that we set the default value for this to False.

Once we set these values that we received as object attributes, we connect to the speci-
fied FTP server and log in. Then, we change to the specified start directory on the server
and change to the start directory on the local machine. Before actually changing into
the local start directory, we first try to create it. If it exists, we’ll get an 0SError exception,
which we ignore.

We have three additional methods defined: get dirs files(), walk(), and run().
get dirs files() determines which files in the current directory are files and which are
directories. (By the way, this is expected to only work on Unix servers.) It figures out
which are files and which are directories by doing a directory listing looking at the first
character of each line of the listing. If the character is d, then it is a directory. If the
character is -, then it is a file. This means that we won’t follow symlinks nor deal with
block devices.

The next method that we defined is walk(). This method is where the bulk of the work
happens. The walk() method takes a single argument: the next directory to visit. Before
we go any further, we’ll mention that this is a recursive function. We intend for it to
call itself. If any directory contains other directories, they will be walked into. The code
in thewalk() method first changes directory on the FTP server to the specified directory.
Then we change into the directory on the local server, creating it if necessary. Then we
store our current positions on both the FTP server and locally into the variables
ftp_curr_dir and local _curr_dir for use later. Next, we get the files and directories in
this directory from our get_dirs_files() method that we’ve already mentioned. For
each of the files in the directory, we retrieve them using the retrbinary() FTP method.
We also delete the file if the delete flag was passed in. Next, we change directory to the
current directories on the FTP server and FTP server and call walk() to walk into those
lower directories. The reason that we change into the current directory again is so that
when lower walk() calls return, we can come back up to where we are.

The final method that we defined is run(). run() is simply a convenience method.
Calling run() simply calls walk() and passes it the current FTP directory.

We have some very basic error and exception handling in this script. First, we don’t
check all the command-line arguments and make sure that at least host, username, and
password are passed in. The script will blow up quickly if those aren’t specified. Also,
we don’t try to download a file again if an exception happened. Instead, if something
causes a download to fail, we’re going to get an exception. The program will terminate

FTP Mirror | 417

in that case. If the script terminates in the middle of a download, the next time you
start it up, the script will begin downloading the file again. The upside to this is that it
won’t delete a file it has only partially downloaded.

418 | Chapter 14: Pragmatic Examples

APPENDIX
Callbacks

The concept of callbacks and passing functions around may be foreign to you. If so, it
is definitely worth digging into so that you understand it well enough to use it, or at
the very least, understand what is going on when you see it being used. In Python,
functions are “first class,” which means that you can pass them around and treat them
as objects—because they really are objects. See Example A-1.

Example A-1. Showing functions as first class

In [1]: def foo():
print foo

In [2]: foo
Out[2]: <function foo at 0x1233270>

In [3]: type(foo)
Out[3]: <type 'function'>

In [4]: dir(foo)
Out[4]:
[' call ',

' class_ ',
' delattr ',

' dict_ ',

' doc_ ',
get ',

' getattribute ',
' _hash_',
'_init_ ',

__module ',
__name__',

' new_ ',
__reduce_ ',

' _reduce ex_ ',
'_repr_ ',

' setattr ',

str ',

419

"func_closure’,
"func_code',
'func_defaults',
"func_dict’,
"func_doc",
"func_globals’,
'func_name"']

Simply referring to a function, such as foo in the previous example, does not call it.
Referring to a function’s name lets you get at any attributes the function has and to
even refer to the function by a different name later. See Example A-2.

Example A-2. Referring to functions by name

In [1]: def foo():
celt """this is a docstring
print "IN FUNCTION FOO"

nnn

In [2]: foo
Out[2]: <function foo at 0x8319534>

In [3]: foo. doc__
Out[3]: 'this is a docstring'

In [4]: bar = foo

In [5]: bar
Out[5]: <function foo at 0x8319534>

In [6]: bar. doc__
Out[6]: 'this is a docstring'

In [7]: foo.a =1

In [8]: bar.a
Out[8]: 1

In [9]: foo()
IN FUNCTION FOO

In [10]: bar()
IN FUNCTION FOO

We created a new function foo so that it contained a docstring. We then stated that
bar was going to point to the function foo that we just created. In Python, what you
usually think of as variables are typically just names that point at (or refer to) some
object. The process of associating a name with an object is called “name binding.” So,
when we created the function foo, we really created a function object and then bound
the name foo to that new function. Using the IPython prompt to see the basic infor-
mation it can tell us about foo, it reported back that it was a foo function. Interestingly,
it said the same thing about the name bar, namely that it was a foo function. We set an

420 | Appendix: Callbacks

attribute a on the function named foo and were able to access it from bar. And, calling
both foo and bar produced the same result.

