
www.it-ebooks.info

http://www.it-ebooks.info/

FFIRS 08/25/2011 11:31:15 Page 2

www.it-ebooks.info

http://www.it-ebooks.info/

FFIRS 08/25/2011 11:31:15 Page 1

THE ART OF
SOFTWARE
TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

FFIRS 08/25/2011 11:31:15 Page 2

www.it-ebooks.info

http://www.it-ebooks.info/

FFIRS 08/25/2011 11:31:15 Page 3

THE ART OF
SOFTWARE
TESTING

Third Edition

GLENFORD J. MYERS
TOM BADGETT
COREY SANDLER

John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

FFIRS 08/25/2011 11:31:15 Page 4

Copyright# 2012 by Word Association, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, scanning, or

otherwise, except as permitted under Section 107 or 108 of the 1976 United States

Copyright Act, without either the prior written permission of the Publisher, or authorization

through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,

222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the

web at www.copyright.com. Requests to the Publisher for permission should be addressed

to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ

07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their

best efforts in preparing this book, they make no representations or warranties with respect

to the accuracy or completeness of the contents of this book and specifically disclaim any

implied warranties of merchantability or fitness for a particular purpose. No warranty may

be created or extended by sales representatives or written sales materials. The advice and

strategies contained herein may not be suitable for your situation. You should consult with a

professional where appropriate. Neither the publisher nor author shall be liable for any loss

of profit or any other commercial damages, including but not limited to special, incidental,

consequential, or other damages.

For general information on our other products and services or for technical support, please

contact our Customer Care Department within the United States at (800) 762-2974, outside

the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears

in print may not be available in electronic books. For more information about Wiley

products, visit our website at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Myers, Glenford J., 1946-

The art of software testing / Glenford J. Myers, Corey Sandler, Tom Badgett. — 3rd ed.

p. cm.

Includes index.

ISBN 978-1-118-03196-4 (cloth); ISBN 978-1-118-13313-2 (ebk); ISBN 978-1-118-13314-9

(ebk); ISBN 978-1-118-13315-6 (ebk)

1. Computer software—Testing. 2. Debugging in computer science. I. Sandler,

Corey, 1950- II. Badgett, Tom. III. Title.

QA76.76.T48M894 2011

005.1 04—dc23

2011017548

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.it-ebooks.info

http://www.wiley.com/go/permissions
http://www.wiley.com
http://www.copyright.com
http://www.it-ebooks.info/

FTOC 08/25/2011 11:33:28 Page 5

Contents

Preface vii

Introduction ix

1 A Self-Assessment Test 1

2 The Psychology and Economics of Software Testing 5

3 Program Inspections, Walkthroughs, and Reviews 19

4 Test-Case Design 41

5 Module (Unit) Testing 85

6 Higher-Order Testing 113

7 Usability (User) Testing 143

8 Debugging 157

9 Testing in the Agile Environment 175

10 Testing Internet Applications 193

11 Mobile Application Testing 213

Appendix Sample Extreme Testing Application 227

Index 233

v

www.it-ebooks.info

http://www.it-ebooks.info/

FTOC 08/25/2011 11:33:28 Page 6

www.it-ebooks.info

http://www.it-ebooks.info/

FPREF 08/08/2011 17:19:4 Page 7

Preface

In 1979, Glenford Myers published a book that turned out to be a classic.

The Art of Software Testing has stood the test of time—25 years on the

publisher’s list of available books. This fact alone is a testament to the

solid, essential, and valuable nature of his work.

During that same time, the authors of this edition (the third) of The Art

of Software Testing published, collectively, more than 200 books, most of

them on computer software topics. Some of these titles sold very well and,

like this one, have gone through multiple versions. Corey Sandler’s Fix

Your Own PC, for example, is in its eighth edition as this book goes to

press; and Tom Badgett’s books on Microsoft PowerPoint and other Office

titles have gone through four or more editions. However, unlike Myers’s

book, none of these remained current for more than a few years.

What is the difference? The newer books covered more transient

topics—operating systems, applications software, security, communica-

tions technology, and hardware configurations. Rapid changes in computer

hardware and software technology during the 1980s and 1990s necessi-

tated frequent changes and updates to these topics.

Also during that period hundreds of books about software testing were

published. They, too, took a more transient approach to the topic. The Art

of Software Testing alone gave the industry a long-lasting, foundational

guide to one of the most important computer topics: How do you ensure

that all of the software you produce does what it was designed to do, and—

just as important—doesn’t do what it isn’t supposed to do?

The edition you are reading today retains the foundational philosophy

laid by Myers more than three decades ago. But we have updated the

examples to include more current programming languages, and we have

addressed topics that were not yet topics when Myers wrote the first

edition: Web programming, e-commerce, Extreme (Agile) programming

and testing, and testing applications for mobile devices.

vii

www.it-ebooks.info

http://www.it-ebooks.info/

FPREF 08/08/2011 17:19:4 Page 8

Along the way, we never lost sight of the fact that a new classic must stay

true to its roots, so our version also offers you a software testing philoso-

phy, and a process that works across current and unforeseeable future

hardware and software platforms. We hope that the third edition of The

Art of Software Testing, too, will span a generation of software designers

and developers.

viii Preface

www.it-ebooks.info

http://www.it-ebooks.info/

CINTRO 08/08/2011 17:23:34 Page 9

Introduction

A t the time this book was first published, in 1979, it was a well-known

rule of thumb that in a typical programming project approximately

50 percent of the elapsed time and more than 50 percent of the total cost

were expended in testing the program or system being developed.

Today, a third of a century and two book updates later, the same holds

true. There are new development systems, languages with built-in tools,

and programmers who are used to developing more on the fly. But testing

continues to play an important part in any software development project.

Given these facts, you might expect that by this time program testing

would have been refined into an exact science. This is far from the case. In

fact, less seems to be known about software testing than about any other

aspect of software development. Furthermore, testing has been an out-of-

vogue subject; it was so when this book was first published and, un-

fortunately, this has not changed. Today there are more books and articles

about software testing—meaning that, at least, the topic has greater visibil-

ity than it did when this book was first published—but testing remains

among the ‘‘dark arts’’ of software development.

This would be more than enough reason to update this book on the art

of software testing, but we have additional motivations. At various times,

we have heard professors and teaching assistants say, ‘‘Our students gradu-

ate and move into industry without any substantial knowledge of how to

go about testing a program. Moreover, we rarely have any advice to offer

in our introductory courses on how a student should go about testing and

debugging his or her exercises.’’

Thus, the purpose of this updated edition of The Art of Software Testing

is the same as it was in 1979 and in 2004: to fill these knowledge gaps for

the professional programmer and the student of computer science. As the

title implies, the book is a practical, rather than theoretical, discussion of

the subject, complete with updated language and process discussions.

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CINTRO 08/08/2011 17:23:35 Page 10

Although it is possible to discuss program testing in a theoretical vein, this

book is intended to be a practical, ‘‘both feet on the ground’’ handbook.

Hence, many subjects related to program testing, such as the idea of math-

ematically proving the correctness of a program, were purposefully

excluded.

Chapter 1 ‘‘assigns’’ a short self-assessment test that every reader should

take before reading further. It turns out that the most important practical

information you must understand about program testing is a set of philo-

sophical and economic issues; these are discussed in Chapter 2. Chapter 3

introduces the important concept of noncomputer-based code walk-

throughs, or inspections. Rather than focus attention on the procedural or

managerial aspects of this concept, as most such discussions do, this chap-

ter addresses it from a technical, how-to-find-errors point of view.

The alert reader will realize that the most important component in a

program tester’s bag of tricks is the knowledge of how to write effective

test cases; this is the subject of Chapter 3. Chapter 4 discusses the testing

of individual modules or subroutines, followed in Chapter 5 by the testing

of larger entities. Chapter 6 takes on the concept of user or usability test-

ing, a component of software testing that always has been important, but is

even more relevant today due to the advent of more complex software

targeted at an ever broadening audience. Chapter 7 offers some practical

advice on program debugging, while Chapter 8 delves into the concepts of

extreme programming testing with emphasis on what has come to be

called the ‘‘agile environment.’’ Chapter 9 shows how to use other features

of program testing, which are detailed elsewhere in this book, with Web

programming, including e-commerce systems, and the all new, highly in-

teractive social networking sites. Chapter 10 describes how to test software

developed for the mobile environment.

We direct this book at three major audiences. First, the professional

programmer. Although we hope that not everything in this book will be

new information to this audience, we believe it will add to the profes-

sional’s knowledge of testing techniques. If the material allows this group

to detect just one more bug in one program, the price of the book will have

been recovered many times over.

The second audience is the project manager, who will benefit from the

book’s practical information on the management of the testing process.

The third audience is the programming and computer science student,

and our goal for them is twofold: to expose them to the problems of

x Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

CINTRO 08/08/2011 17:23:35 Page 11

program testing, and provide a set of effective techniques. For this third

group, we suggest the book be used as a supplement in programming

courses such that students are exposed to the subject of software testing

early in their education.

Introduction xi

www.it-ebooks.info

http://www.it-ebooks.info/

CINTRO 08/08/2011 17:23:35 Page 12

www.it-ebooks.info

http://www.it-ebooks.info/

C01 08/11/2011 11:29:16 Page 1

1 A Self-Assessment
Test

S ince this book was first published over 30 years ago, software testing

has become more difficult and easier than ever.

Software testing is more difficult because of the vast array of program-

ming languages, operating systems, and hardware platforms that have

evolved in the intervening decades. And while relatively few people used

computers in the 1970s, today virtually no one can complete a day’s work

without using a computer. Not only do computers exist on your desk, but

a ‘‘computer,’’ and consequently software, is present in almost every device

we use. Just try to think of the devices today that society relies on that are

not software driven. Sure there are some—hammers and wheelbarrows

come to mind—but the vast majority use some form of software to operate.

Software is pervasive, which raises the value of testing it. The machines

themselves are hundreds of times more powerful, and smaller, than those

early devices, and today’s concept of ‘‘computer’’ is much broader and

more difficult to define. Televisions, telephones, gaming systems, and auto-

mobiles all contain computers and computer software, and in some cases

can even be considered computers themselves.

Therefore, the software we write today potentially touches millions of

people, either enabling them to do their jobs effectively and efficiently, or

causing them untold frustration and costing them in the form of lost work

or lost business. This is not to say that software is more important today

than it was when the first edition of this book was published, but it is safe

to say that computers—and the software that drives them—certainly affect

more people and more businesses now than ever before.

1

www.it-ebooks.info

http://www.it-ebooks.info/

C01 08/11/2011 11:29:16 Page 2

Software testing is easier, too, in some ways, because the array of soft-

ware and operating systems is much more sophisticated than in the past,

providing intrinsic, well-tested routines that can be incorporated into

applications without the need for a programmer to develop them from

scratch. Graphical User Interfaces (GUIs), for example, can be built from a

development language’s libraries, and since they are preprogrammed ob-

jects that have been debugged and tested previously, the need for testing

them as part of a custom application is much reduced.

And, despite the plethora of software testing tomes available on the

market today, many developers seem to have an attitude that is counter

to extensive testing. Better development tools, pretested GUIs, and the

pressure of tight deadlines in an ever more complex development envi-

ronment can lead to avoidance of all but the most obvious testing

protocols. Whereas low-level impacts of bugs may only inconvenience

the end user, the worst impacts can result in large financial loses, or even

cause harm to people. The procedures in this book can help designers,

developers, and project managers better understand the value of compre-

hensive testing, and provide guidelines to help them achieve required

testing goals.

Software testing is a process, or a series of processes, designed to make

sure computer code does what it was designed to do and, conversely, that it

does not do anything unintended. Software should be predictable and con-

sistent, presenting no surprises to users. In this book, we will look at many

approaches to achieving this goal.

Now, before we start the book, we’d like you to take a short exam. We

want you to write a set of test cases—specific sets of data—to test properly

a relatively simple program. Create a set of test data for the program—data

the program must handle correctly to be considered a successful program.

Here’s a description of the program:

The program reads three integer values from an input dialog. The

three values represent the lengths of the sides of a triangle. The pro-

gram displays a message that states whether the triangle is scalene,

isosceles, or equilateral.

Remember that a scalene triangle is one where no two sides are equal,

whereas an isosceles triangle has two equal sides, and an equilateral

triangle has three sides of equal length. Moreover, the angles opposite the

2 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C01 08/11/2011 11:29:16 Page 3

equal sides in an isosceles triangle also are equal (it also follows that the

sides opposite equal angles in a triangle are equal), and all angles in an

equilateral triangle are equal.

Evaluate your set of test cases by using it to answer the following

questions. Give yourself one point for each yes answer.

1. Do you have a test case that represents a valid scalene triangle?

(Note that test cases such as 1, 2, 3 and 2, 5, 10 do not warrant a yes

answer because a triangle having these dimensions is not valid.)

2. Do you have a test case that represents a valid equilateral triangle?

3. Do you have a test case that represents a valid isosceles triangle?

(Note that a test case representing 2, 2, 4 would not count because it

is not a valid triangle.)

4. Do you have at least three test cases that represent valid isosceles

triangles such that you have tried all three permutations of two equal

sides (such as, 3, 3, 4; 3, 4, 3; and 4, 3, 3)?

5. Do you have a test case in which one side has a zero value?

6. Do you have a test case in which one side has a negative value?

7. Do you have a test case with three integers greater than zero such that

the sum of two of the numbers is equal to the third? (That is, if the

program said that 1, 2, 3 represents a scalene triangle, it would contain

a bug.)

8. Do you have at least three test cases in category 7 such that you have

tried all three permutations where the length of one side is equal to

the sum of the lengths of the other two sides (e.g., 1, 2, 3; 1, 3, 2; and

3, 1, 2)?

9. Do you have a test case with three integers greater than zero such that

the sum of two of the numbers is less than the third (such as 1, 2, 4 or

12, 15, 30)?

10. Do you have at least three test cases in category 9 such that you have

tried all three permutations (e.g., 1, 2, 4; 1, 4, 2; and 4, 1, 2)?

11. Do you have a test case in which all sides are zero (0, 0, 0)?

12. Do you have at least one test case specifying noninteger values

(such as 2.5, 3.5, 5.5)?

13. Do you have at least one test case specifying the wrong number of

values (two rather than three integers, for example)?

14. For each test case did you specify the expected output from the

program in addition to the input values?

A Self-Assessment Test 3

www.it-ebooks.info

http://www.it-ebooks.info/

C01 08/11/2011 11:29:16 Page 4

Of course, a set of test cases that satisfies these conditions does not guar-

antee that you will find all possible errors, but since questions 1 through

13 represent errors that actually have occurred in different versions of this

program, an adequate test of this program should expose at least these

errors.

Now, before you become concerned about your score, consider this: In

our experience, highly qualified professional programmers score, on the

average, only 7.8 out of a possible 14. If you’ve done better, congratula-

tions; if not, we’re here to help.

The point of the exercise is to illustrate that the testing of even a trivial

program such as this is not an easy task. Given this is true, consider the diffi-

culty of testing a 100,000-statement air traffic control system, a compiler, or

even a mundane payroll program. Testing also becomes more difficult with

the object-oriented languages, such as Java and Cþþ. For example, your test

cases for applications built with these languages must expose errors associ-

ated with object instantiation and memory management.

It might seem from working with this example that thoroughly testing a

complex, real-world program would be impossible. Not so! Although the

task can be daunting, adequate program testing is a very necessary—and

achievable—part of software development, as you will learn in this book.

4 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:11 Page 5

2 The Psychology
and Economics of
Software Testing

Software testing is a technical task, yes, but it also involves some impor-

tant considerations of economics and human psychology.

In an ideal world, we would want to test every possible permutation of a

program. In most cases, however, this simply is not possible. Even a seem-

ingly simple program can have hundreds or thousands of possible input

and output combinations. Creating test cases for all of these possibilities is

impractical. Complete testing of a complex application would take too

long and require too many human resources to be economically feasible.

In addition, the software tester needs the proper attitude (perhaps

‘‘vision’’ is a better word) to successfully test a software application. In

some cases, the tester’s attitude may be more important than the actual pro-

cess itself. Therefore, we will start our discussion of software testing with

these issues before we delve into the more technical nature of the topic.

The Psychology of Testing
One of the primary causes of poor application testing is the fact that most

programmers begin with a false definition of the term. They might say:

‘‘Testing is the process of demonstrating that errors are not present.’’

‘‘The purpose of testing is to show that a program performs its intended

functions correctly.’’

‘‘Testing is the process of establishing confidence that a program does

what it is supposed to do.’’

5

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:11 Page 6

These definitions are upside down.

When you test a program, you want to add some value to it. Adding

value through testing means raising the quality or reliability of the program.

Raising the reliability of the program means finding and removing errors.

Therefore, don’t test a program to show that it works; rather, start with

the assumption that the program contains errors (a valid assumption for

almost any program) and then test the program to find as many of the

errors as possible.

Thus, a more appropriate definition is this:

Testing is the process of executing a program with the intent of find-

ing errors.

Although this may sound like a game of subtle semantics, it’s really an

important distinction. Understanding the true definition of software test-

ing can make a profound difference in the success of your efforts.

Human beings tend to be highly goal-oriented, and establishing the

proper goal has an important psychological effect on them. If our goal is to

demonstrate that a program has no errors, then we will be steered sub-

consciously toward this goal; that is, we tend to select test data that have a

low probability of causing the program to fail. On the other hand, if our

goal is to demonstrate that a program has errors, our test data will have a

higher probability of finding errors. The latter approach will add more

value to the program than the former.

This definition of testing has myriad implications, many of which are

scattered throughout this book. For instance, it implies that testing is a

destructive, even sadistic, process, which explains why most people find it

difficult. That may go against our grain; with good fortune, most of us have

a constructive, rather than a destructive, outlook on life. Most people are

inclined toward making objects rather than ripping them apart. The defini-

tion also has implications for how test cases (test data) should be designed,

and who should and who should not test a given program.

Another way of reinforcing the proper definition of testing is to analyze

the use of the words ‘‘successful’’ and ‘‘unsuccessful’’—in particular, their use

by project managers in categorizing the results of test cases. Most project

managers refer to a test case that did not find an error a ‘‘successful test run,’’

whereas a test that discovers a new error is usually called ‘‘unsuccessful.’’

Once again, this is upside down. ‘‘Unsuccessful’’ denotes something un-

desirable or disappointing. To our way of thinking, a well-constructed and

6 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:11 Page 7

executed software test is successful when it finds errors that can be fixed.

That same test is also successful when it eventually establishes that there

are no more errors to be found. The only unsuccessful test is one that does

not properly examine the software; and, in the majority of cases, a test that

found no errors likely would be considered unsuccessful, since the con-

cept of a program without errors is basically unrealistic.

A test case that finds a new error can hardly be considered unsuccessful;

rather, it has proven to be a valuable investment. An unsuccessful test case

is one that causes a program to produce the correct result without finding

any errors.

Consider the analogy of a person visiting a doctor because of an overall

feeling of malaise. If the doctor runs some laboratory tests that do not locate

the problem, we do not call the laboratory tests ‘‘successful’’; they were un-

successful tests in that the patient’s net worth has been reduced by the expen-

sive laboratory fees, the patient is still ill, and the patient may question the

doctor’s ability as a diagnostician. However, if a laboratory test determines

that the patient has a peptic ulcer, the test is successful because the doctor

can now begin the appropriate treatment. Hence, the medical profession

seems to use these words in the proper sense. The analogy, of course, is that

we should think of the program, as we begin testing it, as the sick patient.

A second problem with such definitions as ‘‘testing is the process of

demonstrating that errors are not present’’ is that such a goal is impossible

to achieve for virtually all programs, even trivial programs.

Again, psychological studies tell us that people perform poorly when

they set out on a task that they know to be infeasible or impossible. For

instance, if you were instructed to solve the crossword puzzle in the

Sunday New York Times in 15 minutes, you probably would achieve little,

if any, progress after 10 minutes because, if you are like most people, you

would be resigned to the fact that the task seems impossible. If you were

asked for a solution in four hours, however, we could reasonably expect to

see more progress in the initial 10 minutes. Defining program testing as the

process of uncovering errors in a program makes it a feasible task, thus

overcoming this psychological problem.

A third problem with the common definitions such as ‘‘testing is the

process of demonstrating that a program does what it is supposed to do’’ is

that programs that do what they are supposed to do still can contain

errors. That is, an error is clearly present if a program does not do what it is

supposed to do; but errors are also present if a program does what it is not

supposed to do. Consider the triangle program of Chapter 1. Even if we

The Psychology and Economics of Software Testing 7

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:11 Page 8

could demonstrate that the program correctly distinguishes among all sca-

lene, isosceles, and equilateral triangles, the program still would be in

error if it does something it is not supposed to do (such as representing 1,

2, 3 as a scalene triangle or saying that 0, 0, 0 represents an equilateral

triangle). We are more likely to discover the latter class of errors if we

view program testing as the process of finding errors than if we view it as

the process of showing that a program does what it is supposed to do.

To summarize, program testing is more properly viewed as the destruc-

tive process of trying to find the errors in a program (whose presence is

assumed). A successful test case is one that furthers progress in this direc-

tion by causing the program to fail. Of course, you eventually want to use

program testing to establish some degree of confidence that a program

does what it is supposed to do and does not do what it is not supposed to

do, but this purpose is best achieved by a diligent exploration for errors.

Consider someone approaching you with the claim that ‘‘my program is

perfect’’ (i.e., error free). The best way to establish some confidence in this

claim is to try to refute it, that is, to try to find imperfections rather than

just confirm that the program works correctly for some set of input data.

The Economics of Testing
Given our definition of program testing, an appropriate next step is to de-

termine whether it is possible to test a program to find all of its errors. We

will show you that the answer is negative, even for trivial programs. In

general, it is impractical, often impossible, to find all the errors in a pro-

gram. This fundamental problem will, in turn, have implications for the

economics of testing, assumptions that the tester will have to make about

the program, and the manner in which test cases are designed.

To combat the challenges associated with testing economics, you should

establish some strategies before beginning. Two of the most prevalent strate-

gies include black-box testing and white-box testing, which we will explore

in the next two sections.

Black-Box Testing

One important testing strategy is black-box testing (also known as data-

driven or input/output-driven testing). To use this method, view the pro-

gram as a black box. Your goal is to be completely unconcerned about the

8 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:11 Page 9

internal behavior and structure of the program. Instead, concentrate on

finding circumstances in which the program does not behave according to

its specifications.

In this approach, test data are derived solely from the specifications

(i.e., without taking advantage of knowledge of the internal structure of

the program).

If you want to use this approach to find all errors in the program, the

criterion is exhaustive input testing, making use of every possible input con-

dition as a test case. Why? If you tried three equilateral-triangle test cases

for the triangle program, that in no way guarantees the correct detection of

all equilateral triangles. The program could contain a special check for val-

ues 3842, 3842, 3842 and denote such a triangle as a scalene triangle.

Since the program is a black box, the only way to be sure of detecting the

presence of such a statement is by trying every input condition.

To test the triangle program exhaustively, you would have to create test

cases for all valid triangles up to the maximum integer size of the develop-

ment language. This in itself is an astronomical number of test cases, but it

is in no way exhaustive: It would not find errors where the program said

that �3, 4, 5 is a scalene triangle and that 2, A, 2 is an isosceles triangle.

To be sure of finding all such errors, you have to test using not only all

valid inputs, but all possible inputs. Hence, to test the triangle program

exhaustively, you would have to produce virtually an infinite number of

test cases, which, of course, is not possible.

If this sounds difficult, exhaustive input testing of larger programs is even

more problematic. Consider attempting an exhaustive black-box test of a

Cþþ compiler. Not only would you have to create test cases representing all

valid Cþþ programs (again, virtually an infinite number), but you would

have to create test cases for all invalid Cþþ programs (an infinite number)

to ensure that the compiler detects them as being invalid. That is, the com-

piler has to be tested to ensure that it does not do what it is not supposed to

do—for example, successfully compile a syntactically incorrect program.

The problem is even more onerous for transaction-base programs such

as database applications. For example, in a database application such as an

airline reservation system, the execution of a transaction (such as a data-

base query or a reservation for a plane flight) is dependent upon what hap-

pened in previous transactions. Hence, not only would you have to try all

unique valid and invalid transactions, but also all possible sequences of

transactions.

The Psychology and Economics of Software Testing 9

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:12 Page 10

This discussion shows that exhaustive input testing is impossible. Two

important implications of this: (1) You cannot test a program to guarantee

that it is error free; and (2) a fundamental consideration in program testing

is one of economics. Thus, since exhaustive testing is out of the question,

the objective should be to maximize the yield on the testing investment by

maximizing the number of errors found by a finite number of test cases.

Doing so will involve, among other things, being able to peer inside the

program and make certain reasonable, but not airtight, assumptions about

the program (e.g., if the triangle program detects 2, 2, 2 as an equilateral

triangle, it seems reasonable that it will do the same for 3, 3, 3). This will

form part of the test case design strategy in Chapter 4.

White-Box Testing

Another testing strategy, white-box (or logic-driven) testing, permits you to

examine the internal structure of the program. This strategy derives test

data from an examination of the program’s logic (and often, unfortunately,

at the neglect of the specification).

The goal at this point is to establish for this strategy the analog to exhaus-

tive input testing in the black-box approach. Causing every statement in the

program to execute at least once might appear to be the answer, but it is not

difficult to show that this is highly inadequate. Without belaboring the point

here, since this matter is discussed in greater depth in Chapter 4, the analog

is usually considered to be exhaustive path testing. That is, if you execute, via

test cases, all possible paths of control flow through the program, then possi-

bly the program has been completely tested.

There are two flaws in this statement, however. One is that the number

of unique logic paths through a program could be astronomically large. To

see this, consider the trivial program represented in Figure 2.1. The dia-

gram is a control-flow graph. Each node or circle represents a segment of

statements that execute sequentially, possibly terminating with a branching

statement. Each edge or arc represents a transfer of control (branch) be-

tween segments. The diagram, then, depicts a 10- to 20-statement program

consisting of a DO loop that iterates up to 20 times. Within the body of the

DO loop is a set of nested IF statements. Determining the number of unique

logic paths is the same as determining the total number of unique ways of

moving from point a to point b (assuming that all decisions in the program

are independent from one another). This number is approximately 1014, or

10 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:12 Page 11

100 trillion. It is computed from 520 þ 519 þ . . . 51, where 5 is the

number of paths through the loop body. Most people have a difficult time

visualizing such a number, so consider it this way: If you could write, exe-

cute, and verify a test case every five minutes, it would take approximately

1 billion years to try every path. If you were 300 times faster, completing a

test once per second, you could complete the job in 3.2 million years, give

or take a few leap years and centuries.

Of course, in actual programs every decision is not independent from

every other decision, meaning that the number of possible execution paths

would be somewhat fewer. On the other hand, actual programs are much

larger than the simple program depicted in Figure 2.1. Hence, exhaustive

path testing, like exhaustive input testing, appears to be impractical, if not

impossible.

FIGURE 2.1 Control-Flow Graph of a Small Program.

The Psychology and Economics of Software Testing 11

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:12 Page 12

The second flaw in the statement ‘‘exhaustive path testing means a com-

plete test’’ is that every path in a program could be tested, yet the program

might still be loaded with errors. There are three explanations for this.

The first is that an exhaustive path test in no way guarantees that a pro-

gram matches its specification. For example, if you were asked to write an

ascending-order sorting routine but mistakenly produced a descending-

order sorting routine, exhaustive path testing would be of little value; the

program still has one bug: It is the wrong program, as it does not meet the

specification.

Second, a program may be incorrect because of missing paths. Exhaustive

path testing, of course, would not detect the absence of necessary paths.

Third, an exhaustive path test might not uncover data-sensitivity errors.

There are many examples of such errors, but a simple one should suffice.

Suppose that in a program you have to compare two numbers for conver-

gence, that is, to see if the difference between the two numbers is less than

some predetermined value. For example, you might write a Java IF state-

ment as

if (a-b<c)
System.out.println("a-b<c");

Of course, the statement contains an error because it should compare c

to the absolute value of a-b. Detection of this error, however, is dependent

upon the values used for a and b and would not necessarily be detected by

just executing every path through the program.

In conclusion, although exhaustive input testing is superior to exhaus-

tive path testing, neither proves to be useful because both are infeasible.

Perhaps, then, there are ways of combining elements of black-box and

white-box testing to derive a reasonable, but not airtight, testing strategy.

This matter is pursued further in Chapter 4.

Software Testing Principles
Continuing with the major premise of this chapter, that the most impor-

tant considerations in software testing are issues of psychology, we can

identify a set of vital testing principles or guidelines. Most of these princi-

ples may seem obvious, yet they are all too often overlooked. Table 2.1

summarizes these important principles, and each is discussed in more

detail in the paragraphs that follow.

12 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:12 Page 13

Principle 1: A necessary part of a test case is a definition of the

expected output or result.

This principle, though obvious, when overlooked is the cause of

one of the most frequent mistakes in program testing. Again, it is

something that is based on human psychology. If the expected result

of a test case has not been predefined, chances are that a plausible,

but erroneous, result will be interpreted as a correct result because of

the phenomenon of ‘‘the eye seeing what it wants to see.’’ In other

words, in spite of the proper destructive definition of testing, there is

still a subconscious desire to see the correct result. One way of

TABLE 2.1 Vital Program Testing Guidelines

Principle

Number Principle

1 A necessary part of a test case is a definition of the expected

output or result.

2 A programmer should avoid attempting to test his or her own

program.

3 A programming organization should not test its own programs.

4 Any testing process should include a thorough inspection of the

results of each test.

5 Test cases must be written for input conditions that are invalid

and unexpected, as well as for those that are valid and expected.

6 Examining a program to see if it does not do what it is supposed

to do is only half the battle; the other half is seeing whether the

program does what it is not supposed to do.

7 Avoid throwaway test cases unless the program is truly a

throwaway program.

8 Do not plan a testing effort under the tacit assumption that no

errors will be found.

9 The probability of the existence of more errors in a section of a

program is proportional to the number of errors already found in

that section.

10 Testing is an extremely creative and intellectually challenging

task.

The Psychology and Economics of Software Testing 13

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:12 Page 14

combating this is to encourage a detailed examination of all output

by precisely spelling out, in advance, the expected output of the pro-

gram. Therefore, a test case must consist of two components:

1. A description of the input data to the program.

2. A precise description of the correct output of the program for

that set of input data.

A problem may be characterized as a fact or group of facts for

which we have no acceptable explanation, that seem unusual, or that

fail to fit in with our expectations or preconceptions. It should be

obvious that some prior beliefs are required if anything is to appear

problematic. If there are no expectations, there can be no surprises.

Principle 2: A programmer should avoid attempting to test his or her

own program.

Any writer knows—or should know—that it’s a bad idea to at-

tempt to edit or proofread his or her own work. They know what the

piece is supposed to say, hence may not recognize when it says other-

wise. And they really don’t want to find errors in their own work. The

same applies to software authors.

Another problem arises with a change in focus on a software proj-

ect. After a programmer has constructively designed and coded a pro-

gram, it is extremely difficult to suddenly change perspective to look

at the program with a destructive eye.

As many homeowners know, removing wallpaper (a destructive

process) is not easy, but it is almost unbearably depressing if it was

your hands that hung the paper in the first place. Similarly, most pro-

grammers cannot effectively test their own programs because they

cannot bring themselves to shift mental gears to attempt to expose

errors. Furthermore, a programmer may subconsciously avoid find-

ing errors for fear of retribution from peers or a supervisor, a client,

or the owner of the program or system being developed.

In addition to these psychological issues, there is a second signifi-

cant problem: The program may contain errors due to the program-

mer’s misunderstanding of the problem statement or specification. If

this is the case, it is likely that the programmer will carry the same

misunderstanding into tests of his or her own program.

This does not mean that it is impossible for a programmer to test

his or her own program. Rather, it implies that testing is more effec-

tive and successful if someone else does it. However, as we will

14 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:13 Page 15

discuss in more detail in Chapter 3, developers can be valuable mem-

bers of the testing team when the program specification and the pro-

gram code itself are being evaluated.

Note that this argument does not apply to debugging (correcting

known errors); debugging is more efficiently performed by the origi-

nal programmer.

Principle 3: A programming organization should not test its own

programs.

The argument here is similar to that made in the previous princi-

ple. A project or programming organization is, in many senses, a liv-

ing organization with psychological problems similar to those of

individual programmers. Furthermore, in most environments, a pro-

gramming organization or a project manager is largely measured on

the ability to produce a program by a given date and for a certain cost.

One reason for this is that it is easy to measure time and cost objec-

tives, whereas it is extremely difficult to quantify the reliability of a

program. Therefore, it is difficult for a programming organization to

be objective in testing its own programs, because the testing process,

if approached with the proper definition, may be viewed as decreasing

the probability of meeting the schedule and the cost objectives.

Again, this does not say that it is impossible for a programming

organization to find some of its errors, because organizations do

accomplish this with some degree of success. Rather, it implies that it

is more economical for testing to be performed by an objective, inde-

pendent party.

Principle 4: Any testing process should include a thorough inspection

of the results of each test.

This is probably the most obvious principle, but again it is some-

thing that is often overlooked. We’ve seen numerous experiments

that show many subjects failed to detect certain errors, even when

symptoms of those errors were clearly observable on the output list-

ings. Put another way, errors that are found in later tests were often

missed in the results from earlier tests.

Principle 5: Test cases must be written for input conditions that are

invalid and unexpected, as well as for those that are valid

and expected.

There is a natural tendency when testing a program to concentrate

on the valid and expected input conditions, to the neglect of the

The Psychology and Economics of Software Testing 15

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:13 Page 16

invalid and unexpected conditions. For instance, this tendency fre-

quently appears in the testing of the triangle program in Chapter 1.

Few people, for instance, feed the program the numbers 1, 2, 5 to

ensure that the program does not erroneously interpret this as an

equalateral triangle instead of a scalene triangle. Also, many errors that

are suddenly discovered in production software turn up when it is used

in some new or unexpected way. It is hard, if not impossible, to define

all the use cases for software testing. Therefore, test cases representing

unexpected and invalid input conditions seem to have a higher error-

detection yield than do test cases for valid input conditions.

Principle 6: Examining a program to see if it does not do what it is sup-

posed to do is only half the battle; the other half is seeing

whether the program does what it is not supposed to do.

This is a corollary to the previous principle. Programs must be

examined for unwanted side effects. For instance, a payroll program

that produces the correct paychecks is still an erroneous program if it

also produces extra checks for nonexistent employees, or if it over-

writes the first record of the personnel file.

Principle 7: Avoid throwaway test cases unless the program is truly a

throwaway program.

This problem is seen most often with interactive systems to test

programs. A common practice is to sit at a terminal and invent test

cases on the fly, and then send these test cases through the program.

The major issue is that test cases represent a valuable investment

that, in this environment, disappears after the testing has been com-

pleted. Whenever the program has to be tested again (e.g., after cor-

recting an error or making an improvement), the test cases must be

reinvented. More often than not, since this reinvention requires a

considerable amount of work, people tend to avoid it. Therefore, the

retest of the program is rarely as rigorous as the original test, mean-

ing that if the modification causes a previously functional part of the

program to fail, this error often goes undetected. Saving test cases

and running them again after changes to other components of the

program is known as regression testing.

Principle 8: Do not plan a testing effort under the tacit assumption

that no errors will be found.

This is a mistake project managers often make and is a sign of the

use of the incorrect definition of testing—that is, the assumption that

16 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:13 Page 17

testing is the process of showing that the program functions correctly.

Once again, the definition of testing is the process of executing a pro-

gram with the intent of finding errors. And it should be obvious from

our previous discussions that it is impossible to develop a program

that is completely error free. Even after extensive testing and error

correction, it is safe to assume that errors still exist; they simply have

not yet been found.

Principle 9: The probability of the existence of more errors in a section

of a program is proportional to the number of errors al-

ready found in that section.

This phenomenon is illustrated in Figure 2.2. At first glance this

concept may seem nonsensical, but it is a phenomenon present in

many programs. For instance, if a program consists of two modules,

classes, or subroutines, A and B, and five errors have been found in

module A, and only one error has been found in module B, and if

module A has not been purposely subjected to a more rigorous test,

then this principle tells us that the likelihood of more errors in mod-

ule A is greater than the likelihood of more errors in module B.

Another way of stating this principle is to say that errors tend to

come in clusters and that, in the typical program, some sections

seem to be much more prone to errors than other sections, although

nobody has supplied a good explanation of why this occurs. The phe-

nomenon is useful in that it gives us insight or feedback in the testing

process. If a particular section of a program seems to be much more

prone to errors than other sections, then this phenomenon tells us

FIGURE 2.2 The Surprising Relationship between Errors Remaining and

Errors Found.

The Psychology and Economics of Software Testing 17

www.it-ebooks.info

http://www.it-ebooks.info/

C02 08/25/2011 11:54:13 Page 18

that, in terms of yield on our testing investment, additional testing

efforts are best focused against this error-prone section.

Principle 10: Testing is an extremely creative and intellectually chal-

lenging task.

It is probably true that the creativity required in testing a large

program exceeds the creativity required in designing that program.

We already have seen that it is impossible to test a program suffi-

ciently to guarantee the absence of all errors. Methodologies dis-

cussed later in this book help you develop a reasonable set of test

cases for a program, but these methodologies still require a signifi-

cant amount of creativity.

Summary
As you proceed through this book, keep in mind these important princi-

ples of testing:

� Testing is the process of executing a program with the intent of find-

ing errors.

� Testing is more successful when not performed by the developer(s).

� A good test case is one that has a high probability of detecting an

undiscovered error.

� A successful test case is one that detects an undiscovered error.

� Successful testing includes carefully defining expected output as well

as input.

� Successful testing includes carefully studying test results.

18 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:40 Page 19

3 Program Inspections,
Walkthroughs, and
Reviews

For many years, most of us in the programming community worked un-

der the assumptions that programs are written solely for machine exe-

cution, and are not intended for people to read, and that the only way to

test a program is to execute it on a machine. This attitude began to change

in the early 1970s through the efforts of program developers who first saw

the value in reading code as part of a comprehensive testing and debugging

regimen.

Today, not all testers of software applications read code, but the concept

of studying program code as part of a testing effort certainly is widely ac-

cepted. Several factors may affect the likelihood that a given testing and

debugging effort will include people actually reading program code: the

size or complexity of the application, the size of the development team,

the timeline for application development (whether the schedule is relaxed

or intense, for example), and, of course, the background and culture of the

programming team.

For these reasons, we will discuss the process of noncomputer-based

testing (‘‘human testing’’) before we delve into the more traditional

computer-based testing techniques. Human testing techniques are quite

effective in finding errors—so much so that every programming project

should use one or more of these techniques. You should apply these

methods between the time the program is coded and when computer-

based testing begins. You also can develop and apply analogous methods

19

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:40 Page 20

at earlier stages in the programming process (such as at the end of each

design stage), but these are outside the scope of this book.

Before we begin the discussion of human testing techniques, take note

of this important point: Because the involvement of humans results in less

formal methods than mathematical proofs conducted by a computer, you

may feel skeptical that something so simple and informal can be useful.

Just the opposite is true. These informal techniques don’t get in the way of

successful testing; rather, they contribute substantially to productivity and

reliability in two major ways.

First, it is generally recognized that the earlier errors are found, the lower

the costs of correcting the errors and the higher the probability of correcting

them correctly. Second, programmers seem to experience a psychological

shift when computer-based testing commences. Internally induced pressures

seem to build rapidly and there is a tendency to want to ‘‘fix this darn bug

as soon as possible.’’ Because of these pressures, programmers tend to make

more mistakes when correcting an error found during computer-based test-

ing than they make when correcting an error found earlier.

Inspections and Walkthroughs
The three primary human testing methods are code inspections, walk-

throughs and user (or usability) testing. We cover the first two of these,

which are code-oriented methods, in this chapter. These methods can be

used at virtually any stage of software development, after an application is

deemed to be complete or as each module or unit is complete (see Chapter

5 for more information on module testing). We discuss user testing in

detail in Chapter 7.

The two code inspection methods have a lot in common, so we will dis-

cuss their similarities together. Their differences are enumerated in subse-

quent sections.

Inspections and walkthroughs involve a team of people reading or

visually inspecting a program. With either method, participants must

conduct some preparatory work. The climax is a ‘‘meeting of the minds,’’

at a participant conference. The objective of the meeting is to find errors

but not to find solutions to the errors—that is, to test, not debug.

Code inspections and walkthroughs have been widely used for some

time. In our opinion, the reason for their success is related to some of the

principles identified in Chapter 2.

20 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:40 Page 21

In a walkthrough, a group of developers—with three or four being an

optimal number—performs the review. Only one of the participants is the

author of the program. Therefore, the majority of program testing is con-

ducted by people other than the author, which follows testing principle 2,

which states that an individual is usually ineffective in testing his or her

own program. (Refer to Chapter 2, Table 2.1, and the subsequent discus-

sion for all 10 program testing principles.)

An inspection or walkthrough is an improvement over the older desk-

checking process (whereby a programmer reads his or her own program

before testing it). Inspections and walkthroughs are more effective, again

because people other than the program’s author are involved in the

process.

Another advantage of walkthroughs, resulting in lower debugging

(error-correction) costs, is the fact that when an error is found it usually is

located precisely in the code as opposed to black box testing where you

only receive an unexpected result. Moreover, this process frequently

exposes a batch of errors, allowing the errors to be corrected later en

masse. Computer-based testing, on the other hand, normally exposes only

a symptom of the error (e.g., the program does not terminate or the

program prints a meaningless result), and errors are usually detected and

corrected one by one.

These human testing methods generally are effective in finding from

30 to 70 percent of the logic-design and coding errors in typical programs.

They are not effective, however, in detecting high-level design errors, such

as errors made in the requirements analysis process. Note that a success

rate of 30 to 70 percent doesn’t mean that up to 70 percent of all errors

might be found. Recall from Chapter 2 that we can never know the total

number of errors in a program. Thus, what this means is that these meth-

ods are effective in finding up to 70 percent of all errors found by the end

of the testing process.

Of course, a possible criticism of these statistics is that the human pro-

cesses find only the ‘‘easy’’ errors (those that would be trivial to find with

computer-based testing) and that the difficult, obscure, or tricky errors

can be found only by computer-based testing. However, some testers

using these techniques have found that the human processes tend to

be more effective than the computer-based testing processes in finding

certain types of errors, while the opposite is true for other types of

errors (e.g., uninitialized variables versus divide by zero errors).

Program Inspections, Walkthroughs, and Reviews 21

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:40 Page 22

The implication is that inspections/walkthroughs and computer-based

testing are complementary; error-detection efficiency will suffer if one or

the other is not present.

Finally, although these processes are invaluable for testing new pro-

grams, they are of equal, or even higher, value in testing modifications

to programs. In our experience, modifying an existing program is a process

that is more error prone (in terms of errors per statement written) than

writing a new program. Therefore, program modifications also should

be subjected to these testing processes as well as regression testing

techniques.

Code Inspections
A code inspection is a set of procedures and error-detection techniques

for group code reading. Most discussions of code inspections focus on the

procedures, forms to be filled out, and so on. Here, after a short summary

of the general procedure, we will focus on the actual error-detection

techniques.

Inspection Team

An inspection team usually consists of four people. The first of the four

plays the role of moderator, which in this context is tantamount to

that of a quality-control engineer. The moderator is expected to be a

competent programmer, but he or she is not the author of the program

and need not be acquainted with the details of the program. Moderator

duties include:

� Distributing materials for, and scheduling, the inspection session.

� Leading the session.

� Recording all errors found.

� Ensuring that the errors are subsequently corrected.

The second team member is the programmer. The remaining team

members usually are the program’s designer (if different from the program-

mer) and a test specialist. The specialist should be well versed in software

testing and familiar with the most common programming errors, which we

discuss later in this chapter.

22 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:40 Page 23

Inspection Agenda

Several days in advance of the inspection session, the moderator distrib-

utes the program’s listing and design specification to the other participants.

The participants are expected to familiarize themselves with the material

prior to the session. During the session, two activities occur:

1. The programmer narrates, statement by statement, the logic of the

program. During the discourse, other participants should raise ques-

tions, which should be pursued to determine whether errors exist. It

is likely that the programmer, rather than the other team members,

will find many of the errors identified during this narration. In other

words, the simple act of reading aloud a program to an audience seems

to be a remarkably effective error-detection technique.

2. The program is analyzed with respect to checklists of historically

common programming errors (such a checklist is discussed in the

next section).

The moderator is responsible for ensuring that the discussions proceed

along productive lines and that the participants focus their attention on

finding errors, not correcting them. (The programmer corrects errors after

the inspection session.)

Upon the conclusion of the inspection session, the programmer is given

a list of the errors uncovered. If more than a few errors were found, or if

any of the errors require a substantial correction, the moderator might

make arrangements to reinspect the program after those errors have been

corrected. This subsequent list of errors is also analyzed, categorized, and

used to refine the error checklist to improve the effectiveness of future

inspections.

As stated, this inspection process usually concentrates on discovering

errors, not correcting them. That said, some teams may find that when a

minor problem is discovered, two or three people, including the program-

mer responsible for the code, may propose design changes to handle this

special case. The discussion of this minor problem may, in turn, focus

the group’s attention on that particular area of the design. During the dis-

cussion of the best way to alter the design to handle this minor problem,

someone may notice a second problem. Now that the group has seen two

problems related to the same aspect of the design, comments likely will

Program Inspections, Walkthroughs, and Reviews 23

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 24

come thick and fast, with interruptions every few sentences. In a few min-

utes, this whole area of the design could be thoroughly explored, and any

problems made obvious.

The time and location of the inspection should be planned to prevent all

outside interruptions. The optimal amount of time for the inspection ses-

sion appears to be from 90 to 120 minutes. The session is a mentally taxing

experience, thus longer sessions tend to be less productive. Most inspec-

tions proceed at a rate of approximately 150 program statements per hour.

For that reason, large programs should be examined over multiple inspec-

tions, each dealing with one or several modules or subroutines.

Human Agenda

Note that for the inspection process to be effective, the testing group must

adopt an appropriate attitude. If, for example, the programmer views the

inspection as an attack on his or her character and adopts a defensive pos-

ture, the process will be ineffective. Rather, the programmer must a leave

his or her ego at the door and place the process in a positive and construc-

tive light, keeping in mind that the objective of the inspection is to find

errors in the program and, thus, improve the quality of the work. For this

reason, most people recommend that the results of an inspection be a

confidential matter, shared only among the participants. In particular, if

managers somehow make use of the inspection results (to assume or imply

that the programmer is inefficient or incompetent, for example), the pur-

pose of the process may be defeated.

Side Benefits of the Inspection Process

The inspection process has several beneficial side effects, in addition to its

main effect of finding errors. For one, the programmer usually receives

valuable feedback concerning programming style, choice of algorithms,

and programming techniques. The other participants gain in a similar way

by being exposed to another programmer’s errors and programming style.

In general, this type of software testing helps reinforce a team approach to

this particular project and to projects that involve these participants in

general. Reducing the potential for the evolution of an adversarial relation-

ship, in favor of a cooperative, team approach to projects, can lead to more

efficient and reliable program development.

24 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 25

Finally, the inspection process is a way of identifying early the most

error-prone sections of the program, helping to focus attention more

directly on these sections during the computer-based testing processes

(number 9 of the testing principles given in Chapter 2).

An Error Checklist for Inspections
An important part of the inspection process is the use of a checklist to

examine the program for common errors. Unfortunately, some checklists

concentrate more on issues of style than on errors (e.g., ‘‘Are comments

accurate and meaningful?’’ and ‘‘Are if-else code blocks, and do-while

groups aligned?’’), and the error checks are too nebulous to be useful

(such as, ‘‘Does the code meet the design requirements?’’). The checklist in

this section, divided into six categories, was compiled after many years of

study of software errors. It is largely language-independent, meaning that

most of the errors can occur with any programming language. You may

wish to supplement this list with errors peculiar to your programming lan-

guage and with errors detected after completing the inspection process.

Data Reference Errors

Does a referenced variable have a value that is unset or uninitialized?

This probably is the most frequent programming error, occurring in

a wide variety of circumstances. For each reference to a data item

(variable, array element, field in a structure), attempt to ‘‘prove’’ in-

formally that the item has a value at that point.

For all array references, is each subscript value within the defined

bounds of the corresponding dimension?

For all array references, does each subscript have an integer value?

This is not necessarily an error in all languages, but, in general,

working with noninteger array references is a dangerous practice.

For all references through pointer or reference variables, is the refer-

enced memory currently allocated? This is known as the ‘‘dangling

reference’’ problem. It occurs in situations where the lifetime of a

pointer is greater than the lifetime of the referenced memory. One

instance occurs where a pointer references a local variable within

a procedure, the pointer value is assigned to an output parameter

or a global variable, the procedure returns (freeing the referenced

Program Inspections, Walkthroughs, and Reviews 25

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 26

location), and later the program attempts to use the pointer value.

In a manner similar to checking for the prior errors, try to prove

informally that, in each reference using a pointer variable, the refer-

enced memory exists.

When a memory area has alias names with differing attributes, does

the data value in this area have the correct attributes when refer-

enced via one of these names? Situations to look for are the use of

the EQUIVALENCE statement in Fortran and the REDEFINES clause in

COBOL. As an example, a Fortran program contains a real variable A

and an integer variable B; both are made aliases for the same memory

area by using an EQUIVALENCE statement. If the program stores a

value into A and then references variable B, an error is likely present

since the machine would use the floating-point bit representation in

the memory area as an integer.

Sidebar 3.1: History of COBOL and Fortran

COBOL and Fortran are older programming languages that have

fueled business and scientific software development for generations

of computer hardware, operating systems and programmers.

COBOL (an acronym for COmmon Business Oriented Language)

first was defined about 1959 or 1960, and was designed to support

business application development on mainframe class computers.

The original specification included aspects of other existing languages

at the time. Big-name computer manufacturers and representatives of

the federal government participated in this effort to create a business-

oriented programming language that could run on a variety of hard-

ware and operating system platforms.

COBOL language standards have been reviewed and updated over

the years. By 2002, COBOL was available for most current operating

platforms and object-oriented versions supporting the .NET develop-

ment environment.

As the time of this writing, the latest version of COBOL is Visual

COBOL 2010.

Fortran (originally FORTRAN, but modern references generally

follow the uppercase/lowercase syntax) is a little older than COBOL,

26 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 27

Does a variable’s value have a type or attribute other than what

the compiler expects? This situation might occur where a C or Cþþ
program reads a record into memory and references it by using a

structure, but the physical representation of the record differs from

the structure definition.

Are there any explicit or implicit addressing problems if, on the com-

puter being used, the units of memory allocation are smaller than the

units of addressable memory? For instance, in some environments,

fixed-length bit strings do not necessarily begin on byte boundaries,

but address only point-to-byte boundaries. If a program computes

the address of a bit string and later refers to the string through this

address, the wrong memory location may be referenced. This situa-

tion also could occur when passing a bit-string argument to a

subroutine.

If pointer or reference variables are used, does the referenced mem-

ory location have the attributes the compiler expects? An example of

such an error is where a Cþþ pointer upon which a data structure is

based is assigned the address of a different data structure.

If a data structure is referenced in multiple procedures or subrou-

tines, is the structure defined identically in each procedure?

When indexing into a string, are the limits of the string off by one

in indexing operations or in subscript references to arrays?

with early specifications defined in the early to middle 1950s. Like

COBOL, Fortran was designed for specific types of mainframe applica-

tion development, but in the scientific and numerical management

arenas. The name derives from an existing IBM system at the time,

Mathematical FORmula TRANslating System. Although the original

Fortran contained only 32 statements, it marked a significant improve-

ment over assembly-level programming that preceded it.

The current version as of the publication date of this book is Fortran

2008, formally approved by the appropriate standard committees

in 2010. Like COBOL, the evolution of Fortran added support for a

broad range of hardware and operating system platforms. However,

Fortran is probably used more in current development—as well as

older system maintenance—than COBOL.

Program Inspections, Walkthroughs, and Reviews 27

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 28

For object-oriented languages, are all inheritance requirements met

in the implementing class?

Data Declaration Errors

Have all variables been explicitly declared? A failure to do so is not

necessarily an error, but is, nevertheless, a common source of trou-

ble. For instance, if a program subroutine receives an array parame-

ter, and fails to define the parameter as an array (as in a DIMENSION

statement), a reference to the array (such as C¼A(I)) is interpreted

as a function call, leading to the machine’s attempting to execute the

array as a program. Also, if a variable is not explicitly declared in an

inner procedure or block, is it understood that the variable is shared

with the enclosing block?

If all attributes of a variable are not explicitly stated in the declara-

tion, are the defaults well understood? For instance, the default

attributes received in Java are often a source of surprise when not

properly declared.

Where a variable is initialized in a declarative statement, is it prop-

erly initialized? In many languages, initialization of arrays and

strings is somewhat complicated and, hence, error prone.

Is each variable assigned the correct length and data type?

Is the initialization of a variable consistent with its memory type?

For instance, if a variable in a Fortran subroutine needs to be reini-

tialized each time the subroutine is called, it must be initialized with

an assignment statement rather than a DATA statement.

Are there any variables with similar names (e.g., VOLT and VOLTS)?

This is not necessarily an error, but it should be seen as a warning

that the names may have been confused somewhere within the

program.

Computation Errors

Are there any computations using variables having inconsistent

(such as nonarithmetic) data types?

Are there any mixed-mode computations? An example is when

working with floating-point and integer variables. Such occurrences

are not necessarily errors, but they should be explored carefully to

ensure that the conversion rules of the language are understood.

28 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 29

Consider the following Java snippet showing the rounding error that

can occur when working with integers:

int x¼1;
int y¼2;
int z¼0;
z¼x/y;
System.out.println ("z¼ " þz);

OUTPUT:
z¼0

Are there any computations using variables having the same data

type but of different lengths?

Is the data type of the target variable of an assignment smaller than

the data type or a result of the right-hand expression?

Is an overflow or underflow expression possible during the computa-

tion of an expression? That is, the end result may appear to have

valid value, but an intermediate result might be too big or too small

for the programming language’s data types.

Is it possible for the divisor in a division operation to be zero?

If the underlying machine represents variables in base-2 form, are

there any sequences of the resulting inaccuracy? That is, 10 � 0.1 is

rarely equal to 1.0 on a binary machine.

Where applicable, can the value of a variable go outside the mean-

ingful range? For example, statements assigning a value to the varia-

ble PROBABILITY might be checked to ensure that the assigned value

will always be positive and not greater than 1.0.

For expressions containing more than one operator, are the assump-

tions about the order of evaluation and precedence of operators

correct?

Are there any invalid uses of integer arithmetic, particularly divi-

sions? For instance, if i is an integer variable, whether the expres-

sion 2�i/2¼¼i depends on whether i has an odd or an even value

and whether the multiplication or division is performed first.

Comparison Errors

Are there any comparisons between variables having different data types,

such as comparing a character string to an address, date, or number?

Program Inspections, Walkthroughs, and Reviews 29

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 30

Are there any mixed-mode comparisons or comparisons between

variables of different lengths? If so, ensure that the conversion rules

are well understood.

Are the comparison operators correct? Programmers frequently con-

fuse such relations as at most, at least, greater than, not less than, and

less than or equal.

Does each Boolean expression state what it is supposed to state? Pro-

grammers often make mistakes when writing logical expressions in-

volving and, or, and not.

Are the operands of a Boolean operator Boolean? Have comparison

and Boolean operators been erroneously mixed together? This repre-

sents another frequent class of mistakes. Examples of a few typical

mistakes are illustrated here:

� If you want to determine whether i is between 2 and 10, the

expression 2<i<10 is incorrect. Instead, it should be (2<i)&&

(i<10).

� If you want to determine whether i is greater than x or y, i>xjjy
is incorrect. Instead, it should be (i>x)jj(i>y).

� If you want to compare three numbers for equality, if(a¼¼b¼¼c)

does something quite different.

� If you want to test the mathematical relation x>y>z, the correct

expression is (x>y)&&(y>z).

Are there any comparisons between fractional or floating-point num-

bers that are represented in base-2 by the underlying machine? This

is an occasional source of errors because of truncation and base-2

approximations of base-10 numbers.

For expressions containing more than one Boolean operator, are

the assumptions about the order of evaluation and the prece-

dence of operators correct? That is, if you see an expression

such as if((a¼¼2)&&(b¼¼2)jj(c¼¼3)), is it well understood

whether the and or the or is performed first?

Does the way in which the compiler evaluates Boolean expressions

affect the program? For instance, the statement

if(x¼¼0&&(x/y)>z)

may be acceptable for compilers that end the test as soon as one side

of an and is false, but may cause a division-by-zero error with other

compilers.

30 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 31

Control-Flow Errors

If the program contains a multipath branch such as a computed

GOTO, can the index variable ever exceed the number of branch pos-

sibilities? For example, in the statement

GOTO(200,300,400),i

will i always have the value of 1, 2, or 3?

Will every loop eventually terminate? Devise an informal proof or

argument showing that each loop will terminate.

Will the program, module, or subroutine eventually terminate?

Is it possible that, because of the conditions upon entry, a loop will

never execute? If so, does this represent an oversight? For instance,

if you had the following for loop and while loop headed by the fol-

lowing statements:

for (i¼x;i<¼z;iþþ){
...
}

or . . .

while (NOTFOUND) {
...
}

what happens if x is greater than z or if NOTFOUND is initially false?

For a loop controlled by both iteration and a Boolean condition (e.g.,

a searching loop) what are the consequences of loop fall-through?

For example, for the psuedo-code loop headed by

DO I¼1 to TABLESIZE WHILE (NOTFOUND)

what happens if NOTFOUND never becomes false?

Are there any off-by-one errors, such as one too many or too few

iterations? This is a common error in zero-based loops. You will of-

ten forget to count 0 as a number. For example, if you want to create

Java code for a loop that iterates 10 times, the following would be

wrong, as it performs 11 iterations:

for (int i¼0;i<¼10;iþþ){
System.out.println(i);

}

Program Inspections, Walkthroughs, and Reviews 31

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 32

Correct, the loop is iterated 10 times:

for (int i¼0; i<10;iþþ) {
System.out.println(i);

}

If the language contains a concept of statement groups or code

blocks (e.g., do-while or {...}), is there an explicit while for each

group, and do the instances of do correspond to their appropriate

groups? Is there a closing bracket for each open bracket? Most mod-

ern compilers will complain of such mismatches.

Are there any nonexhaustive decisions? For instance, if an input pa-

rameter’s expected values are 1, 2, or 3, does the logic assume that it

must be 3 if it is not 1 or 2? If so, is the assumption valid?

Interface Errors

Does the number of parameters received by this module equal the

number of arguments sent by each of the calling modules? Also, is

the order correct?

Do the attributes (e.g., data type and size) of each parameter match

the attributes of each corresponding argument?

Does the units system of each parameter match the units system of

each corresponding argument? For example, is the parameter

expressed in degrees but the argument expressed in radians?

Does the number of arguments passed by this module to another

module equal the number of parameters expected by that module?

Do the attributes of each argument passed to another module match

the attributes of the corresponding parameter in that module?

Does the units system of each argument passed to another module

match the units system of the corresponding parameter in that

module?

If built-in functions are invoked, are the number, attributes, and or-

der of the arguments correct?

If a module or class has multiple entry points, is a parameter ever

referenced that is not associated with the current point of entry?

Such an error exists in the second assignment statement in the

following PL/1 program:

32 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 33

A: PROCEDURE (W,X);
W¼Xþ1;
RETURN

B: ENTRY (Y,Z);
Y¼XþZ;
END;

Does a subroutine alter a parameter that is intended to be only an

input value?

If global variables are present, do they have the same definition and

attributes in all modules that reference them?

Are constants ever passed as arguments? In some Fortran implemen-

tations a statement such as

CALL SUBX(J,3)

is dangerous, because if the subroutine SUBX assigns a value to its

second parameter, the value of the constant 3 will be altered.

Input/Output Errors

If files are explicitly declared, are their attributes correct?

Are the attributes on the file’s OPEN statement correct?

Does the format specification agree with the information in the I/O

statement? For instance, in Fortran, does each FORMAT statement

agree (in terms of the number and attributes of the items) with the

corresponding READ or WRITE statement?

Is sufficient memory available to hold the file your program will read?

Have all files been opened before use?

Have all files been closed after use?

Are end-of-file conditions detected and handled correctly?

Are I/O error conditions handled correctly?

Are there spelling or grammatical errors in any text that is printed or

displayed by the program?

Does the program properly handle ‘‘File not Found’’ errors?

Other Checks

If the compiler produces a cross-reference listing of identifiers, examine

it for variables that are never referenced or are referenced only once.

Program Inspections, Walkthroughs, and Reviews 33

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:41 Page 34

If the compiler produces an attribute listing, check the attributes of

each variable to ensure that no unexpected default attributes have

been assigned.

If the program compiled successfully, but the computer produced

one or more ‘‘warning’’ or ‘‘informational’’ messages, check each one

carefully. Warning messages are indications that the compiler sus-

pects you are doing something of questionable validity: Review all of

these suspicions. Informational messages may list undeclared varia-

bles or language uses that impede code optimization.

Is the program or module sufficiently robust? That is, does it check

its input for validity?

Is a function missing from the program?

This checklist is summarized in Tables 3.1 and 3.2.

Walkthroughs
The code walkthrough, like the inspection, is a set of procedures and

error-detection techniques for group code reading. It shares much in com-

mon with the inspection process, but the procedures are slightly different,

and a different error-detection technique is employed.

Like the inspection, the walkthrough is an uninterrupted meeting of

one to two hours in duration. The walkthrough team consists of three to

five people. One of these people plays a role similar to that of the modera-

tor in the inspection process; another person plays the role of a secretary

(a person who records all errors found); and a third person plays the role

of a tester. Suggestions as to who the three to five people should be vary. Of

course, the programmer is one of those people. Suggestions for the other

participants include:

� A highly experienced programmer

� A programming-language expert

� A new programmer (to give a fresh, unbiased outlook)

� The person who will eventually maintain the program

� Someone from a different project

� Someone from the same programming team as the programmer

34 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:42 Page 35

TABLE 3.1 Inspection Error Checklist Summary, Part I

Data Reference Computation

1. Unset variable used? 1. Computations on nonarithmetic

variables?

2. Subscripts within bounds? 2. Mixed-mode computations?

3. Noninteger subscripts? 3. Computations on variables of

different lengths?

4. Dangling references? 4. Target size less than size of

assigned value?

5. Correct attributes when aliasing? 5. Intermediate result overflow or

underflow?

6. Record and structure attributes match? 6. Division by zero?

7. Computing addresses of bit strings?

Passing bit-string arguments?

7. Base-2 inaccuracies?

8. Based storage attributes correct? 8. Variable’s value outside of

meaningful range?

9. Structure definitions match across

procedures?

9. Operator precedence

understood?

10. Off-by-one errors in indexing or

subscripting operations?

10. Integer divisions correct?

11. Inheritance requirements met?

Data Declaration Comparison

1. All variables declared? 1. Comparisons between

inconsistent variables?

2. Default attributes understood? 2. Mixed-mode comparisons?

3. Arrays and strings initialized properly? 3. Comparison relationships correct?

4. Correct lengths, types, and storage

classes assigned?

4. Boolean expressions correct?

5. Initialization consistent with storage

class?

5. Comparison and Boolean

expressions mixed?

6. Any variables with similar names? 6. Comparisons of base-2 fractional

values?

7. Operator precedence understood?

8. Compiler evaluation of Boolean

expressions understood?

Program Inspections, Walkthroughs, and Reviews 35

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:42 Page 36

TABLE 3.2 Inspection Error Checklist Summary, Part II

Control Flow Input/Output

1. Multiway branches exceeded? 1. File attributes correct?

2. Will each loop terminate? 2. OPEN statements correct?

3. Will program terminate? 3. Format specification

matches I/O statement?

4. Any loop bypasses because of entry conditions? 4. Buffer size matches record

size?

5. Possible loop fall-throughs correct? 5. Files opened before use?

6. Off-by-one iteration errors? 6. Files closed after use?

7. DO/END statements match? 7. End-of-file conditions

handled?

8. Any nonexhaustive decisions? 8. I/O errors handled?

9. Any textual or grammatical errors in output

information?

Interfaces Other Checks

1. Number of input parameters equal to number

of arguments?

1. Any unreferenced variables

in cross-reference listing?

2. Parameter and argument attributes match? 2. Attribute list what was

expected?

3. Parameter and argument units system match? 3. Any warning or

informational messages?

4. Number of arguments transmitted to called

modules equal to number of parameters?

4. Input checked for validity?

5. Attributes of arguments transmitted to called

modules equal to attributes of parameters?

5. Missing function?

6. Units system of arguments transmitted to called

modules equal to units system of parameters?

7. Number, attributes, and order of arguments to

built-in functions correct?

8. Any references to parameters not associated

with current point of entry?

9. Input-only arguments altered?

10. Global variable definitions consistent across

modules?

11. Constants passed as arguments?

36 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:42 Page 37

The initial procedure is identical to that of the inspection process: The

participants are given the materials several days in advance, to allow

them time to bone up on the program. However, the procedure in the

meeting is different. Rather than simply reading the program or using

error checklists, the participants ‘‘play computer.’’ The person designated

as the tester comes to the meeting armed with a small set of paper test

cases—representative sets of inputs (and expected outputs) for the pro-

gram or module. During the meeting, each test case is mentally executed;

that is, the test data are ‘‘walked through’’ the logic of the program. The

state of the program (i.e., the values of the variables) is monitored on

paper or a whiteboard.

Of course, the test cases must be simple in nature and few in number,

because people execute programs at a rate that is many orders of magni-

tude slower than a machine. Hence, the test cases themselves do not

play a critical role; rather, they serve as a vehicle for getting started and

for questioning the programmer about his or her logic and assumptions.

In most walkthroughs, more errors are found during the process of

questioning the programmer than are found directly by the test cases

themselves.

As in the inspection, the attitude of the participants is critical. Com-

ments should be directed toward the program rather than the programmer.

In other words, errors are not regarded as weaknesses in the person who

committed them. Rather, they are viewed as inherent to the difficulty of

the program development.

The walkthrough should have a follow-up process similar to that de-

scribed for the inspection process. Also, the side effects observed from in-

spections (identification of error-prone sections and education in errors,

style, and techniques) also apply to the walkthrough process.

Desk Checking
A third human error-detection process is the older practice of desk check-

ing. A desk check can be viewed as a one-person inspection or walk-

through: A person reads a program, checks it with respect to an error list,

and/or walks test data through it.

For most people, desk checking is relatively unproductive. One reason

is that it is a completely undisciplined process. A second, and more impor-

tant, reason is that it runs counter to testing principle 2 (see Chapter 2),

Program Inspections, Walkthroughs, and Reviews 37

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:42 Page 38

which states that people are generally ineffective in testing their own

programs. For this reason, you could deduce that desk checking is

best performed by a person other than the author of the program (e.g.,

two programmers might swap programs rather than desk check their

own), but even this is less effective than the walkthrough or inspec-

tion process. The reason is the synergistic effect of the walkthrough

or inspection team. The team session fosters a healthy environment

of competition; people like to show off by finding errors. In a desk-

checking process, there is no one to whom you can show off, thereby

precluding this apparently valuable effect. In short, desk checking

may be more valuable than doing nothing at all, but it is much less

effective than the inspection or walkthrough.

Peer Ratings
The last human review process is not associated with program testing

(i.e., its objective is not to find errors). Nevertheless, we include this pro-

cess here because it is related to the idea of code reading.

Peer rating is a technique of evaluating anonymous programs in

terms of their overall quality, maintainability, extensibility, usability,

and clarity. The purpose of the technique is to provide programmer self-

evaluation.

A programmer is selected to serve as an administrator of the process.

The administrator, in turn, selects approximately 6 to 20 participants (6 is

the minimum to preserve anonymity). The participants are expected to

have similar backgrounds (e.g., don’t group Java application programmers

with assembly language system programmers). Each participant is asked to

select two of his or her own programs to be reviewed. One program should

be representative of what the participant considers to be his or her finest

work; the other should be a program that the programmer considers to be

poorer in quality.

Once the programs have been collected, they are randomly distributed

to the participants. Each participant is given four programs to review. Two

of the programs are the ‘‘finest’’ programs and two are ‘‘poorer’’ programs,

but the reviewer is not told which is which. Each participant spends

30 minutes reviewing each program and then completes an evaluation

form. After reviewing all four programs, each participant rates the relative

quality of the four programs. The evaluation form asks the reviewer to

38 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:42 Page 39

answer, on a scale from 1 to 10 (1 meaning definitely yes and 10 meaning

definitely no), such questions as:

� Was the program easy to understand?

� Was the high-level design visible and reasonable?

� Was the low-level design visible and reasonable?

� Would it be easy for you to modify this program?

� Would you be proud to have written this program?

The reviewer also is asked for general comments and suggested

improvements.

After the review, the participants are given the anonymous evaluation

forms for their two contributed programs. They also are given a statistical

summary showing the overall and detailed ranking of their original pro-

grams across the entire set of programs, as well as an analysis of how their

ratings of other programs compared with those ratings of other reviewers

of the same program. The purpose of the process is to allow programmers

to self-assess their programming skills. As such, the process appears to be

useful in both industrial and classroom environments.

Summary
This chapter discussed a form of testing that developers do not often con-

sider: human code testing. Most people assume that because programs are

written for machine execution, machines should test programs as well.

This assumption is invalid. Human testing techniques are very effective at

revealing errors. In fact, most programming projects should include the

following human testing techniques:

� Code inspections using checklists

� Group walkthroughs

� Desk checking

� Peer reviews

Another form of human testing is user or usability testing, a black-box

technique that evaluates software from a hands-on, end-user perspective.

We cover this topic in detail in Chapter 7.

Program Inspections, Walkthroughs, and Reviews 39

www.it-ebooks.info

http://www.it-ebooks.info/

C03 08/26/2011 12:8:42 Page 40

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:21 Page 41

4 Test-Case Design

Moving beyond the psychological issues discussed in Chapter 2, the

most important consideration in program testing is the design and

creation of effective test cases.

Testing, however creative and seemingly complete, cannot guarantee

the absence of all errors. Test-case design is so important because complete

testing is impossible. Put another way, a test of any program must be nec-

essarily incomplete. The obvious strategy, then, is to try to make tests as

complete as possible.

Given constraints on time and cost, the key issue of testing becomes:

What subset of all possible test cases has the highest probability of

detecting the most errors?

The study of test-case design methodologies supplies answers to this

question.

In general, the least effective methodology of all is random-input

testing—the process of testing a program by selecting, at random, some

subset of all possible input values. In terms of the likelihood of detecting

the most errors, a randomly selected collection of test cases has little

chance of being an optimal, or even close to optimal, subset. Therefore, in

this chapter, we want to develop a set of thought processes that enable you

to select test data more intelligently.

41

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:22 Page 42

Chapter 2 showed that exhaustive black-box and white-box testing are,

in general, impossible; at the same time, it suggested that a reasonable test-

ing strategy might feature elements of both. This is the strategy developed

in this chapter. You can develop a reasonably rigorous test by using certain

black-box–oriented test-case design methodologies and then supplement-

ing these test cases by examining the logic of the program, using white-box

methods.

The methodologies discussed in this chapter are:

Black Box White Box

Equivalence partitioning Statement coverage

Boundary value analysis Decision coverage

Cause-effect graphing Condition coverage

Error guessing Decision/condition coverage

Multiple-condition coverage

Although we will discuss these methods separately, we recommend that

you use a combination of most, if not all, of them to design a rigorous test

of a program, since each method has distinct strengths and weaknesses.

One method may find errors another method overlooks, for example.

Nobody ever promised that software testing would be easy. To quote an

old sage, ‘‘If you thought designing and coding that program was hard, you

ain’t seen nothing yet.’’

The recommended procedure is to develop test cases using the black-

box methods and then develop supplementary test cases, as necessary,

with white-box methods. We’ll discuss the more widely known white-box

methods first.

White-Box Testing
White-box testing is concerned with the degree to which test cases exer-

cise or cover the logic (source code) of the program. As we saw in Chap-

ter 2, the ultimate white-box test is the execution of every path in the

program; but complete path testing is not a realistic goal for a program

with loops.

42 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:22 Page 43

Logic Coverage Testing

If you back completely away from path testing, it may seem that a worthy

goal would be to execute every statement in the program at least once.

Unfortunately, this is a weak criterion for a reasonable white-box test. This

concept is illustrated in Figure 4.1. Assume that this figure represents a

small program to be tested. The equivalent Java code snippet follows:

public void foo(int A,int B,int X) {
if(A>1 && B¼¼0) {

X¼X/A;
}
if(A¼¼2 jj X>1) {

X¼Xþ1;
}

}

FIGURE 4.1 A Small Program to Be Tested.

Test-Case Design 43

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:23 Page 44

You could execute every statement by writing a single test case that

traverses path ace. That is, by setting A¼2, B¼0, and X¼3 at point a, every

statement would be executed once (actually, X could be assigned any inte-

ger value >1).

Unfortunately, this criterion is a rather poor one. For instance, perhaps

the first decision should be an or rather than an and. If so, this error would

go undetected. Perhaps the second decision should have stated X>0; this

error would not be detected. Also, there is a path through the program in

which X goes unchanged (the path abd). If this were an error, it would go

undetected. In other words, the statement coverage criterion is so weak

that it generally is useless.

A stronger logic coverage criterion is known as decision coverage or

branch coverage. This criterion states that you must write enough test cases

that each decision has a true and a false outcome at least once. In other

words, each branch direction must be traversed at least once. Examples of

branch or decision statements are switch-case, do-while, and if-else

statements. Multipath GOTO statements qualify in some programming

languages such as Fortran.

Decision coverage usually can satisfy statement coverage. Since every

statement is on some subpath emanating either from a branch statement

or from the entry point of the program, every statement must be executed

if every branch direction is executed. There are, however, at least three

exceptions:

� Programs with no decisions.

� Programs or subroutines/methods with multiple entry points. A given

statement might be executed only if the program is entered at a

particular entry point.

� Statements within ON-units. Traversing every branch direction will

not necessarily cause all ON-units to be executed.

Since we have deemed statement coverage to be a necessary condition,

decision coverage, a seemingly better criterion, should be defined to

include statement coverage. Hence, decision coverage requires that each

decision have a true and a false outcome, and that each statement be exe-

cuted at least once. An alternative and easier way of expressing it is that

each decision has a true and a false outcome, and that each point of entry

(including ON-units) be invoked at least once.

44 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:23 Page 45

This discussion considers only two-way decisions or branches and has to

be modified for programs that contain multipath decisions. Examples are

Java programs containing switch-case statements, Fortran programs con-

taining arithmetic (three-way) IF statements or computed or arithmetic

GOTO statements, and COBOL programs containing altered GOTO statements

or GO-TO-DEPENDING-ON statements. For such programs, the criterion is exer-

cising each possible outcome of all decisions at least once and invoking each

point of entry to the program or subroutine at least once.

In Figure 4.1, decision coverage can be met by two test cases covering

paths ace and abd or, alternatively, acd and abe. If we choose the latter

alternative, the two test-case inputs are A¼3, B¼0, X¼3 and A¼2, B¼1,

and X¼1.

Decision coverage is a stronger criterion than statement coverage, but it

still is rather weak. For instance, there is only a 50 percent chance that

we would explore the path where x is not changed (i.e., only if we chose

the former alternative). If the second decision were in error (if it should

have said X<1 instead of X>1), the mistake would not be detected by the

two test cases in the previous example.

A criterion that is sometimes stronger than decision coverage is condi-

tion coverage. In this case, you write enough test cases to ensure that each

condition in a decision takes on all possible outcomes at least once. But, as

with decision coverage, this does not always lead to the execution of each

statement, so an addition to the criterion is that each point of entry to the

program or subroutine, as well as ON-units, be invoked at least once. For

instance, the branching statement:

DO K¼0 to 50 WHILE (JþK<QUEST)

contains two conditions: Is K less than or equal to 50, and is JþK less than

QUEST? Hence, test cases would be required for the situations K<¼50, K>50

(to reach the last iteration of the loop), JþK<QUEST, and JþK>¼QUEST.

Figure 4.1 has four conditions: A>1, B¼0, A¼2, and X>1. Hence, enough

test cases are needed to force the situations where A>1, A<¼1, B¼0, and

B<>0 are present at point a and where A¼2, A<>2, X>1, and X<¼1 are

present at point b. A sufficient number of test cases satisfying the criterion,

and the paths traversed by each, are:

A¼2, B¼0, X¼4 ace
A¼1, B¼1, X¼1 adb

Test-Case Design 45

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:23 Page 46

Note that although the same number of test cases was generated for this

example, condition coverage usually is superior to decision coverage in

that it may (but does not always) cause every individual condition in a

decision to be executed with both outcomes, whereas decision coverage

does not. For instance, in the same branching statement

DO K¼0 to 50 WHILE (JþK<QUEST)

is a two-way branch (execute the loop body or skip it). If you are using

decision testing, the criterion can be satisfied by letting the loop run from

K¼0 to 51, without ever exploring the circumstance where the WHILE clause

becomes false. With the condition criterion, however, a test case would be

needed to generate a false outcome for the conditions JþK<QUEST.

Although the condition coverage criterion appears, at first glance, to

satisfy the decision coverage criterion, it does not always do so. If the deci-

sion IF(A & B) is being tested, the condition coverage criterion would let

you write two test cases—A is true, B is false, and A is false, B is true—but

this would not cause the THEN clause of the IF to execute. The condition

coverage tests for the earlier example covered all decision outcomes, but

this was only by chance. For instance, two alternative test cases

A¼1, B¼0, X¼3
A¼2, B¼1, X¼1

cover all condition outcomes but only two of the four decision outcomes

(both of them cover path abe and, hence, do not exercise the true outcome

of the first decision and the false outcome of the second decision).

The obvious way out of this dilemma is a criterion called decision/

condition coverage. It requires sufficient test cases such that each condition

in a decision takes on all possible outcomes at least once, each decision

takes on all possible outcomes at least once, and each point of entry is

invoked at least once.

Aweakness with decision/condition coverage is that although it may ap-

pear to exercise all outcomes of all conditions, it frequently does not, be-

cause certain conditions mask other conditions. To see this, examine

Figure 4.2. The flowchart in this figure is the way a compiler would gener-

ate machine code for the program in Figure 4.1. The multicondition deci-

sions in the source program have been broken into individual decisions

and branches because most machines do not have a single instruction that

makes multicondition decisions. A more thorough test coverage, then,

46 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:24 Page 47

appears to be the exercising of all possible outcomes of each primitive de-

cision. The two previous decision coverage test cases do not accomplish

this; they fail to exercise the false outcome of decision H and the true out-

come of decision K.

The reason, as shown in Figure 4.2, is that results of conditions in the

and and the or expressions can mask or block the evaluation of other con-

ditions. For instance, if an and condition is false, none of the subsequent

conditions in the expression need be evaluated. Likewise, if an or condi-

tion is true, none of the subsequent conditions need be evaluated. Hence,

errors in logical expressions are not necessarily revealed by the condition

coverage and decision/condition coverage criteria.

A criterion that covers this problem, and then some, is multiple-condition

coverage. This criterion requires that you write sufficient test cases such that

all possible combinations of condition outcomes in each decision, and all

FIGURE 4.2 Machine Code for the Program in Figure 4.1.

Test-Case Design 47

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:25 Page 48

points of entry, are invoked at least once. For instance, consider the follow-

ing sequence of pseudo-code.

NOTFOUND¼TRUE;
DO I¼1 to TABSIZE WHILE (NOTFOUND); /*SEARCH TABLE*/

.. . searching logic.. . ;
END

The four situations to be tested are:

1. I<¼TABSIZE and NOTFOUND is true.

2. I<¼TABSIZE and NOTFOUND is false (finding the entry before

hitting the end of the table).

3. I>TABSIZE and NOTFOUND is true (hitting the end of the table without

finding the entry).

4. I>TABSIZE and NOTFOUND is false (the entry is the last one in the

table).

It should be easy to see that a set of test cases satisfying the multiple-

condition criterion also satisfies the decision coverage, condition coverage,

and decision/condition coverage criteria.

Returning to Figure 4.1, test cases must cover eight combinations:

1. A>1, B¼0 5. A¼2, X>1

2. A>1, B<>0 6. A¼2, X<¼1

3. A<¼1, B¼0 7. A<>2, X>1

4. A<¼1, B<>0 8. A<>2, X<¼1

Note Recall from the Java code snippet presented earlier that test cases

5 through 8 express values at the point of the second if statement. Since X

may be altered above this if statement, the values needed at this if state-

ment must be backed up through the logic to find the corresponding input

values.

These combinations to be tested do not necessarily imply that eight test

cases are needed. In fact, they can be covered by four test cases. The test-

case input values, and the combinations they cover, are as follows:

A¼2, B¼0, X¼4 Covers 1, 5

A¼2, B¼1, X¼1 Covers 2, 6

48 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:25 Page 49

A¼1, B¼0, X¼2 Covers 3, 7

A¼1, B¼1, X¼1 Covers 4, 8

The fact that there are four test cases and four distinct paths in Figure 4.1

is just coincidence. In fact, these four test cases do not cover every path; they

miss the path acd. For instance, you would need eight test cases for the

following decision:

if(x¼¼y && length(z)¼¼0 && FLAG) {
j¼1;

else
i¼1;

}

although it contains only two paths. In the case of loops, the number of

test cases required by the multiple-condition criterion is normally much

less than the number of paths.

In summary, for programs containing only one condition per decision,

a minimum test criterion is a sufficient number of test cases to: (1) invoke

all outcomes of each decision at least once, and (2) invoke each point of

entry (such as entry point or ON-unit) at least once, to ensure that all state-

ments are executed at least once. For programs containing decisions hav-

ing multiple conditions, the minimum criterion is a sufficient number of

test cases to invoke all possible combinations of condition outcomes

in each decision, and all points of entry to the program, at least once.

(The word ‘‘possible’’ is inserted because some combinations may be found

to be impossible to create.)

Black-Box Testing
As we discussed in Chapter 2, black-box (data-driven or input/output

driven) testing is based on program specifications. The goal is to find areas

wherein the program does not behave according to its specifications.

Equivalence Partitioning

Chapter 2 described a good test case as one that has a reasonable probabil-

ity of finding an error; it also stated that an exhaustive input test of a pro-

gram is impossible. Hence, when testing a program, you are limited to a

Test-Case Design 49

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:26 Page 50

small subset of all possible inputs. Of course, then, you want to select the

‘‘right’’ subset, that is, the subset with the highest probability of finding the

most errors.

One way of locating this subset is to realize that a well-selected test case

also should have two other properties:

1. It reduces, by more than a count of one, the number of other test

cases that must be developed to achieve some predefined goal of ‘‘rea-

sonable’’ testing.

2. It covers a large set of other possible test cases. That is, it tells us

something about the presence or absence of errors over and above

this specific set of input values.

These properties, although they appear to be similar, describe two dis-

tinct considerations. The first implies that each test case should invoke as

many different input considerations as possible to minimize the total num-

ber of test cases necessary. The second implies that you should try to parti-

tion the input domain of a program into a finite number of equivalence

classes such that you can reasonably assume (but, of course, not be abso-

lutely sure) that a test of a representative value of each class is equivalent

to a test of any other value. That is, if one test case in an equivalence class

detects an error, all other test cases in the equivalence class would be

expected to find the same error. Conversely, if a test case did not detect an

error, we would expect that no other test cases in the equivalence class

would fall within another equivalence class, since equivalence classes may

overlap one another.

These two considerations form a black-box methodology known as

equivalence partitioning. The second consideration is used to develop a set

of ‘‘interesting’’ conditions to be tested. The first consideration is then used

to develop a minimal set of test cases covering these conditions.

An example of an equivalence class in the triangle program of Chapter 1

is the set ‘‘three equal-valued numbers having integer values greater than

zero.’’ By identifying this as an equivalence class, we are stating that if no

error is found by a test of one element of the set, it is unlikely that an error

would be found by a test of another element of the set. In other words, our

testing time is best spent elsewhere: in different equivalence classes.

Test-case design by equivalence partitioning proceeds in two steps:

(1) identifying the equivalence classes and (2) defining the test cases.

50 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:26 Page 51

Identifying the Equivalence Classes The equivalence classes are identi-

fied by taking each input condition (usually a sentence or phrase in the

specification) and partitioning it into two or more groups. You can use the

table in Figure 4.3 to do this. Notice that two types of equivalence classes

are identified: valid equivalence classes represent valid inputs to the pro-

gram, and invalid equivalence classes represent all other possible states

of the condition (i.e., erroneous input values). Thus, we are adhering to

principle 5, discussed in Chapter 2, which stated you must focus attention

on invalid or unexpected conditions.

Given an input or external condition, identifying the equivalence clas-

ses is largely a heuristic process. Follow these guidelines:

1. If an input condition specifies a range of values (e.g., ‘‘the item

count can be from 1 to 999’’), identify one valid equivalence class

(1<item count<999) and two invalid equivalence classes

(item count<1 and item count>999).

2. If an input condition specifies the number of values (e.g., ‘‘one

through six owners can be listed for the automobile’’), identify one

valid equivalence class and two invalid equivalence classes (no own-

ers and more than six owners).

3. If an input condition specifies a set of input values, and there is

reason to believe that the program handles each differently (‘‘type

External
condition

Valid equivalence
classes

Invalid equivalence
classes

FIGURE 4.3 A Form for Enumerating Equivalence Classes.

Test-Case Design 51

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:26 Page 52

of vehicle must be BUS, TRUCK, TAXICAB, PASSENGER, or

MOTORCYCLE’’), identify a valid equivalence class for each and one

invalid equivalence class (‘‘TRAILER,’’ for example).

4. If an input condition specifies a ‘‘must-be’’ situation, such as ‘‘first

character of the identifier must be a letter,’’ identify one valid equiv-

alence class (it is a letter) and one invalid equivalence class (it is not a

letter).

If there is any reason to believe that the program does not handle

elements in an equivalence class identically, split the equivalence class

into smaller equivalence classes. We will illustrate an example of this

process shortly.

Identifying the Test Cases The second step is the use of equivalence

classes to identify the test cases. The process is as follows:

1. Assign a unique number to each equivalence class.

2. Until all valid equivalence classes have been covered by (incorpo-

rated into) test cases, write a new test case covering as many of the

uncovered valid equivalence classes as possible.

3. Until your test cases have covered all invalid equivalence classes,

write a test case that covers one, and only one, of the uncovered

invalid equivalence classes.

The reason that individual test cases cover invalid cases is that certain

erroneous-input checks mask or supersede other erroneous-input checks.

For instance, if the specification states ‘‘enter book type (HARDCOVER,

SOFTCOVER, or LOOSE) and amount (1–999),’’ the test case, (XYZ 0),

expressing two error conditions (invalid book type and amount) will prob-

ably not exercise the check for the amount, since the program may say

‘‘XYZ IS UNKNOWN BOOK TYPE’’ and not bother to examine the remain-

der of the input.

An Example

As an example, assume that we are developing a compiler for a subset

of the Fortran language, and we wish to test the syntax checking of the

DIMENSION statement. The specification is listed below. (Note: This is not

52 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:26 Page 53

the full Fortran DIMENSION statement; it has been edited considerably to

make it textbook size. Do not be deluded into thinking that the testing of

actual programs is as easy as the examples in this book.) In the specifica-

tion, items in italics indicate syntactic units for which specific entities

must be substituted in actual statements; brackets are used to indicate op-

tion items; and an ellipsis indicates that the preceding item may appear

multiple times in succession.

A DIMENSION statement is used to specify the dimensions of arrays.

The form of the DIMENSION statement is

DIMENSION ad[,ad]...

where ad is an array descriptor of the form

n(d[,d]...)

where n is the symbolic name of the array and d is a dimension

declarator. Symbolic names can be one to six letters or digits, the first

of which must be a letter. The minimum and maximum numbers of

dimension declarations that can be specified for an array are one and

seven, respectively. The form of a dimension declarator is

[lb:]ub

where lb and ub are the lower and upper dimension bounds. A

bound may be a constant in the range �65534 to 65535 or the name

of an integer variable (but not an array element name). If lb is not

specified, it is assumed to be 1. The value of ub must be greater than

or equal to lb. If lb is specified, its value may be negative, 0, or posi-

tive. As for all statements, the DIMENSION statement may be contin-

ued over multiple lines.

The first step is to identify the input conditions and, from these, locate

the equivalence classes. These are tabulated in Table 4.1. The numbers in

the table are unique identifiers of the equivalence classes.

The next step is to write a test case covering one or more valid equiva-

lence classes. For instance, the test case

DIMENSION A(2)

covers classes 1, 4, 7, 10, 12, 15, 24, 28, 29, and 43.

Test-Case Design 53

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 54

The next step is to devise one or more test cases covering the remaining

valid equivalence classes. One test case of the form

DIMENSION A 12345 (I,9,J4XXXX,65535,1,KLM,
X,1000, BBB(-65534:100,0:1000,10:10, I:65535)

covers the remaining classes. The invalid input equivalence classes, and a

test case representing each, are:

TABLE 4.1 Equivalence Classes

Input Condition

Valid Equivalence

Classes

Invalid Equivalence

Classes

Number of array

descriptors

one (1), > one (2) none (3)

Size of array name 1–6 (4) 0 (5), >6 (6)

Array name has letters (7),

has digits (8)

has something

else (9)

Array name starts with letter yes (10) no (11)

Number of dimensions 1–7 (12) 0 (13), >7 (14)

Upper bound is constant (15),

integer variable (16)

array element name (17),

something else (18)

Integer variable name has letter (19), has

digits (20)

has something else (21)

Integer variable starts with

letter

yes (22) no (23)

Constant –65534–65535

(24)

<–65534 (25),

>65535 (26)

Lower bound specified yes (27), no (28)

Upper bound to lower

bound

greater than (29),

equal (30)

less than (31)

Specified lower bound negative (32), zero

(33), > 0 (34)

Lower bound is constant (35),

integer variable (36)

array element name (37),

something else (38)

Lower bound is one (39) ub>¼1 (40), ub<1 (41)

Multiple lines yes (42), no (43)

54 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 55

(3): DIMENSION
(5): DIMENSION (10)
(6): DIMENSION A234567(2)
(9): DIMENSION A.1(2)

(11): DIMENSION 1A(10)
(13): DIMENSION B
(14): DIMENSION B(4,4,4,4,4,4,4,4)
(17): DIMENSION B(4,A(2))
(18): DIMENSION B(4,,7)
(21): DIMENSION C(I.,10)
(23): DIMENSION C(10,1J)
(25): DIMENSION D(- 65535:1)
(26): DIMENSION D(65536)
(31): DIMENSION D(4:3)
(37): DIMENSION D(A(2):4)
(38): D(.:4)
(43): DIMENSION D(0)

Hence, the equivalence classes have been covered by 17 test cases. You

may want to consider how these test cases would compare to a set of test

cases derived in an ad hoc manner.

