

Mastering	Proxmox

Third	Edition
	

	

	

	

	

	

	

	

	

Build	virtualized	environments	using	the	Proxmox	VE	hypervisor
	

	

	

	

	

	

	

	

	

	

Wasim	Ahmed

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Mastering	Proxmox

Third	Edition
Copyright	©	2017	Packt	Publishing

	

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a
retrieval	system,	or	transmitted	in	any	form	or	by	any	means,	without	the
prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

	

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the
accuracy	of	the	information	presented.	However,	the	information	contained	in
this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the
author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held
liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by
this	book.

	

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all
of	the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use
of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

	

First	published:	July	2014

Second	edition:	May	2016

Third	edition:	November	2017

	

Production	reference:	1141117

	

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham

B3	2PB,	UK.

	

ISBN	978-1-78839-760-5

	
www.packtpub.com

http://www.packtpub.com

Credits

Author
Wasim	Ahmed

Copy	Editors
Safis	Editing

Madhusudan	Uchil

Reviewers
Nicolas	Ledez

Jorge	Moratilla	Porras

Project	Coordinator
Virginia	Dias

Commissioning	Editor
Vijin	Boricha

Proofreader
Safis	Editing

Acquisition	Editor
Rahul	Nair

Indexer
Francy	Puthiry

Content	Development	Editor
Sharon	Raj

Graphics
Kirk	D’Penha

Technical	Editors
Vishal	Kamal	Mewada

Khushbu	Sutar

Production	Coordinator
Nilesh	Mohite

About	the	Author
Wasim	Ahmed,	born	in	Bangladesh	and	now	a	citizen	of	Canada,	is	a	veteran
of	the	IT	world.	He	first	came	into	close	contact	with	computers	in	1992	and
never	looked	back.	Wasim	has	a	deep	understanding	of	networks,
virtualization,	big	data	storage,	and	network	security.

By	profession,	Wasim	is	the	CEO	of	a	global	IT	support	and	cloud	service
provider	based	in	Calgary,	Alberta.	He	serves	many	companies	and
organizations	through	his	company	on	a	daily	basis.	Wasim’s	strength	comes
from	his	experience,	which	comes	from	learning	and	serving	continually.
Wasim	strives	to	find	the	most	effective	solution	at	the	most	competitive
price.	He	has	built	over	20	enterprise	production	virtual	infrastructures	using
Proxmox	and	the	Ceph	storage	system.

Wasim	and	his	team	are	notorious	for	not	simply	accepting	a	technology
based	on	its	description	alone,	but	putting	it	through	rigorous	testing	to	check
its	validity.	Any	new	technology	that	his	company	provides	goes	through
months	of	continuous	testing	before	it	is	accepted.	Proxmox	made	the	cut
superbly.

	

This	book,	Mastering	Proxmox	–	Third	Edition,	would	not	have	been	possible
without	the	support	and	wholehearted	cooperation	of	the	team	at	Packt
Publishing.	I	wish	to	acknowledge	my	indebtedness	to	each	of	the	team
members	who	walked	me	through	the	process	of	the	major	undertaking	that
was	writing	this	book.

I	also	would	like	to	acknowledge	the	support	and	dedication	of	the	Proxmox
VE	developer	team,	who	made	this	great	hypervisor	available	to	all	of	us.
Their	vision	and	attention	to	detail	has	enabled	Proxmox	VE	to	mature	in	a
very	short	period	of	time	since	its	first	release.

I	am	thankful	to	the	global	community	of	Proxmox	users,	whose	combined
experiences	have	allowed	me	to	learn	many	different	scenarios	in	which
Proxmox	is	used	today.

Finally,	I	would	like	to	acknowledge	Charles	McCrea,	whose	friendship	and
support	played	an	important	role	in	bringing	this	book	to	completion.

About	the	Reviewers
Nicolas	Ledez	has	been	working	as	a	system	administrator	since	2000.	He
has	been	in	big	businesses	such	as	Orange	(a	French	telecom	company)	and	in
small	organizations	too.
His	skills	are	in	DevOps,	Linux,	Ruby,	Python,	Ansible,	Chef,	Saltstack,	and
others.
Currently,	he	is	a	DevOps	architect	at	Cozy	Cloud.	You	can	find	him	on	the
internet	with	the	pseudonym	nledez.

	

	

	

	

Jorge	Moratilla	Porras	has	a	bachelor’s	degree	in	computer	science	and	has
been	working	for	internet	companies	since	1998.	He	has	been	working	as	a
contractor	for	companies	such	as	Sun	Microsystems	and	Oracle.	His	passions
are	teaching	and	improving	workloads	using	automation	techniques.	He	has
been	working	as	a	Sun	Microsystems	certified	instructor	and	field	engineer
for	several	years.	He	has	a	large	background	working	with	products	such	as
Sun	Solaris,	Linux,	LDAP	services,	and	CheckPoint.	Recently,	he	has	been
working	with	configuration	management	products	such	as	Puppet	and	Chef
on	his	assignments	and	has	been	taking	part	in	Madrid	DevOps	(a	group	of
technicians	devoted	to	continuous	deployment	and	DevOps	culture)	as
coordinator.	He	promotes	the	adoption	of	a	culture	of	continuous
improvement	in	enterprise	and	startups	as	the	baseline	to	do	great	things.	You
can	meet	him	at	talks	and	hangouts	that	he	organizes	in	the	community.

He	has	collaborated	as	a	reviewer	on	other	Packt	titles	as	well:

Configuration	Management	with	Chef-Solo	by	Naveed	ur	Rahman	
Proxmox	Cookbook	by	Wasim	Ahmed

I	would	like	to	thank	my	wife,	Nuria,	and	sons,	Eduardo	and	Ruben,	for	being
so	understanding	and	supportive	while	I	was	reviewing	this	book.	Also,	I
would	like	to	thank	my	dear	mom,	Milagros,	and	dad,	Toñi,	who	put	in	all
their	effort	to	give	me	an	education.	Finally,	I	would	also	like	to	thank	all
those	who	have	contributed	to	my	personal	and	professional	development

through	the	years.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.
com.	Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,
with	PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	
www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on
the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and
offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access
to	all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help
you	plan	your	personal	development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our
editorial	process.	To	help	us	improve,	please	leave	us	an	honest	review	on	this
book’s	Amazon	page	at	https://www.amazon.com/dp/1788397606.

If	you’d	like	to	join	our	team	of	regular	reviewers,	you	can	email	us	at
customerreviews@packtpub.com.	We	award	our	regular	reviewers	with	free	eBooks
and	videos	in	exchange	for	their	valuable	feedback.	Help	us	be	relentless	in
improving	our	products!

https://www.amazon.com/dp/1788397606

Table	of	Contents
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	 Understanding	Proxmox	VE	and	Advanced	Installation
Understanding	Proxmox	features

It	is	free!
Built-in	firewall
Open	vSwitch
The	graphical	user	interface
KVM	virtual	machines
Linux	containers,	or	LXC
Storage	plugins
Vibrant	culture

The	basic	installation	of	Proxmox
The	advanced	installation	option
Debugging	the	Proxmox	installation
Proxmox	subscription	and	repositories

Proxmox	VE	Enterprise	repository
Type
Subscription	key
Status
Server	ID
Sockets
Last	checked
Next	due	date

Proxmox	VE	No-Subscription	repository
Proxmox	VE	Test	repository

Summary
2.	 Creating	a	Cluster	and	Exploring	the	Proxmox	GUI

Creating	a	Proxmox	cluster

Exploring	the	Proxmox	GUI
The	GUI	menu	system
Cluster	tree	view
Server	View
Folder	View
Storage	View
Pool	View
The	Datacenter	menu

Datacenter	|	Search
Datacenter	|	Summary
Datacenter	|	Options
Datacenter	|	Storage
Datacenter	|	Backup
Datacenter	|	Permissions

Datacenter	|	Permissions	|	Users
Datacenter	|	Permissions	|	Groups
Datacenter	|	Permissions	|	Pools
Datacenter	|	Permissions	|	Roles
Datacenter	|	Permissions	|	Authentication

Datacenter	|	HA
Datacenter	|	Firewall
Datacenter	|	Support

Node-specific	menus
Node	|	Search
Node	|	Summary
Node	|	Shell
Node	|	System

Node	|	Network
Node	|	DNS
Node	|	Time
Node	|	Syslog

Node	|	Updates
Node	|	Firewall
Node	|	Disks
Node	|	Ceph
Node	|	Task	History
Node	|	Subscription

KVM	menu
KVM	VM	|	Summary
KVM	|	Console
KVM	|	Hardware

KVM	|	Options
KVM	VM	|	Task	History
KVM	|	Monitor
KVM	|	Backup
KVM	VM	|	Snapshot
KVM	|	Firewall
KVM	|	Permissions

LXC	container	menu
LXC	container	|	Summary
LXC	container	|	Resources
LXC	container	|	Network
LXC	container	|	DNS
LXC	container	|	Options
LXC	container	|	Task	History
LXC	container	|	Backup
LXC	container	|	Snapshots
LXC	container	|	Firewall
LXC	container	|	Permissions

Pool	menu
Pool	|	Summary
Pool	|	Members
Pool	|	Permissions

Summary
3.	 Proxmox	under	the	Hood

The	Proxmox	cluster	file	system
Proxmox	directory	structure
Dissecting	the	configuration	files

The	cluster	configuration	file
logging	{		}
nodelist	{		}
quorum	{		}
totem	{		}
interface	{		}

Storage	configuration	file
User	configuration	files
The	password	configuration	file
KVM	virtual	machine	configuration	file
Arguments	in	the	KVM	configuration	file
LXC	container	configuration	file
Version	configuration	file
Member	nodes

Virtual	machine	list	file
The	cluster	log	file
Ceph	configuration	files
Firewall	configuration	file

Summary
4.	 Storage	Systems

Local	storage	versus	shared	storage
Live	migration	of	a	virtual	machine
Seamless	expansion	of	multinode	storage	space
Centralized	backup
Multilevel	data	tiering
Central	storage	management

Local	and	shared	storage	comparison
A	virtual	disk	image

Supported	image	formats
The	.qcow2	images
The	.raw	image	type
The	.vmdk	image	type

Virtual	device	types
Managing	disk	images

Resizing	a	virtual	disk	image
Moving	a	virtual	disk	image
Throttling	a	virtual	disk	image
Caching	a	virtual	disk	image

VirtIO	bus	type	for	Windows	VMs
Installing	VirtIO	drivers	during	Windows	installation
Installing	VirtIO	drivers	after	Windows	installation

Storage	types	in	Proxmox
Directory
iSCSI
Logical	Volume	Management
NFS
ZFS
Ceph	RBD
GlusterFS

Noncommercial/commercial	storage	options
Summary

5.	 Installing	and	Configuring	Ceph
Ceph	components

A	physical	node	as	cluster	member
Maps

A	cluster	map

A	CRUSH	map
Monitor
OSD

OSD	journal
Metadata	server
PG
Pools
Ceph	components	summary

Virtual	Ceph	for	training
Installing	a	Ceph	cluster

Installing	Ceph	on	Proxmox
Preparing	a	Proxmox	node	for	Ceph
Installing	Ceph
Creating	mons	from	the	Proxmox	GUI
Creating	OSDs	from	Proxmox	GUI
Managing	a	Ceph	pool	using	Proxmox	GUI
Creating	a	Ceph	pool	using	Proxmox	GUI
Connecting	Ceph	to	Proxmox
Ceph	command	list

Summary
6.	 KVM	Virtual	Machines

Exploring	KVM
Creating	a	KVM

Creating	a	KVM	using	an	ISO	image
General	tab

Node
VM	ID
Name
Resource	Pool
Help

The	OS	tab
The	CD/DVD	tab
The	Hard	Disk	tab

Bus/Device
Storage
Disk	size	(GB)
Format
Cache
No	backup
Discard
IO	thread

The	CPU	tab

Sockets
Cores
Enabling	NUMA
Type

The	Memory	tab
The	Network	tab

Bridged	mode
Firewall
NAT	mode
No	network	device
Model
MAC	address
Rate	limit	(MB/s)
Multiqueues
Disconnect

Creating	VM	by	cloning
Creating	VMs	from	a	template

Target	node
Mode

Advanced	configuration	options	for	VMs
Configuring	a	sound	device
Configuring	PCI	passthrough
Configuring	GPU	passthrough
Preparing	for	hotplug
Configuring	VMs	with	hotplug

Hotplugging	vCPUs
Hotplugging	memory
Hotplugging	disks/vNICs

Migrating	KVM	virtual	machines
Summary

7.	 LXC	Virtual	Machines
Exploring	LXC	virtual	machines
Understanding	container	templates
Creating	an	LXC	container

General	tab
Node
CT	ID
Hostname
Unprivileged	container
Resource	Pool

The	Template	tab
The	Root	Disk	tab

Storage
ACLs
Enable	quota

The	CPU	tab
Cores

The	Memory	tab
The	Network	tab

Name
MAC	address
Bridge
The	VLAN	Tag
Rate	limit
Firewall
IPv4/IPv6

The	DNS	tab
The	Confirm	tab

Managing	an	LXC	container
Adjusting	resources	using	the	GUI
Adjusting	resources	using	the	CLI
Adjusting	resources	using	direct	modification

Migrating	an	LXC	container
Accessing	an	LXC	container

The	noVNC	console
Direct	shell	through	the	CLI

Converting	OpenVZ	to	LXC
Summary

8.	 Network	of	Virtual	Networks
Exploring	virtual	networks
Physical	networks	versus	virtual	networks

A	physical	network
A	virtual	network

Networking	components	in	Proxmox
Virtual	Network	Interface	Cards

Adding/removing	vNIC
A	virtual	bridge

Adding	a	virtual	bridge	through	the	GUI
Name
IP	information
Bridge	ports
VLAN-aware

Adding	a	virtual	bridge	through	CLI
Extra	bridge	options

bridge_stp
bridge_fd

Virtual	LAN
Adding	a	VLAN

Network	Address	Translation/Translator
Adding	NAT/masquerading

Network	bonding
Adding	a	bonding	interface

The	layer	2	hash	policy
The	layer	2+3	hash	policy
The	layer	3+4	hash	policy

Multicast
Configuring	multicast	on	Netgear

Open	vSwitch
Features	of	Open	vSwitch

Adding	an	Open	vSwitch	bridge
Adding	the	Open	vSwitch	bond
Adding	Open	vSwitch	IntPort
CLI	for	Open	vSwitch
Practicing	Open	vSwitch

Configuration	requirements
Solutions

Sample	virtual	networks
Network	#1	–	Proxmox	in	its	simplest	form
Network	#2	–	the	multi-tenant	environment
Network	#3	–	academic	institution

A	multi-tenant	virtual	environment
A	multi-tenant	network	diagram

Summary
9.	 The	Proxmox	VE	Firewall

Exploring	the	Proxmox	VE	firewall
Components	of	the	Proxmox	firewall

Zones
Security	groups
IPSet
Rules
Protocols
Macros
The	pve-firewall	and	pvefw-logger	services

Configuration	files	of	a	firewall
Configuring	the	data	center-specific	firewall

Configuring	the	Datacenter	firewall	through	the	GUI
Creating	the	Datacenter	firewall	rules

Creating	the	Datacenter	IPSet
Creating	aliases

Configuring	the	Datacenter	firewall	through	the	CLI
[OPTIONS]
[ALIASES]
[IPSET	<name>]
[RULES]
[group	<name>]

Configuring	a	host-specific	firewall
Creating	host	firewall	rules

Options	for	the	host	zone	firewall
Enable	a	firewall
The	SMURFS	filter
The	TCP	flags	filter
NDP
nf_conntrack_max
nf_conntrack_tcp_timeout_established
log_level_in/out
tcp_flags_log_level
smurf_log_level

Configuring	the	host	firewall	through	the	CLI
Configuring	a	VM-specific	firewall

Creating	VM	firewall	rules
Creating		aliases
Creating	IPSets
Options	for	a	VM	zone	firewall

Enable	DHCP
The	MAC	filter
Input/output	policy

Configuring	a	VM-specific	firewall	through	the	CLI
Integrating	a	Suricata	IDS/IPS

Installing/configuring	Suricata
Limitations	of	Suricata	in	Proxmox

Summary
10.	 Proxmox	High	Availability

Understanding	HA
HA	in	Proxmox
How	Proxmox	HA	works

Requirements	for	HA	setup
At	least	three	nodes
Shared	storage
Fencing

BIOS	power-on	feature
Configuring	Proxmox	HA

The	HA	menu
Status
The	Resources	menu

The	Groups	menu
ID
Node
The	restricted	checkbox
The	nofailback	checkbox

The	Fencing	menu
Testing	Proxmox	HA	configuration
The	Proxmox	HA	simulator

Configuring	the	Proxmox	HA	simulator
Summary

11.	 Monitoring	the	Proxmox	Cluster
An	introduction	to	monitoring
Proxmox	built-in	monitoring

Datacenter	Status
Node	Status

Zabbix	as	a	monitoring	solution
Installing	Zabbix
Configuring	Zabbix

Configuring	a	host	to	monitor
Displaying	data	using	a	graph
Configuring	the	disk	health	notification

Installing	smart	monitor	tools
Configuring	the	Zabbix	agent
Creating	a	Zabbix	item	in	the	GUI
Creating	a	trigger	in	the	GUI
Creating	graphs	in	the	GUI

Configuring	SNMP	in	Proxmox
Object	Identifiers
Management	Information	Base

Adding	an	SNMP	device	in	Zabbix
Monitoring	the	Ceph	cluster	with	the	Proxmox	GUI
Monitoring	a	Ceph	cluster	with	third-party	options
Summary

12.	 Proxmox	Production-Level	Setup
Defining	the	production	level

Key	components
Stable	and	scalable	hardware
Redundancy

Node	level
Utility	level
Network	level
HVAC	level
Storage	level

Current	load	versus	future	growth
Budget
Simplicity
Tracking	hardware	inventory
Hardware	selection

Sizing	CPU	and	memory
Single	socket	versus	multi-socket
Hyper-threading	–	enable	versus	disable
Start	small	with	VM	resources
Balancing	node	resources

Ceph	cluster	production
Forget	about	hardware	RAID
Solid	State	Drive	for	Ceph	Journal
Network	bandwidth

Liquid	cooling
Total	immersion	in	oil
Total	immersion	in	3M	Novec
Direct	contact	liquid	cooling

Real-world	Proxmox	scenarios
Scenario	1	–	an	academic	institution
Scenario	2	–	multi-tier	storage	cluster	with	a	Proxmox	cluster
Scenario	3	-	Virtual	infrastructure	for	a	multi-tenant	cloud	service	provider
Scenario	4	–	nested	virtual	environment	for	a	software	development	company
Scenario	5	–	virtual	infrastructure	for	a	public	library
Scenario	6	–	multi-floor	office	virtual	infrastructure	with	virtual	desktops
Scenario	7	–	virtual	infrastructure	for	the	hotel	industry
Scenario	8	–	virtual	infrastructure	for	geological	survey	organization

Summary
13.	 Back	Up	and	Restore	Virtual	Machines

Proxmox	backup	options
A	full	backup

Full	backup	modes
Snapshot
Suspend
Stop

Backup	compression
None

LZO
GZIP

Snapshots
Configuring	backup	storage

Show	VM	configuration	from	backup
Configuring	full	backup

Creating	a	schedule	for	backup
Node
Storage
Day	of	week
Start	Time
Selection	mode
Send	email	to
Email	notification
Compression
Mode
Enable

Creating	a	manual	backup
Creating	snapshots
Restoring	a	virtual	machine
Backup/restore	through	the	CLI

Backup	using	the	CLI
Restore	using	the	CLI
Unlocking	a	VM	after	a	backup	error

Virtual	machine	replication
Creating	a	replication	task	through	the	GUI

Target
Schedule
Rate	limit	(MB/s)
Enabled

Creating	a	replication	task	through	the	CLI
Replication	process

Backup	configuration	file
The	bwlimit	option
The	lockwait	option
The	stopwait	option
The	stdexcludes	option
The	mailto	option
The	script	option
The	exclude-path	option
The	pigz	option

Summary

14.	 Updating/Upgrading	Proxmox
Introducing	Proxmox	updates
Updating	Proxmox	through	the	GUI
Updating	Proxmox	through	the	CLI

Difference	between	upgrade	and	dist-upgrade
Recovering	from	the	grub2	update	issue
Updating	after	a	subscription	change
Rebooting	dilemma	after	Proxmox	updates

Applying	update	without	reboot
Summary

15.	 Proxmox	Troubleshooting
Proxmox	node	issues

Issue	–	fresh	Proxmox	install	stuck	with	/dev	to	be	a	fully	populated	error	during	no
de	reboot
Issue	–	rejoining	a	node	to	a	Proxmox	node	with	the	same	old	IP	address
Issue	–	Proxmox	installation	completed	but	grub	is	in	an	endless	loop	after	reboot
Issue	–	LSI	MegaRAID	9240-8i/9240-4i	causes	an	error	during	booting	of	the	Prox
mox	node

Downloading	and	updating	the	LSI	driver
Updating	the	Supermicro	BIOS

Issue	–	the	Upgrade	button	is	disabled	on	the	Proxmox	GUI,	which	prevents	the	nod
e	upgrade
Issue	–	Proxmox	cannot	start	due	to	the	getpwnam	error
Issue	–	cannot	log	in	to	the	GUI	as	root	after	reinstalling	Proxmox	on	the	same	node

The	main	cluster	issues
Issue	–	Proxmox	virtual	machines	are	running,	but	the	Proxmox	GUI	shows	that	eve
rything	is	offline
Issue	–	kernel	panic	when	disconnecting	USB	devices,	such	as	a	keyboard,	mouse,	
or	UPS
Issue	–	virtual	machines	on	Proxmox	will	not	shut	down	if	shutdown	is	initiated	fro
m	the	Proxmox	GUI
Issue	–	kernel	panic	with	HP	NC360T	(Intel	82571EB	chipset)	only	in	Proxmox	VE
3.2
Issue	–	the	Proxmox	cluster	is	out	of	quorum	and	cluster	filesystem	is	in	read-only	
mode
Issue	–	VM	will	not	respond	to	shutdown	or	restart
Issue	–	Proxmox	GUI	not	responding	after	Firefox	update
Issue	–	the	Proxmox	GUI	is	not	showing	RRD	graphs

Storage	issues
Issue	–	deleting	a	damaged	LVM	from	Proxmox	with	the	error	read	failed	from	0	to	
4096
Issue	–	Proxmox	cannot	mount	NFS	share	due	to	the	timing	out	error

Issue	–	how	to	delete	leftover	NFS	shares	in	Proxmox	or	what	to	do	when	the	NFS	s
tale	file	handle	error	occurs?
Issue	–	Proxmox	issues	—mode	session	exit	code	21	errors	while	trying	to	access	th
e	iSCSI	target
Issue	–	cannot	read	an	iSCSI	target	even	after	it	has	been	deleted	from	Proxmox	stor
age
Issue	–	a	Ceph	node	is	removed	from	the	Proxmox	cluster,	but	OSDs	still	show	up	i
n	PVE
Issue	–	the	no	such	block	device	error	during	creation	of	an	OSD	through	the	Proxm
ox	GUI
Issue	–	the	fstrim	command	does	not	trim	unused	blocks	for	the	Ceph	storage
Issue	–	the	RBD	couldn’t	connect	to	cluster	(500)	error	when	connecting	Ceph	with	
Proxmox
Issue	–	changing	the	storage	type	from	IDE	to	VirtIO	after	the	VM	has	been	set	up	a
nd	the	OS	has	been	installed
Issue	–	the	pveceph	configuration	not	initialized	(500)	error	when	you	click	on	the	
Ceph	tab	in	the	Proxmox	GUI
Issue	–	the	CephFS	storage	disappears	after	a	Proxmox	node	reboots
Issue	–	VM	cloning	does	not	parse	in	the	Ceph	storage
Issue	–	VM	disk	images	stored	on	ZFS	is	extremely	slow

Network	connectivity	issues
Issue	–	no	connectivity	on	Realtek	RTL8111/8411	rev.	06	network	interfaces
Issue	–	network	performance	is	slower	with	the	E1000	virtual	network	interfaces
Issue	–	patch	port	for	Open	vSwitch	in	Proxmox	not	working
Issue	–	trying	to	add	a	node	to	a	newly	created	Proxmox	cluster	when	nodes	do	not	f
orm	quorum
Issue	–	implemented	IPv6	but	firewall	rules	do	not	get	applied

KVM	virtual	machine	issues
Issue	–	Windows	7/XP	machine	converted	to	Proxmox	KVM	hangs	during	boot
Issue	–	Windows	7	VM	does	not	reboot,	instead	it	shuts	down,	requiring	a	manual	b
oot	from	Proxmox
Issue	–	the	qemu-img	command	does	not	convert	the	.vmdk	image	files	created	with
the	.ova	template	in	Proxmox	VE	5.0
Issue	–	online	migration	of	a	virtual	machine	fails	with	a	failed	to	sync	data	error
Issue	–	no	audio	in	Windows	KVM
Issue	–	the	VirtIO	virtual	disk	is	not	available	during	the	Windows	Server	installatio
n

LXC	container	issues
Issue	–	a	Proxmox	node	hangs	when	trying	to	stop	or	restart	an	LXC	container
Issue	–	the	noVNC	console	only	shows	a	cursor	for	LXC	containers

Backup/restore	issues

Issue	–	a	Proxmox	VM	is	locked	after	backup	crashes	unexpectedly
Issue	–	how	can	Proxmox	back	up	only	the	primary	OS	virtual	disk	instead	of	all	th
e	virtual	disks	for	a	VM?
Issue	–	backup	of	virtual	machines	stops	prematurely	with	an	operation	not	permitte
d	error
Issue	–	a	backup	task	takes	a	very	long	time	to	complete,	or	it	crashes	when	multipl
e	nodes	are	backing	up	to	the	same	backup	storage
Issue	–	backup	of	virtual	machines	aborts	a	backup	task	prematurely
Issue	–	backup	storage	has	a	lot	of	.dat	files	and	.tmp	folders	using	the	storage	space

VNC/SPICE	console	issues
Issue	–	the	mouse	pointer	is	not	shared	with	SPICE	(virt-viewer)	on	Windows	8	VM
Issue	–	remote	viewer	is	unable	to	connect	to	a	SPICE-enabled	virtual	machine	on	t
he	Windows	OS

Firewall	issues
Issue	–	rules	are	created	and	a	firewall	is	enabled	for	vNIC,	but	rules	do	not	get	appl
ied
Issue	–	a	firewall	is	enabled	for	a	VM	and	the	necessary	rules	are	created,	but	nothin
g	is	being	filtered	for	that	VM

Summary
16.	 Rescuing	Proxmox

Recovering	from	OS	drive	failure
Physical	drive	failure
OS	data	corruption
Migrating	VMs	from	a	faulty	node
Reinstalling	Proxmox

Recovering	from	a	quorum	failure
Recovering	from	a	node	failure
Recovering	from	a	network	failure

Loss	of	connectivity	between	Proxmox	nodes
Loss	of	connectivity	between	Proxmox	nodes	and	users
Loss	of	connectivity	between	Proxmox	and	storage	nodes

Recovering	from	Ceph	failure
Best	practices	for	a	healthy	Ceph	cluster
Stuck	inconsistent	PGs	in	Ceph
Stuck	inactive	incomplete	PGs	in	Ceph
Error	while	moving	a	Ceph	journal	to	another	drive
Ceph	node	running	out	of	resources	during	recovery

Summary

Preface
Based	on	the	foundation	laid	out	by	the	first	edition	and	second	edition,	this
book,	Mastering	Proxmox,	Third	Edition,	brings	updated	information	and
details	of	the	new	features	of	Proxmox	VE	5.0.	Since	the	first	edition	of	this
book	was	published,	Proxmox	has	been	through	many	changes.	With	this
third	edition,	I	am	confident	that	readers	will	be	able	to	upgrade	their	skills
while	building	and	managing	even	better	Proxmox	clusters.
This	book	shows	the	inner	workings	of	Proxmox,	including	virtual	network
components,	shared	storage	systems,	the	Proxmox	firewall,	high	availability,
and	other	features.

What	this	book	covers
Chapter	1,	Understanding	Proxmox	VE	and	Advanced	Installation,	introduces
Proxmox	VE	in	general	and	shows	the	advanced	options	available	during
installation.

Chapter	2,	Creating	a	Cluster	and	Exploring	the	Proxmox	GUI,	explains	how	to
create	a	cluster	and	shows	the	layout	of	the	graphical	user	interface.

Chapter	3,	Proxmox	under	the	Hood,	explains	the	Proxmox	directory	structure
and	configuration	files.

Chapter	4,	Storage	Systems,	explains	how	Proxmox	interacts	with	storage	and
various	supported	storage	systems.

Chapter	5,	Installing	and	Configuring	Ceph,	shows	how	to	deploy	and	configure
a	fully	functional	Ceph	cluster	along	with	Proxmox.

Chapter	6,	KVM	Virtual	Machines,	covers	creating	and	managing	KVM-based
virtual	machines.

Chapter	7,	LXC	Virtual	Machines,	covers	creating	and	managing	LXC
containers.

Chapter	8,	Network	of	Virtual	Networks,	explains	the	different	networking
components	used	in	Proxmox	to	build	virtual	networks.

Chapter	9,	The	Proxmox	VE	Firewall,	explains	the	built-in	firewall	feature	of
Proxmox.

Chapter	10,	Proxmox	High	Availability,	explains	the	high	availability	or
redundancy	feature	of	Proxmox	and	how	to	configure	it.

Chapter	11,	Monitoring	the	Proxmox	Cluster,	shows	how	to	configure	the
Zabbix-based	network	monitoring	option.

Chapter	12,	Proxmox	Production-Level	Setup,	explains	different	components	in
a	production-level	setup.

Chapter	13,	Back	Up	and	Restore	Virtual	Machines,	explains	the	backup	and
restore	features	of	Proxmox	for	disaster	planning.

Chapter	14,	Updating/Upgrading	Proxmox,	explains	how	to	keep	a	Proxmox
cluster	up	to	date.

Chapter	15,	Proxmox	Troubleshooting,	lists	real	incidents	that	may	arise	in	a

Proxmox	cluster,	with	solutions.

Chapter	16,	Rescuing	Proxmox,	shows	ways	to	rescue	a	Proxmox	cluster	should
a	disaster	occur.

What	you	need	for	this	book
Since	we	will	be	working	with	a	Proxmox	cluster	throughout	the	book,	it	will
be	extremely	helpful	to	have	a	working	Proxmox	cluster	of	your	own.	A	very
basic	cluster	of	two	to	three	nodes,	along	with	a	storage	node,	will	do	just
fine.	If	learning	to	implement	Ceph	in	a	Proxmox	cluster,	then	a	small	cluster
of	two	or	three	nodes	for	Ceph	will	also	be	extremely	helpful.

Who	this	book	is	for
This	book	is	for	readers	who	want	to	build	and	manage	a	virtual	infrastructure
based	on	Proxmox	as	the	hypervisor.	Whether	the	reader	is	a	veteran	in	the
virtualized	industry	but	has	never	worked	with	Proxmox,	or	somebody	is	just
starting	out	on	a	promising	career	in	this	industry,	this	book	will	serve	them
well.	Due	to	the	advanced	nature	of	this	book,	prior	conceptual	knowledge	of
server	virtualization,	networking,	and	hypervisors	is	required.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.	Code	words	in	text,	database	table	names,
folder	names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user
input,	and	Twitter	handles	are	shown	as	follows:	“The	keyring	that	we	need	to
copy	is	located	in	/priv/ceph.client.admin.keyring.”

A	block	of	code	is	set	as	follows:
allow-vmbr1	ens21		

iface	ens21	inet	manual	

				ovs_type	OVSPort	

				ovs_bridge	vmbr1

Any	command-line	input	or	output	is	written	as	follows:
#	apt-get	install	openvswitch-switch		

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on
the	screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:
“Open	vSwitch	bridge	and	interface	under	the	Create	tab	of
the	Network	menu	of	the	node.”

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for
us	as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.	To	send
us	general	feedback,	simply	email	feedback@packtpub.com,	and	mention	the	book’s
title	in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise
in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,	see	our
author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of
things	to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of
this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	The	color	images	will	help	you	better
understand	the	changes	in	the	output.	You	can	download	this	file	from	https://w
ww.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a
mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could	report	this	to
us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us
improve	subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report
them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking
on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata
will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under
the	Errata	section	of	that	title.	To	view	the	previously	submitted	errata,	go	to	h
ttps://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	internet	is	an	ongoing	problem	across
all	media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on
the	internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.	We
appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Understanding	Proxmox	VE	and
Advanced	Installation
Virtualization,	as	we	all	know	today,	is	a	decades-old	technology	that	was
first	implemented	in	the	mainframes	of	the	1960s.	Virtualization	was	a	way	to
logically	divide	the	mainframe’s	resources	for	different	application
processing.	With	the	rise	in	energy	costs,	running	under-utilized	server
hardware	is	no	longer	a	luxury.	Virtualization	enables	us	to	do	more	with	less,
thus	saving	energy	and	money	while	creating	a	virtual	green	data	center
without	geographical	boundaries.

A	hypervisor	is	a	piece	of	software,	hardware,	or	firmware	that	creates	and
manages	virtual	machines.	It	is	the	underlying	platform	or	foundation	that
allows	a	virtual	infrastructure	to	be	built.	In	a	way,	it	is	the	very	building
block	of	all	virtualization.	A	bare	metal	hypervisor	acts	as	a	bridge	between
physical	hardware	and	the	virtual	machines	by	creating	an	abstraction	layer.
Because	of	this	unique	feature,	an	entire	virtual	machine	can	be	moved	over	a
vast	distance	over	the	internet	and	be	made	available	to	function	exactly	the
same.	A	virtual	machine	does	not	see	the	hardware	directly;	instead,	it	sees
the	layer	of	the	hypervisor,	which	is	the	same	no	matter	what	hardware	the
hypervisor	has	been	installed	on.

The	Proxmox	Virtual	Environment	(VE)	is	a	cluster-based	hypervisor	and
one	of	the	best-kept	secrets	in	the	virtualization	industry.	The	reason	is
simple.	It	allows	you	to	build	an	enterprise	business-class	virtual
infrastructure	at	a	small	business-class	price	tag	without	sacrificing	stability,
performance,	and	ease	of	use.	Whether	it	is	a	massive	data	center	to	serve
millions	of	people,	or	a	small	educational	institution,	or	a	home	serving
important	family	members,	Proxmox	can	handle	configuration	to	suit	any
situation.

If	you	have	picked	up	this	book,	you	are	no	doubt	familiar	with	virtualization,
and	perhaps	well	versed	with	other	hypervisors,	such	as	VMware,	Xen,
Hyper-V,	and	so	on.	In	this	chapter	and	upcoming	chapters,	we	will	see	the
mighty	power	of	Proxmox	from	the	inside	out.	We	will	examine	scenarios	and
create	a	complex	virtual	environment.	We	will	tackle	some	heavy	day-to-day
issues	and	show	resolutions	that	might	just	save	the	day	in	a	production
environment.	We	will	also	learn	how	to	deploy	a	highly	redundant	storage

system	using	Ceph	to	store	virtual	machines.	So	strap	yourself	in	and	let’s
dive	into	the	virtual	world	with	the	mighty	hypervisor,	Proxmox	VE.

Understanding	Proxmox	features
Before	we	dive	in,	it	is	necessary	to	understand	why	one	should	choose
Proxmox	over	the	other	mainstream	hypervisors.	Proxmox	is	not	perfect,	but
stands	out	among	other	contenders	with	its	hard-to-beat	features.	The
following	are	some	of	the	features	that	make	Proxmox	a	real	game	changer.

It	is	free!
Yes,	Proxmox	is	free!	To	be	more	accurate,	Proxmox	has	several	subscription
levels,	among	which	the	community	edition	is	completely	free.	One	can
simply	download	the	Proxmox	ISO	at	no	cost	and	raise	a	fully	functional
cluster	without	missing	a	single	hypervisor	feature	and	without	paying
anything.	The	main	difference	between	the	paid	and	community	subscription
level	is	that	the	paid	subscription	receives	updates,	which	go	through
additional	testing	and	refinement.	In	a	production	cluster	with	a	real
workload,	it	is	highly	recommended	to	purchase	a	subscription	from	Proxmox
or	Proxmox	resellers.

Built-in	firewall
Proxmox	VE	comes	with	a	robust	firewall	ready	to	be	configured	out	of	the
box.	This	firewall	can	be	configured	to	protect	the	entire	Proxmox	cluster
down	to	a	virtual	machine.	The	per-VM	firewall	option	gives	you	the	ability
to	configure	each	VM	individually	by	creating	individualized	firewall	rules,	a
prominent	feature	in	a	multi-tenant	virtual	environment.	We	will	learn	about
this	feature	in	detail	in	Chapter	9,	The	Proxmox	VE	Firewall.

Open	vSwitch
Licensed	under	Apache	2.0,	Open	vSwitch	is	a	virtual	switch	designed	to
work	in	a	multi-server	virtual	environment.	All	hypervisors	need	a	bridge
between	VMs	and	the	outside	network.	Open	vSwitch	enhances	the	features
of	the	standard	Linux	bridge	in	an	ever-changing	virtual	environment.
Proxmox	fully	supports	Open	vSwitch	which	allows	you	to	create	an	intricate
virtual	environment,	all	the	while	reducing	virtual	network	management
overhead.	For	details	on	Open	vSwitch,	refer	to	http://openvswitch.org/.

We	will	learn	about	Open	vSwitch	management	in	Proxmox	in	Chapter	8,
Network	of	Virtual	Networks.

http://openvswitch.org/

The	graphical	user	interface
Proxmox	comes	with	a	fully	functional	graphical	user	interface	(GUI)	out
of	the	box.	The	GUI	allows	an	administrator	to	manage	and	configure	almost
all	the	aspects	of	a	Proxmox	cluster.	The	GUI	has	been	designed	keeping
simplicity	in	mind,	with	functions	and	features	separated	into	menus	for
easier	navigation.	The	following	screenshot	shows	an	example	of	the
Proxmox	GUI	dashboard:

	

We	will	dissect	the	Proxmox	GUI	dashboard	in	Chapter	2,	Creating	a	Cluster
and	Exploring	the	Proxmox	GUI.

KVM	virtual	machines
A	Kernel-based	Virtual	Machine	(KVM)	is	a	kernel	module	that	is	added	to
Linux	for	full	virtualization	to	create	isolated,	fully	independent	virtual
machines.	KVMs	are	not	dependent	on	the	host	operating	system	in	any	way,
but	they	do	require	the	virtualization	feature	in	BIOS	to	be	enabled.	A	KVM
allows	a	wide	variety	of	operating	systems	for	virtual	machines,	such	as
Linux	and	Windows.	Proxmox	provides	a	very	stable	environment	for	KVM-
based	VMs.	We	will	learn	how	to	create	KVM	VMs	and	also	how	to	manage
them	in	Chapter	6,	KVM	Virtual	Machines.

Linux	containers,	or	LXC
Introduced	in	Proxmox	VE	4.0,	Linux	containers,	or	LXCs,	allow	multiple
Linux	instances	on	the	same	Linux	host.	All	the	containers	are	dependent	on
the	host	Linux	operating	system	and	only	Linux	flavors	can	be	virtualized	as
containers.	There	are	no	containers	for	the	Windows	operating	system.	LXC
replaces	prior	OpenVZ	containers,	which	were	the	primary	containers	in	the
virtualization	method	in	the	previous	Proxmox	versions.	If	you	are	not
familiar	with	LXC	or	want	details	on	it,	refer	to	https://linuxcontainers.org.

We	will	learn	how	to	create	LXC	containers	and	manage	them	in	Chapter	7,
LXC	Virtual	Machines.

https://linuxcontainers.org

Storage	plugins
Out	of	the	box,	Proxmox	VE	supports	a	variety	of	storage	systems	to	store
virtual	disk	images,	ISO	templates,	backups,	and	so	on.	All	plugins	are	quite
stable	and	work	great	with	Proxmox.	Being	able	to	choose	different	storage
systems	gives	an	administrator	the	flexibility	to	leverage	the	existing	storage
in	the	network.	As	of	Proxmox	VE	5.0,	the	following	storage	plugins	are
supported:

The	local	directory	mount	points
LVM
LVM	thin
NFS
iSCSI
GlusterFS
Ceph	RADOS	Block	Devices	(RBD)
ZFS	over	iSCSI
ZFS

We	will	learn	the	usage	of	different	storage	systems	and	the	types	of	files	they
can	store	in	detail	in	Chapter	4,	Storage	Systems.

Vibrant	culture
Proxmox	has	a	growing	community	of	users	who	are	always	helping	others
learn	Proxmox	and	troubleshoot	various	issues.	With	so	many	active	users
around	the	world,	and	through	active	participation	of	Proxmox	developers,
the	community	has	now	become	a	culture	of	its	own.	Feature	requests	are
continuously	being	worked	on,	and	the	existing	features	are	being
strengthened	on	a	regular	basis.	With	so	many	users	supporting	Proxmox,	it
sure	is	here	to	stay.

Visit	the	following	link	for	the	official	Proxmox	forum:	https://forum
.proxmox.com.

https://forum.proxmox.com

The	basic	installation	of	Proxmox
The	installation	of	a	Proxmox	node	is	very	straightforward.	Simply	accept	the
default	options,	select	localization,	and	enter	the	network	information	to
install	Proxmox	VE.	We	can	summarize	the	installation	process	in	the
following	steps:

1.	 Download	the	ISO	from	the	official	Proxmox	site	and	prepare	a	disc
with	the	image	(http://proxmox.com/en/downloads).

2.	 Boot	the	node	with	the	disc	and	hit	Enter	to	start	the	installation	from	the
installation	GUI,	as	shown	in	the	following	screenshot:

If	an	optical	drive	to	use	the	installation	disc	is	unavailable,	we	can
also	install	Proxmox	from	a	USB	drive.

3.	 Progress	through	the	prompts	to	select	options	or	type	in	information.
4.	 After	the	installation	is	complete,	access	the	Proxmox	GUI	dashboard

using	the	IP	address,	as	https://<proxmox_node_ip>:8006.

In	some	cases,	it	may	be	necessary	to	open	the	firewall	port	to	allow
access	to	the	GUI	over	port	8006.

http://proxmox.com/en/downloads

The	advanced	installation	option
Although	the	basic	installation	works	in	all	scenarios,	there	may	be	times
when	the	advanced	installation	option	is	necessary.	Only	the	advanced
installation	option	provides	you	the	ability	to	customize	the	main	OS	drive.

A	common	practice	for	the	operating	system	drive	is	to	use	a	mirror	RAID
array	using	a	controller	interface.	This	provides	drive	redundancy	if	one	of	the
drives	fails.	This	same	level	of	redundancy	can	also	be	achieved	using	a
software-based	RAID	array,	such	as	ZFS.	Proxmox	now	offers	options	to
select	ZFS-based	arrays	for	the	operating	system	drive	right	at	the	beginning
of	the	installation.	For	details	on	ZFS,	if	you	are	not	familiar,	refer	to	https://en.
wikipedia.org/wiki/ZFS.

It	is	common	to	ask	why	one	should	choose	ZFS	software	RAID
over	tried-and-tested	hardware-based	RAID.	The	simple	answer
is	flexibility.	Hardware	RAID	is	locked,	or	fully	dependent,	on
the	hardware	RAID	controller	interface	that	created	the	array,
whereas	ZFS	creates	software-based	RAID	which	is	not
dependent	on	any	hardware,	and	the	array	can	easily	be	ported
to	different	hardware	nodes.	Should	a	RAID	controller	failure
occur,	the	entire	array	created	from	that	controller	is	lost	unless
there	is	an	identical	controller	interface	available	for
replacement.	The	ZFS	array	is	only	lost	when	all	the	drives	or	a
maximum	tolerable	number	of	drives	are	lost	in	the	array.

Besides	ZFS,	we	can	also	select	other	filesystem	types,	such	as	ext3,	ext4,	or
xfs,	from	the	same	advanced	option.	We	can	also	set	the	custom	disk	or
partition	sizes	through	the	advanced	option.	The	following	screenshot	shows
the	installation	interface	with	the	target	hard	disk	selection	page:

https://en.wikipedia.org/wiki/ZFS

Click	on	Options,	as	shown	in	the	preceding	screenshot,	to	open	the	advanced
options	for	the	hard	disk.	The	following	screenshot	shows	the	option	window
with	supported	filesystem	drop-down	menu:

We	are	going	to	select	the	ZFS	mirror	or	RAID1,	for	the	purpose	of	this	book,
in	order	to	create	a	demo	cluster	from	scratch.	In	the	preceding	screenshot,	we
selected	zfs	(RAID1)	for	mirroring,	and	the	two	drives,	Harddisk	0	and
Harddisk	1,	to	install	Proxmox.	The	installer	will	auto-select	the	installed	disk
drive,	as	shown	in	the	following	screenshot:

The	Advanced	Options	include	some	ZFS	performance-related	configurations
such	as	compress,	checksum,	and	ashift	or	alignment	shift,	as	shown	in	the
following	screenshot:

For	most	environments,	this	configuration	can	be	left	as	default.

If	you	are	unfamiliar	with	ZFS	advanced	tuning,	then	the	following	link	may
be	helpful	to	get	some	insight	on	ZFS	performance	tuning	options:

	http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29

If	we	pick	a	filesystem	such	as	EXT3,	EXT4,	or	XFS	instead	of	ZFS,	the
Harddisk	options	dialog	box	will	look	like	the	following	screenshot,	with	a
different	set	of	options:

Selecting	a	filesystem	gives	us	the	following	advanced	options:

hdsize:	This	is	the	total	drive	size	to	be	used	by	the	Proxmox	installation.
swapsize:	This	defines	the	swap	partition	size.
maxroot:	This	defines	the	maximum	size	to	be	used	by	the	root	partition.
minfree:	This	defines	the	minimum	free	space	that	should	remain	after
the	Proxmox	installation.
maxvz:	This	defines	the	maximum	size	for	the	data	partition.	This	is
usually	/var/lib/vz.

From	Proxmox	VE	version	5,	we	can	select	the	interface	that	will	be	used	for
management.	This	is	very	useful	when	a	node	has	multiple	network	interfaces
and	we	want	to	intentionally	use	a	particular	interface	for	cluster
management.	The	following	screenshot	shows	the	management	network
interface	selection	screen	during	Proxmox	installation:

http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29

Debugging	the	Proxmox	installation
Debugging	features	are	part	of	any	good	operating	system.	Proxmox	has
debugging	features	that	will	help	you	during	a	failed	installation.	Some
common	reasons	are	unsupported	hardware,	conflicts	between	devices,	ISO
image	errors,	and	so	on.	Debugging	mode	logs	and	displays	installation
activities	in	real	time.	When	the	standard	installation	fails,	we	can	start	the
Proxmox	installation	in	debug	mode	from	the	main	installation	interface,	as
shown	in	the	following	screenshot:

The	debug	installation	mode	will	drop	us	in	the	prompt,	as	shown	in	the
following	screenshot:

To	start	the	installation,	we	need	to	press	Ctrl	+	D.	If	there	is	an	error	during
the	installation,	we	can	simply	press	Ctrl	+	C	to	get	back	to	this	console	to
continue	with	our	investigation.	From	the	console,	we	can	check	the
installation	log	using	the	following	command:

#	cat	/tmp/install.log

At	times,	it	may	be	necessary	to	edit	the	loader	information	when	normal
booting	does	not	function.	This	is	a	common	case	when	Proxmox	is	unable	to
show	the	video	output	due	to	UEFI	or	a	nonsupported	resolution.	In	such
cases,	the	booting	process	may	hang.	From	the	main	installation	menu,	we

can	press	E	to	enter	edit	mode	to	change	the	loader	information,	as	shown	in
the	following	screenshot:

One	way	to	continue	with	booting	is	to	add	the	nomodeset	argument	by	editing
the	loader.	The	loader	should	look	as	follows	after	the	edit:

linux/boot/linux26	ro	ramdisk_size=16777216	rw	quiet	nomodeset

Proxmox	subscription	and
repositories
Proxmox	itself	is	completely	free	to	download	and	deploy	without	any	cost.
But	a	subscription	offers	an	added	level	of	stability	to	any	node	used	in	a
production	environment.	Both	free	and	subscribed	versions	have	separate
repositories	and	receive	updates	differently.	

Updates	or	packages	released	through	the	subscribed	or	Enterprise	repository
go	through	additional	testing	and	debugging	before	they	are	released.	This	is
not	to	say	the	updates	or	packages	in	the	free	repository	are	full	of	bugs	and
are	released	without	testing.	All	Proxmox	patches,	updates,	and	packages	are
taken	through	the	complete	development	cycle,	including	testing,	before	they
are	released.	But	Enterprise	packages	go	through	much	more	comprehensive
debugging	and	testing.	This	level	of	tests	is	mandatory	for	an	enterprise-class
network	environment	where	a	small	issue	can	cost	a	company	a	lot	of	money.
A	highly	stable	environment	is	usually	not	needed	in	a	home-based	platform
or	small	business	environment.	The	subscription	menu	allows	you	to	activate
a	purchased	subscription	on	a	node.	So	from	a	stability	point	of	view,	the
enterprise	version	is	without	a	doubt	the	best	choice	for	any	production
environment	cluster.	The	price	of	an	enterprise	subscription	varies	depending
on	the	level	of	Proxmox	support	provided	through	tickets,	portal,	and	phone.

Free	repository	users	can	only	reach	out	for	support	through	the	official
Proxmox	forum.	Proxmox	developers	quite	often	lend	their	expertise	to
address	issues	posted	on	the	forum	by	users.	There	is	no	portal	or	ticket
system	available	for	free	users.	Since	this	is	a	free	community	forum,	some
issues	may	not	get	answered	in	time.

Even	with	the	free	version,	Proxmox	is	still	very	stable.	Do	not
let	the	subscription	level	fool	you	into	thinking	that	the	free
version	is	not	even	worth	considering.

Both	free	and	enterprise	versions	can	be	mixed	in	the	same	environment.	For
example,	some	critical	nodes	actively	serving	users	can	be	on	the	enterprise
version,	while	any	non-critical	nodes,	such	as	nodes	used	for	testing,	backup,
and	so	on,	can	be	on	the	free	version.	Upon	logging	in	through	the	free	non-
subscription	Proxmox	node	through	the	GUI,	we	will	be	presented	with	the
following	notification:

There	are	three	package	repositories	for	Proxmox:

Proxmox	VE	Enterprise	repository
Proxmox	VE	No-Subscription	or	Free	repository
Proxmox	VE	Test	repository

Proxmox	VE	Enterprise	repository
As	the	name	suggests,	this	repository	is	for	nodes	with	paid	subscriptions.	By
default,	the	Enterprise	Repository	is	enabled	in	Proxmox.	The	repository
information	is	in	the	file	/etc/apt/sources.list.d/pve-enterprise.list.	We	can
disable	the	Enterprise	Repository	by	simply	commenting	it	out	with	the	#
symbol	in	the	following	line:

deb	https://enterprise.proxmox.com/debian	jessie	pve-enterprise

When	disabling	the	Enterprise	Repository,	the	No-Subscription	Repository
must	be	enabled	in	order	to	receive	updates,	patches,	and	packages.	If	you’re
using	the	Enterprise	Repository	on	a	mission-critical	node	and	a	subscription
has	been	purchased,	the	subscription	key	can	be	uploaded	through	the
Proxmox	GUI	by	clicking	on	the	Upload	Subscription	Key	button	under
the	Node	|	Subscription	menu,	as	shown	in	the	following	figure:

Copy	and	paste	the	subscription	key	and	then	click	on	OK.	Proxmox	will
automatically	check	the	validity	of	the	key	and	activate	the	subscription	for
the	node.	A	fully	subscribed	node	appears	similarly	to	the
following	screenshot,	under	subscriptions	in	the	GUI:

Let’s	look	at	the	details	provided	through	the	Subscription	page.	

Type
This	shows	the	name	of	the	Proxmox	subscription	level.	There	are	four	levels
of	subscription	available:	Community,	Basic,	Standard,	and	Premium.	The
higher	the	level,	the	more	support	add-ons	are	included.

Subscription	key
This	is	the	alphanumeric	subscription	key	the	customer	receives	after
purchasing	any	subscription.	The	key	is	formatted	in	two	parts:	pveXx-
XXXXXXXXXX.	The	first	portion	of	the	key	indicates	which	level	of	subscription
this	key	belongs	to	and	for	how	many	server	sockets.	For	example,	in	the
previous	screenshot,	the	subscription	key	is	for	a	Community-level
subscription	for	a	server	with	two	sockets.	If	this	were	the	Premium-level
subscription	for	a	server	with	four	sockets,	the	key	would	appear	as	pve4p-
XXXXXXXX.

All	letters	and	numbers	after	the	-	are	unique	to	each	key	and	should	not	be
shared	with	unauthorized	personnel	or	made	public.	

Status
This	shows	the	current	status	of	the	subscription	key.	

Server	ID
This	uniquely	generated	ID	belongs	to	one	node	only.	When	a	subscription
key	is	activated	on	a	particular	server,	the	key	gets	associated	with	this	unique
ID.	When	a	node	needs	to	be	reinstalled	without	any	hardware	changes	in	it,
the	key	can	be	reapplied	to	the	server	without	being	reissued	or	reactivated.
But	if	the	key	is	to	be	applied	to	other	server	hardware	or	if	any	major
component	(such	as	the	CPU,	motherboard,	or	memory)	in	the	server	has
been	changed,	then	a	new	unique	ID	will	be	generated.	In	that	case,	the	key
will	need	to	be	reissued	or	reactivated.	This	reissuing	can	be	done	by	the	user
on	the	Proxmox	customer	site	or	by	the	authorized	reseller	from	whom	the
subscription	key	has	been	purchased.	

Sockets
This	shows	the	physical	CPU	socket	count	of	the	server	node.	

Last	checked
This	shows	the	date	and	time	of	the	last	key	validation	check	performed
automatically	by	the	node	or	manually	by	the	user.	

Next	due	date
This	shows	the	expiration	date	of	the	subscription	key,	by	which	the	key
needs	to	be	renewed.	If	the	key	is	not	renewed	and	expires,	the	Proxmox	node
will	still	continue	to	function	properly.	But	it	will	not	receive	any	updates
from	the	Enterprise	Repository.

Proxmox	VE	No-Subscription
repository
This	repository	includes	updates	and	packages	free	of	cost.	If	using	this
repository,	changes	must	be	made	to	activate	it.	After	disabling	the	Enterprise
Repository,	by	following	the	instructions	in	the	previous	section,	add	the
following	line	to	the	file	/etc/apt/sources.list:

deb	http://download.proxmox.com/debian	jessie	pve-no-subscription

Proxmox	VE	Test	repository
This	repository	largely	contains	packages	for	testing	purposes	only.	It	is
mainly	used	by	Proxmox	developers	to	test	new	packages	and	allow
interested	users	to	test	them	as	well.	Under	no	circumstances	should	this
repository	be	used	in	a	production	environment.	To	enable	this	repository,	add
the	following	line	to	/etc/apt/sources.list:

deb	http://download.proxmox.com/debian	jessie	pvetest

Proxmox	has	the	very	best	prices	per	subscription	in	the
virtualization	product	industry.	The	operating	cost	of	a	Proxmox
cluster	is	minimal	as	compared	to	a	giant	virtual	product,	such
as	VMWare.	Proxmox	provides	big-business	virtualization	at	a
small-business	cost.	For	details	of	different	subscription	levels,
refer	to	http://proxmox.com/proxmox-ve/pricing.

http://proxmox.com/proxmox-ve/pricing

Summary
In	this	chapter,	we	looked	at	why	Proxmox	is	a	better	option	as	a	hypervisor,
what	advanced	installation	options	are	available	during	an	installation,	and
why	we	choose	software	RAID	for	the	operating	system	drive.	We	also
looked	at	different	subscription	levels	and	their	benefits.	We	learned	about	the
presence	of	the	debugging	features	to	investigate	when	an	installation	does
not	proceed	as	usual.

In	next	chapter,	we	will	take	a	closer	look	at	the	Proxmox	GUI	and	see	how
easy	it	is	to	centrally	manage	a	Proxmox	cluster	from	a	web	browser.

Creating	a	Cluster	and	Exploring
the	Proxmox	GUI
Proxmox	VE	can	be	used	independently	without	being	part	of	a	cluster.	But	in
order	to	truly	use	Proxmox	at	its	full	potential,	a	cluster	enables	many	more
advanced	features	such	as	centralized	management,	high	availability,	and	live
migration.	We	will	look	into	the	features	in	later	chapters.	When	multiple
Proxmox	nodes	are	in	the	same	cluster,	they	can	all	be	managed	and
monitored	by	logging	in	to	the	Proxmox	GUI	through	any	member	node.
There	is	no	master-slave	scheme	in	Proxmox.	All	nodes	works	together	by
sharing	the	same	configuration.

Creating	a	Proxmox	cluster
A	cluster	is	nothing	but	a	group	of	Proxmox	servers	or	nodes,	sharing
resources.	A	Proxmox	cluster	can	contain	up	to	32	physical	nodes.	If	network
latency	permits,	the	number	of	nodes	can	be	higher.	But	any	number	of	nodes
higher	than	32	may	cause	an	unstable	situation	within	the	cluster.

As	of	Proxmox	VE	5,	we	cannot	create	clusters	through	the	graphical
interface.	The	entire	process	of	cluster	creation	must	be	done	through	the	CLI.
Proxmox	provides	a	tool	to	create	and	add	nodes	to	a	cluster	called	Proxmox
VE	Cluster	Manager	or	pvecm.

When	naming	a	cluster,	keep	in	mind	that	it	can	be	a	maximum
of	15	characters	and	only—can	be	used	as	a	special	character.

To	create	a	new	cluster,	log	in	to	any	available	Proxmox	node	through	SSH
and	run	the	following	command:

#	pvecm	create	<clustername>

For	our	first	demo	cluster,	we	are	going	to	run	the	following	command	to
create	a	cluster	named	pmx-cluster:

#	pvecm	create	pmx-cluster

After	successfully	creating	the	cluster,	we	can	quickly	check	it	through	the
following	command:

#	pvecm	status

The	following	screenshot	shows	the	result	after	running	the	pvecm	command:

As	shown	in	the	previous	screenshot,	we	have	created	a	new	cluster	from
node	1.	We	are	now	going	to	add	a	second	node	into	the	cluster.	To	add	a
member	node,	log	in	to	the	node	through	SSH,	and	then	run	the	following
command:

#	pvecm	add	<existing_member_ip>

If	there	is	more	than	one	member	node	in	the	cluster	already,	then	the	IP
address	in	the	command	can	be	any	of	those	nodes.	As	mentioned	earlier,
there	is	no	master-slave	scheme	in	a	Proxmox	cluster.	All	nodes	share	the
same	cluster	configuration	and	information.	For	our	demo	cluster,	we	are
going	to	add	our	second	node	into	the	cluster	using	the	following	command,
where	172.16.2.1	is	the	assigned	IP	address	of	the	first	node	in	the	cluster:

#	pvecm	add	172.16.2.1

The	command	will	initiate	the	process	of	adding	the	node	into	the	cluster	and
will	display	results	as	it	progresses.	The	command	also	starts	or	restarts
necessary	services.	The	only	user	prompt	that	is	necessary	in	the	beginning	of
the	process	is	to	enter	the	destination	node’s	root	credentials.	The	following
screenshot	shows	the	command	to	add	a	node	and	the	process	it	progresses
through:

Sometimes	it	may	be	necessary	to	rejoin	a	member	node	with	the	same
hostname	and	IP	address	into	the	cluster	for	any	number	of	reasons,	such	as	a
hostname	change	or	reinstall.	The	node-joining	command	will	produce	an
error,	as	shown	in	the	following	screenshot,	if	the	node	has	the	same	network
information	as	it	had	previously:

The	reason	this	error	occurs	is	the	cluster	configuration	already	has	a	node
listed	in	it	with	the	same	hostname	and	IP	address.	In	such	cases,	we	can	add
an	option	at	the	end	of	the	node-joining	command	as	follows:

#	pvecm	add	<existing_mode_ip>	-f

The	command	will	forcefully	rewrite	the	cluster	configuration,	recreate	the
SSH	authentication	key,	and	join	the	member	node.	We	can	see	the	list	of
member	nodes	in	the	cluster	using	the	following	command:

#	pvecm	nodes

We	can	also	use	the	pvecm	command	to	remove	or	detach	a	member	node	from
the	cluster.	This	command	should	be	run	from	any	node	in	the	cluster	except
from	the	node	being	detached.

Before	removing	a	node	from	the	cluster,	ensure	that	all	virtual
machines	have	been	moved	to	other	nodes	of	the	cluster,	because
after	the	node	is	detached,	all	VMs	residing	in	the	node	will
become	inaccessible	from	the	rest	of	the	nodes	in	the	cluster.

The	following	command	will	remove	a	node	from	the	Proxmox	cluster:
#	pvecm	delnode	<hostname/IP>

Exploring	the	Proxmox	GUI
The	Proxmox	GUI	allows	users	to	interact	with	the	Proxmox	cluster
graphically	using	menus	and	a	visual	representation	of	the	cluster	status.	Even
though	all	of	the	management	can	be	done	from	the	CLI,	it	can	be
overwhelming	at	times,	and	managing	a	cluster	can	become	a	daunting	task.
To	properly	utilize	a	Proxmox	cluster,	it	is	very	important	to	have	a	clear
understanding	of	the	Proxmox	GUI.	The	GUI	can	be	accessed	through	any
member	nodes	in	the	cluster.	From	Proxmox	VE	4.2,	the	GUI	has	been
updated	to	Sencha	Ext	JS	6,	adding	a	new	level	of	cluster	visibility	along	with
aesthetic	appeal.	We	can	now	gather	a	lot	more,	at-a-glance	data	while
managing	more	details	through	the	GUI.

In	this	chapter,	we	are	going	to	explore	the	different	parts	of	the	Proxmox	web
GUI,	such	as	how	the	menu	system	is	organized	and	the	menus’	functions.
The	GUI	can	be	easily	accessed	from	just	about	any	browser	though	a	URL
similar	to	https://<node_ip>:8006.	For	our	demo	cluster,	we	are	going	to	access
the	GUI	through	the	link:	https://172.16.2.1:8006.

The	following	screenshot	shows	an	example	of	the	Proxmox	GUI	for	our
demo	cluster:

The	GUI	menu	system
The	Proxmox	GUI	is	a	single-page	administration	control	panel.	This	means
that	no	matter	which	feature	one	is	managing,	the	browser	does	not	open	a
new	page	or	leave	the	existing	page.	Menus	on	the	admin	page	change
depending	on	which	feature	is	being	administered.	For	example,	in	the
preceding	screenshot,	the	cluster	known	as	Datacenter	is	selected,	so	the	main
menu	only	shows	cluster-specific	menus.	If	a	node	is	selected,	the	main	menu
looks	like	the	following	screenshot,	displaying	node-specific	menus:

The	following	chart	is	a	visual	representation	of	the	Proxmox	GUI	menu
system.	Some	menu	options	are	system	settings	that	need	to	be	set	up	once
during	installation	and	do	not	need	any	regular	attention,	such	as	DNS,	time
and	services.	Other	menu	items	require	regular	visits	to	ensure	a	healthy
cluster	environment,	such	as	Summary,	Syslog,	Backup,	and	Permissions:

Cluster	tree	view
By	default,	the	Proxmox	GUI	displays	the	cluster	tree	menu	in	the	Server
View	mode.	No	matter	which	view	mode	is	selected,	it	does	not	change	the
main	menu	system.	There	are	a	total	of	four	modes	that	we	can	change	the
tree	views	to,	as	shown	in	the	following	screenshot:

Server	View
This	is	the	default	tree	view,	which	shows	the	complete	list	of	all	nodes	and
the	resources	they	contain.	Nodes	can	be	uncollapsed	to	view	the	resources
they	contain,	such	as	virtual	machines,	containers,	and	the	storage	connected
to	them.

Folder	View
This	view	separates	different	resources	in	a	folder-like	manner,	such	as
Nodes,	Pools,	virtual	machine,	and	Storage.	The	following	screenshot	shows
our	demo	cluster	in	Folder	View:

Storage	View
This	view	shows	the	list	of	nodes	with	only	storage	devices	attached	to	them.
It	does	not	show	any	virtual	machines	or	other	resources.	This	is	a	great	view
for	storage	administrators	to	manage	storage	throughout	the	cluster.	The
following	screenshot	shows	the	Storage	View	of	our	demo	cluster:

Pool	View
This	view	shows	a	list	of	pools	and	resources	allocated	on	those	pools.	In	the
Proxmox	GUI,	we	can	create	pools	for	different	departments,	customers,	or
just	about	any	requirement	where	certain	resources	need	to	be	allocated	for
specific	parties	and	managed	separately.	The	advantage	of	this	is	access
permissions	can	be	set	at	the	pool	level	where	an	authorized	person	can	access
all	resources	allocated	to	that	pool.	This	eliminates	the	need	to	set	permissions
for	each	individual	resource.	To	cancel	permissions,	simply	delete	it	from	the
pool.	The	following	screenshot	shows	the	Pool	View	for	our	demo	cluster:

The	Datacenter	menu
In	the	Proxmox	GUI,	Datacenter	is	the	main-level	folder	of	the	Proxmox
nodes/VMs	tree.	Each	data	center	can	only	hold	one	Proxmox	cluster.	As	of
Proxmox	VE	5,	it	is	not	possible	to	manage	more	than	one	cluster	through	the
Proxmox	GUI.	Any	task	performed	through	the	Datacenter	menu	affects	the
cluster	as	a	whole.	Let’s	now	look	at	the	various	options	available	in	the
Datacenter	menu.

Datacenter	|	Search
It	is	very	easy	to	manage	a	cluster	with	a	small	number	of	virtual	machines
with	an	even	smaller	number	of	Proxmox	and	storage	nodes.	When
maintaining	a	large	number	of	virtual	machines	and	Proxmox	nodes,	the
search	feature	can	save	a	lot	of	time	for	an	administrator	spent	in	scrolling
and	manually	looking	for	a	particular	resource.	This	is	where	the	Search	menu
option	can	come	in	handy.	The	following	screenshot	shows	a	search	result
after	typing	a	node	name	in	the	Search	box	in	our	example	cluster:

The	Search	box	under	Datacenter	|	Search	shows	the	results	in	real	time	as
you	type	in	the	box.	It	can	search	with	any	string	in	the	Type	or	Description
columns.	It	can	be	the	partial	name	of	a	VM,	VMID,	or	VM	Type	(qemu,
lxc).

Wildcards	are	not	supported	in	search	strings.	The	Datacenter
search	page	also	shows	a	complete	list	of	all	resources	of	the
cluster.	Prior	to	version	4.3	this	information	was	available
under	Datacenter	|	Summary.

It	is	worth	mentioning	here	that	there	is	another	cluster-wide	search	option
available	that	is	accessible	from	anywhere	in	the	GUI	menu	system.	It	is
located	at	the	top	of	the	GUI	page	next	to	Proxmox	version	information,	as
shown	in	the	following	screenshot:

This	search	box	functions	exactly	like	the	Search	option	under	the	Datacenter
menu.

Datacenter	|	Summary
Starting	from	Proxmox	VE	version	4.3,	the	Summary	menu	in	Datacenter
now	displays	much	more	information,	including	real-time	cluster	performance
data	showing	real-time	clusters,	rather	than	showing	a	list	of	all	the	member
nodes	in	the	Proxmox	cluster.	The	following	screenshot	shows	the	node	list	in
the	Summary	menu	for	our	demo	cluster:

Datacenter	|	Options
Options	in	the	Datacenter	menu	allows	you	to	set	the	Keyboard	Layout
language,	HTTP	proxy,	default	Console	Viewer,	and	Email	from	address
format	that	the	Proxmox	node	sends	root	emails	from.	We	can	also	change	the
default	MAC	address	prefix	for	all	auto-created	MAC	addresses	within	the
cluster	from	this	menu.	The	following	screenshot	shows	the	Options	menu	for
our	demo	cluster:

Datacenter	|	Storage
The	Storage	menu	is	probably	one	of	the	most	important	menu	options	in	the
GUI.	This	is	where	the	Proxmox	cluster	and	storage	system	come	together.
This	is	the	menu	to	attach	or	detach	various	storage	systems	with	Proxmox.	In
Chapter	4,	Storage	Systems,	we	are	going	to	dive	deeper	into	the	Proxmox
storage	system.	The	following	screenshot	shows	attached	Storage	in	a
Proxmox	cluster:

Datacenter	|	Backup
Cluster-wide	backup	schedules	are	created	through	this	menu.	No	backup
tasks	can	be	directly	performed	here.	A	good	backup	plan	is	the	first	line	of
defense	against	any	disaster	that	can	cause	major	or	minor	data	loss.	In	our
ultra-modern	digital	world,	data	is	much	more	valuable	than	ever	before.
Every	virtual	environment	administrator	struggles	with	a	backup	strategy	of
their	virtual	environment.

The	fine	line	between	granular	files	and	an	entire	virtual	machine	backup	is
somewhat	diminished	in	a	virtual	environment.	To	take	the	daily	struggle	of	a
backup	plan	out	of	the	equation,	Proxmox	added	an	excellent	backup	system
right	in	the	hypervisor	itself.

As	of	Proxmox	VE	5.0,	we	can	only	schedule	backup	tasks	up	to
1	week.	Although	the	backup	feature	cannot	back	up	individual
files	inside	a	virtual	machine,	it	works	well	while	backing	up	an
entire	virtual	machine.

Proxmox	backups	can	be	scheduled	over	multiple	storage	systems,	multiple
days,	and	time.	In	Chapter	13,	Back	Up	and	Restore	Virtual	Machines,	we	will
learn	what	backup	and	restore	options	are	available	in	Proxmox	as	part	of
disaster	planning.

Datacenter	|	Permissions
This	Permissions	menu	allows	you	to	set	cluster-wide	access	permission
levels	to	a	user.	The	menu	also	shows	you	a	complete	list	of	all	the
permissions	already	assigned	to	users.	The	same	permissions	can	be	set	from
the	virtual	machine	and	storage	specific	permission	menus.	When	setting
permissions	from	the	Datacenter	|	Permissions	menu,	we	have	to	type	in	the
path	for	the	entity	we	want	to	set	the	permission	for.	For	example,	the
following	screenshot	shows	virtual	machines	assigned	to	some	users:

Following	are	the	paths	formats	for	user	permission	level	for	VMs,	storages
and	pool:

To	assign	the	user	permission	level	for	both	the	KVM	and	LXC	virtual
machines,	the	path	format	is	/vms/<vm/lxc_id>.
To	assign	the	user	permission	level	for	storage,	the	path	format	is
/storage/<storage_name>.
To	assign	the	user	permission	level	for	pools,	the	path	format	is
/pool/<pool_name>.

The	group	permission	level	can	also	be	set	from	this	Permissions	menu.
Before	we	can	create	permissions	for	users	or	groups,	we	have	ensured	the
user	or	group	exists	through	the	Users	and	Groups	menu	under	Permissions.
The	following	screenshot	shows	the	permission-creating	dialog	box:

Datacenter	|	Permissions	|	Users
This	menu	allows	the	user	creator	to	assign	different	permission	levels	for	a
Proxmox	cluster	or	virtual	machine	access.	Changes	to	user	details,	removal
of	users	and	changing	passwords,	and	assigning	groups	are	also	performed
from	this	menu.	The	following	screenshot	shows	the	user-creation	window
with	some	example	data:

The	Proxmox	user	management	allows	you	to	set	a	user’s	access	expiration
date.	This	is	very	useful	when	giving	a	user	temporary	access,	which	must	be
deactivated	after	a	certain	number	of	days.	This	option	is	good	for	temporary
access,	such	as	contracted	employees	or	vendor	access.

Datacenter	|	Permissions	|	Groups
This	menu	helps	you	create,	edit,	and	remove	groups	only.	When	the	same
permission	is	to	be	granted	to	multiple	users,	it	is	easier	to	assign	those	users
to	a	group	and	then	assign	the	permission	level	to	that	group	only	instead	of
all	the	users	individually.	This	saves	a	lot	of	time	and	makes	user
management	much	simpler.	The	following	screenshot	shows	a	list	of	three
groups	in	the	example	cluster:

Datacenter	|	Permissions	|	Pools
Pools	in	a	Proxmox	cluster	are	a	way	of	grouping	different	entities,	such	as
storage	and	virtual	machines.	For	example,	in	a	multi-tenant	virtual
environment,	we	can	assign	storage	to	virtual	machines	that	belong	to	a	client
in	a	separate	pool	so	that	it	is	easy	to	view	resources	assigned	to	that	client.
We	can	create,	edit,	or	remove	pools	from	this	menu.

Datacenter	|	Permissions	|	Roles
This	menu	only	shows	predefined	roles	or	permission	levels	that	come	with
Proxmox	4.1.	There	are	no	options	to	edit	or	add	new	levels.	The	menu	also
shows	defined	privileges	for	each	role.	These	roles	can	be	assigned	to	users	or
user	groups	to	set	different	user	permission	levels.

Datacenter	|	Permissions	|
Authentication
By	default,	Proxmox	creates	the	PAM	and	PVE	authentication	realm.
Through	this	menu,	we	can	create	a	new	authentication	realm,	such	as	LDAP
and	an	Active	Directory	server.	We	can	also	configure	two-factor
authentication	from	this	menu.	The	following	screenshot	shows	the
authentication	menu	with	options	to	add	two-factor	authentication	for	a	PAM
realm:

Datacenter	|	HA
High	Availability	(HA)	has	never	been	easier	than	it	is	in	Proxmox	VE	5.	It
is	now	much	simpler	to	configure	all	through	the	GUI.	In	simple	words,	an
HA-enabled	virtual	machine	is	automatically	moved	to	a	different	node
during	node	failure.	We	will	learn	how	to	configure	and	leverage	HA	in	Chapter
10,	Proxmox	High	Availability.

Datacenter	|	Firewall
The	Proxmox	built-in	firewall	is	one	of	the	most	prominent	features	in	recent
versions.	It	allows	firewall	rules	down	to	the	virtual	machine	level	while
protecting	with	cluster-wide	rules.	A	firewall	works	at	both	the	cluster	and
virtual	machine	level,	which	can	be	configured	to	allow	or	deny	connections
to	and	from	specific	IP	addresses.	Any	firewall	rules	under	the	Datacenter	menu
apply	to	the	entire	cluster.	Chapter	9,	The	Proxmox	VE	Firewall,	has	been
dedicated	to	learning	about	the	firewall	feature	in	greater	length.

Datacenter	|	Support
This	menu	tab	shows	support	options	that	are	available	when	there	is	a	paid
subscription	applied	to	a	node.	Without	any	paid	subscription-level	node	in
the	cluster,	the	menu	displays	no	support	information,	as	shown	in	the
following	screenshot:

Refer	to	the	Proxmox	subscription	and	repositories	section	in	Chapter	1,
Understanding	Proxmox	VE	and	Advanced	Installation,	for	information	on
the	benefits	of	having	a	paid	subscription.

Node-specific	menus
Node-specific	menu	options	are	specific	to	each	node	in	the	cluster.	New
menu	tabs	become	available	as	each	node	is	selected	from	the	left-hand	side
navigation	pane.

Node	|	Search
This	is	similar	to	the	Search	option	in	the	datacenter-specific	menu;	this
search	option	limits	the	scope	of	your	search	to	the	selected	node.

Node	|	Summary
The	Summary	menu	option	for	a	node	is	a	visual	representation	of	real-time
data	of	the	node’s	health.	It	shows	vital	information,	such	as	uptime	and
resource	consumption.	The	Summary	menu	also	shows	CPU	usage,	server
load,	memory	usage,	and	network	traffic	in	a	very	easy-to-understand	graph.
An	administrator	can	get	the	necessary	information	of	a	node	just	by	glancing
at	the	summary.	The	graphs	can	be	viewed	on	an	hourly,	daily,	weekly,
monthly,	and	yearly	basis.	The	following	screenshot	shows	the	summary	of
node	pmx-01	in	our	demo	cluster:

Node	|	Shell
This	menu	opens	the	shell	console	of	the	node	right	in	the	same	browser
instead	of	a	pop-up	window.	One	of	the	benefits	of	opening	the	shell	inside
the	browser	is	that	sometimes	a	console	opened	in	a	pop-up	window	does	not
resize	well.	That	makes	the	console	partially	visible,	which	can	be	a	great
annoyance	at	times	when	trying	to	manage	the	node	through	the	CLI.	A
console	opened	through	this	Shell	option	will	always	resize	to	the	full	view	of
the	console.	The	following	screenshot	shows	the	Shell	window	of	our	node
pmx-01:

We	can	still	open	the	console	separately	in	a	browser	window	using	the
existing	Shell	button	in	the	upper-right	corner	of	the	GUI,	as	shown	in	the
following	screenshot:

Node	|	System
This	menu	displays	the	status	of	all	the	vital	services	in	the	node.	We	can	also
start	or	stop	a	specific	service	from	this	menu	without	going	through	the	CLI.
During	troubleshooting	or	node	maintenance,	services	may	need	to	start	or
stop,	or	the	status	of	a	service	may	be	unknown.	This	menu	lists	all	running	or
stopped	services	for	the	node.	The	following	screenshot	shows	services
running	in	one	of	the	nodes	in	our	example	cluster:

Node	|	Network
The	Network	menu	acts	as	the	glue	between	all	virtual	machines,	nodes,	and
shared	storage	systems.	Without	a	proper	network	interface	card	(NIC)	or
virtual	NIC	(vNIC)	and	a	virtual	bridge	setup,	no	communication	can	take
place.	A	deeper	understanding	of	this	menu	will	allow	you	to	create	a	very
complex	web	of	clusters,	nodes,	and	virtual	machines.	We	will	take	a	closer
look	at	the	network	components	later	in	this	book	in	Chapter	8,	Network	of
Virtual	Networks.	The	following	screenshot	shows	the	node	Network	menu
with	some	interfaces	already	configured:

The	concept	of	a	virtual	network	depends	on	the	building	blocks
of	the	virtual	bridge,	virtual	NIC,	and	virtual	LAN.	Network
virtualization	is	the	future	of	physical	networks	as	server
virtualization	had	been	for	physical	servers.	The	Proxmox
virtual	network	provides	a	hardware	abstraction	layer,	making
the	virtual	network	much	more	flexible	and	compatible.

Node	|	DNS
The	DNS	menu	for	the	node	allows	you	to	set	the	default	DNS	server	address
to	be	used	by	all	virtual	machines	in	the	node.	The	DNS	settings	are	very
important	for	containers	as	they	will	use	the	nodes	for	their	access	to	the
internet.

Node	|	Time
Through	this	menu,	we	can	define	the	time	zone	and	current	time	where	the
node	is	physically	located.	This	is	a	useful	feature	when	cluster	nodes	are
spread	across	regions.	For	a	healthy	cluster,	it	is	very	important	for	all	nodes’
times	to	be	in	sync	with	each	other.

Node	|	Syslog
The	Syslog	option	allows	an	administrator	to	view	the	system	log	in	real	time.
Syslog	gives	feedback	as	it	happens	in	the	node.	It	also	allows	you	to	scroll
up	to	view	logs	from	the	past.	More	importantly,	if	an	error	occurs	in	the
node,	Syslog	gives	that	information	in	real	time	with	the	time	and	date	stamp.
This	helps	pinpoint	an	issue	exactly	when	it	occurs.	An	example	of	a	scenario
when	Syslog	information	can	come	in	handy	is	that	if	a	node	cannot	connect
to	a	storage	system,	the	Syslog	screen	will	show	you	the	error	that	is
preventing	the	connection.	The	following	screenshot	shows	the	Syslog	record
of	our	node	pmx-01:

Node	|	Updates
The	Proxmox	node	can	be	updated	right	from	the	GUI	through	the	Updates
tab.	Each	node	checks	daily	for	any	available	updates	and	alerts	the
administrator	through	an	email	if	there	are	any	new	updates.	It	is	important	to
keep	all	the	nodes	up	to	date	by	updating	regularly.	The	Updates	menu
enables	upgrading	by	just	using	a	few	mouse	clicks.	The	following	screenshot
shows	the	node’s	Updates	menu	with	some	pending	upgrades	available	for
one	of	the	nodes	in	our	example	cluster:

Always	update	one	node	at	a	time.	Some	updates	require	the	node	to	be
restarted.	If	uptime	is	important,	then	migrate	all	the	running	virtual
machines	to	a	different	node	before	restarting	the	upgraded	node.

Node	|	Firewall
The	Firewall	menu	for	a	node	allows	you	to	manage	rules	specific	to	virtual
machines	in	that	node	only.	When	a	VM	is	migrated	or	moved	to	a	different
node,	the	rules	from	the	previous	node	will	no	longer	apply	to	that	VM.	We
will	take	a	look	at	the	firewall	menu	in	detail	in	Chapter	9,	The	Proxmox	VE
Firewall.

Node	|	Disks
The	Disks	menu	shows	information	about	physically	installed	disk	drives	in
the	node.	As	of	Proxmox	version	5,	the	disk	menu	can	show	S.M.A.R.T.
information,	including	the	model	and	a	serial	number	of	the	drive.	For	SSDs,
the	menu	also	displays	the	percentage	of	remaining	life.	The	following
screenshot	shows	the	disk	menu	of	a	production	node	with	a	Proxmox
operating	system	SSD	and	Ceph	HDD	installed:

Node	|	Ceph
Proxmox	seamlessly	integrates	the	Ceph	RBD	storage	to	store	virtual	disk
images.	The	superb	resilience	of	Ceph	and	its	extremely	low	price	makes	it	a
truly	enterprise-class	storage	system	to	rely	on.	We	will	learn	how	to	install
and	configure	a	Ceph	cluster	and	manage	it	through	Proxmox	GUI	properly	to
realize	its	full	potential	in	Chapter	5,	Installing	and	Configuring	Ceph.	We	will
also	look	at	the	Ceph	menu	in	that	chapter.	The	Ceph	menu	in	the	Proxmox
GUI	displays	real-time	Ceph	cluster	data,	as	shown	in	the	following
screenshot:

Node	|	Task	History
The	Task	History	menu	displays	all	the	user	tasks	performed	in	the	node.	The
following	screenshot	shows	the	task	history	of	the	node	pmx-01	in	our	example
cluster:

By	typing	in	the	username	in	the	User	name:	textbox,	we	can	filter	the	history
for	a	specific	user.	This	is	very	useful	in	a	multi-user	cluster	where	many
users	manage	their	own	set	of	virtual	machines.	We	can	also	only	view	tasks
with	errors	by	clicking	on	the	Only	Errors:	checkbox.

Node	|	Subscription
This	menu	shows	information	on	the	subscription	or	no-subscription	level	of
the	node.	This	menu	is	also	used	to	apply	new	subscriptions	or	check	an
existing	subscription	key	expiry.	The	following	screenshot	shows	subscription
information	of	a	production	Proxmox	node:

To	apply	or	reapply	a	subscription	key,	click	on	the	Upload	Subscription	Key
button	and	enter	the	key	you	got	directly	from	Proxmox	or	an	authorized
reseller,	and	then	click	on	OK,	as	shown	in	the	following	screenshot:

KVM	menu
This	menu	is	exclusive	to	KVM-based	virtual	machines.	The	menu	tab	is
visible	when	a	KVM	virtual	machine	is	selected	from	the	left-hand	navigation
pane.

KVM	VM	|	Summary
This	menu	tab	represents	similar	information	as	the	one	accessed	by
navigating	to	Node	|	Summary.	Valuable	information	can	be	gathered	that
shows	the	real-time	status	of	a	KVM-based	virtual	machine.	One	additional
feature	this	menu	has	is	the	Notes	textbox.	Double-clicking	on	the	Notes
textbox	brings	up	a	multiline	textbox	where	an	administrator	can	enter	data,
such	as	the	department,	the	intended	usage	of	the	VM,	or	just	about	any	other
information	that	needs	to	be	on	hand.	The	following	screenshot	shows	the
summary	of	one	of	the	KVM	VMs	in	our	example	cluster:

KVM	|	Console
Similar	to	the	shell	console	option	of	the	node-specific	menu,	the	KVM
console	menu	also	shows	the	VM	within	the	browser	using	noVNC.	Virtual
Network	Computing	or	VNC	is	a	cross-platform	system	to	share	graphical
user	interface	across	network	which	also	transmits	keyboard	and	mouse
signals.	This	allows	an	user	to	access	an	interface	remotely.	VNC	requires
java	in	order	to	function.	To	eliminate	the	shortfall	of	java,	noVNC	was	born.
noVNC	relies	on	HTML5	operate	so	it	works	through	any	HTML5	supported
browser.	To	open	the	VM	console	in	a	separate	browser,	we	need	to	click	on	a
viewer	from	the	Console	drop-down	menu,	as	shown	in	the	following
screenshot:

When	the	VM	video	adapter	is	not	set	to	SPICE,	the	option	to	select	the
SPICE	console	is	disabled.	SPICE	(known	as	Simple	Protocol	for
Independent	Computing	Environment)	is	a	protocol	that	allows	you	to
access	a	virtual	machine	or	any	physical	machine	remotely.	SPICE	can	be
used	to	access	both	Windows	and	Linux-based	machines.	Unlike	noVNC,
where	a	browser	can	be	used	to	access	a	VM	remotely,	SPICE	requires	client
software	locally.	Learn	more	about	SPICE	from	here:	http://www.spice-space.org/inde
x.html.

http://www.spice-space.org/index.html

KVM	|	Hardware
The	initially	created	virtual	machine	is	always	never	the	final	configuration.
As	the	functions	of	a	VM	rise,	it	becomes	necessary	to	add	virtual	drives	or
network	interfaces.	The	Hardware	menu	tab	under	the	virtual	machine	is
where	the	adding	and	removing	of	devices	happens.	Through	the	Add	menu,
additional	CD	drives,	hard	drives,	and	network	interfaces	(bridge,	vNIC,	and
so	on)	can	be	added	to	a	virtual	machine.	The	following	screenshot	shows	the
configured	hardware	for	our	example	KVM	VM	#100:

Besides	the	Add	menu,	other	menus,	such	as	Remove,	Edit,	Resize	disk,	and
Move	disk,	are	also	available	through	the	Hardware	menu.	All	these
additional	menus,	except	the	Add	menu,	require	a	hardware	item	to	be
selected.	Resize	disk	and	Move	disk	will	be	enabled	for	clicking	when	a
virtual	drive	is	selected.	We	will	cover	these	in	detail	in	Chapter	6,	KVM	Virtual
Machines.

Move	disk	is	the	safest	way	to	move	a	virtual	hard	drive	from
one	storage	to	another.	If	the	virtual	disk	is	on	shared	storage,
then	live	migration	of	the	virtual	disk	is	possible,	helping	save	a
lot	of	time.