One of the places in this book that we use callbacks is in the chapter on networking,
Chapter 5. Passing functions around as in the FTP example in that chapter allows for
runtime dynamism and code-time flexibility and can even improve code reuse. Even if
you don’t think you’ll ever use it, it’s a thought process worth putting in your brain’s
catalog.

Callbacks | 421

Symbols
.py files (see wrappers)
\ (backslash)
escape sequences, list of, 73
$ (dollar sign)
for shell execute variables, 36
! (exclamation point)
for shell execute, 36
I for shell execute, 37
%-TAB, 31
? (question mark) for help, 12, 31
to obtain object information, 54
to search for objects, 56
?? to obtain object information, 54
' (quotation mark, single)
creating strings with, 72
" (quotation marks, double)
creating strings with, 72
_ (underscore)
for results history, 62—-64
__ (in variable names), 38
__object, 57
___object, 57
“magic” functions, 34
(see also specific function)

A

Active Directory, using with Python, 406-408
active version of package, changing, 264

alias function, 34-35, 64

alias table, 37, 38

Amazon Web services (Boto), 247

Apache config file, hacking (example), 97-100
Apache log reporting, 408-415

Index

Apache Log Viewer, building (example)
with curses library, 330-334
with Django, 335-341
with PyGTK, 326-330
Apache logfile, parsing (example), 110-116
appscript project, 241
archiving data, 199-204
examining TAR file contents, 201-204
ARP protocol, 221
asr utility, 242
attachments (email), sending, 143
attrib attribute (Element object), 118
authentication
when installing eggs, 265
authentication (SMTP), 142
automated information gathering, 123-126
receiving email, 125-126
automatically re-imaging routines, 242
automation, with [Python shell, 64—69

B

background threading, 211
backslash (\)
escape sequernces, list of, 73
backups, 177
examining TAR file contents, 201-204
bar charts, creating, 137
Bash, Python versus, 2
Bayer, Michael, 385
Bicking, Ian, 280
blocks of code, editing, 29
bookmark command, 41
bookmarks
navigating to bookmarked directories, 40

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

423

bootstrapped virtual environment, custom,
281
Boto (Amazon Web services), 247
Buildout tool, 275-279
developing with, 279
bzip2 compression, 200

C

callbacks, 419-421
capitalization (see case)
case (capitalization)
converting for entire string, 81
cd command, 39-41
-<TAB> option, 42
-b option, 40
charts, creating, 137
checksum comparisons, 187-192
choices usage pattern (optparse), 394
close() function (socket module), 148
close() method, 101
close() method (shelve), 363
cloud computing, 247-253, 248-253
Amazon Web services with Boto, 247
cmp() function (filecmp module), 185
combining strings, 84
command history, 59
command line, 387-404
basic standard input usage, 388—-389
integrating configuration files, 402—404
integrating shell commands, 397-402
optparse, 389-396
community of Python users, 5, 21
comparing data, 185-187
files and directory contents, 185-187
MD5 checksum comparisons, 187—-192
comparing strings
upper() and lower() methods, 81
compiled regular expressions, 88
completion functionality, 28
complexity of Python functionality, 1
compressing data, 199-204
concatenating strings, 84
concurrency
processes and, 313
threads and, 301-313
conditionals
in Perl and Bash, 3
ConfigParser module, 403

configuration files, integrating with command
line, 402—-404
configuration files, when installing eggs, 265
configuring IPython, 30
conflicting packages, managing, 279
connect() function (socket module), 148
connect() method (ftplib module), 156
console scripts, 270-271
__contains__() operator, 75
context managers, 101
counting options usage pattern (optparse),
393
cPickle library, 357, 362-363
(see also pickle module)
cron, for running processes, 316
cross-platform systems management, 233
currency
processes and, 313
threads and, 301-313
current directory, identifying, 43
current working directory, installing source in,
264
curses library
Apache Log Viewer, building (example),
330-334

D
daemonizer, 318-321
daemons, about, 318
data centers, discovering (SNMP), 211-214
retrieving multiple values, 214-220
data persistence, 357—-385
relational serialization, 376-384
SQLAlchemy ORM, 382-385
SQLite library, 376-379
Storm ORM, 379-382
simple serialization, 357-376
cPickle library, 362-363
pickle module, 357-362
shelve module, 363-366
YAML data format, 366
ZODB module, 370-376
data tree
copying with shutil (example), 179
deleting with shutil (example), 181
moving with shutil (example), 180
data wrangler, 177
data, working with, 177-204