Although equivalence partitioning is vastly superior to a random selec-

tion of test cases, it still has deficiencies. It overlooks certain types of high-

yield test cases, for example. The next two methodologies, boundary value

analysis and cause-effect graphing, cover many of these deficiencies.

Boundary Value Analysis

Experience shows that test cases that explore boundary conditions have a

higher payoff than test cases that do not. Boundary conditions are those

situations directly on, above, and beneath the edges of input equivalence

classes and output equivalence classes. Boundary value analysis differs

from equivalence partitioning in two respects:

1. Rather than selecting any element in an equivalence class as being

representative, boundary value analysis requires that one or more ele-

ments be selected such that each edge of the equivalence class is the

subject of a test.

2. Rather than just focusing attention on the input conditions (input

space), test cases are also derived by considering the result space

(output equivalence classes).

Test-Case Design 55

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 56

It is difficult to present a ‘‘cookbook’’ for boundary value analysis, since

it requires a degree of creativity and a certain amount of specialization

toward the problem at hand. (Hence, like many other aspects of testing, it

is more a state of mind than anything else.) However, a few general guide-

lines are in order:

1. If an input condition specifies a range of values, write test cases for

the ends of the range, and invalid-input test cases for situations just

beyond the ends. For instance, if the valid domain of an input value

is –1.0 to 1.0, write test cases for the situations –1.0, 1.0, –1.001,

and 1.001.

2. If an input condition specifies a number of values, write test cases for

the minimum and maximum number of values and one beneath and

beyond these values. For instance, if an input file can contain 1–255

records, write test cases for 0, 1, 255, and 256 records.

3. Use guideline 1 for each output condition. For instance, if a payroll

program computes the monthly FICA deduction, and if the minimum

is $0.00 and the maximum is $1,165.25, write test cases that cause

$0.00 and $1,165.25 to be deducted. Also, see whether it is possible

to invent test cases that might cause a negative deduction or a deduc-

tion of more than $1,165.25.

Note that it is important to examine the boundaries of the result

space because it is not always the case that the boundaries of the in-

put domains represent the same set of circumstances as the bounda-

ries of the output ranges (e.g., consider a sine subroutine). Also, it is

not always possible to generate a result outside of the output range;

nonetheless, it is worth considering the possibility.

4. Use guideline 2 for each output condition. If an information retrieval

system displays the most relevant abstracts based on an input re-

quest, but never more than four abstracts, write test cases such that

the program displays zero, one, and four abstracts, and write a test

case that might cause the program to erroneously display five

abstracts.

5. If the input or output of a program is an ordered set (a sequential file,

for example, or a linear list or a table), focus attention on the first and

last elements of the set.

6. In addition, use your ingenuity to search for other boundary

conditions.

56 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 57

The triangle analysis program of Chapter 1 can illustrate the need for

boundary value analysis. For the input values to represent a triangle, they

must be integers greater than 0 where the sum of any two is greater than

the third. If you were defining equivalent partitions, you might define one

where this condition is met and another where the sum of two of the inte-

gers is not greater than the third. Hence, two possible test cases might be

3–4–5 and 1–2–4. However, we have missed a likely error. That is, if an

expression in the program were coded as AþB>¼C instead of AþB>C, the

program would erroneously tell us that 1–2–3 represents a valid scalene

triangle. Hence, the important difference between boundary value analysis

and equivalence partitioning is that boundary value analysis explores situ-

ations on and around the edges of the equivalence partitions.

As an example of a boundary value analysis, consider the following

program specification:

MTEST is a program that grades multiple-choice examinations. The

input is a data file named OCR, with multiple records that are 80

characters long. Per the file specification, the first record is a title

used as a title on each output report. The next set of records

describes the correct answers on the exam. These records contain a

‘‘2’’ as the last character in column 80. In the first record of this set,

the number of questions is listed in columns 1–3 (a value of 1–999).

Columns 10–59 contain the correct answers for questions 1–50

(any character is valid as an answer). Subsequent records contain, in

columns 10–59, the correct answers for questions 51–100, 101–150,

and so on.

The third set of records describes the answers of each student;

each of these records contains a ‘‘3’’ in column 80. For each student,

the first record contains the student’s name or number in columns 1–

9 (any characters); columns 10–59 contain the student’s answers for

questions 1–50. If the test has more than 50 questions, subsequent

records for the student contain answers 51–100, 101–150, and so on,

in columns 10–59. The maximum number of students is 200. The

input data are illustrated in Figure 4.4. The four output records are:

1. A report, sorted by student identifier, showing each student’s

grade (percentage of answers correct) and rank.

2. A similar report, but sorted by grade.

Test-Case Design 57

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 58

3. A report indicating the mean, median, and standard deviation

of the grades.

4. A report, ordered by question number, showing the percent-

age of students answering each question correctly.

We can begin by methodically reading the specification, looking for in-

put conditions. The first boundary input condition is an empty input file.

The second input condition is the title record; boundary conditions are a

missing title record and the shortest and longest possible titles. The next

input conditions are the presence of correct-answer records and the

number-of-questions field on the first answer record. The equivalence class

1 80

Title

1 3 4 9 10 59 60 79 80

Correct answers 1–50 2
No. of

questions

1 9 10 59 60 79 80

Correct answers 51–100 2

1 9 10 59 60 79 80

Correct answers 1–50 3Student identifier

1 9 10 59 60 79 80

Correct answers 51–100 3

1 9 10 59 60 79 80

Correct answers 1–50 3Student identifier

FIGURE 4.4 Input to the MTEST Program.

58 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 59

for the number of questions is not 1–999, because something special hap-

pens at each multiple of 50 (i.e., multiple records are needed). A reason-

able partitioning of this into equivalence classes is 1–50 and 51–999.

Hence, we need test cases where the number-of-questions field is set to 0,

1, 50, 51, and 999. This covers most of the boundary conditions for the

number of correct-answer records; however, three more interesting situa-

tions are the absence of answer records and having one too many and one

too few answer records (e.g., the number of questions is 60, but there are

three answer records in one case and one answer record in the other case).

The unique test cases identified so far are:

1. Empty input file

2. Missing title record

3. 1-character title

4. 80-character title

5. 1-question exam

6. 50-question exam

7. 51-question exam

8. 999-question exam

9. 0-question exam

10. Number-of-questions field with nonnumeric value

11. No correct-answer records after title record

12. One too many correct-answer records

13. One too few correct-answer records

The next input conditions are related to the students’ answers. The

boundary value test cases here appear to be:

14. 0 students

15. 1 student

16. 200 students

17. 201 students

18. A student has one answer record, but there are two correct-answer

records.

19. The above student is the first student in the file.

20. The above student is the last student in the file.

21. A student has two answer records, but there is just one correct-

answer record.

Test-Case Design 59

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 60

22. The above student is the first student in the file.

23. The above student is the last student in the file.

You also can derive a useful set of test cases by examining the output

boundaries, although some of the output boundaries (e.g., empty report 1)

are covered by the existing test cases. The boundary conditions of reports

1 and 2 are:

0 students (same as test 14)

1 student (same as test 15)

200 students (same as test 16)

24. All students receive the same grade.

25. All students receive a different grade.

26. Some, but not all, students receive the same grade (to see if ranks are

computed correctly).

27. A student receives a grade of 0.

28. A student receives a grade of 10.

29. A student has the lowest possible identifier value (to check the sort).

30. A student has the highest possible identifier value.

31. The number of students is such that the report is just large enough to

fit on one page (to see if an extraneous page is printed).

32. The number of students is such that all students but one fit on one

page.

The boundary conditions from report 3 (mean, median, and standard

deviation) are:

33. The mean is at its maximum (all students have a perfect score).

34. The mean is 0 (all students receive a grade of 0).

35. The standard deviation is at its maximum (one student receives a

0 and the other receives a 100).

36. The standard deviation is 0 (all students receive the same grade).

Tests 33 and 34 also cover the boundaries of the median. Another useful

test case is the situation where there are 0 students (looking for a division

by 0 in computing the mean), but this is identical to test case 14.

60 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 61

An examination of report 4 yields the following boundary value tests:

37. All students answer question 1 correctly.

38. All students answer question 1 incorrectly.

39. All students answer the last question correctly.

40. All students answer the last question incorrectly.

41. The number of questions is such that the report is just large enough

to fit on one page.

42. The number of questions is such that all questions but one fit on one

page.

An experienced programmer would probably agree at this point that

many of these 42 test cases represent common errors that might have been

made in developing this program, yet most of these errors probably would

go undetected if a random or ad hoc test-case generation method were

used. Boundary value analysis, if practiced correctly, is one of the most

useful test-case design methods. However, it often is used ineffectively be-

cause the technique, on the surface, sounds simple. You should understand

that boundary conditions may be very subtle and, hence, identification of

them requires a lot of thought.

Cause-Effect Graphing

One weakness of boundary value analysis and equivalence partitioning is

that they do not explore combinations of input circumstances. For instance,

perhaps the MTEST program of the previous section fails when the prod-

uct of the number of questions and the number of students exceeds some

limit (the program runs out of memory, for example). Boundary value test-

ing would not necessarily detect such an error.

The testing of input combinations is not a simple task because even if

you equivalence-partition the input conditions, the number of combina-

tions usually is astronomical. If you have no systematic way of selecting a

subset of input conditions, you’ll probably select an arbitrary subset of

conditions, which could lead to an ineffective test.

Cause-effect graphing aids in selecting, in a systematic way, a high-yield

set of test cases. It has a beneficial side effect in pointing out incomplete-

ness and ambiguities in the specification.

Test-Case Design 61

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 62

A cause-effect graph is a formal language into which a natural-language

specification is translated. The graph actually is a digital logic circuit (a

combinatorial logic network), but instead of standard electronics notation,

a somewhat simpler notation is used. No knowledge of electronics is nec-

essary other than an understanding of Boolean logic (i.e., of the logic oper-

ators and, or, and not).

The following process is used to derive test cases:

1. The specification is divided into workable pieces. This is necessary be-

cause cause-effect graphing becomes unwieldy when used on large spec-

ifications. For instance, when testing an e-commerce system, a workable

piece might be the specification for choosing and verifying a single item

placed in a shopping cart. When testing a Web page design, you might

test a single menu tree or even a less complex navigation sequence.

2. The causes and effects in the specification are identified. A cause is a

distinct input condition or an equivalence class of input conditions.

An effect is an output condition or a system transformation (a linger-

ing effect that an input has on the state of the program or system).

For instance, if a transaction causes a file or database record to be

updated, the alteration is a system transformation; a confirmation

message would be an output condition.

You identify causes and effects by reading the specification word by

word and underlining words or phrases that describe causes and effects.

Once identified, each cause and effect is assigned a unique number.

3. The semantic content of the specification is analyzed and trans-

formed into a Boolean graph linking the causes and effects. This is

the cause-effect graph.

4. The graph is annotated with constraints describing combinations of

causes and/or effects that are impossible because of syntactic or envi-

ronmental constraints.

5. By methodically tracing state conditions in the graph, you convert

the graph into a limited-entry decision table. Each column in the

table represents a test case.

6. The columns in the decision table are converted into test cases.

The basic notation for the graph is shown in Figure 4.5. Think of each

node as having the value 0 or 1; 0 represents the ‘‘absent’’ state and 1 repre-

sents the ‘‘present’’ state.

62 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:27 Page 63

� The identity function states that if a is 1, b is 1; else b is 0.

� The not function states that if a is 1, b is 0, else b is 1.

� The or function states that if a or b or c is 1, d is 1; else d is 0.

� The and function states that if both a and b are 1, c is 1; else c is 0.

The latter two functions (or and and) are allowed to have any number of

inputs.

To illustrate a small graph, consider the following specification:

The character in column 1 must be an ‘‘A’’ or a ‘‘B.’’ The character in

column 2 must be a digit. In this situation, the file update is made. If

the first character is incorrect, message X12 is issued. If the second char-

acter is not a digit, message X13 is issued.

The causes are:

1—character in column 1 is ‘‘A’’

2—character in column 1 is ‘‘B’’

3—character in column 2 is a digit

FIGURE 4.5 Basic Cause-Effect Graph Symbols.

Test-Case Design 63

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:28 Page 64

and the effects are:

70—update made

71—message X12 is issued

72—message X13 is issued

The cause-effect graph is shown in Figure 4.6. Notice the intermediate

node 11 that was created. You should confirm that the graph represents the

specification by setting all possible states of the causes and verifying that

the effects are set to the correct values. For readers familiar with logic dia-

grams, Figure 4.7 is the equivalent logic circuit.

Although the graph in Figure 4.6 represents the specification, it does

contain an impossible combination of causes—it is impossible for both

causes 1 and 2 to be set to 1 simultaneously. In most programs, certain

combinations of causes are impossible because of syntactic or environmen-

tal considerations (a character cannot be an ‘‘A’’ and a ‘‘B’’ simultaneously).

FIGURE 4.6 Sample Cause-Effect Graph.

FIGURE 4.7 Logic Diagram Equivalent to Figure 4.6.

64 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:29 Page 65

To account for these, the notation in Figure 4.8 is used. The E constraint

states that it must always be true that, at most, one of a and b can be 1 (a

and b cannot be 1 simultaneously). The I constraint states that at least one

of a, b, and c must always be 1 (a, b, and c cannot be 0 simultaneously).

The O constraint states that one, and only one, of a and b must be 1. The R

constraint states that for a to be 1, bmust be 1 (i.e., it is impossible for a to

be 1 and b to be 0).

There frequently is a need for a constraint among effects. The M con-

straint in Figure 4.9 states that if effect a is 1, effect b is forced to 0.

FIGURE 4.8 Constraint Symbols.

FIGURE 4.9 Symbol for ‘‘Masks’’ Constraint.

Test-Case Design 65

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:31 Page 66

Returning to the preceding simple example, we see that it is physically

impossible for causes 1 and 2 to be present simultaneously, but it is possi-

ble for neither to be present. Hence, they are linked with the E constraint,

as shown in Figure 4.10.

To illustrate how cause-effect graphing is used to derive test cases, we

use the following specification for a debugging command in an interactive

system.

The DISPLAY command is used to view from a terminal window

the contents of memory locations. The command syntax is shown in

Figure 4.11. Brackets represent alternative optional operands. Capi-

tal letters represent operand keywords. Lowercase letters represent

operand values (actual values are to be substituted). Underlined op-

erands represent the default values (i.e., the value used when the op-

erand is omitted).

FIGURE 4.10 Sample Cause-Effect Graph with ‘‘Exclusive’’ Constraint.

DISPLAY hexloc1
0

-hexloc2
-END
-bytecount
-1

FIGURE 4.11 Syntax of the DISPLAY Command.

66 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:32 Page 67

The first operand (hexloc1) specifies the address of the first byte

whose contents are to be displayed. The address may be one to six

hexadecimal digits (0–9, A–F) in length. If it is not specified, the ad-

dress 0 is assumed. The address must be within the actual memory

range of the machine.

The second operand specifies the amount of memory to be

displayed. If hexloc2 is specified, it defines the address of the

last byte in the range of locations to be displayed. It may be

one to six hexadecimal digits in length. The address must be

greater than or equal to the starting address (hexloc1). Also,

hexloc2 must be within the actual memory range of the ma-

chine. If END is specified, memory is displayed up through the

last actual byte in the machine. If bytecount is specified, it de-

fines the number of bytes of memory to be displayed (starting

with the location specified in hexloc1). The operand bytecount

is a hexadecimal integer (one to six digits). The sum of

bytecount and hexloc1 must not exceed the actual memory

size plus 1, and bytecount must have a value of at least 1.

When memory contents are displayed, the output format on the

screen is one or more lines of the format

xxxxxx ¼ word1 word2 word3 word4

where xxxxxx is the hexadecimal address of word1. An integral

number of words (four-byte sequences, where the address of the

first byte in the word is a multiple of 4) is always displayed, re-

gardless of the value of hexloc1 or the amount of memory to be

displayed. All output lines will always contain four words (16

bytes). The first byte of the displayed range will fall within the

first word.

The error messages that can be produced are

M1 is invalid command syntax.

M2memory requested is beyond actual memory limit.

M3memory requested is a zero or negative range.

Test-Case Design 67

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:32 Page 68

As examples:

DISPLAY

displays the first four words in memory (default starting address of 0,

default byte count of 1);

DISPLAY 77F

displays the word containing the byte at address 77F, and the three

subsequent words;

DISPLAY 77F-407A

displays the words containing the bytes in the address range

775–407A;

DISPLAY 77F.6

displays the words containing the six bytes starting at location 77F; and

DISPLAY 50FF-END

displays the words containing the bytes in the address range 50FF to

the end of memory.

The first step is a careful analysis of the specification to identify the

causes and effects. The causes are as follows:

1. First operand is present.

2. The hexloc1 operand contains only hexadecimal digits.

3. The hexloc1 operand contains one to six characters.

4. The hexloc1 operand is within the actual memory range of the machine.

5. Second operand is END.

6. Second operand is hexloc.

7. Second operand is bytecount.

8. Second operand is omitted.

9. The hexloc2 operand contains only hexadecimal digits.

10. The hexloc2 operand contains one to six characters.

11. The hexloc2 operand is within the actual memory range of the machine.

12. The hexloc2 operand is greater than or equal to the hexloc1 operand.

13. The bytecount operand contains only hexadecimal digits.

14. The bytecount operand contains one to six characters.

68 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:32 Page 69

15. bytecount þ hexloc1 <¼memory size þ 1.

16. bytecount >¼ 1.

17. Specified range is large enough to require multiple output lines.

18. Start of range does not fall on a word boundary.

Each cause has been given an arbitrary unique number. Notice that four

causes (5 through 8) are necessary for the second operand because the sec-

ond operand could be (1) END, (2) hexloc2, (3) byte-count, (4) absent, and

(5) none of the above. The effects are as follows:

91. Message M1 is displayed.

92. Message M2 is displayed.

93. Message M3 is displayed.

94. Memory is displayed on one line.

95. Memory is displayed on multiple lines.

96. First byte of displayed range falls on a word boundary.

97. First byte of displayed range does not fall on a word boundary.

The next step is the development of the graph. The cause nodes are

listed vertically on the left side of the sheet of paper; the effect nodes are

listed vertically on the right side. The semantic content of the specification

is carefully analyzed to interconnect the causes and effects (i.e., to show

under what conditions an effect is present).

Figure 4.12 shows an initial version of the graph. Intermediate node 32

represents a syntactically valid first operand; node 35 represents a syntacti-

cally valid second operand. Node 36 represents a syntactically valid com-

mand. If node 36 is 1, effect 91 (the error message) does not appear. If

node 36 is 0, effect 91 is present.

The full graph is shown in Figure 4.13. You should explore it carefully

to convince yourself that it accurately reflects the specification.

If Figure 4.13 were used to derive the test cases, many impossible-to-

create test cases would be derived. The reason is that certain combinations of

causes are impossible because of syntactic constraints. For instance, causes 2

and 3 cannot be present unless cause 1 is present. Cause 4 cannot be present

unless both causes 2 and 3 are present. Figure 4.14 contains the complete

graph with the constraint conditions. Notice that, at most, one of the causes

5, 6, 7, and 8 can be present. All other cause constraints are the requires con-

dition. Notice that cause 17 (multiple output lines) requires the not of cause 8

Test-Case Design 69

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:32 Page 70

FIGURE 4.12 Beginning of the Graph for the DISPLAY Command.

70 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:34 Page 71

FIGURE 4.13 Full Cause-Effect Graph without Constraints.

Test-Case Design 71

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:36 Page 72

(second operand is omitted); cause 17 can be present only when cause 8 is

absent. Again, you should explore the constraint conditions carefully.

The next step is the generation of a limited-entry decision table. For

readers familiar with decision tables, the causes are the conditions and the

effects are the actions. The procedure used is as follows:

1. Select an effect to be the present (1) state.

2. Tracing back through the graph, find all combinations of causes (sub-

ject to the constraints) that will set this effect to 1.

3. Create a column in the decision table for each combination of causes.

5

4

3

2

1

10

9

8

7

6

15

14

13

12

11

18

17

16

31

32

35

36

91

40

39

38

34

33

97

96

95

94

93

92

V

V

37

V

V

V

V

V

V

V

V

V

V

V

V

R

RR

R

R

E R R

R

R

R

R

R

R

R
R

R

R

R

FIGURE 4.14 Complete Cause-Effect Graph of the DISPLAY Command.

72 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:37 Page 73

4. For each combination, determine the states of all other effects and

place these in each column.

In performing step 2, the considerations are as follows:

1. When tracing back through an or node whose output should be 1,

never set more than one input to the or to 1 simultaneously. This is

called path sensitizing. Its objective is to prevent the failure to detect

certain errors because of one cause masking another cause.

2. When tracing back through an and node whose output should be 0,

all combinations of inputs leading to 0 output must, of course, be

enumerated. However, if you are exploring the situation where one

input is 0 and one or more of the others are 1, it is not necessary to

enumerate all conditions under which the other inputs can be 1.

3. When tracing back through an and node whose output should be 0,

only one condition where all inputs are zero need be enumerated. (If

the and is in the middle of the graph such that its inputs come from

other intermediate nodes, there may be an excessively large number

of situations under which all of its inputs are 0.)

These complicated considerations are summarized in Figure 4.15, and

Figure 4.16 is used as an example.

FIGURE 4.15 Considerations Used When Tracing the Graph.

Test-Case Design 73

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:38 Page 74

Assume that we want to locate all input conditions that cause the output

state to be 0. Consideration 3 states that we should list only one circum-

stance where nodes 5 and 6 are 0. Consideration 2 states that for the state

where node 5 is 1 and node 6 is 0, we should list only one circumstance

where node 5 is 1, rather than enumerating all possible ways that node 5

can be 1. Likewise, for the state where node 5 is 0 and node 6 is 1, we

should list only one circumstance where node 6 is 1 (although there is

only one in this example). Consideration 1 states that where node 5 should

be set to 1, we should not set nodes 1 and 2 to 1 simultaneously. Hence, we

would arrive at five states of nodes 1 through 4; for example, the values:

0 0 0 0 (5¼0, 6¼0)

1 0 0 0 (5¼1, 6¼0)

1 0 0 1 (5¼1, 6¼0)

1 0 1 0 (5¼1, 6¼0)

0 0 1 1 (5¼0, 6¼1)

rather than the 13 possible states of nodes 1 through 4 that lead to a 0

output state.

These considerations may appear to be capricious, but they have an im-

portant purpose: to lessen the combined effects of the graph. They elimi-

nate situations that tend to be low-yield test cases. If low-yield test cases

are not eliminated, a large cause-effect graph will produce an astronomical

number of test cases. If the number of test cases is too large to be practical,

FIGURE 4.16 Sample Graph to Illustrate the Tracing Considerations.

74 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:39 Page 75

you will select some subset, but there is no guarantee that the low-yield

test cases will be the ones eliminated. Hence, it is better to eliminate them

during the analysis of the graph.

We will now convert the cause-effect graph in Figure 4.14 into the deci-

sion table. Effect 91 will be selected first. Effect 91 is present if node 36 is

0. Node 36 is 0 if nodes 32 and 35 are 0,0; 0,1; or 1,0; and considerations 2

and 3 apply here. By tracing back to the causes, and considering the con-

straints among causes, you can find the combinations of causes that lead to

effect 91 being present, although doing so is a laborious process.

The resultant decision table, under the condition that effect 91 is present,

is shown in Figure 4.17 (columns 1 through 11). Columns (tests) 1 through

3 represent the conditions where node 32 is 0 and node 35 is 1. Columns 4

through 10 represent the conditions where node 32 is 1 and node 35 is 0.

Using consideration 3, only one situation (column 11) out of a possible 21

situations where nodes 32 and 35 are 0 is identified. Blanks in the table rep-

resent ‘‘don’t care’’ situations (i.e., the state of the cause is irrelevant) or indi-

cate that the state of a cause is obvious because of the states of other

dependent causes (e.g., in column 1, we know that causes 5, 7, and 8 must

be 0 because they exist in an ‘‘at most one’’ situation with cause 6).

Columns 12 through 15 represent the situations where effect 92 is pres-

ent. Columns 16 and 17 represent the situations where effect 93 is present.

Figure 4.18 represents the remainder of the decision table.

The last step is to convert the decision table into 38 test cases. A set of

38 test cases is listed here. The number or numbers beside each test case

designate the effects that are expected to be present. Assume that the last

location in memory on the machine being used is 7FFF.

1 DISPLAY 234AF74–123 (91)

2 DISPLAY 2ZX4–3000 (91)

3 DISPLAY HHHHHHHH-2000 (91)

4 DISPLAY 200 200 (91)

5 DISPLAY 0–22222222 (91)

6 DISPLAY 1–2X (91)

7 DISPLAY 2-ABCDEFGHI (91)

8 DISPLAY 3.1111111 (91)

9 DISPLAY 44.$42 (91)

10 DISPLAY 100.$$$$$$$ (91)

Test-Case Design 75

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:39 Page 76

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

11

1

12

1

13

1

14

1

15

1

16

1

17

11

1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 12

0 1 0 1

0

1 1 1 1 1 1 0 11 1

1

1 1 1

11 0 0 1 1

3

1 1 1 1 1 1 1 1 1 1 1 00 0 0 0 091

0 0 0 0 0 0 0 0 0 0 1 11 1 1 0 092

0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 193

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 094

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 095

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 096

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 097

0 1 1 1 1 17

1 0 0 1 113

0 1 0 1

0

1

0

14

15

16

17

18

08

4

5

1 1 1 0 1 1 1 1 1 1 16

1 1 1 1 0 0 0 1 1 19

1 1 1 0 1 0 1 1 1 110

0 0 111

012

FIGURE 4.17 First Half of the Resultant Decision Table.

76 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:39 Page 77

11 DISPLAY 10000000-M (91)

12 DISPLAY FF-8000 (92)

13 DISPLAY FFF.7001 (92)

14 DISPLAY 8000-END (92)

15 DISPLAY 8000–8001 (92)

16 DISPLAY AA-A9 (93)

17 DISPLAY 7000.0 (93)

18 DISPLAY 7FF9-END (94, 97)

18

1

19 20

1

21

1

22

0

23

0

24 25

0

26

10

27

1

28 29

1

30

1

31

1

32

11

33

0

3534

0

36

0

37

11

38

11 1

1 1 1 1 1 1 1 1 11 11 12 1

1 1 1 1 1 1 1 1 11 11 13 1

1 1 1 1 1 1 1 1 11 11 14 1

1 1 1 1 15 1

1 1 1 1 1 16

1 1 1 1 1 17

1 1 18

1 1 1 1 1 19

1 1 1 1 1 110

1 1 1 1 1 111

1 1 1 1 1 112

1 1 1 1 1 113

1 1 1 1 1 114

1 1 1 1 1 115

1 1 1 1 1 116

0 0 0 0 0 0 00 0 0 0 1 11 1 1 1 11 117 0

1 1 1 0 0 0 00 0 0 0 1 11 0 0 0 00 018 1

0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 00 091 0

0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 00 093 0

0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 00 092 0

1 1 1 1 1 1 11 1 1 1 0 00 0 0 0 00 094 1

0 0 0 0 0 0 00 0 0 0 1 11 1 1 1 11 195 0

0 0 0 1 1 1 11 1 1 1 0 00 1 1 1 11 196 0

1 1 1 0 0 0 00 0 0 0 1 11 0 0 0 00 097 1

FIGURE 4.18 Second Half of the Resultant Decision Table.

Test-Case Design 77

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:40 Page 78

19 DISPLAY 1 (94, 97)

20 DISPLAY 21–29 (94, 97)

21 DISPLAY 4021.A (94, 97)

22 DISPLAY -END (94, 96)

23 DISPLAY (94, 96)

24 DISPLAY -F (94, 96)

25 DISPLAY .E (94, 96)

26 DISPLAY 7FF8-END (94, 96)

27 DISPLAY 6000 (94, 96)

28 DISPLAY A0-A4 (94, 96)

29 DISPLAY 20.8 (94, 96)

30 DISPLAY 7001-END (95, 97)

31 DISPLAY 5–15 (95, 97)

32w DISPLAY 4FF.100 (95, 97)

33 DISPLAY -END (95, 96)

34 DISPLAY -20 (95, 96)

35 DISPLAY .11 (95, 96)

36 DISPLAY 7000-END (95, 96)

37 DISPLAY 4–14 (95, 96)

38 DISPLAY 500.11 (95, 96)

Note that where two or more different test cases invoked, for the most

part, the same set of causes, different values for the causes were selected to

slightly improve the yield of the test cases. Also note that, because of the

actual storage size, test case 22 is impossible (it will yield effect 95 instead

of 94, as noted in test case 33). Hence, 37 test cases have been identified.

Remarks Cause-effect graphing is a systematic method of generating test

cases representing combinations of conditions. The alternative would be to

make an ad hoc selection of combinations; but in doing so, it is likely that

you would overlook many of the ‘‘interesting’’ test cases identified by the

cause-effect graph.

Since cause-effect graphing requires the translation of a specification into

a Boolean logic network, it gives you a different perspective on, and addi-

tional insight into, the specification. In fact, the development of a cause-

78 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:40 Page 79

effect graph is a good way to uncover ambiguities and incompleteness

in specifications. For instance, the astute reader may have noticed that

this process has uncovered a problem in the specification of the DISPLAY

command. The specification states that all output lines contain four words.

This cannot be true in all cases; it cannot occur for test cases 18 and 26

because the starting address is less than 16 bytes away from the end of

memory.

Although cause-effect graphing does produce a set of useful test cases, it

normally does not produce all of the useful test cases that might be identi-

fied. For instance, in the example we said nothing about verifying that the

displayed memory values are identical to the values in memory and deter-

mining whether the program can display every possible value in a memory

location. Also, the cause-effect graph does not adequately explore bound-

ary conditions. Of course, you could attempt to cover boundary conditions

during the process. For instance, instead of identifying the single cause

hexloc2>¼hexloc1

you could identify two causes:

hexloc2 ¼ hexloc1

hexloc2 > hexloc1

The problem in doing this, however, is that it complicates the graph

tremendously and leads to an excessively large number of test cases. For

this reason it is best to consider a separate boundary value analysis. For

instance, the following boundary conditions can be identified for the

DISPLAY specification:

1. hexloc1 has one digit

2. hexloc1 has six digits

3. hexloc1 has seven digits

4. hexloc1 ¼ 0

5. hexloc1 ¼ 7FFF

6. hexloc1 ¼ 8000

7. hexloc2 has one digit

8. hexloc2 has six digits

9. hexloc2 has seven digits

10. hexloc2 ¼ 0

Test-Case Design 79

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:40 Page 80

11. hexloc2 ¼ 7FFF

12. hexloc2 ¼ 8000

13. hexloc2 ¼ hexloc

14. hexloc2 ¼ hexloc1 þ 1

15. hexloc2 ¼ hexloc1 � 1

16. bytecount has one digit

17. bytecount has six digits

18. bytecount has seven digits

19. bytecount ¼ 1

20. hexloc1 þ bytecount ¼ 8000

21. hexloc1 þ bytecount ¼ 8001

22. display 16 bytes (one line)

23. display 17 bytes (two lines)

Note that this does not imply that you would write 60 (37 þ 23) test

cases. Since the cause-effect graph gives us leeway in selecting specific val-

ues for operands, the boundary conditions could be blended into the test

cases derived from the cause-effect graph. In this example, by rewriting

some of the original 37 test cases, all 23 boundary conditions could be

covered without any additional test cases. Thus, we arrive at a small but

potent set of test cases that satisfy both objectives.

Note that cause-effect graphing is consistent with several of the testing

principles in Chapter 2. Identifying the expected output of each test case is

an inherent part of the technique (each column in the decision table indi-

cates the expected effects). Also note that it encourages us to look for un-

wanted side effects. For instance, column (test) 1 specifies that we should

expect effect 91 to be present and that effects 92 through 97 should be

absent.

The most difficult aspect of the technique is the conversion of the graph

into the decision table. This process is algorithmic, implying that you

could automate it by writing a program; several commercial programs exist

to help with the conversion.

Error Guessing
It has often been noted that some people seem to be naturally adept at pro-

gram testing. Without using any particular methodology such as boundary

80 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:40 Page 81

value analysis of cause-effect graphing, these people seem to have a knack

for sniffing out errors.

One explanation for this is that these people are practicing—sub-

consciously more often than not—a test-case design technique that could

be termed error guessing. Given a particular program, they surmise—both

by intuition and experience—certain probable types of errors and then

write test cases to expose those errors.

It is difficult to give a procedure for the error-guessing technique since

it is largely an intuitive and ad hoc process. The basic idea is to enumer-

ate a list of possible errors or error-prone situations and then write test

cases based on the list. For instance, the presence of the value 0 in a pro-

gram’s input is an error-prone situation. Therefore, you might write test

cases for which particular input values have a 0 value and for which par-

ticular output values are forced to 0. Also, where a variable number of

inputs or outputs can be present (e.g., the number of entries in a list to

be searched), the cases of ‘‘none’’ and ‘‘one’’ (e.g., empty list, list contain-

ing just one entry) are error-prone situations. Another idea is to identify

test cases associated with assumptions that the programmer might have

made when reading the specification (i.e., factors that were omitted from

the specification, either by accident or because the writer felt them to be

obvious).

Since a procedure for error guessing cannot be given, the next-best al-

ternative is to discuss the spirit of the practice, and the best way to do this

is by presenting examples. If you are testing a sorting subroutine, the fol-

lowing are situations to explore:

� The input list is empty.

� The input list contains one entry.

� All entries in the input list have the same value.

� The input list is already sorted.

In other words, you enumerate those special cases that may have been

overlooked when the program was designed. If you are testing a binary

search subroutine, you might try the situations where: (1) there is only

one entry in the table being searched; (2) the table size is a power of 2

(e.g., 16); and (3) the table size is one less than and one greater than a

power of 2 (e.g., 15 or 17).

Test-Case Design 81

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:40 Page 82

Consider the MTEST program in the section on boundary value

analysis. The following additional tests come to mind when using the

error-guessing technique:

� Does the program accept ‘‘blank’’ as an answer?

� A type-2 (answer) record appears in the set of type-3 (student)

records.

� A record without a 2 or 3 in the last column appears as other than the

initial (title) record.

� Two students have the same name or number.

� Since a median is computed differently depending on whether there is

an odd or an even number of items, test the program for an even

number of students and an odd number of students.

� The number-of-questions field has a negative value.

Error-guessing tests that come to mind for the DISPLAY command of the

previous section are as follows:

DISPLAY 100- (partial second operand)

DISPLAY 100. (partial second operand)

DISPLAY 100–10A 42 (extra operand)

DISPLAY 000–0000FF (leading zeros)

The Strategy
The test-case design methodologies discussed in this chapter can be com-

bined into an overall strategy. The reason for combining them should be

obvious by now: Each contributes a particular set of useful test cases, but

none of them by itself contributes a thorough set of test cases. A reasonable

strategy is as follows:

1. If the specification contains combinations of input conditions, start

with cause-effect graphing.

2. In any event, use boundary value analysis. Remember that this is an

analysis of input and output boundaries. The boundary value analysis

yields a set of supplemental test conditions, but as noted in the sec-

tion on cause-effect graphing, many or all of these can be incorpo-

rated into the cause-effect tests.

82 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:40 Page 83

3. Identify the valid and invalid equivalence classes for the input and

output, and supplement the test cases identified above, if necessary.

4. Use the error-guessing technique to add additional test cases.

5. Examine the program’s logic with regard to the set of test cases. Use

the decision coverage, condition coverage, decision/condition cover-

age, or multiple-condition coverage criterion (the last being the most

complete). If the coverage criterion has not been met by the test cases

identified in the prior four steps, and if meeting the criterion is not

impossible (i.e., certain combinations of conditions may be im-

possible to create because of the nature of the program), add suffi-

cient test cases to cause the criterion to be satisfied.

Again, the use of this strategy will not guarantee that all errors will be

found, but it has been found to represent a reasonable compromise. Also, it

represents a considerable amount of hard work, but as we said at the begin-

ning of this chapter, no one has ever claimed that program testing is easy.

Summary
Once you have agreed that aggressive software testing is a worthy addition

to your development efforts, the next step is to design test cases that will

exercise your application sufficiently to produce satisfactory test results. In

most cases, consider a combination of black-box and white-box methodol-

ogies to ensure that you have designed rigorous program testing.

Test case design techniques discussed in this chapter include:

� Logic coverage. Tests that exercise all decision point outcomes at least

once, and ensure that all statements or entry points are executed at

least once.

� Equivalence partitioning. Defines condition or error classes to help re-

duce the number of finite tests. Assumes that a test of a representative

value within a class also tests all values or conditions within that class.

� Boundary value analysis. Tests each edge condition of an equivalence

class; also considers output equivalence classes as well as input

classes.

� Cause-effect graphing. Produces Boolean graphical representations of

potential test case results to aid in selecting efficient and complete

test cases.

Test-Case Design 83

www.it-ebooks.info

http://www.it-ebooks.info/

C04 08/25/2011 12:4:40 Page 84

� Error guessing. Produces test cases based on intuitive and expert

knowledge of test team members to define potential software errors

to facilitate efficient test case design.

Extensive, in-depth testing is not easy; nor will the most extensive test

case design assure that every error will be uncovered. That said, developers

willing to go beyond cursory testing, who will dedicate sufficient time to

test case design, analyze carefully the test results, and act decisively on the

findings, will be rewarded with functional, reliable software that is reason-

ably error free.

84 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:33 Page 85

5 Module (Unit) Testing

Up to this point we have largely ignored the mechanics of testing and

the size of the program being tested. However, because large programs

(say, of 500 statements or 50-plus classes) require special testing treatment,

in this chapter we consider an initial step in structuring the testing of a large

program: module testing. Chapters 6 and 7 enumerate the remaining steps.

Module testing (or unit testing) is a process of testing the individual sub-

programs, subroutines, classes, or procedures in a program. More specifi-

cally, rather than initially testing the program as a whole, testing is first

focused on the smaller building blocks of the program. The motivations for

doing this are threefold. First, module testing is a way of managing the

combined elements of testing, since attention is focused initially on smaller

units of the program. Second, module testing eases the task of debugging

(the process of pinpointing and correcting a discovered error), since, when

an error is found, it is known to exist in a particular module. Finally, mod-

ule testing introduces parallelism into the program testing process by pre-

senting us with the opportunity to test multiple modules simultaneously.

The purpose of module testing is to compare the function of a module to

some functional or interface specification defining the module. To reemphasize

the goal of all testing processes, the objective here is not to show that the

module meets its specification, but that the module contradicts the specifica-

tion. In this chapter, we address module testing from three points of view:

1. The manner in which test cases are designed.

2. The order in which modules should be tested and integrated.

3. Advice about performing the tests.

85

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:33 Page 86

Test-Case Design
You need two types of information when designing test cases for a module

test: a specification for the module and the module’s source code. The

specification typically defines the module’s input and output parameters

and its function.

Module testing is largely white-box oriented. One reason is that as you

test larger entities, such as entire programs (which will be the case for sub-

sequent testing processes), white-box testing becomes less feasible. A sec-

ond reason is that the subsequent testing processes are oriented toward

finding different types of errors (e.g., errors not necessarily associated

with the program’s logic, such as the program failing to meet its users’

requirements). Hence, the test-case design procedure for a module test is

the following:

Analyze the module’s logic using one or more of the white-box meth-

ods, and then supplement these test cases by applying black-box

methods to the module’s specification.

The test-case design methods we will use were defined in Chapter 4; we

will illustrate their use in a module test here through an example.

Assume that we wish to test a module named BONUS, and its function is

to add $2,000 to the salary of all employees in the department or depart-

ments having the largest sales revenue. However, if an eligible employee’s

current salary is $150,000 or more, or if the employee is a manager, the

salary is to be increased by only $1,000.

The inputs to the module are shown in the tables in Figure 5.1. If the

module performs its function correctly, it returns an error code of 0. If

either the employee or the department table contains no entries, it returns

an error code of 1. If it finds no employees in an eligible department, it

returns an error code of 2.

The module’s source code is shown in Figure 5.2. Input parameters

ESIZE and DSIZE contain the number of entries in the employee and de-

partment tables. Note that though the module is written in PL/1, the fol-

lowing discussion is largely language independent; the techniques are

applicable to programs coded in other languages. Also, because the PL/1

logic in the module is fairly simple, virtually any reader, even those not

familiar with PL/1, should be able to understand it.

86 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 87

Dept. Salary
Job

codeName Dept.

Department table

Employee table

Sales

FIGURE 5.1 Input Tables to Module BONUS.

BONUS : PROCEDURE(EMPTAB,DEPTTAB,ESIZE,DSIZE,ERRCODE);

DECLARE 1 EMPTAB (*),

2 NAME CHAR(6),

2 CODE CHAR(1),

2 DEPT CHAR(3),

2 SALARY FIXED DECIMAL(7,2);

DECLARE 1 DEPTTAB (*),

2 DEPT CHAR(3),

2 SALES FIXED DECIMAL(8,2);

DECLARE (ESIZE,DSIZE) FIXED BINARY;

DECLARE ERRCODE FIXED DECIMAL(1);

DECLARE MAXSALES FIXED DECIMAL(8,2) INIT(0); /*MAX. SALES IN DEPTTAB*/

DECLARE (I,J,K) FIXED BINARY; /*COUNTERS*/

DECLARE FOUND BIT(1); /*TRUE IF ELIGIBLE DEPT. HAS EMPLOYEES*/

DECLARE SINC FIXED DECIMAL(7,2) INIT(200.00); /*STANDARD INCREMENT*/

DECLARE LINC FIXED DECIMAL(7,2) INIT(100.00); /*LOWER INCREMENT*/

DECLARE LSALARY FIXED DECIMAL(7,2) INIT(15000.00); /*SALARY BOUNDARY*/

DECLARE MGR CHAR(1) INIT('M'); (continued)

FIGURE 5.2 Module BONUS.

Module (Unit) Testing 87

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 88

1 ERRCODE=0;

2 IF(ESIZE<=0)|(DSIZE<=0)

3 THEN ERRCODE=1; /*EMPTAB OR DEPTTAB ARE EMPTY*/

4 ELSE DO;

5 DO I = 1 TO DSIZE; /*FIND MAXSALES AND MAXDEPTS*/

6 IF(SALES(I)>=MAXSALES) THEN MAXSALES=SALES(I);

7 END;

8 DO J = 1 TO DSIZE;

9 IF(SALES(J)=MAXSALES) /*ELIGIBLE DEPARTMENT*/

10 THEN DO;

11 FOUND='0'B;

12 DO K = 1 TO ESIZE;

13 IF(EMPTAB.DEPT(K)=DEPTTAB.DEPT(J))

14 THEN DO;

15 FOUND='1'B;

16 IF(SALARY(K)>=LSALARY)|CODE(K)=MGR)

17 THEN SALARY(K)=SALARY(K)+LINC;

18 ELSE SALARY(K)=SALARY(K)+SINC;

19 END;

20 END;

21 IF(-FOUND) THEN ERRCODE=2;

22 END;

23 END;

24 END;

25 END;

FIGURE 5.2 (continued)

Sidebar 5.1: PL/1 Background

Readers new to software development may be unfamiliar with PL/1

and think of it is a ‘‘dead’’ language. True, there probably is very little

new development using PL/1, but maintenance of existing systems

continues, and the PL/1 constructs still are a pretty good way to learn

about programming procedures.

88 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 89

Regardless of which of the logic coverage techniques you use, the first step

is to list the conditional decisions in the program. Candidates in this program

are all IF and DO statements. By inspecting the program, we can see that all of

the DO statements are simple iterations, and each iteration limit will be equal

to or greater than the initial value (meaning that each loop body always will

execute at least once); and the only way of exiting each loop is via the DO

statement. Thus, the DO statements in this program need no special attention,

since any test case that causes a DO statement to execute will eventually cause

it to branch in both directions (i.e., enter the loop body and skip the loop

body). Therefore, the statements that must be analyzed are:

2 IF (ESIZE<¼O) j (DSIZE<¼0)
6 IF (SALES(I)>¼MAXSALES)
9 IF (SALES(J)¼MAXSALES)
13 IF (EMPTAB.DEPT(K)¼DEPTTAB.DEPT(J))
16 IF (SALARY(K)>¼LSALARY) j (CODE(K)¼MGR)
21 IF(-FOUND) THEN ERRCODE¼2

PL/1, which stands for Programming Language One, was devel-

oped in the 1960s by IBM to provide an English-like development

environment for its mainframe class machines, beginning with the

IBM System/360. At this time in computer history, many program-

mers were migrating toward specialty languages such as COBOL, de-

signed for business application development, and Fortran, designed

for scientific applications. (See Sidebar 3.1 in Chapter 3 for a little

background on these languages.)

One of the main goals for PL/1 designers was a development lan-

guage that could compete successfully with COBOL and Fortran while

providing a development environment that would be easier to learn

with a more natural language. All of the early goals for PL/1 likely

never were achieved, but those early designers obviously did their

homework, because PL/1 has been refined and upgraded over the

years and still is in use in some environments today.

By the mid-1990s PL/1 had been extended to other computer

platforms, including OS/2, Linux, UNIX, and Windows. New operating

system support brought language extensions to provide more flexibil-

ity and functionality.

Module (Unit) Testing 89

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 90

Given the small number of decisions, we probably should opt for multi-

condition coverage, but we will examine all the logic coverage criteria

(except statement coverage, which always is too limited to be of use) to

see their effects.

To satisfy the decision coverage criterion, we need sufficient test cases to

invoke both outcomes of each of the six decisions. The required input situ-

ations to invoke all decision outcomes are listed in Table 5.1. Since two of

the outcomes will always occur, there are 10 situations that need to be

forced by test cases. Note that to construct Table 5.1, decision-outcome

circumstances had to be traced back through the logic of the program to

determine the proper corresponding input circumstances. For instance,

decision 16 is not invoked by any employee meeting the conditions; the

employee must be in an eligible department.

The 10 situations of interest in Table 5.1 could be invoked by the two test

cases shown in Figure 5.3. Note that each test case includes a definition of

the expected output, in adherence to the principles discussed in Chapter 2.

Although these two test cases meet the decision coverage criterion, it

should be obvious that there could be many types of errors in the module

that are not detected by these two test cases. For instance, the test cases do

not explore the circumstances where the error code is 0, an employee is a

manager, or the department table is empty (DSIZE<¼0).

TABLE 5.1 Situations Corresponding to the Decision Outcomes

Decision True Outcome False Outcome

2 ESIZE or DSIZE�0 ESIZE and DSIZE>0

6 Will always occur at least once. Order DEPTTAB so that a

department with lower sales occurs

after a department with higher sales.

9 Will always occur at least once. All departments do not have the

same sales.

13 There is an employee in an

eligible department.

There is an employee who is not in

an eligible department.

16 An eligible employee is either a

manager or earns LSALARY or

more.

An eligible employee is not a

manager and earns less than

LSALARY.

21 All eligible departments

contain no employees.

An eligible department contains at

least one employee.

90 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 91

A more satisfactory test can be obtained by using the condition coverage

criterion. Here we need sufficient test cases to invoke both outcomes of

each condition in the decisions. The conditions and required input situa-

tions to invoke all outcomes are listed in Table 5.2. Since two of the out-

comes will always occur, there are 14 situations that must be forced by test

cases. Again, these situations can be invoked by only two test cases, as

shown in Figure 5.4.

The test cases in Figure 5.4 were designed to illustrate a problem. Since

they do invoke all the outcomes in Table 5.2, they satisfy the condition

coverage criterion, but they are probably a poorer set of test cases than

those in Figure 5.3 in terms of satisfying the decision coverage criterion.

The reason is that they do not execute every statement. For example, state-

ment 18 is never executed. Moreover, they do not accomplish much more

than the test cases in Figure 5.3. They do not cause the output situation

ERRORCODE¼0. If statement 2 had erroneously set ESIZE¼0 and DSIZE¼0,

this error would go undetected. Of course, an alternative set of test cases

might solve these problems, but the fact remains that the two test cases in

Figure 5.4 do satisfy the condition coverage criterion.

Using the decision/condition coverage criterion would eliminate the ma-

jor weakness in the test cases in Figure 5.4. Here we would provide suffi-

cient test cases such that all outcomes of all conditions and decisions would

be invoked at least once. Making Jones a manager and making Lorin a non-

manager could accomplish this. This would have the result of generating

both outcomes of decision 16, thus causing us to execute statement 18.

Input Expected outputTest
case

ESIZE = 0

All other inputs are irrelevant

ERRCODE = 1

ESIZE, DSIZE, EMPTAB, and DEPTTAB

are unchanged

1

ESIZE = DSIZE = 3

DEPTTAB

ERRCODE = 2

EMPTAB

JONES

SMITH

LORIN

E D42

D32

D42

E

E

21,000.00

14,000.00

10,000.00

D42

D32

D95

10,000.00

8,000.00

10,000.00

ESIZE, DSIZE, and DEPTTAB are
unchanged

2

EMPTAB

JONES

SMITH

LORIN

E D42

D32

D42

E

E

21,100.00

14,000.00

10,200.00

FIGURE 5.3 Test Cases to Satisfy the Decision-Coverage Criterion.

Module (Unit) Testing 91

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 92

TABLE 5.2 Situations Corresponding to the Condition Outcomes

Decision Condition True Outcome False Outcome

2 ESIZE�0 ESIZE�0 ESIZE>0

2 DSIZE�0 DSIZE�0 DSIZE>0

6 SALES(I)�
MAXSALES

Will always occur at

least once.

Order DEPTTAB so that a

department with lower sales

occurs after a department with

higher sales.

9 SALES(J)¼
MAXSALES

Will always occur at

least once.

All departments do not

have the same sales.

13 EMPTAB.DEPT

(K)¼
DEPTTAB.

DEPT(J)

There is an employee

in an eligible

department.

There is an employee who

is not in an eligible

department.

16 SALARY(K)�
LSALARY

An eligible employee

earns LSALARY or

more.

An eligible employee earns

less than LSALARY.

16 CODE(K)¼MGR An eligible employee

is a manager.

An eligible employee is

not a manager.

21 —FOUND An eligible

department contains

no employees.

An eligible department

contains at least one

employee.

Input Expected outputTest
case

ESIZE = DSIZE = 0

All other inputs are irrelevant

ERRCODE = 1

ESIZE, DSIZE, EMPTAB, and
DEPTTAB are unchanged

1

ESIZE = DSIZE = 3

DEPTTAB

ERRCODE = 2

EMPTAB

JONES

SMITH

LORIN

E D42

D32

D42

E

M

21,000.00

14,000.00

10,000.00

D42

D32

D95

10,000.00

8,000.00

10,000.00

ESIZE, DSIZE, and DEPTTAB are
unchanged

2

EMPTAB

JONES

SMITH

LORIN

E D42

D32

D42

E

M

21,000.00

14,000.00

10,100.00

FIGURE 5.4 Test Cases to Satisfy the Condition Coverage Criterion.

92 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 93

One problem with this, however, is that it is essentially no better than

the test cases in Figure 5.3. If the compiler being used stops evaluating an

or expression as soon as it determines that one operand is true, this modifi-

cation would result in the expression CODE(K)¼MGR in statement 16 never

having a true outcome. Hence, if this expression were coded incorrectly,

the test cases would not detect the error.

The last criterion to explore is multicondition coverage. This criterion

requires sufficient test cases such that all possible combinations of condi-

tions in each decision are invoked at least once. This can be accomplished

by working from Table 5.2. Decisions 6, 9, 13, and 21 have two combina-

tions each; decisions 2 and 16 have four combinations each. The method-

ology to design the test cases is to select one that covers as many of the

combinations as possible, select another that covers as many of the remain-

ing combinations as possible, and so on. A set of test cases satisfying the

multicondition coverage criterion is shown in Figure 5.5. The set is more

Input Expected output

Same as above

Same as above

Test
case

ESIZE = 0 DSIZE = 0

All other inputs are irrelevant

ERRCODE = 1

ESIZE, DSIZE, EMPTAB, and
DEPTTAB are unchanged

1

ESIZE = 0 DSIZE > 0

All other inputs are irrelevant

ESIZE = 5 DSIZE = 4

DEPTTAB

ERRCODE = 2

EMPTAB

JONES

WARNS

LORIN

M D42

D95

D42

M

E

21,000.00

12,000.00

10,000.00

D42

D32

D95

10,000.00

8,000.00

10,000.00

TOY D95E 16,000.00

SMITH D32E 14,000.00

D44 10,000.00

ESIZE, DSIZE, and DEPTTAB are
unchanged

2

ESIZE > 0 DSIZE = 0

All other inputs are irrelevant

3

4

JONES

WARNS

LORIN

M D42

D95

D42

M

E

21,100.00

12,100.00

10,200.00

TOY D95E 16,100.00

SMITH D32E 14,000.00

EMPTAB

FIGURE 5.5 Test Cases to Catisfy the Multicondition

Coverage Criterion.

Module (Unit) Testing 93

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 94

comprehensive than the previous sets of test cases, implying that we

should have selected this criterion at the beginning.

It is important to realize that module BONUS could have such a large

number of errors that even the tests satisfying the multicondition coverage

criterion would not detect them all. For instance, no test cases generate the

situation where ERRORCODE is returned with a value of 0; thus, if statement

1 were missing, the error would go undetected. If LSALARY were errone-

ously initialized to $150,000.01, the mistake would go unnoticed. If state-

ment 16 stated SALARY(K)>LSALARY instead of SALARY(K) >¼LSALARY,

this error would not be found. Also, whether a variety of off-by-one errors

(such as not handling the last entry in DEPTTAB or EMPTAB correctly) would

be detected would depend largely on chance.

Two points should be apparent now: One, the multicondition criterion

is superior to the other criteria, and, two, any logic coverage criterion is

not good enough to serve as the only means of deriving module tests.

Hence, the next step is to supplement the tests in Figure 5.5 with a set of

black-box tests. To do so, the interface specifications of BONUS are shown

in the following:

BONUS, a PL/1 module, receives five parameters, symbolically referred to

here as EMPTAB, DEPTTAB, ESIZE, DSIZE, and ERRORCODE. The attributes

of these parameters are:

DECLARE 1 EMPTAB(*), /*INPUT AND OUTPUT*/
2 NAME CHARACTER(6),
2 CODE CHARACTER(1),
2 DEPT CHARACTER(3),
2 SALARY FIXED DECIMAL(7,2);

DECLARE 1 DEPTTAB(*), /*INPUT*/
2 DEPT CHARACTER(3),
2 SALES FIXED DECIMAL(8,2);

DECLARE (ESIZE, DSIZE) FIXED BINARY; /*INPUT*/
DECLARE ERRCODE FIXED DECIMAL(1); /*OUTPUT*/

The module assumes that the transmitted arguments have these attributes.

ESIZE and DSIZE indicate the number of entries in EMPTAB and

DEPTTAB, respectively. No assumptions should be made about the order of

entries in EMPTAB and DEPTTAB. The function of the module is to increment

the salary (EMPTAB.SALARY) of those employees in the department or depart-

ments having the largest sales amount (DEPTTAB.SALES). If an eligible

94 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 95

employee’s current salary is $150,000 or more, or if the employee is a man-

ager (EMPTAB.CODE¼‘M’), the increment is $1,000; if not, the increment for

the eligible employee is $2,000. The module assumes that the incremented

salary will fit into field EMPTAB.SALARY. If ESIZE and DSIZE are not greater

than 0, ERRCODE is set to 1 and no further action is taken. In all other cases,

the function is completely performed. However, if a maximum-sales depart-

ment is found to have no employee, processing continues but ERRCODE will

have the value 2; otherwise, it is set to 0.

This specification is not suited to cause-effect graphing (there is not a dis-

cernible set of input conditions whose combinations should be explored);

thus, boundary value analysis will be used. The input boundaries identified

are as follows:

1. EMPTAB has 1 entry.

2. EMPTAB has the maximum number of entries (65,535).

3. EMPTAB has 0 entries.

4. DEPTTAB has 1 entry.

5. DEPTTAB has 65,535 entries.

6. DEPTTAB has 0 entries.

7. A maximum-sales department has 1 employee.

8. A maximum-sales department has 65,535 employees.

9. A maximum-sales department has no employees.

10. All departments in DEPTTAB have the same sales.

11. The maximum-sales department is the first entry in DEPTTAB.

12. The maximum-sales department is the last entry in DEPTTAB.

13. An eligible employee is the first entry in EMPTAB.

14. An eligible employee is the last entry in EMPTAB.

15. An eligible employee is a manager.

16. An eligible employee is not a manager.

17. An eligible employee who is not a manager has a salary of $149,999.99.

18. An eligible employee who is not a manager has a salary of $150,000.

19. An eligible employee who is not a manager has a salary of $150,000.01.

The output boundaries are as follows:

20. ERRCODE¼0

21. ERRCODE¼1

22. ERRCODE¼2

23. The incremented salary of an eligible employee is $299,999.99.

Module (Unit) Testing 95

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 96

A further test condition based on the error-guessing technique is

as follows:

24. A maximum-sales department with no employees is followed

in DEPTTAB with another maximum-sales department having

employees.

This is used to determine whether the module erroneously terminates

processing of the input when it encounters an ERRCODE¼2 situation.

Reviewing these 24 conditions, numbers 2, 5, and 8 seem like impractical

test cases. Since they also represent conditions that will never occur (usually

a dangerous assumption to make when testing, but seemingly safe here), we

exclude them. The next step is to compare the remaining 21 conditions to

the current set of test cases (Figure 5.5) to determine which boundary condi-

tions are not already covered. Doing so, we see that conditions 1, 4, 7, 10, 14,

17, 18, 19, 20, 23, and 24 require test cases beyond those in Figure 5.5.

The next step is to design additional test cases to cover the 11 boundary

conditions. One approach is to merge these conditions into the existing

test cases (i.e., by modifying test case 4 in Figure 5.5), but this is not rec-

ommended because doing so could inadvertently upset the complete mul-

ticondition coverage of the existing test cases. Hence, the safest approach

is to add test cases to those of Figure 5.5. In doing this, the goal is to design

the smallest number of test cases necessary to cover the boundary condi-

tions. The three test cases in Figure 5.6 accomplish this. Test case 5 covers

conditions 7, 10, 14, 17, 18, 19, and 20; test case 6 covers conditions 1, 4,

and 23; and test case 7 covers condition 24.

The premise here is that the logic coverage, or white-box, test cases in

Figure 5.6 form a reasonable module test for procedure BONUS.

Incremental Testing
In performing the process of module testing, there are two key considera-

tions: the design of an effective set of test cases, which was discussed in the

previous section, and the manner in which the modules are combined to

form a working program. The second consideration is important because

it has these implications:

� The form in which module test cases are written

� The types of test tools that might be used

96 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 97

� The order in which modules are coded and tested

� The cost of generating test cases

� The cost of debugging (locating and repairing detected errors)

In short, then, it is a consideration of substantial importance. In this

section, we discuss two approaches, incremental and nonincremental test-

ing; in the next, we explore two incremental approaches, top-down and

bottom-up development or testing.

The question pondered here is the following: Should you test a program

by testing each module independently and then combining the modules to

Input Expected outputTest
case

5 ESIZE = 3 DSIZE = 2

DEPTTAB

ERRCODE = 0

EMPTAB

ALLY

BEST

CELTO

E D36

D33

D33

E

E

14,999.99

15,000.00

15,000.01

D33

D36

55,400.01

55,400.01

ESIZE, DSIZE, and DEPTTAB are
unchanged

ALLY

BEST

CELTO

E D36

D33

D33

E

E

15,199.99

15,100.00

15,100.01

EMPTAB

6 ESIZE = 1 DSIZE = 1

DEPTTAB

ERRCODE = 0

EMPTAB

CHIEF M D99 99,899.99 D99 99,000.00

ESIZE, DSIZE, and DEPTTAB are
unchanged

ERRCODE = 2

ESIZE, DSIZE, and DEPTTAB are
unchanged

CHIEF M D99 99,999.99

EMPTAB

7 ESIZE = 2 DSIZE = 2

DEPTTABEMPTAB

DOLE E D67 10,000.00 D66 20,000.00

FORD E D22 33,333.33 D67 20,000.00
EMPTAB

DOLE E D67 10,000.00

FORD E D22 33,333.33

FIGURE 5.6 Supplemental Boundary Value Analysis Test Cases

for BONUS.

Module (Unit) Testing 97

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 98

form the program, or should you combine the next module to be tested

with the set of previously tested modules before it is tested? The first ap-

proach is called nonincremental, or ‘‘big-bang,’’ testing or integration; the

second approach is known as incremental testing or integration.

The program in Figure 5.7 is used as an example. The rectangles repre-

sent the six modules (subroutines or procedures) in the program. The lines

connecting the modules represent the control hierarchy of the program;

that is, module A calls modules B, C, and D; module B calls module E; and

so on. Nonincremental testing, the traditional approach, is performed in

the following manner. First, a module test is performed on each of the six

modules, testing each module as a stand-alone entity. The modules might

be tested at the same time or in succession, depending on the environment

(e.g., interactive versus batch-processing computing facilities) and the

number of people involved. Finally, the modules are combined or inte-

grated (e.g., ‘‘link edited’’) to form the program.

The testing of each module requires a special driver module and one or

more stub modules. For instance, to test module B, test cases are first designed

and then fed to module B by passing it input arguments from a driver module,

a small module that must be coded to ‘‘drive,’’ or transmit, test cases through

the module under test. (Alternatively, a test tool could be used.) The driver

module must also display, to the tester, the results produced by B. In addition,

since module B calls module E, something must be present to receive control

when B calls E. A stub module, a special module given the name ‘‘E ’’ that must

be coded to simulate the function of module E, accomplishes this.

FIGURE 5.7 Sample Six-Module Program.

98 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 99

When the module testing of all six modules has been completed, the

modules are combined to form the program.

The alternative approach is incremental testing. Rather than testing

each module in isolation, the next module to be tested is first combined

with the set of modules that have been tested already.

It is premature to give a procedure for incrementally testing the pro-

gram in Figure 5.7, because there is a large number of possible incremental

approaches. A key issue is whether we should begin at the top or bottom of

the program. However, since we discuss this issue in the next section, let

us assume for the moment that we are beginning from the bottom.

The first step is to test modules E, C, and F, either in parallel (by three

people) or serially. Notice that we must prepare a driver for each module,

but not a stub. The next step is to test B and D ; but rather than testing them

in isolation, they are combined with modules E and F, respectively. In other

words, to test module B, a driver is written, incorporating the test cases,

and the pair B-E is tested. The incremental process, adding the next mod-

ule to the set or subset of previously tested modules, is continued until the

last module (module A in this case) is tested. Note that this procedure

could have alternatively progressed from the top to the bottom.

Several observations should be apparent at this point:

1. Nonincremental testing requires more work. For the program in Fig-

ure 5.7, five drivers and five stubs must be prepared (assuming we do

not need a driver module for the top module). The bottom-up incre-

mental test would require five drivers but no stubs. A top-down incre-

mental test would require five stubs but no drivers. Less work is

required because previously tested modules are used instead of the

driver modules (if you start from the top) or stub modules (if you start

from the bottom) needed in the nonincremental approach.

2. Programming errors related to mismatching interfaces or incorrect

assumptions among modules will be detected earlier when incremen-

tal testing is used. The reason is that combinations of modules are

tested together at an early point in time. However, when nonincre-

mental testing is used, modules do not ‘‘see one another’’ until the

end of the process.

3. As a result, debugging should be easier if incremental testing is used.

If we assume that errors related to intermodule interfaces and

assumptions do exist (a good assumption, from experience), then, if

Module (Unit) Testing 99

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 100

nonincremental testing has been used, the errors will not surface un-

til the entire program has been combined. At this time, we may have

difficulty pinpointing the error, since it could be anywhere within the

program. Conversely, if incremental testing is used, an error of this

type should be easier to pinpoint, because it is likely that the error is

associated with the most recently added module.

4. Incremental testing might result in more thorough testing. If you are

testing module B, either module E or A (depending on whether you

started from the bottom or the top) is executed as a result. Although

E or A should have been thoroughly tested previously, perhaps exe-

cuting it as a result of B’s module test will invoke a new condition,

perhaps one that represents a deficiency in the original test of E or A.

On the other hand, if nonincremental testing is used, the testing of B

will affect only module B. In other words, incremental testing substi-

tutes previously tested modules for the stubs or drivers needed in the

nonincremental test. As a result, the actual modules receive more

exposure by the completion of the last module test.

5. The nonincremental approach appears to use less machine time. If

module A of Figure 5.7 is being tested using the bottom-up approach,

modules B, C, D, E, and F probably execute during the execution of A.

In a nonincremental test of A, only stubs for B, C, and E are executed.

The same is true for a top-down incremental test. If module F is being

tested, modules A, B, C, D, and E may be executed during the test of F ;

in the nonincremental test of F, only the driver for F, plus F itself, exe-

cutes. Hence, the number of machine instructions executed during a

test run using the incremental approach is apparently greater than that

for the nonincremental approach. Offsetting this is the fact that the

nonincremental test requires more drivers and stubs than the incre-

mental test; machine time is needed to develop the drivers and stubs.

6. At the beginning of the module testing phase, there is more oppor-

tunity for parallel activities when nonincremental testing is used

(that is, all the modules can be tested simultaneously). This might

be of significance in a large project (many modules and people),

since the head count of a project is usually at its peak at the start of

the module test phase.

In summary, observations 1 through 4 are advantages of incremental

testing, while observations 5 and 6 are disadvantages. Given current trends

100 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 101

in the computing industry (hardware costs have been decreasing, and seem

destined to continue to do so, while hardware capability increases, and la-

bor costs and the consequences of software errors are increasing), and

given the fact that the earlier an error is found, the lower the cost of repair-

ing it, you can see that observations 1 through 4 are growing in impor-

tance, whereas observation 5 is becoming less important. Observation 6

seems to be a weak disadvantage, if one at all. This leads to the conclusion

that incremental testing is superior.

Top-Down versus Bottom-Up Testing
Given the conclusion of the previous section—that incremental testing is

superior to nonincremental testing—we next explore two incremental

strategies: top-down and bottom-up testing. Before getting into them, how-

ever, we should clarify several misconceptions. First, the terms top-down

testing, top-down development, and top-down design often are used as syno-

nyms. Top-down testing and top-down development are synonyms (they

represent a strategy of ordering the coding and testing of modules), but

top-down design is something quite different and independent. A program

that was designed in top-down fashion can be incrementally tested in

either a top-down or a bottom-up fashion.

Second, bottom-up testing (or bottom-up development) is often mistak-

enly equated with nonincremental testing. The reason is that bottom-up

testing begins in a manner that is identical to a nonincremental test (i.e.,

when the bottom, or terminal, modules are tested), but as we saw in the

previous section, bottom-up testing is an incremental strategy. Finally,

since both strategies are incremental, we won’t repeat here the advantages

of incremental testing; we will discuss only the differences between top-

down and bottom-up testing.

Top-Down Testing

The top-down strategy starts with the top, or initial, module in the pro-

gram. After this, there is no single ‘‘right’’ procedure for selecting the next

module to be incrementally tested; the only rule is that to be eligible to be

the next module, at least one of the module’s subordinate (calling) modules

must have been tested previously.

Module (Unit) Testing 101

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:34 Page 102

Figure 5.8 is used to illustrate this strategy. A through L are the 12 mod-

ules in the program. Assume that module J contains the program’s I/O read

operations and module I contains the write operations.

The first step is to test module A. To accomplish this, stub modules repre-

senting B, C, and D must be written. Unfortunately, the production of stub

modules is often misunderstood; as evidence, you may often see such state-

ments as ‘‘a stub module need only write a message stating ‘we got this far’ ’’;

and, ‘‘in many cases, the dummy module (stub) simply exits—without doing

any work at all.’’ In most situations, these statements are false. Since module

A calls module B, A is expecting B to perform some work; this work most

likely is some result (output arguments) returned to A. If the stub simply

returns control or writes an error message without returning a meaningful

result, module Awill fail, not because of an error in A, but because of a failure

of the stub to simulate the corresponding module. Moreover, returning a

‘‘wired-in’’ output from a stub module is often insufficient. For instance, con-

sider the task of writing a stub representing a square-root routine, a database

table-search routine, an ‘‘obtain corresponding master-file record’’ routine, or

the like. If the stub returns a fixed wired-in output, but doesn’t have the par-

ticular value expected by the calling module during this invocation, the call-

ing module may fail or produce a confusing result. Hence, the production of

stubs is not a trivial task.

FIGURE 5.8 Sample 12-Module Program.

102 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:35 Page 103

Another consideration is the form in which test cases are presented to

the program, an important consideration that is not even mentioned in

most discussions of top-down testing. In our example, the question is: How

do you feed test cases to module A? The top module in typical programs

neither receives input arguments nor performs input/output operations, so

the answer is not immediately obvious. The answer is that the test data are

fed to the module (module A in this situation) from one or more of its stubs.

To illustrate, assume that the functions of B, C, and D are as follows:

B—Obtain summary of transaction file.

C—Determine whether weekly status meets quota.

D—Produce weekly summary report.

A test case for A, then, is a transaction summary returned from stub B.

Stub D might contain statements to write its input data to a printer, allow-

ing the results of each test to be examined.

In this program, another problem exists. Presumably, module A calls mod-

ule B only once; therefore the problem is how to feed more than one test case

to A. One solution is to develop multiple versions of stub B, each with a dif-

ferent wired-in set of test data to be returned to A. To execute the test cases,

the program is executed multiple times, each time with a different version of

stub B. Another alternative is to place test data on external files and have stub

B read the test data and return them to A. In either case, keeping in mind the

previous discussion, you should see that the development of stub modules is

more difficult than it is often made out to be. Furthermore, it often is neces-

sary, because of the characteristics of the program, to represent a test case

across multiple stubs beneath the module under test (i.e., where the module

receives data to be acted upon by calling multiple modules).

After A has been tested, an actual module replaces one of the stubs, and

the stubs required by that module are added. For instance, Figure 5.9

might represent the next version of the program.

After testing the top module, numerous sequences are possible. For in-

stance, if we are performing all the testing sequences, four examples of the

many possible sequences of modules are:

1. A B C D E F G H I J K L

2. A B E F J C G K D H L I

3. A D H I K L C G B F J E

4. A B F J D I E C G K H L

Module (Unit) Testing 103

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:35 Page 104

If parallel testing occurs, other alternatives are possible. For instance,

after module A has been tested, one programmer could take module A and

test the combination A-B; another programmer could test A-C; and a third

could test A-D. In general, there is no best sequence, but here are two

guidelines to consider:

1. If there are critical sections of the program (perhaps module G), de-

sign the sequence such that these sections are added as early as possi-

ble. A ‘‘critical section’’ might be a complex module, a module with a

new algorithm, or a module suspected to be error prone.

2. Design the sequence such that the I/O modules are added as early as

possible.

The motivation for the first should be obvious, but the motivation for

the second deserves further discussion. Recall that a problem with stubs is

that some of them must contain the test cases, and others must write their

input to a printer or display. However, as soon as the module accepting the

program’s input is added, the representation of test cases is considerably

simplified; their form is identical to the input accepted by the final pro-

gram (e.g., from a transaction file or a terminal). Likewise, once the mod-

ule performing the program’s output function is added, the placement of

code in stub modules to write results of test cases might no longer be nec-

essary. Thus, if modules J and I are the I/O modules, and if module G per-

forms some critical function, the incremental sequence might be

A B F J D I C G E K H L

and the form of the program after the sixth increment would be that shown

in Figure 5.10.

FIGURE 5.9 Second Step in the Top-Down Test.

104 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:35 Page 105

Once the intermediate state in Figure 5.10 has been reached, the repre-

sentation of test cases and the inspection of results are simplified. It has an-

other advantage, in that you have a working skeletal version of the program,

that is, a version that performs actual input and output operations. However,

stubs are still simulating some of the ‘‘insides.’’ This early skeletal version:

� Allows you to find human-factor errors and problems.

� Makes it possible to demonstrate the program to the eventual user.

� Serves as evidence that the overall design of the program is sound.

� Serves as a morale booster.

These points represent the major advantage of the top-down strategy.

On the other hand, the top-down approach has some serious shortcom-

ings. Assume that our current state of testing is that of Figure 5.10 and that

our next step is to replace stub H with module H. What we should do at this

point (or earlier) is use the methods described earlier in this chapter to de-

sign a set of test cases for H. Note, however, that the test cases are in the

form of actual program inputs to module J. This presents several problems.

First, because of the intervening modules between J and H (F, B, A, and D),

we might find it impossible to represent certain test cases to module J that

test every predefined situation in H. For instance, if H is the BONUS module

of Figure 5.2, it might be impossible, because of the nature of intervening

module D, to create some of the seven test cases of Figures 5.5 and 5.6.

FIGURE 5.10 Intermediate State in the Top-Down Test.

Module (Unit) Testing 105

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:36 Page 106

Second, because of the ‘‘distance’’ between H and the point at which the

test data enter the program, even if it were possible to test every situation,

determining which data to feed to J to test these situations in H is often a

difficult mental task.

Third, because the displayed output of a test might come from a module

that is a large distance away from the module being tested, correlating the

displayed output to what went on in the module may be difficult or im-

possible. Consider adding module E to Figure 5.10. The results of each

test case are determined by examining the output written by module I, but

because of the intervening modules, it may be difficult to deduce the actual

output of E (that is, the data returned to B).

The top-down strategy, depending on how it is approached, may have

two further problems. People occasionally feel that the strategy can be

overlapped with the program’s design phase. For instance, if you are in the

process of designing the program in Figure 5.8, you might believe that af-

ter the first two levels are designed, modules A through D can be coded and

tested while the design of the lower levels progresses. As we have empha-

sized elsewhere, this is usually an unwise decision. Program design is an

iterative process, meaning that when we are designing the lower levels of a

program’s structure, we may discover desirable changes or improvements

to the upper levels. If the upper levels have already been coded and tested,

the desirable improvements will most likely be discarded, an unwise deci-

sion in the long run.

A final problem that often arises in practice is failing to completely test a

module before proceeding to another module. This occurs for two reasons:

because of the difficulty of embedding test data in stub modules, and be-

cause the upper levels of a program usually provide resources to lower lev-

els. In Figure 5.8 we saw that testing module A might require multiple

versions of the stub for module B. In practice, there is a tendency to say,

‘‘Because this represents a lot of work, I won’t execute all of A’s test cases

now. I’ll wait until I place module J in the program, at which time the

representation of test cases will be easier, and remember at this point to

finish testing module A.’’ Of course, the problem here is that we may forget

to test the remainder of module A at this later point in time. Also, because

upper levels often provide resources for use by lower levels (e.g., opening

of files), it is difficult sometimes to determine whether the resources have

been provided correctly (e.g., whether a file has been opened with the

proper attributes) until the lower modules that use them are tested.

106 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:36 Page 107

Bottom-Up Testing

The next step is to examine the bottom-up incremental testing strategy.

For the most part, bottom-up testing is the opposite of top-down testing;

thus, the advantages of top-down testing become the disadvantages of

bottom-up testing, and the disadvantages of top-down testing become

the advantages of bottom-up testing. Because of this, the discussion of

bottom-up testing is shorter.

The bottom-up strategy begins with the terminal modules in the pro-

gram (the modules that do not call other modules). After these modules

have been tested, again there is no best procedure for selecting the next

module to be incrementally tested; the only rule is that to be eligible to be

the next module, all of the module’s subordinate modules (the modules it

calls) must have been tested previously.

Returning to Figure 5.8, the first step is to test some or all of modules E,

J, G, K, L, and I, either serially or in parallel. To do so, each module needs a

special driver module: a module that contains wired-in test inputs, calls

the module being tested, and displays the outputs (or compares the actual

outputs with the expected outputs). Unlike the situation with stubs, multi-

ple versions of a driver are not needed, since the driver module can itera-

tively call the module being tested. In most cases, driver modules are easier

to produce than stub modules.

As was the case earlier, a factor influencing the sequence of testing is the

critical nature of the modules. If we decide that modules D and F are most

critical, an intermediate state of the bottom-up incremental test might be

that of Figure 5.11. The next steps might be to test E and then test B, com-

bining B with the previously tested modules E, F, and J.

A drawback of the bottom-up strategy is that there is no concept of an

early skeletal program. In fact, the working program does not exist until

the last module (module A) is added, and this working program is the com-

plete program. Although the I/O functions can be tested before the whole

program has been integrated (the I/O modules are being used in Figure

5.11), the advantages of the early skeletal program are not present.

The problems associated with the impossibility, or difficulty, of creating

all test situations in the top-down approach do not exist here. If you think

of a driver module as a test probe, the probe is being placed directly on the

module being tested; there are no intervening modules to worry about.

Examining other problems associated with the top-down approach, you

Module (Unit) Testing 107

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:36 Page 108

can’t make the unwise decision to overlap design and testing, since the

bottom-up test cannot begin until the bottom of the program has been de-

signed. Also, the problem of not completing the test of a module before

starting another, because of the difficulty of encoding test data in versions

of a stub, does not exist when using bottom-up testing.

A Comparison

It would be convenient if the top-down versus bottom-up issue were as

clear-cut as the incremental versus nonincremental issue, but un-

fortunately it is not. Table 5.3 summarizes the relative advantages and dis-

advantages of the two approaches (excluding the previously discussed

advantages shared by both—those of incremental testing). The first advan-

tage of each approach might appear to be the deciding factor, but there is

no evidence showing that major flaws occur more often at the top or bot-

tom levels of the typical program. The safest way to make a decision is to

weigh the factors in Table 5.3 with respect to the particular program being

tested. Lacking such a program here, the serious consequences of the

fourth disadvantage—of top-down testing and the availability of test tools

that eliminate the need for drivers but not stubs—seems to give the

bottom-up strategy the edge.

Furthermore, it may be apparent that top-down and bottom-up testing

are not the only possible incremental strategies.

FIGURE 5.11 Intermediate State in the Bottom-Up Test.

108 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:36 Page 109

Performing the Test
The remaining part of the module test is the act of actually carrying out the

test. A set of hints and guidelines for doing this is included here.

When a test case produces a situation where the module’s actual results

do not match the expected results, there are two possible explanations:

either the module contains an error, or the expected results are incorrect

(the test case is incorrect). To minimize this confusion, the set of test cases

TABLE 5.3 Comparison of Top-Down and Bottom-Up Testing

Top-Down Testing

Advantages Disadvantages

1. Advantageous when major flaws

occur toward the top of the

program.

1. Stub modules must be produced.

2. Once the I/O functions are added,

representation of cases is easier.

2. Stub modules are often more

complicated than they first appear to

be.

3. Early skeletal program allows

demonstrations and boosts morale.

3. Before the I/O functions are added,

the representation of test cases in

stubs can be difficult.

4. Test conditions may be impossible, or

very difficult, to create.

5. Observation of test output is more

difficult.

6. Leads to the conclusion that design

and testing can be overlapped.

7. Defers the completion of testing

certain modules.

Bottom-Up Testing

Advantages Disadvantages

1. Advantageous when major flaws

occur toward the bottom of the

program.

1. Driver modules must be produced.

2. Test conditions are easier to create.

2. The program as an entity does not exist

until the last module is added.

3. Observation of test results is easier.

Module (Unit) Testing 109

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:36 Page 110

should be reviewed or inspected before the test is performed (that is, the

test cases should be tested).

The use of automated test tools can minimize part of the drudgery of the

testing process. For instance, test tools exist that eliminate the need for

driver modules. Flow-analysis tools enumerate the paths through a pro-

gram, find statements that can never be executed (‘‘unreachable’’ code),

and identify instances where a variable is used before it is assigned a value.

As was the practice earlier in this chapter, remember that a definition of

the expected result is a necessary part of a test case. When executing a test,

remember to look for side effects (instances where a module does some-

thing it is not supposed to do). In general, these situations are difficult to

detect, but some of them may be found by checking, after execution of the

test case, the inputs to the module that are not supposed to be altered. For

instance, test case 7 in Figure 5.6 states that as part of the expected result,

ESIZE, DSIZE, and DEPTTAB should be unchanged. When running this test

case, not only should the output be examined for the correct result, but

ESIZE, DSIZE, and DEPTTAB should be examined to determine whether

they were erroneously altered.

The psychological problems associated with a person attempting to test

his or her own programs apply as well to module testing. Rather than test-

ing their own modules, programmers might swap them; more specifically,

the programmer of the calling module is always a good candidate to test

the called module. Note that this applies only to testing; the debugging of

a module always should be performed by the original programmer.

Avoid throwaway test cases; represent them in such a form that they can

be reused in the future. Recall the counterintuitive phenomenon in Figure

2.2. If an abnormally high number of errors is found in a subset of the mod-

ules, it is likely that these modules contain even more, as yet undetected,

errors. Such modules should be subjected to further module testing, and

possibly an additional code walkthrough or inspection. Finally, remember

that the purpose of a module test is not to demonstrate that the module

functions correctly, but to demonstrate the presence of errors in the module.

Summary
In this chapter we introduced you to some of the mechanics of testing,

especially as it relates to large programs. This is a process of testing indi-

vidual program components—subroutines, subprograms, classes, and

110 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:36 Page 111

procedures. In module testing you compare software functionality with the

specification that defines its intended function. Module or unit testing can

be an important part of a developer’s toolbox to help achieve a reliable

application, especially with object-oriented languages such as Java and

C#. The goal in module testing is the same as for any other type of software

testing: attempt to show how the program contradicts the specification. In

addition to the software specification, you will need each module’s source

code to effect a module test.

Module testing is largely white-box testing. (See Chapter 4 for more in-

formation on white-box procedures and designing test cases for testing.) A

thorough module test design will include incremental strategies such as

top-down as well as bottom-up techniques.

It is helpful, when preparing for a module test, to review the psycholog-

ical and economic principles laid out in Chapter 2.

One more point: Module testing software is only the beginning of an

exhaustive testing procedure. You will need to move on to higher-order test-

ing, which we address in Chapter 6, and user testing, covered in Chapter 7.

Module (Unit) Testing 111

www.it-ebooks.info

http://www.it-ebooks.info/

C05 08/25/2011 12:10:36 Page 112

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:12:56 Page 113

6 Higher-Order Testing

When you finish module-testing a program, you have really only just

begun the testing process. This is especially true of large or com-

plex programs. Consider this important concept:

A software error occurs when the program does not do what its end

user reasonably expects it to do.

Applying this definition, even if you could perform an absolutely perfect

module test, you still couldn’t guarantee that you have found all software

errors. To complete testing, then, some form of further testing is necessary.

We call this new form higher-order testing.

Software development is largely a process of communicating informa-

tion about the eventual program and translating this information from one

form to another. In essence, it is moving from the conceptual to the con-

crete. For that reason, the vast majority of software errors can be attributed

to breakdowns, mistakes, and ‘‘noise’’ during the communication and

translation of information.

This view of software development is illustrated in Figure 6.1, a model

of the development cycle for a software product. The flow of the process

can be summarized in seven steps:

1. Translate the program user’s needs into a set of written requirements.

These are the goals for the product.

113

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:12:56 Page 114

2. Translate the requirements into specific objectives by assessing feasi-

bility, time, and cost, resolving conflicting requirements, and estab-

lishing priorities and trade-offs.

3. Translate the objectives into a precise product specification, viewing

the product as a black box and considering only its interfaces and

interactions with the end user. This description is called the external

specification.

4. If the product is a system such as an operating system, flight-control

system, database system, or employee personnel management sys-

tem, rather than an application (e.g., compiler, payroll program,

word processor), the next process is system design. This step

FIGURE 6.1 The Software Development Process.

114 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:12:56 Page 115

partitions the system into individual programs, components, or sub-

systems, and defines their interfaces.

5. Design the structure of the program or programs by specifying the

function of each module, the hierarchical structure of the modules,

and the interfaces between modules.

6. Develop a precise specification that defines the interface to, and func-

tion of, each module.

7. Translate, through one or more substeps, the module interface speci-

fication into the source code algorithm of each module.

Here’s another way of looking at these forms of documentation:

� Requirements specify why the program is needed.

� Objectives specify what the program should do and how well the pro-

gram should do it.

� External specifications define the exact representation of the program

to users.

� Documentation associated with the subsequent processes specifies, in

increasing levels of detail, how the program is constructed.

Given the premise that the seven steps of the development cycle involve

communication, comprehension, and translation of information, and the

premise that most software errors stem from breakdowns in information

handling, there are three complementary approaches to prevent and/or de-

tect these errors.

First, we can introduce more precision into the development process to

prevent many of the errors. Second, we can introduce, at the end of each

process, a separate verification step to locate as many errors as possible

before proceeding to the next process. This approach is illustrated in

Figure 6.2. For instance, the external specification is verified by comparing

it to the output of the prior stage (the statement of objectives) and feeding

back any discovered mistakes to the external specification process. (Use

the code inspection and walkthrough methods discussed in Chapter 3 in

the verification step at the end of the seventh process.)

The third approach is to orient distinct testing processes toward distinct

development processes. That is, focus each testing process on a particular

translation step—thus on a particular class of errors. This approach is

illustrated in Figure 6.3.

Higher-Order Testing 115

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:12:57 Page 116

The testing cycle is structured to model the development cycle. In other

words, you should be able to establish a one-to-one correspondence be-

tween development and testing processes. For instance:

� The purpose of a module test is to find discrepancies between the pro-

gram’s modules and their interface specifications.

� The purpose of a function test is to show that a program does not

match its external specifications.

� The purpose of a system test is to show that the product is in-

consistent with its original objectives.

FIGURE 6.2 The Development Process with Intermediate Verification

Steps.

116 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:12:58 Page 117

Notice how we have structured these statements: ‘‘find discrepancies,’’

‘‘does not match,’’ ‘‘is inconsistent.’’ Remember that the goal of software

testing is to find problems (because we know there will be problems!). If

you set out to prove that some form of inputs work properly, or assume

that the program is true to its specification and objectives, your testing will

be incomplete. Only by setting out to prove that some form of inputs work

improperly, and assume that the program is untrue to its specification and

objectives, will your testing be complete. This is an important concept we

iterate throughout this book.

FIGURE 6.3 The Correspondence Between Development and Testing

Processes.

Higher-Order Testing 117

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:12:59 Page 118

The advantages of this structure are that it avoids unproductive re-

dundant testing and prevents you from overlooking large classes

of errors. For instance, rather than simply labeling system testing as

‘‘the testing of the whole system’’ and possibly repeating earlier tests,

system testing is oriented toward a distinct class of errors (those made

during the translation of the objectives to the external specification) and

measured with respect to a distinct type of documentation in the devel-

opment process.

The higher-order testing methods shown in Figure 6.3 are most applica-

ble to software products (programs written as a result of a contract or in-

tended for wide usage, as opposed to experimental programs or those

written for use only by the program’s author). Programs not written as

products often do not have formal requirements and objectives; for such

programs, the function test might be the only higher-order test. Also, the

need for higher-order testing increases along with the size of the program.

The reason is that the ratio of design errors (errors made in the earlier

development processes) to coding errors is considerably higher in large

programs than in small programs.

Note that the sequence of testing processes in Figure 6.3 does not neces-

sarily imply a time sequence. For instance, since system testing is not de-

fined as ‘‘the kind of testing you do after function testing,’’ but instead as a

distinct type of testing focused on a distinct class of errors, it could very

well be partially overlapped in time with other testing processes.

In this chapter, we discuss the processes of function, system, accep-

tance, and installation testing. We omit integration testing because it is of-

ten not regarded as a separate testing step; and, when incremental module

testing is used, it is an implicit part of the module test.

We will keep the discussions of these testing processes brief, general,

and, for the most part, without examples because specific techniques used

in these higher-order tests are highly dependent on the specific program

being tested. For instance, the characteristics of a system test (the types of

test cases, the manner in which test cases are designed, the test tools used)

for an operating system will differ considerably from a system test of a

compiler, a program controlling a nuclear reactor, or a database applica-

tion program.

In the last few sections in this chapter we address planning and organi-

zational issues, along with the important question of determining when to

stop testing.

118 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:12:59 Page 119

Function Testing
As indicated in Figure 6.3, function testing is a process of attempting to

find discrepancies between the program and the external specification. An

external specification is a precise description of the program’s behavior

from the end-user point of view.

Except when used on small programs, function testing is normally a

black-box activity. That is, you rely on the earlier module-testing process

to achieve the desired white-box logic coverage criteria.

To perform a function test, you analyze the specification to derive a set

of test cases. The equivalence partitioning, boundary value analysis,

cause-effect graphing, and error-guessing methods described in Chapter

4 are especially pertinent to function testing. In fact, the examples in

Chapter 4 are examples of function tests. The descriptions of the Fortran

DIMENSION statement, the examination scoring program, and the

DISPLAY command actually are examples of external specifications. They

are not, however, completely realistic examples; for instance, an actual

external specification for the scoring program would include a precise

description of the format of the reports. (Note: Since we discussed func-

tion testing in Chapter 4, we present no examples of function tests in this

section.)

Many of the guidelines we provided in Chapter 2 also are particularly

pertinent to function testing. In particular, keep track of which functions

have exhibited the greatest number of errors; this information is valuable

because it tells you that these functions probably also contain the prepon-

derance of as-yet undetected errors. Also, remember to focus a sufficient

amount of attention on invalid and unexpected input conditions. (Recall

that the definition of the expected result is a vital part of a test case.)

Finally, as always, keep in mind that the purpose of the function test is to

expose errors and discrepancies with the specification, not to demonstrate

that the program matches its external specification.