We	will	explore	KVM	virtual	machine	configuration	in	detail	in	Chapter	6,
KVM	Virtual	Machines.

KVM	|	Options
The	Options	menu	under	the	virtual	machine	allows	further	tweaking,	such	as
changing	the	name	and	boot	order.	Most	of	the	options	here	can	be	left	to
default.

If	you	want	the	virtual	machine	to	autostart	as	soon	as	the
Proxmox	node	reboots,	set	the	Start	at	boot	option	to	Yes.

The	following	screenshot	shows	the	Options	menu	for	a	KVM	VM:

KVM	VM	|	Task	History
The	Task	History	menu	shows	all	the	tasks	performed	for	a	specific	VM.	This
functionality	is	identical	to	the	node-specific	task	history,	where	it	shows	all
the	tasks	for	all	the	KVM	virtual	machines	in	the	node.

KVM	|	Monitor
The	Monitor	menu	in	a	KVM	is	an	interface	used	to	interact	with	a	running
KVM	virtual	machine	directly	through	the	QEMU	Monitor	Protocol
(QMP).	We	can	initiate	monitor	commands	through	the	Proxmox	monitor
interface	and	see	the	result	on	the	same	page.	There	are	a	large	number	of
commands	used	to	perform	various	tasks	through	the	Monitor	menu.	For
example,	in	the	following	screenshot,	we’ve	entered	the	info	pci	command	to
view	the	PCI	devices	that	the	VM	sees	at	this	moment:

The	monitor	is	a	great	way	to	debug	a	KVM	VM-related	issue	due	to	the
ability	to	gather	a	vast	amount	of	debugging	data,	including	the	memory	core
dump,	CPU	info,	and	so	on.	We	can	also	inject	configurations,	such	as
balloon	memory	configuration,	additional	CPUs,	and	USB	devices	through
this	Monitor	menu	into	a	running	KVM	VM.	Type	help	to	view	a	list	of	all	the
commands	usable	with	Monitor.

KVM	|	Backup
A	backup	system	is	only	as	good	as	the	ability	to	restore	the	backup.	Both	the
backing	up	and	restoring	can	be	done	from	a	single	menu	under	the	virtual
machine	named	Backup.	It	also	allows	backups,	browsing,	and	manual
deletion	of	any	backups.	All	these	are	done	from	a	single	interface	with	a	few
mouse	clicks.	Due	to	the	importance	of	a	backup	strategy	in	a	virtual
environment,	we	will	take	a	look	at	the	Proxmox	backup	system	in	detail	in	Ch
apter	13,	Back	Up	and	Restore	Virtual	Machines.	This	menu	is	usually	used	to
manually	perform	a	backup	task	for	a	particular	VM.

KVM	VM	|	Snapshot
Proxmox	Snapshots	is	a	way	to	roll	back	a	virtual	machine	to	a	previous	state.
Although	it	provides	similar	protection	to	Proxmox	Backup,	it	comes	with
speed.	Proxmox	Snapshots	is	extremely	fast	when	compared	to	Proxmox
Backup,	thus	allowing	a	user	to	take	several	snapshots	a	day.	The	following
screenshot	shows	the	Snapshots	menu	with	a	snapshot	taken	after	a	clean
installation	of	the	operating	system	in	the	virtual	machine:

A	common	scenario	where	Snapshots	can	be	used	is	when	a	software
developer	wants	to	test	the	software	or	available	patches	that	need	to	be
applied.	They	can	take	a	snapshot,	execute	the	program,	and,	if	anything	goes
wrong,	simply	roll	back	to	the	previous	state.	It	creates	a	snapshot	in	the
RAM	itself,	so	the	virtual	machine	is	preserved.

Never	fully	depend	on	snapshots	only.	A	snapshot	is	not	a	full
backup.	It	is	merely	a	state	where	the	virtual	machine	is	frozen
in	time.	Always	do	a	full	backup	of	virtual	machines	for
maximum	protection.	Snapshots	are	never	included	in	the	full
VM	backup.	Snapshots	are	also	never	automatically	deleted.	As
more	and	more	snapshots	are	created,	they	will	accumulate	over
time,	consuming	storage	space.

We	will	look	into	the	Snapshots	option	as	a	backup	strategy	in	Chapter	13,	Back
Up	and	Restore	Virtual	Machines.

KVM	|	Firewall
Unlike	the	Datacenter	|	Firewall	feature,	which	applies	to	the	whole	cluster,
the	KVM	firewall	applies	to	the	selected	VM	only.	The	KVM	VM	firewall
allows	you	to	configure	each	virtual	machine	with	its	own	set	of	firewall
rules,	thus	isolating	each	VM	from	the	other	even	further.	In	a	multi-tenant
environment	where	there	are	many	levels	of	users,	this	firewall	option	helps
you	prevent	a	VM	from	accessing	another	VM.	In	Chapter	9,	The	Proxmox	VE
Firewall,	we	will	take	a	look	at	the	VM	firewall	in	detail.

KVM	|	Permissions
The	Permissions	menu	allows	the	management	of	user	permissions	for	a
particular	virtual	machine.	It	is	possible	to	give	multiple	users	access	to	the
same	virtual	machine.	Just	click	on	Add	to	add	users	or	groups	already
created	by	navigating	to	the	Datacenter	|	Users	and	Datacenter	|	Groups
menus.	The	following	screenshot	shows	that	our	example	VM	has	one	user
permission:

LXC	container	menu
This	menu	is	specific	to	only	LXC-based	containers.	The	menu	tab	is	visible
when	an	LXC	container	is	selected	from	the	left-hand	navigation	pane.

LXC	container	|	Summary
Like	the	Summary	menu	under	the	KVM-specific	menus,	this	shows	the	stats,
notes,	and	usage	graph	of	an	LXC	container.	Data	can	be	viewed	on	an
hourly,	daily,	weekly,	monthly	or	yearly	basis.

LXC	container	|	Resources
Additional	resources	for	LXC	Containers	are	adjusted	here	after	a	container	is
created.	Changes	in	the	resources	get	applied	to	a	container	in	real	time.	We
will	look	into	container	resource	management	in	Chapter	7,	LXC	Virtual
Machines.	The	following	screenshot	shows	the	resources	currently	allocated
for	our	example	container	#101:

LXC	container	|	Network
The	Network	menu	for	a	container	shows	the	currently	assigned	network
interface.	We	can	add	a	new	interface	or	make	changes	to	any	existing
interface	from	this	menu.	The	following	screenshot	shows	the	Network	menu
for	our	example	container:

LXC	container	|	DNS
Similar	to	the	DNS	menu	under	the	node-specific	menus,	the	DNS	menu	for	a
container	is	used	to	configure	the	DNS	search	domain	and	DNS	server
address.	Additionally,	we	can	change	the	Hostname	of	the	container.	The
following	screenshot	shows	the	DNS	menu	for	our	container	#101:

LXC	container	|	Options
Similar	to	the	Options	menu	under	KVM	VMs,	this	menu	provides	additional
configuration	options	for	containers.	Options	such	as	autostart	during	node
boot,	Start/Shutdown	order,	and	selection	of	the	OS	Type	in	the	container	are
available	through	this	Options	menu.	The	following	screenshot	shows	the
Options	menu	for	our		container	#101:

Details	about	these	options	will	be	discussed	later	in	the	book	in	Chapter	7,	LXC
Virtual	Machines.

LXC	container	|	Task	History
The	Task	History	menu	shows	a	list	of	all	the	tasks	performed	on	the	selected
container.	Similar	to	the	Task	History	menu	under	KVM	VMs,	the	container’s
task	history	provides	a	means	to	search	for	tasks	performed	by	specific	users
or	only	shows	tasks	with	errors.

LXC	container	|	Backup
This	menu	is	identical	to	the	Backup	menu	under	KVM	VMs,	where	we	can
perform	a	manual	backup	of	a	selected	container,	remove	a	backup	file,	or
restore	a	container	from	a	list	of	backup	files.	The	details	of	the	backup	and
restore	strategy	will	be	covered	in	detail	in	Chapter	13,	Back	Up	and	Restore
Virtual	Machines.

LXC	container	|	Snapshots
This	menu	offers	identical	functionality	as	KVM	Snapshots,	where	we	can
create	snapshots	of	the	container	or	roll	back	to	a	previous	state.	More	about
snapshots	will	be	covered	in	Chapter	13,	Back	Up	and	Restore	Virtual	Machines.

LXC	container	|	Firewall
Similar	to	the	KVM-specific	Firewall	menu,	this	menu	enables	and	manages
firewall	rules	for	a	particular	LXC	container.	More	will	be	discussed	in	Chapter	
9,	The	Proxmox	VE	Firewall.

LXC	container	|	Permissions
Similar	to	the	KVM-specific	Permissions	menu,	we	can	set	different
permission	levels	for	a	container	through	this	menu.	Refer	to	the	Permissions
menu	under	the	KVM-specific	menu	as	they	are	identical	for	both	the	KVM
and	LXC	virtual	machines.

Pool	menu
This	menu	is	visible	when	a	Pool	is	selected	from	the	left-hand	navigation
pane.	Let’s	now	look	at	each	of	the	options	in	detail.

Pool	|	Summary
The	Summary	menu	for	the	pool	only	shows	the	Comment	description	for	the
pool,	as	shown	in	the	following	screenshot:

We	cannot,	however,	change	the	description	or	add	a	note	from	the	Pools
menu.	This	task	can	be	done	through	the	Datacenter	|	Permissions	|	Pools
menu.	From	there,	select	the	desired	pool	and	change	the	description.	This	is
also	the	same	menu	to	add	new	pools	to	the	cluster.	The	following	screenshot
shows	the	pool	edit	dialog	box	for	our	demo	pool,	Test-Pool1:

Pool	|	Members
This	menu	shows	all	the	resources	currently	allocated	to	the	selected	pool.	We
can	allocate	virtual	machines	or	storage	to	a	pool.	For	example,	in	our	demo
pool	named	Test-Pool1,	we	have	a	container	#101	and	local	storage	allocated,	as
shown	in	the	following	screenshot:

New	resources	can	be	added	through	the	Add	drop-down	menu.	We	can	only
add	virtual	machines	and	storage	to	a	pool.	To	add	a	KVM	or	LXC	container,
simply	click	on	the	Add	button	and	select	a	virtual	machine	from	the	dialog
box,	as	shown	in	the	following	screenshot:

Conveniently,	the	dialog	box	will	only	show	virtual	machines	that	have	not
been	added	to	the	pool	yet.	For	our	example	in	the	previous	screenshot,
container	#101	has	been	already	added	to	the	pool	so	the	dialog	box	only
shows	100	available	virtual	machines.	The	procedure	to	add	storage	to	a	pool
is	the	same	as	adding	a	virtual	machine.

Pool	|	Permissions
The	Permissions	menu	under	Pools	is	the	same	as	the	KVM	and	LXC	virtual
machine	permissions.	With	these	permissions,	we	can	assign	a	user	to	a	pool
and	all	the	resources	under	that	pool	become	accessible	to	that	user.	This
eliminates	any	need	of	assigning	permissions	individually	by	resources.	For
example,	if	a	user	requires	access	permissions	to	multiple	virtual	machines,
we	can	put	those	virtual	machines	in	a	pool	and	give	the	user	permissions	to
that	pool	only.	The	following	screenshot	shows	that	in	our	example	pool
named	Test-Pool1,	the	user	wahmed	has	been	given	administrative	permissions	to
manage	the	pool:

Summary
In	this	chapter,	we	learned	how	to	create	a	Proxmox	cluster	and	explored	the
graphical	user	interface	of	Proxmox	VE.	We	learned	about	how	the	menu
system	is	divided	into	different	entities	and	what	features	are	used	to	manage
resources	in	a	Proxmox	cluster.	We	also	saw	different	modes	of	the	viewing
option	to	browse	all	the	resources	in	a	Proxmox	cluster.

Being	equipped	with	the	knowledge	of	the	Proxmox	GUI	and	its	features
paves	the	way	for	much	more	advanced	topics	in	the	coming	chapters.
Although	Proxmox	provides	many	management	options	through	the	CLI,	a
great	deal	of	time	is	still	spent	on	the	Proxmox	GUI	for	day-to-day	cluster
management.

In	the	next	chapter,	we	will	see	what	is	under	the	hood	of	Proxmox.	We	will
see	how	the	Proxmox	directory	structure	is	laid	out	to	store	vital	configuration
files	and	what	the	Proxmox	cluster	filesystem	is	and	why	it	is	important.

Proxmox	under	the	Hood
In	the	previous	chapter,	we	saw	how	the	Proxmox	GUI	looks	and	also	looked
at	its	features.	In	this	chapter,	we	will	take	a	look	how	configuration	files	hold
a	Proxmox	virtualization	platform	together,	and	the	files	to	be	used	for
advanced	configuration	and	how	they	are	used	to	troubleshoot	a	Proxmox
platform.	Proxmox	is	built	on	Debian	Linux,	which	is	very	stable	with	a	large
active	community.	So,	it	inherited	the	heavy	dependency	on	configuration
or	.conf	files	as	a	primary	means	to	store	various	configurations.	The	Proxmox
GUI	provides	you	with	the	ability	to	manage	a	cluster,	but	does	not	provide
direct	access	to	any	configuration	files.	Any	direct	changes	by	advanced	users
have	to	be	done	through	a	command-line	interface	(CLI).	Commonly	used
scenarios,	such	as	adding	special	arguments	to	configuration	files,	is	done
through	the	CLI.	In	this	chapter,	we	will	cover	the	following	topics:

The	Proxmox	cluster	file	system,	or	pmxcfs
The	Proxmox	directory	structure
Configuration	files’	location	and	their	functions
Arguments	and	syntaxes	used	in	configuration	files

The	Proxmox	cluster	file	system
Proxmox	is	a	cluster-based	hypervisor.	It	is	meant	to	be	used	with	several
server	nodes.	By	using	multiple	nodes	in	a	cluster,	we	provide	redundancy	or
high	availability	to	the	platform	while	increasing	uptime.	A	production	virtual
environment	may	have	several	dozens	to	several	hundreds	of	nodes	in	a
cluster.	As	an	administrator,	it	may	not	be	a	realistic	scenario	to	change
configuration	files	in	the	cluster	one	node	at	a	time.	Depending	on	the	number
of	nodes	in	a	cluster,	it	may	take	several	hours	just	to	change	one	small
argument	in	a	configuration	file	of	all	the	nodes.	To	save	precious	time,
Proxmox	implemented	the	clustered	filesystem	to	keep	all	the	configuration
files	or	any	other	common	files	shared	by	all	the	nodes	in	the	cluster,	in	a
synchronous	state.	Its	official	name	is	Proxmox	Cluster	file	system
(pmxcfs).	The	pmxcfs	is	a	database-driven	filesystem	used	to	store
configuration	files.	Any	changes	made	to	any	files	or	copied/deleted	in	this
filesystem	get	replicated	in	real	time	to	all	the	nodes	using	corosync.	The
Corosync	Cluster	Engine	is	a	group	communication	system	used	to
implement	high	availability	within	an	application.	You	can	learn	more	about
corosync	by	visiting	the	link:	http://corosync.github.io/corosync/.

Any	file	added	to	this	filesystem	almost	instantly	gets	replicated	to	all	the
nodes	in	the	cluster,	thus	saving	an	enormous	amount	of	time	for	a	system
administrator.

The	pmxcfs	filesystem	is	a	database-driven	filesystem	used	to
store	the	Proxmox	cluster	configuration	files	or	any	other	files
commonly	shared	by	all	the	nodes	in	the	Proxmox	cluster.	To
know	more	about	pmxcfs,	visit	the	following	Proxmox	Wiki:
http://pve.proxmox.com/wiki/Proxmox_Cluster_file_system_(pmxcfs)

The	pmxcfs	filesystem	is	mounted	at	the	following	path:
#	/etc/pve	

All	cluster-related	files	are	stored	in	this	folder	path.

http://corosync.github.io/corosync/
http://pve.proxmox.com/wiki/Proxmox_Cluster_file_system_(pmxcfs)

Proxmox	directory	structure
Proxmox	comes	with	a	distinct	directory	structure	where	all	the	configuration
files	and	other	necessary	files	are	stored.	This	makes	finding	those
configuration	files	in	time	of	need	very	easy.	The	following	table	shows	the
location	of	the	files	stored	and	their	functions:

Filename/location File	function

/etc/pve/datacenter.cfg

Proxmox	VE	data	center	configuration	file.
Used	to	change	options	such	as	the	default
language,	keyboard	layout,	default	console,
and	so	on.

/etc/pve/corosync.conf

Main	cluster	configuration	file.	Prior	to
Proxmox	VE	4.0,	this	was	known	as
cluster.conf	and	can	also	be	used	to	change
the	vote	of	a	particular	node.

/etc/pve/storage.cfg

PVE	storage	configuration	file.	This	holds
all	the	information	of	a	local	or	shared
storage	system.

/etc/pve/user.cfg
User	list	and	access	control	configuration	for
all	users	and	groups	in	the	cluster.

/etc/pve/authkey.pub Public	key	used	by	the	ticket	system.

/etc/pve/ceph.conf

When	a	Ceph	cluster	is	integrated	with
Proxmox,	this	configuration	file	is	generated
for	the	Ceph	cluster.

/etc/pve/vzdump.cron

Cluster-wide	backup	tasks	that	are	not
specific	to	a	single	node.	This	file	should	not
be	edited	manually.	All	the	entries	are	auto
created	from	the	Backup	menu	on	the	GUI.

/etc/pve/priv/shadow.cfg
Shadow	password	file	that	holds	all
usernames	and	their	encrypted	passwords.

/etc/pve/priv/authkey.key Private	key	used	by	the	ticket	system.

/etc/pve/priv/ceph.client.admin.keyring

Authentication	keyring	for	a	Ceph	cluster.
This	is	only	created	when	Ceph	is	integrated
with	Proxmox.

/etc/pve/priv/ceph/<storage_id>.keyring

Keyring	used	to	attach	the	Ceph	RBD
storage.	We	will	take	a	look	at	Ceph	in	Chapter
4,	Storage	Systems.

/etc/pve/firewall/<vmid>.fw Firewall	rules	for	all	VMs.

/etc/pve/nodes/<name>/pve-ssl.pem
Public	SSL	key	for	the	web	server.	Used	to
access	the	Proxmox	web	GUI.

/etc/pve/nodes/<name>/priv/pve-ssl.key Private	SSL	key.

/etc/pve/nodes/<name>/host.fw Firewall	rules	for	the	Proxmox	host.

/etc/pve/nodes/<name>/qemu-

server/<vmid>.conf

Virtual	machine	configuration	data	for	KVM
VMs.

/etc/pve/nodes/<name>/lxc/	<vmid>.conf
Virtual	machine	configuration	data	for	LXC
containers.

/etc/pve/.version
File	versions’	data	to	detect	file
modifications.

/etc/pve/.members
Information	nodes	that	are	members	of	the
cluster.

/etc/pve/.vmlist List	of	all	VMs	in	the	cluster.

/etc/pve/.clusterlog Last	50	entries	of	the	cluster	log.

/etc/pve/.rrd Most	recent	entries	of	RRD	data.

Any	changes	made	to	these	files	or	any	other	files	inside	pmxcfs	mounted
under	the	/etc/pve	folder	get	replicated	automatically	the	moment	the	changes

are	made.	For	this	reason,	we	will	have	to	take	extra	care	of	what	we	do	to
these	files.	For	example,	if	we	delete	a	.conf	file	from	one	node	by	mistake,	it
will	also	be	deleted	from	all	the	other	nodes	in	the	Proxmox	cluster.

A	regular	manual	backup	of	the	/etc/pve	folder	should	be	a
common	practice	in	case	the	cluster	needs	rebuilding	after	any
disaster	or	accidental	file	deletion/change.

On	a	regular	day-to-day	basis,	a	system	administrator	will	not	need	to	access
these	files	from	the	command	line	since	almost	all	of	these	are	editable	from
the	Proxmox	GUI.	But	knowing	the	location	of	these	files	and	what	they	hold
might	save	the	day	when	the	GUI	becomes	inaccessible	for	whatever	reason.

Dissecting	the	configuration	files
We	now	know	where	all	the	important	files	that	hold	a	Proxmox	cluster
together	are	placed.	We	will	go	inside	some	of	these	files	for	a	better
understanding	of	what	they	do	and	what	command	arguments	they	use.	You
can	use	any	Linux	editor	to	view/edit	these	configuration	files.	In	this	book,
we	will	use	#nano	to	view	and	edit	configuration	files.

During	the	learning	process,	it	will	be	a	good	idea	to	make	a	backup	of	the
configuration	files	before	editing	them.	In	case	something	goes	wrong,	you
will	be	able	to	replace	it	with	the	original	working	configuration	file.	Simply
copy	the	configuration	file	using	the	following	command:

				#	cp	/etc/pve/<config_file>	/home/<any_folder>		

We	can	also	use	the	SCP	command	to	back	up	files	to	another	node:
				#	scp	/etc/pve/<config_file>	<user>@<ip_or_hostname>:/<folder>		

The	cluster	configuration	file
The	corosync.conf	configuration	file	stores	parameters	needed	for	a	cluster
operation.	Any	empty	lines	or	lines	starting	with	#	in	this	configuration	file
are	completely	ignored.	The	following	code	is	what	our	corosync.conf	file
currently	looks	like	in	our	example	cluster	with	two	Proxmox	nodes.	The
Proxmox	cluster	configuration	file	is	located	under	/etc/pve/corosync.conf:

We	are	now	going	to	dig	into	corosync.conf	to	describe	the	functions	of	the
parameters.	This	configuration	file	is	automatically	created	when	a	new
Proxmox	cluster	is	created.	There	are	four	segments	in	this	file,	which	are	as
follows:

logging	{		}

nodelist	{		}

quorum	{		}

totem	{		}

logging	{		}
This	segment	contains	configuration	parameters	used	for	logging.	According
to	the	parameters	in	our	example	cluster,	debugging	is	off	and	logs	are
transferred	to	syslog.	If	we	want	to	turn	debugging	on	and	transfer	logs	to	a
logfile	instead	of	syslog,	our	parameters	will	appear	as	follows:

logging	{	

		debug:	on	

		to_logfile	:	yes	

		to_syslog	:	no	

		timestamp	:	on	

}	

/var/log/<filename>.log	{	

		daily	

		rotate	5	

		copytruncate	

}	

We	can	also	attach	a	timestamp	to	all	the	log	entries.	Note	that	if	we	want	to
pass	logs	to	a	logfile,	we	need	an	additional	logfile	{	}	segment	along	with	the
logrotate	and	copytruncate	parameters.

nodelist	{		}
As	the	name	implies,	this	segment	is	where	all	the	member	nodes	of	a
Proxmox	cluster	are	listed.	Each	node	is	separated	by	the	node	{	}	subsegment.
The	following	are	the	three	main	parameters	as	they	appear	in	our	cluster
configuration	file:

nodeid	

This	parameter	shows	the	numeric	order	of	the	member	nodes	as	they	get
added	to	the	cluster.	This	is	optional	for	IPv4	but	mandatory	when	using	IPv6.
Each	nodeid	must	be	unique	in	the	cluster	configuration	file.	If	no	nodeid
parameter	is	used	when	using	IPv4,	then	the	cluster	automatically	calculates
this	ID	from	the	32-bit	IPv4	address.	With	IPv6,	this	calculation	cannot
happen	since	IPv6	is	more	than	32	bit.

Warning!	Never	use	nodeid	instead	of	0	as	it	is	reserved	by
corosync.conf.

quorum_votes	

This	option	shows	the	number	of	votes	that	the	node	must	cast	to	form
a	quorum.	In	a	Proxmox	cluster,	this	is	no	more	than	one	vote	per	node.
Whatever	this	number	is,	it	should	be	equal	for	all	nodes.	There	are	simply	no
reasons	to	use	anything	other	than	1.

ring0_addr	

This	line	basically	specifies	the	IP	address	or	the	hostname	of	the	node.	The
actual	format	of	this	option	is	ringX_addr,	where	X	is	the	ring	number.	When
multiple	network	interfaces	are	used	for	redundancy	purposes,	the	redundant
ring	protocol	is	implemented	in	corosync.	Each	of	the	interfaces	is	assigned	a
unique	ringnumber.	This	unique	ringnumber	tells	the	interface	to	connect	to	the
corresponding	ring	protocol.	For	example,	in	our	example	cluster,	if	we	use
the	second	interface	for	redundancy,	the	node	{	}	segment	will	appear	as
follows:

node	{	

		nodeid:	2	

		quorum_votes:	1	

		ring0_addr:	172.16.0.71	

		ring1_addr:	192.168.0.71	

}	

quorum	{		}
This	segment	tells	the	cluster	which	quorum	algorithm	to	use	to	form
a	quorum.	As	of	corosync	version	2.3.5,	there	is	only	one	provider	available,
which	is	votequorum.	This	algorithm	ensures	that	there	are	no	split-brain
situations	and	a	quorum	is	formed	only	when	majority	votes	are	cast.	There
are	no	additional	options	available	for	this	segment.

totem	{		}
This	segment	specifies	parameters	for	totem	protocols.	Corosync	consists	of
the	totem	Single	Ring	Protocol	(SRP)	and	totem	Redundant	Ring	Protocol
(RRP).	This	segment	also	includes	a	{		}	subsegment	interface	to	specify	the
bind	address	and	ring	number.

When	only	one	interface	is	used	for	cluster	communication,
totem	SRP	is	implemented.	In	this	protocol,	only	the	ring	number
0	is	used.	When	multiple	interfaces	are	used	for	redundancy,
totem	RRP	is	implemented,	where	more	than	one	ring	number
and	interfaces	are	used.

The	following	parameters	show	the	name	of	the	Proxmox	cluster	that	is
created	by	Proxmox	during	our	example	cluster	creation:

cluster_name:	pmx-cluster

We	can	also	see	the	cluster	name	from	the	Datacenter	|	Summary	menu.
config_version:	2	

This	parameter	specifies	the	version	number	of	the	configuration	file	after
each	cluster-wide	change,	such	as	adding	or	removing	member	nodes.	When
any	changes	are	made	manually	directly	to	the	file,	then	it	is	mandatory	to
increase	the	version	number	manually.	Failure	to	do	so	will	cause	the	cluster
configuration	to	fail.	In	that	case,	the	cluster	filesystem	in	/etc/pve/	may	be
inaccessible	since	the	node	will	not	be	able	to	start	the	pve-cluster	service.
The	config	number	should	only	increase	incrementally.

ip_version:	IPv4			

This	parameter	specifies	the	version	of	IP	to	be	used.	By	default,	IPv4	is	used.
To	use	version	6	of	IP,	simply	use	the	option	IPv6.

secauth:	on	

This	parameter	tells	the	cluster	to	use	the	SHA1	authentication	for	encrypting
all	transmitted	messages.	Although	this	option	adds	extra	overhead	for	all
transmitted	messages,	thus	reducing	the	total	throughput,	it	is	important	to	use
encryption	to	protect	the	cluster	from	invaders.	By	default,	this	parameter	is
enabled	in	Proxmox.

Note	that	the	secauth	parameter	for	corosync	is	deprecated.	It	is	recommended
by	the	corosync	maintainers	to	use	crypto_hash	and	crypto_cipher.	But	as	of

Proxmox	5,	secauth	is	still	used	by	default.	The	following	is	an	example	of
how	the	recommended	setting	will	appear	in	the	totem	segment:

totem	{	

		crypto_hash:	sha1	

		crypto_cipher:	aes256	

}	

At	the	time	of	writing	this	book,	Proxmox	developers	have	not	confirmed
whether	crypto_hash	and	crypto_cipher	can	be	safely	used	instead	of	secauth.

version:	2	

This	parameter	specifies	the	version	of	the	configuration.	Currently,	the	only
version	for	this	parameter	is	2.	This	is	not	the	version	increment	of	the
configuration	file	whenever	any	changes	are	made.	This	number	must	not	be
changed	manually.

Besides	the	parameters	mentioned	earlier,	there	are	a	few	other	parameters
available	in	the	totem	segment	for	various	purposes.	The	following	table
shows	some	of	these	parameters	and	their	functions:

Parameter Description

rrp_mode

Available	options:	none,	active,	and	passive.

This	parameter	specifies	redundant	protocol	modes.	When	there	is
only	one	interface,	corosync	automatically	chooses	none.	With
multiple	interfaces,	we	can	set	it	to	active,	which	offers	a	lower
latency	at	the	cost	of	less	performance.	We	can	also	set	the	mode	to
passive,	which	offers	a	significant	performance	boost	at	the	cost	of
CPU	usage.

netmtu

Available	options:	1500	to	8982.

This	specifies	the	MTU	of	an	interface.	It	is	useful	when	jumbo
frames	are	used.	Linux	adds	an	18-byte	header	to	the	network	data
packets.	So,	even	though	hardware	can	support	9,000	MTUs,	it	is
wise	to	set	MTUs	to	8,982.	This	way,	after	Linux	adds	additional
headers,	the	total	MTU	does	not	go	beyond	9,000	and	hardware	will
not	misbehave.	These	MTU	tips	apply	to	all	situations	where	jumbo
frames	are	intended.

transport

Available	options:	udp,	udpu,	and	iba.

This	specifies	the	transport	protocol.	By	default,	corosync	uses	UDP.
If	InfiniBand	and	network	are	used	with	RDMA,	then	we	can	specify
iba	instead	of	udp.

interface	{		}
This	is	the	subsegment	of	the	totem	segment	where	the	information	regarding
the	network	interface	is	specified.	By	default,	Proxmox	only	enters	the
bindnetaddr	and	ringnumber	parameters	in	this	subsegment:

bindnetaddr	:	<ip/network_address>	

These	parameters	specify	the	IP	address	or	network	address	that	corosync
should	bind	to.	This	can	be	any	IP	address	of	a	node	in	the	cluster.	Usually,
this	is	the	IP	address	of	the	node	where	the	initial	Proxmox	cluster	creation
command	was	executed:

ringnumber:	0	

This	parameter	specifies	a	separate	ring	number	for	each	network	interface.	A
unique	ringnumber	for	each	interface	allows	unique	identification	of	which	ring
should	use	which	interface.	For	example,	with	a	single	interface	where	totem
SRP	is	applied,	there	is	only	one	ring	with	ringnumber:	0.	With	dual	interfaces
and	totem	RRP	applied,	there	are	two	rings	with	ringnumber:	0	and	ringnumber:	1.
Note	that	the	ring	number	must	start	from	0.

Although	the	primary	use	of	multiple	rings	is	redundancy,	it	can
be	used	for	other	purposes	too,	such	as	connecting	nodes	in
different	locations	to	a	single	Proxmox	cluster.	We	can	achieve
this	by	implementing	VPN,	such	as	OpenVPN,	IPSEC,	or	tinc.
We	can	create	a	dedicated	network	on	a	separate	VLAN	and
create	a	new	ring	to	bind	to	that	network.	This	way,	corosync
will	send	multicast	data	on	both	networks.

There	are	a	few	other	advanced	parameters	available	that	are	not	used	by
default.	The	following	table	shows	some	of	these	parameters	and	their
functions:

Parameter Description

mcastaddr

This	specifies	a	multicast	address,	which	is	used	by	corosync.	The
address	can	be	IPv4	or	IPv6	when	IPV6	is	used.	This	parameter	is
usually	not	needed	if	the	cluster_name	parameter	has	already	been	used
in	the	corosync.conf	configuration	file.	But	when	both	are	used,
mcastaddr	will	have	a	higher	priority	over	cluster_name.	By	default,	the
Proxmox	cluster	configuration,	mcastaddr,	is	not	used.

mcastport

This	specifies	the	UDP	port	number	for	a	multicast	address.
Corosync	uses	two	ports	for	multicasts:	one	for	receiving	and	the
other	for	sending.	We	only	need	to	specify	the	receiving	port	since
the	sending	port	is	automatically	calculated	using	the	formula
mcastport	-	1.	For	example,	if	we	specify	the	receiving	port	number
5405,	then	corosync	will	use	5404	for	sending.	This	is	very	important	to
note	in	a	multi-cluster	environment	on	the	same	network.

	

If	we	put	all	the	totem	parameters	we	have	seen	so	far	together,	the
corosync.conf	for	our	example	cluster	will	appear	as	follows	if	redundant
interfaces	have	been	used:

totem	{	

		cluster_name:	pmx-cluster	

		config_version:	4	

		ip_version:	ipv4	

		crypto_hash:	sha1	

		crypto_cipher:	aes256	

		version:	2	

		rrp_mode:	passive	

			interface	{	

		bindnetaddr:	172.16.2.71	

		ringnumber:	0	

		mcastaddr:	224.1.1.1	

		mcastport:	5405	

		}	

		Interface	{	

		bindnetaddr:	172.16.20.71	

		ringnumber:	1	

		mcastaddr:	224.1.1.2	

		mcastport:	5408	

		}	

}	

Storage	configuration	file
This	is	the	configuration	file	where	storage	to	be	used	with	Proxmox	are
specified.	The	configuration	file	is	located	under	/etc/pve/storage.cfg.	We	will
take	a	look	at	the	different	storage	systems	in	Chapter	4,	Storage	Systems.	The
following	is	the	possible	content	of	the	storage	configuration	file	with	various
storage	systems	supported	by	Proxmox:

dir:	local	

		path	/var/lib/vz	

		content	images,iso,vztmpl,rootdir	

		maxfiles	0	

	

nfs:	nfs_share_name

		path	/mnt/pve/nfs-server	

		server	192.168.145.11	

		export	/mnt/pmxnas01	

		options	vers=3	

		content	iso,vztmpl	

		maxfiles	1	

	

iscsi:	nas-iscsi-01	

		target	iqn.2015-12.org.example.istgt:pmxtgt01	

		portal	192.168.145.11	

		content	none	

	

lvm:	nas-lvm-01	

		vgname	nas-lvm-01	

		base	nas-iscsi-01:0.0.0.scsi-330000000391132dd	

		shared	

		content	images	

	

nfs:	vm-nfs-01	

		path	/mnt/pve/vm-nfs-01	

		server	192.165.145.11	

		export	/mnt/pmxnas01	

		options	vers=3	

		content	images,vztmpl,backup,rootdir	

		maxfiles	1	

	

zfspool:	zfs-01	

		enable	

		pool	zfs_pool	

		content	images,	rootdir	

Almost	all	the	settings	in	storage.cfg	can	be	changed	from	the	Proxmox	GUI
without	using	any	CLI.	Attached	storage	abides	by	the	following	common
format	in	storage.cfg:

storage_type	:	storage_name	

		path	</path	to	folder>	

		target	<target	file	name>	(for	iSCSI)	

		portal	<server	IP	address>	(for	iSCSI)	

		vgname	<volume	group	name>	(for	LVM)

		base	<base	volume	group>	(for	LVM)	

		server	<storage	server	IP	address>	

		export	</shared	location	on	NFS	server>	

		content	<type	of	files	the	storage	can	hold>	

		maxfile	<maximum	number	of	old	backup	to	keep>	

User	configuration	files
The	user.cfg	file	holds	all	user,	group,	and	access	control	information	in	the
cluster	and	is	located	under	/etc/pve/user.cfg.	It	follows	the	following	format	to
store	all	information:

For	user	information,	the	format	is	as	follows:

								<type>:<user>@realm:enable:expiry:f_name:l_name:email:comment	

For	group	information,	the	format	is	as	follows:

								<type>:<group_name>:user@realm:comment	

For	pool	information,	the	format	is	as	follows:

								<type>:<pool_name>:<assigned_resource>:user@realm:comment	

For	access	control	information,	the	format	is	as	follows:

								<type>:<assigned_resource>:user@realm:comment:<assigned_role>	

Based	on	this	format,	the	following	is	what	our	user.cfg	file	looks	like	in	our
example	cluster:

Note	that	the	user.cfg	file	does	not	hold	any	user	passwords.	This	information
is	stored	in	/etc/pve/priv/shadow.cfg	in	an	encrypted	form.	All	the	content	in	this
configuration	file	can	be	managed	through	the	Proxmox	GUI.	Whenever	we
create	a	new	user/group	or	assign	roles,	the	configuration	file	gets	updated.	If
the	GUI	becomes	inaccessible,	this	file	can	be	manually	edited.

The	password	configuration	file
The	password	configuration	file	is	located	under	/etc/pve/priv/shadow.cfg	and
stores	all	the	passwords	for	users	in	the	cluster.	The	format	is	rather	simple
but	the	function	of	this	file	is	very	crucial.	The	format	to	store	password
information	is	as	follows:

<user_name>:<encrypted_password>	

Notice	that	the	password	file	is	in	a	/priv	folder	inside	/etc/pve.	Sensitive
information,	such	as	passwords,	private	authorization	keys,	and	known	hosts,
are	kept	in	the	/etc/pve/priv	folder.	When	a	new	user	is	created	through	the
Proxmox	GUI,	a	new	entry	is	added	here.

KVM	virtual	machine	configuration
file
The	vmid.conf	file	stores	configuration	information	for	each	virtual	machine
and	is	located	at	/etc/pve/nodes/<name>/qemu-server/<vmid.conf>.	The	directory
structure	divides	all	VM	configuration	files	into	categories	based	on	nodes.
For	example,	the	configuration	file	for	our	VM		#100	is	stored	in	the	following
location:

#	/etc/pve/nodes/pmx-01/qemu-server/100.conf	

When	we	migrate	a	VM	from	one	node	to	another,	Proxmox	just	moves	the
configuration	file	to	the	destination	node.	If	the	VM	is	powered	on	during	the
migration,	then	the	entire	memory	content	of	the	VM	is	also	migrated	to	the
destination	node.	For	our	VM	100,	if	we	migrate	it	to	pmx-02,	the	second	node
in	the	cluster,	then	the	location	of	the	100.conf	file	will	be	as	follows:

#	/etc/pve/nodes/pmx-02/qemu-server/100.conf	

If	a	node	with	virtual	machines	in	it	becomes	inaccessible,
simply	moving	the	<vm_id>.conf	files	to	a	different	node	will	allow
access	to	all	the	VMs	from	a	different	node.	Any	files	of	the
folder	inside	/etc/pve	can	be	seen	from	any	node	in	the	cluster.

We	will	now	take	a	look	at	a	<vm_id>.conf	file	itself	to	see	what	makes	up	a
virtual	machine	behind	the	scenes.	This	configuration	file	follows	a	simple
option:value	format.	The	following	is	the	configuration	file	of	our	VM		#100:

Since	our	virtual	machine	also	has	a	snapshot,	the	configuration	also	embeds
the	specification	of	the	virtual	machine	as	it	was	during	the	snapshot.	Almost
all	the	options	in	this	file	can	be	set	through	the	Proxmox	GUI	under	the
KVM	virtual	machine	Options	menu	tab.	Some	option	values,	such	as
arguments,	have	to	be	added	through	the	CLI.	The	following	table	shows
some	of	the	possible	options.	The	values	can	be	used	as	virtual	machine
configurations:

Options Description Possible	values

args

Allows	you	to	pass
arguments	to	a	VM.	Features
such	as	sound	can	be
activated	using	KVM
arguments.	Refer	to	section
2.2.6.2	for	more	details	on
arguments	used	in	the	KVM.

See	section	2.2.6.2

autostart Auto-restarts	a	virtual
machine	after	crash.	The
default	value	is	0.

1;	0

balloon
Targeted	RAM	for	a	VM	in
MB. Integer	number

boot Default	boot	device c=hdd;	d=cd-rom;	n=network

bootdisk
Enables	booting	from	a
specific	disk. ide;	sata;	scsi;	virtio

core
Number	of	cores	per	socket.
The	default	value	is	1. Integer	number

cpu
Emulated	CPU	types.	The
default	value	is	kvm64.

486;	kvm32;	kvm64;	qemu32;	qemu64;
conroe;	haswell;	nehalem;
opteron_G1/2/3/4/5;	penryn;
sandybridge;	westmere;	athlon;
core2duo;	coreduo;	host;	pentium;
pentium2;	pentium3;	phenom

cpuunits

This	is	the	CPU	weight	of
the	VM.	This	value	is	used
by	the	kernel	fair	scheduler.
The	larger	the	value	is,	the
more	CPU	time	a	VM	will
get.	Note	that	this	value	is
relative	to	the	weights	of	all
other	running	VMs	in	the
cluster.	The	default	value
is	1000.

Integer	0	to	500000

description Notes	for	VM Plain	text

freeze Freezes	the	CPU	at	startup 1;	0

hostpci(n)

This	option	allows	a	VM
direct	access	to	the	host
hardware.	When	this	option
is	used,	it	is	not	possible	to
migrate	the	VM.	Caution

HOSTPCIDEVICE

Syntax	for	HOSTPCIDEVICE	is
bus:	<pci_device_number>

should	be	used	for	this
option	as	it	is	still	in	the
experimental	stage.	It	is	not
recommended	for	a
production	environment.

Get	pci_device_number	using	#lspci

hotplug

Enables	hotplug	for	disk	and
network	devices.	The	default
value	is	0.

1;	0

ide(n)

Allows	the	volume	to	be
used	as	an	IDE	disk	or	CD-
ROM.	The	n	in	ide(n)	is
limited	to	0	to	3.

[volume=]image_name];
[media=cdrom,disk];
[cyls=c,heads=h,	secs=s,[trans=t]];
[snapshot=on,off];
[cache=none,writethrough,writeback,

unsafe,directsync];	[format=f];
[backup=yes|no],	[rerror=ignore,

report,stop];
[werror=enospc,ignore,

report,stop];	[aio=native,threads]

kvm

Enables/disables	the	KVM
hardware	virtualization.	This
option	disables	any	hardware
acceleration	within	a	VM.	A
possible	usage	scenario	is
when	you	are	setting	up	a
nested	virtualized	cluster.
The	default	value	is	1.

1;	0

lock

Enables	locking/unlocking	of
a	VM. backup;	migrate;	rollback;	snapshot

memory
Allocated	amount	of	RAM
for	the	VM. Integer	number	from	16	to	N

migration_downtime

Value	in	seconds	for	the
maximum	tolerated
downtime	for	migration.	The
default	value	is	0.1.

Number	0	to	N

migration_speed

Value	for	the	maximum
speed	in	MB/s	for	VM
migrations.	Set	the	value	to	0 Integer	number	from	0	to	N

for	no	limit.	The	default
value	is	0.

name Name	for	the	VM. Text

net(n)

Specified	network	devices.
MODEL=XX:XX:XX:XX:XX:XX,

[bridge=<dev>],[rate=<mbps>],

[tag=<vlanid>]

MODEL=	e1000,	i82551,	i82557b,

i82559er,	ne2k_isa,	ne2k_pci,

pcnet,	rtl8139,	virtio

onboot

Enables/disables	VM	auto-
start	during	the	host	node
reboot.

1;	0

sata(n)

Allows	the	volume	to	be
used	as	a	SATA	disk	or	CD-
ROM.	N	in	sata(n)	is	limited
to	0	to	5.

[volume=]volume],	[media=cdrom,

disk];
[cyls=c,heads=h,secs=s,trans=t]

[snapshot=on,	off];	[cache=none,
writethrough,	writeback,	unsafe,

directsync];	[format=f];
[backup=yes,	no];	[rerror=ignore,
report,	top];	[werror=enospc,
ignore,	report,	stop];	[aio=native,
threads]

scsi(n)

Allows	the	volume	to	be
used	as	an	SCSI	disk	or	CD-
ROM.	N	in	scsi(n)	is	limited
to	0	to	13.

[volume=volume],	[media=cdrom,

disk];[cyls=c,heads=h,
secs=s,trans=t]	[snapshot=on,	off];
[cache=none,	writethrough,

writeback,	unsafe,	directsync];
[format=f];	[backup=yes,	no];
[rerror=ignore,	report,	stop];
[werror=enospc,	ignore,	report,

stop];	[aio=native,	threads]

scsihw
SCSI	controller	type.	The
default	value	is	lsi. lsi;	megasas;	virtio-scsi-pci

shares

This	is	the	value-allocated
amount	of	RAM	for
autoballooning.	The	larger
this	value	is,	the	more	RAM
the	VM	will	get.	The	value	0
disables	this	option.	The
default	value	is	1000.

Integer	from	0	to	50000

sockets
Number	of	CPU	sockets.	The

default	value	is	1. Integer	from	1	to	N

startdate
This	option	sets	the	initial
date	of	the	real-time	clock.

now	|	YYYY-MM-DD	|	YYYY-MM-
DDTHH:MM:SS

startup

This	option	sets	the	behavior
for	VM	startup	and
shutdown.	Order	is	a	positive
integer	number,	which	sets
the	order	in	which	the	VMs
will	start.	Shutdown	follows
the	order	value	in	reverse.
The	delay	of	startup	and
shutdown	can	be	set	through
up	and	down	in	seconds.

[order=+	Int],	[up=+	Int],	[down=+

Int]

tablet

Enables/disables	the	USB
tablet	device	in	a	VM.
Without	this	option,	if
running	a	lot	of	console-only
VMs	on	one	host,	disabling
this	feature	can	save	context
switches.	The	default	value
is	1.

1;	0

unused(n)

Unused	volumes	in	a	VM.
When	a	virtual	drive	is
deleted	from	a	VM,	the
volume	does	not	get	deleted
instantly.	Instead,	the	status
changes	to	unused:
<volume_name>.	At	a	later	time,
if	the	volume	is	needed,	it
can	be	reattached	to	the	VM
by	changing	the	option	to
ide(n):	|	scsi(n):	|	sata(n):.

string

usb(n)

Enables	pass-through	direct
access	to	a	USB	device.	N
can	be	set	to	0	to	4.	When	this
option	is	used,	it	is	no	longer
possible	to	migrate	the	VM.

HOSTUSBDEVICE

Syntax	for	HOSTUSBDEVICE	is
<vendor_id:product_id>	Get
pci_device_number	from	command
#lsusb	-t

vga VM	display	type cirrus	|	std	|	vmware	|	qxl

virtio(n)

Allows	the	volume	to	be
used	as	a	VirtIO	disk.	The	n
in	virtio(n)	is	limited	to	0	to
15.

[volume=volume];	[media=cdrom,
disk],	[cyls=c,heads=h,
secs=s,trans=t];	[snapshot=on,
off];	[cache=none,	writethrough,
writeback,	unsafe,	directsync];
[format=f];	[backup=yes,	no];
[rerror=ignore,	report,	stop];
[werror=enospc,	ignore,	report,

stop];	[aio=native,	threads]

	

Arguments	in	the	KVM
configuration	file
Arguments	in	a	virtual	machine	configuration	file	are	a	way	to	extend	the
capability	of	the	VM	beyond	just	the	default.	For	example,	sound	is	not
enabled	for	a	VM	by	default.	In	order	to	give	a	VM	the	ability	to	play
audio/video,	an	argument	has	to	be	passed	through	the	VM	configuration	file.
The	following	are	some	examples	of	arguments	that	can	be	used	in	a	Proxmox
VM	configuration	file.	Arguments	can	be	added	in	the	following	format:	

args:	-<device_arguments_1>	-<device_arguments_2>	

ballon:	512	

bootdisk:	virtio0	

cores:	1	

ide2:	none,media=cdrom	

.	.	.	.	

.	.	.	.	

Enable	a	serial	device	in	a	VM	using	the	following	code:
args:	-serial	/dev/ttyS0	

Enable	sound	in	a	Windows	XP	VM	using	the	following	code:
args:	-device	AC97,addr=0x18	

Enable	sound	in	Windows	7	and	later	VMs	using	the	following	code:
args	-device	intel-hda,id=sound5,bus=pci.0,addr=0x18	-device	had-micro,id=sound5-

codec0,bus=sound5.0,cad=0	-device	had-duplex,id=sound5-codec1,bus=sound5.0,cad=1	

Enable	UUID	in	a	VM	using	this	line	of	code:
args	-uuid	fl234a93-20d32-2398-129032ds-2322	

Enable	support	for	aio=native	in	a	VM:
args:	-drive	file=/dev/VGGRP/VOL,if=virtio,index=1,cache=none,aio=native	

LXC	container	configuration	file
From	Proxmox	VE	4.0,	OpenVZ	has	been	dropped	in	favor	of	LXC
containers.	LXC	is	derived	from	OpenVZ	for	the	mainline	kernel.	One	of	the
main	advantages	of	LXC	is	that	it	can	be	used	on	top	of	the	standard	Linux
kernel	without	needing	a	special	kernel,	as	is	the	case	for	OpenVZ.

When	using	LXC,	keep	in	mind	that	live	migration	of	a	container
is	not	possible	as	of	Proxmox	VE	5.0.	The	container	will	need	to
be	powered	off	to	commit	offline	migration.

The	following	is	the	LXC	configuration	file	of	the	container	#101	in	our
example	cluster,	which	is	located	in	/etc/pve/lxc/101.conf:

LXC	container	configuration	is	much	simpler	than	OpenVZ.	As	with
OpenVZ,	there	are	no	User	Bean	Counters	in	LXCs.	It	is	worth	noting	here	that	if
your	existing	cluster	is	pre-Proxmox	VE	5	and	has	OpenVZ	containers
running,	they	cannot	be	seamlessly	upgraded	to	LXCs	during	the	Proxmox
upgrade.	All	OpenVZ	containers	must	be	powered	off,	commit	a	full	backup,
and	then	restored	in	the	upgraded	Proxmox	VE	5.	We	will	take	a	look	at	the
upgrade	process	in	detail	later	in	this	book	in	Chapter	14,	Updating/Upgrading
Proxmox.

Like	a	KVM	configuration	file,	LXC	also	uses	an	option	and	value	format	of
the	configuration	in	its	file.	Parameters	added	by	default	during	the	LXC
creation	in	Proxmox	are	mostly	self	explanatory.	Most	of	these	parameters	for
LXC	can	be	changed	through	the	Proxmox	GUI.	LXC	itself	has	got	quite	a
few	configuration	parameters,	which	cannot	be	controlled	through	the	GUI,
but	they	can	be	added	manually	through	the	CLI,	depending	on	the
requirement.	A	comprehensive	list	of	all	the	possible	configuration
parameters	for	LXC	can	be	found	at	the	link:	http://man7.org/linux/man-pages/man5/lxc.
container.conf.5.html.

http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html

Version	configuration	file
The	version	configuration	file	shows	the	version	numbers	of	configuration
files	in	the	cluster	and	is	located	under	/etc/pve/.version.	Every	time	a
configuration	file	is	edited,	the	version	number	increments	in	the	.version	file.
The	following	is	the	.version	file	in	our	cluster	at	this	moment:

There	are	no	manual	configurations	or	editing	required	in	this	file.

Member	nodes
Located	under	/etc/pve/.members,	the	member	node	file	shows	all	the	member
nodes	that	are	part	of	the	Proxmox	cluster.	It	is	a	great	way	to	see	the	cluster
status	when	the	Proxmox	GUI	becomes	inaccessible	for	any	reason.	The
following	is	the	.members	file	in	our	basic	cluster:

"nodename":	"pm4-2"	

The	nodename	section	shows	the	current	node	where	the	.members	file	is	being
accessed:

"version":	4	

The	.members	file	has	its	own	version	numbering	system.	Like	the	.version	file,
every	time	.members	is	changed,	the	version	increases	incrementally.	For
example,	when	a	node	is	added	or	removed	from	the	cluster,	the	version
number	moves	upward:

"cluster":	{	"name":	"pmx-cluster",	"version":	2,	"nodes":	2,	"quorate":	1	},	

The	previous	code	shows	the	cluster	information,	such	as	the	cluster	name,
cluster	version,	number	of	member	nodes,	and	number	of	votes	(quorate)
needed	to	form	a	quorum.

"nodelist":	{		}

Nodes	mentioned	in	the	node	list	section	provide	information	about	each
node,	such	as	the	ID,	online/offline	status,	and	IP	address.

Virtual	machine	list	file
Located	under	/etc/pve/.vmlist,	the	virtual	machine	list	file	stores	a	list	of	all
the	virtual	machines	within	the	Proxmox	cluster.	The	.vmlist	file	uses	the
following	format	to	store	the	list:

"<vmid>":	{	"node":	"<nodename>",	"type":	"<vm_type>",	"version":	<int>	}	

We	have	two	virtual	machines	and	one	template	in	our	basic	cluster.	The
following	screenshot	shows	the	information	stored	in	the	.vmlist	file:

This	list	allows	you	another	way	to	view	the	virtual	machines	list	in	the
cluster	in	all	the	nodes.	We	can	have	a	hard	copy	of	this	file	if	disaster	strikes,
making	the	cluster	inaccessible	through	GUI,	or	we	need	to	rebuild	a	virtual
environment.

The	cluster	log	file
This	is	a	log	file	for	the	cluster	itself	and	is	located	under	/etc/pve/.clusterlog.
It	mostly	maintains	a	log	of	login	authentication	of	users.

Ceph	configuration	files
Ceph	is	a	kind	of	a	distributed	object	and	file	storage	system,	which	fully
integrates	with	Proxmox.	Out	of	the	box,	Proxmox	comes	with	the	Ceph
cluster	management	option	through	the	GUI	and	a	whole	array	of	features	to
make	the	integration	as	seamless	as	possible.	We	will	dive	deep	into	Ceph	in	
Chapter	4,	Storage	Systems.	Ceph	can	be	installed	on	its	own	hardware	using
operating	systems	such	as	Ubuntu,	or	it	can	coexist	with	Proxmox	on	the
same	node.	Whether	it’s	coexisting	or	on	its	own	cluster,	Proxmox	nodes	need
access	to	the	Ceph	configuration	file	to	connect.	The	configuration	file	is
located	in	/etc/pve/ceph.conf	for	the	Proxmox+Ceph	coexisting	node.	For	non-
coexisting	Proxmox	nodes,	the	file	needs	to	be	stored	in	/etc/ceph/ceph.conf.	In
the	coexisting	node,	Proxmox	creates	a	symbolic	link	of	the	Ceph
configuration	file	in	/etc/ceph/ceph.conf.

Besides	the	configuration	file,	Ceph	also	uses	authentication	keys,	which	are
stored	in	the	following	directories:

/etc/pve/priv/ceph.client.admin.keyring	

/etc/pve/priv/ceph.mon.keyring	

/etc/pve/priv/ceph/<rbd_storage_id>.keyring	

In	order	to	connect	a	Ceph	RBD	storage,	Proxmox	requires	a	separate
keyring.	The	<rbd_storage_id>.keyring	is	simply	a	copied	and	renamed	version	of
ceph.client.admin.keyring.	Without	this	keyring,	Proxmox	will	not	be	able	to
connect	to	Ceph.	We	will	look	at	details	of	Ceph	in	Chapter	5,	Installing	and
Configuring	Ceph.

Firewall	configuration	file
As	of	Proxmox	5,	a	fully	functional	firewall	is	integrated	with	a	Proxmox
cluster.	It	is	very	powerful	and	comes	with	a	granular	customization	down	to
a	single	virtual	machine.	Firewall	rules	can	be	created	separately	for	a	cluster,
node,	and	virtual	machine.	The	following	table	shows	the	firewall	rules’	file
location:

Cluster-wide	firewall	rules /etc/pve/firewall/cluster.fw

Node	firewall	rules /etc/pve/nodes/<node_id>/host.fw

VM/CT	firewall	rules /etc/pve/firewall/cluster.fw

	

All	the	firewall	rules	can	be	managed	through	the	Proxmox	GUI	firewall
menu	without	editing	using	the	command	line.	We	will	take	a	look	at	the
firewall	in	detail	later	in	this	book	in	Chapter	9,	The	Proxmox	VE	Firewall.

It	is	worth	mentioning	that	the	Proxmox	firewall	should	be	not	a	substitute	for
the	main	gateway	firewall	where	the	internet	enters	the	facility.	There	should
be	a	dedicated	firewall	between	the	WAN	and	the	local	network.	The
Proxmox	firewall	enhances	security	by	allowing	you	to	prevent	inter-VM
communication	and	by	fine-tuning	the	incoming	and	outgoing	network	traffic.

Summary
In	this	chapter,	we	looked	at	the	location	of	the	important	configuration	files
needed	to	run	a	Proxmox	cluster.	We	also	looked	at	the	configuration	files
from	inside	to	have	a	better	understanding	of	the	parameters	used	and	other
possible	values	for	different	parameters.	As	mentioned	earlier,	most	of	these
configuration	files	can	be	changed	via	the	Proxmox	GUI.	But	when	the	GUI
becomes	inaccessible	for	any	reason,	knowing	where	these	files	are	located
can	save	a	tremendous	amount	of	time	by	accessing	them	through	the	CLI.

In	the	next	chapter,	we	will	take	a	look	at	the	various	storage	systems	that	can
be	used	with	Proxmox	and	the	different	types	of	disk	images	and	their	use
cases.

Storage	Systems
A	storage	system	is	a	medium	to	store	data	for	simultaneous	access	by
multiple	devices	or	nodes	in	a	network.	As	server	and	desktop	virtualization
becomes	the	norm,	a	proper,	stable	storage	system	today	is	much	more	critical
for	a	virtual	environment.	In	terms	of	Proxmox,	a	storage	system	is	where
virtual	disk	images	are	stored	for	both	KVM	and	container-based	virtual
machines.

Although	a	Proxmox	cluster	can	function	fully	with	Direct	Attached	Storage
(DAS)	or	a	local	storage	system	in	the	same	Proxmox	node,	a	shared	storage
system	has	many	benefits	in	a	production	environment,	such	as	increased
manageability,	seamless	storage	expansion,	and	redundancy,	just	to	name	a
few.	In	this	chapter,	we	will	cover	the	following	topics:

Local	versus	shared	storage
Virtual	disk	image	types
Storage	types	supported	by	Proxmox
Commercial	and	free	shared	storage	options
FreeNAS	as	a	low-cost	shared	storage	option

Local	or	shared,	a	storage	system	is	a	vital	component	of	a	Proxmox	cluster.
A	storage	system	is	where	all	the	virtual	machines	reside.	Therefore,	a	deeper
understanding	of	different	storage	systems	will	allow	an	administrator	to
properly	plan	storage	requirements	for	any	cluster	environment.

Local	storage	versus	shared	storage
Shared	storage	is	not	absolutely	necessary	in	a	Proxmox	cluster	environment,
but	without	a	doubt,	it	makes	storage	management	a	simpler	task.	In	a	small
business	environment,	it	may	be	adequate	not	to	have	24/7	uptime	and	100%
reliability,	so	a	local	storage	system	will	suffice.	In	most	enterprise	virtual
environments	with	critical	data,	shared	storage	is	the	only	logical	choice	due
to	the	benefits	it	brings	to	the	whole	cluster	operation.	The	following	are
considered	benefits	of	using	shared	storage:

Live	migration	of	a	virtual	machine
Seamless	expansion	of	multi-node	storage	space
Centralized	backup
Multilevel	data	tiering
Central	storage	management

Live	migration	of	a	virtual	machine
This	is	probably	one	of	the	important	sought-after	reasons	to	go	for	a	shared
storage	system.	Live	migration	is	when	a	virtual	machine	can	be	moved	to	a
different	node	without	shutting	it	down	first.	Offline	migration	is	when	the
virtual	machine	is	powered	off	prior	to	migration.	The	hardware	and	operating
systems	of	Proxmox	nodes	need	updates,	patches,	and	replacements
occasionally.	Some	updates	require	an	immediate	reboot	while	some	require
none	at	all.	The	primary	function	of	Proxmox	nodes	in	a	cluster	is	to	run
virtual	machines.	When	a	node	needs	to	be	rebooted,	all	the	running	VMs
must	be	stopped	or	migrated	to	other	nodes.	Then,	migrate	them	back	to	the
original	node	after	the	reboot	cycle	is	complete.	In	Proxmox,	a	powered-on
VM	cannot	be	migrated	using	live	migration	without	powering	it	down	first	if
the	VM	is	on	the	local	disk	of	the	node	in	question.	If	a	total	Proxmox	node
failure	occurs	for	any	reason,	all	the	VMs	stored	in	that	node	will	be
completely	unavailable	until	the	node	is	fixed	or	replaced.	This	is	because
VMs	cannot	be	accessed	to	be	moved	to	a	different	node	until	the	issue	node
is	powered	up.

In	most	cases,	shutting	down	all	the	VMs	just	to	reboot	the	host	node	is	not	an
option.	This	causes	too	much	downtime	depending	on	the	number	of	VMs	the
node	handles.	In	order	to	migrate	locally	stored	VMs,	they	must	be	stopped
and	then	migration	should	be	initiated	from	the	Proxmox	GUI.	Migration
from	one	local	storage	to	another	local	storage	takes	a	long	time,	depending
on	the	size	of	the	VM,	since	Proxmox	moves	an	entire	image	file	using	rsync
to	relocate	the	VM	to	another	node.	Let’s	take	a	look	at	the	following	diagram
of	a	cluster	with	40	locally	stored	virtual	machines	with	10	on	each	of	the	four
Proxmox	nodes:

In	the	preceding	overly	simplified	diagram,	there	are	four	Proxmox	nodes
with	10	virtual	machines	on	each.	If	node	01	needs	to	reboot	to	apply	an
update	or	hardware	upgrade,	all	the	10	virtual	machines	have	to	be	stopped,
the	node	needs	to	be	rebooted,	and	then	all	the	virtual	machines	must	be
powered	up.	If	node	01	fails	completely,	then	all	these	10	virtual	machines
will	be	inaccessible	until	node	01	is	back	on	again.

So	clearly,	a	cluster	setup	with	local	storage	for	virtual	machines	can	cause
unwanted	downtime	when	migration	is	needed.	Now,	let’s	take	a	look	at	the
following	diagram	where	four	Proxmox	nodes	with	40	virtual	machines	are
stored	on	a	shared	storage	system:

In	the	preceding	diagram,	all	the	40	virtual	machines	are	stored	on	a	shared
storage	system.	The	Proxmox	node	only	holds	the	configuration	files	for	each
virtual	machine.	In	this	scenario,	if	node	01	needs	to	be	rebooted	due	to	a
security	patch	or	update,	all	the	virtual	machines	can	be	simply	migrated	to
another	node	without	powering	down	a	single	virtual	machine.	A	virtual
machine	user	will	never	notice	that	their	machine	has	actually	moved	to	a
different	node.	If	a	total	Proxmox	node	failure	occurs,	the	virtual	machine
configuration	file	can	simply	be	manually	moved	from
/etc/pve/nodes/node01/qemu-server/<vmid>.conf	to	/etc/pve/nodes/node02/qemu-
server/<vmid>.conf.

We	can	also	leverage	another	feature	in	Proxmox	known	as	high
availability	to	automate	the	VM	configuration	file	to	move
during	node	failure.	Refer	to	Chapter	10,	Proxmox	High
Availability,	to	learn	about	this	feature.

Since	all	the	virtual	machine	configuration	files	are	in	a	Proxmox	clustered
file	system	(pmxcfs),	they	can	be	accessed	from	any	node.	Refer	to	Chapter	3,
Proxmox	under	the	Hood,	for	details	on	the	pmxcfs.	With	virtual	machine
image	files	on	shared	storage,	Proxmox	migration	does	not	have	to	move	all
the	image	files	using	rsync	from	one	node	to	another,	which	allows	much

faster	virtual	machine	migration.

The	rsync	is	an	open	source	program	and	network	protocol	for
Unix-based	systems.	It	provides	nonencrypted	or	encrypted
incremental	file	transfers	from	one	location	to	another.

When	live-migrating	a	VM,	keep	in	mind	that	the	more	memory	(RAM)
allocated	to	the	VM,	the	longer	it	will	take	to	live-migrate	a	powered-on
virtual	machine	since	the	migration	process	will	need	to	copy	the	entire
memory	contents.	Failure	to	do	so	may	cause	data	corruption	since	the	data	in
memory	may	not	have	been	written	to	the	disk	image.

It	should	be	noted	that	shared	storage	can	cause	a	single	point	of	failure	if	a
single	node-based	shared	storage	solution	is	set	up,	such	as	FreeNAS	or
NAS4Free	without	high	availability	configured.	Using	multinode	or
distributed	shared	storage	such	as	Ceph,	Gluster,	or	DRBD,	the	single	point	of
failure	can	be	eliminated.	On	a	single-node	shared	storage,	all	virtual
machines	are	stored	on	one	node.	If	node	failure	occurs,	the	storage	will
become	inaccessible	by	a	Proxmox	cluster,	thus	rendering	all	the	running
virtual	machines	unusable.

As	of	Proxmox	VE	5.0,	LXC	containers	cannot	be	live-migrated.
They	will	need	to	be	powered	off	to	commit	offline	migration.
KVM	VMs	can	be	live-migrated	without	shutting	down.

Seamless	expansion	of	multinode
storage	space
Digital	data	is	growing	faster	than	ever	before	in	our	modern	24/7	digitally
connected	world.	The	growth	has	been	exponential	since	the	introduction	of
virtualization.	Since	it	is	much	easier	to	set	up	a	virtual	server	at	a	moment’s
notice,	an	administrator	can	simply	clone	a	virtual	server	template,	and	within
minutes,	a	new	virtual	server	is	up	and	running	while	consuming	storage
space.	If	left	unchecked,	this	regular	creating	and	retiring	of	virtual	machines
can	force	a	company	to	grow	out	of	available	storage	space.	A	distributed
shared	storage	system	is	designed	keeping	this	very	specific	requirement	in
mind.

In	an	enterprise	environment,	storage	space	should	increase	on	demand
without	shutting	down	or	interrupting	critical	nodes	or	virtual	machines.
Using	a	multinode	or	distributed	shared	storage	system,	virtual	machines	can
now	go	beyond	few-node	local	clusters	to	scattered	multiple	nodes	spanned
across	geographical	regions.	For	example,	Ceph	or	Gluster	can	span	across
several	racks	and	comprise	well	over	several	petabytes	of	usable	storage
space.	Simply	add	a	new	node	with	a	full	bay	of	drives	and	then	tell	the
storage	cluster	to	recognize	the	new	node	to	increase	storage	space	for	the
entire	cluster.	Since	shared	storage	is	separated	from	the	virtual	machine	host
nodes,	storage	can	be	increased	or	decreased	without	disturbing	any	running
virtual	machines.	In	Chapter	5,	Installing	and	Configuring	Ceph,	we	will	see
how	we	can	integrate	Ceph	into	a	Proxmox	cluster.

Centralized	backup
Shared	storage	makes	centralized	backup	possible	by	allowing	each	virtual
machine	host	node	to	create	a	backup	in	one	central	location.	This	helps	a
backup	manager	or	an	administrator	to	implement	a	solid	backup	plan	and
manage	the	existing	backups.	Since	a	Proxmox	node	failure	will	not	take	the
shared	storage	system	down,	virtual	machines	can	be	easily	restored	to	a	new
node	to	reduce	downtime.

Always	use	a	separate	node	for	backup	purposes.	It	is	not	a
wise	practice	to	store	both	virtual	machines	and	their	backups
on	the	same	node.

Multilevel	data	tiering
Data	tiering	is	a	concept	where	different	files	can	be	stored	on	different
storage	pools	based	on	their	performance	requirements.	For	example,	a	virtual
file	server	can	provide	very	fast	service	if	its	VM	is	stored	in	an	SSD	storage
pool,	whereas	a	virtual	backup	server	can	be	stored	on	slower	HDD	storage
since	backup	files	are	not	frequently	accessed	and	thus	do	not	require	very
fast	I/O.	Tiering	can	be	set	up	using	different	shared	storage	nodes	with
different	performance	levels.	It	can	also	be	set	up	on	the	same	node	by
assigning	volumes	or	pools	to	specific	sets	of	drives.

Central	storage	management
By	separating	shared	storage	clusters	from	primary	Proxmox	clusters,	we	can
manage	two	clusters	without	them	interfering	with	each	other.	Since	shared
storage	systems	can	be	set	up	with	separate	nodes	and	physical	switches,
managing	them	based	on	different	authorizations	and	permissions	becomes	an
easier	task.	NAS,	SAN,	and	other	types	of	shared	storage	solutions	come	with
their	own	management	programs	from	where	an	administrator	or	operator	can
check	storage	cluster	health,	disk	status,	free	space,	and	so	on.	The	Ceph
storage	is	configured	via	CLI,	but	Proxmox	has	integrated	a	great	deal	of
Ceph	management	options	within	the	Proxmox	GUI,	which	makes	Ceph
cluster	management	much	easier.	Using	the	API,	Proxmox	can	now	collect
the	Ceph	cluster	data	and	display	it	through	the	Proxmox	GUI,	as	shown	in
the	following	screenshot:

Other	NAS	solutions	such	as	FreeNAS,	OpenMediaVault,	and	NAS4Free	also
have	a	GUI	that	simplifies	management.	The	following	screenshot	is	an
example	of	the	hard	drive	status	from	a	FreeNAS	GUI	window:

Local	and	shared	storage
comparison
The	following	table	is	a	comparison	of	both	the	local	and	shared	storage	for	a
quick	reference:

Features Local	storage Shared	storage

VM	live
migration No Yes

High
availability No

Yes,	when	used	in
distributed	shared
storage

Cost Lower Significantly	higher

I/O
performance Native	disk	drive	speed Slower	than	the	native

disk	drive	speed

Skill
requirements No	special	storage	skills	required

Must	be	skilled	in	the
shared	storage	option
used

Expandability Limited	to	available	drive	bays	of	a	node

Expandable	over
multiple	nodes	or
racks	when	multinode
or	distributed	shared
storage	is	used

Maintenance
complexity Virtually	maintenance	free

Storage	nodes	or
clusters	require
regular	monitoring

A	virtual	disk	image
A	virtual	disk	image	is	a	file	or	group	of	files	in	which	a	virtual	machine
stores	its	data.	In	Proxmox,	a	VM	configuration	file	can	be	recreated	and	used
to	attach	a	disk	image.	But	if	the	image	itself	is	lost,	it	can	only	be	restored
from	a	backup.	There	are	different	types	of	virtual	disk	image	formats
available	to	be	used	with	a	virtual	machine.	It	is	essential	to	know	the
different	types	of	image	formats	in	order	to	have	an	optimally	performing
VM.	Knowing	the	disk	images	also	helps	prevent	the	premature	shortage	of
space,	which	may	occur	by	over-provisioning	virtual	disks.

Supported	image	formats
Proxmox	supports	the	.raw,	.qcow2,	and	.vmdk	virtual	disk	formats.	Each	format
has	its	own	set	of	strengths	and	weaknesses.	The	image	format	is	usually
chosen	based	on	the	function	of	the	virtual	machine,	storage	system	in	use,
performance	requirement,	and	available	budget.	The	following	screenshot
shows	the	menu	where	we	can	choose	an	image	type	during	virtual	disk
creation	through	the	GUI:

The	following	table	is	a	brief	summary	of	the	different	image	formats	and
their	possible	usage:

Image	type Storage	supported Strength

.qcow2 NFS	and	directory

Allows	dynamic	virtual	storage	of	image
files.
Stable	and	secure.
Most	feature	rich	among	image	types.

.raw
LVM,	RBD,	iSCSI,
and	directory

No	additional	software	layer.	Direct
access	to	image	files.	
Stable,	secure,	and	fastest.

.vmdk NFS	and	directory

Works	exceptionally	well	with	the
VMware	infrastructure.
Allows	dynamic	virtual	storage	of	image
files.

Proxmox	is	very	forgiving	with	setting	up	virtual	machines	with
the	wrong	image	format.	You	can	always	convert	these	image
types	from	one	format	to	another.	Conversion	can	be	done	from
both	the	CLI	and	GUI.	Virtual	disk	image	conversion	is
explained	later	in	this	chapter.

The	.qcow2	images
The	.qcow2	type	is	a	very	stable	VM	image	format.	Proxmox	fully	supports	this
file	format.	A	VM	disk	created	using	.qcow2	is	much	smaller	since	by	default	it
creates	thin-provisioned	disk	images.	For	example,	an	Ubuntu	VM	created
with	50	GB	storage	space	may	have	an	image	file	with	a	size	around	1	GB.
As	a	user	stores	data	in	the	VM,	this	image	file	will	grow	gradually.	The	.qcow2
image	format	allows	an	administrator	to	over-provision	VMs	with	the	.qcow2
disk	image	file.	If	not	monitored	regularly,	the	shared	storage	will	run	out	of
space	to	accommodate	all	the	growing	virtual	image	files.	Available	storage
space	should	be	regularly	monitored	in	such	an	environment.	It	is	a	good
practice	to	add	additional	storage	space	when	the	overall	storage	space
consumption	reaches	around	80%.

Thin	provisioning	is	when	the	virtual	disk	image	file	does	not
preallocate	all	the	blocks,	thus	keeping	the	size	of	the	image	file
to	only	what	we	want.	As	more	data	is	stored	in	the	virtual
machine,	the	thin-provisioned	image	file	grows	until	it	reaches
the	maximum	size	allocated.	Thick	provisioning,	on	the	other
hand,	is	when	the	virtual	disk	image	file	preallocates	all	the
blocks,	thus	creating	an	image	file	that	is	exactly	the	size	set
when	creating	it.

The	.qcow2	format	also	has	a	very	high	I/O	overhead	due	to	its	additional
software	layer.	Thus,	it	is	a	bad	choice	of	image	format	for	a	VM	such	as	a
database	server.	Any	data	being	read	or	written	into	the	image	format	goes
through	the	.qcow2	software	layer,	which	increases	the	I/O,	making	it	slower.	A
VM	backup	created	with	a	.qcow2	image	can	only	be	restored	to	an	NFS	or
local	directory.

When	budget	is	the	main	concern	and	storage	space	is	very	limited,	.qcow2	is
an	excellent	choice.	This	image	type	supports	KVM	live	snapshots	to
preserve	states	of	virtual	machines.

The	.raw	image	type
The	.raw	image	type	is	also	a	very	stable	and	mature	VM	image	format.	Its
primary	strength	lies	in	performance.	There	is	no	additional	software	layer	for
data	to	go	through.	A	VM	has	direct	pass-through	access	to	the	.raw	file,
which	makes	it	much	faster.	Also,	there	is	no	software	component	attached	to
it,	so	it	is	much	less	problem	prone.	The	.raw	format	can	only	create	a	fixed-
size	or	thick-provisioned	VM	image	file.	For	example,	an	Ubuntu	VM	created
with	50	GB	storage	space	will	have	a	50	GB	image	file.	This	helps	an
administrator	to	know	exactly	how	much	storage	is	in	use,	so	there	is	no
chance	of	an	uncontrolled	out-of-storage	situation.

The	.raw	type	is	the	preferred	file	format	for	all	Proxmox	VMs.	A	.raw	image
format	VM	can	be	restored	to	just	about	any	storage	type.	In	a	virtual
environment,	additional	virtual	disk	image	files	can	be	added	to	a	virtual
machine	at	any	time.	So	it	is	not	necessary	to	initially	allocate	a	larger-size
.raw	virtual	disk	image	file	with	possible	future	growth	in	mind.	The	VM	can
start	with	a	smaller	.raw	image	file	and	add	more	disk	images	as	needed.	For
example,	a	VM	with	50	GB	data	starts	with	an	80	GB	.raw	image	file.	Then,
increase	the	size	of	the	disk	image	or	add	more	virtual	disk	images	as	the	need
arises.	The	concept	is	much	like	adding	new	hard	drives	to	a	server	to
increase	overall	space.

Since	all	the	.raw	disk	image	files	are	preallocated,	there	are	no	risks	of	over-
provisioning	beyond	the	total	available	storage	space.	KVM	live	snapshots
are	also	supported	by	the	.raw	image	format.	There	are	some	shared	storage
solutions	that	only	support	the	.raw	disk	image.	Ceph	RBD	is	one	example.	As
of	Proxmox	VE	4.1,	we	can	only	store	the	.raw	virtual	disk	image	on	Ceph
block	devices.	But	the	Ceph	FileSystem	(CephFS)	supports	all	the	virtual
disk	images.	CephFS	is	one	of	the	three	storage	types	supported	on	the	Ceph
platform.	Currently,	there	are	no	direct	storage	plugins	for	CephFS	in
Proxmox,	only	for	RBD.	But	we	can	connect	CephFS	to	Proxmox	as	an	NFS
share.

The	.vmdk	image	type
The	.vmdk	image	format	is	very	common	in	the	VMware	infrastructure.	The
main	advantage	of	Proxmox	supporting	.vmdk	is	the	ease	of	VM	migration
from	VMware	to	a	Proxmox	cluster.	A	VM	created	in	VMware	with	the	.vmdk
image	format	can	easily	be	configured	to	be	used	in	a	Proxmox	cluster	and
converted.	There	are	no	benefits	to	keeping	a	virtual	disk	image	file	in	the
.vmdk	format,	except	during	a	transitional	period,	such	as	converting	virtual
machines	from	a	VMware	infrastructure.

Virtual	device	types
Virtual	device	types	emulate	the	bus	or	device	nature	of	physical	drives.
Proxmox	allows	quite	a	few	additional	virtual	drives	to	be	added	to	a	VM.
The	following	table	shows	the	bus	types	supported	in	Proxmox	and	the
maximum	number	of	allowed	disk	devices	per	VM	by	Proxmox:

Bus/device	type Maximum	allowed

IDE 3

SATA 5

VirtIO 15

SCSI 13

	

Out	of	four	supported	bus	types,	the	VirtIO	bus	type	gives	the	maximum
performance	in	almost	all	situations.	VirtIO	disk	images	are	recognized	by
Linux	without	any	additional	work	during	OS	installation.	However,	when
installing	Windows	in	a	VM,	VirtIO	drives	are	not	recognized.	Additional
VirtIO	drives	need	to	be	added	at	the	time	of	Windows	installation.	We	will
look	into	best	practices	for	using	the	VirtIO	bus	type	with	Windows	OSes
later	in	this	chapter.

Managing	disk	images
A	Proxmox	virtual	image	file	can	be	managed	from	both	the	WebGUI	and
CLI.	The	WebGUI	allows	the	administrator	to	use	the	add,	resize	(increase
only),	move,	throttling,	and	delete	options,	as	shown	in	the	following
screenshot:

To	make	any	changes	to	a	virtual	disk	image	file,	the	image	must	be	selected
first	from	the	Hardware	tab,	as	shown	in	the	preceding	screenshot.	Virtual
machine	image	files	can	also	be	manipulated	using	CLI	commands.	The
following	table	shows	a	few	examples	of	the	most	common	commands	used
to	delete,	convert,	and	resize	an	image	file:

Command Function

#qemu-img	create	-f	<type>	-o	<filename>	<size>

#qemu-img	create	-f	raw	-o	test.raw	size=1024M	 Creates	an	image	file

#qemu-img	convert	<source>	-O	<type>	<destination>

#qemu-img	convert	test.vmdk	-O	qcow2	test.qcow2 Converts	an	image	file

#qemu-img	resize	<filename>	<+|-><size>

#qemu-img	resize	test.qcow2	+1024M Resizes	an	image	file

Resizing	a	virtual	disk	image
The	Resize	disk	option	only	supports	increasing	the	size	of	the	virtual	disk
image	file.	It	has	no	shrink	function.	The	Proxmox	Resize	disk	option	only
adjusts	the	size	of	the	virtual	disk	image	file.	After	any	resizing,	the	partition
must	be	adjusted	from	inside	the	VM.	The	safest	way	to	resize	partitions	is	to
boot	a	Linux-based	virtual	machine	with	a	partitioning	ISO	image,	such	as
GParted	(http://gparted.org/download.php),	and	then	resize	the	partitions	using	the
GParted	graphical	interface.	It	is	also	possible	to	perform	an	online	partition
resizing	while	the	virtual	machine	is	powered	on.	Resizing	a	virtual	disk
image	file	involves	the	following	three	steps:

1.	 Resize	virtual	disk	image	file	in	Proxmox:
From	GUI:	Select	the	virtual	disk,	and	then	click	on	Resize	disk.
From	CLI:	Run	the	following	command:

																#	qm	resize	<vm_id>	<virtual_disk>	+<size>G				

2.	 Resize	the	partition	of	the	virtual	disk	image	file	from	inside	the	VM:
For	Windows	VMs:	Resize	the	disk	by	going	to	Computer
Management	under	Administrative	Tools.
For	Linux	VMs	with	RAW	partitions:	Run	the	following
command:

																#	cfdisk	<disk_image>

For	Linux	VMs	with	LVM	partitions:	Run	the	following
command:

																#	cfdisk	</dev/XXX/disk_image>				

For	Linux	VMs	with	QCOW2	partitions:	Run	the	following
commands:

																#	apt-get	install	nbd-client

																#	qemu-nbd	--connect	/dev/nbd0	<disk_image>

																#	cfdisk	/dev/nbd0

																#	qemu-nbd	-d	/dev/nbd0

3.	 Resize	the	filesystem	in	the	partition	of	the	virtual	disk	image	file:
For	a	Linux	client	with	LVM:	Run	the	following	commands:

																#	pvscan		(find	PV	name)

http://gparted.org/download.php

																#	pvresize	/dev/xxx		(/dev/xxx	found	from	pvscan)

																#	lvscan	(find	LVname)

																#	lvresize	-L+<size>G	/dev/xxx/lv_<disk>				

To	use	100%	free	space:	Run	the	following	commands:

																#	lvresize	-l	+100%FREE	/dev/xxx/lv_<disk>

																#	resize2fs	/dev/xxx/lv_<disk>	(resize	filesystem)				

Steps	2	and	3	are	necessary	only	if	online	resizing	is	done
without	shutting	down	a	VM.	If	GParted	or	another	bootable
partitioning	medium	is	used,	then	only	step	1	is	needed	before
booting	the	VM	with	an	ISO.

Moving	a	virtual	disk	image
Move	disk	allows	the	image	file	to	be	moved	to	a	different	storage	or
converted	to	a	different	image	type:

	

In	the	Move	disk	option	menu,	just	select	the	Target	Storage	and	Format	type,
and	then	click	on	Move	disk	to	move	the	image	file.	Moving	can	be	done	live
without	shutting	down	the	VM.

The	Format	type	in	the	Move	disk	option	will	be	greyed	out	if	the
destination	storage	only	supports	one	image	format	type.	In	the
preceding	screenshot,	ssd-ceph-01	is	an	RBD	storage	in	a	Ceph
pool.	Since	RBD	only	supports	the	RAW	format,	the	format	type
has	been	greyed	out	automatically.

Clicking	on	Delete	source	will	delete	the	source	image	file	after	the	moving	is
complete.

Note	that	if	the	virtual	machine	has	any	snapshots,	Proxmox	will	not	be	able
to	delete	the	source	file	automatically.	In	such	cases,	the	disk	image	has	to	be
manually	deleted	after	the	snapshots	are	removed.	The	source	image	will	be
listed	as	Unused	disk	0,	as	shown	in	the	following	screenshot,	after	the
moving	is	done	for	a	disk	image	with	snapshots:

Throttling	a	virtual	disk	image
Proxmox	allows	throttling	or	setting	a	limit	on	the	read/write	speed	and
input/output	operations	per	second	(IOPS)	for	each	virtual	disk	image.	By
default,	there	are	no	set	limits.	Each	disk	image	will	try	to	read	and	write	at
the	maximum	speed	achievable	in	the	storage	where	the	disk	image	is	being
stored.	For	example,	if	a	disk	image	is	stored	on	a	local	storage,	it	will	try	to
perform	read	and	write	operations	at	about	110	MB/s	since	that	is	the
theoretical	limit	of	a	SATA	drive.	This	performance	will	vary	in	different
storage	options.	In	a	multi-tenant	or	large	environment,	if	all	the	disk	images
are	not	throttled	without	any	limit,	this	may	put	pressure	on	the	network
and/or	storage	bandwidth.	By	throttling,	we	can	control	the	bandwidth	that
each	disk	image	can	utilize.	The	Disk	Throttle	option	is	available	on	the
Hardware	tab	of	a	VM.	The	following	screenshot	shows	the	Disk	Throttle
dialog	box	with	the	option	to	set	limits:

When	it	comes	to	disk	throttling,	there’s	no	one-size-fits-all	limit.	The	set
limit	is	going	to	vastly	vary	for	different	storage	used	in	the	cluster
environment	and	the	amount	of	load	each	VM	carries.	Depending	on	the	type
of	storage	used,	it	may	be	necessary	to	just	set	write	or	read,	or	both,	limits.
For	example,	a	Ceph	storage	cluster	with	an	SSD	journal	may	have	a	much
higher	write	speed	than	the	read	speed.	So	throttling	a	VM	with	a	higher	read
limit	while	setting	a	lower	write	limit	may	be	a	viable	option.

As	mentioned	earlier,	we	can	set	a	limit	based	on	MB/s	or	OP/s.	Setting	the
MB/s	limit	is	much	simpler	since	we	can	quantify	the	read/write	speed	of	a
disk	drive	or	network	in	megabytes	much	more	easily.	For	example,	a
standard	SATA	drive	can	achieve	a	theoretical	speed	of	115	MB/s	while	a
gigabit	network	can	achieve	about	100	MB/s.	Knowing	the	performance	in

IOPS	or	OP/s	requires	some	extra	steps.	In	some	storage	systems,	we	can
integrate	some	forms	of	monitoring,	which	can	present	us	the	IOPS	data	in
real	time.	For	others,	we	need	to	calculate	the	IOPS	data	to	know	the
performance	matrix	of	the	storage	system	used.	The	complete	details	of	the
IOPS	calculation	are	beyond	the	scope	of	this	book.	But	the	following
guidelines	should	serve	as	a	starting	point	to	calculate	the	OP/s	of	different
storage	devices:

OP/s	for	a	single	7200-RPM	SATA	disk:

IOPS	=	1/(avg.	latency	in	seconds	+	avg.	seek	time	in	seconds)

Based	on	the	previous	formula,	we	can	calculate	IOPS	of	a	standard	SSD
device.	To	get	the	average	latency	and	seek	time	of	a	device,	we	can	use	the
Linux	tool	ioping.	It	is	not	installed	in	Proxmox	by	default.	We	can	install	it
using	the	following	command:

#	apt-get	install	ioping		

The	ioping	tool	is	similar	to	the	iperf	command	but	for	disk	drives.	The
following	command	will	show	the	IO	latency	of	our	example	SSD	device:

#	ioping	/dev/sda

The	following	screenshot	shows	that	the	result	of	ioping	for	average	latency	is
1.79	milliseconds	or	0.00179	seconds:

	

To	get	the	average	seek	time	of	a	device,	we	need	to	run	the	following	ioping
command:

#	ioping	-R	/dev/sda		

The	following	screenshot	shows	that	the	result	of	ioping	for	average	seek	time
is	133	microseconds	or	0.000133	seconds:

	

Using	the	gathered	results,	we	can	calculate	the	IOPS	or	OP/s	of	the	SSD
device,	as	follows:

IOPS	=	1	/	(0.00179	+	0.000133)	=	520

If	we	know	the	maximum	IOPS	a	storage	medium	can	provide,	we	can	tweak

each	VM	with	OP/s	throttling	to	prevent	IO	issues	in	the	cluster.	As	of
Proxmox	VE	4.1,	we	cannot	set	a	cluster-wide	throttling	limit.	Each	disk
image	needs	manual	throttling	separately.

