Viastering
Proxmox

Third Edition

Build virtualized environments using the Proxmox VE
hypervisor

»

Mastering Proxmox

Third Edition

Build virtualized environments using the Proxmox VE hypervisor

Wasim Ahmed

Packt

BIRMINGHAM - MUMBAI

Mastering Proxmox

Third Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

First published: July 2014
Second edition: May 2016
Third edition: November 2017

Production reference: 1141117

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-760-5

www.packtpub.com

http://www.packtpub.com

Credits

Copy Editors
Author T

Safis Editing
Wasim Ahmed

Madhusudan Uchil
Reviewers

Nicolas Ledez

Jorge Moratilla Porras

Project Coordinator

Virginia Dias

Commissioning Editor Proofreader
Vijin Boricha Safis Editing
Acquisition Editor Indexer
Rahul Nair Francy Puthiry
Content Development Editor | Graphics

Sharon Raj

Kirk D’Penha

Technical Editors
Vishal Kamal Mewada
Khushbu Sutar

Production Coordinator

Nilesh Mohite

About the Author

Wasim Ahmed, born in Bangladesh and now a citizen of Canada, is a veteran
of the IT world. He first came into close contact with computers in 1992 and
never looked back. Wasim has a deep understanding of networks,
virtualization, big data storage, and network security.

By profession, Wasim is the CEO of a global IT support and cloud service
provider based in Calgary, Alberta. He serves many companies and
organizations through his company on a daily basis. Wasim’s strength comes
from his experience, which comes from learning and serving continually.
Wasim strives to find the most effective solution at the most competitive
price. He has built over 20 enterprise production virtual infrastructures using
Proxmox and the Ceph storage system.

Wasim and his team are notorious for not simply accepting a technology
based on its description alone, but putting it through rigorous testing to check
its validity. Any new technology that his company provides goes through
months of continuous testing before it is accepted. Proxmox made the cut
superbly.

This book, Mastering Proxmox — Third Edition, would not have been possible
without the support and wholehearted cooperation of the team at Packt
Publishing. I wish to acknowledge my indebtedness to each of the team
members who walked me through the process of the major undertaking that
was writing this book.

I also would like to acknowledge the support and dedication of the Proxmox
VE developer team, who made this great hypervisor available to all of us.
Their vision and attention to detail has enabled Proxmox VE to mature in a
very short period of time since its first release.

I am thankful to the global community of Proxmox users, whose combined
experiences have allowed me to learn many different scenarios in which
Proxmox is used today.

Finally, I would like to acknowledge Charles McCrea, whose friendship and
support played an important role in bringing this book to completion.

About the Reviewers

Nicolas Ledez has been working as a system administrator since 2000. He
has been in big businesses such as Orange (a French telecom company) and in
small organizations too.

His skills are in DevOps, Linux, Ruby, Python, Ansible, Chef, Saltstack, and
others.

Currently, he is a DevOps architect at Cozy Cloud. You can find him on the
internet with the pseudonym niedez.

Jorge Moratilla Porras has a bachelor’s degree in computer science and has
been working for internet companies since 1998. He has been working as a
contractor for companies such as Sun Microsystems and Oracle. His passions
are teaching and improving workloads using automation techniques. He has
been working as a Sun Microsystems certified instructor and field engineer
for several years. He has a large background working with products such as
Sun Solaris, Linux, LDAP services, and CheckPoint. Recently, he has been
working with configuration management products such as Puppet and Chef
on his assignments and has been taking part in Madrid DevOps (a group of
technicians devoted to continuous deployment and DevOps culture) as
coordinator. He promotes the adoption of a culture of continuous
improvement in enterprise and startups as the baseline to do great things. You
can meet him at talks and hangouts that he organizes in the community.

He has collaborated as a reviewer on other Packt titles as well:

e Configuration Management with Chef-Solo by Naveed ur Rahman
e Proxmox Cookbook by Wasim Ahmed

I would like to thank my wife, Nuria, and sons, Eduardo and Ruben, for being
so understanding and supportive while I was reviewing this book. Also, I
would like to thank my dear mom, Milagros, and dad, Tofii, who put in all
their effort to give me an education. Finally, I would also like to thank all
those who have contributed to my personal and professional development

through the years.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.
com. Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at serviceapacktpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and
offers on Packt books and eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access
to all Packt books and video courses, as well as industry-leading tools to help
you plan your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book’s Amazon page at https://www.amazon.com/dp/1788397606.

If you’d like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in
improving our products!

https://www.amazon.com/dp/1788397606

Table of Contents

Preface
What this book covers
What you need for this book
Who this book is for
Conventions

Reader feedback
Customer support

Downloading the color images of this book
Errata

Piracy

Questions

1. Understanding Proxmox VE and Advanced Installation
Understanding Proxmox features

It is free!
Built-in firewall
Open vSwitch
The graphical user interface
KVM virtual machines
Linux containers, or LXC
Storage plugins
Vibrant culture
The basic installation of Proxmox
The advanced installation option

Debugging the Proxmox installation
Proxmox subscription and repositories
Proxmox VE Enterprise repository

Type
Subscription key
Status
Server ID
Sockets
Last checked
Next due date
Proxmox VE No-Subscription repository
Proxmox VE Test repository
Summary
2. Creating a Cluster and Exploring the Proxmox GUI

Creating a Proxmox cluster

Exploring the Proxmox GUI
The GUI menu system
Cluster tree view
Server View
Folder View
Storage View

Pool View
The Datacenter menu

Datacenter | Search
Datacenter | Summary
Datacenter | Options
Datacenter | Storage

Datacenter | Backup
Datacenter | Permissions

Datacenter | Permissions | Users
Datacenter | Permissions | Groups
Datacenter | Permissions | Pools
Datacenter | Permissions | Roles
Datacenter | Permissions | Authentication
Datacenter | HA
Datacenter | Firewall

Datacenter | Support
Node-specific menus

Node | Search
Node | Summary

Node | Shell
Node | System

Node | Network
Node | DNS
Node | Time
Node | Syslog

Node | Updates

Node | Firewall

Node | Disks

Node | Ceph

Node | Task History

Node | Subscription
KVM menu

KVM VM | Summary
KVM | Console
KVM | Hardware

KVM | Options

KVM VM | Task History
KVM | Monitor

KVM | Backup

KVM VM | Snapshot
KVM | Firewall

KVM | Permissions
LXC container menu

LXC container | Summary
LXC container | Resources
LXC container | Network
LXC container | DNS

LXC container | Options
LXC container | Task History
LXC container | Backup
LXC container | Snapshots
LXC container | Firewall

LXC container | Permissions
Pool menu

Pool | Summary
Pool | Members
Pool | Permissions
Summary
3. Proxmox under the Hood
The Proxmox cluster file system

Proxmox directory structure
Dissecting the configuration files
The cluster configuration file

logging { }

nodelist { }

quorum { }

totem { }

interface { }
Storage configuration file
User configuration files
The password configuration file
KVM virtual machine configuration file
Arguments in the KVM configuration file
LXC container configuration file
Version configuration file

Member nodes

Virtual machine list file

The cluster log file

Ceph configuration files

Firewall configuration file
Summary

4. Storage Systems
Local storage versus shared storage

Live migration of a virtual machine

Seamless expansion of multinode storage space
Centralized backup

Multilevel data tiering

Central storage management

Local and shared storage comparison
A virtual disk image
Supported image formats

The .qcow?2 images
The .raw image type
The .vindk image type

Virtual device types

Managing disk images
Resizing a virtual disk image
Moving a virtual disk image
Throttling a virtual disk image

Caching a virtual disk image
VirtIO bus type for Windows VMs

Installing VirtIO drivers during Windows installation

Installing VirtIO drivers after Windows installation
Storage types in Proxmox

Directory

iSCSI

Logical Volume Management

NFS

ZFS

Ceph RBD

GlusterFS
Noncommercial/commercial storage options
Summary

5. Installing and Configuring Ceph
Ceph components

A physical node as cluster member
Maps

A cluster map

A CRUSH map

Monitor
OSD

OSD journal
Metadata server
PG
Pools
Ceph components summary

Virtual Ceph for training
Installing a Ceph cluster
Installing Ceph on Proxmox

Preparing a Proxmox node for Ceph
Installing Ceph
Creating mons from the Proxmox GUI
Creating OSDs from Proxmox GUI
Managing a Ceph pool using Proxmox GUI
Creating a Ceph pool using Proxmox GUI
Connecting Ceph to Proxmox
Ceph command list
Summary
6. KVM Virtual Machines

Exploring KVM
Creating a KVM
Creating a KVM using an ISO image
General tab

Node
VM ID
Name
Resource Pool
Help

The OS tab

The CD/DVD tab
The Hard Disk tab

Bus/Device
Storage

Disk size (GB)
Format

Cache

No backup
Discard

IO thread
The CPU tab

Sockets

Cores

Enabling NUMA
Type

The Memory tab
The Network tab

Bridged mode
Firewall

NAT mode

No network device
Model

MAC address
Rate limit (MB/s)
Multiqueues
Disconnect

Creating VM by cloning
Creating VMs from a template

Target node

Mode
Advanced configuration options for VMs

Configuring a sound device
Configuring PCI passthrough
Configuring GPU passthrough

Preparing for hotplug
Configuring VMs with hotplug

Hotplugging vCPUs
Hotplugging memory
Hotplugging disks/vINICs
Migrating KVM virtual machines
Summary
7. LXC Virtual Machines
Exploring LXC virtual machines

Understanding container templates
Creating an LXC container
General tab

Node

CTID

Hostname
Unprivileged container
Resource Pool

The Template tab
The Root Disk tab

Storage
ACLs

Enable quota
The CPU tab

Cores

The Memory tab
The Network tab

Name
MAC address
Bridge
The VLAN Tag
Rate limit
Firewall
[Pv4/1Pv6

The DNS tab

The Confirm tab
Managing an LXC container

Adjusting resources using the GUI
Adjusting resources using the CLI
Adjusting resources using direct modification

Migrating an LXC container
Accessing an LXC container

The noVNC console
Direct shell through the CLI
Converting OpenVZ to LXC
Summary
8. Network of Virtual Networks

Exploring virtual networks
Physical networks versus virtual networks

A physical network

A virtual network
Networking components in Proxmox
Virtual Network Interface Cards

Adding/removing vNIC
A virtual bridge
Adding a virtual bridge through the GUI

Name

IP information
Bridge ports
VLAN-aware

Adding a virtual bridge through CLI
Extra bridge options

bridge_stp
bridge_fd
Virtual LAN

Adding a VLAN
Network Address Translation/Translator

Adding NAT/masquerading
Network bonding
Adding a bonding interface

The layer 2 hash policy
The layer 2+3 hash policy

The layer 3+4 hash policy
Multicast

Configuring multicast on Netgear
Open vSwitch
Features of Open vSwitch

Adding an Open vSwitch bridge
Adding the Open vSwitch bond
Adding Open vSwitch IntPort

CLI for Open vSwitch
Practicing Open vSwitch

Configuration requirements

Solutions
Sample virtual networks

Network #1 — Proxmox in its simplest form
Network #2 — the multi-tenant environment

Network #3 — academic institution
A multi-tenant virtual environment

A multi-tenant network diagram
Summary

9. The Proxmox VE Firewall
Exploring the Proxmox VE firewall
Components of the Proxmox firewall

Zones

Security groups

IPSet

Rules

Protocols

Macros

The pve-firewall and pvefw-logger services

Configuration files of a firewall
Configuring the data center-specific firewall
Configuring the Datacenter firewall through the GUI

Creating the Datacenter firewall rules

Creating the Datacenter [PSet

Creating aliases
Configuring the Datacenter firewall through the CLI

[OPTIONS]
[ALIASES]
[TPSET <name>]
[RULES]

[group <name>]
Configuring a host-specific firewall
Creating host firewall rules
Options for the host zone firewall

Enable a firewall

The SMUREFS filter

The TCP flags filter

NDP

nf conntrack_max
nf_conntrack_tcp_timeout_established
log_level_in/out

tcp_flags_log level

smurf_log_level

Configuring the host firewall through the CLI
Configuring a VM-specific firewall

Creating VM firewall rules
Creating aliases

Creating IPSets
Options for a VM zone firewall

Enable DHCP
The MAC filter
Input/output policy

Configuring a VM-specific firewall through the CLI
Integrating a Suricata IDS/IPS

Installing/configuring Suricata
Limitations of Suricata in Proxmox
Summary

10. Proxmox High Availability
Understanding HA

HA in Proxmox

How Proxmox HA works
Requirements for HA setup

At least three nodes
Shared storage

Fencing

BIOS power-on feature
Configuring Proxmox HA
The HA menu

Status

The Resources menu
The Groups menu

1D

Node

The restricted checkbox

The nofailback checkbox
The Fencing menu

Testing Proxmox HA configuration
The Proxmox HA simulator

Configuring the Proxmox HA simulator
Summary
11. Monitoring the Proxmox Cluster

An introduction to monitoring
Proxmox built-in monitoring

Datacenter Status
Node Status
Zabbix as a monitoring solution

Installing Zabbix
Configuring Zabbix

Configuring a host to monitor

Displaying data using a graph

Configuring the disk health notification
Installing smart monitor tools
Configuring the Zabbix agent
Creating a Zabbix item in the GUI
Creating a trigger in the GUI

Creating graphs in the GUI
Configuring SNMP in Proxmox

Object Identifiers
Management Information Base
Adding an SNMP device in Zabbix

Monitoring the Ceph cluster with the Proxmox GUI

Monitoring a Ceph cluster with third-party options

Summary

12. Proxmox Production-Level Setup
Defining the production level
Key components

Stable and scalable hardware
Redundancy

Node level
Utility level
Network level
HVAC level
Storage level
Current load versus future growth
Budget
Simplicity
Tracking hardware inventory

Hardware selection
Sizing CPU and memory

Single socket versus multi-socket
Hyper-threading — enable versus disable
Start small with VM resources

Balancing node resources
Ceph cluster production

Forget about hardware RAID
Solid State Drive for Ceph Journal
Network bandwidth

Liquid cooling
Total immersion in oil
Total immersion in 3M Novec

Direct contact liquid cooling
Real-world Proxmox scenarios

Scenario 1 — an academic institution

Scenario 2 — multi-tier storage cluster with a Proxmox cluster

Scenario 3 - Virtual infrastructure for a multi-tenant cloud service provider

Scenario 4 — nested virtual environment for a software development company

Scenario 5 — virtual infrastructure for a public library

Scenario 6 — multi-floor office virtual infrastructure with virtual desktops

Scenario 7 — virtual infrastructure for the hotel industry

Scenario 8 — virtual infrastructure for geological survey organization

Summary

13. Back Up and Restore Virtual Machines

Proxmox backup options
A full backup
Full backup modes

Snapshot
Suspend

Stop
Backup compression

None

LZO
GZIP

Snapshots
Configuring backup storage

Show VM configuration from backup
Configuring full backup
Creating a schedule for backup

Node
Storage
Day of week
Start Time
Selection mode
Send email to
Email notification
Compression
Mode
Enable
Creating a manual backup
Creating snapshots

Restoring a virtual machine
Backup/restore through the CLI

Backup using the CLI
Restore using the CLI

Unlocking a VM after a backup error
Virtual machine replication
Creating a replication task through the GUI

Target
Schedule
Rate limit (MB/s)
Enabled
Creating a replication task through the CLI

Replication process
Backup configuration file

The bwlimit option

The lockwait option
The stopwait option
The stdexcludes option
The mailto option

The script option

The exclude-path option
The pigz option

Summary

14. Updating/Upgrading Proxmox
Introducing Proxmox updates

Updating Proxmox through the GUI
Updating Proxmox through the CLI

Difference between upgrade and dist-upgrade
Recovering from the grub2 update issue

Updating after a subscription change
Rebooting dilemma after Proxmox updates

Applying update without reboot
Summary

15. Proxmox Troubleshooting
Proxmox node issues

Issue — fresh Proxmox install stuck with /dev to be a fully populated error during no
de reboot
Issue — rejoining a node to a Proxmox node with the same old IP address

Issue — Proxmox installation completed but grub is in an endless loop after reboot
Issue — LSI MegaRAID 9240-8i/9240-4i causes an error during booting of the Prox
mox node

Downloading and updating the LSI driver

Updating the Supermicro BIOS
Issue — the Upgrade button is disabled on the Proxmox GUI, which prevents the nod
e upgrade
Issue — Proxmox cannot start due to the getpwnam error

Issue — cannot log in to the GUI as root after reinstalling Proxmox on the same node
The main cluster issues

Issue — Proxmox virtual machines are running, but the Proxmox GUI shows that eve
rything is offline

Issue — kernel panic when disconnecting USB devices, such as a keyboard, mouse,
or UPS

Issue — virtual machines on Proxmox will not shut down if shutdown is initiated fro
m the Proxmox GUI

Issue — kernel panic with HP NC360T (Intel 82571EB chipset) only in Proxmox VE
3.2

Issue — the Proxmox cluster is out of quorum and cluster filesystem is in read-only
mode

Issue — VM will not respond to shutdown or restart

Issue — Proxmox GUI not responding after Firefox update

Issue — the Proxmox GUI is not showing RRD graphs
Storage issues

Issue — deleting a damaged LVM from Proxmox with the error read failed from 0 to
4096

Issue — Proxmox cannot mount NFS share due to the timing out error

Issue — how to delete leftover NFS shares in Proxmox or what to do when the NFS s
tale file handle error occurs?

Issue — Proxmox issues —mode session exit code 21 errors while trying to access th
e iSCSI target

Issue — cannot read an iSCSI target even after it has been deleted from Proxmox stor
age

Issue — a Ceph node is removed from the Proxmox cluster, but OSDs still show up i
n PVE

Issue — the no such block device error during creation of an OSD through the Proxm
ox GUI

Issue — the fstrim command does not trim unused blocks for the Ceph storage

Issue — the RBD couldn’t connect to cluster (500) error when connecting Ceph with
Proxmox

Issue — changing the storage type from IDE to VirtIO after the VM has been set up a
nd the OS has been installed

Issue — the pveceph configuration not initialized (500) error when you click on the
Ceph tab in the Proxmox GUI

Issue — the CephFS storage disappears after a Proxmox node reboots

Issue — VM cloning does not parse in the Ceph storage

Issue — VM disk images stored on ZFS is extremely slow
Network connectivity issues

Issue — no connectivity on Realtek RTL.8111/8411 rev. 06 network interfaces

Issue — network performance is slower with the E1000 virtual network interfaces
Issue — patch port for Open vSwitch in Proxmox not working

Issue — trying to add a node to a newly created Proxmox cluster when nodes do not f
orm quorum

Issue — implemented IPv6 but firewall rules do not get applied
KVM virtual machine issues

Issue — Windows 7/XP machine converted to Proxmox KVM hangs during boot
Issue — Windows 7 VM does not reboot, instead it shuts down, requiring a manual b
oot from Proxmox

Issue — the gemu-img command does not convert the .vmdk image files created with
the .ova template in Proxmox VE 5.0

Issue — online migration of a virtual machine fails with a failed to sync data error
Issue — no audio in Windows KVM

Issue — the VirtIO virtual disk is not available during the Windows Server installatio

n
LXC container issues

Issue — a Proxmox node hangs when trying to stop or restart an LXC container

Issue — the noVINC console only shows a cursor for LXC containers
Backup/restore issues

Issue — a Proxmox VM is locked after backup crashes unexpectedly

Issue — how can Proxmox back up only the primary OS virtual disk instead of all th
e virtual disks for a VM?

Issue — backup of virtual machines stops prematurely with an operation not permitte
d error

Issue — a backup task takes a very long time to complete, or it crashes when multipl
e nodes are backing up to the same backup storage

Issue — backup of virtual machines aborts a backup task prematurely

Issue — backup storage has a lot of .dat files and .tmp folders using the storage space
VNC/SPICE console issues

Issue — the mouse pointer is not shared with SPICE (virt-viewer) on Windows 8 VM
Issue — remote viewer is unable to connect to a SPICE-enabled virtual machine on t

he Windows OS
Firewall issues

Issue — rules are created and a firewall is enabled for vNIC, but rules do not get appl
ied
Issue — a firewall is enabled for a VM and the necessary rules are created, but nothin
g is being filtered for that VM

Summary

16. Rescuing Proxmox
Recovering from OS drive failure

Physical drive failure
OS data corruption
Migrating VMs from a faulty node
Reinstalling Proxmox
Recovering from a quorum failure

Recovering from a node failure
Recovering from a network failure

Loss of connectivity between Proxmox nodes
Loss of connectivity between Proxmox nodes and users

Loss of connectivity between Proxmox and storage nodes
Recovering from Ceph failure

Best practices for a healthy Ceph cluster

Stuck inconsistent PGs in Ceph

Stuck inactive incomplete PGs in Ceph

Error while moving a Ceph journal to another drive
Ceph node running out of resources during recovery

Summary

Preface

Based on the foundation laid out by the first edition and second edition, this
book, Mastering Proxmox, Third Edition, brings updated information and
details of the new features of Proxmox VE 5.0. Since the first edition of this
book was published, Proxmox has been through many changes. With this
third edition, I am confident that readers will be able to upgrade their skills
while building and managing even better Proxmox clusters.

This book shows the inner workings of Proxmox, including virtual network
components, shared storage systems, the Proxmox firewall, high availability,
and other features.

What this book covers

Chapter 1, Understanding Proxmox VE and Advanced Installation, introduces
Proxmox VE in general and shows the advanced options available during
installation.

Chapter 2, Creating a Cluster and Exploring the Proxmox GUI, explains how to
create a cluster and shows the layout of the graphical user interface.

Chapter 3, Proxmox under the Hood, explains the Proxmox directory structure
and configuration files.

Chapter 4, Storage Systems, explains how Proxmox interacts with storage and
various supported storage systems.

Chapter 5, Installing and Configuring Ceph, shows how to deploy and configure
a fully functional Ceph cluster along with Proxmox.

Chapter 6, KVM Virtual Machines, covers creating and managing KVM-based
virtual machines.

Chapter 7, LXC Virtual Machines, covers creating and managing L.XC
containers.

Chapter 8, Network of Virtual Networks, explains the different networking
components used in Proxmox to build virtual networks.

Chapter 9, The Proxmox VE Firewall, explains the built-in firewall feature of
Proxmox.

Chapter 10, Proxmox High Availability, explains the high availability or
redundancy feature of Proxmox and how to configure it.

Chapter 11, Monitoring the Proxmox Cluster, shows how to configure the
Zabbix-based network monitoring option.

Chapter 12, Proxmox Production-Level Setup, explains different components in
a production-level setup.

Chapter 13, Back Up and Restore Virtual Machines, explains the backup and
restore features of Proxmox for disaster planning.

Chapter 14, Updating/Upgrading Proxmox, explains how to keep a Proxmox
cluster up to date.

Chapter 15, Proxmox Troubleshooting, lists real incidents that may arise in a

Proxmox cluster, with solutions.

Chapter 16, Rescuing Proxmox, shows ways to rescue a Proxmox cluster should
a disaster occur.

What you need for this book

Since we will be working with a Proxmox cluster throughout the book, it will
be extremely helpful to have a working Proxmox cluster of your own. A very
basic cluster of two to three nodes, along with a storage node, will do just
fine. If learning to implement Ceph in a Proxmox cluster, then a small cluster
of two or three nodes for Ceph will also be extremely helpful.

Who this book is for

This book is for readers who want to build and manage a virtual infrastructure
based on Proxmox as the hypervisor. Whether the reader is a veteran in the
virtualized industry but has never worked with Proxmox, or somebody is just
starting out on a promising career in this industry, this book will serve them
well. Due to the advanced nature of this book, prior conceptual knowledge of
server virtualization, networking, and hypervisors is required.

Conventions

In this book, you will find a number of text styles that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning. Code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy URLs, user
input, and Twitter handles are shown as follows: “The keyring that we need to
copy is located in /priv/ceph.client.admin. keyring.”
A block of code is set as follows:

allow-vmbril ens21

iface ens21 inet manual

ovs_type OVSPort
ovs_bridge vmbril

Any command-line input or output is written as follows:

| # apt-get install openvswitch-switch

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
“Open vSwitch bridge and interface under the Create tab of

the Network menu of the node.”

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think
about this book-what you liked or disliked. Reader feedback is important for
us as it helps us develop titles that you will really get the most out of. To send
us general feedback, simply email feedback@packtpub.com, and mention the book’s
title in the subject of your message. If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, see our
author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of
things to help you to get the most from your purchase.

Downloading the color images of
this book

We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://w

ww.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books-maybe a
mistake in the text or the code-we would be grateful if you could report this to
us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, Selecting your book, clicking
on the Errata Submission Form link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under
the Errata section of that title. To view the previously submitted errata, go to h
ttps://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on
the internet, please provide us with the location address or website name
immediately so that we can pursue a remedy. Please contact us at
copyright@packtpub.com With a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Understanding Proxmox VE and
Advanced Installation

Virtualization, as we all know today, is a decades-old technology that was
first implemented in the mainframes of the 1960s. Virtualization was a way to
logically divide the mainframe’s resources for different application
processing. With the rise in energy costs, running under-utilized server
hardware is no longer a luxury. Virtualization enables us to do more with less,
thus saving energy and money while creating a virtual green data center
without geographical boundaries.

A hypervisor is a piece of software, hardware, or firmware that creates and
manages virtual machines. It is the underlying platform or foundation that
allows a virtual infrastructure to be built. In a way, it is the very building
block of all virtualization. A bare metal hypervisor acts as a bridge between
physical hardware and the virtual machines by creating an abstraction layer.
Because of this unique feature, an entire virtual machine can be moved over a
vast distance over the internet and be made available to function exactly the
same. A virtual machine does not see the hardware directly; instead, it sees
the layer of the hypervisor, which is the same no matter what hardware the
hypervisor has been installed on.

The Proxmox Virtual Environment (VE) is a cluster-based hypervisor and
one of the best-kept secrets in the virtualization industry. The reason is
simple. It allows you to build an enterprise business-class virtual
infrastructure at a small business-class price tag without sacrificing stability,
performance, and ease of use. Whether it is a massive data center to serve
millions of people, or a small educational institution, or a home serving
important family members, Proxmox can handle configuration to suit any
situation.

If you have picked up this book, you are no doubt familiar with virtualization,
and perhaps well versed with other hypervisors, such as VMware, Xen,
Hyper-V, and so on. In this chapter and upcoming chapters, we will see the
mighty power of Proxmox from the inside out. We will examine scenarios and
create a complex virtual environment. We will tackle some heavy day-to-day
issues and show resolutions that might just save the day in a production
environment. We will also learn how to deploy a highly redundant storage

system using Ceph to store virtual machines. So strap yourself in and let’s
dive into the virtual world with the mighty hypervisor, Proxmox VE.

Understanding Proxmox features

Before we dive in, it is necessary to understand why one should choose
Proxmox over the other mainstream hypervisors. Proxmox is not perfect, but
stands out among other contenders with its hard-to-beat features. The
following are some of the features that make Proxmox a real game changer.

It is free!

Yes, Proxmox is free! To be more accurate, Proxmox has several subscription
levels, among which the community edition is completely free. One can
simply download the Proxmox ISO at no cost and raise a fully functional
cluster without missing a single hypervisor feature and without paying
anything. The main difference between the paid and community subscription
level is that the paid subscription receives updates, which go through
additional testing and refinement. In a production cluster with a real
workload, it is highly recommended to purchase a subscription from Proxmox
or Proxmox resellers.

Built-in firewall

Proxmox VE comes with a robust firewall ready to be configured out of the
box. This firewall can be configured to protect the entire Proxmox cluster
down to a virtual machine. The per-VM firewall option gives you the ability
to configure each VM individually by creating individualized firewall rules, a
prominent feature in a multi-tenant virtual environment. We will learn about
this feature in detail in Chapter 9, The Proxmox VE Firewall.

Open vSwitch

Licensed under Apache 2.0, Open vSwitch is a virtual switch designed to
work in a multi-server virtual environment. All hypervisors need a bridge
between VMs and the outside network. Open vSwitch enhances the features
of the standard Linux bridge in an ever-changing virtual environment.
Proxmox fully supports Open vSwitch which allows you to create an intricate
virtual environment, all the while reducing virtual network management
overhead. For details on Open vSwitch, refer to http://openvswitch.org/.

We will learn about Open vSwitch management in Proxmox in Chapter 8,
Network of Virtual Networks.

http://openvswitch.org/

The graphical user interface

Proxmox comes with a fully functional graphical user interface (GUI) out
of the box. The GUI allows an administrator to manage and configure almost
all the aspects of a Proxmox cluster. The GUI has been designed keeping
simplicity in mind, with functions and features separated into menus for
easier navigation. The following screenshot shows an example of the

Proxmox GUI dashboard:

X PROXMO S Vi P momal 505155128 BETa

Server Uiz

Jatacantzr
&= Datacent: a
Boomett | & 7 Heath
& 5 y
0o staws
& Slage
+ Onire
Sacap
' Dermissions » Offiine
& User Slardaun= nace - dus e celinsd
e escurces
W Peols
Roes cru Memary
3, Autremicztio
 HA
© “vouan
1% 17%
> Supoent
of 2 CPUIS) E70 80 MiB of 3 85 CiB
EnaTins e
Way 13 224858 pmx 01 ro0i@oam
Way 13224812 Way 13224812 pmx01 00r@aam
vay3223%E waypzzte pmeot ogram

Tuming
Stopped

Virtual Machines

Vi a

g aral o fee

6 e

LXC Container

© Nunring [
Seopoed [y
P Vi) P
265" 1% 1% 0058
stat
04
o<

We will dissect the Proxmox GUI dashboard in Chapter 2, Creating a Cluster

and Exploring the Proxmox GUI.

KVM virtual machines

A Kernel-based Virtual Machine (KVM) is a kernel module that is added to
Linux for full virtualization to create isolated, fully independent virtual
machines. KVMs are not dependent on the host operating system in any way,
but they do require the virtualization feature in BIOS to be enabled. A KVM
allows a wide variety of operating systems for virtual machines, such as
Linux and Windows. Proxmox provides a very stable environment for KVM-
based VMs. We will learn how to create KVM VMs and also how to manage
them in Chapter 6, KVM Virtual Machines.

Linux containers, or LXC

Introduced in Proxmox VE 4.0, Linux containers, or LXCs, allow multiple
Linux instances on the same Linux host. All the containers are dependent on
the host Linux operating system and only Linux flavors can be virtualized as
containers. There are no containers for the Windows operating system. LXC
replaces prior OpenVZ containers, which were the primary containers in the
virtualization method in the previous Proxmox versions. If you are not
familiar with LXC or want details on it, refer to https:/linuxcontainers.org.

We will learn how to create LXC containers and manage them in Chapter 7,
LXC Virtual Machines.

https://linuxcontainers.org

Storage plugins

Out of the box, Proxmox VE supports a variety of storage systems to store
virtual disk images, ISO templates, backups, and so on. All plugins are quite
stable and work great with Proxmox. Being able to choose different storage
systems gives an administrator the flexibility to leverage the existing storage
in the network. As of Proxmox VE 5.0, the following storage plugins are
supported:

The local directory mount points
LVM

LVM thin

NFS

iSCSI

GlusterFS

Ceph RADOS Block Devices (RBD)
ZFS over iSCSI

ZFS

We will learn the usage of different storage systems and the types of files they
can store in detail in Chapter 4, Storage Systems.

Vibrant culture

Proxmox has a growing community of users who are always helping others
learn Proxmox and troubleshoot various issues. With so many active users
around the world, and through active participation of Proxmox developers,
the community has now become a culture of its own. Feature requests are
continuously being worked on, and the existing features are being
strengthened on a regular basis. With so many users supporting Proxmox, it
sure is here to stay.

.proxmox.com.

8 Visit the following link for the official Proxmox forum: https://forum

https://forum.proxmox.com

The basic installation of Proxmox

The installation of a Proxmox node is very straightforward. Simply accept the
default options, select localization, and enter the network information to
install Proxmox VE. We can summarize the installation process in the
following steps:

1. Download the ISO from the official Proxmox site and prepare a disc
with the image (http://proxmox.com/en/downloads).

2. Boot the node with the disc and hit Enter to start the installation from the
installation GUI, as shown in the following screenshot:

Proxmox WE 5.0 (build c155hShc-1) - http://www.proxmox.com/

X PROXMOX

Welcome to Proxmox Virtual Environment

Install Proxmox VE (Debug mode)
Rescue Boot

Test memory

If an optical drive to use the installation disc is unavailable, we can
also install Proxmox from a USB drive.

3. Progress through the prompts to select options or type in information.
4. After the installation is complete, access the Proxmox GUI dashboard
using the IP address, as nttps://<proxmox_node_ip>:8006.

In some cases, it may be necessary to open the firewall port to allow
access to the GUI over port sooe.

http://proxmox.com/en/downloads

The advanced installation option

Although the basic installation works in all scenarios, there may be times
when the advanced installation option is necessary. Only the advanced
installation option provides you the ability to customize the main OS drive.

A common practice for the operating system drive is to use a mirror RAID
array using a controller interface. This provides drive redundancy if one of the
drives fails. This same level of redundancy can also be achieved using a
software-based RAID array, such as ZFS. Proxmox now offers options to
select ZFS-based arrays for the operating system drive right at the beginning
of the installation. For details on ZFS, if you are not familiar, refer to https://en.
wikipedia.org/wiki/ZFS.

It is common to ask why one should choose ZFS software RAID
over tried-and-tested hardware-based RAID. The simple answer
is flexibility. Hardware RAID is locked, or fully dependent, on
the hardware RAID controller interface that created the array,
whereas ZFS creates software-based RAID which is not

0 dependent on any hardware, and the array can easily be ported
to different hardware nodes. Should a RAID controller failure
occur, the entire array created from that controller is lost unless
there is an identical controller interface available for
replacement. The ZFS array is only lost when all the drives or a
maximum tolerable number of drives are lost in the array.

Besides ZFS, we can also select other filesystem types, such as ext3, ext4, or
xfs, from the same advanced option. We can also set the custom disk or
partition sizes through the advanced option. The following screenshot shows
the installation interface with the target hard disk selection page:

https://en.wikipedia.org/wiki/ZFS

X PROXMO Proxmox VE Installer

Proxmox Virtualization Environment (PVE)

The Proxmox Installer automatically partitions * Please verify the installation target

your hard disk. It installs all required packages The displayed hard disk is used for installation.
and finally makes the system bootable from hard Warning: All existing partitions and data wil be
disk. All existing partitions and data will be lost. lost.
Press the Next button to continue installation. * Automatic hardware detection
The installer automatically configures your
hardware.

* Graphical user interface
Final configuration will be done on the
graphical user interface via a web browser.

Target Harddisk: = /devjvda (32GB) = Options

Abort Next

Click on Options, as shown in the preceding screenshot, to open the advanced
options for the hard disk. The following screenshot shows the option window
with supported filesystem drop-down menu:

X PROXMO Proxmox VE Installer

Proxmox Viommar———pgment (PVE)
Filesystemn | exta
The Proxmox Installer automa ofs the installation target
your hard disk. It installs all requit NN hard disk is used for installation.
and finally makes the system bog ~ hdsize | 33 5 1FALY xisting partitions and data will be
disk. All existing partitions and dd
swapsize ofs (RAID10
Press the Next button to continu _ ardware detection
e ML Ltomatically configures your
minfree zfs (RAIDZ-3 ‘
er interface
ation will be done on the
maxvz interface via a web browser,
oK
Target Harddisk: = fdevjvda (32GB) » Options

Abort Next

We are going to select the ZFS mirror or RAID1, for the purpose of this book,
in order to create a demo cluster from scratch. In the preceding screenshot, we
selected zfs (RAID1) for mirroring, and the two drives, Harddisk 0 and
Harddisk 1, to install Proxmox. The installer will auto-select the installed disk
drive, as shown in the following screenshot:

X PROXMO

Proxmox VE Installer

Proxmox Virtualization Environment (PVE)

- options LILIE)

The Proxmox Installer automa

: 4 . Fllesystem | zfs (RAID1) v
your hard disk. It installs all requir
and finally makes the system boo
disk. All existing partitions and da Disk Setup Advanced Options
Press the Next button to continu
Harddisk 0 | /devivda (32GE) +

Harddisk 1 | jdevivdb (32GB) »

1e installation target
d disk is used for installation.
ing partitions and data will be

ware detection
matically configures your

nterface
will be done on the
erface via a web browser,

Target: zfs (RAID1) Options

Abort

Mext

The Advanced Options include some ZFS performance-related configurations
such as compress, checksum, and ashift or alignment shift, as shown in the

following screenshot:

: Harddisk options 2=
Flesystem | zfs (RaD1) -
Disk Setup Advanced Options
ashift | & - + ‘
compreass an -
checksum | on -
copies |1 +

OK

For most environments, this configuration can be left as default.

If you are unfamiliar with ZFS advanced tuning, then the following link may
be helpful to get some insight on ZFS performance tuning options:

http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29

If we pick a filesystem such as EXT3, EXT4, or XFS instead of ZFS, the
Harddisk options dialog box will look like the following screenshot, with a
different set of options:

: Harddisk o 2 L DDD:
Filesystern | extd - | |
hdsize | 32.0 - |

sSwapsize

maxroot

minfree

MaxE

OK

Selecting a filesystem gives us the following advanced options:

hdsize: This is the total drive size to be used by the Proxmox installation.
swapsize: This defines the swap partition size.

maxroot: This defines the maximum size to be used by the root partition.
minfree: This defines the minimum free space that should remain after
the Proxmox installation.

e maxvz: This defines the maximum size for the data partition. This is
usually /var/1ib/vz.

From Proxmox VE version 5, we can select the interface that will be used for
management. This is very useful when a node has multiple network interfaces
and we want to intentionally use a particular interface for cluster
management. The following screenshot shows the management network
interface selection screen during Proxmox installation:

http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29

X pRD MD Proxmox VE Installer

Management Network Configuration

Please verify the displayed network * |P address: Set the IP address for the
configuration. You will need a valid network Proxmox Virtual Environment.

configuration to access the management

interface after installation. * Netmask: Set the netmask of your network.

Afterwards press the Next button to continue
installation. The installer will then partition your
hard disk and start copying packages.

* Gateway: IP address of your gateway or
firewall.

* DNS Server: IP address of your DNS server,

Management Interface: = ens18 - 9a:fd:38:b8:ad:c6 (virtio_net) v

Hostname (FQDN): | pmx-01.domain.com

IP Address: = 172.16.5.1

Netmask: | 255.255.252.0

Gateway: 172.16.3.254

DNS Server: 172.16.3.254

Abort Next

Debugging the Proxmox installation

Debugging features are part of any good operating system. Proxmox has
debugging features that will help you during a failed installation. Some
common reasons are unsupported hardware, conflicts between devices, ISO
image errors, and so on. Debugging mode logs and displays installation
activities in real time. When the standard installation fails, we can start the
Proxmox installation in debug mode from the main installation interface, as
shown in the following screenshot:

Proxmox VE 5.0 (build c155hShc-1) - http://www.proxmox.com/

X PROXMO

Welcome to Proxmox Virtual Environment

Install Proxmox VE

Rescue Boot

Test memory

The debug installation mode will drop us in the prompt, as shown in the
following screenshot:

roxnox startup

ounting proc filesysten

ounting sys filesysten

omandline: BOOT_IMAGE=/boot/linux26 ro ramdisk_size=16777216 ru quiet splash-verbose proxdebug

loading drivers: shpchp i2c_piix4 pata_acpi mac_hid gemu_fu_cfy floppy virtio_blk pcspkr serio_raw psmouse input_leds

searching for cdrom

testing cdrom /devssrd

found proxnox cdronm

Debugging node (type exit or CTRL-D to continue startup)
#

To start the installation, we need to press Ctrl + D. If there is an error during
the installation, we can simply press Ctrl + C to get back to this console to
continue with our investigation. From the console, we can check the
installation log using the following command:

| # cat /tmp/install.log

At times, it may be necessary to edit the loader information when normal
booting does not function. This is a common case when Proxmox is unable to
show the video output due to UEFI or a nonsupported resolution. In such
cases, the booting process may hang. From the main installation menu, we

can press E to enter edit mode to change the loader information, as shown in
the following screenshot:

GMU GRUEB wersion 2.

arams 'Install Proxmox 4

'Load ro
linusx shootslim & =l 167 16 rw guiet splh
ash=silent
echo 'Loading initial ramdisk ...

initrd shoot 7 initrc

a

METIL .

One way to continue with booting is to add the nomodeset argument by editing
the loader. The loader should look as follows after the edit:

| 1inux/boot/1inux26 ro ramdisk_size=16777216 rw quiet nomodeset

Proxmox subscription and
repositories

Proxmox itself is completely free to download and deploy without any cost.
But a subscription offers an added level of stability to any node used in a
production environment. Both free and subscribed versions have separate
repositories and receive updates differently.

Updates or packages released through the subscribed or Enterprise repository
go through additional testing and debugging before they are released. This is
not to say the updates or packages in the free repository are full of bugs and
are released without testing. All Proxmox patches, updates, and packages are
taken through the complete development cycle, including testing, before they
are released. But Enterprise packages go through much more comprehensive
debugging and testing. This level of tests is mandatory for an enterprise-class
network environment where a small issue can cost a company a lot of money.
A highly stable environment is usually not needed in a home-based platform
or small business environment. The subscription menu allows you to activate
a purchased subscription on a node. So from a stability point of view, the
enterprise version is without a doubt the best choice for any production
environment cluster. The price of an enterprise subscription varies depending
on the level of Proxmox support provided through tickets, portal, and phone.

Free repository users can only reach out for support through the official
Proxmox forum. Proxmox developers quite often lend their expertise to
address issues posted on the forum by users. There is no portal or ticket
system available for free users. Since this is a free community forum, some
issues may not get answered in time.

let the subscription level fool you into thinking that the free

0 Even with the free version, Proxmox is still very stable. Do not
version is not even worth considering.

Both free and enterprise versions can be mixed in the same environment. For
example, some critical nodes actively serving users can be on the enterprise
version, while any non-critical nodes, such as nodes used for testing, backup,
and so on, can be on the free version. Upon logging in through the free non-
subscription Proxmox node through the GUI, we will be presented with the
following notification:

Mo valid subscription

You do not have a valid subscription for this server. Please visit www proxmox.com to get a

list of available options.

There are three package repositories for Proxmox:

e Proxmox VE Enterprise repository
e Proxmox VE No-Subscription or Free repository
e Proxmox VE Test repository

Proxmox VE Enterprise repository

As the name suggests, this repository is for nodes with paid subscriptions. By
default, the Enterprise Repository is enabled in Proxmox. The repository
information is in the file /etc/apt/sources.list.d/pve-enterprise.list. We can
disable the Enterprise Repository by simply commenting it out with the #
symbol in the following line:

| deb https://enterprise.proxmox.com/debian jessie pve-enterprise

When disabling the Enterprise Repository, the No-Subscription Repository
must be enabled in order to receive updates, patches, and packages. If you’re
using the Enterprise Repository on a mission-critical node and a subscription
has been purchased, the subscription key can be uploaded through the
Proxmox GUI by clicking on the Upload Subscription Key button under

the Node | Subscription menu, as shown in the following figure:

Upload Subscription Key

Subscription
Key:

Copy and paste the subscription key and then click on OK. Proxmox will
automatically check the validity of the key and activate the subscription for
the node. A fully subscribed node appears similarly to the

following screenshot, under subscriptions in the GUI:

Q Search Upload Subscription Key Check System Report

& summary Type Proxmox VE Community Subscription 2 CPUs/year

>_ Shell Subscription Key pveEc_

o System Status Active
Sockets 2
@ DNS
Last checked 2017-05-11 02:59:02
Time
2 Next due date 2017-08-24
= Syslog
2 Updates

Let’s look at the details provided through the Subscription page.

Type

This shows the name of the Proxmox subscription level. There are four levels
of subscription available: Community, Basic, Standard, and Premium. The
higher the level, the more support add-ons are included.

Subscription key

This is the alphanumeric subscription key the customer receives after
purchasing any subscription. The key is formatted in two parts: pvexx-
xxooooooxx. The first portion of the key indicates which level of subscription
this key belongs to and for how many server sockets. For example, in the
previous screenshot, the subscription key is for a Community-level
subscription for a server with two sockets. If this were the Premium-level
subscription for a server with four sockets, the key would appear as pveap-

XXXXXXXX.

All letters and numbers after the - are unique to each key and should not be
shared with unauthorized personnel or made public.

Status

This shows the current status of the subscription key.

Server ID

This uniquely generated ID belongs to one node only. When a subscription
key is activated on a particular server, the key gets associated with this unique
ID. When a node needs to be reinstalled without any hardware changes in it,
the key can be reapplied to the server without being reissued or reactivated.
But if the key is to be applied to other server hardware or if any major
component (such as the CPU, motherboard, or memory) in the server has
been changed, then a new unique ID will be generated. In that case, the key
will need to be reissued or reactivated. This reissuing can be done by the user
on the Proxmox customer site or by the authorized reseller from whom the
subscription key has been purchased.

Sockets

This shows the physical CPU socket count of the server node.

Last checked

This shows the date and time of the last key validation check performed
automatically by the node or manually by the user.

Next due date

This shows the expiration date of the subscription key, by which the key
needs to be renewed. If the key is not renewed and expires, the Proxmox node
will still continue to function properly. But it will not receive any updates
from the Enterprise Repository.

Proxmox VE No-Subscription
repository

This repository includes updates and packages free of cost. If using this
repository, changes must be made to activate it. After disabling the Enterprise
Repository, by following the instructions in the previous section, add the
fOHOWiIlg line to the file /etc/apt/sources.list:

| deb http://download.proxmox.com/debian jessie pve-no-subscription

Proxmox VE Test repository

This repository largely contains packages for testing purposes only. It is
mainly used by Proxmox developers to test new packages and allow
interested users to test them as well. Under no circumstances should this
repository be used in a production environment. To enable this repository, add
the fOHOWiIlg line to /etc/apt/sources.list:

| deb http://download.proxmox.com/debian jessie pvetest

Proxmox has the very best prices per subscription in the
virtualization product industry. The operating cost of a Proxmox
cluster is minimal as compared to a giant virtual product, such
as VMWare. Proxmox provides big-business virtualization at a
small-business cost. For details of different subscription levels,
refer O http://proxmox.com/proxmox-ve/pricing.

http://proxmox.com/proxmox-ve/pricing

Summary

In this chapter, we looked at why Proxmox is a better option as a hypervisor,
what advanced installation options are available during an installation, and
why we choose software RAID for the operating system drive. We also
looked at different subscription levels and their benefits. We learned about the
presence of the debugging features to investigate when an installation does
not proceed as usual.

In next chapter, we will take a closer look at the Proxmox GUI and see how
easy it is to centrally manage a Proxmox cluster from a web browser.

Creating a Cluster and Exploring
the Proxmox GUI

Proxmox VE can be used independently without being part of a cluster. But in
order to truly use Proxmox at its full potential, a cluster enables many more
advanced features such as centralized management, high availability, and live
migration. We will look into the features in later chapters. When multiple
Proxmox nodes are in the same cluster, they can all be managed and
monitored by logging in to the Proxmox GUI through any member node.
There is no master-slave scheme in Proxmox. All nodes works together by
sharing the same configuration.

Creating a Proxmox cluster

A cluster is nothing but a group of Proxmox servers or nodes, sharing
resources. A Proxmox cluster can contain up to 32 physical nodes. If network
latency permits, the number of nodes can be higher. But any number of nodes
higher than 32 may cause an unstable situation within the cluster.

As of Proxmox VE 5, we cannot create clusters through the graphical
interface. The entire process of cluster creation must be done through the CLI.
Proxmox provides a tool to create and add nodes to a cluster called Proxmox
VE Cluster Manager or pvecm.

When naming a cluster, keep in mind that it can be a maximum
0 of 15 characters and only—can be used as a special character.

To create a new cluster, log in to any available Proxmox node through SSH
and run the following command:

| # pvecm create <clustername>

For our first demo cluster, we are going to run the following command to
create a cluster named pmx-cluster:

| # pvecm create pmx-cluster

After successfully creating the cluster, we can quickly check it through the
following command:

| # pvecm status

The following screenshot shows the result after running the pvecn command:

ro0t@pmx :"# puecn create pmx-cluster

Corosync ster Engine d tion key generator.
Gathering yits r) e andon.

riting nc orosyncsauthkey.
rootEpm

Mon May 29 08:29:44 2017
corosync_votequorumn

Quorate

p information

As shown in the previous screenshot, we have created a new cluster from
node 1. We are now going to add a second node into the cluster. To add a

member node, log in to the node through SSH, and then run the following
command:

|# pvecm add <existing_member_ip>

If there is more than one member node in the cluster already, then the IP
address in the command can be any of those nodes. As mentioned earlier,
there is no master-slave scheme in a Proxmox cluster. All nodes share the
same cluster configuration and information. For our demo cluster, we are
going to add our second node into the cluster using the following command,
where 172.16.2.1 is the assigned IP address of the first node in the cluster:

| # pvecm add 172.16.2.1

The command will initiate the process of adding the node into the cluster and
will display results as it progresses. The command also starts or restarts
necessary services. The only user prompt that is necessary in the beginning of
the process is to enter the destination node’s root credentials. The following
screenshot shows the command to add a node and the process it progresses
through:

Sometimes it may be necessary to rejoin a member node with the same
hostname and IP address into the cluster for any number of reasons, such as a
hostname change or reinstall. The node-joining command will produce an
error, as shown in the following screenshot, if the node has the same network
information as it had previously:

The reason this error occurs is the cluster configuration already has a node
listed in it with the same hostname and IP address. In such cases, we can add
an option at the end of the node-joining command as follows:

|# pvecm add <existing_mode_ip> -f

The command will forcefully rewrite the cluster configuration, recreate the
SSH authentication key, and join the member node. We can see the list of
member nodes in the cluster using the following command:

| # pvecm nodes

We can also use the pvecn command to remove or detach a member node from
the cluster. This command should be run from any node in the cluster except
from the node being detached.

Before removing a node from the cluster, ensure that all virtual
' machines have been moved to other nodes of the cluster, because
1|z after the node is detached, all VMs residing in the node will

become inaccessible from the rest of the nodes in the cluster.

The following command will remove a node from the Proxmox cluster:

| # pvecm delnode <hostname/IP>

Exploring the Proxmox GUI

The Proxmox GUI allows users to interact with the Proxmox cluster
graphically using menus and a visual representation of the cluster status. Even
though all of the management can be done from the CLI, it can be
overwhelming at times, and managing a cluster can become a daunting task.
To properly utilize a Proxmox cluster, it is very important to have a clear
understanding of the Proxmox GUI. The GUI can be accessed through any
member nodes in the cluster. From Proxmox VE 4.2, the GUI has been
updated to Sencha Ext JS 6, adding a new level of cluster visibility along with
aesthetic appeal. We can now gather a lot more, at-a-glance data while
managing more details through the GUI.

In this chapter, we are going to explore the different parts of the Proxmox web
GUI, such as how the menu system is organized and the menus’ functions.
The GUI can be easily accessed from just about any browser though a URL
similar to https://<node_ip>:8006. FOor our demo cluster, we are going to access
the GUI through the link: nttps://172.16.2.1:8006.

The following screenshot shows an example of the Proxmox GUI for our
demo cluster:

x PROXMD X Vitud Evionment £0 57 f55b5ke m: Cluster Wide SearchBor

You ae logged in s “ool@oam & 6 Hlp m

St Viow Datacentet Hio
=
= Datacenter
Search
B pmudt b Heaith Guests
8 loca o] & Sunmay
leca-vn (omx 3 5 ages lachines ontainer
lecahm omel!) (] 1 optons Statu: Ned Virtual Machi LXC Contair
&) B Stuage Hunning [} © Hanring 0
£ lrca pmed) v Onine 2 Stoppad 0 Sioped 0
B keadmipmedz) || B Beckap
o Permicsions Cfing 0
UlsterTree Menu o H Cluster px-clustzr, Quorate: Yes
U Fiewel Resturces Neces @
G Suppott
i oPU Wemory Storage Hame D Onfine | Suppat Serw: Address | CPU usage Mamaty usage Lptire
Maln Menu prx-01 1 v - 621 % 1% Wayz 00
ez v . 1121322 % kb3 fhdas i
0
% 23% 8%
of 3 CPUs) 136G 58168 247CBoi M UGB
Dynamie Perfarmance € harls
M Cluster g Tack Histery
Star Tima End Time Hode User name Destrgtion
Way 20071515 May 20 07:05:1% pme1 motfipam Start al VMs and Comzmers 3
Way 2007146 May 20 07043 prdt motpam Stop il Vids and Contanrs 0K
Wy 2007 071 May 20 0T 1751 pmedit motpam Start al Vs and Comziners K
Iy 2007 0147 May 20 07:01:47 pmedi motfjpam Stop all ViAs and Contaners 0K
ey 1124338 May 14 124138 o2 ool@pam Start al YMs and Comiainers K
Wey 13224856 May 13 224858 i 00l pem Slart al VMs annd Conieners 0K
Wy 13224642 May 13224812 pmei olgpsm Stop all VMs and Contarers oK
Way 13223510 May 13222510 et mootdpam Gtart al VMs and Comainers L

The GUI menu system

The Proxmox GUI is a single-page administration control panel. This means
that no matter which feature one is managing, the browser does not open a
new page or leave the existing page. Menus on the admin page change
depending on which feature is being administered. For example, in the
preceding screenshot, the cluster known as patacenter is selected, so the main
menu only shows cluster-specific menus. If a node is selected, the main menu
looks like the following screenshot, displaying node-specific menus:

% PRO MO X Virual Environment 5.0-5/c155b5bc BETA

‘You are logged
Server View Node 'pmx-01"
= Datacenter
& P01 Q Search Package versions
= local (pmx-01) & Summary
£ Jocal-lvm (pmx.01) > Shell pmx-01 (Uptime: 10 days 01:05:30)
mx-02
Eo.p o} System i
£ local (pmx-02) CPU usage 1.39% of 2 CPU(s) 10 delay 123%
£ locakvm (pmx-02) & Updates Load average 004,003,000
U Firewall
& Disks RAM usage 18.20% (718.93 MiB of 3.86 GiB) KSM sharing 0B
® Ceph HD space(root) 16.36% (124 GiB of 7.57 GiB) ~ SWAP usage 0.00% (0 B of 3.87 GIB)
= Task History
CPU(s) 2 x Common KVM processor (1 Socket)
QitSlbsenpton Kernel Version Linux 4.10.1-2-pve #1 SMP PVE 4.10.1-2 (Fri, 10 Mar 2017 10:20-14 +0100)

PVE Manager Version

pve-manager/5.0-5/c155b5bc

CPU usage

0
2017-05-30
07:01:00

2017-05-30
07:10:00

2017-05-30
07:20:00

2017-05-30
07:30:00

2017-05-30
07:40:00

2017-05-30
07:50:00

2017-05-30 20170
08:00:00 08:10

The following chart is a visual representation of the Proxmox GUI menu
system. Some menu options are system settings that need to be set up once
during installation and do not need any regular attention, such as DNS, time
and services. Other menu items require regular visits to ensure a healthy
cluster environment, such as Summary, Syslog, Backup, and Permissions:

Proxmox GUI
Menu System

KVM Menu LXC Menu Storage Menu

Datacenter Menu

Summary

Options

Storage

Backup

Permissions

Node Menu

Summary

Summary

Console

Hardware

Options

Task Histary
Monitor
Backup

Snapshots

Summary

Console

Resources Permissions

Options

Task Histary

Snapshats

Fencing Updates Options
Firewall Firewall Firewall
Firewall
Options Options Optians
Security Groups / Log
Alias Disks Permissions
Ceph

Support

Configuration

Monitor

Task History

Subscription

Permissions

Cluster tree view

By default, the Proxmox GUI displays the cluster tree menu in the Server
View mode. No matter which view mode is selected, it does not change the
main menu system. There are a total of four modes that we can change the
tree views to, as shown in the following screenshot:

)X{ PRO MO < Virtual Environment 5.0-5/c155b5bc

| Server View ‘ Datacenter
Server View
Folder View Q Search
Storage View & Summary
Pool View £ Options
b pmx-02
— Z Storage

= local (pmx-02)
= local-lvm (pmx-02) Backup

Server View

This is the default tree view, which shows the complete list of all nodes and
the resources they contain. Nodes can be uncollapsed to view the resources
they contain, such as virtual machines, containers, and the storage connected

to them.

Folder View

This view separates different resources in a folder-like manner, such as
Nodes, Pools, virtual machine, and Storage. The following screenshot shows
our demo cluster in Folder View:

Folder View Datacenter
= Datacenter - N
B Nodes 8 e
Bz pmx-01 & Summary
B pmx-02 & Options
@ Resource Pool
Storage
@ Test-Pooll s 2
= Storage Backup
£ local (pmx-01) o Permissions
3
= local (pmx-02
pc ®) & Users
= local-lvm (pmx-01)
= local-lvm (pmx-02) & Groups
W Pools

Roles

Storage View

This view shows the list of nodes with only storage devices attached to them.
It does not show any virtual machines or other resources. This is a great view
for storage administrators to manage storage throughout the cluster. The
following screenshot shows the Storage View of our demo cluster:

Storage View Datacenter

= Datacenter

B pmx-01 Q Search
£ local (pmx-01) & Summary
| = local-lvm (pmx-01) # Options
Eb pmx-02
Storage
£ local (pmx-02) s g
£ local-lvm (pmx-02) Backup
o' Permissions
& Users

% Groups

Pool View

This view shows a list of pools and resources allocated on those pools. In the
Proxmox GUI, we can create pools for different departments, customers, or
just about any requirement where certain resources need to be allocated for
specific parties and managed separately. The advantage of this is access
permissions can be set at the pool level where an authorized person can access
all resources allocated to that pool. This eliminates the need to set permissions
for each individual resource. To cancel permissions, simply delete it from the
pool. The following screenshot shows the Pool View for our demo cluster:

Pool View Resource Pool: Test-Pool1

=S Datacenter

@ Test-Pool1 R Scah Statiia
& Summary
Comment
22 Members

' Permissions

The Datacenter menu

In the Proxmox GUI, Datacenter is the main-level folder of the Proxmox
nodes/VMs tree. Each data center can only hold one Proxmox cluster. As of
Proxmox VE 5, it is not possible to manage more than one cluster through the
Proxmox GUI. Any task performed through the Datacenter menu affects the
cluster as a whole. Let’s now look at the various options available in the
Datacenter menu.

Datacenter | Search

It is very easy to manage a cluster with a small number of virtual machines
with an even smaller number of Proxmox and storage nodes. When
maintaining a large number of virtual machines and Proxmox nodes, the
search feature can save a lot of time for an administrator spent in scrolling
and manually looking for a particular resource. This is where the Search menu
option can come in handy. The following screenshot shows a search result
after typing a node name in the Search box in our example cluster:

Servar View Datacenter

= Datacenter
‘ E pmx-01 Qiises Search. pmx-02

£ local (pmx-01) & Summary Type Description Disk usage... Memoryusage% = CPU usage Uptime
£ local-vm (pmx-01) & Options

E» pmx-02
¥ Test-Pocl1

B node pmx-02 16.3 % 33.7% 1.4% of 1CPU 15 days 20:56:07

£ Storage storage local (pmx-02) 16.3 %

Backup storage local-lvm (pmx-02) 0.0%

of' Permissions

The Search box under Datacenter | Search shows the results in real time as
you type in the box. It can search with any string in the Type or Description
columns. It can be the partial name of a VM, VMID, or VM Type (qemu,
1xc).

Wildcards are not supported in search strings. The Datacenter
search page also shows a complete list of all resources of the
cluster. Prior to version 4.3 this information was available
under Datacenter | Summary.

It is worth mentioning here that there is another cluster-wide search option
available that is accessible from anywhere in the GUI menu system. It is
located at the top of the GUI page next to Proxmox version information, as
shown in the following screenshot:

X PROXMO X Vitual Environment 5 0-5/c155b5bc BETA TITEA |
: Type Description Node
Server View Datacenter P ’
= Datacenter B node L Ao 82
b pmx.01 Q Search Heal = storage local-lvm (pmx-02) pmx-02
By pmx-02 & Summary S storage local (pmx-02) pmx-02
¥ Test-Poolt & Options
€ Storage

This search box functions exactly like the Search option under the Datacenter
menu.

Datacenter | Summary

Starting from Proxmox VE version 4.3, the Summary menu in Datacenter
now displays much more information, including real-time cluster performance
data showing real-time clusters, rather than showing a list of all the member
nodes in the Proxmox cluster. The following screenshot shows the node list in
the Summary menu for our demo cluster:

Server View Datacenter
= Datacenter e
Eo = Q Searcl
= local (pmx-01) & Summary
£ Iocal-vm (pmx-01) @& Options
mx-02
B p £ Storage
W Test-Poolt
Backup

o Permissions

& Users

& Groups

¥ Pools

f Roles

&, Authentication
L HA
U Firewall

% Support

Health
Status
Cluster: pmx-cluster, Quorate: Yes
Guests
Virtual Machines
© Running 0
Stopped 0
LXC Container
© Running 0
Resources
CPU Memory Storage
1% 23% 8%

of 3 CPU(s) 1.36 GiB of 5.81 GiB 2.47 GIB of 31.38 GiB

Datacenter | Options

Options in the Datacenter menu allows you to set the Keyboard Layout
language, HTTP proxy, default Console Viewer, and Email from address
format that the Proxmox node sends root emails from. We can also change the
default MAC address prefix for all auto-created MAC addresses within the
cluster from this menu. The following screenshot shows the Options menu for

our demo cluster:

Server View Datacenter
= Datacenter 0 —
B pmxco1 Q. Searc Edit
S local (pmx-01) & Summary Keyboard Layout
£ local-lvm (pmx-01) £ Options HTTP proxy
% :m":‘gz " & Storage Console Viewer
est-Poo)
Backip Email from address

MAC address prefix
o' Permissions

English (USA) (en-us)
none

Default (HTMLS)
root@$hostname

none

Datacenter | Storage

The Storage menu is probably one of the most important menu options in the
GUIL. This is where the Proxmox cluster and storage system come together.
This is the menu to attach or detach various storage systems with Proxmox. In
Chapter 4, Storage Systems, we are going to dive deeper into the Proxmox
storage system. The following screenshot shows attached Storage in a

Proxmox cluster:

Server View

= Datacenter

Ee pmx-01
= local (pmx-01)

=
=
=

local-lvm (pmix-01)

By pmx-02
¥ Test-Poolt

Datacenter

Q Search Add

& Summary D

Options local

£ Storage local-lvm

Backup

Type Content Path/Target Shared Enabled
Dire VZDump backup fil Ivarl/liblvz No Yes
LVM.. Disk image, Container No Yes

Datacenter | Backup

Cluster-wide backup schedules are created through this menu. No backup
tasks can be directly performed here. A good backup plan is the first line of
defense against any disaster that can cause major or minor data loss. In our
ultra-modern digital world, data is much more valuable than ever before.
Every virtual environment administrator struggles with a backup strategy of
their virtual environment.

The fine line between granular files and an entire virtual machine backup is
somewhat diminished in a virtual environment. To take the daily struggle of a
backup plan out of the equation, Proxmox added an excellent backup system
right in the hypervisor itself.

As of Proxmox VE 5.0, we can only schedule backup tasks up to
1 week. Although the backup feature cannot back up individual
files inside a virtual machine, it works well while backing up an
entire virtual machine.

Proxmox backups can be scheduled over multiple storage systems, multiple
days, and time. In Chapter 13, Back Up and Restore Virtual Machines, we will
learn what backup and restore options are available in Proxmox as part of
disaster planning.

Datacenter | Permissions

This Permissions menu allows you to set cluster-wide access permission
levels to a user. The menu also shows you a complete list of all the
permissions already assigned to users. The same permissions can be set from
the virtual machine and storage specific permission menus. When setting
permissions from the Datacenter | Permissions menu, we have to type in the
path for the entity we want to set the permission for. For example, the
following screenshot shows virtual machines assigned to some users:

Datacenter

Q, Search Add Remave
& Summary Path User/Group Role Propag..
#+ Options Ams/101 vps_ygsidetm@pve PVEVMUser frue
£ Storage Nms/102 meggioue@pve PVEVMUser true
Backup ms/103 sgvhsghl@pve PVEVMUser true
& Permissions fvms/104 vps_qyliwndj@pve PVEVMUser true
Amsi105 rwigzkcn@pve PVEVMUser true
& Users
ms/106 duvitrcr@pve PVEVMUser true
W Goups ms108 dbugdbwv@pve PVEVMUser true

Following are the paths formats for user permission level for VMs, storages
and pool:

e To assign the user permission level for both the KVM and LXC virtual
machines, the path format is /vms/<vm/1xc_id>.

e To assign the user permission level for storage, the path format is
/storage/<storage_name>.

¢ To assign the user permission level for pools, the path format is

/pool/<pool_name>.

The group permission level can also be set from this Permissions menu.
Before we can create permissions for users or groups, we have ensured the
user or group exists through the Users and Groups menu under Permissions.
The following screenshot shows the permission-creating dialog box:

Datacenter

Q
&

&

({

L @

Search
Summary
Options
Storage
Backup
Permissiens
& Users
i Groups
W Pools

§ Roles
&, Authentication

Add
Path User/Group Role
{poolTest-Pool1 wahmed@pam PVEPoolAdmin
Add: User Permission)
Path: ‘ |
User: ‘ g |
Role: ‘ NoAccess v |
Propagate:
@nep

Datacenter | Permissions | Users

This menu allows the user creator to assign different permission levels for a
Proxmox cluster or virtual machine access. Changes to user details, removal
of users and changing passwords, and assigning groups are also performed
from this menu. The following screenshot shows the user-creation window
with some example data:

Add: User

User name: wahmed First Name: Wasim

Realm: Linux PAM standard aut Last Name: Ahmed

Group: Authors E-Mail: wahmed@symmcom.com
Expire: 2017-12-31

Enabled:

Comment: ‘ | |
Key |Ds:

The Proxmox user management allows you to set a user’s access expiration
date. This is very useful when giving a user temporary access, which must be
deactivated after a certain number of days. This option is good for temporary
access, such as contracted employees or vendor access.

Datacenter | Permissions | Groups

This menu helps you create, edit, and remove groups only. When the same
permission is to be granted to multiple users, it is easier to assign those users
to a group and then assign the permission level to that group only instead of
all the users individually. This saves a lot of time and makes user
management much simpler. The following screenshot shows a list of three
groups in the example cluster:

Datacenter

Q Search Create I Edit | Remove

& Summary Name Comment

£ Options Admins Proxmox Administrators
£ Storage Authors Author Access

Backup DemoUsers Guest User Permissions
o' Permissions

& Users

i Groups

Datacenter | Permissions | Pools

Pools in a Proxmox cluster are a way of grouping different entities, such as
storage and virtual machines. For example, in a multi-tenant virtual
environment, we can assign storage to virtual machines that belong to a client
in a separate pool so that it is easy to view resources assigned to that client.
We can create, edit, or remove pools from this menu.

Datacenter | Permissions | Roles

This menu only shows predefined roles or permission levels that come with
Proxmox 4.1. There are no options to edit or add new levels. The menu also
shows defined privileges for each role. These roles can be assigned to users or
user groups to set different user permission levels.

Datacenter | Permissions
Authentication

By default, Proxmox creates the PAM and PVE authentication realm.
Through this menu, we can create a new authentication realm, such as LDAP
and an Active Directory server. We can also configure two-factor
authentication from this menu. The following screenshot shows the
authentication menu with options to add two-factor authentication for a PAM
realm:

Edit: linux PAM

Realm: pam TFA: | |

Default fong
OATH
Comment: Linux PAM standard authentication Yubico

Datacenter | HA

High Availability (HA) has never been easier than it is in Proxmox VE 5. It
is now much simpler to configure all through the GUI. In simple words, an
HA-enabled virtual machine is automatically moved to a different node
during node failure. We will learn how to configure and leverage HA in Chapter
10, Proxmox High Availability.