System Testing
System testing is the most misunderstood and most difficult testing pro-

cess. System testing is not a process of testing the functions of the complete

system or program, because this would be redundant with the process of

function testing. Rather, as shown in Figure 6.3, system testing has a

Higher-Order Testing 119

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:12:59 Page 120

particular purpose: to compare the system or program to its original objec-

tives. Given this purpose, consider these two implications:

1. System testing is not limited to systems. If the product is a program,

system testing is the process of attempting to demonstrate how the

program, as a whole, fails to meet its objectives.

2. System testing, by definition, is impossible if there is no set of writ-

ten, measurable objectives for the product.

In looking for discrepancies between the program and its objectives,

focus on translation errors made during the process of designing the

external specification. This makes the system test a vital test process, be-

cause in terms of the product, the number of errors made, and the sever-

ity of those errors, this step in the development cycle usually is the most

error prone.

It also implies that, unlike the function test, the external specification

cannot be used as the basis for deriving the system test cases, since this

would subvert the purpose of the system test. On the other hand, the

objectives document cannot be used by itself to formulate test cases, since

it does not, by definition, contain precise descriptions of the program’s

external interfaces. We solve this dilemma by using the program’s user

documentation or publications—design the system test by analyzing the

objectives; formulate test cases by analyzing the user documentation. This

has the useful side effect of comparing the program to its objectives and to

the user documentation, as well as comparing the user documentation to

the objectives, as shown in Figure 6.4.

Figure 6.4 illustrates why system testing is the most difficult testing pro-

cess. The leftmost arrow in the figure, comparing the program to its objec-

tives, is the central purpose of the system test, but there are no known test-

case design methodologies. The reason for this is that objectives state what

a program should do and how well the program should do it, but they do

not state the representation of the program’s functions. For instance, the

objectives for the DISPLAY command specified in Chapter 4 might have

read as follows:

A command will be provided to view, from a terminal, the contents of

main storage locations. Its syntax should be consistent with the syn-

tax of all other system commands. The user should be able to specify

120 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:12:59 Page 121

a range of locations, via an address range or an address and a count.

Sensible defaults should be provided for command operands.

Output should be displayed as multiple lines of multiple words (in

hexadecimal), with spacing between the words. Each line should

contain the address of the first word of that line. The command is a

‘‘trivial’’ command, meaning that under reasonable system loads, it

should begin displaying output within two seconds, and there should

be no observable delay time between output lines. A programming

error in the command processor should, at the worst, cause the com-

mand to fail; the system and the user’s session must not be affected.

The command processor should have no more than one user-

detected error after the system is put into production.

Given the statement of objectives, there is no identifiable methodology

that would yield a set of test cases, other than the vague but useful guide-

line of writing test cases to attempt to show that the program is in-

consistent with each sentence in the objectives statement. Hence, a

different approach to test-case design is taken here: Rather than describing

a methodology, distinct categories of system test cases are discussed. Be-

cause of the absence of a methodology, system testing requires a substantial

FIGURE 6.4 The System Test.

Higher-Order Testing 121

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:0 Page 122

amount of creativity; in fact, the design of good system test cases requires

more creativity, intelligence, and experience than are required to design

the system or program itself.

Table 6.1 lists 15 categories of test cases, along with a brief description.

We discuss the categories in turn here. We don’t claim that all 15 catego-

ries apply to every program, but to avoid overlooking something, we rec-

ommend that you explore all of them when designing test cases.

TABLE 6.1 15 Categories of Test Cases

Category Description

Facility Ensure that the functionality in the objectives is implemented.

Volume Subject the program to abnormally large volumes of data to

process.

Stress Subject the program to abnormally large loads, generally

concurrent processing.

Usability Determine how well the end user can interact with the program.

Security Try to subvert the program’s security measures.

Performance Determine whether the program meets response and

throughput requirements.

Storage Ensure the program correctly manages its storage needs, both

system and physical.

Configuration Check that the program performs adequately on the

recommended configurations.

Compatibility/

Conversion

Determine whether new versions of the program are

compatible with previous releases.

Installation Ensure the installation methods work on all supported

platforms.

Reliability Determine whether the program meets reliability specifications

such as uptime and MTBF.

Recovery Test whether the system’s recovery facilities work as designed.

Serviceability/

Maintenance

Determine whether the application correctly provides

mechanisms to yield data on events requiring technical support.

Documentation Validate the accuracy of all user documentation.

Procedure Determine the accuracy of special procedures required to use or

maintain the program.

122 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 123

Facility Testing

The most obvious type of system testing is to determine whether each fa-

cility (or function; but the word ‘‘function’’ is not used here to avoid con-

fusing this with function testing) mentioned in the objectives was actually

implemented. The procedure is to scan the objectives sentence by sen-

tence, and when a sentence specifies a what (e.g., ‘‘syntax should be con-

sistent . . . ,’’ ‘‘user should be able to specify a range of locations . . .’’),

determine that the program satisfies the ‘‘what.’’ This type of testing often

can be performed without a computer; a mental comparison of the objec-

tives with the user documentation is sometimes sufficient. Nonetheless, a

checklist is helpful to ensure that you mentally verify the same objectives

the next time you perform the test.

Volume Testing

A second type of system testing is to subject the program to heavy volumes

of data. For instance, a compiler could be fed an absurdly large source pro-

gram to compile. A linkage editor might be fed a program containing thou-

sands of modules. An electronic circuit simulator could be given a circuit

containing millions of components. An operating system’s job queue might

be filled to capacity. If a program is supposed to handle files spanning mul-

tiple volumes, enough data is created to cause the program to switch from

one volume to another. In other words, the purpose of volume testing is to

show that the program cannot handle the volume of data specified in its

objectives.

Obviously, volume testing can require significant resources, therefore,

in terms of machine and people time, you shouldn’t go overboard. Still,

every program must be exposed to at least a few volume tests.

Stress Testing

Stress testing subjects the program to heavy loads, or stresses. This should

not be confused with volume testing; a heavy stress is a peak volume of

data, or activity, encountered over a short span of time. An analogy would be

evaluating a typist: A volume test would determine whether the typist

could cope with a draft of a large report; a stress test would determine

whether the typist could type at a rate of 50 words per minute.

Higher-Order Testing 123

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 124

Because stress testing involves an element of time, it is not applicable to

many programs—for example, a compiler or a batch-processing payroll

program. It is applicable, however, to programs that operate under varying

loads, or interactive, real-time, and process control programs. If an air traf-

fic control system is supposed to keep track of up to 200 planes in its sec-

tor, you could stress-test it by simulating the presence of 200 planes. Since

there is nothing to physically keep a 201st plane from entering the sector, a

further stress test would explore the system’s reaction to this unexpected

plane. An additional stress test might simulate the simultaneous entry of a

large number of planes into the sector.

If an operating system is supposed to support a maximum of 15 concur-

rent jobs, the system could be stressed by attempting to run 15 jobs simul-

taneously. You could stress a pilot training aircraft simulator by

determining the system’s reaction to a trainee who forces the rudder left,

pulls back on the throttle, lowers the flaps, lifts the nose, lowers the land-

ing gear, turns on the landing lights, and banks left, all at the same time.

(Such test cases might require a four-handed pilot or, realistically, two test

specialists in the cockpit.) You might stress-test a process control system

by causing all of the monitored processes to generate signals simulta-

neously, or a telephone switching system by routing to it a large number of

simultaneous phone calls.

Web-based applications are common subjects of stress testing. Here,

you want to ensure that your application, and hardware, can handle a tar-

get volume of concurrent users. You could argue that you may have mil-

lions of people accessing the site at one time, but that is not realistic. You

need to define your audience then design a stress test to represent the max-

imum number of users you think will use your site. (Chapter 10 provides

more information on testing Web-based applications.)

Similarly, you could stress a mobile device application—a mobile phone

operating system, for example—by launching multiple applications that

run and stay resident, then making or receiving one or more telephone

calls. You could launch a GPS navigation program, an application that uses

CPU and radio frequency (RF) resources almost continuously, then

attempt to use other applications or engage telephone calls. (Chapter 11

discusses testing mobile applications in more detail.)

Although many stress tests do represent conditions that the program

likely will experience during its operation, others may truly represent

‘‘never will occur’’ situations; but this does not imply that these tests are

124 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 125

not useful. If these impossible conditions detect errors, the test is valuable

because it is likely that the same errors might also occur in realistic, less

stressful situations.

Usability Testing

Another important test case area is usability, or user testing. Although this

testing technique is nearly 30 years old, it has become more important

with the advent of more GUI-based software and the deep penetration of

computer hardware and software into all aspects of our society. By tasking

the ultimate end user of an application with testing the software in a real-

world environment, potential problems can be discovered that even the

most aggressive automated testing routing likely wouldn’t find. This area

of software testing is so important we will cover it further in the next

chapter.

Security Testing

In response to society’s growing concern about privacy, many programs

now have specific security objectives. Security testing is the process of at-

tempting to devise test cases that subvert the program’s security checks.

For example, you could try to formulate test cases that get around an oper-

ating system’s memory protection mechanism. Similarly, you could try to

subvert a database system’s data security mechanisms. One way to devise

such test cases is to study known security problems in similar systems and

generate test cases that attempt to demonstrate comparable problems in

the system you are testing. For example, published sources in magazines,

chat rooms, or newsgroups frequently cover known bugs in operating sys-

tems or other software systems. By searching for security holes in existing

programs that provide services similar to the one you are testing, you can

devise test cases to determine whether your program suffers from the same

kind of problems.

Web-based applications often need a higher level of security testing

than do most applications. This is especially true of e-commerce sites.

Although sufficient technology, namely encryption, exists to allow cus-

tomers to complete transactions securely over the Internet, you should not

rely on the mere application of technology to ensure safety. In addition,

you will need to convince your customer base that your application is safe,

Higher-Order Testing 125

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 126

or you risk losing customers. Again, Chapter 10 provides more informa-

tion on security testing in Internet-based applications.

Performance Testing

Many programs have specific performance or efficiency objectives, stating

such properties as response times and throughput rates under certain

workload and configuration conditions. Again, since the purpose of a sys-

tem test is to demonstrate that the program does not meet its objectives,

test cases must be designed to show that the program does not satisfy its

performance objectives.

Storage Testing

Similarly, programs occasionally have storage objectives that state, for

example, the amount of system memory the program uses and the size of

temporary or log files. You need to verify that your program can control its

use of system memory so it does not negatively impact other processes

running on the host. The same holds for physical files on the file system.

Filling a disk drive can cause significant downtime. You should design test

cases to show that these storage objectives have not been met.

Configuration Testing

Programs such as operating systems, database management systems, and

messaging programs support a variety of hardware configurations, includ-

ing various types and numbers of I/O devices and communications lines,

or different memory sizes. Often, the number of possible configurations is

too large to test each one, but at the least, you should test the program with

each type of hardware device and with the minimum and maximum con-

figuration. If the program itself can be configured to omit program compo-

nents, or if the program can run on different computers, each possible

configuration of the program should be tested.

Today, many programs are designed for multiple operating systems.

Thus, when testing such a program, you should do so on all of the operat-

ing systems for which it was designed. Programs designed to execute

within a Web browser require special attention, since there are numerous

Web browsers available and they don’t all function the same way. In

126 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 127

addition, the same Web browser will operate differently on different oper-

ating systems.

Compatibility/Conversion Testing

Most programs that are developed are not completely new; they often

are replacements for some deficient system. As such, programs often have

specific objectives concerning their compatibility with, and conversion

procedures from, the existing system. Again, in testing the program against

these objectives, the orientation of the test cases is to demonstrate that the

compatibility objectives have not been met and that the conversion proce-

dures do not work. Here you try to generate errors while moving data from

one system to another. An example would be upgrading a database system.

You want to ensure that the new release supports your existing data, just as

you need to validate that a new version of a word processing application

supports its previous document formats. Various methods exist to test

this process; however, they are highly dependent on the database system

you employ.

Installation Testing

Some types of software systems have complicated installation procedures.

Testing the installation procedure is an important part of the system testing

process. This is particularly true of an automated installation system that is

part of the program package. A malfunctioning installation program could

prevent the user from ever having a successful experience with the main

system you are testing. A user’s first experience is when he or she installs

the application. If this phase performs poorly, then the user/customer may

find another product, or have little confidence in the application’s validity.

Reliability Testing

Of course, the goal of all types of testing is the improvement of the pro-

gram reliability, but if the program’s objectives contain specific statements

about reliability, specific reliability tests might be devised. Testing reliabil-

ity objectives can be difficult. For example, a modern online system such

as a corporate wide area network (WAN) or an Internet service provider

(ISP) generally has a targeted uptime of 99.97 percent over the life of the

Higher-Order Testing 127

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 128

system. There is no known way that you could test this objective within a

test period of months or even years. Today’s critical software systems have

even higher reliability standards, and today’s hardware conceivably should

support these objectives. You potentially can test programs or systems with

more modest mean time between failures (MTBF) objectives or reasonable

(in terms of testing) operational error objectives.

An MTBF of no more than 20 hours, or an objective that a program

should experience no more than 12 unique errors after it is placed into

production, for example, presents testing possibilities, particularly for sta-

tistical, program-proving, or model-based testing methodologies. These

methods are beyond the scope of this book, but the technical literature

(online and otherwise) offers ample guidance in this area. For example, if

this area of program testing is of interest to you, research the concept of

inductive assertions. The goal of this method is the development of a set of

theorems about the program in question, the proof of which guarantees the

absence of errors in the program. The method begins by writing assertions

about the program’s input conditions and correct results. The assertions

are expressed symbolically in a formal logic system, usually the first-order

predicate calculus. You then locate each loop in the program and, for each

loop, write an assertion stating the invariant (always true) conditions at an

arbitrary point in the loop. The program now has been partitioned into a

fixed number of fixed-length paths (all possible paths between a pair of

assertions). For each path, you then take the semantics of the intervening

program statements to modify the assertion, and eventually reach the end

of the path. At this point, two assertions exist at the end of the path: the

original one and the one derived from the assertion at the opposite end.

You then write a theorem stating that the original assertion implies the de-

rived assertion, and attempt to prove the theorem. If the theorems can be

proved, you could assume the program is error free—as long as the pro-

gram eventually terminates. A separate proof is required to show that the

program will always eventually terminate.

As complex as this sort of software proving or prediction sounds, reli-

ability testing and, indeed, the concept of software reliability engineer-

ing (SRE) are with us today and are increasingly important for systems

that must maintain very high uptimes. To illustrate this point, examine

Table 6.2 to see the number of hours per year a system must be up to

support various uptime requirements. These values should indicate the

need for SRE.

128 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 129

Recovery Testing

Programs such as operating systems, database management systems, and

teleprocessing programs often have recovery objectives that state how the

system is to recover from programming errors, hardware failures, and data

errors. One objective of the system test is to show that these recovery func-

tions do not work correctly. Programming errors can be purposely injected

into a system to determine whether it can recover from them. Hardware

failures such as memory parity errors or I/O device errors can be simu-

lated. Data errors such as noise on a communications line or an invalid

pointer in a database can be created purposely or simulated to analyze the

system’s reaction.

One design goal of such systems is to minimize the mean time to recov-

ery (MTTR). Downtime often causes a company to lose revenue because

the system is inoperable. One testing objective is to show that the system

fails to meet the service-level agreement for MTTR. Often, the MTTR will

have an upper and lower boundary, so your test cases should reflect these

bounds.

Serviceability/Maintenance Testing

The program also may have objectives for its serviceability or maintain-

ability characteristics. All objectives of this sort must be tested. Such objec-

tives might define the service aids to be provided with the system,

including storage dump programs or diagnostics, the mean time to debug

an apparent problem, the maintenance procedures, and the quality of in-

ternal logic documentation.

TABLE 6.2 Hours per Year for Various Uptime Requirements

Uptime Percent Requirements Operational Hours per Year

100 8760.0

99.9 8751.2

98 8584.8

97 8497.2

96 8409.6

95 8322.0

Higher-Order Testing 129

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 130

Documentation Testing

As we illustrated in Figure 6.4, the system test also is concerned with the

accuracy of the user documentation. The principal way of accomplishing

this test is to use the documentation to determine the representation of the

prior system test cases. That is, once a particular stress case is devised, you

would use the documentation as a guide for writing the actual test case.

Also, the user documentation itself should be the subject of an inspection

(similar to the concept of the code inspection in Chapter 3), to check it for

accuracy and clarity. Any examples illustrated in the documentation

should be encoded into test cases and fed to the program.

Procedure Testing

Finally, many programs are parts of larger, not completely automated sys-

tems involving procedures people perform. Any prescribed human proce-

dures, such as those for the system operator, database administrator, or

end user, should be tested during the system test.

For example, a database administrator should document procedures for

backing up and recovering the database system. If possible, a person not

associated with the administration of the database should test the proce-

dures. However, a company must create the resources needed to ade-

quately test the procedures. These resources often include hardware and

additional software licensing.

Performing the System Test

One of the most vital considerations in implementing the system test is

determining who should do it. To answer this in a negative way, (1) pro-

grammers should not perform a system test; and (2) of all the testing

phases, this is the one that the organization responsible for developing the

programs definitely should not perform.

The first point stems from the fact that a person performing a system

test must be capable of thinking like an end user, which implies a thor-

ough understanding of the attitudes and environment of the end user and

of how the program will be used. Obviously, then, if feasible, a good test-

ing candidate is one or more end users. However, because the typical end

user will not have the ability or expertise to perform many of the

130 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 131

categories of tests described earlier, an ideal system test team might be

composed of a few professional system test experts (people who spend

their lives performing system tests), a representative end user or two, a

human-factors engineer, and the key original analysts or designers of the

program. Including the original designers does not violate principle 2

from Table 2.1, ‘‘Vital Program Testing Guidelines,’’ recommending

against testing your own program, since the program has probably passed

through many hands since it was conceived. Therefore, the original de-

signers do not have the troublesome psychological ties to the program

that motivated this principle.

The second point stems from the fact that a system test is an ‘‘anything

goes, no holds barred’’ activity. Again, the development organization has

psychological ties to the program that are counter to this type of activity.

Also, most development organizations are most interested in having the

system test proceed as smoothly as possible and on schedule, hence

are not truly motivated to demonstrate that the program does not meet

its objectives. At the least, the system test should be performed by an

independent group of people with few, if any, ties to the development

organization.

Perhaps the most economical way of conducting a system test (econom-

ical in terms of finding the most errors with a given amount of money, or

spending less money to find the same number of errors), is to subcontract

the test to a separate company. We talk about this more in the last section

of this chapter.

Acceptance Testing
Returning to the overall model of the development process shown in

Figure 6.3, you can see that acceptance testing is the process of compar-

ing the program to its initial requirements and the current needs of its

end users. It is an unusual type of test in that it usually is performed by

the program’s customer or end user and normally is not considered the

responsibility of the development organization. In the case of a con-

tracted program, the contracting (user) organization performs the accep-

tance test by comparing the program’s operation to the original contract.

As is the case for other types of testing, the best way to do this is to devise

test cases that attempt to show that the program does not meet the con-

tract; if these test cases are unsuccessful, the program is accepted. In the

Higher-Order Testing 131

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 132

case of a program product, such as a computer manufacturer’s operating

system, or a software company’s database system, the sensible customer

first performs an acceptance test to determine whether the product satis-

fies its needs.

Although the ultimate acceptance test is, indeed, the responsibility of

the customer or end user, the savvy developer will conduct user tests dur-

ing the development cycle and prior to delivering the finished product to

the end user or contract customer. See Chapter 7 for more information on

user or usability testing.

Installation Testing
The remaining testing process in Figure 6.3 is the installation test. Its posi-

tion in the figure is a bit unusual, since it is not related, as all of the other

testing processes are, to specific phases in the design process. It is an un-

usual type of testing because its purpose is not to find software errors but

to find errors that occur during the installation process.

Many events occur when installing software systems. A short list of

examples includes the following:

� User must select a variety of options.

� Files and libraries must be allocated and loaded.

� Valid hardware configurations must be present.

� Programs may need network connectivity to connect to other

programs.

The organization that produced the system should develop the installa-

tion tests, which should be delivered as part of the system, and run after

the system is installed. Among other things, the test cases might check to

ensure that a compatible set of options has been selected, that all parts of

the system exist, that all files have been created and have the necessary

contents, and that the hardware configuration is appropriate.

Test Planning and Control
If you consider that the testing of a large system could entail writing, exe-

cuting, and verifying tens of thousands of test cases, handling thousands

132 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 133

of modules, repairing thousands of errors, and employing hundreds of

people over a time span of a year or more, it is apparent that you are faced

with an immense project management challenge in planning, monitoring,

and controlling the testing process. In fact, the problem is so enormous

that we could devote an entire book to just the management of software

testing. The intent of this section is to summarize some of these

considerations.

As mentioned in Chapter 2, the major mistake most often made in plan-

ning a testing process is the tacit assumption that no errors will be found.

The obvious result of this mistake is that the planned resources (people,

calendar time, and computer time) will be grossly underestimated, a noto-

rious problem in the computing industry. Compounding the problem is

the fact that the testing process falls at the end of the development cycle,

meaning that resource changes are difficult. A second, perhaps more insid-

ious problem is that the wrong definition of testing is being used, since it is

difficult to see how someone using the correct definition of testing (the

goal being to find errors) would plan a test using the assumption that no

errors will be found.

As is the case for most undertakings, the plan is the crucial part of the

management of the testing process. The components of a good test plan are

as follows:

1. Objectives. The objectives of each testing phase must be defined.

2. Completion criteria. Criteria must be designed to specify when each

testing phase will be judged to be complete. This matter is discussed

in the next section.

3. Schedules. Calendar time schedules are needed for each phase. They

should indicate when test cases will be designed, written, and exe-

cuted. Some software methodologies such as Extreme Programming

(discussed in Chapter 9) require that you design the test cases and

unit tests before application coding begins.

4. Responsibilities. For each phase, the people who will design, write,

execute, and verify test cases, and the people who will repair discov-

ered errors, should be identified. And, because in large projects dis-

putes inevitably arise over whether particular test results represent

errors, an arbitrator should be identified.

5. Test case libraries and standards. In a large project, systematic meth-

ods of identifying, writing, and storing test cases are necessary.

Higher-Order Testing 133

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 134

6. Tools. The required test tools must be identified, including a plan for

who will develop or acquire them, how they will be used, and when

they will be needed.

7. Computer time. This is a plan for the amount of computer time

needed for each testing phase. It would include servers used for com-

piling applications, if required; desktop machines required for instal-

lation testing; Web servers for Web-based applications; networked

devices, if required; and so forth.

8. Hardware configuration. If special hardware configurations or devices

are needed, a plan is required that describes the requirements, how

they will be met, and when they will be needed.

9. Integration. Part of the test plan is a definition of how the program

will be pieced together (e.g., incremental top-down testing). A sys-

tem containing major subsystems or programs might be pieced to-

gether incrementally, using the top-down or bottom-up approach, for

instance, but where the building blocks are programs or subsystems,

rather than modules. If this is the case, a system integration plan is

necessary. The system integration plan defines the order of integra-

tion, the functional capability of each version of the system, and re-

sponsibilities for producing ‘‘scaffolding,’’ code that simulates the

function of nonexistent components.

10. Tracking procedures. You must identify means to track various aspects

of the testing progress, including the location of error-prone modules

and estimation of progress with respect to the schedule, resources,

and completion criteria.

11. Debugging procedures. You must define mechanisms for reporting de-

tected errors, tracking the progress of corrections, and adding the

corrections to the system. Schedules, responsibilities, tools, and com-

puter time/resources also must be part of the debugging plan.

12. Regression testing. Regression testing is performed after making a

functional improvement or repair to the program. Its purpose is to

determine whether the change has regressed other aspects of the pro-

gram. It usually is performed by rerunning some subset of the pro-

gram’s test cases. Regression testing is important because changes

and error corrections tend to be much more error prone than the

original program code (in much the same way that most typographi-

cal errors in newspapers are the result of last-minute editorial

134 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 135

changes, rather than changes in the original copy). A plan for regres-

sion testing—who, how, when—also is necessary.

Test Completion Criteria
One of the most difficult questions to answer when testing a program is

determining when to stop, since there is no way of knowing if the error

just detected is the last remaining error. In fact, in anything but a small

program, it is unreasonable to expect that all errors will eventually be de-

tected. Given this dilemma, and given the fact that economics dictate that

testing must eventually terminate, you might wonder if the question has to

be answered in a purely arbitrary way, or if there are some useful stopping

criteria.

The completion criteria typically used in practice are both meaningless

and counterproductive. The two most common criteria are these:

1. Stop when the scheduled time for testing expires.

2. Stop when all the test cases execute without detecting errors—that is,

stop when the test cases are unsuccessful.

The first criterion is useless because you can satisfy it by doing abso-

lutely nothing. It does not measure the quality of the testing. The second

criterion is equally useless because it also is independent of the quality of

the test cases. Furthermore, it is counterproductive because it sub-

consciously encourages you to write test cases that have a low probability

of detecting errors.

As discussed in Chapter 2, humans are highly goal oriented. If you are

told that you have finished a task when the test cases are unsuccessful, you

will subconsciously write test cases that lead to this goal, avoiding the use-

ful, high-yield, destructive test cases.

There are three categories of more useful criteria. The first category, but

not the best, is to base completion on the use of specific test-case design

methodologies. For instance, you might define the completion of module

testing as the following:

The test cases are derived from (1) satisfying the multicondition-

coverage criterion and (2) a boundary value analysis of the module

Higher-Order Testing 135

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 136

interface specification, and all resultant test cases are eventually

unsuccessful.

You might define the function test as being complete when the following

conditions are satisfied:

The test cases are derived from (1) cause-effect graphing, (2) boundary

value analysis, and (3) error guessing, and all resultant test cases are

eventually unsuccessful.

Although this type of criterion is superior to the two mentioned earlier,

it has three problems. First, it is not helpful in a test phase in which spe-

cific methodologies are not available, such as the system test phase. Sec-

ond, it is a subjective measurement, since there is no way to guarantee that

a person has used a particular methodology, such as boundary value analy-

sis, properly and rigorously. Third, rather than setting a goal and then let-

ting the tester choose the best way of achieving it, it does the opposite; test-

case-design methodologies are dictated, but no goal is given. Hence, this

type of criterion is useful sometimes for some testing phases, but it should

be applied only when the tester has proven his or her abilities in the past in

applying the test-case design methodologies successfully.

The second category of criteria—perhaps the most valuable one—is to

state the completion requirements in positive terms. Since the goal of test-

ing is to find errors, why not make the completion criterion the detection

of some predefined number of errors? For instance, you might state that a

module test of a particular module is not complete until three errors have

been discovered. Perhaps the completion criterion for a system test should

be defined as the detection and repair of 70 errors, or an elapsed time of

three months, whichever comes later.

Notice that, although this type of criterion reinforces the definition of

testing, it does have two problems, both of which are surmountable. One

problem is determining how to obtain the number of errors to be detected.

Obtaining this number requires the following three estimates:

1. An estimate of the total number of errors in the program.

2. An estimate of what percentage of these errors can feasibly be found

through testing.

136 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 137

3. An estimate of what fraction of the errors originated in particular de-

sign processes, and during which testing phases these errors are

likely to be detected.

You can get a rough estimate of the total number of errors in several

ways. One method is to obtain them through experience with previous

programs. Also, a variety of predictive modules exist. Some of these re-

quire you to test the program for some period of time, record the elapsed

times between the detection of successive errors, and insert these times

into parameters in a formula. Other modules involve the seeding of

known, but unpublicized, errors into the program, testing the program for

a while, and then examining the ratio of detected seeded errors to detected

unseeded errors. Another model employs two independent test teams

whose members test for a while, examine the errors found by each and the

errors detected in common by both teams, and use these parameters to

estimate the total number of errors. Another gross method to obtain this

estimate is to use industrywide averages. For instance, the number of

errors that exist in typical programs at the time that coding is completed

(before a code walkthrough or inspection is employed) is approximately 4

to 8 errors per 100 program statements.

The second estimate from the preceding list (the percentage of errors

that can be feasibly found through testing) involves a somewhat arbitrary

guess, taking into consideration the nature of the program and the conse-

quences of undetected errors.

Given the current paucity of information about how and when errors

are made, the third estimate is the most difficult. The data that exist indi-

cate that in large programs, approximately 40 percent of the errors are cod-

ing and logic design mistakes, and that the remainder are generated in the

earlier design processes.

To use this criterion, you must develop your own estimates that are per-

tinent to the program at hand. A simple example is presented here. Assume

we are about to begin testing a 10,000-statement program, that the number

of errors remaining after code inspections are performed is estimated at

5 per 100 statements, and we establish, as an objective the detection of

98 percent of the coding and logic design errors and 95 percent of the

design errors. The total number of errors is thus estimated at 500. Of the

500 errors, we assume that 200 are coding and logic design errors and

Higher-Order Testing 137

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 138

300 are design flaws. Hence, the goal is to find 196 coding and logic design

errors and 285 design errors. A plausible estimate of when the errors are

likely to be detected is shown in Table 6.3.

If we have scheduled four months for function testing and three months

for system testing, the following three completion criteria might be

established:

1. Module testing is complete when 130 errors are found and corrected

(65 percent of the estimated 200 coding and logic design errors).

2. Function testing is complete when 240 errors (30 percent of 200

plus 60 percent of 300) are found and corrected, or when four

months of function testing have been completed, whichever occurs

later. The reason for the second clause is that if we find 240 errors

quickly, it is probably an indication that we have underestimated

the total number of errors and thus should not stop function testing

early.

3. System testing is complete when 111 errors are found and corrected,

or when three months of system testing have been completed, which-

ever occurs later.

The other obvious problem with this type of criterion is one of overesti-

mation. What if, in the preceding example, there are fewer than 240 errors

remaining when function testing starts? Based on the criterion, we could

never complete the function test phase.

This is a strange problem if you think about it: We do not have enough

errors; the program is too good. You could label it as not a problem be-

cause it is the kind of problem a lot of people would love to have. If it does

occur, a bit of common sense can solve it. If we cannot find 240 errors in

four months, the project manager can employ an outsider to analyze the

TABLE 6.3 Hypothetical Estimate of When the Errors Might Be Found

Coding and Logic Design Errors Design Errors

Module test 65% 0%

Function test 30% 60%

System test 3% 35%

Total 98% 95%

138 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 139

test cases to judge whether the problem is (1) inadequate test cases or (2)

excellent test cases but a lack of errors to detect.

The third type of completion criterion is an easy one on the surface, but

it involves a lot of judgment and intuition. It requires you to plot the num-

ber of errors found per unit time during the test phase. By examining the

shape of the curve, you can often determine whether to continue the test

phase or end it and begin the next test phase.

Suppose a program is being function-tested and the number of errors

found per week is being plotted. If, in the seventh week, the curve is the

top one of Figure 6.5, it would be imprudent to stop the function test,

even if we had reached our criterion for the number of errors to be found.

Since in the seventh week we still seem to be in high gear (finding many

errors), the wisest decision (remembering that our goal is to find errors) is

to continue function testing, designing additional test cases if necessary.

On the other hand, suppose the curve is the bottom one in Figure 6.5.

The error-detection efficiency has dropped significantly, implying that we

have perhaps picked the function test bone clean and that perhaps the best

move is to terminate function testing and begin a new type of testing (a

system test, perhaps). Of course, we must also consider other factors, such

as whether the drop in error-detection efficiency was due to a lack of com-

puter time or exhaustion of the available test cases.

Figure 6.6 is an illustration of what happens when you fail to plot the

number of errors being detected. The graph represents three testing phases

of an extremely large software system. An obvious conclusion is that the

project should not have switched to a different testing phase after period

6. During period 6, the error-detection rate was good (to a tester, the

higher the rate, the better), but switching to a second phase at this point

caused the error-detection rate to drop significantly.

The best completion criterion is probably a combination of the three

types just discussed. For the module test, particularly because most

projects do not formally track detected errors during this phase, the

best completion criterion is probably the first. You should request that

a particular set of test-case design methodologies be used. For the func-

tion and system test phases, the completion rule might be to stop when

a predefined number of errors are detected or when the scheduled

time has elapsed, whichever comes later, but provided that an analysis

of the errors-versus-time graph indicates that the test has become

unproductive.

Higher-Order Testing 139

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:1 Page 140

60

50

40

30

E
rr

or
s

F
ou

nd

20

10

1 2 3 4

Week

5 6 7
0

60

50

40

30

E
rr

or
s

F
ou

nd

20

10

1 2 3 4

Week

5 6 7
0

FIGURE 6.5 Estimating Completion by Plotting Errors Detected by

Unit Time.

140 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:2 Page 141

The Independent Test Agency
Earlier in this chapter and in Chapter 2, we emphasized that an organiza-

tion should avoid attempting to test its own programs. Our reasoning is

that the organization responsible for developing a program has difficulty

in objectively testing the same program. The test organization should be as

far removed as possible, in terms of the structure of the company, from the

development organization. In fact, it is desirable that the test organization

not be part of the same company, for if it is, it is still influenced by the same

management pressures influencing the development organization.

One way to avoid this conflict is to hire a separate company for software

testing. This is a good idea, whether the company that designed the system

and will use it developed the system, or whether a third-party developer

produced the system. The advantages usually noted are increased motiva-

tion in the testing process, a healthy competition with the development

organization, removal of the testing process from under the management

900

800

700

500

E
rr

or
s

F
ou

nd
 p

er
 p

er
io

d

600

400

300

200

100

21 3 4 5 6 7 8 9 10 11 12 13

Two-week periods

0

FIGURE 6.6 Postmortem Study of the Testing Processes of a Large

Project.

Higher-Order Testing 141

www.it-ebooks.info

http://www.it-ebooks.info/

C06 08/25/2011 12:13:2 Page 142

control of the development organization, and the advantages of specialized

knowledge that the independent test agency brings to bear on the problem.

Summary
Higher-order testing could be considered the next step. We have discussed

and advocated the concept of module testing—using various techniques to

test software components, the building blocks that combine to form the

finished product. With individual components tested and debugged, it is

time to see how well they work together.

Higher-order testing is important for all software products, but it be-

comes increasingly important as the size of the project increases. It stands

to reason that the more modules and the more lines of code a project con-

tains, the more opportunity exists for coding or even design errors.

Function testing attempts to uncover design errors, that is, discrepan-

cies between the finished program and its external specifications—a pre-

cise description of the program’s behavior from the end-user’s perspective.

The system test, on the other hand, tests the relationship between the

software and its original objectives. System testing is designed to uncover

errors made during the process of translating program objectives into the

external specification and ultimately into lines of code. It is this translation

step where errors have the most far-reaching effects; likewise, it is the stage

in the development process that is most error prone. Perhaps the most dif-

ficult part of system testing is designing the test cases. In general you want

to focus on main categories of testing, then get really creative in testing

these categories. Table 6.1 summarizes 15 categories we detailed in this

chapter that can guide your system testing efforts.

Make no mistake, higher-order testing certainly is an important part of

thorough software testing, but it also can become a daunting process, espe-

cially for very large systems, such as an operating system. The key to suc-

cess is consistent and well-planned test planning. We introduce this topic

in this chapter, but if you are managing the testing of large systems, more

thought and planning will be required. One approach to handling this is-

sue is to hire an outside company for testing or for test management.

In Chapter 7 we expand on one important aspect of higher-order test-

ing: user or usability testing.

142 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 143

7 Usability (User)
Testing

An important category of system test cases is one that attempts to find

human-factor, or usability, problems. When the first edition of this

book was published, the computing industry mostly ignored the human

factors associated with computer software. Developers gave little attention

to how humans interacted with their software. That is not to say that there

were no developers testing applications at the user level. In the early

1980s, some—including developers at the Xerox Palo Alto Research Cen-

ter (PARC), for example—were conducting user-based software testing.

By 1987 or 1988, the three of us had become intimately involved in

usability testing of early personal computer hardware and software, when

we contracted with computer manufacturers to test and review their new

desktop computers prior to release to the public. Over perhaps two years,

this prerelease testing prevented potential usability problems with new

hardware and software designs. These early computer manufacturers obvi-

ously were convinced that the time and expense required for this level of

user testing resulted in real marketing and financial advantages.

Usability Testing Basics
Today’s software systems—particularly those designed for a mass, commer-

cial market—generally have undergone extensive human-factor studies,

and modern programs, of course, benefit from the thousands of programs

and systems that have gone before. Nevertheless, an analysis of human

143

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 144

factors is still a highly subjective matter. Here’s our list of questions you

might ask to derive testing considerations:

1. Has each user interface been tailored to the intelligence, educational

background, and environmental pressures of the end user?

2. Are the outputs of the program meaningful, noninsulting to the user,

and devoid of computer gibberish?

3. Are the error diagnostics, such as error messages, straightforward, or

does the user need a PhD in computer science to comprehend them?

For instance, does the program produce such messages as IEK022A

OPEN ERROR ON FILE 'SYSIN' ABEND CODE¼102? Messages such as

these weren’t all that uncommon in software systems of the 1970s

and 1980s. Mass-market systems do better today in this regard, but

users still will encounter unhelpful messages such as, ‘‘An unknown

error has occurred,’’ or ‘‘This program has encountered an error and

must be restarted.’’

Programs you design yourself are under your control and should

not be plagued with such useless messages. Even if you didn’t design

the program, if you are on the testing team, you can push for im-

provements in this area of the human interface.

4. Does the total set of user interfaces exhibit considerable conceptual

integrity, an underlying consistency, and uniformity of syntax, con-

ventions, semantics, format, style, and abbreviations?

5. Where accuracy is vital, such as in an online banking system, is suffi-

cient redundancy present in the input? For example, such a system

should ask for an account number, a customer name, and a personal

identification number (PIN) to verify that the proper person is

accessing account information.

6. Does the system contain an excessive number of options, or options

that are unlikely to be used? One trend in modern software is to pres-

ent to users only those menu choices they are most likely to use,

based on software testing and design considerations. Then a well-

designed program can learn from individual users and begin to

present those menu items that they frequently access. Even with

such an intelligent menu system, successful programs still must be

designed so that accessing the various options is logical and intuitive.

7. Does the system return some type of immediate acknowledgment to

all inputs? Where a mouse click is the input, for example, the chosen

144 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 145

item can change color, or a button object can depress or be presented

in a raised format. If the user is expected to choose from a list, the

selected number should be presented on the screen when the choice

is made. Moreover, if the selected action requires some processing

time—which is frequently the case when the software is accessing a

remote system—then a message should be displayed informing the

user of what is going on. This level of testing sometimes is referred to

as component testing, whereby interactive software components are

tested for reasonable selection and user feedback.

8. Is the program easy to use? For example, is the input case-sensitive

without making this fact clear to the user? Also, if a program requires

navigation through a series of menus or options, is it clear how to

return to the main menu? Can the user easily move up or down one

level?

9. Is the design conducive to user accuracy? One test would be an anal-

ysis of how many errors each user makes during data entry or when

choosing program options. Were these errors merely an in-

convenience—errors the user was able to correct—or did an in-

correct choice or action cause some kind of application failure?

10. Are the user actions easily repeated in later sessions? In other words,

is the software design conducive to the user learning how to be more

efficient in using the system?

11. Did the user feel confident while navigating the various paths or

menu choices? A subjective evaluation might be the user response to

using the application. At the end of the session did the user feel

stressed by or satisfied with the outcome? Would the user be likely to

choose this system for his or her own use, or recommend it to some-

one else?

12. Did the software live up to its design promise? Finally, usability test-

ing should include an evaluation of the software specifications versus

the actual operation. From the user perspective—real people using

the software in a real-world environment—did the software perform

according to its specifications?

Usability or user-based testing basically is a black-box testing tech-

nique. Recall from our discussion in Chapter 2 that black-box testing con-

centrates on finding situations in which the program does not behave

according to specifications. In a black-box scenario you are not concerned

Usability (User) Testing 145

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 146

with the internal workings of the software, or even with understanding

program structure. Presented this way, usability testing obviously is an im-

portant part of any development process. If users perceive, because of im-

proper design, a cumbersome user interface, or specifications missed or

ignored, that a given application does not perform according to its specifi-

cations, the development process has failed. User testing should uncover

problems from design flaws to software ergonomics mistakes.

Usability Testing Process
It should be obvious from our list of items to test that usability testing is

more than simply seeking user opinions or high-level reactions to a software

application. When the errors have been found and corrected, and an appli-

cation is ready for release or for sale, focus groups can be used to elicit opin-

ions from users or potential purchasers. This is marketing and focusing.

Usability testing occurs earlier in the process and is much more involved.

Any usability test should begin with a plan. (Review our vital software

testing guidelines in Chapter 2, Table 2.1.) You should establish practical,

real-world, repeatable exercises for each user to conduct. Design these test-

ing scenarios to present the user with all aspects of the software, perhaps in

various or random order. For example, among the processes you might test

in a customer tracking application are:

� Locate an individual customer record and modify it.

� Locate a company record and modify it.

� Create a new company record.

� Delete a company record.

� Generate a list of all companies of a certain type.

� Print this list.

� Export a selected list of contacts to a text file or spreadsheet format.

� Import a text file or spreadsheet file of contacts from another

application.

� Add a photograph to one or more records.

� Create and save a custom report.

� Customize the menu structure.

During each phase of the test, have observers document the user experi-

ence as they perform each task. When the test is complete, conduct an

146 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 147

interview with the user or provide a written questionnaire to document

other aspects of the user’s experience, such as his or her perception of us-

age versus specification.

In addition, write down detailed instructions for user tests, to ensure

that each user starts with the same information, presented in the same

way. Otherwise, you risk coloring some of the tests if some users receive

different instructions.

Test User Selection

A complete usability testing protocol usually involves multiple tests from

the same users, as well as tests from multiple users. Why multiple tests

from the same users? One area we want to test is user recall, that is, how

much of what a user learns about software operation is retained from ses-

sion to session. Any new system presented to users for the first time will

require some time to learn, but if the design for a particular application is

consistent with the industry or technology with which the target user com-

munity is familiar, the learning process should be fairly quick.

A user already familiar with computer-based engineering design, for

example, would expect any new software in this same industry to follow

certain conventions of terminology, menu design, and perhaps even color,

shading, and font usage. Certainly, a developer may stray from these con-

ventions purposefully to achieve perceived operational improvements, but

if the design goes too far afield from industry standards and expectations,

the software will take longer for new users to learn; in fact, user acceptance

may be so slow as to cause the application to be a commercial failure. If the

application is developed for a single client, such differences may result in

the client rejecting the design or requiring a complete user interface re-

design. Either result is a costly developer mistake.

Therefore, software targeted for a specific end-user type or industry

should be tested by what could be described as expert users, people al-

ready familiar with this class of application in a real-world environment.

In contrast, software with a more general target market—mobile device

software, for example, or general-purpose Web pages—might better be

tested by users selected randomly. (Such test user selection sometimes is

referred to as hallway testing or hallway intercept testing, meaning that us-

ers chosen for software testing are selected at random from folk passing by

in the hallway.)

Usability (User) Testing 147

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 148

How Many Users Do You Need?

When designing a usability test plan, the question ‘‘How many testers do I

need?’’ will come to the forefront. Hiring usability testers is often overlooked

in the development process, and can add an unexpected and expensive cost

to the project. You need to find the right number of testers who can identify

the most errors for the least amount of capital investment.

Intuitively, you may think that the more testers you use the better. After

all, if you have enough evaluators testing your product, then all the errors

should be found. First, as mentioned, this is expensive. Second, it can be-

come a logistics nightmare. Finally, it is unlikely that you can ever detect

100 percent of your application’s usability problems.

Fortunately, significant research on usability has been conducted during

the last 15 years. Based on the work of Jakob Nielsen, a usability testing

expert, you may need fewer testers than you think. Nielsen’s research

found that the number of usability problems found in testing is:

E ¼ 100� ð1� ð1� LÞ^nÞ

where: E¼ percent of errors found

n¼ number of testers

L¼ percent of usability problems found by a tester

Using the equation with L ¼ 31 percent, a reasonable value Nielsen also

gleaned from his research, produces the graph shown in Figure 7.1.

Examining the graph reveals a few interesting points. First, as we intui-

tively know, it will never be possible to detect all of the usability errors in

the application. It’s not theoretically possible, because the curve only con-

verges on 100 percent; it never actually reaches it. Second, you only need a

small number of testers. The graph shows that approximately 83 percent of

the errors are detected by only 5 testers.

From a project manager’s point of view, this is refreshing news. No lon-

ger do you need to incur the cost and complexity of working with a large

group of testers to check your application. Instead, you can focus on de-

signing, executing, and analyzing your tests—putting your effort and

money into what will make the most difference.

Also with fewer testers, you have less analysis to do, so you can quickly

implement changes to the application and the testing methodology; then

148 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C
07

08/29/2011
14:50:12

P
age

149

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Users

%
 o

f E
rr

or
s

F
ou

nd

FIGURE 7.1 Percent Errors Found Versus Number of Users.

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 150

test again with a new group of testers. In this iterative fashion you can

ensure that you catch most problems at minimal cost and time.

Nielsen’s research was conducted in the early 1990s while he was a sys-

tems analyst at Sun Microsystems. On the one hand, his data and approach

to usability testing provides concrete guidance to those of us involved in

software design. On the other hand, since usability testing has become

more important and commonplace, and more evidence has been gathered

from practical testing and better formulaic analysis, some researchers have

come to question Nielsen’s firm statements that three to five users should

be enough.

Nielsen himself cautions that the precise number of testers depends on

economic considerations (how many testers will your budget support) and

on the type of system you are testing. Critical systems such as navigation

applications, banking or other financial software, or security related pro-

grams will, per force, require closer user scrutiny than less-critical software.

Among the considerations important to developers who are designing a

usability testing program are whether the number of users and their indi-

vidual orientations represent sufficiently the total population of potential

users. In addition, as Nielsen notes, some programs are more complex

than others, meaning that detecting a significantly large percentage of

errors will be more difficult. And, since different users, because of their

backgrounds and experiences, are likely to detect different types of errors,

an individual testing situation may dictate a larger number of testers.

As with any testing methodology, it is up to the developers and project

administrators to design the tests, present a reasonable budget, evaluate

interim results, and conduct regressive tests as appropriate to the software

system, the overall project, and the client.

Data-Gathering Methods

Test administrators or observers can gather test results in several ways.

Videotaping a user test and using a think-aloud protocol can provide excel-

lent data on software usability and user perceptions about the application.

A think-aloud protocol involves users speaking aloud their thoughts and

observations while they are performing the assigned software testing tasks.

Using this process, the test participants describe out loud their task, what

they are thinking about the task, and/or whatever else comes to their mind

as they move through the testing scenario. Even when using think-aloud

150 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 151

protocol testing, developers may want to follow up with participants after

the test to get posttest comments, feelings, and observations. Taken to-

gether, these two levels of user thoughts and comments can provide valu-

able feedback to developers for software corrections or improvements.

A disadvantage to the think-aloud process, where videotaping or ob-

servers are involved, is the possibility that the user experience will be

clouded or modified by the unnatural user environment. Developers also

may wish to conduct remote user testing, whereby the application is in-

stalled at the testing user’s business where the software may ultimately be

applied. Remote testing has the advantage of placing the user in a familiar

environment, one in which the final application likely would be used, thus

removing the potential for external influences modifying test results. Of

course, the disadvantage is that developers may not receive feedback as

detailed as would be possible with a think-aloud protocol.

Nevertheless, in a remote testing environment, accurate user data still

can be gathered. Additional software can be installed with the application

to be tested to gather user keystrokes and to capture time required for the

user to complete each assigned task. This requires additional development

time (and more software), but the results of such tests can be enlightening

and very detailed.

In the absence of timing or keystroke capture software, testing users can

be tasked with writing down the start and end times of each assigned task,

along with brief one-word or short-phrase comments during the process.

Posttest questionnaires or interviews can help users recall their thoughts

and opinions about the software.

A sophisticated but potentially useful data-gathering protocol is eye

tracking. When we read a printed page, view a graphical presentation, or

interact with a computer screen, our eyes move over the scanned material

in particular patterns. Research data gathered on eye movement over more

than 100 years shows that eye movement—particularly how long an ob-

server pauses on certain visual elements—reflects at least to some degree

the thought processes of the observer. Tracking this eye movement, which

can be done with video systems and other technologies, shows researchers

which visual elements attract the observers attention, in what order, and

for how long. Such data is potentially useful in determining the efficiency

of software screens presented to users.

Despite extensive research during the last half of the twentieth century,

however, some controversy remains over the ultimate value of eye

Usability (User) Testing 151

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 152

movement research in specific applications. Still, coupled with other user

testing techniques, where developers need the deepest possible user input

data to ensure the highest level of software efficiency (weapons guidance

systems, robotic control systems, vehicle controls or other system that re-

quire fast and accurate responses), eye tracking can be a useful tool.

Usability Questionnaire

As with the software testing procedure itself, a usability questionnaire

should be carefully planned to return the information required from the

associated test procedure. Although you may want to include some ques-

tions that elicit free-form comments from the user, in general you want to

develop questionnaires that generate responses that can be counted and

analyzed across the spectrum of testers. These fall into three general types:

� Yes/no answers

� True/false answers

� Agree/disagree on a scale

For example, instead of asking ‘‘What is your opinion of the main menu

system,’’ you might ask a series of questions that require an answer from

1 to 5, where 5 is totally agree and 1 is totally disagree:

1. The main menu was easy to navigate.

2. It was easy to find the proper software operation from the main

menu.

3. The screen design led me quickly to the correct software operational

choices.

4. Once I had operated the system, it was easy to remember how to re-

peat my actions.

5. The menu operations did not provide enough feedback to verify my

choices.

6. The main menu was more difficult to navigate than other similar pro-

grams I use.

7. I had difficulty repeating previously accomplished operations.

Notice that it may be good practice to ask the same question more

than once, but present it from the opposite perspective so that one elicits

152 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 153

a negative response and the other a positive one. Such practice can

ensure that the user understood the question and that perceptions re-

main constant. In addition, you want to separate the user questionnaire

into sections that correspond to software areas tested or to the testing

tasks assigned.

Experience will teach you quickly which types of questions are condu-

cive to data analysis and which ones aren’t very useful. Statistical analysis

software is available to help capture and interpret data. With a small num-

ber of testing users, the usability test results may be obvious; or you might

develop an ad hoc analysis routine within a spreadsheet application to bet-

ter document results. For large software systems that undergo extensive

testing with a large user base, statistical software may help uncover trends

that aren’t obvious with manual interpretation methods.

When Is Enough, Enough?

How do you plan usability testing so that all aspects of the software are

reasonably tested while staying within an acceptable budget? The answer

to that question, of course, depends in part on the complexity of the sys-

tem or unit being tested. If budget and time allow, it is advisable to test

software in stages, as each segment is completed. If individual components

have been tested throughout the development process, then the final series

of tests need only test the integrated operation of the parts.

Additionally, you may design component tests, which are intended to test

the usability of an interactive component, something that requires user in-

put and that responds to this input in a user-perceivable way. This kind of

feedback testing can help improve the user experience, reduce operational

errors, and improve software consistency. Again, if you have tested a soft-

ware system at this level as the user interface was being designed, you will

have collected a significant body of important testing and operational

knowledge before total system testing begins.

How many individual users should test your software? Again, system

complexity and initial test results should dictate the number of individual

testers. For example, if three or five (or some reasonable number) of users

have difficulty navigating from the opening screen to screens that support

the assigned tasks, and if these users are sufficiently representative of the

target market, then you likely have enough information to tell you that the

user interface needs more design work.

Usability (User) Testing 153

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 154

A reasonable corollary to this might be that if none of the initial testers

have a problem navigating through their assigned tasks, and none uncover

any mistakes or malfunctions, then perhaps the testing pool is too small.

After all, is it reasonable to assume that usability tests of a reasonably com-

plex software system will uncover no errors or required changes? Recall

principle 6, from Table 2.1: Examining a program to see if it does not do

what it is supposed to do is only half the battle; the other half is seeing whether

the program does what it is not supposed to do. There’s a subtle difference in

this comparison. You might find that a series of users determine that a pro-

gram does, in fact, seem to do what it is supposed to do. They find no

errors or problems in working through the software. But have they also

proven that the program isn’t doing anything it is not supposed to do? If

things appear to be running too smoothly during initial testing, it probably

is time for more tests.

We don’t believe there is a formula that tells you how many tests each

user should conduct, or how many iterations of each test should be re-

quired. We do believe, however, that careful analysis and understanding of

the results you gather from some reasonable number of testers and tests

can guide you to the answer of when enough testing is enough.

Summary
Modern software, coupled with the pressure of intense competition and

tight deadlines, make user testing of any software product crucial to suc-

cessful development. It stands to reason that the targeted software user can

be a valuable asset during testing. The knowledgeable user can determine

whether the product meets the goal of its design, and by conducting real-

world tasks can find errors of commission and omission.

Depending on the software target market, developers also may benefit

from selecting random users—persons who are not familiar with the pro-

gram’s specification, or perhaps even the industry or market for which it is

intended—who can uncover errors or user interface problems. For the

same reason that the developers don’t make good error testers, expert users

may avoid operational areas that might produce problems because they

know how the software is supposed to work. Over many years of software

development we have discovered one unavoidable testing truth: The soft-

ware the developer has tested for many hours can be broken easily, and in a

154 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 155

short time, by an unsophisticated user who attempts a task for which the

user interface or the software was not designed.

Remember, too, that a key to successful user (or usability) testing is ac-

curate and detailed data gathering and analysis. The data-gathering pro-

cess actually begins with the development of detailed user instructions

and a task list. It ends by compiling results from user observation or post-

test questionnaires.

Finally, the testing results must be interpreted, and then developers

must effect software changes identified from the data. This may be an itera-

tive process wherein the same testing users are asked to complete similar

tasks after identified software changes have been completed.

Usability (User) Testing 155

www.it-ebooks.info

http://www.it-ebooks.info/

C07 08/29/2011 14:50:12 Page 156

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:14 Page 157

8 Debugging

In brief, debugging is what you do after you have executed a successful

test case. Remember that a successful test case is one that shows that a

program does not do what it was designed to do. Debugging is a two-step

process that begins when you find an error as a result of a successful test

case. Step 1 is the determination of the exact nature and location of the

suspected error within the program. Step 2 consists of fixing the error.

As necessary and integral as debugging is to program testing, it seems to

be the one aspect of the software production process that programmers

enjoy the least, for these reasons primarily:

� Your ego may get in the way. Like it or not, debugging confirms that

programmers are not perfect; they commit errors in either the design

or the coding of the program.

� You may run out of steam. Of all the software development activities,

debugging is the most mentally taxing activity. Moreover, debugging

usually is performed under a tremendous amount of organizational or

self-induced pressure to fix the problem as quickly as possible.

� You may lose your way. Debugging is mentally taxing because the

error you’ve found could occur in virtually any statement within the

program. Without examining the program first, you can’t be abso-

lutely sure, for example, that the origin of a numerical error in a pay-

check produced by a payroll program is not a subroutine that asks the

operator to load a particular form into the printer. Contrast this with

157

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:14 Page 158

the debugging of a physical system, such as an automobile. If a car

stalls when moving up an incline (the symptom), you can immedi-

ately and validly eliminate as the cause of the problem certain parts

of the system—the AM/FM radio, for example, or the speedometer or

the trunk lock. The problem must be in the engine; and, based on

our overall knowledge of automotive engines, we can even rule out

certain engine components such as the water pump and the oil filter.

� You may be on your own. Compared to other software development

activities, comparatively little research, literature, and formal instruc-

tion exist on the process of debugging.

Although this is a book about software testing, not debugging, the two

processes are obviously related. Of the two aspects of debugging, locating

the error and correcting it, locating the error represents perhaps 95 percent

of the problem. Hence, this chapter concentrates on the process of finding

the location of an error, given that a successful test case has found one.

Debugging by Brute Force
The most common scheme for debugging a program is the so-called brute-

force method. It is popular because it requires little thought and is the least

mentally taxing of the methods; unfortunately, it is inefficient and gener-

ally unsuccessful.

Brute-force methods can be partitioned into at least three categories:

� Debugging with a storage dump.

� Debugging according to the common suggestion to ‘‘scatter print

statements throughout your program.’’

� Debugging with automated debugging tools.

The first, debugging with a storage dump (usually a crude display of all

storage locations in hexadecimal or octal format) is the most inefficient of

the brute-force methods. Here’s why:

� It is difficult to establish a correspondence between memory locations

and the variables in a source program.

� With any program of reasonable complexity, such a memory dump

will produce a massive amount of data, most of which is irrelevant.

158 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:14 Page 159

� A memory dump is a static picture of the program, showing the state

of the program at only one instant in time; to find errors, you have to

study the dynamics of a program (state changes over time).

� A memory dump is rarely produced at the exact point of the error, so

it doesn’t show the program’s state at the point of the error. Program

actions between the time of the dump and the time of the error can

mask the clues you need to find the error.

� Adequate methodologies don’t exist for finding errors by analyzing

a memory dump (so many programmers stare, with glazed eyes,

wistfully expecting the error to expose itself magically from the

program dump).

Scattering statements throughout a failing program to display variable

values isn’t much better. It may be better than a memory dump because

it shows the dynamics of a program and lets you examine information

that is easier to relate to the source program, but this method, too, has

many shortcomings:

� Rather than encouraging you to think about the problem, it is largely

a hit-or-miss method.

� It produces a massive amount of data to be analyzed.

� It requires you to change the program; such changes can mask the

error, alter critical timing relationships, or introduce new errors.

� It may work on small programs, but the cost of using it in large

programs is quite high. Furthermore, it often is not even feasible on

certain types of programs such as operating systems or process

control programs.

Automated debugging tools work similarly to inserting print statements

within the program, but rather than making changes to the program, you

analyze the dynamics of the program with the debugging features of the

programming language or special interactive debugging tools. Typical lan-

guage features that might be used are facilities that produce printed traces

of statement executions, subroutine calls, and/or alterations of specified

variables. A common capability and function of debugging tools is to set

breakpoints that cause the program to be suspended when a particular

statement is executed or when a particular variable is altered, enabling the

programmer to examine the current state of the program. This method,

Debugging 159

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:14 Page 160

too, is largely hit or miss, however, and often results in an excessive

amount of irrelevant data.

The general problem with these brute-force methods is that they ignore

the process of thinking. You can draw an analogy between program debug-

ging and solving a homicide. In virtually all murder mystery novels, the

crime is solved by careful analysis of the clues and by piecing together

seemingly insignificant details. This is not a brute-force method; setting

up roadblocks or conducting property searches would be.

There also is some evidence to indicate that whether the debugging

teams are composed of experienced programmers or students, people who

use their brains rather than a set of aids work faster and more accurately in

finding program errors. Therefore, we could recommend brute-force

methods only: (1) when all other methods fail, or (2) as a supplement to,

not a substitute for, the thought processes we’ll describe next.

Debugging by Induction
It should be obvious that careful thought will find most errors without the

debugger even going near the computer. One particular thought process is

induction, where you move from the particulars of a situation to the whole.

That is, start with the clues (the symptoms of the error and possibly the

results of one or more test cases) and look for relationships among the

clues. The induction process is illustrated in Figure 8.1.

FIGURE 8.1 The Inductive Debugging Process.

160 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:14 Page 161

The steps are as follows:

1. Locate the pertinent data. A major mistake debuggers make is failing

to take account of all available data or symptoms about the problem.

Therefore, the first step is the enumeration of all you know about

what the program did correctly and what it did incorrectly—the

symptoms that led you to believe there was an error. Additional

valuable clues are provided by similar, but different, test cases that

do not cause the symptoms to appear.

2. Organize the data. Remember that induction implies that you’re

processing from the particulars to the general, so the second step is

to structure the pertinent data to let you observe the patterns. Of

particular importance is the search for contradictions, events such as

the error occurs only when the customer has no outstanding balance

in his or her margin account.

You can use a form such as the one shown in Figure 8.2 to struc-

ture the available data. In the ‘‘what’’ boxes list the general symptoms;

in the ‘‘where’’ boxes describe where the symptoms were observed; in

the ‘‘when’’ boxes list anything you know about the times when the

symptoms occurred; and in the ‘‘to what extent’’ boxes describe the

scope and magnitude of the symptoms. Notice the ‘‘is’’ and ‘‘is not’’

FIGURE 8.2 A Method for Structuring the Clues.

Debugging 161

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 162

columns: In them describe the contradictions that may eventually

lead to a hypothesis about the error.

3. Devise a hypothesis. Next, study the relationships among the clues, and

devise, using the patterns that might be visible in the structure of the

clues, one or more hypotheses about the cause of the error. If you can’t

devise a theory, more data are needed, perhaps from new test cases. If

multiple theories seem possible, select the more probable one first.

4. Prove the hypothesis. A major mistake at this point, given the pres-

sures under which debugging usually is performed, is to skip this

step and jump to conclusions to fix the problem. Resist this urge, for

it is vital to prove the reasonableness of the hypothesis before you

proceed. If you skip this step, you’ll probably succeed in correcting

only the problem symptom, not the problem itself. Prove the hypoth-

esis by comparing it to the original clues or data, making sure that

this hypothesis completely explains the existence of the clues. If it

does not, the hypothesis is invalid, the hypothesis is incomplete, or

multiple errors are present.

5. Fix the problem. You can proceed with fixing the problem once you

complete the previous steps. By taking the time to fully work through

each step, you can feel confident that your fix will correct the bug.

Remember though, that you still need to perform some type of re-

gression testing to ensure your bug fix didn’t create problems in other

program areas. As the application grows larger, so does the likelihood

that your fix will cause problems elsewhere.

As a simple example, assume that an apparent error has been reported

in the examination grading program described in Chapter 4. The apparent

error is that the median grade seems incorrect in some, but not all,

instances. In a particular test case, 51 students were graded. The mean

score was correctly printed as 73.2, but the median printed was 26 instead

of the expected value of 82. By examining the results of this test case and a

few other test cases, the clues are organized as shown in Figure 8.3.

The next step is to derive a hypothesis about the error by looking for

patterns and contradictions. One contradiction we see is that the error

seems to occur only in test cases that use an odd number of students. This

might be a coincidence, but it seems significant, since you compute a

median differently for sets of odd and even numbers. There’s another

strange pattern: In some test cases, the calculated median always is less

162 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 163

than or equal to the number of students (26 � 51 and 1 � 1). One possible

avenue at this point is to run the 51-student test case again, giving the stu-

dents different grades from before to see how this affects the median calcu-

lation. If we do so, the median is still 26, so the ‘‘to what extent! is not’’

box could be filled in with, ‘‘The median seems to be independent of the

actual grades.’’ Although this result provides a valuable clue, we might

have been able to surmise the error without it. From available data, the

calculated median appears to equal half of the number of students,

rounded up to the next integer. In other words, if you think of the grades

as being stored in a sorted table, the program is printing the entry number

of the middle student rather than his or her grade. Hence, we have a firm

hypothesis about the precise nature of the error. Next, we prove the

hypothesis by examining the code or by running a few extra test cases.

Debugging by Deduction
The process of deduction proceeds from some general theories or premises,

using the processes of elimination and refinement, to arrive at a conclusion

(the location of the error), as shown in Figure 8.4.

As opposed to the process of induction in a murder case, for example,

where you induce a suspect from the clues, using deduction, you start

with a set of suspects and, by the process of elimination (the gardener has

FIGURE 8.3 An Example of Clue Structuring.

Debugging 163

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 164

a valid alibi) and refinement (it must be someone with red hair), decide

that the butler must have done it. The steps are as follows:

1. Enumerate the possible causes or hypotheses. The first step is to de-

velop a list of all conceivable causes of the error. They don’t have to

be complete explanations; they are merely theories to help you struc-

ture and analyze the available data.

2. Use the data to eliminate possible causes. Carefully examine all of

the data, particularly by looking for contradictions (you could use

Figure 8.2 here), and try to eliminate all but one of the possible causes.

If all are eliminated, you need more data gained from additional test

cases to devise new theories. If more than one possible cause remains,

select the most probable cause—the prime hypothesis—first.

3. Refine the remaining hypothesis. The possible cause at this point might

be correct, but it is unlikely to be specific enough to pinpoint the

error. Hence, the next step is to use the available clues to refine the

theory. For example, you might start with the idea that ‘‘there is an

error in handling the last transaction in the file’’ and refine it to ‘‘the

last transaction in the buffer is overlaid with the end-of-file indicator.’’

4. Prove the remaining hypothesis. This vital step is identical to step 4 in

the induction method.

5. Fix the error. Again this step is identical to step 5 in the induction

method. To re-emphasize though, you should thoroughly test your

fix to ensure it does not create problems elsewhere in the application.

As an example, assume that we are commencing the function testing

of the DISPLAY command discussed in Chapter 4. Of the 38 test cases

FIGURE 8.4 The Deductive Debugging Process.

164 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 165

identified by the process of cause-effect graphing, we start by running

four test cases. As part of the process of establishing input conditions,

we will initialize memory that the first, fifth, ninth, . . . , words have the

value 000; the second, sixth, . . . , words have the value 4444;

the third, seventh, . . . , words have the value 8888; and the fourth,

eighth, . . . , words have the value CCCC. That is, each memory word is

initialized to the low-order hexadecimal digit in the address of the first

byte of the word (the values of locations 23FC, 23FD, 23FE, and 23FF

are C).

The test cases, their expected output, and the actual output after the test

are shown in Figure 8.5.

Obviously, we have some problems, since apparently none of the test

cases produced the expected results (all were successful). But let’s start by

debugging the error associated with the first test case. The command indi-

cates that, starting at location 0 (the default), E locations (14 in decimal)

are to be displayed. (Recall that the specification stated that all output will

contain four words, or 16 bytes per line.)

Enumerating the possible causes for the unexpected error message, we

might get:

1. The program does not accept the word DISPLAY.

2. The program does not accept the period.

3. The program does not allow a default as a first operand; it expects a

storage address to precede the period.

4. The program does not allow an E as a valid byte count.

FIGURE 8.5 Test Case Results from the DISPLAY Command.

Debugging 165

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 166

The next step is to try to eliminate the causes. If all are eliminated, we

must retreat and expand the list. If more than one remain, we might want

to examine additional test cases to arrive at a single error hypothesis, or

proceed with the most probable cause. Since we have other test cases at

hand, we see that the second test case in Figure 8.5 seems to eliminate the

first hypothesis; and the third test case, although it produced an incorrect

result, seems to eliminate the second and third hypotheses.

The next step is to refine the fourth hypothesis. It seems specific

enough, but intuition might tell us that there is more to it than meets the

eye—it sounds like an instance of a more general error. We might contend,

then, that the program does not recognize the special hexadecimal charac-

ters A–F. This absence of such characters in the other test cases makes this

sound like a viable explanation.

Rather than jumping to a conclusion, however, we should first consider

all of the available information. The fourth test case might represent a

totally different error, or it might provide a clue about the current error.

Given that the highest valid address in our system is 7FFF, how could the

fourth test case display an area that appears to be nonexistent? The fact

that the displayed values are our initialized values, and not garbage, might

lead to the supposition that this command is somehow displaying some-

thing in the range 0–7FFF. One idea that may arise is that this could occur

if the program were treating the operands in the command as decimal val-

ues rather than hexadecimal, as stated in the specification. This is borne

out by the third test case: Rather than displaying 32 bytes of memory, the

next increment above 11 in hexadecimal (17 in base 10), it displays 16

bytes of memory, which is consistent with our hypothesis that the 11 is

being treated as a base-10 value. Hence, the refined hypothesis is that the

program is treating the byte count as storage address operands, and the

storage addresses on the output listing as decimal values.

The last step is to prove this hypothesis. Looking at the fourth test case,

if 8000 is interpreted as a decimal number, the corresponding base-16

value is 1F40, which would lead to the output shown. As further proof,

examine the second test case. The output is incorrect, but if 21 and 29 are

treated as decimal numbers, the locations of storage addresses 15–1D

would be displayed; this is consistent with the erroneous result of the test

case. Hence, we have almost certainly located the error: The program is

assuming that the operands are decimal values and is printing the memory

addresses as decimal values, which is inconsistent with the specification.

166 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 167

Moreover, this error seems to be the cause of the erroneous results of all

four test cases. A little thought has led to the error, and it also solved three

other problems that, at first glance, appear to be unrelated.

Note that the error probably manifests itself at two locations in the pro-

gram: the part that interprets the input command and the part that prints

memory addresses on the output listing.

As an aside, this error, likely caused by a misunderstanding of the speci-

fication, reinforces the suggestion that a programmer should not attempt

to test his or her own program. If the programmer who created this error

is also designing the test cases, he or she likely will make the same mistake

while writing the test cases. In other words, the programmer’s expected

outputs would not be those of Figure 8.5; they would be the outputs calcu-

lated under the assumption that the operands are decimal values. There-

fore, this fundamental error probably would go unnoticed.

Debugging by Backtracking
An effective method for locating errors in small programs is to backtrack

the incorrect results through the logic of the program until you find

the point where the logic went astray. In other words, start at the point

where the program gives the incorrect result—such as where incorrect

data were printed. Here, you deduce from the observed output what the

values of the program’s variables must have been. By performing a mental

reverse execution of the program from this point and repeatedly applying

the if-then logic that states ‘‘if this was the state of the program at this

point, then this must have been the state of the program up here,’’ you can

quickly pinpoint the error. You’re looking for the location in the program

between the point where the state of the program was what it was expected

to be and the first point where the state of the program was not what it was

expected to be.

Debugging by Testing
The last ‘‘thinking type’’ debugging method is the use of test cases. This

probably sounds a bit peculiar since, at the beginning of this chapter, we

distinguished debugging from testing. However, consider two types of test

cases: test cases for testing, whose purpose is to expose a previously

undetected error, and test cases for debugging, whose purpose is to provide

Debugging 167

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 168

information useful in locating a suspected error. The difference between

the two is that test cases for testing tend to be ‘‘fat,’’ in that you are trying

to cover many conditions in a small number of test cases. Test cases for

debugging, on the other hand, are ‘‘slim,’’ because you want to cover only a

single condition or a few conditions in each test case.

In other words, after you have discovered a symptom of a suspected

error, you write variants of the original test case to attempt to pinpoint the

error. Actually, this is not an entirely separate method; it often is used in

conjunction with the induction method to obtain information needed to

generate a hypothesis and/or to prove a hypothesis. It also is used with

the deduction method to eliminate suspected causes, refine the remaining

hypothesis, and/or prove a hypothesis.

Debugging Principles
In this section, we want to discuss a set of debugging principles that are

psychological in nature. As with the testing principles in Chapter 2, many

of these debugging principles are intuitively obvious, yet they are often

forgotten or overlooked.

Since debugging is a two-part process—locating an error and then

repairing it—we discuss two sets of principles here.

Error-Locating Principles

Think As implied in the previous section, debugging is a problem-solving

process. The most effective method of debugging involves a mental

analysis of the information associated with the error’s symptoms. An

efficient program debugger should be able to pinpoint most errors without

going near a computer. Here’s how:

1. Position yourself in a quiet place, where outside stimuli—voices of

coworkers, telephones, radio or other potential interruptions—won’t

interfere with your concentration.

2. Without looking at the program code, review in your mind how the

program is designed, how the software should be performing within

the area that is performing incorrectly.

3. Concentrate on the process for correct performance, and then

imagine ways in which the code may be incorrectly designed.

168 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 169

This sort of prethinking the physical debugging process will, in many

cases, lead you directly to the area of the program that is causing problems

and help you achieve a fix, quickly.

If You Reach an Impasse, Sleep on It The human subconscious is a

potent problem solver. What we often refer to as inspiration is simply the

subconscious mind working on a problem when the conscious mind is

focused on something else, such as eating, walking, or watching a movie.

If you cannot locate an error in a reasonable amount of time (perhaps

30 minutes for a small program, several hours for a larger one), drop it

and turn your attention to something else, since your thinking efficiency is

about to collapse anyway. After putting aside the problem for a while, your

subconscious mind will have solved the problem, or your conscious mind

will be clear for a fresh examination of its symptoms.

We have used this technique regularly over the years, both as a develop-

ment process as well as a debugging process. It may take some practice to

accept this extraordinary functioning of the human brain, and make effi-

cient use of it, but it does work. We have actually awakened in the night to

realize we have solved a software problem while asleep. For this reason,

we recommend that you keep by your bedside a small tape recorder, a

telephone capable of voice recording, a PDA, or a notepad to capture the

solution you found while sleeping. Resist the temptation to return to sleep

believing you will be able to regenerate the solution in the morning. You

probably won’t—at least not in our experience.

If You Reach an Impasse, Describe the Problem to Someone Else

Talking about the problem with someone else may help you discover

something new. In fact, often, simply by describing the problem to a

good listener, you will suddenly see the solution without any assistance

from the person.

Use Debugging Tools Only as a Second Resort Turn to debugging tools

only after you’ve tried other methods, and then only as an adjunct to, not a

substitute for, thinking. As noted earlier in this chapter, debugging tools,

such as dumps and traces, represent a haphazard approach to debugging.

Experiments show that people who shun such tools, even when they are

debugging programs that are unfamiliar to them, are more successful than

people who use the tools.

Debugging 169

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 170

Why should this be so? Depending on a tool to solve a problem can

short-circuit the diagnostic process. If you believe that the tool can solve

the problem, you are likely to be less attentive to the clues you already

have picked up, information that could help you solve the problem di-

rectly, without the help of a generic diagnostic tool.

Avoid Experimentation—Use It Only as a Last Resort The most com-

mon mistake novice debuggers make is to try to solve a problem by mak-

ing experimental changes to the program. You might think, ‘‘I know what

is wrong, so I’ll change this DO statement and see what happens.’’ This

totally haphazard approach cannot even be considered debugging; it

represents an act of blind hope. Not only does it have a minuscule chance

of success, but you will often compound the problem by adding new errors

to the program.

Error-Repairing Techniques

Where There Is One Bug, There Is Likely to Be Another This is a

restatement of principle 9 in Chapter 2, which states that when you

find an error in a section of a program, the probability of the existence

of another error in that same section is higher than if you hadn’t al-

ready found one error. In other words, errors tend to cluster. When

repairing an error, examine its immediate vicinity for anything else

that looks suspicious.

Fix the Error, Not Just a Symptom of It Another common failing is re-

pairing the symptoms of the error, or just one instance of the error, rather

than the error itself. If the proposed correction does not match all the clues

about the error, you may be fixing only a part of the error.

The Probability of the Fix Being Correct Is Not 100 Percent Tell this to

someone in general conversation and of course he or she would agree; but

tell it to someone in the process of correcting an error and you may get a

different answer—‘‘Yes, in most cases, but this correction is so minor that it

just has to work.’’ Never assume that code added to a program to fix an

error is correct. Statement for statement, corrections are much more error

prone than the original code in the program. One implication is that error

corrections must be tested, perhaps more rigorously than the original

170 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:15 Page 171

program. A solid regression testing plan can help ensure that correcting an

error does not introduce another error somewhere else in the application.

The Probability of the Fix Being Correct Drops as the Size of the Pro-

gram Increases Stating it differently, in our experience, the ratio of

errors caused by incorrect fixes, versus original errors, increases in large

programs. In one widely used large program, one of every six new errors

discovered is an error in a prior correction to the program.

If you accept this as fact, how can you avoid causing problems by trying

to fix them? Read the first three techniques in this section, for starters. One

error found does not mean all errors have been found, and you must be

sure you are correcting the actual error, not just its symptom.

Beware of the Possibility That an Error Correction Creates a New

Error Not only do you have to worry about incorrect corrections, you

also have to worry about a seemingly valid correction having an un-

desirable side effect, thus introducing a new error. Not only is there a prob-

ability that a fix will be invalid, but there also is a probability that a fix will

introduce a new error. One implication is that not only do you have to test

the error situation after the correction is made, but you must also perform

regression testing to determine whether a new error has been introduced.

The Process of Error Repair Should Put You Temporarily Back into the

Design Phase Realize that error correction is a form of program design.

Given the error-prone nature of corrections, common sense says that what-

ever procedures, methodologies, and formalism were used in the design

process should also apply to the error-correction process. For instance, if

the project rationalized that code inspections were desirable, then it must

be doubly important that they be implemented after correcting an error.

Change the Source Code, Not the Object Code When debugging large

systems, particularly those written in an assembly language, occasionally

there is the tendency to correct an error by making an immediate change

to the object code, with the intention of changing the source program later.

Two problems are associated with this approach: (1) It usually is a sign that

‘‘debugging by experimentation’’ is being practiced; and (2) the object code

and source program are now out of synchronization, meaning that

the error could easily resurface when the program is recompiled or

Debugging 171

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:16 Page 172

reassembled. This practice is an indication of a sloppy, unprofessional ap-

proach to debugging.

Error Analysis
The last point to realize about program debugging is that in addition to its

value in removing an error from the program, it can have another valuable

effect: It can tell us something about the nature of software errors, some-

thing we still know too little about. Information about the nature of

software errors can provide valuable feedback in terms of improving future

design, coding, and testing processes.

Every programmer and programming organization could improve im-

mensely by performing a detailed analysis of the detected errors, or at least

a subset of them. Admittedly, it is a difficult and time-consuming task, for

it implies much more than a superficial grouping such as ‘‘x percent of

the errors are logic design errors,’’ or ‘‘x percent of the errors occur in IF

statements.’’ A careful analysis might include the following studies:

� Where was the error made? This question is the most difficult one to

answer, because it requires a backward search through the documen-

tation and history of the project; at the same time, it also is the most

valuable question. It requires that you pinpoint the original source

and time of the error. For example, the original source of the error

might be an ambiguous statement in a specification, a correction to a

prior error, or a misunderstanding of an end-user requirement.

� Who made the error? Wouldn’t it be useful to discover that 60 percent

of the design errors were created by one of the 10 analysts, or that

programmer X makes three times as many mistakes as the other pro-

grammers? (Not for the purposes of punishment but for the purposes

of education.)

� What was done incorrectly? It is not sufficient to determine when and

by whom each error was made; the missing link is a determination of

exactly why the error occurred. Was it caused by someone’s inability

to write clearly? Someone’s lack of education in the programming lan-

guage? A typing mistake? An invalid assumption? A failure to con-

sider valid input?

� How could the error have been prevented?What can be done differently

in the next project to prevent this type of error? The answer to this

172 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:16 Page 173

question constitutes much of the valuable feedback or learning for

which we are searching.

� Why wasn’t the error detected earlier? If the error was detected during

a test phase, you should study why the error was not unearthed

during earlier testing phases, code inspections, and design reviews.

� How could the error have been detected earlier? The answer to this

offers another piece of valuable feedback. How can the review and

testing processes be improved to find this type of error earlier in fu-

ture projects? Providing that we are not analyzing an error found by

an end user (that is, the error was found by a test case), we should

realize that something valuable has happened: We have written a suc-

cessful test case. Why was this test case successful? Can we learn

something from it that will result in additional successful test cases,

either for this program or for future programs?

We repeat, this analysis process is difficult, and costly, but the answers

you may discover by going through it can be invaluable in improving

subsequent programming efforts. The quality of future products will

increase while the capital investment will decrease. It is alarming that the

vast majority of programmers and programming organizations do not

employ it.

Summary
The main focus of this book is on software testing: How do you go about

uncovering as many software errors as possible? Therefore, we don’t want

to spend too much time on the next step—debugging—but the simple fact

is, errors found by successful test cases lead directly to it.

In this chapter we touched on some of the more important aspects of

software debugging. The least desirable method, debugging by brute force,

involves such techniques as dumping memory locations, placing print

statements throughout the program, or using automated tools. Brute-force

techniques may point you to the solution for some errors uncovered dur-

ing testing, but they are not an efficient way to go about debugging.

We demonstrated that you can begin debugging by studying the error

symptoms, or clues, and moving from them to the larger picture (inductive

debugging). Another technique begins the debugging process by consider-

ing general theories, then, through the process of elimination, identifies

Debugging 173

www.it-ebooks.info

http://www.it-ebooks.info/

C08 08/17/2011 1:8:16 Page 174

the error locations (deductive debugging). We also covered program

backtracking—starting with the error and moving backwards through the

program to determine where incorrect information originated. Finally, we

discussed debugging by testing.

If, however, we were to offer a single directive to those tasked with

debugging a software system, we would say, ‘‘Think!’’ Review the numer-

ous debugging principles described in this chapter. We believe they can

lead you in the right direction, toward accurate and efficient debugging.

But the bottom line is, depend on your expertise and knowledge of the

program itself. Open your mind to creative solutions, review what you

know, and let your knowledge and subconscious lead you to the error

locations.

In the next chapter we take on the subject of extreme testing, tech-

niques well suited to help uncover errors in extreme programming envi-

ronments such as agile development.

174 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:53 Page 175

9 Testing in the Agile
Environment

Increased competition and interconnectedness in all markets have forced

businesses to shorten their time-to-market while continuing to provide

high-quality products to their customers. This is particularly true in the soft-

ware development industry where the Internet makes possible near-instant

delivery of software applications and services. Whether creating a product

for the masses or for the human resources department, one fact remains im-

mutable: The twenty-first century customer demands a quality application

delivered almost immediately. Unfortunately, traditional software develop-

ment processes cannot keep up in this competitive environment.

In the early 2000s, a group of developers met to discuss the state of light-

weight and rapid development methodologies. At the gathering they com-

pared notes to identify what successful software projects look like; what

made some projects succeed while others limped along. In the end, they

created the ‘‘Manifesto for Agile Software Development,’’ a document that

became the cornerstone of the Agile movement. Less a discrete methodol-

ogy, the Agile Manifesto (Figure 9.1) is a unique philosophy that focuses on

customers and employees, in lieu of rigid approaches and hierarchies.

Features of Agile Development
Agile development promotes iterative and incremental development, with

significant testing, that is customer-centric and welcomes change during

the process. All attributes of traditional software development approaches

175

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 176

neglect or minimize the importance of the customer. Although Agile meth-

odologies incorporate flexibility into their processes, the main emphasis is

on customer satisfaction. The customer is a key component of the process;

simply put, without customer involvement, the Agile method fails. And

knowing their interaction is welcomed helps customers build satisfaction

and confidence in the end product and development team. If the customer

is not committed, then more traditional processes may be a better develop-

ment choice.

Ironically, Agile development has no single development methodology

or process; many rapid development approaches may be considered Agile.

These approaches do, however, share three common threads: They rely on

customer involvement, mandate significant testing, and have short, itera-

tive development cycles. It is beyond the scope of this book to cover each

methodology in detail, but in Table 9.1 we identify the methodologies con-

sidered Agile and give a brief description of each. (We urge you to learn

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

Kent Beck Mike Beedle Arie van Bennekum

Alistair Cockburn Ward Cunningham Martin Fowler

James Grenning Jim Highsmith Andrew Hunt

Ron Jeffries Jon Kern Brian Marick

Robert C. Martin Steve Mellor Ken Schwaber

Jeff Sutherland Dave Thomas

2001, the above authors
this declaration may be freely copied in any form,

but only in its entirety through this notice.

FIGURE 9.1 Manifesto of Agile Software Development.

176 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 177

more about them because they represent the essence of the Agile philoso-

phy.) In addition, we cover Extreme Programming, one of the more popu-

lar Agile methodologies, in greater detail later in this chapter, and offer a

practical example.

TABLE 9.1 Agile Development Methodologies

Methodology Description

Agile Modeling Not so much a single modeling methodology, but a

collection of principles and practices for modeling and

documenting software systems. Used to support

other methods such as Extreme Programming

and Scrum.

Agile Unified Process Simplified version of the Rational Unified Process

(RUP) tailored for Agile development.

Dynamic Systems

Development Method

Based on rapid application development approaches,

this methodology relies on continuous customer

involvement and uses an iterative and incremental

approach, with the goal of delivering software on time

and within budget.

Essential Unified Process

(EssUP)

An adaptation of RUP in which you choose the

practices, (e.g. use cases or team programming) that

fit your project. RUP generally uses all practices,

whether needed or not.

Extreme Programming Another iterative and incremental approach that relies

heavily on unit and acceptance testing. Probably the

best known of the Agile methodologies.

Feature Driven

Development

A methodology that uses industry best practices, such

as regular builds, domain object modeling, and

feature teams, that are driven by the customer’s

feature set.

Open Unified Process An Agile approach to implementing standard Unified

practices that allows a software team to rapidly

develop their product.

Scrum An iterative and incremental project management

approach that supports many Agile methodologies.

Velocity Tracking Applies to all Agile development methodologies. It

attempts to measure the rate, or ‘‘velocity,’’ at which

the development process is moving.

Testing in the Agile Environment 177

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 178

It’s worth noting that some Agile methodologies are collections, or

adaptations, of traditional software development processes. The Essential

Unified Process (EssUP) is an example. EssUP takes processes from the

Rational Unified Process (RUP) and other well-known software develop-

ment process models that support the Agile development philosophy.

Make no mistake, adopting an Agile development methodology is chal-

lenging. It takes the right combination of developers, managers, and cus-

tomers to make it work. But in the end, the product will benefit from

constant testing and heavy customer involvement.

Agile Testing
In essence, Agile testing is a form of collaborative testing, in that everyone

is involved in the process through design, implementation, and execution

of the test plan. Customers are involved in defining acceptance tests by

defining use cases and program attributes. Developers collaborate with

testers to build test harnesses that can test functionality automatically.

Agile testing requires that everyone be engaged in the test process, which

requires a lot of communication and collaboration.

As with most aspects of Agile development, Agile testing necessitates

engaging the customer as early as possible and throughout the develop-

ment cycle. For example, once developers produce a stable code base,

customers should begin acceptance testing and provide feedback to the

development team. It also means that testing is not a phase; rather, it is

integrated with development efforts to compel continuous progress.

To ensure that the customer receives a stable product with which to per-

form acceptance testing, developers generally begin by writing unit tests

first, then move to coding software units. The unit tests are failure tests, in

that developers design them to cause their software to fail some require-

ment. Paradoxically, developers must write failing software to, in effect,

test the test. Once test harnesses are in place, developers proceed to write

software that passes the unit tests.

To facilitate the timely feedback needed for rapid development, Agile

testing relies on automated testing. Development cycles are short, so time

is valuable, and automated testing is more reliable than manual testing

approaches. Not only is manual testing time-consuming, it may itself intro-

duce bugs. Numerous open-source and commercial testing suites exist. It

really does not matter which of these available testing suites is used, only

178 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 179

that developers and testers use one. Although some problems may require

exploratory manual testing, automated testing is preferred.

Agile development environments often comprise only small teams of

developers, who also act as testers. Larger projects with more resources

may include an individual tester or a testing group. In either case, testers

should not be considered finger-pointers. Their job is to move the project

forward by providing feedback about the quality of the software so that

developers can implement bug fixes and make requirement changes and

general improvements.

Agile testing fits well into the Extreme Programming methodology

whereby developers create unit tests first, then the software. In the remain-

der of this chapter we cover Extreme Programming and Extreme Testing in

more detail.

Extreme Programming and Testing
In the 1990s an innovative software development methodology termed

Extreme Programming (XP) was born. A project manager named Kent

Beck is credited with conceiving this lightweight, Agile development pro-

cess, first testing it while working on a project at Daimler-Chrysler in

1996. Although several other Agile software development processes have

since been created, XP is still the most popular. In fact, numerous open-

source tools exist to support it, which is testimony to XP’s popularity

among developers and project managers.

XP likely was developed to support the adoption of programming

languages such as Java, Visual Basic, and C#.

These object-based languages allow developers to create large, complex

applications much more quickly than with traditional languages such as C,

Fortran, or COBOL. Developing with these languages often requires build-

ing general-purpose libraries to support the application’s coding efforts.

Methods for common tasks such as printing, sorting, networking, and sta-

tistical analysis are not standard components. Languages such as C# and

Java ship with full-featured application programming interfaces (APIs)

that eliminate or reduce the need for creating custom libraries.

However, along with the benefits of rapid application development lan-

guages came liabilities. Although developers were creating applications

much more quickly, their quality was not guaranteed. If an application

compiled, it often failed to meet the customer’s specifications or

Testing in the Agile Environment 179

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 180

expectations. The XP development methodology facilitates the creation of

quality programs in short time frames. Although classical software pro-

cesses still work, they often take too much time, which equates to lost in-

come in the highly competitive arena of software development.

Besides customer involvement, the XP model relies heavily on unit and

acceptance testing. In general, developers run unit tests for every incre-

mental code change, no matter how small, to ensure that the code base still

meets its specification. In fact, testing is of such importance in XP that the

process requires you to create the unit (module) and acceptance tests first,

then your code base. This form of testing is called, appropriately, Extreme

Testing (XT).

Extreme Programming Basics

As mentioned, XP is a software process that helps developers create high-

quality code, rapidly. Here, we define ‘‘quality’’ as a code base that meets

the design specification and customer expectation.

XP focuses on:

� Implementing simple designs.

� Communicating between developers and customers.

� Continually testing the code base.

� Refactoring, to accommodate specification changes.

� Seeking customer feedback.

XP tends to work well for small to medium-size development efforts in

environments that have frequent specification changes, and where near-

instant communication is possible.

XP differs from traditional development processes in several ways. First,

it avoids the large-scale project syndrome in which the customer and the

programming team meet to design every detail of the application before

coding begins. Project managers know this approach has its drawbacks,

not the least of which is that customer specifications and requirements

constantly change to reflect new business rules or marketplace conditions.

For example, the finance department may want payroll reports sorted by

processed date instead of check numbers; or the marketing department

may determine that consumers will not buy product XYZ if it doesn’t

send an e-mail after website registration. In contrast, XP planning sessions

180 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 181

focus on collecting general application requirements, not narrowing in on

every detail.

Another difference with the XP methodology is that it avoids coding un-

needed functionality. If your customer thinks the feature is needed but not

required, it generally is left out of the release. Thus, you can focus on the

task at hand, adding value to a software product. Concentrating only on

the required functionality helps you produce quality software in short

time frames.

But the primary difference of XP compared to traditional methodologies

is its approach to testing. After an all-inclusive design phase, traditional

software development models suggest you code first and create testing

interfaces later. In XP, you must create the unit tests first, and then write

the code to pass the tests. You design unit tests in an XP environment by

following the concepts discussed in Chapter 5.