424 | Index

archiving, compressing, imaging, and
restoring, 199-204
comparing data, 185-187
copying, moving, renaming, and deleting,
179-181
merging data, 187-192
metadata, 197-199
os module, 178-179
paths, directories, and files, 181-185
pattern matching, 193-195
rsync utility for, 195-197
database application, building with Django
(example), 342-353
.deb packages, 23
definition headers, printing, 51
deleting (removing)
bookmarks, 41
content from strings, 79-81
data tree (shutil example), 181
files, 190
variables from interactive namespace, 65
delimiter, splitting strings at, 81-83
device control with SNMP, 224-225
dhist command, 42
dircmp() function (filecmp module), 186
directories
archiving with tar, 200
bookmarked, navigating to, 40
changing between (see cd command)
comparing with filecmp, 185-187
current, identifying with pwd, 43
installing unpacked sources into, 264
merging directory trees, 187-192
pattern-matching, 193-195
synchronizing with rsync, 195-197
walking, with os module, 181-185
directory history, 40, 42
directory trees, 188
(see also directories)
finding duplicates in, 188
renaming files in, 194
synchronizing with rsync, 195-197
discovering data centers (SNMP), 211-214
retrieving multiple values, 214-220
dispatcher, SSH-based, 232
distributing information, 141-145
sending email, 141-144
sending email attachments, 143
disutils, 258, 273-275

Django templating system, 335-353
Apache Log Viewer, building (example),
335-341
simple database application, building
(example), 342-353
DNS, managing with Python, 405-406
dnspython module, 405
documentation and reporting, 123145
automated information gathering, 123-126
receiving email, 125-126
information distribution, 141-145
sending email, 141-144
sending email attachments, 143
information formatting, 135-141
saving as PDF files, 138-141
manual information gathering, 126-135
dollar sign ($)
for shell execute variables, 36
DOM (Document Object Model), for XML,
117
double quotation marks (")
creating strings with, 72
downloading IPython, 8, 22
drawString() method (ReportLab), 140
DSCL (Directory Services Command Line),
240
duplicates in merged directories, finding, 188

E

easy install module
advanced features, 261-266
easy to learn, Python as, 1, 6-7
easy_install utility, 23
edit function (“magic”), 29
.egg files (eggs), 23
eggs
changing standalone .py file into, 264
defined, 266
for package management, 258, 266-270
installing on filesystems, 262
ElementTree library, 116-120
email (incoming), processing, 125-126
email (outgoing), writing, 141-144
email attachments, sending, 143
email package, 141
end() method, 96
endswith() method, 78
__enter__ () method, 101
entry points, 270-271

Index | 425

EPM Package Manager, 283-288
escape sequences, 73
event handler, threaded, 311
event handlers, 323
event-driven networks, 167
exclamation point (!)

for shell execute, 36

I for shell execute, 37
executing files, at shell, 66
executing statements, 8—12
exec_command() method, 165
__exit__() method, 101
extracting data from strings, 75-79

looking within strings, 7579

F

fields() method, 46
file object, creating, 100
filecmp module, 185-187
files
archiving with tar, 199-204
comparing with filecmp, 185-187
compression with bzip2, 200
deleting, 190
executing (IPython shell), 66
merging directories together, 187-192
metadata about, 197-199
pattern-matching, 193-195
renaming, within directory tree, 194
walking, with os module, 181-185
files, working with, 100-105
(see also input)
(see also output)
creating files, 100-102
log parsing (example), 110-116
parsing XML with ElementTree, 116—-120
reading files, 102-104
writing files, 104—105
find() method, 76
find() method (ElementTree), 117
findall() method, 88, 92-94
findall() method (ElementTree), 117
finding (see searching)
finditer() method, 94
fingerprinting operating system type, 229, 232
fnmatch module, 193
fork() method, 319
formatting information, 135-141
as PDF files, 138—-141

FTP mirror, building, 415-418
ftplib module, 155-157
Fulton, Jim, 276
functions, 12-16
“magic” (see “magic” functions)

G

gathering information automatically, 123-126
receiving email, 125-126
gathering information manually, 126-135
gdchart module, 136
generator objects, 183
get() method (Element object), 118
getresponse() method (httplib module), 154
Gibbs, Kevin, 248
glob module, 193
GNU/Linux, Pylnotify with, 238-240
Google App Engine, 248-253
grep() method, 44—46
groupdict() method, 97
groups() method, 97
GUIs, building, 323-355
Apache Log Viewer (example)
with curses library, 330-334
with Django, 335-341
with PyGTK, 326-330
database application (example), 342-353
Django templating system, 335-353
example of (simple PyGTK application),
324-326
theory of, 323-324
Web applications, 334—335
gzip archiving, 201