Caching	a	virtual	disk	image
Caching	a	virtual	disk	image	provides	performance	and	in	some	instances
protection	against	an	ungraceful	VM	shutdown.	Not	all	caching	is	safe	to	use.
For	optimum	VM	performance,	it	is	important	to	be	aware	of	the	various
caching	offered	in	Proxmox.	This	option	is	available	under	the	VM	Hardware
tab	in	the	disk	image	creation	or	edit	dialog	box.	The	following	screenshot
shows	the	disk	image’s	edit	dialog	box	with	the	caching	drop-down	menu	for
the	.raw	disk	image	of	our	example	VM:

As	of	Proxmox	VE	5.0,	the	following	caching	options	are	available:

Cache	option Description

Direct	sync

In	this	cache	option,	the	Proxmox	host	does	not	do	any
caching,	but	a	VM	disk	image	uses	the	write-through	cache.
In	this	cache,	writes	are	only	acknowledged	when	data	has
been	committed	to	the	storage	device.	Direct	sync	is
recommended	for	VMs	that	do	not	send	flushes	when
required.	This	is	a	safer	cache	as	data	is	not	lost	during	a
power	failure	but	it	is	also	slower.

Write	through

In	this	cache	option,	the	Proxmox	host	page	cache	is
enabled	while	the	VM	disk	write	cache	is	disabled.	This
cache	provides	good	read	performance	but	slow	write
performance	due	to	the	write	cache	being	disabled.	This	is	a
safer	cache	as	it	ensures	data	integrity.	This	cache	is
recommended	for	local	or	direct	attached	storage.

Write	back

In	this	cache	option,	both	read	and	write	caching	is	done	by
the	host.	Writes	are	acknowledged	by	the	VM	disk	as
completed	as	soon	as	they	are	committed	to	the	host	cache
regardless	of	whether	they	have	been	committed	to	storage
or	not.	Data	loss	will	occur	for	VMs	in	this	cache.

Write	back	(unsafe)

This	cache	is	the	same	as	Write	back	except	that	all	flushes
are	completely	ignored	by	the	guest	VM.	This	is	the	fastest
cache	although	the	most	unsafe.	This	cache	should	never	be
used	in	a	production	cluster.	Usually,	this	cache	is	used	to
speed	up	OS	installation	in	a	VM.	After	the	VM
installation,	this	cache	should	be	disabled	and	reverted	to	a
different	safer	cache	option.

No	cache

This	is	the	default	caching	option	in	Proxmox.	In	this
option,	no	caching	occurs	at	the	host	level,	but	the	guest
VM	does	write-back	caching.	The	VM	disk	directly
receives	a	write	acknowledgment	from	the	storage	device	in
this	cache	option.	Data	can	be	lost	in	this	cache	during	an
abrupt	host	shutdown	due	to	a	power	failure.

	

Not	all	cache	types	will	provide	the	same	performance	in	all	virtual
environments.	Every	VM’s	workload	is	different.	So	choosing	various	cache
types	and	observing	the	performance	of	the	VM	is	necessary	to	find	out	which
caching	works	best	for	a	particular	VM.

VirtIO	bus	type	for	Windows	VMs
VirtIO	disk	images	are	automatically	recognized	by	Linux	VMs	since	all
Linux	flavors	come	equipped	with	VirtIO	drivers.	Windows	operating
systems,	however,	do	not.	We	can	follow	two	methods	to	use	the	VirtIO	disk
type	with	Windows.

First,	download	the	VirtIO	drivers	for	Windows	in	ISO	format	from	the
following	link:
https://fedoraproject.org/wiki/Windows_Virtio_Drivers

After	downloading	the	ISO	image	file,	simply	upload	it	to	a	storage	attached
to	Proxmox	so	we	can	make	it	available	to	any	VM.	Note	that	the	ISO	image
holds	drivers	for	not	just	the	VirtIO	disk	device	but	also	the	VirtIO	network
interface.	

https://fedoraproject.org/wiki/Windows_Virtio_Drivers

Installing	VirtIO	drivers	during
Windows	installation
In	the	first	method,	we	can	load	the	VirtIO	drivers	during	Windows
installation	through	the	following	steps:

1.	 Add	two	CD/DVD	drives	when	creating	the	Windows	VM.	The	first
drive	is	to	load	the	Windows	installer	and	the	other	one	to	load	the
VirtIO	ISO	image.	

2.	 Start	Windows	installation	and	click	on	Load	driver	as	shown	in	the
following	screenshot:

3.	 Go	to	Browse	to	select	the	drive	with	the	VirtIO	ISO	image,	and	then
navigate	to	the	driver	folder.	The	driver	for	the	VirtIO	disk	image	is
usually	stored	in	\\<DriveLetter>\viostor\<windows_version>\amd6.

4.	 After	selecting	the	folder,	it	should	show	you	the	available	drivers	for	the

VirtIO	disk	image,	which	is	also	known	as	Red	Hat	VirtIO	SCSI
controller,	as	shown	in	the	following	screenshot:

	

5.	 Select	the	driver	and	continue	with	the	Windows	installation	as	usual.

Installing	VirtIO	drivers	after
Windows	installation
This	method	is	useful	when	Windows	is	already	installed	on	a	VM	and	you
need	to	convert	existing	IDE/SATA	disk	images	to	VirtIO	type.	In	this
method,	the	VirtIO	driver	must	be	loaded	before	the	main	OS	disk	image	is
changed	to	the	VirtIO	bus	type.	The	following	steps	are	how	we	can	change
the	bus	type	of	the	main	Windows	OS	disk	image	after	Windows	has	already
been	installed	on	a	non-VirtIO	disk:

1.	 Create	a	small	additional	disk	image.
2.	 Log	in	to	Windows	and	load	the	VirtIO	drive	ISO	image.
3.	 Install	drivers	so	the	additional	VirtIO	disk	image	is	recognized	and

configured	by	Windows.
4.	 Shut	down	Windows,	change	the	main	OS	disk	image	to	VirtIO	type,	and

delete	the	additional	disk	image.	
5.	 Restart	Windows.

Storage	types	in	Proxmox
Proxmox	has	excellent	plugins	for	the	mainstream	storage	options.	In	this
section,	we	are	going	to	see	which	storage	plugins	are	integrated	into
Proxmox	and	also	see	how	to	use	them	to	connect	to	different	storage	types	in
Proxmox.	The	following	are	the	storage	types	that	are	natively	supported	as	of
Proxmox	VE	5.0:

Directory
LVM
NFS
ZFS
Ceph	RBD
GlusterFS

Directory
The	Directory	storage	is	a	mounted	folder	on	the	Proxmox	local	node.	It	is
mainly	used	as	local	storage.	But	we	can	also	mount	a	remote	folder	in	a
different	node	and	use	that	mount	point	to	create	a	new	Directory	storage.	By
default,	this	location	is	mounted	under	/var/lib/vz.

Any	VM	stored	in	this	Directory	storage	does	not	allow	live	migration.	The
VM	must	be	stopped	before	migrating	to	another	node.	All	virtual	disk	image
file	types	can	be	stored	in	the	Directory	storage.	To	create	a	new	storage	with	a
mount	point,	go	to	Datacenter	|	Storage,	and	click	on	Add	to	select	the	Directory
plugin.	The	following	screenshot	shows	the	Add:	Directory	storage	dialog
box,	where	we	can	add	storage	named	local-iso,	which	is	mounted	at	/mnt/iso,
to	store	the	ISO	and	container	templates:

For	locally	mounted	storage,	selecting	the	Shared	checkbox	is	not	necessary.
This	option	only	pertains	to	a	shared	storage	system,	such	as	NFS	and	RBD.

iSCSI
Internet	Small	Computer	Systems	Interface,	which	stands	for	iSCSI,	is
based	on	Internet	Protocol,	which	allows	the	transmission	of	SCSI	commands
over	a	standard	IP-based	network.	iSCSI	devices	can	be	set	up	locally	or	over
a	vast	distance	to	provide	storage	options.	We	cannot	store	virtual	disk	images
directly	on	an	iSCSI	device,	but	we	can	configure	LVM	storage	on	top	of	the
iSCSI	devices	and	then	store	disk	images.	An	attached	iSCSI	device	appears
as	if	it	were	physically	connected	even	if	the	device	is	stored	in	another
remote	node.

For	more	details	on	iSCSI,	refer	to	the	following	link:
http://en.wikipedia.org/wiki/ISCSI

We	will	assume	that	you	already	have	an	iSCSI	device	created	in	a	remote
node	using	FreeNAS	or	any	other	Linux	distribution.	To	add	the	device	to
Proxmox,	we	are	going	to	use	the	iSCSI	storage	plugin,	which	we	can	find	by
navigating	to	the	Datacenter	|	Storage	|	Add	menu.	As	shown	in	the	following
screenshot,	we	are	adding	an	iSCSI	target	named	test1-iSCSI,	which	is
configured	in	a	remote	node,	172.16.2.10:

Note	that	using	LUNs	directly	is	not	recommended,	although	the	option	to
enable	them	is	available.	It	is	known	to	cause	an	iSCSI	device	error	when
accessed	directly.

http://en.wikipedia.org/wiki/ISCSI

Logical	Volume	Management
Logical	Volume	Management	(LVM)	provides	a	method	of	storage	space
allocation	by	using	one	or	more	disk	partitions	or	drives	as	the	underlying
base	storage.	LVM	storage	requires	a	base	storage	to	be	set	up	and	function
properly.	We	can	create	LVM	storage	with	local	devices	as	backing	or
network	backing	with	iSCSI	devices.	LVM	allows	scalable	storage	space
since	the	base	storage	can	be	on	the	same	node	or	on	a	different	one.	LVM
storage	only	supports	the	RAW	virtual	disk	image	format.	We	can	only	store
virtual	disk	images	or	containers	on	LVM	storage.

For	more	details	on	LVM,	refer	to	the	following	link:
http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

If	the	LVM	disk	array	is	configured	using	local	direct-attach	disks	in	the	node,
VMs	stored	on	this	storage	cannot	be	migrated	live	without	powering	down.
But	by	connecting	iSCSI	devices	from	a	remote	node,	and	then	creating	the
LVM	storage	on	top	of	the	iSCSI	volume,	we	can	make	live	migration
possible	since	the	storage	is	now	considered	shared	storage.	FreeNAS	is	an
excellent	option	to	create	LVM	plus	iSCSI	shared	storage	at	no	license	cost.	It
comes	with	a	great	graphical	user	interface	and	many	features,	which	go	far
beyond	just	LVM	or	iSCSI.

To	add	LVM	storage,	go	to	Datacenter	|	Storage	|	Add,	and	select	the	LVM
storage	plugin.	The	following	screenshot	shows	the	LVM	dialog	box,	where
we	are	using	the	iSCSI	device	test1-iscsi,	that	we	added	in	the	previous
section,	to	create	LVM	storage:

http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

NFS
Network	File	System	(NFS),	in	short,	is	a	well-matured	filesystem	protocol
originally	developed	by	Sun	Microsystems	in	1984.	Currently,	version	4	of
the	NFS	protocol	is	in	effect.	But	it	was	not	as	widely	accepted	as	version	3
due	to	a	few	compatibility	issues.	But	the	gap	is	closing	fast	between	version
3	and	4.	Proxmox,	by	default,	uses	version	3	of	the	NFS	protocol,	while
administrators	can	change	to	version	4	through	the	use	of	options	in
storage.cfg.	NFS	storage	can	store	the	.qcow2,	.raw,	and	.vmdk	image	formats,
providing	versatility	and	flexibility	in	a	clustered	environment.	NFS	is	also
the	easiest	to	set	up	and	requires	the	least	amount	of	upfront	hardware	cost,
thus	allowing	a	budget-conscious	small	business	or	a	home	user	to	get	their
hands	on	a	stable	shared	storage	system	for	the	Proxmox	cluster.

Care	should	be	taken	when	using	NFS	version	4	instead	of
version	3	in	Proxmox.	There	are	still	a	few	bugs	that	exist	in
NFSv4,	such	as	kernel	panic	during	system	startup	while
mounting	the	NFSv4	share.

The	NFS	server	can	be	configured	on	just	about	any	Linux	distribution	and
then	connected	to	a	Proxmox	cluster.	An	NFS	share	is	nothing	but	a	mount
point	on	the	NFS	server,	which	is	read	by	the	Proxmox	NFS	plugin.	We	can
also	use	FreeNAS	to	serve	as	the	NFS	server,	and	thus	take	advantage	of	the
FreeNAS	features	and	GUI	to	easily	monitor	the	shared	storage.	Due	to	the
simplicity	of	the	NFS	configuration,	this	is	probably	the	most	widely	used
storage	option	in	the	virtualization	world.	Almost	all	network	admins	have
used	an	NFS	server	at	least	once	in	their	career.

In	the	following	screenshot,	we	are	connecting	an	NFS	storage	named	nfs-01
from	the	remote	server	172.16.2.10:

After	entering	the	IP	address	of	the	remote	server,	the	Export	drop-down

menu	will	scan	the	remote	server	for	all	the	NFS	shares	and	display	them	in
the	list.	In	our	example,	the	mount	point	found	from	the	dialog	box	is	in	/nfs-
vol/nfs-01.

ZFS
ZFS	was	originally	developed	by	Sun	Microsystems.	ZFS	storage	is	a
combination	of	filesystem	and	LVM,	providing	high-capacity	storage	with
important	features,	such	as	data	protection,	data	compression,	self-healing,
and	snapshots.	ZFS	has	built-in	software-defined	RAID,	which	makes	the	use
of	hardware-based	RAID	unnecessary.	A	disk	array	with	ZFS	RAID	can	be
migrated	to	a	completely	different	node,	and	then	entirely	imported	without
rebuilding	the	entire	array.	We	can	only	store	.raw	format	virtual	disk	images
on	the	ZFS	storage.	For	more	details	on	ZFS,	refer	to	http://en.wikipedia.org/wiki/ZF
S.

As	of	Proxmox	VE	4.1,	a	ZFS	storage	plugin	is	included,	which	leverages	the
use	of	ZFS	natively	in	Proxmox	cluster	nodes.	A	ZFS	pool	supports	the
following	RAID	types:

RAID-0	pool:	Requires	at	least	one	disk
RAID-1	pool:	Requires	at	least	two	disks
RAID-10	pool:	Requires	at	least	four	disks
RAIDZ-1	pool:	Requires	at	least	three	disks
RAIDZ-2	pool:	Requires	at	least	four	disks

ZFS	uses	pools	to	define	storage.	Pools	can	only	be	created	through	a	CLI.	As
of	Proxmox	VE	5.0,	there	are	no	ZFS	management	options	in	the	GUI.	All
ZFS	creation	and	management	must	be	done	through	the	CLI.	Once	the	pools
are	created,	they	can	be	attached	to	Proxmox	through	the	Proxmox	GUI.	In
our	example,	we	are	going	to	create	a	RAID1	mirrored	pool	named	zfspool1
and	connect	it	to	Proxmox.	The	command	used	to	create	the	ZFS	pool	is	as
follows:

#	zpool	create	<pool_name>	<raid_type>	<dev1_name>	<dev2_name>	...

So,	for	our	example	pool,	the	command	will	appear	as	follows:
#	zpool	create	zfspool1	mirror	/dev/vdd	/dev/vde		

The	following	options	are	available	for	RAID	types:

RAID	type Option	string	to	use

RAID0 no	string

http://en.wikipedia.org/wiki/ZFS

RAID	1 mirror

RAIDZ-1 raidz1

RAIDZ-2 raidz2

	

To	verify	that	the	pool	is	created,	run	the	following	command:
#	zpool	list		

The	following	screenshot	shows	the	ZFS	pool	list	as	it	appears	for	our
example	ZFS	node:

We	can	use	the	pool	directly,	or	we	can	create	a	dataset	inside	the	pool	and
connect	the	dataset	separately	to	Proxmox	as	an	individual	storage.	The
advantage	of	this	is	to	isolate	the	different	types	of	stored	data	in	each	dataset.
For	example,	if	we	create	a	dataset	to	store	VM	images	and	another	dataset	to
store	backup	files,	we	can	turn	on	compression	for	the	VM	image	dataset	to
compress	the	disk	image	files	while	keeping	compression	off	for	the	backup-
storing	dataset	since	the	backup	files	are	already	compressed,	thus	saving
valuable	resources.	Each	ZFS	dataset	can	be	configured	individually	with	its
own	set	of	configuration	options.	If	we	compare	a	zpool	with	a	directory,
datasets	are	like	subdirectories	inside	the	main	directory.	The	following
command	is	used	to	create	a	dataset	inside	a	ZFS	pool:

#	zfs	create	<zpool_name>/<zfs_dataset_name>		

Datasets	must	be	mounted	in	a	directory	before	they	can	be	used.	By	default,
a	new	zfs	pool	or	dataset	gets	mounted	under	the	root	directory.	The	following
command	will	set	a	new	mount	point	for	a	dataset:

#	zfs	set	mountpoint=/mnt/zfs-vm	zfspool1/zfs-vm		

To	enable	compression	for	the	dataset,	we	can	run	the	following	command:
#	zfs	set	compression=on	zfspool1/zfs-vm		

The	ZFS	pool	will	only	function	locally	from	the	node	where	the	pool	is
created.	Other	nodes	in	the	Proxmox	cluster	will	not	be	able	to	share	the
storage.	By	mounting	a	ZFS	pool	locally	and	creating	the	NFS	share,	it	is
possible	to	share	the	ZFS	pool	between	all	the	Proxmox	nodes.	We	can	mount
a	zfs	dataset	in	a	directory	and	use	that	directory	to	configure	the	Proxmox
node	as	the	NFS	server.

The	process	of	mounting	and	sharing	needs	to	be	done	through	a	CLI	only.
From	the	Proxmox	GUI,	we	can	only	attach	the	NFS	share	with	the
underlying	ZFS	pool.	In	order	to	serve	the	NFS	share,	we	need	to	install	the
NFS	server	in	the	Proxmox	node	using	the	following	command:

#	apt-get	install	nfs-kernel-server

Enter	the	following	line	of	code	in	/etc/exports:
/mnt/zfs/		172.16.0.71/24(rw,nohide,async,no_root_squash)	

Start	the	NFS	service	using	the	following	command:
#	service	nfs-kernel-server	start			

To	share	the	NFS-enabled	ZFS	pool	through	the	Proxmox	GUI,	we	can
simply	follow	the	steps	laid	out	for	the	NFS	storage	in	the	previous	section.
To	add	a	ZFS	pool	or	dataset	to	the	Proxmox	cluster	through	the	GUI,	we
need	to	log	in	to	the	GUI	of	the	node	where	the	ZFS	pool	is	created.	In	our
two-node	example	cluster,	we	have	the	ZFS	pools	in	node	#1,	so	we	will	have
to	access	the	GUI	for	that	node.	Otherwise,	the	ZFS	pools	or	datasets	cannot
be	added	from	different	node	GUIs.	We	can	find	the	ZFS	storage	plugin
option	by	navigating	to	the	Datacenter	|	Storage	|	Add	menu.	Click	on	the	ZFS
plugin	to	open	the	dialog	box.	The	following	screenshot	shows	the	ZFS
storage	dialog	box	with	the	zfs	pool	example	and	dataset	in	the	drop-down
menu:

By	combining	the	ZFS	pool	with	an	NFS	share,	we	can	create	a	shared
storage	with	complete	ZFS	features,	thus	creating	a	flexible	shared	storage	to
be	used	with	all	the	Proxmox	nodes	in	the	cluster.	Using	this	technique,	we
can	create	a	backup	storage	node,	which	is	also	manageable	through	the
Proxmox	GUI.	This	way,	during	a	node	crisis,	we	can	also	migrate	VMs	to
the	backup	nodes	temporarily.	The	previous	steps	are	applicable	to	any	Linux
distribution	and	not	just	a	Proxmox	node.	For	example,	we	can	set	up	a
ZFS+NFS	server	using	Ubuntu	or	CentOS	Linux	to	store	virtual	disk	images
or	templates.	If	you	are	using	FreeNAS	or	a	similar	storage	system,	then	the
steps	for	ZFS	laid	out	in	this	section	are	not	required.	The	entire	process	of
ZFS	creation	is	completed	using	the	FreeNAS	GUI.

Ceph	RBD
RADOS	Block	Device	(RBD)	storage	is	provided	by	the	Ceph	distributed
storage	system.	It	is	the	most	complex	storage	system,	which	requires
multiple	nodes	to	be	set	up.	By	design,	Ceph	is	a	distributed	storage	system
and	can	be	spanned	over	several	dozen	nodes.	RBD	storage	can	only	store
.raw	image	formats.	To	expand	a	Ceph	cluster,	simply	add	a	hard	drive	or	a
node	and	let	Ceph	know	about	the	new	addition.	Ceph	will	automatically
rebalance	data	to	accommodate	the	new	hard	drive	or	node.	Ceph	can	be
scaled	to	several	petabytes	or	more.	Ceph	also	allows	multiple	pool	creations
for	different	disk	drives.	For	example,	we	can	store	database	servers’	VM
images	on	an	SSD-driven	pool	and	back	up	server	images	on	a	slower-
spinning	drive	pool.	Ceph	is	the	recommended	storage	system	for	medium-to-
large	cluster	environments	due	to	its	resilience	against	data	loss	and	the
simplicity	of	storage	expandability.

As	of	Proxmox	VE	Version	4.1,	the	Ceph	server	has	been	integrated	into
Proxmox	to	coexist	on	the	same	node.	The	ability	to	manage	Ceph	clusters
through	the	Proxmox	GUI	has	also	been	added.	Later	in	this	chapter,	we	will
learn	how	to	create	a	Ceph	cluster	and	integrate	it	with	Proxmox.	Ceph	is	a
truly	enterprise	storage	solution	with	a	learning	curve.	Once	the	mechanics	of
Ceph	are	understood,	it	is	also	one	of	the	easiest	to	maintain.	To	know	more
about	Ceph	storage,	refer	to	http://ceph.com/docs/master/start/intro/.	There’s	more	to
come	in	Chapter	5,	Installing	and	Configuring	Ceph.

http://docs.ceph.com/docs/master/start/intro/

GlusterFS
GlusterFS	is	a	powerful,	distributed	filesystem,	which	can	be	scaled	to	several
petabytes	under	a	single	mount	point.	Gluster	is	a	fairly	new	addition	to
Proxmox	that	allows	GlusterFS	users	to	take	full	advantage	of	the	Proxmox
cluster.	GlusterFS	uses	stripe,	replicate,	or	distribute	mode	to	store	files.
Although	distribute	mode	offers	the	option	of	scalability,	note	that	in	stripe
mode,	when	a	GlusterFS	node	goes	down,	all	the	files	in	that	server	become
inaccessible.	This	means	that	if	a	particular	file	is	saved	by	the	GlusterFS
translator	in	that	server,	only	that	node	holds	the	entire	data	of	that	file.	Even
though	all	the	other	nodes	are	operational,	that	particular	file	will	no	longer	be
available.	GlusterFS	can	be	scaled	up	to	petabytes	inside	a	single	mount.	The
GlusterFS	storage	can	be	set	up	with	just	two	nodes	and	supports	NFS,	thus
allowing	you	to	store	any	image	file	format.

To	know	more	about	GlusterFS,	visit	the	following	link:	
http://docs.gluster.org/en/latest/

We	can	install	Gluster	on	the	same	Proxmox	node	or	on	a	remote	node	using
any	Linux	distribution	to	create	a	shared	storage.	Gluster	is	a	great	option	for
a	two-node,	stable	storage	system,	such	as	DRBD.	The	biggest	difference	is
that	it	can	be	scaled	out	to	increase	the	total	storage	space.	For	a	lower-budget
virtual	environment	with	redundancy	requirements,	Gluster	can	be	an
excellent	option.	In	a	two-node	Gluster	setup,	both	the	nodes	sync	with	each
other	and	when	one	node	becomes	unavailable,	the	other	node	simply	takes
over.	The	installation	of	Gluster	is	rather	complex.

To	learn	more	about	how	to	set	up	a	GlusterFS	cluster,	refer	to	the	following
link:	
http://gluster.readthedocs.org/en/latest/Quick-Start-Guide/Quickstart/

In	this	section,	we	will	see	how	to	connect	a	GlusterFS	cluster	to	Proxmox
using	the	Gluster	plugin.	We	can	find	the	plugin	option	by	navigating	to
Datacenter	|	Storage	|	Add.	Click	on	the	GlusterFS	plugin	to	open	the	storage
creation-dialog	box,	as	shown	in	the	following	screenshot:

http://docs.gluster.org/en/latest/
http://gluster.readthedocs.org/en/latest/Quick-Start-Guide/Quickstart/

The	following	table	shows	the	type	of	information	needed	and	the	values	used
for	our	example	to	attach	GlusterFS:

Items Type	of	value Example	value

ID New	name	of	storage. gluster

Server IP	address	of	the	first	Gluster
node.

172.16.0.171

Second	Server IP	address	of	the	second
Gluster	node.

172.16.0.172

Volume	name
Drop-down	menu	to	select
available	volumes	on	the
Gluster	node.

gfsvol11

Content Selects	the	type	of	files	to	be
stored.

VZDump	backup	file

Nodes Selects	nodes	that	can	access
the	storage. All	(No	restrictions)

Enable Enables	or	disables	the
storage. Enabled

Max	Backups

Maximum	number	of	recent
backup	files	can	be	stored.
Older	backups	will	be
deleted	automatically	during
the	backup	process.

2

	

Since	Gluster	does	not	have	the	built-in	software-defined	RAID	option,	each
Gluster	node	will	require	some	form	of	RAID	for	drive	redundancy	per	node.
Like	NFS	on	top	of	ZFS,	which	we	learned	earlier	in	this	chapter,	we	can	also
put	Gluster	on	top	of	ZFS	and	provide	drive	redundancy	that	way.	Note	that
this	will	create	some	overhead	since	resources	will	be	consumed	by	ZFS.

Noncommercial/commercial	storage
options
We	have	discussed	which	virtual	machine	image	formats	and	storage	types
are	supported	by	Proxmox.	To	better	acquaint	ourselves	for	test	or	practice
labs,	we	are	now	going	to	take	a	look	at	what	noncommercial	and	commercial
options	we	have	out	there	in	order	to	set	up	a	storage	system	for	the	Proxmox-
clustered	environment.	By	noncommercial,	I	mean	they	are	free	without	any
primary	features	missing	and	without	any	trial	limits.

These	noncommercial	options	will	allow	you	to	set	up	a	fully	functional
shared	storage	system	with	some	hard	work.	Commercial	versions	usually
come	with	full	support	from	the	provider	company	and,	in	some	cases,	an
ongoing	service-level	agreement	(SLA)	contract.	The	following	list	is	by	no
means	a	complete	one,	but	a	guideline	to	guide	you	in	the	direction	where	you
need	to	plan	and	implement	a	Proxmox	cluster	environment.	Each	of	these
products	can	provide	everything	you	need	to	set	up	shared	storage:

A	question	often	asked	is	“Can	I	set	up	a	Proxmox	production	cluster
environment	using	only	noncommercial	solutions?”.	The	short	answer	is	yes!

It	is	indeed	possible	to	create	an	entire	complex	Proxmox	cluster	using	only
noncommercial	storage	solutions.	However,	you	have	to	be	prepared	for	the
unexpected	and	spend	a	significant	amount	of	time	learning	the	system.

Commercial	solutions	aside,	just	studying	a	system	will	give	an	administrator
an	advantage	when	unforeseen	issues	arise.	The	main	difference	between
these	noncommercial	and	commercial	solutions	is	the	company	support
behind	it.	Typically,	noncommercial	solutions	only	have	community-driven
support	through	forums	and	message	boards.	Commercial	offerings	come
with	technical	support,	with	the	response	time	varying	from	anything	between
immediate	to	24	hours.

The	trade-off	of	using	noncommercial	open	source	solutions	is
the	money	that	is	saved,	which	usually	gets	substituted	by	the
time	spent	on	research	and	mistakes.

Summary
In	this	chapter,	we	took	a	look	at	the	storage	options	that	are	supported	by
Proxmox	and	their	advantages	and	disadvantages.	We	also	saw	the	types	of
virtual	image	files	that	can	be	used	with	Proxmox	and	when	to	use	them.	We
learned	how	to	configure	different	storage	options	using	NFS,	ZFS,	RBD,	and
Gluster	as	storage	backends.	Storage	is	an	important	component	for	Proxmox
clustering	because	this	is	where	virtual	machines	are	created	and	operate
from.	A	properly	implemented	storage	system	is	crucial	to	making	any	cluster
a	successful	one.	With	proper	planning	of	different	storage	requirements	and
by	choosing	the	right	format	and	option,	a	lot	of	hassle	and	frustration	can	be
minimized	later	on.

In	the	next	chapter,	we	will	see	how	to	install	and	configure	a	Ceph	storage
system	and	integrate	it	with	a	Proxmox	cluster.

Installing	and	Configuring	Ceph
Ceph	is	a	distributed,	highly	scalable	storage	system	which	provides	block,
object,	and	file-based	storage	in	the	same	storage	cluster.	Ceph	is	open	source
and	designed	to	run	on	off	the	shelf	commodity	hardware.	Currently,	Ceph
RADOS	Block	Device	(RBD)	block	storage	is	fully	supported	by	Proxmox.
The	Ceph	Reliable	Autonomic	Distributed	Object	Store	(RADOS)
provides	features	such	as	replication,	snapshot,	and	other	block	storage
abilities.	There	are	numerous	reasons	to	consider	Ceph	as	a	storage	backend.
The	following	are	some	of	the	highlights	of	why	one	should	consider	Ceph
over	other	storage	systems:

Ceph	is	free
Ceph	is	a	highly	scalable,	reliable,	distributed	storage	system
Ceph	RBD	is	seamlessly	integrated	with	Proxmox	clusters
Ceph	can	be	managed	and	monitored	through	a	dedicated	Ceph	menu	in
the	Proxmox	GUI
Ceph	can	tolerate	multiple	simultaneous	drive	failures
As	the	Ceph	cluster	grows	in	size,	so	does	the	performance

Visit	the	official	link	to	learn	about	Ceph	in	detail	if	you	are	new	to	Ceph	or
want	to	know	more	about	it:	http://ceph.com/.

When	compared	to	other	storage	systems,	such	as	ZFS,	GlusterFS,	and	so	on,
Ceph	is	a	complex	system.	It	requires	extensive	knowledge	to	properly
maintain	a	Ceph	cluster.	Despite	its	complexity,	Ceph	also	offers	the	highest
level	of	redundancy	spanned	over	multiple	nodes	and	not	just	drive
redundancy.	In	this	chapter,	we	are	going	to	learn	how	to	install	and	configure
Ceph	to	work	with	a	Proxmox	cluster.

Proxmox	VE	5.0	comes	with	Ceph	Luminous,	which	is	not	yet
fully	production	ready.	If	your	existing	environment	is	built	on
Proxmox	VE	4.x,	then	do	not	upgrade	just	yet.	Try	Proxmox	VE
5.0	on	a	test	environment	first	instead.

http://ceph.com/

Ceph	components
Before	we	dive	in,	let’s	take	a	look	at	some	key	components	that	make	up	a
Ceph	cluster.	These	components	are	what	makes	Ceph,	and	it	is	important	to
have	a	proper	understanding	of	what	they	are.	

A	physical	node	as	cluster	member
A	physical	node	is	the	actual	server	hardware	that	holds	one	or	more	Ceph
components.

Maps
In	Ceph,	maps	hold	information,	such	as	a	list	of	participating	nodes	in	a
cluster	and	their	locations,	and	data	paths,	and	a	list	of	OSDs	with	certain	data
chunks.	There	are	several	maps	in	a	Ceph	cluster,	such	as	a	cluster	map,
an	object	storage	daemon	(OSD)	map	for	a	list	of	OSDs,	a	monitor	map	for
known	monitor	nodes,	a	placement	group	(PG)	map	for	the	location	of
objects	or	data	chunks,	and	a	CRUSH	map	to	determine	how	to	store	and
retrieve	data	by	computing	the	data	storage	location.

A	cluster	map
A	cluster	map	is	a	map	of	devices	and	buckets	that	compose	a	Ceph	cluster.
Ceph	uses	a	bucket	hierarchy	to	define	nodes	or	node	locations,	such	as	a
room,	rack,	shelf,	host,	and	so	on.	For	example,	let’s	say	there	are	four	disk
drives	used	as	four	OSDs	in	the	following	bucket	hierarchy:

Bucket	datacenter	=	dc01	

|	

Bucket	room	=	101	

|	

Bucket	rack	=	22	

|	

Bucket	host	=	ceph-node-1	

|	

Bucket	osd	=	osd.1,	osd.2,	osd.3,	osd.4	

In	the	preceding	example,	we	can	see	that	osd.1	to	osd.4	are	in	the	node	ceph-
node-1,	which	is	in	rack	number	22,	which	is	in	room	number	101,	which	is	in
data	center	dc01.	If	osd.3	fails,	and	there	is	an	on-site	technician,	then	an
administrator	can	quickly	give	the	technician	the	previous	bucket	hierarchy	to
identify	the	exact	disk	drive	location	to	replace	it.	There	can	be	several
hundreds	of	OSDs	in	a	cluster.	A	cluster	map	helps	you	pinpoint	a	single	host
or	disk	drive	using	the	bucket	hierarchy.

A	CRUSH	map
Controlled	Replication	Under	Scalable	Hashing	(CRUSH)	is	an	algorithm
used	in	Ceph	to	store	and	retrieve	data	by	computing	data	storage	locations
within	the	cluster.	It	does	so	by	providing	a	per-device	weight	value	to
distribute	data	objects	among	storage	devices.	The	value	is	auto	assigned,
based	on	the	actual	size	of	the	disk	drive	being	used.	For	example,	a	2	TB
disk	drive	may	have	an	approximate	weight	of	1.81.	The	drive	will	keep
writing	data	until	it	reaches	this	weight.	By	design,	CRUSH	distributes	data
evenly	among	weighted	devices	to	maintain	a	balanced	utilization	of	storage
and	device	bandwidth	resources.	A	CRUSH	map	can	be	customized	by	a	user
to	fit	any	cluster	environment	of	any	size.

For	more	details	on	CRUSH	maps,	refer	to	the	following	link:
http://ceph.com/docs/master/rados/operations/crush-map/

http://docs.ceph.com/docs/master/rados/operations/crush-map/

Monitor
A	Ceph	monitor	(mon)	is	a	cluster	monitor	daemon	node	that	holds	the	OSD
map,	PG	map,	CRUSH	map,	and	monitor	map.	Monitors	can	be	set	up	on	the
same	server	node	with	OSDs	or	on	a	fully	separate	machine.	For	a	stable
Ceph	cluster,	setting	up	separate	nodes	with	monitors	is	highly	recommended.
Since	monitors	only	keep	track	of	everything	that	happens	within	the	cluster
and	not	the	actual	read/write	of	cluster	data,	a	monitor	node	can	be	very
underpowered	and	thus	less	expensive.	To	achieve	a	healthy	status	of	the
Ceph	cluster,	a	minimum	of	three	monitors	need	to	be	set	up.	A	healthy	status
is	when	every	status	in	the	cluster	is	OK,	without	any	warnings	or	errors.
Note	that	with	the	recent	integration	of	Ceph	with	Proxmox,	the	same
Proxmox	node	can	be	used	as	a	monitor.	Starting	from	Proxmox	3.2,	it	is
possible	to	set	up	Ceph	monitors	on	the	same	Proxmox	node,	thus	eliminating
the	need	to	use	a	separate	node	for	monitors.	Monitors	can	also	be	managed
from	the	Proxmox	GUI.

For	details	on	Ceph	monitors,	visit	the	following	link:
http://ceph.com/docs/master/man/8/ceph-mon/

http://docs.ceph.com/docs/master/man/8/ceph-mon/

OSD
The	OSD	is	the	actual	storage	media	or	partition	within	media,	such	as
HDD/SSD,	that	stores	the	actual	cluster	data.	OSDs	are	responsible	for	all	the
data	replication,	recovery,	and	rebalancing.	Each	OSD	provides	the
monitoring	information	for	Ceph	monitors	to	check	for	heartbeats.	A	Ceph
cluster	requires	a	minimum	of	two	OSDs	to	be	in	the	active+clean	state.	The
Ceph	cluster	provides	feedback	on	the	cluster	status	at	all	times.	An
active+clean	state	expresses	an	error-	or	warning-free	cluster.	Refer	to	the
PG	section	for	other	states	a	Ceph	cluster	can	achieve.	As	of	Proxmox	version
5.0,	OSDs	can	be	managed	through	the	Proxmox	GUI.

OSD	journal
In	Ceph,	any	I/O	writes	are	first	written	to	a	journal	before	they	are
transferred	to	the	actual	OSD.	Journals	are	simply	smaller	partitions	that
accept	smaller	bits	of	data	at	a	time	while	the	backend	OSDs	catch	up	with
the	writes.	By	putting	journals	on	faster-access	disk	drives,	such	as	SSDs,	we
can	increase	a	Ceph	operation	significantly,	since	user	data	is	written	to	a
journal	at	a	higher	speed	while	the	journal	sends	short	bursts	of	data	to	OSDs,
giving	them	time	to	catch	up.	Journals	for	multiple	OSDs	can	be	stored	in	one
SSD	per	node.	Alternatively,	OSDs	can	be	divided	into	multiple	SSDs.	For	a
small	cluster	of	up	to	eight	OSDs	per	node,	using	an	SSD	improves
performance.	However,	while	working	with	a	larger	cluster	with	a	higher
number	of	OSDs	per	node,	collocating	the	journal	with	the	same	OSDs
increases	performance	instead	of	using	SSDs.	The	combined	write	speed	of
all	the	OSDs	together	outperforms	the	speed	of	one	or	two	SSDs	as	a	journal.

The	important	thing	to	remember	about	a	journal	is	that	the	loss	of	a	journal
partition	causes	OSD	data	loss.	For	this	reason,	it	is	highly	recommended	that
you	use	an	enterprise-grade	SSD	device.	At	the	time	of	writing,	the	Intel	DC
S3700	SSD	is	known	to	work	fine	as	a	Ceph	journal	SSD	device.

Metadata	server
A	metadata	server	(MDS)	stores	meta	information	for	the	Ceph	FileSystem
or	CephFS.	The	Ceph	block	and	object	storage	do	not	use	MDS.	So	in	a
cluster,	if	block	and	object	are	the	only	types	that	are	going	to	be	used,	it	will
not	be	necessary	to	set	up	an	MDS	server.	Like	a	monitor,	MDS	needs	to	be
set	up	on	a	different	machine	of	its	own	to	achieve	high	performance.	As	of
Proxmox	version	5.0,	MDS	cannot	be	managed	or	created	from	the	Proxmox
GUI.

The	CephFS	is	not	fully	standardized	yet	and	is	still	in	the	development
phase.	It	should	not	be	used	to	store	mission-critical	data.	It	is	mostly	stable,
but	unforeseen	bugs	may	still	cause	major	issues,	such	as	data	loss.	Note	that
there	have	not	been	many	reports	of	mass	data	loss	due	to	an	unstable	CephFS
installation.	Two	of	the	virtual	machines	used	to	write	this	book	have	been
running	for	more	than	11	months	without	any	issues.

There	should	be	two	MDS	nodes	in	a	cluster	to	provide	redundancy,	because
the	loss	of	an	MDS	node	will	cause	the	loss	of	data	on	CephFS	and	will
render	it	inaccessible.	Two	MDS	nodes	will	act	as	active+passive	when	one
node	failure	is	taken	over	by	another	node,	and	vice	versa.	To	learn	about
MDS	and	CephFS,	visit	http://docs.ceph.com/docs/master/cephfs/.

http://docs.ceph.com/docs/master/cephfs/

PG
The	main	function	of	a	PG	is	to	combine	several	objects	into	a	group	and	then
map	the	group	to	several	OSDs.	A	per-group	mechanism	is	much	more
efficient	than	a	per-object	mechanism,	since	the	former	uses	fewer	resources.
When	data	is	retrieved,	it	is	far	more	efficient	to	call	a	group	than	to	call	an
individual	object	in	a	group.	The	following	diagram	shows	how	PGs	are
related	to	OSDs:

For	better	efficiency,	we	recommend	a	total	of	50	to	100	PGs	per	OSD	for	all
pools.	Each	PG	will	consume	some	resources	of	the	node,	such	as	CPU	and
memory.	A	balanced	distribution	of	PGs	ensures	that	all	the	nodes,	and	OSDs
in	the	nodes,	are	not	out	of	memory,	or	that	the	CPU	does	not	face	overload
issues.	A	simple	formula	to	follow	while	allocating	PGs	for	a	pool	is	as
follows:

Total	PGs	=	(OSD	x	100)	/	Number	of	Replicas

The	result	of	the	total	PG	should	be	rounded	up	to	the	nearest	power	of	two.
In	a	Ceph	cluster	with	3	nodes	(replicas)	and	24	OSDs,	the	total	PG	count
should	be	as	follows:

Total	PGs	=	(24	x	100)	/	3	=	800

If	we	divide	800	by	24,	which	is	the	total	number	of	OSDs,	then	we	get	33.33.
This	is	the	number	of	PGs	per	replica	per	OSD.	Since	we	have	three	replicas,
we	multiply	33.33	by	4	and	get	99.99.	This	is	the	total	number	of	PGs	per
OSD	in	the	previous	example.	The	formula	will	always	calculate	the	PGs	per
replica.	For	a	three-replica	setup,	each	PG	is	written	thrice,	and	thus,	we
multiplied	the	PG	of	33.33	by	3	to	get	the	total	number	of	PGs	per	OSD.	Let’s

take	a	look	at	another	example	to	calculate	PG.	The	following	setup	has	150
OSDs,	3	Ceph	nodes,	and	2	replicas:

Total	PGs	=	(150	x	100)	/	2	=	7500

If	we	divide	7500	by	150,	the	total	number	of	OSDs	that	we	get	is	50.	Since
we	have	2	replicas,	we	multiply	50	by	2	and	get	100.	So,	each	OSD	in	this
cluster	can	store	100	PGs.	In	both	examples,	our	total	PG	per	OSD	was	within
the	50-100	recommended	range.	Always	round	up	the	PG	value	to	remove
any	decimal	point.

To	balance	the	available	hardware	resources,	it	is	necessary	to	assign	the	right
number	of	PGs.	The	PG	number	will	vary	depending	on	the	number	of	OSDs
in	a	cluster.	The	following	table	shows	a	PG	suggestion	made	by	Ceph
developers:

Number	of	OSDs Number	of	PGs

Fewer	than	5	OSDs 128

Between	5-10	OSDs 512

Between	10-50	OSDs 1024

Selecting	the	proper	number	of	PGs	is	crucial	since	each	PG	will	consume
node	resources.	Too	many	PGs	for	the	wrong	number	of	OSDs	will	actually
penalize	the	resource	usage	of	an	OSD	node,	while	very	few	assigned	PGs	in
a	large	cluster	will	put	data	at	risk.	A	rule	of	thumb	is	to	start	with	the	lowest
number	of	PGs	possible,	and	then	increase	them	as	the	number	of	OSDs
increases.	For	details	on	Placement	Groups,	visit	http://docs.ceph.com/docs/master/rado
s/operations/placement-groups/.

There’s	a	great	PG	calculator	created	by	Ceph	developers	to	calculate	the
recommended	number	of	PGs	for	various	sizes	of	Ceph	clusters	at	http://ceph.co
m/pgcalc/.

http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://ceph.com/pgcalc/

Pools
Pools	are	like	logical	partitions	where	Ceph	stores	data.	When	we	set	a	PG	or
the	number	of	replicas,	we	actually	set	them	for	each	pool.	When	creating	a
Ceph	cluster,	three	pools	are	created	by	default:	data,	metadata,	and	RBD.
The	data	and	metadata	pools	are	used	by	the	Ceph	cluster,	while	the	pool
RBD	is	available	to	store	the	actual	user	data.	PGs	are	set	on	a	per-pool	basis.
The	formula	that	we	discussed	earlier	in	the	PG	section	calculates	the	PGs
required	for	one	pool.	So,	when	creating	multiple	pools,	it	is	important	to
modify	the	formula	a	bit	so	that	the	total	PG	stays	within	50-100	per	OSD.

For	instance,	in	the	example	of	150	OSDs,	3	Ceph	nodes,	and	2	replicas,	our
PG	was	7500	for	a	pool.	This	gave	us	50	PGs	per	OSD.	If	we	had	3	pools	in
that	setup	and	each	pool	had	7500	PGs,	then	the	total	number	of	PGs	would
have	been	150	per	OSD.	In	order	to	balance	the	PGs	across	the	cluster,	we
can	divide	7500	by	3	for	3	pools	and	set	a	PG	of	2500	for	each	pool.	This
gives	us	2500/150	OSDs	=	16	PGs	per	pool	per	OSD	or	16	x	3	pools	=	48
total	PGs	per	OSD.	Since	we	have	two	replicas	in	this	setup,	the	final	total
PGs	per	OSD	will	be	48	x	2	replicas	=	96	PGs.	This	is	within	the
recommended	50-100	range	of	PGs	per	OSD.

Ceph	components	summary
If	we	want	to	understand	the	relationship	between	all	the	Ceph	components
we	have	seen	so	far,	we	can	think	of	it	this	way:	each	pool	comprises	multiple
PGs.	Each	PG	comprises	multiple	OSDs.	An	OSD	map	keeps	track	of	the
number	of	OSDs	in	the	cluster	and	in	the	nodes	they	are	in.	The	mon	map
keeps	track	of	the	number	of	monitors	in	a	cluster	to	form	a	quorum	and
maintains	a	master	copy	of	the	cluster	map.	A	CRUSH	map	dictates	how
much	data	needs	to	be	written	to	an	OSD	and	how	to	write	or	read	it.	These
are	the	building	blocks	of	a	Ceph	cluster.	The	following	diagram	is	an
example	of	how	the	Ceph	components	come	together	to	form	the	storage
system:

Virtual	Ceph	for	training
It	is	possible	to	set	up	an	entire	Ceph	cluster	in	a	virtual	environment.	But	this
cluster	should	only	be	used	for	training	and	learning	purposes.	If	you	are
learning	Ceph	for	the	first	time	and	do	not	want	to	invest	in	the	physical
hardware,	then	a	virtualized	Ceph	platform	is	certainly	possible.	This	will
eliminate	the	need	to	set	up	the	physical	hardware	to	set	up	Ceph	nodes.	The
procedure	to	set	up	a	virtual	Ceph	cluster	is	exactly	the	same	as	for	a	physical
one.	

Installing	a	Ceph	cluster
The	following	diagram	is	a	basic	representation	of	Proxmox	and	a	Ceph
cluster.	Note	that	both	the	clusters	are	on	separate	subnets	on	separate
switches:

A	Ceph	cluster	should	be	set	up	with	a	separate	subnet	on	a	separate	switch	to
keep	it	isolated	from	the	Proxmox	public	subnet	and	for	optimal	Ceph	cluster
functioning.	The	Ceph	Sync	LAN	is	used	by	Ceph	primarily	to	sync	data
between	OSDs.	The	Ceph	Public	LAN	is	used	primarily	to	serve	user
requests	for	data	from	Ceph	into	Proxmox	VMs.	The	advantage	of	this
practice	is	to	keep	Ceph’s	internal	traffic	isolated	so	that	it	does	not	interfere
with	the	traffic	of	the	running	virtual	machines.	On	a	healthy	Ceph	cluster
with	the	active+clean	state,	this	is	not	an	issue.	However,	when	Ceph	goes
into	self-healing	mode	due	to	an	OSD	or	node	failure,	it	rebalances	itself	by
redistributing	PGs	among	remaining	OSDs,	which	causes	very	high
bandwidth	consumption.	Separating	two	clusters	ensures	that	the	cluster	does
not	slow	down	significantly	due	to	the	shortage	of	the	network	bandwidth	and
the	VM	remains	accessible.	

This	also	provides	added	security,	since	the	Ceph	cluster	network	is
completely	hidden	from	any	public	access	using	a	separate	switch.	In	our
previous	example,	we	have	three	mons,	two	MDSs,	and	three	OSD	nodes
connected	to	a	dedicated	switch	used	only	for	the	Ceph	cluster.	The	Proxmox
cluster	connects	to	the	Ceph	cluster	by	creating	a	storage	connection	through

the	Proxmox	GUI.

Installing	Ceph	on	Proxmox
As	of	Proxmox	version	5.0,	it	is	possible	to	install	Ceph	on	the	same	Proxmox
node,	thus	reducing	the	number	of	separate	Ceph	nodes	needed,	such	as	the
admin	node,	monitor	node,	or	OSD	node.	Proxmox	also	provides	the	GUI
features	that	we	can	use	to	view	the	Ceph	cluster	and	manage	OSDs,	mons,
pools,	and	so	on.	In	this	section,	we	will	see	how	to	install	Ceph	on	the
Proxmox	node.	As	of	Proxmox	version	5.0,	MDS	server	and	CRUSH	map
management	are	not	possible	from	the	Proxmox	GUI.

Preparing	a	Proxmox	node	for	Ceph
Since	we	are	installing	Ceph	on	the	same	Proxmox	node,	we	will	set	up	the
network	interfaces	for	a	separate	network	for	Ceph	traffic	only.	We	will	set	up
three	of	our	example	Proxmox	nodes—pmx-01,	pmx-02,	and	pmx-03—with	Ceph.
On	all	of	the	three	nodes,	we	will	add	the	following	interfaces	section
to	/etc/network/interfaces.	You	can	use	any	IP	address	that	suits	your	network
environment.	We	are	going	to	run	the	following	command	from	the	Proxmox
node	pmx-01:

#	nano	/etc/network/interfaces

Configure	all	network	interfaces	according	to	IP	addresses	based	on	your
environment.	The	following	is	the	content	of	the	network	configuration	for
our	example	cluster	after	Proxmox	and	the	Ceph	network	have	been
configured:

#	Node	pmx-01

#	Proxmox	Network

auto	vmbr0

iface	vmbr0	inet	static

				address	172.16.2.1

				netmask	255.255.252.0

				gateway	172.16.3.254

				bridge_ports	ens18

				bridge_stp	off

				bridge_fd	0

#	Ceph	Public	Network

auto	ens19

	iface	ens19	inet	static

			address	192.168.20.1

			netmask	255.255.255.0

#	Ceph	Sync	Network

auto	ens20

	iface	ens20	inet	static

	address	192.168.30.1

	netmask	255.255.255.0

The	network	interfaces	can	also	be	configured	through	Proxmox	GUI.	Reboot
the	node	or	run	the	following	command	to	make	the	new	interface	active:

#	ifup	eth2

Follow	the	previous	steps	and	add	additional	network	interfaces	with	the	IP
addresses	192.168.10.2	and	192.168.10.3,	respectively.

Installing	Ceph
Proxmox	added	a	small	command-line	utility	called	pveceph	to	perform	various
Ceph-related	tasks.	Currently,	pveceph	can	perform	the	following	tasks	through
the	command	line:

Command Task	performed

pveceph	install Installs	Ceph	on	the	Proxmox	node.

pveceph	createmon
Creates	Ceph	monitors	and	must	be	run	from	the	node	to
become	a	monitor.

pveceph	createpool

<name> Creates	a	new	pool.	It	can	be	used	from	any	node.

pveceph	destroymon

<mon_id> Removes	a	monitor.

pveceph	destroypool

<name> Removes	a	Ceph	pool.

pveceph	init	--network

<x.x.x.0/x>

Creates	the	initial	Ceph	configuration	file	based	on	the
network	CIDR	used.

pveceph	start	<service>
Starts	Ceph	daemon	services,	such	as	mon,	OSD,	and
MDS.

pveceph	stop	<service>
Stops	Ceph	daemon	services,	such	as	mon,	OSD,	and
MDS.

pveceph	status
Shows	the	cluster,	monitor,	MDS	server,	OSD	status,	and
cluster	ID.

pveceph	createosd

</dev/X> Creates	OSD	daemons.

pvecph	destroyosd

<osdid> Removes	OSD	daemons.

pveceph	purge
Removes	Ceph	and	all	Ceph-related	data	from	the	node	the
command	is	running	from.

	

Ceph	must	be	installed	and	at	least	one	monitor	must	be	created	using	a
command	line	initially	before	managing	it	through	the	Proxmox	GUI.	We	can
perform	the	following	steps	to	install	Ceph	on	the	Proxmox	nodes	and	create
the	first	monitor.	Run	the	following	command	to	install	Ceph	on	all	the
Proxmox	nodes	that	will	be	part	of	the	Ceph	cluster:

#	pveceph	install	-version	jewel

Note	that	at	the	time	of	writing	this	book,	the	latest	version	of	Ceph	was
codenamed	Kraken.	However,	the	Ceph	version	Jewel	LTS	has	been	used	for
the	writing	of	this	book,	as	it	is	fully	supported	by	Proxmox,	as	of	Proxmox
5.0.	Simply	change	the	codename	in	the	command	to	install	the	latest	Ceph
releases	when	they	become	available	in	Proxmox.

Visit	the	following	link	for	information	on	Ceph	releases	and	their	life	cycle:

	http://docs.ceph.com/docs/master/releases/

Run	the	following	command	to	create	an	initial	Ceph	configuration	file	on	the
first	Proxmox	node.	We	only	need	to	run	this	command	once,	and	from	one
node	only:

#	pveceph	init	--network	192.168.20.0/24

After	running	the	command,	Proxmox	will	create	a	Ceph	configuration	file	in
/etc/pve/ceph.conf.	It	also	creates	a	symlink	of	the	configuration	file	in
/etc/ceph/ceph.conf.	This	way,	any	custom	changes	made	to	the	Ceph
configuration	file	get	replicated	across	all	Proxmox	nodes.	

Although	the	Ceph	cluster	can	be	managed	from	the	Proxmox
GUI,	in	order	to	perform	advanced	tasks,	we	need	to	use	the
CLI.	Ceph	comes	loaded	with	quite	a	few	commands	for	various
tasks.	It	is	beyond	the	scope	of	this	book	to	list	all	Ceph
commands.	But	a	short	list	of	commands	used	to	perform	the
most	common	tasks	is	included	later	in	this	chapter.

Run	the	following	command	to	create	the	first	Ceph	monitor	on	the	same
node	that	we	just	created	in	the	initial	configuration	file:

#	pveceph	createmon

After	performing	these	steps,	we	can	proceed	with	the	Proxmox	GUI	to
further	create	mons,	OSDs,	or	pools.	All	the	Ceph	options	can	be	obtained	by
navigating	to	the	Datacenter	|	node	|	Ceph	menu.	The	following	screenshot
shows	the	content	of	the	/etc/ceph/ceph.conf	file	for	our	example	cluster	after

http://docs.ceph.com/docs/master/releases/

creating	a	Ceph	cluster	with	two	mons	and	no	OSDs:

Recall	from	the	previous	configuration	screenshot	that	both	the	cluster	and
public	network	are	on	the	same	subnet.	That	is	because	we	have	not
configured	the	Ceph	sync	or	cluster	network	yet.	Simply	change	the	IP	subnet
of	the	cluster	network	by	changing	the	Ceph	configuration	file	in
/etc/ceph/ceph.conf	to	ask	Ceph	to	sync	OSDs	on	the	separate	network.	For	our
example	cluster,	we	want	the	Ceph	sync	network	to	be	on	192.168.30.0/24,	as
shown	here:

When	trying	to	access	the	Ceph	menu	through	the	GUI	from	a	node	which	is
not	a	Ceph	mon,	you	may	see	the	following	error	message:	

If	you	do	not	intend	to	create	any	OSD	on	the	node	but	want	to	manage	the
Ceph	cluster	from	a	node,	then	simply	install	Ceph	using	the	#pveceph
command	on	that	node	and	create	a	mon.	This	will	enable	the	node	to	read	the
Ceph	configuration	file	and	allow	managing	of	the	Ceph	cluster	through	the
Proxmox	GUI.	

Creating	mons	from	the	Proxmox
GUI
To	view	and	create	monitors	from	the	Proxmox	GUI,	navigate	to	Datacenter	|
node	|	Ceph	|	Monitor.	Click	on	Create	to	open	the	monitor	creation	dialog
box.	Select	a	Proxmox	node	from	the	drop-down	list	and	then	click	on	the
Create	button	to	initiate	the	monitor	creation.	We	can	also	quickly	check	the
overall	Ceph	cluster	status	from	the	GUI.	The	following	screenshot	shows	our
example	Ceph	cluster	as	seen	through	the	Proxmox	GUI	after	the	initial
configuration:

From	the	Status	interface,	we	can	gather	vital	pieces	of	information	at	a
glance.	The	Ceph	cluster	contains	an	error	at	this	moment	since	there	are	no
OSDs	added.	It	is	perfectly	normal	for	the	Ceph	cluster	to	show	PGs	stuck	at
inactive	and	unclean,	as	we	have	not	added	any	OSDs.

Creating	OSDs	from	Proxmox	GUI
OSDs	are	actual	disk	drives	where	data	is	stored	in	a	Ceph	cluster.	All	OSD-
related	tasks	can	be	performed	through	the	Datacenter	|	node	|	Ceph	|	OSD
menu.	To	view	the	installed	disk	drives	in	the	node,	go	to	the	Datacenter	|	node	|
Disks	menu.	The	following	screenshot	shows	that	we	have	two	available
drives,	/dev/vdc	and	/dev/vdd,	which	can	be	used	to	create	OSDs	in	node	pmx-01:

To	create	an	OSD,	go	to	the	Datacenter	|	node	|	Ceph	|	OSD	menu	and	click	on
the	Create	OSD	button	to	open	a	dialog	box,	as	shown	in	the	following
screenshot.	Select	an	available	disk	drive	from	the	drop-down	list,	and	then
click	on	the	Create	button:

There	is	no	need	to	select	Journal	Disk	if	the	journal	is	going	to	be	collocated
on	the	same	OSD	drive.	Click	on	the	Journal	Disk	drop-down	button	to	select
a	different	disk	drive	to	store	the	OSD	journal.	A	faster	drive,	such	as	an	SSD,
can	be	used	to	store	the	Ceph	journal,	which	makes	writing	to	the	Ceph
cluster	extremely	fast	in	a	smaller	cluster	of	fewer	than	six	Ceph	nodes.	If
using	a	separate	drive	for	journaling,	the	drive	must	be	partitioned	through	the
CLI	before	creating	the	OSD	using	this	dialog	box.	Follow	the	same

procedure	to	finish	creating	OSDs	in	the	node.	The	following	screenshot
shows	the	Ceph	Status	page	after	creating	two	OSDs	in	node	pmx-01:

Note	that	even	after	adding	two	OSDs	in	the	node,	our	Ceph	cluster	is	still
degraded	and	unclean.	This	is	because	we	only	created	OSDs	in	one	node.	By
default,	Ceph	will	try	to	create	three	replicas	on	different	nodes.	So,	we	are
going	to	add	four	more	OSDs	in	the	second	and	third	node	by	following	the
previous	steps.	The	following	screenshot	shows	our	example	Ceph	cluster
with	six	OSDs	on	three	nodes,	with	a	Health_OK	status	for	Health:

By	default,	Proxmox	creates	OSDs	with	the	XFS	filesystem.	However,
sometimes,	it	is	necessary	to	create	OSDs	with	different	filesystem	types,
such	as	ext3,	btrfs,	and	so	on,	due	to	requirements	or	performance
improvements.	As	of	Proxmox	5.0,	we	cannot	adjust	the	partition	type	during
the	OSD	creation	through	the	GUI.	It	can	only	be	done	when	creating	the
OSD	through	CLI.	Enter	the	following	command	format	using	the	CLI	to
create	OSDs	with	different	partition	types:

#	pveceph	createosd	-fstype	ext4	/dev/sdX

Managing	a	Ceph	pool	using
Proxmox	GUI
All	Ceph	pool-related	tasks	can	be	performed	through	the	Datacenter	|	node	|
Ceph	|	Pools	menu.	The	pool	interface	shows	information	about	existing
pools,	such	as	the	name,	replica	number,	PG	number,	and	per-pool	percentage
used.	Once	a	pool	is	created,	it	cannot	be	modified	or	changed	in	any	way
from	the	Proxmox	GUI.	But	a	pool	can	be	edited	through	the	CLI.	If	you	are
going	to	strictly	use	the	Proxmox	GUI	to	perform	all	Ceph-related	tasks,	then
a	new	pool	needs	to	be	created	if	existing	pool	configuration	needs	to	be
changed,	such	as	changing	the	replica	size	or	increasing	the	PG	number.
When	the	Ceph	cluster	is	created,	a	default	pool	named	rbd	is	created	with
replica	size	3	and	a	total	of	64	PGs.	This	PG	number	of	the	rbd	pool	is	too	low
to	store	any	data.	So	we	can	create	a	new	pool	or	we	can	modify	this	pool
through	CLI.	When	an	existing	pool	holds	a	lot	of	data,	changing	the	pool
configuration	through	CLI	is	the	way	to	go,	or	else	all	data	will	need	to	be
moved	to	the	new	pool,	which	can	take	a	very	long	time	depending	on	the
amount	of	data	being	stored.	

Replica	size	is	the	second	most	important	configuration	for	a	Ceph	pool.
Basically,	replica	size	defines	how	many	times	data	will	be	replicated	before
it	is	distributed	among	OSDs	on	different	nodes.	Keep	in	mind	that	a	higher
replica	size	will	consume	higher	network	bandwidth	and	higher	disk	storage
due	to	increased	replication.	For	a	smaller	cluster,	a	replica	size	of	2	is	best
suited	from	a	performance	standpoint.	However,	in	a	large	Ceph	cluster	with
lots	of	drives	and	nodes,	using	a	replica	size	of	3	is	recommended.

For	the	pool	rbd	in	our	example	Ceph	cluster,	we	are	going	to	change	the
default	replica	size	of	3	to	2	using	the	following	command:

#	ceph	osd	pool	set	rbd	size	2

We	are	also	going	to	change	the	minimum	size,	or	min_size,	value	of	the	pool.
The	minimum	replica	size	defines	the	minimum	replicated	data	that	must
exist	in	order	for	the	pool	to	operate.	For	example,	in	the	default	pool	rbd,	the
minimum	size	is	2.	So	if	multiple	HDD	failures	occur	where	a	set	of
OSDs	that	hold	two	data	replicas	goes	down,	the	cluster	will	not	come	online.
But	if	the	minimum	size	is	1,	then	as	long	as	the	Ceph	cluster	can	see	one	data
replica	anywhere	in	the	cluster,	even	in	the	case	of	multiple	OSD	failures,	the

cluster	will	still	operate.	A	minimum	size	of	1	will	ensure	that	there	is	always
at	least	one	copy	of	data	at	all	times.	We	can	change	the	minimum	size	of	a
pool	using	the	following	command	format:

#	ceph	osd	pool	set	rbd	min_size	1

We	are	going	to	increase	the	PG	number	of	the	default	pool	rbd	in	order	to
make	it	usable	to	store	virtual	machine	data.

Refer	to	the	Ceph	PG	calculator	at	the	following	link	to	calculate	the	number
of	PGs	you	need	for	your	Ceph	cluster:

	http://ceph.com/pgcalc/

There	are	two	values	that	need	to	be	set	for	the	PG	number	of	a	pool:	the
actual	PG	number	and	the	effective	PG	number.	This	value	is	defined	with	the
option	pgp_num.	The	pgp_num	must	be	equal	or	less	than	pg_num.	We	are	going	to
increase	the	PG	number	to	256	for	our	default	pool	rbd	using	the	following
command:

#	ceph	osd	pool	set	rbd	pg_num	256

#	ceph	osd	pool	set	rbd	pgp_num	256

When	changing	PG	values,	it	is	very	important	to	keep	in	mind	that	it	is	a
very	intensive	process.	The	Ceph	cluster	will	be	under	load	during	this
process.	When	changing	the	PG	value	from	low	to	high,	it	is	a	wise	idea	to	do
it	in	steps,	using	smaller	PG	values	incrementally.	This	is	not	a	problem	for	a
brand	new	Ceph	cluster	which	is	not	serving	any	users	yet.	But	on	an
established	Ceph	cluster	with	many	active	users,	the	performance	will	be
noticeable	and	may	cause	service	interruption.	

The	replica	size,	minimum	replica	size,	and	PG	value	are	the	most	important
values	for	a	Ceph	pool.	Changes	in	these	values	have	the	most	impact	on
overall	cluster	performance	and	reliability.	So	to	recap,	let’s	run	these
commands	for	a	hypothetical	pool	named	vm_store.	We	are	going	to	change	the
replica	size	to	3,	minimum	replica	size	to	1,	PG	number	to	1024,	and	effective
PG	number	to	1024	using	the	following	commands:

#	ceph	osd	pool	set	vm_store	size	3

#	ceph	osd	pool	set	vm_store	min_size	size	1

#	ceph	osd	pool	set	vm_store	pg_num	1024

#	ceph	osd	pool	set	vm_store	pgp_num	1024

The	following	screenshot	shows	the	pool	status	for	our	default	pool	rbd	in	our
example	cluster	after	making	necessary	changes	through	CLI:

http://ceph.com/pgcalc/

Creating	a	Ceph	pool	using
Proxmox	GUI
To	create	a	new	pool	using	the	Proxmox	GUI,	go	to	Datacenter	|	node	|	Ceph	|
Pools.	Then	click	on	the	Create	button	to	open	the	pool-creation	dialog	box,
as	shown	in	the	following	screenshot.	Enter	a	name	for	the	pool	in	the	Name
field,	the	number	of	replicas	in	Size,	and	the	number	of	minimum	replicas;
leave	Crush	RuleSet	at	0;	and	enter	the	proper	PG	number.	Click	on	Create	to
start	the	pool’s	creation:

Connecting	Ceph	to	Proxmox
As	of	Proxmox	VE	5.0,	we	can	only	connect	Ceph	block	storage	(RBD)	to
Proxmox.	We	cannot	connect	Ceph	Object	Storage	or	Ceph	FileSystem.	We
can	connect	Ceph	RBD	storage	to	the	cluster	using	the	Proxmox	GUI.
However,	there	is	one	step	that	needs	to	be	completed	before	Proxmox	can
successfully	read	the	Ceph	storage.	Ceph	uses	authentication	for	its
functioning.	Authentication	occurs	based	on	keyrings,	which	are	created
along	with	the	Ceph	cluster.	For	each	Ceph	storage,	we	need	to	connect	to
Proxmox,	and	we	need	to	copy	the	main	Ceph	admin	keyring	to	the	Proxmox
directory.	The	keyring	that	we	need	to	copy	is	located
in	/priv/ceph.client.admin.keyring.

This	keyring	needs	to	be	copied	to	the	following	location	and	in	the	following
format.	The	directory	/etc/pve/priv/ceph	does	not	exist,	so	it	needs	to	be	created
first:	/etc/pve/priv/ceph/<storage_id>.keyring.

For	example,	we	are	going	to	create	an	RBD	storage	named	rbd-01.	So,	we
need	to	copy	the	keyring,	as	shown	in	the	following	command:

#	cp	/etc/pve/priv/ceph.client.admin.keyring	/etc/pve/priv/ceph/rbd-01.keyring	

We	can	find	the	Ceph	RBD	storage	plugin	option	by	navigating	to	Datacenter	|
Storage	|	Add.	Click	on	the	RBD	(external)	storage	plugin	to	open	the	dialog
box	and	add	the	required	information,	as	shown	in	the	following	screenshot:

In	the	preceding	screenshot,	we	are	adding	an	RBD	storage	named	rbd-01	that
will	store	virtual	disk	images	in	the	Ceph	pool	named	rbd.	IP	addresses	of	the
Ceph	mon	nodes	are	separated	by	a	semicolon	in	the	Monitor(s)	textbox.
There	is	no	need	to	change	the	User	name,	as	the	admin	is	the	default	user	of
the	Ceph	operation.	As	of	Proxmox	VE	5.0,	we	can	also	use	the	Ceph	RBD
storage	to	store	LXC	containers.	However,	it	will	only	work	if	we	select	the
KRBD	option	in	the	dialog	box.	It	is	possible	to	store	both	the	LVM	and	LXC

images	on	a	single	KRBD-enabled	RBD	storage,	but	for	maximum
performance	and	isolation,	it	is	highly	recommended	that	you	use	two
separate	Ceph	pools	for	KVM	and	LXC	virtual	machine	disk	images,	with	the
KRBD	option	enabled	for	the	LXC	container	pool.	The	following	screenshot
shows	the	RBD	storage	status	from	the	Proxmox	GUI:

Ceph	command	list
The	following	table	shows	some	of	the	common	Ceph	commands	used	in	a
cluster:

Command Function

#ceph	-s Displays	the	Ceph	cluster	status.

#ceph	-w Displays	the	Ceph	cluster	running	log.

#ceph	health

detail Displays	a	detailed	error	if	there	is	one.

#ceph	osd	tree Displays	a	list	of	all	OSDs	categorized	by	nodes.

#ceph	set	osd

noout

#ceph	set	osd

nodown

Prevents	any	OSDs	from	getting	marked	out	and	down,	so	Ceph
does	not	start	rebalancing.	It	is	necessary	during	maintenance	when
the	node	requires	a	reboot	due	to	updates.	

#ceph	unset

osd	noout

#ceph	unset

osd	nodown

Must	be	run	after	the	maintenance	is	over	in	order	to	resume	normal
operation.

#ceph	daemon

osd.X	config

show	|	grep

<item_name>

Ex:	#ceph

daemon	osd.2

config	show	|

grep	threads

Displays	runtime	values	of	Ceph.	For	example,	we	can	run	this
command	to	display	all	thread-related	items	in	a	Ceph	cluster.

#ceph	tell

osd.*

injectargs

'<item_name>

<value>'

Ex:	#ceph	tell

osd.*

injectargs	'-

osd-op-threads

8'

Injects	values	into	items	during	runtime	without	restarting	any
daemons.	It	is	helpful	to	play	around	with	different	values	to	find
optimum	numbers.	When	satisfied,	the	changes	must	be	entered	in
/etc/pve/ceph.conf	or	else	they	will	get	reset	during	the	node	reboot	or
OSD	daemon	restart.

#ceph	osd

lspools Lists	pools.

#ceph	osd	pool

create	<name>

<pg>	<pgs>

Creates	a	pool.

#ceph	osd	pool

delete	<name>

[<name>	--yes-

i-really-

really-mean-

it]

Deletes	a	pool.

#ceph	osd	pool

get	<name>

pg_num
Gets	the	number	of	PGs	in	a	pool.

#ceph	osd	set

pool

<pool_name>

size	<value>

Changes	the	replica	values	of	a	pool.

Summary
In	this	chapter,	we	learned	what	Ceph	storage	is	and	how	to	install	and
configure	it	to	work	with	Proxmox	cluster	to	store	virtual	disk	images.	We
also	learned	various	Ceph	commands	to	manage	a	Ceph	cluster.	

In	the	next	chapter,	we	will	learn	details	about	KVM-based	virtual	machines.
We	will	see	how	to	create	and	manage	KVM	virtual	machines	and	their
advanced	configurations.	

KVM	Virtual	Machines
So	far,	we	have	familiarized	ourselves	with	the	Proxmox	graphical	user
interface,	configuration	files,	and	directory	structure.	We	have	also	learned
about	the	different	type	of	storage	supported	by	Proxmox	and	how	to
integrate	a	Ceph	storage	cluster	in	a	Proxmox	environment.	In	this	chapter,
we	are	going	to	take	it	one	step	further	by	looking	at	Kernel-based	Virtual
Machine	(KVM)	and	all	that	it	has	to	offer.	We	are	going	to	cover	some	of
the	following	topics:

Exploring	KVM	virtual	machines
Creating	KVM	virtual	machines
Configuring	KVM	virtual	machines
Migrating	KVM	virtual	machines
Nested	virtual	environments
Proxmox	backup/restore	system
Virtual	machine	snapshots

Exploring	KVM
As	the	name	implies,	KVM	is	merely	a	virtualization	process	that	adds	the
hypervisor	ability	to	a	Linux	kernel.	KVM	allows	you	to	create	fully	isolated
virtual	machines	while	not	being	dependent	on	the	host	operating	system	or
kernel.	The	isolation	is	created	by	emulating	several	types	of	hardware,	such
as	CPU,	RAM,	sound/video/network	cards,	PCI	bridges,	and	input	devices.	In
order	to	create	KVM	virtual	machines,	the	CPU	in	the	host	node	must	have
hardware	virtualization	extensions	(HWE).	KVM/Qemu	creates	a	layer
that	virtualizes	physical	hardware,	allowing	full	system	virtualization	and	not
kernel-level	virtualization,	as	is	the	case	with	OpenVZ	and	LXC	containers.
This	allows	a	wide	range	of	operating	systems	to	be	virtualized,	such	as
Linux,	BSD,	Windows,	and	macOS.	One	of	the	main	differences	between
KVM	and	container-based	virtual	machines	is	that	a	KVM	virtual	system
shares	on	the	hardware	level,	whereas	container-based	virtualization	shares	on
the	kernel	level.	Thus,	the	density	of	the	number	of	KVM	VMs	in	a	node	is
much	lower	than	containers.	KVM	is	the	only	choice	for	non-Linux	operating
systems	and	for	purpose-built	operating	systems	based	on	Linux,	such	as
ClearOS,	FreeNAS,	and	Zentyal.

For	more	information	on	KVM,	refer	to	the	following	link:
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

Creating	a	KVM
In	Proxmox,	we	can	a	create	KVM	VM	in	the	following	ways:

From	scratch	using	an	ISO	image
From	a	template
Using	network	PXE	boot

In	this	chapter,	we	are	only	going	to	take	a	look	at	VM	creation	though	ISO
images	and	templates.

Creating	a	KVM	using	an	ISO
image
The	VM	creation	process	is	based	on	simple	tab-based	dialog	boxes.	During
the	process,	we	have	to	assign	resources	and	type	in	necessary	information
pertaining	to	the	VM.	The	dialog	box	can	be	accessed	by	clicking	on
the	Create	VM	button	located	in	the	top	right-hand	corner	of	the	screen,	as
shown	in	the	following	screenshot.	It	can	also	be	accessed	by	right-clicking
on	a	node	and	then	selecting	Create	VM	from	the	context	menu:

In	our	example	cluster,	we	are	going	to	create	a	KVM	named	centos1	in	node
pmx-01.	To	progress	through	the	VM	creation,	simply	click	on	the	Next	button
or	click	on	the	Back	button	to	go	back	to	the	previous	tab.	The	following
screenshot	shows	the	dialog	box	after	we	click	on	Create	VM	from	the
Proxmox	GUI:

General	tab
The	General	tab	of	the	dialog	box	is	used	to	mainly	assign	identification
information.	Let’s	have	a	look	at	them.

Node
This	is	a	drop-down	list	to	select	in	which	Proxmox	node	the	VM	should	be
created.

VM	ID
This	is	the	textbox	used	to	enter	the	numeric	ID	of	the	VM.	We	can	also
increase	or	decrease	the	value	of	the	VM	ID	using	the	arrows.	If	we	assign	an
ID	that	exists	in	the	cluster,	the	box	will	show	a	red	border	around	the	box
indicating	that	there	is	already	a	VM	with	the	same	ID.	

Name
This	is	the	textbox	used	to	enter	the	name	of	the	VM.	We	can	enter	any
alphanumeric	string	with	only	a	dash	or	-	allowed	as	the	special	character.

Resource	Pool
This	is	the	drop-down	menu	used	to	select	a	previously	created	pool.	It	is	only
necessary	if	we	want	to	assign	the	VM	to	a	specific	pool.	For	our	example
VM,	we	are	assigning	it	to	pool	named	Linux_VMs.

Help
The	Help	button	will	open	a	new	tab	with	installed	documentation	created	by
Proxmox	developers.	This	documentation	contains	specific	information
pertaining	to	the	tab.	Each	Help	button	on	different	tabs	is	anchored	to	a
particular	section	of	the	documentation.	The	URL	for	this	KVM
documentation	is	https://ip_addr:8006/pve-docs/chapter-qm.html.

The	OS	tab
The	OS	tab	is	used	to	select	the	type	of	guest	operating	system	that	will	be
installed	on	the	VM.	This	type	of	selection	allows	the	VM	to	be	aware	of	the
intended	operating	system	and	adjust	the	architecture	based	on	the	OS
selected.	In	our	example	VM,	we	have	selected	Linux	4.X/3.X/2.6	Kernel,	as
shown	in	the	following	screenshot:

To	achieve	maximum	performance	and	stability,	it	is	highly
recommended	you	select	the	proper	OS	type.

The	CD/DVD	tab
Since	KVM	VMs	are	fully	enclosed	and	emulate	a	physical	machine,	we	can
only	boot	the	VM	or	load	the	operating	system	using	ISO	images	loaded	in	a
virtual	CD/DVD	drive	or	through	a	physical	drive	attached	to	the	Proxmox
host	node.	In	this	tab,	we	can	select	whether	to	use	a	virtual	or	physical
CD/DVD	drive	or	select	an	ISO	image.	The	following	screenshot	shows	the
dialog	box	for	the	CD/DVD	tab,	where	we	have	selected	CentOS	ISO:

If	we	only	want	to	create	the	VM	without	specifying	any	disk	image,	we	will
need	to	select	the	Do	not	use	any	media	option.

The	Hard	Disk	tab
In	this	tab,	we	specify	the	configuration	for	the	first	disk	image	of	the	VM.
The	following	screenshot	shows	the	dialog	box	with	the	configuration	for	our
example	VM:

Bus/Device
There	are	two	drop-down	menus	available	for	this	option.	One	to	select
the	disk	image	bus	type	and	the	other	to	select	the	device	ID.

For	maximum	performance,	the	VirtIO	bus	is	recommended.

For	a	Windows	VM,	it	is	necessary	to	select	an	IDE	since	Windows	does	not
have	a	built-in	driver	for	VirtIO.	In	such	cases,	we	can	use	the	following	steps
to	add	VirtIO	capability	to	a	Windows	VM:

1.	 Create	the	VM	with	IDE	and	install	Windows	as	usual.
2.	 Add	a	second	disk	image	with	the	VirtIO	bus	and	reboot	into	Windows.
3.	 Download	the	latest	VirtIO	driver	ISO	for	Windows	from	the	following

links	and	then	load	it	through	a	virtual	CD	drive:
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.is
o
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

4.	 Update	the	driver	for	the	new	hardware	found	for	the	VirtIO	disk	image.
5.	 Shut	down	the	Windows	VM	and	log	in	to	the	Proxmox	dashboard.
6.	 From	the	Hardware	tab	of	the	VM,	select	the	IDE	image	and	click

on	Remove.	Note	that	this	does	not	remove	the	disk	image	permanently.
The	disk	image	will	now	show	as	Unused	Disk	0:

7.	 Select	the	Unused	disk	0	and	click	on	Edit.	This	will	open	up	a	dialog
box	with	options	to	select	the	Bus/Device	type	and	other	configuration
options:

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

8.	 From	this	dialog	box,	we	can	select	the	desired	bus	type	and	other
configuration	options	if	necessary.

9.	 Click	on	the	Add	button	to	add	the	disk	image	back	to	the	VM.

The	previous	steps	are	necessary	to	enable	the	Windows	VM	to	use	a	VirtIO
disk	image.	Once	the	driver	is	loaded,	it	is	not	necessary	to	reload	it	for
additional	VirtIO	disk	images.

Storage
This	is	a	drop-down	menu	to	select	the	storage	in	which	the	disk	image
should	be	stored.	Along	with	the	name	of	the	storage,	the	drop-down	menu
shows	the	total	capacity	and	available	storage	space	of	attached	storage
devices.

Disk	size	(GB)
This	is	a	textbox	to	define	the	size	of	the	disk	storage	in	GB.	The	value	can
only	be	numeric.	We	can	also	use	the	up	and	down	arrows	of	the	textbox	to
define	the	disk	image	size.

Format
This	is	a	drop-down	menu	to	select	the	type	of	disk	image.	If	we	select
storage	that	only	supports	a	certain	disk	type,	then	this	menu	option	will	be
greyed	out.	For	example,	in	our	example	cluster,	we	have	selected	Ceph	RBD
storage,	which	can	only	store	.raw	images	as	of	Proxmox	5.0.	So	the	format
option	is	greyed	out.

If	we	select	the	wrong	format	of	disk	image	or	later	our	requirement	changes
to	using	a	different	format,	we	can	simply	use	the	Move	disk	option	in	the
Hardware	tab	to	change	the	format.	This	can	also	be	done	through	the	CLI
using	the	following	command	format:

#qemu-img	convert	-O	<type>	<source_image>	<destination_image>		

If	we	want	to	convert	a	.qcow2	disk	image	to	a	.raw	image,	the	command	would
be	as	follows:

#qemu-img	convert	-O	raw	vm-101-disk-1.qcow2	vm-101-disk-1.raw		

This	command	works	great	for	local,	NFS,	ZFS,	and	Gluster	storage	but	is	not
suitable	for	RBD.	To	change	the	disk	image	format	stored	in	RBD,	use	the
Move	disk	option	in	the	Proxmox	dashboard.	Besides	RBD	storage	disk
image,	this	Move	disk	option	can	be	used	to	move	any	disk	image	stored	on
any	storage	through	the	GUI	without	needing	the	CLI	at	all.	This	option	is
also	helpful	to	move	a	disk	image	from	one	storage	to	another	without
powering	off	the	VM.	The	move	could	be	from	local	to	shared	or	vice	versa.
To	move	or	change	the	format	of	a	disk	image,	select	the	disk	image	from
the	Hardware	tab	and	click	on	Move	disk	to	open	a	dialog	box:

As	shown	in	the	previous	screenshot,	for	our	example	VM	we	are	moving	a
.raw	disk	image	from	RBD	to	local	storage.	If	we	select	the	Delete	source
option,	it	will	delete	the	source	file	automatically	after	converting	or	moving
is	finished.	If	the	option	is	not	selected,	then	we	will	have	to	manually	delete

the	source	file.	The	source	file	will	show	up	as	an	unused	disk	image	under
the	Hardware	tab	of	the	VM.

Cache
This	drop-down	menu	allows	us	to	select	the	cache	method	to	use	for	the	disk
image.	We	have	learned	about	the	different	cache	options	in	the	Caching	a
virtual	disk	image	section	in	Chapter	4,	Storage	Systems.	We	can	change	the
cache	option	any	time	even	after	the	VM	is	fully	created	and	functioning.
After	each	cache	option	change,	we	will	need	to	power-cycle	the	VM	to
enable	the	new	cache	option.

No	backup
If	this	option	is	enabled,	the	virtual	disk	image	will	never	be	included	in	the
backup.	By	default,	the	option	is	disabled.

Discard
Disk	images	in	Proxmox	are	sparse	regardless	of	the	image	type,	meaning	the
disk	image	grows	slowly	as	more	data	gets	stored	in	it.	Over	time,	data	gets
created	and	deleted	within	the	filesystem	of	the	disk	image.	But	in	a	sparse
disk	image,	even	after	data	is	deleted,	it	never	reclaims	the	free	space.	The
VM	may	report	the	correct	available	storage	space	but	Proxmox	storage	will
show	higher	storage	usage.	The	Discard	option	allows	the	node	to	reclaim	the
free	space	that	does	not	have	any	data.	This	is	equivalent	to	the	TRIM	option
that	was	introduced	in	SSD	drives.	Before	this	option	can	be	used,	we	have	to
ensure	that	the	VM	uses	the	VirtIO	SCSI	controller.	We	can	set	the	SCSI
Controller	Type	under	virtual	machine’s	Options	tab:

The	Discard	option	may	not	be	suitable	for	all	environments,	storage
solutions,	and	operating	systems.	Perform	enough	testing	before
implementing	it	in	your	environment.	In	some	cases,	the	Discard	option	may
cause	a	VM	to	lock	up,	needing	to	be	power-cycled.	The	VM	will	need	to	be
power-cycled	if	the	option	is	enabled	after	powering	it	back	up.

IO	thread
There	are	two	options	for	disk	images	with	KVM:

IO	thread
io=native

By	default,	Proxmox	uses	io=native	for	all	disk	images	unless	the	IO	thread
option	is	specifically	checked	for	the	disk	image.

The	IO	thread	option	allows	each	disk	image	to	have	its	own	thread	instead	of
waiting	in	a	queue	with	everything	else.	Since	disk	I/O	is	no	longer	waiting
due	to	having	its	own	threads,	it	does	not	hold	up	other	tasks	or	queues	related
to	the	VM,	which	in	turn	speeds	up	the	VM	performance	besides	providing
increased	disk	performance.	The	IO	thread	option	is	fairly	new	in	Proxmox.
There	were	a	few	reported	instances	where	the	VM	was	locked	up	due	to	this
option.	So	perform	plenty	of	testing	before	implementing	this	feature	in	a
production	environment.

The	CPU	tab
This	tab	allows	configuration	of	a	virtual	CPU	for	virtual	machines.	The
following	screenshot	shows	the	dialog	box	with	available	CPU	options:

Sockets
This	option	is	to	define	the	number	of	sockets	the	VM	can	use.	We	can	use
more	than	one	socket	for	the	VM	even	if	the	physical	node	does	not	have
enough	sockets.	This	may	only	be	useful	if	an	application	in	the	VM	requires
us	to	have	more	than	one	socket.	But	it	is	not	useful	at	all	to	increase	VM
performance	in	a	single-socket	Proxmox	node.

Cores
This	option	is	to	define	the	number	of	cores	the	VM	can	use.	It	is	good
practice	to	start	a	VM	with	a	smaller	number	of	cores	and	then	increase	them
as	needed,	depending	on	load.	Assigning	a	large	number	of	cores	to	a	VM
will	cause	unnecessary	stress	on	the	available	resources	in	the	node.	Usually,
VMs	can	provide	good	performance	with	two	or	four	cores	unless	it	is	a	high-
demand	VM,	such	as	a	remote	desktop	server	or	SQL/Exchange	server.

Enabling	NUMA
The	non-uniform	memory	access	(NUMA)	is	not	a	new	approach	to
handling	memory	in	a	multi-CPU	environment,	although	it	is	a	new	addition
to	Proxmox	VE.	With	NUMA,	memory	can	be	distributed	evenly	among
CPUs,	which	increases	performance	since	there	is	no	bottleneck	due	to	all
CPUs	trying	to	access	the	same	memory	bank.	In	Proxmox,	the	NUMA
option	also	enables	memory	and	CPU	hot-plugging.	Without	this	option,	hot-
plugging	for	CPU	and	memory	will	not	work	at	all.

Any	node	with	more	than	one	CPU	socket	is	usually	NUMA	aware.	So
enabling	NUMA	for	VMs	in	this	node	will	benefit	VM	performance.	NUMA
will	always	try	to	keep	the	VM	in	the	same	CPU	package.	We	can	check	the
NUMA	status	in	the	Proxmox	cluster	using	the	following	command:

#	numastat		

This	command	will	show	all	the	nodes	in	the	cluster	that	are	NUMA	aware
and	their	performance	stats.