Datacenter | Firewall

The Proxmox built-in firewall is one of the most prominent features in recent
versions. It allows firewall rules down to the virtual machine level while
protecting with cluster-wide rules. A firewall works at both the cluster and
virtual machine level, which can be configured to allow or deny connections
to and from specific IP addresses. Any firewall rules under the patacenter menu
apply to the entire cluster. Chapter 9, The Proxmox VE Firewall, has been
dedicated to learning about the firewall feature in greater length.

Datacenter | Support

This menu tab shows support options that are available when there is a paid
subscription applied to a node. Without any paid subscription-level node in
the cluster, the menu displays no support information, as shown in the
following screenshot:

Server View Datacenter

= Datacenter

B pmx-01 Q Search
S ocal ooty | @ Summary No valid subscription
% locak-lvm (pmx-01) g4 Options You do not have a valid subscription for this server. Please visit www proxmox com to get a list of available options.
pmx-02
B £ Storage
¥ Test-Poolt

Refer to the Proxmox subscription and repositories section in Chapter 1,
Understanding Proxmox VE and Advanced Installation, for information on
the benefits of having a paid subscription.

Node-specific menus

Node-specific menu options are specific to each node in the cluster. New
menu tabs become available as each node is selected from the left-hand side
navigation pane.

Node | Search

This is similar to the Search option in the datacenter-specific menu; this
search option limits the scope of your search to the selected node.

Node | Summary

The Summary menu option for a node is a visual representation of real-time

data of the node’s health. It shows vital information, such as uptime and
resource consumption. The Summary menu also shows CPU usage, server

load, memory usage, and network traffic in a very easy-to-understand graph.
An administrator can get the necessary information of a node just by glancing

at the summary. The graphs can be viewed on an hourly, daily, weekly,

monthly, and yearly basis. The following screenshot shows the summary of

node pmx-01 in our demo cluster:

Server View Node 'pmx-01') Restart (O Shutdown = >_ Shell £ Bulk Actions

= Datacenter

& pm01 Q Search Package versions Hour (average)

£ local (pmx-01) & Summary pmx-01 (Uptime: 10 days 03:47:37)
£ locaklvm (pmx-01) 5 ghell
[pmx-02 & 5 CPU usage 161%0f2CPU(S) 10 delay 045%
ystem
W et et Load 005,003,000
= Network oad average ,0.03,0.
@ DNS RAM usage 18.32% (72366 MiB 0f 386 GiB) KSM sharing 0B
@ Jane HD space(root) 16.37% (1.24 GIB of 757 GiB) ~ SWAP usage 0.00% (0 B of 3.87 GiB)
= Syslog
< Updates CPU(s) 2 x Common KVM processor (1 Socket)
U Firewall Kemel Version Linux 4.10.1-2-pve #1 SMP PVE 4.10.1-2 (Fri, 10 Mar 2017 10:20:14 +0100)
X PVE Manager Version pve-manager/5.0-5/c155b5bc
& Disks
@ Ceph
CPU usage
= Task History
3
€ Subscription 95

\ i e A

10 delay: 1.21 %
05 Tue May 30 2017 09:44:00 GMT-0600 (Mountain Standard Time)

0

© Help

2017-05-30 2017-05-30 2017-05-30 2017-05-30 2017-05-30 2017-05-30 2017-05-30 2017-05-3(

09:43:00 09:50:00 10:00:00 10:10:00 10:20:00 10:30:00 10:40:00 10:50:00

® CPUusage @10 delay

~

v

Node | Shell

This menu opens the shell console of the node right in the same browser
instead of a pop-up window. One of the benefits of opening the shell inside
the browser is that sometimes a console opened in a pop-up window does not
resize well. That makes the console partially visible, which can be a great
annoyance at times when trying to manage the node through the CLI. A
console opened through this Shell option will always resize to the full view of
the console. The following screenshot shows the Shell window of our node
pmx-01:

Node 'pmx-01' D Restat (O Shutdown
Q Search Connected (encrypted) to: VNC Command Terminal
& Summary Last login: Mon May 29 688:25:13 MDT 2817 on ttyl

>_ Shell
% System The programs included with the Debian GNU/Linux system are free softuware:
the exact distribution terms for each program are described in the
individual files in ~usrssharesdoc/=*/copyright.

= Network

@ DNS
@ Time Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
= Syslog permitted by applicable law.

< Updates I‘DGt@me*ﬁl o I

U Firewall

We can still open the console separately in a browser window using the
existing Shell button in the upper-right corner of the GUI, as shown in the
following screenshot:

You are logged in as Toot@pam’ ¥ € Help

D Restart (D Shutdown >_ Shell ¢ Bulk Actions © Help

Node | System

This menu displays the status of all the vital services in the node. We can also
start or stop a specific service from this menu without going through the CLI.
During troubleshooting or node maintenance, services may need to start or
stop, or the status of a service may be unknown. This menu lists all running or
stopped services for the node. The following screenshot shows services
running in one of the nodes in our example cluster:

Node 'pmx-01'
Q Search Start Stop Restart
& Summary Name Status Description
>— Shell corosync running Corosync Cluster Engine
& System cron running Regular background program processing daemon
= Network ksmtuned running Kernel Samepage Merging (KSM) Tuning Daemon
@ DNS postfix exited Postfix Mail Transport Agent
® o pve-cluster running The Proxmox VE cluster filesystem
pve-firewall running Proxmox VE firewall
= rw pve-ha-crm running PVE Cluster Ressource Manager Daemon
< Updates pve-ha-Irm running PVE Local HA Ressource Manager Daemon
U Firewall pvedaemon running PVE APl Daemon
& Disks pvefw-logger running Proxmox VE firewall logger
@® Ceph pveproxy running PVE API Proxy Server
&= Task History pvestatd running PVE Status Daemon
spiceproxy running PVE SPICE Proxy Server
® Subscription sshd running OpenBSD Secure Shell server
syslog running System Logging Service

systemd-ti... running Network Time Synchronization

Node | Network

The Network menu acts as the glue between all virtual machines, nodes, and
shared storage systems. Without a proper network interface card (NIC) or
virtual NIC (vNIC) and a virtual bridge setup, no communication can take
place. A deeper understanding of this menu will allow you to create a very
complex web of clusters, nodes, and virtual machines. We will take a closer
look at the network components later in this book in Chapter 8, Network of
Virtual Networks. The following screenshot shows the node Network menu
with some interfaces already configured:

Node 'pmx-01' D Restart
Q, Search Create Revert Edit Remove

& Summary Name ‘ Type | Active Autostart | Ports/Slaves IP address Subnetmask | Gateway Comment

>— Shell ens18 Network Device Yes No

4% System vmbr0 Linux Bridge Yes Yes ens18 172.16.2.1 255.255.25.. 172.16.3.254

= Network
Q@ DNS

The concept of a virtual network depends on the building blocks

of the virtual bridge, virtual NIC, and virtual LAN. Network

virtualization is the future of physical networks as server

virtualization had been for physical servers. The Proxmox
virtual network provides a hardware abstraction layer, making
the virtual network much more flexible and compatible.

Node | DNS

The DNS menu for the node allows you to set the default DNS server address
to be used by all virtual machines in the node. The DNS settings are very
important for containers as they will use the nodes for their access to the
internet.

Node | Time

Through this menu, we can define the time zone and current time where the
node is physically located. This is a useful feature when cluster nodes are
spread across regions. For a healthy cluster, it is very important for all nodes’
times to be in sync with each other.

Node | Syslog

The Syslog option allows an administrator to view the system log in real time.
Syslog gives feedback as it happens in the node. It also allows you to scroll
up to view logs from the past. More importantly, if an error occurs in the
node, Syslog gives that information in real time with the time and date stamp.
This helps pinpoint an issue exactly when it occurs. An example of a scenario
when Syslog information can come in handy is that if a node cannot connect
to a storage system, the Syslog screen will show you the error that is

preventing the connection. The following screenshot shows the Syslog record
of our node pmx-o1:

Node 'pmx-01' O Restart () Shutdown > Shell ¢ Bulk Actions @ Help
Q Search Since: 2017-05-27 Until: 2017-05-30 Update
& Summary May 30 10:20:42 pmx-01 pveproxy[14076]: worker 29744 started
May 30 10:21:06 pmx-01 pvedaemon[983]: <root@pam> successful auth for user root@pam’
>_ Shell May 30 10:28:06 pmx-01 pmixcfs[23798]: [dedb] notice: data verification successful
May 30 10:36:06 pmx-01 pvedaemon[984]: <root@pam> successful auth for user root@pam’
=4 System May 30 10:51:06 pmx-01 pvedaemon[985]: <root@pam: successful auth for user ‘root@pam’
= May 30 10:54:30 pmx-01 pveproxy[26129]: worker exit
7 Network May 30 10:54:30 pmx-01 pveproxy[14076]: worker 26129 finiched
@ DNS May 30 10:54:30 pmx-01 pveproxy[14076]: starting 1 worker(s)
May 30 10:54:30 pmx-01 pveproxy[14076]: worker 31983 started
© Tife May 30 10:56:07 pmx-01 pvedaemon[985]: <root@pams starting task UPID:pmx-01:00007D60:05388417:592DA427:-vncshell::root@pam:
May 30 10:56:07 pmx-01 pvedaemon[32096]: starting vnc proxy UPID:pmix-01:00007D60:053B8417:592DA427:vnecshell::root@pam:
T Syslog May 30 10:56:07 pmx-01 pvedaemon[32096]: launch command: /usr/bin/vncterm -rfbport 5900 -timeout 10 -authpath /nodes/pmx-01 -perm Sys.Console -notls -listen localhost -¢ /bin/login
May 30 10:56:09 pmx-01 login[32098]: pam_unix(login:session): session opened for user root by (uid=0)
fo Updates May 30 10:56:09 pmx-01 systemd-logind[543]: New session 272 of user root.
May 30 10:56:09 pmx-01 systemd[1]: Started Session 272 of user root.
U Firewall May 30 10:56:09 pnix-01 login[32099]: ROOT LOGIN on ‘/dev/pts/0'
< May 30 11:02:44 pmx-01 systemd-logind[543]: Removed session 272.
& Disks May 30 11:02:44 pmx-01 pvedaemon[985]: <root@pam> end task UPID:pmx-01:00007D60:053B8417:592DA427:vncshell: :root@pam: OK
@ Ceph May 30 11:05:07 pmx-01 rrdcached[945]: flushing old values
May 30 11:05:07 pmx-01 rrdcached[945]: ratating journals
i= Task History May 30 11:05:07 pmx-01 rrdcached|945]: started new journal /var/lib/rrdcached/journal/rrd.journal.1496163907.931490
May 30 11:05:07 pmx-01 mdcached[945]: removing old journal /var/lib/rrdcached/journal/ird.journal. 1496156707.931817
@& Subscription May 30 11:06:06 pmx-01 pvedaemon[985]: <root@pam3 successful auth for user root@pam'

May 30 11:06:15 pmx-01 pveproxy[24292]: worker exit
May 30 11:06:15 pmx-01 pveproxy[14076]: worker 24292 finished

Node | Updates

The Proxmox node can be updated right from the GUI through the Updates
tab. Each node checks daily for any available updates and alerts the
administrator through an email if there are any new updates. It is important to
keep all the nodes up to date by updating regularly. The Updates menu
enables upgrading by just using a few mouse clicks. The following screenshot

shows the node’s Updates menu with some pending upgrades available for
one of the nodes in our example cluster:

Node 'pmx-01'

Q Search

& Summary
>_ Shell

& System

< Updates

U Firewall

& Disks

@ Ceph

i= Task History

@& Subscription

O Restart O Shutdown > Shell ¢ Bulk Actions e
Refresh Upgrade Changelog
Version
Package Description
current new
Origin: Debian (162 Items)
apparmor 2.11.0-2 2.11.0-3 user-space parser utility for AppArmor

This provides the system initialization scripts needed to use the AppArmor Mandatory Access Control system, including the AppArmor Parser which is

required to convert AppArmor text profiles into machine-readable policies that are loaded into the kernel for use with the AppArmor Linux Security
Module.

apt 1.4~rc2 1.4.4 commandline package manager

This package provides commandline tools for searching and managing as well as querying information about packages as a low-level access to all
features of the libapt-pkg library. . These include: * apt-get for retrieval of packages and information about them from authenticated sources and for
installation, upgrade and removal of packages together with their dependencies * apt-cache for querying available information about installed as well as

installable packages * apt-cdrom to use removable media as a source for packages * apt-config as an interface to the configuration settings * apt-key as
an interface to manage authentication keys

apt-listchanges 38 3.10 package change history notification tool

The tool apt-listchanges can compare a new version of a package with the one currently installed and show what has been changed, by extracting the
relevant entries from the Debian changelog and NEWS files. . It can be run on several .deb archives at a time to get a list of all changes that would be
caused by installing or upgrading a group of packages. When configured as an APT plugin it will do this automatically during upgrades.

Always update one node at a time. Some updates require the node t
restarted. If uptime is important, then migrate all the running virtuc
machines to a different node before restarting the upgraded node.

Node | Firewall

The Firewall menu for a node allows you to manage rules specific to virtual
machines in that node only. When a VM is migrated or moved to a different
node, the rules from the previous node will no longer apply to that VM. We
will take a look at the firewall menu in detail in Chapter 9, The Proxmox VE
Firewall.

Node | Disks

The Disks menu shows information about physically installed disk drives in
the node. As of Proxmox version 5, the disk menu can show S.M.A.R.T.
information, including the model and a serial number of the drive. For SSDs,
the menu also displays the percentage of remaining life. The following
screenshot shows the disk menu of a production node with a Proxmox
operating system SSD and Ceph HDD installed:

Q Search Reload Show SMAR.T. values nitialize Disk with GPT

& Summary Device Type Usage Size GPT Vendor Model Serial SMART Wearout

>— Shell Idevisda Unknown osd.47 1.82TB Yes ATA ST2000DMO001-1ER1 5000c50090a... PASSED ‘ N/A

o} System Idevisdb Unknown osd.4 1.82TB Yes ATA S5T2000DMO001-1ER1 5000c500797... PASSED N/A

£ Updates /devisdc Unknown osd.46 182TB Yes ATA ST2000DMO001-1ER1 5000c50090a PASSED N/A

U Firewall /devisdd Unknown osd.8 182TB Yes ATA ST2000DMO01-1CH1 5000500667 PASSED N/A

g Idevisde Unknown osd.11 1.82TB Yes ATA ST2000DMOQ01-1CH1 5000c5006cf0... PASSED N/A
Idevisdf Unknown osd.14 1.82TB Yes ATA 5T2000DMO001-1CH1 5000c500666... PASSED N/A

@ Coph /devisdg Unknown osd.16 182TB Yes ATA ST2000DMO001-1CH1 5000c5006ce PASSED N/A

i= Task History /devisdh Unknown osd.19 182TB Yes ATA ST2000DMO001-1CH1 5000c5006¢e .. PASSED N/A

@& Subscription Idevisdi 88D LvM 111.79 GiB Yes ATA KINGSTON_SV300S37A120G 50026B774B.. PASSED 6%

Node | Ceph

Proxmox seamlessly integrates the Ceph RBD storage to store virtual disk
images. The superb resilience of Ceph and its extremely low price makes it a
truly enterprise-class storage system to rely on. We will learn how to install
and configure a Ceph cluster and manage it through Proxmox GUI properly to
realize its full potential in Chapter 5, Installing and Configuring Ceph. We will
also look at the Ceph menu in that chapter. The Ceph menu in the Proxmox
GUI displays real-time Ceph cluster data, as shown in the following
screenshot:

Q Search Health
& summary
Status Severity = Summary
> Shell
No Warnings/Errors
o System o i
< Updates
U Firewall HEALTH_OK
& Disks
@ ceph Status
& Configuration
Monitors 0OSDs PGs
[Monitor
B0 0 v 1w o ®n Out active+clean: 2112
a 3 : :
S uUp 47 o]
& Pools v 4: g5«
< Down 0 o]
£ Log
= Task History Total: 47
@ Subscription
Performance
Reads: 0B/s
Usage
Writes: 2.75 MiB/s
25%

21.41TiB of 84.97 TiB
IOPS: 148

Node | Task History

The Task History menu displays all the user tasks performed in the node. The
following screenshot shows the task history of the node pnx-01 in our example
cluster:

Node 'pmx-01' O Restat O Shutdown > Shell £ Bulk Actions @ Help
Q Search View User name: Only Errors: [
& Summary Start Time End Time Node User name Description Status
>— Shell May 30 11:09:34 May 30 11:09:46 pmx-01 root@pam Update package database OK
& System May 30 10:56:07 May 30 11:02:44 pmx-01 root@pam Shell OK
2 Updates May 20 07:05:15 May 20 07:05:15 pmx-01 root@pam Start all VMs and Containers oK
U Firewal May 20 07:04:36 May 20 07:04:36 pmx-01 root@pam Stop all VMs and Containers OK
. May 20 C7:02:51 May 20 07:02:51 pmx-01 root@pam Start all VMs and Containers OK
=iDcke May 20 C7:01:47 May 20 07:01:47 pmx-01 root@pam Stop all VMs and Containers OK
® Ceph May 13 22:48:58 May 13 22:48:58 pmx-01 root@pam Start all VMs and Containers oK
iE Task History May 13 22:48:12 May 13 22:48:12 pmx-01 root@pam Stop all VMs and Containers oK
® Subscription May 13 22:35:18 May 13 22:35:18 pmx-01 root@pam Start all VMs and Containers oK

By typing in the username in the User name: textbox, we can filter the history
for a specific user. This is very useful in a multi-user cluster where many
users manage their own set of virtual machines. We can also only view tasks
with errors by clicking on the Only Errors: checkbox.

Node | Subscription

This menu shows information on the subscription or no-subscription level of
the node. This menu is also used to apply new subscriptions or check an
existing subscription key expiry. The following screenshot shows subscription
information of a production Proxmox node:

Q, Search Upload Subscription Key Check System Report
& Summary Type Proxmox VE Community Subscription 1 CPU/year
>_ Shell Subscription Key pvec N
£ System Status Active
|
2 Updates Server ID
Sockets 1
U Firewall
Last checked 2017-05-16 04:06:02
e Next due date 2017-08-22
@ Ceph
i= Task History

& Subscription

To apply or reapply a subscription key, click on the Upload Subscription Key
button and enter the key you got directly from Proxmox or an authorized
reseller, and then click on OK, as shown in the following screenshot:

Upload Subscription Key

Subscription | pve1c-XXXXX)O(Xj |

Key:
[o | e |

KVM menu

This menu is exclusive to KVM-based virtual machines. The menu tab is
visible when a KVM virtual machine is selected from the left-hand navigation
pane.

KVM VM | Summary

This menu tab represents similar information as the one accessed by
navigating to Node | Summary. Valuable information can be gathered that
shows the real-time status of a KVM-based virtual machine. One additional
feature this menu has is the Notes textbox. Double-clicking on the Notes
textbox brings up a multiline textbox where an administrator can enter data,
such as the department, the intended usage of the VM, or just about any other
information that needs to be on hand. The following screenshot shows the
summary of one of the KVM VMs in our example cluster:

Virtual Machine 100 ('kvm-1'} on node 'pmx-01'

& Summary
>_ Console
4 Hardware
13 Options

= Task History
@& Monitor
Backup

‘D Snapshots
0 Firewall

o' Permissions

kvm-1

Status
Managed by HA
Node

CPU usage
Memory usage

Bootdisk size

CPU usage

0 4

|» stan

Notes

stopped
No
pmx-01

0.00% of 1 CPU(s)
0.00% (0 B of 512 00 MiB)

1.00 GIB

2017-05-30 2017-05-30

20:52:00 21:00:00

2017-05-30 201705
21:50:00 22.00:0

2017-05-30
21:40:00

2017-05-30
21:30:00

20170530
21:20:00

2017-05-30
21:10:00

~

@ CPU usage v

KVM | Console

Similar to the shell console option of the node-specific menu, the KVM
console menu also shows the VM within the browser using nownc. Virtual
Network Computing or VNC is a cross-platform system to share graphical
user interface across network which also transmits keyboard and mouse
signals. This allows an user to access an interface remotely. VNC requires
java in order to function. To eliminate the shortfall of java, noVNC was born.
noVNC relies on HTMLS5 operate so it works through any HTML5 supported
browser. To open the VM console in a separate browser, we need to click on a
viewer from the Console drop-down menu, as shown in the following
screenshot:

You are logged in as 'root@pam' £ @ Help [MEETERN @ Logout

B Start Shutdown Reset Remove < Migrate [T] Clone > Console @ Help

Hour (average)

When the VM video adapter is not set to SPICE, the option to select the
SPICE console is disabled. SPICE (known as Simple Protocol for
Independent Computing Environment) is a protocol that allows you to
access a virtual machine or any physical machine remotely. SPICE can be
used to access both Windows and Linux-based machines. Unlike noVNC,
where a browser can be used to access a VM remotely, SPICE requires client
software locally. Learn more about SPICE from here: http://www.spice-space.org/inde

x.html.

http://www.spice-space.org/index.html

KVM | Hardware

The initially created virtual machine is always never the final configuration.
As the functions of a VM rise, it becomes necessary to add virtual drives or
network interfaces. The Hardware menu tab under the virtual machine is
where the adding and removing of devices happens. Through the Add menu,
additional CD drives, hard drives, and network interfaces (bridge, vINIC, and
so on) can be added to a virtual machine. The following screenshot shows the
configured hardware for our example kvm vm #100:

Virtual Machine 100 {('kvm-1') on node 'pmx-01'

& Summary Add Remove Edit Resize disk Mave disk Disk Throttle CPU options Revert
>— Console Keyboard Layout Default
L Hardware == Memory 126.00 MiB/512.00 MiB
£+ Options fli: Processors 1 (1 sockets, 1 cores)
= Task History 4 Display Default
@ CD/DVD Drive (ide2) none media=cdrom
@ Monitor
£ Hard Disk (virtio0) local-lvm:vm-100-disk-1,5ize=1G
= Backu
= P = Network Device (netD) vitio=CA:35:61:2A:34:CD . bridge=vmbr0

Besides the Add menu, other menus, such as Remove, Edit, Resize disk, and
Move disk, are also available through the Hardware menu. All these
additional menus, except the Add menu, require a hardware item to be
selected. Resize disk and Move disk will be enabled for clicking when a
virtual drive is selected. We will cover these in detail in Chapter 6, KVM Virtual
Machines.

Move disk is the safest way to move a virtual hard drive from
one storage to another. If the virtual disk is on shared storage,
then live migration of the virtual disk is possible, helping save a
lot of time.

We will explore KVM virtual machine configuration in detail in Chapter 6,
KVM Virtual Machines.

KVM | Options

The Options menu under the virtual machine allows further tweaking, such as
changing the name and boot order. Most of the options here can be left to

default.

If you want the virtual machine to autostart as soon as the
Proxmox node reboots, set the Start at boot option to Yes.

The following screenshot shows the Options menu for a KVM VM:

Virtual Machine 100 ('kvm-1') on node 'pmx-01'

& Summary | Edit | Revert

> Console Name

< Hardware Start at boot

£ Options Start’'Shutdown order
OS Type

iE Task History i
Boot Order

e niar Use tablet for pointer

Backup Hotplug

t3 Replication ACPI support

9 Snapshots SCSI Controller Type
BIOS

U Firewall

KVM hardware virtualization
o' Permissions Freeze CPU at startup
Use local time for RTC
RTC start date
SMBIOS settings (typel)
Qemu Agent

Protection

kvm-1

Yes

order=any

Linux 4 X/3.X/2.6 Kernel

Disk 'virtio0', CD-ROM, Network
Yes

Disk, Network, USB, Memory, CPU
Yes

VirtlO SCSI

Default (SeaBIOS)

No

No

No

now
uuid=ff166b1f-2603-4b88-b4a5-1dc211b7b12a
No

No

KVM VM | Task History

The Task History menu shows all the tasks performed for a specific VM. This
functionality is identical to the node-specific task history, where it shows all
the tasks for all the KVM virtual machines in the node.

KVM | Monitor

The Monitor menu in a KVM is an interface used to interact with a running
KVM virtual machine directly through the QEMU Monitor Protocol
(QMP). We can initiate monitor commands through the Proxmox monitor
interface and see the result on the same page. There are a large number of
commands used to perform various tasks through the Monitor menu. For
example, in the following screenshot, we’ve entered the info pci command to
view the PCI devices that the VM sees at this moment:

Virtual Machine 100 ('kvm-1' } on node 'pmx-01'

& Summary PCI bridge: PCI device 1lb36:0001
IRg 10.
> Console BUS 0.
secondary bus 1.
L Hardware subordinate bus 1.
& Options IC range [0xd000, O=xdfff]
memory range [0xfe800000, Oxfelfffff]
= Task History prefetchable memory range [0xfdal0000, Oxfdbfffff]
BARO: &4 bit memory at Oxfea53000 [0xfeaS30£f].
@ Monitor id "pci.1"
& Bus 0, dewvice 31, function 0:
Hiekup PCI bridge: PCI device 1b36:0001
9 Snapshots Irg 11.
BUS 0.
U Firewall secondary bus 2.
subordinate bus 2.
o' Permissions

I0 range [Oxc000, Oxcfff]

memory range [0xfeel0000, OxfeTfffff]
prefetchable memnry range [0xfdB00000, Oxfd9fffff]
BARQD: 64 bit memory at O0xfea54000 [Oxfea540ff].

a s bl n Tes BRE

‘ info pci|

The monitor is a great way to debug a KVM VM-related issue due to the
ability to gather a vast amount of debugging data, including the memory core
dump, CPU info, and so on. We can also inject configurations, such as
balloon memory configuration, additional CPUs, and USB devices through
this Monitor menu into a running KVM VM. Type he1p to view a list of all the
commands usable with Monitor.

KVM | Backup

A backup system is only as good as the ability to restore the backup. Both the
backing up and restoring can be done from a single menu under the virtual
machine named Backup. It also allows backups, browsing, and manual
deletion of any backups. All these are done from a single interface with a few
mouse clicks. Due to the importance of a backup strategy in a virtual
environment, we will take a look at the Proxmox backup system in detail in ch
apter 13, Back Up and Restore Virtual Machines. This menu is usually used to
manually perform a backup task for a particular VM.

KVM VM | Snapshot

Proxmox Snapshots is a way to roll back a virtual machine to a previous state.
Although it provides similar protection to Proxmox Backup, it comes with
speed. Proxmox Snapshots is extremely fast when compared to Proxmox
Backup, thus allowing a user to take several snapshots a day. The following
screenshot shows the Snapshots menu with a snapshot taken after a clean
installation of the operating system in the virtual machine:

Virtual Machine 100 ('kvm-1' } on node 'prmx-01'

& Summary Take Snapshot Rollback Remove Edit

= ek Name RAM | DatefStatus Description
L Hardware -9 Clean_lnstall No = 2017-05-30 22:20:59

#% Options g NOW You are herel
= Task History

@ Monitor

Backup

‘D Snapshots

U Firewall

o' Permissions

A common scenario where Snapshots can be used is when a software
developer wants to test the software or available patches that need to be
applied. They can take a snapshot, execute the program, and, if anything goes
wrong, simply roll back to the previous state. It creates a snapshot in the
RAM itself, so the virtual machine is preserved.

Never fully depend on snapshots only. A snapshot is not a full
backup. It is merely a state where the virtual machine is frozen
in time. Always do a full backup of virtual machines for
0 maximum protection. Snapshots are never included in the full
VM backup. Snapshots are also never automatically deleted. As
more and more snapshots are created, they will accumulate over
time, consuming storage space.

We will look into the Snapshots option as a backup strategy in Chapter 13, Back
Up and Restore Virtual Machines.

KVM | Firewall

Unlike the Datacenter | Firewall feature, which applies to the whole cluster,
the KVM firewall applies to the selected VM only. The KVM VM firewall
allows you to configure each virtual machine with its own set of firewall
rules, thus isolating each VM from the other even further. In a multi-tenant
environment where there are many levels of users, this firewall option helps
you prevent a VM from accessing another VM. In Chapter 9, The Proxmox VE
Firewall, we will take a look at the VM firewall in detail.

KVM | Permissions

The Permissions menu allows the management of user permissions for a
particular virtual machine. It is possible to give multiple users access to the
same virtual machine. Just click on Add to add users or groups already
created by navigating to the Datacenter | Users and Datacenter | Groups
menus. The following screenshot shows that our example VM has one user
permission:

Virtual Machine 100 ('kvm-1') on node 'pmx-01'

& Summary !Add | Remove

»_ Console User/Group Role

Hardware wahmed@pam PVEVMUser

& {

Options

Task History

Monitor

®

iL:}

Backup

&}

Snapshots

Firewall

L &

Permissions

L. XC container menu

This menu is specific to only LXC-based containers. The menu tab is visible
when an LXC container is selected from the left-hand navigation pane.

LXC container | Summary

Like the Summary menu under the KVM-specific menus, this shows the stats,
notes, and usage graph of an LXC container. Data can be viewed on an
hourly, daily, weekly, monthly or yearly basis.

LXC container | Resources

Additional resources for LXC Containers are adjusted here after a container is
created. Changes in the resources get applied to a container in real time. We
will look into container resource management in Chapter 7, LXC Virtual
Machines. The following screenshot shows the resources currently allocated

for our example container #101:

Container 101 ('CT101") on node 'pmx-01'

& Summary Add Edit Remaove
>_ Console [,—,g| Memory
& Resources = Swap
= Network @ Cores
@ DNS {8 CPU limit
_ @ CPU units
#+ Options =
& Root Disk

Task History

Resize disk

512.00 MiB
512.00 MiB
1

unlimited
1024

local-lvm:vm-101-disk-1,size=8G

LXC container | Network

The Network menu for a container shows the currently assigned network
interface. We can add a new interface or make changes to any existing
interface from this menu. The following screenshot shows the Network menu

for our example container:

Container 101 ('CT101") on node 'pmx-01'

& Summary Add Remove | Edi |
>— Console ID Name Bridge
© Resources netd ethd vmbr0

= Network

P Stari

Firewall VLAN Tag MAC address IP address Gateway
No B6:C0:42:79:... 192.168.100.2/24 192.168.100.254

LXC container | DNS

Similar to the DNS menu under the node-specific menus, the DNS menu for a
container is used to configure the DNS search domain and DNS server
address. Additionally, we can change the Hostname of the container. The
following screenshot shows the DNS menu for our container #1o1:

Container 101 ("CT101") on node 'pmx-01'

& Summary Edit

>_ Console Hostname CT101

& Resources DNS domain domain.com
= Network DNS server 8888

@ DNS

LXC container | Options

Similar to the Options menu under KVM VMs, this menu provides additional
configuration options for containers. Options such as autostart during node
boot, Start/Shutdown order, and selection of the OS Type in the container are
available through this Options menu. The following screenshot shows the
Options menu for our container #1o1:

Container 101 ("CT101') on node 'pmx-01'

& Summary Edit
>_ Console | Startat boot No
& Resources Start/Shutdown order order=any
= Network OS Type ubuntu
@ DNS Architecture amd64

: /dev/console Enabled
#* Options

TTY count 2

i ek by Console mode tty
Backup Protection No
‘D Snapshots Unprivileged container No
U Firewall

Details about these options will be discussed later in the book in Chapter 7, LXC
Virtual Machines.

LXC container | Task History

The Task History menu shows a list of all the tasks performed on the selected
container. Similar to the Task History menu under KVM VMs, the container’s
task history provides a means to search for tasks performed by specific users
or only shows tasks with errors.

LXC container | Backup

This menu is identical to the Backup menu under KVM VMs, where we can
perform a manual backup of a selected container, remove a backup file, or
restore a container from a list of backup files. The details of the backup and
restore strategy will be covered in detail in Chapter 13, Back Up and Restore
Virtual Machines.

LXC container | Snapshots

This menu offers identical functionality as KVM Snapshots, where we can
create snapshots of the container or roll back to a previous state. More about
snapshots will be covered in Chapter 13, Back Up and Restore Virtual Machines.

LXC container | Firewall

Similar to the KVM-specific Firewall menu, this menu enables and manages
firewall rules for a particular LXC container. More will be discussed in Chapter
9, The Proxmox VE Firewall.

LXC container | Permissions

Similar to the KVM-specific Permissions menu, we can set different
permission levels for a container through this menu. Refer to the Permissions
menu under the KVM-specific menu as they are identical for both the KVM
and LXC virtual machines.

Pool menu

This menu is visible when a Pool is selected from the left-hand navigation
pane. Let’s now look at each of the options in detail.

Pool | Summary

The Summary menu for the pool only shows the Comment description for the
pool, as shown in the following screenshot:

X PRO MO Vitual Environment 5.0-5/c155b5bc BETA pmx-02

Server View

£ Datacenter
Eb pmx-01

Bl pmx-02
W Test-Pooll

Resource Pool: Test-Pool1

& S
LY Status

222 Members
Comment This is demo pool
=o' Permissions

We cannot, however, change the description or add a note from the Pools
menu. This task can be done through the Datacenter | Permissions | Pools
menu. From there, select the desired pool and change the description. This is
also the same menu to add new pools to the cluster. The following screenshot
shows the pool edit dialog box for our demo pool, Test-poo11:

Datacenter

B @ = & O

S

Search
Summary
Options
Storage
Backup
Permissions
& Users
& Groups
W Pools

Roles

&, Authentication

Create Edit Remove
Name Comment
Test-Pool1 This is demo pool

Pool | Members

This menu shows all the resources currently allocated to the selected pool. We
can allocate virtual machines or storage to a pool. For example, in our demo
pool named Test-Poo11, We have a container #101 and local storage allocated, as
shown in the following screenshot:

Server View Resource Pool: Test-Pocl1

Datacenter

By pmx-01 & Summary Add Remove
[pmx-02 2 Members Type Description Disk usage % Memory usage % CPU usage Uptime
¥ Test-Pooll o' Permissions Ixc 101 (CT101)

£ storage local (pmx-01) 20.3 %

New resources can be added through the Add drop-down menu. We can only
add virtual machines and storage to a pool. To add a KVM or LXC container,
simply click on the Add button and select a virtual machine from the dialog
box, as shown in the following screenshot:

Add: Virtual Machine

ID Node Status Name Type

100 pmx-01 running kvm-1 gemu

Conveniently, the dialog box will only show virtual machines that have not
been added to the pool yet. For our example in the previous screenshot,
container #101 has been already added to the pool so the dialog box only
shows 1ee available virtual machines. The procedure to add storage to a pool
is the same as adding a virtual machine.

Pool | Permissions

The Permissions menu under Pools is the same as the KVM and LXC virtual
machine permissions. With these permissions, we can assign a user to a pool
and all the resources under that pool become accessible to that user. This
eliminates any need of assigning permissions individually by resources. For
example, if a user requires access permissions to multiple virtual machines,
we can put those virtual machines in a pool and give the user permissions to
that pool only. The following screenshot shows that in our example pool
named Test-pool1, the user wahmed has been given administrative permissions to
manage the pool:

Server View Resource Pool: Test-Pool1

== Datacenter

B pmx-01 & Summary Add Remove
Bl pmx-02 222 Members User/Group Role
® Test-Pooll o' Permissions wahmed@pam PVEPoolAdmin

Summary

In this chapter, we learned how to create a Proxmox cluster and explored the
graphical user interface of Proxmox VE. We learned about how the menu
system is divided into different entities and what features are used to manage
resources in a Proxmox cluster. We also saw different modes of the viewing
option to browse all the resources in a Proxmox cluster.

Being equipped with the knowledge of the Proxmox GUI and its features
paves the way for much more advanced topics in the coming chapters.
Although Proxmox provides many management options through the CLI, a
great deal of time is still spent on the Proxmox GUI for day-to-day cluster
management.

In the next chapter, we will see what is under the hood of Proxmox. We will
see how the Proxmox directory structure is laid out to store vital configuration
files and what the Proxmox cluster filesystem is and why it is important.

Proxmox under the Hood

In the previous chapter, we saw how the Proxmox GUI looks and also looked
at its features. In this chapter, we will take a look how configuration files hold
a Proxmox virtualization platform together, and the files to be used for
advanced configuration and how they are used to troubleshoot a Proxmox
platform. Proxmox is built on Debian Linux, which is very stable with a large
active community. So, it inherited the heavy dependency on configuration

or .conf files as a primary means to store various configurations. The Proxmox
GUI provides you with the ability to manage a cluster, but does not provide
direct access to any configuration files. Any direct changes by advanced users
have to be done through a command-line interface (CLI). Commonly used
scenarios, such as adding special arguments to configuration files, is done
through the CLI. In this chapter, we will cover the following topics:

The Proxmox cluster file system, or pmxcfs

The Proxmox directory structure

Configuration files’ location and their functions
Arguments and syntaxes used in configuration files

The Proxmox cluster file system

Proxmox is a cluster-based hypervisor. It is meant to be used with several
server nodes. By using multiple nodes in a cluster, we provide redundancy or
high availability to the platform while increasing uptime. A production virtual
environment may have several dozens to several hundreds of nodes in a
cluster. As an administrator, it may not be a realistic scenario to change
configuration files in the cluster one node at a time. Depending on the number
of nodes in a cluster, it may take several hours just to change one small
argument in a configuration file of all the nodes. To save precious time,
Proxmox implemented the clustered filesystem to keep all the configuration
files or any other common files shared by all the nodes in the cluster, in a
synchronous state. Its official name is Proxmox Cluster file system
(pmxcfs). The pmxcfs is a database-driven filesystem used to store
configuration files. Any changes made to any files or copied/deleted in this
filesystem get replicated in real time to all the nodes using corosync. The
Corosync Cluster Engine is a group communication system used to
implement high availability within an application. You can learn more about
corosync by visiting the link: http://corosync.github.io/corosync/.

Any file added to this filesystem almost instantly gets replicated to all the
nodes in the cluster, thus saving an enormous amount of time for a system
administrator.

The pmxcfs filesystem is a database-driven filesystem used to
store the Proxmox cluster configuration files or any other files
0 commonly shared by all the nodes in the Proxmox cluster. To

know more about pmxcfs, visit the following Proxmox Wiki:
http://pve.proxmox.com/wiki/Proxmox_Cluster_file_system_(pmxcfs)

The pmxcfs filesystem is mounted at the following path:

| # /etc/pve

All cluster-related files are stored in this folder path.

http://corosync.github.io/corosync/
http://pve.proxmox.com/wiki/Proxmox_Cluster_file_system_(pmxcfs)

Proxmox directory structure

Proxmox comes with a distinct directory structure where all the configuration
files and other necessary files are stored. This makes finding those
configuration files in time of need very easy. The following table shows the
location of the files stored and their functions:

Filename/location File function

Proxmox VE data center configuration file.
Used to change options such as the default

language, keyboard layout, default console,
and so on.

/etc/pve/datacenter.cfg

Main cluster configuration file. Prior to
Proxmox VE 4.0, this was known as
cluster.conf and can also be used to change
the vote of a particular node.

/etc/pve/corosync.conf

PVE storage configuration file. This holds
/etc/pve/storage.cfg all the information of a local or shared
storage system.

User list and access control configuration for

/etc/pve/user.cfg .
all users and groups in the cluster.

/etc/pve/authkey . pub Public key used by the ticket system.

When a Ceph cluster is integrated with
/etc/pve/ceph.conf Proxmox, this configuration file is generated
for the Ceph cluster.

Cluster-wide backup tasks that are not
specific to a single node. This file should not
be edited manually. All the entries are auto
created from the Backup menu on the GUI.

/etc/pve/vzdump.cron

Shadow password file that holds all

/etc/pve/priv/shadow.cfg .
usernames and their encrypted passwords.

/etc/pve/priv/authkey.key

Private key used by the ticket system.

/etc/pve/priv/ceph.client.admin.keyring

Authentication keyring for a Ceph cluster.
This is only created when Ceph is integrated
with Proxmox.

/etc/pve/priv/ceph/<storage_id>.keyring

Keyring used to attach the Ceph RBD
storage. We will take a look at Ceph in Chapter
4, Storage Systems.

/etc/pve/firewall/<vmid>.fw

Firewall rules for all VMs.

/etc/pve/nodes/<name>/pve-ssl.pem

Public SSL key for the web server. Used to
access the Proxmox web GUI.

/etc/pve/nodes/<name>/priv/pve-ssl.key

Private SSL key.

/etc/pve/nodes/<name>/host.fw

Firewall rules for the Proxmox host.

/etc/pve/nodes/<name>/gemu-
server/<vmid>.conf

Virtual machine configuration data for KVM
VMs.

/etc/pve/nodes/<name>/1xc/ <vmid>.conf

Virtual machine configuration data for LXC
containers.

/etc/pve/.version

File versions’ data to detect file
modifications.

/etc/pve/.members

Information nodes that are members of the
cluster.

/etc/pve/.vmlist

List of all VMs in the cluster.

/etc/pve/.clusterlog

Last 50 entries of the cluster log.

/etc/pve/.rrd

Most recent entries of RRD data.

Any changes made to these files or any other files inside pmxcfs mounted
under the /etc/pve folder get replicated automatically the moment the changes

are made. For this reason, we will have to take extra care of what we do to
these files. For example, if we delete a .conr file from one node by mistake, it
will also be deleted from all the other nodes in the Proxmox cluster.

common practice in case the cluster needs rebuilding after any

9 A regular manual backup of the setc/pve folder should be a
disaster or accidental file deletion/change.

On a regular day-to-day basis, a system administrator will not need to access
these files from the command line since almost all of these are editable from
the Proxmox GUI. But knowing the location of these files and what they hold
might save the day when the GUI becomes inaccessible for whatever reason.

Dissecting the configuration files

We now know where all the important files that hold a Proxmox cluster
together are placed. We will go inside some of these files for a better
understanding of what they do and what command arguments they use. You
can use any Linux editor to view/edit these configuration files. In this book,
we will use #nano to view and edit configuration files.

During the learning process, it will be a good idea to make a backup of the
configuration files before editing them. In case something goes wrong, you
will be able to replace it with the original working configuration file. Simply
copy the configuration file using the following command:

| # cp /etc/pve/<config_file> /home/<any_folder>

We can also use the sc, command to back up files to another node:

| # scp /etc/pve/<config_file> <user>@<ip_or_hostname>:/<folder>

The cluster configuration file

The corosync.conf configuration file stores parameters needed for a cluster
operation. Any empty lines or lines starting with # in this configuration file
are completely ignored. The following code is what our corosync.conf file
currently looks like in our example cluster with two Proxmox nodes. The
Proxmox cluster configuration file is located under /etc/pve/corosync.conf:

We are now going to dig into corosync.conf to describe the functions of the
parameters. This configuration file is automatically created when a new
Proxmox cluster is created. There are four segments in this file, which are as
follows:

® logging { 1}
® podelist { }

® quorum { }

® totem { }

logging { }

This segment contains configuration parameters used for logging. According
to the parameters in our example cluster, debugging is off and logs are
transferred to sysiog. If we want to turn debugging on and transfer logs to a
logfile instead of sysiog, our parameters will appear as follows:

logging {
debug: on
to_logfile : yes
to_syslog : no
timestamp : on

}

/var/log/<filename>.log {
daily
rotate 5
copytruncate

}

We can also attach a timestamp to all the log entries. Note that if we want to
pass logs to a 10gfile, We need an additional 1ogfile { } segment along with the
logrotate an(lcopytruncate<paFaD]etEFS.

nodelist { }

As the name implies, this segment is where all the member nodes of a
Proxmox cluster are listed. Each node is separated by the node { } subsegment.
The following are the three main parameters as they appear in our cluster
configuration file:

| nodeid

This parameter shows the numeric order of the member nodes as they get
added to the cluster. This is optional for IPv4 but mandatory when using IPv6.
Each nodeid must be unique in the cluster configuration file. If no nodeid
parameter is used when using IPv4, then the cluster automatically calculates
this ID from the 32-bit IPv4 address. With IPv6, this calculation cannot
happen since IPv6 is more than 32 bit.

Warning! Never use nodeid instead of e as it is reserved by
corosync.conf.

| quorum_votes

This option shows the number of votes that the node must cast to form

a quorum. In a Proxmox cluster, this is no more than one vote per node.
Whatever this number is, it should be equal for all nodes. There are simply no
reasons to use anything other than 1.

| ringe_addr

This line basically specifies the IP address or the hostname of the node. The
actual format of this option is ringx_addr, where x is the ring number. When
multiple network interfaces are used for redundancy purposes, the redundant
ring protocol is implemented in corosync. Each of the interfaces is assigned a
unique ringnumber. This unique ringnumber tells the interface to connect to the
corresponding ring protocol. For example, in our example cluster, if we use
the second interface for redundancy, the node { 3 segment will appear as
follows:

node {
nodeid: 2
quorum_votes: 1
ring0_addr: 172.16.0.71
ringl_addr: 192.168.0.71

quorum { }

This segment tells the cluster which quorum algorithm to use to form

a quorum. As of corosync version 2.3.5, there is only one provider available,
which is votequorun. This algorithm ensures that there are no split-brain
situations and a quorum is formed only when majority votes are cast. There
are no additional options available for this segment.

totem { }

This segment specifies parameters for totem protocols. Corosync consists of
the totem Single Ring Protocol (SRP) and totem Redundant Ring Protocol
(RRP). This segment also includes a { 3 subsegment interface to specify the
bind address and ring number.

When only one interface is used for cluster communication,

totem SRP is implemented. In this protocol, only the ring number
0 o is used. When multiple interfaces are used for redundancy,

totem RRP is implemented, where more than one ring number
and interfaces are used.

The following parameters show the name of the Proxmox cluster that is
created by Proxmox during our example cluster creation:

| cluster_name: pmx-cluster

We can also see the cluster name from the Datacenter | Summary menu.

| config_version: 2

This parameter specifies the version number of the configuration file after
each cluster-wide change, such as adding or removing member nodes. When
any changes are made manually directly to the file, then it is mandatory to
increase the version number manually. Failure to do so will cause the cluster
configuration to fail. In that case, the cluster filesystem in /etc/pves may be
inaccessible since the node will not be able to start the pve-cluster service.
The config number should only increase incrementally.

| ip_version: IPv4

This parameter specifies the version of IP to be used. By default, IPv4 is used.
To use version 6 of IP, simply use the option IPv6.

| secauth: on

This parameter tells the cluster to use the SHA1 authentication for encrypting
all transmitted messages. Although this option adds extra overhead for all
transmitted messages, thus reducing the total throughput, it is important to use
encryption to protect the cluster from invaders. By default, this parameter is
enabled in Proxmox.

Note that the secauth parameter for corosync is deprecated. It is recommended
by the corosync maintainers to use crypto_nash and crypto_cipher. But as of

Proxmox 5, secauth is still used by default. The following is an example of
how the recommended setting will appear in the totem segment:

totem {
crypto_hash: shal
crypto_cipher: aes256
3
At the time of writing this book, Proxmox developers have not confirmed

whether crypto_hash and crypto_cipher can be S&f@ly used instead of secauth.

| version: 2

This parameter specifies the version of the configuration. Currently, the only
version for this parameter is 2. This is not the version increment of the
configuration file whenever any changes are made. This number must not be
changed manually.

Besides the parameters mentioned earlier, there are a few other parameters
available in the totem segment for various purposes. The following table
shows some of these parameters and their functions:

Parameter | Description

Available OptiOIlSZ none, active, and passive.

This parameter specifies redundant protocol modes. When there is
only one interface, corosync automatically chooses none. With
multiple interfaces, we can set it to active, which offers a lower
latency at the cost of less performance. We can also set the mode to
passive, which offers a significant performance boost at the cost of
CPU usage.

rrp_mode

Available options: 1500 to s9s2.

This specifies the MTU of an interface. It is useful when jumbo
frames are used. Linux adds an 18-byte header to the network data
netmtu packets. So, even though hardware can support 9,000 MTUs, it is
wise to set MTUs to 8,982. This way, after Linux adds additional
headers, the total MTU does not go beyond 9,000 and hardware will
not misbehave. These MTU tips apply to all situations where jumbo
frames are intended.

Available options: udp, udpu, and iba.

transport This specifies the transport protocol. By default, corosync uses UDP.
If InfiniBand and network are used with RDMA, then we can specify
iba instead of udp.

interface { }

This is the subsegment of the totem segment where the information regarding
the network interface is specified. By default, Proxmox only enters the
bindnetaddr and ringnumber parameters in this subsegment:

| bindnetaddr : <ip/network_address>

These parameters specify the IP address or network address that corosync
should bind to. This can be any IP address of a node in the cluster. Usually,
this is the IP address of the node where the initial Proxmox cluster creation
command was executed:

| ringnumber: ©

This parameter specifies a separate ring number for each network interface. A
unique ringnumber for each interface allows unique identification of which ring
should use which interface. For example, with a single interface where totem
SRP is applied, there is only one ring with ringnumber: o. With dual interfaces
and totem RRP applied, there are two rings with ringnumber: o and ringnumber: 1.
Note that the ring number must start from o.

Although the primary use of multiple rings is redundancy, it can
be used for other purposes too, such as connecting nodes in
different locations to a single Proxmox cluster. We can achieve

8 this by implementing VPN, such as OpenVPN, IPSEC, or tinc.
We can create a dedicated network on a separate VLAN and
create a new ring to bind to that network. This way, corosync
will send multicast data on both networks.

There are a few other advanced parameters available that are not used by
default. The following table shows some of these parameters and their
functions:

Parameter | Description

This specifies a multicast address, which is used by corosync. The
address can be IPv4 or IPv6 when IPV6 is used. This parameter is
usually not needed if the ciuster_name parameter has already been used
in the corosync.conf configuration file. But when both are used,
mcastaddr Will have a higher priority over cluster_name. By default, the
Proxmox cluster configuration, mcastaddr, is not used.

mcastaddr

mcastport

This specifies the UDP port number for a multicast address.
Corosync uses two ports for multicasts: one for receiving and the
other for sending. We only need to specify the receiving port since
the sending port is automatically calculated using the formula
mcastport - 1. For example, if we specify the receiving port number
5405, then corosync will use s404 for sending. This is very important to
note in a multi-cluster environment on the same network.

If we put all the totem parameters we have seen so far together, the
corosync.conf for our example cluster will appear as follows if redundant
interfaces have been used:

3

}

totem {
cluster_name: pmx-cluster
config_version: 4
ip_version: ipv4
crypto_hash: shal
crypto_cipher: aes256
version:
rrp_mode: passive
interface {
bindnetaddr: 172.16.2.71
ringnumber: ©
mcastaddr:
mcastport:

224.1.1.1
5405

Interface {
bindnetaddr: 172.16.20.71
ringnumber: 1

mcastaddr:
mcastport:

224.1.1.2
5408

Storage configuration file

This is the configuration file where storage to be used with Proxmox are
specified. The configuration file is located under /etc/pve/storage.cfg. We will
take a look at the different storage systems in Chapter 4, Storage Systems. The
following is the possible content of the storage configuration file with various
storage systems supported by Proxmox:

dir: local
path /var/lib/vz
content images,iso,vztmpl, rootdir
maxfiles O

nfs: nfs_share_name
path /mnt/pve/nfs-server
server 192.168.145.11
export /mnt/pmxnas@1i
options vers=3
content iso,vztmpl
maxfiles 1

iscsi: nas-iscsi-01
target ign.2015-12.org.example.istgt:pmxtgto1l
portal 192.168.145.11
content none

lvm: nas-1lvm-01
vgname nas-lvm-01
base nas-iscsi-01:0.0.0.scsi-330000000391132dd
shared
content images

nfs: vm-nfs-01
path /mnt/pve/vm-nfs-01
server 192.165.145.11
export /mnt/pmxnas0@l
options vers=3
content images,vztmpl, backup, rootdir
maxfiles 1

zfspool: zfs-01
enable
pool zfs_pool
content images, rootdir

Almost all the settings in storage.cfg can be changed from the Proxmox GUI
without using any CLI. Attached storage abides by the following common
format in storage.cfg:

storage_type : storage_name
path </path to folder>
target <target file name> (for 1SCSI)
portal <server IP address> (for 1SCSI)
vgname <volume group name> (for LVM)
base <base volume group> (for LVM)
server <storage server IP address>
export </shared location on NFS server>
content <type of files the storage can hold>

| maxfile <maximum number of old backup to keep>

User configuration files

The user.cfg file holds all user, group, and access control information in the
cluster and is located under /etc/pve/user.cfg. It follows the following format to
store all information:

For user information, the format is as follows:

| <type>:<user>@realm:enable:expiry:f_name:1 _name:email:comment

For group information, the format is as follows:

| <type>:<group_name>:user@realm:comment

For pool information, the format is as follows:

| <type>:<pool_name>:<assigned_resource>:user@realm:comment

e For access control information, the format is as follows:
| <type>:<assigned_resource>:user@realm:comment:<assigned_role>

Based on this format, the following is what our user.cfg file looks like in our
example cluster:

YIMMC O .. COMm: 2

Note that the user.cfg file does not hold any user passwords. This information
is stored in /etc/pve/priv/shadow.cfg in an encrypted form. All the content in this
configuration file can be managed through the Proxmox GUI. Whenever we
create a new user/group or assign roles, the configuration file gets updated. If
the GUI becomes inaccessible, this file can be manually edited.

The password configuration file

The password configuration file is located under /etc/pve/priv/shadow.cfg and
stores all the passwords for users in the cluster. The format is rather simple
but the function of this file is very crucial. The format to store password
information is as follows:

| <user_name>:<encrypted_password>

Notice that the password file is in a /priv folder inside /etc/pve. Sensitive
information, such as passwords, private authorization keys, and known hosts,
are kept in the /etc/pve/priv folder. When a new user is created through the
Proxmox GUI, a new entry is added here.

KVM virtual machine configuration
file

The vmid.conf file stores configuration information for each virtual machine
and is h)CaIEd.at/etc/pve/nodes/<name>/qemu-server/<vmid.conf>.jj]e diFECtOFy
structure divides all VM configuration files into categories based on nodes.
For example, the configuration file for our VM #100 is stored in the following
location:

| # /etc/pve/nodes/pmx-01/qemu-server/100.conf

When we migrate a VM from one node to another, Proxmox just moves the
configuration file to the destination node. If the VM is powered on during the
migration, then the entire memory content of the VM is also migrated to the
destination node. For our VM 100, if we migrate it to pmx-e2, the second node
in the cluster, then the location of the 1e0.conf file will be as follows:

| # /etc/pve/nodes/pmx-02/qemu-server/100.conf

If a node with virtual machines in it becomes inaccessible,
simply moving the <vn_id>.conf files to a different node will allow
access to all the VMs from a different node. Any files of the
folder inside setc/pve can be seen from any node in the cluster.

We will now take a look at a <vm_id>.conr file itself to see what makes up a
virtual machine behind the scenes. This configuration file follows a simple
option:value format. The following is the configuration file of our VM #1ee:

j—4b88-b4a5-1dc2llb7blZa

size=1G

34:CD, bridge=vmbr0

3-4b88-b4a5-1dc211b7blza

1: local-lvm:vm—-100-disk-1,=ize=1G

Since our virtual machine also has a snapshot, the configuration also embeds
the specification of the virtual machine as it was during the snapshot. Almost
all the options in this file can be set through the Proxmox GUI under the
KVM virtual machine Options menu tab. Some option values, such as
arguments, have to be added through the CLI. The following table shows
some of the possible options. The values can be used as virtual machine
configurations:

Options Description Possible values

Allows you to pass
arguments to a VM. Features
such as sound can be

args activated using KVM See section 2.2.6.2
arguments. Refer to section
2.2.6.2 for more details on
arguments used in the KVM.

autostart Auto-restarts a virtual 1; 0
machine after crash. The
default value is o.
Tar RAM for a VM in
balloon argeted oraV Integer number
MB.
boot Default boot device c=hdd; d=cd-rom n=network
. Enables booting from a . o
bootdisk o . ide; sata, scsi, virtio
specific disk.
core Number of cores per socket. Integer number
The default value is 1.
486, kvm32; kvm64, gemu32; gemu64,
conroe; haswell; nehalem,
cpu Emulated CPU types. The opteron_G1/2/3/4/5; penryn;
default value is kvmea. sandybridge; westmere; athlon,
core2duo, coreduo; host, pentium,
pentium2; pentium3; phenom
This is the CPU weight of
the VM. This value is used
by the kernel fair scheduler.
The larger the value is, the
. more CPU time a VM will
cpuunits . . Integer o to seee00
get. Note that this value is
relative to the weights of all
other running VMs in the
cluster. The default value
1S 1000.
description Notes for VM Plain text
freeze Freezes the CPU at startup 1; 0
This option allows a VM
direct access to the host
hardware. When this option
is used, it is not possible to HOSTPCIDEVICE
migrate the VM. Caution Syntax for HosTpciDEVICE iS
hostpci(n) ’

bus: <pci_device_number>

should be used for this
option as it is still in the
experimental stage. It is not
recommended for a
production environment.

Get pci_device_number llSiIlg #lspci

Enables hotplug for disk and
network devices. The default

hotplug 1,0
value is o.
[volume=]image_name],
[media=cdrom, disk];
Allows the volume to be [cyls=c, heads=h, secs=s, [trans=t]],
: _ [snapshot=on, off],
ide(n) used as an ID_E dlSk OF CD [cache=none,writethrough,writeback,
ROM. The n 11 ide(n) 1S unsafe,directsync]; [format=f],
limited to o to 3. [backup=yes|no], [rerror=ignore,
report, stopl,
[werror=enospc, ignore,
report,stop], [aio=native, threads]
Enables/disables the KVM
hardware virtualization. This
option disables any hardware
wn acceleration within a VM. A o
possible usage scenario is ’
when you are setting up a
nested virtualized cluster.
The default value is 1.
Enables locking/unlocking of
lock a VM. backup; migrate, rollback, snapshot
Allocated amount of RAM
memory for the VM Integer number from 16 to n

migration_downtime

Value in seconds for the
maximum tolerated
downtime for migration. The
default value is 0.1.

Number o to n

migration_speed

Value for the maximum
speed in MB/s for VM
migrations. Set the value to e

Integer number from o to n

for no limit. The default
value is o.

name Name for the VM. Text
SpECiﬁEd network devices. MODEL= e1000, i82551, i82557b,
net(n) MODEL=XX: XX: XX XX:XX:XX, i82559er, ne2k_isa, ne2k_pci,
[bridge=<dev>], [rate=<mbps>], pcnet, rtl8139, virtio
[tag=<vlanid>]
Enables/disables VM auto-
onboot start during the host node 1; 0
reboot.
[volume=]volume], [media=cdrom,
disk],
[cyls=c, heads=h, secs=s, trans=t]
Allows the volume to be [snapshot=on, off]; [cache=none,
sata(n) USEd as a SATA diSk or CD- writethrough, writeback, unsafe,
3 : . . di t S [f t=f1.
ROM. N in sata(n) is limited | ¢*recteynels [format=rl;
t0 0 tO s. [backup=yes, no], [rerror=ignore,
report, top], [werror=enospc,
ignore, report, stop], [aio=native,
threads]
[volume=volume], [media=cdrom,
disk],[cyls=c, heads=h,
Allows the volume to be secs=s, trans=t] [snapshot=on, off];
. cache=none, writethrough,
used as an SCSI disk or CD- : ¢ eback o di gt .
i . . o writeback, unsafe, directsync
sesi(n) ROM. N in scsi(n) is limited , Y
[format=f], [backup=yes, no],
to o tO 13.) .
[rerror=ignore, report, stop],
[werror=enospc, ignore, report,
stop]; [aio=native, threads]
. SCSI controller type. The
scsihw . 1si; megasas, virtio-scsi-pci
default value is 1si.
This is the value-allocated
amount of RAM for
autoballooning. The larger
shares this value is, the more RAM

the VM will get. The value 0
disables this option. The
default value is 100e.

Integer from o to secce

sockets

Number of CPU sockets. The

default value is 1.

Integer from 1 to n

startdate

This option sets the initial
date of the real-time clock.

now |YYYY-MM-DD YYYY-MM-
DDTHH:MM:SS

startup

This option sets the behavior
for VM startup and
shutdown. Order is a positive
integer number, which sets
the order in which the VMs
will start. Shutdown follows
the order value in reverse.
The delay of startup and
shutdown can be set through
up and down in seconds.

[order=+ Int], [up=+ Int], [down=+
Int]

tablet

Enables/disables the USB
tablet device in a VM.
Without this option, if
running a lot of console-only
VMs on one host, disabling
this feature can save context
switches. The default value
is 1.

unused(n)

Unused volumes in a VM.
When a virtual drive is
deleted from a VM, the
volume does not get deleted
instantly. Instead, the status
changes to unused:
<volume_name>. At a later time,
if the volume is needed, it
can be reattached to the VM
by changing the option to

ide(n): | scsi(n): | sata(n):.

string

usb(n)

Enables pass-through direct
access to a USB device. N
can be set to e to 4. When this
option is used, it is no longer
possible to migrate the VM.

HOSTUSBDEVICE
Syntax for HosTusepevice is
<vendor_id:product_id> Get

pci_device_number from command
#lsusb -t

vga

VM display type

cirrus |std |vmware| gx1

virtio(n)

Allows the volume to be
used as a VirtlO disk. The n
in virtio(n) is limited to e to
15.

[volume=volume], [media=cdrom,
disk], [cyls=c, heads=h,

secs=s, trans=t]; [snapshot=on,
off], [cache=none, writethrough,
writeback, unsafe, directsync],
[format=f]; [backup=yes, no],

[rerror=ignore, report, stopl;
[werror=enospc, ignore, report,

stop], [aio=native, threads]

Arguments in the KVM
configuration file

Arguments in a virtual machine configuration file are a way to extend the
capability of the VM beyond just the default. For example, sound is not
enabled for a VM by default. In order to give a VM the ability to play
audio/video, an argument has to be passed through the VM configuration file.
The following are some examples of arguments that can be used in a Proxmox
VM configuration file. Arguments can be added in the following format:

args: -<device_arguments_1> -<device_arguments_2>
ballon: 512

bootdisk: virtio®

cores: 1

ide2: none,media=cdrom

Enable a serial device in a VM using the following code:

| args: -serial /dev/ttySe

Enable sound in a Windows XP VM using the following code:

| args: -device AC97,addr=0x18

Enable sound in Windows 7 and later VMs using the following code:

args -device intel-hda, id=sound5, bus=pci.0, addr=0x18 -device had-micro, id=sound5-
codecO, bus=sound5.0, cad=0 -device had-duplex, id=sound5-codecl, bus=sound5.0, cad=1

Enable UUID in a VM using this line of code:

|args -uuid f1234a93-20d32-2398-129032ds-2322

Enable support for aio=native in a VM:

|args: -drive file=/dev/VGGRP/VOL, if=virtio, index=1,cache=none, aio=native

LXC container configuration file

From Proxmox VE 4.0, OpenVZ has been dropped in favor of LXC
containers. LXC is derived from OpenVZ for the mainline kernel. One of the
main advantages of LXC is that it can be used on top of the standard Linux
kernel without needing a special kernel, as is the case for OpenVZ.

is not possible as of Proxmox VE 5.0. The container will need to

0 When using LXC, keep in mind that live migration of a container
be powered off to commit offline migration.

The following is the LXC configuration file of the container #1012 in our
example cluster, which is located in /etc/pve/ixc/101.conf:

L.XC container configuration is much simpler than OpenVZ. As with
OpenVZ, there are no user sean counters in LXCs. It is worth noting here that if
your existing cluster is pre-Proxmox VE 5 and has OpenVZ containers
running, they cannot be seamlessly upgraded to LXCs during the Proxmox
upgrade. All OpenVZ containers must be powered off, commit a full backup,
and then restored in the upgraded Proxmox VE 5. We will take a look at the
upgrade process in detail later in this book in Chapter 14, Updating/Upgrading
Proxmox.

Like a KVM configuration file, LXC also uses an option and value format of
the configuration in its file. Parameters added by default during the LXC
creation in Proxmox are mostly self explanatory. Most of these parameters for
LXC can be changed through the Proxmox GUI. LXC itself has got quite a
few configuration parameters, which cannot be controlled through the GUI,
but they can be added manually through the CLI, depending on the
requirement. A comprehensive list of all the possible configuration
parameters for LXC can be found at the link: http://man7.org/linux/man-pages/man5/Ixc.

container.conf.5.html.

http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html

Version configuration file

The version configuration file shows the version numbers of configuration
files in the cluster and is located under /etc/pve/.version. Every time a
configuration file is edited, the version number increments in the .version file.
The following is the .version file in our cluster at this moment:

There are no manual configurations or editing required in this file.

Member nodes

Located under /etc/pve/.members, the member node file shows all the member
nodes that are part of the Proxmox cluster. It is a great way to see the cluster
status when the Proxmox GUI becomes inaccessible for any reason. The
following is the .memvers file in our basic cluster:

"pmx-01™,

b,

"name™ :

rl-:jrl: :_r r|!

rl-:jrl: 1 < r|!_

| "nodename": "pm4-2"

The nodename section shows the current node where the .members file is being
accessed:

| "version": 4
The .members file has its own version numbering system. Like the .version file,
every time .members is changed, the version increases incrementally. For

example, when a node is added or removed from the cluster, the version
number moves upward:

|"cluster": { "name": "pmx-cluster", "version": 2, "nodes": 2, "quorate": 1 },

The previous code shows the cluster information, such as the cluster name,
cluster version, number of member nodes, and number of votes (quorate)
needed to form a quorum.

| "nodelist": { 3}

Nodes mentioned in the node list section provide information about each
node, such as the ID, online/offline status, and IP address.

Virtual machine list file

Located under /etc/pve/.vmiist, the virtual machine list file stores a list of all
the virtual machines within the Proxmox cluster. The .vmiist file uses the
following format to store the list:

| "<vmid>": { "node": "<nodename>", "type": "<vm_type>", "version": <int> }

We have two virtual machines and one template in our basic cluster. The
following screenshot shows the information stored in the .vmiist file:

: "pmx-01", "type™: "gemu™,

: "pme-01%, “type": “1=c®,

This list allows you another way to view the virtual machines list in the
cluster in all the nodes. We can have a hard copy of this file if disaster strikes,
making the cluster inaccessible through GUI, or we need to rebuild a virtual
environment.

The cluster log file

This is a log file for the cluster itself and is located under /etc/pve/.clusterlog.
It mostly maintains a log of login authentication of users.

Ceph configuration files

Ceph is a kind of a distributed object and file storage system, which fully
integrates with Proxmox. Out of the box, Proxmox comes with the Ceph
cluster management option through the GUI and a whole array of features to
make the integration as seamless as possible. We will dive deep into Ceph in
Chapter 4, Storage Systems. Ceph can be installed on its own hardware using
operating systems such as Ubuntu, or it can coexist with Proxmox on the
same node. Whether it’s coexisting or on its own cluster, Proxmox nodes need
access to the Ceph configuration file to connect. The configuration file is
located in /etc/pve/ceph.conf for the proxmox+ceph coexisting node. For non-
coexisting Proxmox nodes, the file needs to be stored in /etc/ceph/ceph.conf. In
the coexisting node, Proxmox creates a symbolic link of the Ceph
configuration file in /etc/ceph/ceph.conf.