HardwareComponent class, 344
help documentation
on “magic” functions, 31
question mark (?) for, 12, 31
%quickref command, 32
Hillegass, Aaron, 127
hist (history) function, 60
history, command, 59
history, directory, 40, 42
history, results, 62—-64
HTML, converting ReST to, 131
httplib module, 153-155
hybrid Kudzu design pattern

426 | Index

to change the behavior, 399
to spawn processes, 401
hybrid SNMP tools, creating, 220-222

I
imaging data, 199-204
IMAP protocol, 125
imaplib module, 125
import statement, 16-20
importing LDIF files, 408
importing modules, 9, 10
In built-in variable, 27
in test operator, 75
indenting Python code, 2, 12
index() method, 76
information distribution, 141-145
sending email, 141-144
sending email attachments, 143
information formatting, 135-141
saving as PDF files, 138-141
information gathering, automated, 123-126
receiving email, 125-126
information gathering, manual, 126-135
input
standard input and output, 105-108
input prompts, Python versus IPython, 26
installing eggs on filesystems, 262
installing IPython, 8, 22
interacting with IPython, 24-28
Internet content, processing as input, 109
interpreter (see IPython shell)
interprocess communication (IPC), 158
inventorying several machines, 214-220
__IP variable, 37
IPAddress class (Django), 347
IPC (interprocess communication), 158
[Python community, 21
.ipython directory, 30
[Python shell, 21
automation and shortcuts, 64—69
basic concepts, 23-30
configuring IPython, 30
interacting with IPython, 24-28
“magic” edit function, 29
tab completion, 28
downloading and installing, 8
information-gathering techniques, 51-64
command history, 59
installing, 22

working with Unix shell, 34-50, 48-50
alias function, 34
bookmark command, 41
cd command, 39-41
dhist command, 42
pwd command, 43
rehash command, 37
rehashx command, 38
shell execute, 36
string processing, 44—48
variable expansion, 43

ipy_user_conf.py file, 30
issue tracking system (Trac), 144

J

join() method, 84

K

Kudzu design pattern, 397
and changing the behavior, 399
and spawning processes, 401

L

LDAP, using with Python, 406408
LDIF files, importing, 408
leading whitespace, stripping from strings, 79
Linux operating systems
managing Windows servers from Linux,
253-256
PylInotify with GNU/Linux, 238-240
Red Hat systems administration, 245
Ubuntu administration, 245
listdir() function (os module), 186
log parsing (how to), 110-116
loops
in Perl and Bash, 2
lower() method, 81
lowercase, converting entire string to, 81
Is() function (Scapy), 173
Ismagic function, 30
Istrip() method, 79

M

macro function, 64
magic function, 31
“magic” functions, 30-34
edit function, 29
mail (incoming), processing, 125-126

Index | 427

mail (outgoing), writing, 141-144
mail attachments, sending, 143
maintainability of Python, 2
managed objects (in MIBs), 206
manual information gathering, 126-135
match() method, 95
McGreggor, Duncan, 168
MD5 checksum comparisons, 187-192
memory inventory of several machines
(examples), 214-220
menu-complete functionality, 29
merging data, 187-192
metadata, 197-199
mglob command, 50
MIBs (management information bases), 206
walking MIB tree, 210
Model-View-Template (MVT) framework,
335
modules
obtaining source code for, 54
modules (scripts)
importing, 9, 10
motivation for using Python, 6-7
moving files
shutil to move data trees, 180
using rsync utility, 195-197
multiline strings, 73
splitting into individual lines, 83
when writing files, 105
multithreading (see threads)
MVT (Model-View-Template) framework,
335

N

\n (newline character), 73
when writing files, 105
name binding, 420
__name__ object, 57
namespaces
skipping during object searches, 56
naming conventions
__ (double underscore), 38
Net-SNMP, 208-211
extending, 222-224
installing and configuring, 206-208
retrieving multiple values with, 214-220
Net-SNMP library, 206
networking, 147-176
network clients, 147-158

feplib, 155-157
httplib module, 153-155
socket module, 147-153
urllib module, 157-158
urllib2 module, 158
remote procedure call facilities, 158-164
Pyro framework, 161-164
XML-RPC, 158-161
Scapy program, 173-175
creating scripts with, 175-176
SSH protocol, 164-167
Twisted framework, 167-173
newline character (\n), 73
when writing files, 105
NES src directory, mounting, 232
NES-mounted directories, installing eggs on,
262
no options usage pattern (optparse), 390
not in test operator, 75
numbered prompt, 25