Type
This	is	a	drop-down	menu	to	select	the	CPU	package	type.	By	default,	the
Default	(kvm64)	CPU	type	is	selected	for	all	VMs.	A	common	use	case	is
when	a	specific	application	requires	SSE	or	AVX	instructions.	By	selecting
the	host	CPU	type,	we	can	give	a	VM	direct	access	to	the	physical	CPU.

For	the	best	performance,	host	type	should	be	used.	This	way,
the	VM	will	be	able	to	access	the	CPU	directly	without	an
emulation	layer.	This	is	optimal	type	in	an	environment	where
all	nodes	are	identical.	For	maximum	portability	of	a	VM,	it	is
best	to	choose	the	KVM	or	Qemu	CPU	types.

The	Memory	tab
This	tab	allows	configuration	of	the	memory	allocation	of	the	VM.	The
following	screenshot	shows	the	dialog	box	for	our	example	VM:

In	Proxmox,	we	can	set	fixed	or	dynamic	memory	for	a	VM.	Automatic	range
is	also	known	as	memory	ballooning.	For	the	fixed	option,	all	memory	is
allocated	at	once.	In	the	dynamic	option,	memory	is	allocated	based	on	the
VM,	within	a	preset	range.	Automatic	memory	allocation	works	great	for
Linux-based	guest	VMs.	But	for	Windows	VMs,	memory	ballooning
consumes	a	higher	amount	of	CPU	resources,	causing	the	VM	to	slow	down.
So	for	windows	VMs,	it	is	best	to	use	fixed	memory	whenever	possible.

The	Network	tab
This	tab	allows	configuration	of	the	virtual	network	interface	of	the	VM.	The
following	screenshot	shows	the	dialog	box	for	the	network	configuration	of
our	example	VM:

Bridged	mode
This	mode	allows	a	VM	to	connect	to	the	network	using	a	bridge.	The	VM
does	not	get	direct	access	to	the	outside	network.	We	can	set	the	VLAN	ID	at
the	node	level,	which	makes	it	unnecessary	to	configure	it	inside	the	VM.	The
Bridged	mode	also	provides	firewall	options	for	the	VM.	For	our	example
VM,	we	have	selected	the	default	bridge	vmbr0	and	enabled	the	Firewall
option.

Firewall
To	enable	the	Proxmox	firewall	for	network	interfaces,	this	option	needs	to	be
checked.	Without	this	option,	no	firewall	rules	will	be	applied	to	the	VM
interface.	We	will	look	at	the	Proxmox	firewall	in	greater	detail	in	Chapter	9,
The	Proxmox	VE	Firewall.

NAT	mode
This	mode	provides	a	VM	direct	access	to	outside	networks.	Network	traffic
does	not	go	through	any	bridge.	If	VLAN	is	used	in	the	physical	network,	it
must	be	configured	inside	the	VM	in	order	to	have	the	data	packets	tagged	or
untagged.	The	Proxmox	firewall	option	is	not	available	when	using	NAT
mode.

No	network	device
This	option	will	create	the	VM	without	any	network	interface	configured.

Model
This	is	a	drop-down	menu	to	select	the	virtual	network	interface	type.	For
maximum	network	performance,	the	use	of	VirtIO	is	highly	recommended.
Windows	does	not	come	with	a	VirtIO	driver.	So	if	this	is	used	for	a	Windows
VM,	we	have	to	manually	load	the	driver	from	the	ISO	we	have	downloaded
in	The	Hard	Disk	tab	section	of	this	chapter.	We	can	also	use	Intel	E1000	for
Windows	VMs.	From	Windows	7	onward,	the	driver	for	Intel	is	included.

MAC	address
By	default,	all	MAC	addresses	for	virtual	network	interfaces	are
automatically	assigned.	By	typing	a	MAC	address	in	this	textbox,	we	can
specify	a	particular	MAC	address	for	the	interface.	This	may	be	necessary
when	a	specific	MAC	address	is	required	by	an	application	in	the	guest	VM.

Rate	limit	(MB/s)
This	is	a	textbox	to	define	the	maximum	allowable	speed	of	the	network
interface	in	megabytes	per	second.	This	is	a	very	useful	option	to	limit
network	resources	per	VM.	Without	any	value	defined,	the	VM	will	try	to	use
as	much	bandwidth	as	possible.

Multiqueues
Ordinarily,	KVM	VMs	are	single-queued,	where	sending	and	receiving
packets	occurs	one	at	a	time	and	not	in	parallel.	Multiqueues	remove	this
bottleneck	by	allowing	sending	and	receiving	in	parallel	by	leveraging	virtual
CPU	cores	for	parallel	queues.	Multiqueues	are	especially	useful	for	a	VM
which	is	active	on	numerous	clients,	for	example,	a	web	server.	In	the
Proxmox	Network	tab	in	the	VM	creation	dialog	box,	we	can	enter	a	numeric
value	to	define	how	many	parallel	queues	the	VM	should	use.	This	value
should	not	be	more	than	the	allocated	vCPU	of	the	VM.	For	example,	if	the
VM	has	a	virtual	core	count	of	four,	we	can	set	a	Multiqueues	value	of	4.
Multiqueues	increase	network	performance	of	a	VM	greatly	since	both
sending	and	receiving	can	happen	in	parallel.

Keep	in	mind	that	enabling	Multiqueues	will	also	increase	CPU
usage	of	the	VM	since	each	queue	is	dependent	on	each	vCPU.

Disconnect
If	this	option	is	enabled,	the	virtual	network	interface	will	be	created	along
with	the	VM	but	will	not	be	activated.

Creating	VM	by	cloning
When	deploying	multiple	VMs	with	identical	configuration,	creating	them
individually	can	become	a	time-consuming	process.	In	such	cases,	we	can
clone	an	existing	VM	or	a	template.	Cloning	creates	a	fully	independent	VM
with	identical	configuration.	The	cloned	VM	is	in	no	way	connected	to	the
VM	it	was	cloned	from.	The	cloning	option	can	be	accessed	from	the	context
menu	by	right-clicking	on	the	VM	to	be	cloned:

One	of	the	uses	of	cloning	a	VM	is	backup	strategy.	A	VM	can	be	cloned
regularly	to	separate	nodes,	even	on	separate	storage.	In	the	event	that	the
main	node	becomes	inaccessible,	the	cloned	VM	can	be	up	and	running	in
minutes	without	going	through	the	VM	restore	process.	The	following
screenshot	shows	the	clone	dialog	box	after	clicking	on	Clone	from	the
context	menu:

The	cloning	feature	is	also	useful	to	keep	the	master	VM	up	to	date	or	add
new	applications	and	so	on,	because	the	source	VM	is	still	a	fully	functional

VM.

Creating	VMs	from	a	template
Similar	to	cloning,	a	template	is	also	a	quick	way	to	deploy	fully	configured
VMs	without	going	through	the	complete	VM	creation	process	and	manually
installing	OS	and	applications.	We	can	create	a	new	VM	and	install	the	OS
and	all	other	necessary	programs	before	converting	it	to	a	template.	This	way,
all	new	VMs	created	from	the	template	will	be	fully	configured	with	OS	and
programs.	What	sets	template	apart	from	just	cloning	is	that	once	a	VM	is
converted	to	a	template,	it	cannot	be	powered	up	again.	If	the	template	VM
needs	any	changes,	a	new	VM	must	be	created,	configured,	and	then
converted	to	a	template.	We	can	however	edit	the	hardware	resources	of	the
template.	The	primary	benefit	of	using	a	template	to	clone	VMs	is	that	a
template	allows	us	to	create	full-clone	and	linked-clone	VMs.	

In	order	to	create	VMs	from	a	template,	we	need	to	create	the	template	first.
We	can	do	this	by	converting	a	configured	VM	into	a	template.	This	option
can	be	accessed	by	selecting	the	VM	to	be	converted	and	then	right-clicking
and	selecting	Convert	to	template	to	open	the	dialog	box:

In	this	example,	we	are	going	to	convert	one	of	our	VMs,	102	(centos1),	into
a	template.	Click	on	Yes	to	convert	the	VM	into	a	template.	As	mentioned
earlier,	after	the	VM	is	converted	to	a	template,	the	VM	itself	is	no	longer
usable.	Another	noticeable	difference	is	that	the	icon	in	the	Proxmox
dashboard	is	unique	for	KVM	templates,	as	shown	in	the	following
screenshot:

With	the	template,	we	can	now	clone	VMs	that	will	be	identical	to	the
template.	The	procedure	to	clone	is	the	same	whether	it	is	a	VM	or	a	KVM
template.	To	create	a	new	VM	or	deploy	multiple	VMs	from	the	template,
right-click	on	the	template	to	open	the	context	menu	and	then	click	on
the	Clone	option.	This	will	open	the	cloning	dialog	box,	as	shown	in	the
following	screenshot:

Target	node
This	is	a	drop-down	menu	to	select	which	node	we	want	the	cloned	VM	to	be
created	on.	It	could	be	the	same	node	or	any	other	node	in	the	cluster	with
sufficient	resources.	

Mode
There	are	two	cloning	modes	in	Proxmox	5.0:

Full	Clone
Linked	Clone

Full	Clone	creates	an	identical	copy	of	the	VM,	including	the	virtual	disk
image.	This	is	a	truly	isolated	VM	since	it	is	not	dependent	on	the	source
template	or	VM	in	any	way.	Even	if	we	delete	the	source	template	or	VM,	the
newly	deployed	VM	will	still	function	without	any	issue.	A	Full	Clone
consumes	as	much	storage	space	as	the	original	VM	since	the	virtual	disk	is
also	cloned.	Full	clones	are	useful	when	allocated	resources	are	identical	for
all	deployed	VMs	but	the	guest	operating	system	may	or	may	not	be	different.

A	Linked	Clone	creates	a	duplicate	of	the	original	VM	minus	the	original
virtual	disk	image.	This	creates	an	additional	blank	disk	image	that	is
referenced	to	the	original	virtual	disk,	and	only	new	data	gets	placed	in	the
linked	cloned	disk	image.	All	read	requests,	except	for	new	data,	are
automatically	redirected	to	the	original	disk	image.	A	Linked	Clone	is	heavily
dependent	on	the	source	template	or	VM.	This	clone	mode	is	useful	when	all
cloned	VMs	will	have	the	exact	same	hardware	and	software	configuration,
including	guest	operating	system.	A	Linked	Clone	consumes	much	less
storage	space	since	the	original	or	base	image	is	never	duplicated	but	only
referenced	by	the	new	Linked	Clone	VM.	

Although	we	cannot	power	up	the	template,	we	can	still	make
resource	changes	such	as	CPU,	and	RAM.	But	it	is	not	a
recommended	practice	since	any	hardware	change	may	cause
issues	when	a	cloned	VM	is	powered	on.	It	is	also	very
important	to	ensure	that	the	source	template	is	not	damaged	in
any	way.	A	corrupt	template	will	cause	all	linked	clones	to	fail.

Advanced	configuration	options	for
VMs
We	will	now	look	at	some	of	the	advanced	configuration	options	we	can	use
to	extend	the	capability	of	KVM	virtual	machines.

Configuring	a	sound	device
In	this	section,	we	are	going	to	see	how	to	add	sound	support	to	a	VM.
Proxmox	by	default	does	not	add	audio	hardware	to	a	VM.	In	order	for	the
VM	operating	system	to	start	the	sound	service,	some	arguments	must	be
added	to	the	VM	configuration	file	through	CLI.	As	of	Proxmox	VE	4.1	it	is
not	possible	to	add	a	sound	interface	through	GUI.	The	following	steps	will
add	a	sound	device	to	a	VM:

1.	 Log	in	to	the	Proxmox	node	through	SSH	or	directly	in	the	console.
2.	 Navigate	to	the	VM	configuration	directory	/etc/pve/nodes/<node_name>/qemu-

server/<vm_id>.conf.
3.	 Open	the	VM	configuration	file	with	your	favorite	editor	and	add	the

following	argument:

For	Windows	10	and	later	VMs:
										args:	-device	intel-had,id=sound5,bus=pci.0,

										addr=0x18	-device	hda-micro,id=sound5-codec0,

										bus=sound5.0,cad=0	-device	had-duplex,

										id=sound5-codec1,bus=sound5.0,cad=1	

For	Windows	XP	VMs:
										args:	-device	AC97,addr=0x18	

4.	 Save	the	configuration	file	and	exit	the	editor.
5.	 Power-cycle	the	VM	to	activate	the	sound	device.

Configuring	PCI	passthrough
In	Proxmox	it	is	possible	to	passthrough	PCI	devices	directly	into	a	VM.	In
this	section,	we	are	going	to	see	how	to	configure	and	verify	PCI	passthrough.
The	following	steps	are	to	enable	and	configure	PCI	passthrough	in	Proxmox:

1.	 Log	in	to	the	Proxmox	node	through	SSH	or	directly	in	the	console.
2.	 Open	the	grub	configuration	file	using	an	editor:

								#	nano	/etc/default/grub	

3.	 Change	GRUB_CMDLINE_LINUX_DEFAULT="quiet"	to	the	following:

For	Intel	CPUs:

																		GRUB_CMDLINE_LINUX_DEFAULT="quiet	intel_iommu=on"				

For	AMD	CPUs:

																		GRUB_CMDLINE_LINUX_DEFAULT="quiet	amd_iommu=on"		

4.	 Save	the	changes	and	exit	the	editor.
5.	 Run	the	following	command	to	update	grub:

								#	update-grub

6.	 Only	if	using	an	AMD	CPU,	add	the	following	line	in	the	configuration
file	/etc/modprobe.d/kvm_iommu_map_guest.conf:

								options	kvm	allow_unsafe_assigned_interrupt=1		

7.	 Ensure	the	following	modules	are	loaded	in	/etc/modules:

vfio_iommu_type1

vfio_virqfd

vfio_pci

vfio

8.	 Reboot	the	Proxmox	node.
9.	 Locate	the	PCI	device	address	in	the	form	of	xx:xx.x	using	the	following

command:

								#	lspci		

10.	 Enter	the	following	line	with	the	PCI	device	ID	in	the	VM	configuration
file:

								machine:	q35

								hostpsi0:	01:00.0,pcie=1

11.	 Power-cycle	the	VM.												
12.	 Install	necessary	drivers	for	the	PCI	device	in	the	VM	operating	system.

Configuring	GPU	passthrough
In	this	section,	we	are	going	to	see	how	to	configure	a	video	adapter	to	be
used	directly	in	a	VM.	The	GPU	to	be	added	to	the	VM	must	not	be	bound	to
the	host	node.	To	ensure	that	the	device	is	not	being	used	by	the	host,	take	the
following	steps:

1.	 We	have	to	find	out	the	vendor	and	device	ID	of	the	GPU	device	to	use
passthrough.	To	pinpoint	the	device,	we	can	run	the	#lspci	command.	The
device	should	be	the	one	showing	up	as	a	VGA	compatible	controller.
The	following	screenshot	shows	our	VGA	device	with	ID	00:02.0:	

2.	 To	find	out	the	device	and	vendor	ID,	run	the	command	again	using	the
following	format:

								#lspci	-n	-s	00:02

3.	 The	command	will	produce	a	set	of	numbers.	The	device	and	vendor	IDs
are	the	last	two	sets	of	numbers.	The	following	is	the	set	of	numbers	for
our	example	node:	

								#	df00:02.0	0300:		1013:00b8

4.	 Take	note	of	the	device	ID	then	create	a	file	/etc/modprobe.d/vfio.conf	to
explicitly	define	it	as	the	GPU	passthrough	vfio	device	and	to	prevent
VGA	arbitration	to	opt-out	devices.	Enter	the	following	line	in	the
vfio.conf	file:

								options	vfio-pci	ids=1013:00b8		disable_vga

5.	 We	now	have	to	blacklist	the	default	VGA	drivers	so	they	are	not	loaded
during	boot,	as	follows:

								#	echo	"blacklist	nvidia"	>>	/etc/modprobe.d/blacklist.conf

								#	echo	"blacklist	radeon"	>>	/etc/modprobe.d/blacklist.conf	

								#	echo	"blacklist	nouveau"	>>	/etc/modprobe.d/blacklist.conf

When	trying	to	add	GPU	passthrough	for	a	VM,	it	is	important

to	keep	in	mind	that	not	all	GPU	devices	are	capable	of	being
passthrough	devices.	Try	different	configurations.	

At	this	stage,	we	are	now	ready	to	configure	the	VM	itself	to	use	GPU
passthrough.	The	recommended	way	to	configure	is	to	use	Open	Virtual
Machine	Firmware	(OVMF)	PCI	passthrough.	OVMF	is	a	project	to	enable
VMs	to	use	Unified	Extensible	Firmware	Interface	(UEFI)	BIOS.	To
enable	features	of	OVMF,	the	guest	operating	system	must	support	UEFI.	The
following	steps	will	help	find	out	if	the	GPU	device	is	UEFI	compatible:

1.	 Log	in	to	the	node	with	the	GPU	device	through	SSH.
2.	 Run	the	following	commands	to	download	and	compile	a	tool	to

download	the	GPU	device’s	ROM	content:

								#	git	clone	https://github.com/awilliam/rom-parser

								#	cd	rom-parser

								#	make

3.	 Run	the	following	sets	of	command	to	download	the	ROM	content	of	the
GPU	device	in	a	temporary	directory:

								#	cd	/sys/bus/pci/devices/0000:01:00.0/

								#	echo	1	>	rom

								#	cat	rom	>	/home/rom-parser/image.rom

								#	echo	0	>	rom

4.	 Run	the	following	command	to	test	the	downloaded	ROM	with	the	ROM
parser	we	have	downloaded	and	compiled	to	figure	out	if	the	GPU
device	is	UEFI	compatible:

								#	cd	/home/rom-parser

								#	./rom-parser	/tmp/image.rom

5.	 The	command	will	display	information	similar	to	the	following:

								Valid	ROM	signature	found	@0h,	PCIR	offset	60h

								PCIR:	type	3,	vendor	102b,	device:	0532,	class:	030000

								PCIR:	revision	0,	vendor	revision:	2139

								EFI:	Signature	Valid

								Last	image

If	the	PCIR	is	type	3	then	the	GPU	device	is	UEFI/OVMF	compatible.	

The	VM	configuration	should	look	like	the	following	after	selecting	OVMF
BIOS	and	adding	the	hostpci	line.	Make	the	necessary	changes	and	then
power-cycle	to	activate	the	new	configuration:

bios:	ovmf

scsihw:	virtio-scsi-pci

machine:	q35

hostpci0:	02:00,pcie=1,x-vga=on

....................

....................

When	using	NVIDIA	GPU	devices,	software	such	as	GeForce	Experience
may	cause	the	virtual	machine	to	crash.	In	such	cases,	add	the	following	line
to		/etc/modprobe.d/kvm.conf.	The	issue	may	occur	when	using	software	such	as
PassMark	PerformanceTest	and	SiSoftware	Sandra:

options	kvm	ignore_msrs=1

Preparing	for	hotplug
In	this	section,	we	are	going	to	see	how	to	configure	the	hotplugging	option	in
Proxmox	virtual	machines.	Using	the	hotplugging	feature,	we	can	add	and
remove	devices	or	resources	on	a	VM	without	restarting	or	power-cycling	it.
As	of	Proxmox	5.0,	we	can	use	the	hotplug	option	for	the	following
resources:

Disk
Network	interface
CPU
Memory
USB

As	of	Proxmox	5.0,	we	can	only	increase	CPU	and	memory	but	cannot
decrease	it.	Both	the	disk	and	network	interface	can	be	equally	hotplugged
and	unplugged.	The	following	table	shows	which	device	types	are	supported
on	different	operating	systems:

Device Kernel Hotplug/unplug OS

Disk All Both All	versions	of	Linux/Windows

NIC All Both All	versions	of	Linux/Windows

CPU Greater
than	3.10

Hotplug	only	for
Windows	and	both	for
Linux

All	versions	of	Linux,
Windows	Server	2008	and
greater

Memory Greater
than	3.10

Hotplug	only	for
Windows	and	both	for
Linux

All	versions	of	Linux,
Windows	Server	2008	and
greater

	

While	the	main	configuration	to	enable	hotplugging	for	Proxmox	should	be
done	through	CLI,	we	can	enable	or	disable	a	hotplug	device	through
the	Datacenter	|	Node	|	VM	|	Options	tab	menu,	as	shown	in	the	following
screenshot:

We	need	to	prepare	a	Linux-based	VM	first	before	hotplug	can	be	used.	Two
modules	must	be	loaded	inside	the	Linux	guest	OS	to	enable	hotplug.	We	can
load	the	modules	using	the	following	command:

#	modprobe	acpiphp

#	modprobe	pci_hotplug

To	automatically	load	the	modules	during	boot,	we	can	add	them	into
/etc/modules.

If	the	Linux	guest	OS	is	based	on	Kernel	less	than	4.7,	then	we	need	to	create
a	new	udev	rule	file	in	the		/lib/udev/rules.d/80-hotplug-cpu-mem.rules	file	and	add
the	following	lines:

SUBSYSTEM=="cpu",ACTION=="add",TEST=="online",ATTR{online}=="0",	ATTR=={online}="1"		

SUBSYSTEM=="memory",ACTION=="add",TEST=="state",	ATTR{state}=="offline",ATTR==

{state}="online"	

For	Linux	guest	OS	based	on	kernel	4.7	or	newer,	we	do	not	need	to	add	the
udev	rules	for	memory	hotplug,	but	it	is	still	required	for	CPU.	We	need	to	add
the	following	kernel	parameter	during	boot:

memhp_default_state=online

The	following	steps	are	to	add	the	kernel	parameter	during	boot	to	enable
memory	hotplug:

1.	 Run	the	following	command	from	a	Linux	guest	OS	SSH:

								#gksudo	gedit	/etc/default/grub

2.	 Locate	the	line	starting	with		GRUB_CMDLINE_LINUX_DEFAULT	and	type	in	the
kernel	parameter	at	the	end	of	the	line.	The	line	now	should	appear	as
follows:

						GRUB_CMDLINE_LINUX_DEFAULT="quiet	splash	memhp_default_state=online"

3.	 Save	the	file	and	exit	the	editor.
4.	 Run	the	following	command	to	update	the	grub	boot	loader:

								#	sudo	update-grub

5.	 The	Proxmox	node	needs	to	be	power-cycled	to	activate	the	modules,
rules,	and	kernel	parameter.

6.	 After	reboot,	run	the	following	command	to	verify	which	kernel
parameters	successfully	loaded	during	boot:

								#	cat	/proc/cmdline

Configuring	VMs	with	hotplug
For	CPU	and	memory	hotplug,	we	also	have	to	make	sure	that	the	NUMA
option	is	enabled	for	the	VM.	The	NUMA	option	can	be	found	under
the	Datacenter	|	Node	|	VM	|	Hardware	|	Processors	menu.	Click	on	Edit	to
open	the	CPU	dialog	box:

There	is	no	additional	configuration	necessary	to	hotplug	a	virtual	disk	image
or	virtual	network	interface.

Hotplugging	vCPUs
To	add	a	virtual	CPU	or	vCPU,	go	to	the	Datacenter	|	Node	|	VM	|	Hardware
menu.	Then,	select	Processors	and	click	on	Edit	to	open	the	dialog	box.
Simply	type	in	the	number	of	cores	or	use	the	up	and	down	option	in	the	text
to	choose	the	desired	number	of	cores	or	vCPUs.	Click	on	OK	to	accept	the
changes.	We	can	also	add	a	new	CPU	from	this	dialog	box.	We	can	also	add
vCPUs	by	running	the	following	command	from	the	Proxmox	node	CLI:

#	qm	set	<vm_id>	-vcpus	2

Since	our	example	VM	already	has	one	CPU,	the	previous	command	will	add
an	additional	CPU,	making	it	a	total	of	two	CPUs	for	the	VM.	

Hotplugging	memory
To	open	the	dialog	box	to	edit	allocated	memory	for	a	VM,	go	to	the	Datacenter
|	Node	|	VM	|	Hardware	menu.	Select	Memory	and	then	click	on	Edit	to	open
the	memory	dialog	box:

	

Change	the	amount	of	memory	to	be	allocated	and	then	click	on	OK	to	accept
the	changes.	Ensure	that	the	NUMA	option	is	enabled	in	the	Processors	dialog
box	as	mentioned	in	the	previous	section.	

Hotplugging	disks/vNICs
To	hotplug	a	new	disk	or	network	interface,	go	to	the	Datacenter	|	Node	|	VM	|
Hardware	menu	and	then	select	an	item	from	the	Add	drop-down	menu.	The
dialog	boxes	to	add	these	resources	are	similar	to	the	dialog	box	for	the	VM
creation	process	we	have	seen	in	an	earlier	section	in	this	chapter.	The	Add
drop-down	menu	is	as	shown	in	the	following	screenshot:

Although	CPU	and	memory	hotplug	works	for	both	Linux	and
Windows,	ensure	you	run	several	tests	before	implementing	them
in	a	production	environment.	The	CPU/memory	hotplug	can
create	an	unstable	situation	for	the	VM,	causing	it	to	freeze	and
require	a	complete	reboot.	

Migrating	KVM	virtual	machines
Proxmox	migration	allows	KVM	virtual	machines	to	be	moved	to	a	Proxmox
node	in	both	offline	and	online	or	live	modes.	The	most	common	scenario	of
VM	migration	is	when	a	Proxmox	node	needs	a	reboot	due	to	a	major	kernel
update	or	other	patches.	Other	scenarios	may	include	hardware	failures,	node
replacement,	software	issues	and	so	on.	Without	the	live	migration	option,
each	reboot	would	be	very	difficult	for	an	administrator	as	all	the	running
VMs	would	have	to	be	stopped	first	before	reboot	occurs.	This	will	cause
major	downtime	in	a	mission-critical	virtual	environment.

With	the	live	migration	option,	a	running	VM	can	be	moved	to	another	node
without	downtime.	During	a	live	migration,	the	VM	does	not	experience	any
major	slowdown.	After	the	node	reboots,	simply	migrate	VMs	back	to	the
original	node.	Any	offline	VMs	can	also	be	moved	with	ease.

Proxmox	takes	a	very	minimalistic	approach	to	the	migration	process.	To
access	the	migration	dialog	box,	right-click	on	the	VM	to	be	migrated	to	open
the	context	menu	and	then	select	Migration	or	click	on	the	Migrate	button	in
the	upper-right	corner	to	open	the	dialog	box.	The	following	screenshot
shows	the	migrate	dialog	box:

From	the	dialog,	simply	select	the	destination	node	and	then,	depending	on
online	or	offline	migration,	click	on	the	checkbox.	Then	hit	the	Migrate
button	to	get	the	migration	process	started.	Depending	on	the	size	of	virtual
drive	and	allocated	memory	of	the	VM,	the	entire	migration	process	time	can
vary.	Live/online	migration	also	migrates	the	virtual	memory	content	of	the
VM.	The	bigger	the	memory,	the	longer	it	will	take	to	migrate.	In	the	previous
example,	we	were	live	migrating	VM	ID	#103	to	node	pmx-02.

Summary
In	this	chapter,	we	looked	at	KVM	virtual	machines	and	how	to	create,	clone,
and	migrate	when	need	be.	We	also	looked	at	some	advanced	configuration,
such	as	adding	a	sound	device	and	enabling	PCI/GPU	passthrough	for	a	KVM
VM.	By	leveraging	this	cloning	technique,	we	can	scale	a	virtual	cluster
effortlessly	when	deploying	identical	virtual	machines.	Optional	and	non-
production	setup	of	a	nested	virtual	environment	was	also	explained.

A	KVM	virtual	machine	is	best	practice	for	all	non-Linux	operating	systems
and	also	when	total	resource	isolation	between	VMs	is	mandatory.

In	the	next	chapter,	we	are	going	to	look	at	LXC	containers	in	greater	detail.
We	will	learn	why	a	Proxmox	administrator	would	choose	them	over	KVM
virtual	machines.

LXC	Virtual	Machines
From	Proxmox	VE	4.0,	the	OpenVZ	container	technology	was	replaced	in
favor	of	LXC	container.	In	this	chapter,	we	will	see	the	features	and	benefits
of	using	an	LXC	container	and	learn	how	to	create	and	manage	containers	in
Proxmox.	We	will	cover	some	of	the	following	topics:

Exploring	LXC	containers
Understanding	container	templates
Creating	an	LXC	container
Managing	an	LXC	container
Migrating	an	LXC	container
Accessing	an	LXC	container
Unprivileged	versus	privileged	containers
Converting	an	OpenVZ	container	to	an	LXC	container

Exploring	LXC	virtual	machines
Containers	are	a	different	form	of	the	virtual	machine	that	is	completely
dependent	on	the	operating	system	of	the	host	node.	They	are	kernel-based
virtualizations	that	share	the	host	operating	system,	thereby	reducing	the
overhead	that	a	KVM	virtual	machine	has.	Due	to	the	lower	overhead,	the
virtual	machine	density	per	node	can	be	tighter	and	more	containers	can	be
hosted	than	KVM	virtual	machines.	This	comes	at	a	price	of	less	virtual
machine	isolation.	Since	containers	are	dependent	on	the	underlying	operating
system,	there	can	only	be	Linux-based	containers.	No	Windows	operating
system	can	be	containerized.	Unlike	KVM	virtual	machines,	we	cannot	clone
a	container	or	turn	a	container	into	a	template.	Each	container	is	a	virtual
instance	that	runs	separately.

LXC	is	just	another	type	of	container	technology.	OpenVZ	is	another
container	technology,	which	had	been	used	by	Proxmox	until	version	4.0.
There	are	two	major	differences	between	the	LXC	and	OpenVZ	container
technologies:

LXC	is	available	in	the	Linux	kernel	and	doesn’t	need	a	separate	kernel
as	in	the	case	of	OpenVZ
OpenVZ	supports	live	migration	whereas	LXC	does	not

The	following	are	a	few	advantages	of	using	LXC	containers:

Extremely	fast	deployment
Higher	density	of	virtual	machine	per	node
Smaller	backup	files
Nested	LXC	containers	with	almost	no	overhead
Ability	to	directly	access	data	inside	the	container	filesystem	from	the
host	node

In	Proxmox,	LXC	containers	are	identified	by	a	unique	icon	in	the	GUI
dashboard.	The	following	screenshot	shows	the	icon	of	an	LXC	container
with	ID	#101:

Understanding	container	templates
Unlike	KVM	virtual	machines,	which	can	be	installed	from	ISO	images,	LXC
containers	can	only	be	deployed	using	container	templates.	Container
templates	are	not	the	same	as	the	templates	we	created	for	KVM	in	the
previous	chapter.	LXC	templates	of	various	operating	systems	and	an
application-specific	container	can	be	directly	downloaded	from	the	Proxmox
repository.	To	view	a	list	of	available	templates	already	downloaded,	we	need
to	select	an	attached	storage	that	can	store	container	templates	and	click	on
the	Content	tab,	as	shown	in	the	following	screenshot:

In	the	preceding	screenshot,	we	can	see	that	we	have	a	Ubuntu	container
template	that	is	already	downloaded	to	our	local	storage.	To	view	a	list	of
available	LXC	templates	and	to	download	them	from	the	Proxmox	repository,
we	need	to	click	on	the	Templates	menu	to	open	the	dialog	box:

There	are	over	100	templates	available	to	be	downloaded	from	this	dialog

box.	If	you	are	not	able	to	see	the	complete	list	and	it	only	shows	the	Section:
system	templates,	then	run	the	following	command	from	the	CLI	to	update
the	template	list:

#	pveam	update		

To	download	a	template,	simply	select	it	and	click	on	the	Download	button.
The	downloaded	template	will	now	be	available	in	the	storage.	The	default
location	to	store	the	containers	templates	for	local	storage	is	as	follows:

/mnt/pve/<storage>/template/cache

Creating	an	LXC	container
After	ensuring	that	we	have	the	desired	template	for	the	container,	it	is	now
time	to	create	one.	We	can	click	on	the	Create	CT	button	in	the	top-right
corner	of	the	Proxmox	GUI	to	open	the	container-creation	dialog	box,	as
shown	in	the	following	screenshot:

General	tab
The	General	tab	of	the	dialog	box	is	used	to	assign	identification	information
such	and	create	a	root	password	for	the	container.

Node
This	is	a	drop-down	list	used	to	select	which	Proxmox	node	the	container	is
going	to	be	created	in.	In	our	example,	we	will	create	the	container	in	node
pmx-01.

CT	ID
This	is	a	textbox	used	to	enter	the	numeric	ID	of	the	container.	We	can	also
use	the	up	and	down	arrows	in	the	box	to	assign	the	IDs.	If	we	assign	an	ID
that	already	exists	in	the	cluster,	the	box	will	show	a	red	border	around	the
textbox.	For	our	example	container,	we	are	using	ID	#101.

Hostname
This	is	a	textbox	used	to	enter	the	hostname	of	the	container.	The	Hostname
does	not	need	to	be	FQDN.

Unprivileged	container
Unprivileged	containers	are	when	the	container	is	created	and	run	as	a	user	as
opposed	to	root.	This	is	the	safest	way	to	use	a	container	because	if	the
container	security	gets	compromised	and	the	intruder	breaks	out	of	the
container,	they	will	find	themselves	as	a	nobody	user	with	extremely	limited
privileges.	Unprivileged	containers	do	not	need	to	be	owned	by	the	user	since
they	are	run	in	user	namespaces.	This	is	a	kernel	feature	that	allows	the
mapping	of	the	UID	of	a	physical	host	into	a	namespace	inside	where	a	user
with	UID	0	can	exist.	Unprivileged	containers	can	also	be	run	as	root.	By
assigning	a	specific	UID	and	GID	to	root,	we	can	create	unprivileged
containers	throughout	the	system	and	run	them	as	root.

Privileged	containers	are	when	they	are	created	and	run	by	the	root	user	only.
These	containers	are	not	secure	because	all	the	processes	are	still	run	as	root.
All	containers	created	through	the	Proxmox	GUI	or	PCT	tools	are	privileged
containers.	

Enable	this	option	to	create	unprivileged	containers.	

If	total	security	or	virtual	machine	full	isolation	is	the	primary
concern	for	an	environment,	it	is	best	to	use	a	KVM	virtual
machine,	because	KVM	is	a	fully	independent	virtual	machine
without	any	dependency	on	the	host	operating	system	or	sharing
resources.

Resource	Pool
This	is	a	drop-down	list	menu	used	to	select	a	previously	created	pool.	It	is
only	necessary	if	we	want	to	assign	the	container	to	a	specific	pool.

The	Template	tab
This	tab	is	to	select	a	template	the	container	is	going	to	be	based	on.	Select
Storage	from	the	drop-down	menu	where	the	template	is	stored,	and	then
from	the	Template	drop-down	list,	select	the	template,	as	shown	in	the
following	screenshot:

The	Root	Disk	tab
This	tab	is	used	to	define	the	disk	storage	space	the	container	can	use.	The
following	screenshot	shows	the	dialog	box	with	the	configuration	for	our
example	container	with	the	local	storage	selected:

Storage
LXC	containers	can	be	stored	in	all	storage	types	without	any	modification
with	only	one	exception	for	the	Ceph	RBD	storage.	KRBD	must	be	enabled
for	the	RBD	storage	in	order	to	store	an	LXC	container.	The	inclusion	of	this
option	now	allows	leveraging	the	Ceph	distributed	storage	to	be	used	with	the
LXC	container	platform.	The	following	screenshot	shows	the	KRBD	option
from	the	storage	dialog	box:

ACLs
Access	control	lists	or	ACLs	allow	us	to	set	more	fine-tuned	file	ownership
than	the	traditional	Linux	user	or	group	access	models.	By	default,	Proxmox
creates	LXC	containers	with	ACLs.	To	create	a	container	without	ACLs,
select	Off	from	the	drop-down.	

Enable	quota
Enabling	this	option	allows	us	to	set	limits	inside	an	LXC	container	for	the
amount	of	disk	space	each	container	user	can	use.	However,	this	option
currently	only	works	on	container	storage	images	based	on	the	ext4	filesystem.
It	also	does	not	work	on	unprivileged	containers.	

The	CPU	tab
This	tab	allows	configuration	of	a	virtual	CPU	for	a	container.	The	following
screenshot	shows	the	dialog	box	with	the	available	CPU	options:

Cores
Unlike	KVM	virtual	machines,	we	can	only	allocate	CPU	cores	and	not	CPU
sockets.	We	can	type	in	a	value	or	select	from	the	up	and	down	arrows	how
many	cores	the	container	can	use.	For	our	example	container,	we	have
allocated	1	CPU	core.

The	Memory	tab
This	tab	is	used	to	define	the	allocated	memory	and	swap	the	size	for	the
container.	It	is	common	practice	to	allocate	an	equal	amount	of	swap	size	as
the	memory.	Keep	in	mind	that	for	LXC	containers,	this	swap	allocation
actually	gets	allocated	to	the	host	node	swap	since	the	container	does	not	have
its	own	kernel	running.	This	size	can	be	adjusted	for	a	container	at	a	later	time
without	restarting	the	container.	The	following	screenshot	shows	the	Memory
tab	dialog	box	with	512	MB	of	Memory	and	512	MB	of	Swap	space	allocated:

The	Network	tab
This	tab	allows	the	network	configuration	of	the	container.	The	same	dialog
box	is	used	to	edit	or	add	a	new	network	interface	for	the	container.	The
following	screenshot	shows	the	dialog	box	for	our	example	container:

Name
This	is	a	textbox	to	define	a	name	for	the	network	interface.

MAC	address
By	default,	all	MAC	addresses	for	virtual	network	interfaces	are
automatically	assigned.	By	typing	a	MAC	address	in	this	textbox,	we	can
specify	a	particular	MAC	address	for	the	interface.	This	may	be	necessary
when	a	specific	MAC	address	is	required	by	an	application	in	the	container.

Bridge
This	is	a	drop-down	list	used	to	select	a	virtual	bridge	that	the	interface	will
be	connected	to.

The	VLAN	Tag
This	is	used	to	set	a	VLAN	ID	on	the	virtual	interface.

Rate	limit
With	this	option,	we	can	set	a	limit	on	how	much	bandwidth	the	container	can
use.	The	unit	is	megabytes	per	second.	By	default,	there	is	no	limit.		

Firewall
To	enable	the	Proxmox	firewall	for	the	network	interface,	this	option	needs	to
be	checked.	Without	this	option,	no	firewall	rules	will	be	applied	to	the
interface.	We	will	take	a	look	at	the	Proxmox	firewall	in	detail	in	Chapter	9,	The
Proxmox	VE	Firewall.

IPv4/IPv6
We	can	set	both	IPv4	and	IPv6	on	the	virtual	network	interface.	We	can	also
manually	set	IP	addresses	or	enable	DHCP	for	automatic	IP	assignment.	The
IP	must	be	entered	along	with	CIDR.	Proxmox	also	supports	dynamic	IPv6
assignment	using	stateless	configuration,	such	as	SLAAC.	To	learn	about
Stateless	Auto	Configuration	or	SLAAC,	refer	to	https://tools.ietf.org/html/rfc4862.

https://tools.ietf.org/html/rfc4862

The	DNS	tab
This	tab	is	used	to	configure	the	DNS	information	for	the	LXC	container.
Enter	the	domain	name	to	be	used	by	the	container	and	IP	address(es)	of	the
DNS	server(s).	The	following	screenshot	shows	the	DNS	domain	and	DNS
server	information	for	our	example	container:

The	Confirm	tab
This	tab	is	to	ensure	the	accuracy	of	the	new	container	configuration.	If	any
changes	need	to	be	made,	we	can	simply	click	on	a	tab	to	go	back	without
losing	values	already	entered	or	selected.	Click	on	Finish	to	create	a
container.	The	following	screenshot	shows	our	new	example	container
powered	on	and	running:

Managing	an	LXC	container
In	Proxmox,	each	LXC	container	has	two	configuration	files.	One	defines	the
raw	resource	allocation	while	the	other,	used	by	Proxmox,	is	used	to	define	a
container.	The	Proxmox	container	configuration	file	can	be	found	at	the
following	location:

/etc/pve/local/lxc/<container_id>.conf	

For	our	example	container	ID	#101,	the	following	are	the	contents	of	this
configuration	file:

The	raw	container	configuration	file	can	be	found	at	the	following	location:
/var/lib/lxc/<container_id>/config

The	following	is	the	content	of	the	resource	allocation	configuration	file	for
our	example	container:

There	is	another	directory	for	the	root	filesystem	that	is	a	mount	point	for	the
allocated	storage	space	inside	the	container.	The	location	of	the	directory
is	/var/lib/lxc/<container_id>/rootfs/.

But	in	Proxmox,	this	directory	is	not	used	to	store	container	data.	For	local
storage,	the	container	virtual	disk	image	is	created
in	/var/lib/vz/images/<container_id>/.

For	shared	storage,	the	container	virtual	disk	image	is	created	in
/mnt/pve/<storage>/images/container_id/.

We	can	adjust	allocated	resources	for	a	container	in	real	time	without	power-
cycling	the	container.	This	feature	is	known	as	hotplug	for	KVM	virtual
machines.	However,	for	LXC	containers,	this	feature	is	built	into	the
container	technology	without	needing	any	additional	modification.	There	are
three	ways	in	which	we	can	adjust	allocated	resources	for	a	container:

The	Proxmox	GUI
The	command	line
Editing	a	configuration	file

Adjusting	resources	using	the	GUI
Using	the	Proxmox	GUI	to	change	resource	allocation	is	the	preferred	way	to
adjust	the	container	resource.	Any	changes	made	get	committed	to	the
container	instantly	without	needing	to	power-cycle	it.	For	day-to-day
operations,	the	GUI	provides	almost	all	the	resource	options	to	be	changed
with	a	few	clicks.	

To	change	a	particular	resource,	we	need	to	select	a	container	from	the	left-
hand	navigation	bar,	and	then	we	need	to	select	the	resource	to	be	changed.
For	example,	if	you	want	to	increase	the	allocated	CPU	cores	to	2	from	1,	you
need	to	select	the	Cores	line	item	and	then	click	on	Edit	to	open	the	CPU
Core	dialog	box.	The	following	screenshot	shows	the	Resources	currently
allocated	to	the	example	container	#101:

To	increase	allocated	storage	space,	we	need	to	select	the	Root	Disk	line	item
under	Resources	and	then	click	on	the	Resize	disk	button	to	open	the	dialog
box:	

As	of	Proxmox	5.0,	we	can	only	increase	the	size	of	the	allocated	storage	but
cannot	decrease	it.	We	can	type	in	a	value	in	GB	or	use	the	up	and	down
arrows	to	adjust	size.	It	is	important	to	note	here	that	the	value	we	will	select

here	is	not	the	total	size	of	the	allocated	space.	This	value	adds	on	top	of	the
already	allocated	space.	For	example,	in	our	example	container	#101,	the
allocated	space	is	currently	at	4	GB.	So	if	we	want	to	increase	that	to	a	total
size	of	6	GB,	we	will	type	in	2	in	the	dialog	box,	which	will	increase	the	size
by	2	GB.	Click	on	the	Resize	disk	button	in	the	dialog	box	to	finalize	the
value.

We	can	verify	that	the	disk	space	has	indeed	increased	by	running	the	#df	-
H	command	from	inside	the	container.	The	following	screenshot	shows	the
command	output,	which	shows	that	the	size	of	the	root	mount	point	has
increased	to	6.3	GB:

Adjusting	resources	using	the	CLI
LXC	comes	with	a	vast	number	of	command-line	commands	to	manage
containers.	It	is	not	possible	to	cover	all	the	commands	in	this	book.	The	good
news	for	Proxmox	users	is	that	there	are	some	tools	or	commands	provided	by
Proxmox	to	make	managing	containers	an	easier	task	through	the	CLI.	The
pct	command	is	a	script	created	by	Proxmox	developers	that	wraps	lxc
commands.	To	see	the	available	Proxmox	commands	for	containers,	we	can
run	the	following	command:

#	pct	help

We	can	also	get	details	of	all	the	pct	commands	from	the	Proxmox	wiki	at	https:
//pve.proxmox.com/wiki/Manual:_pct.conf.

Resource	changes	made	using	these	commands	get	committed	to	the
container	immediately	without	the	need	to	restart	the	container.	If	the
Proxmox	GUI	becomes	inaccessible,	we	can	manage	a	container	entirely
using	the	CLI.	The	format	command	used	to	change	container	resources	is	as
follows:

#	pct	set	<ct_id>	[options]		

For	example,	if	we	want	to	change	the	IP	address	of	the	container	#101,	the
command	will	be	as	follows:

#	pct	set	101	-net0	name=eth0,bridge=vmbr0,ip=192.168.1.17/24

We	can	verify	that	the	new	network	configuration	has	been	applied	to	the
container	by	checking	the	network	configuration	file	of	the	container	in
/etc/network/interfaces	as	follows:

It	is	very	important	to	note	here	that	the	gateway	address	is	now	missing	from
the	network	configuration.	The	reason	for	this	is	that	when	we	entered	the
previous	command	to	change	the	IP	address,	we	did	not	mention	the	gateway.
The	pct	set	command	will	replace	the	previous	configuration	for	a	resource	is
changed.	If	we	want	to	include	the	gateway	address,	the	entire	command	will
be	as	follows:

https://pve.proxmox.com/wiki/Manual:_pct.conf

#	pct	set	101	-net0	name=eth0,bridge=vmbr0,ip=192.168.1.17/24,gw=192.168.1.254		

To	adjust	the	allocated	memory	of	the	container	in	real	time,	we	can	use	the
following	command:

#	pct	set	<ct_id>	-memory	<int_value>		

To	change	the	CPU	limit	of	the	container,	we	can	use	the	following	command.
The	value	0	disables	any	CPU	limit:

#	pct	set	<ct_id>	-cpulimit	<0	-	128>		

The	following	command	changes	the	hostname	of	the	container:
#	pct	set	<ct_id>	-hostname	<string>		

To	increase	the	size	of	the	root	filesystem	of	the	container,	we	can	use	the
following	command:

#	pct	set	<ct_id>	-rootfs	size=<int_value	for	GB>		

At	times,	due	to	an	incomplete	backup,	a	container	may	become	locked	and
will	be	unable	to	start	or	stop.	The	following	command	will	unlock	the
container	from	the	CLI:

#	pct	set	<ct_id>	-unlock		

The	following	command	will	show	a	list	of	LXC	containers	in	the	node:
#	pct	list		

The	following	commands	will	start	or	stop	an	LXC	container	from	the	CLI:
#	pct	start	<ct_id>

#	pct	stop	<ct_id>

LXC	commands	are	a	very	useful	tool	should	the	Proxmox	GUI	become
inaccessible	for	any	reason	and	any	container	needs	to	be	managed	right
away.	

Adjusting	resources	using	direct
modification
Although	modifying	a	configuration	file	to	change	resources	of	a	container	is
possible,	it	is	not	recommended	for	day-to-day	operations.	Any	manual
modification	made	to	the	files	does	not	get	passed	right	away	until	the
container	is	restarted,	thus	causing	downtime.	However,	there	are	some
situations	when	manually	editing	the	configuration	file	is	necessary.	The
number	of	configuration	options	can	then	be	changed	through	the	GUI,	and
the	pct	tools	are	geared	toward	standard	containers.	LXC	containers	have	a
large	number	of	configuration	options,	which	cannot	be	changed	through	the
GUI	or	pct	tools.	Only	by	editing	the	configuration	files	and	restarting	the
containers	can	these	options	be	applied.	To	learn	more	about	the	advanced
configuration	options,	refer	to	the	following	link:
http://manpages.ubuntu.com/manpages/precise/man5/lxc.conf.5.html

http://manpages.ubuntu.com/manpages/precise/man5/lxc.conf.5.html

Migrating	an	LXC	container
As	of	Proxmox	VE	5.0,	live	migration	of	LXC	containers	is	not	possible.	The
container	must	be	turned	off	before	it	can	be	moved.	This	is	not	a	limitation	of
Proxmox	but	rather	the	LXC	technology	itself.	To	migrate	a	container,	right-
click	on	Container	to	open	the	Context	menu,	and	then	select	Migrate	or	click
on	the	Migrate	button	in	the	top-right	corner	of	the	GUI	to	open	the	Migration
dialog	box:

Select	a	destination	node	from	the	Target	node	drop-down	list.	Check	the
Restart	Mode	box	to	auto-restart	the	container	after	the	migration	is
complete.	Click	on	the	Migrate	button	to	initiate	the	migration.	The
migration	process	will	auto-stop	the	container,	migrate	it	to	the	destination
node,	and	then	auto-start	it	at	the	end	of	the	process.

Live	migration	is	under	heavy	development	by	LXC,	so	we	should	expect	it
in	the	mainstream	LXC	package	in	the	near	future.	To	some	of	us,	the	lack	of
this	feature	may	be	a	huge	deal	breaker,	especially	in	a	container-dominant
environment	with	many	container	instances.	

Accessing	an	LXC	container
There	are	several	ways	in	which	we	can	access	an	LXC	container:

The	noVNC	console
SSH
Direct	shell	through	the	CLI

The	noVNC	console
We	can	access	and	view	the	container	directly	from	the	GUI	using	the	noVNC
console.	It	is	almost	visual	remote	access	to	the	instance.	The	console	is
identical	to	a	KVM	virtual	machine.	If	we	try	to	access	the	container	using	the
console	after	a	long	period	of	inactivity,	it	may	appear	as	just	a	cursor	and	no
login	option:

By	simply	pressing	the	Enter	key,	we	can	make	the	login	prompt	appear,	as
shown	in	the	following	screenshot:

Direct	shell	through	the	CLI
One	of	the	best	features	of	an	LXC	container	is	the	ability	to	directly	access
the	container	shell	through	the	CLI	of	the	host	node.	The	Proxmox	command
to	access	the	LXC	container	shell	is	as	follows:

#	pct	enter	<ct_id>		

This	gives	us	the	direct	shell	prompt	of	the	container,	as	shown	in	the
following	screenshot:

In	the	previous	example,	we	are	accessing	the	LXC	container	ubuntu-01	from
the	Proxmox	node	pmx-01.	Note	that	no	password	was	asked	to	be	entered	into
the	container	from	the	Proxmox	node.	Since	a	container	is	running	as	root,	we
can	perform	any	tasks	inside	the	container.	Once	done,	we	can	simply	type
exit	to	go	back	to	the	Proxmox	node	from	the	container.

We	can	also	run	various	commands	inside	an	LXC	container	without	actually
entering	the	container.	The	following	Proxmox	command	format	is	used	to
execute	commands	inside	a	container:

#	pct	exec	<ct_id>	--	<command>		

By	following	the	previous	format,	if	we	want	to	create	a	directory	inside	the
container	and	verify	that	it	has	been	created,	our	command	will	be	as	follows:

If	we	try	to	execute	a	command	with	additional	arguments	using	the
following,	we	will	see	a	parsing	error:

In	the	previous	example,	we	tried	to	see	the	storage	usage	in	megabytes	inside
a	container	using	an	additional	option	argument,	-H.	In	such	cases,	we	have	to
modify	the	pct	command	by	adding	--	after	the	container	ID,	as	shown	in	the
following	screenshot:

In	the	preceding	screenshot,	we	can	see	that	the	command	to	check	the
storage	space	has	been	executed	successfully	inside	the	container.

Converting	OpenVZ	to	LXC
This	section	is	for	container	users	who	are	still	using	Proxmox	3.x	or	earlier
with	OpenVZ	container	technology.	Since	OpenVZ	has	been	completely
replaced	in	Proxmox	VE	4.0	and	later	versions,	all	OpenVZ	containers	must
be	converted	to	LXCs	in	order	to	make	them	usable.	The	full	conversion	can
be	performed	through	the	Proxmox	GUI.	The	simple	process	of	this
conversion	can	be	summarized	as	follows:

1.	 Write	down	the	OpenVZ	container	network	information.
2.	 Power	off	the	OpenVZ	container,	and	then	perform	a	full	backup.
3.	 Restore	the	OpenVZ	container	on	Proxmox	4.0	or	later.
4.	 Reconfigure	the	network	based	on	information	collected	in	step	1.

Do	not	upgrade	to	Proxmox	VE	4.0	or	later	before	making	a	full
backup	of	the	existing	OpenVZ	containers.	Otherwise,	these
containers	will	not	start.

The	reason	it	is	important	to	write	down	the	network	configuration	in	step	1	is
that	when	OpenVZ	containers	are	restored	in	Proxmox	4.0	or	later,	the
network	interfaces	are	stripped	off	and	need	to	be	reattached	and
reconfigured.

We	can	also	perform	the	conversion	using	the	CLI	without	the	Proxmox	GUI.
After	collecting	the	network	information	of	the	OpenVZ	containers,	we	can
power	off	the	containers	and	commit	a	full	backup	using	the	following
command:

#	vzctl	stop	<ct_id>	&&	vzdump	<ct_id>	-storage	<storage_id>		

Restore	the	container	in	Proxmox	4	or	later	using	the	following	command:
#	pct	restore	<ct_id>	<storage>/dump/<backup_file>.tar		

Summary
In	this	chapter,	we	learned	about	LXC	containers,	how	to	create	and	manage
them,	and	the	difference	between	unprivileged	and	privileged	containers.	We
also	learned	how	to	convert	OpenVZ	containers	to	LXC	containers	and	use
them	in	Proxmox	VE	4.0	or	later	versions.	Despite	not	having	the	live
migration	ability,	an	LXC	container	is	still	a	better	choice	of	containerization
than	OpenVZ	and	works	very	well	in	a	Proxmox	environment.

In	the	next	chapter,	we	will	see	some	advanced	features	of	network
components	in	a	Proxmox	cluster.	We	will	learn	the	benefits	of	a	virtual
network,	what	Open	vSwitch	is,	and	why	we	should	use	it	in	a	virtual
environment.

Network	of	Virtual	Networks
In	this	chapter,	we	are	going	to	take	an	in-depth	look	at	how	we	can	create	a
virtualized	network	within	a	virtual	environment.	We	will	learn	what	the
network	building	blocks	are	that	make	up	the	Proxmox	hypervisor	and	how	it
manages	both	internal	and	external	network	connectivity.	We	will	examine
several	network	diagrams	to	see	how	Proxmox	can	be	utilized	to	create	an
entire	colony	of	virtual	machines	connected	with	virtual	networks.	We	will
also	take	a	look	at	the	Open	vSwitch	implementation	in	Proxmox	along	with
the	network	configuration	file,	network	bonding,	VLAN,	and	so	on.	We	can
create	dozens	of	virtual	machines	at	will,	but	without	a	planned	network
model,	we	will	fail	to	run	an	efficient	virtual	environment.	If	we	compare
virtual	machines	with	bricks	as	building	blocks,	then	it	is	the	virtual	network
that	acts	as	mortar	to	create	anything	from	a	hut	to	a	cathedral.

In	this	chapter,	we	will	cover	the	following	topics:

Defining	virtual	networks
Networking	components	of	Proxmox,	such	as	bridge,	vNIC,	VLAN,	and
bonding
The	Proxmox	network	configuration	file
Open	vSwitch	implementation
Adding	network	components	to	a	VM
Sample	virtual	networks
Multi-tenant	virtual	environments

Exploring	virtual	networks
A	virtual	network	is	a	software-defined	network	where	all	links	and
components	may	or	may	not	have	direct	interaction	with	physical	hardware.
In	most	cases,	direct	interaction	with	physical	hardware	is	made	by	the
hypervisor	or	host	controller.	All	links	between	virtual	machines,	virtual
switches,	virtual	bridges,	and	virtual	network	interfaces	are	made	completely
virtually.	The	following	are	the	two	types	of	network	virtualization:

External	network	virtualization:	This	consists	of	several	local
networks	operating	as	one	virtual	network.	Physical	LANs	can	be	in	the
same	location	or	spread	over	multiple	locations.	Usually,	external
virtualization	is	a	cloud	network	service-based	model	that	multiple
companies	can	use	to	connect	their	multi-site	virtual	environment	for	a
service	fee.	External	network	virtualization	can	be	easily	achieved	by
combining	several	internal	virtual	networks	into	a	single	virtualized
network	using	a	WAN,	or	the	internet	using	technology	such	as	VPN.
Internal	network	virtualization:	This	usually	happens	locally	within	a
hypervisor	between	virtual	machines.	Do	not	confuse	this	with	the	local
area	network.	Here,	internal	network	virtualization	refers	to	the	network
connectivity	between	VMs,	bridges,	vNICs,	and	so	on,	which	do	not
necessarily	have	to	utilize	the	external	LAN.	This	provides	company	IT
staff	with	total	control	over	virtual	network	operations.	Network	issues
can	be	diagnosed	faster;	customization	of	expansion	or	contraction	can
happen	without	delay.	Internal	virtualization	heavily	uses	virtual
components,	such	as	virtual	bridges	and	vNIC,	to	form	a	virtual	network.

For	in-depth	information	on	external	and	internal	network
virtualizations,	refer	to	http://en.wikipedia.org/wiki/Network_virtualization.
In	particular,	follow	the	References	and	Further	reading	book
list	at	the	bottom	of	the	wiki	page.

In	this	chapter,	we	will	take	a	look	at	the	internal	network	virtualization	in	the
Proxmox	hypervisor	and	how	to	manage	and	configure	it.	We	will	also	take	a
look	at	some	network	diagrams	of	internal	and	external	virtual	network
combinations	later	in	the	book	in	Chapter	12,	Proxmox	Production-Level	Setup.

http://en.wikipedia.org/wiki/Network_virtualization

Physical	networks	versus	virtual
networks
We	will	now	see	the	difference	between	a	physical	network	and	a	virtual
network.	The	following	diagram	represents	a	physical	network	without	any
virtualization	platform:

The	following	diagram	represents	virtualization	as	the	main	infrastructure:

Before	we	dive	into	virtual	network	building	blocks,	we	need	to	understand
how	networks	are	set	up	in	the	preceding	diagrams.	Both	the	diagrams
represent	the	same	office	setup	where	the	main	administrative	department	is
on	the	second	floor,	and	the	accounting	department	is	on	the	fourth	floor	of
the	building.	It	is	apparent	from	the	diagrams	that	a	physical	network	is	less
complex	than	a	virtual	network,	but	by	leveraging	virtualization,	we	can	cut
costs,	increase	efficiency,	reduce	hardware	maintenance	complexity,	and
increase	portability.

A	physical	network
In	the	physical	network	diagram,	there	is	no	virtualization	platform	set	up.
The	network	is	set	up	with	physical	devices,	such	as	firewalls,	switches,
servers,	and	full	desktops.	Each	department	has	its	own	servers	and	network
segments.	A	centralized	management	for	the	whole	company	does	not	exist.
This	is	a	costly	solution	due	to	all	the	physical	hardware.	If	redundancy	is	a
requirement,	it	will	incur	twice	the	cost	since	we	will	need	identical	physical
servers.	All	the	connectivity	in	this	network	is	done	with	physical	cable	links.
Backups	in	this	setup	are	quite	challenging	since	all	the	physical	servers	in	the
two	departments	have	to	be	backed	up	on	a	per-device	basis.

A	virtual	network
The	virtual	network	diagram	represents	how	Proxmox	can	handle	a	setup	with
multiple	departments.	All	the	connections	between	servers	and	users’	virtual
machines	happen	virtually	without	a	physical	network	device.	Using	virtual
bridges	and	vNICs,	both	the	administrative	and	accounting	departments	can
coexist	on	the	same	Proxmox	cluster.	Since	all	computing	happens	in	the
hypervisor,	end	users	can	have	thin	workstations	to	minimize	cost
significantly.	Users	can	connect	to	their	virtual	machines	with	remote
protocols,	such	as	SPICE,	VNC,	or	RDP.

Thin	workstations	or	clients	are	very	underpowered,	cheap,	and
basic	computers	for	the	end	user,	providing	just	the	essentials	to
connect	to	dedicated	server	resources.	Since	all	processing
happens	in	a	virtual	environment,	thin	workstations	do	not	need
to	be	very	powerful.	The	main	purpose	of	a	thin	workstation	is	to
allow	the	user	to	connect	peripherals,	such	as	the	monitor,
keyboard,	mouse,	and	network	cable.	A	thin	workstation	can	be
purchased	under	$200.	There	are	a	lot	of	environments	where
Raspberry	Pi	3	is	being	used	as	a	thin	workstation	due	to	its
price	and	reliability.	

In	this	setup,	all	servers	and	user	machines	are	virtualized.	If	there	is	a	need
for	a	new	server,	it	is	just	a	matter	of	creating	a	virtual	server	with	vNIC	with
a	few	clicks.	In	such	a	scenario,	all	virtual	machines	can	simply	be	migrated
to	another	available	Proxmox	node,	and	everything	is	up	and	running	in
minutes.	Both	the	departments	in	our	example	are	separated	by	two	virtual
bridges.

Through	the	use	of	the	Proxmox	GUI,	all	management	can	be	done	from	one
location,	including	backup	and	restore.	Virtual	servers	can	be	migrated	over
network	links,	which	can	be	spread	over	large	or	small	physical	distances.
Although	a	virtual	network	setup	is	much	more	robust	and	feature-rich,	it	has
a	much	lower	budgetary	requirement.	New	departments	can	be	added	by
creating	new	virtual	bridges	for	separate	subnets	and	using	virtual	LANs	or
VLANs	on	existing	physical	network	switches.

Networking	components	in	Proxmox
We	will	now	take	a	look	at	the	networking	components	of	Proxmox,	which
allow	virtual	machines	to	communicate	with	or	be	segmented	from	other
internal	machines	as	well	as	the	internet.

Virtual	Network	Interface	Cards
A	Virtual	Network	Interface	Card	(vNIC)	is	a	software-defined
representation	of	a	Media	Access	Control	(MAC)	interface	of	physical
network	interfaces.	It	is	basically	a	virtual	network	card	for	a	virtual	machine.
Multiple	vNICs	can	share	a	physical	network	interface	of	a	host	node.	In	a
way,	networking	starts	with	vNIC	when	a	virtual	machine	sends	data	to	other
virtual	machines	or	networking	devices	within	a	virtual	environment	or
physical	environment.	In	the	following	screenshot,	the	example	virtual
machine	has	a	virtual	network	interface	named	net0	assigned	with	the	virtio
driver	and	configured	with	the	bridge	vmbr0:

The	virtio	is	a	Linux	kernel	driver	used	to	virtualize	virtual	network	interfaces
and	virtual	disk	devices.	This	is	the	default	vNIC	for	new	virtual	machines	in
Proxmox.	When	virtio	drivers	are	used	inside	a	guest	virtual	machine
operating	system,	the	VM	is	fully	aware	that	it	is	located	inside	a	virtual
environment.	Thus	the	OS	does	not	need	to	emulate	a	physical	device.	Any
emulation	adds	extra	overhead,	robbing	performance.	The	virtio	has	now
become	the	virtualization	standard	for	network	and	disk	devices	in	a	virtual
environment.

Proxmox	has	four	models	of	virtual	network	interfaces:	Intel	e1000,	VirtIO,
Realtek	RTL8139,	and	VMware	vmxnet3.	Out	of	these	four	models,	VirtIO
provides	the	maximum	network	performance	for	a	VM.	All	Linux-based
operating	systems	come	equipped	with	VirtIO	drivers.	For	Windows,	the
VirtIO	interface	driver	can	be	downloaded	from	http://www.linux-kvm.org/page/Windo
wsGuestDrivers/Download_Drivers.

For	Mac	OS,	the	VirtIO	interface	driver	can	be	downloaded	from	https://github.co
m/pmj/virtio-net-osx.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
https://github.com/pmj/virtio-net-osx

Adding/removing	vNIC
To	add	a	new	virtual	network	interface	for	a	VM,	we	can	open	the	network
device	dialog	using	the	Add	button	from	the	Hardware	tab	of	the	VM:

The	dialog	box	for	creating	vNICs	is	similar	to	the	network	dialog	box	that
we	learned	about	in	Chapter	6,	KVM	Virtual	Machines,	in	the	Creating	a	KVM
section.	To	remove	a	vNIC,	simply	select	the	network	device	and	click	on
the	Remove	button.	

If	the	Hotplug	option	for	the	network	interface	is	enabled	for	the	VM,	we	can
add	or	remove	the	network	interface	without	powering	down	the	VM.	The
following	screenshot	shows	the	Hotplug	option	for	KVM	VMs:

A	virtual	bridge
Just	as	a	real-world	bridge	connects	two	sides	of	a	river,	a	virtual	bridge
connects	a	Proxmox	virtual	network	to	a	physical	network.	A	virtual	bridge	is
like	a	physical	network	switch	where	all	virtual	machines	connect	to	and	can
be	configured	using	the	Spanning	Tree	Protocol	(STP).	A	virtual	bridge	is	a
great	way	to	create	separate	subnets.	All	VMs	in	the	same	subnet	can	connect
to	their	respective	bridges.	Proxmox	creates	one	virtual	bridge	by	default
during	the	installation	process.	Each	Proxmox	node	can	support	up	to	4,094
bridges.	When	the	same	bridge	configuration	is	entered	on	all	nodes,	the
bridge	can	be	used	from	any	nodes	in	the	cluster,	thus	making	live	migration
possible	without	network	connectivity	interruption.	The	default	naming
format	of	a	bridge	is	vmbrX,	where	X	represents	an	integer	between	0	to	4,094.

Proxmox	will	allow	a	bridge	to	be	created	and	not	be	connected	to	a	physical
NIC.	This	allows	an	isolated	environment,	that	has	no	access	to	the	physical
or	any	other	network	on	the	LAN.	Using	Open	vSwitch,	however,	we	can
configure	one	bridge	with	multiple	VLANs,	such	as	a	real	physical	switch.
We	will	take	a	look	at	the	Open	vSwitch	implementation	later	in	this	chapter.

We	can	change	a	virtual	bridge	of	a	VM	in	real	time	without	needing	to
power-cycle	it.	For	example,	if	a	VM	is	configured	with	a	virtual	bridge,	vmbr0,
and	we	want	to	change	the	bridge	to	vmbr10	later,	we	can	do	so	without	turning
off	the	VM.

Adding	a	virtual	bridge	through	the
GUI
We	can	add	a	new	virtual	bridge	through	the	Proxmox	GUI	or	CLI.	Virtual
bridges	are	created	at	the	node	level.	So	select	the	node	which	will	have	the
bridge	and	then	click	on	Network	to	see	the	list	of	existing	configured	virtual
bridges	and	physical	network	interfaces	installed	in	that	node.	The	following
figure	shows	the	Network	option	for	our	node	pmx-01	in	our	example	cluster:

Note	that	if	the	GUI	is	used	to	create	a	bridge,	then	the	node	will	need	to	be
restarted	to	apply	the	configuration.	This	is	because	a	new	network	interface
configuration	through	the	GUI	gets	written	in	/etc/network/interfaces.new,	and
only	by	rebooting	does	the	new	configuration	get	permanently	written	in
/etc/network/interface.	The	following	screenshot	shows	the	pending	change
information	after	creating	a	new	bridge	named	vmbr1:

To	revert	the	changes	before	a	reboot	is	done,	we	can	simply	click	on	the
Revert	changes	button.

To	create	a	new	bridge	through	the	GUI,	we	need	to	click	on	Create	under
Network,	and	then	we	need	to	select	the	Linux	Bridge	option	to	open	the
bridge	creation	dialog	box,	as	shown	in	the	following	screenshot:

Name
In	the	Name	textbox,	type	in	the	name	of	the	new	bridge	to	be	created.	The
naming	format	must	be	vmbrX	where	X	can	be	any	integer	from	0	to	4,094.	For
our	example	bridge,	we	are	naming	it	vmbr1.

IP	information
We	can	configure	both	IPv4	and	IPv6	for	the	bridge.	However,	the	Gateway
entry	must	remain	blank	since	we	already	have	a	default	bridge	configured
with	the	gateway.	There	can	only	be	one	bridge	configured	with	the	gateway
per	node.	If	we	try	to	create	another	bridge	with	a	gateway	address,	the	bridge
creation	process	will	abort	with	an	error:

Bridge	ports
The	Bridge	ports	textbox	is	to	type	in	the	physical	network	interface	of	the
host	to	which	this	bridge	will	be	connected.	There	is	no	drop-down	menu	to
choose	a	physical	network	interface	from.	The	name	of	the	interface	needs	to
be	typed	in.	If	the	virtual	network	traffic	is	not	going	to	go	out	of	the	node	but
will	remain	isolated	among	the	virtual	machines	within	the	node,	then	we	can
leave	the	port’s	textbox	blank.	

It	is	important	to	note	here	that	we	can	only	configure	one
virtual	bridge	per	physical	network	interface.	One	physical
interface	can	never	be	shared	among	multiple	bridges.	

VLAN-aware
The	VLAN-aware	checkbox	is	a	new	addition	that	allows	Proxmox	to	act	as	a
trunk	in	a	switch	that	will	pipe	multiple	VLANs	over	one	connection.
Although	it	is	not	important	to	enable	it,	however,	it	is	a	new	way	of	handling
VLANs	on	the	bridge.	For	example,	if	we	need	to	implement	10	VLANs,	we
will	need	to	create	10	virtual	bridges	in	the	traditional	Linux	bridge	way.
However,	using	the	VLAN-aware	option,	we	can	create	one	bridge	and	just
add	the	VLAN	ID	to	it,	thus	saving	a	lot	of	time	typing	out	multiple	bridge
configurations.

The	following	shows	a	basic	example	configuration	of	a	traditional	Linux
virtual	bridge	for	10	VLANs:

auto	vlan0

iface	vlan0	inet	manual

								vlan_raw_device	eth0

auto	vmbr0

iface	vmbr0	inet	manual

								bridge_ports	vlan0

								bridge_stp	off

								bridge_fd	0

..........

..........

auto	vlan10

iface	vlan10	inet	manual

								vlan_raw_device	eth0

auto	vmbr10

iface	vmbr10	inet	manual

								bridge_ports	vlan10

								bridge_stp	off

								bridge_fd	0

In	the	preceding	configuration,	we	can	see	that	there	are	a	lot	of	bridge
instances	in	the	traditional	Linux	form.	However,	using	the	VLAN-aware
option,	we	can	reduce	the	entire	configuration	to	just	a	few	lines.	The
following	is	an	example	configuration	of	a	VLAN-aware	bridge	for	10
VLANs:

auto	vmbr0

iface	vmbr0	inet	manual

								bridge_vlan_aware	yes

								bridge_ports	eth0

								bridge_vids	1-10

								bridge_pvid	1

								bridge_stp	off

								bridge_fd	0

For	a	traditional	Linux	bridge,	we	have	used	additional	lines	of

configuration	to	create	a	VLAN	port	first,	and	then	we	pass	that
port	as	a	bridge	port	for	the	bridge.	The	configuration	option	is
vlan_raw_device	<physical_port>.	Although	there	is	more	than	one
way	to	create	a	VLAN-backed	bridge,	this	is	the	preferred
method	of	configuration.

The	advantage	of	using	the	traditional	Linux	method	is	that	each	VLAN	gets
its	own	virtual	bridge,	thus	isolating	the	network	traffic	further.	For	instance,
when	reconfiguring	a	bridge	of	a	particular	VLAN	ID,	only	that	bridge	and	all
the	VMs	connected	to	that	bridge	are	affected.	For	the	VLAN-aware	mode,
when	there	is	a	misconfiguration,	it	can	interrupt	network	connectivity	for	all
the	VMs	connected	to	the	bridge.	The	VLAN-aware	mode	provides	similar
functionalities	as	Open	vSwitch	but	without	the	extra	package.	We	will	learn
about	Open	vSwitch	later	in	this	chapter.

When	using	the	VLAN-aware	bridge,	we	have	to	tag	each	virtual	interface
with	the	VLAN	ID,	as	shown	in	the	following	screenshot:

When	using	traditional	mode	without	the	VLAN-aware	option,	we	have	to
select	the	VLAN	tagged	bridge	itself	instead	of	entering	the	VLAN	Tag	for
the	virtual	network	interface.

Adding	a	virtual	bridge	through
CLI
Perform	the	following	steps	to	create	a	virtual	bridge	in	Proxmox	through	the
CLI:

1.	 Log	in	to	the	Proxmox	node	through	the	console.
2.	 Open	the	interface	file	/etc/network/interfaces	using	an	editor.
3.	 Add	the	configuration	lines	using	the	following	format	at	the	end	of	the

file:

								auto	<bridge_name>	

								iface	<bridge_name>	inet	static	

													address	192.168.10.1	

													netmask	255.255.255.0

													bridge_ports	ens21	

													bridge_stp	off	

													bridge_fd	0	

4.	 Save	the	file	and	exit	the	editor.
5.	 Activate	the	bridge	from	the	CLI	using	the	following	command:

								#	ifup	<bridge_name>

The	new	virtual	bridge	should	now	be	activated	and	running.	If	virtual
machines	are	to	be	migrated	to	other	nodes,	then	the	configuration	must	be
duplicated	in	all	the	nodes.

Extra	bridge	options
There	are	two	extra	bridge	options	that	are	usually	used	with	the	virtual
bridge	configuration.

bridge_stp
This	option	allows	multiple	bridges	to	communicate	with	each	other	for
network	discovery	and	loop	avoidance.	This	is	useful	to	eliminate	data	cycles
to	provide	optimal	packet	routing	because	with	STP	on,	bridges	can	talk	to
each	other	and	figure	out	how	they	are	connected,	and	then	provide	the	best
routing	possible	for	the	data	packet	transmission.	STP	also	allows	fault
tolerance	since	it	checks	the	network	topology	if	a	bridge	fails.	To	turn	on	the
STP	option,	just	modify	the	bridge	configuration,	as	follows:

bridge_stp	on	

STP	increases	bandwidth	efficiency	while	posing	security	issues.	Do	not	use
STP	when	a	virtual	subnet	requires	isolation	from	the	other	virtual	subnet	in
the	same	cluster	and	you	do	not	want	the	bridges	to	talk	to	each	other.	It	is	a
useful	option	when	working	inside	the	virtual	environment	of	a	company,
where	data	can	flow	freely	between	departments’	subnets.

STP	is	turned	off	by	default.

STP	does	not	have	any	authentication	and	assumes	all	network	interfaces	to
be	trustworthy.	When	a	bridge	inquires	about	the	network	topology	from
another	bridge,	information	is	freely	shared	without	any	authentication.	Thus,
a	user	in	the	bridge	can	potentially	gather	data	of	the	entire	network	topology
and	other	bridges	in	the	network.	This	leads	to	a	dangerous	situation	when
bridging	between	the	internal	environment	and	the	internet.

bridge_fd
FD	refers	to	forwarding	delay.	The	bridge_fd	option	sets	the	delay	before	the
interface	will	be	ready.	During	the	delay,	the	bridge	tries	to	discover	other
bridges	and	checks	that	there	are	no	network	loops	if	STP	is	on.	By	default,
the	forwarding	delay	is	set	to	0,	as	shown	in	the	following	code:

bridge_fd	0	

In	most	cases,	the	default	value	of	0	is	enough.	In	a	very	complex	virtual
environment	with	several	dozen	bridges,	increasing	this	number	to	3	or	4
might	help.	Without	this	delay,	the	bridge	will	start	transmitting	data	packets
regardless	of	whether	the	other	destination	bridge	is	available	or	not.
Increasing	the	delay	time	allows	the	source	bridge	to	check	all	the	bridges	and
not	transmit	any	data	if	the	destination	bridge	is	down,	thus	preventing
unnecessary	network	bandwidth	consumption.

There	are	many	more	bridge_	options	to	be	used	in	a	network
configuration	file,	such	as	bridge_hello,	bridge_maxage,
and	bridge_bridgeprio.	Bridge	options	are	Linux	specific	and
beyond	the	scope	of	this	book.	For	in-depth	information	on
bridges,	visit	http://www.linuxfoundation.org/collaborate/workgroups/networking
/bridge.

http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge

Virtual	LAN
A	VLAN	is	a	logical	local	area	network	within	a	physical	local	area	network.
It	can	be	compared	with	partitions	within	a	physical	disk	storage.	A	physical
network	interface	can	be	partitioned	to	transport	data	for	multiple	separate
subnets.	This	partition	is	achieved	using	a	VLAN	ID.	For	details	on	VLANs
or	the	IEEE	802.1q	standard,	refer	to	http://en.wikipedia.org/wiki/IEEE_802.1Q.

Once	VLAN	data	leaves	the	virtual	environment,	a	physical	network	switch
with	the	VLAN	feature	tags	each	data	with	an	ID	and	then	directs	the	data	to
its	proper	destination.	Each	subnet	should	have	the	same	VLAN	ID	on	the
virtual	environment	and	on	the	physical	network	switch.	VLAN	helps	reduce
the	broadcast	traffic	of	multiple	domains	on	the	same	network.	By
segmenting	a	large	network	into	smaller	VLANs,	broadcasts	can	be	sent	only
to	relevant	VLANs	without	interrupting	other	data	traffic	on	the	network.

VLAN	also	provides	an	added	security	layer	on	a	multi-domain	network	since
a	user	can	no	longer	just	plug	into	the	network	and	capture	just	about	any	data
of	any	domain	on	the	network.	Network	segmentation	is	usually	done	with	a
layer	3	device	such	as	a	router.	However,	by	using	a	VLAN,	significant	cost
savings	can	be	achieved	with	the	existing	layer	2	devices	on	the	network,
such	as	a	managed	switch	or	smart	switch.	There	are	seven	layers	defined	by
the	Open	Systems	Interconnection	(OSI)	model	by	which	network
communication	takes	place.	For	in-depth	details	on	OSI,	refer	to	http://en.wikipedi
a.org/wiki/OSI_model.

http://en.wikipedia.org/wiki/IEEE_802.1Q
http://en.wikipedia.org/wiki/OSI_model

Adding	a	VLAN
VLAN	can	be	set	up	on	both	the	virtual	machines	and	on	bridges.	If	the
VLAN	traffic	leaves	a	virtual	environment,	it	is	important	for	each	switch	and
physical	network	device	to	be	VLAN-aware	and	tagged	properly.	Tagging
VMs	with	the	VLAN	ID	is	very	straightforward	through	the	Proxmox	GUI.
Just	enter	the	VLAN	ID	during	the	addition	of	a	network	interface	to	a	VM	or
edit	the	already	added	vNICs.	The	following	screenshot	shows	a	virtual
interface	for	a	VM	after	it	was	tagged	with	a	VLAN	ID:

In	the	previous	example,	we	have	tagged	the	interface	for	VLAN	ID	1.	This
tagging	works	when	the	bridge	has	the	VLAN-aware	option	enabled,	or	when
Open	vSwitch	has	been	implemented.	When	each	virtual	bridge	is	configured
with	a	separate	VLAN	ID,	then	instead	of	assigning	a	tag	ID,	we	will
configure	the	interface	to	use	the	bridge	for	that	VLAN.	In	the	following
screenshot,	we	have	configured	the	network	interface	to	use	the	bridge	vmbr1
instead	of	tagging:

We	can	also	configure	a	VLAN	for	bonded	network	interfaces.	For	this,
instead	of	assigning	a	physical	interface	as	a	VLAN	raw	device,	we	need	to
create	a	new	bonded	interface	and	then	use	that	for	the	VLAN	raw	device,	as
shown	in	the	following	example	configuration:

auto	bond0	

iface	bond0	inet	manual	

				slaves	eth0	eth1	

auto	vlan1	

iface	vlan1	inet	manual	

				vlan_raw_device	bond0	

	

auto	vmbr1	

iface	vmbr1	inet	manual	

				bridge_ports	vlan1	

				bridge_stp	off	

				bridge_fd	0	

In	the	previous	example,	we	created	a	bonded	interface	using	the	physical
ports	eth0	and	eth1.	Then,	we	created	a	VLAN	interface	vlan1	using	the	bonded
interface	as	the	raw	device.	The	new	virtual	bridge	vmbr1	was	created	from
vlan1.	Notice	that	nowhere	have	we	used	the	VLAN	tag.	Instead,	we	created
the	VLAN	raw	device	based	on	the	desired	tag.	The	name	of	the	bridge	is	not
important	here,	but	the	name	of	the	VLAN	interface	is.	If	we	have	to	create	a
bridge	for	VLAN	ID	9,	then	our	configuration	will	look	like	this:

auto	vlan9	

iface	vlan9	inet	manual	

				vlan_raw_device	bond0	

	

auto	vmbr9	

iface	vmbr9	inet	manual	

				bridge_ports	vlan9	

				bridge_stp	off	

				bridge_fd	0	

Besides	the	tagged	virtual	bridge	and	virtual	network	interface,	in	order	to
make	the	VLAN	work,	we	also	have	to	configure	a	physical	switch.	Without	a
VLAN,	the	capable	switch	network	traffic	will	not	be	able	to	traverse	between
nodes	or	go	outside	the	local	network.	Traffic	will	be	limited	to	inside	the
node	only.	Each	physical	switch	comes	with	its	own	GUI	for	switch
configuration,	but	the	basic	idea	of	the	VLAN	configuration	remains	the	same
for	all.

The	VLAN	configuration	is	done	on	a	physical	switch	by	configuring	trunks
or	general	ports.	The	option	is	usually	found	by	navigating	to	the	Switching	|
VLAN	menu	of	the	GUI.	The	following	screenshot	is	an	example	of	the
VLAN	setting	on	the	Netgear	GS748T	smart	switch:

In	the	previous	example,	a	demo	VLAN	with	ID	#9	was	set	up	for	the	bridge,
vmbr9.	Next,	we	have	to	configure	the	ports	that	are	part	of	VLAN	9	under	the
VLAN	Membership	menu,	as	shown	in	the	following	screenshot,	where	we
have	tagged	ports	2,	3,	4,	and	5	for	VLAN	9:

A	good	practice	to	identify	which	VLAN	belongs	to	which	bridge
is	to	use	the	same	number	for	both	the	interfaces.	For	example,
a	bridge	vmbr10	will	have	the	VLAN	ID	10.	Without	some	order,	in
the	beginning,	bridges	and	VLANs	will	quickly	get	out	of	control
as	the	network	grows	over	time.

Network	Address
Translation/Translator
Network	Address	Translation/Translator	(NAT)	is	a	method	of	remapping
one	IP	address	space	into	another	by	modifying	the	network	address
information	in	the	IP	datagram	packet	headers	while	they	are	in	transit	across
a	traffic	routing	device.

NAT	secures	a	device	by	not	directly	exposing	it	to	the	internet	or	to	a	public
network.	It	also	allows	more	physical	devices	to	be	able	to	communicate
without	having	individual	public	IPv4	addresses,	which	will	cost	money,	and
there	is	a	limited	supply	of	IP	addresses	on	the	internet.	NAT	is	usually
configured	in	the	router	or	firewall	of	a	network,	where	the	policy	is	created
for	local-to-global	and	global-to-local	IP	address	mapping.

NAT	is	relevant	for	IPv4	networks.	An	IPv6	network	diminishes
the	need	to	use	NAT	because	IPv6	addressing	is	always	public.

Adding	NAT/masquerading
NAT	is	a	way	to	hide	internal	network	IP	addresses	from	the	external
network,	such	as	the	internet.	Any	outgoing	traffic	uses	the	main	host	IP
address	instead	of	using	its	own	local	IP	address.	Add	the	last	three	lines	of
the	following	post-up	and	post-down	settings	to	the	/etc/network/interfaces
configuration	file.	Only	add	these	lines	under	the	virtual	bridge	configuration
that	needs	the	NAT	option:

auto	vmbr0	

iface	vmbr0	inet	static	

address	192.168.145.1	

netmask	255.255.255.0	

				bridge_ports	none	

				bridge_stp	off	

				bridge_fd	0	

				post-up	echo	1	>	/proc/sys/net/ipv4/ip_forward	

				post-up	iptables	-t	nat	-A	POSTROUTING	-s	'192.168.145.0/24'	-o	eth0

				-j	MASQUERADE

				post-down	iptables	-t	nat	-D	POSTROUTING	-s	'192.168.145.0/24'	-o	eth0

				-j	MASQUERADE

It	is	recommended	that	all	NAT	configurations	be	handled	by	a
dedicated	physical	or	virtual	firewall.	Most	firewalls	have	an
out-of-the-box	NAT	option.	Also,	using	virtualized	firewalls,	we
can	create	truly	isolated	virtual	networks	for	multiple	clients	on
the	same	Proxmox	cluster.	Having	a	virtual	firewall	provides	the
client	control	over	their	own	filtering	while	keeping	their
network	hidden	from	the	other	client	networks	in	the	cluster.

Network	bonding
Network	bonding	or	Teaming	or	Link	Aggregation	(LAG)	is	a	concept
where	multiple	interfaces	are	combined	to	increase	the	throughput,	set	up
network	redundancy,	and	balance	network	load.	This	concept	is	heavily	used
in	high-demand	environments	where	downtime	and	slow	network	I/O	are	not
acceptable.	The	Proxmox	GUI	provides	excellent	features	to	create	and
manage	to	bonding	within	the	cluster	node.	Bonding	modes	supported	by
Proxmox	are	balance-rr,	active-backup,	balance-xor,	broadcast,	Link	Aggregation
Control	Protocol	(LACP)	or	802.3ad,	balance-tlb,	and	balance-alb.	The
following	table	lists	the	various	bonding	modes	as	well	as	their	policies	and
descriptions:

Bonding	mode Policy Description

balance-rr

or
Mode	0

Round
robin

Packet	transmission	takes	place	sequentially
from	the	first	participating	network	interface
to	the	last.	This	provides	load	balancing	and
fault	tolerance.

active-backup

or
Mode	1

Active
backup

Only	one	participating	network	interface	is
active.	The	next	interface	becomes	active
when	the	previous	active	interface	fails.	This
only	provides	fault	tolerance.

balance-xor

or
Mode	2

XOR

This	mode	selects	the	same	participating
interface	for	each	destination	MAC	address.
Transmission	takes	place	based	on	bonded
network	interfaces	of	the	MAC	address
XOR’d	with	the	destination	MAC	address.
This	provides	both	load	balancing	and	fault
tolerance.

broadcast

or
Mode	3

Broadcast
Transmission	takes	place	on	all	participating
bonded	network	interfaces.	This	provides
fault	tolerance	only.

All	participating	network	interfaces	in	the
aggregated	group	share	the	same	speed	and

802.3ad

or
Mode	4

Dynamic
link
aggregation

duplex	settings.	All	interfaces	are	utilized
according	to	the	802.3ad	specification.	A
network	switch	with	802.3ad	or	the	LACP
feature	is	required.	This	provides	fault
tolerance.

balance-tlb

or
Mode	5

Adaptive
transmit
load
balancing

Outgoing	packets	are	distributed	according
to	the	current	load	on	each	participating
interface.	Incoming	packets	are	received	on
the	current	interface,	and	if	the	same
interface	fails,	then	the	next	available
interface	takes	over.	This	provides	fault
tolerance	and	load	balancing	for	only
outbound	packets.

balance-alb

or
Mode	6

Adaptive
load
balancing

This	is	the	same	as	balance-tlb	with	the
inclusion	of	load	balancing	for	incoming
packets	on	all	interfaces.	This	provides	fault
tolerance	and	load	balancing	for	both
incoming	and	outgoing	traffic.