The XP development model has 12 core practices that drive the process,

summarized in Table 9.2. In a nutshell, you can group the 12 core XP prac-

tices into four concepts:

1. Listening to the customer and other programmers.

2. Collaborating with the customer to develop the application’s specifi-

cation and test cases.

3. Coding with a programming partner.

4. Testing, and retesting, the code base.

Most of the comments for each practice listed in Table 9.2 are self-

explanatory. However, a couple of the more important principles, namely

planning and testing, warrant further discussion.

XP Planning A successful planning phase lays the foundation of the XP

process. The planning phase in XP differs from that in traditional develop-

ment models, which often combine requirements gathering and application

design. Planning in XP focuses on identifying your customer’s application

requirements and designing user stories (or case stories) that meet them.

You gain significant insight into the application’s purpose and requirements

by creating user stories. In addition, the customer employs the user stories

when performing acceptance tests at the end of a release cycle. Finally, an

intangible benefit of the planning phase is that the customer gains owner-

ship and confidence in the application by participating intimately in it.

Testing in the Agile Environment 181

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 182

TABLE 9.2 The 12 Practices of Extreme Programming

Practice Comment

1. Planning and

requirements

Marketing and business development personnel work

together to identify the maximum business value of

each software feature.

Each major software feature is written as a user story.

Programmers provide time estimates to complete each

user story.

The customer chooses the software features based on

time estimates and business value.

2. Small, incremental

releases

Strive to add small, tangible, value-added features and

release a new code base often.

3. System metaphors Your programming team identifies an organizing

metaphor to help with naming conventions and

program flow.

4. Simple designs Implement the simplest design that allows your code to

pass its unit tests. Assume change will come, so don’t

spend a lot of time designing; just implement.

5. Continuous testing Write unit tests before writing the code module. Each

unit is not complete until it passes its unit test. Further,

the program is not complete until it passes all unit tests,

and acceptance tests are complete.

6. Refactoring Clean up and streamline your code base. Unit tests help

ensure that you do not destroy the functionality in the

process. You must rerun all unit tests after any

refactoring.

7. Pair programming You and another programmer work together, at the

same machine, to create the code base. This allows for

real-time code review, which dramatically facilitates bug

detection and resolution.

8. Collective

ownership of the

code

All code is owned by all programmers.

No single programmer is dedicated to a specific code

base.

9. Continuous

integration

Every day, integrate all changes; after the code passes

the unit tests, add it back into the code base.

10. Forty-hour

workweek

No overtime is allowed. If you work with dedication for

40 hours per week, overtime will not be needed. The

exception is the week before a major release.

182 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 183

XP Testing Continuous testing is central to the success of a XP-based

effort. Although acceptance testing falls under this principle, unit testing

occupies the bulk of the effort. Unit tests are devised to make the software

fail. Only by ensuring that your tests detect errors can you begin correcting

the code so it passes the tests. Assuring that your unit tests catch failures is

key to the testing process—and to a developer’s confidence. At this point,

the developer can experiment with different implementations, knowing

that the unit tests will catch any mistakes.

You want to ensure that any code changes improve the application and

do not introduce bugs. The continuous testing principle also supports

refactoring efforts used to optimize and streamline the code base. Constant

testing also leads to that intangible benefit already mentioned: confidence.

The programming team gains confidence in the code base because you

constantly validate it with unit tests. In addition, your customers’ confi-

dence in their investment soars because they know the code base passes

unit tests every day.

Example XP Project Flow Now that we’ve presented the 12 practices of

the XP process, you may be wondering, how does a typical XP project

flow? Here is a quick example of what you might experience if you worked

on an XP-based project:

1. Programmers meet with the customer to determine the product re-

quirements and build user stories.

2. Programmers meet without the customer to divide the require-

ments into independent tasks and estimate the time to complete

each task.

Table 9.2 (continued)

Practice Comment

11. On-site customer

presence

You and your programming team have unlimited access

to the customer, to enable you to resolve questions

quickly and decisively, which keeps the development

process from stalling.

12. Coding standards All code should look the same. Developing a system

metaphor helps meet this principle.

Testing in the Agile Environment 183

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 184

3. Programmers present the customer with the task list and with time

estimates, and ask them to generate a priority list of features.

4. The programming team assigns tasks to pairs of programmers, based

on their skill sets.

5. Each pair creates unit tests for their programming task using the

application’s specification.

6. Each pair works on their task with the goal of creating a code base

that passes the unit tests.

7. Each pair fixes, then retests their code until all unit tests have passed.

8. All pairs gather every day to integrate their code bases.

9. The team releases a preproduction version of the application.

10. Customers run acceptance tests and either approve the application or

produce a report identifying the bugs/deficiencies.

11. Upon successful acceptance tests, programmers release a version into

production.

12. Programmers update time estimates based on latest experience.

Although compelling, XP is not for every project or every organization.

Proponents of XP conclude that if a programming team fully implements

the 12 practices, then the chances of successful application development in-

crease dramatically. Detractors say that because XP is a process, you must do

all or nothing; if you skip a practice, then you are not properly implement-

ing XP, and your program quality may suffer. Detractors also claim that the

cost of changing a program in the future to add more features is higher than

the cost of initially anticipating and coding the requirement. Finally, some

programmers find working in pairs very cumbersome and invasive; there-

fore, they do not embrace the XP philosophy.

Whatever your views, we recommend that you consider XP as a soft-

ware methodology for your project. Carefully weigh its pros and cons

against the attributes of your project and make the best decision based on

that assessment.

Extreme Testing: The Concepts

To meet the pace and philosophy of XP, developers use Extreme Testing,

which focuses on constant testing. As mentioned earlier, two forms of test-

ing make up the bulk of XT: unit testing and acceptance testing. The the-

ory used when writing the tests does not vary significantly from the theory

presented in Chapter 5; however, the stage in the development process in

184 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 185

which you create the tests does differ. XT mandates creating tests before

coding begins, not after. Nonetheless, XT and traditional testing share the

same goal: to identify errors in a program.

In the rest of this section we provide more information on unit and ac-

ceptance testing, from an Extreme Programming perspective.

Extreme Unit Testing Unit testing, the primary testing approach used in

Extreme Testing, and has two simple rules: All code modules must have

unit tests before coding begins, and all code modules must pass unit tests

before being released into acceptance testing. At first glance this may not

seem so extreme. Closer inspection reveals the big difference between unit

testing, as previously described, and XTunit testing: The unit tests must be

defined and created before coding the module.

Initially, you may wonder why you should, or how you can, create test

drivers for code you haven’t yet written. You may also think that you do

not have time to create the tests and still meet the project deadline. These

are valid concerns, but concerns we can address easily by listing a number

of important benefits associated with writing unit tests before you start

coding the application:

� You gain confidence that your code will meet its specification and

requirements.

� You express the end result before you start coding.

� You better understand the application’s specification and requirements.

� You may implement simple designs initially and confidently refactor

the code later to improve performance, without worrying about

breaking the specification.

Of these benefits, the insight and understanding you gain of the applica-

tion’s specification and requirements cannot be underestimated. For exam-

ple, if you start coding first, you may not fully understand the acceptable

data types and boundaries for the input values of an application. How can

you write a unit test to perform boundary analysis without understanding

the acceptable inputs? Can the application accept only numbers, only

characters, or both? If you create the unit tests first, you must understand

the specification. The practice of creating unit tests first is the shining star

in the XP methodology, as it forces you to understand the specification to

resolve ambiguities before you begin coding.

Testing in the Agile Environment 185

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 186

As mentioned in Chapter 5, you determine the unit’s scope. Given that

today’s popular programming languages such as Java, C#, and Visual Basic

are mostly object-oriented, modules are often classes, or even individual

class methods. You may sometimes define a module as a group of classes

or methods that represent some functionality. Only you, as the program-

mer, know the architecture of the application and how best to build the

unit tests for it.

Manually running unit tests, even for the smallest application, can be a

daunting task. As the application grows, you may generate hundreds or

thousands of unit tests. Therefore, you typically use an automated software

testing suite to ease the burden of running these unit tests. With these

suites you script the tests and then run all or part of them. In addition,

testing suites typically allow you to generate reports and classify the bugs

that frequently occur in your application. This information may help you

proactively eliminate bugs in the future.

Interestingly enough, once you create and validate your unit tests, the

‘‘testing’’ code base becomes as valuable as the software application you are

trying to create. As a result, you should keep the tests in a code repository,

for protection. Likewise, you should institute adequate backups of the test

code, and ensure that needed security is in place.

Extreme Acceptance Testing Acceptance testing represents the second,

and equally important, type of XT that occurs in the XP methodology. Ac-

ceptance testing determines whether the application meets other require-

ments, such as functionality and usability. You and the customer create the

acceptance tests during the design/planning phases.

Unlike the other forms of testing discussed thus far, customers, not

you or your programming partners, conduct the acceptance tests. In this

manner, customers provide the unbiased verification that the applica-

tion meets their needs. Customers create the acceptance tests from user sto-

ries. The ratio of user stories to acceptance tests is usually one too many;

that is, more than one acceptance test may be needed for each user story.

Acceptance tests in XT may or may not be automated. For example, an

unautomated test is required when the customer must validate that a user

input screen meets its specification with respect to color and screen layout.

An example of an automated test is when the application must calculate

payroll values using data input via some data source such as a flat file to

simulate production values.

186 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:54 Page 187

Through acceptance tests, the customer validates an expected result

from the application. A deviation from the expected result is considered a

bug and is reported to the development team. If the customer discovers

several bugs, then he or she must prioritize them before passing the list to

your development group. After you correct the bugs, or after any change,

the customer reruns the acceptance tests. In this manner, the acceptance

tests also become a form of regression testing.

An important note is that a program may pass all unit tests but fail the

acceptance tests. How is this possible? Because a unit test validates

whether a program unit meets some specification, such as calculating pay-

roll deductions, correctly, not some defined functionality or aesthetics. For

a commercial application, the look and feel is a very important compo-

nent. Understanding the specification, but not the functionality, generally

results in this scenario.

Extreme Testing Applied

In this section we create a small Java application and employ JUnit, a Java-

based open-source unit testing suite, to illustrate the concepts of Extreme

Testing (see Figure 9.2). The example itself is trivial; the concepts, how-

ever, apply to most programming situations.

Our example is a command-line application that simply determines

whether an input value is a prime number. For brevity, the source code,

JUnit is a freely available open-source tool used to automate unit tests of Java appli-

cations in Extreme Programming environments. The creators, Kent Beck and Erich

Gamma, developed JUnit to support the significant unit testing that occurs in the

Extreme Programming environment. JUnit is very small, but very flexible and feature

rich. You can create individual tests or a suite of tests. You can automatically gener-

ate reports detailing the errors.

Before using JUnit, or any testing suite, you must fully under- stand how to use it.

JUnit is powerful but only after you master its API. However, whether or not you

adopt an XP methodology, JUnit is a useful tool to provide sanity checks for your

own code.

Visit www.junit.org for more information and to download the test suite. In addition,

there is a wealth of information on XP and XT at this website.

FIGURE 9.2 JUnit Description and Background.

Testing in the Agile Environment 187

www.it-ebooks.info

http://www.junit.org
http://www.it-ebooks.info/

C09 08/26/2011 12:10:55 Page 188

check4Prime.java, and its test harness, check4PrimeTest.java, are

listed in Appendix. In this section we provide snippets from the applica-

tion to illustrate the main points.

The specification of this program is as follows:

Develop a command-line application that accepts any positive inte-

ger, n, where 0<¼n<¼1,000, and determine whether it is a prime

number. If n is a prime number, then the application should return a

message stating it is a prime number. If n is not a prime number, then

the application should return a message stating it is not a prime num-

ber. If n is not a valid input, then the application should display a

help message.

Following the XP methodology and the principles listed in Chapter 5,

we begin the application by designing unit tests. With this application, we

can identify two discrete tasks: validating inputs and determining prime

numbers. We could use black-box and white-box testing approaches,

boundary value analysis, and the decision coverage criterion, respectively.

However, the XT practice mandates a hands-off black-box approach, to

eliminate any bias.

Test-Case Design We begin designing test cases by identifying a testing

approach. In this instance, we will use boundary analysis to validate the

inputs because this application can only accept positive integers within a

certain range. All other input values, including character datatypes and

negative numbers, should raise an error and not be used. Of course, you

could certainly make the case that input validation could fall under the

decision coverage criterion, as the application must decide whether the in-

put is valid. The important concept is to identify, and commit to, a testing

approach when designing your tests.

With the testing approach identified, the next step is to develop a list of

test cases based on possible inputs and expected outcome. Table 9.3 shows

the eight test cases we identified for this example. (Note: As stated, we are

using a very simple example here to illustrate the basics of Extreme Test-

ing. In practice, you would have a much more detailed program specifica-

tion, which might include items such as user interface requirements and

output verbiage. As a result, the list of test cases would increase

substantially.)

188 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:55 Page 189

Test case 1 from Table 9.3 combines two test scenarios. It checks

whether the input is a valid prime and how the application behaves with a

valid input value. You may use any valid prime in this test.

We also test two scenarios with test case 2: What happens when the in-

put value is equal to the upper bounds and when the input is not a prime

number? This case could have been broken out into two unit tests, but one

goal of software testing in general is to minimize the number of test cases

while still adequately checking for error conditions.

Test case 3 checks the lower boundary of valid inputs, as well as testing

for invalid primes. The second part of the check is not needed because test

case 2 handles this scenario. However, it is included by default because 0 is

not a prime number. Test cases 4 and 5 ensure that the inputs are within

the defined range, which is greater than or equal to 0 and less than or equal

to 1,000.

Case 6 tests whether the application properly handles character input

values. Because we are doing a calculation, it is obvious that the

TABLE 9.3 Test Case Descriptions for check4Prime.java

Case

Number Input

Expected

Output Comments

1 n ¼ 3 Affirm n is a

prime number.

Tests for a valid prime number.

Tests input within boundaries.

2 n ¼ 1,000 Affirm n is not a

prime number.

Tests input equal to upper bounds.

Tests whether n is an invalid

prime.

3 n ¼ 0 Affirm n is not a

prime number.

Tests input equal to lower bounds.

4 n ¼ - 1 Print help

message.

Tests input below lower bounds.

5 n ¼ 1,001 Print help

message.

Tests input greater than the upper

bounds.

6 n ¼ ‘‘a’’ Print help

message.

Tests input is an integer and not a

character datatype.

7 Two or more

inputs

Print help

message.

Tests for correct number of input

values.

8 n is empty

(blank)

Print help

message.

Tests whether an input value is

supplied.

Testing in the Agile Environment 189

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:55 Page 190

application should reject character datatypes. The assumption with this

test case is that Java will handle the datatype check. This application

must handle the exception raised when an invalid datatype is supplied.

This test will ensure that the exception is thrown. Last, tests 7 and 8

check for the correct number of input values; any number of inputs other

than 1 should fail.

Test Driver and Application Now that we have designed both test cases,

we can create the test driver class, check4PrimeTest. Table 9.4 maps the

JUnit methods in check4PrimeTest to the test cases covered.

Note that the testCheckPrime_false() method tests two conditions,

because the boundary values are not prime numbers. Therefore, we can

check for boundary value errors and for invalid primes with one test

method. Examining this method in detail reveals that the two tests actually

do occur within it. Here is the complete JUnit method from the

check4JavaTest class listed in the Appendix.

public void testCheckPrime_false(){
assertFalse(check4prime.primeCheck(0));
assertFalse(check4prime.primeCheck(10000));

}

Notice that the JUnit method, assertFalse(), checks to see whether

the parameter supplied causes the method to return a false Boolean value.

If false is returned, the test is considered a success.

The snippet also demonstrates one of the benefits of creating test cases

and test harnesses first. You may notice that the parameter in the

TABLE 9.4 Test Driver Methods

Methods

Test Case(s)

Examined

testCheckPrime_true() 1

testCheckPrime_false() 2, 3

testCheck4Prime_checkArgs_char_input() 6

testCheck4Prime_checkArgs_above_upper_bound() 5

testCheck4Prime_checkArgs_neg_input() 4

testCheck4Prime_checkArgs_2_inputs() 7

testCheck4Prime_checkArgs_0_inputs() 8

190 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:55 Page 191

assertFalse() method is another method, check4prime.

primeCheck(n). This method will reside in a class of the application.

Creating the test harness first forced us to think about the structure of the

application. In some respects, the application is designed to support the

test harness. Here we need a method to check whether the input is a prime

number, so we included it in the application.

With the test harness complete, application coding can begin. Based on

the program specification, test cases, and the test harness, the resultant

Java application will consist of a single class, check4Prime, with the fol-

lowing definition:

public class check4Prime {
public static void main (String [] args)
public void checkArgs(String [] args) throws
Exception

public boolean primeCheck (int num)
}

Briefly, per Java requirements, the main() procedure provides the entry

point into the application. The checkArgs() method asserts that the input

value is a positive integer, n, where 0<¼n<¼1,000. The primeCheck()

procedure checks the input value against a calculated list of prime num-

bers. We implemented the sieve of Eratosthenes to quickly calculate the

prime numbers. This approach is acceptable because of the small number

of prime numbers involved.

Summary
With the heightened competitiveness of software development today, there

is a growing need to introduce products very quickly into the marketplace.

The Agile development process, when strictly adopted, provides a way for

developers to create quality software for their customers at a faster rate

than using traditional software development models. The end result is a

satisfied customer, whether an internal or commercial consumer.

The Extreme Programming model is one of more popular Agile method-

ologies. This lightweight development process focuses on communication,

planning, and testing. The testing aspect of Extreme Programming, termed

Extreme Testing, focuses on unit and acceptance tests. You run unit tests

during development and whenever a change to the code base occurs. The

customer runs the acceptance tests at major release points.

Testing in the Agile Environment 191

www.it-ebooks.info

http://www.it-ebooks.info/

C09 08/26/2011 12:10:55 Page 192

Extreme Testing also requires you to create the test harness, based on

the program specification, before you start coding your application. In this

manner, you design your application to pass the unit tests, thus increasing

the probability that it will meet the specification.

192 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:24 Page 193

10 Testing Internet
Applications

Just a few years ago, Internet-based applications seemed to be the wave

of the future; today, the wave has arrived onshore, and customers,

employees, and business partners expect companies to have a Web pres-

ence. This expectation is not limited only to business. Most churches, civic

groups, schools, and governments all have Internet presences to serve

their patrons.

Generally, small to medium-size businesses have simple Web pages they

use to tout their products and services. Larger enterprises often build full-

fledged e-commerce applications to sell their wares, from cookies to cars

and from consulting services to entire virtual companies that exist only on

the Internet.

Internet applications are essentially client-server applications in which

the client is a Web browser, and the server is a Web or application server.

Although conceptually simple, the complexity of these applications varies

wildly. Some companies have applications built for business-to-consumer

uses such as banking services and retail stores, while others have business-

to-business applications such as supply chain or sales force management.

Development and user presentation/user interface strategies vary for these

different types of websites, and, as you might imagine, the testing approach

varies as well.

The goal of testing Internet-based applications is no different from that

of traditional applications. You need to uncover errors in the application

before deploying it to the Internet and the end user. And, given the

193

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:24 Page 194

complexity of these applications and the interdependency of the compo-

nents, you likely will succeed in finding plenty of errors.

The importance of rooting out the errors in an Internet application

cannot be overstated. As a result of the openness and accessibility of

the Internet, competition in the business-to-consumer and business-to-

business arena is intense. Thus, the Internet has created a buyer’s

market for goods and services. Consumers have developed high

expectations, and if your site does not load quickly, respond immedi-

ately, and provide intuitive navigation features, chances are that the

user will find another company with which to conduct business. This

issue is not confined to strictly e-commerce or product promotion

sites. Websites that are developed as research or information resources

frequently are maintained by advertising or user donations. Either way,

ample competition exists to lure users away, thereby reducing activity

and concomitant revenue.

It would seem that consumers have higher-quality expectations for

Internet applications than they do for those that come shrink-wrapped.

When people buy boxed software from a store or an online retailer, as long

as the quality is ‘‘average,’’ they will continue to use them. One reason for

this behavior is that they have paid for the application, so it must be a

product they perceived as useful or desirable. And even a less-than-

satisfactory program can’t be corrected easily, so if it at least satisfies the

users’ basic needs, they likely will retain the program. In contrast, a poor,

or even average, quality application on the Internet, will likely cause your

customer to switch to a competitor’s site. Not only will the customer leave

your site if it exhibits poor quality, your corporate image will become tar-

nished as well. After all, who feels comfortable buying a car from a com-

pany that cannot build a suitable website? Like it or not, websites have

become the new first impression for business. In general, consumers don’t

pay to access most websites, so there is little incentive to remain loyal in

the face of mediocre design or performance.

This chapter covers some of the basics of testing Internet applications.

This subject is large and complex, and many references exist that explore

its details. However, you will find that the techniques explained in the

early chapters apply to Internet testing as well. Nevertheless, because there

are, indeed, functional and design differences between Web and conven-

tional applications, we want to point out some of the particulars of Web-

based application testing.

194 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:24 Page 195

Basic E-Commerce Architecture
Before diving into testing Internet-based applications, we will provide an

overview of the three-tier client-server (C/S) architecture used in a typical

Internet-based e-commerce application. Conceptually, each tier is treated

as a black box with well-defined interfaces. This model allows you to

change the internals of each tier without worrying about breaking another

tier. Figure 10.1 illustrates each tier and the associated components used

by most e-commerce sites.

Although not an official tier in the architecture, the client side and its

relevance are worth explaining. Most of the access to your applications

occurs from a Web browser running on a computer, although many de-

vices, such as cell phones, PDAs, game consoles, music players, pagers,

and even refrigerators and automobiles, increasingly are being developed

with Internet connectivity in mind. Browsers vary dramatically in how

they render content from a website. As we discuss later in this chapter,

testing for browser compatibility is one challenge associated with testing

Internet applications. Vendors loosely follow published standards to help

make browsers behave consistently, but they also build in proprietary

enhancements that cause inconsistent behavior. The remainder of the

clients employ custom applications that use the Internet as a pipeline to a

particular site. In this scenario, the application mimics a standard client-

server application you might find on a company’s local area network.

The Web server represents the first tier in the three-tier architecture

and houses the website. The look and feel of an Internet application

Clients

Internet
Firewall

Tier 1
Web

Server

Tier 2
Business

Logic

XYZ, Inc.

Tier 3
Data
Stores

Laptop computer

IBM Compatible

FIGURE 10.1 Typical Architecture of an E-Commerce Site.

Testing Internet Applications 195

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:24 Page 196

comes from the first tier. Thus, another term for this tier is the presentation

tier or layer, so dubbed because it provides the visual content to

the end user. The Web server can use static HyperText Markup Language

(HTML) pages or Common Gateway Interface (CGI) scripts to create

dynamic HTML, but most likely it uses a combination of static and

dynamic pages.

Tier 2, or the business layer, houses the application server. Here, you run

the software that models your business processes. The following lists some

of the functionality associated with the Business layer:

� Transaction processing

� User authentication

� Data validation

� Application logging

The third tier focuses on storing and retrieving data from a data source,

typically a relational database management system (RDBMS). Another

term for tier 3 is the data layer. This tier consists of a database infra-

structure to communicate with the second tier. The interface into the data

layer is defined by the data model, which describes how you want to store

data. Sometimes, several database servers make up this tier. You typically

tune database systems into this layer to handle the high transaction rates

encountered in an e-commerce site. In addition to a database server, some

e-commerce sites may place an authentication server in this layer. Most

often, you use a Lightweight Directory Application Protocol (LDAP) server

for this function.

Testing Challenges
You will face many challenges when designing and testing Internet-based

applications due to the large number of elements you cannot control and

the number of interdependent components. Adequately testing your appli-

cation requires that you make some assumptions about your customers

and how they use the site.

An Internet-based application has many failure points that you should

consider when designing a testing approach. The following list provides

some examples of the challenges associated with testing Internet-based

applications:

196 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:24 Page 197

� Large and varied user base. The users of your website possess different

skill sets, employ a variety of browsers, and use different operating

systems or devices. You can also expect your customers to access

your website using a wide range of connection speeds. Ten years

ago not everyone had broadband Internet access. Today, most do.

However, you still need to consider bandwidth as Internet content

becomes ‘‘richer’’ and more interactive.

� Business environment. If you operate an e-commerce site, then you

must consider issues such as calculating taxes, determining shipping

costs, completing financial transactions, and tracking customer pro-

files. These requirements may necessitate a number of external links

to third-party servers or databases to manage these billing and ship-

ping tasks, for example. The developer must thoroughly understand

the structure of the remote system, and work closely with its owners

and developers to ensure security and accuracy.

� Locales. Users may reside in other countries, in which case you will

have internationalization issues such as language translation, time

zone differences, and currency conversion.

� Security. Because your site is open to the world, you must protect it

from hackers. They can bring your website to a grinding halt with

denial-of-service (DoS) attacks, or rip off your customers’ credit

card information.

� Testing environments. To properly test your application, you will need

to duplicate the production environment. This means you should use

Web servers, application servers, and database servers that are identi-

cal to the production equipment. For the most accurate testing

results, the network infrastructure will have to be duplicated as well,

which includes routers, switches, and firewalls.

Even from this list, which could be expanded considerably by including

viewpoints from a wide variety of developers and businesses, you can see

that configuring a testing environment is one of the most challenging

aspects of e-commerce development. Testing applications that process

financial transactions requires the most effort and expense. You must repli-

cate all the components, both hardware and software, used for the applica-

tion to produce valid test results. Configuring such an environment is a

costly endeavor. You will incur not only equipment costs, but labor costs

as well. Most companies fail to factor in these expenses when creating a

Testing Internet Applications 197

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:24 Page 198

budget for their applications, and those that do generally underestimate

the time and monetary requirements. In addition, the testing environment

needs a maintenance plan to support application upgrade efforts.

Another significant testing challenge you face is testing browser

compatibility. There are several different browsers on the market today,

and each behaves differently. Although standards exist for browser op-

eration, most vendors enhance their products in an effort to attract a

loyal user base. Unfortunately, this causes the browsers to operate in a

nonstandard way. We cover this topic in greater detail later in this

chapter.

As noted, you will face many challenges when testing Internet-based

applications; therefore, the best way to proceed is to narrow your testing

efforts to specific areas. Table 10.1 identifies some of the most important

areas to test, to help ensure that users have a positive experience on your

website.

TABLE 10.1 Examples of Presentation, Business, and Data Tier

Testing

Presentation Tier Business Tier Data Tier

Ensure fonts are the

same across browsers.

Verify proper calculation of

sales tax and shipping

charges.

Ensure database

operations meet

performance goals.Confirm that all links

point to valid files or

websites.

Ensure documented

performance rates are met

for response times and

throughput rates.

Verify that data are

stored correctly and

accurately.Verify that graphics are

the correct resolution

and size. Verify that transactions

complete properly.

Verify that you can

recover using current

backups.Spell-check each page.

Confirm that failed

transactions roll back

correctly.

Test failover or

redundancy operations.
Have a copy editor check

grammar and style.

Ensure data are collected

correctly.

Test for proper data

encryption and security

(credit card and user’s

personal information, in

particular).

Check cursor positioning

when page loads to

ensure it is in the correct

text box.

198 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:24 Page 199

Because the first impression is the most important impression, some of

your testing will focus on usability and human-factor concerns. This area

concentrates on the look and feel of your application. Items such as fonts,

colors, and graphics play a major role in whether users accept or reject

your application. Keep in mind, the developer has little or no control over

who will access a given application, how much computer knowledge they

have, whether or not they are motivated to stay with an application in the

face of navigation issues, or what users might ultimately expect in terms of

information or performance.

System performance greatly influences a customer’s first impression. As

mentioned earlier, Internet users want instant gratification. They will not

wait long for pages to load or transactions to complete. Literally, a few sec-

onds’ delay can cause a customer to try another site. Poor performance

may also lead customers to doubt the reliability of your site. Therefore,

you should set performance goals then design tests that reveal problems

that cause your site to miss the goals.

Users also demand that their transactions complete rapidly and accu-

rately when purchasing products or services from your site. They do not,

and should not, tolerate inaccurate billings or shipping errors. Probably

worse than losing a customer is finding yourself liable for more than

the transaction amount if your application does not process financial

transactions correctly.

Your application likely will collect data to complete tasks such as pur-

chases or e-mail registrations. Therefore, you should ensure that the data

you collect are valid. For example, make sure that phone numbers, ID

Table 10.1 (continued)

Presentation Tier Business Tier Data Tier

Test backend data entry

and management

routines for usability and

accuracy.

Confirm that default

button is selected when

the page loads.

Check for consistent and

user-friendly feedback on

interactive operations.

Check for business- or

industry-specific terms

and style.

Testing Internet Applications 199

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 200

numbers, currencies, e-mail addresses, and credit card numbers are the

correct length and are properly formatted. In addition, verify the integrity

of your data. Localization issues can easily cause data corruption via trun-

cation due to character-set issues.

In the Internet environment, it is critical to keep the website available

for customer use. This requires that you develop and implement mainte-

nance guidelines for all the supporting applications and servers. A Web

server and RDBMS require a high level of management. You must monitor

logs, system resources, and backups, and respond to any anomalies imme-

diately. As described in Chapter 6, you want to maximize the mean time

between failures (MTBF) and minimize the mean time to recovery

(MTTR) for these systems.

Finally, network connectivity is another area where it is important to

focus your testing efforts. At some point, you can count on losing network

connectivity. The source of the failure might be the Internet itself, your

service provider, or your internal network. Therefore, you need to create

contingency plans for your application and infrastructure so your systems

respond gracefully when an outage occurs. Keeping with the theme of test-

ing, design your tests to break your contingency plans.

Testing Strategies
Developing a testing strategy for Internet-based applications requires a

solid understanding of the hardware and software components that make

up the application. As is critical to successful testing of standard applica-

tions, you will need a specification document to describe the expected

functionality and performance of your website. Without this document,

you will not be able to design the appropriate tests.

You need to test components developed internally and those pur-

chased from a third party. For the components developed in-house

you should employ the tactics presented in earlier chapters. This in-

cludes creating unit/module tests and performing code reviews. Inte-

grate the components into your system only after verifying that they

meet the design specifications and functionality outlined in the speci-

fication document.

If you purchase components, then you need to develop a series of

system tests to validate that they perform correctly, independently of your

application. Do not rely on the vendor’s quality-control program to detect

200 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 201

errors in its components. Ideally, you should complete this task indepen-

dently of your application testing. Integrate these components only once

you have determined that they perform acceptably. Including a non-

functional third-party component in your architecture makes it difficult to

interpret test results and identify the source of errors. Generally, you will

use black-box approaches for third-party components because you rarely

will have access to the component internals.

Testing Internet-based applications is best tackled with a divide- and-

conquer approach. Fortunately, the architecture of Internet applications

allows you to identify discrete areas to target testing. Figure 10.1 presented

the basic architecture of Internet applications. Figure 10.2 provides a more

detailed view of each tier.

As mentioned earlier in this chapter, Internet applications are consid-

ered three-tier client-server applications. Each tier, or layer, from Figure

10.2 is defined as follows:

� Presentation layer. The layer of an Internet application that provides

the user interface (UI; or GUI, graphical user interface).

� Business layer. The layer that models your business processes, such as

user authentication and transactions.

� Data layer. The layer that houses data used by the application or that

is collected from the end user.

Each tier has its own characteristics that encourage test segmentation.

Testing each tier independently allows you to more easily identify bugs

Clients Internet

Credit
Card

Processing

Shipping
Companies

Bank
Account
Services

Hosted Services

Firewall

LDAP
Stores

Tier 1
Presentation

Layer

Tier 2
Business

Logic

XYZ, Inc.

Tier 3
Data Layer

Laptop computer

IBM Compatible

FIGURE 10.2 Detailed View of Internet Application Architecture.

Testing Internet Applications 201

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 202

and errors before complete system testing begins. If you rely only on

system testing, then you may have a difficult time locating the specific

components that are creating the problem.

Table 10.2 lists items that you should test in each tier. The list is not

comprehensive, but provides you with a starting point to develop your

own testing criteria. In the remainder of this chapter we provide more

details on how to test each tier.

TABLE 10.2 Items to Test in Each Tier

Test Area Comments

Usability/human

factors

Review overall look and feel.

Fonts, colors, and graphics play a major role in the application

aesthetics.

Ensure that all user input is acknowledged so that it is clear to

the user that input has been accepted.

Performance Check for fast-loading pages.

Check for quick transactions.

Poor performance often creates a bad impression.

Business rules Check for accurate representation of business process.

Consider business environment for target user groups.

Ensure that business or industry conventions of terminology

and style are followed.

Transaction

accuracy

Verify that transactions complete accurately.

Confirm that cancelled transactions roll back correctly.

Is input verification sufficiently strong to support security and

accuracy requirements?

Data validity and

integrity

Check for valid formats of phone number, e-mail addresses,

and currency amounts.

Ensure proper character sets.

System reliability Test the failover capabilities of your Web, application, and

database servers.

Maximize MTBF and minimize MTTR.

Network

architecture

Test connectivity redundancy.

Test application behavior during network outages.

202 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 203

Presentation Layer Testing

Testing the presentation layer consists of finding errors in the GUI, or front

end, of your application. This important layer serves as the ‘‘curb appeal’’

of your site, so detecting and correcting errors here are critical to present-

ing a quality, robust website. If your customers encounter errors in this

layer, they may not return. They may conclude, for example, that if your

company posts Web pages with misspelled words, it cannot be trusted to

successfully execute a credit card transaction.

In a nutshell, presentation layer testing is very labor intensive. However,

just as you can segment the testing of an Internet application into discrete

entities, you can do the same when testing the presentation layer. Here are

the three major areas of presentation layer testing:

1. Content testing. Overall aesthetics, fonts, colors, spelling, content ac-

curacy, default values.

2. Website architecture. Broken links or graphics.

3. User environment. Web browser versions and operating system

configuration.

Content testing involves checking the human-interface element of a

website. You need to search for errors in font type, screen layout, colors,

graphic resolutions, and other features that directly affect the end-user

experience. In addition, you should verify the accuracy of the information

on your website. Providing grammatically correct, but inaccurate, informa-

tion harms your company’s credibility as much as any other GUI bug.

Inaccurate information may also cause legal problems for your company.

Test the website architecture by trying to find navigational and struc-

tural errors. Search for broken links, missing pages, wrong files, or any-

thing that sends the user to the wrong area of the site. These errors can

occur very easily, especially for dynamic websites and during development

or upgrade phases. All a project team member needs to do is rename a file,

and its hyperlink becomes invalid. Similarly, if a graphic element is

renamed or moved, then a hole will exist in your Web page because

the file cannot be found. You can validate your website’s architecture by

creating a unit test that checks each page for architectural problems.

As a best practice, you should migrate architecture testing into the

Testing Internet Applications 203

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 204

regression-testing process as well. Numerous tools exist that can automate

the process of verifying links and checking for missing files.

White-box testing techniques are useful when testing website architec-

ture. Just as program units have decision points and execution paths, so do

Web pages. Users may click on links and buttons in any order, which will

navigate to another page. For large sites, there exist many combinations of

navigation events that can occur. Review Chapter 4 for more information

on white-box testing and logic coverage theory.

As mentioned earlier, testing the end-user environment—also known as

browser-compatibility testing—is often the most challenging aspect of

testing Internet-based applications. The combination of browsers and an

operating system (OS) is very large. Not only should you test each browser

configuration, but different versions of the same browser as well. Vendors

often improve some feature of their browsers with each release, which may

or may not be compatible with older versions. It is interesting (and frus-

trating) to see that even in this era of advanced Internet development and

functionality, you can still encounter Web pages that display a message

saying the site is not compatible with the Web browser you are using. It

should not be the user’s responsibility to choose the right browser to access

your site. To ensure a successful user visit, spend extra time in application

design, development, and testing with a wide variety of browsers and

operating systems.

User environment testing becomes more convoluted when your applica-

tion relies heavily on client-side script processing. Every browser has a

different scripting engine or virtual machine to run scripts and code on

the client’s computer. Pay particular attention to browser-compatibility

issues if you use any of the following:

� ActiveX controls

� JavaScript

� VBScript

� Java applets

� HTML 5

� Adobe Flash

� PHP

You can overcome most of the challenges associated with browser com-

patibility testing by generating well-defined functional requirements. For

204 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 205

example, during the requirements-gathering phase, your marketing de-

partment may decide that the application should be certified to work only

with certain browsers. On the one hand, this requirement eliminates a

significant amount of testing because you will have a well-defined

target platform to test against. On the other hand, while this might be a

cost- and time-saving decision, it may not be a smart business decision.

The days when a single (or even a few) Web browser applications domi-

nated the user community are long past. Good business practice would be

to design and test against a wide range of possible user Web browser

applications.

Business Layer Testing

Business layer testing focuses on finding errors in the business logic of

your Internet application. You will find testing this layer very similar to

that of stand-alone applications, in that you can employ both white- and

black-box techniques. You will want to create test plans and procedures

that detect errors in the application’s performance specification, data

acquisition, and transaction processing.

You should employ white-box approaches for components developed

in-house, because you have access to the program logic. For third-party

components, however, black-box testing techniques should comprise your

primary testing approach. You will start by developing test drivers to unit-

test the individual components. Next, you can perform a system test to

determine whether all the components work together correctly.

When conducting a system test for this layer, you need to mimic the

steps a user performs when purchasing a product or service. For example,

for an e-commerce site you may need to build a test driver that searches

inventory, fills a shopping cart, and checks out. Pragmatically modeling

these steps can prove challenging.

The technologies that you use to build the business logic dictate

how you build and conduct your tests. There are numerous technolo-

gies and techniques you may use to build this layer, which makes it

impossible to suggest a cookie-cutter testing method. For instance,

you might architect your solution using a dedicated application server

such as JBoss. Or you could have stand-alone CGI modules written in

C, Python, or Perl.

Testing Internet Applications 205

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 206

Regardless of your approach, there exist certain characteristics of

your application that you should always test. These areas include the

following:

� Performance. Test to see whether the application meets documented

performance specifications (generally specified in response times and

throughput rates).

� Data validity. Test to detect errors in data collected from customers.

� Transactions. Test to uncover errors in transaction processing, which

may include credit card processing, e-mailing verifications, and

calculating sales tax.

Performance Testing A poorly performing Internet application raises

doubt in your user’s mind about its robustness, and often turns the person

away. Lengthy page loads and slow transactions are typical examples. To

help achieve adequate performance levels, you need to ensure that opera-

tional specifications are written during the requirements-gathering phase.

Without written specifications or goals, you cannot know whether your

application performs acceptably. Operational specifications are often stated

in terms of response times or throughput rates. For instance, a page should

load in x seconds, or the application server will complete y credit card

transactions per minute.

A common approach you may use when evaluating performance is

stress testing. Often, performance degrades to the point of being unusable

when the system becomes overloaded with requests. This might cause

time-sensitive transactional components to fail. If you perform financial

transactions, then component failures could cause you or your customer

to lose money. The concepts on stress testing presented in Chapter 6 apply

to testing business layer performance.

As a quick review, stress testing involves blasting the application with

multiple logins, and simulating transactions to the point of failure so you

can determine whether your application meets its performance objectives.

Of course, you need to model a typical user visit for valid results. Just load-

ing the homepage does not equate to the overhead of filling a shopping cart

and processing a transaction. You must fully tax the system to uncover

processing errors.

Stress-testing the application also allows you to investigate the robust-

ness and scalability of your network infrastructure. You may think that

206 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 207

your application has bottlenecks that allow only x transactions per second.

But further investigation shows that a misconfigured router, server, or fire-

wall is throttling bandwidth. Therefore, you should ensure that your sup-

porting infrastructure components are in order before beginning stress

testing. Not doing so may lead to erroneous results.

Data Validation An important function of the business layer is to ensure

that data collected from users are valid. If your system operates with in-

valid information, such as erroneous credit card numbers or malformed

addresses, then egregious errors may occur. If you are unlucky, the

errors could have financial implications for you and your customers. You

should test for data collection errors much like you search for user-input

or parameter errors when testing stand-alone applications. Refer to

Chapter 5 for more information on designing tests of this nature.

Transactional Testing Your e-commerce site must process transactions

correctly 100 percent of the time. No exceptions. Customers will not

tolerate failed transactions. Besides a tarnished reputation and lost

customers, you may also incur legal liabilities associated with failed

transactions.

You can consider transactional testing as system testing of the business

layer. In other words, you test the business layer from start to finish, trying

to uncover errors. Once again, you should have a document specifying

exactly what constitutes a transaction. Does it include a user searching a

site and filling a shopping cart, or does it consist only of processing the

purchase?

For a typical Internet application, the transaction component is more

than completing a financial transaction (such as processing credit cards).

Typical events related to customer transactions include:

� Searching inventory.

� Collecting items the user wants to purchase.

� Presenting the user with related items that might be of interest.

� Presenting users with product or company reviews from other users.

� Soliciting and capturing product or company reviews from the

current user.

� Creating or accessing a user account.

Testing Internet Applications 207

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 208

� Purchasing items, which may involve calculating sales tax and

shipping costs, as well as processing financial transactions.

� Notifying the user of the completed transaction, usually via e-mail.

In addition to testing internal transaction processes, you must test the

external services, such as credit card validation, banking, and address veri-

fication. You typically will use third-party components and well-defined

interfaces to communicate with financial institutions when conducting

financial transactions. Don’t assume these items work correctly. You must

test and validate that you can communicate with the external services and

that you receive correct data back from them.

Data Layer Testing

Once your site is up and running, the data you collect become very valu-

able. Credit card numbers, payment information, and user profiles are

examples of the types of data you may collect while running your

e-commerce site. Losing this information could prove disastrous and crip-

pling to your business. Therefore, you should develop a set of procedures

to protect your data storage systems.

Testing the data layer consists primarily of testing the database manage-

ment system that your application uses to store and retrieve information.

Smaller sites may store data in text files or open-source databases. Larger,

more complex sites, use full-featured enterprise-level databases. Depend-

ing upon your needs, you may use both approaches.

One of the biggest challenges associated with testing this layer is

duplicating the production environment. You must use equivalent

hardware platforms and software versions to conduct valid tests. In

addition, once you obtain the resources, both financial and labor,

you must develop a methodology for keeping production and test environ-

ments synchronized.

As with the other tiers, you should search for errors in certain areas

when testing the data layer. These include the following:

� Response time. Quantifying completion times for Structured Query

Language (SQL) operations.

� Data integrity. Verifying that the data are stored correctly and

accurately.

208 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 209

� Fault tolerance and recoverability. Maximizing the MTBF and mini-

mizing the MTTR.

Response Time Testing Slow e-commerce applications cause unhappy

and untrusting customers. Thus, it is in your interest to ensure that your

website responds in a timely manner to user requests and actions. Re-

sponse time testing in this layer does not include timing page loads; rather,

it focuses on identifying database operations that do not meet performance

objectives. When testing the data-tier response time, you want to ensure

that individual database operations occur quickly so as not to bottleneck

other operations.

That said, before you can measure database operations, you must under-

stand what constitutes one. For this discussion, a database operation in-

volves inserting, deleting, updating, or querying data from the RDBMS.

Measuring the response time simply consists of determining how long

each operation takes. You are not interested in measuring transactional

times, as that may involve multiple database operations. Profiling transac-

tion speeds occurs while testing the business layer.

Because you want to isolate problem database operations, you do not

want to measure the speed of a complete transaction when testing data

layer response times. Too many factors may skew the test results if you test

the whole transaction. For example, if it takes a long time for users to re-

trieve their profiles, you need to determine where the bottleneck for that

operation resides. Is it the SQL statement, Web server, or firewall? Testing

the database operation independently allows you to identify the problem.

In this example, if the SQL statement is poorly written, it will reveal itself

when you test response time.

Data layer response-time testing is plagued with challenges. You

must have a test environment that matches what you use in produc-

tion; otherwise, you may get invalid test results. Also, you must have

a thorough understanding of your database system to make certain

that it is set up correctly and operating efficiently. You may find that a

database operation is performing poorly because the RDBMS is con-

figured incorrectly.

Generally speaking, though, you perform most response-time testing

using black-box methods. All you are interested in is the elapsed time for

database transactions. Many tools exist to help with these efforts, or you

may write your own.

Testing Internet Applications 209

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 210

Data Integrity Testing Data integrity testing is the process of finding in-

accurate data in your data stores. This test differs from data validation,

which you conduct while testing the business layer. Data validation testing

tries to find errors in data collection. Data integrity testing strives to find

errors in how you store data.

Many factors can affect how the database stores data. The datatype and

length can cause data truncation or loss of precision. For date and time

fields, time zone issues come into play. For instance, do you store time

based on the location of the client, the Web server, the application server,

or the RDBMS? Internationalization and character sets can also affect data

integrity. For example, multibyte character sets can double the amount of

storage required, plus they can cause queries to return padded data.

You should also investigate the accuracy of the reference tables used by

your application, such as sales tax, zip codes, and time zone information.

Not only must you ensure that this information is accurate, you must keep

it up to date.

Fault Tolerance and Recoverability Testing If your e-commerce site

relies on an RDBMS, then the system must stay up and running. There is

very little, if any, downtime availability in this scenario. Thus, you must

test the fault tolerance and recoverability of your database system.

One goal of database operations, in general, is to maximize MTBF and

minimize MTTR. You should find these values specified in the system

requirements documentation for your e-commerce site. Your goal when

testing the database system robustness is to try to exceed these numbers.

Maximizing MTBF depends on the fault-tolerance level of your database

system. You might have a failover architecture that allows active transac-

tions to switch to a new database when the primary system fails. In this

case, your customers might experience a short service disruption, but the

system should remain usable. Another scenario is that you build fault tol-

erance into your application so that a downed database affects the system

very little. The types of tests you run depend on the architecture.

You should consider database recovery as equally important. The objec-

tive of recoverability testing is to create a scenario in which you cannot

recover that database. At some point, your database will crash, so you

need to have procedures in place to recover it very quickly. The planning

for recovery begins in obtaining valid backups. If you cannot recover the

database during recoverability testing, then you need to modify your

210 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 211

backup plan. A fault-tolerant database system may reside in multiple loca-

tions connected over a private or shared network. This aspect of database

management must be tested as well. If the local server fails, are the remote

systems current, and can your software connect to a remote system

quickly? What happens if one or more network connections fail? What

happens if a system failure occurs while data is being written?

In general, strive to test all aspects of the system, everything required to

support all levels of activity and data integrity for which your application

is designed.

Summary
The public Internet did not exist when the first edition of this book was

written. Indeed, remotely accessed systems, and applications in general,

were infantile compared to those of today’s Internet. Users in those early

days mostly were sophisticated, computer-savvy folk who could tolerate a

fairly high level of difficulty in accessing and using remote applications.

Today, Internet users may know very little about the actual operation of

computers and computer software, yet they have a virtually infinite choice

of commercial sites from which to choose. Consequently, they have little or

no patience for a Web-based application that is unattractive, difficult to

use, or dysfunctional. Therefore, in-depth testing of any Internet applica-

tion is extremely important.

Testing software in the Internet environment presents many challenges,

particularly the large and varied user base and the need for extreme accu-

racy and security for electronic commerce applications. In general, we

want to test three main Internet application areas: presentation (or user

interface), business logic, and data management. As might be expected,

large user-base applications require extensive user testing (see Chapter 7

for more information on this process) to ensure that the software meets

design specifications and user acceptance criteria. It is important for any

software application to be attractive and easy to use, but applications for

the Internet are judged more harshly. In this environment, software suc-

cess often equates to business success, and this factor alone should drive

developers toward aggressive and thorough testing.

Testing Internet Applications 211

www.it-ebooks.info

http://www.it-ebooks.info/

C10 08/17/2011 1:19:25 Page 212

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:51 Page 213

11 Mobile Application
Testing

Computer technology changes rapidly. In a blink of an eye the com-

puter went from the desktop to the laptop and now to the handheld

mobile device. This migration has changed the way we conduct our lives,

businesses, and governments. It has also significantly affected the way soft-

ware developers and testers do their jobs.

Most software testing professionals find testing mobile applications very

challenging—more so than almost any other software types or platforms.

Actually, it’s the devices and mobile environment more than the ‘‘applica-

tion’’ that impose the challenge. These two components add many

variables and complexities that may skew or mask problems in your

application, which makes designing a robust test plan difficult. Briefly, you

need to consider network performance and reliability, consistent user

interfaces, transcoder influences, device diversity, and limited resource

platforms.

In this chapter, we introduce a relatively new area of software testing:

testing mobile and smartphone applications. We begin by describing the

mobile application environment, which differs from that of a stand-alone

application on desktops, laptops, and servers. Next, we enumerate the

challenges of testing mobile applications—some of which we touched on

earlier in this book. Finally, we cover some testing approaches and test-

case considerations to help lower your learning curve in this new territory.

After reading this chapter you should better understand the challenges and

hurdles of testing mobile application.

213

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:51 Page 214

Mobile Environment
With the widespread rollout of wireless hotspots, the line between mobile

computing and ‘‘traditional’’ wireless network-based activities has blurred.

Thus, to begin here we need to define the terms mobile device and mobile

applications, with respect to the content of this chapter. In that light, we

refer to a mobile device as one that has the capability to run network-based

applications over a cellular or satellite data link. This encompasses most

smartphones, tablets, and PDAs. That said, don’t make the mistake of iden-

tifying mobile devices only by their appearance. Modern laptops can ac-

cept plug-in cellular or satellite cards, and some laptop devices have this

access built in. Based on this definition of a mobile device then, a mobile

application is a network-based program that runs on a mobile device.

This distinction is important. Yes, it is true that most mobile devices can

use hotspots and wireless access points without a problem. However, those

connections provide greater reliability and higher speeds than cellular net-

works, even with the adoption of 3G and 4G technologies. Thus, you design

your mobile application with the expectation that it will use relatively slow,

comparatively unreliable data links. You can also develop stand-alone appli-

cations, such as games, that run on a mobile device without the need to use

the carrier’s network. But for the purposes of this chapter, we do not con-

sider stand-alone applications as mobile applications. Our focus is on the

challenges associated with applications running on cellular data networks.

The key to creating successful test plans for your mobile applications is

to understand the mobile computing environment. Table 11.1 identifies a

number of crucial areas you should investigate while designing test plans.

First, you must understand device connectivity issues and network speeds,

regional availability, and latency. Keep in mind the underlying philosophy

of this book: Your tests should not prove that your application works, but

that your application does not work for the use cases. For example, if you

have a location-based service or e-mail application, then your tests should

identify software problems when the carriers network is slow or

unavailable.

Next are three areas regarding devices—diversity, constraints, and input

methods—which we cover in great detail later in the chapter. To create

successful test plans, you and your testing staff must consider the numer-

ous devices in the marketplace, the varying capabilities of each, and how

the user interacts with the devices.

214 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 215

Last, you need to determine how you will install and maintain your

application. Some vendors, such as Apple, maintain online stores where

the user purchases the application, but only after Apple certifies your

application for its platform. This makes installation and maintenance a

little easier, as you have a single, certified distribution system.

Testing Challenges
As stated, mobile application testing is fraught with challenges. To help

meet them, we can categorize most into four categories: device diversity,

carrier network infrastructure, scripting, and usability. You need to think

through each carefully when designing test cases. The shear combination

of device types, operating systems, user input methods, and network con-

cerns mean that trade-offs must be balanced with time, financial, and labor

TABLE 11.1 Mobile Environment Test Design Considerations

Area Comment

Connectivity Device provisioning

Network speed

Network latency

Network availability in remote areas

Service reliability

Diversity Devices Numerous web browsers to test

Multiple versions of runtimes for Java or other

languages

Device Donstraints Limited memory or processor

Small screen size

Multiple operating systems

Multitasking capabilities

Data cache sizes

Input Devices Touch screens

Stylus

Mouse

Buttons

Rollers

Installation and

Maintenance

Installing and uninstalling

Patching

Upgrading

Mobile Application Testing 215

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 216

resources to arrive at an economical test plan that detects most bugs in a

reasonable time frame. Building a testing strategy that combines the meth-

ods discussed in earlier chapters will help.

In the rest of this section we discuss these categories and offer advice on

how to tackle each one.

Mobile Device Diversity

The ever-expanding diversity of devices presents an often-underestimated

and significant testing challenge to someone new to mobile application

testing. It sometimes seems that manufacturers introduce new devices

daily, making it almost impossible to keep up with the release cycles.

Worse, more devices means more items to consider in your testing. Here’s

a simple example to illustrate only a few items you need to evaluate when a

new device is released:

Suppose Motorola develops a new method of text input via the touch

screen for its Android-based phones. Can you design a test to deter-

mine whether the device’s new input method breaks your applica-

tion? If it does, can you fix your application without breaking

support for other Android-based devices such as tablets? Can you

even obtain a device to test? Do you have access to a supported car-

rier network?

Almost by definition, along with diversity of the devices comes diversity

of operating systems, browsers, application runtime environments, screen

resolutions, user interfaces, ergonomics, screen size, and more. You must

be aware of all of these factors when creating tests. Device diversity also

forces usability testing front and center, which at some point requires tes-

ters to evaluate your application on target devices. Using emulators is great

way to start, but ultimately you will need to test real devices on real carrier

networks.

This raises another facet of mobile application testing: testing on real

devices versus emulators. From an economic standpoint you should do as

much testing as you can with emulators. It may be financially unfeasible,

even if you can obtain a device and access the wireless network, to test on

the real platform. That said, emulators only emulate; they are not the real

devices. So it is likely that you will observe differences between testing

216 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 217

with an emulator and the actual device. For example, the colors and

shapes of buttons and input boxes may pass acceptance tests on an emula-

tor but fail on the target device because of screen resolution and color

depth differences between the device and a PC-based emulator.

In short, you need to realize there may be hundreds of mobile devices

with the potential to access your application. Therefore, during the

requirements-gathering and specification-writing phases, you will be

called upon to make some tough decisions and choose a reasonable subset

of devices to support and test. Be mindful that every device you do not test

may not work with your application; hence, you may lose not only a cus-

tomer but a customer base.

Carrier Network Infrastructure

Testing your application on a carrier network sets up another challenge.

This is especially true if you want to support multiple carriers. Two of the

highest hurdles to jump are: understanding and adapting to the carrier’s

infrastructure, and overcoming location-based obstacles.

Understanding a carrier’s infrastructure is fundamental to developing a

good test plan. Initially, you would think that your mobile application uses

a carrier’s network like an IP wireless hotspot. Not so. Figure 11.1 illus-

trates the ‘‘typical’’ infrastructure of most wireless carriers. The first differ-

ence is that the protocol is not IP-based; it is usually an RF-based protocol

Internet

Firewall

Mobile Proxy

Web Proxy
or transcodes

Tablets

Devices

Smartphones

PDAs

Carrier telco
EQUIP

FIGURE 11.1 Generic Wireless Carrier Data Network.

Mobile Application Testing 217

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 218

such as code division multiple access (CDMA), time division multiple ac-

cess (TDMA), or global system for mobile (GSM). The RF-based protocols

treat the IP-based protocols as a ‘‘payload’’ and delivers them to the mobile

device, which then decodes the payload and presents it to the application.

Also most carriers use some form of transcoder or Web proxy between

the Internet and the device. These devices may perform a variety of func-

tions. And, it is sometimes hard to determine exactly what occurs unless

you work directly with the carriers. Often, they do not reveal this informa-

tion for competitive purposes. The following is a short list of what may

occur at a carrier’s Web proxy or transcoder:

� Transform or transcode content into WAP or HTTP.

� Compress data for better throughput.

� Encrypt traffic for privacy and security.

� Block access to certain high-bandwidth sites.

� Strip HTML headers and other metadata from Web pages that your

application may use.

Transcoding may cause UI inconsistencies across multiple devices.

Some devices support Wireless Application Protocol (WAP) while others

support HTTP. WAP uses Wireless Markup Language (WML) for content

delivery. WAP and WML were intended to be the ‘‘standard’’ for wireless

content delivery, but never gained a strong foothold. Nonetheless, numer-

ous devices implement it, so you may encounter it during your tests. How-

ever, most smartphones and tablets support HTML and therefore rely on

HTTP to deliver content. If you have UI problems across devices and carri-

ers, check with each to determine whether WAP/WML or HTTP/HTML is

being used.

Although data compression is intended to improve throughput, often

during periods of high activity throughput may slow due to the overhead

of compression. The same holds with security: Firewalls and similar layers

may slow throughput during high-volume hours.

Finally, you must overcome location-based hurdles. Obviously, to test

on a carrier’s network, you need access to it. For instance, what if you have

a travel application for a smartphone: How do you test carrier networks in

other parts of the country or in other countries? Answer: You must travel

there or hire someone there to test it for you. Both add to the cost of

testing.

218 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 219

Scripting

An often-overlooked area of mobile applications testing is creating and

running test scripts. Real devices do not allow you to load automated, re-

peatable scripts onto the device; test personnel manually execute all

scripts. That is, someone walks through a written test script designed

to find errors in a test case on the target device. Notice we said ‘‘target’’

device. There exist many targets in the mobile environment.

As we pointed out in previous chapters, manual testing is error prone.

Unfortunately, it is unavoidable when testing mobile applications on real

devices. As mentioned, most emulators have rich scripting functionality

and can perform the bulk of regression testing and system tests. However,

in the end you still need to have someone work with the device. (Later in

the chapter, we explain how to create a generic manual test script to sup-

port multiple devices.)

The refreshing news is that mobile devices are becoming much more

sophisticated and powerful. Given the competitiveness of the marketplace,

it is reasonable to expect an automated scripting product to appear. Apple’s

iOS, Windows Mobile OS, and the Android OS are maturing rapidly, so it is

likely that this problem may be a non-issue in future versions.

Usability

Usability testing presents challenges similar to those of test scripts. Recall

from previous chapters that usability testing is mostly a white-box ap-

proach. Just like testing stand-alone desktop applications, a testing staff

must manually try to find bugs in the user interface and user interaction

layers of your application.

Unlike testing stand-alone desktop applications, mobile device testing

involves more than one platform to test. For instance, you will want to

search for UI consistency issues between Apple’s products and the An-

droid-based platforms. Although you are testing mobile applications,

much of Chapter 7’s discussions apply.

Testing Approaches
Some areas of testing mobile devices are similar to testing Internet applica-

tions, especially when evaluating the back-end infrastructures. The major

Mobile Application Testing 219

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 220

difference lies in how you approach testing the device itself. With Internet

testing, you have only a handful of browsers to evaluate; with mobile de-

vices, you have exponentially more.

Naturally, when testing back-end components, you should employ sim-

ilar techniques and evaluate similar considerations as those discussed in

Chapter 10, ‘‘Testing Internet Applications.’’ Referring back to Figure

10.1, tiers 2 and 3 should have approximately the same configuration as a

normal Internet application. As a quick review, you should test the per-

formance specifications, data validation routines, and transaction process-

ing components of tier 2. Testing tier 3 also is the same as with Internet

applications; test response times, data integrity, fault tolerance, and recov-

erability on this tier. If possible test the tier 2 and 3 components sepa-

rately from the device to ensure they meet your design specifications

using function testing.

Testing tier 1, the user environment, differs from traditional Internet

testing. The concepts presented on testing your content and website

architecture still apply. However, user environment testing equates to

device testing.

We should note the importance of use cases when developing test plans

for your devices. Knowing who will use your application, and how and

when, is imperative, as mobile applications have numerous points of fail-

ure. Table 11.2 lists items you might not generally consider when designing

test cases for standard applications, whether stand-alone or Web-based. For

example, testing your application on the carrier’s network is extremely im-

portant. You want to find problems related to spotty coverage or sudden

loss of connectivity. If your application involves data transfers, look for

problems with data caching and incomplete synchronization with back-end

data stores. What happens when coverage is suddenly restored after an in-

terruption during an application download? Does a purchase occur twice?

Check for bugs related to handling session reinitialization and data corrup-

tion. Some of these issues apply to Web-based applications running in a

PC-based browser. However, LANs/WANs are much more stable. When

dealing with cellular networks, you should expect to lose connectivity.

A test case specific to mobile testing is how your application handles

incoming voice calls and text messages. Chances are end users will want

to suspend your application, or run it in the background, while they an-

swer the phone or read the text message. Try to build test cases where in-

coming calls and messages cause problems in your application.

220 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 221

TABLE 11.2 Test Categories for Mobile Application Testing

Test Category Description

Install/Uninstall Ensure the user can correctly install your application.

Ensure the user can completely uninstall your application.

Network

Infrastructure

Verify the application responds appropriately to loss of

network.

Verify the application responds appropriately to network

restoration.

Verify the application responds appropriately to weak signals.

Incoming Call/

Message

Handling

Test whether user can accept calls/text messages while

application is running.

Test whether user can resume application when finishing

calls/text messages.

Test whether user can reject calls/text messages without

disrupting application.

Test whether user can initiate a call/text message without

disrupting the application.

Low Memory Ensure application remains stable when device encounters a

low memory situation.

Key Mappings Test that all key mapping works as specified.

Feedback Ensure user feedback to keypress occurs within application

design specifications.

Exiting Verify that the application exits gracefully when initiated through

pressing keys, closing the cover, or using the slider.

Confirm the application meets design specifications when the

user initiates a shutdown of device.

Charging Ensure that application works as designed when entering

charge mode.

Ensure that application works as designed while in charge mode.

Ensure that application works as designed when exiting charge

mode.

Battery

Conditions

Test how the application behaves on a low battery.

Measure how quickly application drains the battery.

Ensure the application responds per specification when the

battery is removed while the device is powered on.

Device Interaction Ensure the application does not overload the CPU.

Ensure the application does not consume too much memory.

Mobile Application Testing 221

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 222

In the rest of the chapter we will cover some approaches to device test-

ing in which you basically have two choices: test on real devices or use

device emulators. Table 11.3 offers some advantages and disadvantages of

each approach.

Testing with Real Devices

Manual testing with real devices is inevitable. Although costly, it has some

advantages. Only by testing with the device can you experience its nuances

and get a true feel for the user’s experience. In addition, you can only test

certain cases with real devices. Testing the reliability of a carrier’s network

and determining the effect of an incoming call or text message are obvious

examples. On a real device you also can evaluate how your application be-

haves. Does it load fast and run at an acceptable speed? Does it look okay?

Is the UI consistent across your target devices? Last but not least, you can

determine device-specific bugs. This is almost impossible with an emula-

tor. If you do find a device-specific bug, the challenge is to fix it without

breaking compatibility with other devices.

Despite the advantages, testing with real devices also has some serious

drawbacks. For example, it is costly because you must purchase the device,

TABLE 11.3 Devices versus Emulators

Testing

Approach Disadvantages Advantages

Real

Devices

Expensive, especially if you target a

broad base of mobile devices

Ability to test responsiveness

of the application

Inability to install metering or

diagnostic development tools

Visual inspection of application

on real device to verify UI

consistencyUnable to install on run test

scripts Test carriers’ network

responsivenessNetwork availability

Identify device-specific bugs

Emulators Inability to identify device- related

bugs

Cost-effective

Underlying hardware may skew

performance on real device

Easy to manage; multiple

device support with single

emulator

222 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 223

as well as pay for carrier airtime. Neither is inexpensive, and if you are test-

ing multiple devices from multiple carriers in multiple regions, the

expenses grow accordingly. Some device manufacturers and service pro-

viders have devices that you can rent or access remotely, which may miti-

gate some costs. If you target an individual platform, such as the Apple

iPhone family, you may be spared much of this expense. Still, you will

need enough of each type (iPad, iPhone, iTouch) to test.

In addition, testing with real devices is a manual, white-box process.

Someone must push the buttons, tap the screens, and enter data. As you

know, manual testing is error prone, even with the best instructions and

trained testers. Plus, it adds another expense to the process. You should

keep exacting notes about each well-documented test script and its results.

Then evaluate the effectiveness of the scripts and eliminate those with little

or no value (i.e., fail to find bugs).

As we noted earlier, using real devices eliminates one important weapon

in the software tester’s arsenal: automated test scripts. Therefore, you

should use written, manual scripts that specify generic actions, not details

on how to perform the action on a device. Detailed test scripts for every

device would be a challenge to create and maintain. In short order you

would have a library of scripts, which may be obsolete when the device is

updated. Generic scripts allow you to test system specifications across

multiple devices.

For example, iPhones, iPads, and Android-based devices rely heavily on

touch screens for user input. Other devices, such as BlackBerries or ‘‘stan-

dard’’ phones, have keyboards or keypads to allow for user input. Table 11.4

provides an example script to check whether your application, an e-reader,

aborts if you receive a text message while reading an e-book. Notice the

script does not specify exactly how to do any one step, only to perform the

step using the user-input facilities of the device. These may be buttons,

touch screens, or voice commands. At no point do you specify ‘‘Press OK’’

or ‘‘Press Send.’’ This generic approach will allow you to evaluate test cases

across multiple devices.

Last, manufacturers often ‘‘lock down’’ real devices, meaning you cannot

load tools to monitor or debug your application. So when you hit a bug it is

more challenging to isolate the problem. For instance, if your application

is running slowly, you do not know whether it is the carrier’s network,

transcoding issues, your application, or a combination. Only by trial and

error can you identify problems.

Mobile Application Testing 223

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 224

Testing with Emulators

Testing with emulators may not be the preferred approach, but it is usually

the most practical and cost-effective, and it even has some advantages.

First, emulators allow for inexpensive and quick functional testing of your

application. You can step through the application to find events and cir-

cumstances that do not meet the program requirements. Identify these

bugs using emulators before you get into the expense of device testing.

Second, emulators are easy to manage, and because they run on PCs,

every tester or developer can have an emulator. Developers can manage

the software themselves, precluding the need of system administrators.

Third, most emulator packages support multiple devices. To test a different

device, just load a different device profile. Best of all, you incur no expen-

sive carrier airtime costs. Fourth, emulators run on computers with more

resources, such as faster CPUs and more memory. Fast response times

during testing enables you to complete tests more quickly.

The last and probably most significant advantage is that most emulators

employ high-level scripting languages, so you can create consistent, auto-

mated tests, which are less error prone and quicker than manual testing.

Automated scripting also allows for easier and faster regression testing,

which is especially important when verifying that changes made to your

TABLE 11.4 Generic Device Test Script

1. Start e-reader application.

2. Open e-book.

3. Initiate SMS message to device from another device.

4. Verify SMS message alert is displayed.

5. Open SMS message.

6. Choose Reply to SMS message.

7. Compose SMS message.

8. Send SMS message.

9. Verify SMS message sent notification.

10. Return to e-book.

11. Verify e-book application is running.

12. Verify return to same page or bookmark.

13. Exit e-reader application.

224 The Art of Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 225

application to support one device don’t break support for another. The

scripting languages in emulators generally are device-agnostic. Referring

to Table 11.4, when you script Step 8, ‘‘Send SMS Message,’’ the emulator

will perform that function regardless of the device. This allows scripts to

be used across devices.

The disadvantage of using emulators for testing is that you cannot iden-

tify the nuances and bugs of each device. As we’ve said before, at some

point, you must test your application on the target devices. Without testing

on real devices, you never can be 100 percent sure that you meet compati-

bility and performance specifications. Nonetheless, do not rule out using

emulators for the bulk of your testing. It is a cost-effective and efficient

way to eliminate most of your bugs.

Summary
Mobile application testing represents a new frontier in software testing.

The mobile environment adds greater complexity and more interactions

not experienced when testing standard stand-alone applications. That

said, with an understanding of the challenges, you can greatly improve

your chances of successfully testing your application.

Begin by trying to gain a handle on the device universe you want to

support. Do you want to support only Android-based smartphones and

tablets, or go for broke and support most major tablet and smartphone

vendors? Next, understand the carrier’s network infrastructure. Does it

transcode, encrypt, compress, or in any way modify the data before send-

ing it to the device?

You also need to find a balance between emulator and real device testing.

Both have their pros and cons. Due to costs, you will likely use emulators

more, and save device testing for the final phases. Use the test categories in

Table 11.2 as a starting point to developing your own. Refer to the categories

often when defining your test cases. Also, treat any written test script and

result like source code; ensure you have adequate backups and some form

of change control on the test documents. To save time and money, review

the effectiveness of each script and eliminate ones that fail to add value.

Once you understand the fundamentals of mobile application testing,

you should have no problems creating test plans and use cases. One thing

is certain, mobile applications are here, and sooner or later you will need

to learn how to test these unique applications. Why not start now?

Mobile Application Testing 225

www.it-ebooks.info

http://www.it-ebooks.info/

C11 08/17/2011 1:37:52 Page 226

www.it-ebooks.info

http://www.it-ebooks.info/

BAPP01 08/26/2011 12:16:57 Page 227

Appendix
Sample Extreme Testing
Application

1. check4Prime.java

To compile:

&> javac check4Prime.java

To run:

$> java -cp check4Prime 5

Right . . . 5 is a prime number!

$> java -cp check4Prime 10

Sorry . . . 10 is NOT a prime number!

$> java -cp check4Prime A
Usage: check4Prime x

– where 0<=x<=1000

Source code:

//check4Prime.java
//Imports
import java.lang.*;

public class check4Prime {

static final int max = 1000; // Set upper bounds.
static final int min = 0; // Set lower bounds
static int input =0; // Initialize input variable

public static void main (String [] args) {

//Initialize class object to work with
check4Prime check = new check4Prime();

try{
//Check arguments and assign value to input variable

check.checkArgs(args);

227

www.it-ebooks.info

http://www.it-ebooks.info/

BAPP01 08/26/2011 12:16:57 Page 228

//Check for Exception and display help
}catch (Exception e){

System.out.println("Usage: check4Prime x");
System.out.println(" – where 0<=x<=1000");

System.exit(1);
}

//Check if input is a prime number

if (check.primeCheck(input))

System.out.println("Right... " + input + " is a prime number!");

else

System.out.println("Sorry... " + input + " is NOT a prime number!");

} //End main

//Calculates prime numbers and compares it to the input

public boolean primeCheck (int num){

double sqroot = Math.sqrt(max); // Find square root of n

//Initialize array to hold prime numbers

boolean primeBucket [] = new boolean [max+1];

//Initialize all elements to true, then set non-primes to false

for (int i=2; i<=max; i++){

primeBucket[i]=true;

}

//Do all multiples of 2 first

int j=2;

for (int i=j+j; i<=max; i=i+j){ //start with 2j as 2 is prime

primeBucket[i]=false; //set all multiples to false

}

for (j=3; j<=sqroot; j=j+2){ // do up to sqrt of n

if (primeBucket[j]==true){ // only do if j is a prime

for (int i=j+j; i<=max; i=i+j){ // start with 2j as j is prime

primeBucket[i]=false; // set all multiples to false

}

}

}

//Check input against prime array

if (primeBucket[num] == true) {

return true;

}else{

return false;

}

}//end primeCheck()

228 Appendix

www.it-ebooks.info

http://www.it-ebooks.info/

BAPP01 08/26/2011 12:16:57 Page 229

//Method to validate input
public void checkArgs(String [] args) throws Exception{

//Check arguments for correct number of parameters
if (args.length != 1) {

throw new Exception();
}else{
//Get integer from character
Integer num = Integer.valueOf(args[0]);
input = num.intValue();

//If less than zero
if (input < 0) //If less than lower bounds

throw new Exception();
else if (input > max) //If greater than upper bounds

throw new Exception();
}

}

}//End check4Prime

2. check4PrimeTest.java
Requires the JUnit api, junit.jar

To compile:

$> javac -classpath .:junit.jar check4PrimeTest.java

To run:

$> java -cp .:junit.jar check4PrimeTest

Examples:

Starting test . . .

.

Time: 0.01

OK (7 tests)

Test finished . . .

Source code:

//check4PrimeTest.java
//Imports
import junit.framework.*;

public class check4PrimeTest extends TestCase{

//Initialize a class to work with.
private check4Prime check4prime = new check4Prime();

//constructor
public check4PrimeTest (String name){

super(name);
}

Appendix 229

www.it-ebooks.info

http://www.it-ebooks.info/

BAPP01 08/26/2011 12:16:57 Page 230

//Main entry point
public static void main(String[] args) {

System.out.println("Starting test...");
junit.textui.TestRunner.run(suite());
System.out.println("Test finished...");

} // end main()
//Test case 1
public void testCheckPrime_true(){

assertTrue(check4prime.primeCheck(3));
}

//Test cases 2,3
public void testCheckPrime_false(){

assertFalse(check4prime.primeCheck(0));
assertFalse(check4prime.primeCheck(1000));

}

//Test case 7
public void testCheck4Prime_checkArgs_char_input(){

try {
String [] args= new String[1];
args[0]="r";
check4prime.checkArgs(args);
fail("Should raise an Exception.");

} catch (Exception success){
//successfull test

}
} //end testCheck4Prime_checkArgs_char_input()

//Test case 5
public void testCheck4Prime_checkArgs_above_upper_bound(){

try {
String [] args= new String[1];
args[0]="10001";
check4prime.checkArgs(args);
fail("Should raise an Exception.");

} catch (Exception success){
//successfull test

}
} // end testCheck4Prime_checkArgs_upper_bound()

//Test case 4
public void testCheck4Prime_checkArgs_neg_input(){

try {
String [] args= new String[1];
args[0]="-1";
check4prime.checkArgs(args);
fail("Should raise an Exception.");

} catch (Exception success){
//successfull test

}
}// end testCheck4Prime_checkArgs_neg_input()

//Test case 6
public void testCheck4Prime_checkArgs_2_inputs(){

try {
String [] args= new String[2];
args[0]="5";
args[1]="99";

230 Appendix

www.it-ebooks.info

http://www.it-ebooks.info/

BAPP01 08/26/2011 12:16:58 Page 231

check4prime.checkArgs(args);
fail("Should raise an Exception.");

} catch (Exception success){
//successfull test

}
} // end testCheck4Prime_checkArgs_2_inputs
//Test case 8
public void testCheck4Prime_checkArgs_0_inputs(){

try {
String [] args= new String[0];
check4prime.checkArgs(args);
fail("Should raise an Exception.");
} catch (Exception success){
//successfull test
}

} // end testCheck4Prime_checkArgs_0_inputs

//JUnit required method.
public static Test suite() {

TestSuite suite = new TestSuite(check4PrimeTest.class);
return suite;

}//end suite()

} //end check4PrimeTest

Appendix 231

www.it-ebooks.info

http://www.it-ebooks.info/

BAPP01 08/26/2011 12:16:58 Page 232

www.it-ebooks.info

http://www.it-ebooks.info/

BINDEX 08/25/2011 13:31:44 Page 233

Index

A

Acceptance testing, 131

extreme, 184, 186

Agile development, 175

manifesto, 176

table-methodologies, 177

Agile testing, 175, 178

Application server, 205

Automated debugging tools, 159

B

Backtract debugging, 167

Beck, Kent, 176

Beedle, Mike, 176

Big-bang testing, 98

Black-box testing, 8

equivalence partitioning, 49

usability testing, 145

Black box–white box comparison,

42

Bottom-up testing, 107

compared with top-down testing,

108

Boundary value analysis, 55

guidelines for, 56

MTEST program for, 57

Branch coverage testing, 44

Browser compatibility testing, 204

Brute force debugging, 158

Business layer, 196, 201

Business layer testing, 205

Business tier

table-testing criteria, 198

C

C/S architecture, 195

C++

black-box testing of, 9

Carrier network infrastructure, 217

Cause effect graphing

constraint symbols for, 65

logic diagram for, 64

sample, 64

sample-without constraints, 71

symbols for, 63

with exclusive constraint, 66

Cause–effect graphing, 61

test cases for, 62

CDMA, 218

CGI, 196, 205

Client server architecture, 195

COBOL

history of, 26

Cockburn, Alistair, 176

Code division multiple access, 218

Code inspections, 22

Common Business Oriented

Language. See COBOL

233

www.it-ebooks.info

http://www.it-ebooks.info/

BINDEX 08/25/2011 13:31:45 Page 234

Common gateway interface, 196

Comparison errors, 29

Compatibility/conversion testing,

127

Component tests, 153

Computation errors, 28

Computer

definition, 1

Condition coverage testing, 45

Condition masking, 46

Configuration testing, 126

Control-flow graph, 11

Control-flow errors, 31

Cunningham, Ward, 176

D

Data-declaration errors, 28

Data-gathering methods

usability testing, 150

Data-integrity testing, 210

Data layer, 201

Data-layer testing, 208

Data-reference errors, 25

Data tier

table-testing criteria, 198

Data validation, 207

Data-driven testing. See Black-box

testing

Debugging, 157

automated tools for, 159

by backtracking, 167

by brute force, 158

by deduction, 163

by induction, 160

clue structuring example, 163

error analysis, 172

inductive flowchart, 160

principals of, 168

programmer resistance, 157

with test cases, 167

Debugging principals

error locating, 168

error repairing, 170

Decision coverage testing, 44

Decision/condition coverage

testing, 46

Deductive debugging, 163

the process flowchart, 164

the steps, 164

Desk checking, 21, 37

DISPLAY command

cause-effect graph for, 72

graph for, 70

Diversity

mobile devices, 216

Documentation

software flowchart, 116

Driver module, 98

E

E-Commerce

basic architecture of, 195

Economics of testing, 8

Equivalence class form, 51

Equivalence classes

identifying, 51

table-classes list, 54

test cases for, 52

Equivalence partitioning, 49, 50

Error analysis

with debugging, 172

Error checklist, 25

Error guessing, 80

Errors

comparison, 29

computation, 28

234 Index

www.it-ebooks.info

http://www.it-ebooks.info/

BINDEX 08/25/2011 13:31:45 Page 235

control flow, 31

data declaration, 28

estimating by plotting, 140

estimating number, 136

input/output, 33

interface, 32

rounding, 29

table-when errors found, 138

Essential unified process, 178

EssUP. See Essential unified process

Exhaustive input testing, 9

Extreme acceptance testing, 186

Extreme programming, 179

table-12 practices, 182

Extreme programming basics, 180

Extreme testing, 179, 180

acceptance testing with, 184

applied, 187

concepts of, 184

JUnit test driver, 190

test case design, 188

unit testing with, 184

Extreme unit testing, 185

Eye tracking, 151

F

Facility testing, 123

Fault tolerant testing, 210

Form

equivalence class, 51

Formula Translating System. See

Fortran

Fortran

history of, 26

Fowler, martin, 176

Function test

purpose of, 116

Function testing, 119

G

Global system for mobile, 218

Graphical User Interface, 2

Graphing

cause effect, 61

Grenning, James, 176

GSM, 218

GUI. See Graphical User Interface

H

Hallway testing, 147

Higher order testing, 113

performing the test, 130

test plan components, 133

test planning and control, 132

Highsmith, Jim, 176

HTML, 196

Human testing, 19

Hunt, Andrew, 176

Hypertext markup language, 196

I

Incremental testing, 96

Independent test agency, 141

Induction debugging, 160

Inductive debugging

steps for, 161

structuring the clues, 161

Inductive flowchart

for program debugging, 160

Input/Output errors, 33

Input/output testing. See Black-box

testing

Inspection error

checklist summary table, 35

Inspections

agenda for, 23

effectiveness of, 21

Index 235

www.it-ebooks.info

http://www.it-ebooks.info/

BINDEX 08/25/2011 13:31:45 Page 236

Inspections (continued)

error checklist, 25

side benefits of, 24

team description, 22

time required, 24

Inspections and walkthroughs, 20

Installation testing, 127, 132

Interface errors, 32

Internet applications

data integrity testing in, 210

data layer testing in, 208

data validation in, 207

fault tolerant testing in, 210

illustration-architecture, 201

performance testing, 206

recoverability testing in, 210

response time testing in, 209

table-test criteria, 202

testing of, 193

testing strategies, 200

transactional testing in, 207

Internet testing

challenges of, 196

J

JBoss, 205

Jeffries, Ron, 176

JUnit, 187

test driver, 190

K

Kern, Jon, 176

L

LDAP, 196

Lightweight directory application

protocol, 196

Logic coverage testing, 43

Logic-driven testing. SeeWhite-box

testing

M

Marick, Brian, 176

Martin, Robert C., 176

Mean Time Between Failures, 128,

200

Mean Time to Repair, 129, 200

Mellor, Steve, 176

Mobile application

definition, 214

Mobile application testing, 213

approaches to, 219

challenges, 215

scripting in, 219

table-categories, 221

table-devices versus emulators,

222

table-generic test script, 224

usibility testing in, 219

with emulators, 224

with real devices, 222

Mobile device

definition, 214

Mobile device diversity, 216

Mobile environment, 214

table-test design considerations,

215

Module

driver, 98

input tables for, 87

stub, 98

Module test

purpose of, 116

Module testing, 85

performing the test, 109

test case design, 86

236 Index

www.it-ebooks.info

http://www.it-ebooks.info/

BINDEX 08/25/2011 13:31:45 Page 237

MTBF, 200, 210, SeeMean Time

Between Failures

MTEST

program input chart, 58

program specifications, 57

MTTR, 200, 210, SeeMean Time To

Repair

Multiple-condition coverage

testing, 47, 48

N

Nielsen, Jakob, 148

Nonincremental testing, 98

P

Palo Alto Research Center,

143

PARC. See Palo Alto Research

Center

Path sensitizing, 73

Peer ratings, 38

Performance testing, 126, 206

Performing the test

higher order testing, 130

PL/1

background, 88

Presentation layer, 196, 201

Presentation layer testing, 203

Presentation tier

table-testing criteria, 198

Principals of debugging

error locating, 168

error repairing, 170

Procedure testing, 130

Program

12 module sample, 102

Agile development, 175

breakpoints in, 159

control flow graph, 11

error checklist, 25

inspections, walkthroughs and

reviews, 19

Java sample, 43

module input tables, 87

regression testing, 16

sample flowchart, 43

six module diagram, 98

testing principals, 13

Program testing

definition, 17

successful criteria, 18

Program testing guidelines, 13

Psychology of testing, 5

Q

Questionnaire

usability testing, 152

R

Random input testing, 41

Rapid application development,

179

Rational unified process, 178

RDBMS, 196, 209, 210

Recoverability testing, 210

Recovery testing, 129

Regression testing, 16

Relational database management

system, 196

Reliability testing, 127

Remote user testing, 151

Response time testing, 209

Resultant decision table, 76

Rounding error

Java code sample, 29

RUP. See Rational unified process

Index 237

www.it-ebooks.info

http://www.it-ebooks.info/

BINDEX 08/25/2011 13:31:45 Page 238

S

Schwaber, Ken, 176

Scripting

in mobile application testing,

219

Security testing, 125

Serviceability/maintenance testing,

129

Software

documentation flowchart,

116

documentation of, 115

external specification, 114

testing versus development,

117

Software development

process flowchart, 114

Software reliability engineering

(SRE), 128

Software testing

correct definition, 6

economics of, 8

wrong definition, 5

Software testing principals, 12

SQL, 209

SRE. See Software Reliability

Engineering

Storage testing, 126

Stress testing, 123, 206

Stub module, 98

Sutherland, Jeff, 176

System test

flowchart for, 121

purpose of, 116

System testing, 119

facility, 123

stress, 123

volume, 123

T

TDMA, 218

Test-case

for extreme testing, 188

Test-case debugging, 167

Test-case design, 41

module testing, 86

unit testing, 86

Test-case exam, 2

Test-case strategy, 82

Test cases

table-categories of, 122

types of, 167

Test completion criteria, 135

Test planning and control, 132

Test user selection

usability testing, 147

Testing, 13, 44

acceptance, 131

agile, 178

agile environment, 175

big-bang, 98

branch coverage, 44

browser compatibility, 204

business layer, 205

code-oriented, 20

compatibility/conversion, 127

completion-criteria, 135

condition-coverage, 45

condition-masking, 46

configuration, 126

debugging, 157

decision-coverage, 44

decision/condition-coverage, 46

desk-testing, 21

estimating-errors, 136

human, 19

installation, 127, 132

238 Index

www.it-ebooks.info

http://www.it-ebooks.info/

BINDEX 08/25/2011 13:31:45 Page 239

Internet applications, 193

mobile applications, 213

multiple-condition coverage, 47

nonincremental, 98

performance, 126

presentation layer, 203

procedure-testing, 130

recovery, 129

reliability, 127

security, 125

serviceability/maintenance, 129

storage, 126

top-down, 101

usability, 125, 143

usability questionnaire, 152

Web applications, 194

Testing approaches

mobile applications, 219

Testing principals, 13

Testing strategies

Internet applications, 200

Think aloud protocol, 150

Thomas, Dave, 176

Time-division multiple access, 218

Top-down design, 101

Top-down development, 101

Top-down testing, 101

compared with bottom up

testing, 108

Transactional testing, 207

Triangle

Definition, 2

U

UI, 218

Unit testing, 85

extreme, 185

test case design, 86

with extreme testing, 184

Uptime requirements

table-hours per year, 129

Usability

in mobile application testing, 219

Usability testing, 125, 143

component tests, 153

conducting sufficient tests, 153

data gathering methods, 150

determining number of testers,

148

eye tracking, 151

graph-errors versus testers, 149

hallway testing, 147

questionnaire, 152

remote user testing, 151

test user selection, 147

testing considerations, 144

the process, 146

think aloud protocol, 150

User interface, 218

User testing, 143

V

Van Bennekum, Arie, 176

Volume testing, 123

W

Walkthroughs, 34

effectiveness of, 21

WAP, 218

Web applications

browser compatibility, 195

testing of, 194

testing strategies, 200

White-box testing, 10, 42

White box–black box comparison, 42

Wide Area Network. See

Index 239

www.it-ebooks.info

http://www.it-ebooks.info/

BINDEX 08/25/2011 13:31:45 Page 240

Wireless application protocol, 218

Wireless markup language, 218

WML, 218

X

Xerox, 143

XP, 179, 180

planning, 181

project flow example, 183

testing, 183

XP Planning, 181

XP Project flow, 183

XP Testing, 183

XT, 180

240 Index

www.it-ebooks.info

http://www.it-ebooks.info/

	THE ART OF SOFTWARE TESTING
	Preface
	Introduction
	1 A Self-Assessment Test
	2 The Psychology and Economics of Software Testing
	3 Program Inspections, Walkthroughs, and Reviews
	4 Test-Case Design
	5 Module (Unit) Testing
	6 Higher-Order Testing
	7 Usability (User) Testing
	8 Debugging
	9 Testing in the Agile Environment
	10 Testing Internet Applications
	11 Mobile Application Testing
	Appendix Sample Extreme Testing Application
	Index

SOFTWARE

TESTING

,uwu

GLENFORD J. MYERS

ssssssssssssssssssssss

FFIRS 08/25/2011 11:31:15 Page 2

FFIRS 08/25/2011 11:31:15 Page 1

THE ART OF
SOFTWARE
TESTING

FFIRS 08/25/2011 11:31:15 Page 2

FFIRS 08/25/2011 11:31:15 Page 3

THE ART OF
SOFTWARE
TESTING

Third Edition

GLENFORD J. MYERS
TOM BADGETT
COREY SANDLER

John Wiley & Sons, Inc.

FFIRS 08/25/2011 11:31:15 Page 4

Copyright# 2012 by Word Association, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, scanning, or

otherwise, except as permitted under Section 107 or 108 of the 1976 United States

Copyright Act, without either the prior written permission of the Publisher, or authorization

through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,

222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the

web at www.copyright.com. Requests to the Publisher for permission should be addressed

to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ

07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their

best efforts in preparing this book, they make no representations or warranties with respect

to the accuracy or completeness of the contents of this book and specifically disclaim any

implied warranties of merchantability or fitness for a particular purpose. No warranty may

be created or extended by sales representatives or written sales materials. The advice and

strategies contained herein may not be suitable for your situation. You should consult with a

professional where appropriate. Neither the publisher nor author shall be liable for any loss

of profit or any other commercial damages, including but not limited to special, incidental,

consequential, or other damages.

For general information on our other products and services or for technical support, please

contact our Customer Care Department within the United States at (800) 762-2974, outside

the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears

in print may not be available in electronic books. For more information about Wiley

products, visit our website at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Myers, Glenford J., 1946-

The art of software testing / Glenford J. Myers, Corey Sandler, Tom Badgett. — 3rd ed.

p. cm.

Includes index.

ISBN 978-1-118-03196-4 (cloth); ISBN 978-1-118-13313-2 (ebk); ISBN 978-1-118-13314-9

(ebk); ISBN 978-1-118-13315-6 (ebk)

1. Computer software—Testing. 2. Debugging in computer science. I. Sandler,

Corey, 1950- II. Badgett, Tom. III. Title.

QA76.76.T48M894 2011

005.1 04—dc23

2011017548

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions

http://www.wiley.com

http://www.copyright.com

FTOC 08/25/2011 11:33:28 Page 5

Contents

Preface vii

Introduction ix

1 A Self-Assessment Test 1

2 The Psychology and Economics of Software Testing 5

3 Program Inspections, Walkthroughs, and Reviews 19

4 Test-Case Design 41

5 Module (Unit) Testing 85

6 Higher-Order Testing 113

7 Usability (User) Testing 143

8 Debugging 157

9 Testing in the Agile Environment 175

10 Testing Internet Applications 193

11 Mobile Application Testing 213

Appendix Sample Extreme Testing Application 227

Index 233

v

FTOC 08/25/2011 11:33:28 Page 6

FPREF 08/08/2011 17:19:4 Page 7

Preface

In 1979, Glenford Myers published a book that turned out to be a classic.

The Art of Software Testing has stood the test of time—25 years on the

publisher’s list of available books. This fact alone is a testament to the

solid, essential, and valuable nature of his work.

During that same time, the authors of this edition (the third) of The Art

of Software Testing published, collectively, more than 200 books, most of

them on computer software topics. Some of these titles sold very well and,

like this one, have gone through multiple versions. Corey Sandler’s Fix

Your Own PC, for example, is in its eighth edition as this book goes to

press; and Tom Badgett’s books on Microsoft PowerPoint and other Office

titles have gone through four or more editions. However, unlike Myers’s

book, none of these remained current for more than a few years.

What is the difference? The newer books covered more transient

topics—operating systems, applications software, security, communica-

tions technology, and hardware configurations. Rapid changes in computer

hardware and software technology during the 1980s and 1990s necessi-

tated frequent changes and updates to these topics.