Besides the configuration file, Ceph also uses authentication keys, which are
stored in the following directories:

/etc/pve/priv/ceph.client.admin.keyring

/etc/pve/priv/ceph.mon.keyring

/etc/pve/priv/ceph/<rbd_storage_id>.keyring
In order to connect a Ceph RBD storage, Proxmox requires a separate
keyring. The <rbd_storage_id>.keyring is simply a copied and renamed version of
ceph.client.admin.keyring. Without this keyring, Proxmox will not be able to
connect to Ceph. We will look at details of Ceph in Chapter 5, Installing and
Configuring Ceph.

Firewall configuration file

As of Proxmox 5, a fully functional firewall is integrated with a Proxmox
cluster. It is very powerful and comes with a granular customization down to
a single virtual machine. Firewall rules can be created separately for a cluster,
node, and virtual machine. The following table shows the firewall rules’ file
location:

Cluster-wide firewall rules /etc/pve/firewall/cluster.fw

Node firewall rules /etc/pve/nodes/<node_id>/host.fw

VM/CT firewall rules /etc/pve/firewall/cluster. fw

All the firewall rules can be managed through the Proxmox GUI firewall
menu without editing using the command line. We will take a look at the
firewall in detail later in this book in Chapter 9, The Proxmox VE Firewall.

It is worth mentioning that the Proxmox firewall should be not a substitute for
the main gateway firewall where the internet enters the facility. There should
be a dedicated firewall between the WAN and the local network. The
Proxmox firewall enhances security by allowing you to prevent inter-VM
communication and by fine-tuning the incoming and outgoing network traffic.

Summary

In this chapter, we looked at the location of the important configuration files
needed to run a Proxmox cluster. We also looked at the configuration files
from inside to have a better understanding of the parameters used and other
possible values for different parameters. As mentioned earlier, most of these
configuration files can be changed via the Proxmox GUI. But when the GUI
becomes inaccessible for any reason, knowing where these files are located
can save a tremendous amount of time by accessing them through the CLI.

In the next chapter, we will take a look at the various storage systems that can
be used with Proxmox and the different types of disk images and their use
cases.

Storage Systems

A storage system is a medium to store data for simultaneous access by
multiple devices or nodes in a network. As server and desktop virtualization
becomes the norm, a proper, stable storage system today is much more critical
for a virtual environment. In terms of Proxmox, a storage system is where
virtual disk images are stored for both KVM and container-based virtual
machines.

Although a Proxmox cluster can function fully with Direct Attached Storage
(DAS) or a local storage system in the same Proxmox node, a shared storage
system has many benefits in a production environment, such as increased
manageability, seamless storage expansion, and redundancy, just to name a
few. In this chapter, we will cover the following topics:

Local versus shared storage

Virtual disk image types

Storage types supported by Proxmox
Commercial and free shared storage options
FreeNAS as a low-cost shared storage option

Local or shared, a storage system is a vital component of a Proxmox cluster.
A storage system is where all the virtual machines reside. Therefore, a deeper
understanding of different storage systems will allow an administrator to
properly plan storage requirements for any cluster environment.

Local storage versus shared storage

Shared storage is not absolutely necessary in a Proxmox cluster environment,
but without a doubt, it makes storage management a simpler task. In a small
business environment, it may be adequate not to have 24/7 uptime and 100%
reliability, so a local storage system will suffice. In most enterprise virtual
environments with critical data, shared storage is the only logical choice due
to the benefits it brings to the whole cluster operation. The following are
considered benefits of using shared storage:

Live migration of a virtual machine

Seamless expansion of multi-node storage space
Centralized backup

Multilevel data tiering

Central storage management

Live migration of a virtual machine

This is probably one of the important sought-after reasons to go for a shared
storage system. Live migration is when a virtual machine can be moved to a
different node without shutting it down first. Offline migration is when the
virtual machine is powered off prior to migration. The hardware and operating
systems of Proxmox nodes need updates, patches, and replacements
occasionally. Some updates require an immediate reboot while some require
none at all. The primary function of Proxmox nodes in a cluster is to run
virtual machines. When a node needs to be rebooted, all the running VMs
must be stopped or migrated to other nodes. Then, migrate them back to the
original node after the reboot cycle is complete. In Proxmox, a powered-on
VM cannot be migrated using live migration without powering it down first if
the VM is on the local disk of the node in question. If a total Proxmox node
failure occurs for any reason, all the VMs stored in that node will be
completely unavailable until the node is fixed or replaced. This is because
VMs cannot be accessed to be moved to a different node until the issue node
is powered up.

In most cases, shutting down all the VMs just to reboot the host node is not an
option. This causes too much downtime depending on the number of VMs the
node handles. In order to migrate locally stored VMs, they must be stopped
and then migration should be initiated from the Proxmox GUI. Migration
from one local storage to another local storage takes a long time, depending
on the size of the VM, since Proxmox moves an entire image file using rsync
to relocate the VM to another node. Let’s take a look at the following diagram
of a cluster with 40 locally stored virtual machines with 10 on each of the four
Proxmox nodes:

LAN Switch

vm1
vm?2

vmii
vm12

node 01 node 02
g g

Q R

N\ NS0

vm 10 vm20 vm30

In the preceding overly simplified diagram, there are four Proxmox nodes
with 10 virtual machines on each. If node 01 needs to reboot to apply an
update or hardware upgrade, all the 10 virtual machines have to be stopped,
the node needs to be rebooted, and then all the virtual machines must be
powered up. If node 01 fails completely, then all these 10 virtual machines
will be inaccessible until node 01 is back on again.

So clearly, a cluster setup with local storage for virtual machines can cause

unwanted downtime when migration is needed. Now, let’s take a look at the
following diagram where four Proxmox nodes with 40 virtual machines are
stored on a shared storage system:

NAS Shared
Storage

vm1
- vm?2
vm3

vm 40

node 04

Q

In the preceding diagram, all the 40 virtual machines are stored on a shared
storage system. The Proxmox node only holds the configuration files for each
virtual machine. In this scenario, if node 01 needs to be rebooted due to a
security patch or update, all the virtual machines can be simply migrated to
another node without powering down a single virtual machine. A virtual
machine user will never notice that their machine has actually moved to a
different node. If a total Proxmox node failure occurs, the virtual machine
configuration file can simply be manually moved from
/etc/pve/nodes/noded1/gemu-server/<vmid>.conf 1O /etc/pve/nodes/node02/gemu-

server/<vmid>.conf.

We can also leverage another feature in Proxmox known as high
availability to automate the VM configuration file to move
during node failure. Refer to Chapter 10, Proxmox High
Availability, to learn about this feature.

Since all the virtual machine configuration files are in a Proxmox clustered
file system (pmxcfs), they can be accessed from any node. Refer to Chapter 3,
Proxmox under the Hood, for details on the pmxcfs. With virtual machine
image files on shared storage, Proxmox migration does not have to move all
the image files using rsync from one node to another, which allows much

faster virtual machine migration.

Unix-based systems. It provides nonencrypted or encrypted

0 The rsync is an open source program and network protocol for
incremental file transfers from one location to another.

When live-migrating a VM, keep in mind that the more memory (RAM)
allocated to the VM, the longer it will take to live-migrate a powered-on
virtual machine since the migration process will need to copy the entire
memory contents. Failure to do so may cause data corruption since the data in
memory may not have been written to the disk image.

It should be noted that shared storage can cause a single point of failure if a
single node-based shared storage solution is set up, such as FreeNAS or
NAS4Free without high availability configured. Using multinode or
distributed shared storage such as Ceph, Gluster, or DRBD, the single point of
failure can be eliminated. On a single-node shared storage, all virtual
machines are stored on one node. If node failure occurs, the storage will
become inaccessible by a Proxmox cluster, thus rendering all the running
virtual machines unusable.

They will need to be powered off to commit offline migration.

0 As of Proxmox VE 5.0, LXC containers cannot be live-migrated.
KVM VMs can be live-migrated without shutting down.

Seamless expansion of multinode
storage space

Digital data is growing faster than ever before in our modern 24/7 digitally
connected world. The growth has been exponential since the introduction of
virtualization. Since it is much easier to set up a virtual server at a moment’s
notice, an administrator can simply clone a virtual server template, and within
minutes, a new virtual server is up and running while consuming storage
space. If left unchecked, this regular creating and retiring of virtual machines
can force a company to grow out of available storage space. A distributed
shared storage system is designed keeping this very specific requirement in
mind.

In an enterprise environment, storage space should increase on demand
without shutting down or interrupting critical nodes or virtual machines.
Using a multinode or distributed shared storage system, virtual machines can
now go beyond few-node local clusters to scattered multiple nodes spanned
across geographical regions. For example, Ceph or Gluster can span across
several racks and comprise well over several petabytes of usable storage
space. Simply add a new node with a full bay of drives and then tell the
storage cluster to recognize the new node to increase storage space for the
entire cluster. Since shared storage is separated from the virtual machine host
nodes, storage can be increased or decreased without disturbing any running
virtual machines. In chapter 5, Installing and Configuring Ceph, we will see
how we can integrate Ceph into a Proxmox cluster.

Centralized backup

Shared storage makes centralized backup possible by allowing each virtual
machine host node to create a backup in one central location. This helps a
backup manager or an administrator to implement a solid backup plan and
manage the existing backups. Since a Proxmox node failure will not take the
shared storage system down, virtual machines can be easily restored to a new
node to reduce downtime.

wise practice to store both virtual machines and their backups

8 Always use a separate node for backup purposes. It is not a
on the same node.

Multilevel data tiering

Data tiering is a concept where different files can be stored on different
storage pools based on their performance requirements. For example, a virtual
file server can provide very fast service if its VM is stored in an SSD storage
pool, whereas a virtual backup server can be stored on slower HDD storage
since backup files are not frequently accessed and thus do not require very
fast I/0. Tiering can be set up using different shared storage nodes with
different performance levels. It can also be set up on the same node by
assigning volumes or pools to specific sets of drives.

Central storage management

By separating shared storage clusters from primary Proxmox clusters, we can
manage two clusters without them interfering with each other. Since shared
storage systems can be set up with separate nodes and physical switches,
managing them based on different authorizations and permissions becomes an
easier task. NAS, SAN, and other types of shared storage solutions come with
their own management programs from where an administrator or operator can
check storage cluster health, disk status, free space, and so on. The Ceph
storage is configured via CLI, but Proxmox has integrated a great deal of
Ceph management options within the Proxmox GUI, which makes Ceph
cluster management much easier. Using the API, Proxmox can now collect
the Ceph cluster data and display it through the Proxmox GUI, as shown in
the following screenshot:

}X(PRO MO X virtual Environment 5 0-23/af4267bf Search You are logged in as 'root@pam’
Server View Node pmx-02 D Restat O
= Datacenter
Bo pmx01 Q Search Health
) &
ECJ pmx-02 & Summary
Status T ae
Eﬁ pmx-03 5 Shell Severity Summary
@ Linux_VMs & system A 1 mons down, quorum 0,1 0,1
W Test-Poolt ‘ > 238 pgs are stuck inactive for mare than 300 seconds
Z Updates
69 pgs peering
U Firewall HEALTH_ERR 53 pgs stale
& Disks 238 pgs stuck inactive
@ Ceph 238 pgs stuck unclean
£ Configuration
O Moniter SEE
EEash Monitors 0SDs PGs
& Pools p— — 2 ®in Out active+clean 3

peering 31
QUp 5 0 stale+active+clean 15
13 Replication Down 0 1 stale+remapped-+peering 38
unknown 169

= Log

= Task History
Total: 6
€ Subscription

Other NAS solutions such as FreeNAS, OpenMediaVault, and NAS4Free also
have a GUI that simplifies management. The following screenshot is an
example of the hard drive status from a FreeNAS GUI window:

T

/& FreeNAS'
B o= @m @ & « 0 . © % A

System Network Storage Sharing Services Plugins Jails Reporting Help Log Qut Alert
expand all collapse all Settings X | System Information 2| Storage X | Wiew Disks X | Reporting
+ H Account CPU Disk Memary | Network | Partition System
* [iif Svstem Interface Traffic (reg) [=
+| s Network - 600 kT |
227 = | 1
-| [@ll Storage g 500 k | =8 |
I 408 k |
+ B Pericdic Snapshot Tasks T aha _l
L u v <<
+| ‘B Replication Tasks S ook |
wn
+| & Volumes L R k >
o a -
= "-é ZFS Scrubs 14: 38 14: 40 14:50 15: 0@ 15: 18 15: 28
= b ckup-01 B RX 34,3k Min. 71.2k Avg. 522.8k Max. ca. 30.3M Total
o B TX 8.0 Min. ©533.8 Avg. B74.2 Max. ca. 226.8k Total
g Add ZFS Scrub - .
= View ZFS Scrubs Interface Traffic (emo) £
’ 2 = 70k | —
¥ @ Sharing S eoo k tl X |
+| gP Services U 50 k | -
g 400 k e
% Flugins E 360 k]! e |
+ Jails w200 k |
EH i H o1ee k I =
ﬁ Repaorting] o LE Lok L

14:30 14:40 14:50 15:00 15:1@ 15: 28
RX 5.7k Min. 114.5k Avg. 633.4k Max. ca. 48, 9M Total

E Display System Processes
z TX 3.2k Min, 15.9k Awvg. 46,7k Max. ca. 6.8M Total

Local and shared storage
comparison

The following table is a comparison of both the local and shared storage for a
quick reference:

Features Local storage Shared storage
VM h‘.]e No Yes
migration

Yes, when used in

ng.h - No distributed shared
availability
storage
Cost Lower Significantly higher
Vo Native disk drive speed Sllower. than the native
performance disk drive speed
. Must be skilled in the
Skill
. No special storage skills required shared storage option
requirements used

Expandable over
multiple nodes or
Expandability | Limited to available drive bays of a node | racks when multinode
or distributed shared
storage is used

Storage nodes or
Virtually maintenance free clusters require
regular monitoring

Maintenance
complexity

A virtual disk image

A virtual disk image is a file or group of files in which a virtual machine
stores its data. In Proxmox, a VM configuration file can be recreated and used
to attach a disk image. But if the image itself is lost, it can only be restored
from a backup. There are different types of virtual disk image formats
available to be used with a virtual machine. It is essential to know the
different types of image formats in order to have an optimally performing
VM. Knowing the disk images also helps prevent the premature shortage of
space, which may occur by over-provisioning virtual disks.

Supported image formats

Proxmox supports the .raw, .qcowz, and .vmdk virtual disk formats. Each format
has its own set of strengths and weaknesses. The image format is usually
chosen based on the function of the virtual machine, storage system in use,
performance requirement, and available budget. The following screenshot
shows the menu where we can choose an image type during virtual disk
creation through the GUI:

Add: Hard Disk

Bus/Device:
Storage:
Disk size (GB)

Format:

© Help

Virtlo 1

32

J image format (qcow2)

Raw disk image (raw)
QEMU image format
{qcow?2)

VMware image format
(vmdk)

Cache: Default (No cache)
Mo backup:

Skip replication

Discard:

O thread:

The following table is a brief summary of the different image formats and
their possible usage:

Image type Storage supported Strength
Allows dynamic virtual storage of i
-qcow2 NFS and directory files.

Stable and secure.
Most feature rich among image typs

raw

LVM, RBD, iSCSI,
and directory

No additional software layer. Direct
access to image files.
Stable, secure, and fastest.

Works exceptionally well with the
VMware infrastructure.

Allows dynamic virtual storage of i
files.

.vmdk NFS and directory

Proxmox is very forgiving with setting up virtual machines with

the wrong image format. You can always convert these image
8 types from one format to another. Conversion can be done from

both the CLI and GUL. Virtual disk image conversion is
explained later in this chapter.

The .qcow?2 images

The .qcowz type is a very stable VM image format. Proxmox fully supports this
file format. A VM disk created using .qcowz is much smaller since by default it
creates thin-provisioned disk images. For example, an Ubuntu VM created
with 50 GB storage space may have an image file with a size around 1 GB.
As a user stores data in the VM, this image file will grow gradually. The .qcow2
image format allows an administrator to over-provision VMs with the .qcow2
disk image file. If not monitored regularly, the shared storage will run out of
space to accommodate all the growing virtual image files. Available storage
space should be regularly monitored in such an environment. It is a good
practice to add additional storage space when the overall storage space
consumption reaches around 80%.

Thin provisioning is when the virtual disk image file does not

preallocate all the blocks, thus keeping the size of the image file

to only what we want. As more data is stored in the virtual

machine, the thin-provisioned image file grows until it reaches

the maximum size allocated. Thick provisioning, on the other
hand, is when the virtual disk image file preallocates all the
blocks, thus creating an image file that is exactly the size set
when creating it.

The .qcow2 format also has a very high I/0 overhead due to its additional
software layer. Thus, it is a bad choice of image format for a VM such as a
database server. Any data being read or written into the image format goes
through the .qcowz software layer, which increases the I/0O, making it slower. A
VM backup created with a .qcow2 image can only be restored to an NFS or
local directory.

When budget is the main concern and storage space is very limited, .qcow2 is
an excellent choice. This image type supports KVM live snapshots to
preserve states of virtual machines.

The .raw image type

The .raw image type is also a very stable and mature VM image format. Its
primary strength lies in performance. There is no additional software layer for
data to go through. A VM has direct pass-through access to the .raw file,
which makes it much faster. Also, there is no software component attached to
it, so it is much less problem prone. The .raw format can only create a fixed-
size or thick-provisioned VM image file. For example, an Ubuntu VM created
with 50 GB storage space will have a 50 GB image file. This helps an
administrator to know exactly how much storage is in use, so there is no
chance of an uncontrolled out-of-storage situation.

The .raw type is the preferred file format for all Proxmox VMs. A .raw image
format VM can be restored to just about any storage type. In a virtual
environment, additional virtual disk image files can be added to a virtual
machine at any time. So it is not necessary to initially allocate a larger-size
.raw virtual disk image file with possible future growth in mind. The VM can
start with a smaller .raw image file and add more disk images as needed. For
example, a VM with 50 GB data starts with an 80 GB .raw image file. Then,
increase the size of the disk image or add more virtual disk images as the need
arises. The concept is much like adding new hard drives to a server to
increase overall space.

Since all the .raw disk image files are preallocated, there are no risks of over-
provisioning beyond the total available storage space. KVM live snapshots
are also supported by the .raw image format. There are some shared storage
solutions that only support the .raw disk image. Ceph RBD is one example. As
of Proxmox VE 4.1, we can only store the .raw virtual disk image on Ceph
block devices. But the Ceph FileSystem (CephFS) supports all the virtual
disk images. CephFS is one of the three storage types supported on the Ceph
platform. Currently, there are no direct storage plugins for CephFS in
Proxmox, only for RBD. But we can connect CephFS to Proxmox as an NFS
share.

The .vimdk image type

The .vmdk image format is very common in the VMware infrastructure. The
main advantage of Proxmox supporting .vndk is the ease of VM migration
from VMware to a Proxmox cluster. A VM created in VMware with the .vmdk
image format can easily be configured to be used in a Proxmox cluster and
converted. There are no benefits to keeping a virtual disk image file in the
.vmndk format, except during a transitional period, such as converting virtual
machines from a VMware infrastructure.

Virtual device types

Virtual device types emulate the bus or device nature of physical drives.
Proxmox allows quite a few additional virtual drives to be added to a VM.
The following table shows the bus types supported in Proxmox and the
maximum number of allowed disk devices per VM by Proxmox:

Bus/device type | Maximum allowed
IDE 3

SATA 5

VirtlO 15

SCSI 13

Out of four supported bus types, the VirtIO bus type gives the maximum
performance in almost all situations. VirtlO disk images are recognized by
Linux without any additional work during OS installation. However, when
installing Windows in a VM, VirtlO drives are not recognized. Additional
VirtlO drives need to be added at the time of Windows installation. We will
look into best practices for using the VirtlO bus type with Windows OSes
later in this chapter.

Managing disk images

A Proxmox virtual image file can be managed from both the WebGUI and
CLI. The WebGUI allows the administrator to use the add, resize (increase
only), move, throttling, and delete options, as shown in the following
screenshot:

Virtual Machine 100 ('kvm-1') on node 'pmx-01' P Start
& Summary Add Remove Edit Resize disk Move disk Disk Throttle CPU options Revert
>~ Console Keyboard Layout Default
J Hardware &8 Memory 128.00 MiB/1.00 GiB
& Options {?} Processors 1 (1 sockets, 1 cores) [numa=1]
< Displa Default
= Task History i
@ CD/DVD Drive (ide2) none media=cdrom
e iManos 8| Hard Disk (virtio0) | local-lvm:vm-100-disk-1,size=1G

& Backup = Network Device (netQ) virtio=CA:35:61:2A:34:CD bridge=vmbr0

To make any changes to a virtual disk image file, the image must be selected
first from the Hardware tab, as shown in the preceding screenshot. Virtual
machine image files can also be manipulated using CLI commands. The
following table shows a few examples of the most common commands used
to delete, convert, and resize an image file:

Command Function

#gemu-img create -f <type> -0 <filename> <size> C . fl
#qemu-img create -f raw -o test.raw size=1024M reates an Hnage e

#gemu-img convert <source> -0 <type> <destination> C . fil
#qemu-img convert test.vmdk -0 gcow2 test.gcow2 onverts an Hnage e

#gemu-img resize <filename> <+|-><size> Resi . fil
#gemu-img resize test.qcow2 +1024M esizes an 1mage Iile

Resizing a virtual disk image

The Resize disk option only supports increasing the size of the virtual disk
image file. It has no shrink function. The Proxmox Resize disk option only
adjusts the size of the virtual disk image file. After any resizing, the partition
must be adjusted from inside the VM. The safest way to resize partitions is to
boot a Linux-based virtual machine with a partitioning ISO image, such as
GParted (http://gparted.org/download.php), and then resize the partitions using the
GParted graphical interface. It is also possible to perform an online partition
resizing while the virtual machine is powered on. Resizing a virtual disk
image file involves the following three steps:

1. Resize virtual disk image file in Proxmox:
e From GUI: Select the virtual disk, and then click on Resize disk.
e From CLI: Run the following command:

| # qm resize <vm_id> <virtual_disk> +<size>G

2. Resize the partition of the virtual disk image file from inside the VM:
e For Windows VMs: Resize the disk by going to Computer
Management under Administrative Tools.
¢ For Linux VMs with RAW partitions: Run the following
command:

cfdisk <disk_image>

e For Linux VMs with LVM partitions: Run the following
command:

cfdisk </dev/XXX/disk_image>

e For Linux VMs with QCOW?2 partitions: Run the following
commands:
apt-get install nbd-client
gemu-nbd --connect /dev/nbd0@ <disk_image>

cfdisk /dev/nbdo
gemu-nbd -d /dev/nbd0

3. Resize the filesystem in the partition of the virtual disk image file:
e For a Linux client with LVM: Run the following commands:

| # pvscan (find PV name)

http://gparted.org/download.php

pvresize /dev/xxx (/dev/xxx found from pvscan)
lvscan (find LVname)
lvresize -L+<size>G /dev/xxx/lv_<disk>

e To use 100% free space: Run the following commands:

lvresize -1 +100%FREE /dev/xxx/1lv_<disk>

resize2fs /dev/xxx/1lv_<disk> (resize filesystem)
Steps 2 and 3 are necessary only if online resizing is done
without shutting down a VM. If GParted or another bootable
partitioning medium is used, then only step 1 is needed before
booting the VM with an ISO.

Moving a virtual disk image

Move disk allows the image file to be moved to a different storage or
converted to a different image type:

Move disk

Disk: virtioQ

Target Storage: rbd-01

Delete source:

In the Move disk option menu, just select the Target Storage and Format type,
and then click on Move disk to move the image file. Moving can be done live
without shutting down the VM.

The Format type in the Move disk option will be greyed out if the
destination storage only supports one image format type. In the

8 preceding screenshot, ssd-ceph-o01 is an RBD storage in a Ceph
pool. Since RBD only supports the RAW format, the format type
has been greyed out automatically.

Clicking on Delete source will delete the source image file after the moving is
complete.

Note that if the virtual machine has any snapshots, Proxmox will not be able
to delete the source file automatically. In such cases, the disk image has to be
manually deleted after the snapshots are removed. The source image will be
listed as Unused disk 0, as shown in the following screenshot, after the
moving is done for a disk image with snapshots:

Virtual Machine 100 ('kvm-1') on node 'pmx-01"

& Summary Add Remove H
>_ Console Keyboard Layout
& Hardware &2 Memory
& Options {8 Processors
= Task History =l Bl

@ CD/DVD Drive (ide2)
@ Monitor = Network Device (netQ)
Backup & Unused Disk 0

Resize disk ove disk Disk Throttle CPU options

Default

128.00 MiB/1.00 GiB

1 (1 sockets, 1 cores) [numa=1]

Default

none, media=cdrom
virtio=CA:35:61:2A:34.CD bridge=vmbr0

local-lvm:vm-100-disk-1

Throttling a virtual disk image

Proxmox allows throttling or setting a limit on the read/write speed and
input/output operations per second (IOPS) for each virtual disk image. By
default, there are no set limits. Each disk image will try to read and write at
the maximum speed achievable in the storage where the disk image is being
stored. For example, if a disk image is stored on a local storage, it will try to
perform read and write operations at about 110 MB/s since that is the
theoretical limit of a SATA drive. This performance will vary in different
storage options. In a multi-tenant or large environment, if all the disk images
are not throttled without any limit, this may put pressure on the network
and/or storage bandwidth. By throttling, we can control the bandwidth that
each disk image can utilize. The Disk Throttle option is available on the
Hardware tab of a VM. The following screenshot shows the Disk Throttle
dialog box with the option to set limits:

Edit: Hard Disk (virtioO)

Read limit (MB/s): | Linlimited Read max burst (MB): default
Write limit (MB/s): unlimited Write max burst (MB) default
Read limit {ops/s): unlimited Read max burst (ops) default
Write limit (ops/s): unlimited Write max burst (ops): default

When it comes to disk throttling, there’s no one-size-fits-all limit. The set
limit is going to vastly vary for different storage used in the cluster
environment and the amount of load each VM carries. Depending on the type
of storage used, it may be necessary to just set write or read, or both, limits.
For example, a Ceph storage cluster with an SSD journal may have a much
higher write speed than the read speed. So throttling a VM with a higher read
limit while setting a lower write limit may be a viable option.

As mentioned earlier, we can set a limit based on MB/s or OP/s. Setting the
MB/s limit is much simpler since we can quantify the read/write speed of a
disk drive or network in megabytes much more easily. For example, a
standard SATA drive can achieve a theoretical speed of 115 MB/s while a
gigabit network can achieve about 100 MB/s. Knowing the performance in

IOPS or OP/s requires some extra steps. In some storage systems, we can
integrate some forms of monitoring, which can present us the IOPS data in
real time. For others, we need to calculate the IOPS data to know the
performance matrix of the storage system used. The complete details of the
IOPS calculation are beyond the scope of this book. But the following
guidelines should serve as a starting point to calculate the OP/s of different
storage devices:

OP/s for a single 7200-RPM SATA disk:
IOPS = 1/(avg. latency in seconds + avg. seek time in seconds)

Based on the previous formula, we can calculate IOPS of a standard SSD
device. To get the average latency and seek time of a device, we can use the
Linux tool ioping. It is not installed in Proxmox by default. We can install it
using the following command:

| # apt-get install ioping

The ioping tool is similar to the iperf command but for disk drives. The
following command will show the IO latency of our example SSD device:
| # ioping /dev/sda

The following screenshot shows that the result of ioping for average latency is
1.79 milliseconds or 0.00179 seconds:

To get the average seek time of a device, we need to run the following ioping
command:

| # ioping -R /dev/sda

The following screenshot shows that the result of ioping for average seek time
is 133 microseconds or 0.000133 seconds:

Using the gathered results, we can calculate the IOPS or OP/s of the SSD
device, as follows:

IOPS =1/(0.00179 + 0.000133) = 520

If we know the maximum IOPS a storage medium can provide, we can tweak

each VM with OP/s throttling to prevent 10 issues in the cluster. As of
Proxmox VE 4.1, we cannot set a cluster-wide throttling limit. Each disk
image needs manual throttling separately.

Caching a virtual disk image

Caching a virtual disk image provides performance and in some instances
protection against an ungraceful VM shutdown. Not all caching is safe to use.
For optimum VM performance, it is important to be aware of the various
caching offered in Proxmox. This option is available under the VM Hardware
tab in the disk image creation or edit dialog box. The following screenshot
shows the disk image’s edit dialog box with the caching drop-down menu for
the .raw disk image of our example VM:

Edit: Hard Disk (virtioQ)

Cache: Default (No cache)
No backup: Default (No cache)
— e Direct sync
Skip replication
Wirite through
BitRid Write back
1O thread: Write back (unsafe)
No cache

© Help

As of Proxmox VE 5.0, the following caching options are available:

Cache option Description

In this cache option, the Proxmox host does not do any
caching, but a VM disk image uses the write-through cache.
In this cache, writes are only acknowledged when data has
Direct sync been committed to the storage device. Direct sync is
recommended for VMs that do not send flushes when
required. This is a safer cache as data is not lost during a
power failure but it is also slower.

In this cache option, the Proxmox host page cache is
enabled while the VM disk write cache is disabled. This
cache provides good read performance but slow write

Write through performance due to the write cache being disabled. This is a
safer cache as it ensures data integrity. This cache is
recommended for local or direct attached storage.

In this cache option, both read and write caching is done by
the host. Writes are acknowledged by the VM disk as
Write back completed as soon as they are committed to the host cache
regardless of whether they have been committed to storage
or not. Data loss will occur for VMs in this cache.

This cache is the same as Write back except that all flushes
are completely ignored by the guest VM. This is the fastest
cache although the most unsafe. This cache should never be
Write back (unsafe) | used in a production cluster. Usually, this cache is used to
speed up OS installation in a VM. After the VM
installation, this cache should be disabled and reverted to a
different safer cache option.

This is the default caching option in Proxmox. In this
option, no caching occurs at the host level, but the guest
VM does write-back caching. The VM disk directly
receives a write acknowledgment from the storage device in
this cache option. Data can be lost in this cache during an
abrupt host shutdown due to a power failure.

No cache

Not all cache types will provide the same performance in all virtual
environments. Every VM’s workload is different. So choosing various cache
types and observing the performance of the VM is necessary to find out which
caching works best for a particular VM.

VirtlO bus type for Windows VMs

VirtlO disk images are automatically recognized by Linux VMs since all
Linux flavors come equipped with VirtIO drivers. Windows operating
systems, however, do not. We can follow two methods to use the VirtIO disk
type with Windows.

First, download the VirtIO drivers for Windows in ISO format from the
following link:

https://fedoraproject.org/wiki/Windows_Virtio_Drivers

After downloading the ISO image file, simply upload it to a storage attached
to Proxmox so we can make it available to any VM. Note that the ISO image
holds drivers for not just the VirtIO disk device but also the VirtIO network
interface.

https://fedoraproject.org/wiki/Windows_Virtio_Drivers

Installing VirtIO drivers during
Windows installation

In the first method, we can load the VirtlO drivers during Windows
installation through the following steps:

1. Add two CD/DVD drives when creating the Windows VM. The first
drive is to load the Windows installer and the other one to load the
VirtlO ISO image.

2. Start Windows installation and click on Load driver as shown in the
following screenshot:

@ !@ Windows Setup

Where do you want to install Windows?

Total size Free space | Type

#¢ Refresh 7% Delete # Eormat

% Load driver = Extend

I, We couldn't find any drives, To get a storage driver, click Load driver,

3. Go to Browse to select the drive with the VirtIO ISO image, and then
navigate to the driver folder. The driver for the VirtIO disk image is
usually stored in \\<briveLetter>\viostor\<windows_version>\amds.

4. After selecting the folder, it should show you the available drivers for the

VirtlO disk image, which is also known as Red Hat VirtIO SCSI
controller, as shown in the following screenshot:

@ ,(’éi Windows Setup

Select the driver to install

Red Hat VirtlO 5C51 controller (E\viostor2k12R2\amded\viostor.inf)

¥ Hide drivers that aren't compatible with this computer's hardware.

Browse
L ,

5. Select the driver and continue with the Windows installation as usual.

Installing VirtlO drivers after
Windows installation

This method is useful when Windows is already installed on a VM and you
need to convert existing IDE/SATA disk images to VirtIO type. In this
method, the VirtlO driver must be loaded before the main OS disk image is
changed to the VirtIO bus type. The following steps are how we can change
the bus type of the main Windows OS disk image after Windows has already
been installed on a non-VirtlO disk:

1.
2.
3.

Create a small additional disk image.

Log in to Windows and load the VirtlO drive ISO image.

Install drivers so the additional VirtIO disk image is recognized and
configured by Windows.

Shut down Windows, change the main OS disk image to VirtIO type, and
delete the additional disk image.

Restart Windows.

Storage types in Proxmox

Proxmox has excellent plugins for the mainstream storage options. In this
section, we are going to see which storage plugins are integrated into
Proxmox and also see how to use them to connect to different storage types in
Proxmox. The following are the storage types that are natively supported as of
Proxmox VE 5.0:

Directory
LVM

NFS

ZFS

Ceph RBD
GlusterFS

Directory

The pirectory storage is a mounted folder on the Proxmox local node. It is
mainly used as local storage. But we can also mount a remote folder in a
different node and use that mount point to create a new pirectory storage. By
default, this location is mounted under /var/1ib/vz.

Any VM stored in this pirectory storage does not allow live migration. The
VM must be stopped before migrating to another node. All virtual disk image
file types can be stored in the pirectory storage. To create a new storage with a
mount point, go to patacenter | Storage, and click on Add to select the pirectory
plugin. The following screenshot shows the Add: Directory storage dialog
box, where we can add storage named 1ocal-iso, which is mounted at /mnt/iso,
to store the ISO and container templates:

Add: Directory

ID: local-iso Nodes: All (No restrictions)
Directory: /mntiiso Enable:
Content: Disk image, IS0 image Shared:

Max Backups: 1

For locally mounted storage, selecting the Shared checkbox is not necessary.
This option only pertains to a shared storage system, such as NFS and RBD.

iISCSI

Internet Small Computer Systems Interface, which stands for iSCSI, is
based on Internet Protocol, which allows the transmission of SCSI commands
over a standard IP-based network. iSCSI devices can be set up locally or over
a vast distance to provide storage options. We cannot store virtual disk images
directly on an iSCSI device, but we can configure LVM storage on top of the
iSCSI devices and then store disk images. An attached iSCSI device appears
as if it were physically connected even if the device is stored in another
remote node.

For more details on iSCSI, refer to the following link:

http://en.wikipedia.org/wiki/ISCSI

We will assume that you already have an iSCSI device created in a remote
node using FreeNAS or any other Linux distribution. To add the device to
Proxmox, we are going to use the iSCSI storage plugin, which we can find by
navigating to the patacenter | Storage | Add menu. As shown in the following
screenshot, we are adding an iSCSI target named test1-iscst, which is
configured in a remote node, 172.16.2.10:

Add: iSCSI

ID: test1-scsi MNodes: All (No restrictions)
Portal: 172.16.2.10 Enable:

Target: 2017 .09 test1-iscsi 354 Use LUNs M|

directly:

Note that using LUNs directly is not recommended, although the option to
enable them is available. It is known to cause an iSCSI device error when
accessed directly.

http://en.wikipedia.org/wiki/ISCSI

Logical Volume Management

Logical Volume Management (LVM) provides a method of storage space
allocation by using one or more disk partitions or drives as the underlying
base storage. LVM storage requires a base storage to be set up and function
properly. We can create LVM storage with local devices as backing or
network backing with iSCSI devices. LVM allows scalable storage space
since the base storage can be on the same node or on a different one. LVM
storage only supports the RAW virtual disk image format. We can only store
virtual disk images or containers on LVM storage.

For more details on LVM, refer to the following link:

http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

If the LVM disk array is configured using local direct-attach disks in the node,
VMs stored on this storage cannot be migrated live without powering down.
But by connecting iSCSI devices from a remote node, and then creating the
LVM storage on top of the iSCSI volume, we can make live migration
possible since the storage is now considered shared storage. FreeNAS is an
excellent option to create LVM plus iSCSI shared storage at no license cost. It
comes with a great graphical user interface and many features, which go far
beyond just LVM or iSCSI.

To add LVM storage, go to patacenter | Storage | Add, and select the LVM
storage plugin. The following screenshot shows the LVM dialog box, where
we are using the iSCSI device test1-iscsi, that we added in the previous
section, to create LVM storage:

Add: LVM X
ID: lvm-01 Nodes: v
Base storage: testi-iscsi (iSCSI) A Enable: v|

Shared: V]
Volume group: lvm-01-vg

Content: Disk image, Container v

Add

http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

NES

Network File System (NFS), in short, is a well-matured filesystem protocol
originally developed by Sun Microsystems in 1984. Currently, version 4 of
the NFS protocol is in effect. But it was not as widely accepted as version 3
due to a few compatibility issues. But the gap is closing fast between version
3 and 4. Proxmozx, by default, uses version 3 of the NFS protocol, while
administrators can change to version 4 through the use of options in
storage.cfg. NFS storage can store the .qcow2, .raw, and .vmdk image formats,
providing versatility and flexibility in a clustered environment. NFS is also
the easiest to set up and requires the least amount of upfront hardware cost,
thus allowing a budget-conscious small business or a home user to get their
hands on a stable shared storage system for the Proxmox cluster.

Care should be taken when using NFS version 4 instead of
version 3 in Proxmox. There are still a few bugs that exist in
NFSv4, such as kernel panic during system startup while
mounting the NFSv4 share.

The NFS server can be configured on just about any Linux distribution and
then connected to a Proxmox cluster. An NFS share is nothing but a mount
point on the NFS server, which is read by the Proxmox NFS plugin. We can
also use FreeNAS to serve as the NFS server, and thus take advantage of the
FreeNAS features and GUI to easily monitor the shared storage. Due to the
simplicity of the NFS configuration, this is probably the most widely used
storage option in the virtualization world. Almost all network admins have
used an NFS server at least once in their career.

In the following screenshot, we are connecting an NFS storage named nfs-o1
from the remote server 172.16.2.10:

Add: NFS

ID: nfs-01 Nodes: All (No restrictions)

Server: 172.16.2.10 Enable:

Export: Infs-vol/nfs-01 Max Backups: ‘ 3 ‘
Content: Disk image, 1S0O image

After entering the IP address of the remote server, the Export drop-down

menu will scan the remote server for all the NFS shares and display them in
the list. In our example, the mount point found from the dialog box is in /nfs-

vol/nfs-01.

ZES

ZFS was originally developed by Sun Microsystems. ZFS storage is a
combination of filesystem and LVM, providing high-capacity storage with
important features, such as data protection, data compression, self-healing,
and snapshots. ZFS has built-in software-defined RAID, which makes the use
of hardware-based RAID unnecessary. A disk array with ZFS RAID can be
migrated to a completely different node, and then entirely imported without
rebuilding the entire array. We can only store .raw format virtual disk images
on the ZFS storage. For more details on ZFS, refer to http:/en.wikipedia.org/wiki/ZF
S.

As of Proxmox VE 4.1, a ZFS storage plugin is included, which leverages the
use of ZFS natively in Proxmox cluster nodes. A ZFS pool supports the
following RAID types:

RAID-0 pool: Requires at least one disk
RAID-1 pool: Requires at least two disks
RAID-10 pool: Requires at least four disks
RAIDZ-1 pool: Requires at least three disks
RAIDZ-2 pool: Requires at least four disks

ZFS uses pools to define storage. Pools can only be created through a CLI. As
of Proxmox VE 5.0, there are no ZFS management options in the GUI. All
ZFS creation and management must be done through the CLI. Once the pools
are created, they can be attached to Proxmox through the Proxmox GUI. In
our example, we are going to create a RAID1 mirrored pool named zfspoo11
and connect it to Proxmox. The command used to create the ZFS pool is as
follows:

| # zpool create <pool_name> <raid_type> <devi_name> <dev2_name> ...

So, for our example pool, the command will appear as follows:

|# zpool create zfspooll mirror /dev/vdd /dev/vde

The following options are available for RAID types:

RAID type | Option string to use

RAIDO no string

http://en.wikipedia.org/wiki/ZFS

RAID 1 mirror

RAIDZ-1 | raidz

RAIDZ-2 raidz2

To verify that the pool is created, run the following command:

| # zpool list

The following screenshot shows the ZFS pool list as it appears for our
example ZFS node:

ALLL FREE EXPANDSZ FRAG CAl DEDUF HEALTH WLTRDOT

) . 946 £ e 1.00x ONL INE

We can use the pool directly, or we can create a dataset inside the pool and
connect the dataset separately to Proxmox as an individual storage. The
advantage of this is to isolate the different types of stored data in each dataset.
For example, if we create a dataset to store VM images and another dataset to
store backup files, we can turn on compression for the VM image dataset to
compress the disk image files while keeping compression off for the backup-
storing dataset since the backup files are already compressed, thus saving
valuable resources. Each ZFS dataset can be configured individually with its
own set of configuration options. If we compare a zpoo1 with a directory,
datasets are like subdirectories inside the main directory. The following
command is used to create a dataset inside a ZFS pool:

| # zfs create <zpool name>/<zfs_dataset_name>

Datasets must be mounted in a directory before they can be used. By default,
a new zfs pool or dataset gets mounted under the root directory. The following
command will set a new mount point for a dataset:

| # zfs set mountpoint=/mnt/zfs-vm zfspooll/zfs-vm

To enable compression for the dataset, we can run the following command:

| # zfs set compression=on zfspooli/zfs-vm

The ZFS pool will only function locally from the node where the pool is
created. Other nodes in the Proxmox cluster will not be able to share the
storage. By mounting a ZFS pool locally and creating the NFS share, it is
possible to share the ZFS pool between all the Proxmox nodes. We can mount
a zfs dataset in a directory and use that directory to configure the Proxmox
node as the NFS server.

The process of mounting and sharing needs to be done through a CLI only.
From the Proxmox GUI, we can only attach the NFS share with the
underlying ZFS pool. In order to serve the NFS share, we need to install the
NFS server in the Proxmox node using the following command:

| # apt-get install nfs-kernel-server

Enter the fOHOWiIlg line of code in /etc/exports:

| /mnt/zfs/ 172.16.0.71/24(rw,nohide, async, no_root_squash)

Start the NFS service using the following command:

| # service nfs-kernel-server start

To share the NFS-enabled ZFS pool through the Proxmox GUI, we can
simply follow the steps laid out for the NFS storage in the previous section.
To add a ZFS pool or dataset to the Proxmox cluster through the GUI, we
need to log in to the GUI of the node where the ZFS pool is created. In our
two-node example cluster, we have the ZFS pools in node #1, so we will have
to access the GUI for that node. Otherwise, the ZFS pools or datasets cannot
be added from different node GUIs. We can find the ZFS storage plugin
option by navigating to the patacenter | Storage | Add menu. Click on the ZFS
plugin to open the dialog box. The following screenshot shows the ZFS
storage dialog box with the zfs pool example and dataset in the drop-down
menu:

Add: Unknown X
1D: ‘ Nodes: v
ZFS Pool:]y Enable: 7
Content: Zfspool1 Thin provision: |

zfspooli/zfs-vm

By combining the ZFS pool with an NFS share, we can create a shared
storage with complete ZFS features, thus creating a flexible shared storage to
be used with all the Proxmox nodes in the cluster. Using this technique, we
can create a backup storage node, which is also manageable through the
Proxmox GUI. This way, during a node crisis, we can also migrate VMs to
the backup nodes temporarily. The previous steps are applicable to any Linux
distribution and not just a Proxmox node. For example, we can set up a
ZFS+NFS server using Ubuntu or CentOS Linux to store virtual disk images
or templates. If you are using FreeNAS or a similar storage system, then the
steps for ZFS laid out in this section are not required. The entire process of
ZFS creation is completed using the FreeNAS GUI.

Ceph RBD

RADOS Block Device (RBD) storage is provided by the Ceph distributed
storage system. It is the most complex storage system, which requires
multiple nodes to be set up. By design, Ceph is a distributed storage system
and can be spanned over several dozen nodes. RBD storage can only store
.raw image formats. To expand a Ceph cluster, simply add a hard drive or a
node and let Ceph know about the new addition. Ceph will automatically
rebalance data to accommodate the new hard drive or node. Ceph can be
scaled to several petabytes or more. Ceph also allows multiple pool creations
for different disk drives. For example, we can store database servers’ VM
images on an SSD-driven pool and back up server images on a slower-
spinning drive pool. Ceph is the recommended storage system for medium-to-
large cluster environments due to its resilience against data loss and the
simplicity of storage expandability.

As of Proxmox VE Version 4.1, the Ceph server has been integrated into
Proxmox to coexist on the same node. The ability to manage Ceph clusters
through the Proxmox GUTI has also been added. Later in this chapter, we will
learn how to create a Ceph cluster and integrate it with Proxmox. Ceph is a
truly enterprise storage solution with a learning curve. Once the mechanics of
Ceph are understood, it is also one of the easiest to maintain. To know more
about Ceph storage, refer to http://ceph.com/docs/master/start/intro/. There’s more to
come in Chapter 5, Installing and Configuring Ceph.

http://docs.ceph.com/docs/master/start/intro/

GlusterFS

GlusterFS is a powerful, distributed filesystem, which can be scaled to several
petabytes under a single mount point. Gluster is a fairly new addition to
Proxmox that allows GlusterFS users to take full advantage of the Proxmox
cluster. GlusterFS uses stripe, replicate, or distribute mode to store files.
Although distribute mode offers the option of scalability, note that in stripe
mode, when a GlusterFS node goes down, all the files in that server become
inaccessible. This means that if a particular file is saved by the GlusterFS
translator in that server, only that node holds the entire data of that file. Even
though all the other nodes are operational, that particular file will no longer be
available. GlusterFS can be scaled up to petabytes inside a single mount. The
GlusterFS storage can be set up with just two nodes and supports NFS, thus
allowing you to store any image file format.

To know more about GlusterFS, visit the following link:

http://docs.gluster.org/en/latest/

We can install Gluster on the same Proxmox node or on a remote node using
any Linux distribution to create a shared storage. Gluster is a great option for
a two-node, stable storage system, such as DRBD. The biggest difference is
that it can be scaled out to increase the total storage space. For a lower-budget
virtual environment with redundancy requirements, Gluster can be an
excellent option. In a two-node Gluster setup, both the nodes sync with each
other and when one node becomes unavailable, the other node simply takes
over. The installation of Gluster is rather complex.

To learn more about how to set up a GlusterFS cluster, refer to the following
link:

http://gluster.readthedocs.org/en/latest/Quick-Start-Guide/Quickstart/

In this section, we will see how to connect a GlusterFS cluster to Proxmox
using the Gluster plugin. We can find the plugin option by navigating to
patacenter | Storage | Add. Click on the GlusterFS plugin to open the storage
creation-dialog box, as shown in the following screenshot:

http://docs.gluster.org/en/latest/
http://gluster.readthedocs.org/en/latest/Quick-Start-Guide/Quickstart/

Add: GlusterFS

ID:

Server

Second Server:
Volume name:

Content:

gluster-01 Nodes: All (No restrictions)
172.16.2.10 Enable:

172.16.2.11 Max Backups: | 3]

gfsvoll

VZDump backup file

The following table shows the type of information needed and the values used
for our example to attach GlusterFS:

node.

Items Type of value Example value
ID New name of storage. gluster

IP address of the first Gluster
Server 172.16.0.171

Second Server

IP address of the second
Gluster node.

172.16.0.172

Volume name

Drop-down menu to select
available volumes on the
Gluster node.

gfsvolil

Selects the type of files to be

deleted automatically during
the backup process.

Content vzDump backup file
stored.

Nodes Selects nodes that can access All (No restrictions)
the storage.

Enable Enables or disables the Enabled
storage.
Maximum number of recent
backup files can be stored.

Max Backups Older backups will be 2

Since Gluster does not have the built-in software-defined RAID option, each
Gluster node will require some form of RAID for drive redundancy per node.
Like NFS on top of ZFS, which we learned earlier in this chapter, we can also
put Gluster on top of ZFS and provide drive redundancy that way. Note that
this will create some overhead since resources will be consumed by ZFS.

Noncommercial/commercial storage
options

We have discussed which virtual machine image formats and storage types
are supported by Proxmox. To better acquaint ourselves for test or practice
labs, we are now going to take a look at what noncommercial and commercial
options we have out there in order to set up a storage system for the Proxmox-
clustered environment. By noncommercial, I mean they are free without any
primary features missing and without any trial limits.

These noncommercial options will allow you to set up a fully functional
shared storage system with some hard work. Commercial versions usually
come with full support from the provider company and, in some cases, an
ongoing service-level agreement (SLA) contract. The following list is by no
means a complete one, but a guideline to guide you in the direction where you
need to plan and implement a Proxmox cluster environment. Each of these
products can provide everything you need to set up shared storage:

Noncommercial Commercial
Solaris+napp-IT www.napp-it.org/ Nexenta wWww.nexenta.com
FreeNAS www.freenas.org Falconstor www.falconstor.com
GlusterFS www.gluster.org EMC2 WWW.elnc.com
Ceph www.ceph.com Open-E DSS WWW.open-e.com

NetApp Www.netapp.com

A question often asked is “Can I set up a Proxmox production cluster
environment using only noncommercial solutions?”. The short answer is yes!

It is indeed possible to create an entire complex Proxmox cluster using only
noncommercial storage solutions. However, you have to be prepared for the
unexpected and spend a significant amount of time learning the system.

Commercial solutions aside, just studying a system will give an administrator
an advantage when unforeseen issues arise. The main difference between
these noncommercial and commercial solutions is the company support
behind it. Typically, noncommercial solutions only have community-driven
support through forums and message boards. Commercial offerings come
with technical support, with the response time varying from anything between
immediate to 24 hours.

the money that is saved, which usually gets substituted by the

8 The trade-off of using noncommercial open source solutions is
time spent on research and mistakes.

Summary

In this chapter, we took a look at the storage options that are supported by
Proxmox and their advantages and disadvantages. We also saw the types of
virtual image files that can be used with Proxmox and when to use them. We
learned how to configure different storage options using NFS, ZFS, RBD, and
Gluster as storage backends. Storage is an important component for Proxmox
clustering because this is where virtual machines are created and operate
from. A properly implemented storage system is crucial to making any cluster
a successful one. With proper planning of different storage requirements and
by choosing the right format and option, a lot of hassle and frustration can be
minimized later on.

In the next chapter, we will see how to install and configure a Ceph storage
system and integrate it with a Proxmox cluster.

Installing and Configuring Ceph

Ceph is a distributed, highly scalable storage system which provides block,
object, and file-based storage in the same storage cluster. Ceph is open source
and designed to run on off the shelf commodity hardware. Currently, Ceph
RADOS Block Device (RBD) block storage is fully supported by Proxmox.
The Ceph Reliable Autonomic Distributed Object Store (RADOS)
provides features such as replication, snapshot, and other block storage
abilities. There are numerous reasons to consider Ceph as a storage backend.
The following are some of the highlights of why one should consider Ceph
over other storage systems:

Ceph is free

Ceph is a highly scalable, reliable, distributed storage system

Ceph RBD is seamlessly integrated with Proxmox clusters

Ceph can be managed and monitored through a dedicated Ceph menu in
the Proxmox GUI

e Ceph can tolerate multiple simultaneous drive failures

e As the Ceph cluster grows in size, so does the performance

Visit the official link to learn about Ceph in detail if you are new to Ceph or
want to know more about it: http://ceph.com/.

When compared to other storage systems, such as ZFS, GlusterFS, and so on,
Ceph is a complex system. It requires extensive knowledge to properly
maintain a Ceph cluster. Despite its complexity, Ceph also offers the highest
level of redundancy spanned over multiple nodes and not just drive
redundancy. In this chapter, we are going to learn how to install and configure
Ceph to work with a Proxmox cluster.

Proxmox VE 5.0 comes with Ceph Luminous, which is not yet
fully production ready. If your existing environment is built on
Proxmox VE 4.x, then do not upgrade just yet. Try Proxmox VE
5.0 on a test environment first instead.

http://ceph.com/

Ceph components

Before we dive in, let’s take a look at some key components that make up a
Ceph cluster. These components are what makes Ceph, and it is important to
have a proper understanding of what they are.

A physical node as cluster member

A physical node is the actual server hardware that holds one or more Ceph
components.

Maps

In Ceph, maps hold information, such as a list of participating nodes in a
cluster and their locations, and data paths, and a list of OSDs with certain data
chunks. There are several maps in a Ceph cluster, such as a cluster map,

an object storage daemon (OSD) map for a list of OSDs, a monitor map for
known monitor nodes, a placement group (PG) map for the location of
objects or data chunks, and a CRUSH map to determine how to store and
retrieve data by computing the data storage location.

A cluster map

A cluster map is a map of devices and buckets that compose a Ceph cluster.
Ceph uses a bucket hierarchy to define nodes or node locations, such as a
room, rack, shelf, host, and so on. For example, let’s say there are four disk
drives used as four OSDs in the following bucket hierarchy:

Bucket datacenter = dco1

I
Bucket room = 101

I
Bucket rack = 22

Bucket host = ceph-node-1

Bucket osd = osd.1, osd.2, osd.3, osd.4

In the preceding example, we can see that osd.1 t0 osd.4 are in the node ceph-
node-1, Which is in rack number 22, which is in room number 101, which is in
data center dco1. If osd.3 fails, and there is an on-site technician, then an
administrator can quickly give the technician the previous bucket hierarchy to
identify the exact disk drive location to replace it. There can be several
hundreds of OSDs in a cluster. A cluster map helps you pinpoint a single host
or disk drive using the bucket hierarchy.

A CRUSH map

Controlled Replication Under Scalable Hashing (CRUSH)) is an algorithm
used in Ceph to store and retrieve data by computing data storage locations
within the cluster. It does so by providing a per-device weight value to
distribute data objects among storage devices. The value is auto assigned,
based on the actual size of the disk drive being used. For example, a 2 TB
disk drive may have an approximate weight of 1.81. The drive will keep
writing data until it reaches this weight. By design, CRUSH distributes data
evenly among weighted devices to maintain a balanced utilization of storage
and device bandwidth resources. A CRUSH map can be customized by a user
to fit any cluster environment of any size.

For more details on CRUSH maps, refer to the following link:

http://ceph.com/docs/master/rados/operations/crush-map/

http://docs.ceph.com/docs/master/rados/operations/crush-map/

Monitor

A Ceph monitor (mon) is a cluster monitor daemon node that holds the OSD
map, PG map, CRUSH map, and monitor map. Monitors can be set up on the
same server node with OSDs or on a fully separate machine. For a stable
Ceph cluster, setting up separate nodes with monitors is highly recommended.
Since monitors only keep track of everything that happens within the cluster
and not the actual read/write of cluster data, a monitor node can be very
underpowered and thus less expensive. To achieve a healthy status of the
Ceph cluster, a minimum of three monitors need to be set up. A healthy status
is when every status in the cluster is OK, without any warnings or errors.
Note that with the recent integration of Ceph with Proxmox, the same
Proxmox node can be used as a monitor. Starting from Proxmox 3.2, it is
possible to set up Ceph monitors on the same Proxmox node, thus eliminating
the need to use a separate node for monitors. Monitors can also be managed
from the Proxmox GUI.

For details on Ceph monitors, visit the following link:

http://ceph.com/docs/master/man/8/ceph-mon/

http://docs.ceph.com/docs/master/man/8/ceph-mon/

OSD

The OSD is the actual storage media or partition within media, such as
HDD/SSD, that stores the actual cluster data. OSDs are responsible for all the
data replication, recovery, and rebalancing. Each OSD provides the
monitoring information for Ceph monitors to check for heartbeats. A Ceph
cluster requires a minimum of two OSDs to be in the active+ciean state. The
Ceph cluster provides feedback on the cluster status at all times. An
active+clean State expresses an error- or warning-free cluster. Refer to the

PG section for other states a Ceph cluster can achieve. As of Proxmox version
5.0, OSDs can be managed through the Proxmox GUI.

OSD journal

In Ceph, any I/O writes are first written to a journal before they are
transferred to the actual OSD. Journals are simply smaller partitions that
accept smaller bits of data at a time while the backend OSDs catch up with
the writes. By putting journals on faster-access disk drives, such as SSDs, we
can increase a Ceph operation significantly, since user data is written to a
journal at a higher speed while the journal sends short bursts of data to OSDs,
giving them time to catch up. Journals for multiple OSDs can be stored in one
SSD per node. Alternatively, OSDs can be divided into multiple SSDs. For a
small cluster of up to eight OSDs per node, using an SSD improves
performance. However, while working with a larger cluster with a higher
number of OSDs per node, collocating the journal with the same OSDs
increases performance instead of using SSDs. The combined write speed of
all the OSDs together outperforms the speed of one or two SSDs as a journal.

The important thing to remember about a journal is that the loss of a journal
partition causes OSD data loss. For this reason, it is highly recommended that
you use an enterprise-grade SSD device. At the time of writing, the Intel DC
S3700 SSD is known to work fine as a Ceph journal SSD device.

Metadata server

A metadata server (MDS) stores meta information for the Ceph FileSystem
or CephFS. The Ceph block and object storage do not use MDS. So in a
cluster, if block and object are the only types that are going to be used, it will
not be necessary to set up an MDS server. Like a monitor, MDS needs to be
set up on a different machine of its own to achieve high performance. As of
Proxmox version 5.0, MDS cannot be managed or created from the Proxmox
GUL

The CephFS is not fully standardized yet and is still in the development
phase. It should not be used to store mission-critical data. It is mostly stable,
but unforeseen bugs may still cause major issues, such as data loss. Note that
there have not been many reports of mass data loss due to an unstable CephFS
installation. Two of the virtual machines used to write this book have been
running for more than 11 months without any issues.

There should be two MDS nodes in a cluster to provide redundancy, because
the loss of an MDS node will cause the loss of data on CephFS and will
render it inaccessible. Two MDS nodes will act as active+passive when one
node failure is taken over by another node, and vice versa. To learn about
MDS and CephFS, Visit http://docs.ceph.com/docs/master/cephfs/.

http://docs.ceph.com/docs/master/cephfs/

PG

The main function of a PG is to combine several objects into a group and then
map the group to several OSDs. A per-group mechanism is much more
efficient than a per-object mechanism, since the former uses fewer resources.
When data is retrieved, it is far more efficient to call a group than to call an
individual object in a group. The following diagram shows how PGs are
related to OSDs:

- T o B /--"'_ = e T /__,—' .
(" object) (object) (Object) (* Object) (Object)
e ___J.—-' '.____ __/' -.______'__,_./ g ___J,-" p s ___,;"

e e e e

Placement Group 1 Placement Group 2
o~ Y il . * T~
' ¥ 'R Y
/ 25 ol = o : pal
/ \ / / / .
| OsD1 | | ©OsDh2 | | OSD3 | | OSD4 |
\ . '-._\ ,J." "-.\ ! - /a"ll
\ 4 e b

For better efficiency, we recommend a total of 50 to 100 PGs per OSD for all
pools. Each PG will consume some resources of the node, such as CPU and
memory. A balanced distribution of PGs ensures that all the nodes, and OSDs
in the nodes, are not out of memory, or that the CPU does not face overload
issues. A simple formula to follow while allocating PGs for a pool is as
follows:

Total PGs = (OSD x 100) / Number of Replicas

The result of the total PG should be rounded up to the nearest power of two.
In a Ceph cluster with 3 nodes (replicas) and 24 OSDs, the total PG count
should be as follows:

Total PGs = (24 x 100) / 3 = 800

If we divide 800 by 24, which is the total number of OSDs, then we get 33.33.
This is the number of PGs per replica per OSD. Since we have three replicas,
we multiply 33.33 by 4 and get 99.99. This is the total number of PGs per
OSD in the previous example. The formula will always calculate the PGs per
replica. For a three-replica setup, each PG is written thrice, and thus, we
multiplied the PG of 33.33 by 3 to get the total number of PGs per OSD. Let’s

take a look at another example to calculate PG. The following setup has 150
OSDs, 3 Ceph nodes, and 2 replicas:

Total PGs = (150 x 100) / 2 = 7500

If we divide 7500 by 150, the total number of OSDs that we get is 50. Since
we have 2 replicas, we multiply 50 by 2 and get 100. So, each OSD in this
cluster can store 100 PGs. In both examples, our total PG per OSD was within
the 50-100 recommended range. Always round up the PG value to remove
any decimal point.

To balance the available hardware resources, it is necessary to assign the right
number of PGs. The PG number will vary depending on the number of OSDs
in a cluster. The following table shows a PG suggestion made by Ceph
developers:

Number of OSDs Number of PGs

Fewer than 5 OSDs 128

Between 5-10 OSDs 512

Between 10-50 OSDs | 1024

Selecting the proper number of PGs is crucial since each PG will consume
node resources. Too many PGs for the wrong number of OSDs will actually
penalize the resource usage of an OSD node, while very few assigned PGs in
a large cluster will put data at risk. A rule of thumb is to start with the lowest
number of PGs possible, and then increase them as the number of OSDs
increases. For details on Placement Groups, visit http://docs.ceph.com/docs/master/rado

s/operations/placement-groups/.

There’s a great PG calculator created by Ceph developers to calculate the
recommended number of PGs for various sizes of Ceph clusters at http://ceph.co
m/pgcalc/.

http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://ceph.com/pgcalc/

Pools

Pools are like logical partitions where Ceph stores data. When we set a PG or
the number of replicas, we actually set them for each pool. When creating a
Ceph cluster, three pools are created by default: data, metadata, and RBD.
The data and metadata pools are used by the Ceph cluster, while the pool
RBD is available to store the actual user data. PGs are set on a per-pool basis.
The formula that we discussed earlier in the PG section calculates the PGs
required for one pool. So, when creating multiple pools, it is important to
modify the formula a bit so that the total PG stays within 50-100 per OSD.

For instance, in the example of 150 OSDs, 3 Ceph nodes, and 2 replicas, our
PG was 7500 for a pool. This gave us 50 PGs per OSD. If we had 3 pools in
that setup and each pool had 7500 PGs, then the total number of PGs would
have been 150 per OSD. In order to balance the PGs across the cluster, we
can divide 7500 by 3 for 3 pools and set a PG of 2500 for each pool. This
gives us 2500/150 OSDs = 16 PGs per pool per OSD or 16 x 3 pools = 48
total PGs per OSD. Since we have two replicas in this setup, the final total
PGs per OSD will be 48 x 2 replicas = 96 PGs. This is within the
recommended 50-100 range of PGs per OSD.

Ceph components summary

If we want to understand the relationship between all the Ceph components
we have seen so far, we can think of it this way: each pool comprises multiple
PGs. Each PG comprises multiple OSDs. An OSD map keeps track of the
number of OSDs in the cluster and in the nodes they are in. The mon map
keeps track of the number of monitors in a cluster to form a quorum and
maintains a master copy of the cluster map. A CRUSH map dictates how
much data needs to be written to an OSD and how to write or read it. These
are the building blocks of a Ceph cluster. The following diagram is an
example of how the Ceph components come together to form the storage

system:

Block Device

Ceph Cluster Protocol (librados)

OBJ OBJ Monitors

Placement Group #1 Placement Group #2

OSD #1 OsD #2 OsD #3 OsD i#4

Virtual Ceph for training

It is possible to set up an entire Ceph cluster in a virtual environment. But this
cluster should only be used for training and learning purposes. If you are
learning Ceph for the first time and do not want to invest in the physical
hardware, then a virtualized Ceph platform is certainly possible. This will
eliminate the need to set up the physical hardware to set up Ceph nodes. The
procedure to set up a virtual Ceph cluster is exactly the same as for a physical
one.

Installing a Ceph cluster

The following diagram is a basic representation of Proxmox and a Ceph
cluster. Note that both the clusters are on separate subnets on separate
switches:

192.168.30.0
Ceph Sync LAN

192.168.20.0
Ce

A Ceph cluster should be set up with a separate subnet on a separate switch to
keep it isolated from the Proxmox public subnet and for optimal Ceph cluster
functioning. The Ceph Sync LAN is used by Ceph primarily to sync data
between OSDs. The Ceph Public LAN is used primarily to serve user
requests for data from Ceph into Proxmox VMs. The advantage of this
practice is to keep Ceph’s internal traffic isolated so that it does not interfere
with the traffic of the running virtual machines. On a healthy Ceph cluster
with the active+clean state, this is not an issue. However, when Ceph goes
into self-healing mode due to an OSD or node failure, it rebalances itself by
redistributing PGs among remaining OSDs, which causes very high
bandwidth consumption. Separating two clusters ensures that the cluster does
not slow down significantly due to the shortage of the network bandwidth and
the VM remains accessible.

This also provides added security, since the Ceph cluster network is
completely hidden from any public access using a separate switch. In our
previous example, we have three mons, two MDSs, and three OSD nodes
connected to a dedicated switch used only for the Ceph cluster. The Proxmox
cluster connects to the Ceph cluster by creating a storage connection through

the Proxmox GUI.

Installing Ceph on Proxmox

As of Proxmox version 5.0, it is possible to install Ceph on the same Proxmox
node, thus reducing the number of separate Ceph nodes needed, such as the
admin node, monitor node, or OSD node. Proxmox also provides the GUI
features that we can use to view the Ceph cluster and manage OSDs, mons,
pools, and so on. In this section, we will see how to install Ceph on the
Proxmox node. As of Proxmox version 5.0, MDS server and CRUSH map
management are not possible from the Proxmox GUI.

Preparing a Proxmox node for Ceph

Since we are installing Ceph on the same Proxmox node, we will set up the
network interfaces for a separate network for Ceph traffic only. We will set up
three of our example Proxmox nodes—pmx-o1, pmx-02, and pmx-es—with Ceph.
On all of the three nodes, we will add the following interfaces section

tO /etc/network/interfaces. YOU can use any IP address that suits your network
environment. We are going to run the following command from the Proxmox
node pmx-01:

| # nano /etc/network/interfaces

Configure all network interfaces according to IP addresses based on your
environment. The following is the content of the network configuration for
our example cluster after Proxmox and the Ceph network have been
configured:

Node pmx-01

Proxmox Network

auto vmbro

iface vmbr@ inet static
address 172.16.2.1
netmask 255.255.252.0
gateway 172.16.3.254
bridge_ports ensi18
bridge_stp off
bridge_fd 0

Ceph Public Network
auto ensil9
iface ens19 inet static
address 192.168.20.1
netmask 255.255.255.0

Ceph Sync Network

auto ens20
iface ens20 inet static
address 192.168.30.1
netmask 255.255.255.0

The network interfaces can also be configured through Proxmox GUI. Reboot
the node or run the following command to make the new interface active:

| # ifup eth2

Follow the previous steps and add additional network interfaces with the IP
addresses 192.168.10.2 and 192.168.10.3, respectively.

Installing Ceph

Proxmox added a small command-line utility called pveceph to perform various
Ceph-related tasks. Currently, pveceph can perform the following tasks through

the command line:

Command

Task performed

pveceph install

Installs Ceph on the Proxmox node.

pveceph createmon

Creates Ceph monitors and must be run from the node to
become a monitor.

pveceph createpool
<name>

Creates a new pool. It can be used from any node.

pveceph destroymon
<mon_id>

Removes a monitor.

pveceph destroypool
<name>

Removes a Ceph pool.

pveceph init --network
<X.X.X.0/x>

Creates the initial Ceph configuration file based on the
network CIDR used.

pveceph start <service>

Starts Ceph daemon services, such as mon, OSD, and
MDS.

pveceph stop <service>

Stops Ceph daemon services, such as mon, OSD, and
MDS.

pveceph status

Shows the cluster, monitor, MDS server, OSD status, and
cluster ID.

pveceph createosd
</dev/X>

Creates OSD daemons.

pvecph destroyosd
<osdid>

Removes OSD daemons.

pveceph purge

Removes Ceph and all Ceph-related data from the node the
command is running from.