Adding	a	bonding	interface
We	will	now	see	how	to	add	network	bonding	to	our	cluster.	There	are	several
types	of	bonding	options	available.	However,	only	balance-rr,	active-backup,
and	LACP	(802.3ad)	are	the	most	widely	used.	The	balance-rr	option	provides
the	round	robin	method	to	increase	the	overall	interface	bandwidth	with
failover.	The	balance-rr	option	does	not	require	any	special	network	switch.
Just	about	any	switch	can	be	used	to	make	this	work.	The	major	drawback	of
balance-rr	is	a	waste	of	data	packets.	LACP	is	known	as	the	industry-standard
bonding.

In	this	book,	we	will	only	take	a	look	at	the	LACP	bonding	protocol.
However,	to	give	you	an	idea	of	what	balance-rr	bonding	looks	like,	the
following	diagram	shows	balance-rr	bonding	between	Proxmox	nodes	and
Ceph	distributed	storage	clusters.	In	this	example,	the	Proxmox	public
network	is	on	192.168.10.0/24,	while	the	storage	backend	is	on	a	private
192.168.201.0/24	subnet.	Separate	switches	are	used	for	the	Ceph	storage
network	to	increase	redundancy.	Each	Proxmox	node	has	three	1-gigabit
NICs.	One	is	used	from	the	main	cluster	of	server	virtual	machines,	and	the
remaining	two	are	used	for	balance-rr	bonding.	This	type	of	bonding	is	a	very
economical	way	to	provide	network	redundancy:

LACP	can	combine	multiple	interfaces	to	increase	the	total	throughput	but	not
the	actual	connection.	For	example,	an	LACP	bonding	of	four	1-gigabit
network	interfaces	will	still	have	a	total	connection	speed	of	1-gigabit,	but	it
will	be	able	to	respond	to	more	simultaneous	requests	closer	to	the	1-gigabit
speed.

To	know	more	about	link	aggregation/bonding/teaming,	refer	to	
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_
Control_Protocol.

http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol

For	LACP	to	work,	it	is	very	important	to	know	whether	the	physical	switch
supports	this	feature.	A	quick	visit	to	a	switch	manufacturer’s	website	will
give	us	the	information	about	whether	the	LACP	feature	is	supported.	Some
manufacturers	will	list	this	feature	as	802.3ad.

Like	virtual	bridges,	we	can	also	configure	a	network	bond	through	the
Proxmox	GUI	or	CLI.	A	bond	created	through	the	GUI	will	only	be	activated
after	the	node	reboots,	whereas	a	bond	added	through	the	CLI	by	editing	the
network	configuration	file	directly	can	also	be	activated	through	the	CLI.	We
can	open	the	bond	interface	creation	dialog	box	from	the	Hardware	tab	of	the
node.	The	following	screenshot	shows	the	dialog	box	for	a	bonded	interface,
bond0,	in	our	example	Proxmox	node:

In	the	previous	example,	we	used	physical	interfaces,	ens21	and	ens22,	for	our
bonded	interface,	bond0.	We	have	not	used	any	IP	information	since	this
bonded	interface	will	not	be	directly	connected,	but	we	will	create	VLAN
interfaces	and	virtual	bridges	based	on	the	bond	interface.	For	bond	mode,	we
are	using	LACP	with	the	layer	2+3	hash	policy.	There	are	three	hash	policies	to
choose	from	the	drop-down	list:

layer2
layer2+3
layer3+4

To	maximize	the	performance	and	stability	of	the	network	connectivity,	it	is
important	to	know	the	difference	between	the	policies.

The	layer	2	hash	policy
If	no	policy	is	selected,	then	Proxmox	uses	the	layer	2	policy	by	default.	This
policy	generates	the	transmission	hash	based	on	the	MAC	addresses	of	the
network	interface.	This	policy	puts	all	the	network	traffic	on	a	single	slave
interface	in	the	bonded	LACP.

The	layer	2+3	hash	policy
This	policy	creates	the	transmission	hash	based	on	the	combined	MAC	and	IP
addresses.	These	are	also	the	layer	2	and	layer	3	protocols	of	the	network
layer.	This	policy	also	sends	the	network	traffic	to	a	destination	on	the	same
slave	interface.	However,	it	provides	more	balanced	network	transmission
than	just	using	the	layer	2	policy.	For	best	performance	and	stability,	use	this
policy.

The	layer	3+4	hash	policy
This	policy	creates	the	transmission	hash	based	on	the	upper	network	layer
whenever	it	is	available.	The	combination	of	layer	3	and	4	allows	multiple
network	traffic	or	connections	spanning	over	multiple	slave	interfaces	in	the
bonded	LACP.	However,	one	connection	will	not	span	over	multiple	slave
interfaces.	For	non-IP	network	traffic,	this	policy	uses	the	layer	2	hash	policy.
Do	keep	in	mind	that	the	layer	3+4	policy	is	not	fully	LACP	or	802.3ad
compliant.

To	create	the	bonding	interface	through	the	CLI,	the	following	lines	need	to
be	added	to	the	configuration	file.	In	our	example,	we	are	adding	the	physical
interface	ports,	ens21	and	ens22,	to	the	bonding	interface:

auto	ens21	

iface	ens21	inet	manual	

auto	ens22	

iface	ens22	inet	manual	

	

#	bonding	interfaces	

auto	bond0	

iface	bond0	inet	manual	

				slaves	ens21	ens22	

				bond_miimon	100	

				bond_mode	802.3ad	

We	are	going	to	add	the	following	lines	of	code	to	create	a	virtual	bridge
using	the	bonded	port:

auto	vmbr1	

iface	vmbr1	inet	static	

				address	192.168.10.1	

				netmask	255.255.255.0	

				bridge_ports	bond0	

				bridge_stp	off	

				bridge_fd	0	

Activate	the	bridge	by	rebooting	the	node	or	from	the	CLI	by	stopping	and
restarting	the	bridge.	Use	the	following	commands:

#	ifup	bond0

#	ifdown	vmbr1

#	ifup	vmbr1	

After	configuring	Proxmox	nodes	with	LACP	bonding,	we	now	have	to	set	up
LACP	on	a	physical	switch.	Each	switch	comes	with	its	own	documentation
on	how	to	configure	LACP	link	aggregation.	In	this	section,	we	are	going	to
take	a	look	at	the	Netgear	GS748T	smart	switch	LACP	feature.	The	option	to
enable	LACP	can	be	found	by	navigating	to	Switching	|	LAG	in	the	Netgear
GUI.	First,	we	have	to	enable	LACP	for	each	link	group.	The	following

screenshot	shows	LACP	enabled	for	group	1	to	3	through	the	LAG
Configuration	menu:

After	the	link	groups	are	enabled,	we	will	assign	switch	ports	to	each	groups.
In	our	example,	we	are	assigning	port	1	and	2	to	group	1	named	ch1,	port	3
and	4	to	a	group	named	ch2,	and	port	5	and	6	to	a	group	named	ch3.	The
following	screenshot	shows	ports	enabled	for	group	1:

Bonding	can	also	be	used	with	a	VLAN.	Refer	to	the	Virtual	LAN	section	in
this	chapter	to	learn	how	to	integrate	bonding	with	a	VLAN.

Multicast
From	Proxmox	VE	4.0	and	later,	multicast	is	now	required	for	proper	cluster
communication.	In	simple	words,	multicast	delivers	a	single	transmission	to
multiple	server	nodes	in	a	network	simultaneously,	whereas	unicast	sends	data
packets	to	a	single	destination	from	a	single	source.	The	more	nodes	there	are
in	a	cluster,	the	more	separate	unicast	packets	need	to	be	sent	by	it.	Using
multicast,	this	extra	amount	of	traffic	is	vastly	minimized.	Due	to	the	increase
of	packets	in	the	network	when	using	unicast,	implementing	it	in	a	cluster
with	five	or	more	nodes	should	be	avoided.	In	order	for	multicast	to	work,	the
physical	switch	in	the	network	must	be	multicast	and	IGMP	snoop	capable.

IGMP	snooping	is	simply	a	process	where	the	physical	switch	listens	or
snoops	for	an	IGMP	conversation	between	the	nodes	and	the	switch.	This
allows	the	switch	to	maintain	a	table	or	map	to	determine	how	and	where	to
direct	multicast	requests.	After	enabling	IGMP	snoop,	it	takes	a	few	hours	for
the	switch	to	establish	the	table	after	gathering	enough	data	for	all	multicast-
enabled	switch	ports.

Keep	in	mind	that	Open	vSwitch	currently	does	not	handle
multicast.	So	for	the	Open	vSwitch	environment,	the	multicast
querier	router	must	be	configured	on	the	physical	switch.

If	it	is	not	possible	to	use	multicast	at	all	in	a	Proxmox	environment,	then
unicast	is	the	only	choice.	To	test	whether	multicast	is	functioning	in	the
cluster,	we	can	run	the	following	command	on	all	the	Proxmox	nodes:

#	omping	<remote_node_ip>	<local_node_ip>			

If	multicast	is	functioning	fully,	the	output	will	show	multicast	responses:

If	you	only	see	an	error	message	waiting	for	response	msg,	that	means	the

command	omping	is	only	running	on	one	node.	Only	by	running	it	on	multiple
nodes	simultaneously	can	we	generate	multicast	traffic.	Unsuccessful
multicast	responses	will	show	packet	loss	for	the	node.	The	documentation	of
each	physical	switch	should	show	whether	the	switch	is	multicast	capable.
However,	nowadays,	almost	all	smart	and	managed	switches	have	the
multicast	feature.	It	is,	however,	disabled	on	all	ports	and	must	be	enabled	for
proper	Proxmox	cluster	communication.

Configuring	multicast	on	Netgear
In	this	section,	we	will	see	how	to	configure	multicast	for	the	Netgear	smart
switch	GS748T.	To	configure	multicast,	navigate	to	Switching	|	Multicast.
First,	we	are	going	to	enable	the	IGMP	snooping	status	through	the	IGMP
Snooping	Configuration	option,	as	shown	in	the	following	screenshot:

Next,	we	have	to	Enable	admin	mode	for	the	interface	that	will	be	used	for
IGMP	snooping.	We	can	enable	it	from	the	IGMP	Snooping
Configuration	interface	option.	As	shown	in	the	following	screenshot,	in	our
example	switch,	we	are	enabling	IGMP	snooping	for	switch	ports	1	to	6,
which	is	where	Proxmox	nodes	are	connected:

The	last	configuration	to	be	made	is	to	enable	multicast	traffic	for	switch
ports	from	the	Multicast	Router	Configuration	option.	In	our	example,	we	are
enabling	multicast	on	ports	1	to	6,	as	shown	in	the	following	screenshot:

Open	vSwitch
Licensed	under	the	open	source	Apache	2.0,	Open	vSwitch	is	a	multi-layered,
enterprise-grade	virtual	switch	born	specifically	to	be	used	in	modern	virtual
networks	of	a	virtual	environment.	This	is	similar	to	a	virtual	bridge	of	Linux
but	has	more	capabilities	and	robust	features.	A	question	often	asked	is	why
one	should	choose	Open	vSwitch	over	time-	and	industry-proven	traditional
Linux	bridge	and	networking.	Once	we	understand	the	features	and
advantages	Open	vSwitch	provides	for	a	virtual	network,	the	answer	becomes
obvious.

Features	of	Open	vSwitch
The	following	are	some	of	the	features	that	make	Open	vSwitch	a	better
option	than	standard	Linux	networking:

Security:	Open	vSwitch	provides	a	high	degree	of	security	by	allowing
you	to	set	policies	per	VM	virtual	interface.
LACP	and	VLAN-aware:	Open	vSwitch	fully	supports	LACP	link
aggregation	and	VLAN	tagging.	We	can	configure	one	Open	vSwitch
with	multiple	VLAN	tags,	thus	reducing	the	management	overhead	of
many	virtual	bridges	per	VLAN	tag.
Quality	of	Service:	QoS	or	quality	of	service	is	fully	supported.
Network	monitoring:	We	can	get	an	extreme	level	of	control	over
network	packets	passing	through	Open	vSwitch	by	implementing
powerful	monitoring	using	Netflow	and	sFlow.
IPv6:	Open	vSwitch	fully	supports	IPv6.
Tunneling	protocol:	This	has	full	support	for	multiple	tunneling
protocols,	such	as	GRE,	VXLAN,	STT,	and	IPSEC.
Proxmox	support:	Open	vSwitch	is	fully	integrated	and	supported	by
Proxmox,	making	it	a	viable	choice	for	virtual	network	configuration.

For	complete	details	on	the	Open	vSwitch	technology,	visit	the
official	site	at	http://www.openvswitch.org/.

It	is	possible	to	build	a	Proxmox	cluster	entirely	with	the	traditional	Linux
bridge	without	using	Open	vSwitch	at	all.	But	for	a	large	environment,	Open
vSwitch	does	make	great	sense	since	it	can	lessen	tedious	virtual	network
management	while	providing	excellent	visibility	over	network	traffic.	In	a
multi-tenant	environment,	taking	control	over	what	is	going	on	in	the	network
is	very	important.

Open	vSwitch	is	not	installed	in	Proxmox	by	default.	It	must	be	manually
installed	and	configured.	On	a	clean	installed	Proxmox	node,	we	have	to
configure	the	network	as	usual,	so	the	node	can	have	internet	connectivity.
Then,	run	the	following	command	to	install	Open	vSwitch:

#	apt-get	install	openvswitch-switch		

Even	if	Open	vSwitch	is	not	installed,	the	Proxmox	GUI	will	show	the	menu
options	for	the	Open	vSwitch	bridge	and	interface	under	the	Create	tab	of	the

http://www.openvswitch.org/

Network	menu	of	the	node.

An	important	thing	to	remember	when	using	Open	vSwitch	is
never	to	mix	traditional	Linux	components;	for	example,	bridge,
bond,	and	VLAN	should	never	be	mixed	with	Open	vSwitch
components.	We	must	not	create	an	Open	vSwitch	bridge	based
on	a	Linux	bond	and	vice	versa.

There	are	three	components	that	we	can	use	with	Open	vSwitch:

Open	vSwitch	bridge
Open	vSwitch	bond
Open	vSwitch	IntPort

Adding	an	Open	vSwitch	bridge
The	Open	vSwitch	bridge	is	similar	to	the	Linux	bridge	except	that	it	is
enough	to	configure	one	Open	vSwitch	bridge,	such	as	a	physical	switch,
where	we	can	pass	several	VLANs.	We	do	not	need	to	create	separate	bridges
for	each	VLAN,	like	Linux	bridges.	Configuring	an	Open	vSwitch	bridge	is	a
little	more	complicated	than	a	Linux	bridge.	We	need	to	configure	the	port
first	before	creating	the	actual	bridge.	In	our	example,	we	are	going	to
configure	the	port,	eth1,	which	is	what	our	Open	vSwitch	bridge,	vmbr1,	is
going	to	be	based	on.	For	this,	we	need	to	add	the	following	lines	of	code	to
/etc/network/interfaces:

allow-vmbr1	ens21		

iface	ens21	inet	manual	

				ovs_type	OVSPort	

				ovs_bridge	vmbr1

	

auto	vmbr1	

allow-ovs	vmbr1

iface	vmbr1	inet	static	

				address	192.168.0.171	

				netmask	255.255.255.0	

				ovs_type	OVSBridge	

				ovs_ports	ens21	

Unlike	a	Linux	bridge,	where	VLANs	are	passed	through	bridge	tagging,	in
Open	vSwitch,	we	can	pass	VLANs	through	ports	directly.	VLAN	trunks	are
configured	as	additional	Open	vSwitch	options	in	the	configuration,	as	shown
in	the	following	example,	where	we	are	passing	VLAN	2,	3,	and	4:

allow-vmbr2	ens21		

iface	ens21	inet	manual	

				ovs_type	OVSPort	

				ovs_bridge	vmbr2	

				ovs_options	trunks=2,3,4	

We	can	also	create	the	Open	vSwitch	bridge	through	the	Proxmox	GUI.
However,	we	need	to	keep	in	mind	that	any	network	configuration	performed
through	the	GUI	is	not	activated	until	a	node	is	restarted.

We	can	open	the	Open	vSwitch	bridge-creation	dialog	box	from	the	network
tab	of	a	node.	The	following	screenshot	shows	the	Open	vSwitch	bridge-
creation	dialog	box	with	the	necessary	information:

In	the	OVS	options,	we	can	include	additional	options	for	the	bridge.

Adding	the	Open	vSwitch	bond
Like	the	Linux	bridge,	we	can	create	various	Open	vSwitch	bond	interfaces.
In	this	example,	we	are	going	to	create	the	LACP	bonded	interface	for	Open
vSwitch.	The	following	configuration	parameters	are	used	to	create	a	bond
interface	using	the	interface	to	create	an	Open	vSwitch	bridge:

allow-vmbr1	bond0		

iface	bond0	inet	manual	

				ovs_type	OVSBond	

				ovs_bridge	vmbr1

				ovs_bonds	ens21	ens22	

				pre-up	(ifconfig	ens21	mtu	8996	&&	ifconfig	ens22	mtu	8996)	

				ovs_options	bond_mode=balance-tcp	lacp=active	trunks=2,3,4	

				mtu	8996	

auto	vmbr1	

iface	vmbr1	inet	manual	

				ovs_type	OVSBridge	

				ovs_ports	bond0	

				mtu	8996	

In	the	previous	example,	a	new	parameter	is	added	called	pre-up.	This	is	used
to	configure	jumbo	packets.	The	default	mtu	for	all	the	interfaces	is	1,500.
When	configuring	jumbo	packets,	using	the	value	of	8,996	is	safer	instead	of
9,000	since	some	additional	bytes	are	added	on	top	of	the	configured
MTU	for	which	a	data	packet	may	get	discarded	if	the	MTU	goes	beyond
9,000.

We	can	configure	the	same	Open	vSwitch	bond	through	the	Proxmox	GUI
using	the	bond-creation	dialog	box,	as	shown	in	the	following	screenshot:

The	Open	vSwitch	bridge	must	be	created	before	creating	the	Open
vSwitch	bond.	We	can	select	the	OVS	bridge	from	the	drop-down	menu	of	the
dialog	box.	It	is	not	possible	to	add	extra	parameters,	such	as	configuring	the
desired	MTU	through	the	Proxmox	GUI.	So	before	we	restart	the	node,	we

can	add	the	parameter	to	/etc/network/interfaces.new	so	that	the	configuration
gets	committed	to	/etc/network/interfaces	during	the	node	reboot.

Adding	Open	vSwitch	IntPort
In	Open	vSwitch,	it	is	possible	to	give	the	host	or	physical	node	access	to	a
VLAN	through	the	configured	Open	vSwitch	bridge.	This	is	done	by	creating
an	Open	vSwitch	component	called	IntPort.	In	simple	words,	an	IntPort
splits	a	VLAN,	which	we	can	configure	to	assign	the	IP	information.	This	is
useful	to	give	the	Proxmox	node	access	to	a	VLAN.	For	example,	our
example	Proxmox	node	pmx-01	is	currently	configured	to	use	the	Linux	bridge,
vmbr0.	If	we	want	to	use	Open	vSwitch	instead,	we	will	have	to	create	an	Open
vSwitch	IntPort	to	give	the	node	access	to	the	Open	vSwitch	bridge	utilizing
the	VLAN.	The	following	parameters	need	to	be	added	to	the	network
configuration.	ens18	is	our	main	physical	network	interface	for	the	node:

auto	vmbr0	

allow-ovs	vmbr0	

iface	vmbr0	inet	manual	

				ovs_type	OVSBridge	

				ovs_ports	ens18	vlan1	

	

allow-vmbr0	vlan1	

iface	vlan1	inet	static	

				ovs_type	OVSIntPort	

				ovs_bridge	vmbr0	

				ovs_options	tag=50	

				ovs_extra	set	interface	${IFACE}	external-ids:iface-id=$(hostname	-s)-${IFACE}-

vif	

				address	172.16.2.1	

				netmask	255.255.255.0	

				gateway	172.16.2.254	

				mtu	1500

Note	that	in	the	port	configuration,	we	have	added	both	ens18	and	IntPort
interface	vlan1:

ovs_ports	ens18	vlan1	

Even	though	we	have	specified	the	Open	vSwitch	bridge	through
ovs_bridge	vmbr0	for	the	IntPort,	we	still	have	to	specify	it	in	the
Open	vSwitch	bridge	definition	or	else	the	interface	will	never
be	started.

CLI	for	Open	vSwitch
Besides	the	option	to	create	and	edit	Open	vSwitch	devices	through	the
Proxmox	GUI,	Open	vSwitch	comes	loaded	with	command-line	options	to
manage	and	gather	information	of	a	particular	bridge,	bond,	or	interface.
There	are	four	types	of	commands	in	Open	vSwitch:

ovs-appctl:	This	is	used	to	query	and	control	the	Open	vSwitch	daemon
ovs-vsctl:	This	is	used	to	manage	the	Open	vSwitch	configuration
database
ovs-ofctl:	This	is	a	tool	used	to	monitor	and	manage	the	OpenFlow	switch
ovs-dpctl:	This	is	used	to	manage	Open	vSwitch	data	paths

It	is	beyond	the	scope	of	this	book	to	go	into	details	of	all	the	available
commands	of	Open	vSwitch.	In	this	section,	we	will	only	take	a	look	at	the
commands	that	may	prove	to	be	very	helpful	while	managing	a	Proxmox
cluster:

To	see	a	list	of	configured	Open	vSwitch	bridges,	ports,	and	interfaces,
use	the	following	commands:

								#	ovs-vsctl	list	br

								#	ovs-vsctl	list	port

								#	ovs-vsctl	list	interface		

To	see	a	list	of	all	the	interfaces	in	Open	vSwitch,	run	the	following
command:

								#	ovs-vsctl	show		

To	modify	options	at	runtime	without	rebooting	node:

								#	ovs-vsctl	set	<interface_type>	<interface_name>	<option>		

For	example,	if	we	want	to	add	more	VLAN	IDs	to	our	Open	vSwitch
bonded	interface,	run	the	following	command:

								#	ovs-vsctl	set	port	bond0	trunks=2,3,4,5,6,7		

We	have	to	mention	all	the	existing	VLAN	IDs	along	with	the	new	ones.
Otherwise,	the	trunk	configuration	will	get	replaced	with	only	the	new
ones	while	the	old	configuration	will	get	replaced.	We	also	have	to	add

the	new	IDs	to	the	/etc/network/interfaces	file.

To	snoop	and	display	traffic	to	and	from	the	Open	vSwitch	bridge,	run
the	following	command:

								#	ovs-ofctl	snoop	<bridge_name>		

To	see	the	status	of	each	of	Open	vSwitch	components,	run	this
command:

								#	ovs-ofct	lshow	<name>		

To	dump	OpenFlow	flows,	including	hidden	ones,	run	this	command:

								#	ovs-appctl	bridge/dump-flows	<bridge_name>		

To	print	the	version	of	Open	vSwitch,	run	the	following	command:

								#	ovs-appctl	version		

For	a	complete	list	of	the	available	Open	vSwitch	commands,	visit	the
following	link:
http://www.pica8.com/document/v2.3/pdf/ovs-commands-reference.pdf

http://www.pica8.com/document/v2.3/pdf/ovs-commands-reference.pdf

Practicing	Open	vSwitch
If	you	are	using	Open	vSwitch	for	the	first	time,	it	may	seem	slightly	complex
at	first.	But	with	practice	and	exposure,	it	really	gets	easier	to	create	and
manage	a	complex	virtual	network	fully	powered	by	Open	vSwitch.	In	this
section,	you	are	given	the	task	to	create	a	network	configuration	for	a
Proxmox	node	using	all	the	network	components	that	we’ve	learned	so	far.
The	full	configuration	is	given	in	the	following	section	but	try	to	create	it	on
your	own	first.

Configuration	requirements
The	Proxmox	node	has	three	physical	network	interface	ports—eth0,	eth1,	and
eth2—and	one	InfiniBand	interface,	ib0.

We	have	to	configure	an	LACP	bonded	Open	vSwitch	interface	with	two	of
the	physical	ports.	The	bridge	needs	to	be	configured	as	a	trunk	for	VLAN	11,
12,	13,	and	14.	All	VMs	tagged	as	interfaces	will	connect	to	this	bridge.	The
third	physical	interface	will	have	to	be	configured	for	backup	purposes	on	a
separate	subnet	without	the	VLAN.

The	infiniband	interface	has	to	be	configured	to	be	used	with	Ceph	on	a
separate	subnet.	The	node	must	use	VLAN	12	for	all	host-related
communication	utilizing	the	Open	vSwitch	bridge.

Solutions
The	following	is	the	full	network	configuration	for	the	given	requirements:

auto	lo	

iface	lo	inet	loopback	

	

#	LACP	Bonded	Open	vSwitch	Interface	

allow-vmbr0	bond0	

iface	bond0	inet	manual	

				ovs_bridge	vmbr0	

				ovs_type	OVSBond	

				ovs_bonds	eth0	eth1	

				pre-up	(ifconfig	eth0	mtu	8996	&&	ifconfig	eth1	mtu	8996)	

				ovs_options	bond_mode=balance-tcp	lacp=active	other_config:lacp-time=fast	

trunks=11,12,13,14	

				mtu	8996	

	

#	Creating	Open	vSwitch	bridge	

auto	vmbr0	

allow-ovs	vmbr0	

iface	vmbr0	inet	manual	

				ovs_type	OVSBridge	

				ovs_ports	bond0	vlan12	

				mtu	8996	

	

#	Creating	IntPort	for	physical	node	

allow-vmbr0	vlan12	

iface	vlan12	inet	static	

				ovs_type	OVSIntPort	

				ovs_bridge	vmbr0	

				ovs_options	tag=12	

				ovs_extra	set	interface	${IFACE}	external-ids:iface-id=$(hostname	-s)-${IFACE}-

vif	

				address	172.16.0.171	

				netmask	255.255.252.0	

				gateway	172.16.3.254	

				mtu	1500	

	

#	Creating	Infiniband	interface	

auto	ib0	

iface	ib0	inet	static	

				address	192.168.0.171	

				netmask	255.255.255.0	

				pre-up	modprobe	ib_ipoib	

				pre-up	echo	connected	>	/sys/class/net/ib0/mode	

				mtu	65520	

	

#	Creating	dedicated	interface	for	backup	

auto	eth2	

iface	eth2	inet	static	

				address	192.168.10.171	

				netmask	255.255.255.0

Sample	virtual	networks
At	this	stage,	we	have	covered	components	of	virtual	networks	within	the
Proxmox	cluster	environment.	We	know	the	components	Proxmox	uses	to
hold	everything	together.

We	are	going	to	take	a	look	at	a	few	virtual	environment	scenarios	to	solidify
our	understanding	of	networking	in	a	Proxmox	virtual	environment.	These	are
scenario-based	network	diagrams	and	some	of	them	are	taken	from	a	real
production	environment.

Network	#1	–	Proxmox	in	its
simplest	form
This	is	a	small-scale	Proxmox	cluster	with	three	nodes	and	two	subnets	within
the	virtual	environment.	Each	Proxmox	node	has	two	NICs,	and	both	the
bridges	vmbr0	and	vmbr1	are	attached	to	eth0	and	eth1,	respectively.	Each	bridge
has	three	virtual	machines	attached	to	it.	Outside	the	virtual	environment,
there	is	a	physical	switch,	which	connects	Proxmox	nodes,	and	an	admin
console	for	all	management	work.	This	is	Proxmox	in	its	simplest	form	in	a
production	environment.	This	type	of	network	can	be	used	as	a	learning
platform	or	in	a	very	small	business	environment	with	less	demanding
workload.	Internet	connectivity	is	provided	to	the	second	subnet	directly	from
the	firewall	with	a	second	NIC,	as	shown	in	the	following	diagram:

Network	#2	–	the	multi-tenant
environment
This	network	setup	is	almost	the	same	as	the	previous	network	with	the	added
benefit	of	a	fully	multi-tenant	virtual	platform.	In	a	physical	firewall,	we	can
only	add	a	very	small	number	of	NICs	to	provide	internet	connectivity	to
isolated	subnets.	Using	a	virtualized	firewall,	we	can	add	as	many	firewalls	or
vNICs	as	we	want.	This	setup	is	especially	useful	when	multiple,	isolated
client	subnets	need	to	be	hosted	and	each	subnet	requires	its	own	firewall
control	for	filtering	purposes.	In	this	example,	vmbr0	is	directly	served	by	the
physical	firewall.	The	bridges	vmbr1	and	vmbr200	have	their	own	virtualized
firewalls.	The	firewalls	also	act	as	bridges	between	bridges.	For	example,	the
firewall	for	the	subnet	2	has	two	vNICs.	One	of	these	setups	was		WAN,
where	vmbr0	acts	as	an	internet	provider.	The	second	vNIC	is	LAN	facing,
which	serves	the	subnet	2.

This	is	a	common	scenario	for	infrastructure	service	providers	who	host
virtual	networks	for	multiple	clients.	Since	multiple	companies	can	access
their	virtual	networks	remotely,	it	puts	extra	workload	on	the	physical
firewall.	Single-point	firewall	failure	should	be	avoided	at	all	costs	by
creating	a	cluster	of	physical	firewalls	to	provide	load	balancing	and	failover
firewall	service.

Never	use	a	virtualized	firewall	on	the	same	cluster	to	connect	to
the	internet	directly.	Always	use	separate	physical	hardware	as
the	main	firewall	to	act	as	a	barrier	between	the	internet	and
internal	network.

For	firewall	virtualization,	pfsense	is	a	great	choice	to	set	up.	It	is	easy	to	set
up,	yet	extremely	powerful	and	customizable.	Get	pfsense	and	more
information	from	the	official	link	at	https://www.pfsense.org/.

The	following	diagram	is	an	example	of	a	multi-tenant	virtual	environment:

https://www.pfsense.org/

Network	#3	–	academic	institution
This	network	diagram	is	an	example	of	an	academic	institution	network.	The
following	diagram	shows	network	connectivity	between	the	admin	office,
library,	and	a	remote	campus.	There	are	two	physical	firewalls	providing
internet	connectivity	redundancies.	The	main	virtual	network	consists	of	the
database	server,	file	server,	accounting	server,	and	library	catalog	server.	The
database	server	and	the	file	server	are	connected	with	the	bridge	vmbr0.	The
accounting	server	is	connected	with	the	bridge	vmbr10	and	VLAN	ID	10.	The
library	server	is	connected	with	the	bridge	vmbr20	and	VLAN	ID	20.	The	main
switch	is	set	up	with	VLAN	10	and	20.	The	library	switch	is	set	up	with
VLAN	20.	In	this	setup,	accounting	server	data	goes	straight	to	the	admin
office	and	the	library	catalog	server	data	goes	to	the	library	building	without
causing	additional	stress	to	the	network.	Remote	campus	students	and	staff
can	access	the	main	campus	network	through	VPN,	thus	eliminating	the	need
to	set	up	a	separate	virtual	environment.

Of	course,	the	following	diagram	is	a	very	simplified	form	of	the	actual
network	topology	of	an	academic	institution.	But	the	basics	of	using	VLANs
and	bridges	are	the	same	for	any	network	size:

A	multi-tenant	virtual	environment
Multi-tenancy	is	a	very	frequently	used	word	in	the	world	of	cloud
computing,	where	a	virtual	environment	is	regularly	used	by	different	clients
from	different	organizations	set	up	with	fully	isolated	networks.	Multi-
tenancy	is	an	integral	part	for	a	service	provider	who	provides	Infrastructure
as	a	Service	(IaaS)	to	many	clients.

To	know	more	about	cloud	computing,	visit	http://en.wikipedia.org/wiki/
Cloud_computing.

In	this	type	of	setup,	the	service	provider	hosts	or	rents	out	computing	time
and	storage	space	to	their	clients.	Because	of	the	standard	monthly
subscription	or	SLA-based	payment	method	required	for	this	type	of	service,
multi-tenancy	quickly	gained	popularity.	Basically,	a	multi-tenant	virtual
environment	is	where	several	isolated	networks	coexist	on	the	same	platform
without	interfering	with	one	another.	Almost	all	public	datacenters	are	multi-
tenancy	platforms.

Multi-tenancy	is	not	new	in	the	world	of	information.	The	first	multi-tenant
environment	appeared	back	in	the	1960s,	when	companies	rented	processing
time	and	storage	space	on	mainframe	computers	to	reduce	the	giant	expenses
of	mainframe	operation.	The	virtual	environment	only	augmented	the	same
idea	exponentially	by	leveraging	all	the	virtualization	features	Proxmox
provides.	By	combining	virtualization	with	cloud	computing,	multi-tenancy	is
able	to	get	a	very	strong	footing	to	serve	better	and	serve	more	customers
without	increasing	financial	overheads.	Prior	to	virtualization,	the	physical
space	and	power	requirements	to	host	customers	in	an	IaaS	environment
meant	it	was	rare	and	cost	prohibitive,	thus	not	many	people	enjoyed	its
benefit.

The	Proxmox	hypervisor	is	capable	of	setting	up	a	stable	and	scalable	multi-
tenant	virtual	environment.	All	the	networking	components	we	have	seen	so
far,	such	as	vNIC,	virtual	bridge,	and	VLAN,	are	the	building	blocks	used	to
set	up	a	multi-tenant	virtual	environment.	Once	we	understand	the
relationships	between	virtual	machines	and	virtual	bridges,	it	is	fairly	easy	to
set	up	a	multi-tenant	virtual	environment	with	Proxmox.

When	setting	up	a	multi-tenant	virtual	environment,	it	is	very
important	to	take	special	care	so	that	one	network’s	traffic	does

http://en.wikipedia.org/wiki/Cloud_computing

not	get	intercepted	by	another	network.	Without	a	proper	VLAN
and	subnet,	it	is	possible	for	one	network	to	sniff	network
packets	on	the	entire	virtual	environment,	thus	stealing	data
from	other	tenant	organizations	on	the	network.

A	multi-tenant	network	diagram
The	following	is	an	example	of	a	network	diagram	of	a	typical	cloud	service
provider	who	provides	IaaS	to	their	clients.	The	entire	client	network	is
virtualized	within	the	service	provider’s	virtual	environment:

On	the	client	side,	they	only	have	simple	desktop	computers	and	mobile
devices	to	access	their	virtual	cloud	resources,	such	as	desktop,	storage,	and
processing	power.	Clients	access	these	resources	through	virtual	means,	such
as	Virtual	Network	Computing	(VNC),	SPICE,	or	Remote	Desktop
Protocol	(RDP).

Virtual	networks	are	isolated	with	separate	subnets.	VLANs	are	set	up	(not
shown	in	the	diagram)	to	reduce	mass	broadcast	traffic.	All	virtual	machine
data	is	stored	on	a	separate	storage	cluster	with	full	redundancy.	A	backup

cluster	does	a	regular	backup	of	all	virtual	machines,	and	granular	file	backup
with	histories	are	done	with	a	third-party	backup	software.	A	virtual	firewall
cluster	is	set	up	in	between	the	virtual	environment	and	the	host	Ethernet
interface	to	provide	internet	connectivity	to	all	client	virtual	machines.	Each
virtualized	firewall	has	several	vNICs	to	connect	to	each	subnet.	

Since	the	firewall	is	virtualized,	we	can	add	any	number	of	virtual	network
interfaces	without	worrying	about	running	out	of	physical	slots.	A	virtualized
clustered	firewall	provides	maximum	uptime.	Each	company	network	in	this
example	has	its	own	virtual	bridge,	which	only	talks	to	that	company’s	virtual
machines	and	firewall	interface,	eliminating	any	chance	of	packet	sniffing	by
other	company	networks.

Packet	sniffing	is	a	process	when	data	packets	passing	through
a	network	interface	are	captured	and	analyzed.	Packet	sniffer
software	can	be	placed	in	a	subnet	to	capture	data.	This	is	a
common	practice	of	someone	with	malicious	intentions	to
capture	sensitive	unencrypted	data	passing	through,	such	as
usernames	and	passwords	in	clear	text.

This	environment	is	serving	multiple	clients	or	organizations,	so	uptime	is	a
big	concern.	To	eliminate	this	issue,	the	entire	virtual	environment	is
replicated	to	another	datacenter	to	ensure	99.9	percent	uptime.	The	previous
diagram	is	an	overly	simplified	version	of	what	really	goes	on	inside	a	very
busy	Proxmox	virtual	environment.	Studying	this	diagram	will	give	a	clear
understanding	of	virtual	network	mechanics.	From	the	previous	diagram,	we
can	see	that	this	network	environment	heavily	uses	virtual	bridges.	So,	it	is
imperative	to	understand	the	role	of	bridges	and	plan	out	a	draft	diagram
before	actually	setting	up	this	level	of	a	complex	virtual	network.

When	working	with	a	complex	virtual	network,	always	keep	a
network	diagram	handy	and	update	it	whenever	you	make	any
changes.	An	up-to-date	network	diagram	will	help	greatly	to
have	total	control	over	a	virtual	network.	Especially	when	any
issue	arises,	it	is	easy	to	pinpoint	the	cause	of	the	issue	with	a
diagram.

Summary
We	were	very	busy	in	this	lively	chapter.	We	looked	at	the	differences
between	physical	and	virtual	networks.	We	learned	about	the	network
components	that	make	up	a	Proxmox-based	virtual	network.	We	also	learned
about	Open	vSwitch	and	its	components	to	create	a	really	complex	virtual
network.	We	even	got	to	analyze	a	few	network	diagrams	from	the	basic	to
the	advanced	to	get	a	better	understanding	of	how	the	Proxmox	virtual
network	really	comes	to	life.

Proxmox	provides	all	the	tools	we	need	to	build	any	level	of	virtual	network.
It	is	up	to	the	network	administrator’s	imagination,	the	company’s	budget,	and
the	need	to	foresee	how	all	pieces	should	come	together	to	form	a	well-
designed	and	efficient	virtual	network.	The	best	part	is	that	any	mistake	is
easily	correctable	in	a	virtual	environment.	We	can	always	go	back	and
change	things	until	we	are	satisfied.	For	this	very	reason,	a	virtual	network	is
always	evolving.	Over	time,	a	virtual	network	becomes	an	extension	of	the
network	administrator’s	mental	picture	of	the	network.	The	configurations
and	design	of	a	virtual	network	infrastructure	can	give	us	a	window	into	how
that	administrator	thinks	and	the	logic	they	used	to	construct	the	environment.

In	the	next	chapter,	we	are	going	to	learn	all	about	the	built-in	Proxmox
firewall	and	learn	how	to	protect	from	the	whole	cluster	down	to	a	single
virtual	machine.

The	Proxmox	VE	Firewall
The	Proxmox	VE	firewall	is	a	security	feature	that	allows	easy	and	effective
protection	of	a	virtual	environment	for	both	internal	and	external	network
traffic.	By	leveraging	this	firewall,	we	can	protect	VMs,	host	nodes,	or	the
entire	cluster	by	creating	firewall	rules.	By	creating	rules	at	the	virtual
machine	level,	we	can	provide	total	isolation	for	VM-to-VM	network	traffic,
including	VM-to-external	traffic.	Prior	to	the	Proxmox	VE	firewall,	security
and	isolation	were	not	possible	at	the	hypervisor	level.	Keep	in	mind	that	the
built-in	Proxmox	firewall	should	not	be	a	substitute	for	a	VM-level	firewall.
We	must	still	apply	a	firewall	policy	inside	a	guest	VM,	but	the	hypervisor-
level	firewall	provides	an	added	layer	of	protection	should	the	VM	operating
system	firewall	be	misconfigured	or	not	configured	at	all.	This	also	creates
added	management	overhead	because	network	administrators	or	managers
must	now	open	or	close	ports	or	apply	firewall	policies	at	the	hypervisor
level.		In	this	chapter,	we	will	cover	the	following	topics	related	to	the
Proxmox	VE	firewall:

Exploring	the	Proxmox	VE	firewall
Configuring	the	cluster	firewall	rules
Configuring	the	host	firewall	rules
Configuring	the	VM	firewall	rules
Integrating	a	Suricata	IPS
Enabling	the	IPv6	firewall
Firewall	CLI	commands

Exploring	the	Proxmox	VE	firewall
The	Proxmox	VE	firewall	leverages	iptables	of	each	Proxmox	node	for
protection.	The	iptables	is	an	application	that	allows	you	to	manage	rules
tables	for	the	Linux	kernel	firewall.	All	firewall	rules	and	configurations	are
stored	in	the	Proxmox	cluster	filesystem,	thus	allowing	a	distributed	firewall
system	in	the	Proxmox	cluster.	The	pre-firewall	service	provided	by	Proxmox
for	each	node	reads	the	rules	and	configurations	from	the	cluster	filesystem
and	automatically	adjusts	the	local	iptables.	Rules	can	be	fully	created	and
maintained	by	the	Proxmox	GUI	or	CLI.	The	Proxmox	firewall	can	be	used	in
place	of	a	virtualized	firewall	in	the	cluster.

Although	the	Proxmox	firewall	provides	excellent	protection,	it
is	highly	recommended	that	you	have	a	physical	firewall	for	the
entire	network.	This	firewall	is	also	known	as	an	edge	firewall
since	it	sits	at	the	main	entry	point	to	the	internet.	The	internet
connection	should	not	be	directly	connected	to	Proxmox	nodes.
A	virtualized	firewall	should	not	be	used	as	a	physical	firewall
substitute.

Components	of	the	Proxmox
firewall
There	are	several	components	that	make	up	the	Proxmox	VE	firewall.	In
order	to	effectively	implement	a	firewall	in	a	Proxmox	cluster,	it	is	important
to	know	the	components	and	their	functions.

Zones
The	Proxmox	firewall	protection	area	is	divided	into	the	following	three
logical	zones:

Datacenter:	Rules	in	this	zone	define	traffic	to	and	from	all	hosts	and
guests
Host:	Rules	in	this	zone	define	traffic	to	and	from	a	cluster	and	Proxmox
nodes
VM:	Rules	in	this	zone	define	traffic	to	and	from	each	VM

All	rules	in	the	Datacenter	and	host	zones	are	cascaded.	This	means	that	a	rule
created	in	the	Datacenter	zone	will	be	applied	to	all	hosts	or	nodes	and	all	the
VMs,	while	rules	created	in	a	host	zone	will	be	applied	to	all	VMs	in	that	host
or	Proxmox	node.	Care	must	be	taken	when	creating	rules	in	the	host	zone	for
particular	VMs,	because	when	the	VM	is	migrated	to	a	different	node,	these
rules	in	the	previous	node	will	not	apply	to	the	new	node	for	the	VM.	These
host-level	rules	must	be	created	in	the	new	host,	and	only	then	will	they	be
applied	to	the	VMs.	Rules	created	for	a	VM	apply	to	that	VM	only.	There	is
no	rule	cascading	for	the	VM	zone.	The	following	diagram	is	a	depiction	of
how	Proxmox	firewall	policies	are	laid	out:

Security	groups
This	allows	the	grouping	of	several	firewall	rules	into	one	rule.	This	is	very
helpful	when	the	same	multiple	rules	apply	to	several	VMs.	For	example,	we
can	create	a	Security	Group	named	webserver	and	add	multiple	rules	to	open
ports,	such	as	21,	22,	80,	443,	and	so	on.	Then,	we	can	apply	these	security
groups	to	any	VMs	used	as	a	webserver.	Similarly,	we	can	create	a	Security
Group	to	open	ports	for	servers	for	emails	only.	The	following	screenshot
shows	an	example	of	a	webserver	Security	Group	with	rules	to	open	ports	for
FTP,	SSH,	HTTP,	and	HTTPS:

It	should	be	noted	that	security	groups	are	only	created	in
Datacenter	zones.	There	are	no	security	group	creation	options	in
the	host	or	VM	firewall	zone.

Security	groups	created	in	a	Datacenter	zone	can	be	applied	to	any	zones.
Security	groups	make	the	creation	of	rules	for	multiple	nodes	or	virtual
machines	much	easier.	Details	on	security	group	creation	and	management
will	be	explained	later	in	this	chapter.

IPSet
Sometimes,	it	is	necessary	to	create	firewall	rules	to	restrict	or	allow	traffic
solely	based	on	IP	addresses.	An	IPSet	allows	us	to	create	firewall	rules	that
may	apply	to	multiple	IP	addresses	or	IP	subnets.	For	example,	we	can	create
an	IPSet	to	allow	access	to	the	Proxmox	GUI	from	only	a	few	limited	IP
addresses.	The	following	screenshot	shows	an	example	of	an	IPSet	to	allow
the	proxmoxgui	access	from	only	three	IP	addresses:

	

We	can	create	rules	based	on	individual	IPs	or	the	entire	subnet	using	the
CIDR	format	in	the	rules.

An	IPSet	can	be	created	in	both	the	Datacenter	and	VM	zones	as
the	option	dialog	boxes	are	also	identical.	An	IPSet	created	in
Datacenter	zones	can	be	applied	to	any	hosts	and	VMs	in	the
cluster.	But	the	IPSet	created	under	a	VM	zone	is	applicable	to
that	VM	only.

Another	good	example	of	IPSet	usage	is	to	create	blacklists	and	whitelists	of
IP	addresses	in	Datacenter	zones.	A	whitelist	will	allow	the	defined	traffic	while
a	blacklist	will	block	access	to	the	defined	IPs.	Details	on	IPSet	creation	and
management	will	be	explained	later	in	this	chapter.

Rules
Rules	are	the	heart	of	a	Proxmox	firewall	configuration.	Rules	define	the	flow
and	type	of	traffic	that	will	be	allowed	or	denied	in	the	zones.	There	are	two
directions	in	which	network	traffic	can	flow:

in:	This	refers	to	traffic	inbound	from	anywhere	to	any	zones	except
when	specific	IP	addresses	or	ports	are	mentioned
out:	This	refers	to	traffic	outbound	from	any	zones	to	anywhere	except
when	specific	IP	addresses	or	ports	are	mentioned

There	are	three	types	of	action	that	a	firewall	rule	can	be	applied	to:

ACCEPT:	This	allows	traffic	packets	matching	the	constraints	in	the	rule
REJECT:	Packets	are	rejected,	and	then	an	acknowledgment	of	the
rejection	is	sent	to	the	sender
DENY:	Drops	traffic	packets	matching	the	constraints	in	the	rule	without
sending	any	acknowledgment	to	the	sender

A	typical	rule	will	contain	the	direction	of	traffic,	the	action	to	apply	to	the
traffic,	and	which	port	or	protocol	the	rule	affects.	The	following	screenshot
shows	rules	to	block	traffic	on	port	80	and	allow	it	on	port	443	for	an	example
VM	in	our	cluster:

Protocols
In	a	Proxmox	firewall,	we	can	create	rules	based	on	various	network
protocols,	such	as	TCP,	UDP,	ICMP,	and	so	on.	Depending	on	application
requirements,	different	protocol	selections	may	be	necessary.	For	example,	if
we	want	to	allow	ping	for	a	zone,	we	need	to	create	a	rule	with	the	ICMP
protocol.	Predefined	protocols	are	available	for	selection	through	the	rules
dialog	box,	as	shown	in	the	following	screenshot:

Macros
Macros	are	various	precreated	port	configurations	for	most	known	services,
such	as	HTTP,	HTTPS,	SSH,	FTP,	Telnet,	MySQL,	NTP,	VNC,	and	so	on.
Keep	in	mind	when	using	the	FTP	macro	that	it	will	only	work	in	FTP	passive
mode.	Each	macro	has	a	predefined	protocol	and	port	number.	So,	when
selecting	a	Macro,	we	do	not	have	to	define	a	protocol	or	port	number.	In	fact,
when	a	Macro	is	selected	through	the	drop-down	menu,	the	Proxmox	dialog
box	automatically	disables	the	protocol	and	port	textboxes,	as	shown	in	the
following	screenshot:

If	we	need	to	enter	a	custom	port	for	any	rule,	then	selecting	the
Macro	will	not	work.	We	have	to	manually	define	the	port
number	and	a	proper	protocol	for	the	rule.

The	following	screenshot	shows	the	Macro	drop-down	menu	in	the
firewall	Rule	dialog	box:

	

The	firewall	feature	can	be	accessed	through	the	Firewall	tab	of	all	three
zones,	Datacenter,	host,	and	nodes,	and	virtual	machines	of	both	KVM	and
LXC.

The	pve-firewall	and	pvefw-logger
services
There	are	two	services	that	enable	the	Proxmox	firewall:

pve-firewall:	This	is	the	main	service	to	run	a	firewall	and	it	updates
iptables	rules
pvefw-logger:	This	is	responsible	for	logging	all	firewall	traffic	when
logging	is	enabled

The	pve-firewall	service	is	started	automatically	when	a	node	is	rebooted.	We
can	also	manually	start,	stop,	and	restart	the	service	using	the	following
commands:

				#	pve-firewall	start

				#	pve-firewall	stop

				#	pve-firewall	restart

To	check	the	status	of	a	firewall	service,	we	can	use	the	following	command:
				#	pve-firewall	status		

When	there	are	no	issues	in	the	firewall’s	operation,	the	output	of	the	status
command	will	appear	as	follows:

				Status:	enabled/running		

Configuration	files	of	a	firewall
Although	the	Proxmox	firewall	can	be	managed	entirely	from	the	Proxmox
GUI,	at	times	accessing	the	rules	from	the	CLI	may	be	necessary,	especially
when	a	cluster	is	locked	out	due	to	the	misconfiguration	of	firewall	rules.	All
firewall	configurations	and	rules	follow	the	same	naming	format,	with
the	.fw	extension.	The	firewall	configuration	and	rule	files	are	stored	in	two
different	directories	for	all	three	zones:

				/etc/pve/firewall/cluster.fw		

This	is	the	data	center	configuration	and	zone	rule	file.	All	other	data	center-
wide	firewall	information,	such	as	security	groups	and	IPSets,	are	also	stored
in	this	single	file.	We	can	enable	or	disable	the	data	center-wide	firewall	by
editing	this	configuration	file:

				/etc/pve/nodes/<node_name>/host.fw		

CAUTION!
Do	not	enable	the	data	center-wide	firewall	before	reading	the
Configuring	the	data	center-specific	firewall	section	later	in	this
chapter.

This	is	the	configuration	and	rules	file	for	a	Proxmox	node	or	host:
				/etc/pve/firewall/<vm_id>.fw		

Each	virtual	machine,	whether	it	is	KVM	or	LXC,	has	a	separate	firewall
configuration	file	with	its	VM	ID	stored	in	the	same	directory	the	data	center
firewall	file	is	stored.

When	new	rules	are	created	or	edited	through	the	Proxmox	GUI,	these	are	the
files	that	get	changed.	Whether	the	changes	are	made	through	the	GUI	or	CLI,
all	rules	take	effect	immediately.	There	are	no	reboots	or	restarting	of	a
firewall	service	required.

Configuring	the	data	center-specific
firewall
As	mentioned	earlier,	data	center-specific	firewall	rules	affect	all	resources,
such	as	clusters,	nodes,	and	virtual	machines.	Any	rules	created	in	this	zone
are	cascaded	to	both	hosts	and	VMs.	This	zone	is	also	used	to	fully	lock	down
a	cluster	to	drop	all	incoming	traffic	and	then	only	open	what	is	required.	In	a
freshly	installed	Proxmox	cluster,	the	data	center-wide	firewall	option	is
disabled.

CAUTION!	
Extra	attention	should	always	be	used	when	creating	data
center-specific	firewall	rules	to	prevent	full	cluster	lockout.

Configuring	the	Datacenter	firewall
through	the	GUI
The	following	screenshot	shows	the	Firewall	option	for	the	Datacenter	zone
through	the	Options	tab	by	navigating	to	Datacenter	|	Firewall	|	Options:

As	we	can	see	in	the	preceding	screenshot,	by	default	the	Proxmox	firewall
for	the	Datacenter	zone	is	disabled	with	Input	Policy	set	to	DROP	and	Output
Policy	set	to	ACCEPT.	If	we	did	enable	this	firewall	option	right	now,	then
all	inbound	access	will	be	denied.	You	will	have	to	be	on	the	console	to
access	the	node.	Before	we	enable	this	option,	we	must	create	two	rules	to
allow	the	GUI	on	port	8006	and	the	SSH	console	on	port	22.

Creating	the	Datacenter	firewall
rules
To	open	the	rule	creation	dialog	box,	we	need	to	click	on	Add	by	navigating
to	the	Datacenter	|	Firewall	menu.	For	the	first	rule,	we	are	going	to	allow	the
Proxmox	GUI	on	port	8006,	as	shown	in	the	following	screenshot:

	

The	dialog	box	for	rules	is	identical	for	all	three	zones,	so	it	is	important	to
know	the	details	of	the	option	items	in	this	dialog	box.	The	following	table
summarizes	the	purpose	of	the	text	and	drop-down	list	available	in	the	rules
dialog	box:

Items Functions

Direction This	is	a	drop-down	list	used	to	select	the	direction	of	the
traffic	for	the	rule,	and	it	is	a	required	field.

Action
This	is	a	drop-down	list	used	to	select	actions	that	need	to
be	taken,	such	as	ACCEPT,	DROP,	or	REJECT	incoming
or	outgoing	traffic.	This	is	a	required	field.

Interface

This	is	a	textbox	used	to	define	the	interface	to	apply	this
rule	to.	This	does	not	apply	to	the	Datacenter	zone.	It	is
useful	to	define	this	for	a	VM	with	multiple	interfaces.

Source

This	is	a	drop-down	list	used	to	select	a	preconfigured	IPSet
or	textbox	to	type	in	the	IP	address	where	the	traffic
originates	from.	We	can	also	define	a	subnet	in	the	CIDR
format.	When	left	blank,	it	accepts	traffic	from	all	the
source	IP	addresses.	In	our	previous	example	screenshot,
we	have	selected	IP	set	to	allow	a	GUI	connection	from
specific	hosts	only.

Destination

This	is	a	drop-down	list	used	to	select	a	preconfigured	IPSet
or	textbox	to	type	in	the	IP	address	of	the	destination	device
in	the	cluster.	When	left	blank,	it	accepts	traffic	from	all	the
destination	IP	addresses.

Enable This	is	a	checkbox	used	to	enable	or	disable	the	rule.

Macro
This	is	a	drop-down	list	used	to	select	preconfigured
macros.	We	can	also	type	the	macro	name,	which	filters	the
list	of	macros.

Protocol
This	is	a	drop-down	list	used	to	select	protocols.	We	can
also	type	the	protocol	name,	which	filters	the	list	of
protocols.

Source	port

This	is	a	textbox	used	to	define	the	originating	port	number
for	the	incoming	traffic.	When	left	blank,	it	accepts	traffic
from	any	ports.	We	can	also	define	the	port	ranges,
separated	by	a	colon	(:),	in	this	field.	This	source	port	field
is	also	used	for	the	outgoing	traffic	when	the	traffic
originates	internally	from	a	VM,	node,	or	cluster.

Dest.	Port

This	is	a	textbox	used	to	define	the	destination	port	of	the
incoming	traffic.	When	left	blank,	it	accepts	traffic	from
any	port.	We	can	also	define	port	ranges,	separated	by	a
colon	(:),	in	this	field.

Comment This	is	a	textbox	used	to	write	descriptions	or	any	notes
regarding	the	rule.

	

To	allow	the	SSH	console	traffic,	we	are	going	to	create	a	rule	with	the	SSH

macro.	The	following	screenshot	shows	the	firewall	feature	of	the	Datacenter
zone	with	two	rules	created	to	allow	access	to	the	Proxmox	GUI	and	SSH:

The	Proxmox	GUI	can	only	be	accessed	from	one	IP	address,
which	is	172.16.0.3,	whereas	SSH	can	be	accessed	from	any	IP
address.	Remember	that	all	data	center	rules	are	cascaded	down
to	hosts	and	VMs.	In	this	scenario,	SSH	is	open	for	all	hosts	and
VMs	in	the	cluster.	In	certain	situations,	we	may	need	to	block
SSH	for	certain	VMs	in	order	to	increase	the	security.	If	we	keep
the	previous	rule	as	it	is,	we	will	need	to	create	a	separate	VM-
level	rule	to	drop	SSH	traffic	for	all	VMs.	However,	this	can
become	a	tedious	task	since	some	VMs	may	require	SSH	access
and	there	can	be	dozens	of	VMs.	A	revised	advanced	rule	to
allow	SSH	access	to	only	Proxmox	nodes	would	be	to	create	an
IPSet	in	Datacenter	with	IP	addresses	for	Proxmox	nodes	only,
and	then	assign	the	IPSet	as	the	Destination	for	the	rule.

Creating	the	Datacenter	IPSet
The	following	screenshot	shows	the	IPSet	named	proxmox_nodes	with	IP
addresses	for	three	nodes	in	our	example	cluster:

From	the	IPSet	management	page,	we	need	to	create	the	IPSet	itself	first,	and
then	add	IPs	from	the	right-hand	side	IP/CIDR	option.	IP	addresses	can	be
added	separately	or	defined	in	an	entire	block	using	the	CIDR	value.	The
IPSet’s	name	can	only	be	alphanumeric,	with	two	special	characters:	-	and	_.
But	when	Proxmox	displays	the	IPset	in	the	drop-down	list,	it	adds	+	as	a
prefix.	This	is	not	part	of	the	IPset’s	name.	If	a	string	is	entered	as	capital
letters,	it	automatically	gets	changed	to	lowercase.	The	following	screenshot
shows	the	rules	dialog	box,	where	we	selected	an	IPSet	for	Proxmox	nodes	in
Destination	to	allow	SSH	only	for	Proxmox	nodes:

	

This	revised	rule	will	ensure	that	SSH	is	only	enabled	for	Proxmox	nodes	and
not	VMs.	As	we	can	see,	in	the	previous	example,	when	creating	rules	in	the
Datacenter	zone,	it	is	very	important	to	think	about	the	cascading	effect	of	the
Datacenter	rules	and	how	it	can	affect	nodes	and	VMs.	It	is	best	to	use	the

Datacenter	zone	rules	for	cluster-related	traffic	and	not	VMs	in	any	nodes.

After	we	have	created	rules	to	allow	SSH	and	the	Proxmox	GUI,	we	are	ready
to	enable	the	Datacenter-wide	Firewall	through	the	Options	menu.	The
following	screenshot	shows	the	menu	with	the	Firewall	now	Enabled:

	

The	preceding	screenshot	shows	a	policy	that	will	drop	all	incoming	traffic,
but	outgoing	traffic	will	be	permitted.	To	have	a	fully	locked	down	and
secured	cluster,	both	policies	should	be	set	to	DROP.	The	reason	to	set	the
Output	Policy	to	DROP	is	to	prevent	malicious	traffic	leaving	the	network	in
the	case	of	malware	infection	or	there	being	any	compromised	devices	within
the	internal	network.	Alternatively,	in	a	multitenant	environment,	outgoing
traffic	should	be	firewalled.	This	way,	we	can	control	the	type	of	traffic	that
can	leave	a	VM.	An	example	of	traffic	that	should	be	denied	would	be	ICMP
or	ping	traffic,	which	will	allow	one	VM	to	discover	other	devices	in	the
network.

If	both	the	inbound	and	outbound	firewall	rules	are	set	to	DENY
or	DROP,	you	will	likely	have	to	configure	all	the	allowed
traffic,	even	updates	and	common	traffic.	If	you	are
implementing	DROP	for	the	Input	Policy	in	an	already
established	Proxmox	cluster,	make	sure	that	you	first	create	all
the	necessary	rules	for	all	VMs	and	nodes	before	enabling	the
Datacenter-wide	firewall.	Failure	to	do	so	will	cause	all	VMs	and

nodes	to	drop	connectivity.

Creating	aliases
Aliases	make	it	simple	to	see	what	devices	or	group	of	devices	are	affected	by
a	rule.	We	can	create	aliases	to	identify	an	IP	address	or	a	network.	They	are
similar	to	an	IPSet,	but	one	alias	only	points	to	one	IP	address	or	network,
whereas	an	IPSet	holds	multiple	IP	addresses	or	networks.	For	example,	in	a
scenario	where	we	have	a	Proxmox	network	as	172.16.2.0/24	and	Ceph	public
network	as		192.168.20.0/24,	we	can	create	two	aliases	using	the	alias	creation
dialog	box	by	clicking	on	Add	from	the	Alias	menu,	as	shown	in	the
following	screenshot:

In	the	preceding	screenshot,	we	created	an	alias	named	ProxmoxNet	to	identify
the	network	172.16.2.0/24.	Using	the	same	dialog	box,	we	will	create	another
alias	named	CephNet	for	the	IP	subnet	192.168.20.0/24.	The	following	screenshot
shows	the	Alias	window	with	both	aliases	created:

	

The	advantage	of	having	an	alias	is	that	whenever	we	create	rules,	we	can	use
these	aliases	instead	of	typing	in	the	entire	IP	address.	This	is	especially
useful	when	using	IPv6.	Since	IPv6	addresses	are	quite	long,	we	can	create	an
alias	to	call	the	IP	address	in	a	rule	whenever	we	need	them.

This	is	also	another	way	to	identify	a	numeric	IP	address	with	text.	Aliases
are	accessible	through	the	drop-down	list	for	both	Source	and	Destination
from	the	rules	dialog	box.	The	following	screenshot	shows	the	rule	creation
dialog	box	with	the	aliases	in	the	drop-down	list	for	Source:

	

Aliases	created	in	the	Datacenter	zone	are	useable	throughout	the	cluster	in

both	the	host	and	VM	zones.

Configuring	the	Datacenter	firewall
through	the	CLI
The	Proxmox	firewall	can	also	be	managed	entirely	through	the	CLI	by
editing	the	firewall	configuration	and	rules	files	directly.	The	content	of	the
configuration	and	rule	files	are	laid	out	in	a	very	specific	format.	The
following	screenshot	shows	the	/etc/pve/firewall/cluster.fw	file	of	the	Datacenter
zone	after	adding	rules	from	the	previous	section:

As	we	can	see,	in	the	preceding	screenshot,	there	are	four	segments	in	the
firewall	configuration	file	for	the	Datacenter	zone.	They	are	as	follows:

				[OPTIONS]

				

				[ALIASES]

				

				[IPSET	<name>]

			

				[RULES]

			

				[group	<name>]

						

[OPTIONS]
This	area	is	used	to	enable	or	disable	a	Datacenter-wide	firewall.	Currently,	our
example	cluster	has	the	default	input/output	policy,	which	is	set	to	drop	all
incoming	traffic	while	allowing	all	outgoing	traffic.	If	we	were	to	change	the
input	policy	to	accept	all	incoming	traffic,	then	the	[OPTIONS]	segment	would
appear	as	follows:

				[OPTIONS]

				policy_in:	ACCEPT

				enable:	1		

If	due	to	firewall	rules	misconfiguration	we	locked	ourselves	out,	we	can
disable	the	Datacenter-wide	firewall	using	the	following	option	on	the	console:

				enable:	0		

[ALIASES]
This	segment	shows	all	the	aliases	created	in	the	Datacenter	zone.	It	shows	the
name	of	the	alias	and	IP	address	or	the	network	the	alias	belongs	to.	Each	line
is	used	for	a	separate	alias	entry.

[IPSET	<name>]
This	segment	clumps	all	IPSets	created	under	the	Datacenter	zone.	It	shows	the
name	of	the	IPSet	and	the	IP	addresses	added	in	the	set.	In	our	example,	we
have	two	IPSets	named	proxmox_nodes	and	proxmoxgui.

[RULES]
This	segment	contains	all	the	firewall	rules,	one	on	each	line.	To	disable	any
rule,	we	simply	need	to	put	a	|	in	front	of	the	rule	and	save	the	configuration
file.	In	the	preceding	screenshot,	the	rule	to	allow	ping	is	disabled	in	this	way.

[group	<name>]
This	segment	clumps	all	the	security	groups	created	in	the	Datacenter	zone.	It
shows	the	name	of	the	security	group	and	the	rule	added	to	the	group.	In	the
preceding	screenshot,	we	can	see	that	we	created	a	security	group	named
webserver	and	added	macro	rules	in	order	to	allow	HTTPS,	HTTP,	SSH,	and	FTP	traffic.
We	can	also	manually	add	rules	in	this	segment	by	defining	a	protocol	and
port.	For	example,	if	we	want	to	allow	the	TCP	traffic	to	port	565	only	from	IP
address	10.0.0.2,	we	will	add	the	following	line	of	code	to	the	webserver	security
group:

IN	ACCEPT	-source	10.0.0.2	-p	tcp	-dport	565	

Configuring	a	host-specific	firewall
Any	rules	created	in	the	host	zone	only	apply	to	the	node	where	the
rule	itself	was	created	and	the	VMs	in	that	host	node.	Rules	for	one	node	do
not	get	replicated	to	the	other	nodes,	although	the	rule	files	are	stored	in	the
Proxmox	cluster	filesystem.	There	are	no	options	to	create	IPSet	or	security
groups	in	the	host-specific	firewall	option.	We	can	only	create	firewall	rules.	

Creating	host	firewall	rules
Creating	new	rules	for	the	host	zone	is	identical	to	the	rule	creation	process
that	we	have	already	discussed	in	the	Configuring	the	data	center-specific
firewall	section	earlier	in	this	chapter.	Besides	creating	rules	from	scratch,	we
can	also	assign	predefined	rules	in	the	form	of	a	security	group	to	a	node.	We
cannot	create	a	new	security	group	under	the	host	Firewall	menu,	but	we	can
assign	it	some	predefined	rules.	For	example,	earlier	in	this	chapter,	we
created	a	security	group	named	webserver.	If	a	Proxmox	node	is	only	going	to
host	VMs	used	for	web	servers,	then	we	can	assign	the	security	group
webserver	to	that	node,	and	all	the	rules	will	be	cascaded	into	all	the	VMs	in	the
host.	Thus,	we	would	save	a	lot	of	time	by	not	having	to	create	separate	rules
for	each	VM.

To	open	the	dialog	box	to	assign	a	security	group,	click	on	Insert:	Security
Group	from	the	Datacenter	|	Node	option.	The	following	screenshot	shows	the
dialog	box	with	webserver	selected	from	the	Security	Group	drop-down	list:

	

We	have	to	ensure	that	we	enable	the	rule	by	clicking	on	the	checkbox,	and
then	we	need	to	click	on	Add	to	assign	the	security	group.	The	following
screenshot	shows	the	rule	added	to	the	pmx-01	node:

Options	for	the	host	zone	firewall
The	Proxmox	node	firewall	has	several	items	under	the	Options	tab.	Most	of
the	items	can	be	left	at	their	default	values,	as	shown	in	the	following
screenshot.	However,	an	understanding	of	this	item	will	aid	in	combating
security	through	the	cluster.	The	following	screenshot	shows	the	Option	items
with	default	values	for	an	unmodified	Proxmox	node:

	

To	change	the	settings	of	any	option	item,	we	need	to	select	the	line	item,	and
then	click	on	the	Edit	button.

Enable	a	firewall
By	default,	all	Proxmox	nodes	have	the	Firewall	option	enabled.	To	disable	a
Firewall	for	the	node	completely,	select	No	for	this	option.

The	SMURFS	filter
By	default,	the	SMURFS	filter	is	Enabled.	By	nature,	Smurf	is	a	distributed
denial-of-service	(DDoS)	attack.	In	this	attack,	an	attacker	sends	a	very	large
number	of	ICMP	data	packets	with	the	victim’s	spoofed	IP	address	as	the
source,	and	it	is	broadcast	to	a	network	using	the	broadcast	address.
Generally,	all	network	devices	answer	an	ICMP	ping.	During	a	Smurf	attack,
the	victim’s	device	gets	flooded	by	ICMP	responses.	If	there	are	a	large
number	of	devices	on	the	network,	then	the	flooding	becomes	extreme,
making	the	victimized	device	unresponsive.	This	is	why	this	filter	should
remain	enabled	at	all	times.

The	TCP	flags	filter
In	simple	terms,	TCP	flags	are	control	bits	that	indicate	how	TCP	packets
should	be	handled	by	the	client.	These	control	bits	or	indicators	reside	in	the
TCP	header.	There	are	a	total	of	nine	control	bits	with	one	bit	for	each	flag.
The	full	description	of	how	exactly	these	TCP	flags	work	is	beyond	the	scope
of	this	book	since	TCP	is	a	vast	subject	of	various	complexities.	Here,	we	will
only	see	what	those	TCP	flags	are	and	how	the	Proxmox	firewall	handles	TCP
flag	filtering.	The	following	table	is	a	summary	of	the	TCP	flags	and	their
functions:

TCP	flag Function

URG—1	bit This	indicates	that	the	TCP	packet	is	urgent.

ACK—1	bit This	indicates	the	acknowledgment	field.	After	the	initial
SYN	for	all	packets,	they	are	usually	followed	by	this	flag.

PSD—1	bit This	flag	asks	for	the	buffer	data	to	be	pushed	as	soon	as
possible	to	the	receiving	side	of	the	client	application.

RST—1	bit This	flag	indicates	the	TCP	connection	reset.

SYN—1	bit
This	flag	indicates	a	synchronized	sequence	number	before
initiating	a	TCP	connection.	Only	the	first	packet	that	is
sent	from	a	source	usually	has	this	flag.

FIN—1	bit This	flag	indicates	the	end	of	TCP	packets.

TCP	flags	are	useful	to	detect	and	pinpoint	oddly-behaved	TCP	packets	and
determine	a	possible	intrusion.	Arguments	for	TCP	flag	filtering	are	added	to
the	firewall	rules	right	after	the	-p	syntax,	as	shown	in	the	following	code:

[RULES]	

IN	DROP	-p	tcp	-tcp-flags	SYN,ACK	SYN	-dport	

As	of	Proxmox	VE	5.0,	there	are	no	options	used	to	manually
add	TCP	flags	to	filter	through	the	GUI.	We	can	add	them
through	the	CLI	but	this	makes	the	rule	disappear	from	the	GUI.

By	default,	TCP	flag	filtering	is	disabled	in	the	Proxmox	VE.	We	can	enable
it	to	let	the	Proxmox	firewall	automatically	filter	odd	packets	with	out-of-sync
bits.	All	data	packets	traversing	through	the	network	have	a	uniform	SYN
behavior.	Odd	packets	usually	indicate	that	they	are	from	a	bad	source.

NDP
Neighbor	Discovery	Protocol	(NDP),	is	an	IPv6-specific	option.	Unlike
IPv4,	IPv6	does	not	use	the	ARP	protocol,	but	uses	NDP	instead.	NDP	is	also
used	for	IPv6	auto	configuration	and	advertising	router	data	packets.	By
default,	this	option	is	enabled	for	both	host-	and	VM-specific	Proxmox
firewalls.	If	you	are	not	going	to	use	IPv6	at	all	and	have	no	future	plans	to	do
so,	this	option	can	be	disabled.	

nf_conntrack_max
This	value	defines	the	maximum	size	of	a	netfilter	connection	tracking	table.
This	table	keeps	a	record	of	all	live	connections	and	deletes	them	when	a
connection	is	closed.	By	default,	the	size	of	this	table	is	65,536	bytes.	While
for	most	of	the	nodes,	this	is	perfectly	fine,	for	high-volume	connection
servers,	such	as	DNS	or	web	server,	this	table	may	become	full	quickly.	For	a
Proxmox	node,	which	holds	lots	of	high-traffic	VMs,	this	value	needs	to	be
increased.	We	can	check	the	current	value	of	nf_conntrack_max	using	the
following	command:

				#	sysctl	-a	|	grep	nf_conntrack_max		

The	following	command	will	show	you	the	number	of	current	live
connections	in	the	node:

				#	sysctl	-a	|	grep	nf_conntrack_count		

The	following	screenshot	shows	the	connection	count	for	our	example	node
pmx-01:

Note	that	if	the	tracking	table	is	full	due	to	many	live
connections,	then	the	node	will	drop	all	new	connection	packets.

nf_conntrack_tcp_timeout_established
This	node	only	keeps	track	of	the	netfilter	connections	if	they	live.	Dead
connections	are	deleted	automatically	from	the	table.	This	deletion	happens
based	on	the	set	timeout	period.	The	longer	the	timeout	period,	the	longer	the
record	of	the	connection	will	stay	in	the	tracking	table.	The	value	of	this
option	is	in	seconds.	By	default,	the	value	is	set	to	4,32,000	seconds	or	12
hours.	We	can	check	the	current	value	using	the	following	command:

				#	sysctl	-a	|	grep	nf_conntrack_tcp_timeout_established		

By	reducing	this	value,	we	can	keep	the	tracking	table	lean	which	is	faster	for
a	high-traffic	node.	It	should	be	noted	here	that	lowering	this	value	might	also
break	long	running	idle	TCP	connections.

log_level_in/out
A	firewall	is	only	as	good	as	its	logging	capability.	It	is	only	by	going	through
the	log	that	we	can	see	what	is	being	blocked	and	what	is	not.	Proxmox
comes	with	a	custom	service	named	pvefw-logger,	which	is	based	on	the
netfilter	logging	daemon.	The	sole	purpose	of	this	service	is	to	log	a
connection	activity	based	on	the	set	firewall	rules.	Through	the	firewall’s
Options	tab,	we	can	set	logging	at	various	levels	of	verbosity.	There	are	eight
levels	of	logging	available	for	the	iptable-based	firewall.	The	following	table
shows	the	iptable	logging	levels	and	their	availability	in	the	Proxmox
firewall:

Log	Level Type

Level	0 Emergency Available	in	Proxmox

Level	1 Alert Available	in	Proxmox

Level	2 Critical Available	in	Proxmox

Level	3 Error Available	in	Proxmox

Level	4 Warning Available	in	Proxmox

Level	5 Notice Not	available	in	Proxmox

Level	6 Info Available	in	Proxmox

Level	7 Debug Available	in	Proxmox

	

In	addition	to	these	levels,	Proxmox	also	has	the	nolog	option.	This	disables	all
logging	for	a	resource.	The	log	level	info	is	used	the	most,	as	it	logs	all	the
good	and	bad	connections.	This	way,	we	can	see	exactly	what	is	being
blocked	and	allowed.	However,	the	info	log	level	also	creates	many	log
entries	in	a	very	short	period	of	time.	As	a	good	rule	of	thumb,	always	select
some	form	of	logging	when	enabling	a	firewall.

tcp_flags_log_level
Similar	to	the	standard	log	level,	we	can	also	enable	different	log	levels	for
the	TCP	flags.	If	the	TCP	flags	filter	is	not	enabled,	this	will	not	produce	any
log	entries.	When	enabled,	we	will	see	the	TCP	flags	filter	logged	in	the	log
window.

smurf_log_level
Like	the	TCP	flags	log,	this	also	shows	log	entries	for	Smurf	attacks.	This
also	follows	various	log	levels.

Configuring	the	host	firewall
through	the	CLI
We	can	also	configure	and	manage	the	host	zone	firewall	through	the	CLI.
The	firewall	configuration	file	for	the	host	is	in	/etc/pve/local/host.fw.	The
following	screenshot	shows	the	content	of	the	host.fw	file:

As	we	can	see	in	the	preceding	screenshot,	there	are	only	two	segments	in	the
firewall	configuration	file	for	the	host	zone.	They	are	as	follows:

				[OPTIONS]

			

				

				[RULES]

					

The	functions	of	these	segments	are	exactly	the	same	as	the	segments	in	the
Configuring	the	Datacenter	firewall	through	the	CLI	section	earlier	in	this
chapter.	Note	that	there	are	no	segments	for	security	group	or	IPSet.	This	is
because	these	features	are	not	present	in	the	host	firewall	zone.

Configuring	a	VM-specific	firewall
Rules	created	for	a	VM	only	apply	to	that	particular	virtual	machine.	Even
when	the	virtual	machine	is	moved	to	a	different	node,	the	firewall	rule
follows	the	VM	throughout	the	cluster.	There	are	no	rules	cascading	from	this
zone.	Under	the	VM	firewall	feature,	we	can	create	rules,	aliases,	and	IPSets,
but	we	cannot	create	a	security	group.	The	firewall	management	is	the	same
for	both	the	KVM	virtual	machines	and	LXC	containers.	We	can	go	to	the
firewall	feature	of	a	VM	by	navigating	to	the	VM	|	Firewall	menu:

Creating	VM	firewall	rules
Creating	new	rules	for	a	VM	is	identical	to	the	rule	creation	process	that	we
have	already	seen	in	the	Configuring	the	Datacenter	firewall	through	the	CLI
section	earlier	in	this	chapter.	Besides	creating	rules	from	scratch,	we	can	also
assign	predefined	rules	in	the	form	of	a	security	group	to	a	VM.	The
preceding	screenshot	shows	that	our	example	VM	has	three	firewall	rules	to
allow	standard	web	server	and	HTTPS	traffic,	but	drop	all	HTTP	or	port	80
traffic.

Creating		aliases
An	alias	for	a	VM	zone	serves	the	same	purpose	as	the	alias	for	the	Datacenter
zone.	The	alias	creation	process	is	also	identical	to	the	Configuring	the
Datacenter	firewall	through	the	CLI	section	that	we	have	seen	earlier	in	this
chapter.	Aliases	created	under	a	VM	stay	with	that	particular	VM	only.	An
alias	for	one	VM	can	be	used	in	another	VM.

Creating	IPSets
Like	aliases	for	a	VM,	an	IPSet	created	under	a	VM	also	stays	with	that
particular	VM.	The	IPSet	creation	process	is	identical	to	the	IPSet	for	the
Datacenter	zone	we	have	already	seen	in	the	Configuring	the	Datacenter
firewall	through	the	CLI	section	earlier	in	this	chapter.

Options	for	a	VM	zone	firewall
All	the	option	items	under	the	VM	zone	Options	menu	are	the	same	as	items
for	the	Datacenter	and	host	zone	already	described,	except	for	the	DHCP	and
MAC	filters.	The	following	screenshot	shows	the	Options	items	for	our
example	VM	100	(kvm-1):

Enable	DHCP
This	option	is	used	for	a	VM	that	is	configured	as	a	DHCP	server.	A	DHCP
server	uses	the	UDP	ports	67	and	68	to	complete	IP	requests	from	clients.
Instead	of	manually	opening	these	ports,	we	can	enable	this	option	to	let	all
DHCP-related	pass	to	and	from	the	VM.	By	default,	DHCP	is	Disabled.

The	MAC	filter
When	this	option	is	Enabled,	it	prevents	the	VM	user	spoofing	their	own
MAC	address	of	the	virtual	network	interface	and	sending	out	traffic.	This
filter	will	drop	the	packets	from	the	spoofed	MAC	address.	By	default,	this
option	is	Enabled.

Input/output	policy
These	options	are	to	enable	default	firewall	behavior	for	the	virtual	network
interface.	For	example,	if	you	select	the	policy	to	DROP,	by	default	it	will
block	all	traffic.	We	will	have	to	add	rules	to	open	required	ports.	By	default,
the	Input	Policy	is	to	DROP	all	incoming	traffic.	

Configuring	a	VM-specific	firewall
through	the	CLI
As	with	other	firewall	zones	in	Proxmox,	we	can	also	configure	and	manage	a
virtual	machine-specific	firewall	through	the	CLI.	The	configuration	file	for
each	VM	is	in	/etc/pve/firewall/<vm_id>.fw.	All	segments	in	the	configuration
file	are	the	same	as	the	Datacenter	or	host	zone	configuration.	The	following
screenshot	shows	the	content	of	a	firewall	configuration	file	for	VM	100	(kvm-
1):

Integrating	a	Suricata	IDS/IPS
The	security	protection	of	the	Proxmox	VE	firewall	can	be	further	enhanced
by	configuring	an	intrusion	detection	and	prevention	system	such	as	Suricata.
It	is	a	high-performance	IDS/IPS	engine	that	is	able	to	protect	a	virtual
machine	by	rejecting	traffic	that	may	be	possible	intrusions.	Currently,	Snort
and	Suricata	are	two	open	source	mainstream	IDS/IPS	available,	although
there	are	a	few	others.	One	of	the	primary	advantages	of	Suricata	is	that	it	is
multithreaded,	whereas	Snort	is	single-threaded.	Suricata	is	under	rapid
deployment	and	has	gained	popularity	in	a	short	amount	of	time.

By	default,	Suricata	is	not	installed	on	a	Proxmox	node.	It	needs	to	be
manually	installed	and	configured.	As	of	Proxmox	VE	5.0,	Suricata	can	only
be	used	to	protect	a	virtual	machine	and	not	any	Proxmox	host	nodes.

Do	not	try	to	manually	download	the	Suricata	package	from	any
other	source	other	than	the	Proxmox	repository	and	install	it	on
the	Proxmox	node.	It	may	break	the	system.	Always	use	the	apt-
get	installer	in	Proxmox	to	install	Suricata.

If	you	are	new	to	Suricata,	then	visit	the	official	Suricata	site	that	will	help
you	gain	some	knowledge	of	Suricata	as	an	IDS/IPS:
http://suricata-ids.org/

http://suricata-ids.org/

Installing/configuring	Suricata
We	can	install	Suricata	in	a	Proxmox	node	using	the	following	command:

				#	apt-get	install	suricata		

After	Suricata	is	installed,	we	have	to	load	the	netfilter	queue	subsystem’s
nfnetlink_queue	module	using	the	following	command:

				#	modprobe	nfnetlink		

To	ensure	that	this	module	gets	loaded	automatically	whenever	the	node	is
rebooted,	we	need	to	add	it	to	the	/etc/modules	file.	The	installer	installs	all	the
necessary	files	for	Suricata,	including	Oinkmaster	rules.	All	IDS/IPS	engines
are	heavily	dependent	on	rules.	These	rules	are	precompiled	and	prepackaged
in	rule	files.	Oinkmaster	is	a	script	that	allows	us	to	easily	update	and	manage
rules.	It	is	mainly	used	by	Snort	but	is	also	supported	by	Suricata.	Without
these	rules,	Suricata	will	not	perform	anything.	Visit	the	official	Snort	site	for
information	on	rules	at	https://www.snort.org/.

There	are	no	options	to	enable	Suricata	for	a	VM	through	the	GUI.	So,	we
have	to	manually	enable	it	through	the	CLI	by	editing	the	VM	firewall
configuration	file	in	/etc/pve/firewall/<vm_id>.fw.	We	need	to	add	the	following
lines	to	the	[OPTIONS]	segment	of	the	configuration	file:

				ips:	1

				ips_queues:	0		

The	ips_queues	option	binds	to	a	specific	CPU	queue	of	the	virtual	machine	due
to	its	multithreaded	nature.	Available	queues	that	Suricata	should	listen	to	are
defined	in	/etc/default/suricata,	as	follows:

NFQUEUE=0	

The	value	is	usually	set	based	on	the	number	of	CPUs.	For	example,	to	use
four	CPU	cores	for	Suricata,	we	can	use	the	value	3	for	NFQUEUE.	The	default
value	0	indicates	that	we	only	use	the	first	CPU,	which	is	CPU	0.

Suricata	will	only	work	when	listening	on	NFQUEUE.	This	is	configured	by
default	when	Suricata	is	installed	on	a	Proxmox	node.	All	traffic	that	is	only
accepted	by	the	Proxmox	firewall	gets	passed	to	Suricata	for	inspection.	All
other	dropped	or	rejected	traffic	does	not	get	passed	to	Suricata.	The	Suricata
configuration	files	are	in	/etc/suricata/suricata-debian.yaml.	The	default
configuration	should	work	in	most	cases.

It	is	easier	to	write	your	own	custom	rules	for	Suricata	than	it	is	for	Snort.

https://www.snort.org/

You	can	refer	to	the	excellent	documentation	on	how	to	learn	to	write	your
own	rules	for	Suricata	at	the	following	link:
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Rules

We	can	start	the	Suricata	service	by	running	the	following	command:
				#	systemctl	start	suricata

The	following	screenshot	shows	the	command	to	check	the	status	of	the
Suricata	service	and	displays	the	status	information:

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Rules

Limitations	of	Suricata	in	Proxmox
As	mentioned	earlier,	there	are	no	GUI	options	for	Suricata	in	Proxmox.	All
configurations	are	done	through	the	CLI.	Without	a	proper	knowledge	of
IDS/IPS	rules,	it	is	very	difficult	to	create	rules	based	on	their	own
environments.	Suricata	cannot	be	used	to	protect	any	Proxmox	nodes,	only
virtual	machines.	This	limitation	may	be	due	to	the	fact	that	IDS/IPS	can
frequently	consume	a	large	amount	of	CPU	resources.	While	for	a	dedicated
firewall	appliance,	this	may	or	may	not	be	an	issue,	for	a	hypervisor,	where
the	CPU	is	shared	between	the	hypervisor	itself	and	hosted	virtual	machines,
this	could	be	fatal	due	to	CPU	overconsumption.

There	are	no	dedicated	log	view	options	for	Suricata	as	there	are	for	the
Proxmox	firewall	through	the	GUI.	All	Suricata	logs	are	stored	in	the
/var/log/Suricata	directory	by	default.	However,	we	can	pass	Suricata	IPS	logs
to	syslog	by	changing	the	configuration	file	in	/etc/pve/suricata/suricata-
debian.yaml.	We	have	to	make	the	following	changes	in	order	to	pass	the
Suricata	logs	to	syslog:

				#	a	line	based	alerts	log	similar	to	fast.log	into	syslog

				syslog:

				enabled:	yes

				identity:	"Suricata"

				level:	Info		

There	are	a	few	more	options	available	to	log	the	output	in	the	same
configuration	file.	Some	Proxmox	users	try	to	pass	Suricata	logs	to	a	third-
party	solution	using	Logstash	and	Kibana	from	Elastic	(www.elastic.co).	Suricata
or	any	other	IPS	is	a	complex	task	to	manage	on	a	day-to-day	basis.	Suricata
is	still	in	infancy	in	Proxmox.	Over	time,	it	may	be	integrated	with	the	GUI
for	easier	management.	But	for	now,	using	a	dedicated	firewall	appliance,
such	as	pfSense,	Untangle,	ClearOS,	or	any	other	open	source	firewall	may	be
a	better	option	to	integrate	Suricata	in	a	network.	Suricata	is	fully	supported
in	pfSense	with	a	large	amount	of	manageable	features,	all	through	the
pfSense	GUI	dashboard.	Implementing	an	IDS/IPS	system	in	a	network	is	not
optional	but	should	be	made	mandatory	to	protect	it	from	any	sort	of
intrusion.

http://www.elastic.co

Summary
In	this	chapter,	we	learned	about	one	of	the	most	powerful	features	of
Proxmox,	the	built-in	firewall.	We	learned	what	it	is	and	how	to	implement	it
to	protect	the	entire	cluster,	Proxmox	host	nodes,	and	virtual	machines.	We
learned	how	to	manage	the	firewall	rules	and	configuration	using	both	the
GUI	and	CLI.	Proxmox	adds	security	where	it	is	needed	the	most.	By
leveraging	a	flexible	and	granular	firewall	protection	at	the	hypervisor	level,
we	are	now	able	to	have	a	better-secured	cluster.	This	is	not	to	say	that
firewall	policies	are	not	needed	internally	in	each	VM,	but	having	a	firewall
built	into	the	hypervisor	offers	an	extra	layer	of	protection	from	an
infrastructural	point	of	view.