Also during that period hundreds of books about software testing were

published. They, too, took a more transient approach to the topic. The Art

of Software Testing alone gave the industry a long-lasting, foundational

guide to one of the most important computer topics: How do you ensure

that all of the software you produce does what it was designed to do, and—

just as important—doesn’t do what it isn’t supposed to do?

The edition you are reading today retains the foundational philosophy

laid by Myers more than three decades ago. But we have updated the

examples to include more current programming languages, and we have

addressed topics that were not yet topics when Myers wrote the first

edition: Web programming, e-commerce, Extreme (Agile) programming

and testing, and testing applications for mobile devices.

vii

FPREF 08/08/2011 17:19:4 Page 8

Along the way, we never lost sight of the fact that a new classic must stay

true to its roots, so our version also offers you a software testing philoso-

phy, and a process that works across current and unforeseeable future

hardware and software platforms. We hope that the third edition of The

Art of Software Testing, too, will span a generation of software designers

and developers.

viii Preface

CINTRO 08/08/2011 17:23:34 Page 9

Introduction

A t the time this book was first published, in 1979, it was a well-known

rule of thumb that in a typical programming project approximately

50 percent of the elapsed time and more than 50 percent of the total cost

were expended in testing the program or system being developed.

Today, a third of a century and two book updates later, the same holds

true. There are new development systems, languages with built-in tools,

and programmers who are used to developing more on the fly. But testing

continues to play an important part in any software development project.

Given these facts, you might expect that by this time program testing

would have been refined into an exact science. This is far from the case. In

fact, less seems to be known about software testing than about any other

aspect of software development. Furthermore, testing has been an out-of-

vogue subject; it was so when this book was first published and, un-

fortunately, this has not changed. Today there are more books and articles

about software testing—meaning that, at least, the topic has greater visibil-

ity than it did when this book was first published—but testing remains

among the ‘‘dark arts’’ of software development.

This would be more than enough reason to update this book on the art

of software testing, but we have additional motivations. At various times,

we have heard professors and teaching assistants say, ‘‘Our students gradu-

ate and move into industry without any substantial knowledge of how to

go about testing a program. Moreover, we rarely have any advice to offer

in our introductory courses on how a student should go about testing and

debugging his or her exercises.’’

Thus, the purpose of this updated edition of The Art of Software Testing

is the same as it was in 1979 and in 2004: to fill these knowledge gaps for

the professional programmer and the student of computer science. As the

title implies, the book is a practical, rather than theoretical, discussion of

the subject, complete with updated language and process discussions.

ix

CINTRO 08/08/2011 17:23:35 Page 10

Although it is possible to discuss program testing in a theoretical vein, this

book is intended to be a practical, ‘‘both feet on the ground’’ handbook.

Hence, many subjects related to program testing, such as the idea of math-

ematically proving the correctness of a program, were purposefully

excluded.

Chapter 1 ‘‘assigns’’ a short self-assessment test that every reader should

take before reading further. It turns out that the most important practical

information you must understand about program testing is a set of philo-

sophical and economic issues; these are discussed in Chapter 2. Chapter 3

introduces the important concept of noncomputer-based code walk-

throughs, or inspections. Rather than focus attention on the procedural or

managerial aspects of this concept, as most such discussions do, this chap-

ter addresses it from a technical, how-to-find-errors point of view.

The alert reader will realize that the most important component in a

program tester’s bag of tricks is the knowledge of how to write effective

test cases; this is the subject of Chapter 3. Chapter 4 discusses the testing

of individual modules or subroutines, followed in Chapter 5 by the testing

of larger entities. Chapter 6 takes on the concept of user or usability test-

ing, a component of software testing that always has been important, but is

even more relevant today due to the advent of more complex software

targeted at an ever broadening audience. Chapter 7 offers some practical

advice on program debugging, while Chapter 8 delves into the concepts of

extreme programming testing with emphasis on what has come to be

called the ‘‘agile environment.’’ Chapter 9 shows how to use other features

of program testing, which are detailed elsewhere in this book, with Web

programming, including e-commerce systems, and the all new, highly in-

teractive social networking sites. Chapter 10 describes how to test software

developed for the mobile environment.

We direct this book at three major audiences. First, the professional

programmer. Although we hope that not everything in this book will be

new information to this audience, we believe it will add to the profes-

sional’s knowledge of testing techniques. If the material allows this group

to detect just one more bug in one program, the price of the book will have

been recovered many times over.

The second audience is the project manager, who will benefit from the

book’s practical information on the management of the testing process.

The third audience is the programming and computer science student,

and our goal for them is twofold: to expose them to the problems of

x Introduction

CINTRO 08/08/2011 17:23:35 Page 11

program testing, and provide a set of effective techniques. For this third

group, we suggest the book be used as a supplement in programming

courses such that students are exposed to the subject of software testing

early in their education.

Introduction xi

CINTRO 08/08/2011 17:23:35 Page 12

C01 08/11/2011 11:29:16 Page 1

1 A Self-Assessment
Test

S ince this book was first published over 30 years ago, software testing

has become more difficult and easier than ever.

Software testing is more difficult because of the vast array of program-

ming languages, operating systems, and hardware platforms that have

evolved in the intervening decades. And while relatively few people used

computers in the 1970s, today virtually no one can complete a day’s work

without using a computer. Not only do computers exist on your desk, but

a ‘‘computer,’’ and consequently software, is present in almost every device

we use. Just try to think of the devices today that society relies on that are

not software driven. Sure there are some—hammers and wheelbarrows

come to mind—but the vast majority use some form of software to operate.

Software is pervasive, which raises the value of testing it. The machines

themselves are hundreds of times more powerful, and smaller, than those

early devices, and today’s concept of ‘‘computer’’ is much broader and

more difficult to define. Televisions, telephones, gaming systems, and auto-

mobiles all contain computers and computer software, and in some cases

can even be considered computers themselves.

Therefore, the software we write today potentially touches millions of

people, either enabling them to do their jobs effectively and efficiently, or

causing them untold frustration and costing them in the form of lost work

or lost business. This is not to say that software is more important today

than it was when the first edition of this book was published, but it is safe

to say that computers—and the software that drives them—certainly affect

more people and more businesses now than ever before.

1

C01 08/11/2011 11:29:16 Page 2

Software testing is easier, too, in some ways, because the array of soft-

ware and operating systems is much more sophisticated than in the past,

providing intrinsic, well-tested routines that can be incorporated into

applications without the need for a programmer to develop them from

scratch. Graphical User Interfaces (GUIs), for example, can be built from a

development language’s libraries, and since they are preprogrammed ob-

jects that have been debugged and tested previously, the need for testing

them as part of a custom application is much reduced.

And, despite the plethora of software testing tomes available on the

market today, many developers seem to have an attitude that is counter

to extensive testing. Better development tools, pretested GUIs, and the

pressure of tight deadlines in an ever more complex development envi-

ronment can lead to avoidance of all but the most obvious testing

protocols. Whereas low-level impacts of bugs may only inconvenience

the end user, the worst impacts can result in large financial loses, or even

cause harm to people. The procedures in this book can help designers,

developers, and project managers better understand the value of compre-

hensive testing, and provide guidelines to help them achieve required

testing goals.

Software testing is a process, or a series of processes, designed to make

sure computer code does what it was designed to do and, conversely, that it

does not do anything unintended. Software should be predictable and con-

sistent, presenting no surprises to users. In this book, we will look at many

approaches to achieving this goal.

Now, before we start the book, we’d like you to take a short exam. We

want you to write a set of test cases—specific sets of data—to test properly

a relatively simple program. Create a set of test data for the program—data

the program must handle correctly to be considered a successful program.

Here’s a description of the program:

The program reads three integer values from an input dialog. The

three values represent the lengths of the sides of a triangle. The pro-

gram displays a message that states whether the triangle is scalene,

isosceles, or equilateral.

Remember that a scalene triangle is one where no two sides are equal,

whereas an isosceles triangle has two equal sides, and an equilateral

triangle has three sides of equal length. Moreover, the angles opposite the

2 The Art of Software Testing

C01 08/11/2011 11:29:16 Page 3

equal sides in an isosceles triangle also are equal (it also follows that the

sides opposite equal angles in a triangle are equal), and all angles in an

equilateral triangle are equal.

Evaluate your set of test cases by using it to answer the following

questions. Give yourself one point for each yes answer.

1. Do you have a test case that represents a valid scalene triangle?

(Note that test cases such as 1, 2, 3 and 2, 5, 10 do not warrant a yes

answer because a triangle having these dimensions is not valid.)

2. Do you have a test case that represents a valid equilateral triangle?

3. Do you have a test case that represents a valid isosceles triangle?

(Note that a test case representing 2, 2, 4 would not count because it

is not a valid triangle.)

4. Do you have at least three test cases that represent valid isosceles

triangles such that you have tried all three permutations of two equal

sides (such as, 3, 3, 4; 3, 4, 3; and 4, 3, 3)?

5. Do you have a test case in which one side has a zero value?

6. Do you have a test case in which one side has a negative value?

7. Do you have a test case with three integers greater than zero such that

the sum of two of the numbers is equal to the third? (That is, if the

program said that 1, 2, 3 represents a scalene triangle, it would contain

a bug.)

8. Do you have at least three test cases in category 7 such that you have

tried all three permutations where the length of one side is equal to

the sum of the lengths of the other two sides (e.g., 1, 2, 3; 1, 3, 2; and

3, 1, 2)?

9. Do you have a test case with three integers greater than zero such that

the sum of two of the numbers is less than the third (such as 1, 2, 4 or

12, 15, 30)?

10. Do you have at least three test cases in category 9 such that you have

tried all three permutations (e.g., 1, 2, 4; 1, 4, 2; and 4, 1, 2)?

11. Do you have a test case in which all sides are zero (0, 0, 0)?

12. Do you have at least one test case specifying noninteger values

(such as 2.5, 3.5, 5.5)?

13. Do you have at least one test case specifying the wrong number of

values (two rather than three integers, for example)?

14. For each test case did you specify the expected output from the

program in addition to the input values?

A Self-Assessment Test 3

C01 08/11/2011 11:29:16 Page 4

Of course, a set of test cases that satisfies these conditions does not guar-

antee that you will find all possible errors, but since questions 1 through

13 represent errors that actually have occurred in different versions of this

program, an adequate test of this program should expose at least these

errors.

Now, before you become concerned about your score, consider this: In

our experience, highly qualified professional programmers score, on the

average, only 7.8 out of a possible 14. If you’ve done better, congratula-

tions; if not, we’re here to help.

The point of the exercise is to illustrate that the testing of even a trivial

program such as this is not an easy task. Given this is true, consider the diffi-

culty of testing a 100,000-statement air traffic control system, a compiler, or

even a mundane payroll program. Testing also becomes more difficult with

the object-oriented languages, such as Java and Cþþ. For example, your test

cases for applications built with these languages must expose errors associ-

ated with object instantiation and memory management.

It might seem from working with this example that thoroughly testing a

complex, real-world program would be impossible. Not so! Although the

task can be daunting, adequate program testing is a very necessary—and

achievable—part of software development, as you will learn in this book.

4 The Art of Software Testing

C02 08/25/2011 11:54:11 Page 5

2 The Psychology
and Economics of
Software Testing

Software testing is a technical task, yes, but it also involves some impor-

tant considerations of economics and human psychology.

In an ideal world, we would want to test every possible permutation of a

program. In most cases, however, this simply is not possible. Even a seem-

ingly simple program can have hundreds or thousands of possible input

and output combinations. Creating test cases for all of these possibilities is

impractical. Complete testing of a complex application would take too

long and require too many human resources to be economically feasible.

In addition, the software tester needs the proper attitude (perhaps

‘‘vision’’ is a better word) to successfully test a software application. In

some cases, the tester’s attitude may be more important than the actual pro-

cess itself. Therefore, we will start our discussion of software testing with

these issues before we delve into the more technical nature of the topic.

The Psychology of Testing
One of the primary causes of poor application testing is the fact that most

programmers begin with a false definition of the term. They might say:

‘‘Testing is the process of demonstrating that errors are not present.’’

‘‘The purpose of testing is to show that a program performs its intended

functions correctly.’’

‘‘Testing is the process of establishing confidence that a program does

what it is supposed to do.’’

5

C02 08/25/2011 11:54:11 Page 6

These definitions are upside down.

When you test a program, you want to add some value to it. Adding

value through testing means raising the quality or reliability of the program.

Raising the reliability of the program means finding and removing errors.

Therefore, don’t test a program to show that it works; rather, start with

the assumption that the program contains errors (a valid assumption for

almost any program) and then test the program to find as many of the

errors as possible.

Thus, a more appropriate definition is this:

Testing is the process of executing a program with the intent of find-

ing errors.

Although this may sound like a game of subtle semantics, it’s really an

important distinction. Understanding the true definition of software test-

ing can make a profound difference in the success of your efforts.

Human beings tend to be highly goal-oriented, and establishing the

proper goal has an important psychological effect on them. If our goal is to

demonstrate that a program has no errors, then we will be steered sub-

consciously toward this goal; that is, we tend to select test data that have a

low probability of causing the program to fail. On the other hand, if our

goal is to demonstrate that a program has errors, our test data will have a

higher probability of finding errors. The latter approach will add more

value to the program than the former.

This definition of testing has myriad implications, many of which are

scattered throughout this book. For instance, it implies that testing is a

destructive, even sadistic, process, which explains why most people find it

difficult. That may go against our grain; with good fortune, most of us have

a constructive, rather than a destructive, outlook on life. Most people are

inclined toward making objects rather than ripping them apart. The defini-

tion also has implications for how test cases (test data) should be designed,

and who should and who should not test a given program.

Another way of reinforcing the proper definition of testing is to analyze

the use of the words ‘‘successful’’ and ‘‘unsuccessful’’—in particular, their use

by project managers in categorizing the results of test cases. Most project

managers refer to a test case that did not find an error a ‘‘successful test run,’’

whereas a test that discovers a new error is usually called ‘‘unsuccessful.’’

Once again, this is upside down. ‘‘Unsuccessful’’ denotes something un-

desirable or disappointing. To our way of thinking, a well-constructed and

6 The Art of Software Testing

C02 08/25/2011 11:54:11 Page 7

executed software test is successful when it finds errors that can be fixed.

That same test is also successful when it eventually establishes that there

are no more errors to be found. The only unsuccessful test is one that does

not properly examine the software; and, in the majority of cases, a test that

found no errors likely would be considered unsuccessful, since the con-

cept of a program without errors is basically unrealistic.

A test case that finds a new error can hardly be considered unsuccessful;

rather, it has proven to be a valuable investment. An unsuccessful test case

is one that causes a program to produce the correct result without finding

any errors.

Consider the analogy of a person visiting a doctor because of an overall

feeling of malaise. If the doctor runs some laboratory tests that do not locate

the problem, we do not call the laboratory tests ‘‘successful’’; they were un-

successful tests in that the patient’s net worth has been reduced by the expen-

sive laboratory fees, the patient is still ill, and the patient may question the

doctor’s ability as a diagnostician. However, if a laboratory test determines

that the patient has a peptic ulcer, the test is successful because the doctor

can now begin the appropriate treatment. Hence, the medical profession

seems to use these words in the proper sense. The analogy, of course, is that

we should think of the program, as we begin testing it, as the sick patient.

A second problem with such definitions as ‘‘testing is the process of

demonstrating that errors are not present’’ is that such a goal is impossible

to achieve for virtually all programs, even trivial programs.

Again, psychological studies tell us that people perform poorly when

they set out on a task that they know to be infeasible or impossible. For

instance, if you were instructed to solve the crossword puzzle in the

Sunday New York Times in 15 minutes, you probably would achieve little,

if any, progress after 10 minutes because, if you are like most people, you

would be resigned to the fact that the task seems impossible. If you were

asked for a solution in four hours, however, we could reasonably expect to

see more progress in the initial 10 minutes. Defining program testing as the

process of uncovering errors in a program makes it a feasible task, thus

overcoming this psychological problem.

A third problem with the common definitions such as ‘‘testing is the

process of demonstrating that a program does what it is supposed to do’’ is

that programs that do what they are supposed to do still can contain

errors. That is, an error is clearly present if a program does not do what it is

supposed to do; but errors are also present if a program does what it is not

supposed to do. Consider the triangle program of Chapter 1. Even if we

The Psychology and Economics of Software Testing 7

C02 08/25/2011 11:54:11 Page 8

could demonstrate that the program correctly distinguishes among all sca-

lene, isosceles, and equilateral triangles, the program still would be in

error if it does something it is not supposed to do (such as representing 1,

2, 3 as a scalene triangle or saying that 0, 0, 0 represents an equilateral

triangle). We are more likely to discover the latter class of errors if we

view program testing as the process of finding errors than if we view it as

the process of showing that a program does what it is supposed to do.

To summarize, program testing is more properly viewed as the destruc-

tive process of trying to find the errors in a program (whose presence is

assumed). A successful test case is one that furthers progress in this direc-

tion by causing the program to fail. Of course, you eventually want to use

program testing to establish some degree of confidence that a program

does what it is supposed to do and does not do what it is not supposed to

do, but this purpose is best achieved by a diligent exploration for errors.

Consider someone approaching you with the claim that ‘‘my program is

perfect’’ (i.e., error free). The best way to establish some confidence in this

claim is to try to refute it, that is, to try to find imperfections rather than

just confirm that the program works correctly for some set of input data.

The Economics of Testing
Given our definition of program testing, an appropriate next step is to de-

termine whether it is possible to test a program to find all of its errors. We

will show you that the answer is negative, even for trivial programs. In

general, it is impractical, often impossible, to find all the errors in a pro-

gram. This fundamental problem will, in turn, have implications for the

economics of testing, assumptions that the tester will have to make about

the program, and the manner in which test cases are designed.

To combat the challenges associated with testing economics, you should

establish some strategies before beginning. Two of the most prevalent strate-

gies include black-box testing and white-box testing, which we will explore

in the next two sections.

Black-Box Testing

One important testing strategy is black-box testing (also known as data-

driven or input/output-driven testing). To use this method, view the pro-

gram as a black box. Your goal is to be completely unconcerned about the

8 The Art of Software Testing

C02 08/25/2011 11:54:11 Page 9

internal behavior and structure of the program. Instead, concentrate on

finding circumstances in which the program does not behave according to

its specifications.

In this approach, test data are derived solely from the specifications

(i.e., without taking advantage of knowledge of the internal structure of

the program).

If you want to use this approach to find all errors in the program, the

criterion is exhaustive input testing, making use of every possible input con-

dition as a test case. Why? If you tried three equilateral-triangle test cases

for the triangle program, that in no way guarantees the correct detection of

all equilateral triangles. The program could contain a special check for val-

ues 3842, 3842, 3842 and denote such a triangle as a scalene triangle.

Since the program is a black box, the only way to be sure of detecting the

presence of such a statement is by trying every input condition.

To test the triangle program exhaustively, you would have to create test

cases for all valid triangles up to the maximum integer size of the develop-

ment language. This in itself is an astronomical number of test cases, but it

is in no way exhaustive: It would not find errors where the program said

that �3, 4, 5 is a scalene triangle and that 2, A, 2 is an isosceles triangle.

To be sure of finding all such errors, you have to test using not only all

valid inputs, but all possible inputs. Hence, to test the triangle program

exhaustively, you would have to produce virtually an infinite number of

test cases, which, of course, is not possible.

If this sounds difficult, exhaustive input testing of larger programs is even

more problematic. Consider attempting an exhaustive black-box test of a

Cþþ compiler. Not only would you have to create test cases representing all

valid Cþþ programs (again, virtually an infinite number), but you would

have to create test cases for all invalid Cþþ programs (an infinite number)

to ensure that the compiler detects them as being invalid. That is, the com-

piler has to be tested to ensure that it does not do what it is not supposed to

do—for example, successfully compile a syntactically incorrect program.

The problem is even more onerous for transaction-base programs such

as database applications. For example, in a database application such as an

airline reservation system, the execution of a transaction (such as a data-

base query or a reservation for a plane flight) is dependent upon what hap-

pened in previous transactions. Hence, not only would you have to try all

unique valid and invalid transactions, but also all possible sequences of

transactions.

The Psychology and Economics of Software Testing 9

C02 08/25/2011 11:54:12 Page 10

This discussion shows that exhaustive input testing is impossible. Two

important implications of this: (1) You cannot test a program to guarantee

that it is error free; and (2) a fundamental consideration in program testing

is one of economics. Thus, since exhaustive testing is out of the question,

the objective should be to maximize the yield on the testing investment by

maximizing the number of errors found by a finite number of test cases.

Doing so will involve, among other things, being able to peer inside the

program and make certain reasonable, but not airtight, assumptions about

the program (e.g., if the triangle program detects 2, 2, 2 as an equilateral

triangle, it seems reasonable that it will do the same for 3, 3, 3). This will

form part of the test case design strategy in Chapter 4.

White-Box Testing

Another testing strategy, white-box (or logic-driven) testing, permits you to

examine the internal structure of the program. This strategy derives test

data from an examination of the program’s logic (and often, unfortunately,

at the neglect of the specification).

The goal at this point is to establish for this strategy the analog to exhaus-

tive input testing in the black-box approach. Causing every statement in the

program to execute at least once might appear to be the answer, but it is not

difficult to show that this is highly inadequate. Without belaboring the point

here, since this matter is discussed in greater depth in Chapter 4, the analog

is usually considered to be exhaustive path testing. That is, if you execute, via

test cases, all possible paths of control flow through the program, then possi-

bly the program has been completely tested.

There are two flaws in this statement, however. One is that the number

of unique logic paths through a program could be astronomically large. To

see this, consider the trivial program represented in Figure 2.1. The dia-

gram is a control-flow graph. Each node or circle represents a segment of

statements that execute sequentially, possibly terminating with a branching

statement. Each edge or arc represents a transfer of control (branch) be-

tween segments. The diagram, then, depicts a 10- to 20-statement program

consisting of a DO loop that iterates up to 20 times. Within the body of the

DO loop is a set of nested IF statements. Determining the number of unique

logic paths is the same as determining the total number of unique ways of

moving from point a to point b (assuming that all decisions in the program

are independent from one another). This number is approximately 1014, or

10 The Art of Software Testing

C02 08/25/2011 11:54:12 Page 11

100 trillion. It is computed from 520 þ 519 þ . . . 51, where 5 is the

number of paths through the loop body. Most people have a difficult time

visualizing such a number, so consider it this way: If you could write, exe-

cute, and verify a test case every five minutes, it would take approximately

1 billion years to try every path. If you were 300 times faster, completing a

test once per second, you could complete the job in 3.2 million years, give

or take a few leap years and centuries.

Of course, in actual programs every decision is not independent from

every other decision, meaning that the number of possible execution paths

would be somewhat fewer. On the other hand, actual programs are much

larger than the simple program depicted in Figure 2.1. Hence, exhaustive

path testing, like exhaustive input testing, appears to be impractical, if not

impossible.

FIGURE 2.1 Control-Flow Graph of a Small Program.

The Psychology and Economics of Software Testing 11

C02 08/25/2011 11:54:12 Page 12

The second flaw in the statement ‘‘exhaustive path testing means a com-

plete test’’ is that every path in a program could be tested, yet the program

might still be loaded with errors. There are three explanations for this.

The first is that an exhaustive path test in no way guarantees that a pro-

gram matches its specification. For example, if you were asked to write an

ascending-order sorting routine but mistakenly produced a descending-

order sorting routine, exhaustive path testing would be of little value; the

program still has one bug: It is the wrong program, as it does not meet the

specification.

Second, a program may be incorrect because of missing paths. Exhaustive

path testing, of course, would not detect the absence of necessary paths.

Third, an exhaustive path test might not uncover data-sensitivity errors.

There are many examples of such errors, but a simple one should suffice.

Suppose that in a program you have to compare two numbers for conver-

gence, that is, to see if the difference between the two numbers is less than

some predetermined value. For example, you might write a Java IF state-

ment as

if (a-b<c)
System.out.println("a-b<c");

Of course, the statement contains an error because it should compare c

to the absolute value of a-b. Detection of this error, however, is dependent

upon the values used for a and b and would not necessarily be detected by

just executing every path through the program.

In conclusion, although exhaustive input testing is superior to exhaus-

tive path testing, neither proves to be useful because both are infeasible.

Perhaps, then, there are ways of combining elements of black-box and

white-box testing to derive a reasonable, but not airtight, testing strategy.

This matter is pursued further in Chapter 4.

Software Testing Principles
Continuing with the major premise of this chapter, that the most impor-

tant considerations in software testing are issues of psychology, we can

identify a set of vital testing principles or guidelines. Most of these princi-

ples may seem obvious, yet they are all too often overlooked. Table 2.1

summarizes these important principles, and each is discussed in more

detail in the paragraphs that follow.

12 The Art of Software Testing

C02 08/25/2011 11:54:12 Page 13

Principle 1: A necessary part of a test case is a definition of the

expected output or result.

This principle, though obvious, when overlooked is the cause of

one of the most frequent mistakes in program testing. Again, it is

something that is based on human psychology. If the expected result

of a test case has not been predefined, chances are that a plausible,

but erroneous, result will be interpreted as a correct result because of

the phenomenon of ‘‘the eye seeing what it wants to see.’’ In other

words, in spite of the proper destructive definition of testing, there is

still a subconscious desire to see the correct result. One way of

TABLE 2.1 Vital Program Testing Guidelines

Principle

Number Principle

1 A necessary part of a test case is a definition of the expected

output or result.

2 A programmer should avoid attempting to test his or her own

program.

3 A programming organization should not test its own programs.

4 Any testing process should include a thorough inspection of the

results of each test.

5 Test cases must be written for input conditions that are invalid

and unexpected, as well as for those that are valid and expected.

6 Examining a program to see if it does not do what it is supposed

to do is only half the battle; the other half is seeing whether the

program does what it is not supposed to do.

7 Avoid throwaway test cases unless the program is truly a

throwaway program.

8 Do not plan a testing effort under the tacit assumption that no

errors will be found.

9 The probability of the existence of more errors in a section of a

program is proportional to the number of errors already found in

that section.

10 Testing is an extremely creative and intellectually challenging

task.

The Psychology and Economics of Software Testing 13

C02 08/25/2011 11:54:12 Page 14

combating this is to encourage a detailed examination of all output

by precisely spelling out, in advance, the expected output of the pro-

gram. Therefore, a test case must consist of two components:

1. A description of the input data to the program.

2. A precise description of the correct output of the program for

that set of input data.

A problem may be characterized as a fact or group of facts for

which we have no acceptable explanation, that seem unusual, or that

fail to fit in with our expectations or preconceptions. It should be

obvious that some prior beliefs are required if anything is to appear

problematic. If there are no expectations, there can be no surprises.

Principle 2: A programmer should avoid attempting to test his or her

own program.

Any writer knows—or should know—that it’s a bad idea to at-

tempt to edit or proofread his or her own work. They know what the

piece is supposed to say, hence may not recognize when it says other-

wise. And they really don’t want to find errors in their own work. The

same applies to software authors.

Another problem arises with a change in focus on a software proj-

ect. After a programmer has constructively designed and coded a pro-

gram, it is extremely difficult to suddenly change perspective to look

at the program with a destructive eye.

As many homeowners know, removing wallpaper (a destructive

process) is not easy, but it is almost unbearably depressing if it was

your hands that hung the paper in the first place. Similarly, most pro-

grammers cannot effectively test their own programs because they

cannot bring themselves to shift mental gears to attempt to expose

errors. Furthermore, a programmer may subconsciously avoid find-

ing errors for fear of retribution from peers or a supervisor, a client,

or the owner of the program or system being developed.

In addition to these psychological issues, there is a second signifi-

cant problem: The program may contain errors due to the program-

mer’s misunderstanding of the problem statement or specification. If

this is the case, it is likely that the programmer will carry the same

misunderstanding into tests of his or her own program.

This does not mean that it is impossible for a programmer to test

his or her own program. Rather, it implies that testing is more effec-

tive and successful if someone else does it. However, as we will

14 The Art of Software Testing

C02 08/25/2011 11:54:13 Page 15

discuss in more detail in Chapter 3, developers can be valuable mem-

bers of the testing team when the program specification and the pro-

gram code itself are being evaluated.

Note that this argument does not apply to debugging (correcting

known errors); debugging is more efficiently performed by the origi-

nal programmer.

Principle 3: A programming organization should not test its own

programs.

The argument here is similar to that made in the previous princi-

ple. A project or programming organization is, in many senses, a liv-

ing organization with psychological problems similar to those of

individual programmers. Furthermore, in most environments, a pro-

gramming organization or a project manager is largely measured on

the ability to produce a program by a given date and for a certain cost.

One reason for this is that it is easy to measure time and cost objec-

tives, whereas it is extremely difficult to quantify the reliability of a

program. Therefore, it is difficult for a programming organization to

be objective in testing its own programs, because the testing process,

if approached with the proper definition, may be viewed as decreasing

the probability of meeting the schedule and the cost objectives.

Again, this does not say that it is impossible for a programming

organization to find some of its errors, because organizations do

accomplish this with some degree of success. Rather, it implies that it

is more economical for testing to be performed by an objective, inde-

pendent party.

Principle 4: Any testing process should include a thorough inspection

of the results of each test.

This is probably the most obvious principle, but again it is some-

thing that is often overlooked. We’ve seen numerous experiments

that show many subjects failed to detect certain errors, even when

symptoms of those errors were clearly observable on the output list-

ings. Put another way, errors that are found in later tests were often

missed in the results from earlier tests.

Principle 5: Test cases must be written for input conditions that are

invalid and unexpected, as well as for those that are valid

and expected.

There is a natural tendency when testing a program to concentrate

on the valid and expected input conditions, to the neglect of the

The Psychology and Economics of Software Testing 15

C02 08/25/2011 11:54:13 Page 16

invalid and unexpected conditions. For instance, this tendency fre-

quently appears in the testing of the triangle program in Chapter 1.

Few people, for instance, feed the program the numbers 1, 2, 5 to

ensure that the program does not erroneously interpret this as an

equalateral triangle instead of a scalene triangle. Also, many errors that

are suddenly discovered in production software turn up when it is used

in some new or unexpected way. It is hard, if not impossible, to define

all the use cases for software testing. Therefore, test cases representing

unexpected and invalid input conditions seem to have a higher error-

detection yield than do test cases for valid input conditions.

Principle 6: Examining a program to see if it does not do what it is sup-

posed to do is only half the battle; the other half is seeing

whether the program does what it is not supposed to do.

This is a corollary to the previous principle. Programs must be

examined for unwanted side effects. For instance, a payroll program

that produces the correct paychecks is still an erroneous program if it

also produces extra checks for nonexistent employees, or if it over-

writes the first record of the personnel file.

Principle 7: Avoid throwaway test cases unless the program is truly a

throwaway program.

This problem is seen most often with interactive systems to test

programs. A common practice is to sit at a terminal and invent test

cases on the fly, and then send these test cases through the program.

The major issue is that test cases represent a valuable investment

that, in this environment, disappears after the testing has been com-

pleted. Whenever the program has to be tested again (e.g., after cor-

recting an error or making an improvement), the test cases must be

reinvented. More often than not, since this reinvention requires a

considerable amount of work, people tend to avoid it. Therefore, the

retest of the program is rarely as rigorous as the original test, mean-

ing that if the modification causes a previously functional part of the

program to fail, this error often goes undetected. Saving test cases

and running them again after changes to other components of the

program is known as regression testing.

Principle 8: Do not plan a testing effort under the tacit assumption

that no errors will be found.

This is a mistake project managers often make and is a sign of the

use of the incorrect definition of testing—that is, the assumption that

16 The Art of Software Testing

C02 08/25/2011 11:54:13 Page 17

testing is the process of showing that the program functions correctly.

Once again, the definition of testing is the process of executing a pro-

gram with the intent of finding errors. And it should be obvious from

our previous discussions that it is impossible to develop a program

that is completely error free. Even after extensive testing and error

correction, it is safe to assume that errors still exist; they simply have

not yet been found.

Principle 9: The probability of the existence of more errors in a section

of a program is proportional to the number of errors al-

ready found in that section.

This phenomenon is illustrated in Figure 2.2. At first glance this

concept may seem nonsensical, but it is a phenomenon present in

many programs. For instance, if a program consists of two modules,

classes, or subroutines, A and B, and five errors have been found in

module A, and only one error has been found in module B, and if

module A has not been purposely subjected to a more rigorous test,

then this principle tells us that the likelihood of more errors in mod-

ule A is greater than the likelihood of more errors in module B.

Another way of stating this principle is to say that errors tend to

come in clusters and that, in the typical program, some sections

seem to be much more prone to errors than other sections, although

nobody has supplied a good explanation of why this occurs. The phe-

nomenon is useful in that it gives us insight or feedback in the testing

process. If a particular section of a program seems to be much more

prone to errors than other sections, then this phenomenon tells us

FIGURE 2.2 The Surprising Relationship between Errors Remaining and

Errors Found.

The Psychology and Economics of Software Testing 17

C02 08/25/2011 11:54:13 Page 18

that, in terms of yield on our testing investment, additional testing

efforts are best focused against this error-prone section.

Principle 10: Testing is an extremely creative and intellectually chal-

lenging task.

It is probably true that the creativity required in testing a large

program exceeds the creativity required in designing that program.

We already have seen that it is impossible to test a program suffi-

ciently to guarantee the absence of all errors. Methodologies dis-

cussed later in this book help you develop a reasonable set of test

cases for a program, but these methodologies still require a signifi-

cant amount of creativity.

Summary
As you proceed through this book, keep in mind these important princi-

ples of testing:

� Testing is the process of executing a program with the intent of find-

ing errors.

� Testing is more successful when not performed by the developer(s).

� A good test case is one that has a high probability of detecting an

undiscovered error.

� A successful test case is one that detects an undiscovered error.

� Successful testing includes carefully defining expected output as well

as input.

� Successful testing includes carefully studying test results.

18 The Art of Software Testing

C03 08/26/2011 12:8:40 Page 19

3 Program Inspections,
Walkthroughs, and
Reviews

For many years, most of us in the programming community worked un-

der the assumptions that programs are written solely for machine exe-

cution, and are not intended for people to read, and that the only way to

test a program is to execute it on a machine. This attitude began to change

in the early 1970s through the efforts of program developers who first saw

the value in reading code as part of a comprehensive testing and debugging

regimen.

Today, not all testers of software applications read code, but the concept

of studying program code as part of a testing effort certainly is widely ac-

cepted. Several factors may affect the likelihood that a given testing and

debugging effort will include people actually reading program code: the

size or complexity of the application, the size of the development team,

the timeline for application development (whether the schedule is relaxed

or intense, for example), and, of course, the background and culture of the

programming team.

For these reasons, we will discuss the process of noncomputer-based

testing (‘‘human testing’’) before we delve into the more traditional

computer-based testing techniques. Human testing techniques are quite

effective in finding errors—so much so that every programming project

should use one or more of these techniques. You should apply these

methods between the time the program is coded and when computer-

based testing begins. You also can develop and apply analogous methods

19

C03 08/26/2011 12:8:40 Page 20

at earlier stages in the programming process (such as at the end of each

design stage), but these are outside the scope of this book.

Before we begin the discussion of human testing techniques, take note

of this important point: Because the involvement of humans results in less

formal methods than mathematical proofs conducted by a computer, you

may feel skeptical that something so simple and informal can be useful.

Just the opposite is true. These informal techniques don’t get in the way of

successful testing; rather, they contribute substantially to productivity and

reliability in two major ways.

First, it is generally recognized that the earlier errors are found, the lower

the costs of correcting the errors and the higher the probability of correcting

them correctly. Second, programmers seem to experience a psychological

shift when computer-based testing commences. Internally induced pressures

seem to build rapidly and there is a tendency to want to ‘‘fix this darn bug

as soon as possible.’’ Because of these pressures, programmers tend to make

more mistakes when correcting an error found during computer-based test-

ing than they make when correcting an error found earlier.

Inspections and Walkthroughs
The three primary human testing methods are code inspections, walk-

throughs and user (or usability) testing. We cover the first two of these,

which are code-oriented methods, in this chapter. These methods can be

used at virtually any stage of software development, after an application is

deemed to be complete or as each module or unit is complete (see Chapter

5 for more information on module testing). We discuss user testing in

detail in Chapter 7.

The two code inspection methods have a lot in common, so we will dis-

cuss their similarities together. Their differences are enumerated in subse-

quent sections.

Inspections and walkthroughs involve a team of people reading or

visually inspecting a program. With either method, participants must

conduct some preparatory work. The climax is a ‘‘meeting of the minds,’’

at a participant conference. The objective of the meeting is to find errors

but not to find solutions to the errors—that is, to test, not debug.

Code inspections and walkthroughs have been widely used for some

time. In our opinion, the reason for their success is related to some of the

principles identified in Chapter 2.

20 The Art of Software Testing

C03 08/26/2011 12:8:40 Page 21

In a walkthrough, a group of developers—with three or four being an

optimal number—performs the review. Only one of the participants is the

author of the program. Therefore, the majority of program testing is con-

ducted by people other than the author, which follows testing principle 2,

which states that an individual is usually ineffective in testing his or her

own program. (Refer to Chapter 2, Table 2.1, and the subsequent discus-

sion for all 10 program testing principles.)

An inspection or walkthrough is an improvement over the older desk-

checking process (whereby a programmer reads his or her own program

before testing it). Inspections and walkthroughs are more effective, again

because people other than the program’s author are involved in the

process.

Another advantage of walkthroughs, resulting in lower debugging

(error-correction) costs, is the fact that when an error is found it usually is

located precisely in the code as opposed to black box testing where you

only receive an unexpected result. Moreover, this process frequently

exposes a batch of errors, allowing the errors to be corrected later en

masse. Computer-based testing, on the other hand, normally exposes only

a symptom of the error (e.g., the program does not terminate or the

program prints a meaningless result), and errors are usually detected and

corrected one by one.

These human testing methods generally are effective in finding from

30 to 70 percent of the logic-design and coding errors in typical programs.

They are not effective, however, in detecting high-level design errors, such

as errors made in the requirements analysis process. Note that a success

rate of 30 to 70 percent doesn’t mean that up to 70 percent of all errors

might be found. Recall from Chapter 2 that we can never know the total

number of errors in a program. Thus, what this means is that these meth-

ods are effective in finding up to 70 percent of all errors found by the end

of the testing process.

Of course, a possible criticism of these statistics is that the human pro-

cesses find only the ‘‘easy’’ errors (those that would be trivial to find with

computer-based testing) and that the difficult, obscure, or tricky errors

can be found only by computer-based testing. However, some testers

using these techniques have found that the human processes tend to

be more effective than the computer-based testing processes in finding

certain types of errors, while the opposite is true for other types of

errors (e.g., uninitialized variables versus divide by zero errors).

Program Inspections, Walkthroughs, and Reviews 21

C03 08/26/2011 12:8:40 Page 22

The implication is that inspections/walkthroughs and computer-based

testing are complementary; error-detection efficiency will suffer if one or

the other is not present.

Finally, although these processes are invaluable for testing new pro-

grams, they are of equal, or even higher, value in testing modifications

to programs. In our experience, modifying an existing program is a process

that is more error prone (in terms of errors per statement written) than

writing a new program. Therefore, program modifications also should

be subjected to these testing processes as well as regression testing

techniques.

Code Inspections
A code inspection is a set of procedures and error-detection techniques

for group code reading. Most discussions of code inspections focus on the

procedures, forms to be filled out, and so on. Here, after a short summary

of the general procedure, we will focus on the actual error-detection

techniques.

Inspection Team

An inspection team usually consists of four people. The first of the four

plays the role of moderator, which in this context is tantamount to

that of a quality-control engineer. The moderator is expected to be a

competent programmer, but he or she is not the author of the program

and need not be acquainted with the details of the program. Moderator

duties include:

� Distributing materials for, and scheduling, the inspection session.

� Leading the session.

� Recording all errors found.

� Ensuring that the errors are subsequently corrected.

The second team member is the programmer. The remaining team

members usually are the program’s designer (if different from the program-

mer) and a test specialist. The specialist should be well versed in software

testing and familiar with the most common programming errors, which we

discuss later in this chapter.

22 The Art of Software Testing

C03 08/26/2011 12:8:40 Page 23

Inspection Agenda

Several days in advance of the inspection session, the moderator distrib-

utes the program’s listing and design specification to the other participants.

The participants are expected to familiarize themselves with the material

prior to the session. During the session, two activities occur:

1. The programmer narrates, statement by statement, the logic of the

program. During the discourse, other participants should raise ques-

tions, which should be pursued to determine whether errors exist. It

is likely that the programmer, rather than the other team members,

will find many of the errors identified during this narration. In other

words, the simple act of reading aloud a program to an audience seems

to be a remarkably effective error-detection technique.

2. The program is analyzed with respect to checklists of historically

common programming errors (such a checklist is discussed in the

next section).

The moderator is responsible for ensuring that the discussions proceed

along productive lines and that the participants focus their attention on

finding errors, not correcting them. (The programmer corrects errors after

the inspection session.)

Upon the conclusion of the inspection session, the programmer is given

a list of the errors uncovered. If more than a few errors were found, or if

any of the errors require a substantial correction, the moderator might

make arrangements to reinspect the program after those errors have been

corrected. This subsequent list of errors is also analyzed, categorized, and

used to refine the error checklist to improve the effectiveness of future

inspections.

As stated, this inspection process usually concentrates on discovering

errors, not correcting them. That said, some teams may find that when a

minor problem is discovered, two or three people, including the program-

mer responsible for the code, may propose design changes to handle this

special case. The discussion of this minor problem may, in turn, focus

the group’s attention on that particular area of the design. During the dis-

cussion of the best way to alter the design to handle this minor problem,

someone may notice a second problem. Now that the group has seen two

problems related to the same aspect of the design, comments likely will

Program Inspections, Walkthroughs, and Reviews 23

C03 08/26/2011 12:8:41 Page 24

come thick and fast, with interruptions every few sentences. In a few min-

utes, this whole area of the design could be thoroughly explored, and any

problems made obvious.

The time and location of the inspection should be planned to prevent all

outside interruptions. The optimal amount of time for the inspection ses-

sion appears to be from 90 to 120 minutes. The session is a mentally taxing

experience, thus longer sessions tend to be less productive. Most inspec-

tions proceed at a rate of approximately 150 program statements per hour.

For that reason, large programs should be examined over multiple inspec-

tions, each dealing with one or several modules or subroutines.

Human Agenda

Note that for the inspection process to be effective, the testing group must

adopt an appropriate attitude. If, for example, the programmer views the

inspection as an attack on his or her character and adopts a defensive pos-

ture, the process will be ineffective. Rather, the programmer must a leave

his or her ego at the door and place the process in a positive and construc-

tive light, keeping in mind that the objective of the inspection is to find

errors in the program and, thus, improve the quality of the work. For this

reason, most people recommend that the results of an inspection be a

confidential matter, shared only among the participants. In particular, if

managers somehow make use of the inspection results (to assume or imply

that the programmer is inefficient or incompetent, for example), the pur-

pose of the process may be defeated.

Side Benefits of the Inspection Process

The inspection process has several beneficial side effects, in addition to its

main effect of finding errors. For one, the programmer usually receives

valuable feedback concerning programming style, choice of algorithms,

and programming techniques. The other participants gain in a similar way

by being exposed to another programmer’s errors and programming style.

In general, this type of software testing helps reinforce a team approach to

this particular project and to projects that involve these participants in

general. Reducing the potential for the evolution of an adversarial relation-

ship, in favor of a cooperative, team approach to projects, can lead to more

efficient and reliable program development.

24 The Art of Software Testing

C03 08/26/2011 12:8:41 Page 25

Finally, the inspection process is a way of identifying early the most

error-prone sections of the program, helping to focus attention more

directly on these sections during the computer-based testing processes

(number 9 of the testing principles given in Chapter 2).

An Error Checklist for Inspections
An important part of the inspection process is the use of a checklist to

examine the program for common errors. Unfortunately, some checklists

concentrate more on issues of style than on errors (e.g., ‘‘Are comments

accurate and meaningful?’’ and ‘‘Are if-else code blocks, and do-while

groups aligned?’’), and the error checks are too nebulous to be useful

(such as, ‘‘Does the code meet the design requirements?’’). The checklist in

this section, divided into six categories, was compiled after many years of

study of software errors. It is largely language-independent, meaning that

most of the errors can occur with any programming language. You may

wish to supplement this list with errors peculiar to your programming lan-

guage and with errors detected after completing the inspection process.

Data Reference Errors

Does a referenced variable have a value that is unset or uninitialized?

This probably is the most frequent programming error, occurring in

a wide variety of circumstances. For each reference to a data item

(variable, array element, field in a structure), attempt to ‘‘prove’’ in-

formally that the item has a value at that point.

For all array references, is each subscript value within the defined

bounds of the corresponding dimension?

For all array references, does each subscript have an integer value?

This is not necessarily an error in all languages, but, in general,

working with noninteger array references is a dangerous practice.

For all references through pointer or reference variables, is the refer-

enced memory currently allocated? This is known as the ‘‘dangling

reference’’ problem. It occurs in situations where the lifetime of a

pointer is greater than the lifetime of the referenced memory. One

instance occurs where a pointer references a local variable within

a procedure, the pointer value is assigned to an output parameter

or a global variable, the procedure returns (freeing the referenced

Program Inspections, Walkthroughs, and Reviews 25

C03 08/26/2011 12:8:41 Page 26

location), and later the program attempts to use the pointer value.

In a manner similar to checking for the prior errors, try to prove

informally that, in each reference using a pointer variable, the refer-

enced memory exists.

When a memory area has alias names with differing attributes, does

the data value in this area have the correct attributes when refer-

enced via one of these names? Situations to look for are the use of

the EQUIVALENCE statement in Fortran and the REDEFINES clause in

COBOL. As an example, a Fortran program contains a real variable A

and an integer variable B; both are made aliases for the same memory

area by using an EQUIVALENCE statement. If the program stores a

value into A and then references variable B, an error is likely present

since the machine would use the floating-point bit representation in

the memory area as an integer.

Sidebar 3.1: History of COBOL and Fortran

COBOL and Fortran are older programming languages that have

fueled business and scientific software development for generations

of computer hardware, operating systems and programmers.

COBOL (an acronym for COmmon Business Oriented Language)

first was defined about 1959 or 1960, and was designed to support

business application development on mainframe class computers.

The original specification included aspects of other existing languages

at the time. Big-name computer manufacturers and representatives of

the federal government participated in this effort to create a business-

oriented programming language that could run on a variety of hard-

ware and operating system platforms.

COBOL language standards have been reviewed and updated over

the years. By 2002, COBOL was available for most current operating

platforms and object-oriented versions supporting the .NET develop-

ment environment.

As the time of this writing, the latest version of COBOL is Visual

COBOL 2010.

Fortran (originally FORTRAN, but modern references generally

follow the uppercase/lowercase syntax) is a little older than COBOL,

26 The Art of Software Testing

C03 08/26/2011 12:8:41 Page 27

Does a variable’s value have a type or attribute other than what

the compiler expects? This situation might occur where a C or Cþþ
program reads a record into memory and references it by using a

structure, but the physical representation of the record differs from

the structure definition.

Are there any explicit or implicit addressing problems if, on the com-

puter being used, the units of memory allocation are smaller than the

units of addressable memory? For instance, in some environments,

fixed-length bit strings do not necessarily begin on byte boundaries,

but address only point-to-byte boundaries. If a program computes

the address of a bit string and later refers to the string through this

address, the wrong memory location may be referenced. This situa-

tion also could occur when passing a bit-string argument to a

subroutine.

If pointer or reference variables are used, does the referenced mem-

ory location have the attributes the compiler expects? An example of

such an error is where a Cþþ pointer upon which a data structure is

based is assigned the address of a different data structure.

If a data structure is referenced in multiple procedures or subrou-

tines, is the structure defined identically in each procedure?

When indexing into a string, are the limits of the string off by one

in indexing operations or in subscript references to arrays?

with early specifications defined in the early to middle 1950s. Like

COBOL, Fortran was designed for specific types of mainframe applica-

tion development, but in the scientific and numerical management

arenas. The name derives from an existing IBM system at the time,

Mathematical FORmula TRANslating System. Although the original

Fortran contained only 32 statements, it marked a significant improve-

ment over assembly-level programming that preceded it.

The current version as of the publication date of this book is Fortran

2008, formally approved by the appropriate standard committees

in 2010. Like COBOL, the evolution of Fortran added support for a

broad range of hardware and operating system platforms. However,

Fortran is probably used more in current development—as well as

older system maintenance—than COBOL.

Program Inspections, Walkthroughs, and Reviews 27

C03 08/26/2011 12:8:41 Page 28

For object-oriented languages, are all inheritance requirements met

in the implementing class?

Data Declaration Errors

Have all variables been explicitly declared? A failure to do so is not

necessarily an error, but is, nevertheless, a common source of trou-

ble. For instance, if a program subroutine receives an array parame-

ter, and fails to define the parameter as an array (as in a DIMENSION

statement), a reference to the array (such as C¼A(I)) is interpreted

as a function call, leading to the machine’s attempting to execute the

array as a program. Also, if a variable is not explicitly declared in an

inner procedure or block, is it understood that the variable is shared

with the enclosing block?

If all attributes of a variable are not explicitly stated in the declara-

tion, are the defaults well understood? For instance, the default

attributes received in Java are often a source of surprise when not

properly declared.

Where a variable is initialized in a declarative statement, is it prop-

erly initialized? In many languages, initialization of arrays and

strings is somewhat complicated and, hence, error prone.

Is each variable assigned the correct length and data type?

Is the initialization of a variable consistent with its memory type?

For instance, if a variable in a Fortran subroutine needs to be reini-

tialized each time the subroutine is called, it must be initialized with

an assignment statement rather than a DATA statement.

Are there any variables with similar names (e.g., VOLT and VOLTS)?

This is not necessarily an error, but it should be seen as a warning

that the names may have been confused somewhere within the

program.

Computation Errors

Are there any computations using variables having inconsistent

(such as nonarithmetic) data types?

Are there any mixed-mode computations? An example is when

working with floating-point and integer variables. Such occurrences

are not necessarily errors, but they should be explored carefully to

ensure that the conversion rules of the language are understood.

28 The Art of Software Testing

C03 08/26/2011 12:8:41 Page 29

Consider the following Java snippet showing the rounding error that

can occur when working with integers:

int x¼1;
int y¼2;
int z¼0;
z¼x/y;
System.out.println ("z¼ " þz);

OUTPUT:
z¼0

Are there any computations using variables having the same data

type but of different lengths?

Is the data type of the target variable of an assignment smaller than

the data type or a result of the right-hand expression?

Is an overflow or underflow expression possible during the computa-

tion of an expression? That is, the end result may appear to have

valid value, but an intermediate result might be too big or too small

for the programming language’s data types.

Is it possible for the divisor in a division operation to be zero?

If the underlying machine represents variables in base-2 form, are

there any sequences of the resulting inaccuracy? That is, 10 � 0.1 is

rarely equal to 1.0 on a binary machine.

Where applicable, can the value of a variable go outside the mean-

ingful range? For example, statements assigning a value to the varia-

ble PROBABILITY might be checked to ensure that the assigned value

will always be positive and not greater than 1.0.

For expressions containing more than one operator, are the assump-

tions about the order of evaluation and precedence of operators

correct?

Are there any invalid uses of integer arithmetic, particularly divi-

sions? For instance, if i is an integer variable, whether the expres-

sion 2�i/2¼¼i depends on whether i has an odd or an even value

and whether the multiplication or division is performed first.

Comparison Errors

Are there any comparisons between variables having different data types,

such as comparing a character string to an address, date, or number?

Program Inspections, Walkthroughs, and Reviews 29

C03 08/26/2011 12:8:41 Page 30

Are there any mixed-mode comparisons or comparisons between

variables of different lengths? If so, ensure that the conversion rules

are well understood.

Are the comparison operators correct? Programmers frequently con-

fuse such relations as at most, at least, greater than, not less than, and

less than or equal.

Does each Boolean expression state what it is supposed to state? Pro-

grammers often make mistakes when writing logical expressions in-

volving and, or, and not.

Are the operands of a Boolean operator Boolean? Have comparison

and Boolean operators been erroneously mixed together? This repre-

sents another frequent class of mistakes. Examples of a few typical

mistakes are illustrated here:

� If you want to determine whether i is between 2 and 10, the

expression 2<i<10 is incorrect. Instead, it should be (2<i)&&

(i<10).

� If you want to determine whether i is greater than x or y, i>xjjy
is incorrect. Instead, it should be (i>x)jj(i>y).

� If you want to compare three numbers for equality, if(a¼¼b¼¼c)

does something quite different.

� If you want to test the mathematical relation x>y>z, the correct

expression is (x>y)&&(y>z).

Are there any comparisons between fractional or floating-point num-

bers that are represented in base-2 by the underlying machine? This

is an occasional source of errors because of truncation and base-2

approximations of base-10 numbers.

For expressions containing more than one Boolean operator, are

the assumptions about the order of evaluation and the prece-

dence of operators correct? That is, if you see an expression

such as if((a¼¼2)&&(b¼¼2)jj(c¼¼3)), is it well understood

whether the and or the or is performed first?

Does the way in which the compiler evaluates Boolean expressions

affect the program? For instance, the statement

if(x¼¼0&&(x/y)>z)

may be acceptable for compilers that end the test as soon as one side

of an and is false, but may cause a division-by-zero error with other

compilers.

30 The Art of Software Testing

C03 08/26/2011 12:8:41 Page 31

Control-Flow Errors

If the program contains a multipath branch such as a computed

GOTO, can the index variable ever exceed the number of branch pos-

sibilities? For example, in the statement

GOTO(200,300,400),i

will i always have the value of 1, 2, or 3?

Will every loop eventually terminate? Devise an informal proof or

argument showing that each loop will terminate.

Will the program, module, or subroutine eventually terminate?

Is it possible that, because of the conditions upon entry, a loop will

never execute? If so, does this represent an oversight? For instance,

if you had the following for loop and while loop headed by the fol-

lowing statements:

for (i¼x;i<¼z;iþþ){
...
}

or . . .

while (NOTFOUND) {
...
}

what happens if x is greater than z or if NOTFOUND is initially false?

For a loop controlled by both iteration and a Boolean condition (e.g.,

a searching loop) what are the consequences of loop fall-through?

For example, for the psuedo-code loop headed by

DO I¼1 to TABLESIZE WHILE (NOTFOUND)

what happens if NOTFOUND never becomes false?

Are there any off-by-one errors, such as one too many or too few

iterations? This is a common error in zero-based loops. You will of-

ten forget to count 0 as a number. For example, if you want to create

Java code for a loop that iterates 10 times, the following would be

wrong, as it performs 11 iterations:

for (int i¼0;i<¼10;iþþ){
System.out.println(i);

}

Program Inspections, Walkthroughs, and Reviews 31

C03 08/26/2011 12:8:41 Page 32

Correct, the loop is iterated 10 times:

for (int i¼0; i<10;iþþ) {
System.out.println(i);

}

If the language contains a concept of statement groups or code

blocks (e.g., do-while or {...}), is there an explicit while for each

group, and do the instances of do correspond to their appropriate

groups? Is there a closing bracket for each open bracket? Most mod-

ern compilers will complain of such mismatches.

Are there any nonexhaustive decisions? For instance, if an input pa-

rameter’s expected values are 1, 2, or 3, does the logic assume that it

must be 3 if it is not 1 or 2? If so, is the assumption valid?

Interface Errors

Does the number of parameters received by this module equal the

number of arguments sent by each of the calling modules? Also, is

the order correct?

Do the attributes (e.g., data type and size) of each parameter match

the attributes of each corresponding argument?

Does the units system of each parameter match the units system of

each corresponding argument? For example, is the parameter

expressed in degrees but the argument expressed in radians?

Does the number of arguments passed by this module to another

module equal the number of parameters expected by that module?

Do the attributes of each argument passed to another module match

the attributes of the corresponding parameter in that module?

Does the units system of each argument passed to another module

match the units system of the corresponding parameter in that

module?

If built-in functions are invoked, are the number, attributes, and or-

der of the arguments correct?

If a module or class has multiple entry points, is a parameter ever

referenced that is not associated with the current point of entry?

Such an error exists in the second assignment statement in the

following PL/1 program:

32 The Art of Software Testing

C03 08/26/2011 12:8:41 Page 33

A: PROCEDURE (W,X);
W¼Xþ1;
RETURN

B: ENTRY (Y,Z);
Y¼XþZ;
END;

Does a subroutine alter a parameter that is intended to be only an

input value?

If global variables are present, do they have the same definition and

attributes in all modules that reference them?

Are constants ever passed as arguments? In some Fortran implemen-

tations a statement such as

CALL SUBX(J,3)

is dangerous, because if the subroutine SUBX assigns a value to its

second parameter, the value of the constant 3 will be altered.

Input/Output Errors

If files are explicitly declared, are their attributes correct?

Are the attributes on the file’s OPEN statement correct?

Does the format specification agree with the information in the I/O

statement? For instance, in Fortran, does each FORMAT statement

agree (in terms of the number and attributes of the items) with the

corresponding READ or WRITE statement?

Is sufficient memory available to hold the file your program will read?

Have all files been opened before use?

Have all files been closed after use?

Are end-of-file conditions detected and handled correctly?

Are I/O error conditions handled correctly?

Are there spelling or grammatical errors in any text that is printed or

displayed by the program?

Does the program properly handle ‘‘File not Found’’ errors?

Other Checks

If the compiler produces a cross-reference listing of identifiers, examine

it for variables that are never referenced or are referenced only once.

Program Inspections, Walkthroughs, and Reviews 33

C03 08/26/2011 12:8:41 Page 34

If the compiler produces an attribute listing, check the attributes of

each variable to ensure that no unexpected default attributes have

been assigned.

If the program compiled successfully, but the computer produced

one or more ‘‘warning’’ or ‘‘informational’’ messages, check each one

carefully. Warning messages are indications that the compiler sus-

pects you are doing something of questionable validity: Review all of

these suspicions. Informational messages may list undeclared varia-

bles or language uses that impede code optimization.

Is the program or module sufficiently robust? That is, does it check

its input for validity?

Is a function missing from the program?

This checklist is summarized in Tables 3.1 and 3.2.

Walkthroughs
The code walkthrough, like the inspection, is a set of procedures and

error-detection techniques for group code reading. It shares much in com-

mon with the inspection process, but the procedures are slightly different,

and a different error-detection technique is employed.

Like the inspection, the walkthrough is an uninterrupted meeting of

one to two hours in duration. The walkthrough team consists of three to

five people. One of these people plays a role similar to that of the modera-

tor in the inspection process; another person plays the role of a secretary

(a person who records all errors found); and a third person plays the role

of a tester. Suggestions as to who the three to five people should be vary. Of

course, the programmer is one of those people. Suggestions for the other

participants include:

� A highly experienced programmer

� A programming-language expert

� A new programmer (to give a fresh, unbiased outlook)

� The person who will eventually maintain the program

� Someone from a different project

� Someone from the same programming team as the programmer

34 The Art of Software Testing

C03 08/26/2011 12:8:42 Page 35

TABLE 3.1 Inspection Error Checklist Summary, Part I

Data Reference Computation

1. Unset variable used? 1. Computations on nonarithmetic

variables?

2. Subscripts within bounds? 2. Mixed-mode computations?

3. Noninteger subscripts? 3. Computations on variables of

different lengths?

4. Dangling references? 4. Target size less than size of

assigned value?

5. Correct attributes when aliasing? 5. Intermediate result overflow or

underflow?

6. Record and structure attributes match? 6. Division by zero?

7. Computing addresses of bit strings?

Passing bit-string arguments?

7. Base-2 inaccuracies?

8. Based storage attributes correct? 8. Variable’s value outside of

meaningful range?

9. Structure definitions match across

procedures?

9. Operator precedence

understood?

10. Off-by-one errors in indexing or

subscripting operations?

10. Integer divisions correct?

11. Inheritance requirements met?

Data Declaration Comparison

1. All variables declared? 1. Comparisons between

inconsistent variables?

2. Default attributes understood? 2. Mixed-mode comparisons?

3. Arrays and strings initialized properly? 3. Comparison relationships correct?

4. Correct lengths, types, and storage

classes assigned?

4. Boolean expressions correct?

5. Initialization consistent with storage

class?

5. Comparison and Boolean

expressions mixed?

6. Any variables with similar names? 6. Comparisons of base-2 fractional

values?

7. Operator precedence understood?

8. Compiler evaluation of Boolean

expressions understood?

Program Inspections, Walkthroughs, and Reviews 35

C03 08/26/2011 12:8:42 Page 36

TABLE 3.2 Inspection Error Checklist Summary, Part II

Control Flow Input/Output

1. Multiway branches exceeded? 1. File attributes correct?

2. Will each loop terminate? 2. OPEN statements correct?

3. Will program terminate? 3. Format specification

matches I/O statement?

4. Any loop bypasses because of entry conditions? 4. Buffer size matches record

size?

5. Possible loop fall-throughs correct? 5. Files opened before use?

6. Off-by-one iteration errors? 6. Files closed after use?

7. DO/END statements match? 7. End-of-file conditions

handled?

8. Any nonexhaustive decisions? 8. I/O errors handled?

9. Any textual or grammatical errors in output

information?

Interfaces Other Checks

1. Number of input parameters equal to number

of arguments?

1. Any unreferenced variables

in cross-reference listing?

2. Parameter and argument attributes match? 2. Attribute list what was

expected?

3. Parameter and argument units system match? 3. Any warning or

informational messages?

4. Number of arguments transmitted to called

modules equal to number of parameters?

4. Input checked for validity?

5. Attributes of arguments transmitted to called

modules equal to attributes of parameters?

5. Missing function?

6. Units system of arguments transmitted to called

modules equal to units system of parameters?

7. Number, attributes, and order of arguments to

built-in functions correct?

8. Any references to parameters not associated

with current point of entry?

9. Input-only arguments altered?

10. Global variable definitions consistent across

modules?

11. Constants passed as arguments?

36 The Art of Software Testing

C03 08/26/2011 12:8:42 Page 37

The initial procedure is identical to that of the inspection process: The

participants are given the materials several days in advance, to allow

them time to bone up on the program. However, the procedure in the

meeting is different. Rather than simply reading the program or using

error checklists, the participants ‘‘play computer.’’ The person designated

as the tester comes to the meeting armed with a small set of paper test

cases—representative sets of inputs (and expected outputs) for the pro-

gram or module. During the meeting, each test case is mentally executed;

that is, the test data are ‘‘walked through’’ the logic of the program. The

state of the program (i.e., the values of the variables) is monitored on

paper or a whiteboard.

Of course, the test cases must be simple in nature and few in number,

because people execute programs at a rate that is many orders of magni-

tude slower than a machine. Hence, the test cases themselves do not

play a critical role; rather, they serve as a vehicle for getting started and

for questioning the programmer about his or her logic and assumptions.

In most walkthroughs, more errors are found during the process of

questioning the programmer than are found directly by the test cases

themselves.

As in the inspection, the attitude of the participants is critical. Com-

ments should be directed toward the program rather than the programmer.

In other words, errors are not regarded as weaknesses in the person who

committed them. Rather, they are viewed as inherent to the difficulty of

the program development.

The walkthrough should have a follow-up process similar to that de-

scribed for the inspection process. Also, the side effects observed from in-

spections (identification of error-prone sections and education in errors,

style, and techniques) also apply to the walkthrough process.

Desk Checking
A third human error-detection process is the older practice of desk check-

ing. A desk check can be viewed as a one-person inspection or walk-

through: A person reads a program, checks it with respect to an error list,

and/or walks test data through it.

For most people, desk checking is relatively unproductive. One reason

is that it is a completely undisciplined process. A second, and more impor-

tant, reason is that it runs counter to testing principle 2 (see Chapter 2),

Program Inspections, Walkthroughs, and Reviews 37

C03 08/26/2011 12:8:42 Page 38

which states that people are generally ineffective in testing their own

programs. For this reason, you could deduce that desk checking is

best performed by a person other than the author of the program (e.g.,

two programmers might swap programs rather than desk check their

own), but even this is less effective than the walkthrough or inspec-

tion process. The reason is the synergistic effect of the walkthrough

or inspection team. The team session fosters a healthy environment

of competition; people like to show off by finding errors. In a desk-

checking process, there is no one to whom you can show off, thereby

precluding this apparently valuable effect. In short, desk checking

may be more valuable than doing nothing at all, but it is much less

effective than the inspection or walkthrough.

Peer Ratings
The last human review process is not associated with program testing

(i.e., its objective is not to find errors). Nevertheless, we include this pro-

cess here because it is related to the idea of code reading.

Peer rating is a technique of evaluating anonymous programs in

terms of their overall quality, maintainability, extensibility, usability,

and clarity. The purpose of the technique is to provide programmer self-

evaluation.

A programmer is selected to serve as an administrator of the process.

The administrator, in turn, selects approximately 6 to 20 participants (6 is

the minimum to preserve anonymity). The participants are expected to

have similar backgrounds (e.g., don’t group Java application programmers

with assembly language system programmers). Each participant is asked to

select two of his or her own programs to be reviewed. One program should

be representative of what the participant considers to be his or her finest

work; the other should be a program that the programmer considers to be

poorer in quality.

Once the programs have been collected, they are randomly distributed

to the participants. Each participant is given four programs to review. Two

of the programs are the ‘‘finest’’ programs and two are ‘‘poorer’’ programs,

but the reviewer is not told which is which. Each participant spends

30 minutes reviewing each program and then completes an evaluation

form. After reviewing all four programs, each participant rates the relative

quality of the four programs. The evaluation form asks the reviewer to

38 The Art of Software Testing

C03 08/26/2011 12:8:42 Page 39

answer, on a scale from 1 to 10 (1 meaning definitely yes and 10 meaning

definitely no), such questions as:

� Was the program easy to understand?

� Was the high-level design visible and reasonable?

� Was the low-level design visible and reasonable?

� Would it be easy for you to modify this program?

� Would you be proud to have written this program?

The reviewer also is asked for general comments and suggested

improvements.

After the review, the participants are given the anonymous evaluation

forms for their two contributed programs. They also are given a statistical

summary showing the overall and detailed ranking of their original pro-

grams across the entire set of programs, as well as an analysis of how their

ratings of other programs compared with those ratings of other reviewers

of the same program. The purpose of the process is to allow programmers

to self-assess their programming skills. As such, the process appears to be

useful in both industrial and classroom environments.

Summary
This chapter discussed a form of testing that developers do not often con-

sider: human code testing. Most people assume that because programs are

written for machine execution, machines should test programs as well.

This assumption is invalid. Human testing techniques are very effective at

revealing errors. In fact, most programming projects should include the

following human testing techniques:

� Code inspections using checklists

� Group walkthroughs

� Desk checking

� Peer reviews

Another form of human testing is user or usability testing, a black-box

technique that evaluates software from a hands-on, end-user perspective.

We cover this topic in detail in Chapter 7.

Program Inspections, Walkthroughs, and Reviews 39

C03 08/26/2011 12:8:42 Page 40

C04 08/25/2011 12:4:21 Page 41

4 Test-Case Design

Moving beyond the psychological issues discussed in Chapter 2, the

most important consideration in program testing is the design and

creation of effective test cases.

Testing, however creative and seemingly complete, cannot guarantee

the absence of all errors. Test-case design is so important because complete

testing is impossible. Put another way, a test of any program must be nec-

essarily incomplete. The obvious strategy, then, is to try to make tests as

complete as possible.

Given constraints on time and cost, the key issue of testing becomes:

What subset of all possible test cases has the highest probability of

detecting the most errors?

The study of test-case design methodologies supplies answers to this

question.

In general, the least effective methodology of all is random-input

testing—the process of testing a program by selecting, at random, some

subset of all possible input values. In terms of the likelihood of detecting

the most errors, a randomly selected collection of test cases has little

chance of being an optimal, or even close to optimal, subset. Therefore, in

this chapter, we want to develop a set of thought processes that enable you

to select test data more intelligently.

41

C04 08/25/2011 12:4:22 Page 42

Chapter 2 showed that exhaustive black-box and white-box testing are,

in general, impossible; at the same time, it suggested that a reasonable test-

ing strategy might feature elements of both. This is the strategy developed

in this chapter. You can develop a reasonably rigorous test by using certain

black-box–oriented test-case design methodologies and then supplement-

ing these test cases by examining the logic of the program, using white-box

methods.

The methodologies discussed in this chapter are:

Black Box White Box

Equivalence partitioning Statement coverage

Boundary value analysis Decision coverage

Cause-effect graphing Condition coverage

Error guessing Decision/condition coverage

Multiple-condition coverage

Although we will discuss these methods separately, we recommend that

you use a combination of most, if not all, of them to design a rigorous test

of a program, since each method has distinct strengths and weaknesses.

One method may find errors another method overlooks, for example.

Nobody ever promised that software testing would be easy. To quote an

old sage, ‘‘If you thought designing and coding that program was hard, you

ain’t seen nothing yet.’’

The recommended procedure is to develop test cases using the black-

box methods and then develop supplementary test cases, as necessary,

with white-box methods. We’ll discuss the more widely known white-box

methods first.

White-Box Testing
White-box testing is concerned with the degree to which test cases exer-

cise or cover the logic (source code) of the program. As we saw in Chap-

ter 2, the ultimate white-box test is the execution of every path in the

program; but complete path testing is not a realistic goal for a program

with loops.

42 The Art of Software Testing

C04 08/25/2011 12:4:22 Page 43

Logic Coverage Testing

If you back completely away from path testing, it may seem that a worthy

goal would be to execute every statement in the program at least once.

Unfortunately, this is a weak criterion for a reasonable white-box test. This

concept is illustrated in Figure 4.1. Assume that this figure represents a

small program to be tested. The equivalent Java code snippet follows:

public void foo(int A,int B,int X) {
if(A>1 && B¼¼0) {

X¼X/A;
}
if(A¼¼2 jj X>1) {

X¼Xþ1;
}

}

FIGURE 4.1 A Small Program to Be Tested.

Test-Case Design 43

C04 08/25/2011 12:4:23 Page 44

You could execute every statement by writing a single test case that

traverses path ace. That is, by setting A¼2, B¼0, and X¼3 at point a, every

statement would be executed once (actually, X could be assigned any inte-

ger value >1).

Unfortunately, this criterion is a rather poor one. For instance, perhaps

the first decision should be an or rather than an and. If so, this error would

go undetected. Perhaps the second decision should have stated X>0; this

error would not be detected. Also, there is a path through the program in

which X goes unchanged (the path abd). If this were an error, it would go

undetected. In other words, the statement coverage criterion is so weak

that it generally is useless.

A stronger logic coverage criterion is known as decision coverage or

branch coverage. This criterion states that you must write enough test cases

that each decision has a true and a false outcome at least once. In other

words, each branch direction must be traversed at least once. Examples of

branch or decision statements are switch-case, do-while, and if-else

statements. Multipath GOTO statements qualify in some programming

languages such as Fortran.

Decision coverage usually can satisfy statement coverage. Since every

statement is on some subpath emanating either from a branch statement

or from the entry point of the program, every statement must be executed

if every branch direction is executed. There are, however, at least three

exceptions:

� Programs with no decisions.

� Programs or subroutines/methods with multiple entry points. A given

statement might be executed only if the program is entered at a

particular entry point.

� Statements within ON-units. Traversing every branch direction will

not necessarily cause all ON-units to be executed.

Since we have deemed statement coverage to be a necessary condition,

decision coverage, a seemingly better criterion, should be defined to

include statement coverage. Hence, decision coverage requires that each

decision have a true and a false outcome, and that each statement be exe-

cuted at least once. An alternative and easier way of expressing it is that

each decision has a true and a false outcome, and that each point of entry

(including ON-units) be invoked at least once.

44 The Art of Software Testing

C04 08/25/2011 12:4:23 Page 45

This discussion considers only two-way decisions or branches and has to

be modified for programs that contain multipath decisions. Examples are

Java programs containing switch-case statements, Fortran programs con-

taining arithmetic (three-way) IF statements or computed or arithmetic

GOTO statements, and COBOL programs containing altered GOTO statements

or GO-TO-DEPENDING-ON statements. For such programs, the criterion is exer-

cising each possible outcome of all decisions at least once and invoking each

point of entry to the program or subroutine at least once.

In Figure 4.1, decision coverage can be met by two test cases covering

paths ace and abd or, alternatively, acd and abe. If we choose the latter

alternative, the two test-case inputs are A¼3, B¼0, X¼3 and A¼2, B¼1,

and X¼1.

Decision coverage is a stronger criterion than statement coverage, but it

still is rather weak. For instance, there is only a 50 percent chance that

we would explore the path where x is not changed (i.e., only if we chose

the former alternative). If the second decision were in error (if it should

have said X<1 instead of X>1), the mistake would not be detected by the

two test cases in the previous example.

A criterion that is sometimes stronger than decision coverage is condi-

tion coverage. In this case, you write enough test cases to ensure that each

condition in a decision takes on all possible outcomes at least once. But, as

with decision coverage, this does not always lead to the execution of each

statement, so an addition to the criterion is that each point of entry to the

program or subroutine, as well as ON-units, be invoked at least once. For

instance, the branching statement:

DO K¼0 to 50 WHILE (JþK<QUEST)

contains two conditions: Is K less than or equal to 50, and is JþK less than

QUEST? Hence, test cases would be required for the situations K<¼50, K>50

(to reach the last iteration of the loop), JþK<QUEST, and JþK>¼QUEST.

Figure 4.1 has four conditions: A>1, B¼0, A¼2, and X>1. Hence, enough

test cases are needed to force the situations where A>1, A<¼1, B¼0, and

B<>0 are present at point a and where A¼2, A<>2, X>1, and X<¼1 are

present at point b. A sufficient number of test cases satisfying the criterion,

and the paths traversed by each, are:

A¼2, B¼0, X¼4 ace
A¼1, B¼1, X¼1 adb

Test-Case Design 45

C04 08/25/2011 12:4:23 Page 46

Note that although the same number of test cases was generated for this

example, condition coverage usually is superior to decision coverage in

that it may (but does not always) cause every individual condition in a

decision to be executed with both outcomes, whereas decision coverage

does not. For instance, in the same branching statement

DO K¼0 to 50 WHILE (JþK<QUEST)

is a two-way branch (execute the loop body or skip it). If you are using

decision testing, the criterion can be satisfied by letting the loop run from

K¼0 to 51, without ever exploring the circumstance where the WHILE clause

becomes false. With the condition criterion, however, a test case would be

needed to generate a false outcome for the conditions JþK<QUEST.

Although the condition coverage criterion appears, at first glance, to

satisfy the decision coverage criterion, it does not always do so. If the deci-

sion IF(A & B) is being tested, the condition coverage criterion would let

you write two test cases—A is true, B is false, and A is false, B is true—but

this would not cause the THEN clause of the IF to execute. The condition

coverage tests for the earlier example covered all decision outcomes, but

this was only by chance. For instance, two alternative test cases

A¼1, B¼0, X¼3
A¼2, B¼1, X¼1

cover all condition outcomes but only two of the four decision outcomes

(both of them cover path abe and, hence, do not exercise the true outcome

of the first decision and the false outcome of the second decision).

The obvious way out of this dilemma is a criterion called decision/

condition coverage. It requires sufficient test cases such that each condition

in a decision takes on all possible outcomes at least once, each decision

takes on all possible outcomes at least once, and each point of entry is

invoked at least once.

Aweakness with decision/condition coverage is that although it may ap-

pear to exercise all outcomes of all conditions, it frequently does not, be-

cause certain conditions mask other conditions. To see this, examine

Figure 4.2. The flowchart in this figure is the way a compiler would gener-

ate machine code for the program in Figure 4.1. The multicondition deci-

sions in the source program have been broken into individual decisions

and branches because most machines do not have a single instruction that

makes multicondition decisions. A more thorough test coverage, then,

46 The Art of Software Testing

C04 08/25/2011 12:4:24 Page 47

appears to be the exercising of all possible outcomes of each primitive de-

cision. The two previous decision coverage test cases do not accomplish

this; they fail to exercise the false outcome of decision H and the true out-

come of decision K.

The reason, as shown in Figure 4.2, is that results of conditions in the

and and the or expressions can mask or block the evaluation of other con-

ditions. For instance, if an and condition is false, none of the subsequent

conditions in the expression need be evaluated. Likewise, if an or condi-

tion is true, none of the subsequent conditions need be evaluated. Hence,

errors in logical expressions are not necessarily revealed by the condition

coverage and decision/condition coverage criteria.

A criterion that covers this problem, and then some, is multiple-condition

coverage. This criterion requires that you write sufficient test cases such that

all possible combinations of condition outcomes in each decision, and all

FIGURE 4.2 Machine Code for the Program in Figure 4.1.

Test-Case Design 47

C04 08/25/2011 12:4:25 Page 48

points of entry, are invoked at least once. For instance, consider the follow-

ing sequence of pseudo-code.

NOTFOUND¼TRUE;
DO I¼1 to TABSIZE WHILE (NOTFOUND); /*SEARCH TABLE*/

.. . searching logic.. . ;
END

The four situations to be tested are:

1. I<¼TABSIZE and NOTFOUND is true.

2. I<¼TABSIZE and NOTFOUND is false (finding the entry before

hitting the end of the table).

3. I>TABSIZE and NOTFOUND is true (hitting the end of the table without

finding the entry).

4. I>TABSIZE and NOTFOUND is false (the entry is the last one in the

table).

It should be easy to see that a set of test cases satisfying the multiple-

condition criterion also satisfies the decision coverage, condition coverage,

and decision/condition coverage criteria.

Returning to Figure 4.1, test cases must cover eight combinations:

1. A>1, B¼0 5. A¼2, X>1

2. A>1, B<>0 6. A¼2, X<¼1

3. A<¼1, B¼0 7. A<>2, X>1

4. A<¼1, B<>0 8. A<>2, X<¼1

Note Recall from the Java code snippet presented earlier that test cases

5 through 8 express values at the point of the second if statement. Since X

may be altered above this if statement, the values needed at this if state-

ment must be backed up through the logic to find the corresponding input

values.

These combinations to be tested do not necessarily imply that eight test

cases are needed. In fact, they can be covered by four test cases. The test-

case input values, and the combinations they cover, are as follows:

A¼2, B¼0, X¼4 Covers 1, 5

A¼2, B¼1, X¼1 Covers 2, 6

48 The Art of Software Testing

C04 08/25/2011 12:4:25 Page 49

A¼1, B¼0, X¼2 Covers 3, 7

A¼1, B¼1, X¼1 Covers 4, 8

The fact that there are four test cases and four distinct paths in Figure 4.1

is just coincidence. In fact, these four test cases do not cover every path; they

miss the path acd. For instance, you would need eight test cases for the

following decision:

if(x¼¼y && length(z)¼¼0 && FLAG) {
j¼1;

else
i¼1;

}

although it contains only two paths. In the case of loops, the number of

test cases required by the multiple-condition criterion is normally much

less than the number of paths.

In summary, for programs containing only one condition per decision,

a minimum test criterion is a sufficient number of test cases to: (1) invoke

all outcomes of each decision at least once, and (2) invoke each point of

entry (such as entry point or ON-unit) at least once, to ensure that all state-

ments are executed at least once. For programs containing decisions hav-

ing multiple conditions, the minimum criterion is a sufficient number of

test cases to invoke all possible combinations of condition outcomes

in each decision, and all points of entry to the program, at least once.

(The word ‘‘possible’’ is inserted because some combinations may be found

to be impossible to create.)

Black-Box Testing
As we discussed in Chapter 2, black-box (data-driven or input/output

driven) testing is based on program specifications. The goal is to find areas

wherein the program does not behave according to its specifications.

Equivalence Partitioning

Chapter 2 described a good test case as one that has a reasonable probabil-

ity of finding an error; it also stated that an exhaustive input test of a pro-

gram is impossible. Hence, when testing a program, you are limited to a

Test-Case Design 49

C04 08/25/2011 12:4:26 Page 50

small subset of all possible inputs. Of course, then, you want to select the

‘‘right’’ subset, that is, the subset with the highest probability of finding the

most errors.

One way of locating this subset is to realize that a well-selected test case

also should have two other properties:

1. It reduces, by more than a count of one, the number of other test

cases that must be developed to achieve some predefined goal of ‘‘rea-

sonable’’ testing.

2. It covers a large set of other possible test cases. That is, it tells us

something about the presence or absence of errors over and above

this specific set of input values.

These properties, although they appear to be similar, describe two dis-

tinct considerations. The first implies that each test case should invoke as

many different input considerations as possible to minimize the total num-

ber of test cases necessary. The second implies that you should try to parti-

tion the input domain of a program into a finite number of equivalence

classes such that you can reasonably assume (but, of course, not be abso-

lutely sure) that a test of a representative value of each class is equivalent

to a test of any other value. That is, if one test case in an equivalence class

detects an error, all other test cases in the equivalence class would be

expected to find the same error. Conversely, if a test case did not detect an

error, we would expect that no other test cases in the equivalence class

would fall within another equivalence class, since equivalence classes may

overlap one another.

These two considerations form a black-box methodology known as

equivalence partitioning. The second consideration is used to develop a set

of ‘‘interesting’’ conditions to be tested. The first consideration is then used

to develop a minimal set of test cases covering these conditions.

An example of an equivalence class in the triangle program of Chapter 1

is the set ‘‘three equal-valued numbers having integer values greater than

zero.’’ By identifying this as an equivalence class, we are stating that if no

error is found by a test of one element of the set, it is unlikely that an error

would be found by a test of another element of the set. In other words, our

testing time is best spent elsewhere: in different equivalence classes.

Test-case design by equivalence partitioning proceeds in two steps:

(1) identifying the equivalence classes and (2) defining the test cases.

50 The Art of Software Testing

C04 08/25/2011 12:4:26 Page 51

Identifying the Equivalence Classes The equivalence classes are identi-

fied by taking each input condition (usually a sentence or phrase in the

specification) and partitioning it into two or more groups. You can use the

table in Figure 4.3 to do this. Notice that two types of equivalence classes

are identified: valid equivalence classes represent valid inputs to the pro-

gram, and invalid equivalence classes represent all other possible states

of the condition (i.e., erroneous input values). Thus, we are adhering to

principle 5, discussed in Chapter 2, which stated you must focus attention

on invalid or unexpected conditions.

Given an input or external condition, identifying the equivalence clas-

ses is largely a heuristic process. Follow these guidelines:

1. If an input condition specifies a range of values (e.g., ‘‘the item

count can be from 1 to 999’’), identify one valid equivalence class

(1<item count<999) and two invalid equivalence classes

(item count<1 and item count>999).

2. If an input condition specifies the number of values (e.g., ‘‘one

through six owners can be listed for the automobile’’), identify one

valid equivalence class and two invalid equivalence classes (no own-

ers and more than six owners).

3. If an input condition specifies a set of input values, and there is

reason to believe that the program handles each differently (‘‘type

External
condition

Valid equivalence
classes

Invalid equivalence
classes

FIGURE 4.3 A Form for Enumerating Equivalence Classes.

Test-Case Design 51

C04 08/25/2011 12:4:26 Page 52

of vehicle must be BUS, TRUCK, TAXICAB, PASSENGER, or

MOTORCYCLE’’), identify a valid equivalence class for each and one

invalid equivalence class (‘‘TRAILER,’’ for example).

4. If an input condition specifies a ‘‘must-be’’ situation, such as ‘‘first

character of the identifier must be a letter,’’ identify one valid equiv-

alence class (it is a letter) and one invalid equivalence class (it is not a

letter).

If there is any reason to believe that the program does not handle

elements in an equivalence class identically, split the equivalence class

into smaller equivalence classes. We will illustrate an example of this

process shortly.

Identifying the Test Cases The second step is the use of equivalence

classes to identify the test cases. The process is as follows:

1. Assign a unique number to each equivalence class.

2. Until all valid equivalence classes have been covered by (incorpo-

rated into) test cases, write a new test case covering as many of the

uncovered valid equivalence classes as possible.

3. Until your test cases have covered all invalid equivalence classes,

write a test case that covers one, and only one, of the uncovered

invalid equivalence classes.

The reason that individual test cases cover invalid cases is that certain

erroneous-input checks mask or supersede other erroneous-input checks.

For instance, if the specification states ‘‘enter book type (HARDCOVER,

SOFTCOVER, or LOOSE) and amount (1–999),’’ the test case, (XYZ 0),

expressing two error conditions (invalid book type and amount) will prob-

ably not exercise the check for the amount, since the program may say

‘‘XYZ IS UNKNOWN BOOK TYPE’’ and not bother to examine the remain-

der of the input.

An Example

As an example, assume that we are developing a compiler for a subset

of the Fortran language, and we wish to test the syntax checking of the

DIMENSION statement. The specification is listed below. (Note: This is not

52 The Art of Software Testing

C04 08/25/2011 12:4:26 Page 53

the full Fortran DIMENSION statement; it has been edited considerably to

make it textbook size. Do not be deluded into thinking that the testing of

actual programs is as easy as the examples in this book.) In the specifica-

tion, items in italics indicate syntactic units for which specific entities

must be substituted in actual statements; brackets are used to indicate op-

tion items; and an ellipsis indicates that the preceding item may appear

multiple times in succession.

A DIMENSION statement is used to specify the dimensions of arrays.

The form of the DIMENSION statement is

DIMENSION ad[,ad]...

where ad is an array descriptor of the form

n(d[,d]...)

where n is the symbolic name of the array and d is a dimension

declarator. Symbolic names can be one to six letters or digits, the first

of which must be a letter. The minimum and maximum numbers of

dimension declarations that can be specified for an array are one and

seven, respectively. The form of a dimension declarator is

[lb:]ub

where lb and ub are the lower and upper dimension bounds. A

bound may be a constant in the range �65534 to 65535 or the name

of an integer variable (but not an array element name). If lb is not

specified, it is assumed to be 1. The value of ub must be greater than

or equal to lb. If lb is specified, its value may be negative, 0, or posi-

tive. As for all statements, the DIMENSION statement may be contin-

ued over multiple lines.

The first step is to identify the input conditions and, from these, locate

the equivalence classes. These are tabulated in Table 4.1. The numbers in

the table are unique identifiers of the equivalence classes.

The next step is to write a test case covering one or more valid equiva-

lence classes. For instance, the test case

DIMENSION A(2)

covers classes 1, 4, 7, 10, 12, 15, 24, 28, 29, and 43.

Test-Case Design 53

C04 08/25/2011 12:4:27 Page 54

The next step is to devise one or more test cases covering the remaining

valid equivalence classes. One test case of the form

DIMENSION A 12345 (I,9,J4XXXX,65535,1,KLM,
X,1000, BBB(-65534:100,0:1000,10:10, I:65535)

covers the remaining classes. The invalid input equivalence classes, and a

test case representing each, are:

TABLE 4.1 Equivalence Classes

Input Condition

Valid Equivalence

Classes

Invalid Equivalence

Classes

Number of array

descriptors

one (1), > one (2) none (3)

Size of array name 1–6 (4) 0 (5), >6 (6)

Array name has letters (7),

has digits (8)

has something

else (9)

Array name starts with letter yes (10) no (11)

Number of dimensions 1–7 (12) 0 (13), >7 (14)

Upper bound is constant (15),

integer variable (16)

array element name (17),

something else (18)

Integer variable name has letter (19), has

digits (20)

has something else (21)

Integer variable starts with

letter

yes (22) no (23)

Constant –65534–65535

(24)

<–65534 (25),

>65535 (26)

Lower bound specified yes (27), no (28)

Upper bound to lower

bound

greater than (29),

equal (30)

less than (31)

Specified lower bound negative (32), zero

(33), > 0 (34)

Lower bound is constant (35),

integer variable (36)

array element name (37),

something else (38)

Lower bound is one (39) ub>¼1 (40), ub<1 (41)

Multiple lines yes (42), no (43)

54 The Art of Software Testing

C04 08/25/2011 12:4:27 Page 55

(3): DIMENSION
(5): DIMENSION (10)
(6): DIMENSION A234567(2)
(9): DIMENSION A.1(2)

(11): DIMENSION 1A(10)
(13): DIMENSION B
(14): DIMENSION B(4,4,4,4,4,4,4,4)
(17): DIMENSION B(4,A(2))
(18): DIMENSION B(4,,7)
(21): DIMENSION C(I.,10)
(23): DIMENSION C(10,1J)
(25): DIMENSION D(- 65535:1)
(26): DIMENSION D(65536)
(31): DIMENSION D(4:3)
(37): DIMENSION D(A(2):4)
(38): D(.:4)
(43): DIMENSION D(0)

Hence, the equivalence classes have been covered by 17 test cases. You

may want to consider how these test cases would compare to a set of test

cases derived in an ad hoc manner.

Although equivalence partitioning is vastly superior to a random selec-

tion of test cases, it still has deficiencies. It overlooks certain types of high-

yield test cases, for example. The next two methodologies, boundary value

analysis and cause-effect graphing, cover many of these deficiencies.

Boundary Value Analysis

Experience shows that test cases that explore boundary conditions have a

higher payoff than test cases that do not. Boundary conditions are those

situations directly on, above, and beneath the edges of input equivalence

classes and output equivalence classes. Boundary value analysis differs

from equivalence partitioning in two respects:

1. Rather than selecting any element in an equivalence class as being

representative, boundary value analysis requires that one or more ele-

ments be selected such that each edge of the equivalence class is the

subject of a test.

2. Rather than just focusing attention on the input conditions (input

space), test cases are also derived by considering the result space

(output equivalence classes).

Test-Case Design 55

C04 08/25/2011 12:4:27 Page 56

It is difficult to present a ‘‘cookbook’’ for boundary value analysis, since

it requires a degree of creativity and a certain amount of specialization

toward the problem at hand. (Hence, like many other aspects of testing, it

is more a state of mind than anything else.) However, a few general guide-

lines are in order:

1. If an input condition specifies a range of values, write test cases for

the ends of the range, and invalid-input test cases for situations just

beyond the ends. For instance, if the valid domain of an input value

is –1.0 to 1.0, write test cases for the situations –1.0, 1.0, –1.001,

and 1.001.

2. If an input condition specifies a number of values, write test cases for

the minimum and maximum number of values and one beneath and

beyond these values. For instance, if an input file can contain 1–255

records, write test cases for 0, 1, 255, and 256 records.