Ceph must be installed and at least one monitor must be created using a
command line initially before managing it through the Proxmox GUI. We can
perform the following steps to install Ceph on the Proxmox nodes and create
the first monitor. Run the following command to install Ceph on all the
Proxmox nodes that will be part of the Ceph cluster:

| # pveceph install -version jewel

Note that at the time of writing this book, the latest version of Ceph was
codenamed Kraken. However, the Ceph version Jewel LTS has been used for
the writing of this book, as it is fully supported by Proxmox, as of Proxmox
5.0. Simply change the codename in the command to install the latest Ceph
releases when they become available in Proxmox.

Visit the following link for information on Ceph releases and their life cycle:
http://docs.ceph.com/docs/master/releases/

Run the following command to create an initial Ceph configuration file on the
first Proxmox node. We only need to run this command once, and from one
node only:

| # pveceph init --network 192.168.20.0/24

After running the command, Proxmox will create a Ceph configuration file in
/etc/pve/ceph.conf. It also creates a symlink of the configuration file in
/etc/ceph/ceph.conf. This way, any custom changes made to the Ceph
configuration file get replicated across all Proxmox nodes.

Although the Ceph cluster can be managed from the Proxmox

GUI, in order to perform advanced tasks, we need to use the

CLI. Ceph comes loaded with quite a few commands for various

tasks. It is beyond the scope of this book to list all Ceph
commands. But a short list of commands used to perform the
most common tasks is included later in this chapter.

Run the following command to create the first Ceph monitor on the same
node that we just created in the initial configuration file:

| # pveceph createmon

After performing these steps, we can proceed with the Proxmox GUI to
further create mons, OSDs, or pools. All the Ceph options can be obtained by
navigating to the patacenter | node | Ceph menu. The following screenshot
shows the content of the /etc/ceph/ceph.cont file for our example cluster after

http://docs.ceph.com/docs/master/releases/

creating a Ceph cluster with two mons and no OSDs:

)X(DRQ)(MDX Virtual Environment 5.0-23/af4267bf Search

Server View

= Datacenter
B pmx-01
B pmx-02

B pmx-03
@ Test-Pooll

Node pmx-01'

Q Search
& Summary
>_ Shell

% System
Network

DNS

e < 1

Time

Syslog

= Updates

U Firewall

8 Disks

@ Ccepn
£ Configuration
I Monitor

8 03D

Configuration

[global]
auth client required = cephx
auth cluster required = cephx
auth service required = cephx
cluster network = 192 168 20.0/24
fsid = 353016d3-d1cc-4093-a42e-6c5ecaedciOc
keyring = /etc/pve/priv/bcluster Sname keyring
mon allow pool delete = true
osd journal size = 5120
osd pool default min size =2
osd pool default size = 3
public network = 192.168.20.0/24

[osd]
keyring = /var/lib/ceph/osd/ceph-Sid/keyring

[mon.0]
host = pmx-01
mon addr = 192.168.20.1:6789

[mon.1]
host = pmx-02
mon addr = 192.168.20.2:6759

Recall from the previous configuration screenshot that both the cluster and
public network are on the same subnet. That is because we have not
configured the Ceph sync or cluster network yet. Simply change the IP subnet
of the cluster network by changing the Ceph configuration file in
setc/ceph/ceph.conf t0 ask Ceph to sync OSDs on the separate network. For our
example cluster, we want the Ceph sync network to be on 192.168.30.0/24, as

shown here:

Node 'pmx-01'

Configuration

Q. Search
[global]
& Summary auth client required = cephx
auth cluster required = cephx
= el auth service required = cephx
& System
fsid = 353016d3-d1cc-4093-a42e-6c5ecaedcilc
— Network keyring = /etc/pve/priv/$cluster Sname keyring
mon allow pool delete = true
@ DNS osd journal size = 5120
: osd pool default min size =2
2 osd pool default size = 3
= Syslog public network = 192.168.20.0/24

When trying to access the Ceph menu through the GUI from a node which is
not a Ceph mon, you may see the following error message:

SR Node pmx-03 9 Restart () Shutdown
= Datacenter
Bb pmx01 @ DNS
101(CT101) 0 Time
100 (kvm-1) _
£ Jocal (pmed1) Lk
£ locakhm (pmx0t) & Updates
b pc2 U Firewal
Ep pme03 B Dists
® Test-Poolf
® Ceph

% Configuration !

3 o pveceph configuration not enabled (500)
onitor

B 08D
& Pools

If you do not intend to create any OSD on the node but want to manage the
Ceph cluster from a node, then simply install Ceph using the #pveceph
command on that node and create a mon. This will enable the node to read the
Ceph configuration file and allow managing of the Ceph cluster through the
Proxmox GUL

Creating mons from the Proxmox
GUI

To view and create monitors from the Proxmox GUI, navigate to patacenter |
node | Ceph | Monitor. Click on Create to open the monitor creation dialog
box. Select a Proxmox node from the drop-down list and then click on the
Create button to initiate the monitor creation. We can also quickly check the
overall Ceph cluster status from the GUI. The following screenshot shows our
example Ceph cluster as seen through the Proxmox GUI after the initial
configuration:

)X{ PROXMO X Vitual Environment 5 0-23/aH4267bf ez Youare logged in as oot@)
Server View Nade pmx-01') Restart
£ Datacentsr
B pmx 1 Q Seach Health
B px02
& Summary
B pme3 Status Severity Summary
© Test-Pool »_ Shell
no 0sds
% System
2 Network
@ ONS HEALTH_ ERR
O Time
& Syslog Status
& Updates .
Monitors 08Ds PGs
U Firewal
unknown: 64
B Disks by ity] i
oup 00 0
M Cepn
)Down 0 0
Configuration
O Manitor L
8 08D

From the Status interface, we can gather vital pieces of information at a
glance. The Ceph cluster contains an error at this moment since there are no
OSDs added. It is perfectly normal for the Ceph cluster to show PGs stuck at
inactive and unclean, as we have not added any OSDs.

Creating OSDs from Proxmox GUI

OSDs are actual disk drives where data is stored in a Ceph cluster. All OSD-
related tasks can be performed through the patacenter | node | Ceph | OSD
menu. To view the installed disk drives in the node, go to the patacenter | node |
Disks menu. The following screenshot shows that we have two available
drives, /dev/vdc and sdev/vdd, which can be used to create OSDs in node pmx-o1:

Node pmx-01'
Reload Show S.M.A.R.T. values alize Disk with GPT

o Updates

Device Type Usage Size G...
U Firewall

/dev/vda Unknown LVM 32.00 GiB Yes
& Disks o :

/dev/vdb Unknown partitions 32.00 GiB Yes
® Ceph Idevivde Unknown No 20.00 GiB No

& Configuration /dev/vdd Unknown No 20.00 GiB No

CJ Monitor

To create an OSD, go to the patacenter | node | Ceph | OSD menu and click on
the Create OSD button to open a dialog box, as shown in the following
screenshot. Select an available disk drive from the drop-down list, and then
click on the Create button:

Create: Ceph OSD

Disk: /devivde
use OSD disk

There is no need to select Journal Disk if the journal is going to be collocated
on the same OSD drive. Click on the Journal Disk drop-down button to select
a different disk drive to store the OSD journal. A faster drive, such as an SSD,
can be used to store the Ceph journal, which makes writing to the Ceph
cluster extremely fast in a smaller cluster of fewer than six Ceph nodes. If
using a separate drive for journaling, the drive must be partitioned through the
CLI before creating the OSD using this dialog box. Follow the same

Journal Disk:

procedure to finish creating OSDs in the node. The following screenshot
shows the Ceph Status page after creating two OSDs in node pmx-o1:

Node pmx-01' O Restart () Shutdown >_ Shell § Bulk.
Health
Q Search
B Summary Status Severity | Summary
>_ Shell L % 32pgs are stuck inactive for more than 300 seconds
& System 64 pgs degraded
S 32 pgs stuck degraded
= Networl
HEALTH_ERR 32 pgs stuck inactive
s 64 pgs stuck unclean
O Time 32 pgs stuck undersized
i= Syslog 64 pos undersized
< Updates
U Firewal Status
2 Diss Monitors 0SDs PGs
® Ceph . .
s || 1w O O0ut active+undersized+degraded-+remapped: 32
& Configuration ' ' undlersized+degradec-+peered: R
OUp 2 0
O Monitor o0 0 O
8 08D
Total: 2

Note that even after adding two OSDs in the node, our Ceph cluster is still
degraded and unclean. This is because we only created OSDs in one node. By
default, Ceph will try to create three replicas on different nodes. So, we are
going to add four more OSDs in the second and third node by following the
previous steps. The following screenshot shows our example Ceph cluster
with six OSDs on three nodes, with a Health_ OK status for Health:

Server View Nods pme03

= Datacenter

gplm—;; Q Search
o

s pm03
@ TestPoolt 1 Shell

& Summary

% System
2 Nefwork
@ DNS
O Time
£ Syslog

© Updates

U Firewal

& Disks

® Ceph
% Configuration
R

Y Resat () Shutdown > Shel

Health
Status Severty | Summary
No Warnings/Errors
HEALTH_OK
Status
Monitors 08Ds PGs
ovlltel2v oh oot activetclean:
OUp 6 0
ODwn 0 0
Total. 6

By default, Proxmox creates OSDs with the XFS filesystem. However,

sometimes, it is necessary to create OSDs with different filesystem types,

such as ext3, btrfs, and so on, due to requirements or performance
improvements. As of Proxmox 5.0, we cannot adjust the partition type during

the OSD creation through the GUI. It can only be done when creating the
OSD through CLI. Enter the following command format using the CLI to

create OSDs with different partition types:

|# pveceph createosd -fstype ext4 /dev/sdX

i Buk

64

Managing a Ceph pool using
Proxmox GUI

All Ceph pool-related tasks can be performed through the patacenter | node |
Ceph | Pools menu. The pool interface shows information about existing
pools, such as the name, replica number, PG number, and per-pool percentage
used. Once a pool is created, it cannot be modified or changed in any way
from the Proxmox GUI. But a pool can be edited through the CLI. If you are
going to strictly use the Proxmox GUI to perform all Ceph-related tasks, then
a new pool needs to be created if existing pool configuration needs to be
changed, such as changing the replica size or increasing the PG number.
When the Ceph cluster is created, a default pool named rbd is created with
replica size s and a total of 62 PGs. This PG number of the rbd pool is too low
to store any data. So we can create a new pool or we can modify this pool
through CLI. When an existing pool holds a lot of data, changing the pool
configuration through CLI is the way to go, or else all data will need to be
moved to the new pool, which can take a very long time depending on the
amount of data being stored.

Replica size is the second most important configuration for a Ceph pool.
Basically, replica size defines how many times data will be replicated before
it is distributed among OSDs on different nodes. Keep in mind that a higher
replica size will consume higher network bandwidth and higher disk storage
due to increased replication. For a smaller cluster, a replica size of 2 is best
suited from a performance standpoint. However, in a large Ceph cluster with
lots of drives and nodes, using a replica size of s is recommended.

For the pool rbd in our example Ceph cluster, we are going to change the
default replica size of s to 2 using the following command:

| # ceph osd pool set rbd size 2

We are also going to change the minimum size, or min_size, value of the pool.
The minimum replica size defines the minimum replicated data that must
exist in order for the pool to operate. For example, in the default pool rbd, the
minimum size is 2. So if multiple HDD failures occur where a set of

OSDs that hold two data replicas goes down, the cluster will not come online.
But if the minimum size is 1, then as long as the Ceph cluster can see one data
replica anywhere in the cluster, even in the case of multiple OSD failures, the

cluster will still operate. A minimum size of 1 will ensure that there is always
at least one copy of data at all times. We can change the minimum size of a
pool using the following command format:

| # ceph osd pool set rbd min_size 1

We are going to increase the PG number of the default pool rbd in order to
make it usable to store virtual machine data.

Refer to the Ceph PG calculator at the following link to calculate the number
of PGs you need for your Ceph cluster:

http://ceph.com/pgcalc/

There are two values that need to be set for the PG number of a pool: the
actual PG number and the effective PG number. This value is defined with the
option pgp_num. The pgp_nun must be equal or less than pg_nun. We are going to
increase the PG number to 256 for our default pool rbd using the following
command:

ceph osd pool set rbd pg_num 256

ceph osd pool set rbd pgp_num 256
When changing PG values, it is very important to keep in mind that it is a
very intensive process. The Ceph cluster will be under load during this
process. When changing the PG value from low to high, it is a wise idea to do
it in steps, using smaller PG values incrementally. This is not a problem for a
brand new Ceph cluster which is not serving any users yet. But on an
established Ceph cluster with many active users, the performance will be
noticeable and may cause service interruption.

The replica size, minimum replica size, and PG value are the most important
values for a Ceph pool. Changes in these values have the most impact on
overall cluster performance and reliability. So to recap, let’s run these
commands for a hypothetical pool named vm_store. We are going to change the
replica size to s, minimum replica size to 1, PG number to 1624, and effective
PG number to 1024 using the following commands:

ceph osd pool set vm_store size 3

ceph osd pool set vm_store min_size size 1
ceph osd pool set vm_store pg_num 1024

ceph osd pool set vm_store pgp_num 1024

The following screenshot shows the pool status for our default pool rbd in our
example cluster after making necessary changes through CLI:

http://ceph.com/pgcalc/

Node 'pmx-01'

Q Search
& Summary
>_ Shell

£ System

= Network

Create

Name

rbd

remove

Size/min

2/1

pg_num

256

L

) Restart
Used
% Total
0.00 0B
0.00 0B

Creating a Ceph pool using
Proxmox GUI

To create a new pool using the Proxmox GUI, go to patacenter | node | Ceph |
Pools. Then click on the Create button to open the pool-creation dialog box,
as shown in the following screenshot. Enter a name for the pool in the Name
field, the number of replicas in Size, and the number of minimum replicas;
leave Crush RuleSet at o; and enter the proper PG number. Click on Create to
start the pool’s creation:

Create: Ceph Pool

Name: vm_store
Size: 2
Min. Size: 1

Crush RuleSet: 0

pg_num: 256

Connecting Ceph to Proxmox

As of Proxmox VE 5.0, we can only connect Ceph block storage (RBD) to
Proxmox. We cannot connect Ceph Object Storage or Ceph FileSystem. We
can connect Ceph RBD storage to the cluster using the Proxmox GUI.
However, there is one step that needs to be completed before Proxmox can
successfully read the Ceph storage. Ceph uses authentication for its
functioning. Authentication occurs based on keyrings, which are created
along with the Ceph cluster. For each Ceph storage, we need to connect to
Proxmox, and we need to copy the main Ceph admin keyring to the Proxmox
directory. The keyring that we need to copy is located

in /priv/ceph.client.admin.keyring.

This keyring needs to be copied to the following location and in the following
format. The directory setc/pve/priv/ceph does not exist, so it needs to be created
first: /etc/pve/priv/ceph/<storage_id>.keyring.

For example, we are going to create an RBD storage named rbd-e1. S0, we
need to copy the keyring, as shown in the following command:

|# cp /etc/pve/priv/ceph.client.admin.keyring /etc/pve/priv/ceph/rbd-01.keyring
We can find the Ceph RBD storage plugin option by navigating to patacenter |

Storage | Add. Click on the RBD (external) storage plugin to open the dialog
box and add the required information, as shown in the following screenshot:

Add: RBD

ID: rbd-01 Nodes: All (No restrictions)
Pool: rbd Enable:

Monitor(s): 192.168.20.1:192.168.20.2; Content: Container, Disk image
User name: admin KRBD:

In the preceding screenshot, we are adding an RBD storage named rbd-e1 that
will store virtual disk images in the Ceph pool named rbd. IP addresses of the
Ceph mon nodes are separated by a semicolon in the Monitor(s) textbox.
There is no need to change the User name, as the admin is the default user of
the Ceph operation. As of Proxmox VE 5.0, we can also use the Ceph RBD
storage to store LXC containers. However, it will only work if we select the
KRBD option in the dialog box. It is possible to store both the LVM and LXC

images on a single KRBD-enabled RBD storage, but for maximum
performance and isolation, it is highly recommended that you use two
separate Ceph pools for KVM and LXC virtual machine disk images, with the
KRBD option enabled for the LXC container pool. The following screenshot

shows the RBD storage status from the Proxmox GUI:

ServerView Storage 'rbd-01' on nod pmx-01'
= Datacenter §s
umma
B pmx-0t v
10 (CTTOU i Content
Status
100 (kym-1) o Pemissions
£ local (pmx01)
€ local-hm (pmx-01) Enabled Yes
£ 1bd01 (pmx-01) Active Yes
b pme2 Content Disk image, Container
B pmx-03
Type RBD
© TestPoolt
Usage 523% (6.22 GiB of 119.00 GIB)
Usage
140 G4
120 G+ "_
100 G+ l
0 806 |
2606 “I
i) /
406 f
206 “I‘
O T T T T T 1) T T T T I
0170742 20170712 20170742 20170742 20170712 201740

0170712 201740712

12:40:00 12:50:00 13:00:00 13:10:00 13:20:00 13:30:00 13:40:00 13:49

O Total Size @ Used Size

Ceph command list

The following table shows some of the common Ceph commands used in a
cluster:

Command Function
#ceph -s Displays the Ceph cluster status.
#ceph -w Displays the Ceph cluster running log.

#ceph health
detail

Displays a detailed error if there is one.

#ceph osd tree

Displays a list of all OSDs categorized by nodes.

#ceph set osd
noout

#ceph set osd
nodown

Prevents any OSDs from getting marked out and down, so Ceph
does not start rebalancing. It is necessary during maintenance when
the node requires a reboot due to updates.

#ceph unset
osd noout

#ceph unset
osd nodown

Must be run after the maintenance is over in order to resume normal
operation.

#ceph daemon
osd.X config
show | grep
<item_name>
Ex: #ceph
daemon osd.2
config show |
grep threads

Displays runtime values of Ceph. For example, we can run this
command to display all thread-related items in a Ceph cluster.

#ceph tell
osd.*
injectargs
'<item_name>
<value>'

Ex: #ceph tell
osd.*
injectargs '-
osd-op-threads
8 1

Injects values into items during runtime without restarting any
daemons. It is helpful to play around with different values to find
optimum numbers. When satisfied, the changes must be entered in
/etc/pve/ceph.conf Or else they will get reset during the node reboot or
OSD daemon restart.

#ceph osd
1spools

Lists pools.

#ceph osd pool
create <name>

<pg> <pgs>

Creates a pool.

#ceph osd pool
delete <name>
[<name> --yes-
i-really-
really-mean-
it]

Deletes a pool.

#ceph osd pool
get <name>
pg_num

Gets the number of PGs in a pool.

#ceph osd set
pool
<pool_name>
size <value>

Changes the replica values of a pool.

Summary

In this chapter, we learned what Ceph storage is and how to install and
configure it to work with Proxmox cluster to store virtual disk images. We
also learned various Ceph commands to manage a Ceph cluster.

In the next chapter, we will learn details about KVM-based virtual machines.
We will see how to create and manage KVM virtual machines and their

advanced configurations.

KVM Virtual Machines

So far, we have familiarized ourselves with the Proxmox graphical user
interface, configuration files, and directory structure. We have also learned
about the different type of storage supported by Proxmox and how to
integrate a Ceph storage cluster in a Proxmox environment. In this chapter,
we are going to take it one step further by looking at Kernel-based Virtual
Machine (KVM) and all that it has to offer. We are going to cover some of
the following topics:

Exploring KVM virtual machines
Creating KVM virtual machines
Configuring KVM virtual machines
Migrating KVM virtual machines
Nested virtual environments
Proxmox backup/restore system
Virtual machine snapshots

Exploring KVM

As the name implies, KVM is merely a virtualization process that adds the
hypervisor ability to a Linux kernel. KVM allows you to create fully isolated
virtual machines while not being dependent on the host operating system or
kernel. The isolation is created by emulating several types of hardware, such
as CPU, RAM, sound/video/network cards, PCI bridges, and input devices. In
order to create KVM virtual machines, the CPU in the host node must have
hardware virtualization extensions (HWE). KVM/Qemu creates a layer
that virtualizes physical hardware, allowing full system virtualization and not
kernel-level virtualization, as is the case with OpenVZ and LXC containers.
This allows a wide range of operating systems to be virtualized, such as
Linux, BSD, Windows, and macOS. One of the main differences between
KVM and container-based virtual machines is that a KVM virtual system
shares on the hardware level, whereas container-based virtualization shares on
the kernel level. Thus, the density of the number of KVM VMs in a node is
much lower than containers. KVM is the only choice for non-Linux operating
systems and for purpose-built operating systems based on Linux, such as
ClearOS, FreeNAS, and Zentyal.

For more information on KVM, refer to the following link:

https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

Creating a KVM

In Proxmox, we can a create KVM VM in the following ways:

e From scratch using an ISO image
e From a template
e Using network PXE boot

In this chapter, we are only going to take a look at VM creation though ISO
images and templates.

Creating a KVM using an ISO
image

The VM creation process is based on simple tab-based dialog boxes. During
the process, we have to assign resources and type in necessary information
pertaining to the VM. The dialog box can be accessed by clicking on

the Create VM button located in the top right-hand corner of the screen, as
shown in the following screenshot. It can also be accessed by right-clicking
on a node and then selecting Create VM from the context menu:

© Help

Search:

In our example cluster, we are going to create a KVM named centos1 in node
pmx-01. TO progress through the VM creation, simply click on the Next button
or click on the Back button to go back to the previous tab. The following
screenshot shows the dialog box after we click on Create VM from the
Proxmox GUI:

Create: Virtual Machine

General 03

Node: pmx-01 Resource Pool: Linux_ViMs
WM 1D: 102

Name: centos1

General tab

The General tab of the dialog box is used to mainly assign identification
information. Let’s have a look at them.

Node

This is a drop-down list to select in which Proxmox node the VM should be
created.

VM ID

This is the textbox used to enter the numeric ID of the VM. We can also
increase or decrease the value of the VM ID using the arrows. If we assign an
ID that exists in the cluster, the box will show a red border around the box
indicating that there is already a VM with the same ID.

Name

This is the textbox used to enter the name of the VM. We can enter any
alphanumeric string with only a dash or - allowed as the special character.

Resource Pool

This is the drop-down menu used to select a previously created pool. It is only
necessary if we want to assign the VM to a specific pool. For our example
VM, we are assigning it to pool named cinux_vws.

Help

The Help button will open a new tab with installed documentation created by
Proxmox developers. This documentation contains specific information
pertaining to the tab. Each Help button on different tabs is anchored to a
particular section of the documentation. The URL for this KVM
documentation iS https://ip_addr:8006/pve-docs/chapter-qm.html.

The OS tab

The OS tab is used to select the type of guest operating system that will be
installed on the VM. This type of selection allows the VM to be aware of the
intended operating system and adjust the architecture based on the OS
selected. In our example VM, we have selected Linux 4.X/3.X/2.6 Kernel, as
shown in the following screenshot:

To achieve maximum performance and stability, it is highly
recommended you select the proper OS type.

Create: Virtual Machine)

General E CD/DVD

Microsoft Windows
(Microsoft Windows 10/2016

| Microsoft Windows 8.x/2012/2012r2
(_ Microsoft Windows 7/2008r2

| Microsoft Windows Vista/2008
(_ Microsoft Windows XP/2003

" Microsoft Windows 2000

Linux/Other OS types
(@) Linux 4.X/3.X/2.6 Kernel

Linux 2.4 Kemel
(_ Solaris Kernel

| Other OS types

© Help Back m

The CD/DVD tab

Since KVM VMs are fully enclosed and emulate a physical machine, we can
only boot the VM or load the operating system using ISO images loaded in a
virtual CD/DVD drive or through a physical drive attached to the Proxmox
host node. In this tab, we can select whether to use a virtual or physical
CD/DVD drive or select an ISO image. The following screenshot shows the
dialog box for the CD/DVD tab, where we have selected CentOS ISO:

Create: Virtual Machine

General 03 CD/IDVD Hard Disk

Use CD/DVD disc image file (iso)

Storage: | local

IS0 image: | CentOS-7-x86_64-Minima

" Use physical CD/DVD Drive

(_ Do not use any media

]

If we only want to create the VM without specifying any disk image, we will
need to select the Do not use any media option.

The Hard Disk tab

In this tab, we specify the configuration for the first disk image of the VM.
The following screenshot shows the dialog box with the configuration for our
example VM:

Create: Virtual Machine

General 0s CD/DVD Hard Disk CPU

Bus/Device: Wirtlo 0 Cache: Write through
Storage: rod-01 No backup:
Disk size (GB): 20 Discard:

10 thread:

T =R

Bus/Device

There are two drop-down menus available for this option. One to select
the disk image bus type and the other to select the device ID.

8 For maximum performance, the VirtlO bus is recommended.

For a Windows VM, it is necessary to select an IDE since Windows does not
have a built-in driver for VirtIO. In such cases, we can use the following steps
to add VirtIO capability to a Windows VM:

1.
2.
3.

ot

7.

Create the VM with IDE and install Windows as usual.
Add a second disk image with the VirtlO bus and reboot into Windows.
Download the latest VirtIO driver ISO for Windows from the following
links and then load it through a virtual CD drive:

® https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.is

0

® http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
Update the driver for the new hardware found for the VirtIO disk image.
Shut down the Windows VM and log in to the Proxmox dashboard.
From the Hardware tab of the VM, select the IDE image and click
on Remove. Note that this does not remove the disk image permanently.
The disk image will now show as Unused Disk 0:

Add Remove Edit Resize disk Viove dis Disk Throttle

Keyboard Layout Default

= Memory 126.00 MiB/212.00 MiB

iﬁ} Processors 1 (1 sockets, 1 cores)

-] Display Default

@ CD/DVD Drive (ide2) none media=cdrom

= Network Device (net0) virtio=CA35:61:2A:34:CD, bridge=vmbrQ
& | Unused Disk 0 local-lvm:vm-100-disk-1

Select the Unused disk 0 and click on Edit. This will open up a dialog
box with options to select the Bus/Device type and other configuration
options:

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

Add: Unused Disk

Bus/Device: 0 Cache: Default {No cache)
Disk image: local-lvm:vm-100-disk-1 No backup:

Skip replication: []
Discard:

10 thread:

8. From this dialog box, we can select the desired bus type and other

configuration options if necessary.
9. Click on the Add button to add the disk image back to the VM.

The previous steps are necessary to enable the Windows VM to use a VirtlO
disk image. Once the driver is loaded, it is not necessary to reload it for
additional VirtIO disk images.

Storage

This is a drop-down menu to select the storage in which the disk image
should be stored. Along with the name of the storage, the drop-down menu
shows the total capacity and available storage space of attached storage
devices.

Disk size (GB)

This is a textbox to define the size of the disk storage in GB. The value can
only be numeric. We can also use the up and down arrows of the textbox to
define the disk image size.

Format

This is a drop-down menu to select the type of disk image. If we select
storage that only supports a certain disk type, then this menu option will be
greyed out. For example, in our example cluster, we have selected Ceph RBD
storage, which can only store .raw images as of Proxmox 5.0. So the format
option is greyed out.

If we select the wrong format of disk image or later our requirement changes
to using a different format, we can simply use the Move disk option in the
Hardware tab to change the format. This can also be done through the CLI
using the following command format:

| #gemu-img convert -0 <type> <source_image> <destination_image>

If we want to convert a .qcowz disk image to a .raw image, the command would
be as follows:

| #gemu-img convert -0 raw vm-101-disk-1.qcow2 vm-101-disk-1.raw

This command works great for local, NFS, ZFS, and Gluster storage but is not
suitable for RBD. To change the disk image format stored in RBD, use the
Move disk option in the Proxmox dashboard. Besides RBD storage disk
image, this Move disk option can be used to move any disk image stored on
any storage through the GUI without needing the CLI at all. This option is
also helpful to move a disk image from one storage to another without
powering off the VM. The move could be from local to shared or vice versa.
To move or change the format of a disk image, select the disk image from

the Hardware tab and click on Move disk to open a dialog box:

Move disk

Disk: virtioQ

Target Storage local-lvm

Delete source:

As shown in the previous screenshot, for our example VM we are moving a
.raw disk image from RBD to local storage. If we select the Delete source
option, it will delete the source file automatically after converting or moving
is finished. If the option is not selected, then we will have to manually delete

the source file. The source file will show up as an unused disk image under
the Hardware tab of the VM.

Cache

This drop-down menu allows us to select the cache method to use for the disk
image. We have learned about the different cache options in the Caching a
virtual disk image section in Chapter 4, Storage Systems. We can change the
cache option any time even after the VM is fully created and functioning.
After each cache option change, we will need to power-cycle the VM to
enable the new cache option.

No backup

If this option is enabled, the virtual disk image will never be included in the
backup. By default, the option is disabled.

Discard

Disk images in Proxmox are sparse regardless of the image type, meaning the
disk image grows slowly as more data gets stored in it. Over time, data gets
created and deleted within the filesystem of the disk image. But in a sparse
disk image, even after data is deleted, it never reclaims the free space. The
VM may report the correct available storage space but Proxmox storage will
show higher storage usage. The Discard option allows the node to reclaim the
free space that does not have any data. This is equivalent to the TRIM option
that was introduced in SSD drives. Before this option can be used, we have to
ensure that the VM uses the VirtIO SCSI controller. We can set the SCSI
Controller Type under virtual machine’s Options tab:

Virtual Machine 102 (‘'centos1') on node 'pmx-01'

& Summary Edit Revert

> Console Name centos1

b Hardware Start at boot No

& Options Start/Shutdown order order=any

&= Task History 0OS Type Linux 4. X/3.X/2.6 Kemel
_ Boot Order Disk 'virtio0', CD-ROM, Network

@ Monitor Use tablet for pointer Yes

Backup Hotplug Disk, Network, USB

13 Replication ACPI support Yes

%) Snapshots SCSI Controller Type VirtlO SCSI

U Firewal BIOS Default (SeaBIOS)

The Discard option may not be suitable for all environments, storage
solutions, and operating systems. Perform enough testing before
implementing it in your environment. In some cases, the Discard option may
cause a VM to lock up, needing to be power-cycled. The VM will need to be
power-cycled if the option is enabled after powering it back up.

10 thread

There are two options for disk images with KVM:

e [0 thread

® ijo=native

By default, Proxmox uses io=native for all disk images unless the 10 thread
option is specifically checked for the disk image.

The 10 thread option allows each disk image to have its own thread instead of
waiting in a queue with everything else. Since disk I/O is no longer waiting
due to having its own threads, it does not hold up other tasks or queues related
to the VM, which in turn speeds up the VM performance besides providing
increased disk performance. The IO thread option is fairly new in Proxmox.
There were a few reported instances where the VM was locked up due to this
option. So perform plenty of testing before implementing this feature in a
production environment.

The CPU tab

This tab allows configuration of a virtual CPU for virtual machines. The
following screenshot shows the dialog box with available CPU options:

Create: Virtual Machine &3]

General s cDibvD Hard Disk CPU Memory Network

Sockets: 1 Type: Default (kvmb4)
Cores: 1 Total cores: 1
Enable NUMA:

Sockets

This option is to define the number of sockets the VM can use. We can use
more than one socket for the VM even if the physical node does not have
enough sockets. This may only be useful if an application in the VM requires
us to have more than one socket. But it is not useful at all to increase VM
performance in a single-socket Proxmox node.

Cores

This option is to define the number of cores the VM can use. It is good
practice to start a VM with a smaller number of cores and then increase them
as needed, depending on load. Assigning a large number of cores to a VM
will cause unnecessary stress on the available resources in the node. Usually,
VMs can provide good performance with two or four cores unless it is a high-
demand VM, such as a remote desktop server or SQL/Exchange server.

Enabling NUMA

The non-uniform memory access (NUMA) is not a new approach to
handling memory in a multi-CPU environment, although it is a new addition
to Proxmox VE. With NUMA, memory can be distributed evenly among
CPUs, which increases performance since there is no bottleneck due to all
CPUs trying to access the same memory bank. In Proxmox, the NUMA
option also enables memory and CPU hot-plugging. Without this option, hot-
plugging for CPU and memory will not work at all.

Any node with more than one CPU socket is usually NUMA aware. So
enabling NUMA for VMs in this node will benefit VM performance. NUMA
will always try to keep the VM in the same CPU package. We can check the
NUMA status in the Proxmox cluster using the following command:

| # numastat

This command will show all the nodes in the cluster that are NUMA aware
and their performance stats.

Type

This is a drop-down menu to select the CPU package type. By default, the
Default (kvim64) CPU type is selected for all VMs. A common use case is
when a specific application requires SSE or AVX instructions. By selecting
the host CPU type, we can give a VM direct access to the physical CPU.

For the best performance, host type should be used. This way,

the VM will be able to access the CPU directly without an
8 emulation layer. This is optimal type in an environment where

all nodes are identical. For maximum portability of a VM, it is
best to choose the KVM or Qemu CPU types.

The Memory tab

This tab allows configuration of the memory allocation of the VM. The
following screenshot shows the dialog box for our example VM:

Create: Virtual Machine

General 03 CD/DVD Hard Disk CPU Memory Network

_ Use fixed size memory

(@ Automatically allocate memory within this
range

Maximum memory (MB): |

Minimum memory (MB). | 512

Shares: | Default (1000)

© Help]

In Proxmox, we can set fixed or dynamic memory for a VM. Automatic range
is also known as memory ballooning. For the fixed option, all memory is
allocated at once. In the dynamic option, memory is allocated based on the
VM, within a preset range. Automatic memory allocation works great for
Linux-based guest VMs. But for Windows VMs, memory ballooning
consumes a higher amount of CPU resources, causing the VM to slow down.
So for windows VMs, it is best to use fixed memory whenever possible.

The Network tab

This tab allows configuration of the virtual network interface of the VM. The
following screenshot shows the dialog box for the network configuration of
our example VM:

Create: Virtual Machine (<)

General OS CD/DVD HardDisk CPU Memory m Confirm

(@ Bridged mode Model: VRO (paravirtualized)
VLAN Tag: | no VLAN MAC address: auto
Bridge: | vmbr0 Rate limit (MB/s): | unlimited
Firewall: |4 Multigueues:
(| NAT mode Disconnect:

" No network device

© Hep (=]

Bridged mode

This mode allows a VM to connect to the network using a bridge. The VM
does not get direct access to the outside network. We can set the VLAN ID at
the node level, which makes it unnecessary to configure it inside the VM. The
Bridged mode also provides firewall options for the VM. For our example
VM, we have selected the default bridge vmbre and enabled the Firewall
option.

Firewall

To enable the Proxmox firewall for network interfaces, this option needs to be
checked. Without this option, no firewall rules will be applied to the VM
interface. We will look at the Proxmox firewall in greater detail in Chapter 9,
The Proxmox VE Firewall.

NAT mode

This mode provides a VM direct access to outside networks. Network traffic
does not go through any bridge. If VLAN is used in the physical network, it
must be configured inside the VM in order to have the data packets tagged or
untagged. The Proxmox firewall option is not available when using NAT
mode.

No network device

This option will create the VM without any network interface configured.

Model

This is a drop-down menu to select the virtual network interface type. For
maximum network performance, the use of VirtIO is highly recommended.
Windows does not come with a VirtIO driver. So if this is used for a Windows
VM, we have to manually load the driver from the ISO we have downloaded
in The Hard Disk tab section of this chapter. We can also use Intel E1000 for
Windows VMs. From Windows 7 onward, the driver for Intel is included.

MAC address

By default, all MAC addresses for virtual network interfaces are
automatically assigned. By typing a MAC address in this textbox, we can
specify a particular MAC address for the interface. This may be necessary
when a specific MAC address is required by an application in the guest VM.

Rate limit (MB/s)

This is a textbox to define the maximum allowable speed of the network
interface in megabytes per second. This is a very useful option to limit
network resources per VM. Without any value defined, the VM will try to use
as much bandwidth as possible.

Multiqueues

Ordinarily, KVM VMs are single-queued, where sending and receiving
packets occurs one at a time and not in parallel. Multiqueues remove this
bottleneck by allowing sending and receiving in parallel by leveraging virtual
CPU cores for parallel queues. Multiqueues are especially useful fora VM
which is active on numerous clients, for example, a web server. In the
Proxmox Network tab in the VM creation dialog box, we can enter a numeric
value to define how many parallel queues the VM should use. This value
should not be more than the allocated vCPU of the VM. For example, if the
VM has a virtual core count of four, we can set a Multiqueues value of 4.
Multiqueues increase network performance of a VM greatly since both
sending and receiving can happen in parallel.

Keep in mind that enabling Multiqueues will also increase CPU
9 usage of the VM since each queue is dependent on each vCPU.

Disconnect

If this option is enabled, the virtual network interface will be created along
with the VM but will not be activated.

Creating VM by cloning

When deploying multiple VMs with identical configuration, creating them
individually can become a time-consuming process. In such cases, we can
clone an existing VM or a template. Cloning creates a fully independent VM
with identical configuration. The cloned VM is in no way connected to the
VM it was cloned from. The cloning option can be accessed from the context
menu by right-clicking on the VM to be cloned:

st o Virtual Machine
= Datacenter
& Summary
Es pmx-01
101 (CT101) >_ Console
200 dom:) b Hardware
102 (centos1) :
VM 102
£ local (pmx-01
2 local-lvm (pm: L ?iart |
& bd-01 (pmx U
Eﬁ prmx-02 =hutdown
E» pmx-03 S8
@ Linux_VMs 1 Migrate
W Test-Poolt [0 clone

[9 Convert to template

>_ Console

One of the uses of cloning a VM is backup strategy. A VM can be cloned
regularly to separate nodes, even on separate storage. In the event that the
main node becomes inaccessible, the cloned VM can be up and running in
minutes without going through the VM restore process. The following
screenshot shows the clone dialog box after clicking on Clone from the
context menu:

Clone VM 102
Target node: pmx-01 Target Storage: Same as source
VM ID: 103
Name centos2
Resource Pool Linux_VMs
© eip =N

The cloning feature is also useful to keep the master VM up to date or add
new applications and so on, because the source VM is still a fully functional

VM.

Creating VMs from a template

Similar to cloning, a template is also a quick way to deploy fully configured
VMs without going through the complete VM creation process and manually
installing OS and applications. We can create a new VM and install the OS
and all other necessary programs before converting it to a template. This way,
all new VMs created from the template will be fully configured with OS and
programs. What sets template apart from just cloning is that once a VM is
converted to a template, it cannot be powered up again. If the template VM
needs any changes, a new VM must be created, configured, and then
converted to a template. We can however edit the hardware resources of the
template. The primary benefit of using a template to clone VMs is that a
template allows us to create full-clone and linked-clone VMs.

In order to create VMs from a template, we need to create the template first.
We can do this by converting a configured VM into a template. This option
can be accessed by selecting the VM to be converted and then right-clicking
and selecting Convert to template to open the dialog box:

Confirm

5™ VM 102 - Convert to template
= B

In this example, we are going to convert one of our VMs, 102 (centos1), into
a template. Click on Yes to convert the VM into a template. As mentioned
earlier, after the VM is converted to a template, the VM itself is no longer
usable. Another noticeable difference is that the icon in the Proxmox
dashboard is unique for KVM templates, as shown in the following
screenshot:

Server View

== Datacenter
B pmx-01
101 (CT101)
100 (kvm-1)
£ 102 (centos1)
103 (centos2)
local (pmx-01)
local-lvm (pmx-01)
rbd-01 (pmx-01)
Es pmx-02

(@ (o (o

With the template, we can now clone VMs that will be identical to the
template. The procedure to clone is the same whether it isa VM or a KVM
template. To create a new VM or deploy multiple VMs from the template,
right-click on the template to open the context menu and then click on

the Clone option. This will open the cloning dialog box, as shown in the
following screenshot:

Clone Template 102

Target node: pmx-01 Mode Linked Clone
VM ID 104

Name: centos-Cloned

Resource Pool: Linux_WVMs

@ Heb]

Target node

This is a drop-down menu to select which node we want the cloned VM to be
created on. It could be the same node or any other node in the cluster with
sufficient resources.

Mode

There are two cloning modes in Proxmox 5.0:

e Full Clone
e Linked Clone

Full Clone creates an identical copy of the VM, including the virtual disk
image. This is a truly isolated VM since it is not dependent on the source
template or VM in any way. Even if we delete the source template or VM, the
newly deployed VM will still function without any issue. A Full Clone
consumes as much storage space as the original VM since the virtual disk is
also cloned. Full clones are useful when allocated resources are identical for
all deployed VMs but the guest operating system may or may not be different.

A Linked Clone creates a duplicate of the original VM minus the original
virtual disk image. This creates an additional blank disk image that is
referenced to the original virtual disk, and only new data gets placed in the
linked cloned disk image. All read requests, except for new data, are
automatically redirected to the original disk image. A Linked Clone is heavily
dependent on the source template or VM. This clone mode is useful when all
cloned VMs will have the exact same hardware and software configuration,
including guest operating system. A Linked Clone consumes much less
storage space since the original or base image is never duplicated but only
referenced by the new Linked Clone VM.

Although we cannot power up the template, we can still make
resource changes such as CPU, and RAM. But it is not a
recommended practice since any hardware change may cause
issues when a cloned VM is powered on. It is also very
important to ensure that the source template is not damaged in
any way. A corrupt template will cause all linked clones to fail.

Advanced configuration options for
VMs

We will now look at some of the advanced configuration options we can use
to extend the capability of KVM virtual machines.

Configuring a sound device

In this section, we are going to see how to add sound support to a VM.
Proxmox by default does not add audio hardware to a VM. In order for the
VM operating system to start the sound service, some arguments must be
added to the VM configuration file through CLI. As of Proxmox VE 4.1 it is
not possible to add a sound interface through GUI. The following steps will
add a sound device to a VM:

1. Log in to the Proxmox node through SSH or directly in the console.

2. Navigate to the VM conﬁguration diFECtOFy /etc/pve/nodes/<node_name>/qemu-
server/<vm_id>.conf.

3. Open the VM configuration file with your favorite editor and add the
following argument:

For Windows 10 and later VMs:

args: -device intel-had, id=sound5, bus=pci.o,
addr=0x18 -device hda-micro, id=sound5-codecQ,
bus=sound5.0,cad=0 -device had-duplex,
id=sound5-codec1, bus=sound5.0, cad=1

For Windows XP VMs:

| args: -device AC97,addr=0x18

4. Save the configuration file and exit the editor.
5. Power-cycle the VM to activate the sound device.

Configuring PCI passthrough

In Proxmox it is possible to passthrough PCI devices directly into a VM. In
this section, we are going to see how to configure and verify PCI passthrough.
The following steps are to enable and configure PCI passthrough in Proxmox:

f—

. Log in to the Proxmox node through SSH or directly in the console.
. Open the grub configuration file using an editor:

N

| # nano /etc/default/grub

w

. Change crus_cupLInNe_LINUX_DEFAULT="quiet" tO the following:

e For Intel CPUs:

GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_iommu=on"

e For AMD CPUs:

| GRUB_CMDLINE_LINUX_DEFAULT="quiet amd_iommu=on"

Save the changes and exit the editor.
Run the following command to update grub:

oA

| # update-grub

6. Only if using an AMD CPU, add the following line in the configuration

file /etc/modprobe.d/kvm_iommu_map_guest.conf.

| options kvm allow_unsafe_assigned_interrupt=1
7. Ensure the following modules are loaded in /etc/modules:

vfio_iommu_typel
vfio_virgfd

vfio_pci

vfio

Reboot the Proxmox node.
9. Locate the PCI device address in the form of xx:xx.x using the following
command:

o

| # 1spci

10.

11.
12.

Enter the following line with the PCI device ID in the VM configuration
file:

machine: 35
hostpsi®: 01:00.0,pcie=1

Power-cycle the VM.
Install necessary drivers for the PCI device in the VM operating system.

Configuring GPU passthrough

In this section, we are going to see how to configure a video adapter to be
used directly in a VM. The GPU to be added to the VM must not be bound to
the host node. To ensure that the device is not being used by the host, take the
following steps:

1.

We have to find out the vendor and device ID of the GPU device to use
passthrough. To pinpoint the device, we can run the #1spci command. The
device should be the one showing up as a VGA compatible controller.
The following screenshot shows our VGA device with ID oe:0e2.6:

To find out the device and vendor ID, run the command again using the
following format:

#lspci -n -s 00:02

The command will produce a set of numbers. The device and vendor IDs
are the last two sets of numbers. The following is the set of numbers for
our example node:

df00:02.0 0300: 1013:00b8

Take note of the device ID then create a file /etc/modprobe.d/vfio.conf tO
explicitly define it as the GPU passthrough vrio device and to prevent
VGA arbitration to opt-out devices. Enter the following line in the
vfio.conf file:

options vfio-pci ids=1013:00b8 disable_vga

We now have to blacklist the default VGA drivers so they are not loaded
during boot, as follows:
echo "blacklist nvidia" >> /etc/modprobe.d/blacklist.conf

echo "blacklist radeon" >> /etc/modprobe.d/blacklist.conf
echo "blacklist nouveau" >> /etc/modprobe.d/blacklist.conf

Pa ' When trying to add GPU passthrough for a VM, it is important

to keep in mind that not all GPU devices are capable of being
passthrough devices. Try different configurations.

At this stage, we are now ready to configure the VM itself to use GPU
passthrough. The recommended way to configure is to use Open Virtual
Machine Firmware (OVMF) PCI passthrough. OVMF is a project to enable
VMs to use Unified Extensible Firmware Interface (UEFI) BIOS. To
enable features of OVMEF, the guest operating system must support UEFI. The
following steps will help find out if the GPU device is UEFI compatible:

1. Log in to the node with the GPU device through SSH.
2. Run the following commands to download and compile a tool to
download the GPU device’s ROM content:

cd rom-parser

git clone https://github.com/awilliam/rom-parser
make

3. Run the following sets of command to download the ROM content of the
GPU device in a temporary directory:

‘ # cd /sys/bus/pci/devices/0000:01:00.0/

echo 1 > rom

cat rom > /home/rom-parser/image.rom
echo 0 > rom

4. Run the following command to test the downloaded ROM with the ROM
parser we have downloaded and compiled to figure out if the GPU
device is UEFI compatible:

cd /home/rom-parser
./rom-parser /tmp/image.rom

5. The command will display information similar to the following:

Valid ROM signature found @®h, PCIR offset 60h

PCIR: type 3, vendor 102b, device: 0532, class: 030000
PCIR: revision 0, vendor revision: 2139

EFI: Signature Valid

Last image

If the PCIR is type 3 then the GPU device is UEFI/OVMF compatible.

The VM configuration should look like the following after selecting OVMF
BIOS and adding the nostpci line. Make the necessary changes and then
power-cycle to activate the new configuration:

bios: ovmf

scsihw: virtio-scsi-pci
machine: 35

hostpci@: 02:00,pcie=1, x-vga=on

When using NVIDIA GPU devices, software such as GeForce Experience
may cause the virtual machine to crash. In such cases, add the following line
t0 /etc/modprobe.d/kvm.conf. The issue may occur when using software such as
PassMark PerformanceTest and SiSoftware Sandra:

| options kvm ignore_msrs=1

Preparing for hotplug

In this section, we are going to see how to configure the hotplugging option in
Proxmox virtual machines. Using the hotplugging feature, we can add and
remove devices or resources on a VM without restarting or power-cycling it.
As of Proxmox 5.0, we can use the hotplug option for the following
resources:

Disk

Network interface
CPU

Memory

USB

As of Proxmox 5.0, we can only increase CPU and memory but cannot
decrease it. Both the disk and network interface can be equally hotplugged
and unplugged. The following table shows which device types are supported
on different operating systems:

Device Kernel Hotplug/unplug 0S
Disk All Both All versions of Linux/Windows
NIC All Both All versions of Linux/Windows
Greater Hotplug only for All versions of Linux,
CPU Windows and both for Windows Server 2008 and
than 3.10 .
Linux greater
Greater Hotplug only for All versions of Linux,
Memory Windows and both for Windows Server 2008 and
than 3.10 .
Linux greater

While the main configuration to enable hotplugging for Proxmox should be
done through CLI, we can enable or disable a hotplug device through

the patacenter | Node | VM | Options tab menu, as shown in the following
screenshot:

Edit: Hotplug

Hotplug: 1 Disk
Network
USB
Memory
CPU

We need to prepare a Linux-based VM first before hotplug can be used. Two
modules must be loaded inside the Linux guest OS to enable hotplug. We can
load the modules using the following command:

modprobe acpiphp
modprobe pci_hotplug
To automatically load the modules during boot, we can add them into

/etc/modules.

If the Linux guest OS is based on Kernel less than 4.7, then we need to create
a new udev rule file in the /1lib/udev/rules.d/80-hotplug-cpu-mem.rules file and add

the following lines:
SUBSYSTEM=="cpu", ACTION=="add", TEST=="online", ATTR{online}=="0", ATTR=={online}="1"

SUBSYSTEM=="memory", ACTION=="add", TEST=="state", ATTR{state}=="offline", ATTR==
{state}="online"

For Linux guest OS based on kernel 4.7 or newer, we do not need to add the
udev rules for memory hotplug, but it is still required for CPU. We need to add
the following kernel parameter during boot:

| memhp_default_state=online

The following steps are to add the kernel parameter during boot to enable
memory hotplug:

bW

. Run the following command from a Linux guest OS SSH:

#gksudo gedit /etc/default/grub

Locate the line starting with crus_cvoLine_Linux_perauLT and type in the
kernel parameter at the end of the line. The line now should appear as
follows:

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash memhp_default_state=online"

Save the file and exit the editor.
Run the following command to update the grub boot loader:

sudo update-grub

The Proxmox node needs to be power-cycled to activate the modules,
rules, and kernel parameter.

After reboot, run the following command to verify which kernel
parameters successfully loaded during boot:

cat /proc/cmdline

Configuring VMs with hotplug

For CPU and memory hotplug, we also have to make sure that the NUMA
option is enabled for the VM. The NUMA option can be found under

the patacenter | Node | VM | Hardware | Processors menu. Click on Edit to
open the CPU dialog box:

Edit: Processors

Sockets | i Type Default (kvm54)
Cores 1 Total cores 1
Enable NUMA
0 var K N

There is no additional configuration necessary to hotplug a virtual disk image
or virtual network interface.

Hotplugging vCPUs

To add a virtual CPU or vCPU, go to the patacenter | Node | VM | Hardware
menu. Then, select Processors and click on Edit to open the dialog box.
Simply type in the number of cores or use the up and down option in the text
to choose the desired number of cores or vCPUs. Click on OK to accept the
changes. We can also add a new CPU from this dialog box. We can also add
vCPUs by running the following command from the Proxmox node CLI:

| # qm set <vm_id> -vcpus 2

Since our example VM already has one CPU, the previous command will add
an additional CPU, making it a total of two CPUs for the VM.

Hotplugging memory

To open the dialog box to edit allocated memory for a VM, go to the patacenter
| Node | VM | Hardware menu. Select Memory and then click on Edit to open
the memory dialog box:

Edit: Memory

#) Use fixed size memary
Memory (MB): | 512
Ballooning:

() Automatically allocate memory within this rangs

© Help

Change the amount of memory to be allocated and then click on OK to accept
the changes. Ensure that the NUMA option is enabled in the Processors dialog
box as mentioned in the previous section.

Hotplugging disks/vNICs

To hotplug a new disk or network interface, go to the patacenter | Node | VM |
Hardware menu and then select an item from the Add drop-down menu. The
dialog boxes to add these resources are similar to the dialog box for the VM
creation process we have seen in an earlier section in this chapter. The Add
drop-down menu is as shown in the following screenshot:

& Summary Add Remove Edit Resize dis
>_ Console ¢ & Hard Disk Default
& Hardware g © | CDIDVD Drive 512.00 MiB/4.00 GiB
& Options | = ;ET‘?EDEVECE 2 (1 sockets, 2 cores)
= Task History i Hoa

Although CPU and memory hotplug works for both Linux and
Windows, ensure you run several tests before implementing them
in a production environment. The CPU/memory hotplug can
create an unstable situation for the VM, causing it to freeze and
require a complete reboot.

&

Migrating KVM virtual machines

Proxmox migration allows KVM virtual machines to be moved to a Proxmox
node in both offline and online or live modes. The most common scenario of
VM migration is when a Proxmox node needs a reboot due to a major kernel
update or other patches. Other scenarios may include hardware failures, node
replacement, software issues and so on. Without the live migration option,
each reboot would be very difficult for an administrator as all the running
VMs would have to be stopped first before reboot occurs. This will cause
major downtime in a mission-critical virtual environment.

With the live migration option, a running VM can be moved to another node
without downtime. During a live migration, the VM does not experience any
major slowdown. After the node reboots, simply migrate VMs back to the
original node. Any offline VMs can also be moved with ease.

Proxmox takes a very minimalistic approach to the migration process. To
access the migration dialog box, right-click on the VM to be migrated to open
the context menu and then select Migration or click on the Migrate button in
the upper-right corner to open the dialog box. The following screenshot
shows the migrate dialog box:

Migrate VM 103

Target node pmx-02

Online

© Help Migrate

From the dialog, simply select the destination node and then, depending on
online or offline migration, click on the checkbox. Then hit the Migrate
button to get the migration process started. Depending on the size of virtual
drive and allocated memory of the VM, the entire migration process time can
vary. Live/online migration also migrates the virtual memory content of the
VM. The bigger the memory, the longer it will take to migrate. In the previous
example, we were live migrating VM ID #103 to node pmx-o2.

Summary

In this chapter, we looked at KVM virtual machines and how to create, clone,
and migrate when need be. We also looked at some advanced configuration,
such as adding a sound device and enabling PCI/GPU passthrough for a KVM
VM. By leveraging this cloning technique, we can scale a virtual cluster
effortlessly when deploying identical virtual machines. Optional and non-
production setup of a nested virtual environment was also explained.

A KVM virtual machine is best practice for all non-Linux operating systems
and also when total resource isolation between VMs is mandatory.

In the next chapter, we are going to look at LXC containers in greater detail.
We will learn why a Proxmox administrator would choose them over KVM
virtual machines.

L.XC Virtual Machines

From Proxmox VE 4.0, the OpenVZ container technology was replaced in
favor of LXC container. In this chapter, we will see the features and benefits
of using an LXC container and learn how to create and manage containers in
Proxmox. We will cover some of the following topics:

Exploring LXC containers

Understanding container templates

Creating an LXC container

Managing an LXC container

Migrating an LXC container

Accessing an LXC container

Unprivileged versus privileged containers

Converting an OpenVZ container to an LXC container

Exploring LXC virtual machines

Containers are a different form of the virtual machine that is completely
dependent on the operating system of the host node. They are kernel-based
virtualizations that share the host operating system, thereby reducing the
overhead that a KVM virtual machine has. Due to the lower overhead, the
virtual machine density per node can be tighter and more containers can be
hosted than KVM virtual machines. This comes at a price of less virtual
machine isolation. Since containers are dependent on the underlying operating
system, there can only be Linux-based containers. No Windows operating
system can be containerized. Unlike KVM virtual machines, we cannot clone
a container or turn a container into a template. Each container is a virtual
instance that runs separately.

LXC is just another type of container technology. OpenVZ is another
container technology, which had been used by Proxmox until version 4.0.
There are two major differences between the LXC and OpenVZ container
technologies:

e [XC is available in the Linux kernel and doesn’t need a separate kernel
as in the case of OpenVZ
e OpenVZ supports live migration whereas L.XC does not

The following are a few advantages of using LXC containers:

Extremely fast deployment

Higher density of virtual machine per node

Smaller backup files

Nested LXC containers with almost no overhead

Ability to directly access data inside the container filesystem from the
host node

In Proxmox, LXC containers are identified by a unique icon in the GUI
dashboard. The following screenshot shows the icon of an LXC container
with ID #1e1:

£ Datacenter
B pmx-01
& 101 (ubuntu-01)
100 (kvm-1)
103 (centos2)
[£2 102 (centos1)

£ local (pmx-01)

Understanding container templates

Unlike KVM virtual machines, which can be installed from ISO images, LXC
containers can only be deployed using container templates. Container
templates are not the same as the templates we created for KVM in the
previous chapter. LXC templates of various operating systems and an
application-specific container can be directly downloaded from the Proxmox
repository. To view a list of available templates already downloaded, we need
to select an attached storage that can store container templates and click on
the Content tab, as shown in the following screenshot:

4 X ¢ Virtual Environment 5.0-23/af4267bf Search You
A

Server View Storage 'local’ on node 'pmx-01'

£ Datacenter

& Summan Restore Remiove Show Confiatratia
E@ pmx01 ¥ estore emove Templates Upload Show Configuratio

¢ 101 (ubuntu-01) 2 Content Name Format | Type Size

100 (kvm-1) o Permissions . . .

50 image (1 ltem)

103 (centos2)
E@ 102 (centos1) CentOS-7-x86_64-Minimal-1611.iso Iso ISO image 630.00 MiB
5 local (pmx-01) Container template (1 Item)
£ locallvm (pmx-01) ubuntu-16 04-standard_16 04-1_amd64 tar gz gz Container t . 187 99 MiB

In the preceding screenshot, we can see that we have a Ubuntu container
template that is already downloaded to our local storage. To view a list of
available LXC templates and to download them from the Proxmox repository,
we need to click on the Templates menu to open the dialog box:

Templates
ype Package Version Description

Section: system (19 Items)

Ixc debian-8.0-standard 871 Debian 8.0 (standard)

Ixc alpine-3 3-default 20160427 LXC default image for alpine 3.3 (201
Ixc opensuse-42 2-default 20170406 LXC default image for opensuse 422
Ixc fedora-24-default 20161207 LXC default image for fedora 24 (2016
Ixc ubuntu-12.04-standard 12.041 Ubuntu Precise (standard)

Ixc alpine-3 5-default 20170504 LXC default image for alpine 3.5 (201
Ixc centos-7-default 20170504 LXC default image for centos 7 (2017
Ixc ubuntu-14 04-standard 14 041 Ubuntu Trusty (standard)

Ixc archlinux-base 201707 ArchLinux base image.

Ixc ubuntu-17.04-standard 17.04-1 Ubuntu Zesty (standard)

Ixc fedora-25-default 20170316 LXC default image for fedora 25 (2017...

There are over 100 templates available to be downloaded from this dialog

box. If you are not able to see the complete list and it only shows the Section:
system templates, then run the following command from the CLI to update
the template list:

| # pveam update

To download a template, simply select it and click on the Download button.
The downloaded template will now be available in the storage. The default
location to store the containers templates for local storage is as follows:

| /mnt/pve/<storage>/template/cache

Creating an LXC container

After ensuring that we have the desired template for the container, it is now
time to create one. We can click on the Create CT button in the top-right
corner of the Proxmox GUI to open the container-creation dialog box, as
shown in the following screenshot:

Create: LXC Container

Template

Node: pmx-01 Resource Pool: | Linux_VMs

CTID: 101 Password: | sesessssene

Hostname: ubuntu-01 gopfiml = [euoase
password:

Unprivileged

container: S5H public key:

Load SSH Key File

General tab

The General tab of the dialog box is used to assign identification information
such and create a root password for the container.

Node

This is a drop-down list used to select which Proxmox node the container is
going to be created in. In our example, we will create the container in node
pmx-01.

CTID

This is a textbox used to enter the numeric ID of the container. We can also
use the up and down arrows in the box to assign the IDs. If we assign an ID
that already exists in the cluster, the box will show a red border around the
textbox. For our example container, we are using ID #1e1.

Hostname

This is a textbox used to enter the hostname of the container. The Hostname
does not need to be FQDN.

Unprivileged container

Unprivileged containers are when the container is created and run as a user as
opposed to root. This is the safest way to use a container because if the
container security gets compromised and the intruder breaks out of the
container, they will find themselves as a nobody user with extremely limited
privileges. Unprivileged containers do not need to be owned by the user since
they are run in user namespaces. This is a kernel feature that allows the
mapping of the UID of a physical host into a namespace inside where a user
with UID o can exist. Unprivileged containers can also be run as root. By
assigning a specific UID and GID to root, we can create unprivileged
containers throughout the system and run them as root.

Privileged containers are when they are created and run by the root user only.
These containers are not secure because all the processes are still run as root.
All containers created through the Proxmox GUI or PCT tools are privileged
containers.

Enable this option to create unprivileged containers.

If total security or virtual machine full isolation is the primary

concern for an environment, it is best to use a KVM virtual
8 machine, because KVM is a fully independent virtual machine

without any dependency on the host operating system or sharing
resources.

Resource Pool

This is a drop-down list menu used to select a previously created pool. It is
only necessary if we want to assign the container to a specific pool.

The Template tab

This tab is to select a template the container is going to be based on. Select
Storage from the drop-down menu where the template is stored, and then
from the Template drop-down list, select the template, as shown in the
following screenshot:

Create: LXC Container

General Template

Storage: local

Template: |
Name For... Size
ubuntu-16.04-standard_16.04-1_amd64ta... tgz 187....

The Root Disk tab

This tab is used to define the disk storage space the container can use. The
following screenshot shows the dialog box with the configuration for our
example container with the local storage selected:

Create: LXC Container

General Template Root Disk CPU

Storage: local-lvm ACLs: Off

Disk size (GB): 4 Enable quota:

0 v Cons | o

Storage

L.XC containers can be stored in all storage types without any modification
with only one exception for the Ceph RBD storage. KRBD must be enabled
for the RBD storage in order to store an LXC container. The inclusion of this
option now allows leveraging the Ceph distributed storage to be used with the
LXC container platform. The following screenshot shows the KRBD option
from the storage dialog box:

Edit: RBD

ID: rbd-01 MNodes: All (No restrictions)
Pool rbd Enable:

Monitor(s): 192.168.20.1,192.168.20.2;192 1§HaEMKEAL: Disk image, Container

User name admin KRBD

ACLs

Access control lists or ACLs allow us to set more fine-tuned file ownership
than the traditional Linux user or group access models. By default, Proxmox
creates LXC containers with ACLs. To create a container without ACLs,
select orr from the drop-down.

Enable quota

Enabling this option allows us to set limits inside an LXC container for the
amount of disk space each container user can use. However, this option
currently only works on container storage images based on the ext4 filesystem.
It also does not work on unprivileged containers.

The CPU tab

This tab allows configuration of a virtual CPU for a container. The following
screenshot shows the dialog box with the available CPU options:

Create: LXC Container

General Template Root Disk Memory

Cores: 1

0 vt

t

Cores

Unlike KVM virtual machines, we can only allocate CPU cores and not CPU
sockets. We can type in a value or select from the up and down arrows how
many cores the container can use. For our example container, we have
allocated 1 CPU core.

The Memory tab

This tab is used to define the allocated memory and swap the size for the
container. It is common practice to allocate an equal amount of swap size as
the memory. Keep in mind that for LXC containers, this swap allocation
actually gets allocated to the host node swap since the container does not have
its own kernel running. This size can be adjusted for a container at a later time
without restarting the container. The following screenshot shows the Memory
tab dialog box with s12 MB of Memory and 512 MB of Swap space allocated:

Create: LXC Container

General Template Root Disk CPU m Network

Memory (MB) 512

Swap (MB) 512

0 e =

The Network tab

This tab allows the network configuration of the container. The same dialog
box is used to edit or add a new network interface for the container. The
following screenshot shows the dialog box for our example container:

Create: LXC Container

General Template Root Disk CPU Memory m DNS

Name (i.e. eth0). eth0 IPv4: (@) Static () DHCP

MAC address: auto IPv4/CIDR: 192.168.1.1/24
Bridge: vmbrQ Gateway (IPv4): | 192.168.1.254|
VLAN Tag no VLAN IPv6: (@) Static () DHCP (_)SLAAC
Rate limit (MB/s): | unlimited IPv6/CIDR:

Firewall: Gateway (IPv6):

Name

This is a textbox to define a name for the network interface.

MAC address

By default, all MAC addresses for virtual network interfaces are
automatically assigned. By typing a MAC address in this textbox, we can
specify a particular MAC address for the interface. This may be necessary
when a specific MAC address is required by an application in the container.

Bridge

This is a drop-down list used to select a virtual bridge that the interface will
be connected to.

The VLAN Tag

This is used to set a VLAN ID on the virtual interface.

Rate limit

With this option, we can set a limit on how much bandwidth the container can
use. The unit is megabytes per second. By default, there is no limit.

Firewall

To enable the Proxmox firewall for the network interface, this option needs to
be checked. Without this option, no firewall rules will be applied to the
interface. We will take a look at the Proxmox firewall in detail in Chapter 9, The
Proxmox VE Firewall.

IPv4/IPv6

We can set both IPv4 and IPv6 on the virtual network interface. We can also
manually set IP addresses or enable DHCP for automatic IP assignment. The
IP must be entered along with CIDR. Proxmox also supports dynamic IPv6
assignment using stateless configuration, such as SLAAC. To learn about
Stateless Auto Configuration or SLAAGC, refer to https:/tools.ietf.org/html/rfc4862.

https://tools.ietf.org/html/rfc4862

The DNS tab

This tab is used to configure the DNS information for the LXC container.
Enter the domain name to be used by the container and IP address(es) of the
DNS server(s). The following screenshot shows the DNS domain and DNS
server information for our example container:

Create: LXC Container
General Template Root Disk CPU Memory Network Confirm

DNS domain: domain.com

DNS server 1: 86888

DNS server 2: 208 67 222 222,

DNS server 3:

The Confirm tab

This tab is to ensure the accuracy of the new container configuration. If any
changes need to be made, we can simply click on a tab to go back without
losing values already entered or selected. Click on Finish to create a
container. The following screenshot shows our new example container
powered on and running;

Create: LXC Container

General Template Root Disk CPU Memory MNetwork DNS m

Settings

Key Value

cores 1

hostname ubuntu-01

memory 512

nameserver 8.8.8.8 208.67.222.222

net0 bridge=vmbr(name=eth0,ip=192.168.1.1/24 gw=192.168.1.254 firew._.
nodename pmx-01

ostemplate local:vztmpl/ubuntu-16.04-standard_16.04-1_amd6&4 tar.gz
pool Linux_VMs

rootfs local-lvm: 4 acl=0

searchdomain domain.com

Managing an LXC container

In Proxmox, each LXC container has two configuration files. One defines the
raw resource allocation while the other, used by Proxmox, is used to define a
container. The Proxmox container configuration file can be found at the
following location:

| 7etc/pve/local/lxc/<container_id>.conf

For our example container ID #101, the following are the contents of this
configuration file:

The raw container configuration file can be found at the following location:

| /7var/1ib/1xc/<container_id>/config

The following is the content of the resource allocation configuration file for
our example container:

GNU nano 2.7.4 File: svar/lib/lxc/1@1/config

There is another directory for the root filesystem that is a mount point for the
allocated storage space inside the container. The location of the directory

iS /var/lib/1xc/<container_id>/rootfs/.

But in Proxmox, this directory is not used to store container data. For local
storage, the container virtual disk image is created

iH,/var/lib/vz/images/<container_id>/.

For shared storage, the container virtual disk image is created in

/mnt/pve/<storage>/images/container_id/.

We can adjust allocated resources for a container in real time without power-
cycling the container. This feature is known as hotplug for KVM virtual
machines. However, for LXC containers, this feature is built into the
container technology without needing any additional modification. There are
three ways in which we can adjust allocated resources for a container:

e The Proxmox GUI
e The command line
e Editing a configuration file

Adjusting resources using the GUI

Using the Proxmox GUI to change resource allocation is the preferred way to
adjust the container resource. Any changes made get committed to the
container instantly without needing to power-cycle it. For day-to-day
operations, the GUI provides almost all the resource options to be changed
with a few clicks.