In	the	next	chapter,	we	are	going	to	learn	about	the	Proxmox	VE	High
Availability	feature	for	VMs,	which	has	been	completely	redesigned	from	the
ground	up.	The	new	changes	brought	higher	stability	while	making	the
management	and	configuration	a	much	simpler	task.

Proxmox	High	Availability
In	this	chapter,	we	are	going	to	see	one	of	the	most	prominent	features	that
make	Proxmox	an	enterprise-class	hypervisor.	Proxmox	VE	High
Availability	(HA)	allows	the	cluster	to	move	or	migrate	virtual	machines
from	a	faulty	node	to	a	healthy	node	without	any	user	interaction.	We	will
take	a	look	at	the	following	topics:

Understanding	HA
Requirements	for	HA
Configuring	Proxmox	HA
Configuring	the	Proxmox	HA	simulator

Understanding	HA
HA	is	a	combination	of	components	and	configurations	that	allows
continuous	operation	of	a	computational	environment.	Basically,	it	means	that
even	when	unattended	server	hardware	goes	bad	in	a	live	environment,
HA	can	manage	the	remaining	servers	on	its	own	and	keep	a	virtual
environment	running	by	automatically	moving	or	migrating	virtual	machines
from	one	node	to	another,	while	minimizing	downtime	as	little	as	possible.	It
should	be	noted	here	that	Proxmox	HA	does	not	provide	zero	downtime
migration	of	VMs.	When	a	node	with	VM	goes	down	hard,	for	obvious
reason	the	VM	becomes	fully	inaccessible.	What	Proxmox	HA	does	when
that	happens	is,	it	automatically	moves	the	VM	configuration	files	to	member
nodes	and	starts.	A	properly	configured	HA	should	require	very	little	actual
user	interaction	during	a	hardware	failure.	Without	HA	in	place,	all	nodes	will
require	constant	monitoring	by	a	network	manager	in	order	to	manually	move
virtual	machines	to	healthy	nodes	when	a	node	goes	bad.	

In	a	small	environment,	manually	moving	VMs	is	not	a	major	issue,	but	in	a
large	environment	with	hundreds	of	virtual	machines	and	nodes,	constant
monitoring	can	be	very	time	consuming.	Although	there	can	be	monitoring
software	in	place	to	automatically	alert	administrators	for	any	node	failure,
without	HA,	the	administrator	will	have	to	manually	move	or	migrate	any
virtual	machine	from	a	faulty	node.	This	can	cause	longer	downtime	due	to
the	network	staff’s	response	time.	That’s	where	the	Proxmox	HA	feature
comes	in.	HA	takes	operator	intervention	out	of	the	equation	by	simply
moving	or	migrating	virtual	machines	to	a	node	as	soon	as	server	hardware
failure	occurs.

HA	in	Proxmox
To	set	up	functional	HA	in	Proxmox,	it	is	important	to	have	all	the	virtual
machines	on	shared	storage.	It	is	crucial	to	understand	that	Proxmox	HA	only
handles	Proxmox	nodes	and	virtual	machines	within	the	Proxmox	cluster.
These	HA	features	are	not	to	be	confused	with	shared	storage	redundancy,
which	Proxmox	can	utilize	for	its	HA	deployment.	High	availability	in	shared
storage	is	just	as	important	as	Proxmox	VMs’	HA.	A	third-party	shared
storage	can	provide	its	own	HA	features.	So	both	the	Proxmox	cluster	and
shared	storage	will	need	to	be	configured	to	provide	a	truly	highly	available
environment.	It	is	beyond	the	scope	of	this	book	to	go	into	the	details	of	high-
availability	storage.

There	can	be	levels	of	redundancy	in	a	Proxmox	computing	node,	such	as	the
use	of	RAID,	redundant	power	supplies,	aggregated	network	links,	or	bonds.
HA	in	Proxmox	is	not	a	replacement	for	any	of	these	layers.	It	just	facilitates
redundancy	features	for	virtual	machines	to	keep	running	during	a	node
failure.	Proxmox	uses	a	software	stack	called	HA-manager	to	provide	fully
automated	high	availability	from	Proxmox	virtual	environments.	

It	should	be	noted	that	in	a	Proxmox	node,	a	reboot	due	to	an	applied	update
will	cause	all	HA-enabled	virtual	machines	to	shut	down	and	move	to	the	next
available	Proxmox	node	and	restart.	In	such	a	situation,	it	may	be	necessary	to
manually	live-migrate	virtual	machines	first	before	rebooting	the	node.	But	by
using	a	service	such	as	Kernel	Care	from	CloudLinux,	we	can	mitigate
reboots	due	to	update	because	Kernel	Care	applies	security	updates	without
ever	needing	to	reboot	a	node.	Find	out	more	about	this	service	from	https://ww
w.cloudlinux.com/all-products/product-overview/kernelcare.

https://www.cloudlinux.com/all-products/product-overview/kernelcare

How	Proxmox	HA	works
When	a	node	becomes	unresponsive	for	various	reasons,	Proxmox	HA	waits
for	60	seconds	before	fencing	the	faulty	node.	Fencing	prevents	cluster
services	from	coming	online	during	that	time.	Then,	HA	moves	the	VM	to	the
next	available	node	in	the	HA	member	group.	As	of	Proxmox	VE	5.0,	LXC
containers	cannot	be	live-migrated.	So,	HA	will	stop	all	LXC	containers	and
then	move	them	to	the	next	node.	Even	if	the	node	with	VMs	is	still	powered
up	but	loses	network	connectivity,	Proxmox	VA	will	try	to	move	all	VMs	out
of	the	node	to	a	different	node.

Once	the	faulty	node	comes	back	online,	however,	HA	will	not	automatically
move	the	VMs	back	to	the	original	node.	This	must	be	done	manually.	But	a
VM	can	only	be	moved	manually	if	HA	is	disabled	for	that	VM.	So	we	have
to	disable	HA	first	and	then	move	to	the	original	node	and	enable	HA	on	the
VM	again.	As	we	can	see,	Proxmox	HA	likes	to	manage	everything	on	its
own,	although	it	adds	little	annoyances	to	manually	performing	certain
functions.	HA	is	focused	on	maintaining	uptime,	which	it	does	suitably.	Later
in	this	chapter,	we	will	see	how	to	configure	HA	for	virtual	machines.

Requirements	for	HA	setup
In	Proxmox	4.0,	the	HA	feature	has	been	completely	redesigned	from	the
ground	up,	making	it	much	simpler	to	configure	and	use.	There	are	a	few
requirements	that	the	virtual	environment	must	meet	before	configuring
Proxmox	HA.	They	are	as	follows:

At	least	three	nodes
Shared	storage
Fencing

At	least	three	nodes
HA	must	be	configured	in	a	cluster	with	a	minimum	of	three	nodes	because
with	three	nodes	or	more,	achieving	a	quorum	is	possible.	Quorum	is	the
minimum	number	of	votes	required	for	Proxmox	cluster	operation.	This
minimum	number	is	the	total	vote	by	a	majority	of	the	nodes.	For	example,	in
a	cluster	of	three	Proxmox	nodes,	a	minimum	vote	of	two	Proxmox	nodes	is
required	to	form	a	quorum.	In	a	cluster	with	eight	nodes,	a	minimum	vote	of
five	Proxmox	nodes	is	required	to	form	a	quorum.	With	just	two	nodes,	the
ratio	of	votes	will	always	be	1:1,	so	no	quorum	is	possible.

Shared	storage
During	a	node	failure,	VM	configuration	files	are	moved	to	the	next	member
node	in	the	HA	and	auto	started.	Note	that	this	migration	applies	to	the
configuration	files	only	and	not	the	virtual	disk	image.	A	VM	cannot	be
started	by	HA	when	the	disk	image	is	not	stored	on	shared	storage.	When	a
VM	is	stored	locally,	then	HA	will	only	move	the	configuration	file	and	will
be	unable	to	move	the	disk	image.	This	will	produce	error	when	HA	tries	to
auto	start	the	VM.	

Do	not	try	to	enable	HA	for	any	locally	stored	VM.	The	HA	will
forcefully	move	the	VM	configuration	file	and	not	move	the
location	of	the	disk	image.

Fencing
Fencing	is	a	concept	of	isolating	a	node	or	its	resources	during	node	failure	so
that	other	nodes	cannot	access	the	same	resources,	putting	them	at	risk	of	data
corruption.	In	Proxmox,	fencing	prevents	multiple	nodes	from	running	on	the
same	virtual	machine	or	cluster-specific	services.	Fencing	ensures	data
integrity	during	a	node	failure	by	preventing	all	nodes	from	running	on	the
same	virtual	machine	or	cluster	services	at	the	same	time.

As	of	Proxmox	VE	5.0,	a	separate	fencing	device	used	to	configure	Proxmox
HA	is	no	longer	required.	Fencing	now	uses	a	hardware-based	watchdog	or	a
Linux	softdog.	A	Linux	softdog	is	a	software	version	of	a	traditional
watchdog.	Most	modern	server	BIOSes	have	the	watchdog	functionality,	but
it	is	normally	disabled.	When	enabled,	this	will	reboot	server	nodes	after	a
certain	period	of	inactivity.	Proxmox	HA	will	always	check	whether	there	is	a
hardware	watchdog,	and	if	not,	it	will	automatically	use	a	softdog.	The	use	of
a	softdog	now	allows	HA	to	be	implemented	in	a	nested	virtual	environment.
This	is	helpful	to	set	up	a	virtualized	Proxmox	environment	to	learn	and	test
Proxmox	HA	without	effecting	changes	on	the	main	systems.

BIOS	power-on	feature
Before	we	set	up	fencing	and	Proxmox	HA,	we	have	to	make	sure	that	nodes
can	boot	immediately	after	a	power	cycle	or	power	loss.	Usually,	this	feature
is	disabled.	The	following	screenshot	shows	this	BIOS	feature:

It	is	important	that	the	BIOS	power	on	functionality	be	tested
and	verified.	To	do	so,	unplug	the	power	cord,	then	plug	it	back
again	to	see	whether	the	node	powers	up.	Without	this	feature
enabled,	the	node	will	not	be	able	to	auto	boot	or	power	cycle
using	Proxmox	HA	fencing.

Configuring	Proxmox	HA
Thanks	to	the	new	version	of	HA	in	Proxmox,	all	configuration	of	Proxmox
HA	can	be	done	from	the	GUI.	The	HA	feature	is	available	by	navigating	to
Datacenter	|	HA.	This	is	the	menu	where	we	will	perform	all	HA-related
configuration	and	management.	The	following	screenshot	shows	the	Proxmox
HA	management	interface:

The	HA	menu
The	HA	menu	is	divided	into	two	parts	and	two	submenus	where	we	can
perform	all	configuration	and	management	tasks.

Status
The	Status	shows	the	cluster-wide	quorum	formation	for	the	HA	to	function
properly	and	the	status	of	member	nodes	configured	in	HA.	A	clean-installed
Proxmox	cluster	will	show	only	one	line	item	for	a	healthy	quorum.	Once	the
new	member	nodes	are	added	to	the	HA	configuration,	this	status	menu	will
show	running	states	of	all	the	nodes	and	the	virtual	machines	that	have	HA
enabled.

The	Resources	menu
This	is	the	menu	where	we	enable	HA	for	a	virtual	machine	or	container.
Click	on	Add	to	open	the	VM	resource	dialog	box.	The	following	screenshot
shows	that	we	are	configuring	our	example	VM	100	with	the	HA	feature:

Max.	Restart	and	Max.	Relocate	are	two	new	options	added	to	the	HA
resource-adding	dialog	box.	The	value	for	Max.	Restart	is	the	number	of
times	Proxmox	HA	will	try	to	restart	services	and/or	the	VM	after	migrating
should	any	failure	occur.	The	Max.	Relocate	value	is	to	define	the	number	of
times	HA	will	try	to	relocate	VM	services	to	another	node	before	quitting.	

Request	State	is	a	drop-down	menu	to	define	what	action	HA	should	take
after	the	VM	is	migrated	to	another	node	during	a	failure.	We	can	select
started	to	start	the	VM	after	migration,	stopped	to	migrate	the	VM	but	not
start,	and	disabled	to	disable	the	HA	feature	for	the	VM.	This	is	useful	when
we	want	to	temporarily	disable	the	resource	and	we	may	use	it	in	future.

After	adding	a	VM	into	HA,	we	may	see	a	number	of	error	messages	showing
failure	to	enable	HA	on	that	VM.	The	following	screenshot	shows	some
example	errors	we	may	encounter	after	adding	VM	100	into	the	HA:

From	the	errors	we	can	see	that	to	enable	HA	for	a	VM,	there	are	certain
criteria	that	need	to	be	met.	For	example,	NUMA	must	be	enabled	and	the
VM	memory	allocation	must	be	at	least	1024	MB.	The	following	screenshot
shows	the	Resources	menu	with	the	example	vm	100	assigned	to	the	HA	group
after	we	enabled	NUMA	and	allocated	1024	MB	of	memory:

The	Groups	menu
This	menu	is	used	to	create	and	manage	different	groups	of	Proxmox	for	HA.
The	most	relevant	use	of	groups	is	for	software	solutions	or	infrastructure
VMs	that	should	always	be	running	together	for	continuous	functionality	in
the	event	of	a	failure:	a	domain	controller,	file	server,	and	so	on.	We	can
create	multiple	groups	through	this	menu.	A	VM	assigned	to	a	particular
group	will	only	be	moved	within	the	member	nodes	in	that	group.	For
example,	if	we	have	six	nodes,	out	of	which	three	nodes	have	enough
resources	to	run	the	database	virtual	server	and	the	other	three	nodes	to	run
virtual	desktops	or	VDI	solutions,	we	can	create	two	groups	for	which	the
database	virtual	servers	will	only	be	moved	within	the	nodes	that	we	have
assigned	for	that	group.	This	ensures	that	a	VM	is	moved	to	a	correct	node
that	will	be	able	to	run	the	VMs.	To	open	the	group-creation	dialog	box,
simply	click	on	Create	in	the	Groups	submenu.	The	following	screenshot
shows	the	groups	dialog	box	for	our	example	group	named	Pmx_HA_Test:

The	following	are	the	items	available	in	the	HA	Group	dialog	box.

ID
This	is	a	textbox	used	to	enter	a	name	for	the	HA	Group.	The	ID	string	can	be
alphanumeric	text	with	only	underscore	(_)	as	the	special	character.

Note	that	once	we	create	a	group,	we	cannot	change	the	group
name.	We	will	have	to	delete	the	group	and	create	a	new	one
with	a	proper	ID	if	we	need	to	change	the	group	name.

Node
This	is	a	list	of	all	the	Proxmox	nodes	in	the	cluster.	We	can	select	multiple
nodes	in	the	list.	In	order	to	create	the	group,	we	need	to	select	at	least	one
node.	Unlike	the	ID	textbox,	we	can	change	the	assigned	member	nodes	for
the	group	even	after	the	group	has	been	created.

The	restricted	checkbox
This	is	a	checkbox	used	to	allow	VMs	to	be	moved	by	Proxmox	HA	only
within	the	available	member	nodes	in	the	HA	group.	If	there	are	no	available
member	nodes,	then	the	VMs	will	be	stopped	automatically.	This	option	is	not
enabled	by	default.

The	nofailback	checkbox
This	is	also	a	checkbox	used	to	prevent	the	group	from	automatic	failback
when	a	new	node	joins	the	cluster.	This	is	not	enabled	by	default.	Unless	there
is	a	strict	requirement,	this	option	should	not	be	enabled.	One	scenario	of
using	this	is	when	an	administrator	is	trying	to	diagnose	a	node	or	network
failure.	By	enabling	this	option,	we	can	prevent	recovered	VMs	or	services
from	moving	back	into	the	original	node.	

The	following	screenshot	shows	the	Groups	submenu	interface	with	our
example	group	created:

At	first	glance,	using	groups	may	seem	like	just	another	layer	of	complexity,
but	proper	use	of	groups	really	can	help	us	create	a	highly	complex	automated
administrator.	Groups	allow	us	to	create	multiple	layers	of	failover,	bind
certain	services	to	specific	nodes,	and	distribute	VMs	to	specific	nodes	to
name	a	few.	Let’s	look	at	the	following	scenario	to	better	understand	how
groups	can	be	used	in	a	complex	environment.

For	this	scenario,	let’s	assume	that	this	is	a	three-node	Proxmox	cluster	where
node	#1	is	powerful	enough	to	run	all	VMs,	whereas	node	#2	is	powerful
enough	to	run	half	and	node	#3	only	a	handful	of	VMs.	In	this	scenario,
creating	just	one	group	will	try	to	move	all	VMs	to	one	of	the	nodes,	resulting
in	half	of	the	VMs	remaining	powered	off	due	to	shortage	of	resources.	But	if
we	create	two	groups,	one	to	move	half	of	the	VMs	to	node	#2	and	another

group	to	move	the	remaining	VMs	to	node	#3,	we	can	easily	create	an	HA
strategy	to	handle	node	failure	automatically.	

Another	scenario	is	to	use	groups	to	create	different	HAs	for	different	VM
groups.	For	example,	we	can	have	an	HA	group	only	to	handle	SQL	database
cluster	VMs	whereas	another	group	will	handle	all	VMs	functioning	as	file
servers.	Due	to	the	differing	workloads	of	database	and	file	servers,	it	may	be
more	efficient	to	run	them	on	specific	groups	of	Proxmox	nodes.	

The	Fencing	menu
As	of	Proxmox	5.0,	there	is	no	use	for	this	menu.	It	only	displays	the	fencing
device	being	used	by	Proxmox	HA.	Proxmox	uses	a	hardware	watchdog	and
software	Linux	watchdog	for	fencing.	The	following	screenshot	shows	the
Fencing	menu	interface:

At	this	point,	we’ve	created	a	Proxmox	HA	group	and	added	a	VM	to	the
group	to	be	managed	by	HA.	Our	VM	is	currently	in	the	pmx-01	node	and	is
ready	to	be	managed	by	Proxmox	HA.	The	following	screenshot	shows	the
Status	menu	of	HA:

As	we	can	see,	in	the	preceding	screenshot,	the	Status	menu	shows	the	current
state	of	the	entire	HA	feature.	For	our	example	cluster,	it	shows	the	following
vital	information:

Cluster	quorum	is	established
The	master	node	pmx-01	of	the	HA	group	is	active	and	the	timestamp	of

the	last	heartbeat	has	been	checked
All	the	three	member	nodes	of	the	HA	group	are	active	and	the
timestamp	of	the	last	heartbeat	has	been	checked
The	VM	service	for	100	has	been	started	on	the	first	node,	pmx-01

Testing	Proxmox	HA	configuration
To	test	whether	the	HA	is	really	working,	we	will	disconnect	network
connectivity	for	the	node	pmx-01	and	observe	the	Status	window	for	HA
changes.	The	Status	window	displays	the	status	of	resources	in	real	time.	The
following	screenshot	shows	the	HA	status	after	interrupting	network
connectivity:

In	the	preceding	screenshot,	we	can	see	that	our	example	node	pm4-1	is	no
longer	connected	to	the	cluster,	and	HA	does	not	get	any	acknowledgement
from	the	node.	After	60	seconds,	Proxmox	HA	promotes	the	next	available
node	in	the	HA	group	as	the	master	and	migrates	any	HA-enabled	VM.	In	our
example	cluster,	after	disconnecting	node	pmx-01,	the	HA	migrating	the	VM	is
as	shown	in	the	following	screenshot:

After	the	VM	resources	are	fenced,	in	the	next	stage,	the	VM	is	fully	stopped.
Since	the	node	itself	is	down,	the	VM	cannot	be	live-migrated	because	the
memory	state	of	the	running	VM	cannot	be	retrieved	from	the	down
node.	After	the	VM	is	stopped,	it	is	moved	to	the	next	available	node	in	the
HA	group	and	started	automatically.	The	following	screenshot	shows	that	the
VM	has	now	moved	to	node	pmx-02	and	has	been	started:

After	the	failed	node	comes	back	online,	the	VM	will	continue	to	run	on	the
node	it	was	migrated	to	by	HA.	From	the	Status	interface	we	can	see	that	the
second	node	pmx-02	is	now	active	while	the	other	two	nodes	are	idle:

It	is	possible	that	Proxmox	HA	will	produce	an	error	during	the	automatic
VM	move	for	various	reasons.	After	any	error,	Proxmox	HA	will	make
several	attempts	with	the	restart	and	relocate	policy	to	recover	from	the	error.
If	all	attempts	fail,	Proxmox	HA	puts	the	resource	in	the	error	state	and	will
not	perform	any	automated	tasks	for	it.	For	this	reason,	even	after	the	error
has	been	addressed	and	fixed,	HA	will	not	automatically	start	the	VM.	We
will	manually	have	to	start	it.	This	is	one	of	the	unintended	side	effects	of
enabling	Proxmox	HA	where	it	may	not	behave	as	expected	after	an	error	has
occurred.

If	the	VM	is	automatically	moved	after	a	node	failure	and	then	restarted	on	a
new	node,	this	completes	the	entire	process	of	the	Proxmox	HA	configuration.

The	Proxmox	HA	simulator
Although	Proxmox	HA	has	become	far	easier	to	configure	and	manage,	it	is
still	a	complex	topic	to	grasp.	With	the	use	of	software-based	watchdogs,	it	is
entirely	possible	to	configure,	test,	and	learn	Proxmox	HA	in	a	virtualized
environment	before	implementing	it	in	a	production	cluster.	There	is	also	a
simulator	for	Proxmox	HA	that	we	can	use	to	see	HA	in	action	without	setting
up	any	clusters.	The	simulator	allows	us	to	see	the	HA	configuration	in	action
and	see	how	the	states	change	at	different	stages.

Configuring	the	Proxmox	HA
simulator
The	Proxmox	HA	simulator	is	not	shipped	with	the	distribution	and	needs	to
be	manually	installed.	Along	with	the	simulator	package,	we	also	need	xorg
and	xuath	because	the	simulator	requires	X11	redirection,	which	is	also	known
as	X11	forwarding.	We	can	use	the	following	commands	to	install	the
packages:

				#	apt-get	install	pve-ha-simulator

				#	apt-get	install	xorg

				#	apt-get	install	xauth		

We	can	access	the	simulator	from	both	Linux	and	Windows	operating
systems.	If	we	log	in	from	Linux,	use	the	standard	SSH	command	with	the	-Y
option,	as	shown	in	the	following	command:

				#	ssh	root@<pmx_node>	-Y		

For	Windows,	we	can	use	an	advanced	terminal,	such	as	MobaXterm,	which
can	be	downloaded	from	the	following	link:
http://mobaxterm.mobatek.net/

After	we	access	the	Proxmox	node	through	Linux	or	Windows,	we	need	to
create	a	directory,	which	will	be	used	as	the	working	data	directory	for	the
simulator.	After	the	directory	is	created,	we	can	run	the	simulator,	pointing	it
to	the	working	directory.	The	following	screenshot	shows	the	SSH	console
with	the	directory	created	and	simulator	started	using	the	MobaXterm
program:

After	the	command	is	executed,	the	Proxmox	HA	simulator	is	started	in	a
graphical	interface,	as	shown	in	the	following	screenshot:

http://mobaxterm.mobatek.net/

As	we	can	see,	in	the	preceding	screenshot,	the	simulator	provides	a	three-
node	HA	setup	with	two	VMs	per	node.	We	can	simulate	a	node	or	network
failure	using	the	Power	or	Network	buttons	and	watch	HA	in	action.	Before
HA	takes	action,	we	have	to	enable	it	for	each	VM.	We	will	see	that	as
various	HA	states	change,	the	configuration	entries	of	the	HA	also	change	in
real	time.	This	simulator	will	aid	in	understanding	Proxmox	HA	better
through	practice.	The	cluster	log	shows	line-by-line	info	as	you	try	and	test
different	HA	scenarios.		

Summary
In	this	chapter,	we	learned	about	the	different	aspects	of	the	recently
redesigned	and	enhanced	Proxmox	HA	feature	and	how	it	can	benefit	a	virtual
environment.	By	leveraging	HA,	we	can	automate	the	response	to	a	failure	by
auto-migrating	VMs,	thus	reducing	downtime	during	node	power	failure	or
network	failure.	We	explained	the	requirements	the	infrastructure	must	meet
in	order	to	implement	a	fully	functional	HA	feature.	We	walked	through	the
process	of	HA	configuration	and	finally	tested	HA	by	simulating	device
failure.	We	also	learned	how	to	install	and	use	the	Proxmox	HA	simulator	to
see	HA	in	action	without	setting	up	any	clusters.

Due	to	the	nature	of	Proxmox	HA,	it	is	highly	recommended	you	test	this
feature	to	its	full	extent	before	diving	into	implementing	it	for	production
clusters.	HA	can	limit	user	interaction	during	some	operations.	The	need	for
HA	should	be	evaluated	and,	if	used,	it	should	be	thoroughly	tested	before
being	implemented	in	a	production	environment.	It	is	also	quite	important	to
group	and	size	the	HA	solution	properly.	If	the	nodes	cannot	handle	the	load
of	virtual	machines	that	HA	requires,	the	entire	solution	could	be	at	risk	when
a	failure	occurs,	compounding	the	issue.

In	the	next	chapter,	we	are	going	to	see	the	effectiveness	of	a	good	network
monitoring	system	and	how	to	implement	one	to	monitor	a	Proxmox
environment.

Monitoring	the	Proxmox	Cluster
Monitoring	a	network	environment	of	any	size	is	mandatory	to	ensure	healthy
operation	and	timely	responses	to	any	issues.	In	this	chapter,	we	will	see	how
to	monitor	and	configure	notifications,	so	that	when	something	goes	wrong	in
the	cluster,	we	know	about	it	right	away	and	can	take	necessary	actions.	We
will	cover	the	following	topics	in	this	chapter:

An	introduction	to	monitoring
Proxmox	built-in	monitoring
Zabbix	as	a	monitoring	solution	
Configuring	the	disk	health	notification
Configuring	SNMP	in	Proxmox
Monitoring	the	Proxmox	cluster	with	Zabbix

An	introduction	to	monitoring
In	a	network	of	any	size,	it	is	only	a	matter	of	time	before	an	issue	arises	due
to	intentional	or	unintentional	circumstances.	The	root	cause	of	an	issue	could
be	hardware	failures,	software	issues,	human	errors,	or	just	about	any	other
environmental	factor	that	causes	loss	of	network	or	data.	Network	monitoring
is	a	practice	in	which	an	administrator	checks	the	pulse	of	the	network
components	in	a	network	environment.

There	is	no	system	to	monitor	everything.	A	good	monitoring	system	is
usually	put	together	with	various	tools	and	some	types	of	notification	options
to	send	alerts	automatically.	The	Proxmox	cluster	is	a	sum	of	switches,
network	cables,	physical	nodes	acting	as	hosts,	and	virtual	machines.	A
monitoring	system	should	be	able	to	monitor	all	of	these	components	and
automatically	send	notifications	via	a	medium,	such	as	an	email	or	SMS,	to
responsible	parties.	There	are	wide	ranges	of	network	monitoring	tools
available	today,	such	as	Icinga,	Zabbix,	Nagios,	OpenNMS,	Pandora	FMS,
and	Zenoss.	There	are	many	more	options,	both	paid	and	open	source.	In	this
chapter,	we	will	see	how	to	use	Zabbix	to	monitor	the	Proxmox	cluster.
Zabbix	has	a	user-friendly	GUI,	graphing	ability,	and	many	more	features	out
of	the	box.	It	is	very	easy	to	learn,	for	novice	and	network	professionals	alike.
Once	Zabbix	is	installed,	all	the	configuration	and	monitoring	can	be	done
through	the	GUI.

A	monitoring	node	should	be	a	standalone	reliable	machine.	For	learning	and
testing	purposes,	it	can	be	set	up	as	a	virtual	machine.	However,	to	monitor	a
production-level	cluster,	a	separate	node	outside	the	main	cluster	is	an	ideal
solution.	This	will	ensure	that	even	if	the	internal	network	is	down,	the
monitoring	system	can	still	send	out	notifications.

Proxmox	built-in	monitoring
Proxmox	has	limited	monitoring	capabilities	built	into	the	GUI	to	monitor	the
health	of	a	cluster	and	gather	real-time	data	on	various	resources.	A	visually
appealing	representation	of	data	makes	it	easily	understandable	while
gathering	particular	data	through	just	a	few	clicks.	Each	separate	entity	comes
with	its	own	status	page	to	monitor	various	aspects	of	the	cluster.

Datacenter	Status
From	this	Status	page,	we	can	gather	critical	data	at	a	glance,	such	as	whether
a	node	is	online	or	offline,	total	cluster	storage,	number	of	virtual	machines,
and	so	on.	The	following	screenshot	shows	the	Status	page	of	a	production
cluster.	The	Status	page	can	be	accessed	through	the	Datacenter	|	Summary
menu:

	

As	shown	in	the	previous	screenshot,	from	the	Datacenter	|	Summary	page	we
can	see	the	entire	cluster	status	at	a	glance.	The	Health	shows	the	current
state	of	the	Proxmox	cluster.	It	shows	the	name	of	the	cluster,	the	quorum
presence,	and	the	total	number	of	online	and	offline	Proxmox	member	nodes.
When	there	is	a	cluster-related	issue,	we	can	quickly	check	the	cluster	status
here.

The	Guests	section	shows	the	total	number	of	KVM	and	LXC	virtual
machines	Running	and	Stopped	in	the	cluster.

The	Resources	section	shows	the	amount	of	cluster-wide	available	resources,
such	as	CPU,	Memory,	and	Storage	space.	It	also	shows	resources	used	as	a
percentage.	The	CPU	and	Memory	count	is	the	total	CPU	cores	and	memory
of	all	Proxmox	nodes	in	the	cluster.	The	Storage	is	the	total	of	all	attached
storage,	including	the	local	storage	of	all	nodes	and	any	shared	storage	node
attached	to	the	cluster.

The	Nodes	section	shows	a	list	of	all	cluster	nodes.	We	can	sort	this	list	by
clicking	on	any	heading,	such	as	Server	Address,	CPU	usage,	and	so	on.	In
the	previous	screenshot,	the	list	was	sorted	by	Server	Address	in	ascending
order.

Node	Status
The	Status	page	shows	node-specific	data	only.	Proxmox	comes	with	built-in
RRD-based	graphs	to	show	the	historical	resource	usage	and	performance
data	up	to	1	year	previously.	Using	this	tool,	we	can	analyze	the	performance
trend	of	a	resource	over	a	period	of	time.	All	consumption	and	performance
data	is	under	the	Summary	tab	menu	for	both	Proxmox	nodes	and	virtual
machines.	We	can	view	data	on	a	per	hour,	day,	week,	and	year	basis.	The
following	screenshot	shows	the	Summary	page	of	the	node	pmx-01	with	the
drop-down	list	to	select	data	for	a	period:

	

There	are	also	ways	to	display	a	list	of	all	the	nodes	and	virtual	machines	in
the	cluster	and	sort	them	by	consumption	to	get	quick	information	on	the
highest	or	lowest	resource	consuming	entity.	We	can	see	the	list	by	navigating
to	Datacenter	|	Search.	The	following	screenshot	shows	the	list	of	Proxmox
nodes	and	virtual	machines	of	a	production	cluster,	sorted	by	the	highest
memory	consuming	entity:

We	can	sort	this	list	by	Type,	Description,	Disk	usage	%,
Memory	usage	%,	CPU	usage,	and	Uptime	by	clicking	on	the
column	header.	There	is	no	historical	data	in	this	list.	It	only
shows	the	resource	consumption	in	real	time.

We	can	leverage	S.M.A.R.T.	for	disk	drives	to	receive	automated	emails
about	the	Proxmox	node	when	there	are	any	major	issues	occurring	in	any
disk	drives	in	the	node.	For	this,	we	will	need	to	install	S.M.A.R.T.	monitor
tools,	using	the	following	command:

				#	apt-get	install	smartmontools		

Make	sure	that	you	install	this	in	all	the	Proxmox	nodes	in	the
cluster.	There	is	no	other	configuration	needed	to	receive	the
email,	except	ensuring	that	the	correct	email	address	is	entered
for	the	root	user	in	Proxmox.

We	can	check	the	correctness	of	the	email	address	from	the	user	details	dialog
box	in	the	Datacenter	|	Users	menu,	as	shown	in	the	following	screenshot:

	

Whenever	there	is	a	major	issue	in	any	disk	drive	in	the	Proxmox	node,	it	will
send	out	an	automated	email	with	the	name	of	the	node	where	the	issue
originated	and	the	nature	of	the	failures	or	issues	for	the	disk	drive.	The	email
also	shows	the	details	of	the	drive	itself,	such	as	the	serial	number	and	the
device	ID	of	the	drive.	The	following	screenshot	shows	a	sample	of	an	email
received	from	the	node	pm4-1	with	the	sector	error	for	the	device	/dev/sda,	with
the	serial	number	V1FA516P:

If	the	same	error	continues	to	occur,	the	Proxmox	node	will	send	this	email
every	24	hours.	Based	on	the	information	provided	in	the	email,	we	can
pinpoint	the	drive	and	replace	it	if	necessary.

As	we	can	see,	Proxmox	really	does	not	have	a	robust	monitoring	system,	and
it’s	very	unlikely	it	ever	will.	Its	strength	lies	in	being	a	great	hypervisor	and
not	a	monitoring	system.	However,	we	can	easily	fill	the	gap	using	a	third-
party	monitoring	system,	such	as	Zabbix.

Zabbix	as	a	monitoring	solution
Zabbix	was	released	in	2004	and	is	a	robust	web-based	network	monitoring
tool	capable	of	monitoring	many	hundreds	of	hosts	and	running	thousands	of
checks	per	host	at	any	set	time.	Zabbix	is	completely	open	source	and	does
not	have	enterprise	or	paid	versions.	Zabbix	takes	just	a	few	minutes	to
install,	even	by	a	beginner,	and	it	can	be	fully	configured	through	a	web-
based	interface.	The	following	screenshot	shows	the	Zabbix	3.0	dashboard
after	logging	in	through	the	web	GUI:

Zabbix	has	a	very	active	community	and	many	downloadable	templates	used
to	monitor	a	variety	of	devices	or	equipment.	It	is	also	comparatively	easier	to
create	our	own	custom	Zabbix	template	for	nonstandard	devices.	More	details
on	Zabbix	can	be	found	on	the	official	Zabbix	site	at	http://www.zabbix.com/.

http://www.zabbix.com/

Why	give	preference	to	Zabbix	over	mainstream	monitoring	systems,	such	as
Nagios	or	Icinga,	or	any	other	solutions	currently	available?	The	reason	is	that
Zabbix	offers	simplicity,	without	sacrificing	any	of	the	features	that	make	a
great	monitoring	system.	Zabbix	is	fully	managed	through	the	GUI,	without
requiring	you	to	edit	any	script	file	through	the	CLI.	This	eases	the	burden	of
device	configuration	through	the	script	file,	such	as	in	the	case	of	a	Nagios-
based	monitoring	system.	Whether	it	is	a	small	network	environment	or	a
large	one	spread	across	regions,	Zabbix	is	up	to	the	challenge.

Installing	Zabbix
In	this	section,	we	will	see	how	to	install	Zabbix	and	configure	it	to	monitor
the	Proxmox	cluster	and	network	devices.	We	are	going	to	install	the	Zabbix
version	3.0	on	CentOS	7.	Zabbix	can	be	installed	very	easily	on	other	major
distributions,	such	as	Debian	or	Ubuntu.

For	stability	and	performance	when	monitoring	a	large
production	environment,	using	CentOS	as	the	base	operating
system	is	highly	recommended.

Always	make	sure	that	you	set	up	a	separate	node	or	a	virtual
machine	to	offer	maximum	performance.	A	fully	configured
Zabbix	with	thousands	of	items	will	run	frequent	checks,	which
is	resource	heavy.	Using	Zabbix	in	a	node	or	VM,	which	serves
other	roles,	will	greatly	affect	the	performance.

Zabbix	also	provides	preinstalled	and	preconfigured	downloadable	appliances
for	evaluation	purposes.	It	is	useful	for	learning	and	testing	purposes	but	is
not	recommended	for	production	use.	Zabbix	appliances	can	be	downloaded
from	http://www.zabbix.com/download.php.

Zabbix	will	still	work	without	a	Zabbix	agent	installed	on	the	host	to	be
monitored,	but	an	agent	can	gather	much	more	data	from	the	host.	There	are
agents	available	for	all	major	operating	systems,	including	Linux,	Windows,
FreeBSD,	AIX,	Solaris,	and	HP-UX.	For	devices	where	an	agent	installation
is	not	possible,	such	as	a	managed	switch	or	other	network	equipment,	Zabbix
is	able	to	monitor	them	through	SNMP.	After	the	Zabbix	server	installation	is
completed,	install	Zabbix	agents	on	hosts	to	be	monitored.

A	Zabbix	agent	can	capture	much	more	data	than	SNMP.	Use	an	agent	over
SNMP	whenever	possible.	This	reduces	the	complexity	of	configuring	SNMP
while	creating	a	lot	more	custom	checks.	Agents	are	a	great	option	for
Proxmox	host	nodes.

The	Zabbix	official	documentation	has	excellent	instructions	to	install	Zabbix
on	various	Linux	distributions.

Refer	to	the	documentation	for	instructions	on	how	to	install	the
Zabbix	3.0	server	and	agent	at	https://www.zabbix.com/documentation/3.0/
manual/installation/install_from_packages.

http://www.zabbix.com/download.php
https://www.zabbix.com/documentation/3.0/manual/installation/install_from_packages

After	the	installation	is	complete,	the	Zabbix	server	can	be	accessed
through:	http://<node_ip>/zabbix.

By	default,	the	Username	and	Password	to	log	in	to	the	Zabbix	web	GUI
are	Admin	and	zabbix,	where	the	username	is	case	sensitive.	It	is	highly
recommended	that	you	change	the	password	right	after	logging	in.	Go	to
Administration	|	Users,	then	click	on	the	Admin	(Zabbix	administrator)
member,	or	click	on	the	User	profile	icon	in	top-right	corner	of	the	GUI,	to
change	the	administrative	password,	as	shown	in	the	following	screenshot:

If	you	are	using	CentOS	7	for	the	Zabbix	server,	after	accessing	the	Zabbix
GUI	you	may	notice	that	the	status	informs	that	the	Zabbix	server	is	not
running,	even	though	the	Zabbix	service	is	running,	as	shown	in	the	following
screenshot:

	

This	is	due	to	the	httpd_can_connect_network	argument	in	the	SELinux	firewall
configuration.	The	argument	needs	to	be	enabled	in	order	to	let	Zabbix	access

the	network.	Run	the	following	command	to	check	whether	it	is	off	or
disabled:

				#	getsebool	httpd_can_network_connect		

If	the	result	shows	off,	then	enable	it	by	running	the	following	command:
				#	setsebool	httpd_can_network_connect	on		

The	Zabbix	GUI	now	shows	that	the	server	is	running.

Configuring	Zabbix
After	the	Zabbix	server	is	installed	and	functioning,	we	have	to	set	up	emails
so	that	we	get	automated	emails	whenever	there	is	an	issue.	Zabbix	3.0	is	able
to	send	emails	through	SMTP.	We	can	configure	it	by	navigating	to	the
Administration	|	Media	types	menu	and	changing	the	SMTP	information
under	Email.	After	the	email	is	configured,	it	is	now	time	to	add	some	hosts
or	devices	to	start	monitoring.

Configuring	a	host	to	monitor
In	this	section,	we	will	see	how	to	add	a	host,	whether	it	is	a	Proxmox	node	or
a	virtual	machine,	to	the	Zabbix	monitoring	server.	This	procedure	is	the	same
for	adding	any	host	with	a	Zabbix	agent	installed.	By	default,	the	Zabbix
server	is	added	to	the	monitoring	host.	We	are	now	going	to	add	our	example
Proxmox	node	pmx-01	to	Zabbix	in	order	to	be	monitored.	The	following	steps
show	how	to	add	the	host	to	Zabbix:

1.	 Go	to	Configuration	|	Hosts	and	click	on	Create	Host.
2.	 Type	in	the	Host	name	and	Visible	name.	The	Host	name	must	match	the

hostname	entered	in	the	host	Zabbix	agent	configuration	file.	We	will
configure	the	agent	after	we	add	the	host	in	the	Zabbix	server.	The
Visible	name	can	be	anything.

3.	 Select	an	appropriate	Group.	Since	we	are	adding	a	Proxmox	host	node,
we	need	to	select	Hypervisors	as	the	Group.

4.	 If	we	are	adding	a	host	with	the	agent	installed,	we	type	in	the	IP	address
of	the	host	in	the	Agent	interfaces.	By	default,	the	agent	listens	on	port
10050.	If	we	are	using	a	different	port,	we	type	in	the	port	here.	Make	sure
that	you	open	the	ports	in	the	firewall	if	the	host	is	behind	any	firewall.
The	following	screenshot	shows	the	Host	configuration	page	after	adding
the	necessary	information:

5.	 Click	on	the	Templates	tab	to	add	a	template	to	the	host.	In	Zabbix,

templates	are	preconfigured	groups	of	checks.	By	assigning	a	template	to
a	host,	we	apply	multiple	checks	at	once	instead	of	manually	adding	each
check.

6.	 Type	a	template	name	in	the	Link	new	templates	textbox,	or	select	one
by	clicking	on	the	Select	button.	The	textbox	is	a	self-search	box,	so	the
value	does	not	need	to	be	the	exact	name	of	the	template.	For	example,
we	have	typed	in	Linux,	which	pulled	up	two	possible	templates.	We	are
going	to	select	Template	OS	Linux,	as	shown	in	the	following
screenshot:

7.	 We	can	also	assign	an	SNMP	device	using	the	same	template	page.	Refer
to	the	Configuring	SNMP	in	Proxmox	section	later	in	this	chapter	for
how	to	install	and	configure	SNMP	in	Proxmox	nodes.

8.	 Click	on	Add	to	assign	the	template	to	the	host.

9.	 Click	on	Host	inventory,	and	then	select	Automatic	so	that	the	Zabbix
agent	can	pull	relevant	information	about	the	host,	such	as	the	host
brand,	serial	number,	OS	installed,	and	so	on.	We	can	also	manually
enter	data,	such	as	longitude,	latitude,	hardware,	and	software	installed
in	the	node.	This	is	helpful	to	build	an	inventory	list.

10.	 Click	on	Save	to	finish	adding	the	host.

The	following	steps	need	to	be	performed	to	configure	the	Zabbix	agent	in	a
host:

1.	 Open	the	Zabbix	agent	configuration	file	in	the
/etc/zabbix/zabbix_agentd.conf	file	of	the	host.

2.	 Make	the	changes	for	the	following	option	lines:

								Server=172.16.2.172	//IP	of	Zabbix	Server

								ServerActive=172.16.2.171:10051	//IP_Server:Server_Port

								Hostname=pmx-01	

							//must	be	same	as	Hostname	typed	in	Zabbix	Server	for	the	host

3.	 Save	and	exit	the	editor.	Run	the	following	command	to	restart	the
Zabbix	agent	in	the	host:

								#	service	zabbix-agent	restart		

Within	a	minute	or	so	of	adding	the	host,	the	Zabbix	server	will	run	auto
checks	and	will	discover	that	the	host	now	has	a	live	agent.	The	following
screenshot	shows	the	node	after	adding	it	to	the	Zabbix	monitoring:

From	the	list,	we	can	also	see	that	the	template	added	32	items,	15	triggers,
and	5	graphs	to	the	host.	Items	are	what	are	being	checked	by	Zabbix	and
triggers	are	what	initiate	certain	actions,	such	as	sending	automatic
notifications	for	any	event.	The	template	has	two	discovery	items,	which
automatically	gather	information	of	installed	and	configured	disk	drives	and
partitions	in	the	node.	The	following	screenshot	shows	the	Triggers	page	for
the	host	pmx-01:

	

The	expression	column	in	the	Triggers	page	shows	when	an	event	is

triggered.	For	example,	the	expression	{pmx-
01:system.cpu.util[,iowait].avg(5m)}>20	for	disk	I/O	overload	will	trigger	a
warning	when	the	I/O	wait	exceeds	20	for	5	minutes	in	the	host.	Another
example	trigger	is	{pmx-01:proc.num[].avg(5m)}>300,	which	may	trigger	when	the
number	of	running	processes	exceeds	300	for	5	minutes.	Modern	servers	can
run	many	more	processes	at	once.	So,	for	a	node	or	host	that	hosts	many
virtual	machines,	this	process	limit	of	300	may	not	be	enough,	and	will	trigger
a	warning	frequently.	We	can	change	the	trigger,	for	example,	to	900,	to
increase	the	limit.

To	learn	more	about	triggers,	refer	to	https://www.zabbix.com/documenta
tion/3.0/manual/config/triggers/expression.

We	can	also	add	each	virtual	machine	as	a	host	and	then	monitor	it	through
Zabbix.	For	this,	we	need	to	install	the	Zabbix	agent	inside	the	virtual
machine,	and	add	it	as	a	host	in	Zabbix.	To	group	all	virtual	machines
together,	we	need	to	create	a	group	named	Virtual	Machine	in	Zabbix	and	assign
all	VMs	to	be	monitored	in	that	group.

https://www.zabbix.com/documentation/2.2/manual/config/triggers/expression

Displaying	data	using	a	graph
Zabbix	comes	with	an	excellent	graphing	ability	out	of	the	box,	without	any
manual	configuration.	As	soon	as	data	is	pulled	from	a	resource,	the	graphing
utility	starts	plotting	using	the	raw	data.	Almost	all	the	built-in	templates	in
Zabbix	have	some	graphing	items	predefined.	We	can	get	graphs	of	monitored
items	by	navigating	to	Monitoring	|	Graphs	in	the	Zabbix	GUI.	The	following
screenshot	shows	the	graph	of	the	CPU	load	over	a	period	of	15	minutes	for	a
host:

	

We	can	also	create	our	own	graph	items,	through	a	few	clicks,	for	any	host	or
device	being	monitored.	For	example,	let’s	create	a	graph	to	visualize	data	for
the	CPU	iowait	overtime.	For	this,	we	need	to	go	to	Configuration	|	Hosts,
and	then	click	on	the	node.	Once	inside	the	node,	click	on	the	Graphs	menu	to
open	the	graph	editor	page,	as	shown	in	the	following	screenshot:

In	the	preceding	screenshot,	we	can	see	that	there	are	five	graph	items	that

have	already	been	created.	We	are	going	to	add	a	new	item	to	the	pm4-2:CPU
iowait	time.	Click	on	the	Create	graph	button	to	open	a	new	graph	item	page.
Type	in	an	easily	understandable	name	for	the	graph	item.	We	are	going	to
name	it	CPU	IOWait	time.	From	the	Items	box	at	the	bottom	of	this,	click	on	Add
to	open	a	list	of	available	items	to	choose	from.	We	are	going	to	select	pm4-
2:CPU	iowait	time	for	this	example.	We	can	configure	the	color	and	type	of	the
graph	being	created.	Click	on	the	Add	button	when	you	are	satisfied	with	the
configuration.	The	following	screenshot	shows	the	graph	creation	page	for
our	example	of	pm4-2:CPU	iowait	time:

	

To	see	the	newly	created	graph	item,	we	need	to	go	to	Monitoring	|
Graphs	and	select	the	item	for	the	node.	The	following	screenshot	shows	the
graph	for	the	gathered	CPU	IOWait	time	over	a	period	of	15	minutes:

	

In	the	preceding	screenshot,	we	can	see	that	the	CPU	IOwait	time	is	shown	in
green,	and	if	there	are	any	trigger	events	due	to	the	CPU	IOwait	time	being
greater	than	20%,	they	will	be	shown	in	yellow.

Configuring	the	disk	health
notification
In	the	Proxmox	built-in	monitoring	section,	we	saw	how	we	can	leverage
S.M.A.R.T.	to	receive	automated	emails	if	there	are	any	issues	for	any	disk
drives.	In	this	section,	we	are	going	to	accomplish	the	same	thing,	but	with
Zabbix,	and	with	an	additional	feature:	graphing.	A	great	use	case	of	a	graph
for	a	disk	drive	is	monitoring	data	for	temperature.	High	temperature	is	a	bad
thing	for	all	spinning	drives.	Using	the	Zabbix	graph,	we	can	see	the	exact
temperature	trend	of	the	storage	cluster,	down	to	a	single	drive,	and	take
action	accordingly.	Zabbix	can	also	send	automated	emails	when	there	are
any	issues	in	any	of	the	drives,	such	as	read	or	write	issues,	due	to	a	bad
sector	or	any	other	S.M.A.R.T.	event.

Almost	all	HDDs	and	SSDs	nowadays	have	the	S.M.A.R.T.	ability,	which	can
gather	valuable	data	on	the	disk	drive’s	health.	Using	the	S.M.A.R.T.
monitoring	tool,	we	can	avoid	premature	drive	failure	by	detecting	potential
problems	early	on.	We	can	configure	each	Proxmox	node	to	send	email	alerts
when	any	problem	is	detected	in	any	attached	drives.

If	drives	are	connected	to	RAID	controllers	and	configured	as
some	form	of	arrays,	then	the	S.M.A.R.T.	tool	will	not	be	able	to
retrieve	the	drive’s	health	data.

Installing	smart	monitor	tools
We	need	to	install	smartmontools	in	our	storage	using	the	following	command:

#apt-get	install	smartmontools

Retrieve	a	list	of	all	the	attached	drives	using	the	following	command:
#	fdisk	-l

Verify	that	each	attached	drive	has	the	S.M.A.R.T.	feature,	and	that	it	is
turned	on,	using	the	following	command:

#smartctl	-a	/dev/sdX

If	the	drive	has	the	S.M.A.R.T.	feature	and	it	is	enabled,	it	will	appear	as
shown	in	the	following	screenshot:

	

If	the	feature	is	available	but	disabled	for	any	reason,	we	can	enable	it	using
the	following	command:

#smartctl	-s	on	-a	/dev/sdX

Configuring	the	Zabbix	agent
Adding	the	disk	drive	monitoring	into	Zabbix	is	a	two-step	process.	In	the
first	step,	we	need	to	add	arguments	in	the	Zabbix	agent	configuration	file,
and	then	add	the	drive	items	in	the	Zabbix	server	for	each	host.	These	special
arguments	are	known	as	user	parameters.	They	work	similar	to	a	script,	where
we	can	define	commands	to	be	run	on	the	host,	and	then	the	Zabbix	agent
passes	the	data	to	the	Zabbix	server.

In	this	example,	we	are	going	to	add	user	parameters	to	pull	data	for	the	serial
number	and	drive	temperature.	The	following	two	lines	need	to	be	added	at
the	end	of	the	agent	configuration	file	in	/etc/zabbix/zabbix_agentd.conf:

After	adding	the	lines,	we	need	to	restart	the	Zabbix	agent	using	the	following
command:

#	service	zabbix_agentd	restart

Creating	a	Zabbix	item	in	the	GUI
After	the	user	parameters	are	added,	we	need	to	create	new	items	in	the
Zabbix	server	for	the	host.	First,	we	will	add	an	item	to	gather	data	for	the
drive	temperature.	Go	to	Configuration	|	Hosts	|	Items,	and	then	click	on
Create	item	to	open	a	new	item	page.	The	following	screenshot	shows	the
page	with	the	necessary	configuration:

The	name	of	the	item	can	be	any	text	string.	Since	we	are	pulling	data	through
the	user	parameters	of	the	Zabbix	agent,	we	need	to	select	the	agent	as	Type.
The	Key	textbox	is	the	most	important	thing	here,	as	this	is	where	we	define
what	data	we	are	pulling.	The	key	entered,	as	shown	in	the	preceding
screenshot,	tells	Zabbix	to	pull	the	drive	temperature	for	the	sda	device.	The

numeric	value	of	194	in	the	key	is	for	the	temperature	information.	Each	smart
monitor	attribute	has	a	unique	numeric	ID.	For	example,	if	we	want	to	gather
data	for	an	uncorrectable	sector	count,	the	code	would	be	197.

To	view	a	complete	list	of	smart	monitor	attribute	codes,	refer	to
https://en.wikipedia.org/wiki/S.M.A.R.T.#Known_ATA_S.M.A.R.T._attributes.

Type	of	information	is	a	drop-down	list	used	to	select	the	nature	of	data	being
collected.	Since	the	temperature	is	a	numeric	value,	we	will	select	the
Numeric	(unsigned)	type.	To	increase	the	temperature	accuracy,	we	need	to
select	Decimal	as	the	Data	type.

Update	interval	(in	sec)	is	a	textbox	used	to	enter	seconds,	which	needs
careful	attention.	This	is	the	interval	at	which	Zabbix	will	run	checks	for	each
item.	By	default,	Zabbix	uses	an	interval	of	30	seconds.	When	adding	high-
volume	checks,	such	as	a	disk	drive’s	data,	with	more	disk	drives	present	in	a
node,	the	volume	of	checks	will	increase	exponentially.	For	example,	if	we
want	to	gather	drive	data	for	a	Ceph	node	with	12	drives,	Zabbix	will	run
checks	every	30	seconds	for	all	the	12	drives,	and	that	will	add	up	to	hundreds
of	checks	per	hour.	To	reduce	the	check	bottleneck,	we	can	set	it	to	a	higher
interval.	In	our	example,	we	are	using	2	minutes,	or	120	seconds,	for	a	drive
check.	Click	on	Add	to	finish	creating	the	item.

We	need	to	create	separate	new	items	for	each	drive	that	needs
to	be	monitored.	Change	the	device	ID	for	each	item,	such	as
sdb,	sdc,	and	so	on.

https://en.wikipedia.org/wiki/S.M.A.R.T.#Known_ATA_S.M.A.R.T._attributes

Creating	a	trigger	in	the	GUI
After	the	item	is	created,	we	now	need	to	create	a	trigger	so	that	Zabbix	can
send	auto	notification	emails	if	the	temperature	goes	beyond	a	threshold.	To
create	a	trigger,	go	to	Configuration	|	Hosts	|	Triggers,	and	click	on	the	Create
trigger	button.	The	following	screenshot	shows	the	new	trigger	creation	page
with	the	necessary	information	entered:

	

Type	in	a	Name	to	identify	the	trigger,	and	then	enter	an	Expression	for	the
trigger.	The	Expression	is	used	to	set	a	threshold	beyond	which	Zabbix	will
trigger	an	event,	such	as	sending	an	email.	In	our	example,	shown	in	the

preceding	screenshot,	our	Expression	shows	that	if	the	last	temperature
gathered	is	greater	than	40	degrees	Celsius,	Zabbix	will	send	an	alert	email.

In	order	to	identify	the	importance	of	the	trigger,	we	need	to	select	the
Severity	level.	For	example,	we	have	selected	Warning	as	the	severity	of	the
trigger.	Select	the	appropriate	severity	depending	on	the	trigger.	This	creates
color	coded	information	throughout	Zabbix	to	identify	how	serious	the	issue
is.	Click	on	Add	to	finish	creating	the	trigger.	Like	triggers,	each	drive	will
need	a	separate	trigger	item.

Creating	graphs	in	the	GUI
Following	the	instructions	to	display	data	using	a	graph,	as	discussed	earlier
in	this	chapter,	we	are	now	going	to	create	a	new	graph	item	to	show	the	drive
temperature	data	visually.	Unlike	triggers	and	items,	we	do	not	need	to	create
separate	graph	items.	We	can	configure	one	graph	item	to	show	multiple	drive
data	by	simply	adding	the	drive	items	in	the	same	graph	item.	The	following
screenshot	shows	the	drive	temperature	graph	for	a	Ceph	node	with	seven
disk	drives	over	a	6	hour	period:

Configuring	SNMP	in	Proxmox
Simple	Network	Management	Protocol	(SNMP)	is	a	network	management
protocol	used	to	monitor	a	wide	variety	of	network	devices.	It	is	especially
useful	when	a	full	network	monitoring	agent	installation	is	not	possible,	such
as	with	switches,	routers,	printers,	IP-based	devices,	and	so	on.	Almost	all
network	monitoring	programs	support	some	level	of	SNMP.

If	the	choice	of	monitoring	a	package	does	not	have	any	agents,	SNMP	is	the
best	option	to	monitor	those	devices.	SNMP	is	fully	configurable	in	Linux
distributions,	and	since	Proxmox	is	based	on	Debian,	it	inherits	all	the
benefits	of	SNMP.

To	learn	more	about	SNMP,	refer	to		https://en.wikipedia.org/wiki/Simple
_Network_Management_Protocol.

There	are	a	couple	of	components	of	SNMP	worth	mentioning	here,	since	we
will	be	using	them	to	configure	SNMP.	They	are	as	follows:

Object	Identifier	(OID)	
Management	Information	Base	(MIB)

https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

Object	Identifiers
OIDs	are	objects	that	SNMP	query	to	gather	information	from	a	device.	An
object	can	be	a	network	interface	status,	disk	storage	usage,	device	name,	and
so	on.	These	object	identifiers	are	extremely	structured	in	a	hierarchical	tree
manner.	Each	OID	is	specifically	numbered.	For	example,	the	OID	of	the
object	that	gathers	the	device	name	is	1.3.6.1.2.1.1.5.0.	OIDs	always	have
numerical	values.	OIDs	can	be	compared	with	IP	addresses,	where	numeric
values	are	used	to	identify	a	device	in	a	network.

Each	dot	in	an	OID	represents	segmentation	of	the	network	element.	We	can
think	of	an	OID	like	an	address	of	a	location.	Let’s	take	the	following	address:
Wasim	Ahmed	111	Server	Street,	4th	Floor	Calgary,	AB	111-222	Canada

If	we	put	this	address	in	OID	format,	it	will	look	like	the	following:
Canada.AB.Calgary.111-222.Server	Street.111.4th	Floor.Wasim	Ahmed

Putting	this	in	a	formula	will	look	like	the	following:
Country.Province.City.Postal	code.Street	name.Street	number.Unit	number.Contact	name

Just	like	the	address	example,	the	OIDs	also	follow	a	strict	hierarchy,	as
shown	here:

1	=	ISO	1.3	=	Organization	1.3.6	=	US	Department	of	Defense	1.3.6.1	=
Internet	1.3.6.1.2	=	IETF

Management	1.3.6.1.2.X	=	Management-related	OIDs

To	look	up	management-related	OIDs,	refer	to	http://www.alvestrand.n
o/objectid/1.3.6.1.2.1.html.

http://www.alvestrand.no/objectid/1.3.6.1.2.1.html

Management	Information	Base
There	are	databases	where	objects	are	stored.	MIB	acts	as	a	translator	and
allows	an	SNMP	server	to	query	an	object	using	a	textual	OID	instead	of
numeric.	For	example,	to	retrieve	a	device	name	through	SNMP	queries,	we
can	use	the	OID	1.3.6.1.2.1.1.5.0	or	the	OID	SNMPv2-MIB::sysName.0.	Both	of	them
will	give	you	the	exact	same	result.	But	the	textual	OID	is	easier	to
understand	than	just	a	numeric	OID.	We	can	compare	MIB	to	OID	as	being
similar	to	a	domain	name	to	an	IP	address.	Some	manufacturers	provide	their
own	MIB	since	they	do	not	exist	in	the	standard	MIB.	It	is	important	to	know
the	MIBs	when	configuring	unsupported	devices	for	monitoring	tools.	There
are	a	number	of	MIBs	ready	to	be	downloaded.	Proxmox	does	not	install	any
MIB	by	default.	It	has	to	be	manually	installed.

For	more	details	on	MIBs,	refer	to	https://en.wikipedia.org/wiki/Managem
ent_information_base.

There	are	three	versions	of	SNMP	currently	available.	Before	implementing
an	SNMP	infrastructure,	it	is	important	to	know	which	version	to	use.	The
three	versions	are	as	follows:

SNMP	version	1:	This	is	the	oldest	SNMP	version,	which	only	supports
32-bit	counters	and	has	no	security	at	all.	A	community	string	is	sent	as
plain	text	in	this	SNMP.
SNMP	version	2:	This	has	all	the	features	of	version	1,	with	added
features	to	support	64-bit	counters.	Most	of	the	devices	nowadays
support	version	2.
SNMP	version	3:	This	has	all	the	features	of	version	1	and	2,	with	the
added	benefits	of	security.	Both	encryption	and	authentication	are	added
to	counters.	If	security	is	the	biggest	concern,	this	is	the	SNMP	version
that	should	be	used.

SNMP	is	not	installed	by	default	in	Proxmox.	The	following	steps	show	how
to	install	SNMP	in	Proxmox	and	how	to	configure	it.

Run	the	following	command	to	install	SNMP	on	Proxmox	nodes:
#	apt-get	install	snmpd	snmp

Add	the	following	repository	in	the	/etc/apt/sources.list	of	the	Proxmox	node.

https://en.wikipedia.org/wiki/Management_information_base

This	is	used	to	add	a	repository	to	install	SNMP	MIBs:
deb	http://http.us.debian.org/debian/stretch	main	non-free

Run	the	following	commands	to	install	SNMP	MIBs:
#	apt-get	update

#	apt-get	install	snmp-mibs-downloader

Open	the	SNMP	/etc/snmp/snmpd.conf	configuration	file	using	an	editor.

Ensure	that	the	following	line	is	uncommented.	We	can	specify	the	node	IP
address.	SNMP	listens	on	port	161.	Change	it	here	if	required:

agentAddress	udp:127.0.0.1:161

Add	the	following	line	to	the	SNMP	configuration	file:
rocommunity	<secret_string>	<IP/CIDR>

In	our	example,	we	have	added	the	following	line:
rocommunity	SecretSNMP	172.16.0.0/24

Save	the	file	and	restart	SNMP	using	the	following	command:
#service	snmpd	restart

Adding	an	SNMP	device	in	Zabbix
Adding	an	SNMP	device	in	Zabbix	is	a	similar	process	to	adding	a	host,
except	that	we	have	to	select	SNMP	interfaces	instead	of	Agent	interfaces,	as
shown	in	the	following	screenshot:

	

By	default,	SNMP	devices	listen	on	port	161.	Zabbix	comes	with	prebuilt
SNMP	templates,	which	can	gather	a	vast	amount	of	data	for	devices	where
agent	installation	is	not	possible	or	desired.	A	common	example	of	an	SNMP
device	is	a	network	switch.	Zabbix	has	excellent	support	for	switch
monitoring	through	the	SNMP	template.

In	this	example,	we	will	add	a	Netgear	48	port	switch	using	the	SNMP
interface.	Go	to	Configuration	|	Hosts	and	click	on	the	Create	host	button	to
open	a	new	host	creation	page.	Besides	using	the	SNMP	interface	in	the	host
creation	page,	we	need	to	select	the	SNMP	device	template	and	type	in	the
SNMP	v2	community	string	under	MACRO,	as	shown	in	the	following
screenshot:

The	{$SNMP_COMMUNITY}	macro	is	used	to	pass	a	community	secret	string,	which	is
used	by	the	SNMP	version	2.	The	value	of	this	MACRO	must	match	the
VALUE	entered	in	the	monitored	device	itself.

After	the	host	or	device	is	added,	Zabbix	will	start	checks	on	the	switch	in	a
few	minutes	and	start	gathering	data.	The	SNMP	device	template	has	auto
discovery	configured,	which	will	automatically	scan	the	switch	for	the
number	of	ports	and	show	data	for	both	incoming	and	outgoing	traffic	on	each
port.	The	template	also	has	a	graph	item	configured	to	show	you	the	visual
data	of	each	port.	The	following	screenshot	shows	the	graph	of	incoming	and
outgoing	traffic	usage	for	port	1	of	the	Netgear	48	port	switch	over	a	1-hour
period:

	

Like	the	switch,	we	can	add	just	about	any	network	device	with	the	SNMP
capability	for	Zabbix	to	monitor	at	all	times.

Monitoring	the	Ceph	cluster	with
the	Proxmox	GUI
As	of	Proxmox	VE	5.0,	we	can	monitor	and	manage	the	Ceph	storage	cluster
through	the	Proxmox	GUI.	Under	the	Ceph	tabbed	menu	of	each	node,	you
will	see	a	great	amount	of	data,	such	as	the	health	status	of	the	Ceph	cluster,
the	number	of	OSDs,	mons,	pools,	Ceph	configurations,	and	so	on.	Refer	to	C
hapter	5,	Installing	and	Configuring	Ceph,	for	information	on	Ceph
management	through	the	Proxmox	GUI.

The	Ceph	|	Status	page	of	the	Proxmox	GUI	shows	all	relevant	information
about	the	Ceph	cluster.	Data	such	as	Health,	Monitors,	OSDs	status,	and	so
on,	are	presented	in	real	time.	This	is	critical	to	maintaining	a	healthy	Ceph
cluster.	Whenever	an	issue	arises	within	Ceph,	we	can	quickly	pinpoint	where
the	issue	is	through	this	Status	page.	The	following	screenshot	shows	the
Ceph	status	of	our	example	cluster:

	

In	the	previous	screenshot,	we	can	clearly	see	that	the	Ceph	cluster	has	errors
due	to	some	OSDs	being	out	and	down.	Ceph	placement	groups	(PGs)	have
some	defined	states	that	show	the	current	condition	of	the	PGs:	conditions
such	as	stale+active,	stale+down,	active+clean,	and	so	on,	to	name	a	few.
Understanding	these	various	states	is	very	important	to	manage	a	fully

functional	Ceph	cluster.

To	learn	more	about	the	PG	states	visit	the	official	Ceph
documentation	at	http://docs.ceph.com/docs/master/rados/operations/pg-
states/.

http://docs.ceph.com/docs/master/rados/operations/pg-states/

Monitoring	a	Ceph	cluster	with
third-party	options
In	this	section,	we	will	see	how	to	implement	a	third-party	solution	to	monitor
the	Ceph	cluster.	There	are	several	options	that	can	be	used	to	monitor	a	Ceph
cluster	graphically,	which	are	as	follows:

Calamari:	https://ceph.com/category/calamari/
Kraken	dash:	https://github.com/krakendash/krakendash
The	Ceph	dashboard:	https://github.com/Crapworks/ceph-dash

All	three	options	are	viable	options	used	to	monitor	the	Ceph	cluster,	but	due
to	the	simplicity	and	effectiveness	of	Ceph	dashboard,	we	are	going	to	see
how	to	install	the	Ceph	dashboard	in	this	chapter.	This	is	the	only	free
monitoring	dashboard,	and	it	is	read-only,	without	any	management	ability.
This	is	also	safer,	since	an	unauthorized	user	cannot	make	Ceph	changes.	The
Ceph	Calamari	and	Kraken	dashboards	are	both	equally	challenging	to	install
and	configure.

The	Ceph	dashboard	can	be	installed	on	any	Ceph	node	or	Proxmox+Ceph
node	in	the	cluster.	As	long	as	it	can	read	the	ceph.conf	file,	it	will	function	just
fine.	The	Ceph	dashboard	does	not	require	a	web	server	or	any	other	services
to	function.	We	can	download	the	Ceph	dashboard	package	from	Git.	By
default,	Git	is	not	installed	in	the	Proxmox	node.	We	can	install	it	using	the
following	command:

#	apt-get	install	git

Next,	we	need	to	clone	the	Ceph	dashboard	GitHub	repository,	using	the
following	command:

#	git	clone	https://github.com/Crapworks/ceph-dash

After	the	download	is	complete,	we	need	to	add	the	IP	address	of	the	node
where	the	dashboard	will	be	located.	We	need	to	make	changes	in	the
following	line	in	the	ceph-dash.py	file:

app.run(host='ip_address',debug=True)

To	start	the	dashboard	after	making	the	changes,	simply	run	the	following
command:

#	<dashboard_directory>/ceph-dash.py

https://ceph.com/category/calamari/
https://github.com/krakendash/krakendash
https://github.com/Crapworks/ceph-dash

We	can	access	the	dashboard	by	pointing	to	the	node,	such	as	at	the	following
link:
http://ip_address:5000

The	following	screenshot	shows	the	status	of	our	example	cluster	using	the
Ceph	dashboard:

The	Ceph	dashboard	displays	the	following	information	on	a	Ceph	cluster:

The	Ceph	cluster	key
The	overall	health	status
The	monitor	status
The	OSD	status
The	PG	status
The	storage	utilization	percentage
The	total	available	space	and	used	space
Read/write	speed	per	second
Operations	per	second

Refer	to	Chapter	5,	Installing	and	Configuring	Ceph,	for	information	on	Ceph

components,	such	as	mon,	OSD,	PG,	and	so	on.	All	the	data	is	automatically
updated	at	regular	intervals.	When	faults	within	the	cluster	occur,	the
dashboard	will	show	related	information	in	a	color	coded	format.	Using	port
forwarding	in	the	firewall,	we	can	also	monitor	a	Ceph	cluster	remotely.

Summary
In	this	chapter,	we	saw	how	we	can	monitor	a	Proxmox	cluster	network	using
powerful	monitoring	systems,	such	as	Zabbix.	The	only	monitoring	option
available	as	a	mainstream	choice,	but	it	does	have	many	advantages	over
other	solutions.	The	out-of-the-box	features,	such	as	graphing,	templates,
SNMP,	auto	notification,	and	so	on,	are	just	the	tip	of	the	iceberg	of	what
Zabbix	has	to	offer.	Whether	it	is	a	small	environment	or	a	large	cloud	service
provider	spanning	multiple	regions,	Zabbix	can	monitor	them	all.	A	good
network	administrator	will	try	a	few	solutions	and	find	the	one	that	suits	their
environment	best.

In	the	next	chapter,	we	will	see	some	complex	production-level	virtual
network	environments	leveraging	Proxmox	as	a	hypervisor.	We	will	take	a
look	at	a	scenario-based	network	diagram	to	gain	knowledge	of	what
Proxmox	can	do.

Proxmox	Production-Level	Setup
So	far	in	this	book,	we	have	seen	the	internal	workings	of	Proxmox.	We	now
know	how	to	properly	set	up	a	fully	functional	Proxmox	cluster.	We	discussed
Ceph—a	robust	and	redundant	shared	storage	system—and	how	we	can
connect	it	with	Proxmox.	We	also	saw	what	a	virtual	network	is	and	how	it
works	with	the	Proxmox	cluster.

In	this	chapter,	we	are	going	to	see	which	components	play	a	crucial	part	in
making	a	Proxmox	cluster	production-ready,	with	multilayer	redundancy,
good	performance,	and	stability.	We	are	going	to	cover	the	following	topics:

Definition	of	production	level
Key	components	of	a	production-level	setup
Entry-level	and	advanced-level	hardware	requirements

Throughout	this	chapter,	you	will	notice	that	we	have	used	user-built
hardware	configurations	instead	of	ready-made	branded	servers.	The	purpose
of	this	is	to	show	you	what	sort	of	node	configuration	is	possible	using	off-
the-shelf	commodity	hardware	to	cut	costs	while	setting	up	a	stable	Proxmox
cluster.	The	example	configurations	shown	in	this	chapter	are	not	theoretical
scenarios,	but	are	taken	from	various	live	clusters	in	service.	Use	the
information	in	this	chapter	purely	as	a	guideline	so	that	you	can	select	the
proper	hardware	for	your	environment	at	any	budget.

Defining	the	production	level
Production	level	is	a	scenario	where	a	company’s	cluster	environment	is	fully
functional	and	actively	serving	its	users	or	clients	on	a	regular	basis.	It	is	no
longer	considered	as	a	platform	to	learn	Proxmox	or	a	test	platform	to	test
different	things	on.	A	production-level	setup	requires	much	advanced
planning	and	preparation,	because	once	the	setup	is	complete	and	the	cluster
has	been	brought	online,	it	cannot	be	taken	offline	completely	at	a	moment’s
notice	when	users	are	dependent	on	it.	A	properly	planned	production-level
setup	can	save	hours,	or	days,	of	headache.	If	you	are	still	learning	Proxmox,
you	might	want	to	set	aside	hardware	to	practice	on	so	that	you	can	hone	your
skillset	before	attempting	a	production-level	setup.	In	this	section,	we	are
going	to	cover	some	of	the	key	components	or	characteristics	of	a	production-
level	environment.

Key	components
The	following	key	components	should	be	kept	in	mind	while	planning	for	a
production-level	cluster	setup,	due	to	stability	and	performance	requirements:

Stable	and	scalable	hardware
Redundancy
Current	load	versus	future	growth
Budget
Simplicity
Hardware	inventory	tracking

Stable	and	scalable	hardware
Stable	hardware	means	minimum	downtime.	Without	quality	hardware,	it	is
not	unusual	to	have	randomized	hardware	failure	in	a	cluster	environment,
causing	massive,	unnecessary	downtime.	It	is	very	important	to	select	a
hardware	brand	with	a	good	reputation	and	support	behind	it.	For	example,
Intel’s	server	class	components	are	well	known	for	their	superb	stability	and
support.	It	is	true	that	you	pay	more	for	Intel	products,	but	sometimes	the
stability	outweighs	the	higher	cost	per	hardware.	AMD	is	also	an	excellent
choice,	but	statistically,	AMD-based	hardware	has	more	stability	issues.

For	budget-conscious	enterprise	environments,	we	can	mix	both	Intel-	and
AMD-based	hardware	in	the	same	cluster.	Since	Proxmox	provides	a	full
migration	option,	we	can	have	Intel	nodes	serving	full	time,	while	AMD
nodes	act	only	as	failover.	This	reduces	cost	without	compromising	stability.
Throughout	this	chapter,	we	are	going	to	stay	primarily	with	Intel-based
hardware.	At	the	end	of	this	chapter,	we	will	see	some	proven	AMD-based
clusters	to	give	you	some	idea	of	how	viable	AMD	is	in	a	Proxmox	cluster
environment.

When	choosing	between	Intel	and	AMD,	apart	from	stability,	the	following
two	criteria	are	also	deciding	factors:

Energy	cost
Heat	generation

Intel	CPUs	use	less	energy	and	run	much	cooler	than	their	AMD	counterparts.
Increased	heat	generation	in	AMD	servers	means	an	increased	requirement
for	cooling,	and	thus,	increased	utility	bills.	By	design,	AMD	CPUs	use	a
much	higher	wattage	per	CPU,	which	is	the	direct	cause	of	high	heat
generation.

Another	deciding	factor	for	hardware	is	scalability	and	availability.	Hardware
components	used	in	server	nodes	must	be	easily	available	when	they	need	to
be	replaced.	Using	difficult-to-find	components,	even	if	they	cost	much	less,
only	prolongs	downtime	when	something	needs	to	be	replaced.	A	common
practice	is	to	use	identical	hardware	for	groups	of	servers	based	on	their
workload.	This	makes	hardware	management	easier	and	also	allows	in-hand
stock	buildup	to	quickly	replace	a	node	when	needed.	This	is	extremely
difficult	in	an	environment	where	a	cluster	has	been	put	together	using	all

sorts	of	different	brands,	models,	and	configurations.

Redundancy
The	need	to	have	redundancy	in	different	layers	in	a	production	environment
cannot	be	stressed	enough.	There	must	be	redundancy	in	different	levels	of
components.

Node	level
Node-level	redundancy	usually	includes	redundant	power	supply,	network
cards,	RAID,	and	so	on.	This	redundancy	is	confined	to	the	node	itself.	With
redundant	power	supply,	the	node	can	be	connected	to	two	different	power
sources,	thus	ensuring	continuous	operation	during	power	failure.

Always	use	mirrored	SSD	drives	as	the	operating	system	drive.
This	will	ensure	that	the	operating	system	itself	will	run
uninterrupted,	even	if	a	drive	fails	entirely.

Utility	level
In	order	for	the	cluster	nodes	to	keep	running	during	power	loss,	we	need	to
provide	some	sort	of	backup	power,	whether	by	means	of	a	UPS,	a	generator,
or	a	large	battery	bank.

Network	level
Network-level	redundancy	includes	network	infrastructure,	such	as	switches
and	cables.	By	using	multiple	switches	and	multiple	network	paths,	we	can
ensure	that	network	connectivity	will	not	be	interrupted	during	a	switch	or
cable	failure.	Layer	three	managed	switches,	such	as	stackable	switches,	are
the	correct	components	to	create	truly	redundant	network	paths.

HVAC	level
Proper	cooling	equipment,	with	backup	systems	for	continued	cooling	in	the
event	the	HVAC	system	goes	down,	is	often	overlooked.	Depending	on	the
number	of	server	nodes,	switches,	and	so	on,	each	network	environment
creates	enormous	amounts	of	heat.	If	there	is	no	redundancy	in	place,	a	failure
of	the	cooling	system	can	result	in	the	failure	of	extreme-heat-generating
components.	Whether	it	is	air	or	liquid	cooled,	there	must	be	a	contingency	in
the	cooling	system	to	prevent	any	damage.	Damage	of	components	also
means	loss	of	connectivity	and	increased	cost.

Storage	level
Storage	plays	an	important	role	for	any	virtual	environment	and	deserves	the
same	level	of	redundancy	attention	as	the	rest	of	the	cluster.	There	is	no	point
in	implementing	redundancy	in	all	Proxmox	host	nodes,	networks,	and	power
supplies,	then	putting	virtual	disk	images	on	a	single	NAS	storage	without
any	redundancy.	If	the	single	node	storage	fails,	even	though	it	is	considered
shared	storage,	all	VMs	stored	on	it	will	be	completely	unusable.	In	a
production	environment,	use	of	enterprise-grade	storage	systems	such	as
Ceph	and	Gluster	is	critical.	This	type	of	storage	has	redundancy	built	into	the
firmware/operating	system.	We	still	need	to	ensure	that	these	storage	nodes
have	node,	utility,	network,	and	HVAC-level	redundancy	in	place.

Current	load	versus	future	growth
When	designing	a	cluster,	you	should	always	think	of	future	growth,	at	least
the	growth	for	the	foreseeable	future.	An	enterprise	cluster	must	be	able	to
grow	with	the	company	and	adapt	to	increased	workloads	and	computational
requirements.	At	the	very	least,	plan	in	such	a	way	that	you	do	not	exceed
your	resources	within	a	few	months	of	your	deployment.	Both	the	Proxmox
and	Ceph	clusters	have	the	ability	to	grow	at	any	time	and	to	any	size.	This
provides	the	ability	to	simply	add	new	hardware	nodes	to	expand	cluster	size
and	increase	the	resources	required	by	the	virtual	machines.

When	provisioning	your	node	memory	configuration,	take	failover	load	into
account.	You	will	likely	need	to	have	50	percent	capacity	available	for	a
single	node	failure.	If	two	nodes	of	a	three-node	cluster	were	to	fail,	you
would	want	each	machine	to	utilize	only	33	percent	of	the	available	memory.
For	example,	let’s	say	all	six	nodes	in	a	Proxmox	cluster	have	64	GB
memory,	and	60	GB	is	consumed	at	all	times	by	all	the	virtual	machines.	If
node	1	fails,	you	will	not	be	able	to	migrate	all	virtual	machines	from	node	1
to	the	other	five	nodes,	because	there	is	not	enough	memory	to	go	around.	We
could	just	add	another	spare	node	and	migrate	all	the	virtual	machines.
However,	we	have	to	make	sure	that	there	are	enough	power	outlets	to	even
plug	in	the	new	node.

Budget
Budgetary	concerns	always	play	a	role	in	decision	making,	no	matter	what
kind	of	network	environment	we	are	dealing	with.	The	truth	is	that	a	setup	can
be	adaptable	to	just	about	any	budget	with	some	clever	and	creative	planning.
Administrators	often	need	to	work	with	very	small	IT	budgets.	Hopefully,	this
chapter	will	help	you	to	find	that	missing	thread	to	connect	a	budget	with
proper	hardware	components.	By	using	commodity	equipment	over	complete
brand	servers,	we	can	easily	set	up	a	full	Proxmox	cluster	on	a	very	lean
budget.	Proxmox	works	very	well	on	quality	commodity	hardware
components.

Simplicity
Simplicity	is	often	overlooked	in	a	network	environment.	A	lot	of	times,	it
just	happens	naturally.	If	we	are	not	mindful	about	simplicity,	we	can	very
quickly	make	a	network	unnecessarily	complex.	By	mixing	hardware	RAID
with	software	RAID,	putting	RAID	within	another	RAID,	or	through	multi-
drive	setup	to	protect	OS,	we	can	cause	a	cluster’s	performance	to	drop	to	an
almost	unusable	or	unstable	state.	Both	Proxmox	and	Ceph	can	run	on	high-
grade	commodity	hardware,	as	well	as	common	server	hardware.	For
example,	just	by	selecting	desktop-class	i7	over	server-class	Xeon,	we	can
slash	costs	in	half	while	providing	a	very	stable	and	simple	cluster	setup,
unless	the	task	specifically	calls	for	a	multi-Xeon	setup.

Tracking	hardware	inventory
An	administrator	should	have	access	to	key	information	about	hardware	being
used	in	a	network:	information	such	as	the	brand,	model,	and	serial	number	of
a	hardware	component;	when	was	it	purchased;	who	the	vendor	was;	when	is
it	due	for	replacement;	and	so	on.	A	proper	tracking	system	can	save	a	lot	of
time	when	any	of	this	information	needs	to	be	retrieved.	Each	company	is
different,	and	thus,	tracking	systems	could	be	different,	but	the	responsibility
of	gathering	this	information	falls	solely	on	the	network	manager	or
administrator.	If	there	is	no	system	in	place,	then	creating	a	simple
spreadsheet	can	be	enough	to	keep	track	of	all	hardware	information.

Hardware	selection
Several	factors	affect	what	type	of	hardware	to	select,	such	as	whether	the
cluster	is	going	to	support	many	virtual	machines	with	fewer	resources	or
serve	few	virtual	machines	with	more	resources.	A	cluster	focused	on	many
virtual	machines	needs	to	have	a	much	higher	processor	core	count,	so	our
goal	should	be	to	put	as	many	cores	as	possible	per	node.	When	a	cluster	is
focused	on	few	virtual	machines,	with	a	lot	more	users	per	virtual	machine,
we	need	to	have	a	large	memory.	Thus,	a	system	with	a	smaller	core	but	a
greater	amount	of	memory	is	much	more	appropriate.	Also,	a	cluster	can
focus	on	both	types	and	create	a	hybrid	cluster	environment.	A	hybrid
environment	usually	starts	with	an	entry-level	hardware	setup	and	then
matures	into	an	advanced-level	setup	as	the	company	grows	and	a	larger
budget	is	available.	For	example,	a	small	company	can	start	its	cluster
infrastructure	with	stable	desktop-class	hardware,	and	then	gradually	replace
that	with	a	server-class	platform	such	as	Xeon	to	accommodate	company
expansion.

Sizing	CPU	and	memory
A	question	often	asked	when	it	comes	to	creating	virtual	environments	is	how
much	CPU	or	memory	will	be	needed	in	each	node	and	how	much	to	allocate
per	virtual	machine.	This	is	one	of	those	questions	that	is	very	open-ended,
because	its	answer	varies	greatly	from	environment	to	environment.	However,
there	are	a	few	pointers	that	need	to	be	kept	in	mind	to	avoid	over-allocation
or	under-allocation.

It	is	a	fact	that	we	will,	and	often	do,	run	out	of	memory	much	sooner	than
CPU	for	a	given	Proxmox	or	any	other	host	node.	From	the	usage	of	each	VM
on	the	Proxmox	nodes,	we	can	determine	the	RAM	and	CPU	requirements	on
that	node.	In	this	section,	we	are	going	to	go	over	the	factors	that	will	help	us
to	decide	on	CPU	and	memory	needs.

Single	socket	versus	multi-socket
A	multi-socket	node	will	always	have	better	performance	than	a	single	socket,
regardless	of	the	number	of	cores	per	CPU.	They	work	efficiently	in
distributing	VM	workload.	This	is	true	for	both	Intel	and	AMD	architectures.
If	the	budget	is	available,	a	quad-socket	node	will	provide	the	maximum
performance	of	any	socket	configuration	node.

Hyper-threading	–	enable	versus
disable
One	of	the	major	differences	between	Intel	and	AMD	is	hyper-threading.	All
cores	in	AMD	CPUs	are	true	cores,	whereas	all	Intel	CPUs	have	hyper-
threading,	which	creates	two	virtual	cores	per	physical	core.	Another	question
that	is	asked	far	too	often	is	whether	to	enable	or	disable	hyper-threading.
From	hundreds	of	reports	and	testing,	it	appears	that	it	is	better	to	leave	it	on
for	newer	Intel	servers.	The	fear	of	performance	degradation	due	to	hyper-
threading	is	no	longer	valid,	as	it	has	gone	through	decades	of	development
and	all	the	initial	issues	have	been	resolved.	It	is	also	best	to	not	count	all
hyper-threading	cores	as	real	cores,	since	they	are	still	virtual.	When	counting
the	number	of	total	cores	available	in	a	node,	take	a	conservative	approach
and	count	slightly	fewer	than	the	total	cores.

Start	small	with	VM	resources
A	virtual	machine	is	completely	different	from	a	physical	machine	and	it
needs	to	be	treated	as	such.	They	do	not	consume	CPU	and	memory	like	a
physical	node	does.	The	best	practice	is	to	always	provision	CPU	and
memory	resources	sparingly,	and	then	increase	them	as	you	see	the
application’s	performance.	This	allows	the	VM	to	use	allocated	resources
efficiently,	which	in	turn	makes	all	the	VMs	run	efficiently	in	the	node.	By
over-provisioning	CPU	and	memory	for	all	VMs	in	the	node,	we	degrade
node	performance,	because	all	VMs	will	be	fighting	to	have	more	CPU	time.
Always	start	with	one	virtual	CPU	(vCPU)	for	most	of	the	VMs.	Start	from
two	vCPUs	for	processor	intensive	VMs	such	as	database	servers,	exchange
servers,	and	so	on.	Monitor	the	VM’s	resource	utilization	and	adjust
accordingly.	A	quick	way	to	see	which	VM	is	using	the	most	CPU	or	memory
is	through	the	Datacenter	or	Node	Search	menu,	which	shows	the	list	of	all
entities	and	is	sortable.

When	allocating	vCPU	for	a	single	VM,	never	exceed	the	total	number	of
cores	in	the	node.	This	will	degrade	the	performance	of	the	entire	node	and	all
VMs	in	it.

Keep	in	mind	that	in	a	virtual	environment,	more	CPU	and
memory	for	a	virtual	machine	does	not	always	mean	better
performance.