0
object identifiers (OIDs), 206
object-oriented programming (OOP), 3
Object-Relationship Mapping (ORM), 379
(see also SQLAlchemy ORM; Storm ORM)
objects
listing, functions for, 57-59
obtaining information on, with pinfo, 53
searching for, with psearch, 55-57
OIDs (object identifiers), 206
open() method, 100
open() method (shelve), 363
OpenLDAP using with Python, 406—408
operating systems, 227-256
cloud computing, 247-253
GNU/Linux, PyInotify with, 238-240
OS X, 240-245
Red Hat systems administration, 245
Solaris systems administration, 245
Ubuntu administration, 245
Unix programming, cross-platform, 228—
238
Virtualization, 246
OperatingSystem class (Django), 346
option with multiple arguments usage pattern
(optparse), 396
optparse, 389-396
ORM (Object-Relationship Mapping), 379

428 | Index

(see also SQLAlchemy ORM; Storm ORM)

os module, 178-179

copying, moving, renaming, and deleting

data, 179-181

listdir() function, 186

paths, directories, and files, 181-185
OS X programming, 240-245, 240-245
OSA (Open Scripting Architecture), 241
Out built-in variable, 27
output

standard input and output, 105-108
output history, 62-64
output paging, with page function, 51
output prompts, Python versus IPython, 26

P

package management, 257-288
building pages with setuptools (see
setuptools)
Buildout tool, 275-279
developing with, 279
creating packages with disutils, 273-275
EPM package manager, 283-288
registering packages with Python Package
Index, 271-272
virtualenv tool, 279-283
package version, changing active, 264
packet manipulation program (see Scapy
program)
page function, 51
paramkio library, 165, 166
parse() method (ElementTree), 117
parsing logfiles (example), 110-116

parsing XML files with ElementTree, 116-120

partition re-imaging, 242

password-protected sites, installing eggs on,
265

paths, walking with os module, 181-185

pattern matching (see regular expressions)

pattern matching with files and directories,
193-195

pdef function, 51

PDF files, saving data as, 138-141

pdoc function, 52

Perez, Fernando, 22

Perl, Python versus, 2

persistent data (see data persistence)

Perspective Broker mechanism, 170

pfile function, 52

pickle module, 357-362, 357
(see also cPickle library)
pie charts, creating, 137
pinfo function, 53-54
platform module, 228
Plist files, managing, 245
Plone content management system, 276
POP3 protocol, 125
Popen() method (Subprocess), 290, 304
poplib module, 125
port checker (example)
using socket module, 148-153
using Twisted, 168
print statement, 25
processes, 289-321
currency and, 313
Daemonizer, 318-321
managing with screen application, 300—
301
managing with Supervisor, 298-300
scheduling, 316-317
Subprocess module, 289-298
using return codes, 290-298
threads, 301-313
processing module, 313
profiles, 48
prompt (IPython), numbering of, 25
psearch function, 55-57
psource function, 54
public ssh-key, creating, 231
pwd command, 43
.py file, changing to egg, 264
py-appscript project, 241
PyDNS module, 405
Pyexpect tool, 224
PyGTK applications
Apache Log Viewer, building (example),
326-330
simple application (example), 324-326
PylInotify module, 238-240
pypi (Python Package Index), 5
Pyro framework, 161-164
PySNMP library, 206
pysysinfo module, 18
Python, motivation for using, 6—7
Python, reasons to use, 1-6
Python basics, 8
executing statements, 8—12
functions, 12-16, 12

Index | 429

(see also functions)
reusing code, 16-20
Python community, 5, 21
Python eggs
changing standalone .py file into, 264
defined, 266
for package management, 258, 266-270
installing on filesystems, 262
Python Package Index, 271-272
Python packages, 23
Python prompts, versus IPython prompts, 26
Python Remote Objects (see Pyro framework)
Python Standard Library, 5
Python wrappers (see wrappers)
python-ldap module, 407
python-reportlab package, 139
python-textile package, 134

Q

question mark (?)
to obtain object information, 54
to search for objects, 56
?? to obtain object information, 54
question mark (?) for help, 12, 31
queues, threading, 305
%quickref command, 32
quotation marks
creating strings with, 72