To change a particular resource, we need to select a container from the left-
hand navigation bar, and then we need to select the resource to be changed.
For example, if you want to increase the allocated CPU cores to 2 from 1, you
need to select the Cores line item and then click on Edit to open the CPU
Core dialog box. The following screenshot shows the Resources currently
allocated to the example container #101:

X PROXMOX virtual Environment 5.0-23/a4267bf Search

Server View Container 101 (ubuntu-01') on node "pmx-01'

== Datacenter

& Summar Add Edit Renove Resize disk
E» pmx-01 “ . |—|
&> 101 (ubuntu-01) >_ Console =8 Memory 512.00 MiB
100 (kvm-1) © Resources 2 Swap 512.00 MiB
103 (centos2
f‘) = Network @ Cores 1
£ local (pmx-01) o i@ CPU units 1024
= |ocal-lvm (pmx-01) Options
= ® ! = Op £ Root Disk local-lvm:vm-101-disk-1,acl=0,size=4G
5 1bd 0l (pmedl) iE Task History

To increase allocated storage space, we need to select the Root Disk line item
under Resources and then click on the Resize disk button to open the dialog
box:

Resize disk

Disk: rootfs
Size Increment 0
(GB):

Resize disk

As of Proxmox 5.0, we can only increase the size of the allocated storage but
cannot decrease it. We can type in a value in GB or use the up and down
arrows to adjust size. It is important to note here that the value we will select

here is not the total size of the allocated space. This value adds on top of the
already allocated space. For example, in our example container #101, the
allocated space is currently at 4 GB. So if we want to increase that to a total
size of 6 GB, we will type in 2 in the dialog box, which will increase the size
by 2 GB. Click on the Resize disk button in the dialog box to finalize the
value.

We can verify that the disk space has indeed increased by running the #daf -
+ command from inside the container. The following screenshot shows the
command output, which shows that the size of the root mount point has
increased to 6.3 GB:

Adjusting resources using the CLI

L.XC comes with a vast number of command-line commands to manage
containers. It is not possible to cover all the commands in this book. The good
news for Proxmox users is that there are some tools or commands provided by
Proxmox to make managing containers an easier task through the CLI. The

pct command is a script created by Proxmox developers that wraps 1xc
commands. To see the available Proxmox commands for containers, we can
run the following command:

| # pct help

We can also get details of all the pct commands from the Proxmox wiki at https:

//pve.proxmox.com/wiki/Manual:_pct.conf.

Resource changes made using these commands get committed to the
container immediately without the need to restart the container. If the
Proxmox GUI becomes inaccessible, we can manage a container entirely
using the CLI. The format command used to change container resources is as
follows:

| # pct set <ct_id> [options]
For example, if we want to change the IP address of the container #1e1, the
command will be as follows:

|# pct set 101 -net® name=ethO, bridge=vmbr0,ip=192.168.1.17/24
We can verify that the new network configuration has been applied to the

container by checking the network configuration file of the container in
/etc/network/interfaces as follows:

-’\lin lo
iface lo inet loopback

auto ethB@

iface eth8 ine
addres
netmas

It is very important to note here that the gateway address is now missing from
the network configuration. The reason for this is that when we entered the
previous command to change the IP address, we did not mention the gateway.
The pct set command will replace the previous configuration for a resource is
changed. If we want to include the gateway address, the entire command will
be as follows:

https://pve.proxmox.com/wiki/Manual:_pct.conf

| # pct set 101 -net® name=ethO,bridge=vmbre,ip=192.168.1.17/24,9gw=192.168.1.254

To adjust the allocated memory of the container in real time, we can use the
following command:

| # pct set <ct_id> -memory <int_value>

To change the CPU limit of the container, we can use the following command.
The value o disables any CPU limit:

| # pct set <ct_id> -cpulimit <0 - 128>

The following command changes the hostname of the container:

| # pct set <ct_id> -hostname <string>
To increase the size of the root filesystem of the container, we can use the
following command:

| # pct set <ct_id> -rootfs size=<int_value for GB>

At times, due to an incomplete backup, a container may become locked and
will be unable to start or stop. The following command will unlock the
container from the CLI:

| # pct set <ct_id> -unlock

The following command will show a list of LXC containers in the node:

| # pct list

The following commands will start or stop an LXC container from the CLI:

pct start <ct_id>

pct stop <ct_id>
LXC commands are a very useful tool should the Proxmox GUI become
inaccessible for any reason and any container needs to be managed right
away.

Adjusting resources using direct
modification

Although modifying a configuration file to change resources of a container is
possible, it is not recommended for day-to-day operations. Any manual
modification made to the files does not get passed right away until the
container is restarted, thus causing downtime. However, there are some
situations when manually editing the configuration file is necessary. The
number of configuration options can then be changed through the GUI, and
the pct tools are geared toward standard containers. LXC containers have a
large number of configuration options, which cannot be changed through the
GUI or pct tools. Only by editing the configuration files and restarting the
containers can these options be applied. To learn more about the advanced
configuration options, refer to the following link:

http://manpages.ubuntu.com/manpages/precise/man5/Ixc.conf.5.html

http://manpages.ubuntu.com/manpages/precise/man5/lxc.conf.5.html

Migrating an LXC container

As of Proxmox VE 5.0, live migration of LXC containers is not possible. The
container must be turned off before it can be moved. This is not a limitation of
Proxmox but rather the LXC technology itself. To migrate a container, right-
click on Container to open the Context menu, and then select Migrate or click
on the Migrate button in the top-right corner of the GUI to open the Migration
dialog box:

Migrate CT 101

Target node pmx-02

Restart Mode:

@ Help

Select a destination node from the Target node drop-down list. Check the
Restart Mode box to auto-restart the container after the migration is
complete. Click on the Migrate button to initiate the migration. The
migration process will auto-stop the container, migrate it to the destination
node, and then auto-start it at the end of the process.

Live migration is under heavy development by LXC, so we should expect it
in the mainstream LXC package in the near future. To some of us, the lack of
this feature may be a huge deal breaker, especially in a container-dominant
environment with many container instances.

Accessing an LXC container

There are several ways in which we can access an LXC container:

e The noVINC console
e SSH
e Direct shell through the CLI

The noVNC console

We can access and view the container directly from the GUI using the noVINC
console. It is almost visual remote access to the instance. The console is
identical to a KVM virtual machine. If we try to access the container using the
console after a long period of inactivity, it may appear as just a cursor and no
login option:

X PRO XMMO < virtual Environment 5.0-23/af4267bf Searcr
SSHIEMEN Container 101 ('ubuntu-01') on node 'pmx-01'

== Datacenter

B pmx-01 & Summary
&> 101 (ubuntu-01) >_ Console
100 (lvm-1) @ Resources
103 (centos2) e
[£ 102 (centos1) =
& DNS

£ local (pmx-01)

By simply pressing the Enter key, we can make the login prompt appear, as
shown in the following screenshot:

X PRO MO X Virtual Environment 5 0-23/af4267bf Searcr
SEREREM Container 101 ('ubuntu-01') on node '‘pmx-01'

= Datacenter

& Summary
By pmx-01
i 101 (ubuntu-01) >_ Console
1) Resources

103 (centos2)
[2102 (centos1)

%
= Network
£ local (pmx-01) @

DNS

Direct shell through the CLI

One of the best features of an LXC container is the ability to directly access
the container shell through the CLI of the host node. The Proxmox command
to access the LXC container shell is as follows:

| # pct enter <ct_id>

This gives us the direct shell prompt of the container, as shown in the
following screenshot:

0 VNC Command Terminal - noVNC - Opera

172.16.2.1

In the previous example, we are accessing the LXC container ubuntu-e1 from
the Proxmox node pmx-01. Note that no password was asked to be entered into
the container from the Proxmox node. Since a container is running as root, we
can perform any tasks inside the container. Once done, we can simply type
exit to go back to the Proxmox node from the container.

We can also run various commands inside an LXC container without actually
entering the container. The following Proxmox command format is used to
execute commands inside a container:

| # pct exec <ct_id> -- <command>

By following the previous format, if we want to create a directory inside the
container and verify that it has been created, our command will be as follows:

If we try to execute a command with additional arguments using the
following, we will see a parsing error:

In the previous example, we tried to see the storage usage in megabytes inside
a container using an additional option argument, -+. In such cases, we have to
modify the pct command by adding -- after the container ID, as shown in the
following screenshot:

In the preceding screenshot, we can see that the command to check the
storage space has been executed successfully inside the container.

Converting OpenVZ to LXC

This section is for container users who are still using Proxmox 3.x or earlier
with OpenVZ container technology. Since OpenVZ has been completely
replaced in Proxmox VE 4.0 and later versions, all OpenVZ containers must
be converted to LXCs in order to make them usable. The full conversion can
be performed through the Proxmox GUI. The simple process of this
conversion can be summarized as follows:

Write down the OpenVZ container network information.

Power off the OpenVZ container, and then perform a full backup.
Restore the OpenVZ container on Proxmox 4.0 or later.
Reconfigure the network based on information collected in step 1.

el

backup of the existing OpenVZ containers. Otherwise, these

8 Do not upgrade to Proxmox VE 4.0 or later before making a full
containers will not start.

The reason it is important to write down the network configuration in step 1 is
that when OpenVZ containers are restored in Proxmox 4.0 or later, the
network interfaces are stripped off and need to be reattached and
reconfigured.

We can also perform the conversion using the CLI without the Proxmox GUI.
After collecting the network information of the OpenVZ containers, we can
power off the containers and commit a full backup using the following
command:

| # vzctl stop <ct_id> && vzdump <ct_id> -storage <storage_id>

Restore the container in Proxmox 4 or later using the following command:

| # pct restore <ct_id> <storage>/dump/<backup_file>.tar

Summary

In this chapter, we learned about LXC containers, how to create and manage
them, and the difference between unprivileged and privileged containers. We
also learned how to convert OpenVZ containers to LXC containers and use
them in Proxmox VE 4.0 or later versions. Despite not having the live
migration ability, an LXC container is still a better choice of containerization
than OpenVZ and works very well in a Proxmox environment.

In the next chapter, we will see some advanced features of network
components in a Proxmox cluster. We will learn the benefits of a virtual
network, what Open vSwitch is, and why we should use it in a virtual
environment.

Network of Virtual Networks

In this chapter, we are going to take an in-depth look at how we can create a
virtualized network within a virtual environment. We will learn what the
network building blocks are that make up the Proxmox hypervisor and how it
manages both internal and external network connectivity. We will examine
several network diagrams to see how Proxmox can be utilized to create an
entire colony of virtual machines connected with virtual networks. We will
also take a look at the Open vSwitch implementation in Proxmox along with
the network configuration file, network bonding, VLAN, and so on. We can
create dozens of virtual machines at will, but without a planned network
model, we will fail to run an efficient virtual environment. If we compare
virtual machines with bricks as building blocks, then it is the virtual network
that acts as mortar to create anything from a hut to a cathedral.

In this chapter, we will cover the following topics:

e Defining virtual networks

Networking components of Proxmox, such as bridge, vNIC, VLAN, and
bonding

The Proxmox network configuration file

Open vSwitch implementation

Adding network components to a VM

Sample virtual networks

Multi-tenant virtual environments

Exploring virtual networks

A virtual network is a software-defined network where all links and
components may or may not have direct interaction with physical hardware.
In most cases, direct interaction with physical hardware is made by the
hypervisor or host controller. All links between virtual machines, virtual
switches, virtual bridges, and virtual network interfaces are made completely
virtually. The following are the two types of network virtualization:

¢ External network virtualization: This consists of several local
networks operating as one virtual network. Physical LANs can be in the
same location or spread over multiple locations. Usually, external
virtualization is a cloud network service-based model that multiple
companies can use to connect their multi-site virtual environment for a
service fee. External network virtualization can be easily achieved by
combining several internal virtual networks into a single virtualized
network using a WAN, or the internet using technology such as VPN.

e Internal network virtualization: This usually happens locally within a
hypervisor between virtual machines. Do not confuse this with the local
area network. Here, internal network virtualization refers to the network
connectivity between VMs, bridges, vNICs, and so on, which do not
necessarily have to utilize the external LAN. This provides company IT
staff with total control over virtual network operations. Network issues
can be diagnosed faster; customization of expansion or contraction can
happen without delay. Internal virtualization heavily uses virtual
components, such as virtual bridges and vNIC, to form a virtual network.

For in-depth information on external and internal network
virtualizations, refer O http://en.wikipedia.org/wiki/Network_virtualization.
In particular, follow the References and Further reading book
list at the bottom of the wiki page.

In this chapter, we will take a look at the internal network virtualization in the
Proxmox hypervisor and how to manage and configure it. We will also take a
look at some network diagrams of internal and external virtual network
combinations later in the book in Chapter 12, Proxmox Production-Level Setup.

http://en.wikipedia.org/wiki/Network_virtualization

Physical networks versus virtual

networks

We will now see the difference between a physical network and a virtual
network. The following diagram represents a physical network without any

virtualization platform:

Internet

—

,_,-//

Physical Serer
192.168.1.1

"

Physical Sener

l192 168.1.2

Workstations

192.168.1.0

Physical Switch

2nd Floor
Administrative Office

/

2

ese,,;\
%

Physical |rewaII
192.168.1.254
192.168.2.254

. Phys:cal Sener
192.168.2.1

Physical Switch
92 168.2.0

4th Floor Accounting

k

Y

Workstations

Physucal Sener

192.168.2.2

The following diagram represents virtualization as the main infrastructure:

Administrative Office Subnet

s
internet Proxmox Node 1 Viflnﬁr %ehﬁr
VM 1 VM 2 VM 3 VM 4
[WNIC |7 [WIC |
e LMNICI Lhwcl \—w\ch \—m|c|
/’ / \\ '
? Physical Sener | ' Virtual Bridge 1 A __________,
/ Room Switch / /Proxmox Node 2’\ =¥ 10218810
/\
*)
,i% q “l, Vitual Bridge 2 _(_ Accogntir?g 0_fﬁoe Subnet
\,;w.‘f - - 192168.2.0 7-__ —
\
. Proxmox Node 3/ Py
| >
Physical Firewall | T (- _‘VM 1 L‘VM 2 | L‘VM 3 ’J L‘VM 4 ’J
102.168.1.254 | VM 1 VM 2 WIC | WIC | WIC WIC
192.168.2.254

4

2nd Floor

Proxmox Virtual Environment

Physical Swtc@i
S

S 94

Thin Workstations

(!"

—

S S8S8 S

Thin Workstations

Q 4th Floor Physical Switch
ey

Before we dive into virtual network building blocks, we need to understand
how networks are set up in the preceding diagrams. Both the diagrams
represent the same office setup where the main administrative department is
on the second floor, and the accounting department is on the fourth floor of
the building. It is apparent from the diagrams that a physical network is less
complex than a virtual network, but by leveraging virtualization, we can cut
costs, increase efficiency, reduce hardware maintenance complexity, and

increase portability.

A physical network

In the physical network diagram, there is no virtualization platform set up.
The network is set up with physical devices, such as firewalls, switches,
servers, and full desktops. Each department has its own servers and network
segments. A centralized management for the whole company does not exist.
This is a costly solution due to all the physical hardware. If redundancy is a
requirement, it will incur twice the cost since we will need identical physical
servers. All the connectivity in this network is done with physical cable links.
Backups in this setup are quite challenging since all the physical servers in the
two departments have to be backed up on a per-device basis.

A virtual network

The virtual network diagram represents how Proxmox can handle a setup with
multiple departments. All the connections between servers and users’ virtual
machines happen virtually without a physical network device. Using virtual
bridges and vINICs, both the administrative and accounting departments can
coexist on the same Proxmox cluster. Since all computing happens in the
hypervisor, end users can have thin workstations to minimize cost
significantly. Users can connect to their virtual machines with remote
protocols, such as SPICE, VNC, or RDP.

Thin workstations or clients are very underpowered, cheap, and

basic computers for the end user, providing just the essentials to

connect to dedicated server resources. Since all processing

happens in a virtual environment, thin workstations do not need

to be very powerful. The main purpose of a thin workstation is to

allow the user to connect peripherals, such as the monitor,
keyboard, mouse, and network cable. A thin workstation can be
purchased under $200. There are a lot of environments where
Raspberry Pi 3 is being used as a thin workstation due to its
price and reliability.

In this setup, all servers and user machines are virtualized. If there is a need
for a new server, it is just a matter of creating a virtual server with vNIC with
a few clicks. In such a scenario, all virtual machines can simply be migrated
to another available Proxmox node, and everything is up and running in
minutes. Both the departments in our example are separated by two virtual
bridges.

Through the use of the Proxmox GUI, all management can be done from one
location, including backup and restore. Virtual servers can be migrated over
network links, which can be spread over large or small physical distances.
Although a virtual network setup is much more robust and feature-rich, it has
a much lower budgetary requirement. New departments can be added by
creating new virtual bridges for separate subnets and using virtual LANs or
VLANS on existing physical network switches.

Networking components in Proxmox

We will now take a look at the networking components of Proxmox, which
allow virtual machines to communicate with or be segmented from other
internal machines as well as the internet.

Virtual Network Interface Cards

A Virtual Network Interface Card (vNIC) is a software-defined
representation of a Media Access Control (MAC) interface of physical
network interfaces. It is basically a virtual network card for a virtual machine.
Multiple vINICs can share a physical network interface of a host node. In a
way, networking starts with vINIC when a virtual machine sends data to other
virtual machines or networking devices within a virtual environment or
physical environment. In the following screenshot, the example virtual
machine has a virtual network interface named neto assigned with the virtio
driver and configured with the bridge vmbro:

= Hardware B2 Memory 128.00 MiB/512.00 MiB
& Options {i} Processors 1 (1 sockets, 1 cores)
e 4 Display Default
. @ CD/DVD Drive (ide2) none media=cdrom
&% MonRey £ Hard Disk (virtio0) local-lvm:vm-100-disk-1 size=1G
Backup = Network Device (net0) virtio=CA:35:61:2A:34:CD bridge=vmbr0

The virtio is a Linux kernel driver used to virtualize virtual network interfaces
and virtual disk devices. This is the default vNIC for new virtual machines in
Proxmox. When virtio drivers are used inside a guest virtual machine
operating system, the VM is fully aware that it is located inside a virtual
environment. Thus the OS does not need to emulate a physical device. Any
emulation adds extra overhead, robbing performance. The virtio has now
become the virtualization standard for network and disk devices in a virtual
environment.

Proxmox has four models of virtual network interfaces: Intel e1000, VirtIO,
Realtek RTL8139, and VMware vmxnets. Out of these four models, VirtIO
provides the maximum network performance for a VM. All Linux-based
operating systems come equipped with VirtlO drivers. For Windows, the
VirtlO interface driver can be downloaded from http://www.linux-kvm.org/page/Windo

wsGuestDrivers/Download_Drivers.

For Mac OS, the VirtIO interface driver can be downloaded from htps:/github.co

m/pmj/virtio-net-osx.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
https://github.com/pmj/virtio-net-osx

Adding/removing vNIC

To add a new virtual network interface for a VM, we can open the network
device dialog using the Add button from the Hardware tab of the VM:

Virtual Machine 100 ('kvm-1') on node 'pmx-01'

& Summary Add Remave Edit Resize disk ove disk Disk Throttle
>_ Console ¢ 8 HardDisk Default
’ .

2 Hardware § B Comun bise 128.00 MiB/512.00 MiB

| = Nobwore Dovice 1 (1 sockets, 1 cores)
@ Gptons & EFI Disk :
- : € Default
i= Task History -2 USB Device

(v/ LiUVD Uiive (iugd) none media=cdrom
@& Monit

enter & Hard Disk (virtioD) local-lvm:vm-100-disk-1,size=1G

Backup = Network Device (net0) virtio=CA:35:61:2A:34:CD bridge=vmbr0

The dialog box for creating vINICs is similar to the network dialog box that
we learned about in Chapter 6, KVM Virtual Machines, in the Creating a KVM
section. To remove a vNIC, simply select the network device and click on
the Remove button.

If the Hotplug option for the network interface is enabled for the VM, we can
add or remove the network interface without powering down the VM. The
following screenshot shows the Hotplug option for KVM VMs:

Server View Virtual Machine 100 (kvm-1') on node 'pmx-01

= Datacenter

e pmx-01 & Summary Edit | Revert
&K 101 (ubuntu-01) > Console Name kvm-1
100 (kvm-1) &= Hardware Start at boot No
103 (centos2) & Options Start/Shutdown order order=any
(1102 (centos1) = _ 0S Type Linux 4 X/3 X/2 6 Kemel
% local (prmx-01) = TaSk_ ristony Boot Order Disk 'virtio0', CD-ROM, Network
: lrzzalol:?;:npxm;?ﬂ Monitor Use tablet for pointer Yes
ﬁ;)mx.oz Backup Hotplug Disk, Network, USB, Memory, CPU
E@ pmx.03 3 Replication ACPI support Yes
¥ Linux_VMs %) Snapshots SCSI Controller Type VirtlO SCSI

A virtual bridge

Just as a real-world bridge connects two sides of a river, a virtual bridge
connects a Proxmox virtual network to a physical network. A virtual bridge is
like a physical network switch where all virtual machines connect to and can
be configured using the Spanning Tree Protocol (STP). A virtual bridge is a
great way to create separate subnets. All VMs in the same subnet can connect
to their respective bridges. Proxmox creates one virtual bridge by default
during the installation process. Each Proxmox node can support up to 4,094
bridges. When the same bridge configuration is entered on all nodes, the
bridge can be used from any nodes in the cluster, thus making live migration
possible without network connectivity interruption. The default naming
format of a bridge is vmbrx, where x represents an integer between o to 4, 094.

Proxmox will allow a bridge to be created and not be connected to a physical
NIC. This allows an isolated environment, that has no access to the physical
or any other network on the LAN. Using Open vSwitch, however, we can
configure one bridge with multiple VL ANSs, such as a real physical switch.
We will take a look at the Open vSwitch implementation later in this chapter.

We can change a virtual bridge of a VM in real time without needing to
power-cycle it. For example, if a VM is configured with a virtual bridge, vmbro,
and we want to change the bridge to vmorie later, we can do so without turning
off the VM.

Adding a virtual bridge through the
GUI

We can add a new virtual bridge through the Proxmox GUI or CLI. Virtual
bridges are created at the node level. So select the node which will have the
bridge and then click on Network to see the list of existing configured virtual
bridges and physical network interfaces installed in that node. The following
figure shows the Network option for our node pmx-e1 in our example cluster:

Server View N el

= [afacenter

Q Search Oreale ~ Revet Edt Remove

£ pmcd
0 {01 bunte 1) & Sy Name Type Acive Adostat Pog/Sleves Paddress Subnetmask | Gataway
LU R osd Mok Vs Mo
103 {contos?
) & System st NetorkD.. Yes Vs 192160201 2%9255..
[0 ot
L NetworkD.. Yes Vs 19166301 202020

$ lca e

Emmmm) 408 o) LnBrge Y5 Vs enstd ez %%k 172163

Note that if the GUI is used to create a bridge, then the node will need to be
restarted to apply the configuration. This is because a new network interface
configuration through the GUI gets written in /etc/network/interfaces.new, and
only by rebooting does the new configuration get permanently written in
/etc/network/interface. The following screenshot shows the pending change
information after creating a new bridge named vmbra:

i= Syslog Pending changes (Please reboot to activate changes)

< Updates
--- fetc/network/interfaces 2017-87-18 22:05:01.429958579 -0680
U Firewall +++ Jetc/network/interfaces.new 2017-88-09 19:23:38.986001792 -P6RE
) @@ -33,3 +33,11 @@
& Disks bridge stp off
bridge fd @
® Ceph i
13 Replication +auto vmbrl
+iface wvmbrl inet static
= Task History address 192.168.10.2

netmask 255.255.255.0
bridge ports ens2l
bridge stp off
bridge fd @

® Subscription

+ o+ o+ o+ o+ o+

To revert the changes before a reboot is done, we can simply click on the
Revert changes button.

To create a new bridge through the GUI, we need to click on Create under
Network, and then we need to select the Linux Bridge option to open the
bridge creation dialog box, as shown in the following screenshot:

Create: Linux Bridge

Name vmbr1 Autostart

IP address: 192.168.10.2 VLAN aware

Subnet mask: 255.255.255.0 Bridge ports ens21
Gateway | | Comment

IPv6 address:
Prefix length:

Gateway:

Name

In the Name textbox, type in the name of the new bridge to be created. The
naming format must be vmorx where x can be any integer from o to 4,e94. For
our example bridge, we are naming it vmbra.

IP information

We can configure both IPv4 and IPv6 for the bridge. However, the Gateway
entry must remain blank since we already have a default bridge configured
with the gateway. There can only be one bridge configured with the gateway
per node. If we try to create another bridge with a gateway address, the bridge
creation process will abort with an error:

Error

| ;/ | Parameter verification failed. (400)
7N

gateway: Default gateway already exists on interface 'vmbr(Q'.

Bridge ports

The Bridge ports textbox is to type in the physical network interface of the
host to which this bridge will be connected. There is no drop-down menu to
choose a physical network interface from. The name of the interface needs to
be typed in. If the virtual network traffic is not going to go out of the node but
will remain isolated among the virtual machines within the node, then we can
leave the port’s textbox blank.

It is important to note here that we can only configure one
0 virtual bridge per physical network interface. One physical
interface can never be shared among multiple bridges.

VLAN-aware

The VLAN-aware checkbox is a new addition that allows Proxmox to act as a
trunk in a switch that will pipe multiple VLANSs over one connection.
Although it is not important to enable it, however, it is a new way of handling
VLANS on the bridge. For example, if we need to implement 10 VLANSs, we
will need to create 10 virtual bridges in the traditional Linux bridge way.
However, using the VL AN-aware option, we can create one bridge and just
add the VLAN ID to it, thus saving a lot of time typing out multiple bridge
configurations.

The following shows a basic example configuration of a traditional Linux
virtual bridge for 10 VLANS:

auto vlane
iface vlan® inet manual
vlan_raw_device eth0

auto vmbro

iface vmbr® inet manual
bridge_ports vlan®
bridge_stp off
bridge_fd ©

auto vlanio
iface vlanl10 inet manual
vlan_raw_device eth®

auto vmbri0

iface vmbri10 inet manual
bridge_ports vlani0
bridge_stp off
bridge_fd ©

In the preceding configuration, we can see that there are a lot of bridge
instances in the traditional Linux form. However, using the VLAN-aware
option, we can reduce the entire configuration to just a few lines. The
following is an example configuration of a VLAN-aware bridge for 10
VLANS:

auto vmbro

iface vmbro inet manual
bridge_vlan_aware yes
bridge_ports etho
bridge_vids 1-10
bridge_pvid 1
bridge_stp off
bridge_fd ©

For a traditional Linux bridge, we have used additional lines of

port as a bridge port for the bridge. The configuration option is
vlan_raw_device <physical_port>. Although there is more than one
way to create a VLAN-backed bridge, this is the preferred
method of configuration.

0 configuration to create a VLAN port first, and then we pass that

The advantage of using the traditional Linux method is that each VLAN gets
its own virtual bridge, thus isolating the network traffic further. For instance,
when reconfiguring a bridge of a particular VLAN ID, only that bridge and all
the VMs connected to that bridge are affected. For the VL AN-aware mode,
when there is a misconfiguration, it can interrupt network connectivity for all
the VMs connected to the bridge. The VLAN-aware mode provides similar
functionalities as Open vSwitch but without the extra package. We will learn
about Open vSwitch later in this chapter.

When using the VLAN-aware bridge, we have to tag each virtual interface
with the VLAN ID, as shown in the following screenshot:

Edit: Network Device

(@ Bridged mode Maodel VirtlO (paravirtualized)

VLAN Tag: | 1| MAC address: CA35:61:2A:34CD

Bridge: | vmbrQ Rate limit (MB/s). | unlimited
Firewall Multiqueues:
) NAT mode Disconnect
© e [ok] reset]

When using traditional mode without the VL. AN-aware option, we have to
select the VLAN tagged bridge itself instead of entering the VLAN Tag for
the virtual network interface.

Adding a virtual bridge through
CLI

Perform the following steps to create a virtual bridge in Proxmox through the
CLI:

1. Log in to the Proxmox node through the console.

Open the interface file /etc/network/interfaces using an editor.

3. Add the configuration lines using the following format at the end of the
file:

N

auto <bridge_name>

iface <bridge_name> inet static
address 192.168.10.1
netmask 255.255.255.0
bridge_ports ens21
bridge_stp off
bridge_fd 0

4. Save the file and exit the editor.
5. Activate the bridge from the CLI using the following command:

| # ifup <bridge_name>

The new virtual bridge should now be activated and running. If virtual
machines are to be migrated to other nodes, then the configuration must be
duplicated in all the nodes.

Extra bridge options

There are two extra bridge options that are usually used with the virtual
bridge configuration.

bridge_stp

This option allows multiple bridges to communicate with each other for
network discovery and loop avoidance. This is useful to eliminate data cycles
to provide optimal packet routing because with STP on, bridges can talk to
each other and figure out how they are connected, and then provide the best
routing possible for the data packet transmission. STP also allows fault
tolerance since it checks the network topology if a bridge fails. To turn on the
STP option, just modify the bridge configuration, as follows:

| bridge_stp on

STP increases bandwidth efficiency while posing security issues. Do not use
STP when a virtual subnet requires isolation from the other virtual subnet in
the same cluster and you do not want the bridges to talk to each other. It is a
useful option when working inside the virtual environment of a company,
where data can flow freely between departments’ subnets.

0 STP is turned off by default.

STP does not have any authentication and assumes all network interfaces to
be trustworthy. When a bridge inquires about the network topology from
another bridge, information is freely shared without any authentication. Thus,
a user in the bridge can potentially gather data of the entire network topology
and other bridges in the network. This leads to a dangerous situation when
bridging between the internal environment and the internet.

bridge_fd

FD refers to forwarding delay. The bridge_fd option sets the delay before the
interface will be ready. During the delay, the bridge tries to discover other
bridges and checks that there are no network loops if STP is on. By default,
the forwarding delay is set to o, as shown in the following code:

| bridge_fd ©

In most cases, the default value of e is enough. In a very complex virtual
environment with several dozen bridges, increasing this number to 3 or 4
might help. Without this delay, the bridge will start transmitting data packets
regardless of whether the other destination bridge is available or not.
Increasing the delay time allows the source bridge to check all the bridges and
not transmit any data if the destination bridge is down, thus preventing
unnecessary network bandwidth consumption.

There are many more bridge_ options to be used in a network
configuration file, such as bridge _hello, bridge _maxage,

and bridge bridgeprio. Bridge options are Linux specific and
beyond the scope of this book. For in-depth information on
bridges, VISIt http://www.linuxfoundation.org/collaborate/workgroups/networking
/bridge.

http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge

Virtual LAN

A VLAN is a logical local area network within a physical local area network.
It can be compared with partitions within a physical disk storage. A physical
network interface can be partitioned to transport data for multiple separate
subnets. This partition is achieved using a VLAN ID. For details on VLANs
or the IEEE 802.1q standard, refer to http://en.wikipedia.org/wiki/IEEE_802.1Q.

Once VLAN data leaves the virtual environment, a physical network switch
with the VLAN feature tags each data with an ID and then directs the data to
its proper destination. Each subnet should have the same VLAN ID on the
virtual environment and on the physical network switch. VLAN helps reduce
the broadcast traffic of multiple domains on the same network. By
segmenting a large network into smaller VL ANSs, broadcasts can be sent only
to relevant VLANSs without interrupting other data traffic on the network.

VLAN also provides an added security layer on a multi-domain network since
a user can no longer just plug into the network and capture just about any data
of any domain on the network. Network segmentation is usually done with a
layer 3 device such as a router. However, by using a VLAN, significant cost
savings can be achieved with the existing layer 2 devices on the network,
such as a managed switch or smart switch. There are seven layers defined by
the Open Systems Interconnection (OSI) model by which network
communication takes place. For in-depth details on OSI, refer to http:/en.wikipedi
a.org/wiki/OSI_model.

http://en.wikipedia.org/wiki/IEEE_802.1Q
http://en.wikipedia.org/wiki/OSI_model

Adding a VLAN

VLAN can be set up on both the virtual machines and on bridges. If the
VLAN traffic leaves a virtual environment, it is important for each switch and
physical network device to be VLAN-aware and tagged properly. Tagging
VMs with the VLAN ID is very straightforward through the Proxmox GUI.
Just enter the VLAN ID during the addition of a network interface to a VM or
edit the already added vINICs. The following screenshot shows a virtual
interface for a VM after it was tagged with a VLAN ID:

Virtual Machine 100 ('kvm-1") on node 'pmx-01"

& Summary Add Remove | Edit | Resize disk ove disk Disk Throttle CFU options
>~ Console B3 Keyboard Layout Default
L Hardware = Memory 128.00 MiB/512.00 MiB
& Options {i: Processors 1 (1 sockets, 1 cores)

Displa Default
= Task History ~ by

@ CD/DVD Drive (ide2) none media=cdrom
@& Monit
entter & Hard Disk (virtio0) local-lvm:vm-100-disk-1,size=1G

Backup = Network Device (net0) virtio=CA:35:61:2A:34:CD bridge=vmbr0 tag=1

In the previous example, we have tagged the interface for VLAN ID 1. This
tagging works when the bridge has the VLLAN-aware option enabled, or when
Open vSwitch has been implemented. When each virtual bridge is configured
with a separate VLAN ID, then instead of assigning a tag ID, we will
configure the interface to use the bridge for that VLAN. In the following
screenshot, we have configured the network interface to use the bridge vmor1
instead of tagging:

Virtual Machine 100 ('kvm-1') on node 'pmx-01'

& Summary Add Remove | Edit | Resize disk ove disk Disk Throttle
> Console Keyboard Layout Default
b Hardware B3 Memory 128.00 MiB/512 00 MiB
&% Options {'!} Processors 1 (1 sockets, 1 cores)
Displa Default

iE Task History - i

@ CD/DVD Drive (ide2) none media=—cdrom
@ Monitor

£ Hard Disk (virtioD) local-lvm:vm-100-disk-1,size=1G
Backup = Network Device (net0) virtio=CA:35:61:2A:34:CD bridge=vmbr1

We can also configure a VLAN for bonded network interfaces. For this,
instead of assigning a physical interface as a VLAN raw device, we need to
create a new bonded interface and then use that for the VLAN raw device, as
shown in the following example configuration:

auto bondo
iface bond® inet manual
slaves ethO ethi

auto vlani
iface vlanl inet manual
vlan_raw_device bond0

auto vmbri

iface vmbril inet manual
bridge_ports vlanl
bridge_stp off
bridge_fd 0

In the previous example, we created a bonded interface using the physical
ports ethe and eth1. Then, we created a VLAN interface vian1 using the bonded
interface as the raw device. The new virtual bridge vmbr1 was created from
viani. Notice that nowhere have we used the VLAN tag. Instead, we created
the VLAN raw device based on the desired tag. The name of the bridge is not
important here, but the name of the VLAN interface is. If we have to create a
bridge for VLAN ID 9, then our configuration will look like this:

auto vlan9
iface vlan9 inet manual
vlan_raw_device bond®

auto vmbr9

iface vmbr9 inet manual
bridge_ports vlan9
bridge_stp off
bridge_fd 0

Besides the tagged virtual bridge and virtual network interface, in order to
make the VLAN work, we also have to configure a physical switch. Without a
VLAN, the capable switch network traffic will not be able to traverse between
nodes or go outside the local network. Traffic will be limited to inside the
node only. Each physical switch comes with its own GUI for switch
configuration, but the basic idea of the VLAN configuration remains the same
for all.

The VLAN configuration is done on a physical switch by configuring trunks
or general ports. The option is usually found by navigating to the Switching |
VLAN menu of the GUI. The following screenshot is an example of the
VLAN setting on the Netgear GS748T smart switch:

NETGEAR

Switching Routing Security Monitoring Maintenance

Auto-VoIP | STP | Multicast MVR | Address Table

Basic VLAN Configuration

VLAN Configuration

» VLAN Membership | | vLAN ID | VLAN Name VLAN Type
» VLAN Status nl _II—.I'_SWc

» Port PVID

1 Default Default
Configuration
» MAC Based VLAN Fa Auto VoIP AUTO VoIP
» Protocol Based 3 Auto-Video Auto-Video
VLAN Group 9 Demo vLan Static

In the previous example, a demo VLAN with ID #9 was set up for the bridge,
vmbro. Next, we have to configure the ports that are part of VLAN 9 under the
VLAN Membership menu, as shown in the following screenshot, where we
have tagged ports 2, 3, 4, and 5 for VLAN 9:

Sysiem Swi|ching Rouling QoS Sl-(urlty Moniloring Maintenance Hc|p Index
VLAN Auto-YoIP | STP | Multicast MVR | Address Table

Basic VLAN Membership

» VLAN Configuration VLAN Membership

VLAN ID _ Group Operation Untag All

» VAN status VAN Namne UNTAGGED PORI MEMBERS
» Port PVID

. m Static i TAGGED PORT MEMBERS

Cenfiguration -
» MAC Based VLAN T Unit1
» Protocol Based Port 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
il s g g g

VLAN Group
Configuration
» Protocol Based

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50

A good practice to identify which VLAN belongs to which bridge
is to use the same number for both the interfaces. For example,
a bridge vmorie will have the VLAN ID 10. Without some order, in
the beginning, bridges and VLANs will quickly get out of control
as the network grows over time.

Network Address
Translation/Translator

Network Address Translation/Translator (NAT) is a method of remapping
one IP address space into another by modifying the network address
information in the IP datagram packet headers while they are in transit across
a traffic routing device.

NAT secures a device by not directly exposing it to the internet or to a public
network. It also allows more physical devices to be able to communicate
without having individual public IPv4 addresses, which will cost money, and
there is a limited supply of IP addresses on the internet. NAT is usually
configured in the router or firewall of a network, where the policy is created
for local-to-global and global-to-local IP address mapping.

NAT is relevant for IPv4 networks. An IPv6 network diminishes
0 the need to use NAT because IPv6 addressing is always public.

Adding NAT/masquerading

NAT is a way to hide internal network IP addresses from the external
network, such as the internet. Any outgoing traffic uses the main host IP
address instead of using its own local IP address. Add the last three lines of
the following post-up and post-down settings to the /etc/network/interfaces
configuration file. Only add these lines under the virtual bridge configuration
that needs the NAT option:

auto vmbro
iface vmbro inet static
address 192.168.145.1
netmask 255.255.255.0
bridge_ports none
bridge_stp off
bridge_fd 0
post-up echo 1 > /proc/sys/net/ipv4/ip_forward
post-up iptables -t nat -A POSTROUTING -s '192.168.145.0/24' -o etho
-j MASQUERADE
post-down iptables -t nat -D POSTROUTING -s '192.168.145.0/24' -0 etho
-j MASQUERADE

It is recommended that all NAT configurations be handled by a
dedicated physical or virtual firewall. Most firewalls have an
out-of-the-box NAT option. Also, using virtualized firewalls, we
8 can create truly isolated virtual networks for multiple clients on
the same Proxmox cluster. Having a virtual firewall provides the
client control over their own filtering while keeping their
network hidden from the other client networks in the cluster.

Network bonding

Network bonding or Teaming or Link Aggregation (LAG) is a concept
where multiple interfaces are combined to increase the throughput, set up
network redundancy, and balance network load. This concept is heavily used
in high-demand environments where downtime and slow network I/O are not
acceptable. The Proxmox GUI provides excellent features to create and
manage to bonding within the cluster node. Bonding modes supported by
Proxmox are balance-rr, active-backup, balance-xor, broadcast, Link Aggregation
Control Protocol (LACP) or 8e2.3ad, balance-t1b, and balance-alb. The
following table lists the various bonding modes as well as their policies and

descriptions:
Bonding mode Policy Description
Packet transmission takes place sequentially
balance-rr Round from the first participating network interface
or ! : . :
Mode © robin to the last. This provides load balancing and
fault tolerance.
Only one participating network interface is
active-backup Active active. The next interface becomes active
or) . . .
Mode 1 backup when the previous active interface fails. This
only provides fault tolerance.
This mode selects the same participating
interface for each destination MAC address.
balance-xor Transmission takes place based on bonded
or XOR network interfaces of the MAC address
Mode 2 XOR’d with the destination MAC address.
This provides both load balancing and fault
tolerance.
broadeast Transmission takes place on all participating
or Broadcast | bonded network interfaces. This provides
Mode 3 fault tolerance only.

All participating network interfaces in the
aggregated group share the same speed and

802.3ad Dynamic duplex settings. All interfaces are utilized
Sgde 4 link according to the se2.3ad specification. A
aggregation | network switch with se2.3ad or the LACP
feature is required. This provides fault
tolerance.
Outgoing packets are distributed according
to the current load on each participating
Adaptive interface. Incoming packets are received on
balance-tlb . . .
or transmit the current interface, and if the same
Mode 5 load interface fails, then the next available
balancing interface takes over. This provides fault
tolerance and load balancing for only
outbound packets.
This is the same as balance-t1b with the
balance-alb Adaptive inclusion of load balancing for incoming
or load packets on all interfaces. This provides fault
Mode 6 balancing tolerance and load balancing for both

incoming and outgoing traffic.

Adding a bonding interface

We will now see how to add network bonding to our cluster. There are several
types of bonding options available. However, only balance-rr, active-backup,
and LACP (802.3ad) are the most widely used. The balance-rr option provides
the round robin method to increase the overall interface bandwidth with
failover. The balance-rr option does not require any special network switch.
Just about any switch can be used to make this work. The major drawback of
balance-rr is @ waste of data packets. LACP is known as the industry-standard
bonding.

In this book, we will only take a look at the LACP bonding protocol.
However, to give you an idea of what balance-rr bonding looks like, the
following diagram shows balance-rr bonding between Proxmox nodes and
Ceph distributed storage clusters. In this example, the Proxmox public
network is on 192.168.10.0/24, while the storage backend is on a private
192.168.201.0/24 subnet. Separate switches are used for the Ceph storage
network to increase redundancy. Each Proxmox node has three 1-gigabit
NICs. One is used from the main cluster of server virtual machines, and the
remaining two are used for baiance-rr bonding. This type of bonding is a very
economical way to provide network redundancy:

192.168.201.0
P \‘ Ceph Switch 1)/
— - Y rd

AN Y — 1 /
172400180 Proxmox Node 1 NS /" Ceph Node 1
Public LAN P \\b, / "
e 4 # M~
P 5 —~ N \ = S
— < />
N ‘\‘_'f‘\/ \\ '
. ProxmoxNode2 / "~ N\ “_ Ceph Node 2
N L bS
Proxmox Node 3 Ceph Switch 2 Ceph Node 3

LACP can combine multiple interfaces to increase the total throughput but not
the actual connection. For example, an LACP bonding of four 1-gigabit
network interfaces will still have a total connection speed of 1-gigabit, but it
will be able to respond to more simultaneous requests closer to the 1-gigabit
speed.

To know more about link aggregation/bonding/teaming, refer to
8 http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_

Control_Protocol.

http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol

For LACP to work, it is very important to know whether the physical switch
supports this feature. A quick visit to a switch manufacturer’s website will
give us the information about whether the LACP feature is supported. Some
manufacturers will list this feature as 802.3ad.

Like virtual bridges, we can also configure a network bond through the
Proxmox GUI or CLI. A bond created through the GUI will only be activated
after the node reboots, whereas a bond added through the CLI by editing the
network configuration file directly can also be activated through the CLI. We
can open the bond interface creation dialog box from the Hardware tab of the
node. The following screenshot shows the dialog box for a bonded interface,
bonde, in our example Proxmox node:

Create: Linux Bond

Name: bond0 Autostart:

IP address Slaves: ens21 ens2?2
Subnet mask ‘ | Mode: LACP (802 3ad)
Gateway: Hash policy: layer2+3

IPv6 address: Comment

Prefix length:

Gateway:

In the previous example, we used physical interfaces, ens21 and ens22, for our
bonded interface, bonde. We have not used any IP information since this
bonded interface will not be directly connected, but we will create VLAN
interfaces and virtual bridges based on the bond interface. For bond mode, we
are using LACP with the 1ayer 2+3 hash policy. There are three hash policies to
choose from the drop-down list:

e layer2
e layer2+3
e layer3+4

To maximize the performance and stability of the network connectivity, it is
important to know the difference between the policies.

The layer 2 hash policy

If no policy is selected, then Proxmox uses the layer 2 policy by default. This
policy generates the transmission hash based on the MAC addresses of the
network interface. This policy puts all the network traffic on a single slave
interface in the bonded LACP.

The layer 2+3 hash policy

This policy creates the transmission hash based on the combined MAC and IP
addresses. These are also the layer 2 and layer 3 protocols of the network
layer. This policy also sends the network traffic to a destination on the same
slave interface. However, it provides more balanced network transmission
than just using the layer 2 policy. For best performance and stability, use this
policy.

The layer 3+4 hash policy

This policy creates the transmission hash based on the upper network layer
whenever it is available. The combination of layer 3 and 4 allows multiple
network traffic or connections spanning over multiple slave interfaces in the
bonded LACP. However, one connection will not span over multiple slave
interfaces. For non-IP network traffic, this policy uses the layer 2 hash policy.
Do keep in mind that the layer 3+4 policy is not fully LACP or 802.3ad
compliant.

To create the bonding interface through the CLI, the following lines need to
be added to the configuration file. In our example, we are adding the physical
interface ports, ens21 and ens22, to the bonding interface:

auto ens21
iface ens21 inet manual
auto ens22
iface ens22 inet manual

bonding interfaces

auto bonde

iface bond@ inet manual
slaves ens21 ens22
bond_miimon 100
bond_mode 802.3ad

We are going to add the following lines of code to create a virtual bridge
using the bonded port:

auto vmbri

iface vmbril inet static
address 192.168.10.1
netmask 255.255.255.0
bridge_ports bondo
bridge_stp off
bridge_fd 0

Activate the bridge by rebooting the node or from the CLI by stopping and

restarting the bridge. Use the following commands:

ifup bondo

ifdown vmbri

ifup vmbri
After configuring Proxmox nodes with LACP bonding, we now have to set up
LACP on a physical switch. Each switch comes with its own documentation
on how to configure LACP link aggregation. In this section, we are going to
take a look at the Netgear GS748T smart switch LACP feature. The option to
enable LACP can be found by navigating to Switching | LAG in the Netgear
GUL. First, we have to enable LACP for each link group. The following

screenshot shows LACP enabled for group 1 to 3 through the LAG
Configuration menu:

System Swifching Routing QoS Security Monitoring Maintenance Help Index

AG | VIAN | Auto-VoIP | STP | Multicast MVR | Address Table

LAG Configuration

LAG Configuration
» LAG Membership

Advanced Description Admin Mode | STP Mode Link Trap LAG Type
chi 11 Enable Enable Enable LACP
ch2 12 Enable Enable Enable LACP
ch3 13 Enable Enable Enable LACP
ch4 14 Enable Enable Enable Static I
chs 15 Enable Enable Enable Static
ché 16 Enable Enable Enable Static

After the link groups are enabled, we will assign switch ports to each groups.
In our example, we are assigning port 1 and 2 to group 1 named ch1, port 3
and 4 to a group named ch2, and port 5 and 6 to a group named chs. The
following screenshot shows ports enabled for group 1:

Switching Routing

Security Monitoring Maintenance Help

Ports | LAG | VLAN | Auto-YoIP | STP Multicast | MVR | Address Table

LAG Membership
» LAG
Configuration LAG Membership

LAG ID CURRENT MEMBERS

Advanced

Port Selection Table

= Unit 1
Port 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
v v

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Bonding can also be used with a VLAN. Refer to the Virtual LAN section in
this chapter to learn how to integrate bonding with a VLAN.

Multicast

From Proxmox VE 4.0 and later, multicast is now required for proper cluster
communication. In simple words, multicast delivers a single transmission to
multiple server nodes in a network simultaneously, whereas unicast sends data
packets to a single destination from a single source. The more nodes there are
in a cluster, the more separate unicast packets need to be sent by it. Using
multicast, this extra amount of traffic is vastly minimized. Due to the increase
of packets in the network when using unicast, implementing it in a cluster
with five or more nodes should be avoided. In order for multicast to work, the
physical switch in the network must be multicast and IGMP snoop capable.

IGMP snooping is simply a process where the physical switch listens or
snoops for an IGMP conversation between the nodes and the switch. This
allows the switch to maintain a table or map to determine how and where to
direct multicast requests. After enabling IGMP snoop, it takes a few hours for
the switch to establish the table after gathering enough data for all multicast-
enabled switch ports.

multicast. So for the Open vSwitch environment, the multicast

0 Keep in mind that Open vSwitch currently does not handle
querier router must be configured on the physical switch.

If it is not possible to use multicast at all in a Proxmox environment, then
unicast is the only choice. To test whether multicast is functioning in the
cluster, we can run the following command on all the Proxmox nodes:

|# omping <remote_node_ip> <local_node_ip>

If multicast is functioning fully, the output will show multicast responses:

If you only see an error message waiting for response msg, that means the

command omping is only running on one node. Only by running it on multiple
nodes simultaneously can we generate multicast traffic. Unsuccessful
multicast responses will show packet loss for the node. The documentation of
each physical switch should show whether the switch is multicast capable.
However, nowadays, almost all smart and managed switches have the
multicast feature. It is, however, disabled on all ports and must be enabled for
proper Proxmox cluster communication.

Configuring multicast on Netgear

In this section, we will see how to configure multicast for the Netgear smart
switch GS748T. To configure multicast, navigate to Switching | Multicast.
First, we are going to enable the IGMP snooping status through the IGMP
Snooping Configuration option, as shown in the following screenshot:

Switching Routing

Security Monitoring Maintenance

Ports | LAG | VLAN | Auto-VolIP | STP Multicast MVR Address Table

MFDB IGMP Snooping Configuration
Auto-Video =
IGMP Snooping Configuration
IGMP Snooping Status Disable
Vvalidate IGMP IP header Disable (@ Enable

» IGMP Snooping
Interface IGMP Statistics
Configuration

» IGMP Snooping
Table Interfaces Enabled for IGMP Snooping

Multicast Control Frame Count 0

Next, we have to Enable admin mode for the interface that will be used for
IGMP snooping. We can enable it from the IGMP Snooping

Configuration interface option. As shown in the following screenshot, in our
example switch, we are enabling IGMP snooping for switch ports 1 to 6,
which is where Proxmox nodes are connected:

Switching Routing Security Monitoring Maintenance

Ports | LAG | VIAN | Auto-VoIP | STP Multicast MVR Address Table

MEDB IGMP Snooping Interface Configuration
Auto-Video

IGMP Snooping Interface Configuration

» IGMP Snooping LAGS All Go To Interface

GO
Configuration Max MRouter
Interface | Admin Mode | Host Timeout | Response N
2 Timeout
Time
O - §i | Al I

» IGMP Snooping
e gl Enable 260 10 0
» IGMP Snooping g2 Enable 260 10 0
VLAN Configuration a3 Enable 260 10 0
» Multicast Router g4 Enable 260 10 0
Configuration g5 Enable 260 10 0
» Multicast Router g6 Enable 260 10 0
VLAN Configuration g7 Disable 260 10 0
IGMP Snoopin
. ping g8 Disable 260 10 0
Querier .
MLD Snooping g9 Disable 260 10 0
glo Disable 260 10 0
gl1 Disable 260 10 0
gl2 Disable 260 10 0

The last configuration to be made is to enable multicast traffic for switch
ports from the Multicast Router Configuration option. In our example, we are
enabling multicast on ports 1 to 6, as shown in the following screenshot:

Switching Routing Security
Ports | LAG | VLAN Auto-VoIP | STP Multicast MVR
MEDB Multicast Router Configuratic
Auto-Video

Multicast Router Configuration

» IGMP Snooping LAGS All Go

Configuration - Interface | Multicast Router
il O
Interface P———

Configuration g1 Enable
» IGMP Snooping g2 Enable
Table g3 Enable
» IGMP Snooping g4 Enable
VLAN Configuration g5 Enable
g6 Enable
- a7 Disable

» Multicast Router = :
VLAN Configuration a8 Disable
IGMP Snooping a9 Disable
Querier glo Disable
MLD Snooping gll Disable

gl2 Disable

Open vSwitch

Licensed under the open source Apache 2.0, Open vSwitch is a multi-layered,
enterprise-grade virtual switch born specifically to be used in modern virtual
networks of a virtual environment. This is similar to a virtual bridge of Linux
but has more capabilities and robust features. A question often asked is why
one should choose Open vSwitch over time- and industry-proven traditional
Linux bridge and networking. Once we understand the features and
advantages Open vSwitch provides for a virtual network, the answer becomes
obvious.

Features of Open vSwitch

The following are some of the features that make Open vSwitch a better
option than standard Linux networking:

e Security: Open vSwitch provides a high degree of security by allowing
you to set policies per VM virtual interface.

e LACP and VLAN-aware: Open vSwitch fully supports LACP link
aggregation and VLAN tagging. We can configure one Open vSwitch
with multiple VLAN tags, thus reducing the management overhead of
many virtual bridges per VLAN tag.

¢ Quality of Service: QoS or quality of service is fully supported.

e Network monitoring: We can get an extreme level of control over
network packets passing through Open vSwitch by implementing
powerful monitoring using Netflow and sFlow.

e IPv6: Open vSwitch fully supports IPv6.

¢ Tunneling protocol: This has full support for multiple tunneling
protocols, such as GRE, VXLAN, STT, and IPSEC.

e Proxmox support: Open vSwitch is fully integrated and supported by
Proxmox, making it a viable choice for virtual network configuration.

For complete details on the Open vSwitch technology, visit the
0 official site at http://www.openvswitch.org/.

It is possible to build a Proxmox cluster entirely with the traditional Linux
bridge without using Open vSwitch at all. But for a large environment, Open
vSwitch does make great sense since it can lessen tedious virtual network
management while providing excellent visibility over network traffic. In a
multi-tenant environment, taking control over what is going on in the network
is very important.

Open vSwitch is not installed in Proxmox by default. It must be manually
installed and configured. On a clean installed Proxmox node, we have to
configure the network as usual, so the node can have internet connectivity.
Then, run the following command to install Open vSwitch:

|# apt-get install openvswitch-switch

Even if Open vSwitch is not installed, the Proxmox GUI will show the menu
options for the Open vSwitch bridge and interface under the Create tab of the

http://www.openvswitch.org/

Network menu of the node.

An important thing to remember when using Open vSwitch is
never to mix traditional Linux components; for example, bridge,

8 bond, and VLAN should never be mixed with Open vSwitch
components. We must not create an Open vSwitch bridge based

on a Linux bond and vice versa.

There are three components that we can use with Open vSwitch:

e Open vSwitch bridge
e Open vSwitch bond
e Open vSwitch IntPort

Adding an Open vSwitch bridge

The Open vSwitch bridge is similar to the Linux bridge except that it is
enough to configure one Open vSwitch bridge, such as a physical switch,
where we can pass several VLANs. We do not need to create separate bridges
for each VLAN, like Linux bridges. Configuring an Open vSwitch bridge is a
little more complicated than a Linux bridge. We need to configure the port
first before creating the actual bridge. In our example, we are going to
configure the port, eth1, which is what our Open vSwitch bridge, vmbri, is
going to be based on. For this, we need to add the following lines of code to

/etc/network/interfaces.

allow-vmbril ens21

iface ens21 inet manual
ovs_type OVSPort
ovs_bridge vmbril

auto vmbri

allow-ovs vmbri

iface vmbril inet static
address 192.168.0.171
netmask 255.255.255.0
ovs_type OVSBridge
ovs_ports ens21

Unlike a Linux bridge, where VLLANSs are passed through bridge tagging, in
Open vSwitch, we can pass VL ANs through ports directly. VLAN trunks are
configured as additional Open vSwitch options in the configuration, as shown
in the following example, where we are passing VLAN 2, 3, and 4:

allow-vmbr2 ens21
iface ens21 inet manual
ovs_type OVSPort
ovs_bridge vmbr2
ovs_options trunks=2,3,4
We can also create the Open vSwitch bridge through the Proxmox GUI.
However, we need to keep in mind that any network configuration performed

through the GUI is not activated until a node is restarted.

We can open the Open vSwitch bridge-creation dialog box from the network
tab of a node. The following screenshot shows the Open vSwitch bridge-
creation dialog box with the necessary information:

Create: OVS Bridge X

Name: vmbr1 Autostart:

IP address: 102.168.10.1 Bridge ports: ens21
Subnet mask: 255.255.255.0 OVS options: ‘ |
Gateway: Comment:

IPv6 address:
Prefix length:

Gateway:

In the OVS options, we can include additional options for the bridge.

Adding the Open vSwitch bond

Like the Linux bridge, we can create various Open vSwitch bond interfaces.
In this example, we are going to create the LACP bonded interface for Open
vSwitch. The following configuration parameters are used to create a bond
interface using the interface to create an Open vSwitch bridge:

allow-vmbrl bondo

iface bond® inet manual
ovs_type 0VSBond
ovs_bridge vmbril
ovs_bonds ens21 ens22
pre-up (ifconfig ens21 mtu 8996 && ifconfig ens22 mtu 8996)
ovs_options bond_mode=balance-tcp lacp=active trunks=2,3,4
mtu 8996

auto vmbri

iface vmbrl inet manual
ovs_type OVSBridge
ovs_ports bondo
mtu 8996

In the previous example, a new parameter is added called pre-up. This is used
to configure jumbo packets. The default ntu for all the interfaces is 1,500.
When configuring jumbo packets, using the value of 8,996 is safer instead of
9,000 since some additional bytes are added on top of the configured

MTU for which a data packet may get discarded if the MTU goes beyond
9,000.

We can configure the same Open vSwitch bond through the Proxmox GUI
using the bond-creation dialog box, as shown in the following screenshot:

Create: OVS Bond

Name: bond0 OVS Bridge: vmbr1

Mode LACP (balance-tcp) VLAN Tag no VLAN

Slaves: ensZ1 ens2? OVS options: lacp=active trunks=2,3.4| ‘
Comment

The Open vSwitch bridge must be created before creating the Open

vSwitch bond. We can select the OVS bridge from the drop-down menu of the
dialog box. It is not possible to add extra parameters, such as configuring the
desired MTU through the Proxmox GUI. So before we restart the node, we

can add the parameter to /etc/network/interfaces.new SO that the configuration
gets committed to /etc/network/interfaces during the node reboot.

Adding Open vSwitch IntPort

In Open vSwitch, it is possible to give the host or physical node access to a
VLAN through the configured Open vSwitch bridge. This is done by creating
an Open vSwitch component called IntPort. In simple words, an IntPort
splits a VLAN, which we can configure to assign the IP information. This is
useful to give the Proxmox node access to a VLAN. For example, our
example Proxmox node pmx-e1 is currently configured to use the Linux bridge,
vmbre. If we want to use Open vSwitch instead, we will have to create an Open
vSwitch IntPort to give the node access to the Open vSwitch bridge utilizing
the VLAN. The following parameters need to be added to the network
configuration. ens1s is our main physical network interface for the node:

auto vmbroe

allow-ovs vmbro

iface vmbr@ inet manual
ovs_type OVSBridge
ovs_ports ens18 vlanl

allow-vmbrO vlanl

iface vlanl inet static
ovs_type 0VSIntPort
ovs_bridge vmbro
ovs_options tag=50
ovs_extra set interface ${IFACE} external-ids:iface-id=$(hostname -s)-${IFACE}-

vif
address 172.16.2.1
netmask 255.255.255.0
gateway 172.16.2.254
mtu 1500

Note that in the port configuration, we have added both ens1s and IntPort
interface viana:

| ovs_ports ens18 vlani

Even though we have specified the Open vSwitch bridge through
ovs_bridge vmbro for the IntPort, we still have to specify it in the
Open vSwitch bridge definition or else the interface will never
be started.

CLI for Open vSwitch

Besides the option to create and edit Open vSwitch devices through the
Proxmox GUI, Open vSwitch comes loaded with command-line options to
manage and gather information of a particular bridge, bond, or interface.
There are four types of commands in Open vSwitch:

ovs-appctl: This is used to query and control the Open vSwitch daemon
ovs-vsctl: This is used to manage the Open vSwitch configuration
database

ovs-ofctl: This is a tool used to monitor and manage the OpenFlow switch
ovs-dpct1: This is used to manage Open vSwitch data paths

It is beyond the scope of this book to go into details of all the available
commands of Open vSwitch. In this section, we will only take a look at the
commands that may prove to be very helpful while managing a Proxmox
cluster:

To see a list of configured Open vSwitch bridges, ports, and interfaces,
use the following commands:

ovs-vsctl list br
ovs-vsctl list port
ovs-vsctl list interface

To see a list of all the interfaces in Open vSwitch, run the following
command:

ovs-vsctl show

To modify options at runtime without rebooting node:

ovs-vsctl set <interface_type> <interface_name> <option>

For example, if we want to add more VLAN IDs to our Open vSwitch
bonded interface, run the following command:

ovs-vsctl set port bond® trunks=2,3,4,5,6,7

We have to mention all the existing VLAN IDs along with the new ones.
Otherwise, the trunk configuration will get replaced with only the new
ones while the old configuration will get replaced. We also have to add

the new IDs to the /etc/network/interfaces file.

¢ To snoop and display traffic to and from the Open vSwitch bridge, run
the following command:

| # ovs-ofctl snoop <bridge_name>

¢ To see the status of each of Open vSwitch components, run this
command:

| # ovs-ofct lshow <name>

e To dump OpenFlow flows, including hidden ones, run this command:

| # ovs-appctl bridge/dump-flows <bridge_name>

¢ To print the version of Open vSwitch, run the following command:
| # ovs-appctl version

For a complete list of the available Open vSwitch commands, visit the
following link:

http://www.pica8.com/document/v2.3/pdf/ovs-commands-reference.pdf

http://www.pica8.com/document/v2.3/pdf/ovs-commands-reference.pdf

Practicing Open vSwitch

If you are using Open vSwitch for the first time, it may seem slightly complex
at first. But with practice and exposure, it really gets easier to create and
manage a complex virtual network fully powered by Open vSwitch. In this
section, you are given the task to create a network configuration for a
Proxmox node using all the network components that we’ve learned so far.
The full configuration is given in the following section but try to create it on
your own first.

Configuration requirements

The Proxmox node has three physical network interface ports—ethe, eth1, and
eth2—and one InfiniBand interface, ive.

We have to configure an LACP bonded Open vSwitch interface with two of
the physical ports. The bridge needs to be configured as a trunk for VLAN 11,
12, 13, and 14. All VMs tagged as interfaces will connect to this bridge. The
third physical interface will have to be configured for backup purposes on a
separate subnet without the VLAN.

The infiniband interface has to be configured to be used with Ceph on a
separate subnet. The node must use VLAN 12 for all host-related
communication utilizing the Open vSwitch bridge.

Solutions

The following is the full network configuration for the given requirements:

auto lo
iface lo inet loopback

LACP Bonded Open vSwitch Interface
allow-vmbr® bondo
iface bond® inet manual
ovs_bridge vmbro
ovs_type 0VSBond
ovs_bonds eth® eth1l
pre-up (ifconfig eth® mtu 8996 && ifconfig ethl mtu 8996)
ovs_options bond_mode=balance-tcp lacp=active other_config:lacp-time=fast
trunks=11,12,13,14
mtu 8996

Creating Open vSwitch bridge

auto vmbro

allow-ovs vmbro

iface vmbr® inet manual
ovs_type OVSBridge
ovs_ports bond® vlani2
mtu 8996

Creating IntPort for physical node
allow-vmbro vlanl2
iface vlanl2 inet static

ovs_type OVSIntPort

ovs_bridge vmbro

ovs_options tag=12

ovs_extra set interface ${IFACE} external-ids:iface-id=$(hostname -s)-${IFACE}-
vif

address 172.16.0.171

netmask 255.255.252.0

gateway 172.16.3.254

mtu 1500

Creating Infiniband interface
auto ib@
iface ib@ inet static
address 192.168.0.171
netmask 255.255.255.0
pre-up modprobe ib_ipoib
pre-up echo connected > /sys/class/net/ib0/mode
mtu 65520

Creating dedicated interface for backup
auto eth2
iface eth2 inet static

address 192.168.10.171

netmask 255.255.255.0

Sample virtual networks

At this stage, we have covered components of virtual networks within the
Proxmox cluster environment. We know the components Proxmox uses to
hold everything together.

We are going to take a look at a few virtual environment scenarios to solidify
our understanding of networking in a Proxmox virtual environment. These are
scenario-based network diagrams and some of them are taken from a real
production environment.

Network #1 — Proxmox in its
simplest form

This is a small-scale Proxmox cluster with three nodes and two subnets within
the virtual environment. Each Proxmox node has two NICs, and both the
bridges vmbre and vmbr1 are attached to ethe and eth1, respectively. Each bridge
has three virtual machines attached to it. Outside the virtual environment,
there is a physical switch, which connects Proxmox nodes, and an admin
console for all management work. This is Proxmox in its simplest form in a
production environment. This type of network can be used as a learning
platform or in a very small business environment with less demanding
workload. Internet connectivity is provided to the second subnet directly from
the firewall with a second NIC, as shown in the following diagram:

wut, Physical Switch

(Internetsi, S .
s S
A b .

Ly

Physical Firewall

7
192.168.1.254 / \
/’/ / \\

Proxmox 1 4

; = — .
— T
— e

vmbrQ/eth0 vmbr1/eth1
/ . .
e S / v \a

VM 1 VM2 VM 3 ‘ VM 1 VM2 VM3

SUBNET 1 SUBNET 2

Virtual Environment

Network #2 — the multi-tenant
environment

This network setup is almost the same as the previous network with the added
benefit of a fully multi-tenant virtual platform. In a physical firewall, we can
only add a very small number of NICs to provide internet connectivity to
isolated subnets. Using a virtualized firewall, we can add as many firewalls or
vINICs as we want. This setup is especially useful when multiple, isolated
client subnets need to be hosted and each subnet requires its own firewall
control for filtering purposes. In this example, vmbro is directly served by the
physical firewall. The bridges vmbr1 and vmor2ee have their own virtualized
firewalls. The firewalls also act as bridges between bridges. For example, the
firewall for the subnet 2 has two vINICs. One of these setups was WAN,
where vmbre acts as an internet provider. The second vNIC is LAN facing,
which serves the subnet 2.

This is a common scenario for infrastructure service providers who host
virtual networks for multiple clients. Since multiple companies can access
their virtual networks remotely, it puts extra workload on the physical
firewall. Single-point firewall failure should be avoided at all costs by
creating a cluster of physical firewalls to provide load balancing and failover
firewall service.

Never use a virtualized firewall on the same cluster to connect to
the internet directly. Always use separate physical hardware as
the main firewall to act as a barrier between the internet and
internal network.

For firewall virtualization, pfsense is a great choice to set up. It is easy to set
up, yet extremely powerful and customizable. Get pfsense and more
information from the official link at https:/www.pfsense.org/.

The following diagram is an example of a multi-tenant virtual environment:

https://www.pfsense.org/

\

Internet "~———____$¢ ”ﬁ

Physical Firewall
192.168.1.254

Proxmox 1

M 1
vmbr0/eth0
VM2
VM3
SUBNET 1
VM 4

Virtual Environment

Physical Switch

-

=

Admin Console

<=

nox 3

Firewall

vmbr200

VM 2

VM3 VM 4

SUBNET 3

Firewall -
M 1 VM2 VM 3 VM 4
SUBNET 2
— Mirtual

Network #3 — academic institution

This network diagram is an example of an academic institution network. The
following diagram shows network connectivity between the admin office,
library, and a remote campus. There are two physical firewalls providing
internet connectivity redundancies. The main virtual network consists of the
database server, file server, accounting server, and library catalog server. The
database server and the file server are connected with the bridge vmore. The
accounting server is connected with the bridge vmorie and VLAN ID 10. The
library server is connected with the bridge vmbr2e and VLAN ID 20. The main
switch is set up with VLAN 10 and 20. The library switch is set up with
VLAN 20. In this setup, accounting server data goes straight to the admin
office and the library catalog server data goes to the library building without
causing additional stress to the network. Remote campus students and staff
can access the main campus network through VPN, thus eliminating the need
to set up a separate virtual environment.