3. Use guideline 1 for each output condition. For instance, if a payroll

program computes the monthly FICA deduction, and if the minimum

is $0.00 and the maximum is $1,165.25, write test cases that cause

$0.00 and $1,165.25 to be deducted. Also, see whether it is possible

to invent test cases that might cause a negative deduction or a deduc-

tion of more than $1,165.25.

Note that it is important to examine the boundaries of the result

space because it is not always the case that the boundaries of the in-

put domains represent the same set of circumstances as the bounda-

ries of the output ranges (e.g., consider a sine subroutine). Also, it is

not always possible to generate a result outside of the output range;

nonetheless, it is worth considering the possibility.

4. Use guideline 2 for each output condition. If an information retrieval

system displays the most relevant abstracts based on an input re-

quest, but never more than four abstracts, write test cases such that

the program displays zero, one, and four abstracts, and write a test

case that might cause the program to erroneously display five

abstracts.

5. If the input or output of a program is an ordered set (a sequential file,

for example, or a linear list or a table), focus attention on the first and

last elements of the set.

6. In addition, use your ingenuity to search for other boundary

conditions.

56 The Art of Software Testing

C04 08/25/2011 12:4:27 Page 57

The triangle analysis program of Chapter 1 can illustrate the need for

boundary value analysis. For the input values to represent a triangle, they

must be integers greater than 0 where the sum of any two is greater than

the third. If you were defining equivalent partitions, you might define one

where this condition is met and another where the sum of two of the inte-

gers is not greater than the third. Hence, two possible test cases might be

3–4–5 and 1–2–4. However, we have missed a likely error. That is, if an

expression in the program were coded as AþB>¼C instead of AþB>C, the

program would erroneously tell us that 1–2–3 represents a valid scalene

triangle. Hence, the important difference between boundary value analysis

and equivalence partitioning is that boundary value analysis explores situ-

ations on and around the edges of the equivalence partitions.

As an example of a boundary value analysis, consider the following

program specification:

MTEST is a program that grades multiple-choice examinations. The

input is a data file named OCR, with multiple records that are 80

characters long. Per the file specification, the first record is a title

used as a title on each output report. The next set of records

describes the correct answers on the exam. These records contain a

‘‘2’’ as the last character in column 80. In the first record of this set,

the number of questions is listed in columns 1–3 (a value of 1–999).

Columns 10–59 contain the correct answers for questions 1–50

(any character is valid as an answer). Subsequent records contain, in

columns 10–59, the correct answers for questions 51–100, 101–150,

and so on.

The third set of records describes the answers of each student;

each of these records contains a ‘‘3’’ in column 80. For each student,

the first record contains the student’s name or number in columns 1–

9 (any characters); columns 10–59 contain the student’s answers for

questions 1–50. If the test has more than 50 questions, subsequent

records for the student contain answers 51–100, 101–150, and so on,

in columns 10–59. The maximum number of students is 200. The

input data are illustrated in Figure 4.4. The four output records are:

1. A report, sorted by student identifier, showing each student’s

grade (percentage of answers correct) and rank.

2. A similar report, but sorted by grade.

Test-Case Design 57

C04 08/25/2011 12:4:27 Page 58

3. A report indicating the mean, median, and standard deviation

of the grades.

4. A report, ordered by question number, showing the percent-

age of students answering each question correctly.

We can begin by methodically reading the specification, looking for in-

put conditions. The first boundary input condition is an empty input file.

The second input condition is the title record; boundary conditions are a

missing title record and the shortest and longest possible titles. The next

input conditions are the presence of correct-answer records and the

number-of-questions field on the first answer record. The equivalence class

1 80

Title

1 3 4 9 10 59 60 79 80

Correct answers 1–50 2
No. of

questions

1 9 10 59 60 79 80

Correct answers 51–100 2

1 9 10 59 60 79 80

Correct answers 1–50 3Student identifier

1 9 10 59 60 79 80

Correct answers 51–100 3

1 9 10 59 60 79 80

Correct answers 1–50 3Student identifier

FIGURE 4.4 Input to the MTEST Program.

58 The Art of Software Testing

C04 08/25/2011 12:4:27 Page 59

for the number of questions is not 1–999, because something special hap-

pens at each multiple of 50 (i.e., multiple records are needed). A reason-

able partitioning of this into equivalence classes is 1–50 and 51–999.

Hence, we need test cases where the number-of-questions field is set to 0,

1, 50, 51, and 999. This covers most of the boundary conditions for the

number of correct-answer records; however, three more interesting situa-

tions are the absence of answer records and having one too many and one

too few answer records (e.g., the number of questions is 60, but there are

three answer records in one case and one answer record in the other case).

The unique test cases identified so far are:

1. Empty input file

2. Missing title record

3. 1-character title

4. 80-character title

5. 1-question exam

6. 50-question exam

7. 51-question exam

8. 999-question exam

9. 0-question exam

10. Number-of-questions field with nonnumeric value

11. No correct-answer records after title record

12. One too many correct-answer records

13. One too few correct-answer records

The next input conditions are related to the students’ answers. The

boundary value test cases here appear to be:

14. 0 students

15. 1 student

16. 200 students

17. 201 students

18. A student has one answer record, but there are two correct-answer

records.

19. The above student is the first student in the file.

20. The above student is the last student in the file.

21. A student has two answer records, but there is just one correct-

answer record.

Test-Case Design 59

C04 08/25/2011 12:4:27 Page 60

22. The above student is the first student in the file.

23. The above student is the last student in the file.

You also can derive a useful set of test cases by examining the output

boundaries, although some of the output boundaries (e.g., empty report 1)

are covered by the existing test cases. The boundary conditions of reports

1 and 2 are:

0 students (same as test 14)

1 student (same as test 15)

200 students (same as test 16)

24. All students receive the same grade.

25. All students receive a different grade.

26. Some, but not all, students receive the same grade (to see if ranks are

computed correctly).

27. A student receives a grade of 0.

28. A student receives a grade of 10.

29. A student has the lowest possible identifier value (to check the sort).

30. A student has the highest possible identifier value.

31. The number of students is such that the report is just large enough to

fit on one page (to see if an extraneous page is printed).

32. The number of students is such that all students but one fit on one

page.

The boundary conditions from report 3 (mean, median, and standard

deviation) are:

33. The mean is at its maximum (all students have a perfect score).

34. The mean is 0 (all students receive a grade of 0).

35. The standard deviation is at its maximum (one student receives a

0 and the other receives a 100).

36. The standard deviation is 0 (all students receive the same grade).

Tests 33 and 34 also cover the boundaries of the median. Another useful

test case is the situation where there are 0 students (looking for a division

by 0 in computing the mean), but this is identical to test case 14.

60 The Art of Software Testing

C04 08/25/2011 12:4:27 Page 61

An examination of report 4 yields the following boundary value tests:

37. All students answer question 1 correctly.

38. All students answer question 1 incorrectly.

39. All students answer the last question correctly.

40. All students answer the last question incorrectly.

41. The number of questions is such that the report is just large enough

to fit on one page.

42. The number of questions is such that all questions but one fit on one

page.

An experienced programmer would probably agree at this point that

many of these 42 test cases represent common errors that might have been

made in developing this program, yet most of these errors probably would

go undetected if a random or ad hoc test-case generation method were

used. Boundary value analysis, if practiced correctly, is one of the most

useful test-case design methods. However, it often is used ineffectively be-

cause the technique, on the surface, sounds simple. You should understand

that boundary conditions may be very subtle and, hence, identification of

them requires a lot of thought.

Cause-Effect Graphing

One weakness of boundary value analysis and equivalence partitioning is

that they do not explore combinations of input circumstances. For instance,

perhaps the MTEST program of the previous section fails when the prod-

uct of the number of questions and the number of students exceeds some

limit (the program runs out of memory, for example). Boundary value test-

ing would not necessarily detect such an error.

The testing of input combinations is not a simple task because even if

you equivalence-partition the input conditions, the number of combina-

tions usually is astronomical. If you have no systematic way of selecting a

subset of input conditions, you’ll probably select an arbitrary subset of

conditions, which could lead to an ineffective test.

Cause-effect graphing aids in selecting, in a systematic way, a high-yield

set of test cases. It has a beneficial side effect in pointing out incomplete-

ness and ambiguities in the specification.

Test-Case Design 61

C04 08/25/2011 12:4:27 Page 62

A cause-effect graph is a formal language into which a natural-language

specification is translated. The graph actually is a digital logic circuit (a

combinatorial logic network), but instead of standard electronics notation,

a somewhat simpler notation is used. No knowledge of electronics is nec-

essary other than an understanding of Boolean logic (i.e., of the logic oper-

ators and, or, and not).

The following process is used to derive test cases:

1. The specification is divided into workable pieces. This is necessary be-

cause cause-effect graphing becomes unwieldy when used on large spec-

ifications. For instance, when testing an e-commerce system, a workable

piece might be the specification for choosing and verifying a single item

placed in a shopping cart. When testing a Web page design, you might

test a single menu tree or even a less complex navigation sequence.

2. The causes and effects in the specification are identified. A cause is a

distinct input condition or an equivalence class of input conditions.

An effect is an output condition or a system transformation (a linger-

ing effect that an input has on the state of the program or system).

For instance, if a transaction causes a file or database record to be

updated, the alteration is a system transformation; a confirmation

message would be an output condition.

You identify causes and effects by reading the specification word by

word and underlining words or phrases that describe causes and effects.

Once identified, each cause and effect is assigned a unique number.

3. The semantic content of the specification is analyzed and trans-

formed into a Boolean graph linking the causes and effects. This is

the cause-effect graph.

4. The graph is annotated with constraints describing combinations of

causes and/or effects that are impossible because of syntactic or envi-

ronmental constraints.

5. By methodically tracing state conditions in the graph, you convert

the graph into a limited-entry decision table. Each column in the

table represents a test case.

6. The columns in the decision table are converted into test cases.

The basic notation for the graph is shown in Figure 4.5. Think of each

node as having the value 0 or 1; 0 represents the ‘‘absent’’ state and 1 repre-

sents the ‘‘present’’ state.

62 The Art of Software Testing

C04 08/25/2011 12:4:27 Page 63

� The identity function states that if a is 1, b is 1; else b is 0.

� The not function states that if a is 1, b is 0, else b is 1.

� The or function states that if a or b or c is 1, d is 1; else d is 0.

� The and function states that if both a and b are 1, c is 1; else c is 0.

The latter two functions (or and and) are allowed to have any number of

inputs.

To illustrate a small graph, consider the following specification:

The character in column 1 must be an ‘‘A’’ or a ‘‘B.’’ The character in

column 2 must be a digit. In this situation, the file update is made. If

the first character is incorrect, message X12 is issued. If the second char-

acter is not a digit, message X13 is issued.

The causes are:

1—character in column 1 is ‘‘A’’

2—character in column 1 is ‘‘B’’

3—character in column 2 is a digit

FIGURE 4.5 Basic Cause-Effect Graph Symbols.

Test-Case Design 63

C04 08/25/2011 12:4:28 Page 64

and the effects are:

70—update made

71—message X12 is issued

72—message X13 is issued

The cause-effect graph is shown in Figure 4.6. Notice the intermediate

node 11 that was created. You should confirm that the graph represents the

specification by setting all possible states of the causes and verifying that

the effects are set to the correct values. For readers familiar with logic dia-

grams, Figure 4.7 is the equivalent logic circuit.

Although the graph in Figure 4.6 represents the specification, it does

contain an impossible combination of causes—it is impossible for both

causes 1 and 2 to be set to 1 simultaneously. In most programs, certain

combinations of causes are impossible because of syntactic or environmen-

tal considerations (a character cannot be an ‘‘A’’ and a ‘‘B’’ simultaneously).

FIGURE 4.6 Sample Cause-Effect Graph.

FIGURE 4.7 Logic Diagram Equivalent to Figure 4.6.

64 The Art of Software Testing

C04 08/25/2011 12:4:29 Page 65

To account for these, the notation in Figure 4.8 is used. The E constraint

states that it must always be true that, at most, one of a and b can be 1 (a

and b cannot be 1 simultaneously). The I constraint states that at least one

of a, b, and c must always be 1 (a, b, and c cannot be 0 simultaneously).

The O constraint states that one, and only one, of a and b must be 1. The R

constraint states that for a to be 1, bmust be 1 (i.e., it is impossible for a to

be 1 and b to be 0).

There frequently is a need for a constraint among effects. The M con-

straint in Figure 4.9 states that if effect a is 1, effect b is forced to 0.

FIGURE 4.8 Constraint Symbols.

FIGURE 4.9 Symbol for ‘‘Masks’’ Constraint.

Test-Case Design 65

C04 08/25/2011 12:4:31 Page 66

Returning to the preceding simple example, we see that it is physically

impossible for causes 1 and 2 to be present simultaneously, but it is possi-

ble for neither to be present. Hence, they are linked with the E constraint,

as shown in Figure 4.10.

To illustrate how cause-effect graphing is used to derive test cases, we

use the following specification for a debugging command in an interactive

system.

The DISPLAY command is used to view from a terminal window

the contents of memory locations. The command syntax is shown in

Figure 4.11. Brackets represent alternative optional operands. Capi-

tal letters represent operand keywords. Lowercase letters represent

operand values (actual values are to be substituted). Underlined op-

erands represent the default values (i.e., the value used when the op-

erand is omitted).

FIGURE 4.10 Sample Cause-Effect Graph with ‘‘Exclusive’’ Constraint.

DISPLAY hexloc1
0

-hexloc2
-END
-bytecount
-1

FIGURE 4.11 Syntax of the DISPLAY Command.

66 The Art of Software Testing

C04 08/25/2011 12:4:32 Page 67

The first operand (hexloc1) specifies the address of the first byte

whose contents are to be displayed. The address may be one to six

hexadecimal digits (0–9, A–F) in length. If it is not specified, the ad-

dress 0 is assumed. The address must be within the actual memory

range of the machine.

The second operand specifies the amount of memory to be

displayed. If hexloc2 is specified, it defines the address of the

last byte in the range of locations to be displayed. It may be

one to six hexadecimal digits in length. The address must be

greater than or equal to the starting address (hexloc1). Also,

hexloc2 must be within the actual memory range of the ma-

chine. If END is specified, memory is displayed up through the

last actual byte in the machine. If bytecount is specified, it de-

fines the number of bytes of memory to be displayed (starting

with the location specified in hexloc1). The operand bytecount

is a hexadecimal integer (one to six digits). The sum of

bytecount and hexloc1 must not exceed the actual memory

size plus 1, and bytecount must have a value of at least 1.

When memory contents are displayed, the output format on the

screen is one or more lines of the format

xxxxxx ¼ word1 word2 word3 word4

where xxxxxx is the hexadecimal address of word1. An integral

number of words (four-byte sequences, where the address of the

first byte in the word is a multiple of 4) is always displayed, re-

gardless of the value of hexloc1 or the amount of memory to be

displayed. All output lines will always contain four words (16

bytes). The first byte of the displayed range will fall within the

first word.

The error messages that can be produced are

M1 is invalid command syntax.

M2memory requested is beyond actual memory limit.

M3memory requested is a zero or negative range.

Test-Case Design 67

C04 08/25/2011 12:4:32 Page 68

As examples:

DISPLAY

displays the first four words in memory (default starting address of 0,

default byte count of 1);

DISPLAY 77F

displays the word containing the byte at address 77F, and the three

subsequent words;

DISPLAY 77F-407A

displays the words containing the bytes in the address range

775–407A;

DISPLAY 77F.6

displays the words containing the six bytes starting at location 77F; and

DISPLAY 50FF-END

displays the words containing the bytes in the address range 50FF to

the end of memory.

The first step is a careful analysis of the specification to identify the

causes and effects. The causes are as follows:

1. First operand is present.

2. The hexloc1 operand contains only hexadecimal digits.

3. The hexloc1 operand contains one to six characters.

4. The hexloc1 operand is within the actual memory range of the machine.

5. Second operand is END.

6. Second operand is hexloc.

7. Second operand is bytecount.

8. Second operand is omitted.

9. The hexloc2 operand contains only hexadecimal digits.

10. The hexloc2 operand contains one to six characters.

11. The hexloc2 operand is within the actual memory range of the machine.

12. The hexloc2 operand is greater than or equal to the hexloc1 operand.

13. The bytecount operand contains only hexadecimal digits.

14. The bytecount operand contains one to six characters.

68 The Art of Software Testing

C04 08/25/2011 12:4:32 Page 69

15. bytecount þ hexloc1 <¼memory size þ 1.

16. bytecount >¼ 1.

17. Specified range is large enough to require multiple output lines.

18. Start of range does not fall on a word boundary.

Each cause has been given an arbitrary unique number. Notice that four

causes (5 through 8) are necessary for the second operand because the sec-

ond operand could be (1) END, (2) hexloc2, (3) byte-count, (4) absent, and

(5) none of the above. The effects are as follows:

91. Message M1 is displayed.

92. Message M2 is displayed.

93. Message M3 is displayed.

94. Memory is displayed on one line.

95. Memory is displayed on multiple lines.

96. First byte of displayed range falls on a word boundary.

97. First byte of displayed range does not fall on a word boundary.

The next step is the development of the graph. The cause nodes are

listed vertically on the left side of the sheet of paper; the effect nodes are

listed vertically on the right side. The semantic content of the specification

is carefully analyzed to interconnect the causes and effects (i.e., to show

under what conditions an effect is present).

Figure 4.12 shows an initial version of the graph. Intermediate node 32

represents a syntactically valid first operand; node 35 represents a syntacti-

cally valid second operand. Node 36 represents a syntactically valid com-

mand. If node 36 is 1, effect 91 (the error message) does not appear. If

node 36 is 0, effect 91 is present.

The full graph is shown in Figure 4.13. You should explore it carefully

to convince yourself that it accurately reflects the specification.

If Figure 4.13 were used to derive the test cases, many impossible-to-

create test cases would be derived. The reason is that certain combinations of

causes are impossible because of syntactic constraints. For instance, causes 2

and 3 cannot be present unless cause 1 is present. Cause 4 cannot be present

unless both causes 2 and 3 are present. Figure 4.14 contains the complete

graph with the constraint conditions. Notice that, at most, one of the causes

5, 6, 7, and 8 can be present. All other cause constraints are the requires con-

dition. Notice that cause 17 (multiple output lines) requires the not of cause 8

Test-Case Design 69

C04 08/25/2011 12:4:32 Page 70

FIGURE 4.12 Beginning of the Graph for the DISPLAY Command.

70 The Art of Software Testing

C04 08/25/2011 12:4:34 Page 71

FIGURE 4.13 Full Cause-Effect Graph without Constraints.

Test-Case Design 71

C04 08/25/2011 12:4:36 Page 72

(second operand is omitted); cause 17 can be present only when cause 8 is

absent. Again, you should explore the constraint conditions carefully.

The next step is the generation of a limited-entry decision table. For

readers familiar with decision tables, the causes are the conditions and the

effects are the actions. The procedure used is as follows:

1. Select an effect to be the present (1) state.

2. Tracing back through the graph, find all combinations of causes (sub-

ject to the constraints) that will set this effect to 1.

3. Create a column in the decision table for each combination of causes.

5

4

3

2

1

10

9

8

7

6

15

14

13

12

11

18

17

16

31

32

35

36

91

40

39

38

34

33

97

96

95

94

93

92

V

V

37

V

V

V

V

V

V

V

V

V

V

V

V

R

RR

R

R

E R R

R

R

R

R

R

R

R
R

R

R

R

FIGURE 4.14 Complete Cause-Effect Graph of the DISPLAY Command.

72 The Art of Software Testing

C04 08/25/2011 12:4:37 Page 73

4. For each combination, determine the states of all other effects and

place these in each column.

In performing step 2, the considerations are as follows:

1. When tracing back through an or node whose output should be 1,

never set more than one input to the or to 1 simultaneously. This is

called path sensitizing. Its objective is to prevent the failure to detect

certain errors because of one cause masking another cause.

2. When tracing back through an and node whose output should be 0,

all combinations of inputs leading to 0 output must, of course, be

enumerated. However, if you are exploring the situation where one

input is 0 and one or more of the others are 1, it is not necessary to

enumerate all conditions under which the other inputs can be 1.

3. When tracing back through an and node whose output should be 0,

only one condition where all inputs are zero need be enumerated. (If

the and is in the middle of the graph such that its inputs come from

other intermediate nodes, there may be an excessively large number

of situations under which all of its inputs are 0.)

These complicated considerations are summarized in Figure 4.15, and

Figure 4.16 is used as an example.

FIGURE 4.15 Considerations Used When Tracing the Graph.

Test-Case Design 73

C04 08/25/2011 12:4:38 Page 74

Assume that we want to locate all input conditions that cause the output

state to be 0. Consideration 3 states that we should list only one circum-

stance where nodes 5 and 6 are 0. Consideration 2 states that for the state

where node 5 is 1 and node 6 is 0, we should list only one circumstance

where node 5 is 1, rather than enumerating all possible ways that node 5

can be 1. Likewise, for the state where node 5 is 0 and node 6 is 1, we

should list only one circumstance where node 6 is 1 (although there is

only one in this example). Consideration 1 states that where node 5 should

be set to 1, we should not set nodes 1 and 2 to 1 simultaneously. Hence, we

would arrive at five states of nodes 1 through 4; for example, the values:

0 0 0 0 (5¼0, 6¼0)

1 0 0 0 (5¼1, 6¼0)

1 0 0 1 (5¼1, 6¼0)

1 0 1 0 (5¼1, 6¼0)

0 0 1 1 (5¼0, 6¼1)

rather than the 13 possible states of nodes 1 through 4 that lead to a 0

output state.

These considerations may appear to be capricious, but they have an im-

portant purpose: to lessen the combined effects of the graph. They elimi-

nate situations that tend to be low-yield test cases. If low-yield test cases

are not eliminated, a large cause-effect graph will produce an astronomical

number of test cases. If the number of test cases is too large to be practical,

FIGURE 4.16 Sample Graph to Illustrate the Tracing Considerations.

74 The Art of Software Testing

C04 08/25/2011 12:4:39 Page 75

you will select some subset, but there is no guarantee that the low-yield

test cases will be the ones eliminated. Hence, it is better to eliminate them

during the analysis of the graph.

We will now convert the cause-effect graph in Figure 4.14 into the deci-

sion table. Effect 91 will be selected first. Effect 91 is present if node 36 is

0. Node 36 is 0 if nodes 32 and 35 are 0,0; 0,1; or 1,0; and considerations 2

and 3 apply here. By tracing back to the causes, and considering the con-

straints among causes, you can find the combinations of causes that lead to

effect 91 being present, although doing so is a laborious process.

The resultant decision table, under the condition that effect 91 is present,

is shown in Figure 4.17 (columns 1 through 11). Columns (tests) 1 through

3 represent the conditions where node 32 is 0 and node 35 is 1. Columns 4

through 10 represent the conditions where node 32 is 1 and node 35 is 0.

Using consideration 3, only one situation (column 11) out of a possible 21

situations where nodes 32 and 35 are 0 is identified. Blanks in the table rep-

resent ‘‘don’t care’’ situations (i.e., the state of the cause is irrelevant) or indi-

cate that the state of a cause is obvious because of the states of other

dependent causes (e.g., in column 1, we know that causes 5, 7, and 8 must

be 0 because they exist in an ‘‘at most one’’ situation with cause 6).

Columns 12 through 15 represent the situations where effect 92 is pres-

ent. Columns 16 and 17 represent the situations where effect 93 is present.

Figure 4.18 represents the remainder of the decision table.

The last step is to convert the decision table into 38 test cases. A set of

38 test cases is listed here. The number or numbers beside each test case

designate the effects that are expected to be present. Assume that the last

location in memory on the machine being used is 7FFF.

1 DISPLAY 234AF74–123 (91)

2 DISPLAY 2ZX4–3000 (91)

3 DISPLAY HHHHHHHH-2000 (91)

4 DISPLAY 200 200 (91)

5 DISPLAY 0–22222222 (91)

6 DISPLAY 1–2X (91)

7 DISPLAY 2-ABCDEFGHI (91)

8 DISPLAY 3.1111111 (91)

9 DISPLAY 44.$42 (91)

10 DISPLAY 100.$$$$$$$ (91)

Test-Case Design 75

C04 08/25/2011 12:4:39 Page 76

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

11

1

12

1

13

1

14

1

15

1

16

1

17

11

1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 12

0 1 0 1

0

1 1 1 1 1 1 0 11 1

1

1 1 1

11 0 0 1 1

3

1 1 1 1 1 1 1 1 1 1 1 00 0 0 0 091

0 0 0 0 0 0 0 0 0 0 1 11 1 1 0 092

0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 193

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 094

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 095

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 096

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 097

0 1 1 1 1 17

1 0 0 1 113

0 1 0 1

0

1

0

14

15

16

17

18

08

4

5

1 1 1 0 1 1 1 1 1 1 16

1 1 1 1 0 0 0 1 1 19

1 1 1 0 1 0 1 1 1 110

0 0 111

012

FIGURE 4.17 First Half of the Resultant Decision Table.

76 The Art of Software Testing

C04 08/25/2011 12:4:39 Page 77

11 DISPLAY 10000000-M (91)

12 DISPLAY FF-8000 (92)

13 DISPLAY FFF.7001 (92)

14 DISPLAY 8000-END (92)

15 DISPLAY 8000–8001 (92)

16 DISPLAY AA-A9 (93)

17 DISPLAY 7000.0 (93)

18 DISPLAY 7FF9-END (94, 97)

18

1

19 20

1

21

1

22

0

23

0

24 25

0

26

10

27

1

28 29

1

30

1

31

1

32

11

33

0

3534

0

36

0

37

11

38

11 1

1 1 1 1 1 1 1 1 11 11 12 1

1 1 1 1 1 1 1 1 11 11 13 1

1 1 1 1 1 1 1 1 11 11 14 1

1 1 1 1 15 1

1 1 1 1 1 16

1 1 1 1 1 17

1 1 18

1 1 1 1 1 19

1 1 1 1 1 110

1 1 1 1 1 111

1 1 1 1 1 112

1 1 1 1 1 113

1 1 1 1 1 114

1 1 1 1 1 115

1 1 1 1 1 116

0 0 0 0 0 0 00 0 0 0 1 11 1 1 1 11 117 0

1 1 1 0 0 0 00 0 0 0 1 11 0 0 0 00 018 1

0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 00 091 0

0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 00 093 0

0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 00 092 0

1 1 1 1 1 1 11 1 1 1 0 00 0 0 0 00 094 1

0 0 0 0 0 0 00 0 0 0 1 11 1 1 1 11 195 0

0 0 0 1 1 1 11 1 1 1 0 00 1 1 1 11 196 0

1 1 1 0 0 0 00 0 0 0 1 11 0 0 0 00 097 1

FIGURE 4.18 Second Half of the Resultant Decision Table.

Test-Case Design 77

C04 08/25/2011 12:4:40 Page 78

19 DISPLAY 1 (94, 97)

20 DISPLAY 21–29 (94, 97)

21 DISPLAY 4021.A (94, 97)

22 DISPLAY -END (94, 96)

23 DISPLAY (94, 96)

24 DISPLAY -F (94, 96)

25 DISPLAY .E (94, 96)

26 DISPLAY 7FF8-END (94, 96)

27 DISPLAY 6000 (94, 96)

28 DISPLAY A0-A4 (94, 96)

29 DISPLAY 20.8 (94, 96)

30 DISPLAY 7001-END (95, 97)

31 DISPLAY 5–15 (95, 97)

32w DISPLAY 4FF.100 (95, 97)

33 DISPLAY -END (95, 96)

34 DISPLAY -20 (95, 96)

35 DISPLAY .11 (95, 96)

36 DISPLAY 7000-END (95, 96)

37 DISPLAY 4–14 (95, 96)

38 DISPLAY 500.11 (95, 96)

Note that where two or more different test cases invoked, for the most

part, the same set of causes, different values for the causes were selected to

slightly improve the yield of the test cases. Also note that, because of the

actual storage size, test case 22 is impossible (it will yield effect 95 instead

of 94, as noted in test case 33). Hence, 37 test cases have been identified.

Remarks Cause-effect graphing is a systematic method of generating test

cases representing combinations of conditions. The alternative would be to

make an ad hoc selection of combinations; but in doing so, it is likely that

you would overlook many of the ‘‘interesting’’ test cases identified by the

cause-effect graph.

Since cause-effect graphing requires the translation of a specification into

a Boolean logic network, it gives you a different perspective on, and addi-

tional insight into, the specification. In fact, the development of a cause-

78 The Art of Software Testing

C04 08/25/2011 12:4:40 Page 79

effect graph is a good way to uncover ambiguities and incompleteness

in specifications. For instance, the astute reader may have noticed that

this process has uncovered a problem in the specification of the DISPLAY

command. The specification states that all output lines contain four words.

This cannot be true in all cases; it cannot occur for test cases 18 and 26

because the starting address is less than 16 bytes away from the end of

memory.

Although cause-effect graphing does produce a set of useful test cases, it

normally does not produce all of the useful test cases that might be identi-

fied. For instance, in the example we said nothing about verifying that the

displayed memory values are identical to the values in memory and deter-

mining whether the program can display every possible value in a memory

location. Also, the cause-effect graph does not adequately explore bound-

ary conditions. Of course, you could attempt to cover boundary conditions

during the process. For instance, instead of identifying the single cause

hexloc2>¼hexloc1

you could identify two causes:

hexloc2 ¼ hexloc1

hexloc2 > hexloc1

The problem in doing this, however, is that it complicates the graph

tremendously and leads to an excessively large number of test cases. For

this reason it is best to consider a separate boundary value analysis. For

instance, the following boundary conditions can be identified for the

DISPLAY specification:

1. hexloc1 has one digit

2. hexloc1 has six digits

3. hexloc1 has seven digits

4. hexloc1 ¼ 0

5. hexloc1 ¼ 7FFF

6. hexloc1 ¼ 8000

7. hexloc2 has one digit

8. hexloc2 has six digits

9. hexloc2 has seven digits

10. hexloc2 ¼ 0

Test-Case Design 79

C04 08/25/2011 12:4:40 Page 80

11. hexloc2 ¼ 7FFF

12. hexloc2 ¼ 8000

13. hexloc2 ¼ hexloc

14. hexloc2 ¼ hexloc1 þ 1

15. hexloc2 ¼ hexloc1 � 1

16. bytecount has one digit

17. bytecount has six digits

18. bytecount has seven digits

19. bytecount ¼ 1

20. hexloc1 þ bytecount ¼ 8000

21. hexloc1 þ bytecount ¼ 8001

22. display 16 bytes (one line)

23. display 17 bytes (two lines)

Note that this does not imply that you would write 60 (37 þ 23) test

cases. Since the cause-effect graph gives us leeway in selecting specific val-

ues for operands, the boundary conditions could be blended into the test

cases derived from the cause-effect graph. In this example, by rewriting

some of the original 37 test cases, all 23 boundary conditions could be

covered without any additional test cases. Thus, we arrive at a small but

potent set of test cases that satisfy both objectives.

Note that cause-effect graphing is consistent with several of the testing

principles in Chapter 2. Identifying the expected output of each test case is

an inherent part of the technique (each column in the decision table indi-

cates the expected effects). Also note that it encourages us to look for un-

wanted side effects. For instance, column (test) 1 specifies that we should

expect effect 91 to be present and that effects 92 through 97 should be

absent.

The most difficult aspect of the technique is the conversion of the graph

into the decision table. This process is algorithmic, implying that you

could automate it by writing a program; several commercial programs exist

to help with the conversion.

Error Guessing
It has often been noted that some people seem to be naturally adept at pro-

gram testing. Without using any particular methodology such as boundary

80 The Art of Software Testing

C04 08/25/2011 12:4:40 Page 81

value analysis of cause-effect graphing, these people seem to have a knack

for sniffing out errors.

One explanation for this is that these people are practicing—sub-

consciously more often than not—a test-case design technique that could

be termed error guessing. Given a particular program, they surmise—both

by intuition and experience—certain probable types of errors and then

write test cases to expose those errors.

It is difficult to give a procedure for the error-guessing technique since

it is largely an intuitive and ad hoc process. The basic idea is to enumer-

ate a list of possible errors or error-prone situations and then write test

cases based on the list. For instance, the presence of the value 0 in a pro-

gram’s input is an error-prone situation. Therefore, you might write test

cases for which particular input values have a 0 value and for which par-

ticular output values are forced to 0. Also, where a variable number of

inputs or outputs can be present (e.g., the number of entries in a list to

be searched), the cases of ‘‘none’’ and ‘‘one’’ (e.g., empty list, list contain-

ing just one entry) are error-prone situations. Another idea is to identify

test cases associated with assumptions that the programmer might have

made when reading the specification (i.e., factors that were omitted from

the specification, either by accident or because the writer felt them to be

obvious).

Since a procedure for error guessing cannot be given, the next-best al-

ternative is to discuss the spirit of the practice, and the best way to do this

is by presenting examples. If you are testing a sorting subroutine, the fol-

lowing are situations to explore:

� The input list is empty.

� The input list contains one entry.

� All entries in the input list have the same value.

� The input list is already sorted.

In other words, you enumerate those special cases that may have been

overlooked when the program was designed. If you are testing a binary

search subroutine, you might try the situations where: (1) there is only

one entry in the table being searched; (2) the table size is a power of 2

(e.g., 16); and (3) the table size is one less than and one greater than a

power of 2 (e.g., 15 or 17).

Test-Case Design 81

C04 08/25/2011 12:4:40 Page 82

Consider the MTEST program in the section on boundary value

analysis. The following additional tests come to mind when using the

error-guessing technique:

� Does the program accept ‘‘blank’’ as an answer?

� A type-2 (answer) record appears in the set of type-3 (student)

records.

� A record without a 2 or 3 in the last column appears as other than the

initial (title) record.

� Two students have the same name or number.

� Since a median is computed differently depending on whether there is

an odd or an even number of items, test the program for an even

number of students and an odd number of students.

� The number-of-questions field has a negative value.

Error-guessing tests that come to mind for the DISPLAY command of the

previous section are as follows:

DISPLAY 100- (partial second operand)

DISPLAY 100. (partial second operand)

DISPLAY 100–10A 42 (extra operand)

DISPLAY 000–0000FF (leading zeros)

The Strategy
The test-case design methodologies discussed in this chapter can be com-

bined into an overall strategy. The reason for combining them should be

obvious by now: Each contributes a particular set of useful test cases, but

none of them by itself contributes a thorough set of test cases. A reasonable

strategy is as follows:

1. If the specification contains combinations of input conditions, start

with cause-effect graphing.

2. In any event, use boundary value analysis. Remember that this is an

analysis of input and output boundaries. The boundary value analysis

yields a set of supplemental test conditions, but as noted in the sec-

tion on cause-effect graphing, many or all of these can be incorpo-

rated into the cause-effect tests.

82 The Art of Software Testing

C04 08/25/2011 12:4:40 Page 83

3. Identify the valid and invalid equivalence classes for the input and

output, and supplement the test cases identified above, if necessary.

4. Use the error-guessing technique to add additional test cases.

5. Examine the program’s logic with regard to the set of test cases. Use

the decision coverage, condition coverage, decision/condition cover-

age, or multiple-condition coverage criterion (the last being the most

complete). If the coverage criterion has not been met by the test cases

identified in the prior four steps, and if meeting the criterion is not

impossible (i.e., certain combinations of conditions may be im-

possible to create because of the nature of the program), add suffi-

cient test cases to cause the criterion to be satisfied.

Again, the use of this strategy will not guarantee that all errors will be

found, but it has been found to represent a reasonable compromise. Also, it

represents a considerable amount of hard work, but as we said at the begin-

ning of this chapter, no one has ever claimed that program testing is easy.

Summary
Once you have agreed that aggressive software testing is a worthy addition

to your development efforts, the next step is to design test cases that will

exercise your application sufficiently to produce satisfactory test results. In

most cases, consider a combination of black-box and white-box methodol-

ogies to ensure that you have designed rigorous program testing.

Test case design techniques discussed in this chapter include:

� Logic coverage. Tests that exercise all decision point outcomes at least

once, and ensure that all statements or entry points are executed at

least once.

� Equivalence partitioning. Defines condition or error classes to help re-

duce the number of finite tests. Assumes that a test of a representative

value within a class also tests all values or conditions within that class.

� Boundary value analysis. Tests each edge condition of an equivalence

class; also considers output equivalence classes as well as input

classes.

� Cause-effect graphing. Produces Boolean graphical representations of

potential test case results to aid in selecting efficient and complete

test cases.

Test-Case Design 83

C04 08/25/2011 12:4:40 Page 84

� Error guessing. Produces test cases based on intuitive and expert

knowledge of test team members to define potential software errors

to facilitate efficient test case design.

Extensive, in-depth testing is not easy; nor will the most extensive test

case design assure that every error will be uncovered. That said, developers

willing to go beyond cursory testing, who will dedicate sufficient time to

test case design, analyze carefully the test results, and act decisively on the

findings, will be rewarded with functional, reliable software that is reason-

ably error free.

84 The Art of Software Testing

C05 08/25/2011 12:10:33 Page 85

5 Module (Unit) Testing

Up to this point we have largely ignored the mechanics of testing and

the size of the program being tested. However, because large programs

(say, of 500 statements or 50-plus classes) require special testing treatment,

in this chapter we consider an initial step in structuring the testing of a large

program: module testing. Chapters 6 and 7 enumerate the remaining steps.

Module testing (or unit testing) is a process of testing the individual sub-

programs, subroutines, classes, or procedures in a program. More specifi-

cally, rather than initially testing the program as a whole, testing is first

focused on the smaller building blocks of the program. The motivations for

doing this are threefold. First, module testing is a way of managing the

combined elements of testing, since attention is focused initially on smaller

units of the program. Second, module testing eases the task of debugging

(the process of pinpointing and correcting a discovered error), since, when

an error is found, it is known to exist in a particular module. Finally, mod-

ule testing introduces parallelism into the program testing process by pre-

senting us with the opportunity to test multiple modules simultaneously.

The purpose of module testing is to compare the function of a module to

some functional or interface specification defining the module. To reemphasize

the goal of all testing processes, the objective here is not to show that the

module meets its specification, but that the module contradicts the specifica-

tion. In this chapter, we address module testing from three points of view:

1. The manner in which test cases are designed.

2. The order in which modules should be tested and integrated.

3. Advice about performing the tests.

85

C05 08/25/2011 12:10:33 Page 86

Test-Case Design
You need two types of information when designing test cases for a module

test: a specification for the module and the module’s source code. The

specification typically defines the module’s input and output parameters

and its function.

Module testing is largely white-box oriented. One reason is that as you

test larger entities, such as entire programs (which will be the case for sub-

sequent testing processes), white-box testing becomes less feasible. A sec-

ond reason is that the subsequent testing processes are oriented toward

finding different types of errors (e.g., errors not necessarily associated

with the program’s logic, such as the program failing to meet its users’

requirements). Hence, the test-case design procedure for a module test is

the following:

Analyze the module’s logic using one or more of the white-box meth-

ods, and then supplement these test cases by applying black-box

methods to the module’s specification.

The test-case design methods we will use were defined in Chapter 4; we

will illustrate their use in a module test here through an example.

Assume that we wish to test a module named BONUS, and its function is

to add $2,000 to the salary of all employees in the department or depart-

ments having the largest sales revenue. However, if an eligible employee’s

current salary is $150,000 or more, or if the employee is a manager, the

salary is to be increased by only $1,000.

The inputs to the module are shown in the tables in Figure 5.1. If the

module performs its function correctly, it returns an error code of 0. If

either the employee or the department table contains no entries, it returns

an error code of 1. If it finds no employees in an eligible department, it

returns an error code of 2.

The module’s source code is shown in Figure 5.2. Input parameters

ESIZE and DSIZE contain the number of entries in the employee and de-

partment tables. Note that though the module is written in PL/1, the fol-

lowing discussion is largely language independent; the techniques are

applicable to programs coded in other languages. Also, because the PL/1

logic in the module is fairly simple, virtually any reader, even those not

familiar with PL/1, should be able to understand it.

86 The Art of Software Testing

C05 08/25/2011 12:10:34 Page 87

Dept. Salary
Job

codeName Dept.

Department table

Employee table

Sales

FIGURE 5.1 Input Tables to Module BONUS.

BONUS : PROCEDURE(EMPTAB,DEPTTAB,ESIZE,DSIZE,ERRCODE);

DECLARE 1 EMPTAB (*),

2 NAME CHAR(6),

2 CODE CHAR(1),

2 DEPT CHAR(3),

2 SALARY FIXED DECIMAL(7,2);

DECLARE 1 DEPTTAB (*),

2 DEPT CHAR(3),

2 SALES FIXED DECIMAL(8,2);

DECLARE (ESIZE,DSIZE) FIXED BINARY;

DECLARE ERRCODE FIXED DECIMAL(1);

DECLARE MAXSALES FIXED DECIMAL(8,2) INIT(0); /*MAX. SALES IN DEPTTAB*/

DECLARE (I,J,K) FIXED BINARY; /*COUNTERS*/

DECLARE FOUND BIT(1); /*TRUE IF ELIGIBLE DEPT. HAS EMPLOYEES*/

DECLARE SINC FIXED DECIMAL(7,2) INIT(200.00); /*STANDARD INCREMENT*/

DECLARE LINC FIXED DECIMAL(7,2) INIT(100.00); /*LOWER INCREMENT*/

DECLARE LSALARY FIXED DECIMAL(7,2) INIT(15000.00); /*SALARY BOUNDARY*/

DECLARE MGR CHAR(1) INIT('M'); (continued)

FIGURE 5.2 Module BONUS.

Module (Unit) Testing 87

C05 08/25/2011 12:10:34 Page 88

1 ERRCODE=0;

2 IF(ESIZE<=0)|(DSIZE<=0)

3 THEN ERRCODE=1; /*EMPTAB OR DEPTTAB ARE EMPTY*/

4 ELSE DO;

5 DO I = 1 TO DSIZE; /*FIND MAXSALES AND MAXDEPTS*/

6 IF(SALES(I)>=MAXSALES) THEN MAXSALES=SALES(I);

7 END;

8 DO J = 1 TO DSIZE;

9 IF(SALES(J)=MAXSALES) /*ELIGIBLE DEPARTMENT*/

10 THEN DO;

11 FOUND='0'B;

12 DO K = 1 TO ESIZE;

13 IF(EMPTAB.DEPT(K)=DEPTTAB.DEPT(J))

14 THEN DO;

15 FOUND='1'B;

16 IF(SALARY(K)>=LSALARY)|CODE(K)=MGR)

17 THEN SALARY(K)=SALARY(K)+LINC;

18 ELSE SALARY(K)=SALARY(K)+SINC;

19 END;

20 END;

21 IF(-FOUND) THEN ERRCODE=2;

22 END;

23 END;

24 END;

25 END;

FIGURE 5.2 (continued)

Sidebar 5.1: PL/1 Background

Readers new to software development may be unfamiliar with PL/1

and think of it is a ‘‘dead’’ language. True, there probably is very little

new development using PL/1, but maintenance of existing systems

continues, and the PL/1 constructs still are a pretty good way to learn

about programming procedures.

88 The Art of Software Testing

C05 08/25/2011 12:10:34 Page 89

Regardless of which of the logic coverage techniques you use, the first step

is to list the conditional decisions in the program. Candidates in this program

are all IF and DO statements. By inspecting the program, we can see that all of

the DO statements are simple iterations, and each iteration limit will be equal

to or greater than the initial value (meaning that each loop body always will

execute at least once); and the only way of exiting each loop is via the DO

statement. Thus, the DO statements in this program need no special attention,

since any test case that causes a DO statement to execute will eventually cause

it to branch in both directions (i.e., enter the loop body and skip the loop

body). Therefore, the statements that must be analyzed are:

2 IF (ESIZE<¼O) j (DSIZE<¼0)
6 IF (SALES(I)>¼MAXSALES)
9 IF (SALES(J)¼MAXSALES)
13 IF (EMPTAB.DEPT(K)¼DEPTTAB.DEPT(J))
16 IF (SALARY(K)>¼LSALARY) j (CODE(K)¼MGR)
21 IF(-FOUND) THEN ERRCODE¼2

PL/1, which stands for Programming Language One, was devel-

oped in the 1960s by IBM to provide an English-like development

environment for its mainframe class machines, beginning with the

IBM System/360. At this time in computer history, many program-

mers were migrating toward specialty languages such as COBOL, de-

signed for business application development, and Fortran, designed

for scientific applications. (See Sidebar 3.1 in Chapter 3 for a little

background on these languages.)

One of the main goals for PL/1 designers was a development lan-

guage that could compete successfully with COBOL and Fortran while

providing a development environment that would be easier to learn

with a more natural language. All of the early goals for PL/1 likely

never were achieved, but those early designers obviously did their

homework, because PL/1 has been refined and upgraded over the

years and still is in use in some environments today.

By the mid-1990s PL/1 had been extended to other computer

platforms, including OS/2, Linux, UNIX, and Windows. New operating

system support brought language extensions to provide more flexibil-

ity and functionality.

Module (Unit) Testing 89

C05 08/25/2011 12:10:34 Page 90

Given the small number of decisions, we probably should opt for multi-

condition coverage, but we will examine all the logic coverage criteria

(except statement coverage, which always is too limited to be of use) to

see their effects.

To satisfy the decision coverage criterion, we need sufficient test cases to

invoke both outcomes of each of the six decisions. The required input situ-

ations to invoke all decision outcomes are listed in Table 5.1. Since two of

the outcomes will always occur, there are 10 situations that need to be

forced by test cases. Note that to construct Table 5.1, decision-outcome

circumstances had to be traced back through the logic of the program to

determine the proper corresponding input circumstances. For instance,

decision 16 is not invoked by any employee meeting the conditions; the

employee must be in an eligible department.

The 10 situations of interest in Table 5.1 could be invoked by the two test

cases shown in Figure 5.3. Note that each test case includes a definition of

the expected output, in adherence to the principles discussed in Chapter 2.

Although these two test cases meet the decision coverage criterion, it

should be obvious that there could be many types of errors in the module

that are not detected by these two test cases. For instance, the test cases do

not explore the circumstances where the error code is 0, an employee is a

manager, or the department table is empty (DSIZE<¼0).

TABLE 5.1 Situations Corresponding to the Decision Outcomes

Decision True Outcome False Outcome

2 ESIZE or DSIZE�0 ESIZE and DSIZE>0

6 Will always occur at least once. Order DEPTTAB so that a

department with lower sales occurs

after a department with higher sales.

9 Will always occur at least once. All departments do not have the

same sales.

13 There is an employee in an

eligible department.

There is an employee who is not in

an eligible department.

16 An eligible employee is either a

manager or earns LSALARY or

more.

An eligible employee is not a

manager and earns less than

LSALARY.

21 All eligible departments

contain no employees.

An eligible department contains at

least one employee.

90 The Art of Software Testing

C05 08/25/2011 12:10:34 Page 91

A more satisfactory test can be obtained by using the condition coverage

criterion. Here we need sufficient test cases to invoke both outcomes of

each condition in the decisions. The conditions and required input situa-

tions to invoke all outcomes are listed in Table 5.2. Since two of the out-

comes will always occur, there are 14 situations that must be forced by test

cases. Again, these situations can be invoked by only two test cases, as

shown in Figure 5.4.

The test cases in Figure 5.4 were designed to illustrate a problem. Since

they do invoke all the outcomes in Table 5.2, they satisfy the condition

coverage criterion, but they are probably a poorer set of test cases than

those in Figure 5.3 in terms of satisfying the decision coverage criterion.

The reason is that they do not execute every statement. For example, state-

ment 18 is never executed. Moreover, they do not accomplish much more

than the test cases in Figure 5.3. They do not cause the output situation

ERRORCODE¼0. If statement 2 had erroneously set ESIZE¼0 and DSIZE¼0,

this error would go undetected. Of course, an alternative set of test cases

might solve these problems, but the fact remains that the two test cases in

Figure 5.4 do satisfy the condition coverage criterion.

Using the decision/condition coverage criterion would eliminate the ma-

jor weakness in the test cases in Figure 5.4. Here we would provide suffi-

cient test cases such that all outcomes of all conditions and decisions would

be invoked at least once. Making Jones a manager and making Lorin a non-

manager could accomplish this. This would have the result of generating

both outcomes of decision 16, thus causing us to execute statement 18.

Input Expected outputTest
case

ESIZE = 0

All other inputs are irrelevant

ERRCODE = 1

ESIZE, DSIZE, EMPTAB, and DEPTTAB

are unchanged

1

ESIZE = DSIZE = 3

DEPTTAB

ERRCODE = 2

EMPTAB

JONES

SMITH

LORIN

E D42

D32

D42

E

E

21,000.00

14,000.00

10,000.00

D42

D32

D95

10,000.00

8,000.00

10,000.00

ESIZE, DSIZE, and DEPTTAB are
unchanged

2

EMPTAB

JONES

SMITH

LORIN

E D42

D32

D42

E

E

21,100.00

14,000.00

10,200.00

FIGURE 5.3 Test Cases to Satisfy the Decision-Coverage Criterion.

Module (Unit) Testing 91

C05 08/25/2011 12:10:34 Page 92

TABLE 5.2 Situations Corresponding to the Condition Outcomes

Decision Condition True Outcome False Outcome

2 ESIZE�0 ESIZE�0 ESIZE>0

2 DSIZE�0 DSIZE�0 DSIZE>0

6 SALES(I)�
MAXSALES

Will always occur at

least once.

Order DEPTTAB so that a

department with lower sales

occurs after a department with

higher sales.

9 SALES(J)¼
MAXSALES

Will always occur at

least once.

All departments do not

have the same sales.

13 EMPTAB.DEPT

(K)¼
DEPTTAB.

DEPT(J)

There is an employee

in an eligible

department.

There is an employee who

is not in an eligible

department.

16 SALARY(K)�
LSALARY

An eligible employee

earns LSALARY or

more.

An eligible employee earns

less than LSALARY.

16 CODE(K)¼MGR An eligible employee

is a manager.

An eligible employee is

not a manager.

21 —FOUND An eligible

department contains

no employees.

An eligible department

contains at least one

employee.

Input Expected outputTest
case

ESIZE = DSIZE = 0

All other inputs are irrelevant

ERRCODE = 1

ESIZE, DSIZE, EMPTAB, and
DEPTTAB are unchanged

1

ESIZE = DSIZE = 3

DEPTTAB

ERRCODE = 2

EMPTAB

JONES

SMITH

LORIN

E D42

D32

D42

E

M

21,000.00

14,000.00

10,000.00

D42

D32

D95

10,000.00

8,000.00

10,000.00

ESIZE, DSIZE, and DEPTTAB are
unchanged

2

EMPTAB

JONES

SMITH

LORIN

E D42

D32

D42

E

M

21,000.00

14,000.00

10,100.00

FIGURE 5.4 Test Cases to Satisfy the Condition Coverage Criterion.

92 The Art of Software Testing

C05 08/25/2011 12:10:34 Page 93

One problem with this, however, is that it is essentially no better than

the test cases in Figure 5.3. If the compiler being used stops evaluating an

or expression as soon as it determines that one operand is true, this modifi-

cation would result in the expression CODE(K)¼MGR in statement 16 never

having a true outcome. Hence, if this expression were coded incorrectly,

the test cases would not detect the error.

The last criterion to explore is multicondition coverage. This criterion

requires sufficient test cases such that all possible combinations of condi-

tions in each decision are invoked at least once. This can be accomplished

by working from Table 5.2. Decisions 6, 9, 13, and 21 have two combina-

tions each; decisions 2 and 16 have four combinations each. The method-

ology to design the test cases is to select one that covers as many of the

combinations as possible, select another that covers as many of the remain-

ing combinations as possible, and so on. A set of test cases satisfying the

multicondition coverage criterion is shown in Figure 5.5. The set is more

Input Expected output

Same as above

Same as above

Test
case

ESIZE = 0 DSIZE = 0

All other inputs are irrelevant

ERRCODE = 1

ESIZE, DSIZE, EMPTAB, and
DEPTTAB are unchanged

1

ESIZE = 0 DSIZE > 0

All other inputs are irrelevant

ESIZE = 5 DSIZE = 4

DEPTTAB

ERRCODE = 2

EMPTAB

JONES

WARNS

LORIN

M D42

D95

D42

M

E

21,000.00

12,000.00

10,000.00

D42

D32

D95

10,000.00

8,000.00

10,000.00

TOY D95E 16,000.00

SMITH D32E 14,000.00

D44 10,000.00

ESIZE, DSIZE, and DEPTTAB are
unchanged

2

ESIZE > 0 DSIZE = 0

All other inputs are irrelevant

3

4

JONES

WARNS

LORIN

M D42

D95

D42

M

E

21,100.00

12,100.00

10,200.00

TOY D95E 16,100.00

SMITH D32E 14,000.00

EMPTAB

FIGURE 5.5 Test Cases to Catisfy the Multicondition

Coverage Criterion.

Module (Unit) Testing 93

C05 08/25/2011 12:10:34 Page 94

comprehensive than the previous sets of test cases, implying that we

should have selected this criterion at the beginning.

It is important to realize that module BONUS could have such a large

number of errors that even the tests satisfying the multicondition coverage

criterion would not detect them all. For instance, no test cases generate the

situation where ERRORCODE is returned with a value of 0; thus, if statement

1 were missing, the error would go undetected. If LSALARY were errone-

ously initialized to $150,000.01, the mistake would go unnoticed. If state-

ment 16 stated SALARY(K)>LSALARY instead of SALARY(K) >¼LSALARY,

this error would not be found. Also, whether a variety of off-by-one errors

(such as not handling the last entry in DEPTTAB or EMPTAB correctly) would

be detected would depend largely on chance.

Two points should be apparent now: One, the multicondition criterion

is superior to the other criteria, and, two, any logic coverage criterion is

not good enough to serve as the only means of deriving module tests.

Hence, the next step is to supplement the tests in Figure 5.5 with a set of

black-box tests. To do so, the interface specifications of BONUS are shown

in the following:

BONUS, a PL/1 module, receives five parameters, symbolically referred to

here as EMPTAB, DEPTTAB, ESIZE, DSIZE, and ERRORCODE. The attributes

of these parameters are:

DECLARE 1 EMPTAB(*), /*INPUT AND OUTPUT*/
2 NAME CHARACTER(6),
2 CODE CHARACTER(1),
2 DEPT CHARACTER(3),
2 SALARY FIXED DECIMAL(7,2);

DECLARE 1 DEPTTAB(*), /*INPUT*/
2 DEPT CHARACTER(3),
2 SALES FIXED DECIMAL(8,2);

DECLARE (ESIZE, DSIZE) FIXED BINARY; /*INPUT*/
DECLARE ERRCODE FIXED DECIMAL(1); /*OUTPUT*/

The module assumes that the transmitted arguments have these attributes.

ESIZE and DSIZE indicate the number of entries in EMPTAB and

DEPTTAB, respectively. No assumptions should be made about the order of

entries in EMPTAB and DEPTTAB. The function of the module is to increment

the salary (EMPTAB.SALARY) of those employees in the department or depart-

ments having the largest sales amount (DEPTTAB.SALES). If an eligible

94 The Art of Software Testing

C05 08/25/2011 12:10:34 Page 95

employee’s current salary is $150,000 or more, or if the employee is a man-

ager (EMPTAB.CODE¼‘M’), the increment is $1,000; if not, the increment for

the eligible employee is $2,000. The module assumes that the incremented

salary will fit into field EMPTAB.SALARY. If ESIZE and DSIZE are not greater

than 0, ERRCODE is set to 1 and no further action is taken. In all other cases,

the function is completely performed. However, if a maximum-sales depart-

ment is found to have no employee, processing continues but ERRCODE will

have the value 2; otherwise, it is set to 0.

This specification is not suited to cause-effect graphing (there is not a dis-

cernible set of input conditions whose combinations should be explored);

thus, boundary value analysis will be used. The input boundaries identified

are as follows:

1. EMPTAB has 1 entry.

2. EMPTAB has the maximum number of entries (65,535).

3. EMPTAB has 0 entries.

4. DEPTTAB has 1 entry.

5. DEPTTAB has 65,535 entries.

6. DEPTTAB has 0 entries.

7. A maximum-sales department has 1 employee.

8. A maximum-sales department has 65,535 employees.

9. A maximum-sales department has no employees.

10. All departments in DEPTTAB have the same sales.

11. The maximum-sales department is the first entry in DEPTTAB.

12. The maximum-sales department is the last entry in DEPTTAB.

13. An eligible employee is the first entry in EMPTAB.

14. An eligible employee is the last entry in EMPTAB.

15. An eligible employee is a manager.

16. An eligible employee is not a manager.

17. An eligible employee who is not a manager has a salary of $149,999.99.

18. An eligible employee who is not a manager has a salary of $150,000.

19. An eligible employee who is not a manager has a salary of $150,000.01.

The output boundaries are as follows:

20. ERRCODE¼0

21. ERRCODE¼1

22. ERRCODE¼2

23. The incremented salary of an eligible employee is $299,999.99.

Module (Unit) Testing 95

C05 08/25/2011 12:10:34 Page 96

A further test condition based on the error-guessing technique is

as follows:

24. A maximum-sales department with no employees is followed

in DEPTTAB with another maximum-sales department having

employees.

This is used to determine whether the module erroneously terminates

processing of the input when it encounters an ERRCODE¼2 situation.

Reviewing these 24 conditions, numbers 2, 5, and 8 seem like impractical

test cases. Since they also represent conditions that will never occur (usually

a dangerous assumption to make when testing, but seemingly safe here), we

exclude them. The next step is to compare the remaining 21 conditions to

the current set of test cases (Figure 5.5) to determine which boundary condi-

tions are not already covered. Doing so, we see that conditions 1, 4, 7, 10, 14,

17, 18, 19, 20, 23, and 24 require test cases beyond those in Figure 5.5.

The next step is to design additional test cases to cover the 11 boundary

conditions. One approach is to merge these conditions into the existing

test cases (i.e., by modifying test case 4 in Figure 5.5), but this is not rec-

ommended because doing so could inadvertently upset the complete mul-

ticondition coverage of the existing test cases. Hence, the safest approach

is to add test cases to those of Figure 5.5. In doing this, the goal is to design

the smallest number of test cases necessary to cover the boundary condi-

tions. The three test cases in Figure 5.6 accomplish this. Test case 5 covers

conditions 7, 10, 14, 17, 18, 19, and 20; test case 6 covers conditions 1, 4,

and 23; and test case 7 covers condition 24.

The premise here is that the logic coverage, or white-box, test cases in

Figure 5.6 form a reasonable module test for procedure BONUS.

Incremental Testing
In performing the process of module testing, there are two key considera-

tions: the design of an effective set of test cases, which was discussed in the

previous section, and the manner in which the modules are combined to

form a working program. The second consideration is important because

it has these implications:

� The form in which module test cases are written

� The types of test tools that might be used

96 The Art of Software Testing

C05 08/25/2011 12:10:34 Page 97

� The order in which modules are coded and tested

� The cost of generating test cases

� The cost of debugging (locating and repairing detected errors)

In short, then, it is a consideration of substantial importance. In this

section, we discuss two approaches, incremental and nonincremental test-

ing; in the next, we explore two incremental approaches, top-down and

bottom-up development or testing.

The question pondered here is the following: Should you test a program

by testing each module independently and then combining the modules to

Input Expected outputTest
case

5 ESIZE = 3 DSIZE = 2

DEPTTAB

ERRCODE = 0

EMPTAB

ALLY

BEST

CELTO

E D36

D33

D33

E

E

14,999.99

15,000.00

15,000.01

D33

D36

55,400.01

55,400.01

ESIZE, DSIZE, and DEPTTAB are
unchanged

ALLY

BEST

CELTO

E D36

D33

D33

E

E

15,199.99

15,100.00

15,100.01

EMPTAB

6 ESIZE = 1 DSIZE = 1

DEPTTAB

ERRCODE = 0

EMPTAB

CHIEF M D99 99,899.99 D99 99,000.00

ESIZE, DSIZE, and DEPTTAB are
unchanged

ERRCODE = 2

ESIZE, DSIZE, and DEPTTAB are
unchanged

CHIEF M D99 99,999.99

EMPTAB

7 ESIZE = 2 DSIZE = 2

DEPTTABEMPTAB

DOLE E D67 10,000.00 D66 20,000.00

FORD E D22 33,333.33 D67 20,000.00
EMPTAB

DOLE E D67 10,000.00

FORD E D22 33,333.33

FIGURE 5.6 Supplemental Boundary Value Analysis Test Cases

for BONUS.

Module (Unit) Testing 97

C05 08/25/2011 12:10:34 Page 98

form the program, or should you combine the next module to be tested

with the set of previously tested modules before it is tested? The first ap-

proach is called nonincremental, or ‘‘big-bang,’’ testing or integration; the

second approach is known as incremental testing or integration.

The program in Figure 5.7 is used as an example. The rectangles repre-

sent the six modules (subroutines or procedures) in the program. The lines

connecting the modules represent the control hierarchy of the program;

that is, module A calls modules B, C, and D; module B calls module E; and

so on. Nonincremental testing, the traditional approach, is performed in

the following manner. First, a module test is performed on each of the six

modules, testing each module as a stand-alone entity. The modules might

be tested at the same time or in succession, depending on the environment

(e.g., interactive versus batch-processing computing facilities) and the

number of people involved. Finally, the modules are combined or inte-

grated (e.g., ‘‘link edited’’) to form the program.

The testing of each module requires a special driver module and one or

more stub modules. For instance, to test module B, test cases are first designed

and then fed to module B by passing it input arguments from a driver module,

a small module that must be coded to ‘‘drive,’’ or transmit, test cases through

the module under test. (Alternatively, a test tool could be used.) The driver

module must also display, to the tester, the results produced by B. In addition,

since module B calls module E, something must be present to receive control

when B calls E. A stub module, a special module given the name ‘‘E ’’ that must

be coded to simulate the function of module E, accomplishes this.

FIGURE 5.7 Sample Six-Module Program.

98 The Art of Software Testing

C05 08/25/2011 12:10:34 Page 99

When the module testing of all six modules has been completed, the

modules are combined to form the program.

The alternative approach is incremental testing. Rather than testing

each module in isolation, the next module to be tested is first combined

with the set of modules that have been tested already.

It is premature to give a procedure for incrementally testing the pro-

gram in Figure 5.7, because there is a large number of possible incremental

approaches. A key issue is whether we should begin at the top or bottom of

the program. However, since we discuss this issue in the next section, let

us assume for the moment that we are beginning from the bottom.

The first step is to test modules E, C, and F, either in parallel (by three

people) or serially. Notice that we must prepare a driver for each module,

but not a stub. The next step is to test B and D ; but rather than testing them

in isolation, they are combined with modules E and F, respectively. In other

words, to test module B, a driver is written, incorporating the test cases,

and the pair B-E is tested. The incremental process, adding the next mod-

ule to the set or subset of previously tested modules, is continued until the

last module (module A in this case) is tested. Note that this procedure

could have alternatively progressed from the top to the bottom.

Several observations should be apparent at this point:

1. Nonincremental testing requires more work. For the program in Fig-

ure 5.7, five drivers and five stubs must be prepared (assuming we do

not need a driver module for the top module). The bottom-up incre-

mental test would require five drivers but no stubs. A top-down incre-

mental test would require five stubs but no drivers. Less work is

required because previously tested modules are used instead of the

driver modules (if you start from the top) or stub modules (if you start

from the bottom) needed in the nonincremental approach.

2. Programming errors related to mismatching interfaces or incorrect

assumptions among modules will be detected earlier when incremen-

tal testing is used. The reason is that combinations of modules are

tested together at an early point in time. However, when nonincre-

mental testing is used, modules do not ‘‘see one another’’ until the

end of the process.

3. As a result, debugging should be easier if incremental testing is used.

If we assume that errors related to intermodule interfaces and

assumptions do exist (a good assumption, from experience), then, if

Module (Unit) Testing 99

C05 08/25/2011 12:10:34 Page 100

nonincremental testing has been used, the errors will not surface un-

til the entire program has been combined. At this time, we may have

difficulty pinpointing the error, since it could be anywhere within the

program. Conversely, if incremental testing is used, an error of this

type should be easier to pinpoint, because it is likely that the error is

associated with the most recently added module.

4. Incremental testing might result in more thorough testing. If you are

testing module B, either module E or A (depending on whether you

started from the bottom or the top) is executed as a result. Although

E or A should have been thoroughly tested previously, perhaps exe-

cuting it as a result of B’s module test will invoke a new condition,

perhaps one that represents a deficiency in the original test of E or A.

On the other hand, if nonincremental testing is used, the testing of B

will affect only module B. In other words, incremental testing substi-

tutes previously tested modules for the stubs or drivers needed in the

nonincremental test. As a result, the actual modules receive more

exposure by the completion of the last module test.

5. The nonincremental approach appears to use less machine time. If

module A of Figure 5.7 is being tested using the bottom-up approach,

modules B, C, D, E, and F probably execute during the execution of A.

In a nonincremental test of A, only stubs for B, C, and E are executed.

The same is true for a top-down incremental test. If module F is being

tested, modules A, B, C, D, and E may be executed during the test of F ;

in the nonincremental test of F, only the driver for F, plus F itself, exe-

cutes. Hence, the number of machine instructions executed during a

test run using the incremental approach is apparently greater than that

for the nonincremental approach. Offsetting this is the fact that the

nonincremental test requires more drivers and stubs than the incre-

mental test; machine time is needed to develop the drivers and stubs.

6. At the beginning of the module testing phase, there is more oppor-

tunity for parallel activities when nonincremental testing is used

(that is, all the modules can be tested simultaneously). This might

be of significance in a large project (many modules and people),

since the head count of a project is usually at its peak at the start of

the module test phase.

In summary, observations 1 through 4 are advantages of incremental

testing, while observations 5 and 6 are disadvantages. Given current trends

100 The Art of Software Testing

C05 08/25/2011 12:10:34 Page 101

in the computing industry (hardware costs have been decreasing, and seem

destined to continue to do so, while hardware capability increases, and la-

bor costs and the consequences of software errors are increasing), and

given the fact that the earlier an error is found, the lower the cost of repair-

ing it, you can see that observations 1 through 4 are growing in impor-

tance, whereas observation 5 is becoming less important. Observation 6

seems to be a weak disadvantage, if one at all. This leads to the conclusion

that incremental testing is superior.

Top-Down versus Bottom-Up Testing
Given the conclusion of the previous section—that incremental testing is

superior to nonincremental testing—we next explore two incremental

strategies: top-down and bottom-up testing. Before getting into them, how-

ever, we should clarify several misconceptions. First, the terms top-down

testing, top-down development, and top-down design often are used as syno-

nyms. Top-down testing and top-down development are synonyms (they

represent a strategy of ordering the coding and testing of modules), but

top-down design is something quite different and independent. A program

that was designed in top-down fashion can be incrementally tested in

either a top-down or a bottom-up fashion.

Second, bottom-up testing (or bottom-up development) is often mistak-

enly equated with nonincremental testing. The reason is that bottom-up

testing begins in a manner that is identical to a nonincremental test (i.e.,

when the bottom, or terminal, modules are tested), but as we saw in the

previous section, bottom-up testing is an incremental strategy. Finally,

since both strategies are incremental, we won’t repeat here the advantages

of incremental testing; we will discuss only the differences between top-

down and bottom-up testing.

Top-Down Testing

The top-down strategy starts with the top, or initial, module in the pro-

gram. After this, there is no single ‘‘right’’ procedure for selecting the next

module to be incrementally tested; the only rule is that to be eligible to be

the next module, at least one of the module’s subordinate (calling) modules

must have been tested previously.

Module (Unit) Testing 101

C05 08/25/2011 12:10:34 Page 102

Figure 5.8 is used to illustrate this strategy. A through L are the 12 mod-

ules in the program. Assume that module J contains the program’s I/O read

operations and module I contains the write operations.

The first step is to test module A. To accomplish this, stub modules repre-

senting B, C, and D must be written. Unfortunately, the production of stub

modules is often misunderstood; as evidence, you may often see such state-

ments as ‘‘a stub module need only write a message stating ‘we got this far’ ’’;

and, ‘‘in many cases, the dummy module (stub) simply exits—without doing

any work at all.’’ In most situations, these statements are false. Since module

A calls module B, A is expecting B to perform some work; this work most

likely is some result (output arguments) returned to A. If the stub simply

returns control or writes an error message without returning a meaningful

result, module Awill fail, not because of an error in A, but because of a failure

of the stub to simulate the corresponding module. Moreover, returning a

‘‘wired-in’’ output from a stub module is often insufficient. For instance, con-

sider the task of writing a stub representing a square-root routine, a database

table-search routine, an ‘‘obtain corresponding master-file record’’ routine, or

the like. If the stub returns a fixed wired-in output, but doesn’t have the par-

ticular value expected by the calling module during this invocation, the call-

ing module may fail or produce a confusing result. Hence, the production of

stubs is not a trivial task.

FIGURE 5.8 Sample 12-Module Program.

102 The Art of Software Testing

C05 08/25/2011 12:10:35 Page 103

Another consideration is the form in which test cases are presented to

the program, an important consideration that is not even mentioned in

most discussions of top-down testing. In our example, the question is: How

do you feed test cases to module A? The top module in typical programs

neither receives input arguments nor performs input/output operations, so

the answer is not immediately obvious. The answer is that the test data are

fed to the module (module A in this situation) from one or more of its stubs.

To illustrate, assume that the functions of B, C, and D are as follows:

B—Obtain summary of transaction file.

C—Determine whether weekly status meets quota.

D—Produce weekly summary report.

A test case for A, then, is a transaction summary returned from stub B.

Stub D might contain statements to write its input data to a printer, allow-

ing the results of each test to be examined.

In this program, another problem exists. Presumably, module A calls mod-

ule B only once; therefore the problem is how to feed more than one test case

to A. One solution is to develop multiple versions of stub B, each with a dif-

ferent wired-in set of test data to be returned to A. To execute the test cases,

the program is executed multiple times, each time with a different version of

stub B. Another alternative is to place test data on external files and have stub

B read the test data and return them to A. In either case, keeping in mind the

previous discussion, you should see that the development of stub modules is

more difficult than it is often made out to be. Furthermore, it often is neces-

sary, because of the characteristics of the program, to represent a test case

across multiple stubs beneath the module under test (i.e., where the module

receives data to be acted upon by calling multiple modules).

After A has been tested, an actual module replaces one of the stubs, and

the stubs required by that module are added. For instance, Figure 5.9

might represent the next version of the program.

After testing the top module, numerous sequences are possible. For in-

stance, if we are performing all the testing sequences, four examples of the

many possible sequences of modules are:

1. A B C D E F G H I J K L

2. A B E F J C G K D H L I

3. A D H I K L C G B F J E

4. A B F J D I E C G K H L

Module (Unit) Testing 103

C05 08/25/2011 12:10:35 Page 104

If parallel testing occurs, other alternatives are possible. For instance,

after module A has been tested, one programmer could take module A and

test the combination A-B; another programmer could test A-C; and a third

could test A-D. In general, there is no best sequence, but here are two

guidelines to consider:

1. If there are critical sections of the program (perhaps module G), de-

sign the sequence such that these sections are added as early as possi-

ble. A ‘‘critical section’’ might be a complex module, a module with a

new algorithm, or a module suspected to be error prone.

2. Design the sequence such that the I/O modules are added as early as

possible.

The motivation for the first should be obvious, but the motivation for

the second deserves further discussion. Recall that a problem with stubs is

that some of them must contain the test cases, and others must write their

input to a printer or display. However, as soon as the module accepting the

program’s input is added, the representation of test cases is considerably

simplified; their form is identical to the input accepted by the final pro-

gram (e.g., from a transaction file or a terminal). Likewise, once the mod-

ule performing the program’s output function is added, the placement of

code in stub modules to write results of test cases might no longer be nec-

essary. Thus, if modules J and I are the I/O modules, and if module G per-

forms some critical function, the incremental sequence might be

A B F J D I C G E K H L

and the form of the program after the sixth increment would be that shown

in Figure 5.10.

FIGURE 5.9 Second Step in the Top-Down Test.

104 The Art of Software Testing

C05 08/25/2011 12:10:35 Page 105

Once the intermediate state in Figure 5.10 has been reached, the repre-

sentation of test cases and the inspection of results are simplified. It has an-

other advantage, in that you have a working skeletal version of the program,

that is, a version that performs actual input and output operations. However,

stubs are still simulating some of the ‘‘insides.’’ This early skeletal version:

� Allows you to find human-factor errors and problems.

� Makes it possible to demonstrate the program to the eventual user.

� Serves as evidence that the overall design of the program is sound.

� Serves as a morale booster.

These points represent the major advantage of the top-down strategy.

On the other hand, the top-down approach has some serious shortcom-

ings. Assume that our current state of testing is that of Figure 5.10 and that

our next step is to replace stub H with module H. What we should do at this

point (or earlier) is use the methods described earlier in this chapter to de-

sign a set of test cases for H. Note, however, that the test cases are in the

form of actual program inputs to module J. This presents several problems.

First, because of the intervening modules between J and H (F, B, A, and D),

we might find it impossible to represent certain test cases to module J that

test every predefined situation in H. For instance, if H is the BONUS module

of Figure 5.2, it might be impossible, because of the nature of intervening

module D, to create some of the seven test cases of Figures 5.5 and 5.6.

FIGURE 5.10 Intermediate State in the Top-Down Test.

Module (Unit) Testing 105

C05 08/25/2011 12:10:36 Page 106

Second, because of the ‘‘distance’’ between H and the point at which the

test data enter the program, even if it were possible to test every situation,

determining which data to feed to J to test these situations in H is often a

difficult mental task.

Third, because the displayed output of a test might come from a module

that is a large distance away from the module being tested, correlating the

displayed output to what went on in the module may be difficult or im-

possible. Consider adding module E to Figure 5.10. The results of each

test case are determined by examining the output written by module I, but

because of the intervening modules, it may be difficult to deduce the actual

output of E (that is, the data returned to B).

The top-down strategy, depending on how it is approached, may have

two further problems. People occasionally feel that the strategy can be

overlapped with the program’s design phase. For instance, if you are in the

process of designing the program in Figure 5.8, you might believe that af-

ter the first two levels are designed, modules A through D can be coded and

tested while the design of the lower levels progresses. As we have empha-

sized elsewhere, this is usually an unwise decision. Program design is an

iterative process, meaning that when we are designing the lower levels of a

program’s structure, we may discover desirable changes or improvements

to the upper levels. If the upper levels have already been coded and tested,

the desirable improvements will most likely be discarded, an unwise deci-

sion in the long run.

A final problem that often arises in practice is failing to completely test a

module before proceeding to another module. This occurs for two reasons:

because of the difficulty of embedding test data in stub modules, and be-

cause the upper levels of a program usually provide resources to lower lev-

els. In Figure 5.8 we saw that testing module A might require multiple

versions of the stub for module B. In practice, there is a tendency to say,

‘‘Because this represents a lot of work, I won’t execute all of A’s test cases

now. I’ll wait until I place module J in the program, at which time the

representation of test cases will be easier, and remember at this point to

finish testing module A.’’ Of course, the problem here is that we may forget

to test the remainder of module A at this later point in time. Also, because

upper levels often provide resources for use by lower levels (e.g., opening

of files), it is difficult sometimes to determine whether the resources have

been provided correctly (e.g., whether a file has been opened with the

proper attributes) until the lower modules that use them are tested.

106 The Art of Software Testing

C05 08/25/2011 12:10:36 Page 107

Bottom-Up Testing

The next step is to examine the bottom-up incremental testing strategy.

For the most part, bottom-up testing is the opposite of top-down testing;

thus, the advantages of top-down testing become the disadvantages of

bottom-up testing, and the disadvantages of top-down testing become

the advantages of bottom-up testing. Because of this, the discussion of

bottom-up testing is shorter.

The bottom-up strategy begins with the terminal modules in the pro-

gram (the modules that do not call other modules). After these modules

have been tested, again there is no best procedure for selecting the next

module to be incrementally tested; the only rule is that to be eligible to be

the next module, all of the module’s subordinate modules (the modules it

calls) must have been tested previously.

Returning to Figure 5.8, the first step is to test some or all of modules E,

J, G, K, L, and I, either serially or in parallel. To do so, each module needs a

special driver module: a module that contains wired-in test inputs, calls

the module being tested, and displays the outputs (or compares the actual

outputs with the expected outputs). Unlike the situation with stubs, multi-

ple versions of a driver are not needed, since the driver module can itera-

tively call the module being tested. In most cases, driver modules are easier

to produce than stub modules.

As was the case earlier, a factor influencing the sequence of testing is the

critical nature of the modules. If we decide that modules D and F are most

critical, an intermediate state of the bottom-up incremental test might be

that of Figure 5.11. The next steps might be to test E and then test B, com-

bining B with the previously tested modules E, F, and J.

A drawback of the bottom-up strategy is that there is no concept of an

early skeletal program. In fact, the working program does not exist until

the last module (module A) is added, and this working program is the com-

plete program. Although the I/O functions can be tested before the whole

program has been integrated (the I/O modules are being used in Figure

5.11), the advantages of the early skeletal program are not present.

The problems associated with the impossibility, or difficulty, of creating

all test situations in the top-down approach do not exist here. If you think

of a driver module as a test probe, the probe is being placed directly on the

module being tested; there are no intervening modules to worry about.

Examining other problems associated with the top-down approach, you

Module (Unit) Testing 107

C05 08/25/2011 12:10:36 Page 108

can’t make the unwise decision to overlap design and testing, since the

bottom-up test cannot begin until the bottom of the program has been de-

signed. Also, the problem of not completing the test of a module before

starting another, because of the difficulty of encoding test data in versions

of a stub, does not exist when using bottom-up testing.

A Comparison

It would be convenient if the top-down versus bottom-up issue were as

clear-cut as the incremental versus nonincremental issue, but un-

fortunately it is not. Table 5.3 summarizes the relative advantages and dis-

advantages of the two approaches (excluding the previously discussed

advantages shared by both—those of incremental testing). The first advan-

tage of each approach might appear to be the deciding factor, but there is

no evidence showing that major flaws occur more often at the top or bot-

tom levels of the typical program. The safest way to make a decision is to

weigh the factors in Table 5.3 with respect to the particular program being

tested. Lacking such a program here, the serious consequences of the

fourth disadvantage—of top-down testing and the availability of test tools

that eliminate the need for drivers but not stubs—seems to give the

bottom-up strategy the edge.

Furthermore, it may be apparent that top-down and bottom-up testing

are not the only possible incremental strategies.

FIGURE 5.11 Intermediate State in the Bottom-Up Test.

108 The Art of Software Testing

C05 08/25/2011 12:10:36 Page 109

Performing the Test
The remaining part of the module test is the act of actually carrying out the

test. A set of hints and guidelines for doing this is included here.

When a test case produces a situation where the module’s actual results

do not match the expected results, there are two possible explanations:

either the module contains an error, or the expected results are incorrect

(the test case is incorrect). To minimize this confusion, the set of test cases

TABLE 5.3 Comparison of Top-Down and Bottom-Up Testing

Top-Down Testing

Advantages Disadvantages

1. Advantageous when major flaws

occur toward the top of the

program.

1. Stub modules must be produced.

2. Once the I/O functions are added,

representation of cases is easier.

2. Stub modules are often more

complicated than they first appear to

be.

3. Early skeletal program allows

demonstrations and boosts morale.

3. Before the I/O functions are added,

the representation of test cases in

stubs can be difficult.

4. Test conditions may be impossible, or

very difficult, to create.

5. Observation of test output is more

difficult.

6. Leads to the conclusion that design

and testing can be overlapped.

7. Defers the completion of testing

certain modules.

Bottom-Up Testing

Advantages Disadvantages

1. Advantageous when major flaws

occur toward the bottom of the

program.

1. Driver modules must be produced.

2. Test conditions are easier to create.

2. The program as an entity does not exist

until the last module is added.

3. Observation of test results is easier.

Module (Unit) Testing 109

C05 08/25/2011 12:10:36 Page 110

should be reviewed or inspected before the test is performed (that is, the

test cases should be tested).

The use of automated test tools can minimize part of the drudgery of the

testing process. For instance, test tools exist that eliminate the need for

driver modules. Flow-analysis tools enumerate the paths through a pro-

gram, find statements that can never be executed (‘‘unreachable’’ code),

and identify instances where a variable is used before it is assigned a value.

As was the practice earlier in this chapter, remember that a definition of

the expected result is a necessary part of a test case. When executing a test,

remember to look for side effects (instances where a module does some-

thing it is not supposed to do). In general, these situations are difficult to

detect, but some of them may be found by checking, after execution of the

test case, the inputs to the module that are not supposed to be altered. For

instance, test case 7 in Figure 5.6 states that as part of the expected result,

ESIZE, DSIZE, and DEPTTAB should be unchanged. When running this test

case, not only should the output be examined for the correct result, but

ESIZE, DSIZE, and DEPTTAB should be examined to determine whether

they were erroneously altered.

The psychological problems associated with a person attempting to test

his or her own programs apply as well to module testing. Rather than test-

ing their own modules, programmers might swap them; more specifically,

the programmer of the calling module is always a good candidate to test

the called module. Note that this applies only to testing; the debugging of

a module always should be performed by the original programmer.

Avoid throwaway test cases; represent them in such a form that they can

be reused in the future. Recall the counterintuitive phenomenon in Figure

2.2. If an abnormally high number of errors is found in a subset of the mod-

ules, it is likely that these modules contain even more, as yet undetected,

errors. Such modules should be subjected to further module testing, and

possibly an additional code walkthrough or inspection. Finally, remember

that the purpose of a module test is not to demonstrate that the module

functions correctly, but to demonstrate the presence of errors in the module.

Summary
In this chapter we introduced you to some of the mechanics of testing,

especially as it relates to large programs. This is a process of testing indi-

vidual program components—subroutines, subprograms, classes, and

110 The Art of Software Testing

C05 08/25/2011 12:10:36 Page 111

procedures. In module testing you compare software functionality with the

specification that defines its intended function. Module or unit testing can

be an important part of a developer’s toolbox to help achieve a reliable

application, especially with object-oriented languages such as Java and

C#. The goal in module testing is the same as for any other type of software

testing: attempt to show how the program contradicts the specification. In

addition to the software specification, you will need each module’s source

code to effect a module test.

Module testing is largely white-box testing. (See Chapter 4 for more in-

formation on white-box procedures and designing test cases for testing.) A

thorough module test design will include incremental strategies such as

top-down as well as bottom-up techniques.

It is helpful, when preparing for a module test, to review the psycholog-

ical and economic principles laid out in Chapter 2.

One more point: Module testing software is only the beginning of an

exhaustive testing procedure. You will need to move on to higher-order test-

ing, which we address in Chapter 6, and user testing, covered in Chapter 7.

Module (Unit) Testing 111

C05 08/25/2011 12:10:36 Page 112

C06 08/25/2011 12:12:56 Page 113

6 Higher-Order Testing

When you finish module-testing a program, you have really only just

begun the testing process. This is especially true of large or com-

plex programs. Consider this important concept:

A software error occurs when the program does not do what its end

user reasonably expects it to do.

Applying this definition, even if you could perform an absolutely perfect

module test, you still couldn’t guarantee that you have found all software

errors. To complete testing, then, some form of further testing is necessary.

We call this new form higher-order testing.

Software development is largely a process of communicating informa-

tion about the eventual program and translating this information from one

form to another. In essence, it is moving from the conceptual to the con-

crete. For that reason, the vast majority of software errors can be attributed

to breakdowns, mistakes, and ‘‘noise’’ during the communication and

translation of information.

This view of software development is illustrated in Figure 6.1, a model

of the development cycle for a software product. The flow of the process

can be summarized in seven steps:

1. Translate the program user’s needs into a set of written requirements.

These are the goals for the product.

113

C06 08/25/2011 12:12:56 Page 114

2. Translate the requirements into specific objectives by assessing feasi-

bility, time, and cost, resolving conflicting requirements, and estab-

lishing priorities and trade-offs.

3. Translate the objectives into a precise product specification, viewing

the product as a black box and considering only its interfaces and

interactions with the end user. This description is called the external

specification.

4. If the product is a system such as an operating system, flight-control

system, database system, or employee personnel management sys-

tem, rather than an application (e.g., compiler, payroll program,

word processor), the next process is system design. This step

FIGURE 6.1 The Software Development Process.

114 The Art of Software Testing

C06 08/25/2011 12:12:56 Page 115

partitions the system into individual programs, components, or sub-

systems, and defines their interfaces.

5. Design the structure of the program or programs by specifying the

function of each module, the hierarchical structure of the modules,

and the interfaces between modules.

6. Develop a precise specification that defines the interface to, and func-

tion of, each module.

7. Translate, through one or more substeps, the module interface speci-

fication into the source code algorithm of each module.

Here’s another way of looking at these forms of documentation:

� Requirements specify why the program is needed.

� Objectives specify what the program should do and how well the pro-

gram should do it.

� External specifications define the exact representation of the program

to users.

� Documentation associated with the subsequent processes specifies, in

increasing levels of detail, how the program is constructed.

Given the premise that the seven steps of the development cycle involve

communication, comprehension, and translation of information, and the

premise that most software errors stem from breakdowns in information

handling, there are three complementary approaches to prevent and/or de-

tect these errors.

First, we can introduce more precision into the development process to

prevent many of the errors. Second, we can introduce, at the end of each

process, a separate verification step to locate as many errors as possible

before proceeding to the next process. This approach is illustrated in

Figure 6.2. For instance, the external specification is verified by comparing

it to the output of the prior stage (the statement of objectives) and feeding

back any discovered mistakes to the external specification process. (Use

the code inspection and walkthrough methods discussed in Chapter 3 in

the verification step at the end of the seventh process.)

The third approach is to orient distinct testing processes toward distinct

development processes. That is, focus each testing process on a particular

translation step—thus on a particular class of errors. This approach is

illustrated in Figure 6.3.

Higher-Order Testing 115

C06 08/25/2011 12:12:57 Page 116

The testing cycle is structured to model the development cycle. In other

words, you should be able to establish a one-to-one correspondence be-

tween development and testing processes. For instance:

� The purpose of a module test is to find discrepancies between the pro-

gram’s modules and their interface specifications.

� The purpose of a function test is to show that a program does not

match its external specifications.

� The purpose of a system test is to show that the product is in-

consistent with its original objectives.

FIGURE 6.2 The Development Process with Intermediate Verification

Steps.

116 The Art of Software Testing

C06 08/25/2011 12:12:58 Page 117

Notice how we have structured these statements: ‘‘find discrepancies,’’

‘‘does not match,’’ ‘‘is inconsistent.’’ Remember that the goal of software

testing is to find problems (because we know there will be problems!). If

you set out to prove that some form of inputs work properly, or assume

that the program is true to its specification and objectives, your testing will

be incomplete. Only by setting out to prove that some form of inputs work

improperly, and assume that the program is untrue to its specification and

objectives, will your testing be complete. This is an important concept we

iterate throughout this book.

FIGURE 6.3 The Correspondence Between Development and Testing

Processes.

Higher-Order Testing 117

C06 08/25/2011 12:12:59 Page 118

The advantages of this structure are that it avoids unproductive re-

dundant testing and prevents you from overlooking large classes

of errors. For instance, rather than simply labeling system testing as

‘‘the testing of the whole system’’ and possibly repeating earlier tests,

system testing is oriented toward a distinct class of errors (those made

during the translation of the objectives to the external specification) and

measured with respect to a distinct type of documentation in the devel-

opment process.

The higher-order testing methods shown in Figure 6.3 are most applica-

ble to software products (programs written as a result of a contract or in-

tended for wide usage, as opposed to experimental programs or those

written for use only by the program’s author). Programs not written as

products often do not have formal requirements and objectives; for such

programs, the function test might be the only higher-order test. Also, the

need for higher-order testing increases along with the size of the program.

The reason is that the ratio of design errors (errors made in the earlier

development processes) to coding errors is considerably higher in large

programs than in small programs.

Note that the sequence of testing processes in Figure 6.3 does not neces-

sarily imply a time sequence. For instance, since system testing is not de-

fined as ‘‘the kind of testing you do after function testing,’’ but instead as a

distinct type of testing focused on a distinct class of errors, it could very

well be partially overlapped in time with other testing processes.

In this chapter, we discuss the processes of function, system, accep-

tance, and installation testing. We omit integration testing because it is of-

ten not regarded as a separate testing step; and, when incremental module

testing is used, it is an implicit part of the module test.

We will keep the discussions of these testing processes brief, general,

and, for the most part, without examples because specific techniques used

in these higher-order tests are highly dependent on the specific program

being tested. For instance, the characteristics of a system test (the types of

test cases, the manner in which test cases are designed, the test tools used)

for an operating system will differ considerably from a system test of a

compiler, a program controlling a nuclear reactor, or a database applica-

tion program.

In the last few sections in this chapter we address planning and organi-

zational issues, along with the important question of determining when to

stop testing.

118 The Art of Software Testing

C06 08/25/2011 12:12:59 Page 119

Function Testing
As indicated in Figure 6.3, function testing is a process of attempting to

find discrepancies between the program and the external specification. An

external specification is a precise description of the program’s behavior

from the end-user point of view.

Except when used on small programs, function testing is normally a

black-box activity. That is, you rely on the earlier module-testing process

to achieve the desired white-box logic coverage criteria.

To perform a function test, you analyze the specification to derive a set

of test cases. The equivalence partitioning, boundary value analysis,

cause-effect graphing, and error-guessing methods described in Chapter

4 are especially pertinent to function testing. In fact, the examples in

Chapter 4 are examples of function tests. The descriptions of the Fortran

DIMENSION statement, the examination scoring program, and the

DISPLAY command actually are examples of external specifications. They

are not, however, completely realistic examples; for instance, an actual

external specification for the scoring program would include a precise

description of the format of the reports. (Note: Since we discussed func-

tion testing in Chapter 4, we present no examples of function tests in this

section.)

Many of the guidelines we provided in Chapter 2 also are particularly

pertinent to function testing. In particular, keep track of which functions

have exhibited the greatest number of errors; this information is valuable

because it tells you that these functions probably also contain the prepon-

derance of as-yet undetected errors. Also, remember to focus a sufficient

amount of attention on invalid and unexpected input conditions. (Recall

that the definition of the expected result is a vital part of a test case.)