R

raw strings, 73
in regular expressions, 91
re module, 88
(see also regular expressions)
re-imaging partitions, 242
read() method, 102
readability of Python, 2
(see also whitespace)
reading files, 102—-104
reading input (see input)
readline support, 59
readline() method, 103
readlines() method, 103
rec directive, 50
recv() function (socket module), 148
Red Hat systems administration, 245
registering packages with Python Index, 271—
272

regular expressions, 88-97
raw strings in, 91
rehash command, 37-38
rehashx command, 38
relational serialization, 376-384
remote procedure calls (RPCs), 158-164
Pyro framework, 161-164
XML-RPC, 158-161
remove() method (os module), 190
removing (see deleting)
renaming files in directory tree, 194
rep function, 66—69
replace() method, 85
reporting and documentation, 123-145
automated information gathering, 123-126
receiving email, 125-126
information distribution, 141-145
sending email, 141-144
sending email attachments, 143
information formatting, 135-141
saving as PDF files, 138-141
manual information gathering, 126-135
ReportLab library, 138
__repr__ representation of strings, 75
request() method (httplib module), 154
reset function, 65
ReST (reStructuredText) format, 131, 271
ReSTless utility, 271
restoring data, 199-204
results history, 62—64
retrbinary() method (ftpmodule), 156
return codes, with Subprocess, 290-298
reusing code, 16-20
rstrip() method, 79
rsync, 415
rsync utility, 195-197
run function, 66
running shell commands, 9

S

s attribute, 47
save function, 66
SAX (simple API for XML), 116
Scapy

creating scripts with, 175-176
Scapy program, 173-175
scheduling process, 316-317
screen application, 300-301
script wrappers (see wrappers)

430 | Index

scripts (see modules)
search() method, 95
search() method (imaplib), 125
searching
command history, 61
for objects by name, 55-57
within strings, 75-79, 85
(see also substrings)
using regular expressions, 88-97
searching (finding)
for duplicates in directory trees, 188
TAR file contents, 201-204
using pattern matching, 193-195
searching strings
for substrings
and replacing them, 85
serialization
relational, 376-384
SQLAlchemy ORM, 382-385
SQLite library, 376-379
Storm ORM, 379-382
simple, 357-376
cPickle library, 362-363
pickle module, 357-362
shelve module, 363-366
YAML data format, 366
ZODB module, 370-376
Server class (Django), 346
Service class (Django), 346
setuptools, 258
Easy Install module
advanced features, 261-266
entry points and console scripts, 270-271
SFTP (Secure FTP), 166
sh profile, 48-50
shadow history, 61
shell (see IPython shell)
shell commands, integrating with command-
line tools, 397-402
shell execute, 36
shell prompt, numbering of, 25
shelve module, 124, 363-366
shortcuts, with IPython shell, 64-69
showPage() method (ReportLab), 140
shutil module, 179
copying data tree (example), 179
deleting data tree (example), 181
moving data tree (example), 180
simple serialization, 357-376

cPickle library, 362-363
pickle module, 357-362
shelve module, 363-366
YAML data format, 366
ZODB module, 370-376
simplicity of Python, 1, 6-266
single quotation mark (')
creating strings with, 72
slicing strings, 78
(see also strings; substrings)
SMTP authentication, 142
smtplib package, 141
SNMP, 205-226
device control, 224-225
discovering data centers, 211-214
enterprise integration with Zenoss, 207,
225-226
extending Net-SNMP, 222-224
hybrid SNMP tools, creating, 220-222
Net-SNMP, about, 208-211
overview of, 205-208
installation and configuration, 206208
retrieving multiple values, 214-220
snmpstatus tool, 220
socket() function (socket module), 147
socket module, 147-153
Solaris systems administration, 245
source code, obtaining, 54
span() method, 96
spawning processes from command-line tool,
401
split() method, 81-83
splitlines() method, 83
SQLAlchemy, 197
SQLAlchemy ORM, 382-385, 382-385
SQLite library, 376-379, 376-379
ssh keys, 231
SSH protocol, 164-167
SSL (Secure Sockets Layer), 143
standard input and output, 105-108
standard library, 5
standard out, suppressing, 290
start() method, 96
startswith() method, 78
starttls() method, 143
statement execution, 8—12
store function, 65
Storm ORM, 379-382, 379-382
__str__ representation of strings, 75

Index | 431

str type, 71
(see also strings)
string input (see input)
string output (see output)
string processing with Unix shell, 44-48
string representations, 25
stringlO module, 108
strings, 71
converting case of, 81
creating (str type), 72—75
creating (Unicode), 85-87
extracting data from
looking within strings, 7579
hacking Apache config file (example), 97—
100
joining together (concatenating), 84
processing as input, 108
raw strings, 73, 91
removing content from, 79-81
replacing substrings within, 85
searching within, 75-79
using regular expressions, 88-97
splitting at delimiter, 81-83
unicode strings, 85-87
strip() method, 79-81
subprocess module, 11
subprocess.call, 10
Subprocess module, 289-298
using return codes, 290-298
substrings, 75
(see also strings)
joining (concatenating), 84
replacing within strings, 85
searching strings for, 75-85
Sun Solaris systems administration, 245
Supervisor utility, 298-300
synchronizing directories with rsync, 195-197
sys module, 105-108
sys.argv, 388
sysDescr OID, 206, 209
system_profiler utility, 119