Of course, the following diagram is a very simplified form of the actual
network topology of an academic institution. But the basics of using VLANSs
and bridges are the same for any network size:

et Campu_s’”“&'“"-n " AdminOffice

o =
" Remote 1 Remote 2 Remote 3 Remote 4 ™ Admin1 Admin2 Admin3 Admin 4
\ -
/ \ (
(| \ y
LSS S S SSASS
% B__ = 2 > - =N S > W
= ~_ Wi/ — — [T AN | e
~_ . - W Switeh WAN A AN20
4 ‘.y:‘ 4 |
A B <
¥ (‘} (1Y PP __ ITConsole
Internet—}_ R / | s
gﬁ__ = ;"U-% e A S
oy E%—: Proxhox 1% Proxgox2 Proxmox3 Proxmox4
i 7
‘ /] .
- N\ / 7-"'-.,_7_7 e — ".‘ /"
= 5 .
g|+student2 Switch AN 20 —*’j
St _— N |*Dm‘_,_ — ‘mbrifethﬂ
«— Server /
Student 3 S) i [i |
= ==/ = @ wmnbr10
Sudent1 _—— / |\ FileServer | etho 10
— = A I".‘ Accounting [4 T
= i \ | Serer | vmbr20
e e ¥ | W‘ : eth0 20
Server |
N N N N
oSan = = = SUBNET 1
Cataleg 2 Catalog 1 Library Staff2 Library Staff 1
Library Buildin
4 9 Virtual Environment

A multi-tenant virtual environment

Multi-tenancy is a very frequently used word in the world of cloud
computing, where a virtual environment is regularly used by different clients
from different organizations set up with fully isolated networks. Multi-
tenancy is an integral part for a service provider who provides Infrastructure
as a Service (IaaS) to many clients.

To know more about cloud computing, Visit http://en.wikipedia.org/wiki/
8 Cloud_computing.

In this type of setup, the service provider hosts or rents out computing time
and storage space to their clients. Because of the standard monthly
subscription or SLA-based payment method required for this type of service,
multi-tenancy quickly gained popularity. Basically, a multi-tenant virtual
environment is where several isolated networks coexist on the same platform
without interfering with one another. Almost all public datacenters are multi-
tenancy platforms.

Multi-tenancy is not new in the world of information. The first multi-tenant
environment appeared back in the 1960s, when companies rented processing
time and storage space on mainframe computers to reduce the giant expenses
of mainframe operation. The virtual environment only augmented the same
idea exponentially by leveraging all the virtualization features Proxmox
provides. By combining virtualization with cloud computing, multi-tenancy is
able to get a very strong footing to serve better and serve more customers
without increasing financial overheads. Prior to virtualization, the physical
space and power requirements to host customers in an IaaS environment
meant it was rare and cost prohibitive, thus not many people enjoyed its
benefit.

The Proxmox hypervisor is capable of setting up a stable and scalable multi-
tenant virtual environment. All the networking components we have seen so
far, such as vINIC, virtual bridge, and VLAN, are the building blocks used to
set up a multi-tenant virtual environment. Once we understand the
relationships between virtual machines and virtual bridges, it is fairly easy to
set up a multi-tenant virtual environment with Proxmox.

When setting up a multi-tenant virtual environment, it is very
important to take special care so that one network’s traffic does

.

http://en.wikipedia.org/wiki/Cloud_computing

% not get intercepted by another network. Without a proper VLAN

and subnet, it is possible for one network to sniff network
packets on the entire virtual environment, thus stealing data
from other tenant organizations on the network.

A multi-tenant network diagram

The following is an example of a network diagram of a typical cloud service
provider who provides IaaS to their clients. The entire client network is
virtualized within the service provider’s virtual environment:

Small Small Software
Business 2 Business 1 Developercoqrg’w Corxn%any Coﬁr;;gny
Datacenter #2
_!,l ; !J g _!J ‘l ‘l !‘ J Replication ,;
J
s AN

Cloud Storage

Virtual Server WebHost
}
Email Virtual Office /1

Virtual Desktop

' , Research J
Service Provider # J
Public Cloud - 4

) Admin Console

Proxmux Cluster Backup Cluster

il

o]

Company ABC ‘ Virtual Firewall 1 ‘ |—J | Virlual Firewall 2 ‘

192.168.1.0
\ Virtual Firewall Cluster

vmbri0 [vmbrz0 “ vbr30 n vmbrd0 n vmbr50 vmbrt0
\ 192.168.1.254 || 192.168.2.254 || 192.168.3.254 || 192.1684.254 || 192 168.5.254 || 192 163.6.254
vmbri10
/ 7

Company' XYZ
192168.2.0 | -

Object Storage for
Software Developer

N

\ 2
\ Small Busines!

w2

§ Cuser \ ™ |
162.168.6.0

Company 123 VM4
192.168.5.0

— Proxmox Virtual
Environment

On the client side, they only have simple desktop computers and mobile
devices to access their virtual cloud resources, such as desktop, storage, and
processing power. Clients access these resources through virtual means, such

as Virtual Network Computing (VNC), SPICE, or Remote Desktop
Protocol (RDP).

Virtual networks are isolated with separate subnets. VLANSs are set up (not
shown in the diagram) to reduce mass broadcast traffic. All virtual machine
data is stored on a separate storage cluster with full redundancy. A backup

cluster does a regular backup of all virtual machines, and granular file backup
with histories are done with a third-party backup software. A virtual firewall
cluster is set up in between the virtual environment and the host Ethernet
interface to provide internet connectivity to all client virtual machines. Each
virtualized firewall has several vINICs to connect to each subnet.

Since the firewall is virtualized, we can add any number of virtual network
interfaces without worrying about running out of physical slots. A virtualized
clustered firewall provides maximum uptime. Each company network in this
example has its own virtual bridge, which only talks to that company’s virtual
machines and firewall interface, eliminating any chance of packet sniffing by
other company networks.

Packet sniffing is a process when data packets passing through

a network interface are captured and analyzed. Packet sniffer

software can be placed in a subnet to capture data. This is a

common practice of someone with malicious intentions to
capture sensitive unencrypted data passing through, such as
usernames and passwords in clear text.

This environment is serving multiple clients or organizations, so uptime is a
big concern. To eliminate this issue, the entire virtual environment is
replicated to another datacenter to ensure 99.9 percent uptime. The previous
diagram is an overly simplified version of what really goes on inside a very
busy Proxmox virtual environment. Studying this diagram will give a clear
understanding of virtual network mechanics. From the previous diagram, we
can see that this network environment heavily uses virtual bridges. So, it is
imperative to understand the role of bridges and plan out a draft diagram
before actually setting up this level of a complex virtual network.

When working with a complex virtual network, always keep a

network diagram handy and update it whenever you make any

changes. An up-to-date network diagram will help greatly to

have total control over a virtual network. Especially when any
issue arises, it is easy to pinpoint the cause of the issue with a
diagram.

Summary

We were very busy in this lively chapter. We looked at the differences
between physical and virtual networks. We learned about the network
components that make up a Proxmox-based virtual network. We also learned
about Open vSwitch and its components to create a really complex virtual
network. We even got to analyze a few network diagrams from the basic to
the advanced to get a better understanding of how the Proxmox virtual
network really comes to life.

Proxmox provides all the tools we need to build any level of virtual network.
It is up to the network administrator’s imagination, the company’s budget, and
the need to foresee how all pieces should come together to form a well-
designed and efficient virtual network. The best part is that any mistake is
easily correctable in a virtual environment. We can always go back and
change things until we are satisfied. For this very reason, a virtual network is
always evolving. Over time, a virtual network becomes an extension of the
network administrator’s mental picture of the network. The configurations
and design of a virtual network infrastructure can give us a window into how
that administrator thinks and the logic they used to construct the environment.

In the next chapter, we are going to learn all about the built-in Proxmox
firewall and learn how to protect from the whole cluster down to a single
virtual machine.

The Proxmox VE Firewall

The Proxmox VE firewall is a security feature that allows easy and effective
protection of a virtual environment for both internal and external network
traffic. By leveraging this firewall, we can protect VMs, host nodes, or the
entire cluster by creating firewall rules. By creating rules at the virtual
machine level, we can provide total isolation for VM-to-VM network traffic,
including VM-to-external traffic. Prior to the Proxmox VE firewall, security
and isolation were not possible at the hypervisor level. Keep in mind that the
built-in Proxmox firewall should not be a substitute for a VM-level firewall.
We must still apply a firewall policy inside a guest VM, but the hypervisor-
level firewall provides an added layer of protection should the VM operating
system firewall be misconfigured or not configured at all. This also creates
added management overhead because network administrators or managers
must now open or close ports or apply firewall policies at the hypervisor
level. In this chapter, we will cover the following topics related to the
Proxmox VE firewall:

Exploring the Proxmox VE firewall
Configuring the cluster firewall rules
Configuring the host firewall rules
Configuring the VM firewall rules
Integrating a Suricata IPS

Enabling the IPv6 firewall

Firewall CLI commands

Exploring the Proxmox VE firewall

The Proxmox VE firewall leverages iptables of each Proxmox node for
protection. The iptables is an application that allows you to manage rules
tables for the Linux kernel firewall. All firewall rules and configurations are
stored in the Proxmox cluster filesystem, thus allowing a distributed firewall
system in the Proxmox cluster. The pre-firewall service provided by Proxmox
for each node reads the rules and configurations from the cluster filesystem
and automatically adjusts the local iptables. Rules can be fully created and
maintained by the Proxmox GUI or CLI. The Proxmox firewall can be used in
place of a virtualized firewall in the cluster.

Although the Proxmox firewall provides excellent protection, it
is highly recommended that you have a physical firewall for the
entire network. This firewall is also known as an edge firewall

9 since it sits at the main entry point to the internet. The internet
connection should not be directly connected to Proxmox nodes.
Avirtualized firewall should not be used as a physical firewall
substitute.

Components of the Proxmox
firewall

There are several components that make up the Proxmox VE firewall. In
order to effectively implement a firewall in a Proxmox cluster, it is important
to know the components and their functions.

Z.ones

The Proxmox firewall protection area is divided into the following three
logical zones:

e Datacenter: Rules in this zone define traffic to and from all hosts and
guests

e Host: Rules in this zone define traffic to and from a cluster and Proxmox
nodes

e VM: Rules in this zone define traffic to and from each VM

All rules in the patacenter and host zones are cascaded. This means that a rule
created in the patacenter zone will be applied to all hosts or nodes and all the
VMs, while rules created in a host zone will be applied to all VMs in that host
or Proxmox node. Care must be taken when creating rules in the host zone for
particular VMs, because when the VM is migrated to a different node, these
rules in the previous node will not apply to the new node for the VM. These
host-level rules must be created in the new host, and only then will they be
applied to the VMs. Rules created for a VM apply to that VM only. There is
no rule cascading for the VM zone. The following diagram is a depiction of
how Proxmox firewall policies are laid out:

Datacenter specific Firewall rules

Security groups

This allows the grouping of several firewall rules into one rule. This is very
helpful when the same multiple rules apply to several VMs. For example, we
can create a Security Group named webserver and add multiple rules to open

ports, such as 21, 22, se, 443, and so on. Then, we can apply these security
groups to any VMs used as a webserver. Similarly, we can create a Security
Group to open ports for servers for emails only. The following screenshot

shows an example of a webserver Security Group with rules to open ports for

FTP, SSH, HTTP, and HTTPS:

}X(DRQ)(MUX Virtual Environment 5.0-23/af4267bf Search

Server View Datacenter

£ Datacenter

E@ pmx-01 Q Search Group: Create Remove Rules: Add Copy Ren
101 (ubuntu-01) & Summary Group Comment Enable | Type | Action
100 (kvm-1) £ Options webserver 0 in ACCEPT
10 i) S Storage 1 in ACCEPT
[to 102 (centos1)
= local (pmx-01) Backup 2 th e
g local-lvm (pmx-01) 13 Replication = in ACCER
% thd:01 (pmuclil) o' Permissions
& pmx-02
%@5 pmx-03 it TR
W Linux_VMs U Firewall
¥ Test-Pooll & Options

& Security Group
@ Alias

Macro
FTP
SSH
HTTP
HTTPS

It should be noted that security groups are only created in
patacenter zones. There are no security group creation options in

the host or VM firewall zone.

Security groups created in a patacenter zone can be applied to any zones.
Security groups make the creation of rules for multiple nodes or virtual

Source

machines much easier. Details on security group creation and management

will be explained later in this chapter.

IPSet

Sometimes, it is necessary to create firewall rules to restrict or allow traffic
solely based on IP addresses. An IPSet allows us to create firewall rules that
may apply to multiple IP addresses or IP subnets. For example, we can create
an IPSet to allow access to the Proxmox GUI from only a few limited IP
addresses. The following screenshot shows an example of an IPSet to allow
the proxmoxgui access from only three IP addresses:

)X(PRO MO < virtual Environment 5.0-23/af4267bf Search

Server View Datacenter

= Datacenter

Q Search IPSet: Create Remove Edit IP/ICIDR: Add Remove Edit
e pmx-01
101 (ubuntu-01) & Summary IPSet Comment IP/CIDR Comment
T e St} & Options proxmoxgui 1 10.0.010 Office
103 tos2
eninse) = Storage 2 17216010 Home
D::l eSS 3 192168010 Lab
a
= local (pmx-01) B Backup
g local-lvm (pmx-01) 13 Replication
] o o
£ .rbd 01 (pmx-01) o' Permissions
E» pmx-02 -
Eip pmx-03 e
¥ Linux_VMs U Firewall
@ Test-Pooll # Options

& Security Group
' Alias

i= IPSet

We can create rules based on individual IPs or the entire subnet using the
CIDR format in the rules.

An IPSet can be created in both the patacenter and VM zones as
the option dialog boxes are also identical. An IPSet created in

o patacenter zones can be applied to any hosts and VMs in the
cluster. But the IPSet created under a VM zone is applicable to
that VM only.

Another good example of IPSet usage is to create blacklists and whitelists of
IP addresses in patacenter zones. A whitelist will allow the defined traffic while
a blacklist will block access to the defined IPs. Details on IPSet creation and
management will be explained later in this chapter.

Rules

Rules are the heart of a Proxmox firewall configuration. Rules define the flow
and type of traffic that will be allowed or denied in the zones. There are two
directions in which network traffic can flow:

e in: This refers to traffic inbound from anywhere to any zones except
when specific IP addresses or ports are mentioned

e out: This refers to traffic outbound from any zones to anywhere except
when specific IP addresses or ports are mentioned

There are three types of action that a firewall rule can be applied to:

e ACCEPT: This allows traffic packets matching the constraints in the rule

e REJECT: Packets are rejected, and then an acknowledgment of the
rejection is sent to the sender

e DENY: Drops traffic packets matching the constraints in the rule without
sending any acknowledgment to the sender

A typical rule will contain the direction of traffic, the action to apply to the
traffic, and which port or protocol the rule affects. The following screenshot
shows rules to block traffic on port se and allow it on port 443 for an example
VM in our cluster:

Virtual Machine 100 ('kvm-1') on node 'pmx-01' P Start Shutdown W Remove
& Summary Add Cop Insert: Security Group

> Console Enable | Type = Action Macro | Interface Source Destination Protocol Dest. port Source port
& Hardware 0 in ACCEPT tep 443

Options 1 in DROP tcp 80

Protocols

In a Proxmox firewall, we can create rules based on various network
protocols, such as TCP, UDP, ICMP, and so on. Depending on application
requirements, different protocol selections may be necessary. For example, if
we want to allow ping for a zone, we need to create a rule with the ICMP
protocol. Predefined protocols are available for selection through the rules
dialog box, as shown in the following screenshot:

Add: Rule)
Direction in Enable:
Action: ACCEPT Macro
Interface: Protocol ‘ |
Protocol N.. | Description
Source: Source port: fcp 6 Transmission Control Protocal
istalio Dest.port udp 17 User Datagram Protocol
icmp 1 Internet Control Message Profocol
Gomment igmp 2 Internet Group Management
qop 3 gateway-gateway protocol
ipencap 4 IP encapsulated in [P
st 5 ST datagram mode
egp 8 exterior gateway protocol
igp 9 any private interior gateway (Cisco)
pup 12 PARC universal packet protocol

hmp 20 host monitoring protocol

Macros

Macros are various precreated port configurations for most known services,
such as HTTP, HTTPS, SSH, FTP, Telnet, MySQL, NTP, VNC, and so on.
Keep in mind when using the FTP macro that it will only work in FTP passive
mode. Each macro has a predefined protocol and port number. So, when
selecting a Macro, we do not have to define a protocol or port number. In fact,
when a Macro is selected through the drop-down menu, the Proxmox dialog
box automatically disables the protocol and port textboxes, as shown in the
following screenshot:

Add: Rule

Direction: in Enable

Action: ACCEPT Macro | HTTH

Interface:

Source:

Destination:

Comment:

If we need to enter a custom port for any rule, then selecting the
Macro will not work. We have to manually define the port
number and a proper protocol for the rule.

The following screenshot shows the Macro drop-down menu in the
firewall Rule dialog box:

Add: Rule

Direction: in
Action- ACCEPT

Interface:

Source:

Destination:

Comment:

Enable:
Macro:

Protocol:

Source port

Dest. port:

Macro
MSNF
MSSQL
Mail
Munin
MySQL
NNTP
NNTPS
NTP
NeighborDi
OSPF
OpenVPN

Description
Microsoft Notification Protocol

Microsoft SQL Server

Mail traffic (SMTP, SMTPS, Submission)
Munin networked resource monitoring traffic
MySAL server

NNTP traffic (Usenet).

Encrypted NNTP traffic (Usenet)

Network Time Protocol (ntpd)

IPv6 neighbor sclicitation, neighbor and rou. ..
OSPF multicast traffic

OpenVPN traffic

The firewall feature can be accessed through the Firewall tab of all three
zones, patacenter, host, and nodes, and virtual machines of both KVM and

LXC.

The pve-firewall and pvefw-logger
services

There are two services that enable the Proxmox firewall:

® pve-firewall: This is the main service to run a firewall and it updates
iptables rules

® pvefw-logger: This is responsible for logging all firewall traffic when
logging is enabled

The pve-firewall service is started automatically when a node is rebooted. We
can also manually start, stop, and restart the service using the following
commands:

pve-firewall start
pve-firewall stop
pve-firewall restart

To check the status of a firewall service, we can use the following command:

| # pve-firewall status

When there are no issues in the firewall’s operation, the output of the status
command will appear as follows:

| Status: enabled/running

Configuration files of a firewall

Although the Proxmox firewall can be managed entirely from the Proxmox
GUI, at times accessing the rules from the CLI may be necessary, especially
when a cluster is locked out due to the misconfiguration of firewall rules. All
firewall configurations and rules follow the same naming format, with

the .rw extension. The firewall configuration and rule files are stored in two
different directories for all three zones:

| /etc/pve/firewall/cluster.fw

This is the data center configuration and zone rule file. All other data center-
wide firewall information, such as security groups and IPSets, are also stored
in this single file. We can enable or disable the data center-wide firewall by
editing this configuration file:

| /etc/pve/nodes/<node_name>/host . fw

CAUTION!

Do not enable the data center-wide firewall before reading the
Configuring the data center-specific firewall section later in this
chapter.

This is the configuration and rules file for a Proxmox node or host:

| /etc/pve/firewall/<vm_id>. fw

Each virtual machine, whether it is KVM or LXC, has a separate firewall
configuration file with its VM ID stored in the same directory the data center
firewall file is stored.

When new rules are created or edited through the Proxmox GUI, these are the
files that get changed. Whether the changes are made through the GUI or CLI,
all rules take effect immediately. There are no reboots or restarting of a
firewall service required.

Configuring the data center-specific
firewall

As mentioned earlier, data center-specific firewall rules affect all resources,
such as clusters, nodes, and virtual machines. Any rules created in this zone
are cascaded to both hosts and VMs. This zone is also used to fully lock down
a cluster to drop all incoming traffic and then only open what is required. In a
freshly installed Proxmox cluster, the data center-wide firewall option is
disabled.

CAUTION!
0 Extra attention should always be used when creating data
center-specific firewall rules to prevent full cluster lockout.

Configuring the Datacenter firewall
through the GUI

The following screenshot shows the Firewall option for the patacenter zone
through the options tab by navigating to patacenter | Firewall | Options:

Server View

=

== Datacenter
e pmx-01
101 (ubuntu-01)
100 (kvm-1)
103 (centos2)

[10102 (centos1)
local (pmx-01)
local-lvm (pmx-01)
rbd-01 (pmx-01)
B pmx-02
e pmx-03
W Linux_VMs
¥ Test-Poolt

(o (o (W

Datacenter

Q

L]

o =

L]

o

Q5

a

Search Edit

Summary Disabled

DROP
ACCEPT

. Firewall

Options Input Policy

Storage Output Policy
Backup

Replication

Permissions

HA

Firewall

£+ Options

& Security Group

As we can see in the preceding screenshot, by default the Proxmox firewall
for the patacenter zone is disabled with Input Policy set to DROP and Output
Policy set to ACCEPT. If we did enable this firewall option right now, then
all inbound access will be denied. You will have to be on the console to
access the node. Before we enable this option, we must create two rules to
allow the GUI on port sees and the SSH console on port 22.

Creating the Datacenter firewall

rules

To open the rule creation dialog box, we need to click on Add by navigating
to the patacenter | Firewall menu. For the first rule, we are going to allow the
Proxmox GUI on port sees, as shown in the following screenshot:

Add: Rule

Direction
Action:

Interface:

Source:

Destination:

Comment:

in Enable
ACCEPT Macro

Protocol: tcp
+ProXmaoxgui Source port:

Dest port: 8006

Proxmox GUI access from limited |P| ‘

The dialog box for rules is identical for all three zones, so it is important to
know the details of the option items in this dialog box. The following table
summarizes the purpose of the text and drop-down list available in the rules

dialog box:
Items Functions
Direction This is a drop-down list used to select the direction of the
traffic for the rule, and it is a required field.
This is a drop-down list used to select actions that need to
Action be taken, such as ACCEPT, DROP, or REJECT incoming
or outgoing traffic. This is a required field.
This is a textbox used to define the interface to apply this
Interface rule to. This does not apply to the patacenter zone. It is

useful to define this for a VM with multiple interfaces.

Source

This is a drop-down list used to select a preconfigured IPSet
or textbox to type in the IP address where the traffic
originates from. We can also define a subnet in the CIDR
format. When left blank, it accepts traffic from all the
source IP addresses. In our previous example screenshot,
we have selected IP set to allow a GUI connection from
specific hosts only.

Destination

This is a drop-down list used to select a preconfigured IPSet
or textbox to type in the IP address of the destination device
in the cluster. When left blank, it accepts traffic from all the
destination IP addresses.

Enable

This is a checkbox used to enable or disable the rule.

Macro

This is a drop-down list used to select preconfigured
macros. We can also type the macro name, which filters the
list of macros.

Protocol

This is a drop-down list used to select protocols. We can
also type the protocol name, which filters the list of
protocols.

Source port

This is a textbox used to define the originating port number
for the incoming traffic. When left blank, it accepts traffic
from any ports. We can also define the port ranges,
separated by a colon (:), in this field. This source port field
is also used for the outgoing traffic when the traffic
originates internally from a VM, node, or cluster.

This is a textbox used to define the destination port of the
incoming traffic. When left blank, it accepts traffic from

Dest. Port .
any port. We can also define port ranges, separated by a
colon (:), in this field.
This is a textbox used to write descriptions or any notes
Comment

regarding the rule.

To allow the SSH console traffic, we are going to create a rule with the SSH

macro. The following screenshot shows the firewall feature of the patacenter
zone with two rules created to allow access to the Proxmox GUI and SSH:

Add Cop Insert: Security Group

Enable Type Action Macro Interface Source Destination Protocol Dest. port Source port Comment

0 in ACCEPT SSH Allow SSH
1 in ACCEPT +prox. tep 8006 Proxmox GUI access from limited IP

The Proxmox GUI can only be accessed from one IP address,
which is 172.16.0.3, whereas SSH can be accessed from any IP
address. Remember that all data center rules are cascaded down
to hosts and VMs. In this scenario, SSH is open for all hosts and
VMs in the cluster. In certain situations, we may need to block
SSH for certain VMs in order to increase the security. If we keep
0 the previous rule as it is, we will need to create a separate VM-
level rule to drop SSH trdffic for all VMs. However, this can
become a tedious task since some VMs may require SSH access
and there can be dozens of VMs. A revised advanced rule to
allow SSH access to only Proxmox nodes would be to create an
IPSet in patacenter with IP addresses for Proxmox nodes only,
and then assign the IPSet as the Destination for the rule.

Creating the Datacenter IPSet

The following screenshot shows the IPSet named proxmox_nodes with IP
addresses for three nodes in our example cluster:

IPSet: Create Remove Edit IPICIDR: | Add | Remove Edit
IPSet Comment IP/CIDR Comment
proxmox_nodes 1 BE2 1621 Node 1
proxmoxgui 2| 1721622 Node 2

|| AE2He23 Node 3

From the IPSet management page, we need to create the IPSet itself first, and
then add IPs from the right-hand side IP/CIDR option. IP addresses can be
added separately or defined in an entire block using the CIDR value. The
[PSet’s name can only be alphanumeric, with two special characters: - and _.
But when Proxmox displays the IPset in the drop-down list, it adds + as a
prefix. This is not part of the IPset’s name. If a string is entered as capital
letters, it automatically gets changed to lowercase. The following screenshot
shows the rules dialog box, where we selected an IPSet for Proxmox nodes in
Destination to allow SSH only for Proxmox nodes:

Edit: Rule

Direction: in Enable:

Action: ACCEPT Macro SSH
Interface:

Source:

Destination: +proxmox_nodes| |

Comment: Allow SSH

This revised rule will ensure that SSH is only enabled for Proxmox nodes and
not VMs. As we can see, in the previous example, when creating rules in the
patacenter ZONE, it is very important to think about the cascading effect of the
patacenter Flles and how it can affect nodes and VMs. It is best to use the

patacenter Zzone rules for cluster-related traffic and not VMs in any nodes.

After we have created rules to allow SSH and the Proxmox GUI, we are ready
to enable the patacenter-wide Firewall through the Options menu. The
following screenshot shows the menu with the Firewall now Enabled:

Server View Datacenter
= Datacenter —
Q Search | Edit |
Ep pmx-01 —
101 (ubuntu-01) & Summary Firewall Enabled
100 (kvm-1) £ Options Input Policy DROP
103 (centos2) = Storage Qutput Policy ACCEPT
[L2102 (centos1)
S local (pmx-01) B Backup
E local-lvm (pmx-01) 13 Replication
- g =
= idoATpmcl) o' Permissions
Ep pmx-02 "
B pmx-03 i
¥ Linux_VMs U Firewall

The preceding screenshot shows a policy that will drop all incoming traffic,
but outgoing traffic will be permitted. To have a fully locked down and
secured cluster, both policies should be set to DROP. The reason to set the
Output Policy to DROP is to prevent malicious traffic leaving the network in
the case of malware infection or there being any compromised devices within
the internal network. Alternatively, in a multitenant environment, outgoing
traffic should be firewalled. This way, we can control the type of traffic that
can leave a VM. An example of traffic that should be denied would be ICMP
or ping traffic, which will allow one VM to discover other devices in the
network.

If both the inbound and outbound firewall rules are set to DENY
or DROP, you will likely have to configure all the allowed
traffic, even updates and common trdffic. If you are
implementing DROP for the Input Policy in an already

o established Proxmox cluster, make sure that you first create all
the necessary rules for all VMs and nodes before enabling the
patacenter-wide firewall. Failure to do so will cause all VMs and

nodes to drop connectivity.

Creating aliases

Aliases make it simple to see what devices or group of devices are affected by
a rule. We can create aliases to identify an IP address or a network. They are
similar to an IPSet, but one alias only points to one IP address or network,
whereas an IPSet holds multiple IP addresses or networks. For example, in a
scenario where we have a Proxmox network as 172.16.2.e/24 and Ceph public
network as 192.168.20.0/24, we can create two aliases using the alias creation
dialog box by clicking on Add from the Alias menu, as shown in the
following screenshot:

Add: Alias

Name: ProxmoxNet

IP/CIDR: 172.16.2.0/24

Comment Proxmox Network] ‘

In the preceding screenshot, we created an alias named proxmoxnet to identify
the network 172.16.2.0/24. Using the same dialog box, we will create another
alias named cephnet for the IP subnet 192.168.20.0/24. The following screenshot
shows the Alias window with both aliases created:

Datacenter

Q

o4 Mo

(]

iL:]

nd

q 5

a

Search Add Remove Edit

Summary

Name IP/CIDR

Options CephNet

ProxmoxNet

192.168.20.0/24
Storage 172.16.2 0/24
Backup

Replication

Permissions

HA

Firewall

i+ Options

% Security Group

' Alias

Comment

Ceph Public Network

Proxmox Public Netwark

The advantage of having an alias is that whenever we create rules, we can use
these aliases instead of typing in the entire IP address. This is especially
useful when using IPv6. Since IPv6 addresses are quite long, we can create an
alias to call the IP address in a rule whenever we need them.

This is also another way to identify a numeric IP address with text. Aliases
are accessible through the drop-down list for both Source and Destination
from the rules dialog box. The following screenshot shows the rule creation
dialog box with the aliases in the drop-down list for Source:

Add: Rule

Direction:
Action:

Interface:

Source:

Destination:

Comment:

in

ACCEPT

Type Name

ipset +proxmox_nodes
ipset +proxmoxgui
alias cephnet

alias proxmoxnet

Enable:
Macro

Protocol: tcp

Source port:

Comment

Ceph Public Network

Proxmox Public Network

Aliases created in the patacenter zone are useable throughout the cluster in

both the host and VM zones.

Configuring the Datacenter firewall
through the CLI

The Proxmox firewall can also be managed entirely through the CLI by
editing the firewall configuration and rules files directly. The content of the
configuration and rule files are laid out in a very specific format. The
fOHOWiIlg screenshot shows the /etc/pve/firewall/cluster.fw file of the patacenter
zone after adding rules from the previous section:

As we can see, in the preceding screenshot, there are four segments in the
firewall configuration file for the patacenter zone. They are as follows:

[OPTIONS]

[OPTIONS]

This area is used to enable or disable a patacenter-wide firewall. Currently, our
example cluster has the default input/output policy, which is set to drop all
incoming traffic while allowing all outgoing traffic. If we were to change the
input policy to accept all incoming traffic, then the [orrons] Segment would
appear as follows:

[OPTIONS]
policy in: ACCEPT
enable: 1
If due to firewall rules misconfiguration we locked ourselves out, we can

disable the patacenter-wide firewall using the following option on the console:

| enable: 0

[ALIASES]

This segment shows all the aliases created in the patacenter zone. It shows the
name of the alias and IP address or the network the alias belongs to. Each line
is used for a separate alias entry.

[IPSET <name>]

This segment clumps all IPSets created under the patacenter zone. It shows the
name of the IPSet and the IP addresses added in the set. In our example, we

have two IPSets named proxmox_nodes and proxmoxgui.

[RULES]

This segment contains all the firewall rules, one on each line. To disable any
rule, we simply need to put a | in front of the rule and save the configuration
file. In the preceding screenshot, the rule to allow ping is disabled in this way.

[group <name>]

This segment clumps all the security groups created in the patacenter Zone. It
shows the name of the security group and the rule added to the group. In the
preceding screenshot, we can see that we created a security group named
webserver and added macro rules in order to allow wrtes, HTTP, ssu, and rrp traffic.
We can also manually add rules in this segment by defining a protocol and
port. For example, if we want to allow the TCP traffic to port ses only from IP
address 10.0.0.2, we will add the following line of code to the webserver security
group:

| IN ACCEPT -source 10.0.0.2 -p tcp -dport 565

Configuring a host-specific firewall

Any rules created in the host zone only apply to the node where the

rule itself was created and the VMs in that host node. Rules for one node do

not get replicated to the other nodes, although the rule files are stored in the

Proxmox cluster filesystem. There are no options to create IPSet or security

groups in the host-specific firewall option. We can only create firewall rules.

Creating host firewall rules

Creating new rules for the host zone is identical to the rule creation process
that we have already discussed in the Configuring the data center-specific
firewall section earlier in this chapter. Besides creating rules from scratch, we
can also assign predefined rules in the form of a security group to a node. We
cannot create a new security group under the host Firewall menu, but we can
assign it some predefined rules. For example, earlier in this chapter, we
created a security group named webserver. If a Proxmox node is only going to
host VMs used for web servers, then we can assign the security group
webserver t0 that node, and all the rules will be cascaded into all the VMs in the
host. Thus, we would save a lot of time by not having to create separate rules
for each VM.

To open the dialog box to assign a security group, click on Insert: Security
Group from the patacenter | Node option. The following screenshot shows the
dialog box with webserver selected from the Security Group drop-down list:

Add: Rule

Security Group: | webserver Enable:

Interface:

Comment:

We have to ensure that we enable the rule by clicking on the checkbox, and
then we need to click on Add to assign the security group. The following
screenshot shows the rule added to the pmx-e1 node:

= Datacenter

Q, Search Add Copy | Insert Security Graup | Remove Ed
Bl pmx-01 ——
101 (ubuntu-01) 8 Summary Enable | Type Acion | Macro | Inferface Source
M iet) > Shell 0 group webserver
103 (centos2
() & System

(12102 (centos1)

Options for the host zone firewall

The Proxmox node firewall has several items under the Options tab. Most of
the items can be left at their default values, as shown in the following
screenshot. However, an understanding of this item will aid in combating
security through the cluster. The following screenshot shows the Option items
with default values for an unmodified Proxmox node:

Server View Node 'pmx-01'
= Datacenter
E@ - Q Search Edit
101 (ubuntu-01) & Summary Firewall Enabled
100 (kvm-1) >_ Shell SMURFS filter Enabled
103 (centos2) & System TCP flags filter Disabled
[L0102 (centos1) NDP Enabled
S local (pmx-01) = Network nf_conntrack_max Default
z lr:;alor?;:::;?ﬂ @ D.NS nf_conntrack_tcp_timeout_established Default
E@h;mx-oz @ Time log_level_in nolog
E@ 03 = Syslog log_level out nolog
® Linux_VMs 2 Updates tcp_flags _log_level nolog
® Test-Poolt U Firewall smurf_log_level nolog
£+ Options
£ log

To change the settings of any option item, we need to select the line item, and
then click on the Edit button.

Enable a firewall

By default, all Proxmox nodes have the Firewall option enabled. To disable a
Firewall for the node completely, select No for this option.

The SMUREFS filter

By default, the SMUREFS filter is Enabled. By nature, Smurf is a distributed
denial-of-service (DDoS) attack. In this attack, an attacker sends a very large
number of ICMP data packets with the victim’s spoofed IP address as the
source, and it is broadcast to a network using the broadcast address.
Generally, all network devices answer an ICMP ping. During a Smurf attack,
the victim’s device gets flooded by ICMP responses. If there are a large
number of devices on the network, then the flooding becomes extreme,
making the victimized device unresponsive. This is why this filter should
remain enabled at all times.

The TCP flags filter

In simple terms, TCP flags are control bits that indicate how TCP packets
should be handled by the client. These control bits or indicators reside in the
TCP header. There are a total of nine control bits with one bit for each flag.
The full description of how exactly these TCP flags work is beyond the scope
of this book since TCP is a vast subject of various complexities. Here, we will
only see what those TCP flags are and how the Proxmox firewall handles TCP
flag filtering. The following table is a summary of the TCP flags and their
functions:

TCP flag Function

ure—1 bit This indicates that the TCP packet is urgent.

This indicates the acknowledgment field. After the initial

pox—1 bit syn for all packets, they are usually followed by this flag.
. This flag asks for the buffer data to be pushed as soon as
pso—1 bit . ..) . .
possible to the receiving side of the client application.
rsT—1 bit This flag indicates the TCP connection reset.

This flag indicates a synchronized sequence number before
syv—1 bit initiating a TCP connection. Only the first packet that is
sent from a source usually has this flag.

rin—1 bit This flag indicates the end of TCP packets.

TCP flags are useful to detect and pinpoint oddly-behaved TCP packets and
determine a possible intrusion. Arguments for TCP flag filtering are added to
the firewall rules right after the -p syntax, as shown in the following code:

[RULES]
IN DROP -p tcp -tcp-flags SYN,ACK SYN -dport

add TCP flags to filter through the GUI. We can add them

0 As of Proxmox VE 5.0, there are no options used to manually
through the CLI but this makes the rule disappear from the GUIL.

By default, TCP flag filtering is disabled in the Proxmox VE. We can enable
it to let the Proxmox firewall automatically filter odd packets with out-of-sync
bits. All data packets traversing through the network have a uniform svn
behavior. Odd packets usually indicate that they are from a bad source.

NDP

Neighbor Discovery Protocol (NDP), is an [Pv6-specific option. Unlike
IPv4, IPv6 does not use the ARP protocol, but uses NDP instead. NDP is also
used for IPv6 auto configuration and advertising router data packets. By
default, this option is enabled for both host- and VM-specific Proxmox
firewalls. If you are not going to use IPv6 at all and have no future plans to do
so, this option can be disabled.

nf conntrack max

This value defines the maximum size of a netfilter connection tracking table.
This table keeps a record of all live connections and deletes them when a
connection is closed. By default, the size of this table is 65,536 bytes. While
for most of the nodes, this is perfectly fine, for high-volume connection
servers, such as DNS or web server, this table may become full quickly. For a
Proxmox node, which holds lots of high-traffic VMs, this value needs to be
increased. We can check the current value of nf_conntrack_max using the
following command:

| # sysctl -a | grep nf_conntrack_max

The following command will show you the number of current live
connections in the node:

| # sysctl -a | grep nf_conntrack_count

The following screenshot shows the connection count for our example node

pmx-01:

Note that if the tracking table is full due to many live
0 connections, then the node will drop all new connection packets.

nf_conntrack_tcp_timeout_establish

This node only keeps track of the netfilter connections if they live. Dead
connections are deleted automatically from the table. This deletion happens
based on the set timeout period. The longer the timeout period, the longer the
record of the connection will stay in the tracking table. The value of this
option is in seconds. By default, the value is set to 4,32,000 seconds or 12
hours. We can check the current value using the following command:

| # sysctl -a | grep nf_conntrack_tcp_timeout_established
By reducing this value, we can keep the tracking table lean which is faster for

a high-traffic node. It should be noted here that lowering this value might also
break long running idle TCP connections.

log level_in/out

A firewall is only as good as its logging capability. It is only by going through
the log that we can see what is being blocked and what is not. Proxmox
comes with a custom service named pvefw-1ogger, Which is based on the
netfilter logging daemon. The sole purpose of this service is to log a
connection activity based on the set firewall rules. Through the firewall’s
Options tab, we can set logging at various levels of verbosity. There are eight
levels of logging available for the iptable-based firewall. The following table
shows the iptable logging levels and their availability in the Proxmox
firewall:

Log Level | Type

Level 0 Emergency | Available in Proxmox
Level 1 Alert Available in Proxmox
Level 2 Critical Available in Proxmox
Level 3 Error Available in Proxmox
Level 4 Warning Available in Proxmox
Level 5 Notice Not available in Proxmox
Level 6 Info Available in Proxmox
Level 7 Debug Available in Proxmox

In addition to these levels, Proxmox also has the no1og option. This disables all
logging for a resource. The log level info is used the most, as it logs all the
good and bad connections. This way, we can see exactly what is being
blocked and allowed. However, the info log level also creates many log
entries in a very short period of time. As a good rule of thumb, always select
some form of logging when enabling a firewall.

tcp_flags_log_level

Similar to the standard log level, we can also enable different log levels for
the TCP flags. If the TCP flags filter is not enabled, this will not produce any
log entries. When enabled, we will see the TCP flags filter logged in the log
window.

smurf_log_level

Like the TCP flags log, this also shows log entries for Smurf attacks. This
also follows various log levels.

Configuring the host firewall
through the CLI

We can also configure and manage the host zone firewall through the CLI.
The firewall configuration file for the host is in /etc/pve/iocaishost.fw. The
following screenshot shows the content of the host.fw file:

[OPTIONS]

nf _conntrack_max: 188888
tcp_flags_log_level: err
log_level _out: err

tcpf lags: 1

log_level_in: err

[RULES]

IN ACCEPT -p tcp -dport 65
iROUP webserver

As we can see in the preceding screenshot, there are only two segments in the
firewall configuration file for the host zone. They are as follows:

[OPTIONS]

The functions of these segments are exactly the same as the segments in the
Configuring the Datacenter firewall through the CLI section earlier in this
chapter. Note that there are no segments for security group or IPSet. This is
because these features are not present in the host firewall zone.

Configuring a VM-specific firewall

Rules created for a VM only apply to that particular virtual machine. Even
when the virtual machine is moved to a different node, the firewall rule
follows the VM throughout the cluster. There are no rules cascading from this
zone. Under the VM firewall feature, we can create rules, aliases, and IPSets,
but we cannot create a security group. The firewall management is the same
for both the KVM virtual machines and LXC containers. We can go to the
firewall feature of a VM by navigating to the VM | Firewall menu:

£ Datacenter

& Summa Add
B pmx-01 <
101 (ubuntu-01) >— Console Enable
100 (kvm-1) d Hardware 0
103 tos2,
{contas2) #+ Options 1
[t 102 (centos1)

— 2
£ local (pmx-01) = Task History

Insert: Security Group

Type Action Macro Interface Source Destination Protocol Dest. port

group webserver
in ACCEPT tep 443

in DROP tcp 80

Creating VM firewall rules

Creating new rules for a VM is identical to the rule creation process that we
have already seen in the Configuring the Datacenter firewall through the CLI
section earlier in this chapter. Besides creating rules from scratch, we can also
assign predefined rules in the form of a security group to a VM. The
preceding screenshot shows that our example VM has three firewall rules to
allow standard web server and HTTPS traffic, but drop all HTTP or port se
traffic.

Creating aliases

An alias for a VM zone serves the same purpose as the alias for the patacenter
zone. The alias creation process is also identical to the Configuring the
Datacenter firewall through the CLI section that we have seen earlier in this
chapter. Aliases created under a VM stay with that particular VM only. An
alias for one VM can be used in another VM.

Creating IPSets

Like aliases for a VM, an IPSet created under a VM also stays with that
particular VM. The IPSet creation process is identical to the IPSet for the
patacenter ZOone we have already seen in the Configuring the Datacenter
firewall through the CLI section earlier in this chapter.

Options for a VM zone firewall

All the option items under the VM zone Options menu are the same as items
for the patacenter and host zone already described, except for the DHCP and
MAC filters. The following screenshot shows the Options items for our
example VM 100 (kvm-1):

= Datacenter

B pmx.01 & Summary Edit
101 (ubuntu-01) >_ Console Firewall Disabled
100 (kvm-1) L Hardware DHCP Disabled
103 (centos2) & Options NDP Enabled
(10102 (centos1) — . Router Advertisement Disabled
€ local (pmx-01) = MAG filter Enabled
3 ';Zalor"?;;p:;:?” *: Monior IP filter Disabled
Eg_;)mx-m B Backup log_level_in nolog
E@ pMX.03 13 Replication log_level_out nolog
® Linux_VMs 9 Snapshots Input Policy DROP
@ Test-Poolt U Firewall Qutput Policy ACCEPT

£+ Options

Enable DHCP

This option is used for a VM that is configured as a DHCP server. A DHCP
server uses the UDP ports 67 and s to complete IP requests from clients.
Instead of manually opening these ports, we can enable this option to let all
DHCP-related pass to and from the VM. By default, DHCP is Disabled.

The MAC filter

When this option is Enabled, it prevents the VM user spoofing their own
MAC address of the virtual network interface and sending out traffic. This
filter will drop the packets from the spoofed MAC address. By default, this
option is Enabled.

Input/output policy

These options are to enable default firewall behavior for the virtual network
interface. For example, if you select the policy to DROP, by default it will
block all traffic. We will have to add rules to open required ports. By default,
the Input Policy is to DROP all incoming traffic.

Configuring a VM-specific firewall
through the CLI

As with other firewall zones in Proxmox, we can also configure and manage a
virtual machine-specific firewall through the CLI. The configuration file for
each VM is in /etc/pve/firewall/<vm_id>.fw. All segments in the configuration
file are the same as the patacenter or host zone configuration. The following
screenshot shows the content of a firewall configuration file for VM 166 (kvn-
1).

Integrating a Suricata IDS/IPS

The security protection of the Proxmox VE firewall can be further enhanced
by configuring an intrusion detection and prevention system such as Suricata.
It is a high-performance IDS/IPS engine that is able to protect a virtual
machine by rejecting traffic that may be possible intrusions. Currently, Snort
and Suricata are two open source mainstream IDS/IPS available, although
there are a few others. One of the primary advantages of Suricata is that it is
multithreaded, whereas Snort is single-threaded. Suricata is under rapid
deployment and has gained popularity in a short amount of time.

By default, Suricata is not installed on a Proxmox node. It needs to be
manually installed and configured. As of Proxmox VE 5.0, Suricata can only
be used to protect a virtual machine and not any Proxmox host nodes.

Do not try to manually download the Suricata package from any
other source other than the Proxmox repository and install it on
the Proxmox node. It may break the system. Always use the apt-
get installer in Proxmox to install Suricata.

If you are new to Suricata, then visit the official Suricata site that will help
you gain some knowledge of Suricata as an IDS/IPS:

http://suricata-ids.org/

http://suricata-ids.org/

Installing/configuring Suricata

We can install Suricata in a Proxmox node using the following command:

| # apt-get install suricata

After Suricata is installed, we have to load the netfilter queue subsystem’s
nfnetlink_queue Module using the following command:

| # modprobe nfnetlink

To ensure that this module gets loaded automatically whenever the node is
rebooted, we need to add it to the /etc/modules file. The installer installs all the
necessary files for Suricata, including Oinkmaster rules. All IDS/IPS engines
are heavily dependent on rules. These rules are precompiled and prepackaged
in rule files. Oinkmaster is a script that allows us to easily update and manage
rules. It is mainly used by Snort but is also supported by Suricata. Without
these rules, Suricata will not perform anything. Visit the official Snort site for
information on rules at https://www.snort.org/.

There are no options to enable Suricata for a VM through the GUI. So, we
have to manually enable it through the CLI by editing the VM firewall
configuration file in /etc/pve/firewall/<vm_id>.fw. We need to add the following
lines to the [opt1ons] segment of the configuration file:

ips: 1

ips_queues: 0
The ips_queues option binds to a specific CPU queue of the virtual machine due
to its multithreaded nature. Available queues that Suricata should listen to are
defined in /etc/default/suricata, dS follows:

| NFQUEUE=0

The value is usually set based on the number of CPUs. For example, to use
four CPU cores for Suricata, we can use the value 3 for nrqueue. The default
value o indicates that we only use the first CPU, which is CPU e.

Suricata will only work when listening on nrqueve. This is configured by
default when Suricata is installed on a Proxmox node. All traffic that is only
accepted by the Proxmox firewall gets passed to Suricata for inspection. All
other dropped or rejected traffic does not get passed to Suricata. The Suricata
Configuration files are in setc/suricata/suricata-debian.yaml. The default
configuration should work in most cases.

It is easier to write your own custom rules for Suricata than it is for Snort.

https://www.snort.org/

You can refer to the excellent documentation on how to learn to write your
own rules for Suricata at the following link:

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Rules

We can start the Suricata service by running the following command:

| # systemctl start suricata

The following screenshot shows the command to check the status of the
Suricata service and displays the status information:

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Rules

Limitations of Suricata in Proxmox

As mentioned earlier, there are no GUI options for Suricata in Proxmox. All
configurations are done through the CLI. Without a proper knowledge of
IDS/IPS rules, it is very difficult to create rules based on their own
environments. Suricata cannot be used to protect any Proxmox nodes, only
virtual machines. This limitation may be due to the fact that IDS/IPS can
frequently consume a large amount of CPU resources. While for a dedicated
firewall appliance, this may or may not be an issue, for a hypervisor, where
the CPU is shared between the hypervisor itself and hosted virtual machines,
this could be fatal due to CPU overconsumption.

There are no dedicated log view options for Suricata as there are for the
Proxmox firewall through the GUI. All Suricata logs are stored in the
/var/log/suricata directory by default. However, we can pass Suricata IPS logs
to syslog by changing the configuration file in /etc/pve/suricata/suricata-
debian.yaml. We have to make the following changes in order to pass the
Suricata logs to syslog:

a line based alerts log similar to fast.log into syslog

syslog:

enabled: yes

identity: "Suricata"

level: Info
There are a few more options available to log the output in the same
configuration file. Some Proxmox users try to pass Suricata logs to a third-
party solution using Logstash and Kibana from Elastic (www.elastic.co). Suricata
or any other IPS is a complex task to manage on a day-to-day basis. Suricata
is still in infancy in Proxmox. Over time, it may be integrated with the GUI
for easier management. But for now, using a dedicated firewall appliance,
such as pfSense, Untangle, ClearOS, or any other open source firewall may be
a better option to integrate Suricata in a network. Suricata is fully supported
in pfSense with a large amount of manageable features, all through the
pfSense GUI dashboard. Implementing an IDS/IPS system in a network is not
optional but should be made mandatory to protect it from any sort of
intrusion.

http://www.elastic.co

Summary

In this chapter, we learned about one of the most powerful features of
Proxmox, the built-in firewall. We learned what it is and how to implement it
to protect the entire cluster, Proxmox host nodes, and virtual machines. We
learned how to manage the firewall rules and configuration using both the
GUI and CLI. Proxmox adds security where it is needed the most. By
leveraging a flexible and granular firewall protection at the hypervisor level,
we are now able to have a better-secured cluster. This is not to say that
firewall policies are not needed internally in each VM, but having a firewall
built into the hypervisor offers an extra layer of protection from an
infrastructural point of view.

In the next chapter, we are going to learn about the Proxmox VE High
Availability feature for VMs, which has been completely redesigned from the
ground up. The new changes brought higher stability while making the
management and configuration a much simpler task.

Proxmox High Availability

In this chapter, we are going to see one of the most prominent features that
make Proxmox an enterprise-class hypervisor. Proxmox VE High
Availability (HA) allows the cluster to move or migrate virtual machines
from a faulty node to a healthy node without any user interaction. We will
take a look at the following topics:

Understanding HA

Requirements for HA

Configuring Proxmox HA

Configuring the Proxmox HA simulator

Understanding HA

HA is a combination of components and configurations that allows
continuous operation of a computational environment. Basically, it means that
even when unattended server hardware goes bad in a live environment,

HA can manage the remaining servers on its own and keep a virtual
environment running by automatically moving or migrating virtual machines
from one node to another, while minimizing downtime as little as possible. It
should be noted here that Proxmox HA does not provide zero downtime
migration of VMs. When a node with VM goes down hard, for obvious
reason the VM becomes fully inaccessible. What Proxmox HA does when
that happens is, it automatically moves the VM configuration files to member
nodes and starts. A properly configured HA should require very little actual
user interaction during a hardware failure. Without HA in place, all nodes will
require constant monitoring by a network manager in order to manually move
virtual machines to healthy nodes when a node goes bad.

In a small environment, manually moving VMs is not a major issue, but in a
large environment with hundreds of virtual machines and nodes, constant
monitoring can be very time consuming. Although there can be monitoring
software in place to automatically alert administrators for any node failure,
without HA, the administrator will have to manually move or migrate any
virtual machine from a faulty node. This can cause longer downtime due to
the network staff’s response time. That’s where the Proxmox HA feature
comes in. HA takes operator intervention out of the equation by simply
moving or migrating virtual machines to a node as soon as server hardware
failure occurs.

HA in Proxmox

To set up functional HA in Proxmox, it is important to have all the virtual
machines on shared storage. It is crucial to understand that Proxmox HA only
handles Proxmox nodes and virtual machines within the Proxmox cluster.
These HA features are not to be confused with shared storage redundancy,
which Proxmox can utilize for its HA deployment. High availability in shared
storage is just as important as Proxmox VMs’ HA. A third-party shared
storage can provide its own HA features. So both the Proxmox cluster and
shared storage will need to be configured to provide a truly highly available
environment. It is beyond the scope of this book to go into the details of high-
availability storage.

There can be levels of redundancy in a Proxmox computing node, such as the
use of RAID, redundant power supplies, aggregated network links, or bonds.
HA in Proxmox is not a replacement for any of these layers. It just facilitates
redundancy features for virtual machines to keep running during a node
failure. Proxmox uses a software stack called HA-manager to provide fully
automated high availability from Proxmox virtual environments.

It should be noted that in a Proxmox node, a reboot due to an applied update
will cause all HA-enabled virtual machines to shut down and move to the next
available Proxmox node and restart. In such a situation, it may be necessary to
manually live-migrate virtual machines first before rebooting the node. But by
using a service such as Kernel Care from CloudLinux, we can mitigate
reboots due to update because Kernel Care applies security updates without

ever needing to reboot a node. Find out more about this service from https:/ww
w.cloudlinux.com/all-products/product-overview/kernelcare.

https://www.cloudlinux.com/all-products/product-overview/kernelcare

How Proxmox HA works

When a node becomes unresponsive for various reasons, Proxmox HA waits
for 60 seconds before fencing the faulty node. Fencing prevents cluster
services from coming online during that time. Then, HA moves the VM to the
next available node in the HA member group. As of Proxmox VE 5.0, LXC
containers cannot be live-migrated. So, HA will stop all LXC containers and
then move them to the next node. Even if the node with VMs is still powered
up but loses network connectivity, Proxmox VA will try to move all VMs out
of the node to a different node.

Once the faulty node comes back online, however, HA will not automatically
move the VMs back to the original node. This must be done manually. But a
VM can only be moved manually if HA is disabled for that VM. So we have
to disable HA first and then move to the original node and enable HA on the
VM again. As we can see, Proxmox HA likes to manage everything on its
own, although it adds little annoyances to manually performing certain
functions. HA is focused on maintaining uptime, which it does suitably. Later
in this chapter, we will see how to configure HA for virtual machines.

Requirements for HA setup

In Proxmox 4.0, the HA feature has been completely redesigned from the
ground up, making it much simpler to configure and use. There are a few
requirements that the virtual environment must meet before configuring
Proxmox HA. They are as follows:

e At least three nodes
e Shared storage
e Fencing

At least three nodes

HA must be configured in a cluster with a minimum of three nodes because
with three nodes or more, achieving a quorum is possible. Quorum is the
minimum number of votes required for Proxmox cluster operation. This
minimum number is the total vote by a majority of the nodes. For example, in
a cluster of three Proxmox nodes, a minimum vote of two Proxmox nodes is
required to form a quorum. In a cluster with eight nodes, a minimum vote of
five Proxmox nodes is required to form a quorum. With just two nodes, the
ratio of votes will always be 1:1, so no quorum is possible.

Shared storage

During a node failure, VM configuration files are moved to the next member
node in the HA and auto started. Note that this migration applies to the
configuration files only and not the virtual disk image. A VM cannot be
started by HA when the disk image is not stored on shared storage. When a
VM is stored locally, then HA will only move the configuration file and will
be unable to move the disk image. This will produce error when HA tries to
auto start the VM.

Do not try to enable HA for any locally stored VM. The HA will
forcefully move the VM configuration file and not move the
location of the disk image.

Fencing

Fencing is a concept of isolating a node or its resources during node failure so
that other nodes cannot access the same resources, putting them at risk of data
corruption. In Proxmox, fencing prevents multiple nodes from running on the
same virtual machine or cluster-specific services. Fencing ensures data
integrity during a node failure by preventing all nodes from running on the
same virtual machine or cluster services at the same time.

As of Proxmox VE 5.0, a separate fencing device used to configure Proxmox
HA is no longer required. Fencing now uses a hardware-based watchdog or a
Linux softdog. A Linux softdog is a software version of a traditional
watchdog. Most modern server BIOSes have the watchdog functionality, but
it is normally disabled. When enabled, this will reboot server nodes after a
certain period of inactivity. Proxmox HA will always check whether there is a
hardware watchdog, and if not, it will automatically use a softdog. The use of
a softdog now allows HA to be implemented in a nested virtual environment.
This is helpful to set up a virtualized Proxmox environment to learn and test
Proxmox HA without effecting changes on the main systems.

BIOS power-on feature

Before we set up fencing and Proxmox HA, we have to make sure that nodes
can boot immediately after a power cycle or power loss. Usually, this feature
is disabled. The following screenshot shows this BIOS feature:

It is important that the BIOS power on functionality be tested

and verified. To do so, unplug the power cord, then plug it back
8 again to see whether the node powers up. Without this feature

enabled, the node will not be able to auto boot or power cycle
using Proxmox HA fencing.

Configuring Proxmox HA

Thanks to the new version of HA in Proxmox, all configuration of Proxmox
HA can be done from the GUI. The HA feature is available by navigating to

patacenter | HA. This is the menu where we will perform all HA-related

configuration and management. The following screenshot shows the Proxmox
HA management interface:

Server View

Datacenter
e pmx-01

101 (ubuntu-01)

100 (kvm-1)

103 (centos2)

[2102 (centos1)

local (pmx-01)

local-lvm (pmx-01)

rbd-01 (pmx-01)

B pmx-02

[pmx-03

¥ Linux_VMs

W Test-Pool

(@ (@ (@

Datacenter

Q Search
& Summary
& Options

(]

Storage
Backup
t3 Replication
o' Permissions
® HA
& Groups
¥ Fencing
U Firewall

© Support

Status

Type Status
quorum OK

Resources

Add Edit Remove

D State Node Max. Restart | Max. Reloc... | Group

Description

The HA menu

The HA menu is divided into two parts and two submenus where we can
perform all configuration and management tasks.

Status

The Status shows the cluster-wide quorum formation for the HA to function
properly and the status of member nodes configured in HA. A clean-installed
Proxmox cluster will show only one line item for a healthy quorum. Once the
new member nodes are added to the HA configuration, this status menu will
show running states of all the nodes and the virtual machines that have HA

enabled.

The Resources menu

This is the menu where we enable HA for a virtual machine or container.
Click on Add to open the VM resource dialog box. The following screenshot
shows that we are configuring our example VM 1ee with the HA feature:

Add: Resource: Container/Virtual Machine

CT/VM ID: 100 Group:

Max. Restart: 1 Request State: started

Max. Relocate: 1

Comment: | | ‘

Max. Restart and Max. Relocate are two new options added to the HA
resource-adding dialog box. The value for Max. Restart is the number of
times Proxmox HA will try to restart services and/or the VM after migrating
should any failure occur. The Max. Relocate value is to define the number of
times HA will try to relocate VM services to another node before quitting.

Request State is a drop-down menu to define what action HA should take
after the VM is migrated to another node during a failure. We can select
started to start the VM after migration, stopped to migrate the VM but not
start, and disabled to disable the HA feature for the VM. This is useful when
we want to temporarily disable the resource and we may use it in future.

After adding a VM into HA, we may see a number of error messages showing
failure to enable HA on that VM. The following screenshot shows some
example errors we may encounter after adding vm 100 into the HA:

Cluster log

Start Time End Time

Aug 19 12:47:26 Aug 19124726
Aug 19 12:47:16 Aug 19124747
Aug 19 12:47:06 Aug 1912:47:06
Aug 19 12:46:56 Aug 19 12:46:56
Aug 19 12:4553 Aug 19 12:45:54
Aug 1912:45.01 Aug 1912:45:02
Aug 19 12:44:58 Aug 19 12:44:59
Aug 19124315 Aug 19124315
Aug 19 12:43.05 Aug 19 12:43.05
Aug 19 12:42:55 Aug 19 12:42:56
Aug 19 12:42:45 Aug 19124245
Aug 19 12:42:35 Aug 19124231
Aug 19 0951:02 Aug 19.09:51:23
Aug 1909:47:14 Aug 1909:51:05
Aug 19.09:45:14 Aug 19 09:46:10

Node

pmix-01
pmx-01
pmx-01
pmx-01
pmx-01
pmx-01
pmx-01
pmx-01
pmx-01
pmix-01
pmx-01
pmx-01
pmx-01
pmx-01
pmx-01

User name

root@pam
root@pam
root@pam
root@pam
root@pam
root@pam
root@pam
root@pam
root@pam
root@pam
root@pam
root@pam
root@pam
root@pam

root@pam

Description Status

VM 100 - Start
VM 100 - Migrate
VM 100 - Start
VM 100 - Start
HA 100 - Start
HA 100 - Start
VMICT 100 - Console
VM 100 - Start
VM 100 - Start
VM 100 - Migrate
VM 100 - Start
VM 100 - Start
Shell

Shell

Shell

0K
Q0K
0K

Error: minimum memory must be 1024MB

Error: migration aborted

Error: minimum memory must be 1024MB

Error: minimum memory must be 1024MB

Error: command ‘ha-manager set vm 100 —state started' failed: exit code
Error: command ‘ha-manager set vm 100 —-state started' failed: exit code .
Error: Failed to run vncproxy.

Error: NUMA needs to be enabled for memory fiotplug

Error: NUMA needs to be enabled for memory hotplug

Error: migration aborted

Error: NUMA needs to be enabled for memary hotplug

Error: NUMA needs to be enabled for memory hotplug

From the errors we can see that to enable HA for a VM, there are certain
criteria that need to be met. For example, NUMA must be enabled and the
VM memory allocation must be at least 1024 MB. The following screenshot
shows the Resources menu with the example vm 100 assigned to the HA group
after we enabled NUMA and allocated 1024 MB of memory:

Server View

Datacenter
= Datacenter Sis .
earc
E» pmx-01
101 (ubuntu-01) & Summary
Gl 100 (kvm-1) # Options
103 tos2
Pa £ Storage
[t 102 (centos1)
£ local (pmx-01) Backup
g local-lvm (pmx-01) 3 Replication
= bd- ,
= 1081 (pin01) o' Permissions
pmx-02
EQ T HA
Ee pmx-03
¥ Linux_VMs & Groups
¥ Test-Poolt % Fencing
U Firewall
< Support
Tasks Cluster log
Start Time End Time

Aug 19 13:04:27
Aug 19 13.04:17
Aug 19 13:04:07
Aug 19 13:03:50

Aug 19 13:04:36
Aug 19 13.04.18
Aug 19 13:04:08
Aug 19 13:04:04

Status

Type Status

quorum oK

master pmx-01 (active, Sat Aug 19 13:05:11 2017)

Irm pmx-01 (active, Sat Aug 19 13:05:17 2017)

Irm pmx-02 (idle, Sat Aug 19 13:05:13 2017)

Irm pmx-03 (idle, Sat Aug 18 13:05:15 2017)

Resources

Add Ed Remove

ID State Node Max. Restart

vm: 100 started pmx-01 1
Node User name Descripfion
pmx-01 root@pam VM 100 - Start
pmx-01 root@pam VM 100 - Migrate
pmx-01 root@pam VM 100 - Start
pmx-01 root@pam Shell

Max. Reloc

1

Group Description

Status

oK

Error: migration aborted

Error: start failed: command "/usr/bin/kvm -id 100 -
OK

The Groups menu

This menu is used to create and manage different groups of Proxmox for HA.
The most relevant use of groups is for software solutions or infrastructure
VMs that should always be running together for continuous functionality in
the event of a failure: a domain controller, file server, and so on. We can
create multiple groups through this menu. A VM assigned to a particular
group will only be moved within the member nodes in that group. For
example, if we have six nodes, out of which three nodes have enough
resources to run the database virtual server and the other three nodes to run
virtual desktops or VDI solutions, we can create two groups for which the
database virtual servers will only be moved within the nodes that we have
assigned for that group. This ensures that a VM is moved to a correct node
that will be able to run the VMs. To open the group-creation dialog box,
simply click on Create in the Groups submenu. The following screenshot
shows the groups dialog box for our example group named pmx_HA_Test:

Create: HA Group

ID: Pmx_HA_Test restricted
nofailback
Comment:
Node Memory usage % CPU usage Priority
1] pmx-ot 6.7 % 51.7% of 2CPUs B
pmx-02 638 % 3.5% of 1ICPU s
pmx-03 47.0% 2.0% of 2CPUs 1
© tep

The following are the items available in the HA Group dialog box.

ID

This is a textbox used to enter a name for the HA Group. The ID string can be
alphanumeric text with only underscore () as the special character.

name. We will have to delete the group and create a new one

0 Note that once we create a group, we cannot change the group
with a proper ID if we need to change the group name.

Node

This is a list of all the Proxmox nodes in the cluster. We can select multiple
nodes in the list. In order to create the group, we need to select at least one
node. Unlike the ID textbox, we can change the assigned member nodes for
the group even after the group has been created.

The restricted checkbox

This is a checkbox used to allow VMs to be moved by Proxmox HA only
within the available member nodes in the HA group. If there are no available
member nodes, then the VMs will be stopped automatically. This option is not
enabled by default.

The nofailback checkbox

This is also a checkbox used to prevent the group from automatic failback
when a new node joins the cluster. This is not enabled by default. Unless there
is a strict requirement, this option should not be enabled. One scenario of
using this is when an administrator is trying to diagnose a node or network
failure. By enabling this option, we can prevent recovered VMs or services
from moving back into the original node.

The following screenshot shows the Groups submenu interface with our
example group created:

Datacenter

Q Search Create Edit Remove

& Summary Group restricted nofailback Nodes

Options Pmx_HA_Test Yes No pmx-01:2 pmx-03:1 pmx-02:2
S Storage

& Backup

3 Replication

o' Permissions

<3

HA
& Groups

& Fencing

At first glance, using groups may seem like just another layer of complexity,
but proper use of groups really can help us create a highly complex automated
administrator. Groups allow us to create multiple layers of failover, bind
certain services to specific nodes, and distribute VMs to specific nodes to
name a few. Let’s look at the following scenario to better understand how
groups can be used in a complex environment.

For this scenario, let’s assume that this is a three-node Proxmox cluster where
node #1 is powerful enough to run all VMs, whereas node #2 is powerful
enough to run half and node #3 only a handful of VMs. In this scenario,
creating just one group will try to move all VMs to one of the nodes, resulting
in half of the VMs remaining powered off due to shortage of resources. But if
we create two groups, one to move half of the VMs to node #2 and another

group to move the remaining VMs to node #3, we can easily create an HA
strategy to handle node failure automatically.

Another scenario is to use groups to create different HAs for different VM
groups. For example, we can have an HA group only to handle SQL database
cluster VMs whereas another group will handle all VMs functioning as file
servers. Due to the differing workloads of database and file servers, it may be
more efficient to run them on specific groups of Proxmox nodes.