Finally, as always, keep in mind that the purpose of the function test is to

expose errors and discrepancies with the specification, not to demonstrate

that the program matches its external specification.

System Testing
System testing is the most misunderstood and most difficult testing pro-

cess. System testing is not a process of testing the functions of the complete

system or program, because this would be redundant with the process of

function testing. Rather, as shown in Figure 6.3, system testing has a

Higher-Order Testing 119

C06 08/25/2011 12:12:59 Page 120

particular purpose: to compare the system or program to its original objec-

tives. Given this purpose, consider these two implications:

1. System testing is not limited to systems. If the product is a program,

system testing is the process of attempting to demonstrate how the

program, as a whole, fails to meet its objectives.

2. System testing, by definition, is impossible if there is no set of writ-

ten, measurable objectives for the product.

In looking for discrepancies between the program and its objectives,

focus on translation errors made during the process of designing the

external specification. This makes the system test a vital test process, be-

cause in terms of the product, the number of errors made, and the sever-

ity of those errors, this step in the development cycle usually is the most

error prone.

It also implies that, unlike the function test, the external specification

cannot be used as the basis for deriving the system test cases, since this

would subvert the purpose of the system test. On the other hand, the

objectives document cannot be used by itself to formulate test cases, since

it does not, by definition, contain precise descriptions of the program’s

external interfaces. We solve this dilemma by using the program’s user

documentation or publications—design the system test by analyzing the

objectives; formulate test cases by analyzing the user documentation. This

has the useful side effect of comparing the program to its objectives and to

the user documentation, as well as comparing the user documentation to

the objectives, as shown in Figure 6.4.

Figure 6.4 illustrates why system testing is the most difficult testing pro-

cess. The leftmost arrow in the figure, comparing the program to its objec-

tives, is the central purpose of the system test, but there are no known test-

case design methodologies. The reason for this is that objectives state what

a program should do and how well the program should do it, but they do

not state the representation of the program’s functions. For instance, the

objectives for the DISPLAY command specified in Chapter 4 might have

read as follows:

A command will be provided to view, from a terminal, the contents of

main storage locations. Its syntax should be consistent with the syn-

tax of all other system commands. The user should be able to specify

120 The Art of Software Testing

C06 08/25/2011 12:12:59 Page 121

a range of locations, via an address range or an address and a count.

Sensible defaults should be provided for command operands.

Output should be displayed as multiple lines of multiple words (in

hexadecimal), with spacing between the words. Each line should

contain the address of the first word of that line. The command is a

‘‘trivial’’ command, meaning that under reasonable system loads, it

should begin displaying output within two seconds, and there should

be no observable delay time between output lines. A programming

error in the command processor should, at the worst, cause the com-

mand to fail; the system and the user’s session must not be affected.

The command processor should have no more than one user-

detected error after the system is put into production.

Given the statement of objectives, there is no identifiable methodology

that would yield a set of test cases, other than the vague but useful guide-

line of writing test cases to attempt to show that the program is in-

consistent with each sentence in the objectives statement. Hence, a

different approach to test-case design is taken here: Rather than describing

a methodology, distinct categories of system test cases are discussed. Be-

cause of the absence of a methodology, system testing requires a substantial

FIGURE 6.4 The System Test.

Higher-Order Testing 121

C06 08/25/2011 12:13:0 Page 122

amount of creativity; in fact, the design of good system test cases requires

more creativity, intelligence, and experience than are required to design

the system or program itself.

Table 6.1 lists 15 categories of test cases, along with a brief description.

We discuss the categories in turn here. We don’t claim that all 15 catego-

ries apply to every program, but to avoid overlooking something, we rec-

ommend that you explore all of them when designing test cases.

TABLE 6.1 15 Categories of Test Cases

Category Description

Facility Ensure that the functionality in the objectives is implemented.

Volume Subject the program to abnormally large volumes of data to

process.

Stress Subject the program to abnormally large loads, generally

concurrent processing.

Usability Determine how well the end user can interact with the program.

Security Try to subvert the program’s security measures.

Performance Determine whether the program meets response and

throughput requirements.

Storage Ensure the program correctly manages its storage needs, both

system and physical.

Configuration Check that the program performs adequately on the

recommended configurations.

Compatibility/

Conversion

Determine whether new versions of the program are

compatible with previous releases.

Installation Ensure the installation methods work on all supported

platforms.

Reliability Determine whether the program meets reliability specifications

such as uptime and MTBF.

Recovery Test whether the system’s recovery facilities work as designed.

Serviceability/

Maintenance

Determine whether the application correctly provides

mechanisms to yield data on events requiring technical support.

Documentation Validate the accuracy of all user documentation.

Procedure Determine the accuracy of special procedures required to use or

maintain the program.

122 The Art of Software Testing

C06 08/25/2011 12:13:1 Page 123

Facility Testing

The most obvious type of system testing is to determine whether each fa-

cility (or function; but the word ‘‘function’’ is not used here to avoid con-

fusing this with function testing) mentioned in the objectives was actually

implemented. The procedure is to scan the objectives sentence by sen-

tence, and when a sentence specifies a what (e.g., ‘‘syntax should be con-

sistent . . . ,’’ ‘‘user should be able to specify a range of locations . . .’’),

determine that the program satisfies the ‘‘what.’’ This type of testing often

can be performed without a computer; a mental comparison of the objec-

tives with the user documentation is sometimes sufficient. Nonetheless, a

checklist is helpful to ensure that you mentally verify the same objectives

the next time you perform the test.

Volume Testing

A second type of system testing is to subject the program to heavy volumes

of data. For instance, a compiler could be fed an absurdly large source pro-

gram to compile. A linkage editor might be fed a program containing thou-

sands of modules. An electronic circuit simulator could be given a circuit

containing millions of components. An operating system’s job queue might

be filled to capacity. If a program is supposed to handle files spanning mul-

tiple volumes, enough data is created to cause the program to switch from

one volume to another. In other words, the purpose of volume testing is to

show that the program cannot handle the volume of data specified in its

objectives.

Obviously, volume testing can require significant resources, therefore,

in terms of machine and people time, you shouldn’t go overboard. Still,

every program must be exposed to at least a few volume tests.

Stress Testing

Stress testing subjects the program to heavy loads, or stresses. This should

not be confused with volume testing; a heavy stress is a peak volume of

data, or activity, encountered over a short span of time. An analogy would be

evaluating a typist: A volume test would determine whether the typist

could cope with a draft of a large report; a stress test would determine

whether the typist could type at a rate of 50 words per minute.

Higher-Order Testing 123

C06 08/25/2011 12:13:1 Page 124

Because stress testing involves an element of time, it is not applicable to

many programs—for example, a compiler or a batch-processing payroll

program. It is applicable, however, to programs that operate under varying

loads, or interactive, real-time, and process control programs. If an air traf-

fic control system is supposed to keep track of up to 200 planes in its sec-

tor, you could stress-test it by simulating the presence of 200 planes. Since

there is nothing to physically keep a 201st plane from entering the sector, a

further stress test would explore the system’s reaction to this unexpected

plane. An additional stress test might simulate the simultaneous entry of a

large number of planes into the sector.

If an operating system is supposed to support a maximum of 15 concur-

rent jobs, the system could be stressed by attempting to run 15 jobs simul-

taneously. You could stress a pilot training aircraft simulator by

determining the system’s reaction to a trainee who forces the rudder left,

pulls back on the throttle, lowers the flaps, lifts the nose, lowers the land-

ing gear, turns on the landing lights, and banks left, all at the same time.

(Such test cases might require a four-handed pilot or, realistically, two test

specialists in the cockpit.) You might stress-test a process control system

by causing all of the monitored processes to generate signals simulta-

neously, or a telephone switching system by routing to it a large number of

simultaneous phone calls.

Web-based applications are common subjects of stress testing. Here,

you want to ensure that your application, and hardware, can handle a tar-

get volume of concurrent users. You could argue that you may have mil-

lions of people accessing the site at one time, but that is not realistic. You

need to define your audience then design a stress test to represent the max-

imum number of users you think will use your site. (Chapter 10 provides

more information on testing Web-based applications.)

Similarly, you could stress a mobile device application—a mobile phone

operating system, for example—by launching multiple applications that

run and stay resident, then making or receiving one or more telephone

calls. You could launch a GPS navigation program, an application that uses

CPU and radio frequency (RF) resources almost continuously, then

attempt to use other applications or engage telephone calls. (Chapter 11

discusses testing mobile applications in more detail.)

Although many stress tests do represent conditions that the program

likely will experience during its operation, others may truly represent

‘‘never will occur’’ situations; but this does not imply that these tests are

124 The Art of Software Testing

C06 08/25/2011 12:13:1 Page 125

not useful. If these impossible conditions detect errors, the test is valuable

because it is likely that the same errors might also occur in realistic, less

stressful situations.

Usability Testing

Another important test case area is usability, or user testing. Although this

testing technique is nearly 30 years old, it has become more important

with the advent of more GUI-based software and the deep penetration of

computer hardware and software into all aspects of our society. By tasking

the ultimate end user of an application with testing the software in a real-

world environment, potential problems can be discovered that even the

most aggressive automated testing routing likely wouldn’t find. This area

of software testing is so important we will cover it further in the next

chapter.

Security Testing

In response to society’s growing concern about privacy, many programs

now have specific security objectives. Security testing is the process of at-

tempting to devise test cases that subvert the program’s security checks.

For example, you could try to formulate test cases that get around an oper-

ating system’s memory protection mechanism. Similarly, you could try to

subvert a database system’s data security mechanisms. One way to devise

such test cases is to study known security problems in similar systems and

generate test cases that attempt to demonstrate comparable problems in

the system you are testing. For example, published sources in magazines,

chat rooms, or newsgroups frequently cover known bugs in operating sys-

tems or other software systems. By searching for security holes in existing

programs that provide services similar to the one you are testing, you can

devise test cases to determine whether your program suffers from the same

kind of problems.

Web-based applications often need a higher level of security testing

than do most applications. This is especially true of e-commerce sites.

Although sufficient technology, namely encryption, exists to allow cus-

tomers to complete transactions securely over the Internet, you should not

rely on the mere application of technology to ensure safety. In addition,

you will need to convince your customer base that your application is safe,

Higher-Order Testing 125

C06 08/25/2011 12:13:1 Page 126

or you risk losing customers. Again, Chapter 10 provides more informa-

tion on security testing in Internet-based applications.

Performance Testing

Many programs have specific performance or efficiency objectives, stating

such properties as response times and throughput rates under certain

workload and configuration conditions. Again, since the purpose of a sys-

tem test is to demonstrate that the program does not meet its objectives,

test cases must be designed to show that the program does not satisfy its

performance objectives.

Storage Testing

Similarly, programs occasionally have storage objectives that state, for

example, the amount of system memory the program uses and the size of

temporary or log files. You need to verify that your program can control its

use of system memory so it does not negatively impact other processes

running on the host. The same holds for physical files on the file system.

Filling a disk drive can cause significant downtime. You should design test

cases to show that these storage objectives have not been met.

Configuration Testing

Programs such as operating systems, database management systems, and

messaging programs support a variety of hardware configurations, includ-

ing various types and numbers of I/O devices and communications lines,

or different memory sizes. Often, the number of possible configurations is

too large to test each one, but at the least, you should test the program with

each type of hardware device and with the minimum and maximum con-

figuration. If the program itself can be configured to omit program compo-

nents, or if the program can run on different computers, each possible

configuration of the program should be tested.

Today, many programs are designed for multiple operating systems.

Thus, when testing such a program, you should do so on all of the operat-

ing systems for which it was designed. Programs designed to execute

within a Web browser require special attention, since there are numerous

Web browsers available and they don’t all function the same way. In

126 The Art of Software Testing

C06 08/25/2011 12:13:1 Page 127

addition, the same Web browser will operate differently on different oper-

ating systems.

Compatibility/Conversion Testing

Most programs that are developed are not completely new; they often

are replacements for some deficient system. As such, programs often have

specific objectives concerning their compatibility with, and conversion

procedures from, the existing system. Again, in testing the program against

these objectives, the orientation of the test cases is to demonstrate that the

compatibility objectives have not been met and that the conversion proce-

dures do not work. Here you try to generate errors while moving data from

one system to another. An example would be upgrading a database system.

You want to ensure that the new release supports your existing data, just as

you need to validate that a new version of a word processing application

supports its previous document formats. Various methods exist to test

this process; however, they are highly dependent on the database system

you employ.

Installation Testing

Some types of software systems have complicated installation procedures.

Testing the installation procedure is an important part of the system testing

process. This is particularly true of an automated installation system that is

part of the program package. A malfunctioning installation program could

prevent the user from ever having a successful experience with the main

system you are testing. A user’s first experience is when he or she installs

the application. If this phase performs poorly, then the user/customer may

find another product, or have little confidence in the application’s validity.

Reliability Testing

Of course, the goal of all types of testing is the improvement of the pro-

gram reliability, but if the program’s objectives contain specific statements

about reliability, specific reliability tests might be devised. Testing reliabil-

ity objectives can be difficult. For example, a modern online system such

as a corporate wide area network (WAN) or an Internet service provider

(ISP) generally has a targeted uptime of 99.97 percent over the life of the

Higher-Order Testing 127

C06 08/25/2011 12:13:1 Page 128

system. There is no known way that you could test this objective within a

test period of months or even years. Today’s critical software systems have

even higher reliability standards, and today’s hardware conceivably should

support these objectives. You potentially can test programs or systems with

more modest mean time between failures (MTBF) objectives or reasonable

(in terms of testing) operational error objectives.

An MTBF of no more than 20 hours, or an objective that a program

should experience no more than 12 unique errors after it is placed into

production, for example, presents testing possibilities, particularly for sta-

tistical, program-proving, or model-based testing methodologies. These

methods are beyond the scope of this book, but the technical literature

(online and otherwise) offers ample guidance in this area. For example, if

this area of program testing is of interest to you, research the concept of

inductive assertions. The goal of this method is the development of a set of

theorems about the program in question, the proof of which guarantees the

absence of errors in the program. The method begins by writing assertions

about the program’s input conditions and correct results. The assertions

are expressed symbolically in a formal logic system, usually the first-order

predicate calculus. You then locate each loop in the program and, for each

loop, write an assertion stating the invariant (always true) conditions at an

arbitrary point in the loop. The program now has been partitioned into a

fixed number of fixed-length paths (all possible paths between a pair of

assertions). For each path, you then take the semantics of the intervening

program statements to modify the assertion, and eventually reach the end

of the path. At this point, two assertions exist at the end of the path: the

original one and the one derived from the assertion at the opposite end.

You then write a theorem stating that the original assertion implies the de-

rived assertion, and attempt to prove the theorem. If the theorems can be

proved, you could assume the program is error free—as long as the pro-

gram eventually terminates. A separate proof is required to show that the

program will always eventually terminate.

As complex as this sort of software proving or prediction sounds, reli-

ability testing and, indeed, the concept of software reliability engineer-

ing (SRE) are with us today and are increasingly important for systems

that must maintain very high uptimes. To illustrate this point, examine

Table 6.2 to see the number of hours per year a system must be up to

support various uptime requirements. These values should indicate the

need for SRE.

128 The Art of Software Testing

C06 08/25/2011 12:13:1 Page 129

Recovery Testing

Programs such as operating systems, database management systems, and

teleprocessing programs often have recovery objectives that state how the

system is to recover from programming errors, hardware failures, and data

errors. One objective of the system test is to show that these recovery func-

tions do not work correctly. Programming errors can be purposely injected

into a system to determine whether it can recover from them. Hardware

failures such as memory parity errors or I/O device errors can be simu-

lated. Data errors such as noise on a communications line or an invalid

pointer in a database can be created purposely or simulated to analyze the

system’s reaction.

One design goal of such systems is to minimize the mean time to recov-

ery (MTTR). Downtime often causes a company to lose revenue because

the system is inoperable. One testing objective is to show that the system

fails to meet the service-level agreement for MTTR. Often, the MTTR will

have an upper and lower boundary, so your test cases should reflect these

bounds.

Serviceability/Maintenance Testing

The program also may have objectives for its serviceability or maintain-

ability characteristics. All objectives of this sort must be tested. Such objec-

tives might define the service aids to be provided with the system,

including storage dump programs or diagnostics, the mean time to debug

an apparent problem, the maintenance procedures, and the quality of in-

ternal logic documentation.

TABLE 6.2 Hours per Year for Various Uptime Requirements

Uptime Percent Requirements Operational Hours per Year

100 8760.0

99.9 8751.2

98 8584.8

97 8497.2

96 8409.6

95 8322.0

Higher-Order Testing 129

C06 08/25/2011 12:13:1 Page 130

Documentation Testing

As we illustrated in Figure 6.4, the system test also is concerned with the

accuracy of the user documentation. The principal way of accomplishing

this test is to use the documentation to determine the representation of the

prior system test cases. That is, once a particular stress case is devised, you

would use the documentation as a guide for writing the actual test case.

Also, the user documentation itself should be the subject of an inspection

(similar to the concept of the code inspection in Chapter 3), to check it for

accuracy and clarity. Any examples illustrated in the documentation

should be encoded into test cases and fed to the program.

Procedure Testing

Finally, many programs are parts of larger, not completely automated sys-

tems involving procedures people perform. Any prescribed human proce-

dures, such as those for the system operator, database administrator, or

end user, should be tested during the system test.

For example, a database administrator should document procedures for

backing up and recovering the database system. If possible, a person not

associated with the administration of the database should test the proce-

dures. However, a company must create the resources needed to ade-

quately test the procedures. These resources often include hardware and

additional software licensing.

Performing the System Test

One of the most vital considerations in implementing the system test is

determining who should do it. To answer this in a negative way, (1) pro-

grammers should not perform a system test; and (2) of all the testing

phases, this is the one that the organization responsible for developing the

programs definitely should not perform.

The first point stems from the fact that a person performing a system

test must be capable of thinking like an end user, which implies a thor-

ough understanding of the attitudes and environment of the end user and

of how the program will be used. Obviously, then, if feasible, a good test-

ing candidate is one or more end users. However, because the typical end

user will not have the ability or expertise to perform many of the

130 The Art of Software Testing

C06 08/25/2011 12:13:1 Page 131

categories of tests described earlier, an ideal system test team might be

composed of a few professional system test experts (people who spend

their lives performing system tests), a representative end user or two, a

human-factors engineer, and the key original analysts or designers of the

program. Including the original designers does not violate principle 2

from Table 2.1, ‘‘Vital Program Testing Guidelines,’’ recommending

against testing your own program, since the program has probably passed

through many hands since it was conceived. Therefore, the original de-

signers do not have the troublesome psychological ties to the program

that motivated this principle.

The second point stems from the fact that a system test is an ‘‘anything

goes, no holds barred’’ activity. Again, the development organization has

psychological ties to the program that are counter to this type of activity.

Also, most development organizations are most interested in having the

system test proceed as smoothly as possible and on schedule, hence

are not truly motivated to demonstrate that the program does not meet

its objectives. At the least, the system test should be performed by an

independent group of people with few, if any, ties to the development

organization.

Perhaps the most economical way of conducting a system test (econom-

ical in terms of finding the most errors with a given amount of money, or

spending less money to find the same number of errors), is to subcontract

the test to a separate company. We talk about this more in the last section

of this chapter.

Acceptance Testing
Returning to the overall model of the development process shown in

Figure 6.3, you can see that acceptance testing is the process of compar-

ing the program to its initial requirements and the current needs of its

end users. It is an unusual type of test in that it usually is performed by

the program’s customer or end user and normally is not considered the

responsibility of the development organization. In the case of a con-

tracted program, the contracting (user) organization performs the accep-

tance test by comparing the program’s operation to the original contract.

As is the case for other types of testing, the best way to do this is to devise

test cases that attempt to show that the program does not meet the con-

tract; if these test cases are unsuccessful, the program is accepted. In the

Higher-Order Testing 131

C06 08/25/2011 12:13:1 Page 132

case of a program product, such as a computer manufacturer’s operating

system, or a software company’s database system, the sensible customer

first performs an acceptance test to determine whether the product satis-

fies its needs.

Although the ultimate acceptance test is, indeed, the responsibility of

the customer or end user, the savvy developer will conduct user tests dur-

ing the development cycle and prior to delivering the finished product to

the end user or contract customer. See Chapter 7 for more information on

user or usability testing.

Installation Testing
The remaining testing process in Figure 6.3 is the installation test. Its posi-

tion in the figure is a bit unusual, since it is not related, as all of the other

testing processes are, to specific phases in the design process. It is an un-

usual type of testing because its purpose is not to find software errors but

to find errors that occur during the installation process.

Many events occur when installing software systems. A short list of

examples includes the following:

� User must select a variety of options.

� Files and libraries must be allocated and loaded.

� Valid hardware configurations must be present.

� Programs may need network connectivity to connect to other

programs.

The organization that produced the system should develop the installa-

tion tests, which should be delivered as part of the system, and run after

the system is installed. Among other things, the test cases might check to

ensure that a compatible set of options has been selected, that all parts of

the system exist, that all files have been created and have the necessary

contents, and that the hardware configuration is appropriate.

Test Planning and Control
If you consider that the testing of a large system could entail writing, exe-

cuting, and verifying tens of thousands of test cases, handling thousands

132 The Art of Software Testing

C06 08/25/2011 12:13:1 Page 133

of modules, repairing thousands of errors, and employing hundreds of

people over a time span of a year or more, it is apparent that you are faced

with an immense project management challenge in planning, monitoring,

and controlling the testing process. In fact, the problem is so enormous

that we could devote an entire book to just the management of software

testing. The intent of this section is to summarize some of these

considerations.

As mentioned in Chapter 2, the major mistake most often made in plan-

ning a testing process is the tacit assumption that no errors will be found.

The obvious result of this mistake is that the planned resources (people,

calendar time, and computer time) will be grossly underestimated, a noto-

rious problem in the computing industry. Compounding the problem is

the fact that the testing process falls at the end of the development cycle,

meaning that resource changes are difficult. A second, perhaps more insid-

ious problem is that the wrong definition of testing is being used, since it is

difficult to see how someone using the correct definition of testing (the

goal being to find errors) would plan a test using the assumption that no

errors will be found.

As is the case for most undertakings, the plan is the crucial part of the

management of the testing process. The components of a good test plan are

as follows:

1. Objectives. The objectives of each testing phase must be defined.

2. Completion criteria. Criteria must be designed to specify when each

testing phase will be judged to be complete. This matter is discussed

in the next section.

3. Schedules. Calendar time schedules are needed for each phase. They

should indicate when test cases will be designed, written, and exe-

cuted. Some software methodologies such as Extreme Programming

(discussed in Chapter 9) require that you design the test cases and

unit tests before application coding begins.

4. Responsibilities. For each phase, the people who will design, write,

execute, and verify test cases, and the people who will repair discov-

ered errors, should be identified. And, because in large projects dis-

putes inevitably arise over whether particular test results represent

errors, an arbitrator should be identified.

5. Test case libraries and standards. In a large project, systematic meth-

ods of identifying, writing, and storing test cases are necessary.

Higher-Order Testing 133

C06 08/25/2011 12:13:1 Page 134

6. Tools. The required test tools must be identified, including a plan for

who will develop or acquire them, how they will be used, and when

they will be needed.

7. Computer time. This is a plan for the amount of computer time

needed for each testing phase. It would include servers used for com-

piling applications, if required; desktop machines required for instal-

lation testing; Web servers for Web-based applications; networked

devices, if required; and so forth.

8. Hardware configuration. If special hardware configurations or devices

are needed, a plan is required that describes the requirements, how

they will be met, and when they will be needed.

9. Integration. Part of the test plan is a definition of how the program

will be pieced together (e.g., incremental top-down testing). A sys-

tem containing major subsystems or programs might be pieced to-

gether incrementally, using the top-down or bottom-up approach, for

instance, but where the building blocks are programs or subsystems,

rather than modules. If this is the case, a system integration plan is

necessary. The system integration plan defines the order of integra-

tion, the functional capability of each version of the system, and re-

sponsibilities for producing ‘‘scaffolding,’’ code that simulates the

function of nonexistent components.

10. Tracking procedures. You must identify means to track various aspects

of the testing progress, including the location of error-prone modules

and estimation of progress with respect to the schedule, resources,

and completion criteria.

11. Debugging procedures. You must define mechanisms for reporting de-

tected errors, tracking the progress of corrections, and adding the

corrections to the system. Schedules, responsibilities, tools, and com-

puter time/resources also must be part of the debugging plan.

12. Regression testing. Regression testing is performed after making a

functional improvement or repair to the program. Its purpose is to

determine whether the change has regressed other aspects of the pro-

gram. It usually is performed by rerunning some subset of the pro-

gram’s test cases. Regression testing is important because changes

and error corrections tend to be much more error prone than the

original program code (in much the same way that most typographi-

cal errors in newspapers are the result of last-minute editorial

134 The Art of Software Testing

C06 08/25/2011 12:13:1 Page 135

changes, rather than changes in the original copy). A plan for regres-

sion testing—who, how, when—also is necessary.

Test Completion Criteria
One of the most difficult questions to answer when testing a program is

determining when to stop, since there is no way of knowing if the error

just detected is the last remaining error. In fact, in anything but a small

program, it is unreasonable to expect that all errors will eventually be de-

tected. Given this dilemma, and given the fact that economics dictate that

testing must eventually terminate, you might wonder if the question has to

be answered in a purely arbitrary way, or if there are some useful stopping

criteria.

The completion criteria typically used in practice are both meaningless

and counterproductive. The two most common criteria are these:

1. Stop when the scheduled time for testing expires.

2. Stop when all the test cases execute without detecting errors—that is,

stop when the test cases are unsuccessful.

The first criterion is useless because you can satisfy it by doing abso-

lutely nothing. It does not measure the quality of the testing. The second

criterion is equally useless because it also is independent of the quality of

the test cases. Furthermore, it is counterproductive because it sub-

consciously encourages you to write test cases that have a low probability

of detecting errors.

As discussed in Chapter 2, humans are highly goal oriented. If you are

told that you have finished a task when the test cases are unsuccessful, you

will subconsciously write test cases that lead to this goal, avoiding the use-

ful, high-yield, destructive test cases.

There are three categories of more useful criteria. The first category, but

not the best, is to base completion on the use of specific test-case design

methodologies. For instance, you might define the completion of module

testing as the following:

The test cases are derived from (1) satisfying the multicondition-

coverage criterion and (2) a boundary value analysis of the module

Higher-Order Testing 135

C06 08/25/2011 12:13:1 Page 136

interface specification, and all resultant test cases are eventually

unsuccessful.

You might define the function test as being complete when the following

conditions are satisfied:

The test cases are derived from (1) cause-effect graphing, (2) boundary

value analysis, and (3) error guessing, and all resultant test cases are

eventually unsuccessful.

Although this type of criterion is superior to the two mentioned earlier,

it has three problems. First, it is not helpful in a test phase in which spe-

cific methodologies are not available, such as the system test phase. Sec-

ond, it is a subjective measurement, since there is no way to guarantee that

a person has used a particular methodology, such as boundary value analy-

sis, properly and rigorously. Third, rather than setting a goal and then let-

ting the tester choose the best way of achieving it, it does the opposite; test-

case-design methodologies are dictated, but no goal is given. Hence, this

type of criterion is useful sometimes for some testing phases, but it should

be applied only when the tester has proven his or her abilities in the past in

applying the test-case design methodologies successfully.

The second category of criteria—perhaps the most valuable one—is to

state the completion requirements in positive terms. Since the goal of test-

ing is to find errors, why not make the completion criterion the detection

of some predefined number of errors? For instance, you might state that a

module test of a particular module is not complete until three errors have

been discovered. Perhaps the completion criterion for a system test should

be defined as the detection and repair of 70 errors, or an elapsed time of

three months, whichever comes later.

Notice that, although this type of criterion reinforces the definition of

testing, it does have two problems, both of which are surmountable. One

problem is determining how to obtain the number of errors to be detected.

Obtaining this number requires the following three estimates:

1. An estimate of the total number of errors in the program.

2. An estimate of what percentage of these errors can feasibly be found

through testing.

136 The Art of Software Testing

C06 08/25/2011 12:13:1 Page 137

3. An estimate of what fraction of the errors originated in particular de-

sign processes, and during which testing phases these errors are

likely to be detected.

You can get a rough estimate of the total number of errors in several

ways. One method is to obtain them through experience with previous

programs. Also, a variety of predictive modules exist. Some of these re-

quire you to test the program for some period of time, record the elapsed

times between the detection of successive errors, and insert these times

into parameters in a formula. Other modules involve the seeding of

known, but unpublicized, errors into the program, testing the program for

a while, and then examining the ratio of detected seeded errors to detected

unseeded errors. Another model employs two independent test teams

whose members test for a while, examine the errors found by each and the

errors detected in common by both teams, and use these parameters to

estimate the total number of errors. Another gross method to obtain this

estimate is to use industrywide averages. For instance, the number of

errors that exist in typical programs at the time that coding is completed

(before a code walkthrough or inspection is employed) is approximately 4

to 8 errors per 100 program statements.

The second estimate from the preceding list (the percentage of errors

that can be feasibly found through testing) involves a somewhat arbitrary

guess, taking into consideration the nature of the program and the conse-

quences of undetected errors.

Given the current paucity of information about how and when errors

are made, the third estimate is the most difficult. The data that exist indi-

cate that in large programs, approximately 40 percent of the errors are cod-

ing and logic design mistakes, and that the remainder are generated in the

earlier design processes.

To use this criterion, you must develop your own estimates that are per-

tinent to the program at hand. A simple example is presented here. Assume

we are about to begin testing a 10,000-statement program, that the number

of errors remaining after code inspections are performed is estimated at

5 per 100 statements, and we establish, as an objective the detection of

98 percent of the coding and logic design errors and 95 percent of the

design errors. The total number of errors is thus estimated at 500. Of the

500 errors, we assume that 200 are coding and logic design errors and

Higher-Order Testing 137

C06 08/25/2011 12:13:1 Page 138

300 are design flaws. Hence, the goal is to find 196 coding and logic design

errors and 285 design errors. A plausible estimate of when the errors are

likely to be detected is shown in Table 6.3.

If we have scheduled four months for function testing and three months

for system testing, the following three completion criteria might be

established:

1. Module testing is complete when 130 errors are found and corrected

(65 percent of the estimated 200 coding and logic design errors).

2. Function testing is complete when 240 errors (30 percent of 200

plus 60 percent of 300) are found and corrected, or when four

months of function testing have been completed, whichever occurs

later. The reason for the second clause is that if we find 240 errors

quickly, it is probably an indication that we have underestimated

the total number of errors and thus should not stop function testing

early.

3. System testing is complete when 111 errors are found and corrected,

or when three months of system testing have been completed, which-

ever occurs later.

The other obvious problem with this type of criterion is one of overesti-

mation. What if, in the preceding example, there are fewer than 240 errors

remaining when function testing starts? Based on the criterion, we could

never complete the function test phase.

This is a strange problem if you think about it: We do not have enough

errors; the program is too good. You could label it as not a problem be-

cause it is the kind of problem a lot of people would love to have. If it does

occur, a bit of common sense can solve it. If we cannot find 240 errors in

four months, the project manager can employ an outsider to analyze the

TABLE 6.3 Hypothetical Estimate of When the Errors Might Be Found

Coding and Logic Design Errors Design Errors

Module test 65% 0%

Function test 30% 60%

System test 3% 35%

Total 98% 95%

138 The Art of Software Testing

C06 08/25/2011 12:13:1 Page 139

test cases to judge whether the problem is (1) inadequate test cases or (2)

excellent test cases but a lack of errors to detect.

The third type of completion criterion is an easy one on the surface, but

it involves a lot of judgment and intuition. It requires you to plot the num-

ber of errors found per unit time during the test phase. By examining the

shape of the curve, you can often determine whether to continue the test

phase or end it and begin the next test phase.

Suppose a program is being function-tested and the number of errors

found per week is being plotted. If, in the seventh week, the curve is the

top one of Figure 6.5, it would be imprudent to stop the function test,

even if we had reached our criterion for the number of errors to be found.

Since in the seventh week we still seem to be in high gear (finding many

errors), the wisest decision (remembering that our goal is to find errors) is

to continue function testing, designing additional test cases if necessary.

On the other hand, suppose the curve is the bottom one in Figure 6.5.

The error-detection efficiency has dropped significantly, implying that we

have perhaps picked the function test bone clean and that perhaps the best

move is to terminate function testing and begin a new type of testing (a

system test, perhaps). Of course, we must also consider other factors, such

as whether the drop in error-detection efficiency was due to a lack of com-

puter time or exhaustion of the available test cases.

Figure 6.6 is an illustration of what happens when you fail to plot the

number of errors being detected. The graph represents three testing phases

of an extremely large software system. An obvious conclusion is that the

project should not have switched to a different testing phase after period

6. During period 6, the error-detection rate was good (to a tester, the

higher the rate, the better), but switching to a second phase at this point

caused the error-detection rate to drop significantly.

The best completion criterion is probably a combination of the three

types just discussed. For the module test, particularly because most

projects do not formally track detected errors during this phase, the

best completion criterion is probably the first. You should request that

a particular set of test-case design methodologies be used. For the func-

tion and system test phases, the completion rule might be to stop when

a predefined number of errors are detected or when the scheduled

time has elapsed, whichever comes later, but provided that an analysis

of the errors-versus-time graph indicates that the test has become

unproductive.

Higher-Order Testing 139

C06 08/25/2011 12:13:1 Page 140

60

50

40

30

E
rr

or
s

F
ou

nd

20

10

1 2 3 4

Week

5 6 7
0

60

50

40

30

E
rr

or
s

F
ou

nd

20

10

1 2 3 4

Week

5 6 7
0

FIGURE 6.5 Estimating Completion by Plotting Errors Detected by

Unit Time.

140 The Art of Software Testing

C06 08/25/2011 12:13:2 Page 141

The Independent Test Agency
Earlier in this chapter and in Chapter 2, we emphasized that an organiza-

tion should avoid attempting to test its own programs. Our reasoning is

that the organization responsible for developing a program has difficulty

in objectively testing the same program. The test organization should be as

far removed as possible, in terms of the structure of the company, from the

development organization. In fact, it is desirable that the test organization

not be part of the same company, for if it is, it is still influenced by the same

management pressures influencing the development organization.

One way to avoid this conflict is to hire a separate company for software

testing. This is a good idea, whether the company that designed the system

and will use it developed the system, or whether a third-party developer

produced the system. The advantages usually noted are increased motiva-

tion in the testing process, a healthy competition with the development

organization, removal of the testing process from under the management

900

800

700

500

E
rr

or
s

F
ou

nd
 p

er
 p

er
io

d

600

400

300

200

100

21 3 4 5 6 7 8 9 10 11 12 13

Two-week periods

0

FIGURE 6.6 Postmortem Study of the Testing Processes of a Large

Project.

Higher-Order Testing 141

C06 08/25/2011 12:13:2 Page 142

control of the development organization, and the advantages of specialized

knowledge that the independent test agency brings to bear on the problem.

Summary
Higher-order testing could be considered the next step. We have discussed

and advocated the concept of module testing—using various techniques to

test software components, the building blocks that combine to form the

finished product. With individual components tested and debugged, it is

time to see how well they work together.

Higher-order testing is important for all software products, but it be-

comes increasingly important as the size of the project increases. It stands

to reason that the more modules and the more lines of code a project con-

tains, the more opportunity exists for coding or even design errors.

Function testing attempts to uncover design errors, that is, discrepan-

cies between the finished program and its external specifications—a pre-

cise description of the program’s behavior from the end-user’s perspective.

The system test, on the other hand, tests the relationship between the

software and its original objectives. System testing is designed to uncover

errors made during the process of translating program objectives into the

external specification and ultimately into lines of code. It is this translation

step where errors have the most far-reaching effects; likewise, it is the stage

in the development process that is most error prone. Perhaps the most dif-

ficult part of system testing is designing the test cases. In general you want

to focus on main categories of testing, then get really creative in testing

these categories. Table 6.1 summarizes 15 categories we detailed in this

chapter that can guide your system testing efforts.

Make no mistake, higher-order testing certainly is an important part of

thorough software testing, but it also can become a daunting process, espe-

cially for very large systems, such as an operating system. The key to suc-

cess is consistent and well-planned test planning. We introduce this topic

in this chapter, but if you are managing the testing of large systems, more

thought and planning will be required. One approach to handling this is-

sue is to hire an outside company for testing or for test management.

In Chapter 7 we expand on one important aspect of higher-order test-

ing: user or usability testing.

142 The Art of Software Testing

C07 08/29/2011 14:50:12 Page 143

7 Usability (User)
Testing

An important category of system test cases is one that attempts to find

human-factor, or usability, problems. When the first edition of this

book was published, the computing industry mostly ignored the human

factors associated with computer software. Developers gave little attention

to how humans interacted with their software. That is not to say that there

were no developers testing applications at the user level. In the early

1980s, some—including developers at the Xerox Palo Alto Research Cen-

ter (PARC), for example—were conducting user-based software testing.

By 1987 or 1988, the three of us had become intimately involved in

usability testing of early personal computer hardware and software, when

we contracted with computer manufacturers to test and review their new

desktop computers prior to release to the public. Over perhaps two years,

this prerelease testing prevented potential usability problems with new

hardware and software designs. These early computer manufacturers obvi-

ously were convinced that the time and expense required for this level of

user testing resulted in real marketing and financial advantages.

Usability Testing Basics
Today’s software systems—particularly those designed for a mass, commer-

cial market—generally have undergone extensive human-factor studies,

and modern programs, of course, benefit from the thousands of programs

and systems that have gone before. Nevertheless, an analysis of human

143

C07 08/29/2011 14:50:12 Page 144

factors is still a highly subjective matter. Here’s our list of questions you

might ask to derive testing considerations:

1. Has each user interface been tailored to the intelligence, educational

background, and environmental pressures of the end user?

2. Are the outputs of the program meaningful, noninsulting to the user,

and devoid of computer gibberish?

3. Are the error diagnostics, such as error messages, straightforward, or

does the user need a PhD in computer science to comprehend them?

For instance, does the program produce such messages as IEK022A

OPEN ERROR ON FILE 'SYSIN' ABEND CODE¼102? Messages such as

these weren’t all that uncommon in software systems of the 1970s

and 1980s. Mass-market systems do better today in this regard, but

users still will encounter unhelpful messages such as, ‘‘An unknown

error has occurred,’’ or ‘‘This program has encountered an error and

must be restarted.’’

Programs you design yourself are under your control and should

not be plagued with such useless messages. Even if you didn’t design

the program, if you are on the testing team, you can push for im-

provements in this area of the human interface.

4. Does the total set of user interfaces exhibit considerable conceptual

integrity, an underlying consistency, and uniformity of syntax, con-

ventions, semantics, format, style, and abbreviations?

5. Where accuracy is vital, such as in an online banking system, is suffi-

cient redundancy present in the input? For example, such a system

should ask for an account number, a customer name, and a personal

identification number (PIN) to verify that the proper person is

accessing account information.

6. Does the system contain an excessive number of options, or options

that are unlikely to be used? One trend in modern software is to pres-

ent to users only those menu choices they are most likely to use,

based on software testing and design considerations. Then a well-

designed program can learn from individual users and begin to

present those menu items that they frequently access. Even with

such an intelligent menu system, successful programs still must be

designed so that accessing the various options is logical and intuitive.

7. Does the system return some type of immediate acknowledgment to

all inputs? Where a mouse click is the input, for example, the chosen

144 The Art of Software Testing

C07 08/29/2011 14:50:12 Page 145

item can change color, or a button object can depress or be presented

in a raised format. If the user is expected to choose from a list, the

selected number should be presented on the screen when the choice

is made. Moreover, if the selected action requires some processing

time—which is frequently the case when the software is accessing a

remote system—then a message should be displayed informing the

user of what is going on. This level of testing sometimes is referred to

as component testing, whereby interactive software components are

tested for reasonable selection and user feedback.

8. Is the program easy to use? For example, is the input case-sensitive

without making this fact clear to the user? Also, if a program requires

navigation through a series of menus or options, is it clear how to

return to the main menu? Can the user easily move up or down one

level?

9. Is the design conducive to user accuracy? One test would be an anal-

ysis of how many errors each user makes during data entry or when

choosing program options. Were these errors merely an in-

convenience—errors the user was able to correct—or did an in-

correct choice or action cause some kind of application failure?

10. Are the user actions easily repeated in later sessions? In other words,

is the software design conducive to the user learning how to be more

efficient in using the system?

11. Did the user feel confident while navigating the various paths or

menu choices? A subjective evaluation might be the user response to

using the application. At the end of the session did the user feel

stressed by or satisfied with the outcome? Would the user be likely to

choose this system for his or her own use, or recommend it to some-

one else?

12. Did the software live up to its design promise? Finally, usability test-

ing should include an evaluation of the software specifications versus

the actual operation. From the user perspective—real people using

the software in a real-world environment—did the software perform

according to its specifications?

Usability or user-based testing basically is a black-box testing tech-

nique. Recall from our discussion in Chapter 2 that black-box testing con-

centrates on finding situations in which the program does not behave

according to specifications. In a black-box scenario you are not concerned

Usability (User) Testing 145

C07 08/29/2011 14:50:12 Page 146

with the internal workings of the software, or even with understanding

program structure. Presented this way, usability testing obviously is an im-

portant part of any development process. If users perceive, because of im-

proper design, a cumbersome user interface, or specifications missed or

ignored, that a given application does not perform according to its specifi-

cations, the development process has failed. User testing should uncover

problems from design flaws to software ergonomics mistakes.

Usability Testing Process
It should be obvious from our list of items to test that usability testing is

more than simply seeking user opinions or high-level reactions to a software

application. When the errors have been found and corrected, and an appli-

cation is ready for release or for sale, focus groups can be used to elicit opin-

ions from users or potential purchasers. This is marketing and focusing.

Usability testing occurs earlier in the process and is much more involved.

Any usability test should begin with a plan. (Review our vital software

testing guidelines in Chapter 2, Table 2.1.) You should establish practical,

real-world, repeatable exercises for each user to conduct. Design these test-

ing scenarios to present the user with all aspects of the software, perhaps in

various or random order. For example, among the processes you might test

in a customer tracking application are:

� Locate an individual customer record and modify it.

� Locate a company record and modify it.

� Create a new company record.

� Delete a company record.

� Generate a list of all companies of a certain type.

� Print this list.

� Export a selected list of contacts to a text file or spreadsheet format.

� Import a text file or spreadsheet file of contacts from another

application.

� Add a photograph to one or more records.

� Create and save a custom report.

� Customize the menu structure.

During each phase of the test, have observers document the user experi-

ence as they perform each task. When the test is complete, conduct an

146 The Art of Software Testing

C07 08/29/2011 14:50:12 Page 147

interview with the user or provide a written questionnaire to document

other aspects of the user’s experience, such as his or her perception of us-

age versus specification.

In addition, write down detailed instructions for user tests, to ensure

that each user starts with the same information, presented in the same

way. Otherwise, you risk coloring some of the tests if some users receive

different instructions.

Test User Selection

A complete usability testing protocol usually involves multiple tests from

the same users, as well as tests from multiple users. Why multiple tests

from the same users? One area we want to test is user recall, that is, how

much of what a user learns about software operation is retained from ses-

sion to session. Any new system presented to users for the first time will

require some time to learn, but if the design for a particular application is

consistent with the industry or technology with which the target user com-

munity is familiar, the learning process should be fairly quick.

A user already familiar with computer-based engineering design, for

example, would expect any new software in this same industry to follow

certain conventions of terminology, menu design, and perhaps even color,

shading, and font usage. Certainly, a developer may stray from these con-

ventions purposefully to achieve perceived operational improvements, but

if the design goes too far afield from industry standards and expectations,

the software will take longer for new users to learn; in fact, user acceptance

may be so slow as to cause the application to be a commercial failure. If the

application is developed for a single client, such differences may result in

the client rejecting the design or requiring a complete user interface re-

design. Either result is a costly developer mistake.

Therefore, software targeted for a specific end-user type or industry

should be tested by what could be described as expert users, people al-

ready familiar with this class of application in a real-world environment.

In contrast, software with a more general target market—mobile device

software, for example, or general-purpose Web pages—might better be

tested by users selected randomly. (Such test user selection sometimes is

referred to as hallway testing or hallway intercept testing, meaning that us-

ers chosen for software testing are selected at random from folk passing by

in the hallway.)

Usability (User) Testing 147

C07 08/29/2011 14:50:12 Page 148

How Many Users Do You Need?

When designing a usability test plan, the question ‘‘How many testers do I

need?’’ will come to the forefront. Hiring usability testers is often overlooked

in the development process, and can add an unexpected and expensive cost

to the project. You need to find the right number of testers who can identify

the most errors for the least amount of capital investment.

Intuitively, you may think that the more testers you use the better. After

all, if you have enough evaluators testing your product, then all the errors

should be found. First, as mentioned, this is expensive. Second, it can be-

come a logistics nightmare. Finally, it is unlikely that you can ever detect

100 percent of your application’s usability problems.

Fortunately, significant research on usability has been conducted during

the last 15 years. Based on the work of Jakob Nielsen, a usability testing

expert, you may need fewer testers than you think. Nielsen’s research

found that the number of usability problems found in testing is:

E ¼ 100� ð1� ð1� LÞ^nÞ

where: E¼ percent of errors found

n¼ number of testers

L¼ percent of usability problems found by a tester

Using the equation with L ¼ 31 percent, a reasonable value Nielsen also

gleaned from his research, produces the graph shown in Figure 7.1.

Examining the graph reveals a few interesting points. First, as we intui-

tively know, it will never be possible to detect all of the usability errors in

the application. It’s not theoretically possible, because the curve only con-

verges on 100 percent; it never actually reaches it. Second, you only need a

small number of testers. The graph shows that approximately 83 percent of

the errors are detected by only 5 testers.

From a project manager’s point of view, this is refreshing news. No lon-

ger do you need to incur the cost and complexity of working with a large

group of testers to check your application. Instead, you can focus on de-

signing, executing, and analyzing your tests—putting your effort and

money into what will make the most difference.

Also with fewer testers, you have less analysis to do, so you can quickly

implement changes to the application and the testing methodology; then

148 The Art of Software Testing

C
07

08/29/2011
14:50:12

P
age

149

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Users

%
 o

f E
rr

or
s

F
ou

nd

FIGURE 7.1 Percent Errors Found Versus Number of Users.

C07 08/29/2011 14:50:12 Page 150

test again with a new group of testers. In this iterative fashion you can

ensure that you catch most problems at minimal cost and time.

Nielsen’s research was conducted in the early 1990s while he was a sys-

tems analyst at Sun Microsystems. On the one hand, his data and approach

to usability testing provides concrete guidance to those of us involved in

software design. On the other hand, since usability testing has become

more important and commonplace, and more evidence has been gathered

from practical testing and better formulaic analysis, some researchers have

come to question Nielsen’s firm statements that three to five users should

be enough.

Nielsen himself cautions that the precise number of testers depends on

economic considerations (how many testers will your budget support) and

on the type of system you are testing. Critical systems such as navigation

applications, banking or other financial software, or security related pro-

grams will, per force, require closer user scrutiny than less-critical software.

Among the considerations important to developers who are designing a

usability testing program are whether the number of users and their indi-

vidual orientations represent sufficiently the total population of potential

users. In addition, as Nielsen notes, some programs are more complex

than others, meaning that detecting a significantly large percentage of

errors will be more difficult. And, since different users, because of their

backgrounds and experiences, are likely to detect different types of errors,

an individual testing situation may dictate a larger number of testers.

As with any testing methodology, it is up to the developers and project

administrators to design the tests, present a reasonable budget, evaluate

interim results, and conduct regressive tests as appropriate to the software

system, the overall project, and the client.

Data-Gathering Methods

Test administrators or observers can gather test results in several ways.

Videotaping a user test and using a think-aloud protocol can provide excel-

lent data on software usability and user perceptions about the application.

A think-aloud protocol involves users speaking aloud their thoughts and

observations while they are performing the assigned software testing tasks.

Using this process, the test participants describe out loud their task, what

they are thinking about the task, and/or whatever else comes to their mind

as they move through the testing scenario. Even when using think-aloud

150 The Art of Software Testing

C07 08/29/2011 14:50:12 Page 151

protocol testing, developers may want to follow up with participants after

the test to get posttest comments, feelings, and observations. Taken to-

gether, these two levels of user thoughts and comments can provide valu-

able feedback to developers for software corrections or improvements.

A disadvantage to the think-aloud process, where videotaping or ob-

servers are involved, is the possibility that the user experience will be

clouded or modified by the unnatural user environment. Developers also

may wish to conduct remote user testing, whereby the application is in-

stalled at the testing user’s business where the software may ultimately be

applied. Remote testing has the advantage of placing the user in a familiar

environment, one in which the final application likely would be used, thus

removing the potential for external influences modifying test results. Of

course, the disadvantage is that developers may not receive feedback as

detailed as would be possible with a think-aloud protocol.

Nevertheless, in a remote testing environment, accurate user data still

can be gathered. Additional software can be installed with the application

to be tested to gather user keystrokes and to capture time required for the

user to complete each assigned task. This requires additional development

time (and more software), but the results of such tests can be enlightening

and very detailed.

In the absence of timing or keystroke capture software, testing users can

be tasked with writing down the start and end times of each assigned task,

along with brief one-word or short-phrase comments during the process.

Posttest questionnaires or interviews can help users recall their thoughts

and opinions about the software.

A sophisticated but potentially useful data-gathering protocol is eye

tracking. When we read a printed page, view a graphical presentation, or

interact with a computer screen, our eyes move over the scanned material

in particular patterns. Research data gathered on eye movement over more

than 100 years shows that eye movement—particularly how long an ob-

server pauses on certain visual elements—reflects at least to some degree

the thought processes of the observer. Tracking this eye movement, which

can be done with video systems and other technologies, shows researchers

which visual elements attract the observers attention, in what order, and

for how long. Such data is potentially useful in determining the efficiency

of software screens presented to users.

Despite extensive research during the last half of the twentieth century,

however, some controversy remains over the ultimate value of eye

Usability (User) Testing 151

C07 08/29/2011 14:50:12 Page 152

movement research in specific applications. Still, coupled with other user

testing techniques, where developers need the deepest possible user input

data to ensure the highest level of software efficiency (weapons guidance

systems, robotic control systems, vehicle controls or other system that re-

quire fast and accurate responses), eye tracking can be a useful tool.

Usability Questionnaire

As with the software testing procedure itself, a usability questionnaire

should be carefully planned to return the information required from the

associated test procedure. Although you may want to include some ques-

tions that elicit free-form comments from the user, in general you want to

develop questionnaires that generate responses that can be counted and

analyzed across the spectrum of testers. These fall into three general types:

� Yes/no answers

� True/false answers

� Agree/disagree on a scale

For example, instead of asking ‘‘What is your opinion of the main menu

system,’’ you might ask a series of questions that require an answer from

1 to 5, where 5 is totally agree and 1 is totally disagree:

1. The main menu was easy to navigate.

2. It was easy to find the proper software operation from the main

menu.

3. The screen design led me quickly to the correct software operational

choices.

4. Once I had operated the system, it was easy to remember how to re-

peat my actions.

5. The menu operations did not provide enough feedback to verify my

choices.

6. The main menu was more difficult to navigate than other similar pro-

grams I use.

7. I had difficulty repeating previously accomplished operations.

Notice that it may be good practice to ask the same question more

than once, but present it from the opposite perspective so that one elicits

152 The Art of Software Testing

C07 08/29/2011 14:50:12 Page 153

a negative response and the other a positive one. Such practice can

ensure that the user understood the question and that perceptions re-

main constant. In addition, you want to separate the user questionnaire

into sections that correspond to software areas tested or to the testing

tasks assigned.

Experience will teach you quickly which types of questions are condu-

cive to data analysis and which ones aren’t very useful. Statistical analysis

software is available to help capture and interpret data. With a small num-

ber of testing users, the usability test results may be obvious; or you might

develop an ad hoc analysis routine within a spreadsheet application to bet-

ter document results. For large software systems that undergo extensive

testing with a large user base, statistical software may help uncover trends

that aren’t obvious with manual interpretation methods.

When Is Enough, Enough?

How do you plan usability testing so that all aspects of the software are

reasonably tested while staying within an acceptable budget? The answer

to that question, of course, depends in part on the complexity of the sys-

tem or unit being tested. If budget and time allow, it is advisable to test

software in stages, as each segment is completed. If individual components

have been tested throughout the development process, then the final series

of tests need only test the integrated operation of the parts.

Additionally, you may design component tests, which are intended to test

the usability of an interactive component, something that requires user in-

put and that responds to this input in a user-perceivable way. This kind of

feedback testing can help improve the user experience, reduce operational

errors, and improve software consistency. Again, if you have tested a soft-

ware system at this level as the user interface was being designed, you will

have collected a significant body of important testing and operational

knowledge before total system testing begins.

How many individual users should test your software? Again, system

complexity and initial test results should dictate the number of individual

testers. For example, if three or five (or some reasonable number) of users

have difficulty navigating from the opening screen to screens that support

the assigned tasks, and if these users are sufficiently representative of the

target market, then you likely have enough information to tell you that the

user interface needs more design work.

Usability (User) Testing 153

C07 08/29/2011 14:50:12 Page 154

A reasonable corollary to this might be that if none of the initial testers

have a problem navigating through their assigned tasks, and none uncover

any mistakes or malfunctions, then perhaps the testing pool is too small.

After all, is it reasonable to assume that usability tests of a reasonably com-

plex software system will uncover no errors or required changes? Recall

principle 6, from Table 2.1: Examining a program to see if it does not do

what it is supposed to do is only half the battle; the other half is seeing whether

the program does what it is not supposed to do. There’s a subtle difference in

this comparison. You might find that a series of users determine that a pro-

gram does, in fact, seem to do what it is supposed to do. They find no

errors or problems in working through the software. But have they also

proven that the program isn’t doing anything it is not supposed to do? If

things appear to be running too smoothly during initial testing, it probably

is time for more tests.

We don’t believe there is a formula that tells you how many tests each

user should conduct, or how many iterations of each test should be re-

quired. We do believe, however, that careful analysis and understanding of

the results you gather from some reasonable number of testers and tests

can guide you to the answer of when enough testing is enough.

Summary
Modern software, coupled with the pressure of intense competition and

tight deadlines, make user testing of any software product crucial to suc-

cessful development. It stands to reason that the targeted software user can

be a valuable asset during testing. The knowledgeable user can determine

whether the product meets the goal of its design, and by conducting real-

world tasks can find errors of commission and omission.

Depending on the software target market, developers also may benefit

from selecting random users—persons who are not familiar with the pro-

gram’s specification, or perhaps even the industry or market for which it is

intended—who can uncover errors or user interface problems. For the

same reason that the developers don’t make good error testers, expert users

may avoid operational areas that might produce problems because they

know how the software is supposed to work. Over many years of software

development we have discovered one unavoidable testing truth: The soft-

ware the developer has tested for many hours can be broken easily, and in a

154 The Art of Software Testing

C07 08/29/2011 14:50:12 Page 155

short time, by an unsophisticated user who attempts a task for which the

user interface or the software was not designed.

Remember, too, that a key to successful user (or usability) testing is ac-

curate and detailed data gathering and analysis. The data-gathering pro-

cess actually begins with the development of detailed user instructions

and a task list. It ends by compiling results from user observation or post-

test questionnaires.

Finally, the testing results must be interpreted, and then developers

must effect software changes identified from the data. This may be an itera-

tive process wherein the same testing users are asked to complete similar

tasks after identified software changes have been completed.

Usability (User) Testing 155

C07 08/29/2011 14:50:12 Page 156

C08 08/17/2011 1:8:14 Page 157

8 Debugging

In brief, debugging is what you do after you have executed a successful

test case. Remember that a successful test case is one that shows that a

program does not do what it was designed to do. Debugging is a two-step

process that begins when you find an error as a result of a successful test

case. Step 1 is the determination of the exact nature and location of the

suspected error within the program. Step 2 consists of fixing the error.

As necessary and integral as debugging is to program testing, it seems to

be the one aspect of the software production process that programmers

enjoy the least, for these reasons primarily:

� Your ego may get in the way. Like it or not, debugging confirms that

programmers are not perfect; they commit errors in either the design

or the coding of the program.

� You may run out of steam. Of all the software development activities,

debugging is the most mentally taxing activity. Moreover, debugging

usually is performed under a tremendous amount of organizational or

self-induced pressure to fix the problem as quickly as possible.

� You may lose your way. Debugging is mentally taxing because the

error you’ve found could occur in virtually any statement within the

program. Without examining the program first, you can’t be abso-

lutely sure, for example, that the origin of a numerical error in a pay-

check produced by a payroll program is not a subroutine that asks the

operator to load a particular form into the printer. Contrast this with

157

C08 08/17/2011 1:8:14 Page 158

the debugging of a physical system, such as an automobile. If a car

stalls when moving up an incline (the symptom), you can immedi-

ately and validly eliminate as the cause of the problem certain parts

of the system—the AM/FM radio, for example, or the speedometer or

the trunk lock. The problem must be in the engine; and, based on

our overall knowledge of automotive engines, we can even rule out

certain engine components such as the water pump and the oil filter.

� You may be on your own. Compared to other software development

activities, comparatively little research, literature, and formal instruc-

tion exist on the process of debugging.

Although this is a book about software testing, not debugging, the two

processes are obviously related. Of the two aspects of debugging, locating

the error and correcting it, locating the error represents perhaps 95 percent

of the problem. Hence, this chapter concentrates on the process of finding

the location of an error, given that a successful test case has found one.

Debugging by Brute Force
The most common scheme for debugging a program is the so-called brute-

force method. It is popular because it requires little thought and is the least

mentally taxing of the methods; unfortunately, it is inefficient and gener-

ally unsuccessful.

Brute-force methods can be partitioned into at least three categories:

� Debugging with a storage dump.

� Debugging according to the common suggestion to ‘‘scatter print

statements throughout your program.’’

� Debugging with automated debugging tools.

The first, debugging with a storage dump (usually a crude display of all

storage locations in hexadecimal or octal format) is the most inefficient of

the brute-force methods. Here’s why:

� It is difficult to establish a correspondence between memory locations

and the variables in a source program.

� With any program of reasonable complexity, such a memory dump

will produce a massive amount of data, most of which is irrelevant.

158 The Art of Software Testing

C08 08/17/2011 1:8:14 Page 159

� A memory dump is a static picture of the program, showing the state

of the program at only one instant in time; to find errors, you have to

study the dynamics of a program (state changes over time).

� A memory dump is rarely produced at the exact point of the error, so

it doesn’t show the program’s state at the point of the error. Program

actions between the time of the dump and the time of the error can

mask the clues you need to find the error.

� Adequate methodologies don’t exist for finding errors by analyzing

a memory dump (so many programmers stare, with glazed eyes,

wistfully expecting the error to expose itself magically from the

program dump).

Scattering statements throughout a failing program to display variable

values isn’t much better. It may be better than a memory dump because

it shows the dynamics of a program and lets you examine information

that is easier to relate to the source program, but this method, too, has

many shortcomings:

� Rather than encouraging you to think about the problem, it is largely

a hit-or-miss method.

� It produces a massive amount of data to be analyzed.

� It requires you to change the program; such changes can mask the

error, alter critical timing relationships, or introduce new errors.

� It may work on small programs, but the cost of using it in large

programs is quite high. Furthermore, it often is not even feasible on

certain types of programs such as operating systems or process

control programs.

Automated debugging tools work similarly to inserting print statements

within the program, but rather than making changes to the program, you

analyze the dynamics of the program with the debugging features of the

programming language or special interactive debugging tools. Typical lan-

guage features that might be used are facilities that produce printed traces

of statement executions, subroutine calls, and/or alterations of specified

variables. A common capability and function of debugging tools is to set

breakpoints that cause the program to be suspended when a particular

statement is executed or when a particular variable is altered, enabling the

programmer to examine the current state of the program. This method,

Debugging 159

C08 08/17/2011 1:8:14 Page 160

too, is largely hit or miss, however, and often results in an excessive

amount of irrelevant data.

The general problem with these brute-force methods is that they ignore

the process of thinking. You can draw an analogy between program debug-

ging and solving a homicide. In virtually all murder mystery novels, the

crime is solved by careful analysis of the clues and by piecing together

seemingly insignificant details. This is not a brute-force method; setting

up roadblocks or conducting property searches would be.

There also is some evidence to indicate that whether the debugging

teams are composed of experienced programmers or students, people who

use their brains rather than a set of aids work faster and more accurately in

finding program errors. Therefore, we could recommend brute-force

methods only: (1) when all other methods fail, or (2) as a supplement to,

not a substitute for, the thought processes we’ll describe next.

Debugging by Induction
It should be obvious that careful thought will find most errors without the

debugger even going near the computer. One particular thought process is

induction, where you move from the particulars of a situation to the whole.

That is, start with the clues (the symptoms of the error and possibly the

results of one or more test cases) and look for relationships among the

clues. The induction process is illustrated in Figure 8.1.

FIGURE 8.1 The Inductive Debugging Process.

160 The Art of Software Testing

C08 08/17/2011 1:8:14 Page 161

The steps are as follows:

1. Locate the pertinent data. A major mistake debuggers make is failing

to take account of all available data or symptoms about the problem.

Therefore, the first step is the enumeration of all you know about

what the program did correctly and what it did incorrectly—the

symptoms that led you to believe there was an error. Additional

valuable clues are provided by similar, but different, test cases that

do not cause the symptoms to appear.

2. Organize the data. Remember that induction implies that you’re

processing from the particulars to the general, so the second step is

to structure the pertinent data to let you observe the patterns. Of

particular importance is the search for contradictions, events such as

the error occurs only when the customer has no outstanding balance

in his or her margin account.

You can use a form such as the one shown in Figure 8.2 to struc-

ture the available data. In the ‘‘what’’ boxes list the general symptoms;

in the ‘‘where’’ boxes describe where the symptoms were observed; in

the ‘‘when’’ boxes list anything you know about the times when the

symptoms occurred; and in the ‘‘to what extent’’ boxes describe the

scope and magnitude of the symptoms. Notice the ‘‘is’’ and ‘‘is not’’

FIGURE 8.2 A Method for Structuring the Clues.

Debugging 161

C08 08/17/2011 1:8:15 Page 162

columns: In them describe the contradictions that may eventually

lead to a hypothesis about the error.

3. Devise a hypothesis. Next, study the relationships among the clues, and

devise, using the patterns that might be visible in the structure of the

clues, one or more hypotheses about the cause of the error. If you can’t

devise a theory, more data are needed, perhaps from new test cases. If

multiple theories seem possible, select the more probable one first.

4. Prove the hypothesis. A major mistake at this point, given the pres-

sures under which debugging usually is performed, is to skip this

step and jump to conclusions to fix the problem. Resist this urge, for

it is vital to prove the reasonableness of the hypothesis before you

proceed. If you skip this step, you’ll probably succeed in correcting

only the problem symptom, not the problem itself. Prove the hypoth-

esis by comparing it to the original clues or data, making sure that

this hypothesis completely explains the existence of the clues. If it

does not, the hypothesis is invalid, the hypothesis is incomplete, or

multiple errors are present.

5. Fix the problem. You can proceed with fixing the problem once you

complete the previous steps. By taking the time to fully work through

each step, you can feel confident that your fix will correct the bug.

Remember though, that you still need to perform some type of re-

gression testing to ensure your bug fix didn’t create problems in other

program areas. As the application grows larger, so does the likelihood

that your fix will cause problems elsewhere.

As a simple example, assume that an apparent error has been reported

in the examination grading program described in Chapter 4. The apparent

error is that the median grade seems incorrect in some, but not all,

instances. In a particular test case, 51 students were graded. The mean

score was correctly printed as 73.2, but the median printed was 26 instead

of the expected value of 82. By examining the results of this test case and a

few other test cases, the clues are organized as shown in Figure 8.3.

The next step is to derive a hypothesis about the error by looking for

patterns and contradictions. One contradiction we see is that the error

seems to occur only in test cases that use an odd number of students. This

might be a coincidence, but it seems significant, since you compute a

median differently for sets of odd and even numbers. There’s another

strange pattern: In some test cases, the calculated median always is less

162 The Art of Software Testing

C08 08/17/2011 1:8:15 Page 163

than or equal to the number of students (26 � 51 and 1 � 1). One possible

avenue at this point is to run the 51-student test case again, giving the stu-

dents different grades from before to see how this affects the median calcu-

lation. If we do so, the median is still 26, so the ‘‘to what extent! is not’’

box could be filled in with, ‘‘The median seems to be independent of the

actual grades.’’ Although this result provides a valuable clue, we might

have been able to surmise the error without it. From available data, the

calculated median appears to equal half of the number of students,

rounded up to the next integer. In other words, if you think of the grades

as being stored in a sorted table, the program is printing the entry number

of the middle student rather than his or her grade. Hence, we have a firm

hypothesis about the precise nature of the error. Next, we prove the

hypothesis by examining the code or by running a few extra test cases.

Debugging by Deduction
The process of deduction proceeds from some general theories or premises,

using the processes of elimination and refinement, to arrive at a conclusion

(the location of the error), as shown in Figure 8.4.

As opposed to the process of induction in a murder case, for example,

where you induce a suspect from the clues, using deduction, you start

with a set of suspects and, by the process of elimination (the gardener has

FIGURE 8.3 An Example of Clue Structuring.

Debugging 163

C08 08/17/2011 1:8:15 Page 164

a valid alibi) and refinement (it must be someone with red hair), decide

that the butler must have done it. The steps are as follows:

1. Enumerate the possible causes or hypotheses. The first step is to de-

velop a list of all conceivable causes of the error. They don’t have to

be complete explanations; they are merely theories to help you struc-

ture and analyze the available data.

2. Use the data to eliminate possible causes. Carefully examine all of

the data, particularly by looking for contradictions (you could use

Figure 8.2 here), and try to eliminate all but one of the possible causes.

If all are eliminated, you need more data gained from additional test

cases to devise new theories. If more than one possible cause remains,

select the most probable cause—the prime hypothesis—first.

3. Refine the remaining hypothesis. The possible cause at this point might

be correct, but it is unlikely to be specific enough to pinpoint the

error. Hence, the next step is to use the available clues to refine the

theory. For example, you might start with the idea that ‘‘there is an

error in handling the last transaction in the file’’ and refine it to ‘‘the

last transaction in the buffer is overlaid with the end-of-file indicator.’’

4. Prove the remaining hypothesis. This vital step is identical to step 4 in

the induction method.

5. Fix the error. Again this step is identical to step 5 in the induction

method. To re-emphasize though, you should thoroughly test your

fix to ensure it does not create problems elsewhere in the application.

As an example, assume that we are commencing the function testing

of the DISPLAY command discussed in Chapter 4. Of the 38 test cases

FIGURE 8.4 The Deductive Debugging Process.

164 The Art of Software Testing

C08 08/17/2011 1:8:15 Page 165

identified by the process of cause-effect graphing, we start by running

four test cases. As part of the process of establishing input conditions,

we will initialize memory that the first, fifth, ninth, . . . , words have the

value 000; the second, sixth, . . . , words have the value 4444;

the third, seventh, . . . , words have the value 8888; and the fourth,

eighth, . . . , words have the value CCCC. That is, each memory word is

initialized to the low-order hexadecimal digit in the address of the first

byte of the word (the values of locations 23FC, 23FD, 23FE, and 23FF

are C).

The test cases, their expected output, and the actual output after the test

are shown in Figure 8.5.

Obviously, we have some problems, since apparently none of the test

cases produced the expected results (all were successful). But let’s start by

debugging the error associated with the first test case. The command indi-

cates that, starting at location 0 (the default), E locations (14 in decimal)

are to be displayed. (Recall that the specification stated that all output will

contain four words, or 16 bytes per line.)

Enumerating the possible causes for the unexpected error message, we

might get:

1. The program does not accept the word DISPLAY.

2. The program does not accept the period.

3. The program does not allow a default as a first operand; it expects a

storage address to precede the period.

4. The program does not allow an E as a valid byte count.

FIGURE 8.5 Test Case Results from the DISPLAY Command.

Debugging 165

C08 08/17/2011 1:8:15 Page 166

The next step is to try to eliminate the causes. If all are eliminated, we

must retreat and expand the list. If more than one remain, we might want

to examine additional test cases to arrive at a single error hypothesis, or

proceed with the most probable cause. Since we have other test cases at

hand, we see that the second test case in Figure 8.5 seems to eliminate the

first hypothesis; and the third test case, although it produced an incorrect

result, seems to eliminate the second and third hypotheses.

The next step is to refine the fourth hypothesis. It seems specific

enough, but intuition might tell us that there is more to it than meets the

eye—it sounds like an instance of a more general error. We might contend,

then, that the program does not recognize the special hexadecimal charac-

ters A–F. This absence of such characters in the other test cases makes this

sound like a viable explanation.

Rather than jumping to a conclusion, however, we should first consider

all of the available information. The fourth test case might represent a

totally different error, or it might provide a clue about the current error.

Given that the highest valid address in our system is 7FFF, how could the

fourth test case display an area that appears to be nonexistent? The fact

that the displayed values are our initialized values, and not garbage, might

lead to the supposition that this command is somehow displaying some-

thing in the range 0–7FFF. One idea that may arise is that this could occur

if the program were treating the operands in the command as decimal val-

ues rather than hexadecimal, as stated in the specification. This is borne

out by the third test case: Rather than displaying 32 bytes of memory, the

next increment above 11 in hexadecimal (17 in base 10), it displays 16

bytes of memory, which is consistent with our hypothesis that the 11 is

being treated as a base-10 value. Hence, the refined hypothesis is that the

program is treating the byte count as storage address operands, and the

storage addresses on the output listing as decimal values.

The last step is to prove this hypothesis. Looking at the fourth test case,

if 8000 is interpreted as a decimal number, the corresponding base-16

value is 1F40, which would lead to the output shown. As further proof,

examine the second test case. The output is incorrect, but if 21 and 29 are

treated as decimal numbers, the locations of storage addresses 15–1D

would be displayed; this is consistent with the erroneous result of the test

case. Hence, we have almost certainly located the error: The program is

assuming that the operands are decimal values and is printing the memory

addresses as decimal values, which is inconsistent with the specification.

166 The Art of Software Testing

C08 08/17/2011 1:8:15 Page 167

Moreover, this error seems to be the cause of the erroneous results of all

four test cases. A little thought has led to the error, and it also solved three

other problems that, at first glance, appear to be unrelated.

Note that the error probably manifests itself at two locations in the pro-

gram: the part that interprets the input command and the part that prints

memory addresses on the output listing.

As an aside, this error, likely caused by a misunderstanding of the speci-

fication, reinforces the suggestion that a programmer should not attempt

to test his or her own program. If the programmer who created this error

is also designing the test cases, he or she likely will make the same mistake

while writing the test cases. In other words, the programmer’s expected

outputs would not be those of Figure 8.5; they would be the outputs calcu-

lated under the assumption that the operands are decimal values. There-

fore, this fundamental error probably would go unnoticed.

Debugging by Backtracking
An effective method for locating errors in small programs is to backtrack

the incorrect results through the logic of the program until you find

the point where the logic went astray. In other words, start at the point

where the program gives the incorrect result—such as where incorrect

data were printed. Here, you deduce from the observed output what the

values of the program’s variables must have been. By performing a mental

reverse execution of the program from this point and repeatedly applying

the if-then logic that states ‘‘if this was the state of the program at this

point, then this must have been the state of the program up here,’’ you can

quickly pinpoint the error. You’re looking for the location in the program

between the point where the state of the program was what it was expected

to be and the first point where the state of the program was not what it was

expected to be.

Debugging by Testing
The last ‘‘thinking type’’ debugging method is the use of test cases. This

probably sounds a bit peculiar since, at the beginning of this chapter, we

distinguished debugging from testing. However, consider two types of test

cases: test cases for testing, whose purpose is to expose a previously

undetected error, and test cases for debugging, whose purpose is to provide

Debugging 167

C08 08/17/2011 1:8:15 Page 168

information useful in locating a suspected error. The difference between

the two is that test cases for testing tend to be ‘‘fat,’’ in that you are trying

to cover many conditions in a small number of test cases. Test cases for

debugging, on the other hand, are ‘‘slim,’’ because you want to cover only a

single condition or a few conditions in each test case.

In other words, after you have discovered a symptom of a suspected

error, you write variants of the original test case to attempt to pinpoint the

error. Actually, this is not an entirely separate method; it often is used in

conjunction with the induction method to obtain information needed to

generate a hypothesis and/or to prove a hypothesis. It also is used with

the deduction method to eliminate suspected causes, refine the remaining

hypothesis, and/or prove a hypothesis.

Debugging Principles
In this section, we want to discuss a set of debugging principles that are

psychological in nature. As with the testing principles in Chapter 2, many

of these debugging principles are intuitively obvious, yet they are often

forgotten or overlooked.

Since debugging is a two-part process—locating an error and then

repairing it—we discuss two sets of principles here.

Error-Locating Principles

Think As implied in the previous section, debugging is a problem-solving

process. The most effective method of debugging involves a mental

analysis of the information associated with the error’s symptoms. An

efficient program debugger should be able to pinpoint most errors without

going near a computer. Here’s how:

1. Position yourself in a quiet place, where outside stimuli—voices of

coworkers, telephones, radio or other potential interruptions—won’t

interfere with your concentration.

2. Without looking at the program code, review in your mind how the

program is designed, how the software should be performing within

the area that is performing incorrectly.

3. Concentrate on the process for correct performance, and then

imagine ways in which the code may be incorrectly designed.

168 The Art of Software Testing

C08 08/17/2011 1:8:15 Page 169

This sort of prethinking the physical debugging process will, in many

cases, lead you directly to the area of the program that is causing problems

and help you achieve a fix, quickly.

If You Reach an Impasse, Sleep on It The human subconscious is a

potent problem solver. What we often refer to as inspiration is simply the

subconscious mind working on a problem when the conscious mind is

focused on something else, such as eating, walking, or watching a movie.

If you cannot locate an error in a reasonable amount of time (perhaps

30 minutes for a small program, several hours for a larger one), drop it

and turn your attention to something else, since your thinking efficiency is

about to collapse anyway. After putting aside the problem for a while, your

subconscious mind will have solved the problem, or your conscious mind

will be clear for a fresh examination of its symptoms.

We have used this technique regularly over the years, both as a develop-

ment process as well as a debugging process. It may take some practice to

accept this extraordinary functioning of the human brain, and make effi-

cient use of it, but it does work. We have actually awakened in the night to

realize we have solved a software problem while asleep. For this reason,

we recommend that you keep by your bedside a small tape recorder, a

telephone capable of voice recording, a PDA, or a notepad to capture the

solution you found while sleeping. Resist the temptation to return to sleep

believing you will be able to regenerate the solution in the morning. You

probably won’t—at least not in our experience.

If You Reach an Impasse, Describe the Problem to Someone Else

Talking about the problem with someone else may help you discover

something new. In fact, often, simply by describing the problem to a

good listener, you will suddenly see the solution without any assistance

from the person.

Use Debugging Tools Only as a Second Resort Turn to debugging tools

only after you’ve tried other methods, and then only as an adjunct to, not a

substitute for, thinking. As noted earlier in this chapter, debugging tools,

such as dumps and traces, represent a haphazard approach to debugging.

Experiments show that people who shun such tools, even when they are

debugging programs that are unfamiliar to them, are more successful than

people who use the tools.

Debugging 169

C08 08/17/2011 1:8:15 Page 170

Why should this be so? Depending on a tool to solve a problem can

short-circuit the diagnostic process. If you believe that the tool can solve

the problem, you are likely to be less attentive to the clues you already

have picked up, information that could help you solve the problem di-

rectly, without the help of a generic diagnostic tool.

Avoid Experimentation—Use It Only as a Last Resort The most com-

mon mistake novice debuggers make is to try to solve a problem by mak-

ing experimental changes to the program. You might think, ‘‘I know what

is wrong, so I’ll change this DO statement and see what happens.’’ This

totally haphazard approach cannot even be considered debugging; it

represents an act of blind hope. Not only does it have a minuscule chance

of success, but you will often compound the problem by adding new errors

to the program.

Error-Repairing Techniques

Where There Is One Bug, There Is Likely to Be Another This is a

restatement of principle 9 in Chapter 2, which states that when you

find an error in a section of a program, the probability of the existence

of another error in that same section is higher than if you hadn’t al-

ready found one error. In other words, errors tend to cluster. When

repairing an error, examine its immediate vicinity for anything else

that looks suspicious.

Fix the Error, Not Just a Symptom of It Another common failing is re-

pairing the symptoms of the error, or just one instance of the error, rather

than the error itself. If the proposed correction does not match all the clues

about the error, you may be fixing only a part of the error.

The Probability of the Fix Being Correct Is Not 100 Percent Tell this to

someone in general conversation and of course he or she would agree; but

tell it to someone in the process of correcting an error and you may get a

different answer—‘‘Yes, in most cases, but this correction is so minor that it

just has to work.’’ Never assume that code added to a program to fix an

error is correct. Statement for statement, corrections are much more error

prone than the original code in the program. One implication is that error

corrections must be tested, perhaps more rigorously than the original

170 The Art of Software Testing

C08 08/17/2011 1:8:15 Page 171

program. A solid regression testing plan can help ensure that correcting an

error does not introduce another error somewhere else in the application.

The Probability of the Fix Being Correct Drops as the Size of the Pro-

gram Increases Stating it differently, in our experience, the ratio of

errors caused by incorrect fixes, versus original errors, increases in large

programs. In one widely used large program, one of every six new errors

discovered is an error in a prior correction to the program.

If you accept this as fact, how can you avoid causing problems by trying

to fix them? Read the first three techniques in this section, for starters. One

error found does not mean all errors have been found, and you must be

sure you are correcting the actual error, not just its symptom.

Beware of the Possibility That an Error Correction Creates a New

Error Not only do you have to worry about incorrect corrections, you

also have to worry about a seemingly valid correction having an un-

desirable side effect, thus introducing a new error. Not only is there a prob-

ability that a fix will be invalid, but there also is a probability that a fix will

introduce a new error. One implication is that not only do you have to test

the error situation after the correction is made, but you must also perform

regression testing to determine whether a new error has been introduced.

The Process of Error Repair Should Put You Temporarily Back into the

Design Phase Realize that error correction is a form of program design.

Given the error-prone nature of corrections, common sense says that what-

ever procedures, methodologies, and formalism were used in the design

process should also apply to the error-correction process. For instance, if

the project rationalized that code inspections were desirable, then it must

be doubly important that they be implemented after correcting an error.

Change the Source Code, Not the Object Code When debugging large

systems, particularly those written in an assembly language, occasionally

there is the tendency to correct an error by making an immediate change

to the object code, with the intention of changing the source program later.

Two problems are associated with this approach: (1) It usually is a sign that

‘‘debugging by experimentation’’ is being practiced; and (2) the object code

and source program are now out of synchronization, meaning that

the error could easily resurface when the program is recompiled or

Debugging 171

C08 08/17/2011 1:8:16 Page 172

reassembled. This practice is an indication of a sloppy, unprofessional ap-

proach to debugging.

Error Analysis
The last point to realize about program debugging is that in addition to its

value in removing an error from the program, it can have another valuable

effect: It can tell us something about the nature of software errors, some-

thing we still know too little about. Information about the nature of

software errors can provide valuable feedback in terms of improving future

design, coding, and testing processes.

Every programmer and programming organization could improve im-

mensely by performing a detailed analysis of the detected errors, or at least

a subset of them. Admittedly, it is a difficult and time-consuming task, for

it implies much more than a superficial grouping such as ‘‘x percent of

the errors are logic design errors,’’ or ‘‘x percent of the errors occur in IF

statements.’’ A careful analysis might include the following studies:

� Where was the error made? This question is the most difficult one to

answer, because it requires a backward search through the documen-

tation and history of the project; at the same time, it also is the most

valuable question. It requires that you pinpoint the original source

and time of the error. For example, the original source of the error

might be an ambiguous statement in a specification, a correction to a

prior error, or a misunderstanding of an end-user requirement.

� Who made the error? Wouldn’t it be useful to discover that 60 percent

of the design errors were created by one of the 10 analysts, or that

programmer X makes three times as many mistakes as the other pro-

grammers? (Not for the purposes of punishment but for the purposes

of education.)

� What was done incorrectly? It is not sufficient to determine when and

by whom each error was made; the missing link is a determination of

exactly why the error occurred. Was it caused by someone’s inability

to write clearly? Someone’s lack of education in the programming lan-

guage? A typing mistake? An invalid assumption? A failure to con-

sider valid input?

� How could the error have been prevented?What can be done differently

in the next project to prevent this type of error? The answer to this

172 The Art of Software Testing

C08 08/17/2011 1:8:16 Page 173

question constitutes much of the valuable feedback or learning for

which we are searching.

� Why wasn’t the error detected earlier? If the error was detected during

a test phase, you should study why the error was not unearthed

during earlier testing phases, code inspections, and design reviews.

� How could the error have been detected earlier? The answer to this

offers another piece of valuable feedback. How can the review and

testing processes be improved to find this type of error earlier in fu-

ture projects? Providing that we are not analyzing an error found by

an end user (that is, the error was found by a test case), we should

realize that something valuable has happened: We have written a suc-

cessful test case. Why was this test case successful? Can we learn

something from it that will result in additional successful test cases,

either for this program or for future programs?

We repeat, this analysis process is difficult, and costly, but the answers

you may discover by going through it can be invaluable in improving

subsequent programming efforts. The quality of future products will

increase while the capital investment will decrease. It is alarming that the

vast majority of programmers and programming organizations do not

employ it.

Summary
The main focus of this book is on software testing: How do you go about

uncovering as many software errors as possible? Therefore, we don’t want

to spend too much time on the next step—debugging—but the simple fact

is, errors found by successful test cases lead directly to it.

In this chapter we touched on some of the more important aspects of

software debugging. The least desirable method, debugging by brute force,

involves such techniques as dumping memory locations, placing print

statements throughout the program, or using automated tools. Brute-force

techniques may point you to the solution for some errors uncovered dur-

ing testing, but they are not an efficient way to go about debugging.

We demonstrated that you can begin debugging by studying the error

symptoms, or clues, and moving from them to the larger picture (inductive

debugging). Another technique begins the debugging process by consider-

ing general theories, then, through the process of elimination, identifies

Debugging 173

C08 08/17/2011 1:8:16 Page 174

the error locations (deductive debugging). We also covered program

backtracking—starting with the error and moving backwards through the

program to determine where incorrect information originated. Finally, we

discussed debugging by testing.

If, however, we were to offer a single directive to those tasked with

debugging a software system, we would say, ‘‘Think!’’ Review the numer-

ous debugging principles described in this chapter. We believe they can

lead you in the right direction, toward accurate and efficient debugging.

But the bottom line is, depend on your expertise and knowledge of the

program itself. Open your mind to creative solutions, review what you

know, and let your knowledge and subconscious lead you to the error

locations.

In the next chapter we take on the subject of extreme testing, tech-

niques well suited to help uncover errors in extreme programming envi-

ronments such as agile development.

174 The Art of Software Testing

C09 08/26/2011 12:10:53 Page 175

9 Testing in the Agile
Environment

Increased competition and interconnectedness in all markets have forced

businesses to shorten their time-to-market while continuing to provide

high-quality products to their customers. This is particularly true in the soft-

ware development industry where the Internet makes possible near-instant

delivery of software applications and services. Whether creating a product

for the masses or for the human resources department, one fact remains im-

mutable: The twenty-first century customer demands a quality application

delivered almost immediately. Unfortunately, traditional software develop-

ment processes cannot keep up in this competitive environment.

In the early 2000s, a group of developers met to discuss the state of light-

weight and rapid development methodologies. At the gathering they com-

pared notes to identify what successful software projects look like; what

made some projects succeed while others limped along. In the end, they

created the ‘‘Manifesto for Agile Software Development,’’ a document that

became the cornerstone of the Agile movement. Less a discrete methodol-

ogy, the Agile Manifesto (Figure 9.1) is a unique philosophy that focuses on

customers and employees, in lieu of rigid approaches and hierarchies.

Features of Agile Development
Agile development promotes iterative and incremental development, with

significant testing, that is customer-centric and welcomes change during

the process. All attributes of traditional software development approaches

175

C09 08/26/2011 12:10:54 Page 176

neglect or minimize the importance of the customer. Although Agile meth-

odologies incorporate flexibility into their processes, the main emphasis is

on customer satisfaction. The customer is a key component of the process;

simply put, without customer involvement, the Agile method fails. And

knowing their interaction is welcomed helps customers build satisfaction

and confidence in the end product and development team. If the customer

is not committed, then more traditional processes may be a better develop-

ment choice.

Ironically, Agile development has no single development methodology

or process; many rapid development approaches may be considered Agile.

These approaches do, however, share three common threads: They rely on

customer involvement, mandate significant testing, and have short, itera-

tive development cycles. It is beyond the scope of this book to cover each

methodology in detail, but in Table 9.1 we identify the methodologies con-

sidered Agile and give a brief description of each. (We urge you to learn

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

Kent Beck Mike Beedle Arie van Bennekum

Alistair Cockburn Ward Cunningham Martin Fowler

James Grenning Jim Highsmith Andrew Hunt

Ron Jeffries Jon Kern Brian Marick

Robert C. Martin Steve Mellor Ken Schwaber

Jeff Sutherland Dave Thomas

2001, the above authors
this declaration may be freely copied in any form,

but only in its entirety through this notice.

FIGURE 9.1 Manifesto of Agile Software Development.

176 The Art of Software Testing

C09 08/26/2011 12:10:54 Page 177

more about them because they represent the essence of the Agile philoso-

phy.) In addition, we cover Extreme Programming, one of the more popu-

lar Agile methodologies, in greater detail later in this chapter, and offer a

practical example.

TABLE 9.1 Agile Development Methodologies

Methodology Description

Agile Modeling Not so much a single modeling methodology, but a

collection of principles and practices for modeling and

documenting software systems. Used to support

other methods such as Extreme Programming

and Scrum.

Agile Unified Process Simplified version of the Rational Unified Process

(RUP) tailored for Agile development.

Dynamic Systems

Development Method

Based on rapid application development approaches,

this methodology relies on continuous customer

involvement and uses an iterative and incremental

approach, with the goal of delivering software on time

and within budget.

Essential Unified Process

(EssUP)

An adaptation of RUP in which you choose the

practices, (e.g. use cases or team programming) that

fit your project. RUP generally uses all practices,

whether needed or not.

Extreme Programming Another iterative and incremental approach that relies

heavily on unit and acceptance testing. Probably the

best known of the Agile methodologies.

Feature Driven

Development

A methodology that uses industry best practices, such

as regular builds, domain object modeling, and

feature teams, that are driven by the customer’s

feature set.

Open Unified Process An Agile approach to implementing standard Unified

practices that allows a software team to rapidly

develop their product.

Scrum An iterative and incremental project management

approach that supports many Agile methodologies.

Velocity Tracking Applies to all Agile development methodologies. It

attempts to measure the rate, or ‘‘velocity,’’ at which

the development process is moving.

Testing in the Agile Environment 177

C09 08/26/2011 12:10:54 Page 178

It’s worth noting that some Agile methodologies are collections, or

adaptations, of traditional software development processes. The Essential

Unified Process (EssUP) is an example. EssUP takes processes from the

Rational Unified Process (RUP) and other well-known software develop-

ment process models that support the Agile development philosophy.

Make no mistake, adopting an Agile development methodology is chal-

lenging. It takes the right combination of developers, managers, and cus-

tomers to make it work. But in the end, the product will benefit from

constant testing and heavy customer involvement.

Agile Testing
In essence, Agile testing is a form of collaborative testing, in that everyone

is involved in the process through design, implementation, and execution

of the test plan. Customers are involved in defining acceptance tests by

defining use cases and program attributes. Developers collaborate with

testers to build test harnesses that can test functionality automatically.

Agile testing requires that everyone be engaged in the test process, which

requires a lot of communication and collaboration.

As with most aspects of Agile development, Agile testing necessitates

engaging the customer as early as possible and throughout the develop-

ment cycle. For example, once developers produce a stable code base,

customers should begin acceptance testing and provide feedback to the

development team. It also means that testing is not a phase; rather, it is

integrated with development efforts to compel continuous progress.

To ensure that the customer receives a stable product with which to per-

form acceptance testing, developers generally begin by writing unit tests

first, then move to coding software units. The unit tests are failure tests, in

that developers design them to cause their software to fail some require-

ment. Paradoxically, developers must write failing software to, in effect,

test the test. Once test harnesses are in place, developers proceed to write

software that passes the unit tests.

To facilitate the timely feedback needed for rapid development, Agile

testing relies on automated testing. Development cycles are short, so time

is valuable, and automated testing is more reliable than manual testing

approaches. Not only is manual testing time-consuming, it may itself intro-

duce bugs. Numerous open-source and commercial testing suites exist. It

really does not matter which of these available testing suites is used, only

178 The Art of Software Testing

C09 08/26/2011 12:10:54 Page 179

that developers and testers use one. Although some problems may require

exploratory manual testing, automated testing is preferred.

Agile development environments often comprise only small teams of

developers, who also act as testers. Larger projects with more resources

may include an individual tester or a testing group. In either case, testers

should not be considered finger-pointers. Their job is to move the project

forward by providing feedback about the quality of the software so that

developers can implement bug fixes and make requirement changes and

general improvements.

Agile testing fits well into the Extreme Programming methodology

whereby developers create unit tests first, then the software. In the remain-

der of this chapter we cover Extreme Programming and Extreme Testing in

more detail.

Extreme Programming and Testing
In the 1990s an innovative software development methodology termed

Extreme Programming (XP) was born. A project manager named Kent

Beck is credited with conceiving this lightweight, Agile development pro-

cess, first testing it while working on a project at Daimler-Chrysler in

1996. Although several other Agile software development processes have

since been created, XP is still the most popular. In fact, numerous open-

source tools exist to support it, which is testimony to XP’s popularity

among developers and project managers.

XP likely was developed to support the adoption of programming

languages such as Java, Visual Basic, and C#.