Balancing	node	resources
Always	ensure	that	each	Proxmox	node	in	a	cluster	has	similar	CPU	and
memory	resources.	If	some	nodes	end	up	with	more	than	the	others,	it	will
cause	an	issue	when	trying	to	move	or	migrate	VMs	from	a	high-resource
node	to	a	low-resource	node.	The	node	with	less	resources	will	not	be	able	to
handle	all	VMs,	causing	longer	downtime	during	node	failure.	This	issue	can
be	mitigated	by	using	a	combination	of	a	few	high	resource	nodes	and	more
low	resource	nodes.

Ceph	cluster	production
As	mentioned	throughout	this	book,	Ceph	is	a	very	resilient	distributed
storage	system	that	pairs	well	with	Proxmox	to	store	virtual	disk	images.
There	are	a	few	key	factors	that	make	a	Ceph	cluster	a	good	choice	for	a
production-level	virtual	environment.

Forget	about	hardware	RAID
When	it	comes	to	Ceph	nodes	and	clusters,	we	can	forget	about	hardware-
based	RAID.	Instead,	we	have	to	think	multi-node	or	clustered	RAID.	That	is
because	of	the	distributed	nature	of	Ceph	and	how	data	is	dispersed	in	all	the
drives	in	the	cluster	regardless	of	which	node	the	drive	is	in.	With	Ceph,	we
no	longer	need	to	worry	about	a	device	failure	in	a	particular	node.	Ceph
performs	best	when	it	is	given	access	to	each	drive	directly	without	any	RAID
in	the	middle.	If	we	are	to	place	drives	in	RAID	per	node,	we	will	actually
hurt	Ceph	immensely	and	take	away	everything	that	makes	Ceph	great.	We
can,	however,	still	use	the	RAID	interface	card	to	implement	JBOD
configuration	or	to	be	able	to	connect	many	drives	per	node.

Solid	State	Drive	for	Ceph	Journal
Incoming	data	for	the	Ceph	cluster	gets	written	to	a	journal	before	it	gets
passed	down	to	the	OSDs	themselves.	So,	a	dedicated	drive	such	as	SSD	will
increase	write	speed	greatly,	since	it	can	achieve	an	extreme	write	speed,
much	faster	than	a	standard	SATA	or	SAS	drive.	Even	the	fastest	15,000	rpm
enterprise-grade	disk	drive	does	not	come	close	to	the	performance	of	SSD.
When	selecting	SSD	for	a	Ceph	journal,	care	must	be	taken	in	brand	or	model
selection.

Not	all	SSDs	will	perform	well	for	a	Ceph	journal.	Currently,	the	only	SSD
that	can	withstand	the	rigorous	load	of	Ceph	while	providing	great	write
speed	and	power	loss	protection	is	the	Intel	DC	S3700	or	S3500.	There	are
other	SSDs	that	can	also	perform	well,	but	the	ones	mentioned	have	a	much
longer	lifespan.	Their	built-in	power	loss	protection	also	prevents	journal	data
corruption,	which	may	lead	to	corrupt	data	in	OSDs.	Visit	the	following	link
for	an	article	on	how	to	test	suitable	SSD	drives	for	Ceph	and	a	list	of
possible	SSDs	for	the	Ceph	cluster:	http://www.sebastien-han.fr/blog/2014/10/10/ceph-how-
to-test-if-your-ssd-is-suitable-as-a-journal-device/.

Instead	of	standard	SATA	SSDs,	we	can	also	use	PCI-based	SSDs,	which	can
provide	an	extreme	performance	increase	over	that	of	standard	SATA	SSDs.	If
there	is	a	drive	bay	limitation	for	dedicated	SSDs,	then	this	is	a	perfect
choice.	The	following	link	specifies	Intel	PCI-E	SSDs	that	can	be	considered
as	Ceph	journal:	http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750
-series.html.

Ceph	can	still	be	used	without	the	use	of	dedicated	SSD	journal	drives.	We
can	configure	Ceph	OSDs	to	store	journals	on	the	same	spinning	drive,	but
due	to	the	low	speed	of	mechanical	drives,	we	will	see	high	IO	wait	times	in
the	Proxmox	nodes.	Use	of	enterprise-grade	SATA	or	SAS	drives	will	lessen
this	IO	wait	time,	but	not	as	much	as	a	dedicated	SSD.

Never	put	a	dedicated	journal,	whether	SSD	or	HDD,	on	any
sort	of	RAID.	This	will	reduce	journal	performance,	which	in
turn	affects	Ceph’s	overall	performance.

http://www.sebastien-han.fr/blog/2014/10/10/ceph-how-to-test-if-your-ssd-is-suitable-as-a-journal-device/
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750-series.html

Network	bandwidth
Having	ample	network	bandwidth	is	crucial	for	Ceph	or	any	other	storage.
The	more	bandwidth	that	is	dedicated,	the	more	VM’s	performance	and
latency	will	benefit.	Note	here	that	when	a	dedicated	journal	such	as	SSD	is
used,	the	requirement	for	network	bandwidth	will	increase	significantly,
because	more	data	will	traverse	the	Ceph	cluster	for	replication	and
distribution.	For	a	Ceph	cluster	where	SSD	is	used	as	a	dedicated	journal,	a
gigabit	network	should	not	be	used	for	the	Ceph	cluster	network.	At	the	very
least,	10	GB	would	be	a	good	network.	We	can	also	use	InfiniBand	as	an
alternative	network	solution	on	a	lower	budget.	If	neither	is	possible,	then
multiple	bonded	gigabits	would	also	work.	On	a	single	gigabit,	the	network
will	become	a	bottleneck,	causing	cluster-wide	performance	degradation.

Also,	Ceph	cluster	sync	should	be	on	its	own	dedicated	network,	with	the
Ceph	public	facing	network	on	another.	Ceph	uses	the	cluster	network	to
commit	all	syncs	between	OSDs.	This	prevents	unnecessary	load	on	the
public	facing	network.

Liquid	cooling
In	this	solution,	computer	equipment	is	cooled	using	liquid,	as	liquid	is	1,000
times	better	at	heat	transfer	than	air.	We	can	effectively	remove	heat	directly
from	IT	equipment	and	transfer	it	with	great	ease	out	of	the	facility.	Liquid
cooling	takes	away	the	hassle	of	running	a	large	HVAC	system,	thus	saving
enormous	costs	and	reducing	noise	significantly.	Liquid	cooling	requires	no
internal	fans,	thus	we	can	increase	server	density	per	rack	tenfold.	Liquid
cooling	is	the	future,	as	more	and	more	IT	facilities	are	realizing	its	full
potential.	By	using	liquid	cooling,	we	can	also	decrease	our	energy
consumption,	reducing	our	carbon	footprint	enormously.	There	are	different
liquid	cooling	solutions	available	on	the	market.

Total	immersion	in	oil
IT	equipment	is	totally	submerged	in	mineral	oil.	Hot	oil	is	pumped	through	a
liquid-to-liquid	heat	exchanger,	where	the	heat	is	carried	away,	using	water,	to
an	outside	cooling	tower.	Water	and	oil	never	have	full	contact,	only	heat
transfer.	This	is	not	only	the	most	cost-effective	liquid	cooling	solution	today,
but	also	the	messiest,	as	servers	are	dipped	in	oil.	It	also	requires	more	space,
since	all	racks	are	laid	on	their	backs.	However,	this	extra	space	can	easily	be
compensated	for	by	increased	density	per	node.	Currently,	Green	Revolution
Cooling	pioneers	this	technology.	Visit	the	following	links	for	their	official
site	and	a	great	video	showing	the	technology	in	action:

Official	website:	http://www.grcooling.com/
YouTube	video:	https://www.youtube.com/watch?v=U5zoIEjo1Zk

There	is	another	technology	worth	mentioning	here	that	is	similar	to
immersion,	but	the	immersion	is	isolated	in	the	server	node	itself.	LiquidCool
Solutions	has	a	unique	approach	of	filling	up	a	sealed	server	chassis	with
mineral	oil	to	remove	heat.

Visit	the	following	link	for	more	info	on	this	approach:
http://www.liquidcoolsolutions.com

http://www.grcooling.com/
https://www.youtube.com/watch?v=U5zoIEjo1Zk
http://www.liquidcoolsolutions.com

Total	immersion	in	3M	Novec
Similar	to	oil	immersion	cooling,	this	is	also	a	total	immersion	technology,
where	3M	Novec	engineered	fluid	is	used	instead	of	mineral	oil.	The
advantage	of	this	option	is	zero	mess.	Unlike	oil,	this	fluid	does	not	stick	to
any	equipment	and	does	not	require	any	heat	exchanger	or	pump	to	move	the
fluid	itself.	This	fluid	has	a	boiling	temperature	of	60	degrees	Celsius,	at
which	it	becomes	vapor.	When	the	vapor	hits	a	cold	coil	on	top	of	the
container,	it	turns	to	liquid	and	drops	back	down	to	the	tank.	Only	a	pump	is
needed	to	circulate	water	through	the	coil,	thus	it	needs	only	half	of	the
equipment	needed	for	oil-based	cooling.

Visit	the	following	link	for	a	video	presentation	of	the	technology:
https://www.youtube.com/watch?v=a6ErbZtpL88

https://www.youtube.com/watch?v=a6ErbZtpL88

Direct	contact	liquid	cooling
Heat	is	removed	directly	from	the	heat	source,	such	as	the	CPU	and	memory,
using	a	cold	plate	and	liquid	coolant	such	as	water	or	any	other	coolant	agent.
Since	no	equipment	is	immersed,	this	technology	can	be	used	with	existing
infrastructure	with	major	modification,	while	still	increasing	density	per	node
and	reducing	energy	consumption.	This	is	not	a	unique	technology,	as	this
type	of	liquid	cooling	solution	had	been	in	use	for	several	years.	Consumer
class	liquid	cooling	solutions	use	this	off-the-shelf	technology.	Asetek	is
known	for	desktop	liquid	cooling	solutions	for	desktop	users.

Visit	their	official	site	through	the	following	link:
http://www.asetek.com/

Another	direct	contact	liquid	cooling	solution	provider	worth	mentioning	here
is	from	CoolIT	Systems.	They	also	take	the	cold	plate	approach	to	cool
equipment	through	liquid	cooling.	Some	of	their	solutions	can	be
implemented	directly	in	the	rack	as	a	standard	mounted	cooling	unit,	without
the	need	to	have	a	water	facility	or	cooling	tower.

Visit	the	following	link	for	more	information	on	their	solution:
http://www.coolitsystems.com/

http://www.asetek.com/
http://www.coolitsystems.com/

Real-world	Proxmox	scenarios
Equipped	with	all	the	knowledge	we	have	gathered	from	the	previous
chapters	in	this	book,	we	are	now	ready	to	put	all	the	pieces	together	to	form	a
complex	virtual	environment	for	just	about	any	scenario	that	we	are	going	to
be	called	for.	A	set	of	scenarios	to	build	networks	using	Proxmox	for	various
industries	is	given	in	the	next	section.	At	the	end	of	the	chapter,	you	will	find
network	diagrams	of	each	scenario	given	in	the	first	part	of	the	chapter.

Some	scenarios	have	been	taken	from	real-life	production	environments,
while	some	are	theoretical,	to	show	how	complex	networks	are	possible	with
Proxmox.	You	can	take	these	network	models	and	use	them	as	they	are	or
modify	them	to	make	them	even	better.

We	hope	that	through	these	network	scenarios	and	models,	you	will	start
seeing	Proxmox	from	a	whole	new	point	of	view	and	be	fully	prepared	to	face
any	level	of	virtual	infrastructure	you	are	challenged	with.

While	analyzing	these	scenarios,	keep	in	mind	that	the	solutions
and	diagrams	provided	in	this	chapter	are	some	of	the	many
ways	the	network	infrastructure	could	be	set	up.	To	fit	the
diagrams	within	the	confinement	of	the	book,	some	non-vital
components	might	have	been	omitted.	All	network	and
identification	information	used	in	the	network	diagrams	is
fictional.

The	network	diagrams	show	the	relationship	between	components	within
infrastructure,	such	as	virtual	environment,	cluster	of	nodes,	and	overall
network	connectivity.	They	also	represent	how	virtual	network	components
such	as	bridges	relate	to	each	other,	network	segmentation,	and	so	on.

Scenario	1	–	an	academic	institution
This	scenario	is	for	a	typical	academic	institution	with	multiple	networks,
multiple	campuses,	and	multiple	building	setups,	along	with	both	private	and
public	networks.

Key	requirements	are	as	follows:

Network	isolation	to	protect	sensitive	data.
Ability	to	have	centralized	management	for	network	infrastructure.
Professors	should	be	on	separate	Wi-Fi,	accessible	only	by	them.	This
Wi-Fi	should	give	professors	the	ability	to	log	in	to	the	main	campus
server	to	retrieve	their	files	for	lectures.
Students	should	have	on-campus	Wi-Fi	access	and	wired	internet
connection	to	their	dormitories.	These	subnets	must	be	separated	from
the	main	campus	network.
The	library	should	be	on	a	separate	subnet	with	its	own	server.
Classrooms,	admin	offices,	and	professors	should	be	on	the	main
isolated	network.	Professors	should	have	the	ability	to	retrieve	their	files
from	file	servers	in	classroom	computers	during	lectures.

This	is	a	scenario	for	a	typical	academic	institution	campus	network.	Thanks
to	Proxmox,	we	can	have	all	the	main	server	equipment	and	the	virtual
environment	in	one	place	to	have	centralized	management.	There	are	five
subnets	in	this	network:

Subnet Network	description

10.170.10.0
Wired	network	for	dormitory.	Firewall	provides	DHCP.	This	subnet
does	not	need	to	go	through	the	main	network.

10.180.10.0
Student	and	public	Wi-Fi	on	campus.	Firewall	provides	DHCP.	This
subnet	does	not	need	to	go	through	the	main	network.

10.160.10.0

Main	administrative	and	professor	network.	Private	Wi-Fi	for
professors	is	an	extension	of	this	network,	to	allow	professors	to
retrieve	their	files	wirelessly.	All	classrooms	are	also	on	this	network
to	provide	in-class	access	to	files	for	professors.

10.110.10.0 Storage	cluster.

10.190.10.0

Library	subnet.	DHCP	provided	by	virtualized	library	server.	This
server	is	for	the	library	only.	Separate	LAN	(eth2)	is	used	to	connect
the	virtual	machine	with	the	library	building.

The	following	diagram	shows	typical	network	flow	of	academic	institution:		

Scenario	2	–	multi-tier	storage
cluster	with	a	Proxmox	cluster
Key	requirements	are	as	follows:

Need	separate	storage	clusters	for	SSD,	Hybrid	HDD,	and	HDD
Storage	clusters	should	be	on	separate	subnets
Storage	should	be	distributed	with	high	availability	and	high	scalability

For	this	scenario,	each	Proxmox	node	must	have	at	least	four	network
interface	cards:	three	to	connect	to	three	storage	cluster	subnets	and	one	to
connect	the	virtual	environment.	This	example	is	for	six	virtual	machines	to
have	access	to	three	differently	performing	storages.	The	following	are	the
three	Ceph	clusters	and	their	performance	categories:

Subnet Network	description

192.168.10.0:6789

CEPH	cluster	#1	with	SSDs	for	all	OSDs.	This	subnet	is
connected	with	Proxmox	nodes	through	eth1.	This	storage	is	used
by	VM6.

192.168.20.0:6790

CEPH	cluster	#2	with	hybrid	HDDs	for	all	OSDs.	This	subnet	is
connected	with	Proxmox	nodes	through	eth2.	This	storage	is	used
by	VM5.

192.168.30.0:6791

CEPH	cluster	#3	with	HDDs	for	all	OSDs.	This	subnet	is
connected	with	Proxmox	nodes	through	eth3.	This	storage	is	used
by	VM1,	VM2,	VM3,	and	VM4.

10.160.10.0 This	is	the	main	subnet	for	all	virtual	machines.

	

Multi-tiered	infrastructure	is	very	typical	for	data	centers	where	there	is	a
different	level	of	SLA-based	clients	with	various	requirements	for	storage
performance:

Scenario	3	-	Virtual	infrastructure
for	a	multi-tenant	cloud	service
provider
Key	requirements	are	as	follows:

There	should	be	a	firewall	cluster	for	edge	firewalls
Each	client	network	must	be	fully	isolated	from	others
A	separate	storage	cluster	for	backup	is	required
Client	users	must	be	able	to	access	their	company’s	virtual	desktops	via
RDP
There	must	be	a	bandwidth	control	ability	for	client	networks’	internet
connectivity
Replicate	all	data	to	another	data	center

In	this	scenario,	a	virtualized	firewall	and	virtual	bridges	are	used	to	separate
traffic	between	each	client	network.	The	virtual	firewall	has	seven	virtual
network	interfaces	to	connect	six	client	networks	within	a	virtual	environment
and	to	provide	WAN	connectivity.	Internet	bandwidth	is	controlled	through
the	virtual	firewall	for	each	vNIC.	The	virtual	firewall	is	connected	to	WAN
through	the	main	virtual	bridge,	vmbr0.	The	Proxmox	cluster	has	nine	virtual
bridges:

Subnet Network	description

vmbr0 Main	virtual	bridge	to	provide	WAN	connection	to	virtual	firewall

vmbr1 Connects	main	storage	cluster

vmbr5 Connects	storage	cluster	for	backup

vmbr10 Bridge	for	company	ABC	subnet	10.10.10.0

vmbr20 Bridge	for	company	XYZ	subnet	10.20.20.0

vmbr30 Bridge	for	LXC	containers	for	web	hosting	instances

vmbr40 Bridge	for	object	storage	instances	to	be	used	by	software	developers

vmbr50 Bridge	for	company	123	subnet	10.50.50.0

vmbr60 Bridge	for	a	small	business’s	virtual	cluster

	

Each	bridge	connects	the	client	company’s	virtual	machines	together	and
creates	isolated	internal	networks	for	respective	clients:

Scenario	4	–	nested	virtual
environment	for	a	software
development	company
Key	requirements	are	as	follows:

Developers	must	have	nested	virtual	environments	to	test	software
Outsourced	developers	should	have	access	to	nested	virtual
environments	using	RDP
Developers	must	have	the	ability	to	create	or	delete	virtual	clusters
Nested	virtual	environments	must	be	fully	isolated	from	main	company
network

In	this	scenario,	a	nested	Proxmox	virtual	cluster	is	created	inside	the	main
cluster	for	a	software	development	company,	mainly	for	software	testing
purposes.	Since	virtual	clusters	can	be	created	and	taken	down	at	any	time,	it
reduces	cost	and	time	setting	up	the	entire	hardware	and	setup	process.	A
virtual	firewall	is	used	to	direct	traffic	between	nested	and	main	virtual
environments.	All	developers	access	their	nested	virtual	machines	through
RDP	port	forwarding.	Outsourced	developers	also	need	to	connect	to	nested
virtual	environments	using	RDP.	The	main	firewall	does	port	forwarding	to
the	virtual	firewall.	Then,	the	virtual	firewall	does	port	forwarding	to	nested
virtual	machines.	Four	subnets	are	used	in	this	example:

Subnet Network	description

10.160.10.0
This	is	the	main	company	subnet.	All	staff,	including	developers,	are
on	this	subnet.

10.160.20.0
Main	storage	cluster	subnet.	It	is	connected	to	the	main	cluster	with
vmbr1.

10.170.10.0
Nested	cluster	subnet.	It	is	isolated	from	the	main	cluster	with	vmbr2,
which	is	only	connected	to	the	virtual	firewall.

10.170.20.0 Nested	storage	cluster	subnet.

	

Virtual	machines	VM	Proxmox	1,	VM	Proxmox	2,	and	VM	Proxmox	3	are
used	to	create	a	nested	Proxmox	cluster,	while	VM	Storage	1,	VM	Storage
2,	and	VM	Storage	3	virtual	machines	are	used	to	create	a	nested	storage
cluster:

Scenario	5	–	virtual	infrastructure
for	a	public	library
Key	requirements	are	as	follows:

Catalog	consoles	should	be	on	a	separate	subnet	along	with	the	main
admin	subnet
Public	Wi-Fi	and	consoles	for	public	internet	usage	should	be	on	the
same	separate	subnet
Need	kiosks	for	self	check-in/check-out	of	books	and	media
Need	online	access	to	the	library	catalog
Public	internet	traffic	must	be	monitored	for	any	Internet	Usage	Policy
violation
Public	computers	should	have	printer	access

This	is	a	typical	scenario	for	a	public	library	network	system.	Since	a	public
library	is	a	public	place	with	access	to	computers	for	public	usage,	it	is	very
important	to	isolate	sensitive	networks.	In	this	example,	the	network	is
isolated	using	two	subnets:

Subnet Network	description

10.16.10.0
Main	network	for	library	staff	and	protected	consoles	only,	such	as
catalog,	kiosks,	staff	printers,	and	self	check-in/check-out.

10.20.10.0
This	public	subnet	is	for	public	Wi-Fi,	internet	consoles,	and	printers,
with	a	payment	system.

	

The	network	10.20.10.0	is	controlled,	managed,	and	isolated	using	a	virtual
firewall,	VM5.	The	virtual	firewall	has	two	vNICs,	one	for	WAN	connection
through	vmbr3	and	the	other	to	connect	to	a	dedicated	NIC	on	Proxmox	node
through	vmbr4.	The	eth2	of	Proxmox	node	is	connected	to	a	separate	LAN
switch	to	connect	only	public	devices.	The	virtual	firewall	provides	the	ability
to	monitor	internet	traffic	to	keep	in	line	with	any	violations	of	Library
Internet	Usage	Policy.

Each	Proxmox	node	has	four	network	interface	cards,	eth0,	eth1,	eth2,	and	eth3,
and	the	cluster	has	three	virtual	bridges,	vmbr0,	vmbr2,	and	vmbr4.	The	main
storage	cluster	is	connected	to	the	Proxmox	node	through	eth1	and	the	backup
cluster	is	connected	to	eth3:

Scenario	6	–	multi-floor	office
virtual	infrastructure	with	virtual
desktops
Key	requirements	are	as	follows:

All	staff	members	should	be	on	virtual	desktops
Redundant	internet	connectivity
Each	department	should	have	their	own	remote	desktop	server
Accounting	department	network	traffic	should	only	be	directed	to	their
department

This	is	a	common	scenario	for	an	office	building	where	departments	are	on
different	floors	of	the	building.	Since	the	accounting	department	requires	data
isolation,	we	are	going	to	use	a	VLAN	to	isolate	their	data.	Administrative
offices,	the	copy	room,	and	the	main	server	room	are	on	the	4th	floor.	The	HR
department	is	on	the	5th	floor,	Marketing	is	on	the	6th,	and	the	accounting
department	is	on	the	7th	floor.	The	5th,	6th,	and	7th	floors	have	their	own
LAN	switches.	So,	we	could	easily	use	VLAN	for	another	floor	if	it	was
required.	We	only	need	to	set	up	VLAN	on	the	switch	for	the	4th	floor.

Each	Proxmox	node	has	two	network	interfaces.	The	eth1	is	to	connect	the
storage	cluster	and	eth0	is	to	connect	all	virtual	machines	to	their	departments.
The	vlan0.10	is	used	to	separate	Accounting	traffic,	which	is	only	directed	to
the	7th	floor.

All	department	staff	use	virtual	desktops	through	RDP.	Each	department’s
virtual	server	acts	as	a	remote	desktop	server	and	the	department’s	main
server:

Scenario	7	–	virtual	infrastructure
for	the	hotel	industry
Key	requirements	are	as	follows:

Centralized	IT	infrastructure	management.
Dedicated	secured	Wi-Fi	access	for	guests.
Secured	private	Wi-Fi	access	in	the	restaurant	and	bar	for	menu	tablets
only.	The	Wi-Fi	needs	to	talk	to	the	restaurant	and	bar	server.
All	staff	must	have	remote	desktops	for	day-to-day	work.
A	video	surveillance	system	should	be	integrated	with	the	virtual
environment.

This	is	a	scenario	for	a	typical	hotel	establishment	with	an	in-house
restaurant.	This	example	uses	a	central	virtualized	database	server	to	store	all
information.	Although	it	is	an	unconventional	way	to	connect	all	departments
with	a	single	database	(including	a	surveillance	system),	it	is	possible	to	use
an	all-in-one	single	solution	to	reduce	cost	and	management	overhead.	In	a
typical	scenario,	separate	software	is	used	to	handle	different	departments
without	data	portability.	In	this	example,	unified	management	software
connects	all	departments	with	a	single	database	and	a	customized	user
interface	for	each	department.

Secured	non-filtered	Wi-Fi	connectivity	is	provided	for	all	guests.	DHCP	is
provided	directly	by	the	firewall.	Secured	private	Wi-Fi	is	set	up	for
restaurant	menu	tablets	only.	All	menu	tablets	only	connect	to	the
restaurant/bar	virtual	server,	with	an	IP	of	10.190.1.5.	All	department	thin
clients	and	IP-based	surveillance	cameras	are	connected	to	the	main	network
subnet	10.190.1.0:

Scenario	8	–	virtual	infrastructure
for	geological	survey	organization
Key	requirements	are	as	follows:

Field	surveyors	should	submit	their	work	orders	from	their	mobile
devices	through	a	VPN	connection
There	must	be	a	fail-over	infrastructure	in	the	multi-site	network
topology

In	this	scenario,	a	geographical	survey	company	has	a	main	office	and	branch
office	connected	by	1+	GBps	hard-link	network	connectivity.	Each	office	has
an	identical	infrastructure	set	up.	All	surveyors	use	mobile	devices,	such	as
tablets,	for	their	survey	work.	The	survey	software	automatically	detects
which	office	IP	is	live	and	sends	data	to	the	infrastructure	of	that	office.	All
data	is	replicated	at	the	block	level	in	real	time	between	the	two	offices.

If	the	infrastructure	of	one	office	becomes	unavailable,	staff	can	simply
continue	to	work	using	the	infrastructure	from	the	other	office:

Summary
Virtual	environments	are	very	flexible,	so	there	is	no	one-network-fits-all
configuration.	Each	network	will	be	unique.	The	components	and
requirements	described	in	this	chapter	are	mere	guidelines	to	show	how	to
take	the	correct	approach	to	plan	for	a	production-level	Proxmox	setup.	We
saw	some	of	the	requirements	of	a	production-level	setup,	and	we	covered
how	to	allocate	CPU	and	memory	resources	properly	for	both	the	Proxmox
host	node	and	the	virtual	machine	itself.	We	also	discussed	how	to	give	Ceph
storage	the	best	chance	of	providing	redundancy	along	with	performance.
Finally,	we	saw	how	to	cool	equipment	efficiently	by	leveraging	liquid
cooling,	thus	increasing	Proxmox	computing	node	density	per	rack	while
saving	energy.

We	also	saw	some	real-world	scenarios	of	Proxmox	in	action	in	different
industries.	We	hope	this	will	aid	you	in	your	quest	to	find	that	perfect	balance
between	performance	and	budget	that	all	network	administrators	crave.

In	the	next	chapter,	we	are	going	to	see	how	to	effectively	use	the	built-in
backup	and	restore	features	of	Proxmox	to	be	part	of	a	disaster	planning
strategy.	We	are	also	going	to	learn	about	the	newest	feature,	replication,
introduced	in	the	latest	Proxmox	5.0	release,	and	how	this	can	aid	your
backup	strategy.

Back	Up	and	Restore	Virtual
Machines
A	good	backup	strategy	is	the	last	line	of	defense	against	disasters	such	as
hardware	failure,	environmental	damage,	accidental	deletions,	or
misconfigurations.	In	a	virtual	environment,	a	backup	strategy	can	turn	into	a
daunting	task	because	of	the	number	of	virtual	machines	that	need	to	be
backed	up.	In	a	busy	production	environment,	a	new	virtual	machine	can
come	and	go	anytime.	Without	a	proper	backup	plan,	the	entire	backup	task
can	become	difficult	to	manage.	Gone	are	the	days	when	we	had	only	a	little
server	hardware	to	deal	with	and	backing	it	up	was	an	easy	task.	In	today’s
virtual	environments,	a	backup	solution	has	to	deal	with	several	dozen,	or
possibly	several	hundred,	virtual	machines.

Depending	on	the	business	requirement,	an	administrator	may	have	to	back
up	all	the	virtual	machines	regularly,	instead	of	just	the	files	inside	VMs.
Backing	up	an	entire	virtual	machine	takes	up	a	very	large	amount	of	space
after	a	while,	depending	on	how	many	previous	backups	we	have.	A	granular
file	backup	helps	you	quickly	back	up	user	data	but	provides	no	protection
against	entire	VM	corruption	or	loss.

Along	with	a	backup	strategy,	a	restore	plan	is	equally	important,	because	a
backup	is	only	useful	when	we	can	successfully	restore	data	in	a	timely	and
proper	manner	after	a	disaster.	In	this	chapter,	we	will	cover	the	following
topics:

Exploring	Proxmox	backup	options
Configuring	backups
Configuring	snapshots
Restoring	VMs
VM	replication
Backing	up	a	configuration	file

Proxmox	backup	options
As	of	Proxmox	VE	5.0,	there	are	two	backup	options	included	out	of	the	box:

Full	backup:	This	backs	up	the	entire	virtual	machine
Snapshots:	This	freezes	the	state	of	a	VM	at	a	point	in	time

Proxmox	5.0	can	only	do	a	full	backup	and	cannot	do	any	granular	file
backup	from	inside	a	virtual	machine.	Proxmox	also	does	not	use	any	backup
agents	for	guest	VMs.

A	full	backup
A	full	backup	is	a	complete,	compressed	backup	of	a	virtual	machine,
including	its	configuration	file.	We	can	take	this	backup	and	restore	it	locally
to	the	same	cluster	or	to	an	entirely	different	Proxmox	cluster.	We	can
potentially	set	up	a	full	backup	every	day,	or	on	a	different	schedule	of	up	to
one	week.	Since	a	full	backup	commits	the	complete	backup	of	the	entire
virtual	machine,	including	all	the	virtual	disk	images	in	it,	it	is	the	slowest
backup	option.	It	is	also	the	safest,	since	the	final	backup	file	is	not	dependent
on	the	original	VM.	Two	of	the	most	important	components	of	a	full	backup
are	backup	modes	and	compression	level.

Full	backup	modes
Various	backup	modes	offer	different	data	assurance	and	speed.	There	are
three	types	of	modes	available	for	a	full	backup.

Snapshot
Snapshots	for	a	full	backup	are	not	the	same	as	snapshots	for	virtual
machines,	where	they	freeze	the	state	of	the	VM	in	a	point	in	time.	A	snapshot
for	a	full	backup	is	when	it	is	committed	without	powering	off	or	temporarily
suspending	the	VM.	This	is	also	known	as	a	live	backup.	Since	a	backup
occurs	while	the	VM	is	running,	there	is	no	downtime	for	this	mode,	but	it
also	has	the	longest	backup	time.	On	rare	occasions,	files	in	use	can	cause
backup	errors	due	to	file	locks.

Suspend
In	this	mode,	a	backup	occurs	after	temporarily	suspending	or	freezing	the
VM.	There	is	no	need	to	completely	power	off	the	VM;	thus,	the	downtime	is
moderate	during	a	backup.	After	a	backup	is	completed,	the	VM	resumes
regular	operation.	This	mode	has	a	much	lower	chance	of	errors	during	a
backup	since	a	VM	is	suspended.

Stop
In	this	mode,	running	VMs	are	automatically	powered	off	or	stopped	and	then
powered	on	after	the	backup	has	been	completed.	This	provides	the	maximum
assurance	of	zero	errors	in	the	backup,	since	the	VM	is	not	running	at	all.	This
is	also	the	fastest	backup	mode.

Backup	compression
In	Proxmox,	we	can	commit	a	backup	with	different	compression	levels.	The
higher	the	level,	the	less	space	is	used	to	store	backup	files,	but	it	also
consumes	higher	CPU	resources	to	perform	compression.	There	are	three
compression	levels	in	a	Proxmox	backup.

None
When	this	level	is	selected,	no	compression	occurs	for	the	backup	task.	While
this	will	take	the	least	amount	of	CPUs	during	a	backup	task,	do	keep	in	mind
that	it	will	take	a	significantly	large	amount	of	space	to	store	backup	files.
Proxmox	virtual	disk	images	are	sparsed,	which	means	that	an	allocated	disk
image	only	uses	some	of	the	actual	data	space.	The	rest	of	the	allocation	is
sparsed,	or	filled	with	zeros.

A	backup	with	no	compression	will	save	the	disk	image	without	compressing
the	empty	spaces.	This	will	cause	the	backup	file	to	take	as	much	room	as	the
disk	image	itself.

Use	this	option	with	care	and	ensure	that	the	backup	storage	has
enough	storage	space	to	hold	uncompressed	backup	files.

LZO
This	is	the	default	compression	level	in	Proxmox.	LZO	provides	a	balance
between	speed	and	compression.	It	also	has	the	fastest	decompression	rate,
making	the	restoration	of	a	VM	much	faster.

GZIP
This	level	provides	a	much	higher	compression	ratio	but	also	takes	a	longer
time	to	back	up.	Due	to	an	increased	compression	rate,	this	level	consumes	a
lot	more	CPU	and	memory	resources.	We	need	to	ensure	that	backup	nodes
have	sufficient	processing	ability	before	we	enable	this	level.

Snapshots
Snapshots	freeze	or	capture	the	state	of	a	virtual	machine	at	a	point	in	time.
This	is	not	a	full	backup	of	a	VM,	since	the	snapshots	are	fully	dependent	on
the	original	VM.	We	cannot	move	snapshots	elsewhere	for	safekeeping.
Snapshots	are	used	to	roll	back	to	a	previous	state.	Since	snapshots	do	not
back	up	the	entire	virtual	machine	with	disk	images,	they	are	the	fastest
backup	option	to	quickly	save	the	state	of	the	VM.	In	Proxmox,	we	can	take
snapshots	of	a	running	VM;	in	which	case,	the	content	of	the	running	memory
also	gets	saved.	This	way,	we	can	revert	to	the	earlier	VM	exactly	as	it	was
running	when	a	snapshot	was	taken.

A	good	use	case	of	this	backup	is	when	testing	software	or	applying	updates.
We	can	take	snapshots	of	a	VM	prior	to	installing	any	software	or	applying
updates.	So,	if	something	goes	wrong	after	the	installation,	we	can	simply
revert	to	the	previous	state	in	a	matter	of	minutes	instead	of	reinstalling	the
entire	virtual	machine.	This	is	much	faster	and	cleaner	than	uninstalling	the
tested	software	itself.

A	full	backup	should	never	be	substituted	with	snapshots.	Always	include	a
full	backup	in	a	primary	disaster	recovery	strategy.

As	of	Proxmox	VE	5.0,	there	is	no	snapshot	scheduling	option.	All	snapshots
must	be	performed	manually.	For	this	reason,	snapshots	are	not	widely	used
as	a	means	of	main	backup	planning.	Two	of	the	most	used	scenarios	for
snapshots	are	to	save	the	state	of	a	VM	before	applying	updates/patches	or
installing	software	for	testing,	and	to	save	very	mission	critical	VM	states	in
between	full	backups.	In	an	environment	with	several	dozen	virtual	machines,
manual	snapshots	can	become	a	time-consuming	task.	It	is	possible	to	set	up
snapshot	scheduling	using	bash,	cron,	and	qm,	but	these	methods	can	be	flawed
and	they	are	known	to	be	somewhat	unstable;	therefore,	they	are	not
recommended	for	a	production	environment.

If	a	full	backup	is	performed	on	a	virtual	machine	that	has	snapshots	applied,
the	snapshots	do	not	get	placed	in	the	backup	file.	A	full	backup	task	ignores
all	the	snapshot	images.	Also,	when	a	virtual	machine	is	deleted,	all	the
snapshots	belonging	to	the	virtual	machine	also	get	deleted.

Configuring	backup	storage
A	sound	backup	strategy	has	a	dedicated	shared	storage	for	the	backup	images
instead	of	local	storage	or	storage	that	is	used	for	the	disk	images	themselves.
This	way,	we	can	centralize	the	backup	location	and	restore	them	even	in	the
event	of	a	Proxmox	node	failure.	If	the	backup	is	stored	locally	on	the	same
node,	during	hardware	failures,	that	node	may	become	completely
inaccessible,	causing	a	VM	restoration	delay.

One	of	the	most	popular	options	for	a	backup	storage	node	is	NFS.	In	an
enterprise	or	mission-critical	environment,	a	cluster	with	built-in	redundancy
dedicated	to	backups	is	a	recommended	practice.	In	smaller	environments,
good	redundancy	can	still	be	achieved	using	storage	options,	such	as	Gluster
or	DRBD.	With	the	addition	of	ZFS	and	Gluster	in	Proxmox	VE,	it	is	now	a
viable	option	to	turn	a	Proxmox	node	into	a	backup	using	ZFS	and	still
manage	the	node	through	the	Proxmox	GUI.	Unfortunately,	we	cannot	store
backup	files	on	the	Ceph	RBD	storage.

For	a	single	backup	storage	node,	FreeNAS	is	a	great	option	without	cluster
redundancy.	Regardless	of	which	storage	system	is	used,	the	primary	goal	is
to	store	a	backup	on	a	separate	node	instead	of	the	computing	node.	Refer	to	C
hapter	4,	Storage	Systems,	for	information	on	how	to	attach	various	storage
systems	to	Proxmox.	Once	a	storage	is	set	up	and	attached	to	Proxmox,	we
need	to	ensure	that	the	content	type	for	the	storage	is	configured	in	order	to
store	backup	files	and	backup	rotation	quantity.	There	are	two	options	in	the
storage	dialog	box	to	select	the	content	type	and	to	define	the	backup	rotation
quantity.	The	following	screenshot	shows	the	storage	dialog	box	for	an	NFS
storage	in	our	example	cluster:

In	the	preceding	screenshot,	we	selected	the	VZDump	backup	file	from	the
drop-down	list	and	typed	3	in	the	Max	Backups,	or	backup	rotation,	quantity
tab.	This	means	that	the	storage	will	allow	you	to	store	backup	files	and	three
recent	backups	will	always	be	kept.	Older	backups	will	automatically
be	deleted.	This	will	only	happen	automatically	when	the	backup	is	handled
by	a	backup	schedule.

When	performing	manual	backups,	this	quantity	value	will	actually	prevent
committing	manual	backups	if	there	are	already	three	backups	stored	in	the
storage	for	a	VM.	In	such	cases,	we	will	have	to	manually	delete	older
backups	or	increase	the	quantity	value	to	accommodate	new	manual	backups.
We	can	delete	backup	files	for	the	VM	through	the	Backup	tab	menu	of	the
VM	or	directly	from	the	storage	device	in	the	content	tab.	We	need	to	select
the	backup	file	that	we	need	to	delete	and	then	click	on	Remove.	The
following	screenshot	shows	the	backup	menu	for	a	VM:

Make	sure	that	you	set	appropriate	values	for	Max	Backups,
because	higher	values	will	keep	more	backup	files,	consuming	a
lot	more	space	in	the	storage	node.	Too	many	backup	files	and
not	enough	space	will	cause	new	backup	tasks	to	fail.	We	can
also	set	up	two	storage	nodes	and	use	one	to	store	frequent
backups,	for	example,	weekly,	while	the	other	one	can	be	used	to
store	longer	interval	backups,	for	example,	biannually.

Depending	on	the	backup	strategy	and	business	requirement,	there	may	be	a
need	to	keep	certain	periods	of	backup	history.	Proxmox	allows	both
automatic	and	manual	deletion	of	any	backups	outside	the	required	history
range.	Automatic	deletion	is	performed	through	the	value	of	Max	Backups	in
the	backup	dialog	box.	We	can	enter	any	number	between	0	to	365	as	Max
backups.	For	example,	our	NFS	storage	has	a	Max	Backups	of	3.	This	means
that	during	a	full	backup,	Proxmox	will	keep	the	three	newest	backups	of
each	virtual	machine	and	delete	anything	older.

If	we	were	to	commit	daily	backups,	we	could	potentially	keep	365	days’,	or
1	year’s,	worth	of	backups	at	any	given	time.	If	we	did	a	backup	every	other
day,	then	it	would	be	2	years’	worth	of	backups.

Show	VM	configuration	from
backup
Show	Configuration	is	a	new	feature	added	from	Proxmox	5.0.	Previously,	we
could	not	see	the	configuration	of	a	VM	that	was	backed	up	without	restoring
it	completely.	This	is	useful	when	the	VM	does	not	exist	any	more	and	only	a
backup	is	available.	The	option	is	under	the	Backup	menu,	named	Show
Configuration,	as	shown	in	the	following	screenshot:

To	view	the	configuration,	select	a	backup	file,	then	click	on	Show
Configuration.	This	will	open	a	dialog	box	with	the	full	configuration	of	the
VM	this	backup	file	belongs	to.	The	following	screenshot	shows	the
configuration	of	the	VM	#101:

Configuring	full	backup
All	full	backups	are	in	the	.tar	format,	containing	both	the	configuration	file
and	virtual	disk	image	file.	The	backup	files	are	all	you	need	to	restore	a
virtual	machine	on	any	nodes	and	on	any	storage.	Full	backup	files	are	named
based	on	the	following	formats	for	both	KVM	and	LXC	virtual	machines:

vzdump-lxc-<ct_id>-YYYY_MM_DD-HH_MM_SS.tar	

vzdump-lxc-<ct_id>-YYYY_MM_DD-HH_MM_SS.tar.lzo	

vzdump-lxc-<ct_id>-YYYY_MM_DD-HH_MM_SS.tar.gz	

	

vzdump-qemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma	

vzdump-qemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma.lzo	

vzdump-qemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma.fz	

The	following	screenshot	shows	a	list	of	backup	files	in	a	backup	storage
node,	as	seen	from	the	Proxmox	GUI:

The	backup	list	is	sortable	by	the	Format,	Type,	or	Size	of	backup	files.	From
the	same	page,	we	can	also	delete	or	restore	backup	files.	

Creating	a	schedule	for	backup
In	Proxmox,	we	can	schedule	automated	backup	tasks	or	commit	manual
backups	for	each	virtual	machine.	Whether	scheduled	or	manual,	the	backup
process	is	the	same	for	both	KVM	and	LXC	virtual	machines.	Schedules	can
be	created	from	the	Backup	option	under	the	Datacenter	tabbed	menu.	We	will
see	each	option	box	in	detail	in	the	following	sections.	The	Backup	option
shows	a	list	of	already	created	backup	schedules,	along	with	options	to	Add,
Remove,	and	Edit	tasks.	The	schedule	dialog	box	is	the	same	for	adding,
removing,	and	editing	backup	tasks.	We	can	click	on	Add	to	open	the	dialog
box,	as	shown	in	the	following	screenshot:

In	the	preceding	screenshot,	we	created	a	backup	task	to	perform	twice	a
week	for	selected	virtual	machines.	The	dialog	box	has	several	components,
which	need	to	be	defined	in	order	to	schedule	a	backup	task.

Node
This	is	a	drop-down	list	used	to	select	a	Proxmox	node	to	show	only	the
virtual	machines	in	that	node.	This	also	sets	the	task	to	apply	to	that	node
only.	For	example,	if	we	select	a	particular	node	and	a	VM	in	it	to	commit	a
backup,	and	we	later	move	that	VM	to	another	node,	no	backup	task	will	be
performed	since	the	VM	is	no	longer	in	the	original	node.	By	default,	all
nodes	are	selected.	In	our	example,	we	have	selected	all	nodes.

Storage
This	is	a	drop-down	list	used	to	select	a	backup	storage	destination	where	all
full	backups	will	be	stored.	Typically,	an	NFS	server	is	used	for	backup
storage.	They	are	easy	to	set	up	and	do	not	require	a	lot	of	upfront	investment
due	to	their	lower	performance	requirements.	Backup	servers	are	much	leaner
than	computing	nodes	since	they	do	not	have	to	run	any	virtual	machines.
Some	storage	nodes,	such	as	ZFS,	do	need	a	lot	of	memory	to	operate
adequately.

Day	of	week
This	is	a	drop-down	list	used	to	select	which	day	or	days	the	backup	task
applies	to.	We	can	select	multiple	days	in	this	list.	In	order	to	create	a	daily
backup	task,	all	days	need	to	be	selected.	As	of	Proxmox	VE	5.0,	we	can	only
create	daily	or	weekly	backup	schedules.

Start	Time
Unlike	Day	of	week,	only	one	time	slot	can	be	selected.	Multiple	selections	of
times,	to	backup	different	times	of	the	day,	are	not	possible.

If	the	backup	needs	to	run	multiple	times	a	day,	create	a
separate	task	for	each	time	slot.

Selection	mode
This	is	a	drop-down	list	used	to	define	how	VMs	are	selected	for	backups.
There	are	three	options	available	to	select	from:

The	All	mode	will	select	all	the	virtual	machines	within	the	whole
Proxmox	cluster	or	node,	depending	on	the	selection	in	the	Node	drop-
down	list
The	Exclude	selected	VMs	mode	will	back	up	all	VMs	except	the	ones
selected
The	Include	selected	VMs	mode	will	back	up	only	the	ones	selected

Send	email	to
Enter	a	valid	email	address	here	so	that	the	Proxmox	backup	task	can	send	an
email	upon	backup	task	completion,	or	if	there	was	an	issue	during	backup.
The	email	includes	the	entire	log	of	the	backup	tasks.

It	is	highly	recommended	that	you	enter	an	email	address	here
so	that	an	administrator	or	backup	operator	can	receive	backup
task	feedback	emails.	This	will	allow	you	to	find	out	if	there	was
an	issue	during	backup	or	how	much	time	it	actually	took,	to	see
if	any	performance	issues	occurred	during	backup.

Email	notification
This	is	a	drop-down	list	used	to	define	when	the	backup	task	should	send
automated	emails.	We	can	select	this	option	to	always	send	an	email	or	to
only	send	an	email	when	there	is	an	error	or	a	failure.

Compression
This	is	a	drop-down	list	used	to	select	the	compression	level	for	the	backup
task.	Refer	to	the	Backup	compression	section	earlier	in	this	chapter	to	see	the
differences	between	the	various	compression	levels.	By	default,	the	LZO
(fast)	compression	method	is	selected.

Mode
This	is	a	drop-down	list	used	to	define	the	backup	mode	for	the	task.	Refer	to
the	Full	backup	modes	section	earlier	in	this	chapter	to	see	the	differences
between	backup	modes.	By	default,	all	running	virtual	machine	backups
occur	with	the	snapshot	option.

Enable
This	is	a	checkbox	used	to	enable	or	disable	a	backup	task.	This	was	newly
added	in	the	recent	Proxmox	version.	With	this	option,	we	can	disable	a
backup	task	temporarily	instead	of	deleting	and	creating	from	scratch,	as	was
the	case	in	previous	Proxmox	versions.	The	following	screenshot	shows	the
Backup	option	with	our	newly	created	backup	task	listed:

Creating	a	manual	backup
A	manual	backup	can	be	performed	on	a	particular	virtual	machine	at	any
time	through	the	Proxmox	GUI.	The	manual	backup	option	is	accessible
through	the	Backup	tabbed	menu	of	the	virtual	machine.	From	the	same
Backup	menu,	we	can	back	up,	restore,	and	delete	backup	files.

To	open	the	backup	creation	dialog	box,	we	select	the	VM	we	are	going	to
back	up,	then	click	on	the	Backup	now	button.	The	manual	backup	dialog	box
is	extremely	simple.	We	only	need	to	select	the	destination	Storage	node,	the
backup	Mode,	and	the	Compression	level,	as	shown	in	the	following
screenshot:

Creating	snapshots
A	snapshot	are	a	great	way	to	preserve	the	state	of	a	virtual	machine.	It	is
much	faster	than	a	full	backup,	since	it	does	not	copy	all	the	data.	A	snapshot
is	not	really	a	backup,	in	a	way,	and	does	not	perform	granular	level	backup.
It	captures	the	state	at	a	point	in	time	and	allows	rollback	to	that	previous
state.	A	snapshot	can	be	really	helpful	when	used	in	between	full	backups.
The	Take	Snapshot	option	can	be	found	under	the	Snapshots	tabbed	menu	of
the	virtual	machine.	A	newly	installed	VM	without	any	snapshots	will	appear
under	the	Snapshots	menu,	as	shown	in	the	following	screenshot:

The	actual	snapshot	creation	process	is	very	straightforward.	Click	on	Take
Snapshot	to	open	the	dialog	box,	and	then	just	enter	a	Name,	select	or
deselect	the	RAM	content,	and	type	in	some	Description.	The	Name	textbox
does	not	allow	any	spaces	and	the	name	must	start	with	a	letter	of	the
alphabet.	The	following	screenshot	shows	the	snapshots	creation	dialog	box
for	our	example	VM	#100:

Keep	in	mind	that	when	creating	snapshot	of	an	LXC	container,
the	option	to	Include	RAM	is	not	present.	When	selecting	this
option	for	KVMs,	the	bigger	the	RAM	allocation	is	for	the
virtual	machine,	the	longer	it	will	take	to	create	a	snapshot,	but

it	is	still	much	faster	than	a	full	backup.

The	snapshot	feature	is	available	for	both	KVM	and	LXC	virtual	machines.
The	following	screenshot	shows	the	Snapshots	option	with	our	newly	created
snapshot:

If	we	want	to	go	back	to	the	snapshot	image,	we	just	select	the	snapshot	we
want	to	go	back	to	and	click	on	Rollback.	Simply	click	Yes	when	prompted	to
confirm	the	rollback.

Keep	in	mind	that	when	you	roll	back	to	the	earlier	virtual
machine	state,	it	will	erase	all	the	changes	that	happened	to	the
virtual	machine	between	the	time	of	rolling	back	and	the
snapshot	being	rolled	back	to.

Restoring	a	virtual	machine
Like	backup,	we	can	also	restore	virtual	machines	through	the	Proxmox	GUI.
VMs	can	be	restored	through	the	Backup	menu	tab	of	the	VM	or	by	selecting
a	backup	file	through	the	storage	content	list.	If	Restore	is	selected	through
the	VM	Backup	option,	then	the	VM	ID	cannot	be	changed.	To	understand
this	better,	let’s	take	a	look	at	the	following	example:

In	the	preceding	screenshot,	we	are	under	the	Backup	option	for	VM	#100.
Since	the	Backup	option	shows	a	list	of	all	backup	files	stored	in	that	backup
storage	node,	we	can	see	the	backup	file	for	VM	#100.	If	we	select	the	backup
file	and	then	click	on	Restore,	we	will	not	be	able	to	restore	the	VM	#100	on	its
own.	Instead,	it	will	actually	replace	VM	#100.	The	following	screenshot
shows	the	Restore	dialog	box	where	the	destination	VM	ID	is	not	definable:

If	we	select	the	backup	file	for	VM	#100	from	the	storage	content	list	and	then
click	on	Restore,	we	will	be	able	to	define	a	VM	ID	in	the	Restore	dialog	box,
as	shown	in	the	following	screenshot:

Defining	the	VM	ID	during	restore	is	needed	when	we	want	to	restore	a	VM
while	the	VM’s	same	ID	stays	intact.	If	the	same	VM	ID	is	kept,	then	the
existing	virtual	machine	in	the	cluster	with	the	same	ID	will	be	deleted	and
restored	from	the	backup	version.	If	we	use	a	different	ID	before	restoring	it,
then	we	will	have	an	exact	copy	of	the	original	VM	with	a	different	VM	ID.

One	important	thing	to	remember	is	that	a	full	backup	created
for	a	virtual	machine	with	the	.qcow2	or	.vmdk	image	format	can
only	be	restored	to	local,	CephFS,	or	NFS-like	storages.	But	a
virtual	machine	with	the	.raw	image	format	can	be	restored	on
just	about	any	storage	system.	RBD	and	LVM	storages	do	not
support	image	types	such	as	.qcow2	or	.vmdk.

Backup/restore	through	the	CLI
In	Proxmox,	the	entire	backup	and	restore	process	can	be	managed	from	the
command	line	if	the	GUI	becomes	inaccessible.

Backup	using	the	CLI
The	command	to	commit	a	backup	for	both	KVM	and	LXC	virtual	machines
is	the	same.	The	following	is	the	command	format	for	a	backup:

#	vzdump	<vmid>	<options>		

There	is	a	long	list	of	vzdump	options	that	can	be	used	with	the	command.	The
following	are	just	a	few	of	the	most	commonly	used	ones:

Options Description

-all
The	default	value	is	0.	This	option	will	back	up	all	available	virtual
machines	in	a	Proxmox	node.

-bwlimit This	adjusts	the	backup	bandwidth	in	KBPS.

-compress
The	default	value	is	LZO.	This	sets	the	compression	type	or	disables
compression.	The	available	options	are	0,	1,	gzip,	and	lzo.

-mailto This	is	the	email	address	used	to	send	a	backup	report.

-maxfiles
This	contains	an	integer	number.	This	sets	the	maximum	number	of
backup	files	to	be	kept.

-mod
The	default	value	is	stop.	This	sets	the	backup	mode.	The	available
options	are	snapshot,	stop,	and	suspend.

-remove
The	default	value	is	1.	This	removes	older	backups	if	the	value	entered
is	more	than	in	-maxfiles.

-lockwait
This	is	the	maximum	time	in	minutes	to	wait	for	a	global	lock.	The
default	value	is	180.

-storage This	is	the	storage	ID	of	the	destination	backup	storage.

-tmpdir
This	specifies	a	temporary	directory	to	store	files	during	backup.	This	is
optional.

Restore	using	the	CLI
Although	the	same	command	can	be	used	to	perform	a	backup	for	both	KVM
and	LXC,	there	are	two	separate	commands	available	to	restore	the	KVM	and
LXC	virtual	machines:

qm	restore:	To	restore	KVM-based	VMs
pct	restore:	To	restore	LXC	containers

The	following	command	format	will	restore	KVM	VMs	through	the
command	line:

#qmrestore	<backup_file>	<new/old_vmid>	<options>		

Based	on	the	previous	command,	if	we	want	to	restore	our	example	KVM	#100
from	a	backup	onto	local	storage,	it	will	appear	as	follows:

#qmrestore	/var/lib/vz/dump/vzdump-qemu-110-2017_08_13-20_24_26.vma.lzo	110	-

storage	local		

The	following	options	can	be	used	with	the	qmrestore	command:

Options Description

-force

<int>

The	Boolean	value	is	0	or	1.	This	option	allows	for	overwriting	the
existing	VM.	Use	this	option	with	caution.

-unique

<int>

The	Boolean	value	is	0	or	1.	This	assigns	a	unique,	random	Ethernet
address	to	the	virtual	network	interface.

-pool

<string> This	is	the	name	of	the	pool	to	add	the	VM	to.

-storage

<string>

This	is	the	storage	ID	of	the	destination	storage	where	the	VM	disk
image	will	be	restored.

	

The	following	command	format	will	restore	LXC	containers	through	the
command	line:

#pct	restore	<ct_id>	<backupfile>	<options>		

Based	on	the	previous	command,	if	we	want	to	restore	our	example	container

#101	onto	local	storage,	it	will	appear	as	follows:
#pct	restore	101	/var/lib/vz/dump/vzdump-lxc-101-2017_08_25-18_49_04.tar.lzo	-

storage	local		

The	following	options	can	be	used	with	the	pct	restore	command:

Options Description

-force	<int>

The	default	value	is	0	or	1.	This	option	allows
overwriting	the	existing	VM.	Use	this	option	with
caution.

-cpulimit	<int>

The	value	range	is	from	0	to	128	with	the	default	value
as	0.	This	defines	the	number	of	CPUs	or	CPU	time.
Value	0	defines	no	CPU	limit.

-cpuunits	<int>

The	value	range	is	from	0	to	500,000,	with	the	default
value	as	1,024.	This	defines	the	CPU	weight	of	the	VM
in	relation	to	other	VMs.

-console	<int>
The	default	value	is	1.	This	defines	the	number	of
consoles	to	be	attached	to	the	container.

-force	<int>
The	Boolean	value	is	0	or	1.	This	allows	overwriting
of	the	existing	container	with	the	restored	one.

-hostname	<string> This	sets	the	hostname	of	the	container	after	a	restore.

-memory	<int>
The	default	value	is	512.	This	defines	the	amount	of
memory	allocated	for	the	container.

-swap	<int>
The	default	value	is	512.	This	defines	the	amount	of
swap	space	for	the	container.

-password	<string>
This	sets	the	root	password	in	the	container	after	a
restore.

-storage	<string>
This	defines	the	destination	storage	ID	where	the
container	will	be	restored.

Unlocking	a	VM	after	a	backup
error
Any	backup	process	can	be	interrupted	before	it	is	finished	due	to	various
issues,	such	as	backup	storage	node	failure,	loss	of	network	connectivity,	very
large	virtual	disk	images,	and	so	on.	Prior	to	starting	the	actual	backup
process,	Proxmox	puts	a	global	lock	on	the	VM	so	that	multiple	backup	tasks
cannot	be	run	on	the	same	node.	If	the	backup	is	not	finished	successfully,
this	lock	sometimes	remains	in	place	and	is	not	automatically	removed.	If	we
try	to	start/stop	the	VM,	we	may	see	an	error	message	that	informs	us	that	the
VM	is	locked.

In	such	cases,	we	need	to	manually	unlock	the	VM	to	resume	the	normal
operation.	The	unlocking	cannot	be	done	from	the	Proxmox	GUI,	but	only
through	the	CLI.	The	command	will	need	to	be	run	in	the	node	where	the	VM
is.	The	following	command	will	unlock	a	locked	VM	in	a	Proxmox	node:

				#	qm	unlock	<vm_id>		

Virtual	machine	replication
Virtual	machine	replication	is	a	brand	new	feature	that	has	been	added	from
the	Proxmox	VE	5.0	release.	This	is	a	very	useful	feature	for	a	single-node
Proxmox	environment	where	VM	disk	images	reside	locally	on	the	same
computer	node	the	VMs	actually	run	from.	With	this	option,	VMs	can	be
replicated	to	a	different	node	in	real	time	should	the	primary	node	go	down
for	any	number	of	reasons.	In	such	a	scenario,	the	second	node	with	a	replica
of	the	VMs	can	be	brought	online,	thus	minimizing	downtime	significantly.

It	is	very	important	to	note	here	that	this	replication	will	only
work	when	the	VM	disk	image	is	stored	on	a	local	ZFS	storage.

The	storage	must	be	attached	to	a	Proxmox	cluster	using	the	ZFS	storage
plugin,	as	shown	in	the	following	screenshot:

The	replication	simply	will	not	work	when	the	disk	image	is	on	any	other
storage.	Even	if	the	disk	image	is	stored	on	a	ZFS	storage	with	NFS	share,
replication	will	not	work.	In	such	a	scenario,	when	trying	to	create	replication,
the	following	error	message	will	be	displayed:

ZFS	is	needed	because	the	replication	uses	ZFS	snapshots	to	perform

replication,	minimizing	network	traffic.	A	new	command	line	tool,	pvesr,	has
been	added	to	perform	all	replication	tasks.	When	we	manage	replication
through	the	GUI,	it	just	leverages	the	pvesr	command.	

It	should	be	noted	here	that	the	replication	feature	is
presented	as	a	technology	preview	in	Proxmox	5.0,	but	from	our
extensive	lab	testing,	it	has	proven	very	stable.	If	you	have	a
single-node	Proxmox	deployment	and	want	to	use	replication	as
a	primary	backup	strategy,	then	doing	tests	to	familiarize
yourself	with	the	replication	process	is	highly	recommended.

Creating	a	replication	task	through
the	GUI
The	replication	menu	is	accessible	from	Datacenter-,	node-,	and	VM-specific
menus.	The	only	difference	is	each	replication	menu	shows	the	specific
entity-related	replication	tasks.	For	example,	the	Datacenter-specific	replication
menu	shows	all	replication	tasks	within	the	cluster,	whereas	the	node-specific
replication	menu	shows	replication	tasks	for	that	node	only.	

To	access	the	replication	dialog	box	through	the	Proxmox	GUI,	select	a	VM
you	want	to	replicate;	then,	from	the	Replication	option,	click	on	Add,	as
shown	in	the	following	screenshot:

Since	we	are	creating	a	replicated	version	of	the	VM,	we	cannot	define	any
manual	ID	for	the	VM.	The	replicated	VM	is	going	to	be	an	exact	copy	of	the
existing	VM,	including	the	same	ID	and	identical	configuration.

Target
This	is	a	drop-down	list	to	select	which	Proxmox	node	the	VM	is	going	to	be
replicated	to.	Note	that	the	destination	node	must	also	have	ZFS	storage	set
up.	If	the	source	VM	is	on	ZFS	but	the	destination	node	has	no	ZFS	storage,
we	cannot	create	the	replication	task.	We	will	see	an	error	message,	as	shown
in	the	earlier	section.	It	is	possible	to	replicate	a	VM	to	multiple	nodes,	thus
increasing	redundancy.	We	can	achieve	this	by	creating	multiple	tasks	for	the
VM,	but	we	can	never	replicate	a	VM	to	the	same	storage	or	same	node	the
VM	is	in.	

Schedule
Here,	we	define	how	frequently	the	VM	will	be	replicated.	Initially,	when	a
replication	task	is	started,	the	process	will	replicate	the	entire	VM;	after	that,
it	will	only	replicate	incrementally	on	set	intervals.	The	drop-down	list	has
some	predefined	schedules,	which	can	be	also	customized,	simply	by	typing
the	value.	For	example,	if	we	want	to	replicate	the	VM	every	5	minutes,	we
can	simply	type	*/5	in	the	schedule	textbox,	since	there	is	no	predefined
schedule	for	5	minutes.	Note	that	frequent	replication	will	increase	bandwidth
consumption,	depending	on	how	much	data	is	changing	in	the	VM.

Rate	limit	(MB/s)
We	can	limit	the	amount	of	bandwidth	that	can	be	consumed	during	the
replication	process.	By	default,	it	is	set	to	unlimited	bandwidth.	When
replicating	multiple	VMs	on	the	node,	it	may	be	very	helpful	to	limit	the	rate
so	the	running	VMs	can	be	used	without	any	issue.	The	rate	limit	is	defined	in
MBps.

Enabled
To	enable	the	replication	task,	this	option	needs	to	be	checked.	This	is	useful
when	disabling	the	replication	task	temporarily.	To	enable	it	again,	simply
select	the	task	and	click	on	the	Edit	button.

Creating	a	replication	task	through
the	CLI
In	order	to	create	a	replication	task	through	the	CLI,	it	is	very	important	to
know	that	each	replication	task	created	must	have	a	cluster-wide	unique	ID.
When	the	tasks	are	created	through	the	GUI,	the	ID	gets	created	and	assigned
automatically.	But	when	they	are	created	through	the	CLI,	we	have	to
manually	assign	the	ID.	This	unique	job	ID	is	node-specific	only.	For
example,	if	the	first	node	has	a	replication	task	using	a	job	ID	from	0	to	10,
another	node	can	also	have	unique	job	ID	of	the	same	sequence.	The	format
of	this	ID	is:

<vmid>-<integer	job	number>

We	are	going	to	use	the	pvesr	command	to	create	a	replication	task.	The
following	is	the	command-line	format	to	create	a	task:

#	pvesr	create-local-job	<vmid>-<job	number>	<destination_node>	--schedule	"

<frequency>"	--rate	<limit	in	MB/s>

Using	the	command-line	format,	if	we	want	to	create	a	replication	task	for
VM	#100	to	replicate	to	node	pmx-02	every	5	minutes	with	a	rate	limit	of	20
MBps,	we	will	enter	the	following	command:

#	pvesr	create-local-job	100-0	pmx-02	--schedule	"*/5"	--rate	20

If	we	want	to	create	another	task	for	VM	#102	to	node	pmx-02	every	30	minutes
without	a	rate	limit,	we	will	enter	the	following	command:

#	pvesr	create-local-job	102-1	pmx-02	--schedule	"*/30"

Note	that	we	have	entered	a	unique	ID	of	1	for	this	task,	for	VM	#102.

Once	the	task	is	created,	we	can	also	edit	it	through	the	CLI.	The	following
command	format	is	to	update	an	already	created	replication	task:

#	pvesr	update	<vmid>-<job	number>	--schedule	"<frequency>"

To	change	the	schedule	of	replication	100-0	to	half	an	hour,	we	would	enter	the
following	command:

#	pvesr	update	100-0	--schedule	"*/30"

To	see	a	list	of	all	replication	tasks,	use	the	following	command	format:
#	pvesr	list

To	disable	or	enable	a	replication	task,	use	the	following	command	format:

#	pvesr	<disable/enable>	<vmid>-<job	number>	

Replication	process
The	replication	process	will	start	automatically,	at	set	intervals,	without	any
user	interaction.	If	the	replication	task	is	created	for	a	VM	for	the	first	time,	it
will	initially	send	an	entire	copy	of	the	VM	to	the	destination	node.	Once	the
initial	transfer	is	done,	then	the	replication	process	will	only	send	new	data
that	has	changed	incrementally.

Also,	after	the	initial	transfer,	we	are	now	fully	ready	with	VM	redundancy.	In
the	event	the	node	with	the	running	VM	goes	down,	we	can	simply	turn	on
the	replicated	VM	on	the	second	node	while	we	fix	the	issue	on	the	primary
node.	This	can	significantly	decrease	the	downtime	for	a	small	environment
without	shared	storage.	Depending	on	what	replication	interval	has	been	used,
users	will	only	lose	data	since	the	last	sync.	So	if	the	scheduled	task	is	set	to
run	every	5	minutes,	then	the	replicated	VM	will	only	lose	the	last	5	minutes.

Replication	depends	on	SSH,	so	it	is	important	that	nodes	can	connect	to	each
other	with	proper	SSH	keys.	If	there	is	a	problem	with	SSH	connectivity,	you
may	see	a	replication	error	like	the	following:

You	may	have	to	find	the	cause	of	the	SSH	issue,	but	in	most	cases	it	can	be
fixed	using	the	following	command:

#	ssh-copy-id	<proxmox_Node>

To	run	a	replication	task	manually	at	any	time,	select	the	replication	task,	then
click	on	the	Schedule	now	button	on	the	Task	page.

Backup	configuration	file
The	backup	configuration	file	in	Proxmox	allows	more	advanced	options	to
be	used.	For	example,	if	we	want	to	limit	the	backup	speed	so	that	the	backup
task	does	not	consume	all	of	the	available	network	bandwidth,	we	can	limit	it
with	the	bwlimit	option.	As	of	Proxmox	VE	5.0,	the	configuration	file	cannot
be	edited	from	the	GUI.	It	has	to	be	done	from	the	CLI,	using	an	editor.	The
backup	configuration	file	can	be	found	in	/etc/vzdump.conf.	The	following	is	the
default	vzdump.conf	file	on	a	new	Proxmox	cluster:

#	tmpdir:	DIR	

#	dumpdir:	DIR	

#	storage:	STORAGE_ID	

#	mode:	snapshot|suspend|stop	

#	bwlimit:	KBPS	

#	ionice:	PRI	

#	lockwait:	MINUTES	

#	stopwait:	MINUTES	

#	size:	MB	

#	stdexcludes:	BOOLEAN

#	mailto:	ADDRESSLIST

#	maxfiles:	N	

#	script:	FILENAME	

#	exclude-path:	PATHLIST	

#	pigz:	N:	

All	the	options	are	commented	in	the	file	by	default	because	Proxmox	has	a
set	of	default	options	already	encoded	in	the	operating	system.	Changing	the
vzdump.conf	file	overwrites	the	default	settings	and	allows	us	to	customize	the
Proxmox	backup.

The	bwlimit	option
The	most	common	edit	in	vzdump.conf	is	to	adjust	the	backup	speed.	This	is
usually	done	in	the	case	of	remotely	stored	backups	and	interface	saturation	if
the	backup	interface	is	the	same	as	that	used	for	the	VM	production	traffic.
The	value	must	be	defined	in	kilobytes	per	second	(KBps).	For	example,	to
limit	backup	to	200	MBps,	make	the	following	adjustment:

bwlimit:	200000	

The	lockwait	option
The	Proxmox	backup	uses	a	global	lock	file	to	prevent	multiple	instances
running	simultaneously.	More	instances	put	an	extra	load	on	the	server.	The
default	lock	wait	in	Proxmox	is	180	minutes.	Depending	on	different	virtual
environments	and	numbers	of	virtual	machines,	the	lock	wait	time	may	need
to	be	increased.	If	the	limit	needs	to	be	10	hours	or	600	minutes,	adjust	the
option	as	follows:

lockwait:	600	

The	lock	prevents	the	VM	from	migrating	or	shutting	down	while	the	backup
task	is	running.

The	stopwait	option
This	is	the	maximum	time	in	minutes	the	backup	will	wait	until	a	VM	is
stopped.	A	use	case	scenario	is	a	VM	that	takes	much	longer	to	shut	down,	for
example,	an	exchange	server	or	a	database	server.	If	a	VM	is	not	stopped
within	the	allocated	time,	backup	is	skipped	for	that	VM.

The	stdexcludes	option
This	is	a	Boolean	option	to	enable	or	disable	exclusion	of	standard	files,	such
as	temporary	files,	log	files,	or	hidden	OS	system	files.	By	default,	this	option
is	enabled.

The	mailto	option
This	is	a	comma-separated	value	to	define	email	address	to	which	the	backup
notifications	will	be	sent	after	a	successful	backup	or	failure.

The	script	option
It	is	possible	to	create	backup	scripts	and	hook	them	with	a	backup	task.	This
script	is	basically	a	set	instruction	that	can	be	called	upon	during	the	entire
backup	tasks	to	accomplish	various	backup-related	tasks,	such	as
starting/stopping	a	backup,	shutting	down/suspending	a	VM,	and	so	on.	We
can	add	customized	scripts	as	follows:

script:	/etc/pve/script/my-script.pl	

The	exclude-path	option
To	exclude	certain	folders	from	backing	up,	use	the	exclude-path	option.	All
paths	must	be	entered	on	one	line,	without	breaks.	Keep	in	mind	that	this
option	is	only	for	LXC	containers:

exclude-path:	"/log/.+"	"/var/cache/.+"		

The	previous	example	will	exclude	all	the	files	and	directories	under	/log	and
/var/cache.	To	manually	exclude	other	directories	from	being	backed	up,
simply	use	the	following	format:

exclude-path:	"/<directory_tree>/.+"		

The	pigz	option
In	simple	terms,	pigz	allows	multiple	threads	on	multiple	cores	during	the	.gzip
compression	backup.	The	standard	.gzip	backup	process	uses	a	single	core,
which	is	why	the	backup	is	slower.	Using	the	pigz	package,	we	can	notify	the
backup	process	to	use	multiple	cores,	thus	speeding	up	the	backup	and	restore
process.	pigz	is	basically	a	.gzip,	but	with	multi-core	support.	It	is	not	installed
in	Proxmox	by	default.	We	can	install	it	using	the	following	command:

#	apt-get	install	pigz		

In	order	to	enable	pigz	for	backup,	we	need	to	select	the	.gzip	compression
level	for	the	backup	task	in	GUI.	Then,	the	following	pigz	option	in	the
backup	configuration	file	enables	the	pigz	feature:

pigz:	1	

By	default,	this	value	is	0	and	is	used	to	disable	pigz.	A	value	of	1	uses	half	of
the	total	core	in	the	node,	while	any	value	greater	than	1	creates	a	number	of
threads	based	on	the	value.	The	value	should	not	exceed	the	maximum
number	of	CPU	cores	in	the	node.

It	is	worth	noting	here	that	pigz	is	not	faster	than	or	superior	to
the	LZO	compression	level,	but	when	using	the	maximum
compression,	such	as	.gzip,	the	use	of	pigz	will	significantly
reduce	the	backup	time	while	compressing	backup	at	the
maximum	level.

Summary
In	this	chapter,	we	looked	at	the	backup	and	restore	features	in	Proxmox,	how
to	configure	them,	and	how	to	use	them	to	create	a	good	data	disaster
recovery	plan.	We	also	looked	at	the	new	VM	replication	feature	to	replicate	a
VM	across	nodes	for	safekeeping	when	using	local	storage.

There	are	no	substitutes	for	backing	up	data	in	order	to	mitigate	any	disasters
where	data	may	be	at	risk.	As	much	as	backing	up	is	important,	the	ability	to
restore	is	also	equally	important,	since	backup	files	will	not	mean	anything	if
a	restore	is	not	possible	in	times	of	need.	Although	Proxmox	does	not	provide
everything	you	need	for	backing	up,	such	as	a	granular	file	backup,	the	ability
to	back	up	a	virtual	machine	is	very	helpful.	The	backup	features	in	the
Proxmox	platform	have	proven	to	be	reliable	in	production	environments	and
during	actual	disaster	scenarios.

In	the	next	chapter,	we	are	going	to	take	a	look	at	the	necessity	for	an	up-to-
date	Proxmox	cluster	and	how	to	apply	new	releases	or	patches	regularly.

Updating/Upgrading	Proxmox
There	is	no	such	thing	as	a	perfect	piece	of	software.	All	software	matures	as
it	progresses	through	time	by	getting	new	features	and	finding	and	fixing
hidden	bugs.	By	releasing	regular	updates	and	upgrades,	the	developers	can
ensure	that	their	software	does	not	become	obsolete	due	to	the	rapid	evolution
of	technology.	In	this	chapter,	we	will	see	how	to	update	and	upgrade	a
Proxmox	node.	We	will	cover	the	following	topics:

Introducing	Proxmox	updates
Updating	Proxmox	through	the	GUI
Updating	Proxmox	through	the	CLI
Updating	after	subscription	change
Rebooting	dilemma	after	updates

Introducing	Proxmox	updates
Proxmox	updates	keep	a	node	up	to	date	with	the	latest	stable	packages,	patch
security	vulnerabilities,	and	introduce	new	features.	Each	node	checks	for	the
latest	updates	and	alerts	administrators	through	emails	if	there	are	any
available	updates.	It	is	vital	to	keep	all	Proxmox	nodes	up	to	date,	especially
when	security	patches	are	released.	Proxmox	developers	are	very	prompt	in
closing	vulnerabilities	through	updates	in	a	timely	manner.

The	number	and	nature	of	updates	vary	depending	on	your	Proxmox
subscription	level.	For	example,	a	Proxmox	free	version	without	a
subscription	receives	the	most	up-to-date	stable	updates,	while	a	node	with	a
subscription	receives	updates	that	are	not	so	cutting	edge	and	go	through	an
additional	layer	of	testing.	Delaying	the	new	package	releases	for	subscription
levels	creates	a	buffer	to	address	any	issues	that	may	not	have	been	identified
during	the	initial	release.

This	is	not	to	say	that	a	node	without	a	subscription	is	not	as	stable	as	a	paid
version.	Both	offer	a	very	high	level	of	stability	and	performance.	The	only
difference	is	that	the	delay	allows	subscribed	updates	to	receive	bug	fixes
which	may	not	have	been	noticed	during	the	initial	release	of	the	update	in	the
free	version	of	Proxmox.

A	Proxmox	node	can	be	updated	through	both	the	GUI	and	CLI.	There	is	no
strict	recommendation	on	which	one	to	use.	But	it	is	best	to	perform	at	the
console	or	through	server	IPMI.	The	reason	is,	if	you	are	using	Open	vSwitch
as	the	networking	option	and	if	the	Openv	Switch	package	has	been	updated
in	the	release,	it	may	interrupt	network	connectivity.

Updating	Proxmox	through	the	GUI
In	this	section,	we	will	see	how	to	update	a	Proxmox	node	through	the	GUI.
Proxmox	checks	for	daily	updates	and	displays	relevant	packages	for	which
updates	are	available	based	on	subscription	levels.	The	Updates	menu	in	the
Proxmox	GUI	can	be	accessed	by	selecting	the	node	and	clicking	on	the
Updates	menu.	The	following	screenshot	shows	the	available	update	packages
for	our	example	node,	pmx-01:

In	the	preceding	screenshot,	we	can	see	that	the	node	pmx-01	has	48	updates
available.	The	Updates	feature	shows	the	name	of	the	package,	the	current
version	installed,	the	new	available	version,	and	a	description	of	the	package.
To	start	the	update	or	upgrade	process,	we	simply	need	to	click	on	Upgrade.	It
will	open	the	node	shell	on	the	default	console,	such	as	noVNC,	and	will	start
the	update	process.	Depending	on	the	packages	being	updated,	it	may	be
necessary	to	act	on	some	prompts.	The	following	screenshot	shows	a	typical
prompt	waiting	for	a	response	during	the	update	process:

If	the	package	list	is	old	and	has	not	been	refreshed,	it	will	notify	that	the
package	database	is	out	of	date,	as	shown	in	the	following	screenshot:

We	can	update	the	package	list	by	clicking	on	Refresh	through	the	GUI.	To
restart	the	update	process,	click	on	the	Upgrade	button	on	the	GUI	again.	The
following	screenshot	shows	the	updated	interface	in	the	GUI	after	clicking	on
Refresh:

The	package	database	task	window	shows	the	list	of	the	repositories	being
read	and	the	size	of	each	package	list	being	downloaded.	We	can	stop	the
package	database	update	by	clicking	on	Stop.

Proxmox	downloads	or	refreshes	the	updated	package	list	daily	and	sends	an
email	to	the	root	email	address.	The	Proxmox	GUI	update	menu	visually
displays	the	list.	If	there	are	no	updates	available,	the	list	will	be	empty,	with
no	messages	shown.

Updating	Proxmox	through	the	CLI
As	mentioned	earlier	in	this	chapter,	in	the	recent	Proxmox	release,	a	bug	in
the	software	resulted	in	upgrading	through	the	GUI	having	some	issues.	The
GUI	is	basically	a	frontend	of	the	behind-the-scene	commands	that	are	run
through	Proxmox	scripts.	Still,	updating	or	upgrading	Proxmox	through	the
CLI	seems	to	be	the	safest	path.

There	are	no	special	Proxmox-specific	commands	to	update	a	Proxmox	node.
The	standard	apt-get	for	all	Debian-based	distributions	is	used	for	the	updating
process.	Log	in	to	the	Proxmox	node	directly	on	the	node	or	through	SSH,
and	then	run	the	following	command	to	update	the	list	of	new	packages:

#	apt-get	update		

After	the	package	database	is	up	to	date,	we	can	start	the	update	process	using
the	following	command:

#	apt-get	dist-upgrade		

Difference	between	upgrade	and
dist-upgrade
Besides	the	dist-upgrade	command,	there	is	another	option	available	for
upgrade:

#	apt-get	upgrade		

This	is	also	the	standard	Debian-based	Linux	distribution	command.
However,	there	is	a	big	difference	between	these	two	commands.

The	apt-get	upgrade	command	will	only	update	the	already	installed	packages
without	installing	any	new	ones	or	making	significant	changes	to	the
packages,	such	as	removing	them.	This	also	will	not	satisfy	any	dependency
issues.	If	any	packages	require	dependencies	to	be	resolved,	this	command
will	simply	leave	them	alone.	The	main	benefit	of	this	package	is	that	it	will
very	rarely	break	the	system.	On	the	downside,	it	also	will	not	update	or	patch
everything	that	is	necessary	to	bring	a	node	up	to	date.

The	apt-get	dist-upgrade	command,	on	the	other	hand,	will	upgrade	all	the
packages	and	remove	any	unneeded	packages	dictated	by	the	package
maintainer.	This	command	will	also	intelligently	satisfy	almost	all	the
required	dependencies	for	a	package	being	updated	or	marked	for	a	new
installation.

Based	on	the	previous	explanation	of	these	two	update	commands,	we	can	see
that	both	of	these	commands	have	advantages	and	disadvantages.	But	to	keep
a	Proxmox	node	up	to	date,	the	apt-get	dist-upgrade	command	seems	to	be	the
right	way	to	go.	Proxmox	is	not	just	another	Linux	distribution,	but	a	highly
specialized	hypervisor.	So	packages	that	are	included	in	a	distribution	are
carefully	chosen	by	Proxmox	developers.	Also,	there	is	no	mention	of	the	apt-
get	upgrade	command	anywhere	in	the	Proxmox	wiki.

Recovering	from	the	grub2	update
issue
Due	to	the	latest	grub2	update,	there	may	be	some	instances,	when	updating	a
Proxmox	node	through	the	GUI,	that	cause	issues	by	breaking	packages.	This
is	especially	true	for	an	earlier	release,	such	as	Proxmox	3.4.	All	the	newer
versions	of	Proxmox	seem	to	have	this	issue	fixed.	To	prevent	this	issue	from
happening,	it	is	best	to	upgrade	a	node	through	SSH	or	the	console	by	logging
in	directly	on	the	node	and	not	through	the	GUI.	If	the	upgrade	has	already
been	applied	through	the	GUI	and	there	are	unconfigured	packages	due	to
issues,	perform	the	following	steps	to	fix	the	issue:

1.	 Check	package	status:

								#	pveversion	-v		

2.	 Before	configuring	grub,	we	need	to	know	the	device	where	Proxmox	is
installed.	We	can	find	the	device	by	running	the	following	command:

								#	parted	-l			

3.	 If	there	are	incorrect	packages,	run	the	following	commands	to	kill	the
background	dpkg	process	and	configure	all	the	packages,	including	the
new	grub2:

								#	killall	dpkg

								#	dpkg	--configure	-a		

4.	 Select	the	Proxmox	device	name	when	prompted	during	the	grub2
installation.

5.	 Reboot	the	node.
6.	 It	is	also	possible	to	manually	install	grub2	on	the	Master	Boot	Record

(MBR).	Run	the	following	command	to	install	grub2	on	the	boot	device:

							#	grub-install	/dev/sdX		

Updating	after	a	subscription
change
The	Proxmox	subscription	level	for	a	node	can	be	changed	at	any	time	by
simply	applying	a	subscription	key	through	the	GUI.	Different	subscription
levels	have	different	natures	of	package	updates.	If	a	node	has	started	with	no
subscription,	it	can	always	be	changed	to	any	paid	subscription	at	any	given
time.	After	the	subscription	level	changes,	it	is	important	to	update	the	node
accordingly	so	that	updates	related	to	the	subscription	level	can	be	applied.	In
this	section,	we	will	see	how	to	update	a	node	if	the	subscription	level	of	the
node	changes	at	any	time.	For	example,	we	are	assuming	that	the	node	is	on
no	subscription	and	we	are	adding	a	paid-level	subscription.	We	can	upload	a
subscription	key	through	the	Subscription	tabbed	menu	for	a	node	on	the
Proxmox	GUI.	But	the	modification	that	needs	to	be	made	to	activate	the
repository	for	subscription	needs	to	be	done	through	the	CLI.	To	disable	the
free	subscription-level	repository,	we	are	going	to	comment	out	the	following
command	in	the	/etc/apt/sources.list	file:

#	deb	http://download.proxmox.com/debian	stretch	pve-no-subscription		

After	this,	we	need	to	uncomment	the	following	line	of	code	in
/etc/apt/sources.list.d/pve-enterprise.list	to	enable	the	subscription-level
repository:

#	deb	https://enterprise.proxmox.com/debian/pve	stretch	pve-enterprise		

After	these	modifications	are	made,	we	can	update	the	Proxmox	GUI	by
following	the	steps	in	the	Updating	Proxmox	through	the	GUI	section	in	this
chapter.

To	update	through	the	command	line,	we	can	follow	the	steps	in	the	Updating
Proxmox	through	the	CLI	section	in	this	chapter.

The	same	enterprise	repository	works	for	all	paid	subscription	levels,	such	as
Community,	Basic,	Standard,	and	Premium.	All	paid	subscriptions	receive	the
same	type	of	updates.

Rebooting	dilemma	after	Proxmox
updates
After	an	update,	all	administrators	face	the	question	of	whether	the	node
should	be	rebooted	or	not.	The	Proxmox	upgrade	process	is	usually	very
informative	and	tells	us	whether	the	node	really	needs	a	reboot.	Most	of	the
updates	do	not	require	any	reboot.	They	are	simply	packaged	updates.	But
some	upgrades,	such	as	kernel	releases,	newer	grubs,	and	security	patches,
will	require	a	node	reboot	every	time.	The	exact	method	of	rebooting	depends
on	the	environment,	number,	and	nature	of	the	VMs	stored	per	node.	In	this
section,	we	will	see	the	most	widely	used	method,	which	is	by	no	means	the
only	method.

For	minimal	virtual	machine	downtime,	we	can	live-migrate	all	the	VMs	from
a	node	to	a	different	node,	and	then	migrate	them	back	to	the	original	node.
As	of	Proxmox	VE	5.0,	there	is	a	nice	GUI	feature	addition	to	instruct	all	VM
migrations	with	a	menu	instead	of	selecting	and	migrating	one	VM	at	a	time.
The	feature	is	under	the	Bulk	Actions	drop-down	menu	in	the	top-right	corner
of	the	GUI,	as	shown	in	the	following	screenshot:

As	you	can	see	from	the	previous	screenshot,	we	can	also	start	or	stop	all
virtual	machines.	The	selected	action	will	only	take	place	on	a	selected	node
from	the	left-hand	navigation	pane	of	the	GUI.	If	the	Proxmox	node	requires
a	reboot	after	an	update,	we	can	select	Bulk	Stop	from	the	Bulk	Actions
drop-down	menu	to	shut	down	all	VMs	in	the	node,	and	then	restart	the	node.
After	the	node	restarts,	start	all	VMs	by	clicking	on	Bulk	Start	under	the	drop-
down	menu.

Always	check	and	read	all	major	or	minor	Proxmox	update
releases	before	applying	them	to	a	node.	This	gives	you	a	good
idea	of	what	is	being	updated	and	its	importance.	If	the
importance	or	seriousness	is	not	critical,	we	can	always	put	off
the	update	to	avoid	any	node	reboots.	You	can	refer	to	the
Proxmox	roadmap,	which	is	a	good	place	to	find	out	new	feature

additions,	bug	fixes,	or	simply	information	on	changes,	at	http://pv
e.proxmox.com/wiki/Roadmap#Roadmap.

The	official	Proxmox	forum	is	also	a	great	place	to	hang	out	to	get
information	on	issues	due	to	updates.	This	is	also	a	great	place	to	learn	about
fixes	posted	by	Proxmox	developers	if	there	are	any	issues	with	the	released
update.

Visit	the	official	Proxmox	forum	at	the	following	link:
https://forum.proxmox.com

http://pve.proxmox.com/wiki/Roadmap#Roadmap
https://forum.proxmox.com

Applying	update	without	reboot
Although	there	is	no	built-in	feature	in	Proxmox	that	will	allow	us	to	update
the	host	without	ever	needing	a	reboot,	there	is	a	third-party	solution	to
achieve	this	and	never	have	to	reboot	again	after	applying	an	update.	A	server
reboot	can	be	very	disruptive	for	a	busy	virtual	environment	where	downtime
has	a	high	price	tag	on	it.	A	service	named	KernelCare	from	CloudLinux	can
solve	this	issue.	More	information	about	KernelCare	can	be	found	at	https://ww
w.cloudlinux.com/all-products/product-overview/kernelcare.