The Fencing menu

As of Proxmox 5.0, there is no use for this menu. It only displays the fencing
device being used by Proxmox HA. Proxmox uses a hardware watchdog and
software Linux watchdog for fencing. The following screenshot shows the
Fencing menu interface:

Server View Datacenter
= Datacenter ~
Q Search Node Command
s pmx-01
101 (ubuntu-01) & Summary Use watchdog based fencing
G 100 (kvm-1) # Options
103 tos2
(Cenios?) S Storage
[£o 102 (centos1)
= local (pmx-01) B Backup
g local-lvm (pmx-01) 13 Replication
= i]
= .01 (pmx:01) o' Permissions
[l pmx-02
© HA
s pmx-03
@ Linux_VMs &l Groups
¥ Test-Pooll % Fencing
U Firewall

At this point, we’ve created a Proxmox HA group and added a VM to the
group to be managed by HA. Our VM is currently in the pnx-01 node and is
ready to be managed by Proxmox HA. The following screenshot shows the
Status menu of HA:

Server View Datacenter
= Datacenter e o o
earc| atus
B pmx-01
101 (ubuntu-01) & Summary Type Status
ek 100 (kvm-1) # Options quorum fol's
163contos2) S Storage master pmx-01 (active, Sat Aug 19 14:11:35 2017)
D: 102 {centost) Irm pmx-01 (active, Sat Aug 19 14:11:40 2017)
£ local (pmx-01) Backup
2 " - Irm pmx-02 (idle, Sat Aug 19 14:11:39 2017)
= local-lvm (pmx-01) 13 Replication
Irm mx-03 (idle, Sat Aug 19 14:11:38 2017
€ rod-01 (pmx-01) o' Permissions ? (L)
B pmx-02
B pmx-03 T HA Resources
W Linux_VMs 1= Groups o e e
W Test-Poolt % Fencing
1D State Node Max. Restart Max. Reloc. Group
U Firewall
vm:100 started pmx-01 1 1
< Support

As we can see, in the preceding screenshot, the Status menu shows the current
state of the entire HA feature. For our example cluster, it shows the following
vital information:

e Cluster quorum is established
e The master node pmx-01 of the HA group is active and the timestamp of

the last heartbeat has been checked

e All the three member nodes of the HA group are active and the
timestamp of the last heartbeat has been checked

e The VM service for 100 has been started on the first node, pmx-e1

Testing Proxmox HA configuration

To test whether the HA is really working, we will disconnect network
connectivity for the node pmx-e1 and observe the Status window for HA
changes. The Status window displays the status of resources in real time. The
following screenshot shows the HA status after interrupting network
connectivity:

Server View Datacenter
= Datacenter
Q Search Status
0 pmx-01
i pmx-02 8 Summary Type Status
- .
£ local-vm (pmx-02) :
= S Storage master pmx-01 (old timestamp - dead?, Sat Aug 19 14:19:.45 2017)
E e e { 01 (old timestamp - dead?, Sat Aug 19 14:19:44 2017)
. m pmx-01 (old timestamp - dead?, Sat Aug 19:
B pmec03 Backup :
- o Im pmx-02 (idle, Sat Aug 19 14:21:39 2017)
= local (pmx-03) 3 Replication
= Irm pmx-03 (idle, Sat Aug 19 14:21:38 2017)
= beethrpmed) o' Permissions
S d01 (pmx-03)
m
® Linx Wis v HA Resources
Test-Poolt K Groups
» Add = Edt Remove
k Fencing
ID State Node Max. Restart | Max. Reloc..
U Firewall
vm:100 startad pmx-01 1 1
& Support

In the preceding screenshot, we can see that our example node pm4-1 is no
longer connected to the cluster, and HA does not get any acknowledgement
from the node. After 60 seconds, Proxmox HA promotes the next available
node in the HA group as the master and migrates any HA-enabled VM. In our
example cluster, after disconnecting node pmx-e1, the HA migrating the VM is
as shown in the following screenshot:

Server View

Datacenter
= Datacenter
Q Search Status
0 pmx-01
i pmx02 & Summary Type Status
£ Jocal (pmx-02) ‘
i $ Storage master pmx-03 (active, Sat Aug 19 14:23:56 2017)
E i e E 01 (old timestamp - dead?, Sat Aug 19 14:19:44 2017)
: m pmx-01 (old timestamp - dead?, Sat Aug 19 14:19:
S 101 (pm2) L |
o Irm pmx-02 (active, Sat Aug 19 14:23:51 2017)
il pmx03 £3 Replication
= Irm pmx-03 (idle, Sat Aug 19 14:23:58 2017)
& b inkD) o' Permissions
S local-vm (pmx-03)
S oo 0t () ? HA Resources
W Linux WM B Groups P =
ID State Node Max_Restart | Max_Reloc..
U Firewal
vm:100 migrate pmx-02 1 1
O Support

After the VM resources are fenced, in the next stage, the VM is fully stopped.
Since the node itself is down, the VM cannot be live-migrated because the
memory state of the running VM cannot be retrieved from the down

node. After the VM is stopped, it is moved to the next available node in the
HA group and started automatically. The following screenshot shows that the
VM has now moved to node pmx-02 and has been started:

Server View

= Datacenter
@ pmx-01
) pmx-02
G2 100 (kvm-1)

local (pmx-02)

local-lvm (pmx-02)

rbd-01 (pmx-02)
mx-03

local (pmx-03)

@ e we

&
_

local-vm (pmx-03)
rbd-01 (pmx-03)
® Linux_YMs

$ Test-Poolt

e (@ we

Datacenter

Q Search
& Summary
f Options
£ Storage
Backup
£ Replication
o' Pemissions
& Users
i& Groups
¥ Pools
® Roles
G Authentication
° HA

& Groups

Status

Type
quorum
master
Irm

Im

Im

Resources

Add | Edit

ID

vm:100

OK

pmx-03 (active, Sat Aug 19 14:34:48 2017)

pmx-01 (old timestamp - dead?, Sat Aug 19 14:19:44 2017)
pmx-02 (active, Sat Aug 19 14:34.49 2017)

pmx-03 (idle, Sat Aug 19 14:34:.46 2017)

State Node Max Restat Max Reloc.. Group

started pmx-02] U]

After the failed node comes back online, the VM will continue to run on the
node it was migrated to by HA. From the Status interface we can see that the
second node pmx-02 is now active while the other two nodes are idle:

Server View

= Datacenter

iy pmx-01
il pmx.02
G 100 (kvm-1)
local (pmx-02)
local-vm (pmx-02)
tbd-01 (pmx-02)
mx-03
local (pmx-03)

o wwe e

&
=

local-m (pmx-03)
rbd-01 (pmx-03)
® Linux VMs

® Test-Poolt

o w we

Datacenter

Q Search
& Summary
% Options
S Siorage
Backup
£3 Replication
o' Permissions
T HA
& Groups
k¥ Fencing
U Firewall

& Support

Status

Type Status

quarum 0K

master pmx-03 (active, Sat Aug 19 14:41:19 2017)

Im pmx-01 (idle, Sat Aug 19 14:41:17 2017)

Irm pmx-02 (active, Sat Aug 19 14:41:19 2017)

Irm pmx-03 (idle, Sat Aug 19 14:41:16 2017)

Resources

Add Edt Remove

D State Node Max_Restat | Max. Reloc... | Group
vm:100 started pmx-02 1 1

It is possible that Proxmox HA will produce an error during the automatic
VM move for various reasons. After any error, Proxmox HA will make
several attempts with the restart and relocate policy to recover from the error.
If all attempts fail, Proxmox HA puts the resource in the error state and will
not perform any automated tasks for it. For this reason, even after the error
has been addressed and fixed, HA will not automatically start the VM. We
will manually have to start it. This is one of the unintended side effects of
enabling Proxmox HA where it may not behave as expected after an error has
occurred.

If the VM is automatically moved after a node failure and then restarted on a
new node, this completes the entire process of the Proxmox HA configuration.

The Proxmox HA simulator

Although Proxmox HA has become far easier to configure and manage, it is
still a complex topic to grasp. With the use of software-based watchdogs, it is
entirely possible to configure, test, and learn Proxmox HA in a virtualized
environment before implementing it in a production cluster. There is also a
simulator for Proxmox HA that we can use to see HA in action without setting
up any clusters. The simulator allows us to see the HA configuration in action
and see how the states change at different stages.

Configuring the Proxmox HA
simulator

The Proxmox HA simulator is not shipped with the distribution and needs to
be manually installed. Along with the simulator package, we also need xorg
and xuath because the simulator requires X11 redirection, which is also known
as X11 forwarding. We can use the following commands to install the
packages:

apt-get install pve-ha-simulator

apt-get install xorg

apt-get install xauth
We can access the simulator from both Linux and Windows operating
systems. If we log in from Linux, use the standard SSH command with the -v

option, as shown in the following command:

| # ssh root@<pmx_node> -Y

For Windows, we can use an advanced terminal, such as MobaXterm, which
can be downloaded from the following link:

http://mobaxterm.mobatek.net/

After we access the Proxmox node through Linux or Windows, we need to
create a directory, which will be used as the working data directory for the
simulator. After the directory is created, we can run the simulator, pointing it
to the working directory. The following screenshot shows the SSH console
with the directory created and simulator started using the MobaXterm
program:

[l
Terminal Sessions View Xserver Tools Games Settings Macros Help
S et . =3
2 | \ > | y N &
5 6 Rk &4 w 8 @ B = X @
Session | Servers Tools Games Sessions View Split MultiExec Tunneling Packages Settings Help
Quick connect... iy 2 172 ? (root)
_ P - 1 i root@pmx- dir /root/pmxHAsim)
& | k 20N | \ W A root@pmx-02:~# pve-ha-simulator /root/pmxHAsim/Ji]
____|froot/ T _/|
2 | Mame Size (KB) Last modified

20170703 ...
2017-05-29 ...
2017-08-19 ...
2017-08-03 ...

| .nano
|...-’ | .ssh

+ . pmxHAsim
E = | bash_history
After the command is executed, the Proxmox HA simulator is started in a
graphical interface, as shown in the following screenshot:

[= T S N Y

http://mobaxterm.mobatek.net/

- Proxmox HA Simulator@pmx-02 [= ==

Mode Power Network Status
Cluster Log | Manager Statu
nodel OFF OFF -
info 15:27:30 hardware: starting simulation =
node2 OFF OFF | -

node3 OFF OFF -

Service ID Request State Node Status

vm:101 disabled v Migrate nedel queued
vm:i102 | disabled v] Migrate nede2 queued
vm:103 | disabled v Migrate node3 queued
e Migrate | nodel queued
vm:105 | disabled v || Migrate | node2 queued

vm:106 | disabled v || Migrate | node3 queued

+ elele|le oo

As we can see, in the preceding screenshot, the simulator provides a three-
node HA setup with two VMs per node. We can simulate a node or network
failure using the Power or Network buttons and watch HA in action. Before
HA takes action, we have to enable it for each VM. We will see that as
various HA states change, the configuration entries of the HA also change in
real time. This simulator will aid in understanding Proxmox HA better

through practice. The cluster log shows line-by-line info as you try and test
different HA scenarios.

Summary

In this chapter, we learned about the different aspects of the recently
redesigned and enhanced Proxmox HA feature and how it can benefit a virtual
environment. By leveraging HA, we can automate the response to a failure by
auto-migrating VMs, thus reducing downtime during node power failure or
network failure. We explained the requirements the infrastructure must meet
in order to implement a fully functional HA feature. We walked through the
process of HA configuration and finally tested HA by simulating device
failure. We also learned how to install and use the Proxmox HA simulator to
see HA in action without setting up any clusters.

Due to the nature of Proxmox HA, it is highly recommended you test this
feature to its full extent before diving into implementing it for production
clusters. HA can limit user interaction during some operations. The need for
HA should be evaluated and, if used, it should be thoroughly tested before
being implemented in a production environment. It is also quite important to
group and size the HA solution properly. If the nodes cannot handle the load
of virtual machines that HA requires, the entire solution could be at risk when
a failure occurs, compounding the issue.

In the next chapter, we are going to see the effectiveness of a good network
monitoring system and how to implement one to monitor a Proxmox
environment.

Monitoring the Proxmox Cluster

Monitoring a network environment of any size is mandatory to ensure healthy
operation and timely responses to any issues. In this chapter, we will see how
to monitor and configure notifications, so that when something goes wrong in
the cluster, we know about it right away and can take necessary actions. We
will cover the following topics in this chapter:

An introduction to monitoring

Proxmox built-in monitoring

Zabbix as a monitoring solution

Configuring the disk health notification
Configuring SNMP in Proxmox

Monitoring the Proxmox cluster with Zabbix

An introduction to monitoring

In a network of any size, it is only a matter of time before an issue arises due
to intentional or unintentional circumstances. The root cause of an issue could
be hardware failures, software issues, human errors, or just about any other
environmental factor that causes loss of network or data. Network monitoring
is a practice in which an administrator checks the pulse of the network
components in a network environment.

There is no system to monitor everything. A good monitoring system is
usually put together with various tools and some types of notification options
to send alerts automatically. The Proxmox cluster is a sum of switches,
network cables, physical nodes acting as hosts, and virtual machines. A
monitoring system should be able to monitor all of these components and
automatically send notifications via a medium, such as an email or SMS, to
responsible parties. There are wide ranges of network monitoring tools
available today, such as Icinga, Zabbix, Nagios, OpenNMS, Pandora FMS,
and Zenoss. There are many more options, both paid and open source. In this
chapter, we will see how to use Zabbix to monitor the Proxmox cluster.
Zabbix has a user-friendly GUI, graphing ability, and many more features out
of the box. It is very easy to learn, for novice and network professionals alike.
Once Zabbix is installed, all the configuration and monitoring can be done
through the GUI.

A monitoring node should be a standalone reliable machine. For learning and
testing purposes, it can be set up as a virtual machine. However, to monitor a
production-level cluster, a separate node outside the main cluster is an ideal
solution. This will ensure that even if the internal network is down, the
monitoring system can still send out notifications.

Proxmox built-in monitoring

Proxmox has limited monitoring capabilities built into the GUI to monitor the
health of a cluster and gather real-time data on various resources. A visually
appealing representation of data makes it easily understandable while
gathering particular data through just a few clicks. Each separate entity comes
with its own status page to monitor various aspects of the cluster.

Datacenter Status

From this Status page, we can gather critical data at a glance, such as whether
a node is online or offline, total cluster storage, number of virtual machines,
and so on. The following screenshot shows the Status page of a production
cluster. The Status page can be accessed through the patacenter | Summary
menu:

Datacenter
Search
4 Health
& Summary
& Options Status Nodes
£ Storage _
v Online 7
Backup
13 Replication * Offine 1
Dot Cluster: SymmincHive, Quorate: Yes
i Guests
& Groups
W Pools Virtual Machines LXC Container
Roles © Running 32 © Running 2
Stopped 10 Stopped 3
&, Authentication
¢ HA
U Firewall
< Support Resources
CPU Memory Storage
0 0 0
% 56% 33%
of 104 CPU(s) 192.59 GiB of 345.77 GIB 13.72TiB of 41.04 TIB
Nodes
Mar | 1D | Online | Support Server Address | CPU usage Memary usage Uptime
CA-0I 8 v Community 10.0.01 8% T1% 3 days 20:... 2
CAOL 10 v Community 10.0.0.3 21% 58% 16 days 21...

CADI 9 v Community 10.0.0.4 1% 35% 23 days 07...

As shown in the previous screenshot, from the patacenter | Summary page we
can see the entire cluster status at a glance. The Health shows the current
state of the Proxmox cluster. It shows the name of the cluster, the quorum
presence, and the total number of online and offline Proxmox member nodes.
When there is a cluster-related issue, we can quickly check the cluster status
here.

The Guests section shows the total number of KVM and LXC virtual
machines Running and Stopped in the cluster.

The Resources section shows the amount of cluster-wide available resources,
such as CPU, Memory, and Storage space. It also shows resources used as a
percentage. The CPU and Memory count is the total CPU cores and memory
of all Proxmox nodes in the cluster. The Storage is the total of all attached
storage, including the local storage of all nodes and any shared storage node
attached to the cluster.

The Nodes section shows a list of all cluster nodes. We can sort this list by
clicking on any heading, such as Server Address, CPU usage, and so on. In
the previous screenshot, the list was sorted by Server Address in ascending
order.

Node Status

The Status page shows node-specific data only. Proxmox comes with built-in
RRD-based graphs to show the historical resource usage and performance
data up to 1 year previously. Using this tool, we can analyze the performance
trend of a resource over a period of time. All consumption and performance
data is under the Summary tab menu for both Proxmox nodes and virtual
machines. We can view data on a per hour, day, week, and year basis. The
following screenshot shows the Summary page of the node pnx-01 with the
drop-down list to select data for a period:

Semer View Node 'prmx-01' O Restari () Shutdown > Shell : Buk
£ Datacenter
E@ P01 Q, Search Package versions Hour
s pmx-02 & Summary pmx-01 (Uptime: 23 days 01:08:40)
o pmx-03 >_ Shell
¥ Linux_VMs & System CPU usage 267% of 2 CPU(s) ‘
® Test-Podl] 10 delay 0.76%
= Network Load average 0.25,0.16,0.10
@ DNS . . .
RAM usage 86.79% (3.35 GiB of 3.86 GiB) KSM sharing 0B
@ Time
HD space(root) 53.24% (4.03 GIB of 7.57 GIB] SWAP usage 0.71% (4.21 MiB of 3.87 GIB)
i= Syslog
2 Updates CPU(s) 2 x Commen KVM processor (1 Socket)
U Firewall Kernel Version Linux 4.10.15-1-pve #1 SMP PVE 4.10.15-15 (Fri, 23 Jun 2017 08:57:55 +0200)
& Diske PVE Manager Versicn pve-manager/3.0-23/af4267bf
® ceph
o CPU usage
3 Replication
o 14 -
= Task History 124
8 Subscription 10 -
g -
=]
- 6 .
4
2
0

2017-11-02 2017-11-02 2017-11-02 2017-11-02 2017-11-02 2017-11-02 2017-11-02 2017-11-02 2017-11-02 2017-11-02
111200 111900 112600 113300 114000 114700 115400 12:01:00 120800 121500

There are also ways to display a list of all the nodes and virtual machines in
the cluster and sort them by consumption to get quick information on the
highest or lowest resource consuming entity. We can see the list by navigating
to patacenter | Search. The following screenshot shows the list of Proxmox
nodes and virtual machines of a production cluster, sorted by the highest
memory consuming entity:

Datacenter @ Help
Q, Search Search:
& Summary Type Description | Disk usage.. = Memoryus... = CPU usage Uptime
& Options G} gemu 1000214 937% 17.0%of 6CPUs 20:13-10
€ Storage o gemu 1000219... 92.4% 1.5% of 2CPUs Jdays 19:.03.53
Backup ("N gemu 1000106... 91.8% 13.4% of 4CPUs 8 days 04:41:20
13 Replication L gemu 1000104... 89.2 % 0.5% of 4CPUs 19:32:36
B Permissions G} qemu 10001011 88.4% 19%0f2CPUs 3 days 201226
& Users m gemu 1000210._. 874 % 13.5% of 4CPUs J days 21:21:16
0, 0, & ::
% Groups m gemu 1000100 873% 3.5% of 1CPU 23 days 08:41:09
[gemu 1000100... 86.7 % 3.1% of 1CPU 22 days 11:36:03
¥ Pools
L gemu 1000100... 854 % 53.9% of 2CPUs 16 days 20:56:44
f Roles
m gemu 1000219... 85.1% 2.1% of 2CPUs 3 days 19:.03.42
& Authentication
m. gemu 1000219._. 846 % 0.9% of 2CPUs 3 days 19:03:59
(5.]
¥ m. gemu 1000220 842 % 6.1% of 4CPUs 3 days 20:42:22
U Firewall G} qemu 1000219 831% 29%0f2CPUs 3 days 19.0347
© Support o gemu 1000101... 82.75% 19.9% of 4CPUs 15 days 04:01.06
L gemu 1000100... 82.4% 49 3% of 4CPUs 15 days 22:30:32

We can sort this list by Type, Description, Disk usage %,

Memory usage %, CPU usage, and Uptime by clicking on the
column header. There is no historical data in this list. It only
shows the resource consumption in real time.

We can leverage S.M.A.R.T. for disk drives to receive automated emails
about the Proxmox node when there are any major issues occurring in any
disk drives in the node. For this, we will need to install S.M.A.R.T. monitor
tools, using the following command:

| # apt-get install smartmontools

Make sure that you install this in all the Proxmox nodes in the
cluster. There is no other configuration needed to receive the
email, except ensuring that the correct email address is entered
for the root user in Proxmox.

We can check the correctness of the email address from the user details dialog
box in the patacenter | Users menu, as shown in the following screenshot:

Edit: User

User name wahmed@pam First Name Wasim

Group Authors Last Name Ahmed

Expire E-Mail wahmed@symmcom.com
Enabled

Comment

Key IDs

Whenever there is a major issue in any disk drive in the Proxmox node, it will
send out an automated email with the name of the node where the issue
originated and the nature of the failures or issues for the disk drive. The email
also shows the details of the drive itself, such as the serial number and the
device ID of the drive. The following screenshot shows a sample of an email
received from the node pms-1 with the sector error for the device /dev/sda, with
the serial number virasiep:

This message was generated by the smartd daemon running on:

host name: pm4-1
DNS domain: domain.com

The following warning/error was logged by the smartd daemon:
Device: /dev/sda [SAT], 8 Offline uncorrectable sectors

Device info:
ST2000DMPO1-1CH164, S/N:V1IFA516P, WWN:5-000c50-06040e51c, FW:CC26, 2.0 TB

For details see host's SYSLOG.

You can also use the smartctl utility for further investigation.
The original message about this issue was sent at Sat Feb 13 ©9:01:14 2016 MST
Another message will be sent in 24 hours if the problem persists.

If the same error continues to occur, the Proxmox node will send this email
every 24 hours. Based on the information provided in the email, we can
pinpoint the drive and replace it if necessary.

As we can see, Proxmox really does not have a robust monitoring system, and
it’s very unlikely it ever will. Its strength lies in being a great hypervisor and
not a monitoring system. However, we can easily fill the gap using a third-
party monitoring system, such as Zabbix.

Z.abbix as a monitoring solution

Zabbix was released in 2004 and is a robust web-based network monitoring
tool capable of monitoring many hundreds of hosts and running thousands of
checks per host at any set time. Zabbix is completely open source and does
not have enterprise or paid versions. Zabbix takes just a few minutes to
install, even by a beginner, and it can be fully configured through a web-
based interface. The following screenshot shows the Zabbix 3.0 dashboard
after logging in through the web GUI:

€ & M0 ¢ teE0 4B
PANSIRIDY Montorng Inventory Repots Configuraton Administration Q B 7 2 0
Dashboard

Dashboard ¢
Favourite graphs Status of Zabbix

(raphs Zabbixsenveris running Ve lncalhost-10051
Number of hosts (enabled/disabledtemplates) Bl
Favourite screens
Number of tems (enabled/disabledinot supported) 0
Number of riggers (enabled/disabled [problem/ok]) 0 010[010]
15 Slidesho
Number of users (onine) 2
Favourite maps
Required server parformance, new values per second 0
M IS
System status

Zabbix has a very active community and many downloadable templates used
to monitor a variety of devices or equipment. It is also comparatively easier to
create our own custom Zabbix template for nonstandard devices. More details
on Zabbix can be found on the official Zabbix site at http://www.zabbix.com/.

http://www.zabbix.com/

Why give preference to Zabbix over mainstream monitoring systems, such as
Nagios or Icinga, or any other solutions currently available? The reason is that
Zabbix offers simplicity, without sacrificing any of the features that make a
great monitoring system. Zabbix is fully managed through the GUI, without
requiring you to edit any script file through the CLI. This eases the burden of
device configuration through the script file, such as in the case of a Nagios-
based monitoring system. Whether it is a small network environment or a
large one spread across regions, Zabbix is up to the challenge.

Installing Zabbix

In this section, we will see how to install Zabbix and configure it to monitor
the Proxmox cluster and network devices. We are going to install the Zabbix
version 3.0 on CentOS 7. Zabbix can be installed very easily on other major
distributions, such as Debian or Ubuntu.

For stability and performance when monitoring a large
production environment, using CentOS as the base operating
system is highly recommended.

8 Always make sure that you set up a separate node or a virtual

machine to offer maximum performance. A fully configured
Zabbix with thousands of items will run frequent checks, which
is resource heavy. Using Zabbix in a node or VM, which serves
other roles, will greatly affect the performance.

Zabbix also provides preinstalled and preconfigured downloadable appliances
for evaluation purposes. It is useful for learning and testing purposes but is
not recommended for production use. Zabbix appliances can be downloaded
from http://www.zabbix.com/download.php.

Zabbix will still work without a Zabbix agent installed on the host to be
monitored, but an agent can gather much more data from the host. There are
agents available for all major operating systems, including Linux, Windows,
FreeBSD, AIX, Solaris, and HP-UX. For devices where an agent installation
is not possible, such as a managed switch or other network equipment, Zabbix
is able to monitor them through SNMP. After the Zabbix server installation is
completed, install Zabbix agents on hosts to be monitored.

A Zabbix agent can capture much more data than SNMP. Use an agent over
SNMP whenever possible. This reduces the complexity of configuring SNMP
while creating a lot more custom checks. Agents are a great option for
Proxmox host nodes.

The Zabbix official documentation has excellent instructions to install Zabbix
on various Linux distributions.

Refer to the documentation for instructions on how to install the
8 Zabbix 3.0 server and agent at https://www.zabbix.com/documentation/3.0/

manual/installation/install_from_packages.

http://www.zabbix.com/download.php
https://www.zabbix.com/documentation/3.0/manual/installation/install_from_packages

After the installation is complete, the Zabbix server can be accessed
through: http://<node_ip>/zabbix.

By default, the Username and Password to log in to the Zabbix web GUI
are Admin and zabbix, where the username is case sensitive. It is highly
recommended that you change the password right after logging in. Go to
Administration | Users, then click on the Admin (Zabbix administrator)
member, or click on the User profile icon in top-right corner of the GUI, to
change the administrative password, as shown in the following screenshot:

ZABBIX Monitering nventory Reports Configuration Administration Q EShare ? E =
User profile:
User Media Messaging
Password
Password (once again)
Language | English(en_GB) | |Youare not able to choose some of the languages, because locales for them are not installed on the web serve
Theme | System defaull [v]
Auto-login %
Auto-logout (min 90 seconds) []
Refresh (in seconds) 30
Rows per page 50
URL (after login)

If you are using CentOS 7 for the Zabbix server, after accessing the Zabbix
GUI you may notice that the status informs that the Zabbix server is not
running, even though the Zabbix service is running, as shown in the following
screenshot:

Status of Zabbix

Zabbix server is running No localhost: 10051
Number of hosts (enabled/disabled/templates) 39 0/1/38
Number of items (enabled/disabled/not supported) 0 0/0/C

This is due to the nhttpd_can_connect_network argument in the SELinux firewall
configuration. The argument needs to be enabled in order to let Zabbix access

the network. Run the following command to check whether it is off or
disabled:

| # getsebool httpd_can_network_connect

If the result shows off, then enable it by running the following command:

| # setsebool httpd_can_network_connect on

The Zabbix GUI now shows that the server is running.

Configuring Zabbix

After the Zabbix server is installed and functioning, we have to set up emails
so that we get automated emails whenever there is an issue. Zabbix 3.0 is able
to send emails through SMTP. We can configure it by navigating to the
Administration | Media types menu and changing the SMTP information
under Email. After the email is configured, it is now time to add some hosts
or devices to start monitoring.

Configuring a host to monitor

In this section, we will see how to add a host, whether it is a Proxmox node or
a virtual machine, to the Zabbix monitoring server. This procedure is the same
for adding any host with a Zabbix agent installed. By default, the Zabbix
server is added to the monitoring host. We are now going to add our example
Proxmox node pmx-01 to Zabbix in order to be monitored. The following steps
show how to add the host to Zabbix:

1. Go to Configuration | Hosts and click on Create Host.

2. Type in the Host name and Visible name. The Host name must match the
hostname entered in the host Zabbix agent configuration file. We will
configure the agent after we add the host in the Zabbix server. The
Visible name can be anything.

3. Select an appropriate Group. Since we are adding a Proxmox host node,
we need to select Hypervisors as the Group.

4. If we are adding a host with the agent installed, we type in the IP address
of the host in the Agent interfaces. By default, the agent listens on port
10050. If we are using a different port, we type in the port here. Make sure
that you open the ports in the firewall if the host is behind any firewall.
The following screenshot shows the Host configuration page after adding
the necessary information:

ZABBIX Monitoring Inventory Reports Configuration Administration

Hosts

Host Templates IPMI Macros Host inventory Encryption

Host name | pmx-01
Visible name | pmx-01

Groups In groups Other groups
= UISCOVEred Nosts
T ——— DS Servers
Firewalls
Linux servers
* | ooc
switches
Symmcom
Templates

Virtual machines
Weh Servers

New group

Agent interfaces

‘17215.2 1l n DNS || 10050 ® Remove

Add

5. Click on the Templates tab to add a template to the host. In Zabbix,

templates are preconfigured groups of checks. By assigning a template to

a host, we apply multiple checks at once instead of manually adding each
check.

6. Type a template name in the Link new templates textbox, or select one
by clicking on the Select button. The textbox is a self-search box, so the
value does not need to be the exact name of the template. For example,
we have typed in cinux, which pulled up two possible templates. We are
going to select Template OS Linux, as shown in the following

screenshot:
Host groups Templates Hosts Maintenance Actions Discovery IT services
Hosts
Host Templates IPMI Macros Host inventory Encryption

Linked templates NAME ACTION

Template OS Linux Unlink

Link new templates
e here to search Select

o

‘ Cancel

7. We can also assign an SNMP device using the same template page. Refer
to the Configuring SNMP in Proxmox section later in this chapter for
how to install and configure SNMP in Proxmox nodes.

8. Click on Add to assign the template to the host.

9. Click on Host inventory, and then select Automatic so that the Zabbix
agent can pull relevant information about the host, such as the host
brand, serial number, OS installed, and so on. We can also manually
enter data, such as longitude, latitude, hardware, and software installed
in the node. This is helpful to build an inventory list.

10. Click on Save to finish adding the host.

The following steps need to be performed to configure the Zabbix agent in a
host:

1. Open the Zabbix agent configuration file in the
/etc/zabbix/zabbix_agentd.conf file of the host.

2. Make the changes for the following option lines:

Server=172.16.2.172 //IP of Zabbix Server
ServerActive=172.16.2.171:10051 //IP_Server:Server_Port
Hostname=pmx-01

//must be same as Hostname typed in Zabbix Server for the host

3. Save and exit the editor. Run the following command to restart the
Zabbix agent in the host:

| # service zabbix-agent restart

Within a minute or so of adding the host, the Zabbix server will run auto
checks and will discover that the host now has a live agent. The following
screenshot shows the node after adding it to the Zabbix monitoring:

7

Hosts Group | Hypervisors

Filter &

Name like | pmx DNS like IP like Port like

Reset

O NAME a AFFLICATIONS ITEMS TRIGGERS GRAPHS DISCOVERY WEB [INTERFACE TEM STATUS AVAILABILITY AGENT ENCRYPTION INFQ

O pmx-01 Applications 10 liems 32 Triggers 15 Grephs5 Discovery? Web 172.16.2.1: 10050 Template OS Linux (Template App Zabbix Agent) Enabled (BN SRSl

From the list, we can also see that the template added 32 items, 15 triggers,
and 5 graphs to the host. Items are what are being checked by Zabbix and
triggers are what initiate certain actions, such as sending automatic
notifications for any event. The template has two discovery items, which
automatically gather information of installed and configured disk drives and
partitions in the node. The following screenshot shows the Triggers page for
the host pmx-e1:

0 SEVERITY NAME 4 XPRESSION STATUS
O ‘Waming Template OF Linux: /etc/pesswd has been changed on {HOSTNAME} e.cksum|/etcipasswd].diff(0)y>0

«: Configurea max number of opened files Is 100 low on {HOST.NAME} axfies last(0)}<1024
nux: Configured max number of processes is 100 low on {HOST.NAME}

nu: Disk /0 Is overioaded on {HOST.NAME} owait].avg(sm)}>20

nui: Host information was changed on {HOST.NAME} ne.diff{0))=0

ert: Host name of zaboix_agentd was changed on (HOST.NAME} {pmx-01:ag me diff(0)}>0

nux: Hostname was changed on {HOST.NAME} > diff{0)}>0

Average

nux: Lack of avaliable memery on server {HOST.NAME)

abie].last(0)}<20M

O ‘Waming S Linu: Lack of froe swap space on {HOST NAME} fpm ze] piree] last{0)}<50
O 'Warning nux: Processor load is too high on {HOST.NAME} pIT pu.avgll.avg(Sm)pS Know!
Ol Warning 1u: Teo many procssses on {HOST.NAME} fpm um[avg(5m|}>700

O |Warming

The expression column in the Triggers page shows when an event is

1ux: Too many processes running on {HOST.NAME)
App Zabbix Agent: Version of zabbix_agent(d) was changed on {HOST.NAME}
x Agenl. Zabbix agent on {HOST.NAME} is unreachable for 5 minutes

nux: {HOST.NAME} has just been restarted

{omx-01:proc.numf,.run].avg{5m)}>30

{pmx-01:agent.version.diff{0)}>0

ng.nodata(sm)}=1

uptime.change(0)j<0

triggered. For example, the expression ¢pmx-
01:system.cpu.util[,iowait].avg(5m)}>20 for disk I/O overload will trigger d
warning when the I/O wait exceeds 20 for 5 minutes in the host. Another
example trigger is {pmx-01:proc.num[].avg(sm)}>300, Which may trigger when the
number of running processes exceeds see for 5 minutes. Modern servers can
run many more processes at once. So, for a node or host that hosts many
virtual machines, this process limit of see may not be enough, and will trigger
a warning frequently. We can change the trigger, for example, to 9ee, to
increase the limit.

To learn more about triggers, refer to https://www.zabbix.com/documenta
0 tion/3.0/manual/config/triggers/expression.

We can also add each virtual machine as a host and then monitor it through
Zabbix. For this, we need to install the Zabbix agent inside the virtual
machine, and add it as a host in Zabbix. To group all virtual machines
together, we need to create a group named virtual Machine in Zabbix and assign
all VMs to be monitored in that group.

https://www.zabbix.com/documentation/2.2/manual/config/triggers/expression

Displaying data using a graph

Zabbix comes with an excellent graphing ability out of the box, without any
manual configuration. As soon as data is pulled from a resource, the graphing
utility starts plotting using the raw data. Almost all the built-in templates in
Zabbix have some graphing items predefined. We can get graphs of monitored
items by navigating to Monitoring | Graphs in the Zabbix GUI. The following
screenshot shows the graph of the CPU load over a period of 15 minutes for a
host:

ZABBIX Monitoring Inventory Reports Configuration Administration Q Hsha ? 3 o
Graphs Group all v| Host pma-2 v| Graph cPUIoad v E
prmd-2: CPU load (15m)

14 _— e N S I A T N S

We can also create our own graph items, through a few clicks, for any host or
device being monitored. For example, let’s create a graph to visualize data for
the CPU iowait overtime. For this, we need to go to Configuration | Hosts,
and then click on the node. Once inside the node, click on the Graphs menu to
open the graph editor page, as shown in the following screenshot:

ost groups emplates s Maintenance \ctions Discovery T senices
Graphs Group all v| Host| pmd 2 v‘ Create graph
Allhosts | pm4-2 Enable i Applications Iter Triggers Graphs Discavery rules Web scenarios
NA
il CPU jumps 900 200 Normal
2PU load 900 200 Normal
900 200 Stacked
mory usage 900 200 Normal
600 340 Pie

In the preceding screenshot, we can see that there are five graph items that

have already been created. We are going to add a new item to the pma-2:cpu
iowait time. Click on the Create graph button to open a new graph item page.
Type in an easily understandable name for the graph item. We are going to
name it cru Towait time. From the Items box at the bottom of this, click on Add
to open a list of available items to choose from. We are going to select pma-
2:cpu iowait time for this example. We can configure the color and type of the
graph being created. Click on the Add button when you are satisfied with the
configuration. The following screenshot shows the graph creation page for
our example of pma-2:cpu iowait time:

Graph

Name = CPU IOWait time
Width 900
Height 200
Graphtype | Normal v
Show legend ¥
Show working time |
Show triggers v
Percentile line (left)
Percentile line (ight)
Y axis MNvalue Calculated v |
Y axis MAX value Calculated V]

ftems
1: pmd-2 CPU iowait time avg |v Line vten [v] [t Remoe

Add

| Cancel

To see the newly created graph item, we need to go to Monitoring |
Graphs and select the item for the node. The following screenshot shows the
graph for the gathered cru 1owait time over a period of 15 minutes:

Graphs

14%

12%

10%

Bl CPU jowait time
0 Trigger: Disk |/0 Is overloaded on pmd-2

10:30

:08:30
12:09:30

12:11:30
12:12:30

1z:
1z2:

v

Group al v| Host pmd-2 v| Graph CPU IOWait time

Fiter v

pméd-2; CPU I0Wait time (15m)

+ic)”

e
M

2:13:30
14:30
15:30

2:16:30
17:30

z:19:30

12:20:30
12:21:30

12

1z
1z:
12
12
1

In the preceding screenshot, we can see that the cru 1owait time is shown in
green, and if there are any trigger events due to the cpu 1owait time being
greater than 20%, they will be shown in yellow.

Configuring the disk health
notification

In the Proxmox built-in monitoring section, we saw how we can leverage
S.M.A.R.T. to receive automated emails if there are any issues for any disk
drives. In this section, we are going to accomplish the same thing, but with
Zabbix, and with an additional feature: graphing. A great use case of a graph
for a disk drive is monitoring data for temperature. High temperature is a bad
thing for all spinning drives. Using the Zabbix graph, we can see the exact
temperature trend of the storage cluster, down to a single drive, and take
action accordingly. Zabbix can also send automated emails when there are
any issues in any of the drives, such as read or write issues, due to a bad
sector or any other S.M.A.R.T. event.

Almost all HDDs and SSDs nowadays have the S.M.A.R.T. ability, which can
gather valuable data on the disk drive’s health. Using the S M.A.R.T.
monitoring tool, we can avoid premature drive failure by detecting potential
problems early on. We can configure each Proxmox node to send email alerts
when any problem is detected in any attached drives.

some form of arrays, then the S.M.A.R.T. tool will not be able to

0 If drives are connected to RAID controllers and configured as
retrieve the drive’s health data.

Installing smart monitor tools

We need to install smartmontools in our storage using the following command:

| #apt-get install smartmontools

Retrieve a list of all the attached drives using the following command:

| # fdisk -1

Verify that each attached drive has the S.M.A.R.T. feature, and that it is
turned on, using the following command:

| #smartctl -a /dev/sdX

If the drive has the S.M.A.R.T. feature and it is enabled, it will appear as
shown in the following screenshot:

18-A7 r488Z [x b4 -1 inux— 1-pvel (local build)
2-14, Bruce : Christia ke, wad.smartmontools.org

sfully opened

" (or "-x") to print SMART (and more) information

If the feature is available but disabled for any reason, we can enable it using
the following command:

| #smartctl -s on -a /dev/sdX

Configuring the Zabbix agent

Adding the disk drive monitoring into Zabbix is a two-step process. In the
first step, we need to add arguments in the Zabbix agent configuration file,
and then add the drive items in the Zabbix server for each host. These special
arguments are known as user parameters. They work similar to a script, where
we can define commands to be run on the host, and then the Zabbix agent
passes the data to the Zabbix server.

In this example, we are going to add user parameters to pull data for the serial
number and drive temperature. The following two lines need to be added at
the end of the agent configuration file in /etc/zabbix/zabbix_agentd.conf:

UserParameter=hdd .temp[=]1,smartct]l -A ~devwsS1 | grep -E -i "7[1=(52)[1’ | cut -cB8-98

UserParameter=hdd .serial[=],smartct]l -i ~devw 51 | grep 'Serial Number’ icut -c19-

After adding the lines, we need to restart the Zabbix agent using the following
command:

| # service zabbix_agentd restart

Creating a Zabbix item in the GUI

After the user parameters are added, we need to create new items in the
Zabbix server for the host. First, we will add an item to gather data for the
drive temperature. Go to Configuration | Hosts | Items, and then click on
Create item to open a new item page. The following screenshot shows the
page with the necessary configuration:

ltems

Allhosts / pm4-2 Enabled

Y QAN VY] Applications 10 ftems 64 Triggers Graphs 1 Discovery rules ?

Name | HDD /devisda Temperature
Type | Zabbix agent M
Key ' hddtemp[sda,194] Select
Host interface | 172.16.0.172 : 10050 E
Type of information - Numeric (unsigned) H
Datatype Decimal M

Units | ¢

L]

Use custom multiplier
Update interval (in sec) 120

Custom intervals

Schedulmg) a 00-2400 Remove

Add

History storage period (in days) 90

Trend storage period (in days) 365

The name of the item can be any text string. Since we are pulling data through
the user parameters of the Zabbix agent, we need to select the agent as Type.
The Key textbox is the most important thing here, as this is where we define
what data we are pulling. The key entered, as shown in the preceding
screenshot, tells Zabbix to pull the drive temperature for the sda device. The

numeric value of 194 in the key is for the temperature information. Each smart
monitor attribute has a unique numeric ID. For example, if we want to gather
data for an uncorrectable sector count, the code would be 197.

To view a complete list of smart monitor attribute codes, refer to
0 https://en.wikipedia.org/wiki/S.M.A.R.T.#Known_ATA_S.M.A.R.T._attributes.

Type of information is a drop-down list used to select the nature of data being
collected. Since the temperature is a numeric value, we will select the
Numeric (unsigned) type. To increase the temperature accuracy, we need to
select Decimal as the Data type.

Update interval (in sec) is a textbox used to enter seconds, which needs
careful attention. This is the interval at which Zabbix will run checks for each
item. By default, Zabbix uses an interval of se seconds. When adding high-
volume checks, such as a disk drive’s data, with more disk drives present in a
node, the volume of checks will increase exponentially. For example, if we
want to gather drive data for a Ceph node with 12 drives, Zabbix will run
checks every se seconds for all the 12 drives, and that will add up to hundreds
of checks per hour. To reduce the check bottleneck, we can set it to a higher
interval. In our example, we are using 2 minutes, or 120 seconds, for a drive
check. Click on Add to finish creating the item.

to be monitored. Change the device ID for each item, such as

0 We need to create separate new items for each drive that needs
sdb, sdc, and so on.

https://en.wikipedia.org/wiki/S.M.A.R.T.#Known_ATA_S.M.A.R.T._attributes

Creating a trigger in the GUI

After the item is created, we now need to create a trigger so that Zabbix can
send auto notification emails if the temperature goes beyond a threshold. To
create a trigger, go to Configuration | Hosts | Triggers, and click on the Create
trigger button. The following screenshot shows the new trigger creation page
with the necessary information entered:

Triggers
Allhosts /| pm4-2 Enabled [ESENICINTHEEN Applications ttems Triggers Graphs

Trigger Dependencies

Name HDD Over Temperature /dev/sda

Expression [pmd-2 hdd temp[sda, 194] Jast()}=40 Add

Multiple PROBLEM events generation

Descnption
URL
Severity Mot classified Information | Waming Average High Disaster
Enabled v
Add Cancel |

Type in a Name to identify the trigger, and then enter an Expression for the
trigger. The Expression is used to set a threshold beyond which Zabbix will
trigger an event, such as sending an email. In our example, shown in the

preceding screenshot, our Expression shows that if the last temperature
gathered is greater than 4o degrees Celsius, Zabbix will send an alert email.

In order to identify the importance of the trigger, we need to select the
Severity level. For example, we have selected Warning as the severity of the
trigger. Select the appropriate severity depending on the trigger. This creates
color coded information throughout Zabbix to identify how serious the issue
is. Click on Add to finish creating the trigger. Like triggers, each drive will
need a separate trigger item.

Creating graphs in the GUI

Following the instructions to display data using a graph, as discussed earlier
in this chapter, we are now going to create a new graph item to show the drive
temperature data visually. Unlike triggers and items, we do not need to create
separate graph items. We can configure one graph item to show multiple drive
data by simply adding the drive items in the same graph item. The following
screenshot shows the drive temperature graph for a Ceph node with seven
disk drives over a 6 hour period:

CYANA AW VYW TRINTV VT W v N
: [Fi \ AR [

Configuring SNMP in Proxmox

Simple Network Management Protocol (SNMP) is a network management
protocol used to monitor a wide variety of network devices. It is especially
useful when a full network monitoring agent installation is not possible, such
as with switches, routers, printers, [P-based devices, and so on. Almost all
network monitoring programs support some level of SNMP.

If the choice of monitoring a package does not have any agents, SNMP is the
best option to monitor those devices. SNMP is fully configurable in Linux
distributions, and since Proxmox is based on Debian, it inherits all the
benefits of SNMP.

_Network_Management_Protocol.

0 To learn more about SNMP, refer to https://en.wikipedia.org/wiki/Simple

There are a couple of components of SNMP worth mentioning here, since we
will be using them to configure SNMP. They are as follows:

¢ Object Identifier (OID)
e Management Information Base (MIB)

https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

Object Identifiers

OIDs are objects that SNMP query to gather information from a device. An
object can be a network interface status, disk storage usage, device name, and
so on. These object identifiers are extremely structured in a hierarchical tree
manner. Each OID is specifically numbered. For example, the OID of the
object that gathers the device name is 1.3.6.1.2.1.1.5.0. OIDs always have
numerical values. OIDs can be compared with IP addresses, where numeric
values are used to identify a device in a network.

Each dot in an OID represents segmentation of the network element. We can
think of an OID like an address of a location. Let’s take the following address:

wWasim Ahmed 111 Server Street, 4th Floor Calgary, AB 111-222 Canada

If we put this address in OID format, it will look like the following:

Canada.AB.Calgary.111-222.Server Street.111.4th Floor.wasim Ahmed

Putting this in a formula will look like the following:

Country.Province.City.Postal code.Street name.Street number.Unit number.Contact name

Just like the address example, the OIDs also follow a strict hierarchy, as
shown here:

1 = 1ISO 1.3 = Organization 1.3.6 = US Department of Defense 1.3.6.1 =
Internet 1.3.6.1.2 = IETF

Management 1.3.6.1.2.X = Management-related OIDs

To look up management-related OIDs, refer to http://www.alvestrand.n
0 o/objectid/1.3.6.1.2.1.html.

http://www.alvestrand.no/objectid/1.3.6.1.2.1.html

Management Information Base

There are databases where objects are stored. MIB acts as a translator and
allows an SNMP server to query an object using a textual OID instead of
numeric. For example, to retrieve a device name through SNMP queries, we
can use the OID 1.3.6.1.2.1.1.5.0 or the OID snmpv2-m1B: : sysname.o. Both of them
will give you the exact same result. But the textual OID is easier to
understand than just a numeric OID. We can compare MIB to OID as being
similar to a domain name to an IP address. Some manufacturers provide their
own MIB since they do not exist in the standard MIB. It is important to know
the MIBs when configuring unsupported devices for monitoring tools. There
are a number of MIBs ready to be downloaded. Proxmox does not install any
MIB by default. It has to be manually installed.

ent_information_base.

0 For more details on MIBs, refer tO https://en.wikipedia.org/wiki/Managem

There are three versions of SNMP currently available. Before implementing
an SNMP infrastructure, it is important to know which version to use. The
three versions are as follows:

e SNMP version 1: This is the oldest SNMP version, which only supports
32-bit counters and has no security at all. A community string is sent as
plain text in this SNMP.

e SNMP version 2: This has all the features of version 1, with added
features to support 64-bit counters. Most of the devices nowadays
support version 2.

e SNMP version 3: This has all the features of version 1 and 2, with the
added benefits of security. Both encryption and authentication are added
to counters. If security is the biggest concern, this is the SNMP version
that should be used.

SNMP is not installed by default in Proxmox. The following steps show how
to install SNMP in Proxmox and how to configure it.

Run the following command to install SNMP on Proxmox nodes:

|# apt-get install snmpd snmp

Add the following repository in the setc/apt/sources.1ist of the Proxmox node.

https://en.wikipedia.org/wiki/Management_information_base

This is used to add a repository to install SNMP MIBs:

| deb http://http.us.debian.org/debian/stretch main non-free

Run the following commands to install SNMP MIBs:

apt-get update
apt-get install snmp-mibs-downloader

Open the SNMP /etc/snmp/snmpd..conf configuration file using an editor.

Ensure that the following line is uncommented. We can specify the node IP
address. SNMP listens on port 161. Change it here if required:

| agentAddress udp:127.0.0.1:161

Add the following line to the SNMP configuration file:

| rocommunity <secret_string> <IP/CIDR>

In our example, we have added the following line:

| rocommunity SecretSNMP 172.16.0.0/24

Save the file and restart SNMP using the following command:

| #service snmpd restart

Adding an SNMP device in Zabbix

Adding an SNMP device in Zabbix is a similar process to adding a host,
except that we have to select SNMP interfaces instead of Agent interfaces, as
shown in the following screenshot:

Agent interfaces

SNMP interfaces
127.001 ﬁ DNS 161 *) Remove

v Use bulk requests

By default, SNMP devices listen on port 161. Zabbix comes with prebuilt
SNMP templates, which can gather a vast amount of data for devices where
agent installation is not possible or desired. A common example of an SNMP
device is a network switch. Zabbix has excellent support for switch
monitoring through the SNMP template.

In this example, we will add a Netgear 48 port switch using the SNMP
interface. Go to Configuration | Hosts and click on the Create host button to
open a new host creation page. Besides using the SNMP interface in the host
creation page, we need to select the SNMP device template and type in the
SNMP v2 community string under MACRO, as shown in the following
screenshot:

ZABBIX Monitering Inventory Reports Configuration Administration

Hosts

Haost Templates IPMI Macros Host inventory Encryplion

Inherited and host macros

{5SNMP_COMMUNITY} = MacrodSNMPv2 Remove

Add

| cancel |

The ¢ssnmp_communzTyy macro is used to pass a community secret string, which is
used by the SNMP version 2. The value of this MACRO must match the
VALUE entered in the monitored device itself.

After the host or device is added, Zabbix will start checks on the switch in a
few minutes and start gathering data. The SNMP device template has auto
discovery configured, which will automatically scan the switch for the
number of ports and show data for both incoming and outgoing traffic on each
port. The template also has a graph item configured to show you the visual
data of each port. The following screenshot shows the graph of incoming and
outgoing traffic usage for port 1 of the Netgear 48 port switch over a 1-hour
period:

300 Kbps
280 Kbps
260 Kbps
240 Kbps
220 Kbps
200 Kbps
180 Kbps
160 Kbps 8
140 Kbps
120 Kbps
100 Kbps

last min avg max
M Incoming traffic on interface unit 1 port L Gigabit - Level [avg] 153.50Kbps 144.62 Kbps 153.07 Kbps 167.10 Kbps
M Outgoing traffic on interface unit 1 port 1 Gigabit - Level [avg] 117.5kbps 117.16 kbps 209.84 kbps 281.42 kbps

Like the switch, we can add just about any network device with the SNMP
capability for Zabbix to monitor at all times.

Monitoring the Ceph cluster with
the Proxmox GUI

As of Proxmox VE 5.0, we can monitor and manage the Ceph storage cluster
through the Proxmox GUI. Under the Ceph tabbed menu of each node, you
will see a great amount of data, such as the health status of the Ceph cluster,
the number of OSDs, mons, pools, Ceph configurations, and so on. Refer to C
hapter 5, Installing and Configuring Ceph, for information on Ceph
management through the Proxmox GUI.

The Ceph | Status page of the Proxmox GUI shows all relevant information
about the Ceph cluster. Data such as Health, Monitors, OSDs status, and so
on, are presented in real time. This is critical to maintaining a healthy Ceph
cluster. Whenever an issue arises within Ceph, we can quickly pinpoint where
the issue is through this Status page. The following screenshot shows the
Ceph status of our example cluster:

)X(PRO MO virtual Environment 5.0-23/af4267bi

Server View Node ‘om0

=8 Datacenter

B pm-01

B pmi-02 & Summary
@ pmi-03 »_ Shell

Status

Severity | Summary

© Linux_WNis & 5 2 hosts (4 0sds) down
stem
§ Test-Poolt : 3 0sds down
F Heahik 214 pgs are stuck inactive for more than 300 seconds
A HEALTH ERR €2 pgs down
O Time 35 pgs peering
i 5yslog 176 pos stale
5 Ut 175 pgs stuck inactive
& Updates
39 pgs stuck stale
U Fireval
175 pgs stuck unclean
2 Disks
® Cceph Status
& Configuration
Monitors 08Ds PGs
I Monitor
i 1] on ou stale+active+lean: 81
S il | stalesdoun o
& Puok O 5 3 stalesdounsremapped: ;
o0om 0 4 stale+peering: 2
£ Log stale+remappedspeering: 12
unknown 78
£ Replcation Total: 6
= Task History
@ Susscrpion Performance
Usage
Reads: 0B/s
0
5% o
Writes: 0Bis

216 GIB of 39.60 GiB

In the previous screenshot, we can clearly see that the Ceph cluster has errors
due to some OSDs being out and down. Ceph placement groups (PGs) have
some defined states that show the current condition of the PGs: conditions
such as stale+active, stale+down, active+clean, and so on, to name a few.
Understanding these various states is very important to manage a fully

functional Ceph cluster.

To learn more about the PG states visit the official Ceph
0 documentation at http://docs.ceph.com/docs/master/rados/operations/pg-

states/.

http://docs.ceph.com/docs/master/rados/operations/pg-states/

Monitoring a Ceph cluster with
third-party options

In this section, we will see how to implement a third-party solution to monitor
the Ceph cluster. There are several options that can be used to monitor a Ceph
cluster graphically, which are as follows:

e Calamari: https:/ceph.com/category/calamari/
e Kraken dash: https://github.com/krakendash/krakendash
e The Ceph dashboard: https:/github.com/Crapworks/ceph-dash

All three options are viable options used to monitor the Ceph cluster, but due
to the simplicity and effectiveness of Ceph dashboard, we are going to see
how to install the Ceph dashboard in this chapter. This is the only free
monitoring dashboard, and it is read-only, without any management ability.
This is also safer, since an unauthorized user cannot make Ceph changes. The
Ceph Calamari and Kraken dashboards are both equally challenging to install
and configure.

The Ceph dashboard can be installed on any Ceph node or Proxmox+Ceph
node in the cluster. As long as it can read the ceph.conr file, it will function just
fine. The Ceph dashboard does not require a web server or any other services
to function. We can download the Ceph dashboard package from Git. By
default, Git is not installed in the Proxmox node. We can install it using the
following command:

| # apt-get install git
Next, we need to clone the Ceph dashboard GitHub repository, using the
following command:

| # git clone https://github.com/Crapworks/ceph-dash
After the download is complete, we need to add the IP address of the node

where the dashboard will be located. We need to make changes in the
following line in the ceph-dash.py file:

|app.run(host='ip_address',debug=True)

To start the dashboard after making the changes, simply run the following
command:

|# <dashboard_directory>/ceph-dash.py

https://ceph.com/category/calamari/
https://github.com/krakendash/krakendash
https://github.com/Crapworks/ceph-dash

We can access the dashboard by pointing to the node, such as at the following
link:

http://ip_address:5000

The following screenshot shows the status of our example cluster using the
Ceph dashboard:

Ceph Dashboard

Ceph Cluster Overall Status

¥ Cluster StatusHEALTH OK.

Ceph Cluster Monitor Status

Ceph Cluster 0SD Status

[

Ceph Cluster Placement Group Status

Storage Write | second

21.34 MB

Read / second

80.68 kB

41.74 GB / 224.89 GB (19%) 256 placementgroups in cluster

The Ceph dashboard displays the following information on a Ceph cluster:

The Ceph cluster key

The overall health status

The monitor status

The OSD status

The PG status

The storage utilization percentage

The total available space and used space
Read/write speed per second

Operations per second

Refer to Chapter 5, Installing and Configuring Ceph, for information on Ceph

components, such as mon, OSD, PG, and so on. All the data is automatically
updated at regular intervals. When faults within the cluster occur, the
dashboard will show related information in a color coded format. Using port
forwarding in the firewall, we can also monitor a Ceph cluster remotely.

Summary

In this chapter, we saw how we can monitor a Proxmox cluster network using
powerful monitoring systems, such as Zabbix. The only monitoring option
available as a mainstream choice, but it does have many advantages over
other solutions. The out-of-the-box features, such as graphing, templates,
SNMP, auto notification, and so on, are just the tip of the iceberg of what
Zabbix has to offer. Whether it is a small environment or a large cloud service
provider spanning multiple regions, Zabbix can monitor them all. A good
network administrator will try a few solutions and find the one that suits their
environment best.

In the next chapter, we will see some complex production-level virtual
network environments leveraging Proxmox as a hypervisor. We will take a
look at a scenario-based network diagram to gain knowledge of what
Proxmox can do.

Proxmox Production-Level Setup

So far in this book, we have seen the internal workings of Proxmox. We now
know how to properly set up a fully functional Proxmox cluster. We discussed
Ceph—a robust and redundant shared storage system—and how we can
connect it with Proxmox. We also saw what a virtual network is and how it
works with the Proxmox cluster.

In this chapter, we are going to see which components play a crucial part in
making a Proxmox cluster production-ready, with multilayer redundancy,
good performance, and stability. We are going to cover the following topics:

e Definition of production level
e Key components of a production-level setup
e Entry-level and advanced-level hardware requirements

Throughout this chapter, you will notice that we have used user-built
hardware configurations instead of ready-made branded servers. The purpose
of this is to show you what sort of node configuration is possible using off-
the-shelf commodity hardware to cut costs while setting up a stable Proxmox
cluster. The example configurations shown in this chapter are not theoretical
scenarios, but are taken from various live clusters in service. Use the
information in this chapter purely as a guideline so that you can select the
proper hardware for your environment at any budget.

Defining the production level

Production level is a scenario where a company’s cluster environment is fully
functional and actively serving its users or clients on a regular basis. It is no
longer considered as a platform to learn Proxmox or a test platform to test
different things on. A production-level setup requires much advanced
planning and preparation, because once the setup is complete and the cluster
has been brought online, it cannot be taken offline completely at a moment’s
notice when users are dependent on it. A properly planned production-level
setup can save hours, or days, of headache. If you are still learning Proxmox,
you might want to set aside hardware to practice on so that you can hone your
skillset before attempting a production-level setup. In this section, we are
going to cover some of the key components or characteristics of a production-
level environment.

Key components

The following key components should be kept in mind while planning for a
production-level cluster setup, due to stability and performance requirements:

Stable and scalable hardware
Redundancy

Current load versus future growth
Budget

Simplicity

Hardware inventory tracking

Stable and scalable hardware

Stable hardware means minimum downtime. Without quality hardware, it is
not unusual to have randomized hardware failure in a cluster environment,
causing massive, unnecessary downtime. It is very important to select a
hardware brand with a good reputation and support behind it. For example,
Intel’s server class components are well known for their superb stability and
support. It is true that you pay more for Intel products, but sometimes the
stability outweighs the higher cost per hardware. AMD is also an excellent
choice, but statistically, AMD-based hardware has more stability issues.

For budget-conscious enterprise environments, we can mix both Intel- and
AMD-based hardware in the same cluster. Since Proxmox provides a full
migration option, we can have Intel nodes serving full time, while AMD
nodes act only as failover. This reduces cost without compromising stability.
Throughout this chapter, we are going to stay primarily with Intel-based
hardware. At the end of this chapter, we will see some proven AMD-based
clusters to give you some idea of how viable AMD is in a Proxmox cluster
environment.

When choosing between Intel and AMD, apart from stability, the following
two criteria are also deciding factors:

e Energy cost
e Heat generation

Intel CPUs use less energy and run much cooler than their AMD counterparts.
Increased heat generation in AMD servers means an increased requirement
for cooling, and thus, increased utility bills. By design, AMD CPUs use a
much higher wattage per CPU, which is the direct cause of high heat
generation.

Another deciding factor for hardware is scalability and availability. Hardware
components used in server nodes must be easily available when they need to
be replaced. Using difficult-to-find components, even if they cost much less,
only prolongs downtime when something needs to be replaced. A common
practice is to use identical hardware for groups of servers based on their
workload. This makes hardware management easier and also allows in-hand
stock buildup to quickly replace a node when needed. This is extremely
difficult in an environment where a cluster has been put together using all

sorts of different brands, models, and configurations.

Redundancy

The need to have redundancy in different layers in a production environment
cannot be stressed enough. There must be redundancy in different levels of
components.

Node level

Node-level redundancy usually includes redundant power supply, network
cards, RAID, and so on. This redundancy is confined to the node itself. With
redundant power supply, the node can be connected to two different power
sources, thus ensuring continuous operation during power failure.

This will ensure that the operating system itself will run

8 Always use mirrored SSD drives as the operating system drive.
uninterrupted, even if a drive fails entirely.

Utility level

In order for the cluster nodes to keep running during power loss, we need to
provide some sort of backup power, whether by means of a UPS, a generator,
or a large battery bank.

Network level

Network-level redundancy includes network infrastructure, such as switches
and cables. By using multiple switches and multiple network paths, we can
ensure that network connectivity will not be interrupted during a switch or
cable failure. Layer three managed switches, such as stackable switches, are
the correct components to create truly redundant network paths.

HVAC level

Proper cooling equipment, with backup systems for continued cooling in the
event the HVAC system goes down, is often overlooked. Depending on the
number of server nodes, switches, and so on, each network environment
creates enormous amounts of heat. If there is no redundancy in place, a failure
of the cooling system can result in the failure of extreme-heat-generating
components. Whether it is air or liquid cooled, there must be a contingency in
the cooling system to prevent any damage. Damage of components also
means loss of connectivity and increased cost.

Storage level

Storage plays an important role for any virtual environment and deserves the
same level of redundancy attention as the rest of the cluster. There is no point
in implementing redundancy in all Proxmox host nodes, networks, and power
supplies, then putting virtual disk images on a single NAS storage without
any redundancy. If the single node storage fails, even though it is considered
shared storage, all VMs stored on it will be completely unusable. In a
production environment, use of enterprise-grade storage systems such as
Ceph and Gluster is critical. This type of storage has redundancy built into the
firmware/operating system. We still need to ensure that these storage nodes
have node, utility, network, and HVAC-level redundancy in place.

Current load versus future growth

When designing a cluster, you should always think of future growth, at least
the growth for the foreseeable future. An enterprise cluster must be able to
grow with the company and adapt to increased workloads and computational
requirements. At the very least, plan in such a way that you do not exceed
your resources within a few months of your deployment. Both the Proxmox
and Ceph clusters have the ability to grow at any time and to any size. This
provides the ability to simply add new hardware nodes to expand cluster size
and increase the resources required by the virtual machines.

When provisioning your node memory configuration, take failover load into
account. You will likely need to have 50 percent capacity available for a
single node failure. If two nodes of a three-node cluster were to fail, you
would want each machine to utilize only 33 percent of the available memory.
For example, let’s say all six nodes in a Proxmox cluster have 64 GB
memory, and 60 GB is consumed at all times by all the virtual machines. If
node 1 fails, you will not be able to migrate all virtual machines from node 1
to the other five nodes, because there is not enough memory to go around. We
could just add another spare node and migrate all the virtual machines.
However, we have to make sure that there are enough power outlets to even
plug in the new node.

Budget

Budgetary concerns always play a role in decision making, no matter what
kind of network environment we are dealing with. The truth is that a setup can
be adaptable to just about any budget with some clever and creative planning.
Administrators often need to work with very small I'T budgets. Hopefully, this
chapter will help you to find that missing thread to connect a budget with
proper hardware components. By using commodity equipment over complete
brand servers, we can easily set up a full Proxmox cluster on a very lean
budget. Proxmox works very well on quality commodity hardware
components.

Simplicity

Simplicity is often overlooked in a network environment. A lot of times, it
just happens naturally. If we are not mindful about simplicity, we can very
quickly make a network unnecessarily complex. By mixing hardware RAID
with software RAID, putting RAID within another RAID, or through multi-
drive setup to protect OS, we can cause a cluster’s performance to drop to an
almost unusable or unstable state. Both Proxmox and Ceph can run on high-
grade commodity hardware, as well as common server hardware. For
example, just by selecting desktop-class i7 over server-class Xeon, we can
slash costs in half while providing a very stable and simple cluster setup,
unless the task specifically calls for a multi-Xeon setup.

Tracking hardware inventory

An administrator should have access to key information about hardware being
used in a network: information such as the brand, model, and serial number of
a hardware component; when was it purchased; who the vendor was; when is
it due for replacement; and so on. A proper tracking system can save a lot of
time when any of this information needs to be retrieved. Each company is
different, and thus, tracking systems could be different, but the responsibility
of gathering this information falls solely on the network manager or
administrator. If there is no system in place, then creating a simple
spreadsheet can be enough to keep track of all hardware information.

Hardware selection

Several factors affect what type of hardware to select, such as whether the
cluster is going to support many virtual machines with fewer resources or
serve few virtual machines with more resources. A cluster focused on many
virtual machines needs to have a much higher processor core count, so our
goal should be to put as many cores as possible per node. When a cluster is
focused on few virtual machines, with a lot more users per virtual machine,
we need to have a large memory. Thus, a system with a smaller core but a
greater amount of memory is much more appropriate. Also, a cluster can
focus on both types and create a hybrid cluster environment. A hybrid
environment usually starts with an entry-level hardware setup and then
matures into an advanced-level setup as the company grows and a larger
budget is available. For example, a small company can start its cluster
infrastructure with stable desktop-class hardware, and then gradually replace
that with a server-class platform such as Xeon to accommodate company
expansion.

Sizing CPU and memory

A question often asked when it comes to creating virtual environments is how
much CPU or memory will be needed in each node and how much to allocate
per virtual machine. This is one of those questions that is very open-ended,
because its answer varies greatly from environment to environment. However,
there are a few pointers that need to be kept in mind to avoid over-allocation
or under-allocation.

It is a fact that we will, and often do, run out of memory much sooner than
CPU for a given Proxmox or any other host node. From the usage of each VM
on the Proxmox nodes, we can determine the RAM and CPU requirements on
that node. In this section, we are going to go over the factors that will help us
to decide on CPU and memory needs.

Single socket versus multi-socket

A multi-socket node will always have better performance than a single socket,
regardless of the number of cores per CPU. They work efficiently in
distributing VM workload. This is true for both Intel and AMD architectures.
If the budget is available, a quad-socket node will provide the maximum
performance of any socket configuration node.

Hyper-threading — enable versus
disable

One of the major differences between Intel and AMD is hyper-threading. All
cores in AMD CPUs are true cores, whereas all Intel CPUs have hyper-
threading, which creates two virtual cores per physical core. Another question
that is asked far too often is whether to enable or disable hyper-threading.
From hundreds of reports and testing, it appears that it is better to leave it on
for newer Intel servers. The fear of performance degradation due to hyper-
threading is no longer valid, as it has gone through decades of development
and all the initial issues have been resolved. It is also best to not count all
hyper-threading cores as real cores, since they are still virtual. When counting
the number of total cores available in a node, take a conservative approach
and count slightly fewer than the total cores.

Start small with VM resources

A virtual machine is completely different from a physical machine and it
needs to be treated as such. They do not consume CPU and memory like a
physical node does. The best practice is to always provision CPU and
memory resources sparingly, and then increase them as you see the
application’s performance. This allows the VM to use allocated resources
efficiently, which in turn makes all the VMs run efficiently in the node. By
over-provisioning CPU and memory for all VMs in the node, we degrade
node performance, because all VMs will be fighting to have more CPU time.
Always start with one virtual CPU (vCPU) for most of the VMs. Start from
two vCPUs for processor intensive VMs such as database servers, exchange
servers, and so on. Monitor the VM’s resource utilization and adjust
accordingly. A quick way to see which VM is using the most CPU or memory
is through the Datacenter or Node Search menu, which shows the list of all
entities and is sortable.