T

%-TAB, 31

tab complete, 11

tab completion, 28

tabbing code (see indenting Python code)
tag attribute (Element object), 118

tar package, 199-204

searching TAR files, 201-204
text attribute (Element object), 118
text files, working with, 100-105
(see also input)
(see also output)
creating files, 100-102
log parsing (example), 110-116
parsing XML with ElementTree, 116-120
reading files, 102—-104
writing files, 104105
text strings, 75 (see strings)
(see also substrings)
textile, 134-135
third-party packages, 5
threading timer, 310
threads, 301-313
ticket tracking system (Trac), 144
time utility (Unix), 90
timeit utility, 89
timer for threads, 310
Trac wiki, 144
tracking system (Trac), 144
trailing whitespace, stripping from strings, 79
triple quotes for string creation, 73
true/false usage pattern (optparse), 391
Twisted framework, 167-173
TwistedSNMP library, 206

U

Ubuntu administration, 245
UDP ports for SNMP, 205
underscore ()
for results history, 62—-64
__ (in variable names), 38
__object, 57
___ object, 57
unicode strings, 85-87
Unix mashups, 397402
Unix programming, cross-platform, 228-238
Unix shell, working with, 34-50, 39-41
alias function, 34
bookmark command, 41
dhist command, 42
pwd command, 43
rehash command, 37
rehashx command, 38
sh profile, 48-50
shell execute, 36
string processing, 4448

432 | Index

variable expansion, 43
upgrading packages, 262
upper() method, 81
uppercase, converting entire string to, 81
URL-based content, processing as input, 109
urllib module, 109, 157-158
urllib2 module, 158

vV

Vainio, Ville, 22

variable expansion, 43

variables
deleting from interactive namespace, 65
starting with __ (double underscore), 38

VBox (PyGTK), 329

vertical box (PyGTX), 329

Vim, 209

virtual machine, creating, 237

virtualenv tool, 279-283

Virtualization, 246

]

walking MIB trees, 210

web applications, building, 334-335

web server port monitoring (example), 148—

153

Web-based content, processing as input, 109

web2ldap tool, 408

whitespace
as string delimiter, when splitting, 83
stripping from strings, 79

whitespace in Python code, 2, 12

who function, 57

whos function, 58

who_ls function, 58

Windows servers, managing from Linux, 253—

256
with statement, 101
working directory, installing source in, 264
wrapper() function (curses library), 333
wrappers, 9
importing scripts (see import statement)

wrapping command-line tools in Python, 397

and changing the behavior, 399
and spawning processes, 401
write() method, 101, 104
write() method (ftplib module), 156
writelines() method, 104

writing files, 104—105
writing output (see output)

X

XHTML, converting Textile to, 134

XML file parsing with ElementTree, 116-120

XML-RPC, 158-161

XML-RPC, communicating with Zenoss via,
226

Y

YAML data format, 366-370

z

zendmd API, 226
Zenoss API, 207, 225-226
managing Windows servers from Linux,
253-256
ZODB module, 370-376

Index | 433

About the Authors

Noah Gift has an M.A. in CIS from California State University, Los Angeles, a B.S. in
nutritional science from California Polytechnic San Luis Obispo, is an Apple and LPI
certified sysadmin, and has worked at companies such as Caltech, Disney Feature Ani-
mation, Sony Imageworks, and Turner Studios.

In his free time, he enjoys hanging out with his wife, Leah, and their son, Liam, playing
the piano, and exercising religiously.

Jeremy M. Jones is a software engineer who works for Predictix. His weapon of choice
is Python, but he has done some shell, plenty of Perl, a touch of Java, is currently
learning C#, and finds functional programming languages (especially OCaml)
fascinating.

He is the author of the open source projects Munkware, a multiproducer/multicon-
sumer, transactional, and persistent queuing mechanism; ediplex, an EDI (electronic
data interchange) parsing engine; and podgrabber, a podcast downloader. All three
projects were written in the Python language.

Jeremy spends his spare time enjoying his family and doing a little writing. He lives in
Conyers, Georgia (just east of Atlanta) with his wife, Debra, two children, Zane and
Justus, and a lab named Genevieve (how Madelinesque).