These object-based languages allow developers to create large, complex

applications much more quickly than with traditional languages such as C,

Fortran, or COBOL. Developing with these languages often requires build-

ing general-purpose libraries to support the application’s coding efforts.

Methods for common tasks such as printing, sorting, networking, and sta-

tistical analysis are not standard components. Languages such as C# and

Java ship with full-featured application programming interfaces (APIs)

that eliminate or reduce the need for creating custom libraries.

However, along with the benefits of rapid application development lan-

guages came liabilities. Although developers were creating applications

much more quickly, their quality was not guaranteed. If an application

compiled, it often failed to meet the customer’s specifications or

Testing in the Agile Environment 179

C09 08/26/2011 12:10:54 Page 180

expectations. The XP development methodology facilitates the creation of

quality programs in short time frames. Although classical software pro-

cesses still work, they often take too much time, which equates to lost in-

come in the highly competitive arena of software development.

Besides customer involvement, the XP model relies heavily on unit and

acceptance testing. In general, developers run unit tests for every incre-

mental code change, no matter how small, to ensure that the code base still

meets its specification. In fact, testing is of such importance in XP that the

process requires you to create the unit (module) and acceptance tests first,

then your code base. This form of testing is called, appropriately, Extreme

Testing (XT).

Extreme Programming Basics

As mentioned, XP is a software process that helps developers create high-

quality code, rapidly. Here, we define ‘‘quality’’ as a code base that meets

the design specification and customer expectation.

XP focuses on:

� Implementing simple designs.

� Communicating between developers and customers.

� Continually testing the code base.

� Refactoring, to accommodate specification changes.

� Seeking customer feedback.

XP tends to work well for small to medium-size development efforts in

environments that have frequent specification changes, and where near-

instant communication is possible.

XP differs from traditional development processes in several ways. First,

it avoids the large-scale project syndrome in which the customer and the

programming team meet to design every detail of the application before

coding begins. Project managers know this approach has its drawbacks,

not the least of which is that customer specifications and requirements

constantly change to reflect new business rules or marketplace conditions.

For example, the finance department may want payroll reports sorted by

processed date instead of check numbers; or the marketing department

may determine that consumers will not buy product XYZ if it doesn’t

send an e-mail after website registration. In contrast, XP planning sessions

180 The Art of Software Testing

C09 08/26/2011 12:10:54 Page 181

focus on collecting general application requirements, not narrowing in on

every detail.

Another difference with the XP methodology is that it avoids coding un-

needed functionality. If your customer thinks the feature is needed but not

required, it generally is left out of the release. Thus, you can focus on the

task at hand, adding value to a software product. Concentrating only on

the required functionality helps you produce quality software in short

time frames.

But the primary difference of XP compared to traditional methodologies

is its approach to testing. After an all-inclusive design phase, traditional

software development models suggest you code first and create testing

interfaces later. In XP, you must create the unit tests first, and then write

the code to pass the tests. You design unit tests in an XP environment by

following the concepts discussed in Chapter 5.

The XP development model has 12 core practices that drive the process,

summarized in Table 9.2. In a nutshell, you can group the 12 core XP prac-

tices into four concepts:

1. Listening to the customer and other programmers.

2. Collaborating with the customer to develop the application’s specifi-

cation and test cases.

3. Coding with a programming partner.

4. Testing, and retesting, the code base.

Most of the comments for each practice listed in Table 9.2 are self-

explanatory. However, a couple of the more important principles, namely

planning and testing, warrant further discussion.

XP Planning A successful planning phase lays the foundation of the XP

process. The planning phase in XP differs from that in traditional develop-

ment models, which often combine requirements gathering and application

design. Planning in XP focuses on identifying your customer’s application

requirements and designing user stories (or case stories) that meet them.

You gain significant insight into the application’s purpose and requirements

by creating user stories. In addition, the customer employs the user stories

when performing acceptance tests at the end of a release cycle. Finally, an

intangible benefit of the planning phase is that the customer gains owner-

ship and confidence in the application by participating intimately in it.

Testing in the Agile Environment 181

C09 08/26/2011 12:10:54 Page 182

TABLE 9.2 The 12 Practices of Extreme Programming

Practice Comment

1. Planning and

requirements

Marketing and business development personnel work

together to identify the maximum business value of

each software feature.

Each major software feature is written as a user story.

Programmers provide time estimates to complete each

user story.

The customer chooses the software features based on

time estimates and business value.

2. Small, incremental

releases

Strive to add small, tangible, value-added features and

release a new code base often.

3. System metaphors Your programming team identifies an organizing

metaphor to help with naming conventions and

program flow.

4. Simple designs Implement the simplest design that allows your code to

pass its unit tests. Assume change will come, so don’t

spend a lot of time designing; just implement.

5. Continuous testing Write unit tests before writing the code module. Each

unit is not complete until it passes its unit test. Further,

the program is not complete until it passes all unit tests,

and acceptance tests are complete.

6. Refactoring Clean up and streamline your code base. Unit tests help

ensure that you do not destroy the functionality in the

process. You must rerun all unit tests after any

refactoring.

7. Pair programming You and another programmer work together, at the

same machine, to create the code base. This allows for

real-time code review, which dramatically facilitates bug

detection and resolution.

8. Collective

ownership of the

code

All code is owned by all programmers.

No single programmer is dedicated to a specific code

base.

9. Continuous

integration

Every day, integrate all changes; after the code passes

the unit tests, add it back into the code base.

10. Forty-hour

workweek

No overtime is allowed. If you work with dedication for

40 hours per week, overtime will not be needed. The

exception is the week before a major release.

182 The Art of Software Testing

C09 08/26/2011 12:10:54 Page 183

XP Testing Continuous testing is central to the success of a XP-based

effort. Although acceptance testing falls under this principle, unit testing

occupies the bulk of the effort. Unit tests are devised to make the software

fail. Only by ensuring that your tests detect errors can you begin correcting

the code so it passes the tests. Assuring that your unit tests catch failures is

key to the testing process—and to a developer’s confidence. At this point,

the developer can experiment with different implementations, knowing

that the unit tests will catch any mistakes.

You want to ensure that any code changes improve the application and

do not introduce bugs. The continuous testing principle also supports

refactoring efforts used to optimize and streamline the code base. Constant

testing also leads to that intangible benefit already mentioned: confidence.

The programming team gains confidence in the code base because you

constantly validate it with unit tests. In addition, your customers’ confi-

dence in their investment soars because they know the code base passes

unit tests every day.

Example XP Project Flow Now that we’ve presented the 12 practices of

the XP process, you may be wondering, how does a typical XP project

flow? Here is a quick example of what you might experience if you worked

on an XP-based project:

1. Programmers meet with the customer to determine the product re-

quirements and build user stories.

2. Programmers meet without the customer to divide the require-

ments into independent tasks and estimate the time to complete

each task.

Table 9.2 (continued)

Practice Comment

11. On-site customer

presence

You and your programming team have unlimited access

to the customer, to enable you to resolve questions

quickly and decisively, which keeps the development

process from stalling.

12. Coding standards All code should look the same. Developing a system

metaphor helps meet this principle.

Testing in the Agile Environment 183

C09 08/26/2011 12:10:54 Page 184

3. Programmers present the customer with the task list and with time

estimates, and ask them to generate a priority list of features.

4. The programming team assigns tasks to pairs of programmers, based

on their skill sets.

5. Each pair creates unit tests for their programming task using the

application’s specification.

6. Each pair works on their task with the goal of creating a code base

that passes the unit tests.

7. Each pair fixes, then retests their code until all unit tests have passed.

8. All pairs gather every day to integrate their code bases.

9. The team releases a preproduction version of the application.

10. Customers run acceptance tests and either approve the application or

produce a report identifying the bugs/deficiencies.

11. Upon successful acceptance tests, programmers release a version into

production.

12. Programmers update time estimates based on latest experience.

Although compelling, XP is not for every project or every organization.

Proponents of XP conclude that if a programming team fully implements

the 12 practices, then the chances of successful application development in-

crease dramatically. Detractors say that because XP is a process, you must do

all or nothing; if you skip a practice, then you are not properly implement-

ing XP, and your program quality may suffer. Detractors also claim that the

cost of changing a program in the future to add more features is higher than

the cost of initially anticipating and coding the requirement. Finally, some

programmers find working in pairs very cumbersome and invasive; there-

fore, they do not embrace the XP philosophy.

Whatever your views, we recommend that you consider XP as a soft-

ware methodology for your project. Carefully weigh its pros and cons

against the attributes of your project and make the best decision based on

that assessment.

Extreme Testing: The Concepts

To meet the pace and philosophy of XP, developers use Extreme Testing,

which focuses on constant testing. As mentioned earlier, two forms of test-

ing make up the bulk of XT: unit testing and acceptance testing. The the-

ory used when writing the tests does not vary significantly from the theory

presented in Chapter 5; however, the stage in the development process in

184 The Art of Software Testing

C09 08/26/2011 12:10:54 Page 185

which you create the tests does differ. XT mandates creating tests before

coding begins, not after. Nonetheless, XT and traditional testing share the

same goal: to identify errors in a program.

In the rest of this section we provide more information on unit and ac-

ceptance testing, from an Extreme Programming perspective.

Extreme Unit Testing Unit testing, the primary testing approach used in

Extreme Testing, and has two simple rules: All code modules must have

unit tests before coding begins, and all code modules must pass unit tests

before being released into acceptance testing. At first glance this may not

seem so extreme. Closer inspection reveals the big difference between unit

testing, as previously described, and XTunit testing: The unit tests must be

defined and created before coding the module.

Initially, you may wonder why you should, or how you can, create test

drivers for code you haven’t yet written. You may also think that you do

not have time to create the tests and still meet the project deadline. These

are valid concerns, but concerns we can address easily by listing a number

of important benefits associated with writing unit tests before you start

coding the application:

� You gain confidence that your code will meet its specification and

requirements.

� You express the end result before you start coding.

� You better understand the application’s specification and requirements.

� You may implement simple designs initially and confidently refactor

the code later to improve performance, without worrying about

breaking the specification.

Of these benefits, the insight and understanding you gain of the applica-

tion’s specification and requirements cannot be underestimated. For exam-

ple, if you start coding first, you may not fully understand the acceptable

data types and boundaries for the input values of an application. How can

you write a unit test to perform boundary analysis without understanding

the acceptable inputs? Can the application accept only numbers, only

characters, or both? If you create the unit tests first, you must understand

the specification. The practice of creating unit tests first is the shining star

in the XP methodology, as it forces you to understand the specification to

resolve ambiguities before you begin coding.

Testing in the Agile Environment 185

C09 08/26/2011 12:10:54 Page 186

As mentioned in Chapter 5, you determine the unit’s scope. Given that

today’s popular programming languages such as Java, C#, and Visual Basic

are mostly object-oriented, modules are often classes, or even individual

class methods. You may sometimes define a module as a group of classes

or methods that represent some functionality. Only you, as the program-

mer, know the architecture of the application and how best to build the

unit tests for it.

Manually running unit tests, even for the smallest application, can be a

daunting task. As the application grows, you may generate hundreds or

thousands of unit tests. Therefore, you typically use an automated software

testing suite to ease the burden of running these unit tests. With these

suites you script the tests and then run all or part of them. In addition,

testing suites typically allow you to generate reports and classify the bugs

that frequently occur in your application. This information may help you

proactively eliminate bugs in the future.

Interestingly enough, once you create and validate your unit tests, the

‘‘testing’’ code base becomes as valuable as the software application you are

trying to create. As a result, you should keep the tests in a code repository,

for protection. Likewise, you should institute adequate backups of the test

code, and ensure that needed security is in place.

Extreme Acceptance Testing Acceptance testing represents the second,

and equally important, type of XT that occurs in the XP methodology. Ac-

ceptance testing determines whether the application meets other require-

ments, such as functionality and usability. You and the customer create the

acceptance tests during the design/planning phases.

Unlike the other forms of testing discussed thus far, customers, not

you or your programming partners, conduct the acceptance tests. In this

manner, customers provide the unbiased verification that the applica-

tion meets their needs. Customers create the acceptance tests from user sto-

ries. The ratio of user stories to acceptance tests is usually one too many;

that is, more than one acceptance test may be needed for each user story.

Acceptance tests in XT may or may not be automated. For example, an

unautomated test is required when the customer must validate that a user

input screen meets its specification with respect to color and screen layout.

An example of an automated test is when the application must calculate

payroll values using data input via some data source such as a flat file to

simulate production values.

186 The Art of Software Testing

C09 08/26/2011 12:10:54 Page 187

Through acceptance tests, the customer validates an expected result

from the application. A deviation from the expected result is considered a

bug and is reported to the development team. If the customer discovers

several bugs, then he or she must prioritize them before passing the list to

your development group. After you correct the bugs, or after any change,

the customer reruns the acceptance tests. In this manner, the acceptance

tests also become a form of regression testing.

An important note is that a program may pass all unit tests but fail the

acceptance tests. How is this possible? Because a unit test validates

whether a program unit meets some specification, such as calculating pay-

roll deductions, correctly, not some defined functionality or aesthetics. For

a commercial application, the look and feel is a very important compo-

nent. Understanding the specification, but not the functionality, generally

results in this scenario.

Extreme Testing Applied

In this section we create a small Java application and employ JUnit, a Java-

based open-source unit testing suite, to illustrate the concepts of Extreme

Testing (see Figure 9.2). The example itself is trivial; the concepts, how-

ever, apply to most programming situations.

Our example is a command-line application that simply determines

whether an input value is a prime number. For brevity, the source code,

JUnit is a freely available open-source tool used to automate unit tests of Java appli-

cations in Extreme Programming environments. The creators, Kent Beck and Erich

Gamma, developed JUnit to support the significant unit testing that occurs in the

Extreme Programming environment. JUnit is very small, but very flexible and feature

rich. You can create individual tests or a suite of tests. You can automatically gener-

ate reports detailing the errors.

Before using JUnit, or any testing suite, you must fully under- stand how to use it.

JUnit is powerful but only after you master its API. However, whether or not you

adopt an XP methodology, JUnit is a useful tool to provide sanity checks for your

own code.

Visit www.junit.org for more information and to download the test suite. In addition,

there is a wealth of information on XP and XT at this website.

FIGURE 9.2 JUnit Description and Background.

Testing in the Agile Environment 187

http://www.junit.org

C09 08/26/2011 12:10:55 Page 188

check4Prime.java, and its test harness, check4PrimeTest.java, are

listed in Appendix. In this section we provide snippets from the applica-

tion to illustrate the main points.

The specification of this program is as follows:

Develop a command-line application that accepts any positive inte-

ger, n, where 0<¼n<¼1,000, and determine whether it is a prime

number. If n is a prime number, then the application should return a

message stating it is a prime number. If n is not a prime number, then

the application should return a message stating it is not a prime num-

ber. If n is not a valid input, then the application should display a

help message.

Following the XP methodology and the principles listed in Chapter 5,

we begin the application by designing unit tests. With this application, we

can identify two discrete tasks: validating inputs and determining prime

numbers. We could use black-box and white-box testing approaches,

boundary value analysis, and the decision coverage criterion, respectively.

However, the XT practice mandates a hands-off black-box approach, to

eliminate any bias.

Test-Case Design We begin designing test cases by identifying a testing

approach. In this instance, we will use boundary analysis to validate the

inputs because this application can only accept positive integers within a

certain range. All other input values, including character datatypes and

negative numbers, should raise an error and not be used. Of course, you

could certainly make the case that input validation could fall under the

decision coverage criterion, as the application must decide whether the in-

put is valid. The important concept is to identify, and commit to, a testing

approach when designing your tests.

With the testing approach identified, the next step is to develop a list of

test cases based on possible inputs and expected outcome. Table 9.3 shows

the eight test cases we identified for this example. (Note: As stated, we are

using a very simple example here to illustrate the basics of Extreme Test-

ing. In practice, you would have a much more detailed program specifica-

tion, which might include items such as user interface requirements and

output verbiage. As a result, the list of test cases would increase

substantially.)

188 The Art of Software Testing

C09 08/26/2011 12:10:55 Page 189

Test case 1 from Table 9.3 combines two test scenarios. It checks

whether the input is a valid prime and how the application behaves with a

valid input value. You may use any valid prime in this test.

We also test two scenarios with test case 2: What happens when the in-

put value is equal to the upper bounds and when the input is not a prime

number? This case could have been broken out into two unit tests, but one

goal of software testing in general is to minimize the number of test cases

while still adequately checking for error conditions.

Test case 3 checks the lower boundary of valid inputs, as well as testing

for invalid primes. The second part of the check is not needed because test

case 2 handles this scenario. However, it is included by default because 0 is

not a prime number. Test cases 4 and 5 ensure that the inputs are within

the defined range, which is greater than or equal to 0 and less than or equal

to 1,000.

Case 6 tests whether the application properly handles character input

values. Because we are doing a calculation, it is obvious that the

TABLE 9.3 Test Case Descriptions for check4Prime.java

Case

Number Input

Expected

Output Comments

1 n ¼ 3 Affirm n is a

prime number.

Tests for a valid prime number.

Tests input within boundaries.

2 n ¼ 1,000 Affirm n is not a

prime number.

Tests input equal to upper bounds.

Tests whether n is an invalid

prime.

3 n ¼ 0 Affirm n is not a

prime number.

Tests input equal to lower bounds.

4 n ¼ - 1 Print help

message.

Tests input below lower bounds.

5 n ¼ 1,001 Print help

message.

Tests input greater than the upper

bounds.

6 n ¼ ‘‘a’’ Print help

message.

Tests input is an integer and not a

character datatype.

7 Two or more

inputs

Print help

message.

Tests for correct number of input

values.

8 n is empty

(blank)

Print help

message.

Tests whether an input value is

supplied.

Testing in the Agile Environment 189

C09 08/26/2011 12:10:55 Page 190

application should reject character datatypes. The assumption with this

test case is that Java will handle the datatype check. This application

must handle the exception raised when an invalid datatype is supplied.

This test will ensure that the exception is thrown. Last, tests 7 and 8

check for the correct number of input values; any number of inputs other

than 1 should fail.

Test Driver and Application Now that we have designed both test cases,

we can create the test driver class, check4PrimeTest. Table 9.4 maps the

JUnit methods in check4PrimeTest to the test cases covered.

Note that the testCheckPrime_false() method tests two conditions,

because the boundary values are not prime numbers. Therefore, we can

check for boundary value errors and for invalid primes with one test

method. Examining this method in detail reveals that the two tests actually

do occur within it. Here is the complete JUnit method from the

check4JavaTest class listed in the Appendix.

public void testCheckPrime_false(){
assertFalse(check4prime.primeCheck(0));
assertFalse(check4prime.primeCheck(10000));

}

Notice that the JUnit method, assertFalse(), checks to see whether

the parameter supplied causes the method to return a false Boolean value.

If false is returned, the test is considered a success.

The snippet also demonstrates one of the benefits of creating test cases

and test harnesses first. You may notice that the parameter in the

TABLE 9.4 Test Driver Methods

Methods

Test Case(s)

Examined

testCheckPrime_true() 1

testCheckPrime_false() 2, 3

testCheck4Prime_checkArgs_char_input() 6

testCheck4Prime_checkArgs_above_upper_bound() 5

testCheck4Prime_checkArgs_neg_input() 4

testCheck4Prime_checkArgs_2_inputs() 7

testCheck4Prime_checkArgs_0_inputs() 8

190 The Art of Software Testing

C09 08/26/2011 12:10:55 Page 191

assertFalse() method is another method, check4prime.

primeCheck(n). This method will reside in a class of the application.

Creating the test harness first forced us to think about the structure of the

application. In some respects, the application is designed to support the

test harness. Here we need a method to check whether the input is a prime

number, so we included it in the application.

With the test harness complete, application coding can begin. Based on

the program specification, test cases, and the test harness, the resultant

Java application will consist of a single class, check4Prime, with the fol-

lowing definition:

public class check4Prime {
public static void main (String [] args)
public void checkArgs(String [] args) throws
Exception

public boolean primeCheck (int num)
}

Briefly, per Java requirements, the main() procedure provides the entry

point into the application. The checkArgs() method asserts that the input

value is a positive integer, n, where 0<¼n<¼1,000. The primeCheck()

procedure checks the input value against a calculated list of prime num-

bers. We implemented the sieve of Eratosthenes to quickly calculate the

prime numbers. This approach is acceptable because of the small number

of prime numbers involved.

Summary
With the heightened competitiveness of software development today, there

is a growing need to introduce products very quickly into the marketplace.

The Agile development process, when strictly adopted, provides a way for

developers to create quality software for their customers at a faster rate

than using traditional software development models. The end result is a

satisfied customer, whether an internal or commercial consumer.

The Extreme Programming model is one of more popular Agile method-

ologies. This lightweight development process focuses on communication,

planning, and testing. The testing aspect of Extreme Programming, termed

Extreme Testing, focuses on unit and acceptance tests. You run unit tests

during development and whenever a change to the code base occurs. The

customer runs the acceptance tests at major release points.

Testing in the Agile Environment 191

C09 08/26/2011 12:10:55 Page 192

Extreme Testing also requires you to create the test harness, based on

the program specification, before you start coding your application. In this

manner, you design your application to pass the unit tests, thus increasing

the probability that it will meet the specification.

192 The Art of Software Testing

C10 08/17/2011 1:19:24 Page 193

10 Testing Internet
Applications

Just a few years ago, Internet-based applications seemed to be the wave

of the future; today, the wave has arrived onshore, and customers,

employees, and business partners expect companies to have a Web pres-

ence. This expectation is not limited only to business. Most churches, civic

groups, schools, and governments all have Internet presences to serve

their patrons.

Generally, small to medium-size businesses have simple Web pages they

use to tout their products and services. Larger enterprises often build full-

fledged e-commerce applications to sell their wares, from cookies to cars

and from consulting services to entire virtual companies that exist only on

the Internet.

Internet applications are essentially client-server applications in which

the client is a Web browser, and the server is a Web or application server.

Although conceptually simple, the complexity of these applications varies

wildly. Some companies have applications built for business-to-consumer

uses such as banking services and retail stores, while others have business-

to-business applications such as supply chain or sales force management.

Development and user presentation/user interface strategies vary for these

different types of websites, and, as you might imagine, the testing approach

varies as well.

The goal of testing Internet-based applications is no different from that

of traditional applications. You need to uncover errors in the application

before deploying it to the Internet and the end user. And, given the

193

C10 08/17/2011 1:19:24 Page 194

complexity of these applications and the interdependency of the compo-

nents, you likely will succeed in finding plenty of errors.

The importance of rooting out the errors in an Internet application

cannot be overstated. As a result of the openness and accessibility of

the Internet, competition in the business-to-consumer and business-to-

business arena is intense. Thus, the Internet has created a buyer’s

market for goods and services. Consumers have developed high

expectations, and if your site does not load quickly, respond immedi-

ately, and provide intuitive navigation features, chances are that the

user will find another company with which to conduct business. This

issue is not confined to strictly e-commerce or product promotion

sites. Websites that are developed as research or information resources

frequently are maintained by advertising or user donations. Either way,

ample competition exists to lure users away, thereby reducing activity

and concomitant revenue.

It would seem that consumers have higher-quality expectations for

Internet applications than they do for those that come shrink-wrapped.

When people buy boxed software from a store or an online retailer, as long

as the quality is ‘‘average,’’ they will continue to use them. One reason for

this behavior is that they have paid for the application, so it must be a

product they perceived as useful or desirable. And even a less-than-

satisfactory program can’t be corrected easily, so if it at least satisfies the

users’ basic needs, they likely will retain the program. In contrast, a poor,

or even average, quality application on the Internet, will likely cause your

customer to switch to a competitor’s site. Not only will the customer leave

your site if it exhibits poor quality, your corporate image will become tar-

nished as well. After all, who feels comfortable buying a car from a com-

pany that cannot build a suitable website? Like it or not, websites have

become the new first impression for business. In general, consumers don’t

pay to access most websites, so there is little incentive to remain loyal in

the face of mediocre design or performance.

This chapter covers some of the basics of testing Internet applications.

This subject is large and complex, and many references exist that explore

its details. However, you will find that the techniques explained in the

early chapters apply to Internet testing as well. Nevertheless, because there

are, indeed, functional and design differences between Web and conven-

tional applications, we want to point out some of the particulars of Web-

based application testing.

194 The Art of Software Testing

C10 08/17/2011 1:19:24 Page 195

Basic E-Commerce Architecture
Before diving into testing Internet-based applications, we will provide an

overview of the three-tier client-server (C/S) architecture used in a typical

Internet-based e-commerce application. Conceptually, each tier is treated

as a black box with well-defined interfaces. This model allows you to

change the internals of each tier without worrying about breaking another

tier. Figure 10.1 illustrates each tier and the associated components used

by most e-commerce sites.

Although not an official tier in the architecture, the client side and its

relevance are worth explaining. Most of the access to your applications

occurs from a Web browser running on a computer, although many de-

vices, such as cell phones, PDAs, game consoles, music players, pagers,

and even refrigerators and automobiles, increasingly are being developed

with Internet connectivity in mind. Browsers vary dramatically in how

they render content from a website. As we discuss later in this chapter,

testing for browser compatibility is one challenge associated with testing

Internet applications. Vendors loosely follow published standards to help

make browsers behave consistently, but they also build in proprietary

enhancements that cause inconsistent behavior. The remainder of the

clients employ custom applications that use the Internet as a pipeline to a

particular site. In this scenario, the application mimics a standard client-

server application you might find on a company’s local area network.

The Web server represents the first tier in the three-tier architecture

and houses the website. The look and feel of an Internet application

Clients

Internet
Firewall

Tier 1
Web

Server

Tier 2
Business

Logic

XYZ, Inc.

Tier 3
Data
Stores

Laptop computer

IBM Compatible

FIGURE 10.1 Typical Architecture of an E-Commerce Site.

Testing Internet Applications 195

C10 08/17/2011 1:19:24 Page 196

comes from the first tier. Thus, another term for this tier is the presentation

tier or layer, so dubbed because it provides the visual content to

the end user. The Web server can use static HyperText Markup Language

(HTML) pages or Common Gateway Interface (CGI) scripts to create

dynamic HTML, but most likely it uses a combination of static and

dynamic pages.

Tier 2, or the business layer, houses the application server. Here, you run

the software that models your business processes. The following lists some

of the functionality associated with the Business layer:

� Transaction processing

� User authentication

� Data validation

� Application logging

The third tier focuses on storing and retrieving data from a data source,

typically a relational database management system (RDBMS). Another

term for tier 3 is the data layer. This tier consists of a database infra-

structure to communicate with the second tier. The interface into the data

layer is defined by the data model, which describes how you want to store

data. Sometimes, several database servers make up this tier. You typically

tune database systems into this layer to handle the high transaction rates

encountered in an e-commerce site. In addition to a database server, some

e-commerce sites may place an authentication server in this layer. Most

often, you use a Lightweight Directory Application Protocol (LDAP) server

for this function.

Testing Challenges
You will face many challenges when designing and testing Internet-based

applications due to the large number of elements you cannot control and

the number of interdependent components. Adequately testing your appli-

cation requires that you make some assumptions about your customers

and how they use the site.

An Internet-based application has many failure points that you should

consider when designing a testing approach. The following list provides

some examples of the challenges associated with testing Internet-based

applications:

196 The Art of Software Testing

C10 08/17/2011 1:19:24 Page 197

� Large and varied user base. The users of your website possess different

skill sets, employ a variety of browsers, and use different operating

systems or devices. You can also expect your customers to access

your website using a wide range of connection speeds. Ten years

ago not everyone had broadband Internet access. Today, most do.

However, you still need to consider bandwidth as Internet content

becomes ‘‘richer’’ and more interactive.

� Business environment. If you operate an e-commerce site, then you

must consider issues such as calculating taxes, determining shipping

costs, completing financial transactions, and tracking customer pro-

files. These requirements may necessitate a number of external links

to third-party servers or databases to manage these billing and ship-

ping tasks, for example. The developer must thoroughly understand

the structure of the remote system, and work closely with its owners

and developers to ensure security and accuracy.

� Locales. Users may reside in other countries, in which case you will

have internationalization issues such as language translation, time

zone differences, and currency conversion.

� Security. Because your site is open to the world, you must protect it

from hackers. They can bring your website to a grinding halt with

denial-of-service (DoS) attacks, or rip off your customers’ credit

card information.

� Testing environments. To properly test your application, you will need

to duplicate the production environment. This means you should use

Web servers, application servers, and database servers that are identi-

cal to the production equipment. For the most accurate testing

results, the network infrastructure will have to be duplicated as well,

which includes routers, switches, and firewalls.

Even from this list, which could be expanded considerably by including

viewpoints from a wide variety of developers and businesses, you can see

that configuring a testing environment is one of the most challenging

aspects of e-commerce development. Testing applications that process

financial transactions requires the most effort and expense. You must repli-

cate all the components, both hardware and software, used for the applica-

tion to produce valid test results. Configuring such an environment is a

costly endeavor. You will incur not only equipment costs, but labor costs

as well. Most companies fail to factor in these expenses when creating a

Testing Internet Applications 197

C10 08/17/2011 1:19:24 Page 198

budget for their applications, and those that do generally underestimate

the time and monetary requirements. In addition, the testing environment

needs a maintenance plan to support application upgrade efforts.

Another significant testing challenge you face is testing browser

compatibility. There are several different browsers on the market today,

and each behaves differently. Although standards exist for browser op-

eration, most vendors enhance their products in an effort to attract a

loyal user base. Unfortunately, this causes the browsers to operate in a

nonstandard way. We cover this topic in greater detail later in this

chapter.

As noted, you will face many challenges when testing Internet-based

applications; therefore, the best way to proceed is to narrow your testing

efforts to specific areas. Table 10.1 identifies some of the most important

areas to test, to help ensure that users have a positive experience on your

website.

TABLE 10.1 Examples of Presentation, Business, and Data Tier

Testing

Presentation Tier Business Tier Data Tier

Ensure fonts are the

same across browsers.

Verify proper calculation of

sales tax and shipping

charges.

Ensure database

operations meet

performance goals.Confirm that all links

point to valid files or

websites.

Ensure documented

performance rates are met

for response times and

throughput rates.

Verify that data are

stored correctly and

accurately.Verify that graphics are

the correct resolution

and size. Verify that transactions

complete properly.

Verify that you can

recover using current

backups.Spell-check each page.

Confirm that failed

transactions roll back

correctly.

Test failover or

redundancy operations.
Have a copy editor check

grammar and style.

Ensure data are collected

correctly.

Test for proper data

encryption and security

(credit card and user’s

personal information, in

particular).

Check cursor positioning

when page loads to

ensure it is in the correct

text box.

198 The Art of Software Testing

C10 08/17/2011 1:19:24 Page 199

Because the first impression is the most important impression, some of

your testing will focus on usability and human-factor concerns. This area

concentrates on the look and feel of your application. Items such as fonts,

colors, and graphics play a major role in whether users accept or reject

your application. Keep in mind, the developer has little or no control over

who will access a given application, how much computer knowledge they

have, whether or not they are motivated to stay with an application in the

face of navigation issues, or what users might ultimately expect in terms of

information or performance.

System performance greatly influences a customer’s first impression. As

mentioned earlier, Internet users want instant gratification. They will not

wait long for pages to load or transactions to complete. Literally, a few sec-

onds’ delay can cause a customer to try another site. Poor performance

may also lead customers to doubt the reliability of your site. Therefore,

you should set performance goals then design tests that reveal problems

that cause your site to miss the goals.

Users also demand that their transactions complete rapidly and accu-

rately when purchasing products or services from your site. They do not,

and should not, tolerate inaccurate billings or shipping errors. Probably

worse than losing a customer is finding yourself liable for more than

the transaction amount if your application does not process financial

transactions correctly.

Your application likely will collect data to complete tasks such as pur-

chases or e-mail registrations. Therefore, you should ensure that the data

you collect are valid. For example, make sure that phone numbers, ID

Table 10.1 (continued)

Presentation Tier Business Tier Data Tier

Test backend data entry

and management

routines for usability and

accuracy.

Confirm that default

button is selected when

the page loads.

Check for consistent and

user-friendly feedback on

interactive operations.

Check for business- or

industry-specific terms

and style.

Testing Internet Applications 199

C10 08/17/2011 1:19:25 Page 200

numbers, currencies, e-mail addresses, and credit card numbers are the

correct length and are properly formatted. In addition, verify the integrity

of your data. Localization issues can easily cause data corruption via trun-

cation due to character-set issues.

In the Internet environment, it is critical to keep the website available

for customer use. This requires that you develop and implement mainte-

nance guidelines for all the supporting applications and servers. A Web

server and RDBMS require a high level of management. You must monitor

logs, system resources, and backups, and respond to any anomalies imme-

diately. As described in Chapter 6, you want to maximize the mean time

between failures (MTBF) and minimize the mean time to recovery

(MTTR) for these systems.

Finally, network connectivity is another area where it is important to

focus your testing efforts. At some point, you can count on losing network

connectivity. The source of the failure might be the Internet itself, your

service provider, or your internal network. Therefore, you need to create

contingency plans for your application and infrastructure so your systems

respond gracefully when an outage occurs. Keeping with the theme of test-

ing, design your tests to break your contingency plans.

Testing Strategies
Developing a testing strategy for Internet-based applications requires a

solid understanding of the hardware and software components that make

up the application. As is critical to successful testing of standard applica-

tions, you will need a specification document to describe the expected

functionality and performance of your website. Without this document,

you will not be able to design the appropriate tests.

You need to test components developed internally and those pur-

chased from a third party. For the components developed in-house

you should employ the tactics presented in earlier chapters. This in-

cludes creating unit/module tests and performing code reviews. Inte-

grate the components into your system only after verifying that they

meet the design specifications and functionality outlined in the speci-

fication document.

If you purchase components, then you need to develop a series of

system tests to validate that they perform correctly, independently of your

application. Do not rely on the vendor’s quality-control program to detect

200 The Art of Software Testing

C10 08/17/2011 1:19:25 Page 201

errors in its components. Ideally, you should complete this task indepen-

dently of your application testing. Integrate these components only once

you have determined that they perform acceptably. Including a non-

functional third-party component in your architecture makes it difficult to

interpret test results and identify the source of errors. Generally, you will

use black-box approaches for third-party components because you rarely

will have access to the component internals.

Testing Internet-based applications is best tackled with a divide- and-

conquer approach. Fortunately, the architecture of Internet applications

allows you to identify discrete areas to target testing. Figure 10.1 presented

the basic architecture of Internet applications. Figure 10.2 provides a more

detailed view of each tier.

As mentioned earlier in this chapter, Internet applications are consid-

ered three-tier client-server applications. Each tier, or layer, from Figure

10.2 is defined as follows:

� Presentation layer. The layer of an Internet application that provides

the user interface (UI; or GUI, graphical user interface).

� Business layer. The layer that models your business processes, such as

user authentication and transactions.

� Data layer. The layer that houses data used by the application or that

is collected from the end user.

Each tier has its own characteristics that encourage test segmentation.

Testing each tier independently allows you to more easily identify bugs

Clients Internet

Credit
Card

Processing

Shipping
Companies

Bank
Account
Services

Hosted Services

Firewall

LDAP
Stores

Tier 1
Presentation

Layer

Tier 2
Business

Logic

XYZ, Inc.

Tier 3
Data Layer

Laptop computer

IBM Compatible

FIGURE 10.2 Detailed View of Internet Application Architecture.

Testing Internet Applications 201

C10 08/17/2011 1:19:25 Page 202

and errors before complete system testing begins. If you rely only on

system testing, then you may have a difficult time locating the specific

components that are creating the problem.

Table 10.2 lists items that you should test in each tier. The list is not

comprehensive, but provides you with a starting point to develop your

own testing criteria. In the remainder of this chapter we provide more

details on how to test each tier.

TABLE 10.2 Items to Test in Each Tier

Test Area Comments

Usability/human

factors

Review overall look and feel.

Fonts, colors, and graphics play a major role in the application

aesthetics.

Ensure that all user input is acknowledged so that it is clear to

the user that input has been accepted.

Performance Check for fast-loading pages.

Check for quick transactions.

Poor performance often creates a bad impression.

Business rules Check for accurate representation of business process.

Consider business environment for target user groups.

Ensure that business or industry conventions of terminology

and style are followed.

Transaction

accuracy

Verify that transactions complete accurately.

Confirm that cancelled transactions roll back correctly.

Is input verification sufficiently strong to support security and

accuracy requirements?

Data validity and

integrity

Check for valid formats of phone number, e-mail addresses,

and currency amounts.

Ensure proper character sets.

System reliability Test the failover capabilities of your Web, application, and

database servers.

Maximize MTBF and minimize MTTR.

Network

architecture

Test connectivity redundancy.

Test application behavior during network outages.

202 The Art of Software Testing

C10 08/17/2011 1:19:25 Page 203

Presentation Layer Testing

Testing the presentation layer consists of finding errors in the GUI, or front

end, of your application. This important layer serves as the ‘‘curb appeal’’

of your site, so detecting and correcting errors here are critical to present-

ing a quality, robust website. If your customers encounter errors in this

layer, they may not return. They may conclude, for example, that if your

company posts Web pages with misspelled words, it cannot be trusted to

successfully execute a credit card transaction.

In a nutshell, presentation layer testing is very labor intensive. However,

just as you can segment the testing of an Internet application into discrete

entities, you can do the same when testing the presentation layer. Here are

the three major areas of presentation layer testing:

1. Content testing. Overall aesthetics, fonts, colors, spelling, content ac-

curacy, default values.

2. Website architecture. Broken links or graphics.

3. User environment. Web browser versions and operating system

configuration.

Content testing involves checking the human-interface element of a

website. You need to search for errors in font type, screen layout, colors,

graphic resolutions, and other features that directly affect the end-user

experience. In addition, you should verify the accuracy of the information

on your website. Providing grammatically correct, but inaccurate, informa-

tion harms your company’s credibility as much as any other GUI bug.

Inaccurate information may also cause legal problems for your company.

Test the website architecture by trying to find navigational and struc-

tural errors. Search for broken links, missing pages, wrong files, or any-

thing that sends the user to the wrong area of the site. These errors can

occur very easily, especially for dynamic websites and during development

or upgrade phases. All a project team member needs to do is rename a file,

and its hyperlink becomes invalid. Similarly, if a graphic element is

renamed or moved, then a hole will exist in your Web page because

the file cannot be found. You can validate your website’s architecture by

creating a unit test that checks each page for architectural problems.

As a best practice, you should migrate architecture testing into the

Testing Internet Applications 203

C10 08/17/2011 1:19:25 Page 204

regression-testing process as well. Numerous tools exist that can automate

the process of verifying links and checking for missing files.

White-box testing techniques are useful when testing website architec-

ture. Just as program units have decision points and execution paths, so do

Web pages. Users may click on links and buttons in any order, which will

navigate to another page. For large sites, there exist many combinations of

navigation events that can occur. Review Chapter 4 for more information

on white-box testing and logic coverage theory.

As mentioned earlier, testing the end-user environment—also known as

browser-compatibility testing—is often the most challenging aspect of

testing Internet-based applications. The combination of browsers and an

operating system (OS) is very large. Not only should you test each browser

configuration, but different versions of the same browser as well. Vendors

often improve some feature of their browsers with each release, which may

or may not be compatible with older versions. It is interesting (and frus-

trating) to see that even in this era of advanced Internet development and

functionality, you can still encounter Web pages that display a message

saying the site is not compatible with the Web browser you are using. It

should not be the user’s responsibility to choose the right browser to access

your site. To ensure a successful user visit, spend extra time in application

design, development, and testing with a wide variety of browsers and

operating systems.

User environment testing becomes more convoluted when your applica-

tion relies heavily on client-side script processing. Every browser has a

different scripting engine or virtual machine to run scripts and code on

the client’s computer. Pay particular attention to browser-compatibility

issues if you use any of the following:

� ActiveX controls

� JavaScript

� VBScript

� Java applets

� HTML 5

� Adobe Flash

� PHP

You can overcome most of the challenges associated with browser com-

patibility testing by generating well-defined functional requirements. For

204 The Art of Software Testing

C10 08/17/2011 1:19:25 Page 205

example, during the requirements-gathering phase, your marketing de-

partment may decide that the application should be certified to work only

with certain browsers. On the one hand, this requirement eliminates a

significant amount of testing because you will have a well-defined

target platform to test against. On the other hand, while this might be a

cost- and time-saving decision, it may not be a smart business decision.

The days when a single (or even a few) Web browser applications domi-

nated the user community are long past. Good business practice would be

to design and test against a wide range of possible user Web browser

applications.

Business Layer Testing

Business layer testing focuses on finding errors in the business logic of

your Internet application. You will find testing this layer very similar to

that of stand-alone applications, in that you can employ both white- and

black-box techniques. You will want to create test plans and procedures

that detect errors in the application’s performance specification, data

acquisition, and transaction processing.

You should employ white-box approaches for components developed

in-house, because you have access to the program logic. For third-party

components, however, black-box testing techniques should comprise your

primary testing approach. You will start by developing test drivers to unit-

test the individual components. Next, you can perform a system test to

determine whether all the components work together correctly.

When conducting a system test for this layer, you need to mimic the

steps a user performs when purchasing a product or service. For example,

for an e-commerce site you may need to build a test driver that searches

inventory, fills a shopping cart, and checks out. Pragmatically modeling

these steps can prove challenging.

The technologies that you use to build the business logic dictate

how you build and conduct your tests. There are numerous technolo-

gies and techniques you may use to build this layer, which makes it

impossible to suggest a cookie-cutter testing method. For instance,

you might architect your solution using a dedicated application server

such as JBoss. Or you could have stand-alone CGI modules written in

C, Python, or Perl.

Testing Internet Applications 205

C10 08/17/2011 1:19:25 Page 206

Regardless of your approach, there exist certain characteristics of

your application that you should always test. These areas include the

following:

� Performance. Test to see whether the application meets documented

performance specifications (generally specified in response times and

throughput rates).

� Data validity. Test to detect errors in data collected from customers.

� Transactions. Test to uncover errors in transaction processing, which

may include credit card processing, e-mailing verifications, and

calculating sales tax.

Performance Testing A poorly performing Internet application raises

doubt in your user’s mind about its robustness, and often turns the person

away. Lengthy page loads and slow transactions are typical examples. To

help achieve adequate performance levels, you need to ensure that opera-

tional specifications are written during the requirements-gathering phase.

Without written specifications or goals, you cannot know whether your

application performs acceptably. Operational specifications are often stated

in terms of response times or throughput rates. For instance, a page should

load in x seconds, or the application server will complete y credit card

transactions per minute.

A common approach you may use when evaluating performance is

stress testing. Often, performance degrades to the point of being unusable

when the system becomes overloaded with requests. This might cause

time-sensitive transactional components to fail. If you perform financial

transactions, then component failures could cause you or your customer

to lose money. The concepts on stress testing presented in Chapter 6 apply

to testing business layer performance.

As a quick review, stress testing involves blasting the application with

multiple logins, and simulating transactions to the point of failure so you

can determine whether your application meets its performance objectives.

Of course, you need to model a typical user visit for valid results. Just load-

ing the homepage does not equate to the overhead of filling a shopping cart

and processing a transaction. You must fully tax the system to uncover

processing errors.

Stress-testing the application also allows you to investigate the robust-

ness and scalability of your network infrastructure. You may think that

206 The Art of Software Testing

C10 08/17/2011 1:19:25 Page 207

your application has bottlenecks that allow only x transactions per second.

But further investigation shows that a misconfigured router, server, or fire-

wall is throttling bandwidth. Therefore, you should ensure that your sup-

porting infrastructure components are in order before beginning stress

testing. Not doing so may lead to erroneous results.

Data Validation An important function of the business layer is to ensure

that data collected from users are valid. If your system operates with in-

valid information, such as erroneous credit card numbers or malformed

addresses, then egregious errors may occur. If you are unlucky, the

errors could have financial implications for you and your customers. You

should test for data collection errors much like you search for user-input

or parameter errors when testing stand-alone applications. Refer to

Chapter 5 for more information on designing tests of this nature.

Transactional Testing Your e-commerce site must process transactions

correctly 100 percent of the time. No exceptions. Customers will not

tolerate failed transactions. Besides a tarnished reputation and lost

customers, you may also incur legal liabilities associated with failed

transactions.

You can consider transactional testing as system testing of the business

layer. In other words, you test the business layer from start to finish, trying

to uncover errors. Once again, you should have a document specifying

exactly what constitutes a transaction. Does it include a user searching a

site and filling a shopping cart, or does it consist only of processing the

purchase?

For a typical Internet application, the transaction component is more

than completing a financial transaction (such as processing credit cards).

Typical events related to customer transactions include:

� Searching inventory.

� Collecting items the user wants to purchase.

� Presenting the user with related items that might be of interest.

� Presenting users with product or company reviews from other users.

� Soliciting and capturing product or company reviews from the

current user.

� Creating or accessing a user account.

Testing Internet Applications 207

C10 08/17/2011 1:19:25 Page 208

� Purchasing items, which may involve calculating sales tax and

shipping costs, as well as processing financial transactions.

� Notifying the user of the completed transaction, usually via e-mail.

In addition to testing internal transaction processes, you must test the

external services, such as credit card validation, banking, and address veri-

fication. You typically will use third-party components and well-defined

interfaces to communicate with financial institutions when conducting

financial transactions. Don’t assume these items work correctly. You must

test and validate that you can communicate with the external services and

that you receive correct data back from them.

Data Layer Testing

Once your site is up and running, the data you collect become very valu-

able. Credit card numbers, payment information, and user profiles are

examples of the types of data you may collect while running your

e-commerce site. Losing this information could prove disastrous and crip-

pling to your business. Therefore, you should develop a set of procedures

to protect your data storage systems.

Testing the data layer consists primarily of testing the database manage-

ment system that your application uses to store and retrieve information.

Smaller sites may store data in text files or open-source databases. Larger,

more complex sites, use full-featured enterprise-level databases. Depend-

ing upon your needs, you may use both approaches.

One of the biggest challenges associated with testing this layer is

duplicating the production environment. You must use equivalent

hardware platforms and software versions to conduct valid tests. In

addition, once you obtain the resources, both financial and labor,

you must develop a methodology for keeping production and test environ-

ments synchronized.

As with the other tiers, you should search for errors in certain areas

when testing the data layer. These include the following:

� Response time. Quantifying completion times for Structured Query

Language (SQL) operations.

� Data integrity. Verifying that the data are stored correctly and

accurately.

208 The Art of Software Testing

C10 08/17/2011 1:19:25 Page 209

� Fault tolerance and recoverability. Maximizing the MTBF and mini-

mizing the MTTR.

Response Time Testing Slow e-commerce applications cause unhappy

and untrusting customers. Thus, it is in your interest to ensure that your

website responds in a timely manner to user requests and actions. Re-

sponse time testing in this layer does not include timing page loads; rather,

it focuses on identifying database operations that do not meet performance

objectives. When testing the data-tier response time, you want to ensure

that individual database operations occur quickly so as not to bottleneck

other operations.

That said, before you can measure database operations, you must under-

stand what constitutes one. For this discussion, a database operation in-

volves inserting, deleting, updating, or querying data from the RDBMS.

Measuring the response time simply consists of determining how long

each operation takes. You are not interested in measuring transactional

times, as that may involve multiple database operations. Profiling transac-

tion speeds occurs while testing the business layer.

Because you want to isolate problem database operations, you do not

want to measure the speed of a complete transaction when testing data

layer response times. Too many factors may skew the test results if you test

the whole transaction. For example, if it takes a long time for users to re-

trieve their profiles, you need to determine where the bottleneck for that

operation resides. Is it the SQL statement, Web server, or firewall? Testing

the database operation independently allows you to identify the problem.

In this example, if the SQL statement is poorly written, it will reveal itself

when you test response time.

Data layer response-time testing is plagued with challenges. You

must have a test environment that matches what you use in produc-

tion; otherwise, you may get invalid test results. Also, you must have

a thorough understanding of your database system to make certain

that it is set up correctly and operating efficiently. You may find that a

database operation is performing poorly because the RDBMS is con-

figured incorrectly.

Generally speaking, though, you perform most response-time testing

using black-box methods. All you are interested in is the elapsed time for

database transactions. Many tools exist to help with these efforts, or you

may write your own.

Testing Internet Applications 209

C10 08/17/2011 1:19:25 Page 210

Data Integrity Testing Data integrity testing is the process of finding in-

accurate data in your data stores. This test differs from data validation,

which you conduct while testing the business layer. Data validation testing

tries to find errors in data collection. Data integrity testing strives to find

errors in how you store data.

Many factors can affect how the database stores data. The datatype and

length can cause data truncation or loss of precision. For date and time

fields, time zone issues come into play. For instance, do you store time

based on the location of the client, the Web server, the application server,

or the RDBMS? Internationalization and character sets can also affect data

integrity. For example, multibyte character sets can double the amount of

storage required, plus they can cause queries to return padded data.

You should also investigate the accuracy of the reference tables used by

your application, such as sales tax, zip codes, and time zone information.

Not only must you ensure that this information is accurate, you must keep

it up to date.

Fault Tolerance and Recoverability Testing If your e-commerce site

relies on an RDBMS, then the system must stay up and running. There is

very little, if any, downtime availability in this scenario. Thus, you must

test the fault tolerance and recoverability of your database system.

One goal of database operations, in general, is to maximize MTBF and

minimize MTTR. You should find these values specified in the system

requirements documentation for your e-commerce site. Your goal when

testing the database system robustness is to try to exceed these numbers.

Maximizing MTBF depends on the fault-tolerance level of your database

system. You might have a failover architecture that allows active transac-

tions to switch to a new database when the primary system fails. In this

case, your customers might experience a short service disruption, but the

system should remain usable. Another scenario is that you build fault tol-

erance into your application so that a downed database affects the system

very little. The types of tests you run depend on the architecture.

You should consider database recovery as equally important. The objec-

tive of recoverability testing is to create a scenario in which you cannot

recover that database. At some point, your database will crash, so you

need to have procedures in place to recover it very quickly. The planning

for recovery begins in obtaining valid backups. If you cannot recover the

database during recoverability testing, then you need to modify your

210 The Art of Software Testing

C10 08/17/2011 1:19:25 Page 211

backup plan. A fault-tolerant database system may reside in multiple loca-

tions connected over a private or shared network. This aspect of database

management must be tested as well. If the local server fails, are the remote

systems current, and can your software connect to a remote system

quickly? What happens if one or more network connections fail? What

happens if a system failure occurs while data is being written?

In general, strive to test all aspects of the system, everything required to

support all levels of activity and data integrity for which your application

is designed.

Summary
The public Internet did not exist when the first edition of this book was

written. Indeed, remotely accessed systems, and applications in general,

were infantile compared to those of today’s Internet. Users in those early

days mostly were sophisticated, computer-savvy folk who could tolerate a

fairly high level of difficulty in accessing and using remote applications.

Today, Internet users may know very little about the actual operation of

computers and computer software, yet they have a virtually infinite choice

of commercial sites from which to choose. Consequently, they have little or

no patience for a Web-based application that is unattractive, difficult to

use, or dysfunctional. Therefore, in-depth testing of any Internet applica-

tion is extremely important.

Testing software in the Internet environment presents many challenges,

particularly the large and varied user base and the need for extreme accu-

racy and security for electronic commerce applications. In general, we

want to test three main Internet application areas: presentation (or user

interface), business logic, and data management. As might be expected,

large user-base applications require extensive user testing (see Chapter 7

for more information on this process) to ensure that the software meets

design specifications and user acceptance criteria. It is important for any

software application to be attractive and easy to use, but applications for

the Internet are judged more harshly. In this environment, software suc-

cess often equates to business success, and this factor alone should drive

developers toward aggressive and thorough testing.

Testing Internet Applications 211

C10 08/17/2011 1:19:25 Page 212

C11 08/17/2011 1:37:51 Page 213

11 Mobile Application
Testing

Computer technology changes rapidly. In a blink of an eye the com-

puter went from the desktop to the laptop and now to the handheld

mobile device. This migration has changed the way we conduct our lives,

businesses, and governments. It has also significantly affected the way soft-

ware developers and testers do their jobs.

Most software testing professionals find testing mobile applications very

challenging—more so than almost any other software types or platforms.

Actually, it’s the devices and mobile environment more than the ‘‘applica-

tion’’ that impose the challenge. These two components add many

variables and complexities that may skew or mask problems in your

application, which makes designing a robust test plan difficult. Briefly, you

need to consider network performance and reliability, consistent user

interfaces, transcoder influences, device diversity, and limited resource

platforms.

In this chapter, we introduce a relatively new area of software testing:

testing mobile and smartphone applications. We begin by describing the

mobile application environment, which differs from that of a stand-alone

application on desktops, laptops, and servers. Next, we enumerate the

challenges of testing mobile applications—some of which we touched on

earlier in this book. Finally, we cover some testing approaches and test-

case considerations to help lower your learning curve in this new territory.

After reading this chapter you should better understand the challenges and

hurdles of testing mobile application.

213

C11 08/17/2011 1:37:51 Page 214

Mobile Environment
With the widespread rollout of wireless hotspots, the line between mobile

computing and ‘‘traditional’’ wireless network-based activities has blurred.

Thus, to begin here we need to define the terms mobile device and mobile

applications, with respect to the content of this chapter. In that light, we

refer to a mobile device as one that has the capability to run network-based

applications over a cellular or satellite data link. This encompasses most

smartphones, tablets, and PDAs. That said, don’t make the mistake of iden-

tifying mobile devices only by their appearance. Modern laptops can ac-

cept plug-in cellular or satellite cards, and some laptop devices have this

access built in. Based on this definition of a mobile device then, a mobile

application is a network-based program that runs on a mobile device.

This distinction is important. Yes, it is true that most mobile devices can

use hotspots and wireless access points without a problem. However, those

connections provide greater reliability and higher speeds than cellular net-

works, even with the adoption of 3G and 4G technologies. Thus, you design

your mobile application with the expectation that it will use relatively slow,

comparatively unreliable data links. You can also develop stand-alone appli-

cations, such as games, that run on a mobile device without the need to use

the carrier’s network. But for the purposes of this chapter, we do not con-

sider stand-alone applications as mobile applications. Our focus is on the

challenges associated with applications running on cellular data networks.

The key to creating successful test plans for your mobile applications is

to understand the mobile computing environment. Table 11.1 identifies a

number of crucial areas you should investigate while designing test plans.

First, you must understand device connectivity issues and network speeds,

regional availability, and latency. Keep in mind the underlying philosophy

of this book: Your tests should not prove that your application works, but

that your application does not work for the use cases. For example, if you

have a location-based service or e-mail application, then your tests should

identify software problems when the carriers network is slow or

unavailable.

Next are three areas regarding devices—diversity, constraints, and input

methods—which we cover in great detail later in the chapter. To create

successful test plans, you and your testing staff must consider the numer-

ous devices in the marketplace, the varying capabilities of each, and how

the user interacts with the devices.

214 The Art of Software Testing

C11 08/17/2011 1:37:52 Page 215

Last, you need to determine how you will install and maintain your

application. Some vendors, such as Apple, maintain online stores where

the user purchases the application, but only after Apple certifies your

application for its platform. This makes installation and maintenance a

little easier, as you have a single, certified distribution system.

Testing Challenges
As stated, mobile application testing is fraught with challenges. To help

meet them, we can categorize most into four categories: device diversity,

carrier network infrastructure, scripting, and usability. You need to think

through each carefully when designing test cases. The shear combination

of device types, operating systems, user input methods, and network con-

cerns mean that trade-offs must be balanced with time, financial, and labor

TABLE 11.1 Mobile Environment Test Design Considerations

Area Comment

Connectivity Device provisioning

Network speed

Network latency

Network availability in remote areas

Service reliability

Diversity Devices Numerous web browsers to test

Multiple versions of runtimes for Java or other

languages

Device Donstraints Limited memory or processor

Small screen size

Multiple operating systems

Multitasking capabilities

Data cache sizes

Input Devices Touch screens

Stylus

Mouse

Buttons

Rollers

Installation and

Maintenance

Installing and uninstalling

Patching

Upgrading

Mobile Application Testing 215

C11 08/17/2011 1:37:52 Page 216

resources to arrive at an economical test plan that detects most bugs in a

reasonable time frame. Building a testing strategy that combines the meth-

ods discussed in earlier chapters will help.

In the rest of this section we discuss these categories and offer advice on

how to tackle each one.

Mobile Device Diversity

The ever-expanding diversity of devices presents an often-underestimated

and significant testing challenge to someone new to mobile application

testing. It sometimes seems that manufacturers introduce new devices

daily, making it almost impossible to keep up with the release cycles.

Worse, more devices means more items to consider in your testing. Here’s

a simple example to illustrate only a few items you need to evaluate when a

new device is released:

Suppose Motorola develops a new method of text input via the touch

screen for its Android-based phones. Can you design a test to deter-

mine whether the device’s new input method breaks your applica-

tion? If it does, can you fix your application without breaking

support for other Android-based devices such as tablets? Can you

even obtain a device to test? Do you have access to a supported car-

rier network?

Almost by definition, along with diversity of the devices comes diversity

of operating systems, browsers, application runtime environments, screen

resolutions, user interfaces, ergonomics, screen size, and more. You must

be aware of all of these factors when creating tests. Device diversity also

forces usability testing front and center, which at some point requires tes-

ters to evaluate your application on target devices. Using emulators is great

way to start, but ultimately you will need to test real devices on real carrier

networks.

This raises another facet of mobile application testing: testing on real

devices versus emulators. From an economic standpoint you should do as

much testing as you can with emulators. It may be financially unfeasible,

even if you can obtain a device and access the wireless network, to test on

the real platform. That said, emulators only emulate; they are not the real

devices. So it is likely that you will observe differences between testing

216 The Art of Software Testing

C11 08/17/2011 1:37:52 Page 217

with an emulator and the actual device. For example, the colors and

shapes of buttons and input boxes may pass acceptance tests on an emula-

tor but fail on the target device because of screen resolution and color

depth differences between the device and a PC-based emulator.

In short, you need to realize there may be hundreds of mobile devices

with the potential to access your application. Therefore, during the

requirements-gathering and specification-writing phases, you will be

called upon to make some tough decisions and choose a reasonable subset

of devices to support and test. Be mindful that every device you do not test

may not work with your application; hence, you may lose not only a cus-

tomer but a customer base.

Carrier Network Infrastructure

Testing your application on a carrier network sets up another challenge.

This is especially true if you want to support multiple carriers. Two of the

highest hurdles to jump are: understanding and adapting to the carrier’s

infrastructure, and overcoming location-based obstacles.

Understanding a carrier’s infrastructure is fundamental to developing a

good test plan. Initially, you would think that your mobile application uses

a carrier’s network like an IP wireless hotspot. Not so. Figure 11.1 illus-

trates the ‘‘typical’’ infrastructure of most wireless carriers. The first differ-

ence is that the protocol is not IP-based; it is usually an RF-based protocol

Internet

Firewall

Mobile Proxy

Web Proxy
or transcodes

Tablets

Devices

Smartphones

PDAs

Carrier telco
EQUIP

FIGURE 11.1 Generic Wireless Carrier Data Network.

Mobile Application Testing 217

C11 08/17/2011 1:37:52 Page 218

such as code division multiple access (CDMA), time division multiple ac-

cess (TDMA), or global system for mobile (GSM). The RF-based protocols

treat the IP-based protocols as a ‘‘payload’’ and delivers them to the mobile

device, which then decodes the payload and presents it to the application.

Also most carriers use some form of transcoder or Web proxy between

the Internet and the device. These devices may perform a variety of func-

tions. And, it is sometimes hard to determine exactly what occurs unless

you work directly with the carriers. Often, they do not reveal this informa-

tion for competitive purposes. The following is a short list of what may

occur at a carrier’s Web proxy or transcoder:

� Transform or transcode content into WAP or HTTP.

� Compress data for better throughput.

� Encrypt traffic for privacy and security.

� Block access to certain high-bandwidth sites.

� Strip HTML headers and other metadata from Web pages that your

application may use.

Transcoding may cause UI inconsistencies across multiple devices.

Some devices support Wireless Application Protocol (WAP) while others

support HTTP. WAP uses Wireless Markup Language (WML) for content

delivery. WAP and WML were intended to be the ‘‘standard’’ for wireless

content delivery, but never gained a strong foothold. Nonetheless, numer-

ous devices implement it, so you may encounter it during your tests. How-

ever, most smartphones and tablets support HTML and therefore rely on

HTTP to deliver content. If you have UI problems across devices and carri-

ers, check with each to determine whether WAP/WML or HTTP/HTML is

being used.

Although data compression is intended to improve throughput, often

during periods of high activity throughput may slow due to the overhead

of compression. The same holds with security: Firewalls and similar layers

may slow throughput during high-volume hours.

Finally, you must overcome location-based hurdles. Obviously, to test

on a carrier’s network, you need access to it. For instance, what if you have

a travel application for a smartphone: How do you test carrier networks in

other parts of the country or in other countries? Answer: You must travel

there or hire someone there to test it for you. Both add to the cost of

testing.

218 The Art of Software Testing

C11 08/17/2011 1:37:52 Page 219

Scripting

An often-overlooked area of mobile applications testing is creating and

running test scripts. Real devices do not allow you to load automated, re-

peatable scripts onto the device; test personnel manually execute all

scripts. That is, someone walks through a written test script designed

to find errors in a test case on the target device. Notice we said ‘‘target’’

device. There exist many targets in the mobile environment.

As we pointed out in previous chapters, manual testing is error prone.

Unfortunately, it is unavoidable when testing mobile applications on real

devices. As mentioned, most emulators have rich scripting functionality

and can perform the bulk of regression testing and system tests. However,

in the end you still need to have someone work with the device. (Later in

the chapter, we explain how to create a generic manual test script to sup-

port multiple devices.)

The refreshing news is that mobile devices are becoming much more

sophisticated and powerful. Given the competitiveness of the marketplace,

it is reasonable to expect an automated scripting product to appear. Apple’s

iOS, Windows Mobile OS, and the Android OS are maturing rapidly, so it is

likely that this problem may be a non-issue in future versions.

Usability

Usability testing presents challenges similar to those of test scripts. Recall

from previous chapters that usability testing is mostly a white-box ap-

proach. Just like testing stand-alone desktop applications, a testing staff

must manually try to find bugs in the user interface and user interaction

layers of your application.

Unlike testing stand-alone desktop applications, mobile device testing

involves more than one platform to test. For instance, you will want to

search for UI consistency issues between Apple’s products and the An-

droid-based platforms. Although you are testing mobile applications,

much of Chapter 7’s discussions apply.

Testing Approaches
Some areas of testing mobile devices are similar to testing Internet applica-

tions, especially when evaluating the back-end infrastructures. The major

Mobile Application Testing 219

C11 08/17/2011 1:37:52 Page 220

difference lies in how you approach testing the device itself. With Internet

testing, you have only a handful of browsers to evaluate; with mobile de-

vices, you have exponentially more.

Naturally, when testing back-end components, you should employ sim-

ilar techniques and evaluate similar considerations as those discussed in

Chapter 10, ‘‘Testing Internet Applications.’’ Referring back to Figure

10.1, tiers 2 and 3 should have approximately the same configuration as a

normal Internet application. As a quick review, you should test the per-

formance specifications, data validation routines, and transaction process-

ing components of tier 2. Testing tier 3 also is the same as with Internet

applications; test response times, data integrity, fault tolerance, and recov-

erability on this tier. If possible test the tier 2 and 3 components sepa-

rately from the device to ensure they meet your design specifications

using function testing.

Testing tier 1, the user environment, differs from traditional Internet

testing. The concepts presented on testing your content and website

architecture still apply. However, user environment testing equates to

device testing.

We should note the importance of use cases when developing test plans

for your devices. Knowing who will use your application, and how and

when, is imperative, as mobile applications have numerous points of fail-

ure. Table 11.2 lists items you might not generally consider when designing

test cases for standard applications, whether stand-alone or Web-based. For

example, testing your application on the carrier’s network is extremely im-

portant. You want to find problems related to spotty coverage or sudden

loss of connectivity. If your application involves data transfers, look for

problems with data caching and incomplete synchronization with back-end

data stores. What happens when coverage is suddenly restored after an in-

terruption during an application download? Does a purchase occur twice?

Check for bugs related to handling session reinitialization and data corrup-

tion. Some of these issues apply to Web-based applications running in a

PC-based browser. However, LANs/WANs are much more stable. When

dealing with cellular networks, you should expect to lose connectivity.

A test case specific to mobile testing is how your application handles

incoming voice calls and text messages. Chances are end users will want

to suspend your application, or run it in the background, while they an-

swer the phone or read the text message. Try to build test cases where in-

coming calls and messages cause problems in your application.

220 The Art of Software Testing

C11 08/17/2011 1:37:52 Page 221

TABLE 11.2 Test Categories for Mobile Application Testing

Test Category Description

Install/Uninstall Ensure the user can correctly install your application.

Ensure the user can completely uninstall your application.

Network

Infrastructure

Verify the application responds appropriately to loss of

network.

Verify the application responds appropriately to network

restoration.

Verify the application responds appropriately to weak signals.

Incoming Call/

Message

Handling

Test whether user can accept calls/text messages while

application is running.

Test whether user can resume application when finishing

calls/text messages.

Test whether user can reject calls/text messages without

disrupting application.

Test whether user can initiate a call/text message without

disrupting the application.

Low Memory Ensure application remains stable when device encounters a

low memory situation.

Key Mappings Test that all key mapping works as specified.

Feedback Ensure user feedback to keypress occurs within application

design specifications.

Exiting Verify that the application exits gracefully when initiated through

pressing keys, closing the cover, or using the slider.

Confirm the application meets design specifications when the

user initiates a shutdown of device.

Charging Ensure that application works as designed when entering

charge mode.

Ensure that application works as designed while in charge mode.

Ensure that application works as designed when exiting charge

mode.

Battery

Conditions

Test how the application behaves on a low battery.

Measure how quickly application drains the battery.

Ensure the application responds per specification when the

battery is removed while the device is powered on.

Device Interaction Ensure the application does not overload the CPU.

Ensure the application does not consume too much memory.

Mobile Application Testing 221

C11 08/17/2011 1:37:52 Page 222

In the rest of the chapter we will cover some approaches to device test-

ing in which you basically have two choices: test on real devices or use

device emulators. Table 11.3 offers some advantages and disadvantages of

each approach.

Testing with Real Devices

Manual testing with real devices is inevitable. Although costly, it has some

advantages. Only by testing with the device can you experience its nuances

and get a true feel for the user’s experience. In addition, you can only test

certain cases with real devices. Testing the reliability of a carrier’s network

and determining the effect of an incoming call or text message are obvious

examples. On a real device you also can evaluate how your application be-

haves. Does it load fast and run at an acceptable speed? Does it look okay?

Is the UI consistent across your target devices? Last but not least, you can

determine device-specific bugs. This is almost impossible with an emula-

tor. If you do find a device-specific bug, the challenge is to fix it without

breaking compatibility with other devices.

Despite the advantages, testing with real devices also has some serious

drawbacks. For example, it is costly because you must purchase the device,

TABLE 11.3 Devices versus Emulators

Testing

Approach Disadvantages Advantages

Real

Devices

Expensive, especially if you target a

broad base of mobile devices

Ability to test responsiveness

of the application

Inability to install metering or

diagnostic development tools

Visual inspection of application

on real device to verify UI

consistencyUnable to install on run test

scripts Test carriers’ network

responsivenessNetwork availability

Identify device-specific bugs

Emulators Inability to identify device- related

bugs

Cost-effective

Underlying hardware may skew

performance on real device

Easy to manage; multiple

device support with single

emulator

222 The Art of Software Testing

C11 08/17/2011 1:37:52 Page 223

as well as pay for carrier airtime. Neither is inexpensive, and if you are test-

ing multiple devices from multiple carriers in multiple regions, the

expenses grow accordingly. Some device manufacturers and service pro-

viders have devices that you can rent or access remotely, which may miti-

gate some costs. If you target an individual platform, such as the Apple

iPhone family, you may be spared much of this expense. Still, you will

need enough of each type (iPad, iPhone, iTouch) to test.

In addition, testing with real devices is a manual, white-box process.

Someone must push the buttons, tap the screens, and enter data. As you

know, manual testing is error prone, even with the best instructions and

trained testers. Plus, it adds another expense to the process. You should

keep exacting notes about each well-documented test script and its results.

Then evaluate the effectiveness of the scripts and eliminate those with little

or no value (i.e., fail to find bugs).

As we noted earlier, using real devices eliminates one important weapon

in the software tester’s arsenal: automated test scripts. Therefore, you

should use written, manual scripts that specify generic actions, not details

on how to perform the action on a device. Detailed test scripts for every

device would be a challenge to create and maintain. In short order you

would have a library of scripts, which may be obsolete when the device is

updated. Generic scripts allow you to test system specifications across

multiple devices.

For example, iPhones, iPads, and Android-based devices rely heavily on

touch screens for user input. Other devices, such as BlackBerries or ‘‘stan-

dard’’ phones, have keyboards or keypads to allow for user input. Table 11.4

provides an example script to check whether your application, an e-reader,

aborts if you receive a text message while reading an e-book. Notice the

script does not specify exactly how to do any one step, only to perform the

step using the user-input facilities of the device. These may be buttons,

touch screens, or voice commands. At no point do you specify ‘‘Press OK’’

or ‘‘Press Send.’’ This generic approach will allow you to evaluate test cases

across multiple devices.

Last, manufacturers often ‘‘lock down’’ real devices, meaning you cannot

load tools to monitor or debug your application. So when you hit a bug it is

more challenging to isolate the problem. For instance, if your application

is running slowly, you do not know whether it is the carrier’s network,

transcoding issues, your application, or a combination. Only by trial and

error can you identify problems.

Mobile Application Testing 223

C11 08/17/2011 1:37:52 Page 224

Testing with Emulators

Testing with emulators may not be the preferred approach, but it is usually

the most practical and cost-effective, and it even has some advantages.

First, emulators allow for inexpensive and quick functional testing of your

application. You can step through the application to find events and cir-

cumstances that do not meet the program requirements. Identify these

bugs using emulators before you get into the expense of device testing.

Second, emulators are easy to manage, and because they run on PCs,

every tester or developer can have an emulator. Developers can manage

the software themselves, precluding the need of system administrators.

Third, most emulator packages support multiple devices. To test a different

device, just load a different device profile. Best of all, you incur no expen-

sive carrier airtime costs. Fourth, emulators run on computers with more

resources, such as faster CPUs and more memory. Fast response times

during testing enables you to complete tests more quickly.

The last and probably most significant advantage is that most emulators

employ high-level scripting languages, so you can create consistent, auto-

mated tests, which are less error prone and quicker than manual testing.

Automated scripting also allows for easier and faster regression testing,

which is especially important when verifying that changes made to your

TABLE 11.4 Generic Device Test Script

1. Start e-reader application.

2. Open e-book.

3. Initiate SMS message to device from another device.

4. Verify SMS message alert is displayed.

5. Open SMS message.

6. Choose Reply to SMS message.

7. Compose SMS message.

8. Send SMS message.

9. Verify SMS message sent notification.

10. Return to e-book.

11. Verify e-book application is running.

12. Verify return to same page or bookmark.

13. Exit e-reader application.

224 The Art of Software Testing

C11 08/17/2011 1:37:52 Page 225

application to support one device don’t break support for another. The

scripting languages in emulators generally are device-agnostic. Referring

to Table 11.4, when you script Step 8, ‘‘Send SMS Message,’’ the emulator

will perform that function regardless of the device. This allows scripts to

be used across devices.

The disadvantage of using emulators for testing is that you cannot iden-

tify the nuances and bugs of each device. As we’ve said before, at some

point, you must test your application on the target devices. Without testing

on real devices, you never can be 100 percent sure that you meet compati-

bility and performance specifications. Nonetheless, do not rule out using

emulators for the bulk of your testing. It is a cost-effective and efficient

way to eliminate most of your bugs.

Summary
Mobile application testing represents a new frontier in software testing.

The mobile environment adds greater complexity and more interactions

not experienced when testing standard stand-alone applications. That

said, with an understanding of the challenges, you can greatly improve

your chances of successfully testing your application.

Begin by trying to gain a handle on the device universe you want to

support. Do you want to support only Android-based smartphones and

tablets, or go for broke and support most major tablet and smartphone

vendors? Next, understand the carrier’s network infrastructure. Does it

transcode, encrypt, compress, or in any way modify the data before send-

ing it to the device?

You also need to find a balance between emulator and real device testing.

Both have their pros and cons. Due to costs, you will likely use emulators

more, and save device testing for the final phases. Use the test categories in

Table 11.2 as a starting point to developing your own. Refer to the categories

often when defining your test cases. Also, treat any written test script and

result like source code; ensure you have adequate backups and some form

of change control on the test documents. To save time and money, review

the effectiveness of each script and eliminate ones that fail to add value.

Once you understand the fundamentals of mobile application testing,

you should have no problems creating test plans and use cases. One thing

is certain, mobile applications are here, and sooner or later you will need

to learn how to test these unique applications. Why not start now?

Mobile Application Testing 225

C11 08/17/2011 1:37:52 Page 226

BAPP01 08/26/2011 12:16:57 Page 227

Appendix
Sample Extreme Testing
Application

1. check4Prime.java

To compile:

&> javac check4Prime.java

To run:

$> java -cp check4Prime 5

Right . . . 5 is a prime number!

$> java -cp check4Prime 10

Sorry . . . 10 is NOT a prime number!

$> java -cp check4Prime A
Usage: check4Prime x

– where 0<=x<=1000

Source code:

//check4Prime.java
//Imports
import java.lang.*;

public class check4Prime {

static final int max = 1000; // Set upper bounds.
static final int min = 0; // Set lower bounds
static int input =0; // Initialize input variable

public static void main (String [] args) {

//Initialize class object to work with
check4Prime check = new check4Prime();

try{
//Check arguments and assign value to input variable

check.checkArgs(args);

227

BAPP01 08/26/2011 12:16:57 Page 228

//Check for Exception and display help
}catch (Exception e){

System.out.println("Usage: check4Prime x");
System.out.println(" – where 0<=x<=1000");

System.exit(1);
}

//Check if input is a prime number

if (check.primeCheck(input))

System.out.println("Right... " + input + " is a prime number!");

else

System.out.println("Sorry... " + input + " is NOT a prime number!");

} //End main

//Calculates prime numbers and compares it to the input

public boolean primeCheck (int num){

double sqroot = Math.sqrt(max); // Find square root of n

//Initialize array to hold prime numbers

boolean primeBucket [] = new boolean [max+1];

//Initialize all elements to true, then set non-primes to false

for (int i=2; i<=max; i++){

primeBucket[i]=true;

}

//Do all multiples of 2 first

int j=2;

for (int i=j+j; i<=max; i=i+j){ //start with 2j as 2 is prime

primeBucket[i]=false; //set all multiples to false

}

for (j=3; j<=sqroot; j=j+2){ // do up to sqrt of n

if (primeBucket[j]==true){ // only do if j is a prime

for (int i=j+j; i<=max; i=i+j){ // start with 2j as j is prime

primeBucket[i]=false; // set all multiples to false

}

}

}

//Check input against prime array

if (primeBucket[num] == true) {

return true;

}else{

return false;

}

}//end primeCheck()

228 Appendix

BAPP01 08/26/2011 12:16:57 Page 229

//Method to validate input
public void checkArgs(String [] args) throws Exception{

//Check arguments for correct number of parameters
if (args.length != 1) {

throw new Exception();
}else{
//Get integer from character
Integer num = Integer.valueOf(args[0]);
input = num.intValue();

//If less than zero
if (input < 0) //If less than lower bounds

throw new Exception();
else if (input > max) //If greater than upper bounds

throw new Exception();
}

}

}//End check4Prime

2. check4PrimeTest.java
Requires the JUnit api, junit.jar

To compile:

$> javac -classpath .:junit.jar check4PrimeTest.java

To run:

$> java -cp .:junit.jar check4PrimeTest

Examples:

Starting test . . .

.

Time: 0.01

OK (7 tests)

Test finished . . .

Source code:

//check4PrimeTest.java
//Imports
import junit.framework.*;

public class check4PrimeTest extends TestCase{

//Initialize a class to work with.
private check4Prime check4prime = new check4Prime();

//constructor
public check4PrimeTest (String name){

super(name);
}

Appendix 229

BAPP01 08/26/2011 12:16:57 Page 230

//Main entry point
public static void main(String[] args) {

System.out.println("Starting test...");
junit.textui.TestRunner.run(suite());
System.out.println("Test finished...");

} // end main()
//Test case 1
public void testCheckPrime_true(){

assertTrue(check4prime.primeCheck(3));
}

//Test cases 2,3
public void testCheckPrime_false(){

assertFalse(check4prime.primeCheck(0));
assertFalse(check4prime.primeCheck(1000));

}

//Test case 7
public void testCheck4Prime_checkArgs_char_input(){

try {
String [] args= new String[1];
args[0]="r";
check4prime.checkArgs(args);
fail("Should raise an Exception.");

} catch (Exception success){
//successfull test

}
} //end testCheck4Prime_checkArgs_char_input()

//Test case 5
public void testCheck4Prime_checkArgs_above_upper_bound(){

try {
String [] args= new String[1];
args[0]="10001";
check4prime.checkArgs(args);
fail("Should raise an Exception.");

} catch (Exception success){
//successfull test

}
} // end testCheck4Prime_checkArgs_upper_bound()

//Test case 4
public void testCheck4Prime_checkArgs_neg_input(){

try {
String [] args= new String[1];
args[0]="-1";
check4prime.checkArgs(args);
fail("Should raise an Exception.");

} catch (Exception success){
//successfull test

}
}// end testCheck4Prime_checkArgs_neg_input()

//Test case 6
public void testCheck4Prime_checkArgs_2_inputs(){

try {
String [] args= new String[2];
args[0]="5";
args[1]="99";

230 Appendix

BAPP01 08/26/2011 12:16:58 Page 231

check4prime.checkArgs(args);
fail("Should raise an Exception.");

} catch (Exception success){
//successfull test

}
} // end testCheck4Prime_checkArgs_2_inputs
//Test case 8
public void testCheck4Prime_checkArgs_0_inputs(){

try {
String [] args= new String[0];
check4prime.checkArgs(args);
fail("Should raise an Exception.");
} catch (Exception success){
//successfull test
}

} // end testCheck4Prime_checkArgs_0_inputs

//JUnit required method.
public static Test suite() {

TestSuite suite = new TestSuite(check4PrimeTest.class);
return suite;

}//end suite()

} //end check4PrimeTest

Appendix 231

BAPP01 08/26/2011 12:16:58 Page 232

BINDEX 08/25/2011 13:31:44 Page 233

Index

A

Acceptance testing, 131

extreme, 184, 186

Agile development, 175

manifesto, 176

table-methodologies, 177

Agile testing, 175, 178

Application server, 205

Automated debugging tools, 159

B

Backtract debugging, 167

Beck, Kent, 176

Beedle, Mike, 176

Big-bang testing, 98

Black-box testing, 8

equivalence partitioning, 49

usability testing, 145

Black box–white box comparison,

42

Bottom-up testing, 107

compared with top-down testing,

108

Boundary value analysis, 55

guidelines for, 56

MTEST program for, 57

Branch coverage testing, 44

Browser compatibility testing, 204

Brute force debugging, 158

Business layer, 196, 201

Business layer testing, 205

Business tier

table-testing criteria, 198

C

C/S architecture, 195

C++

black-box testing of, 9

Carrier network infrastructure, 217

Cause effect graphing

constraint symbols for, 65

logic diagram for, 64

sample, 64

sample-without constraints, 71

symbols for, 63

with exclusive constraint, 66

Cause–effect graphing, 61

test cases for, 62

CDMA, 218

CGI, 196, 205

Client server architecture, 195

COBOL

history of, 26

Cockburn, Alistair, 176

Code division multiple access, 218

Code inspections, 22

Common Business Oriented

Language. See COBOL

233

BINDEX 08/25/2011 13:31:45 Page 234

Common gateway interface, 196

Comparison errors, 29

Compatibility/conversion testing,

127

Component tests, 153

Computation errors, 28

Computer

definition, 1

Condition coverage testing, 45

Condition masking, 46

Configuration testing, 126

Control-flow graph, 11

Control-flow errors, 31

Cunningham, Ward, 176

D

Data-declaration errors, 28

Data-gathering methods

usability testing, 150

Data-integrity testing, 210

Data layer, 201

Data-layer testing, 208

Data-reference errors, 25

Data tier

table-testing criteria, 198

Data validation, 207

Data-driven testing. See Black-box

testing

Debugging, 157

automated tools for, 159

by backtracking, 167

by brute force, 158

by deduction, 163

by induction, 160

clue structuring example, 163

error analysis, 172

inductive flowchart, 160

principals of, 168

programmer resistance, 157

with test cases, 167

Debugging principals

error locating, 168

error repairing, 170

Decision coverage testing, 44

Decision/condition coverage

testing, 46

Deductive debugging, 163

the process flowchart, 164

the steps, 164

Desk checking, 21, 37

DISPLAY command

cause-effect graph for, 72

graph for, 70

Diversity

mobile devices, 216

Documentation

software flowchart, 116

Driver module, 98

E

E-Commerce

basic architecture of, 195

Economics of testing, 8

Equivalence class form, 51

Equivalence classes

identifying, 51

table-classes list, 54

test cases for, 52

Equivalence partitioning, 49, 50

Error analysis

with debugging, 172

Error checklist, 25

Error guessing, 80

Errors

comparison, 29

computation, 28

234 Index

BINDEX 08/25/2011 13:31:45 Page 235

control flow, 31

data declaration, 28

estimating by plotting, 140

estimating number, 136

input/output, 33

interface, 32

rounding, 29

table-when errors found, 138

Essential unified process, 178

EssUP. See Essential unified process

Exhaustive input testing, 9

Extreme acceptance testing, 186

Extreme programming, 179

table-12 practices, 182

Extreme programming basics, 180

Extreme testing, 179, 180

acceptance testing with, 184

applied, 187

concepts of, 184

JUnit test driver, 190

test case design, 188

unit testing with, 184

Extreme unit testing, 185

Eye tracking, 151

F

Facility testing, 123

Fault tolerant testing, 210

Form

equivalence class, 51

Formula Translating System. See

Fortran

Fortran

history of, 26

Fowler, martin, 176

Function test

purpose of, 116

Function testing, 119

G

Global system for mobile, 218

Graphical User Interface, 2

Graphing

cause effect, 61

Grenning, James, 176

GSM, 218

GUI. See Graphical User Interface

H

Hallway testing, 147

Higher order testing, 113

performing the test, 130

test plan components, 133

test planning and control, 132

Highsmith, Jim, 176

HTML, 196

Human testing, 19

Hunt, Andrew, 176

Hypertext markup language, 196

I

Incremental testing, 96

Independent test agency, 141

Induction debugging, 160

Inductive debugging

steps for, 161

structuring the clues, 161

Inductive flowchart

for program debugging, 160

Input/Output errors, 33

Input/output testing. See Black-box

testing

Inspection error

checklist summary table, 35

Inspections

agenda for, 23

effectiveness of, 21

Index 235

BINDEX 08/25/2011 13:31:45 Page 236

Inspections (continued)

error checklist, 25

side benefits of, 24

team description, 22

time required, 24

Inspections and walkthroughs, 20

Installation testing, 127, 132

Interface errors, 32

Internet applications

data integrity testing in, 210

data layer testing in, 208

data validation in, 207

fault tolerant testing in, 210

illustration-architecture, 201

performance testing, 206

recoverability testing in, 210

response time testing in, 209

table-test criteria, 202

testing of, 193

testing strategies, 200

transactional testing in, 207

Internet testing

challenges of, 196

J

JBoss, 205

Jeffries, Ron, 176

JUnit, 187

test driver, 190

K

Kern, Jon, 176

L

LDAP, 196

Lightweight directory application

protocol, 196

Logic coverage testing, 43

Logic-driven testing. SeeWhite-box

testing

M

Marick, Brian, 176

Martin, Robert C., 176

Mean Time Between Failures, 128,

200

Mean Time to Repair, 129, 200

Mellor, Steve, 176

Mobile application

definition, 214

Mobile application testing, 213

approaches to, 219

challenges, 215

scripting in, 219

table-categories, 221

table-devices versus emulators,

222

table-generic test script, 224

usibility testing in, 219

with emulators, 224

with real devices, 222

Mobile device

definition, 214

Mobile device diversity, 216

Mobile environment, 214

table-test design considerations,

215

Module

driver, 98

input tables for, 87

stub, 98

Module test

purpose of, 116

Module testing, 85

performing the test, 109

test case design, 86

236 Index

BINDEX 08/25/2011 13:31:45 Page 237

MTBF, 200, 210, SeeMean Time

Between Failures

MTEST

program input chart, 58

program specifications, 57

MTTR, 200, 210, SeeMean Time To

Repair

Multiple-condition coverage

testing, 47, 48

N

Nielsen, Jakob, 148

Nonincremental testing, 98

P

Palo Alto Research Center,

143

PARC. See Palo Alto Research

Center

Path sensitizing, 73

Peer ratings, 38

Performance testing, 126, 206

Performing the test

higher order testing, 130

PL/1

background, 88

Presentation layer, 196, 201

Presentation layer testing, 203

Presentation tier

table-testing criteria, 198

Principals of debugging

error locating, 168

error repairing, 170

Procedure testing, 130

Program

12 module sample, 102

Agile development, 175

breakpoints in, 159

control flow graph, 11

error checklist, 25

inspections, walkthroughs and

reviews, 19

Java sample, 43

module input tables, 87

regression testing, 16

sample flowchart, 43

six module diagram, 98

testing principals, 13

Program testing

definition, 17

successful criteria, 18

Program testing guidelines, 13

Psychology of testing, 5

Q

Questionnaire

usability testing, 152

R

Random input testing, 41

Rapid application development,

179

Rational unified process, 178

RDBMS, 196, 209, 210

Recoverability testing, 210

Recovery testing, 129

Regression testing, 16

Relational database management

system, 196

Reliability testing, 127

Remote user testing, 151

Response time testing, 209

Resultant decision table, 76

Rounding error

Java code sample, 29

RUP. See Rational unified process

Index 237

BINDEX 08/25/2011 13:31:45 Page 238

S

Schwaber, Ken, 176

Scripting

in mobile application testing,

219

Security testing, 125

Serviceability/maintenance testing,

129

Software

documentation flowchart,

116

documentation of, 115

external specification, 114

testing versus development,

117

Software development

process flowchart, 114

Software reliability engineering

(SRE), 128

Software testing

correct definition, 6

economics of, 8

wrong definition, 5

Software testing principals, 12

SQL, 209

SRE. See Software Reliability

Engineering

Storage testing, 126

Stress testing, 123, 206

Stub module, 98

Sutherland, Jeff, 176

System test

flowchart for, 121

purpose of, 116

System testing, 119

facility, 123

stress, 123

volume, 123

T

TDMA, 218

Test-case

for extreme testing, 188

Test-case debugging, 167

Test-case design, 41

module testing, 86

unit testing, 86

Test-case exam, 2

Test-case strategy, 82

Test cases

table-categories of, 122

types of, 167

Test completion criteria, 135

Test planning and control, 132

Test user selection

usability testing, 147

Testing, 13, 44

acceptance, 131

agile, 178

agile environment, 175

big-bang, 98

branch coverage, 44

browser compatibility, 204

business layer, 205

code-oriented, 20

compatibility/conversion, 127

completion-criteria, 135

condition-coverage, 45

condition-masking, 46

configuration, 126

debugging, 157

decision-coverage, 44

decision/condition-coverage, 46

desk-testing, 21

estimating-errors, 136

human, 19

installation, 127, 132

238 Index

BINDEX 08/25/2011 13:31:45 Page 239

Internet applications, 193

mobile applications, 213

multiple-condition coverage, 47

nonincremental, 98

performance, 126

presentation layer, 203

procedure-testing, 130

recovery, 129

reliability, 127

security, 125

serviceability/maintenance, 129

storage, 126

top-down, 101

usability, 125, 143

usability questionnaire, 152

Web applications, 194

Testing approaches

mobile applications, 219

Testing principals, 13

Testing strategies

Internet applications, 200

Think aloud protocol, 150

Thomas, Dave, 176

Time-division multiple access, 218

Top-down design, 101

Top-down development, 101

Top-down testing, 101

compared with bottom up

testing, 108

Transactional testing, 207

Triangle

Definition, 2

U

UI, 218

Unit testing, 85

extreme, 185

test case design, 86

with extreme testing, 184

Uptime requirements

table-hours per year, 129

Usability

in mobile application testing, 219

Usability testing, 125, 143

component tests, 153

conducting sufficient tests, 153

data gathering methods, 150

determining number of testers,

148

eye tracking, 151

graph-errors versus testers, 149

hallway testing, 147

questionnaire, 152

remote user testing, 151

test user selection, 147

testing considerations, 144

the process, 146

think aloud protocol, 150

User interface, 218

User testing, 143

V

Van Bennekum, Arie, 176

Volume testing, 123

W

Walkthroughs, 34

effectiveness of, 21

WAP, 218

Web applications

browser compatibility, 195

testing of, 194

testing strategies, 200

White-box testing, 10, 42

White box–black box comparison, 42

Wide Area Network. See

Index 239

BINDEX 08/25/2011 13:31:45 Page 240

Wireless application protocol, 218

Wireless markup language, 218

WML, 218

X

Xerox, 143

XP, 179, 180

planning, 181

project flow example, 183

testing, 183

XP Planning, 181

XP Project flow, 183

XP Testing, 183

XT, 180

240 Index

		THE ART OF SOFTWARE TESTING

		Preface

		Introduction

		1 A Self-Assessment Test

		2 The Psychology and Economics of Software Testing

		3 Program Inspections, Walkthroughs, and Reviews

		4 Test-Case Design

		5 Module (Unit) Testing

		6 Higher-Order Testing

		7 Usability (User) Testing

		8 Debugging

		9 Testing in the Agile Environment

		10 Testing Internet Applications

		11 Mobile Application Testing

		Appendix Sample Extreme Testing Application

		Index

SOFTWARE

TESTING

,uwu

GLENFORD J. MYERS

ssssssssssssssssssssss