Simply	put,	what	KernelCare	does	is	applies	security	patches	on	the	runtime
kernel	without	needing	to	reboot	a	node.	This	allows	a	node	to	stay	updated	at
all	times.	Due	to	the	possible	downtime,	many	administrators	forego	patching.
With	KernelCare,	security	updates	are	applied	as	they	become	available.	This
does	not	disrupt	the	normal	functioning	or	services	of	the	node	in	any	way.
The	extremely	affordable	price	and	the	easiness	of	the	installation	make
KernelCare	an	effective	solution	for	an	environment	of	any	size.

KernelCare	also	provides	completely	free	trial	licenses	to	try	out	the	service
before	making	a	purchase.	They	can	be	installed	in	minutes	by	following	the
official	documentation	at	http://docs.kernelcare.com/index.html?installation.htm.

https://www.cloudlinux.com/all-products/product-overview/kernelcare
http://docs.kernelcare.com/index.html?installation.htm

Summary
In	this	chapter,	we	learned	about	the	importance	of	keeping	Proxmox	nodes
up	to	date	in	a	cluster	and	how	to	properly	update	and	upgrade	a	node	through
both	the	GUI	and	CLI.	We	also	covered	when	to	reboot	or	not	reboot	a	node
after	an	upgrade.

In	the	next	chapter,	we	are	going	to	learn	how	to	troubleshoot	a	Proxmox
cluster	when	various	issues	arise.	These	issues	have	been	taken	from	real-
world	Proxmox	clusters	serving	live	users.

Proxmox	Troubleshooting
In	this	chapter,	we	are	going	to	learn	about	the	common	Proxmox	issues
found	in	a	production	environment	and	solutions	to	those	issues.	Once	a
Proxmox	cluster	is	set	up,	it	usually	runs	without	issues.	However,	when
issues	arise,	a	system	administrator’s	knowledge	is	tested.	Learning	how	to
properly	troubleshoot	can	be	made	easier	by	learning	about	other	people’s
resolutions.	Throughout	this	chapter,	we	will	gain	some	insight	into	Proxmox
troubleshooting,	so	that	hopefully,	when	these	issues	arise	in	our	own
Proxmox	clusters,	we	will	be	able	to	identify	and	resolve	problems	quickly
and	with	ease.

All	the	issues	explained	in	this	chapter	are	those	that	may	be	commonly	faced
by	others.	It	is	just	not	possible	to	explain	all	error	possibilities,	mainly	due	to
all	of	the	components	that	work	in	concert	to	make	up	a	stable	system.	As	you
run	your	own	cluster,	you	may	face	other	issues	that	we	have	not	documented
here.

The	issues	are	divided	into	the	following	sections:

Proxmox	nodes
The	main	cluster
Storage
Network	connectivity
The	KVM	virtual	machine
LXC	containers
Backup/restore
The	VNC/SPICE	console
A	firewall

Proxmox	node	issues
This	section	contains	issues	related	to	the	Proxmox	node	itself.

Issue	–	fresh	Proxmox	install	stuck
with	/dev	to	be	a	fully	populated
error	during	node	reboot
This	issue	occurs	when	the	OS	tries	to	boot	with	a	non-standard	VGA	driver.
To	prevent	this	issue,	we	need	to	add	and	modify	some	grub	options.	Restart
the	node,	and	then	press	the	E	key	from	the	Proxmox	boot	menu.	At	the	end
of	the	Kernel	boot	line,	add	the	following	nomodeset,	as	shown	in	the	following
screenshot:

Press	Ctrl	+	X	or	F10	to	boot	the	node	normally.	To	make	this	option
permanent,	make	the	following	modifications	in	/etc/default/grub:

Uncomment	GRUB_TERMINAL=console
Comment	out	GRUB_GFXMODE=some_X,some_Y

Issue	–	rejoining	a	node	to	a
Proxmox	node	with	the	same	old	IP
address
If	you	are	rejoining	a	Proxmox	node	back	to	the	cluster	with	the	same	IP
address,	then	the	joining	command	must	run	with	the	-force	option.	Run	the
following	command	from	the	node	that	is	being	rejoined:

#	pvecm	add	<any_proxmox_node_ip)	-force		

Without	the	additional	-force	option,	the	node	will	not	be	joined	and	an	error
message	will	be	displayed	informing	you	of	the	existence	of	a	certificate.	This
also	applies	when	a	node	is	reinstalled	completely	with	the	same	hostname
and	IP	address.

Issue	–	Proxmox	installation
completed	but	grub	is	in	an	endless
loop	after	reboot
This	is	a	common	occurrence	when	Proxmox	is	installed	on	a	node	with
newer	UEFI	BIOS.	Simply	disabling	the	UEFI	mode	will	allow	the	system	to
boot.	If	this	does	not	work,	Proxmox	should	be	installed	manually	over
Debian	Stretch.

To	get	information	and	instructions	on	how	to	install	Proxmox
when	the	ISO	installer	does	not	work,	refer	to	the	following:
http://pve.proxmox.com/wiki/Install_Proxmox_VE_on_Debian_Stretch

http://pve.proxmox.com/wiki/Install_Proxmox_VE_on_Debian_Stretch

Issue	–	LSI	MegaRAID	9240-
8i/9240-4i	causes	an	error	during
booting	of	the	Proxmox	node
This	issue	can	be	prominent	in	the	Supermicro	motherboard	with	the	LSI
chipset	for	hot-swap	bays.	There	are	two	ways	in	which	we	can	use	cards	in
the	Proxmox	mode:

Downloading	and	updating	the	LSI
driver
We	can	download	and	install	the	latest	LSI	drivers	in	Proxmox	to	activate	the
LSI	cards	by	performing	the	following	steps:

1.	 Run	the	following	command	to	install	the	necessary	program	for
compiling:

								#	apt-get	install	build-essential		

2.	 Run	the	following	command	to	install	header	files	for	the	currently
installed	kernel:

								#	apt-get	install	pve-headers-<version>-pve		

3.	 Download	the	LSI	drivers	from	http://www.avagotech.com/support/download-search.
4.	 Extract	the	downloaded	driver	in	/usr/local/src.
5.	 After	extracting	the	driver,	the	directory	may	appear	as	follows:

								#	/usr/local/src/megaraid_sas-v00.00.05.30		

6.	 Enter	the	driver	directory	and	rename	makefile	to	makefile.orig.	Then,	copy
makefile.standalone	to	makefile.

7.	 Compile	the	source	using	the	following	command:

								#	make	-C	/usr/src/linux-headers-<version>/	M=$PWD	modules		

It	will	show	some	text	output	and	warnings,	but	they	are	safe	to
ignore.	The	driver	will	end	up	in	the	following	directory:

								/usr/local/src/megaraid_sas-v00.00.05.30/megaraid_sas.ko	

8.	 Remove	or	rename	the	existing	driver	file	in	the	following	directory:

								/lib/modules/<version>-pve/kernel/drivers/scsi/megaraid/

								megaraid_sas.ko			

9.	 Copy	the	newly	compiled	driver	to	the	previous	directory,	as	follows:

								#	cp	/usr/local/src/megaraid_sas-v00.00.05.30/megaraid_sas.ko

								/lib/modules/<version>-pve/kernel/drivers/scsi/megaraid/

								megaraid_sas.ko

http://www.avagotech.com/support/download-search

10.	 Back	up	the	initial	RAM	disk	by	renaming	it,	as	follows:

								#	mv	/boot/initrd.img-2.6.32-7-pve	/boot/initrd.img-<version>

								-pve.bak		

11.	 Run	the	following	command	to	update	initramfs:

							#	update-initramfs	-c	-k	2.6.32-7-pve		

12.	 Run	the	following	command	to	update	grub,	and	then	reboot	it:

								#	update-grub		

Updating	the	Supermicro	BIOS
We	can	also	update	the	Supermicro	BIOS	to	the	latest	firmware	to	use	the	LSI
cards.	Always	check	whether	you	have	the	latest	firmware	before	updating	it.
For	instructions	on	how	to	update	the	Supermicro	BIOS	firmware,	refer	to	http:
//wahlnetwork.com/2013/06/03/the-easy-button-for-supermicro-bios-upgrades/.

http://wahlnetwork.com/2013/06/03/the-easy-button-for-supermicro-bios-upgrades/

Issue	–	the	Upgrade	button	is
disabled	on	the	Proxmox	GUI,
which	prevents	the	node	upgrade
There	are	three	common	reasons	why	the	Upgrade	button	could	be	disabled
on	the	Proxmox	GUI.	Check	the	following	alternatives	to	fix	this	issue:

1.	 If	the	node	does	not	have	a	valid	subscription,	ensure	that	the	pve-no-
subscription	repository	is	added.	For	Proxmox	repository	information,
visit	the	link:	https://pve.proxmox.com/wiki/Package_repositories.

2.	 Refresh	the	browser	cache	to	reload	the	graphic	interface.
3.	 A	very	basic	mistake,	but	not	unheard	of,	is	to	make	sure	that	the	root

user	is	logged	in	to	facilitate	the	upgrade.	The	Upgrade	button	is	only
visible	when	you	log	in	with	the	root	privilege.

https://pve.proxmox.com/wiki/Package_repositories

Issue	–	Proxmox	cannot	start	due	to
the	getpwnam	error
Boot	the	Proxmox	node	in	recovery	mode	using	the	Proxmox	installation
disk,	or	select	the	recovery	option	from	Proxmox’s	boot	menu	at	the
beginning	of	the	boot	process.	After	the	recovery	shell	is	loaded,	run	the
following	commands	from	the	command	prompt	and	then	reboot:

				#	apt-get	update	&&	apt-get	dist-upgrade		

Issue	–	cannot	log	in	to	the	GUI	as
root	after	reinstalling	Proxmox	on
the	same	node
In	order	to	log	in	to	the	Proxmox	GUI	as	root,	local	loopback	must	be	enabled	in
the	network	interface	file.	Look	for	the	following	two	lines	to	make	sure	they
are	not	commented	out	in	/etc/network/interfaces:

				auto	lo

				iface	lo	inet	loopback	

The	main	cluster	issues
This	section	contains	issues	related	to	the	main	Proxmox’s	cluster	operations.

Issue	–	Proxmox	virtual	machines
are	running,	but	the	Proxmox	GUI
shows	that	everything	is	offline
This	is	usually	caused	by	one	of	the	three	services,	such	as	pvedaemon,	pvestatd,
or	pveproxy	crashing	or	stopping	working	for	any	number	of	reasons.	Simply
restarting	them	through	SSH	will	fix	this	issue.	One	of	the	common	causes	of
this	issue	is	if	any	NFS	shared	storage	gets	stuck	during	an	extended	backup
task.	A	node	reboot	will	always	fix	this	issue.	But	reboot	is	not	always
possible	in	a	production	node.	Forcefully	unmounting	the	NFS	shared	storage
under	/mnt/pve/<share>,	then	running	the	following	commands	will	show
everything	normally	again:

				#	service	pvedaemon	restart

				#	service	pveproxy	restart

				#	service	pvestatd	restart		

Issue	–	kernel	panic	when
disconnecting	USB	devices,	such	as	a
keyboard,	mouse,	or	UPS
There	is	no	real	solution	to	this	issue	yet,	as	the	issue	is	not	reproducible	all
the	time.	This	issue	has	been	seen	on	a	variety	of	hardware	with	both	standard
and	nonstandard	Proxmox	installations.	However,	almost	all	of	the	time,	the
issue	does	not	cause	the	server	to	freeze	permanently,	thus	the	panic	can	just
be	ignored	and	you	can	go	on	as	usual.

Kernel	panic	seems	to	mostly	occur	with	kernels	2.6.32-26,	2.6.32-27,	and
2.6.32-28.	It	is	nonexistent	in	kernel	3.2	and	later.	For	the	regular	day-to-day
operations	of	a	cluster,	this	issue	can	be	safely	ignored	unless	it	causes	the
node	to	freeze	on	occasions.

Issue	–	virtual	machines	on
Proxmox	will	not	shut	down	if
shutdown	is	initiated	from	the
Proxmox	GUI
This	issue	is	not	consistent	and	is	not	directly	related	to	Proxmox.	The
Shutdown	button	on	Proxmox’s	GUI	only	sends	an	ACPI	signal	to	a	virtual
machine	to	initiate	the	shutdown	process.

Once	the	VM	receives	an	ACPI	signal,	it	starts	the	shutdown	process.
However,	if	the	VM	has	a	number	of	processes	running	in	the	memory,	it
might	take	a	while	to	end	processes	before	shutdown.	The	ending	of	processes
may	take	longer,	which	causes	Proxmox	to	issue	a	timeout	error.	The	issue
may	occur	for	both	Windows	and	Linux.	The	workaround	for	this	is	to	access
the	VM	through	a	console	or	SPICE	and	then	manually	shut	down	the	VM.

Issue	–	kernel	panic	with	HP
NC360T	(Intel	82571EB	chipset)
only	in	Proxmox	VE	3.2
An	immediate	workaround	is	to	use	Broadcom	for	the	network	interface	card.
A	permanent	fix	is	to	download	E1000	drivers	from	the	Intel	website	and
compile	a	module	from	those	sources.	The	E1000	driver	can	be	downloaded
from	this	link:	http://www.intel.com/support/network/sb/cs-006120.htm.

http://www.intel.com/support/network/sb/cs-006120.htm

Issue	–	the	Proxmox	cluster	is	out	of
quorum	and	cluster	filesystem	is	in
read-only	mode
This	occurs	when	a	node	falls	out	of	quorum.	To	prevent	an	error	occurring	in
the	cluster	configuration	files,	Proxmox	puts	the	cluster	filesystem	in	the
read-only	mode	for	the	node	in	question.	Run	the	following	commands	from
the	node	with	this	issue.	We	have	to	stop	the	cluster	service,	start	it	in	local
mode,	delete	or	move	the	existing	corosync.conf	file,	and	then	restart	the	cluster.
A	new	corosync.conf	file	will	be	synced	with	the	node	with	a	read-only	issue.
Perform	the	following	steps	to	overcome	this	issue:

1.	 Stop	the	cluster	in	the	node	using	the	following	command:

								#	systemctl	stop	pve-cluster		

2.	 Start	the	cluster	filesystem	in	the	local	node	using	the	following
command:

								#	/usr/bin/pmxcfs	-l		

3.	 Remove	or	back	up	the	corosync.conf	file	using	the	following	command:

								#	mv	/etc/pve/corosync.conf	directory_path		

4.	 Stop	and	start	the	cluster	normally	using	the	following	commands:

								#	systemctl	stop	pve-cluster

								#	systemctl	start	pve-cluster

Issue	–	VM	will	not	respond	to
shutdown	or	restart
First	check	whether	High	Availability	(HA)	is	enabled	for	the	VM	or	not,	as
HA	will	prevent	any	manual	action	such	as	the	VM	shutdown,	stop,	restart,	or
start	because	the	main	purpose	of	HA	is	for	actions	to	be	taken	without	user
interaction.	In	order	to	manually	perform	any	task	for	a	VM,	we	need	to
disable	HA	for	the	VM,	perform	a	task,	and	then	re-enable	HA.	Also,	if
anything	inside	the	guest	VM	is	preventing	it	from	shutting	down,	it	will	not
respond	to	the	GUI	shutdown	or	restart	option.	In	such	cases,	it	is	best	to
shutdown	or	restart	from	within	the	guest	VM.

Issue	–	Proxmox	GUI	not
responding	after	Firefox	update
Due	to	a	Firefox	update,	the	Proxmox	GUI	may	become	non-responsive,	even
after	successful	login.	In	Firefox,	on	the	address	bar,	type	about:config.

On	the	search	bar,	type	touch	and	find	the	following	entry:
dom.w3c_touch_events.enabled

Change	the	value	to	0	and	try	to	log	in	to	the	GUI	again.

Issue	–	the	Proxmox	GUI	is	not
showing	RRD	graphs
If	a	node	or	VM	is	running	fine,	but	there	are	no	RRD	graphs	on	the	Status
page,	it	might	be	due	to	the	stuck	pvestatd	service	or	corrupted	RRD	cache.
Run	the	following	commands	to	restart	the	pvestatd	service	and	clear	the	RRD
cache:

				#	rrdcache	-P	FLUSHALL

				#	systemctl	restart	pvestatd

Storage	issues
This	section	contains	issues	related	to	storage	systems	supported	by	Proxmox,
such	as	local,	NFS,	Ceph,	GlusterFS,	and	so	on.

Issue	–	deleting	a	damaged	LVM
from	Proxmox	with	the	error	read
failed	from	0	to	4096
This	error	occurs	when	a	LVM	storage	in	Proxmox	becomes	partially	or	fully
corrupted.	In	such	cases	the	LVM	may	need	to	remove	manually.	This	will
remove	the	LVM	which	will	cause	data	loss.	Run	the	following	command
from	the	CLI	to	remove	the	LVM:

				#	dmsetup	remove	/dev/<volume_group>/<lvm_name>		

Issue	–	Proxmox	cannot	mount	NFS
share	due	to	the	timing	out	error
Some	NFS	servers,	such	as	FreeNAS,	do	a	reverse	lookup	for	hostnames.	In
such	cases	accessing	the	NFS	storage	from	Proxmox	causes	timing	out	error.
We	need	to	add	Proxmox	hostnames	to	the	host	files	of	the	NFS	server	to
prevent	time	out	error:

				#	nano	/etc/hosts		

Issue	–	how	to	delete	leftover	NFS
shares	in	Proxmox	or	what	to	do
when	the	NFS	stale	file	handle	error
occurs?
When	NFS	shares	are	deleted	from	Proxmox	storage,	in	some	cases,	it	still
remains	mounted,	which	causes	the	NFS	stale	file	handle	error.	Simply
manually	unmounting	the	share	and	removing	the	NFS	mount	point	folder
from	the	Proxmox	directory	fixes	this	issue.	Run	the	following	commands
from	the	Proxmox	node:

				#	umount	-f	/mnt/<nfs_share>

				#	rmdir	/mnt/<nfs_share>		

Issue	–	Proxmox	issues	—mode
session	exit	code	21	errors	while
trying	to	access	the	iSCSI	target
Run	the	following	command	from	the	Proxmox	node	to	fix	the	error:

				#	iscsiadm	-m	node	-l	ALL		

Issue	–	cannot	read	an	iSCSI	target
even	after	it	has	been	deleted	from
Proxmox	storage
When	trying	to	read	the	same	iSCSI	target	after	it	has	been	deleted	from
Proxmox	storage,	an	error	occurs	mentioning	the	target	that	has	already	been
added	to	Proxmox.	In	these	cases,	the	iSCSI	daemon	has	to	be	restarted	to
clear	the	issue.	Run	the	following	command	from	all	the	Proxmox	nodes:

				#	/etc/init.d/open-iscsi	restart		

Issue	–	a	Ceph	node	is	removed
from	the	Proxmox	cluster,	but	OSDs
still	show	up	in	PVE
This	is	a	common	occurrence	when	a	Ceph	node	is	taken	offline	without
removing	all	the	Ceph-related	processes	first.	The	OSDs	in	the	node	must	be
removed	or	moved	to	another	node	before	taking	the	node	offline.	Run	the
following	commands	to	remove	OSDs:

				#	ceph	osd	out	<osd.id>

				#	ceph	osd	crush	remove	osd	<osd.id>

				#	ceph	auth	del	osd.<id>

				#	ceph	osd	rm	<osd.id>		

Issue	–	the	no	such	block	device
error	during	creation	of	an	OSD
through	the	Proxmox	GUI
When	creating	an	OSD	through	the	Proxmox	GUI,	sometimes	this	error
occurs.	This	is	not	a	common	occurrence	and	is	not	reproducible	at	all	times.
Although	there	are	no	permanent	fixes	for	this	issue,	it	can	be	ignored.	So,
just	retry	to	create	an	OSD.	The	issue	seems	to	be	isolated	in	Proxmox	4.x
releases.

Issue	–	the	fstrim	command	does	not
trim	unused	blocks	for	the	Ceph
storage
To	properly	trim	unused	blocks	for	virtual	disks	stored	on	the	Ceph	storage,
perform	the	following	steps:

1.	 Use	a	virtio	disk	type	for	a	virtual	disk.
2.	 Enable	the	discard	option	through	<vm_id>.conf.	Add	discard=on	to	the	drive

properties	of	virtio0,	like	the	following:

								#	<rbd_storage>:<virtual_disk>,cache=writethrough,

								size=50G,discard=on			

Issue	–	the	RBD	couldn’t	connect	to
cluster	(500)	error	when	connecting
Ceph	with	Proxmox
Authentication	failure	is	the	most	common	cause	for	this	error	when	Ceph
RBD	storage	cannot	connect	to	Proxmox.	Proxmox	requires	a	copy	of	the
Ceph	admin	keyring	to	authenticate.	The	name	of	the	keyring	must	match	the
storage	ID	assigned	through	the	Proxmox	GUI.	Refer	to	Chapter	5,	Installing
and	Configuring	Ceph,	for	information	on	how	to	set	up	the	Ceph	cluster	to
be	used	as	storage	backend.

Issue	–	changing	the	storage	type
from	IDE	to	VirtIO	after	the	VM
has	been	set	up	and	the	OS	has	been
installed
If	IDE	was	used	during	the	initial	VM	setup	and	needs	to	be	changed	to
VirtIO	later,	this	can	be	done	through	the	Proxmox	GUI	without	reinstalling
the	OS.	The	VM	will	need	to	be	powered	off	first,	and	then	the	virtual	disk
needs	to	be	removed	through	the	Proxmox	GUI.	After	clicking	on	Remove,
the	virtual	disk	will	become	unused,	as	shown	in	the	following	screenshot:

	

Double-click	on	the	unused	virtual	disk	or	navigate	to	Add	|	Hard	Disk	to	add
it	back	to	the	VM.	Select	VirtIO	as	Bus/Device	from	the	dialog	box.	It	is	very
important	to	keep	in	mind	that	following	this	procedure	on	a	Windows	VM,
which	has	one	single	IDE	disk	image,	will	make	the	VM	inaccessible.	The
reason	is	Windows	does	not	come	equipped	with	VirtIO	driver,	it	needs	to	be
manually	loaded.	To	change	the	primary	Windows	disk	image	from	IDE	to
VirtIO,	add	a	second	disk	image	of	any	size	into	the	Windows	guest	VM,	then
boot	into	it.	Load	the	VirtIO	driver	ISO	file	downloaded	from	https://fedorapeople.
org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso.

Go	to	Control	Panel	|	Device	Manager	and	update	the	disk	drive	detected
using	the	driver	from	the	loaded	ISO	image.	Once	the	proper	driver	is	loaded
and	the	VirtIO	disk	drive	is	fully	recognized,	shutdown	Windows.	Then
remove	the	disk	image	added	for	this	purpose	and	follow	the	steps	described
earlier	in	this	section.

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso

Issue	–	the	pveceph	configuration
not	initialized	(500)	error	when	you
click	on	the	Ceph	tab	in	the
Proxmox	GUI
This	error	occurs	when	you	click	on	the	Ceph	tab	in	the	Proxmox	GUI
without	initializing	the	Ceph	storage.	If	Ceph	is	not	going	to	be	used	along
with	Proxmox	on	the	same	cluster,	then	this	error	should	simply	be	ignored.
But	if	any	Proxmox	node	is	going	to	be	used	to	manage	Ceph	through	the
Proxmox	GUI,	then	simply	copy	the	Ceph	configuration	file	from
/etc/pve/ceph.conf	into	/etc/ceph/ceph.conf,	which	will	allow	you	to	manage	Ceph
even	if	there	is	no	OSD	or	mon	in	that	node.	Since	Ceph	configuration	may
change	over	time,	it	is	recommended	to	create	a	symlink	for	the	configuration
file	instead	of	a	simple	copy.	The	following	command	will	create	a	symlink	of
the	Ceph	configuration	file	in	the	/etc/ceph	directory:

						#	ln	-s	/etc/pve/ceph.conf	/etc/ceph/ceph.conf

Issue	–	the	CephFS	storage
disappears	after	a	Proxmox	node
reboots
CephFS	needs	to	be	mounted	in	order	to	make	it	available	for	storage	service.
If	the	mount	point	is	not	set	in	/etc/fstab,	it	will	need	to	be	remounted	after
each	reboot.	The	following	format	is	used	to	enter	the	CephFS	in	/etc/fstab:

id={user-ID}[,conf={path/to/conf.conf}]	/mount/path		fuse.ceph	defaults	0	0	

id=admin,conf=/etc/ceph/conf.conf	/mnt/<path>		fuse.ceph	defaults	0	0	

Issue	–	VM	cloning	does	not	parse	in
the	Ceph	storage
When	full	cloning	is	performed	on	a	virtual	machine	stored	on	Ceph	storage,
it	looses	parse	on	the	virtual	disk.	For	cloning,	Proxmox	uses	the	qemu-img
method	instead	of	rbd	flattening.	Until	it	is	implemented	in	later	versions	of
Proxmox,	VM	clones	will	lose	parsing	on	Ceph	storage.

Issue	–	VM	disk	images	stored	on
ZFS	is	extremely	slow
If	the	VM	disk	images	are	stored	on	ZFS	storage,	which	is	configured	as
RAIDZ3,	the	VMs	will	suffer	a	big	performance	loss.	Especially	if	the	ZFS
loses	a	drive	and	it	goes	into	data	rebalancing,	the	load	on	the	storage	will
make	the	VM	almost	unusable.	When	using	ZFS,	the	RAID10	will	provide
the	best	performance	possible	from	ZFS	storage.	RAID10	will	have	paired
vdevs	where	data	will	be	mirrored	and	then	will	be	stripped	among	multiple
vdevs.	One	drawback	of	using	RAID10	is	it	provides	half	of	the	disk	capacity
of	the	total	number	of	drives.	For	example,	if	20	2	TB	drives	are	used	in	a
RAID10	ZFS	configuration,	then	the	usable	space	will	only	be	20	TB.	For	a
non-critical	node	such	as	backup	storage,	the	use	of	RAIDZ3	could	be	a	good
choice,	since	it	will	provide	the	maximum	capacity	possible	at	the	expense	of
performance.

Network	connectivity	issues
This	section	contains	issues	related	to	virtual	or	physical	network	connectivity
within	Proxmox.

Issue	–	no	connectivity	on	Realtek
RTL8111/8411	rev.	06	network
interfaces
Some	newer	Realtek	chipsets	don’t	get	compiled	with	the	right	drivers.	This
causes	the	interface	to	be	up	without	any	network	traffic.	In	order	to	fix	this
issue,	the	older	driver	needs	to	be	downloaded	from	the	Realtek	site	and
compiled	manually.	The	driver	can	be	downloaded	from	http://www.realtek.com.tw/
Downloads/.

Since	this	driver	is	manually	installed,	during	a	kernel	update	it	will	get
updated	automatically.	To	prevent	this	and	ensure	that	the	driver	builds	itself
automatically	when	a	new	kernel	is	installed,	run	the	following	commands
and	then	reboot	the	node:

				#	apt-get	install	dkms	build-essential	pve-headers-4.10.15-pve

				#	mkdir	/usr/src/r8168-8.037.00

				#	cat	<<	EOF	>	/usr/src/r8168-8.037.00/dkms.conf

				PACKAGE_NAME=r8168

				PACKAGE_VERSION=8.037.00

				MAKE[0]="'make'"

				BUILT_MODULE_NAME[0]=r8168

				BUILT_MODULE_LOCATION[0]="src/"

				DEST_MODULE_LOCATION[0]="/kernel/updates/dkms"

				AUTOINSTALL="YES"

				EOF		

				#	dkms	add	-m	r8168	-v	8.037.00

				#	dkms	build	-m	r8168	-v	8.037.00	

				#	dkms	install	-m	r8168	-v	8.037.00	

				#	dkms	status

http://www.realtek.com.tw/Downloads/

Issue	–	network	performance	is
slower	with	the	E1000	virtual
network	interfaces
The	performance	of	the	E1000	virtual	network	interfaces	is	about	30-35%	less
than	VirtIO	virtual	network	interfaces.	Changing	vNICs	to	VirtIO	will
increase	the	overall	network	bandwidth	of	a	virtual	machine.	The	VirtIO
drivers	are	included	in	all	major	Linux	flavors.	For	Windows	machines,	an
ISO	file	with	VirtIO	drivers	can	be	downloaded	from	http://www.linux-kvm.org/page/
WindowsGuestDrivers/Download_Drivers.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

Issue	–	patch	port	for	Open	vSwitch
in	Proxmox	not	working
Currently,	there	are	three	Open	vSwitch	options	that	are	fully	supported
through	Proxmox,	such	as	OVSBridge,	OVSIntPort,	and	OVSBond.	The
OVSPatchPort	option	that	is	required	for	the	patch	port	cannot	be	configured
through	the	Proxmox	GUI.	Thus,	even	if	we	manually	create	a	configuration
in	the	network	interface	file,	it	still	seems	to	be	out	of	reach.	An	alternative
solution	where	the	patch	port	is	required	is	to	use	an	Open	vSwitch	fake
bridge.	A	patch	port	allows	us	to	create	an	extension	of	the	main	bridge.	For
example,	if	we	are	connecting	two	physical	switches	with	each	other,	the
ports	where		we	will	connect	the	network	cable	to	becomes	patch	ports	for
these	two	switches.	Fake	bridges	look	and	act	like	full	Open	vSwitch	bridges
but	are	tied	to	a	particular	VLAN.	A	fake	bridge	depends	on	an	already
configured	main	Open	vSwitch	bridge.	Assuming	that	the	main	bridge	is
vmbr0,	the	content	of	the	/etc/network/interfaces	will	look	as	follows	for	a	fake
bridge	named	11	for	VLAN	ID	#11:

				auto	vmbr11

				allow-vmbr0	vmbr11

				iface	vmbr11	inet	manual

						ovs_bridge	vmbr0

						ovs_type	OVSBridge

						ovs_options	vmbr0	11		

The	entry	option	for	a	fake	bridge	is	as	follows:
ovs_options	<main_bridge>	<vlan_id>	

We	can	now	connect	a	VM	to	this	bridge	without	assigning	any	VLAN	ID	to
the	virtual	network	interface.

Issue	–	trying	to	add	a	node	to	a
newly	created	Proxmox	cluster	when
nodes	do	not	form	quorum
From	Proxmox	4.0	and	later,	we	now	require	the	multicast	feature.	Without
this,	nodes	will	be	unable	to	form	quorum.	So,	when	we	add	a	new	node	to	a
cluster,	if	the	process	gets	stuck	at	Waiting	for	Quorum…,	we	need	to	ensure
that	multicast	is	enabled	on	the	switch.	As	soon	as	multicast	is	available,
nodes	will	form	quorum	without	any	issues.

Issue	–	implemented	IPv6	but
firewall	rules	do	not	get	applied
All	firewall	rules	are	primarily	applied	to	IPv4	traffic.	In	order	to	also	apply
these	rules	to	IPv6,	we	need	to	ensure	that	the	following	entry	is	present	in
/etc/network/interfaces:

iface	lo	inet6	loopback	

We	also	need	to	load	the	IPv6	driver	into	/etc/modules	during	boot.	Simply	add
the	following	entry	in	/etc/modules:

ipv6

KVM	virtual	machine	issues
This	section	contains	issues	related	to	KVM	virtual	machines	only.

Issue	–	Windows	7/XP	machine
converted	to	Proxmox	KVM	hangs
during	boot
The	Windows	operating	system	can	be	unforgiving	when	you	convert	or
migrate	from	one	type	of	hardware	to	another.	It	is	certainly	possible	to
convert/migrate	just	about	any	Windows	OS,	as	long	as	a	proper	procedure	is
followed.	For	in-depth	information	on	the	proper	procedure	to	migrate
Windows	machines	to	a	virtual	machine,	refer	to	http://pve.proxmox.com/wiki/Migratio
n_of_servers_to_Proxmox_VE#mergeide.

http://pve.proxmox.com/wiki/Migration_of_servers_to_Proxmox_VE#mergeide

Issue	–	Windows	7	VM	does	not
reboot,	instead	it	shuts	down,
requiring	a	manual	boot	from
Proxmox
This	issue	causes	a	Windows	7	virtual	machine	to	shut	down	when	a	reboot	is
initiated	from	within	the	OS.	A	manual	power-on	through	the	Proxmox	GUI
is	required	to	power	up	the	VM.	This	is	an	issue	caused	by	the	installation	of
Windows	itself,	especially	a	VM	that	is	configured	with	a	standard	video.
Changing	the	display	to	SPICE	solves	the	issue	for	this	type	of	Windows	7
virtual	machine.	This	is	not	a	common	occurrence	and	causes	an	issue	in
some	Windows	7	VMs,	while	others	run	just	fine.	Following	screenshot
shows	the	display	adapter	selected	as	SPICE:

Issue	–	the	qemu-img	command
does	not	convert	the	.vmdk	image
files	created	with	the	.ova	template
in	Proxmox	VE	5.0
The	.vmdk	image	files	created	with	VMware’s	.ova	template	may	present	the
following	error	messages	during	conversion	with	the	qemu-img	command:

#	qemu-img	convert	-f	vmdk	disk1.vmdk	-O	qcow2	vm-101-disk-1.qcow2

qemu-img:	'image'	uses	a	vmdk	feature	which	is	not	supported	by	this	qemu	version:	

VMDK	version	3

qemu-img:	Could	not	open	'disk1.vmdk':	Could	not	open	'disk1.vmdk':	Wrong	medium	

type

qemu-img:	Could	not	open	'disk1.vmdk'		

The	.vmdk3	format	is	only	supported	in	pve-qemu-kvm	2.0	and	later.	Enter	the
following	command	to	check	the	version	installed	in	the	Proxmox	node:

				#	pveversion	-v	|	grep	pve-qemu-kvm	

Look	for	the	version	number	of	pve-qemu-kvm.	A	.vmdk	file	can	still	be	converted
by	following	the	instructions	given	at	http://ask.xmodulo.com/convert-ova-to-qcow2-linux.
html.

http://ask.xmodulo.com/convert-ova-to-qcow2-linux.html

Issue	–	online	migration	of	a	virtual
machine	fails	with	a	failed	to	sync
data	error
In	order	to	migrate	virtual	machines	online	without	powering	them	off,	the
virtual	disk	of	the	VM	must	be	on	a	shared	storage	system.	Any	VM	with	a
virtual	disk	on	local	storage	cannot	be	migrated	live.	The	error	will	look	as
follows:

Aug	12	19:54:37	starting	migration	of	VM	134	to	node	'pmx-02'	(172.17.2.2)	

Aug	12	19:54:37	copying	disk	images	

Aug	12	19:54:37	ERROR:	Failed	to	sync	data	-	can't	do	online	migration	-	VM	uses	

local	disks	

Aug	12	19:54:37	aborting	phase	1	-	cleanup	resources	

Aug	12	19:54:37	ERROR:	migration	aborted	(duration	00:00:00):	Failed	to	sync	data	-	

can't	do	online	migration	-	VM	uses	local	disks	

TASK	ERROR:	migration	aborted	

Issue	–	no	audio	in	Windows	KVM
Sound	devices	must	be	added	manually	by	adding	the	following	line	in	a
KVM	virtual	machine	configuration	file	located	in	/etc/pve/qemu-
server/<vm_id>.conf:

args:	-device	intel-hda,id=sound5,bus=pci.0,addr=0x18	-device	hda-micro,id=sound5-

codec0,bus=sound5.0,cad=0	-device	hda-duplex,id=sound5-codec1,bus=sound5.0,cad=1	

After	saving	the	configuration	file,	the	VM	will	need	to	be	powered	off	and
then	powered	on.	Windows	7	and	later	will	automatically	install	the	necessary
driver	for	the	sound	device.

Issue	–	the	VirtIO	virtual	disk	is	not
available	during	the	Windows
Server	installation
The	VirtIO	drivers	are	not	included	in	the	Windows	Server	installation.
During	the	installation,	the	Windows	setup	will	not	see	any	VirtIO	virtual
disks	attached	to	the	virtual	machine.	A	VirtIO	driver	must	be	downloaded
and	loaded	during	the	installation	in	order	to	activate	the	VirtIO	virtual	disk
with	the	Windows	operating	system.	The	ISO	image	of	VirtIO	drivers	can	be
downloaded	from	http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

LXC	container	issues
This	section	contains	issues	related	to	LXC	containers	only.

Issue	–	a	Proxmox	node	hangs	when
trying	to	stop	or	restart	an	LXC
container
This	has	been	an	issue	since	the	initial	release	of	Proxmox	VE	4.0.	Due	to	a
bug	when	shutdown,	stop,	or	restart	was	initiated	for	LXC	container	from
GUI,	the	node	itself	became	unusable	and	all	network	connectivity	was	lost.
The	only	way	to	come	out	of	it	was	to	reboot	the	entire	node.	In	consecutive
later	releases,	this	issue	has	been	addressed	and	patched	by	Proxmox
developers.	If	you	are	in	Proxmox	4.0,	an	immediate	upgrade	to	4.1	or	later	is
highly	recommended.

Issue	–	the	noVNC	console	only
shows	a	cursor	for	LXC	containers
Due	to	unknown	reasons,	the	noVNC	console	may	only	show	a	cursor,	as
shown	in	the	following	screenshot,	when	trying	to	access	an	LXC	container:

	

This	does	not	mean	that	the	container	is	frozen.	Simply	hit	Enter	to	get	to	the
login	prompt.

Backup/restore	issues
This	section	contains	issues	related	to	backing	up	and	restoring	Proxmox.

Issue	–	a	Proxmox	VM	is	locked
after	backup	crashes	unexpectedly
This	is	a	common	cause	after	a	VM	backup	is	interrupted	or	crashed.	Simply
unlocking	the	VM	through	SSH	using	the	following	command	will	fix	this
issue:

				#	qm	unlock	<vm_id>

Issue	–	how	can	Proxmox	back	up
only	the	primary	OS	virtual	disk
instead	of	all	the	virtual	disks	for	a
VM?
By	default,	a	Proxmox	backup	will	back	up	all	the	virtual	disks	assigned	to	a
VM.	If	we	want	to	exclude	certain	virtual	disks	from	the	backup	process,	we
only	need	to	add	the	backup=no	option	at	the	end	of	a	virtual	disk	line	item	in
<vm_id>.conf,	as	follows:

virtio0:	rbd-hdd-01:vm-101-disk1,size=80G	

virtio0:	rbd-hdd-01:vm-101-disk2,size=200G,backup=no	

In	the	previous	example,	the	virtual	machine	has	two	virtual	disks.	The	disk1
is	for	the	primary	OS	and	disk2	is	for	the	secondary.	By	adding	backup=no,
Proxmox	will	skip	this	disk	during	the	backup	process	and	only	back	up	the
primary	disk.

Issue	–	backup	of	virtual	machines
stops	prematurely	with	an	operation
not	permitted	error
This	error	usually	looks	like	this	from	syslog	of	the	Proxmox	node:

ERROR:	job	failed	with	err	-1	-	Operation	not	permitted	

INFO:	aborting	backup	job	

INFO:	stopping	kvm	after	backup	task	

ERROR:	Backup	of	VM	101	failed	-	job	failed	with	err	-1	-	Operation	not	permitted	

The	primary	cause	of	this	issue	is	when	the	backup	storage	has	less	space	than
the	total	storage	required	for	an	assigned	backup	task.	Verify	the	total	storage
space	that	is	required	for	backing	up	the	selected	virtual	machines.

Issue	–	a	backup	task	takes	a	very
long	time	to	complete,	or	it	crashes
when	multiple	nodes	are	backing	up
to	the	same	backup	storage
When	multiple	Proxmox	nodes	are	backing	up	to	the	same	backup	storage
simultaneously,	it	tends	to	take	a	very	long	time	or	the	backup	crashes.	This	is
a	common	occurrence	when	backup	traffic	coexists	with	the	main	cluster
traffic	on	a	gigabit	network	and	the	backup	node	only	has	one	network
interface.	By	separating	backups	in	multiple	subnets	over	multiple	network
interfaces,	we	can	prevent	this	issue.

Issue	–	backup	of	virtual	machines
aborts	a	backup	task	prematurely
During	a	VM	backup,	the	following	error	message	appears	in	the	backup	log
after	it	aborts	a	running	backup	task:

101:	INFO:	status:	1%	(129309081/4294967296),	sparse	0%	(886784),	duration	91,	

33/33	MB/s	

[...]	

107:	INFO:	status:	80%	(2706263244/4294967296),	sparse	16%	(698703462),	duration	

1950,	5/4	MB/s	

107:	ERROR:	interrupted	by	signal	

107:	INFO:	aborting	backup	job	

This	error	usually	occurs	when	there	is	a	version	mismatch	for	the	pve-qemu-kvm
package	in	Proxmox.	At	the	time	of	writing,	the	available	pve-qemu-kvm	package
version	is	2.9.0-4.	Check	for	the	version	that	is	installed	when	you	get	this
error	during	a	backup.	If	you’re	using	an	older	version,	then	upgrade	to	the
latest	version	using	the	following	command	to	fix	the	issue.

Issue	–	backup	storage	has	a	lot	of
.dat	files	and	.tmp	folders	using	the
storage	space
Due	to	a	backup	crash	or	unfinished	backups,	there	may	be	backup	files
leftover	in	the	backup	storage,	such	as	the	.dat	files	and	.tmp	folders.	These
files	and	folders	can	be	easily	deleted	to	reclaim	storage	space.

VNC/SPICE	console	issues
This	section	contains	issues	related	to	the	VNC	and	SPICE	consoles	in
Proxmox.

Issue	–	the	mouse	pointer	is	not
shared	with	SPICE	(virt-viewer)	on
Windows	8	VM
In	order	to	have	a	seamless	mouse	point	between	the	VM	and	host	machine,
SPICE	guest	tools	must	be	installed	inside	the	VM.	The	guest	tools	package
contains	full	driver	support	for	Windows	7	and	Windows	2008	R2.	However,
the	support	for	Windows	8	or	8.1	is	close	to	nonexistent.

Issue	–	remote	viewer	is	unable	to
connect	to	a	SPICE-enabled	virtual
machine	on	the	Windows	OS
This	issue	is	caused	by	a	firewall	that	blocks	the	SPICE	port,	which	prevents
SPICE-enabled	virtual	machines	from	being	connected	to	SPICE.	Open	port
3128	from	Windows	firewall	to	allow	remote	viewer	to	connect	to	a	SPICE
virtual	machine.

Firewall	issues
This	section	shows	issues	regarding	the	Proxmox	firewall	feature.

Issue	–	rules	are	created	and	a
firewall	is	enabled	for	vNIC,	but
rules	do	not	get	applied
On	rare	occasions,	due	to	changes	in	the	network	interface	or	other	reasons,
the	firewall	service	may	get	stuck.	In	such	cases,	we	can	restart	the	service
using	the	following	command:

				#	systemctl	restart	pve-firewall

If	the	previous	command	does	not	help,	then	check	the	syslog	of	the	node	to
look	for	a	clue.	If	nothing	helps,	then	a	reboot	will	clear	any	firewall	issues.
As	of	Proxmox	VE	5.0,	if	a	firewall	becomes	inactive,	it	does	not	fall	back	on
a	predefined	set	of	protection;	a	firewall	simply	becomes	nonexistent.

Issue	–	a	firewall	is	enabled	for	a
VM	and	the	necessary	rules	are
created,	but	nothing	is	being	filtered
for	that	VM
This	issue	may	occur	when	the	firewall	is	not	enabled	in	the	virtual	network
interface	of	the	VM.	For	each	VM,	a	firewall	needs	to	be	enabled	in	two
different	places.	The	first	one	is	under	the	Firewall	tab	menu,	as	shown	in	the
following	screenshot:

Another	place	where	the	firewall	needs	to	be	enabled	is	in	the	vNIC	of	the
VM,	as	shown	in	the	following	screenshot:

Summary
We	hope	this	troubleshooting	chapter	has	provided	you	with	some	insight	into
some	of	the	common	issues	that	are	most	likely	to	surface	in	a	Proxmox
cluster.	As	mentioned	earlier	in	this	chapter,	this	is	by	no	means	a	complete
list	of	all	the	possible	issues.	If	at	all	possible,	always	hold	off	major	Proxmox
upgrades	for	a	production	cluster.	Give	it	some	time	to	work	out	the	bugs.
This	way,	your	cluster	will	have	very	little	chance	of	going	down	due	to	any
unforeseen	bugs.

Purchasing	a	Proxmox	subscription	is	the	best	way	to	ensure	that	there	are
fewer	bugs	in	the	repositories,	since	Proxmox	Enterprise	repositories	go
through	an	additional	layer	of	scrutiny	and	testing.	For	information	on
Proxmox	subscriptions,	refer	to	https://www.proxmox.com/proxmox-ve/pricing.

The	Proxmox	forum	is	also	a	great	place	to	ask	for	help	or	share	issues	with
the	community.	There	are	many	forum	users	who	are	ready	to	provide	their
expertise.	Visit	the	forum	at	http://forum.proxmox.com.

https://www.proxmox.com/proxmox-ve/pricing
http://forum.proxmox.com

Rescuing	Proxmox
Whether	we	want	to	accept	it	or	not,	a	network	environment	is	always	at	risk
of	something	going	wrong.	Even	if	we	take	out	the	hardware	and	software
from	the	equation,	there	is	always	the	human	factor.	Sometimes	all	it	takes	is
a	small	mistake	that	can	snowball	very	rapidly	to	something	major.	A	well
thought	out	disaster	plan	can	go	a	long	way	to	combating	a	situation,	or
sometimes	on	the	ball	quick	thinking	can	save	the	day.

As	we	approach	the	end	of	the	book,	in	this	concluding	chapter	we	are	going
to	see	some	situations	where	things	went	wrong	and	what	do	to	do	when	the
same	happens	to	you	in	the	virtual	environment	you	are	part	of.	Like	Chapter	15,
Proxmox	Troubleshooting,	these	are	not	all-inclusive	scenarios.	You	may,	or
will,	come	across	other	situations	that	are	not	covered	in	this	chapter.	As	a
good	administrator,	you	can	expand	on	this	through	your	own	documentation,
but	we	hope	we	were	able	to	put	together	some	critical	situations	that	you
may	face	in	your	career	and	that	the	solutions	provided	here	will	prove
extremely	valuable.

This	chapter	is	divided	into	the	following	categories	of	scenario:

Recovering	from	OS	drive	failure
Recovering	from	a	quorum	failure
Recovering	from	a	node	failure
Recovering	from	a	network	failure
Recovering	from	Ceph	failure

Recovering	from	OS	drive	failure
OS	drive	failure	is	one	of	the	critical	failures	when	a	node	becomes	fully
inaccessible.	Since	Proxmox	stores	all	cluster-related	configuration	files	on
Proxmox	Cluster	file	system	(pmxcfs),	no	cluster	data	is	lost	even	when	the
OS	drive	fails	completely.	Refer	to	Chapter	3,	Proxmox	under	the	Hood,	to
recap	details	on	pmxcfs.	There	are	mainly	two	types	of	OS	drive	failure:

Physical	drive	failure
OS	data	corruption

Physical	drive	failure
This	failure	occurs	when	the	physical	drive	itself	becomes	completely
unusable	or	defective.	In	this	scenario,	the	only	option	is	to	replace	the
damaged	drive	with	a	new	one	and	install	clean	Proxmox	VE	on	it.	One	way
to	prevent	downtime	due	to	physical	drive	failure	is	to	use	two	physical	drives
for	the	OS	in	mirror	mode.	During	Proxmox	installation,	we	can	select	the
Advanced	option	to	create	a	ZFS	mirror	on	two	physical	drives.	This	way
when	one	drive	becomes	physically	damaged,	it	does	not	cause	any	downtime
since	there	is	a	second	drive	with	all	of	the	OS	files.	This	same	RAID-level
redundancy	can	be	achieved	using	a	RAID	card	and	by	creating	Raid	1	on
two	physical	drives.	

OS	data	corruption
This	failure	occurs	when	no	physical	damage	has	occurred	but	critical	files	of
the	OS	itself	become	corrupted,	or	some	portion	of	the	OS	is	accidentally
deleted.	In	some	cases,	this	can	also	occur	due	to	an	incomplete	upgrade	or
due	to	the	presence	of	bugs	in	the	update	or	patch.	File	partition	corruption
can	also	cause	severe	unrecoverable	OS	data	corruption.	In	most	cases	when
there	is	a	filesystem	error	or	any	data	corruption,	the	OS	boot	process	will
drop	in	the	maintenance	shell	or	we	can	manually	enter	into	Proxmox	rescue
mode	by	rebooting	the	node	from	Proxmox	ISO	CDROM	and	selecting
Rescue	Boot,	as	shown	in	the	following	screenshot:

Migrating	VMs	from	a	faulty	node
Depending	on	the	nature	of	the	OS	drive	failure,	the	length	of	the	downtime
will	vary.	If	the	fix	takes	more	than	a	tolerable	amount	of	downtime,	then	it
may	be	necessary	to	start	the	VMs	previously	served	by	the	faulty	node	on
different	nodes	in	the	cluster.	When	the	VM	disk	images	are	stored	on	a
shared	storage	node,	then	we	can	simply	move	the	VM	configuration	file	to	a
different	node	and	turn	them	on.	The	following	commands	will	move	KVM
and	LXC	VMs	from	one	node	to	another	within	pmxcfs:

#	mv		/etc/pve/nodes/<faulty_node>/lxc/<lxc_id>.conf	

/etc/pve/nodes/<second_node>/lxc/<lxc_id>.conf

#	mv		/etc/pve/nodes/<faulty_node>/qemu-server/<kvm_id>.conf	

/etc/pve/nodes/<second_node>/qemu-server/<kvm_id>.conf

If	the	VM	disk	images	are	stored	locally	on	the	same	OS	drive,	the	previous
method,	however,	will	not	work,	because	if	the	drive	is	physically	damaged	or
corrupted,	so	will	the	VM	disk	images	be.	In	other	cases,	where	the	VM	disk
images	are	stored	locally	on	the	same	node	but	on	different	drives,	the
previous	method	will	also	not	work	since	the	VM	disk	images	will	need	to	be
moved	or	the	drives	will	need	to	be	mounted	on	a	different	node	first.

Reinstalling	Proxmox
If	the	Proxmox	OS	was	not	mirrored	or	if	the	OS	is	beyond	repair,	it	may	be
necessary	to	reinstall	Proxmox	on	a	new	or	reformatted	OS	drive.	If	the	node
was	part	of	a	cluster,	then	after	the	OS	reinstall,	simply	re-add	the	node	into
the	cluster.	If	both	IP	address	and	hostname	are	the	same	as	before,	it	may	be
necessary	to	add	the	node	forcefully	with	the	-f	option	in	the	pvecm	add
command.	Reinstalling	Proxmox	and	then	re-adding	to	the	cluster	may	be	a
faster	solution	in	most	cases	than	trying	to	fix	an	OS-related	issue,	but	each
use	case	will	vary	based	on	the	environment	and	where	disk	images	are
stored.	

Recovering	from	a	quorum	failure
There	are	various	reason	why	a	Proxmox	cluster	can	lose	a	quorum.	For	the
cluster	to	operate	correctly,	a	quorum	must	exist	within	the	nodes.	A	quorum
is	established	when	the	majority	of	the	nodes	are	online.	If	51%	of	the	nodes
go	offline	for	whatever	reason,	a	quorum	will	be	lost,	resulting	in	a	cluster
error.	A	Proxmox	quorum	relies	on	multicast.	So	if	multicast	gets	disabled	in
the	switch,	the	cluster	can	also	lose	a	quorum.	A	manual	misconfiguration	in
the	cluster	file	can	also	cause	loss	of	a	quorum.	When	a	quorum	is	lost,	the
following	error	messages	will	appear	in	log	files	under	/var/log/corosync:

......................

corosync[9999]:		[QUORUM]	Quorum	provider:	corosync_votequorum	failed	to	

initialize.

corosync[9999]:		[SERV]	Service	engine	'corosync_quorum'	failed	to	load	for	

reason

				'configuration	error:	nodelist	or	quorum.expected_votes	must	be	configured!'

......................

The	previous	error	may	be	because	the	hostname	of	the	node	could	not	be
resolved.	Adding	all	the	nodes’	hostnames	and	IP	addresses	to	/etc/hosts	may
help	establish	a	quorum.	The	following	is	the	host’s	file	content	of	our
example	node:

	

If	the	quorum	is	lost	due	to	manual	editing	of	the	cluster	configuration	file,
then	we	need	to	reverse	the	change	by	re-editing	the	/etc/pve/corosync.conf	file
or	restoring	it	from	a	recent	backup.	Note	that	after	a	quorum	is	lost,	the
pmxcfs	will	become	read-only	and	so	will	all	the	files	in	it,	including
corosync.conf.	To	be	able	to	edit	the	file,	we	can	run	the	following	command	to
temporarily	establish	a	quorum:

#	pvecm	expected	1

The	previous	command	sets	the	total	vote	count	to	1	and	lets	the	cluster

establish	a	quorum.	Always	make	sure	you	edit	the	local	copy	of	the	cluster
file	and	that	the	content	of	this	configuration	is	the	same	on	all	nodes.	Only
then	can	a	quorum	be	established.	Any	misconfiguration	will	cause	split-
brain,	causing	the	full	loss	of	a	quorum.	

It	is	of	utmost	importance	to	avoid	any	manual	configuration	of
the	corosync.conf	file.	If	manual	editing	becomes	necessary,	then
only	commit	changes	when	fully	capable	of	doing	so.	If	unsure
of	how	the	corosync.conf	file	works,	it	is	best	to	avoid	doing	it
yourself	and	seek	help	from	the	Proxmox	forum	or	paid	support.	

After	restoring	the	content	of	corosync.conf	with	a	working	configuration,
restart	the	cluster	using	the	following	commands:

#	systemctl	restart	pve-cluster

#	systemctl	restart	corosync

If	the	quorum	is	lost	or	unable	to	be	established	due	to	a	multicast	error,	then
the	first	step	is	to	check	if	the	multicast	is	properly	configured	or	exists	on	the
network.	We	can	use	the	following	command	format	to	check	multicast
between	nodes:

#	omping	-c	10000	-i	0.001	-F	-q	<node1_ip>	<node2_ip>

If	the	previous	test	fails,	that	means	multicast	does	not	exist	and	the	quorum	is
failing.	

Recovering	from	a	node	failure
A	Proxmox	node	can	physically	fail	due	to	hardware	component	failure	such
as	the	motherboard,	CPU,	memory,	power	supply	and	so	on,	while	the	OS
drive	remains	intact.	In	such	a	scenario,	we	can	simply	move	the	OS	drive	to
a	different	node	and	power	up.	The	new	node	does	not	need	to	be	identical	to
the	faulty	one	at	all.	Since	the	network	interface	may	be	different,	we	only
will	need	to	ensure	the	network	configuration	is	set	for	the	proper	interface.
Also,	if	the	Proxmox	OS	has	a	paid	subscription,	the	key	will	need	to	be
reissued.	Contact	the	seller	where	the	subscription	was	purchased	from	or
Proxmox	directly	to	get	the	subscription	key	reissued.

The	subscription	key	is	bound	to	the	hardware	component,	so	the	reissue	of
the	key	is	required	to	bind	the	subscription	key	to	the	new	hardware
component.	It	is	important	to	note	that	the	CPU	count	will	matter	when
moving	the	OS	drive	from	one	to	another	with	a	paid	subscription.	A
Proxmox	subscription	key	purchased	for	one	CPU	count	will	not	work	for
multiple	CPU	nodes.

If	the	failed	node	had	locally	stored	VM	disk	images	on	the	same	OS	drive,
the	VM	will	just	power	up	when	the	new	node	comes	online	with	the	moved
OS	drive	from	the	failed	node.	If	the	disk	images	were	stored	locally	on
separate	drives,	then	those	drives	will	also	need	to	be	moved	to	a	new	node,
and	mount	points	must	be	reconfigured	before	the	VM	can	be	powered	up.	

Recovering	from	a	network	failure
The	extent	of	network	failure	can	span	over	multiple	layers,	causing
interruption	between	the	Proxmox	node	and	the	user,	or	between	the	storage
node	and	Proxmox	nodes.	The	failure	can	occur	due	to	physical	network
interface	failure	or	an	accidental	network	cable	pull	from	nodes.	The	network
failure	can	also	occur	due	to	heavy	network	traffic,	which	may	be	caused	by
but	not	limited	to	running	a	backup	task	on	the	same	network	path.	In	most
production	environments,	server	nodes	usually	contain	more	than	one
network	interface	for	redundancy	to	reduce	the	loss	of	network	connectivity
to	a	minimum.	The	three	most	common	scenarios	for	network	connectivity
interruptions	are	explained	in	the	following	sections.	

Loss	of	connectivity	between
Proxmox	nodes
In	this	scenario,	network	connectivity	is	only	interrupted	between	Proxmox
nodes	in	a	cluster.	When	over	half	of	the	Proxmox	nodes	in	a	cluster	cannot
communicate	with	each	other,	a	quorum	cannot	be	established.	If	multiple
nodes	lose	network	connectivity	simultaneously,	this	usually	indicates	a
network	switch	failure.	This	is	a	common	scenario	when	a	Proxmox	cluster	is
on	a	dedicated	management	interface.	So	a	loss	of	this	connectivity	only
interrupts	the	quorum	but	not	the	VMs	running	on	the	nodes	and	users
accessing	it.	When	a	quorum	is	lost,	VMs	in	respective	nodes	function
properly	but	from	the	GUI	they	may	appear	offline,	including	the	nodes
themselves,	as	shown	in	the	following	screenshot:

	
In	the	previous	screenshot,	the	cluster	lost	a	quorum	so	while	accessing	the
GUI	from	node	pmx-03,	all	other	nodes	appear	offline	even	though	they	are
running.	

Loss	of	connectivity	between
Proxmox	nodes	and	users
In	this	scenario,	when	the	connection	between	the	user	and	Proxmox	node	is
lost	but	the	connection	between	Proxmox	nodes	and	storage	is	unaffected,
then	the	VM	continues	to	run	fine,	except	users	cannot	access	the	VMs.	If	a
single	interface	is	used	for	the	Proxmox	management	and	Proxmox	public-
side	traffic,	then	a	loss	of	connectivity	on	this	interface	will	interrupt	cluster
communication	and	users	will	not	be	able	to	access	their	VMs	running	on	this
node.	This	will	also	prevent	any	console	access	through	SSH.	If	another
interface	is	used	for	shared	storage	and	that	interface	did	not	lose
connectivity,	then	the	VM	itself	will	keep	running	without	interruption.
Restoring	connectivity	will	resume	all	usual	operation	of	the	node	within
moments.	

Another	scenario	when	a	node	itself	can	lose	network	connectivity	is	the	use
of	Open	vSwitch.	In	Proxmox	4.4,	there	was	a	situation	when	the	node	was
updated	and	rebooted,	but	the	node	could	not	start	the	network	interface	due
to	an	updated	Open	vSwitch	package.	The	network	service	needed	to	be
manually	restarted.	If	the	node	is	in	a	remote	location	without	immediate
access,	and	if	there	were	other	network	interfaces	in	the	node	configured,	that
were	not	Open	vSwitch-dependent,	such	as	InfiniBand	or	standard	Linux
bridging	on	a	different	subnet,	then	we	could	still	access	the	node	from
another	node	through	a	different	network	interface.	

Loss	of	connectivity	between
Proxmox	and	storage	nodes
If	the	network	connectivity	between	Proxmox	nodes	and	storage	nodes	is	lost,
users	will	experience	a	frozen	state	in	their	VMs.	If	the	connection	is	stored
within	a	reasonable	amount	of	time,	the	VM	will	resume	operation.	If	the
connection	is	not	restored	after	an	extended	amount	of	time,	the	VM	will	need
to	be	restarted	after	the	connection	is	restored.	The	reason	VMs	can	continue
operating	after	the	connection	is	restored	is	that	VM	data	remains	in	the
memory,	which	is	not	directly	affected	by	the	storage	node.	

Usually,	network	connectivity	affecting	multiple	nodes	can	be	traced	down	to
a	physical	network	switch,	while	a	single	node	network	connectivity	loss	is
due	to	the	node	itself	or	a	single	network	cable.	

Recovering	from	Ceph	failure
Ceph	is	a	very	resilient,	highly	available	storage	system.	Once	a	Ceph	cluster
is	configured,	for	the	most	part,	it	can	run	maintenance	free.	In	most	cases,
lack	of	knowledge	on	how	Ceph	works	leads	to	major	issues,	causing	cluster-
side	interference.	In	this	section,	we	will	highlight	some	of	the	most	common
issues	and	how	to	combat	them	in	a	Ceph	cluster.	

Best	practices	for	a	healthy	Ceph
cluster
The	following	are	a	few	best	practices	to	keep	a	Ceph	cluster	running	healthy:

If	possible,	keep	all	settings	to	default	for	a	healthy	cluster.
Use	Ceph	pool	only	to	implement	a	different	OSD	type	policy	and	not
for	multitenancy,	such	as	one	pool	for	SSDs	and	another	for	HDDs.
Do	not	make	frequent	Ceph	configuration	changes.	It	adds	extra
workload	on	the	cluster	OSDs,	reducing	the	life	of	HDDs.	After	each
change,	let	the	cluster	rebalance	data	before	making	new	changes.	
Always	keep	in	mind	the	core	count	of	Ceph	nodes	when	adjusting	Ceph
threads.	Do	not	let	the	number	of	threads	become	more	than	the	core
count.
In	a	small	Ceph	cluster,	SSDs	will	increase	write	performance.	In	a	large
cluster,	a	higher	OSD	count	will	increase	performance.
Do	not	use	desktop	class	hard	drives	as	OSDs	in	a	small	cluster.
Reduce	backfill	and	recovery	threads	to	a	minimum	to	continue	recovery
without	hurting	client	request	performance.

Stuck	inconsistent	PGs	in	Ceph
Over	time,	Ceph	PGs	may	become	inconsistent.	The	following	steps	will	help
us	to	find	the	inconsistent	PG	and	repair	it:

1.	 Get	PG	name:

								#	ceph	health	detail

2.	 Run	this	command	to	repair	the	PG:

								#	ceph	pg	repair	

Stuck	inactive	incomplete	PGs	in
Ceph
If	any	PG	is	stuck	due	to	OSD	or	node	failure	and	becomes	unhealthy,
resulting	in	the	cluster	becoming	inaccessible	due	to	a	blocked	request	for
greater	than	32	secs,	try	the	following:

1.	 Set	noout	to	prevent	data	rebalancing:

								#ceph	osd	set	noout

2.	 Query	the	PG	to	see	which	are	the	probing	OSDs:

								#	ceph	pg	xx.x	query

3.	 Go	to	each	probing	OSD	and	delete	the	header	folder	here:

								var/lib/ceph/osd/ceph-X/current/xx.x_head/

4.	 Restart	all	OSDs.	

5.	 Run	a	PG	query	to	see	the	PG	does	not	exist.	It	should	show	something
like	a	NOENT	message.

6.	 Force	create	a	PG:

								#	ceph	pg	force_pg_create	x.xx

7.	 Restart	PG	OSDs.

Warning	!!
Follow	this	only	if	all	attempts	to	restore	the	placement	group	or
PG	have	failed.	This	will	cause	data	loss.		

Error	while	moving	a	Ceph	journal
to	another	drive
When	a	Ceph	journal	is	on	SSD,	it	provides	the	fastest	performance	in	a	small
Ceph	cluster	with	less	than	50	OSDs.	If	a	cluster	was	created	initially	with
OSDs	co-located	on	the	same	spinner	HDD,	then	it	needs	to	be	moved	to	SSD
for	journaling.	There	are	a	few	steps	that	must	be	followed	to	ensure	a	Ceph
journal	can	be	written	onto	a	new	drive.	When	using	SSD	as	a	journaling
drive,	always	ensure	not	to	overload	it	with	too	much	journals	for	multiple
OSDs.	As	a	rule	of	thumb,	one	SSD	should	be	used	for	every	five	OSDs.	We
can	allocate	multiple	partitions	on	an	SSD	to	store	journals	for	multiple
OSDs.	If	proper	steps	are	not	followed	to	create	a	journaling	drive,	the
respective	OSDs	will	not	be	able	to	start.	The	following	steps	will	move	an
OSD	journal	to	another	drive:

1.	 Format	the	SSD	and	create	a	number	of	partitions	based	on	the	number
of	OSD	journals	needing	to	be	stored.	

2.	 Stop	the	OSD	using	this	command:	

								#	service	ceph	stop	osd.<id>

3.	 Flush	the	journal	for	the	OSD:	

								#	ceph-osd	-i	<id>	--flush-journal

4.	 Create	Symlink:	

								#	rm	/var/lib/ceph/osd/osd.<id>/journal

								#	ln	-s	/dev/sdX	/var/lib/ceph/osd/osd.<id>/journal

5.	 Create	a	new	journal:

								#	ceph-osd	-i	<id>	--mkjournal

6.	 Start	the	OSD:

								#	service	ceph	stop	osd.<id>

As	of	Proxmox	5.5,	we	can	start/stop	OSDs	from	the	GUI,	but	we	cannot
move	the	journal	drive.	However,	when	creating	new	OSDs	through	the	GUI,
we	can	manually	select	which	drive	we	want	to	use	as	the	journaling	drive,	as

shown	in	the	following	screenshot:

Ceph	node	running	out	of	resources
during	recovery
On	day-to-day	operations,	a	Ceph	node	uses	very	little	resources	such	as	CPU
and	memory.	But	during	a	cluster	recovery,	Ceph	redistributes	a	large	amount
of	data	between	OSDs,	which	uses	up	a	large	portion	of	the	node	resources.	If
a	node	is	constantly	running	out	of	resources	during	recovery,	check	whether
there	are	any	VMs	running	on	that	node.	Those	VMs	will	need	to	be	powered
off	or	migrated	to	another	node	until	the	rebalancing	finishes.	If	this	is	not	the
case,	then	check	the	available	resources	of	the	node.	It	may	be	that	the	node
simply	does	not	have	enough	resources	to	keep	up	with	the	Ceph	recovery.
Another	common	reason	for	running	out	of	resources	is	that	Ceph	may	be
configured	with	higher	performance	values,	such	as	a	number	of	threads
allocated	for	recovery	or	maximum	backfills	allowed.	A	great	feature	of	Ceph
is	lots	of	the	configuration	can	be	applied	during	runtime,	which	gets	applied
immediately.	The	following	are	some	of	the	configuration	options	that	need	to
be	checked	if	nodes	are	running	out	of	resources	during	recovery:

To	check	the	recovery	values	of	an	OSD,	run	this	command	format:
#	ceph	daemon	osd.0	config	show	|	grep	recovery

This	command	will	show	all	the	OSD	recovery-related	options	currently	set
for	OSDs,	as	shown	in	the	following	screenshot:

From	the	previous	screenshot,	we	can	see	that	currently	the	value	for
osd_recovery_max_active	is	set	to	3.	This	means	the	OSD	recovery	will	use	three

threads	during	recovery.	If	the	Ceph	node	is	struggling,	we	need	to	drop	the
value	to	one	thread	using	the	following	command:

#	ceph	tell	osd.*	injectargs	'--osd-recovery-max-active	1'

The	previous	command	will	change	the	recovery	thread	to	1	for	all	OSDs
because	we	have	added	a	wildcard	as	the	OSD	ID	instead	of	specifying	one
particular	OSD.	The	injectargs	syntax	changes	values	in	real	time	without
needing	to	restart	any	OSD	or	node.	

If	we	want	to	check	the	value	currently	set	for	max	backfills,	we	can	enter	a
similar	command	as	follows:	

#	ceph	daemon	osd.0	config	show	|	grep	backfills

For	our	example	cluster,	the	command	shows	the	backfills	set	to	6,	as	shown
in	the	following	screenshot:

	

As	we	can	see	from	the	previous	screenshot,	the	backfills	are	set	to	a	value	of
6.	This	may	be	too	high	for	a	smaller	node.	This	value	should	be	set	to	1	if	the
node	is	running	out	of	resources	during	recovery.	We	are	going	to	change	the
value	using	the	following	command	we	already	have	seen	for	the	recovery
thread:

#	ceph	tell	osd.*	injectargs	'--osd-max-backfills	1'

It	is	important	to	note	here	that	besides	a	node	running	out	of	resources,	there
can	also	be	a	network	bottleneck	due	to	higher	recovery	values,	such	as	an
extreme	slowdown	in	network	connectivity	to	the	point	where	users	will	not
be	able	to	access	their	VMs.	In	such	a	scenario,	these	recovery	values	will
also	prove	very	helpful.	Lower	recovery	values	ensure	that	user	requests	do
not	get	interrupted,	yet	recovery	takes	place	at	a	slower	pace.	If	user
connectivity	is	not	a	priority,	for	example	overnight,	we	can	inject	new	higher
values	to	speed	up	recovery,	then	change	them	to	a	lower	value	before	the
working	day	starts.	

Summary
In	this	chapter,	we	got	to	see	some	of	the	most	common	scenarios	when
things	can	go	wrong	and	some	steps	to	recover	from	them.	By	no	means
are	these	the	only	issues	that	can	bring	a	cluster	down.	This	list	should	be
expanded	through	proper	documentation	as	new	issues	surface	and	solutions
are	found.	

No	amount	of	reading	or	study	can	equal	hands-on	experience	with	Proxmox.
You	may	already	be	a	professional	in	the	virtualization	field,	or	you	may	be
just	starting	out	on	a	networking	career	and	looking	for	a	way	to	stand	out
from	the	crowd,	but	hopefully,	this	book	will	push	you	in	the	right	direction.
Besides	the	official	site	and	forum,	you	can	also	reach	out	to	the	author
directly	to	ask	questions	or	to	have	a	discussion,	through	the	author
maintained	forum	at	http://www.masteringproxmox.com/.

http://www.masteringproxmox.com/

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Understanding Proxmox VE and Advanced Installation
	Understanding Proxmox features
	It is free!
	Built-in firewall
	Open vSwitch
	The graphical user interface
	KVM virtual machines
	Linux containers, or LXC
	Storage plugins
	Vibrant culture

	The basic installation of Proxmox
	The advanced installation option
	Debugging the Proxmox installation
	Proxmox subscription and repositories
	Proxmox VE Enterprise repository
	Type
	Subscription key
	Status
	Server ID
	Sockets
	Last checked
	Next due date

	Proxmox VE No-Subscription repository
	Proxmox VE Test repository

	Summary

	Creating a Cluster and Exploring the Proxmox GUI
	Creating a Proxmox cluster
	Exploring the Proxmox GUI
	The GUI menu system
	Cluster tree view
	Server View
	Folder View
	Storage View
	Pool View
	The Datacenter menu
	Datacenter | Search
	Datacenter | Summary
	Datacenter | Options
	Datacenter | Storage
	Datacenter | Backup
	Datacenter | Permissions
	Datacenter | Permissions | Users
	Datacenter | Permissions | Groups
	Datacenter | Permissions | Pools
	Datacenter | Permissions | Roles
	Datacenter | Permissions | Authentication

	Datacenter | HA
	Datacenter | Firewall
	Datacenter | Support

	Node-specific menus
	Node | Search
	Node | Summary
	Node | Shell
	Node | System
	Node | Network
	Node | DNS
	Node | Time
	Node | Syslog

	Node | Updates
	Node | Firewall
	Node | Disks
	Node | Ceph
	Node | Task History
	Node | Subscription

	KVM menu
	KVM VM | Summary
	KVM | Console
	KVM | Hardware
	KVM | Options
	KVM VM | Task History
	KVM | Monitor
	KVM | Backup
	KVM VM | Snapshot
	KVM | Firewall
	KVM | Permissions

	LXC container menu
	LXC container | Summary
	LXC container | Resources
	LXC container | Network
	LXC container | DNS
	LXC container | Options
	LXC container | Task History
	LXC container | Backup
	LXC container | Snapshots
	LXC container | Firewall
	LXC container | Permissions

	Pool menu
	Pool | Summary
	Pool | Members
	Pool | Permissions

	Summary

	Proxmox under the Hood
	The Proxmox cluster file system
	Proxmox directory structure
	Dissecting the configuration files
	The cluster configuration file
	logging { }
	nodelist { }
	quorum { }
	totem { }
	interface { }

	Storage configuration file
	User configuration files
	The password configuration file
	KVM virtual machine configuration file
	Arguments in the KVM configuration file
	LXC container configuration file
	Version configuration file
	Member nodes
	Virtual machine list file
	The cluster log file
	Ceph configuration files
	Firewall configuration file

	Summary

	Storage Systems
	Local storage versus shared storage
	Live migration of a virtual machine
	Seamless expansion of multinode storage space
	Centralized backup
	Multilevel data tiering
	Central storage management

	Local and shared storage comparison
	A virtual disk image
	Supported image formats
	The .qcow2 images
	The .raw image type
	The .vmdk image type

	Virtual device types
	Managing disk images
	Resizing a virtual disk image
	Moving a virtual disk image
	Throttling a virtual disk image
	Caching a virtual disk image

	VirtIO bus type for Windows VMs
	Installing VirtIO drivers during Windows installation
	Installing VirtIO drivers after Windows installation

	Storage types in Proxmox
	Directory
	iSCSI
	Logical Volume Management
	NFS
	ZFS
	Ceph RBD
	GlusterFS

	Noncommercial/commercial storage options
	Summary

	Installing and Configuring Ceph
	Ceph components
	A physical node as cluster member
	Maps
	A cluster map
	A CRUSH map

	Monitor
	OSD
	OSD journal

	Metadata server
	PG
	Pools
	Ceph components summary

	Virtual Ceph for training
	Installing a Ceph cluster
	Installing Ceph on Proxmox
	Preparing a Proxmox node for Ceph
	Installing Ceph
	Creating mons from the Proxmox GUI
	Creating OSDs from Proxmox GUI
	Managing a Ceph pool using Proxmox GUI
	Creating a Ceph pool using Proxmox GUI
	Connecting Ceph to Proxmox
	Ceph command list

	Summary

	KVM Virtual Machines
	Exploring KVM
	Creating a KVM
	Creating a KVM using an ISO image
	General tab
	Node
	VM ID
	Name
	Resource Pool
	Help

	The OS tab
	The CD/DVD tab
	The Hard Disk tab
	Bus/Device
	Storage
	Disk size (GB)
	Format
	Cache
	No backup
	Discard
	IO thread

	The CPU tab
	Sockets
	Cores
	Enabling NUMA
	Type

	The Memory tab
	The Network tab
	Bridged mode
	Firewall
	NAT mode
	No network device
	Model
	MAC address
	Rate limit (MB/s)
	Multiqueues
	Disconnect

	Creating VM by cloning
	Creating VMs from a template
	Target node
	Mode

	Advanced configuration options for VMs
	Configuring a sound device
	Configuring PCI passthrough
	Configuring GPU passthrough
	Preparing for hotplug
	Configuring VMs with hotplug
	Hotplugging vCPUs
	Hotplugging memory
	Hotplugging disks/vNICs

	Migrating KVM virtual machines
	Summary

	LXC Virtual Machines
	Exploring LXC virtual machines
	Understanding container templates
	Creating an LXC container
	General tab
	Node
	CT ID
	Hostname
	Unprivileged container
	Resource Pool

	The Template tab
	The Root Disk tab
	Storage
	ACLs
	Enable quota

	The CPU tab
	Cores

	The Memory tab
	The Network tab
	Name
	MAC address
	Bridge
	The VLAN Tag
	Rate limit
	Firewall
	IPv4/IPv6

	The DNS tab
	The Confirm tab

	Managing an LXC container
	Adjusting resources using the GUI
	Adjusting resources using the CLI
	Adjusting resources using direct modification

	Migrating an LXC container
	Accessing an LXC container
	The noVNC console
	Direct shell through the CLI

	Converting OpenVZ to LXC
	Summary

	Network of Virtual Networks
	Exploring virtual networks
	Physical networks versus virtual networks
	A physical network
	A virtual network

	Networking components in Proxmox
	Virtual Network Interface Cards
	Adding/removing vNIC

	A virtual bridge
	Adding a virtual bridge through the GUI
	Name
	IP information
	Bridge ports
	VLAN-aware

	Adding a virtual bridge through CLI

	Extra bridge options
	bridge_stp
	bridge_fd

	Virtual LAN
	Adding a VLAN

	Network Address Translation/Translator
	Adding NAT/masquerading

	Network bonding
	Adding a bonding interface
	The layer 2 hash policy
	The layer 2+3 hash policy
	The layer 3+4 hash policy

	Multicast
	Configuring multicast on Netgear

	Open vSwitch
	Features of Open vSwitch
	Adding an Open vSwitch bridge
	Adding the Open vSwitch bond
	Adding Open vSwitch IntPort
	CLI for Open vSwitch
	Practicing Open vSwitch
	Configuration requirements
	Solutions

	Sample virtual networks
	Network #1 – Proxmox in its simplest form
	Network #2 – the multi-tenant environment
	Network #3 – academic institution

	A multi-tenant virtual environment
	A multi-tenant network diagram

	Summary

	The Proxmox VE Firewall
	Exploring the Proxmox VE firewall
	Components of the Proxmox firewall
	Zones
	Security groups
	IPSet
	Rules
	Protocols
	Macros
	The pve-firewall and pvefw-logger services

	Configuration files of a firewall

	Configuring the data center-specific firewall
	Configuring the Datacenter firewall through the GUI
	Creating the Datacenter firewall rules
	Creating the Datacenter IPSet
	Creating aliases

	Configuring the Datacenter firewall through the CLI
	[OPTIONS]
	[ALIASES]
	[IPSET <name>]
	[RULES]
	[group <name>]

	Configuring a host-specific firewall
	Creating host firewall rules
	Options for the host zone firewall
	Enable a firewall
	The SMURFS filter
	The TCP flags filter
	NDP
	nf_conntrack_max
	nf_conntrack_tcp_timeout_established
	log_level_in/out
	tcp_flags_log_level
	smurf_log_level

	Configuring the host firewall through the CLI

	Configuring a VM-specific firewall
	Creating VM firewall rules
	Creating aliases
	Creating IPSets
	Options for a VM zone firewall
	Enable DHCP
	The MAC filter
	Input/output policy

	Configuring a VM-specific firewall through the CLI

	Integrating a Suricata IDS/IPS
	Installing/configuring Suricata
	Limitations of Suricata in Proxmox

	Summary

	Proxmox High Availability
	Understanding HA
	HA in Proxmox
	How Proxmox HA works

	Requirements for HA setup
	At least three nodes
	Shared storage
	Fencing
	BIOS power-on feature

	Configuring Proxmox HA
	The HA menu
	Status
	The Resources menu

	The Groups menu
	ID
	Node
	The restricted checkbox
	The nofailback checkbox

	The Fencing menu

	Testing Proxmox HA configuration
	The Proxmox HA simulator
	Configuring the Proxmox HA simulator

	Summary

	Monitoring the Proxmox Cluster
	An introduction to monitoring
	Proxmox built-in monitoring
	Datacenter Status
	Node Status

	Zabbix as a monitoring solution
	Installing Zabbix
	Configuring Zabbix
	Configuring a host to monitor
	Displaying data using a graph
	Configuring the disk health notification
	Installing smart monitor tools
	Configuring the Zabbix agent
	Creating a Zabbix item in the GUI
	Creating a trigger in the GUI
	Creating graphs in the GUI

	Configuring SNMP in Proxmox
	Object Identifiers
	Management Information Base

	Adding an SNMP device in Zabbix
	Monitoring the Ceph cluster with the Proxmox GUI
	Monitoring a Ceph cluster with third-party options
	Summary

	Proxmox Production-Level Setup
	Defining the production level
	Key components
	Stable and scalable hardware
	Redundancy
	Node level
	Utility level
	Network level
	HVAC level
	Storage level

	Current load versus future growth
	Budget
	Simplicity
	Tracking hardware inventory
	Hardware selection

	Sizing CPU and memory
	Single socket versus multi-socket
	Hyper-threading – enable versus disable
	Start small with VM resources
	Balancing node resources

	Ceph cluster production
	Forget about hardware RAID
	Solid State Drive for Ceph Journal
	Network bandwidth

	Liquid cooling
	Total immersion in oil
	Total immersion in 3M Novec
	Direct contact liquid cooling

	Real-world Proxmox scenarios
	Scenario 1 – an academic institution
	Scenario 2 – multi-tier storage cluster with a Proxmox cluster
	Scenario 3 - Virtual infrastructure for a multi-tenant cloud service provider
	Scenario 4 – nested virtual environment for a software development company
	Scenario 5 – virtual infrastructure for a public library
	Scenario 6 – multi-floor office virtual infrastructure with virtual desktops
	Scenario 7 – virtual infrastructure for the hotel industry
	Scenario 8 – virtual infrastructure for geological survey organization

	Summary

	Back Up and Restore Virtual Machines
	Proxmox backup options
	A full backup
	Full backup modes
	Snapshot
	Suspend
	Stop

	Backup compression
	None
	LZO
	GZIP

	Snapshots

	Configuring backup storage
	Show VM configuration from backup

	Configuring full backup
	Creating a schedule for backup
	Node
	Storage
	Day of week
	Start Time
	Selection mode
	Send email to
	Email notification
	Compression
	Mode
	Enable

	Creating a manual backup

	Creating snapshots
	Restoring a virtual machine
	Backup/restore through the CLI
	Backup using the CLI
	Restore using the CLI
	Unlocking a VM after a backup error

	Virtual machine replication
	Creating a replication task through the GUI
	Target
	Schedule
	Rate limit (MB/s)
	Enabled

	Creating a replication task through the CLI
	Replication process

	Backup configuration file
	The bwlimit option
	The lockwait option
	The stopwait option
	The stdexcludes option
	The mailto option
	The script option
	The exclude-path option
	The pigz option

	Summary

	Updating/Upgrading Proxmox
	Introducing Proxmox updates
	Updating Proxmox through the GUI
	Updating Proxmox through the CLI
	Difference between upgrade and dist-upgrade

	Recovering from the grub2 update issue
	Updating after a subscription change
	Rebooting dilemma after Proxmox updates
	Applying update without reboot

	Summary

	Proxmox Troubleshooting
	Proxmox node issues
	Issue – fresh Proxmox install stuck with /dev to be a fully populated error during node reboot
	Issue – rejoining a node to a Proxmox node with the same old IP address
	Issue – Proxmox installation completed but grub is in an endless loop after reboot
	Issue – LSI MegaRAID 9240-8i/9240-4i causes an error during booting of the Proxmox node
	Downloading and updating the LSI driver
	Updating the Supermicro BIOS

	Issue – the Upgrade button is disabled on the Proxmox GUI, which prevents the node upgrade
	Issue – Proxmox cannot start due to the getpwnam error
	Issue – cannot log in to the GUI as root after reinstalling Proxmox on the same node

	The main cluster issues
	Issue – Proxmox virtual machines are running, but the Proxmox GUI shows that everything is offline
	Issue – kernel panic when disconnecting USB devices, such as a keyboard, mouse, or UPS
	Issue – virtual machines on Proxmox will not shut down if shutdown is initiated from the Proxmox GUI
	Issue – kernel panic with HP NC360T (Intel 82571EB chipset) only in Proxmox VE 3.2
	Issue – the Proxmox cluster is out of quorum and cluster filesystem is in read-only mode
	Issue – VM will not respond to shutdown or restart
	Issue – Proxmox GUI not responding after Firefox update
	Issue – the Proxmox GUI is not showing RRD graphs

	Storage issues
	Issue – deleting a damaged LVM from Proxmox with the error read failed from 0 to 4096
	Issue – Proxmox cannot mount NFS share due to the timing out error
	Issue – how to delete leftover NFS shares in Proxmox or what to do when the NFS stale file handle error occurs?
	Issue – Proxmox issues --mode session exit code 21 errors while trying to access the iSCSI target
	Issue – cannot read an iSCSI target even after it has been deleted from Proxmox storage
	Issue – a Ceph node is removed from the Proxmox cluster, but OSDs still show up in PVE
	Issue – the no such block device error during creation of an OSD through the Proxmox GUI
	Issue – the fstrim command does not trim unused blocks for the Ceph storage
	Issue – the RBD couldn't connect to cluster (500) error when connecting Ceph with Proxmox
	Issue – changing the storage type from IDE to VirtIO after the VM has been set up and the OS has been installed
	Issue – the pveceph configuration not initialized (500) error when you click on the Ceph tab in the Proxmox GUI
	Issue – the CephFS storage disappears after a Proxmox node reboots
	Issue – VM cloning does not parse in the Ceph storage
	Issue – VM disk images stored on ZFS is extremely slow

	Network connectivity issues
	Issue – no connectivity on Realtek RTL8111/8411 rev. 06 network interfaces
	Issue – network performance is slower with the E1000 virtual network interfaces
	Issue – patch port for Open vSwitch in Proxmox not working
	Issue – trying to add a node to a newly created Proxmox cluster when nodes do not form quorum
	Issue – implemented IPv6 but firewall rules do not get applied

	KVM virtual machine issues
	Issue – Windows 7/XP machine converted to Proxmox KVM hangs during boot
	Issue – Windows 7 VM does not reboot, instead it shuts down, requiring a manual boot from Proxmox
	Issue – the qemu-img command does not convert the .vmdk image files created with the .ova template in Proxmox VE 5.0
	Issue – online migration of a virtual machine fails with a failed to sync data error
	Issue – no audio in Windows KVM
	Issue – the VirtIO virtual disk is not available during the Windows Server installation

	LXC container issues
	Issue – a Proxmox node hangs when trying to stop or restart an LXC container
	Issue – the noVNC console only shows a cursor for LXC containers

	Backup/restore issues
	Issue – a Proxmox VM is locked after backup crashes unexpectedly
	Issue – how can Proxmox back up only the primary OS virtual disk instead of all the virtual disks for a VM?
	Issue – backup of virtual machines stops prematurely with an operation not permitted error
	Issue – a backup task takes a very long time to complete, or it crashes when multiple nodes are backing up to the same backup storage
	Issue – backup of virtual machines aborts a backup task prematurely
	Issue – backup storage has a lot of .dat files and .tmp folders using the storage space

	VNC/SPICE console issues
	Issue – the mouse pointer is not shared with SPICE (virt-viewer) on Windows 8 VM
	Issue – remote viewer is unable to connect to a SPICE-enabled virtual machine on the Windows OS

	Firewall issues
	Issue – rules are created and a firewall is enabled for vNIC, but rules do not get applied
	Issue – a firewall is enabled for a VM and the necessary rules are created, but nothing is being filtered for that VM

	Summary

	Rescuing Proxmox
	Recovering from OS drive failure
	Physical drive failure
	OS data corruption
	Migrating VMs from a faulty node
	Reinstalling Proxmox

	Recovering from a quorum failure
	Recovering from a node failure
	Recovering from a network failure
	Loss of connectivity between Proxmox nodes
	Loss of connectivity between Proxmox nodes and users
	Loss of connectivity between Proxmox and storage nodes

	Recovering from Ceph failure
	Best practices for a healthy Ceph cluster
	Stuck inconsistent PGs in Ceph
	Stuck inactive incomplete PGs in Ceph
	Error while moving a Ceph journal to another drive
	Ceph node running out of resources during recovery

	Summary