Opinions and views expressed by Jeremy are his own and not those of Predictix.

Colophon

The image on the cover of Python for Unix and Linux System Administration is a boa
constrictor (boa constrictor). Found throughout South and Central America and some
islands in the Caribbean, boa constrictors are non-venomous snakes that can thrive in
a wide array of environments, from deserts to open savannas and wet tropical forests,
but they prefer arid terrain over wet surroundings. They are both terrestrial and arbor-
eal, but as they get older, they tend to spend more time on the ground.

Boa constrictors have very unique markings that include diamond- and oval-like pat-
terns. Their scales change colors depending on their habitat, allowing them to hide
from the forest-dwelling animals that hunt them.

In the wild, boa constrictors thrive on small- to medium-size rodents, lizards, bats,
birds, mongooses, squirrels, and have even been known to feast on other mammals as
large as ocelots. Being cold-blooded and slow moving, boas can go up to a week without
eating after capturing large prey. They are solitary and nocturnal hunters, with heat-
sensitive pads on their heads to help them hunt. Particularly fond of bats, boas will
hang in trees and from the mouths of caves waiting for them to fly by, then they can
grab the bats with their mouths. Not surprisingly, boa constrictors kill by constriction.
The snake wraps its body around its prey in coils, tightening its grip each time the victim
breathes out, eventually suffocating it to death.

Boas are a common attraction in zoos, and they are even relatively common pets. In
fact, thousands of dollars are made every year importing them into the U.S. In South
America, they are revered as “destroyers of rodents” and are often domesticated for
that reason. Boa constrictors grow quite tame in captivity and can live there as such for
20-30 years. Hunted for the exotic pet trade and their decorative markings, some boa
constrictors are endangered and have protected status.

Boa constrictors are seasonal breeders. To attract males, females emit a scent from their
cloacas, which is the chamber into which the intestinal and urogenital tracts discharge.
Fertilization happens internally, and females can give birth to up to 60 live babies at
one time. Significantly smaller than their anaconda cousins, newborn boas average 2
feet in length and can grow up to 13 feet long and weigh more than 100 pounds. Found
in South America, the largest boa constrictor on record was 18 feet!

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s
TheSansMonoCondensed.

9

Python/Systems Administration

O’REILLY*

Python for Unix and Linux System Administration

Python for Unix and Linux System Administration
demonstrates how the Python language offers you
a more efficient way to handle various tasks when
managing Unix and Linux servers. Each chapter
presents a particular administrative issue, such as concurrency
or data backup, and offers Python solutions through hands-on
examples. You'll learn to develop your own set of command-
line utilities with Python to tackle a wide range of problems.

The authors also built a free, downloadable Ubuntu virtual
machine that includes the book’s source code and runs examples
with SNMP, [Python, SQLAlchemy, and many other utilities.

With this book, you will discover how Python can help you:
* Read text files and extract information
* Run tasks concurrently using threading and forking options

* Get information from one process to another using network
facilities
« Create clickable GUI utilities that are more easily interactive

= Monitor large clusters of machines by interacting with SNMP
programmatically

* Master the IPython shell to replace or augment Bash, Korn,
or Z-Shell

« Integrate cloud computing into your infrastructure and write
a Google App Engine application

» Solve unique data backup challenges with customized scripts

* Use the Django, SQLAlchemy, and Storm ORMs to interact

with databases

With this book and the complementary virtual machine, you'll
learn to package and deploy your Python applications and
libraries, and to write code that runs equally well on multiple
Unix and Linux platforms.

www.oreilly.com

US $49.99 CAN $49.99
ISBN: 978-0-596-51582-9

99
NN g

7805967515829

Safari

Books Online

“This book welcomes new-

comers to Python, whether
they’re experienced in shell
scripting or relatively new to
programming in general.

Jeremy and Noabh take care

to give support for their
redasoning and to explain
the real-life uses of the code
examples. Unlike many
programming books, which
can easily overwhelm novices,
Python for Unix and Linux
System Administration nicakes
every effort to ensure their
confidence and success.”
—Ruth Suehle and

Bascha Harris,
Red Hat Magazine

Noah Gift has used Unix and
Linux for over a decade,
working at Caltech, Disney,
Feature Animation, and Turner
Studios. He’s a partner in
Giltes, LLC, and Cloud Seed
Software, LLC.

Jeremy M. Jones, a software
engineer who works for
Predictix, is also the author
of the open source projects
Munkware, ediplex, and
podgrabber.

**2 Free online edition
for 45 days with
purchase of this book.
Details on last page.