When allocating vCPU for a single VM, never exceed the total number of
cores in the node. This will degrade the performance of the entire node and all
VMs in it.

memory for a virtual machine does not always mean better

0 Keep in mind that in a virtual environment, more CPU and
performance.

Balancing node resources

Always ensure that each Proxmox node in a cluster has similar CPU and
memory resources. If some nodes end up with more than the others, it will
cause an issue when trying to move or migrate VMs from a high-resource
node to a low-resource node. The node with less resources will not be able to
handle all VMs, causing longer downtime during node failure. This issue can
be mitigated by using a combination of a few high resource nodes and more
low resource nodes.

Ceph cluster production

As mentioned throughout this book, Ceph is a very resilient distributed
storage system that pairs well with Proxmox to store virtual disk images.
There are a few key factors that make a Ceph cluster a good choice for a
production-level virtual environment.

Forget about hardware RAID

When it comes to Ceph nodes and clusters, we can forget about hardware-
based RAID. Instead, we have to think multi-node or clustered RAID. That is
because of the distributed nature of Ceph and how data is dispersed in all the
drives in the cluster regardless of which node the drive is in. With Ceph, we
no longer need to worry about a device failure in a particular node. Ceph
performs best when it is given access to each drive directly without any RAID
in the middle. If we are to place drives in RAID per node, we will actually
hurt Ceph immensely and take away everything that makes Ceph great. We
can, however, still use the RAID interface card to implement JBOD
configuration or to be able to connect many drives per node.

Solid State Drive for Ceph Journal

Incoming data for the Ceph cluster gets written to a journal before it gets
passed down to the OSDs themselves. So, a dedicated drive such as SSD will
increase write speed greatly, since it can achieve an extreme write speed,
much faster than a standard SATA or SAS drive. Even the fastest 15,000 rpm
enterprise-grade disk drive does not come close to the performance of SSD.
When selecting SSD for a Ceph journal, care must be taken in brand or model
selection.

Not all SSDs will perform well for a Ceph journal. Currently, the only SSD
that can withstand the rigorous load of Ceph while providing great write
speed and power loss protection is the Intel DC S3700 or S3500. There are
other SSDs that can also perform well, but the ones mentioned have a much
longer lifespan. Their built-in power loss protection also prevents journal data
corruption, which may lead to corrupt data in OSDs. Visit the following link
for an article on how to test suitable SSD drives for Ceph and a list of
possible SSDs for the Ceph cluster: http://www.sebastien-han.fr/blog/2014/10/10/ceph-how-

to-test-if-your-ssd-is-suitable-as-a-journal-device/.

Instead of standard SATA SSDs, we can also use PCI-based SSDs, which can
provide an extreme performance increase over that of standard SATA SSDs. If
there is a drive bay limitation for dedicated SSDs, then this is a perfect
choice. The following link specifies Intel PCI-E SSDs that can be considered
as Ceph journal: http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750

-series.html.

Ceph can still be used without the use of dedicated SSD journal drives. We
can configure Ceph OSDs to store journals on the same spinning drive, but
due to the low speed of mechanical drives, we will see high IO wait times in
the Proxmox nodes. Use of enterprise-grade SATA or SAS drives will lessen
this IO wait time, but not as much as a dedicated SSD.

Never put a dedicated journal, whether SSD or HDD, on any
8 sort of RAID. This will reduce journal performance, which in
turn affects Ceph’s overall performance.

http://www.sebastien-han.fr/blog/2014/10/10/ceph-how-to-test-if-your-ssd-is-suitable-as-a-journal-device/
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750-series.html

Network bandwidth

Having ample network bandwidth is crucial for Ceph or any other storage.
The more bandwidth that is dedicated, the more VM’s performance and
latency will benefit. Note here that when a dedicated journal such as SSD is
used, the requirement for network bandwidth will increase significantly,
because more data will traverse the Ceph cluster for replication and
distribution. For a Ceph cluster where SSD is used as a dedicated journal, a
gigabit network should not be used for the Ceph cluster network. At the very
least, 10 GB would be a good network. We can also use InfiniBand as an
alternative network solution on a lower budget. If neither is possible, then
multiple bonded gigabits would also work. On a single gigabit, the network
will become a bottleneck, causing cluster-wide performance degradation.

Also, Ceph cluster sync should be on its own dedicated network, with the
Ceph public facing network on another. Ceph uses the cluster network to
commit all syncs between OSDs. This prevents unnecessary load on the
public facing network.

Liquid cooling

In this solution, computer equipment is cooled using liquid, as liquid is 1,000
times better at heat transfer than air. We can effectively remove heat directly
from IT equipment and transfer it with great ease out of the facility. Liquid
cooling takes away the hassle of running a large HVAC system, thus saving
enormous costs and reducing noise significantly. Liquid cooling requires no
internal fans, thus we can increase server density per rack tenfold. Liquid
cooling is the future, as more and more IT facilities are realizing its full
potential. By using liquid cooling, we can also decrease our energy
consumption, reducing our carbon footprint enormously. There are different
liquid cooling solutions available on the market.

Total immersion in oil

IT equipment is totally submerged in mineral oil. Hot oil is pumped through a
liquid-to-liquid heat exchanger, where the heat is carried away, using water, to
an outside cooling tower. Water and oil never have full contact, only heat
transfer. This is not only the most cost-effective liquid cooling solution today,
but also the messiest, as servers are dipped in oil. It also requires more space,
since all racks are laid on their backs. However, this extra space can easily be
compensated for by increased density per node. Currently, Green Revolution
Cooling pioneers this technology. Visit the following links for their official
site and a great video showing the technology in action:

o Official website: hitp://www.grcooling.com/
¢ YouTube video: https://www.youtube.com/watch?v=U5zolEjo1Zk

There is another technology worth mentioning here that is similar to
immersion, but the immersion is isolated in the server node itself. LiquidCool
Solutions has a unique approach of filling up a sealed server chassis with
mineral oil to remove heat.

Visit the following link for more info on this approach:

http://www.liquidcoolsolutions.com

http://www.grcooling.com/
https://www.youtube.com/watch?v=U5zoIEjo1Zk
http://www.liquidcoolsolutions.com

Total immersion in 3M Novec

Similar to oil immersion cooling, this is also a total immersion technology,
where 3M Novec engineered fluid is used instead of mineral oil. The
advantage of this option is zero mess. Unlike oil, this fluid does not stick to
any equipment and does not require any heat exchanger or pump to move the
fluid itself. This fluid has a boiling temperature of 60 degrees Celsius, at
which it becomes vapor. When the vapor hits a cold coil on top of the
container, it turns to liquid and drops back down to the tank. Only a pump is
needed to circulate water through the coil, thus it needs only half of the
equipment needed for oil-based cooling.

Visit the following link for a video presentation of the technology:

https://www.youtube.com/watch?v=a6ErbZtpL.88

https://www.youtube.com/watch?v=a6ErbZtpL88

Direct contact liquid cooling

Heat is removed directly from the heat source, such as the CPU and memory,
using a cold plate and liquid coolant such as water or any other coolant agent.
Since no equipment is immersed, this technology can be used with existing
infrastructure with major modification, while still increasing density per node
and reducing energy consumption. This is not a unique technology, as this
type of liquid cooling solution had been in use for several years. Consumer
class liquid cooling solutions use this off-the-shelf technology. Asetek is
known for desktop liquid cooling solutions for desktop users.

Visit their official site through the following link:

http://www.asetek.com/

Another direct contact liquid cooling solution provider worth mentioning here
is from CoollIT Systems. They also take the cold plate approach to cool
equipment through liquid cooling. Some of their solutions can be
implemented directly in the rack as a standard mounted cooling unit, without
the need to have a water facility or cooling tower.

Visit the following link for more information on their solution:

http://www.coolitsystems.com/

http://www.asetek.com/
http://www.coolitsystems.com/

Real-world Proxmox scenarios

Equipped with all the knowledge we have gathered from the previous
chapters in this book, we are now ready to put all the pieces together to form a
complex virtual environment for just about any scenario that we are going to
be called for. A set of scenarios to build networks using Proxmox for various
industries is given in the next section. At the end of the chapter, you will find
network diagrams of each scenario given in the first part of the chapter.

Some scenarios have been taken from real-life production environments,
while some are theoretical, to show how complex networks are possible with
Proxmox. You can take these network models and use them as they are or
modify them to make them even better.

We hope that through these network scenarios and models, you will start
seeing Proxmox from a whole new point of view and be fully prepared to face
any level of virtual infrastructure you are challenged with.

While analyzing these scenarios, keep in mind that the solutions
and diagrams provided in this chapter are some of the many
ways the network infrastructure could be set up. To fit the

8 diagrams within the confinement of the book, some non-vital
components might have been omitted. All network and
identification information used in the network diagrams is
fictional.

The network diagrams show the relationship between components within
infrastructure, such as virtual environment, cluster of nodes, and overall
network connectivity. They also represent how virtual network components
such as bridges relate to each other, network segmentation, and so on.

Scenario 1 — an academic institution

This scenario is for a typical academic institution with multiple networks,
multiple campuses, and multiple building setups, along with both private and
public networks.

Key requirements are as follows:

e Network isolation to protect sensitive data.

e Ability to have centralized management for network infrastructure.

e Professors should be on separate Wi-Fi, accessible only by them. This
Wi-Fi should give professors the ability to log in to the main campus
server to retrieve their files for lectures.

e Students should have on-campus Wi-Fi access and wired internet
connection to their dormitories. These subnets must be separated from
the main campus network.

e The library should be on a separate subnet with its own server.

e (Classrooms, admin offices, and professors should be on the main
isolated network. Professors should have the ability to retrieve their files
from file servers in classroom computers during lectures.

This is a scenario for a typical academic institution campus network. Thanks
to Proxmox, we can have all the main server equipment and the virtual
environment in one place to have centralized management. There are five
subnets in this network:

Subnet Network description

Wired network for dormitory. Firewall provides DHCP. This subnet

10.170.10.0 :
does not need to go through the main network.

10,186 16,0 Student and public Wi-Fi on campus. Firewall provides DHCP. This
subnet does not need to go through the main network.
Main administrative and professor network. Private Wi-Fi for

10166166 professors is an extension of this network, to allow professors to

retrieve their files wirelessly. All classrooms are also on this network
to provide in-class access to files for professors.

10.110.10.0 Storage cluster.

Library subnet. DHCP provided by virtualized library server. This
10.190.10.0 | server is for the library only. Separate LAN (eth2) is used to connect
the virtual machine with the library building.

The following diagram shows typical network flow of academic institution:

(Internet |

SCENARIO #1 DormimryE\

F]re\:rall I# IEL y Ig-l

ethd — s r—aT—m

I; |§L 10.160.10.0 I_I_ |4 l.J.
i —] Student/Public WiFi
I% l _J-_‘ —— On Campus
Professors WiFi —-——/’/\T
On Campus r
SF_J -)1 Oiﬁ'u'z Class 1 Class 2
ce ce -
k. - § N
IT Admin < NSI > S ' l;zk‘-l;} : LE—E’Z}
Node Piof. 1 Pfof. 2 Lecture Building
(/ Admin Building
10.110.10.0

vmbrQ/ethO Proxmox Cluster vmbr1i/eth1

SSSS

vmbr10/eth2
10.190.10.¢

vmbr0 vmbri0 x
VM 1 VM 2 VM 3
Domain File Exchange . ;
Controller Sener Server = !l = “Sl = !) X SJ
vmbr0 vmbro mbr0 Catalog 1 Catalog 2 Sfaff1 Sfaff2
VM 4 VM 5 VM 6 ‘ S]) !I . .j) 3
Database Library RDS User1 User2 USer3 -
Sener Sener Sener Self
wmbr0 vmbr10 vmbr0 Library Building Checkout
Proxmox Virtual Environment

Scenario 2 — multi-tier storage
cluster with a Proxmox cluster

Key requirements are as follows:

e Need separate storage clusters for SSD, Hybrid HDD, and HDD
e Storage clusters should be on separate subnets
e Storage should be distributed with high availability and high scalability

For this scenario, each Proxmox node must have at least four network
interface cards: three to connect to three storage cluster subnets and one to
connect the virtual environment. This example is for six virtual machines to
have access to three differently performing storages. The following are the
three Ceph clusters and their performance categories:

Subnet Network description

CEPH cluster #1 with SSDs for all OSDs. This subnet is
192.168.10.0:6789 | connected with Proxmox nodes through eth1. This storage is used
by vme.

CEPH cluster #2 with hybrid HDDs for all OSDs. This subnet is
192.168.20.0:6790 | connected with Proxmox nodes through eth2. This storage is used
by vms.

CEPH cluster #3 with HDDs for all OSDs. This subnet is
192.168.30.0:6791 | connected with Proxmox nodes through eths. This storage is used
by vm1, vmz, vz, and vma.

10.160.16.0 This is the main subnet for all virtual machines.

Multi-tiered infrastructure is very typical for data centers where there is a
different level of SLA-based clients with various requirements for storage
performance:

SCENARIO #2

(Inte mej;,

Firewall

10.160.10.0 q

VM 1 VM 2 VM 3 2
IT Admin

vmbro || vmor0 || vmbro ke

VM 4 VM 6 vmbrO/eth0
i e Proxmox Cluster

Environment
eth1 eth2 eth3

Ceph Storage Ceph Storage Ceph Storage

Cluster 1 Cluster 2 Cluster 3
192.168.10,0:6789 192.168.20,0:6790 192.168.30,0:6791
SSD Backed Storage Hybrid HDD Backed Standard HDD Backed
to store VMs requiring Storage to store VMs Storage to store VMs
very high performance. requiring moderate requiring low
Such as Datlabase performance. Such as performance. Such as
Serwer, Exchange File Sener, Virtual Staging Storage for
Sener disks used for OS Tape Drives,

Suneillance Data

Scenario 3 - Virtual infrastructure
for a multi-tenant cloud service
provider

Key requirements are as follows:

There should be a firewall cluster for edge firewalls

Each client network must be fully isolated from others

A separate storage cluster for backup is required

Client users must be able to access their company’s virtual desktops via

RDP

e There must be a bandwidth control ability for client networks’ internet
connectivity

e Replicate all data to another data center

In this scenario, a virtualized firewall and virtual bridges are used to separate
traffic between each client network. The virtual firewall has seven virtual
network interfaces to connect six client networks within a virtual environment
and to provide WAN connectivity. Internet bandwidth is controlled through
the virtual firewall for each vINIC. The virtual firewall is connected to WAN
through the main virtual bridge, vmbre. The Proxmox cluster has nine virtual
bridges:

Subnet | Network description

vmbro Main virtual bridge to provide WAN connection to virtual firewall
vmbri Connects main storage cluster

vmbrs Connects storage cluster for backup

vmbr10 Bridge for company ABC subnet 10.10.10.0

vmbr20 Bridge for company XYZ subnet 1e.20.20.0

vmbr3e Bridge for LXC containers for web hosting instances

vmbr40 Bridge for object storage instances to be used by software developers

vmbrs50 Bridge for company 123 subnet 16.50.50.0

vmbr60 Bridge for a small business’s virtual cluster

Each bridge connects the client company’s virtual machines together and
creates isolated internal networks for respective clients:

aufi"n::sz B ey Dsm e sl it o SCENARIO #3
S SN S8S o~
/ _,.-/"J < Datacenter #2 ‘1_‘
e me——————y Replicauml))
\ Oy
Cloud Storage

TN Virtual Server WebHost
v ot Virtual Office ')

Firewall Cluster
Virtual Desktop

Research
Service Prwuhr
Public Cloud -/ -/
] Admin Console

PrrysE| Switch ‘l
Storage Cluster Proxmox Gluster /'/ Backup Cluster

_ vmbr0 i -

" Company ABC ﬁ ‘

l: 10.10.10.0 E Virtual Firewall 1 Virtual Firewall 2
\ Virtual Firewall Cluster

\k wnbrig n wmbrzo n VmEr30 n vmbrd0 r vmbrso vmbIGo

VM3 .,L_‘_ 10.10.10.254 | 102020.254 || 10.20.30.254 || 10.40.40.254 | 10.50.50.254 10.60,60.254
ﬂ vmbr10 }4” = e S o~ o
- = s P /,/ o /
— - P P
| vmbr20 k b - s /
W1 7{—— P e 7
! By ’ et / =2 ’:/

| -~) e i “'/ . ‘
i > 4 vmbré0 -
Company XYZ P < e
T .
| i 1020200 | - 4@— — —-—J\\i—'
—‘W bt Storags 1 \ ‘\Q* w2 |
{ Software Developer A
\\41 VM2 Small Busmes& N
| Cluster M3 |

Web Hosting Service U —
T T
-—m =— = = |= \\ 10.60.800
-l —— pe— — Company 123 | M4 I
- - 10.50.50.0 \
BT ST [
—d | -bemml i —

Proxmox Virtual
Environment

Scenario 4 — nested virtual
environment for a software
development company

Key requirements are as follows:

e Developers must have nested virtual environments to test software

e QOutsourced developers should have access to nested virtual
environments using RDP

e Developers must have the ability to create or delete virtual clusters

e Nested virtual environments must be fully isolated from main company
network

In this scenario, a nested Proxmox virtual cluster is created inside the main
cluster for a software development company, mainly for software testing
purposes. Since virtual clusters can be created and taken down at any time, it
reduces cost and time setting up the entire hardware and setup process. A
virtual firewall is used to direct traffic between nested and main virtual
environments. All developers access their nested virtual machines through
RDP port forwarding. Outsourced developers also need to connect to nested
virtual environments using RDP. The main firewall does port forwarding to
the virtual firewall. Then, the virtual firewall does port forwarding to nested
virtual machines. Four subnets are used in this example:

Subnet Network description

This is the main company subnet. All staff, including developers, are

10.160.10.0 .
on this subnet.

16.160.26 6 Main storage cluster subnet. It is connected to the main cluster with
vmbri.

16.176.10.0 Nested cluster subnet. It is isolated from the main cluster with vmbr2,

which is only connected to the virtual firewall.

10.170.20.0 | Nested storage cluster subnet.

Virtual machines VM Proxmox 1, VM Proxmox 2, and VM Proxmox 3 are
used to create a nested Proxmox cluster, while VM Storage 1, VM Storage
2, and VM Storage 3 virtual machines are used to create a nested storage
cluster:

o internet) ‘ SCENARIO #4

=Arril

" Fire.wall Dev1 DevZ Dev3 Dev4
OutS-;urced ¥ ! :‘—m’l B __’_J = S
Dev v I

—

——
il N Y Y
IT Admin ,] ' X
Node i !l 5 !l !} , ,____‘J
10.160.20.0 Devt Dev6 Dev7 Dev8
| === wamo_o

!
— = : eth1 vmbr0/eth0
|

Proxmox Cluster
vmbr0

| Storage Cluster

/"'_—;’I ‘-\-"
¥ i
Nested Proxmox Cluster s] v \
VM VM VM VM VM Domain VM
Proxmox 1 | | Proxmox 2 | | Proxmox 3 Firewall Controller Exchange
T 1

-~

—]
vmbr2 —
\

VM Storage 1 /"i vmbri/eth1 I—l vmbr0/eth0 I_
Y Slosge 2 vMm1 | vmz2 || vma || vma

VM Storage 3 10.170.20.0

Nested Storage VM 5 VMB || VM7 || VM8
Cluster
10.170.10.0
Proxmox Main Virtual Nested Virtual Environment

Environment

Scenario 5 — virtual infrastructure
for a public library

Key requirements are as follows:

e (Catalog consoles should be on a separate subnet along with the main
admin subnet

e Public Wi-Fi and consoles for public internet usage should be on the
same separate subnet

e Need kiosks for self check-in/check-out of books and media

e Need online access to the library catalog

e Public internet traffic must be monitored for any Internet Usage Policy
violation

e Public computers should have printer access

This is a typical scenario for a public library network system. Since a public
library is a public place with access to computers for public usage, it is very
important to isolate sensitive networks. In this example, the network is
isolated using two subnets:

Subnet Network description

Main network for library staff and protected consoles only, such as
catalog, kiosks, staff printers, and self check-in/check-out.

10.16.10.0

This public subnet is for public Wi-Fi, internet consoles, and printers,
with a payment system.

10.20.10.0

The network 10.20.10.0 is controlled, managed, and isolated using a virtual
firewall, vus. The virtual firewall has two vINICs, one for WAN connection
through vmbrs and the other to connect to a dedicated NIC on Proxmox node
through vmora. The eth2 of Proxmox node is connected to a separate LAN
switch to connect only public devices. The virtual firewall provides the ability
to monitor internet traffic to keep in line with any violations of Library
Internet Usage Policy.

Each Proxmox node has four network interface cards, ethe, eth1, eth2, and eths,
and the cluster has three virtual bridges, vmbre, vmbr2, and vmbra. The main
storage cluster is connected to the Proxmox node through eth1 and the backup
cluster is connected to eths:

€ Internet’) & T Admin SCENARIO #5
S W T
eth0 eth1 / Catalog Consoles
i Firewall . - .
Online Catalog -) B)
- Y 8N 8 8
10.16.20.0 \ S S 8.5

Check-In/Out Klosks Sta!f1

—

10.16.10: N N . Si
V=l a2

P

Catalagmg Barcoding

=) | X} Printer Printer
2 ethd || ethl | |
.| bidii il Proxmox Cluster

SO

Backup Cluster C wvmb3 || vmbrd/eth2 |

-— Public Switch
/ P // 10.20.10.0
) 4] /
VM 1 VM5 | ymbr3 10.20.10.0 / ¥
Domain Firewall : g —
Controller DHCP, | mbM |—— e
Content Fllter '.’
VM 2 :
Catalog <
Database 1 VM 6 -S). 3} < ;S) _:\!J
File/Printer - . : u u
VM 3 Sener : _Sl _!i S S) SI
Catalog = =2 > s
Database 2 e - u u
N N
S 1= U | bl
Archive, Proxmox e —
Journal Virtual Environment Public Internet Conscles Public WiFi
5 Bl 10.20.10.0
192.200.200.0

Scenario 6 — multi-floor office
virtual infrastructure with virtual
desktops

Key requirements are as follows:

All staff members should be on virtual desktops

Redundant internet connectivity

Each department should have their own remote desktop server
Accounting department network traffic should only be directed to their
department

This is a common scenario for an office building where departments are on
different floors of the building. Since the accounting department requires data
isolation, we are going to use a VLAN to isolate their data. Administrative
offices, the copy room, and the main server room are on the 4th floor. The HR
department is on the 5th floor, Marketing is on the 6th, and the accounting
department is on the 7th floor. The 5th, 6th, and 7th floors have their own
LAN switches. So, we could easily use VLAN for another floor if it was
required. We only need to set up VLAN on the switch for the 4th floor.

Each Proxmox node has two network interfaces. The eth1 is to connect the
storage cluster and ethe is to connect all virtual machines to their departments.
The viane.1e is used to separate Accounting traffic, which is only directed to
the 7th floor.

All department staff use virtual desktops through RDP. Each department’s
virtual server acts as a remote desktop server and the department’s main
server:

‘ SCENARIO #6

(
owe e CriT
(Klzternetj)

- .

Firewall
IT Admin

Proxmox Cluster

vmbrO/Man0.10

[vmbrOMan0 10 | |

VM 1 VM 2 VM 3 | g

Domain File/Print Accounting I gl

Controller Sener RDS(van) | : l

VM 5 VM 6 | 5|

H ;MRAIE)S Marketing Administrative L - - 1

= RDS RDS Storage Cluster
Proxmox Virtual Environment

vian0.10
ey Sy

6th Floor \:mFloor

Administrative H.R. Marketing Accounting
88 SS(8S| S S
as asnsaa
3.3 S 38NN A

4th Floor

Scenario 7 — virtual infrastructure
for the hotel industry

Key requirements are as follows:

¢ Centralized IT infrastructure management.

e Dedicated secured Wi-Fi access for guests.

e Secured private Wi-Fi access in the restaurant and bar for menu tablets
only. The Wi-Fi needs to talk to the restaurant and bar server.

e All staff must have remote desktops for day-to-day work.

e A video surveillance system should be integrated with the virtual
environment.

This is a scenario for a typical hotel establishment with an in-house
restaurant. This example uses a central virtualized database server to store all
information. Although it is an unconventional way to connect all departments
with a single database (including a surveillance system), it is possible to use
an all-in-one single solution to reduce cost and management overhead. In a
typical scenario, separate software is used to handle different departments
without data portability. In this example, unified management software
connects all departments with a single database and a customized user
interface for each department.

Secured non-filtered Wi-Fi connectivity is provided for all guests. DHCP is
provided directly by the firewall. Secured private Wi-Fi is set up for
restaurant menu tablets only. All menu tablets only connect to the
restaurant/bar virtual server, with an IP of 1e.190.1.5. All department thin
clients and IP-based surveillance cameras are connected to the main network
subnet 10.190.1.0:

unmmet)\w SCENARIO #7
eih1
10.160.20.0 F':r‘:";” u u u

Secured Guest Rooms and Public WiFi

vmbr0/eth0

Proxmox Cluster

Storage Cluster 5 <><>

IT Admin q wymbr0/ethD
Node
—"‘—._
1019010 Wb =
VM 1 Vi 2
Domain A e :: File / RDS
\ Controller ceatnting Sener
/ \ VM 4 VM 5
VM 6 :
Restaurant & - — Suneillence
/ e " | Database Server e B
ik Proxmox Virtual Environment

v

Secured WiFi for .
Menu Tablets Only S f
‘ ‘ ‘ Accounting Office
4 - P - / \\ Thin Clients
i = ~

o ® | | e
Restaurant/Bar Lt \ ‘ ‘ ‘-]
Menu Tablets : : / bl ‘ ‘ ‘

\‘\
s i i *-:-!J ‘ %;SL ;\‘-) kg — IP based Suneillance
Restaurant/Bar Administrative T— Cameras

Thin Clients

Scenario 8 — virtual infrastructure
for geological survey organization

Key requirements are as follows:

e Field surveyors should submit their work orders from their mobile
devices through a VPN connection
e There must be a fail-over infrastructure in the multi-site network

topology

In this scenario, a geographical survey company has a main office and branch
office connected by 1+ GBps hard-link network connectivity. Each office has
an identical infrastructure set up. All surveyors use mobile devices, such as
tablets, for their survey work. The survey software automatically detects
which office IP is live and sends data to the infrastructure of that office. All
data is replicated at the block level in real time between the two offices.

If the infrastructure of one office becomes unavailable, staff can simply
continue to work using the infrastructure from the other office:

> @

Location 2 Suneyors

P> W

Location 1 Suneyors

W

Location 3 Sureyors

W

SCENARIO #8

1+ gbps Hardlink allows realtime £

block level data replication between |
two Infrastructure (‘

[ethO
VPN
Firewall

j_w/j‘/\

Suneyors mobile devices only sends
data to company live IP addresses. Main
Office and Branch Offices are failover for

Staﬂ‘ Des ktopf.—:.

b Proxmox Cluster

OSSO

VM 1 VM 4

VM 2 VM 5

VM 3 VM 6

Storage Cluster

Proxmox

Virtual Environment

Main Office Infrastructure

\
Inl:ernetr) sach other
10.200.X0
eth0
VPN
LFirewaII
link ethi
4’ !
S 88
SJ S R
Staff Desktops

brﬂ)‘ 0
Proxmox Cluster w' i

OO

VM 1 VM 4

VM 2 VM5
Storage Cluster VM 3 VM 6
Proxmox

Virtual Environment

Branch Office Infrastructure

Summary

Virtual environments are very flexible, so there is no one-network-fits-all
configuration. Each network will be unique. The components and
requirements described in this chapter are mere guidelines to show how to
take the correct approach to plan for a production-level Proxmox setup. We
saw some of the requirements of a production-level setup, and we covered
how to allocate CPU and memory resources properly for both the Proxmox
host node and the virtual machine itself. We also discussed how to give Ceph
storage the best chance of providing redundancy along with performance.
Finally, we saw how to cool equipment efficiently by leveraging liquid
cooling, thus increasing Proxmox computing node density per rack while
saving energy.

We also saw some real-world scenarios of Proxmox in action in different
industries. We hope this will aid you in your quest to find that perfect balance
between performance and budget that all network administrators crave.

In the next chapter, we are going to see how to effectively use the built-in
backup and restore features of Proxmox to be part of a disaster planning
strategy. We are also going to learn about the newest feature, replication,
introduced in the latest Proxmox 5.0 release, and how this can aid your
backup strategy.

Back Up and Restore Virtual
Machines

A good backup strategy is the last line of defense against disasters such as
hardware failure, environmental damage, accidental deletions, or
misconfigurations. In a virtual environment, a backup strategy can turn into a
daunting task because of the number of virtual machines that need to be
backed up. In a busy production environment, a new virtual machine can
come and go anytime. Without a proper backup plan, the entire backup task
can become difficult to manage. Gone are the days when we had only a little
server hardware to deal with and backing it up was an easy task. In today’s
virtual environments, a backup solution has to deal with several dozen, or
possibly several hundred, virtual machines.

Depending on the business requirement, an administrator may have to back
up all the virtual machines regularly, instead of just the files inside VMs.
Backing up an entire virtual machine takes up a very large amount of space
after a while, depending on how many previous backups we have. A granular
file backup helps you quickly back up user data but provides no protection
against entire VM corruption or loss.

Along with a backup strategy, a restore plan is equally important, because a
backup is only useful when we can successfully restore data in a timely and
proper manner after a disaster. In this chapter, we will cover the following
topics:

Exploring Proxmox backup options
Configuring backups

Configuring snapshots

Restoring VMs

VM replication

Backing up a configuration file

Proxmox backup options

As of Proxmox VE 5.0, there are two backup options included out of the box:

e Full backup: This backs up the entire virtual machine
e Snapshots: This freezes the state of a VM at a point in time

Proxmox 5.0 can only do a full backup and cannot do any granular file
backup from inside a virtual machine. Proxmox also does not use any backup
agents for guest VMs.

A full backup

A full backup is a complete, compressed backup of a virtual machine,
including its configuration file. We can take this backup and restore it locally
to the same cluster or to an entirely different Proxmox cluster. We can
potentially set up a full backup every day, or on a different schedule of up to
one week. Since a full backup commits the complete backup of the entire
virtual machine, including all the virtual disk images in it, it is the slowest
backup option. It is also the safest, since the final backup file is not dependent
on the original VM. Two of the most important components of a full backup
are backup modes and compression level.

Full backup modes

Various backup modes offer different data assurance and speed. There are
three types of modes available for a full backup.

Snapshot

Snapshots for a full backup are not the same as snapshots for virtual
machines, where they freeze the state of the VM in a point in time. A snapshot
for a full backup is when it is committed without powering off or temporarily
suspending the VM. This is also known as a live backup. Since a backup
occurs while the VM is running, there is no downtime for this mode, but it
also has the longest backup time. On rare occasions, files in use can cause
backup errors due to file locks.

Suspend

In this mode, a backup occurs after temporarily suspending or freezing the
VM. There is no need to completely power off the VM; thus, the downtime is
moderate during a backup. After a backup is completed, the VM resumes
regular operation. This mode has a much lower chance of errors during a

backup since a VM is suspended.

Stop

In this mode, running VMs are automatically powered off or stopped and then
powered on after the backup has been completed. This provides the maximum
assurance of zero errors in the backup, since the VM is not running at all. This
is also the fastest backup mode.

Backup compression

In Proxmox, we can commit a backup with different compression levels. The
higher the level, the less space is used to store backup files, but it also
consumes higher CPU resources to perform compression. There are three
compression levels in a Proxmox backup.

None

When this level is selected, no compression occurs for the backup task. While
this will take the least amount of CPUs during a backup task, do keep in mind
that it will take a significantly large amount of space to store backup files.
Proxmox virtual disk images are sparsed, which means that an allocated disk
image only uses some of the actual data space. The rest of the allocation is
sparsed, or filled with zeros.

A backup with no compression will save the disk image without compressing
the empty spaces. This will cause the backup file to take as much room as the
disk image itself.

Use this option with care and ensure that the backup storage has
8 enough storage space to hold uncompressed backup files.

LZ0O

This is the default compression level in Proxmox. LZO provides a balance
between speed and compression. It also has the fastest decompression rate,
making the restoration of a VM much faster.

GZIP

This level provides a much higher compression ratio but also takes a longer
time to back up. Due to an increased compression rate, this level consumes a
lot more CPU and memory resources. We need to ensure that backup nodes
have sufficient processing ability before we enable this level.

Snapshots

Snapshots freeze or capture the state of a virtual machine at a point in time.
This is not a full backup of a VM, since the snapshots are fully dependent on
the original VM. We cannot move snapshots elsewhere for safekeeping.
Snapshots are used to roll back to a previous state. Since snapshots do not
back up the entire virtual machine with disk images, they are the fastest
backup option to quickly save the state of the VM. In Proxmox, we can take
snapshots of a running VM; in which case, the content of the running memory
also gets saved. This way, we can revert to the earlier VM exactly as it was
running when a snapshot was taken.

A good use case of this backup is when testing software or applying updates.
We can take snapshots of a VM prior to installing any software or applying
updates. So, if something goes wrong after the installation, we can simply
revert to the previous state in a matter of minutes instead of reinstalling the
entire virtual machine. This is much faster and cleaner than uninstalling the
tested software itself.

A full backup should never be substituted with snapshots. Always include a
full backup in a primary disaster recovery strategy.

As of Proxmox VE 5.0, there is no snapshot scheduling option. All snapshots
must be performed manually. For this reason, snapshots are not widely used
as a means of main backup planning. Two of the most used scenarios for
snapshots are to save the state of a VM before applying updates/patches or
installing software for testing, and to save very mission critical VM states in
between full backups. In an environment with several dozen virtual machines,
manual snapshots can become a time-consuming task. It is possible to set up
snapshot scheduling using bash, cron, and qm, but these methods can be flawed
and they are known to be somewhat unstable; therefore, they are not
recommended for a production environment.

If a full backup is performed on a virtual machine that has snapshots applied,
the snapshots do not get placed in the backup file. A full backup task ignores
all the snapshot images. Also, when a virtual machine is deleted, all the
snapshots belonging to the virtual machine also get deleted.

Configuring backup storage

A sound backup strategy has a dedicated shared storage for the backup images
instead of local storage or storage that is used for the disk images themselves.
This way, we can centralize the backup location and restore them even in the
event of a Proxmox node failure. If the backup is stored locally on the same
node, during hardware failures, that node may become completely
inaccessible, causing a VM restoration delay.

One of the most popular options for a backup storage node is NFS. In an
enterprise or mission-critical environment, a cluster with built-in redundancy
dedicated to backups is a recommended practice. In smaller environments,
good redundancy can still be achieved using storage options, such as Gluster
or DRBD. With the addition of ZFS and Gluster in Proxmox VE, it is now a
viable option to turn a Proxmox node into a backup using ZFS and still
manage the node through the Proxmox GUI. Unfortunately, we cannot store
backup files on the Ceph RBD storage.

For a single backup storage node, FreeNAS is a great option without cluster
redundancy. Regardless of which storage system is used, the primary goal is
to store a backup on a separate node instead of the computing node. Refer to
hapter 4, Storage Systems, for information on how to attach various storage
systems to Proxmox. Once a storage is set up and attached to Proxmox, we
need to ensure that the content type for the storage is configured in order to
store backup files and backup rotation quantity. There are two options in the
storage dialog box to select the content type and to define the backup rotation
quantity. The following screenshot shows the storage dialog box for an NFS
storage in our example cluster:

Add: NES
ID nfs-backup-01 Nodes
Server 172.16.2.100 Enable
Export /mntinfs-01 Max Backups 3
Content VZDump backup file] |
Disk image
ISO image

Container template
VZDump backup file
Container

In the preceding screenshot, we selected the VZDump backup file from the
drop-down list and typed s in the Max Backups, or backup rotation, quantity
tab. This means that the storage will allow you to store backup files and three
recent backups will always be kept. Older backups will automatically

be deleted. This will only happen automatically when the backup is handled
by a backup schedule.

When performing manual backups, this quantity value will actually prevent
committing manual backups if there are already three backups stored in the
storage for a VM. In such cases, we will have to manually delete older
backups or increase the quantity value to accommodate new manual backups.
We can delete backup files for the VM through the Backup tab menu of the
VM or directly from the storage device in the content tab. We need to select
the backup file that we need to delete and then click on Remove. The
following screenshot shows the backup menu for a VM:

& Summary Backup now Restore Remove Show Configuration

>— Console Name Format Size

& Hardware vzdump-gemu-10001041-2016_05_22-04 59 45vma.lzo vma.lzo 616.84 GiB
#3 Options vzdump-gemu-10001041-2016_05_29-09 30_33.vma.lzo vma.lzo 73040 GiB
i= Task History

@ Monitor

Backup

13 Replication

D Snapshots

Make sure that you set appropriate values for Max Backups,
because higher values will keep more backup files, consuming a
lot more space in the storage node. Too many backup files and

8 not enough space will cause new backup tasks to fail. We can
also set up two storage nodes and use one to store frequent
backups, for example, weekly, while the other one can be used to
store longer interval backups, for example, biannually.

Depending on the backup strategy and business requirement, there may be a
need to keep certain periods of backup history. Proxmox allows both
automatic and manual deletion of any backups outside the required history
range. Automatic deletion is performed through the value of Max Backups in
the backup dialog box. We can enter any number between o to 365 as Max
backups. For example, our NFS storage has a Max Backups of s. This means
that during a full backup, Proxmox will keep the three newest backups of
each virtual machine and delete anything older.

If we were to commit daily backups, we could potentially keep 365 days’, or
1 year’s, worth of backups at any given time. If we did a backup every other
day, then it would be 2 years’ worth of backups.

Show VM configuration from
backup

Show Configuration is a new feature added from Proxmox 5.0. Previously, we
could not see the configuration of a VM that was backed up without restoring
it completely. This is useful when the VM does not exist any more and only a
backup is available. The option is under the Backup menu, named Show
Configuration, as shown in the following screenshot:

& Summary Backup now Restore Remove Show Configuration

>— Console Name Format Size

L Hardware vzdump-gemu-10001041-2016_05_22-04 59 45vma.lzo vma.lzo 616.84 GIB
£ Options vzdump-gemu-10001041-2016_05_29-09 30 33.vma.lzo vma.lzo 730.40 GiB

To view the configuration, select a backup file, then click on Show
Configuration. This will open a dialog box with the full configuration of the
VM this backup file belongs to. The following screenshot shows the
configuration of the VM #1o01:

Configuration

arch: amdé64

cores: 1

cpulimit: 1

hostname: ubuntu-01

memory: 512

nameserver: 5.8.8.8 208.67.222.222

net0: name=eth(,bridge=vmbr0, firewall=1,gw=192.168.1.254, hwaddr=C6:5B:9C:CB:4C:D4,ip=192.168.1.1/24, type=veth
ostype: ubuntu

rootfs: local-lvm:vm-101-disk-1,acl=0,size=6G
searchdomain: domain.com

swap: 512

unprivileged: 1

Configuring full backup

All full backups are in the .tar format, containing both the configuration file
and virtual disk image file. The backup files are all you need to restore a
virtual machine on any nodes and on any storage. Full backup files are named
based on the following formats for both KVM and LXC virtual machines:

vzdump-1xc-<ct_id>-YYYY_MM_DD-HH_MM_SS. tar
vzdump-1xc-<ct_id>-YYYY_MM_DD-HH_MM_SS.tar.lzo
vzdump-1xc-<ct_id>-YYYY_MM_DD-HH_MM_SS.tar.gz

vzdump-qgemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma
vzdump-gemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma.lzo
vzdump-gemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma.fz

The following screenshot shows a list of backup files in a backup storage

node, as seen from the Proxmox GUI:
& Summary Restore Remove Templates Upload Show Cao
$22 Content Kt

o' Permissions VZDump backup file (40 ltems)

vzdump-Ixc-10001007-2017_08_25-15_04_ 48 tarlzo
vzdump-Ixc-101-2017_08_19-12_22 11 tarlzo
vzdump-Ixc-119-2017_09_01-08_50_45 tar.lzo
vzdump-Ixc-120-2017_09_01-08_45 08 tarlzo
vzdump-Ixc-121-2017_09_01-08_36_31 tarlzo
vzdump-qemu-10001001-2016_08_30-18_30_01.vma.lzo
vzdump-gemu-10001002-2016_08_30-18_58_02.vma.lzo

nfiguration

Format

tarlzo
tarlzo
tar.lzo
tarlzo
tarlzo
vma.lzo

vma.lzo

Type

VZDumpb...
VZDumpb
VZDump b...
VZDumpb...
VZDumpb...
VZDumpb...
VZDumpb...

Size

§61.90 MiB
373.49 MiB
229.99 MiB
369.66 MiB
369.83 MiB
9.87 GIiB

5.61GiB

The backup list is sortable by the Format, Type, or Size of backup files. From

the same page, we can also delete or restore backup files.

Creating a schedule for backup

In Proxmox, we can schedule automated backup tasks or commit manual
backups for each virtual machine. Whether scheduled or manual, the backup
process is the same for both KVM and LXC virtual machines. Schedules can
be created from the Backup option under the patacenter tabbed menu. We will
see each option box in detail in the following sections. The Backup option
shows a list of already created backup schedules, along with options to Add,
Remove, and Edit tasks. The schedule dialog box is the same for adding,
removing, and editing backup tasks. We can click on Add to open the dialog
box, as shown in the following screenshot:

Create: Backup Job

Node: Send email to: admin@domain.com
Storage: local Email
notification: e
Day of week: Saturday
Compression: LZO (fast)
Start Time: 22:00
Mode Snapshot
Selection mode: | Include selected VMs
Enable:
ID Node Status Name Type
100 pmx-01 stopped kvm-1 gemu
101 pmx-01 stopped ubuntu-01 Ixc
’E 102 pmx-01 stopped centos1 gemu
103 pmx-01 stopped centos2 gemu

@ Help

In the preceding screenshot, we created a backup task to perform twice a
week for selected virtual machines. The dialog box has several components,
which need to be defined in order to schedule a backup task.

Node

This is a drop-down list used to select a Proxmox node to show only the
virtual machines in that node. This also sets the task to apply to that node
only. For example, if we select a particular node and a VM in it to commit a
backup, and we later move that VM to another node, no backup task will be
performed since the VM is no longer in the original node. By default, all
nodes are selected. In our example, we have selected all nodes.

Storage

This is a drop-down list used to select a backup storage destination where all
full backups will be stored. Typically, an NFS server is used for backup
storage. They are easy to set up and do not require a lot of upfront investment
due to their lower performance requirements. Backup servers are much leaner
than computing nodes since they do not have to run any virtual machines.
Some storage nodes, such as ZFS, do need a lot of memory to operate
adequately.

Day of week

This is a drop-down list used to select which day or days the backup task
applies to. We can select multiple days in this list. In order to create a daily
backup task, all days need to be selected. As of Proxmox VE 5.0, we can only
create daily or weekly backup schedules.

Start Time

Unlike Day of week, only one time slot can be selected. Multiple selections of
times, to backup different times of the day, are not possible.

If the backup needs to run multiple times a day, create a
8 separate task for each time slot.

Selection mode

This is a drop-down list used to define how VMs are selected for backups.
There are three options available to select from:

e The All mode will select all the virtual machines within the whole
Proxmox cluster or node, depending on the selection in the Node drop-
down list

e The Exclude selected VMs mode will back up all VMs except the ones
selected

e The Include selected VMs mode will back up only the ones selected

Send email to

Enter a valid email address here so that the Proxmox backup task can send an
email upon backup task completion, or if there was an issue during backup.
The email includes the entire log of the backup tasks.

It is highly recommended that you enter an email address here
so that an administrator or backup operator can receive backup

8 task feedback emails. This will allow you to find out if there was
an issue during backup or how much time it actually took, to see
if any performance issues occurred during backup.

Email notification

This is a drop-down list used to define when the backup task should send
automated emails. We can select this option to always send an email or to
only send an email when there is an error or a failure.

Compression

This is a drop-down list used to select the compression level for the backup
task. Refer to the Backup compression section earlier in this chapter to see the
differences between the various compression levels. By default, the LZO
(fast) compression method is selected.

Mode

This is a drop-down list used to define the backup mode for the task. Refer to
the Full backup modes section earlier in this chapter to see the differences
between backup modes. By default, all running virtual machine backups
occur with the snapshot option.

Enable

This is a checkbox used to enable or disable a backup task. This was newly
added in the recent Proxmox version. With this option, we can disable a
backup task temporarily instead of deleting and creating from scratch, as was
the case in previous Proxmox versions. The following screenshot shows the
Backup option with our newly created backup task listed:

Server View

=5 Datacenter
B pmx-01
101 {(ubuntu-01)
100 (kvm-1)
103 (centos2)

[T2102 (centos1)
local (pmx-01)

Datacenter

Q Search Add Remove Edit

& Summary Enabled Node Day of week Star. Storage Selection
Options o Al Saturday 22:00 local 100,102
£ Storage

Backup

local-vm (pmx-01" 45 Replication

Creating a manual backup

A manual backup can be performed on a particular virtual machine at any
time through the Proxmox GUI. The manual backup option is accessible
through the Backup tabbed menu of the virtual machine. From the same
Backup menu, we can back up, restore, and delete backup files.

To open the backup creation dialog box, we select the VM we are going to
back up, then click on the Backup now button. The manual backup dialog box
is extremely simple. We only need to select the destination Storage node, the
backup Mode, and the Compression level, as shown in the following
screenshot:

Backup VM 100

Storage: local

Mode: Snapshot
Compression LZO (fast)

Send email fo: | admin@domain com|

© Help

Creating snapshots

A snapshot are a great way to preserve the state of a virtual machine. It is
much faster than a full backup, since it does not copy all the data. A snapshot
is not really a backup, in a way, and does not perform granular level backup.
It captures the state at a point in time and allows rollback to that previous
state. A snapshot can be really helpful when used in between full backups.
The Take Snapshot option can be found under the Snapshots tabbed menu of
the virtual machine. A newly installed VM without any snapshots will appear

under the Snapshots menu, as shown in the following screenshot:

Server View

£ Datacenter
% pmx-01
101 (ubuntu-01)
100 (kvm-1)
103 (centos2)
12102 (centos1)
= local (pmx-01)
= local-lvm (pmx-01
£ bd-01 (pmx-01)
E» pmx-02
B pmx-03
local (pmx-03)
local-lvm (pmx-03
rbg-01 (pmx-03)

(@ (o (@

Container 101 ('ubuntu-01") on node 'pmx-01'

& Summary Take Snapshol Rollback

>_ Console Name

LJ Now

Date/Status Description

& Resources You are herel
= Network

@ DNS

£ Options

iE Task History

Backup

13 Replication

D Snapshots

The actual snapshot creation process is very straightforward. Click on Take
Snapshot to open the dialog box, and then just enter a Name, select or
deselect the RAM content, and type in some Description. The Name textbox
does not allow any spaces and the name must start with a letter of the
alphabet. The following screenshot shows the snapshots creation dialog box

for our example VM #100:

VM 100: Take Snapshot

Name: Fresh_Install

Include RAM:

Description Snapshot taken after clean instal|

Take Snapshot

Keep in mind that when creating snapshot of an LXC container,
the option to Include RAM is not present. When selecting this
option for KVMs, the bigger the RAM allocation is for the
virtual machine, the longer it will take to create a snapshot, but

i

it is still much faster than a full backup.

The snapshot feature is available for both KVM and LXC virtual machines.
The following screenshot shows the Snapshots option with our newly created

snapshot:

Server View

= Datacenter
B pmx-01
101 (ubuntu-01)
100 (kvm-1)
103 (centos2)
[£2102 (centos1)

Container 101 (‘'ubuntu-01") on node "pmx-01'

& Summary Take Snapshot Rollback Remove Edit

>~ Console Name Date/Status Description

¥ Resources) Fresh_Install 2017-09-09 15:44:09 Snapshot taken after clean install
= Network L NOW You are herel

If we want to go back to the snapshot image, we just select the snapshot we
want to go back to and click on Rollback. Simply click Yes when prompted to
confirm the rollback.

Keep in mind that when you roll back to the earlier virtual
machine state, it will erase all the changes that happened to the
virtual machine between the time of rolling back and the
snapshot being rolled back to.

Restoring a virtual machine

Like backup, we can also restore virtual machines through the Proxmox GUI.
VMs can be restored through the Backup menu tab of the VM or by selecting
a backup file through the storage content list. If Restore is selected through
the VM Backup option, then the VM ID cannot be changed. To understand
this better, let’s take a look at the following example:

Server View Virtual Machine 100 (kvm-1') on node 'pmx-01'
= Datacenter g s 5
gﬁ pmx_01 ummary BBCKUD now Restore Remove Show Conﬂgurallon
101 (ubuntu-01) ~ >~ Console Name Format Size
LI & Hardware vzdump-gemu-100-2017_09_09-15_50_56.vma Iz vma.lzo 69.57 KiB
103 (centos2) :
& Options

local (pmx-01) i= Task History
local-lvm (pmx-01 @ Monitor

= rbd-01 (pmx-01)
Eb pmx-02
[pmx03 £3 Replication

Backup

In the preceding screenshot, we are under the Backup option for VM #10o.
Since the Backup option shows a list of all backup files stored in that backup
storage node, we can see the backup file for VM #100. If we select the backup
file and then click on Restore, we will not be able to restore the VM #100 0n its
own. Instead, it will actually replace VM #100. The following screenshot
shows the Restore dialog box where the destination VM ID is not definable:

Restore: VM 100

Source: vzdump-gemu-100-2017_09_09-15_50_56.vma.lzo
Storage: | rbd-01| ‘
VM: 100

If we select the backup file for VM #1ee from the storage content list and then
click on Restore, we will be able to define a VM ID in the Restore dialog box,
as shown in the following screenshot:

Restore: VM
Source: vzdump-qemu-100-2017_09_09-15_50_56 vma Izo
Storage: local-lvm

VM 1D:

Defining the VM ID during restore is needed when we want to restore a VM
while the VM’s same ID stays intact. If the same VM ID is kept, then the
existing virtual machine in the cluster with the same ID will be deleted and
restored from the backup version. If we use a different ID before restoring it,
then we will have an exact copy of the original VM with a different VM ID.

One important thing to remember is that a full backup created
for a virtual machine with the .qcowz or .vmdk image format can
only be restored to local, CephFS, or NFS-like storages. But a
virtual machine with the .raw image format can be restored on
just about any storage system. RBD and LVM storages do not
support image types such as .qcowz Or .vmdk.

Backup/restore through the CLI

In Proxmox, the entire backup and restore process can be managed from the
command line if the GUI becomes inaccessible.

Backup using the CLI

The command to commit a backup for both KVM and LXC virtual machines
is the same. The following is the command format for a backup:

| # vzdump <vmid> <options>

There is a long list of vzdump options that can be used with the command. The
following are just a few of the most commonly used ones:

Options | Description

The default value is . This option will back up all available virtual
machines in a Proxmox node.

-all

-bwlimit | This adjusts the backup bandwidth in KBPS.

The default value is LZO. This sets the compression type or disables

-compress K . X
compression. The available options are o, 1, gzip, and 1zo.

-mailto This is the email address used to send a backup report.

maxfiles This contains an integer number. This sets the maximum number of
backup files to be kept.

nod The default value is stop. This sets the backup mode. The available
OptiODS are snapshot, stop, and suspend.

renove The default value is 1. This removes older backups if the value entered
is more than in -maxfiles.

Lockuait This is the maximum time in minutes to wait for a global lock. The

default value is 1se.

-storage | This is the storage ID of the destination backup storage.

This specifies a temporary directory to store files during backup. This is

-tmpdir R
optional.

Restore using the CLI

Although the same command can be used to perform a backup for both KVM
and LXC, there are two separate commands available to restore the KVM and
LXC virtual machines:

® gm restore: 10 restore KVM-based VMs
® ct restore: 10 restore LXC containers

The following command format will restore KVM VMs through the
command line:

| #gmrestore <backup_file> <new/old_vmid> <options>

Based on the previous command, if we want to restore our example KVM #1006
from a backup onto local storage, it will appear as follows:

#qmrestore /var/lib/vz/dump/vzdump-gemu-110-2017_08_13-20_24 26.vma.lzo 110 -
storage local

The following options can be used with the gnrestore command:

Options | Description

—force The Boolean value is o or 1. This option allows for overwriting the
<int> existing VM. Use this option with caution.

~unique The Boolean value is o or 1. This assigns a unique, random Ethernet
<int> address to the virtual network interface.

_pool This is the name of the pool to add the VM to.

<string>

-storage This is the storage ID of the destination storage where the VM disk
<string> image will be restored.

The following command format will restore LXC containers through the
command line:

|#pct restore <ct_id> <backupfile> <options>

Based on the previous command, if we want to restore our example container

#101 onto local storage, it will appear as follows:

#pct restore 101 /var/lib/vz/dump/vzdump-1xc-101-2017_08_25-18 49_04.tar.lzo -

storage local

The following options can be used with the pct restore command:

Options

Description

-force <int>

The default value is e or 1. This option allows
overwriting the existing VM. Use this option with
caution.

-cpulimit <int>

The value range is from e to 128 with the default value
as o. This defines the number of CPUs or CPU time.
Value o defines no CPU limit.

-cpuunits <int>

The value range is from o to soe0, eee, with the default
value as 1, 024. This defines the CPU weight of the VM
in relation to other VMs.

-console <int>

The default value is 1. This defines the number of
consoles to be attached to the container.

-force <int>

The Boolean value is o or 1. This allows overwriting
of the existing container with the restored one.

-hostname <string>

This sets the hostname of the container after a restore.

-memory <int>

The default value is s12. This defines the amount of
memory allocated for the container.

-swap <int>

The default value is s12. This defines the amount of
swap space for the container.

-password <string>

This sets the root password in the container after a
restore.

-storage <string>

This defines the destination storage ID where the
container will be restored.

Unlocking a VM after a backup
error

Any backup process can be interrupted before it is finished due to various
issues, such as backup storage node failure, loss of network connectivity, very
large virtual disk images, and so on. Prior to starting the actual backup
process, Proxmox puts a global lock on the VM so that multiple backup tasks
cannot be run on the same node. If the backup is not finished successfully,
this lock sometimes remains in place and is not automatically removed. If we
try to start/stop the VM, we may see an error message that informs us that the
VM is locked.

In such cases, we need to manually unlock the VM to resume the normal
operation. The unlocking cannot be done from the Proxmox GUI, but only
through the CLI. The command will need to be run in the node where the VM
is. The following command will unlock a locked VM in a Proxmox node:

| # qm unlock <vm_id>

Virtual machine replication

Virtual machine replication is a brand new feature that has been added from
the Proxmox VE 5.0 release. This is a very useful feature for a single-node
Proxmox environment where VM disk images reside locally on the same
computer node the VMs actually run from. With this option, VMs can be
replicated to a different node in real time should the primary node go down
for any number of reasons. In such a scenario, the second node with a replica
of the VMs can be brought online, thus minimizing downtime significantly.

It is very important to note here that this replication will only
0 work when the VM disk image is stored on a local ZFS storage.

The storage must be attached to a Proxmox cluster using the ZFS storage
plugin, as shown in the following screenshot:

Server View Datacenter

== Datacenter

E® pmx-01 Q Search Add Remove
101 (ubuntu-01) = & Summary &= Directory
100 (kvm-1) & Options o lioa
103 (centos2) = st B LVM-Thin
orage
[[£2102 (centos1) 2 NFS
£ local (pmx-01) Backup B iscs
£ local-lvm (pmx-01 4 Replication GlusterF5
£ 1bd-01 (pmx-01 =
=7 5 o (1) o' Permissions RBD
gﬂ pmx_os N B ZFS overiSCS
T pmx-
- B 7FS
local (pmx-03) i Groups

local-lvm (pmx-03
rbd-01 (pmx-03)

((® (@ (o

W Pools

The replication simply will not work when the disk image is on any other
storage. Even if the disk image is stored on a ZFS storage with NFS share,
replication will not work. In such a scenario, when trying to create replication,
the following error message will be displayed:

Error

()

missing replicate feature on volume 'local-lvm:vm-100-disk-1" (500)

ZFS is needed because the replication uses ZFS snapshots to perform

replication, minimizing network traffic. A new command line tool, pvesr, has
been added to perform all replication tasks. When we manage replication
through the GUI, it just leverages the pvesr command.

It should be noted here that the replication feature is

presented as a technology preview in Proxmox 5.0, but from our
extensive lab testing, it has proven very stable. If you have a
single-node Proxmox deployment and want to use replication as
a primary backup strategy, then doing tests to familiarize
yourself with the replication process is highly recommended.

Creating a replication task through
the GUI

The replication menu is accessible from patacenter-, node-, and VM-specific
menus. The only difference is each replication menu shows the specific
entity-related replication tasks. For example, the patacenter-specific replication
menu shows all replication tasks within the cluster, whereas the node-specific
replication menu shows replication tasks for that node only.

To access the replication dialog box through the Proxmox GUI, select a VM
you want to replicate; then, from the Replication option, click on Add, as
shown in the following screenshot:

Create: Replication Job

CTAM ID- 100
Target: pmx-02
Schedule:

Rate limit (MB/s). | 10

Comment: | | ‘

Enabled:

Since we are creating a replicated version of the VM, we cannot define any
manual ID for the VM. The replicated VM is going to be an exact copy of the
existing VM, including the same ID and identical configuration.

Target

This is a drop-down list to select which Proxmox node the VM is going to be
replicated to. Note that the destination node must also have ZFS storage set
up. If the source VM is on ZFS but the destination node has no ZFS storage,
we cannot create the replication task. We will see an error message, as shown
in the earlier section. It is possible to replicate a VM to multiple nodes, thus
increasing redundancy. We can achieve this by creating multiple tasks for the
VM, but we can never replicate a VM to the same storage or same node the
VM is in.

Schedule

Here, we define how frequently the VM will be replicated. Initially, when a
replication task is started, the process will replicate the entire VM; after that,
it will only replicate incrementally on set intervals. The drop-down list has
some predefined schedules, which can be also customized, simply by typing
the value. For example, if we want to replicate the VM every 5 minutes, we
can simply type */s in the schedule textbox, since there is no predefined
schedule for 5 minutes. Note that frequent replication will increase bandwidth
consumption, depending on how much data is changing in the VM.

Rate limit (MB/s)

We can limit the amount of bandwidth that can be consumed during the
replication process. By default, it is set to unlimited bandwidth. When
replicating multiple VMs on the node, it may be very helpful to limit the rate
so the running VMs can be used without any issue. The rate limit is defined in
MBps.

Enabled

To enable the replication task, this option needs to be checked. This is useful
when disabling the replication task temporarily. To enable it again, simply
select the task and click on the Edit button.

Creating a replication task through
the CLI

In order to create a replication task through the CLI, it is very important to
know that each replication task created must have a cluster-wide unique ID.
When the tasks are created through the GUI, the ID gets created and assigned
automatically. But when they are created through the CLI, we have to
manually assign the ID. This unique job ID is node-specific only. For
example, if the first node has a replication task using a job ID from o to 10,
another node can also have unique job ID of the same sequence. The format
of this ID is:

| <vmid>-<integer job number>

We are going to use the pvesr command to create a replication task. The
following is the command-line format to create a task:

pvesr create-local-job <vmid>-<job number> <destination_node> --schedule "
<frequency>" --rate <limit in MB/s>

Using the command-line format, if we want to create a replication task for
VM #100 to replicate to node pmx-02 every 5 minutes with a rate limit of 2e
MBps, we will enter the following command:

|# pvesr create-local-job 100-0 pmx-02 --schedule "*/5" --rate 20

If we want to create another task for VM #1062 to node pmx-e2 every 30 minutes
without a rate limit, we will enter the following command:

|# pvesr create-local-job 102-1 pmx-02 --schedule "*/30"
Note that we have entered a unique ID of 1 for this task, for VM #1e2.

Once the task is created, we can also edit it through the CLI. The following
command format is to update an already created replication task:

| # pvesr update <vmid>-<job number> --schedule "<frequency>"

To change the schedule of replication 1ee-0 to half an hour, we would enter the
following command:

| # pvesr update 100-0 --schedule "*/30"

To see a list of all replication tasks, use the following command format:

| # pvesr list

To disable or enable a replication task, use the following command format:

| # pvesr <disable/enable> <vmid>-<job number>

Replication process

The replication process will start automatically, at set intervals, without any
user interaction. If the replication task is created for a VM for the first time, it
will initially send an entire copy of the VM to the destination node. Once the
initial transfer is done, then the replication process will only send new data
that has changed incrementally.

Also, after the initial transfer, we are now fully ready with VM redundancy. In
the event the node with the running VM goes down, we can simply turn on
the replicated VM on the second node while we fix the issue on the primary
node. This can significantly decrease the downtime for a small environment
without shared storage. Depending on what replication interval has been used,
users will only lose data since the last sync. So if the scheduled task is set to
run every 5 minutes, then the replicated VM will only lose the last 5 minutes.

Replication depends on SSH, so it is important that nodes can connect to each
other with proper SSH keys. If there is a problem with SSH connectivity, you
may see a replication error like the following:

& Summary Add E

>~ Console Enabled Guest Job Target Status Last Sync Dur Next Sync Sched
& Hardware 104 0 CA-00-0 command '/usr/bin/ssh -0 'BatchMode=yes' -0 'HostKeyAlias=CA-00- - 0.1s 2017-09-10 07:43:01 *I5
Options

You may have to find the cause of the SSH issue, but in most cases it can be
fixed using the following command:

|# ssh-copy-id <proxmox_Node>

To run a replication task manually at any time, select the replication task, then
click on the Schedule now button on the Task page.

Backup configuration file

The backup configuration file in Proxmox allows more advanced options to
be used. For example, if we want to limit the backup speed so that the backup
task does not consume all of the available network bandwidth, we can limit it
with the bwiinit option. As of Proxmox VE 5.0, the configuration file cannot
be edited from the GUI. It has to be done from the CLI, using an editor. The
backup configuration file can be found in /etc/vzdump.conf. The following is the
default vzdump.conf file on a new Proxmox cluster:

tmpdir: DIR

dumpdir: DIR

storage: STORAGE_ID
mode: snapshot|suspend]|stop
bwlimit: KBPS

ionice: PRI

lockwait: MINUTES
stopwait: MINUTES
size: MB

stdexcludes: BOOLEAN
mailto: ADDRESSLIST
maxfiles: N

script: FILENAME
exclude-path: PATHLIST
pigz: N:

HHBFHEHFHHHHHEHHHH R

All the options are commented in the file by default because Proxmox has a
set of default options already encoded in the operating system. Changing the
vzdump.conf file overwrites the default settings and allows us to customize the
Proxmox backup.

The bwlimit option

The most common edit in vzdump.conf is to adjust the backup speed. This is
usually done in the case of remotely stored backups and interface saturation if
the backup interface is the same as that used for the VM production traffic.
The value must be defined in kilobytes per second (KBps). For example, to
limit backup to 200 MBps, make the following adjustment:

| bwlimit: 200000

The lockwait option

The Proxmox backup uses a global lock file to prevent multiple instances
running simultaneously. More instances put an extra load on the server. The
default lock wait in Proxmox is 180 minutes. Depending on different virtual
environments and numbers of virtual machines, the lock wait time may need
to be increased. If the limit needs to be 10 hours or see minutes, adjust the
option as follows:

| lockwait: 600

The lock prevents the VM from migrating or shutting down while the backup
task is running.

The stopwait option

This is the maximum time in minutes the backup will wait until a VM is
stopped. A use case scenario is a VM that takes much longer to shut down, for
example, an exchange server or a database server. If a VM is not stopped
within the allocated time, backup is skipped for that VM.

The stdexcludes option

This is a Boolean option to enable or disable exclusion of standard files, such
as temporary files, log files, or hidden OS system files. By default, this option
is enabled.

The mailto option

This is a comma-separated value to define email address to which the backup
notifications will be sent after a successful backup or failure.

The script option

It is possible to create backup scripts and hook them with a backup task. This
script is basically a set instruction that can be called upon during the entire
backup tasks to accomplish various backup-related tasks, such as
starting/stopping a backup, shutting down/suspending a VM, and so on. We
can add customized scripts as follows:

| script: /etc/pve/script/my-script.pl

The exclude-path option

To exclude certain folders from backing up, use the exciude-path option. All
paths must be entered on one line, without breaks. Keep in mind that this
option is only for LXC containers:

| exclude-path: "/log/.+" "/var/cache/.+"
The previous example will exclude all the files and directories under /109 and

svar/cache. To manually exclude other directories from being backed up,
simply use the following format:

| exclude-path: "/<directory_tree>/.+"

The pigz option

In simple terms, pigz allows multiple threads on multiple cores during the .gzip
compression backup. The standard .gzip backup process uses a single core,
which is why the backup is slower. Using the pigz package, we can notify the
backup process to use multiple cores, thus speeding up the backup and restore
process. pigz is basically a .gzip, but with multi-core support. It is not installed
in Proxmox by default. We can install it using the following command:

| # apt-get install pigz

In order to enable pigz for backup, we need to select the .gzip compression
level for the backup task in GUI. Then, the following pigz option in the
backup configuration file enables the pigz feature:

| pigz: 1

By default, this value is o and is used to disable pigz. A value of 1 uses half of
the total core in the node, while any value greater than 1 creates a number of
threads based on the value. The value should not exceed the maximum
number of CPU cores in the node.

It is worth noting here that pigz is not faster than or superior to

the LZO compression level, but when using the maximum
0 compression, such as .gzip, the use of pigz will significantly

reduce the backup time while compressing backup at the
maximum level.

Summary

In this chapter, we looked at the backup and restore features in Proxmox, how
to configure them, and how to use them to create a good data disaster
recovery plan. We also looked at the new VM replication feature to replicate a
VM across nodes for safekeeping when using local storage.

There are no substitutes for backing up data in order to mitigate any disasters
where data may be at risk. As much as backing up is important, the ability to
restore is also equally important, since backup files will not mean anything if
a restore is not possible in times of need. Although Proxmox does not provide
everything you need for backing up, such as a granular file backup, the ability
to back up a virtual machine is very helpful. The backup features in the
Proxmox platform have proven to be reliable in production environments and
during actual disaster scenarios.

In the next chapter, we are going to take a look at the necessity for an up-to-
date Proxmox cluster and how to apply new releases or patches regularly.

Updating/Upgrading Proxmox

There is no such thing as a perfect piece of software. All software matures as
it progresses through time by getting new features and finding and fixing
hidden bugs. By releasing regular updates and upgrades, the developers can
ensure that their software does not become obsolete due to the rapid evolution
of technology. In this chapter, we will see how to update and upgrade a
Proxmox node. We will cover the following topics:

Introducing Proxmox updates
Updating Proxmox through the GUI
Updating Proxmox through the CLI
Updating after subscription change
Rebooting dilemma after updates

Introducing Proxmox updates

Proxmox updates keep a node up to date with the latest stable packages, patch
security vulnerabilities, and introduce new features. Each node checks for the
latest updates and alerts administrators through emails if there are any
available updates. It is vital to keep all Proxmox nodes up to date, especially
when security patches are released. Proxmox developers are very prompt in
closing vulnerabilities through updates in a timely manner.

The number and nature of updates vary depending on your Proxmox
subscription level. For example, a Proxmox free version without a
subscription receives the most up-to-date stable updates, while a node with a
subscription receives updates that are not so cutting edge and go through an
additional layer of testing. Delaying the new package releases for subscription
levels creates a buffer to address any issues that may not have been identified
during the initial release.

This is not to say that a node without a subscription is not as stable as a paid
version. Both offer a very high level of stability and performance. The only
difference is that the delay allows subscribed updates to receive bug fixes
which may not have been noticed during the initial release of the update in the
free version of Proxmox.

A Proxmox node can be updated through both the GUI and CLI. There is no
strict recommendation on which one to use. But it is best to perform at the
console or through server IPMI. The reason is, if you are using Open vSwitch
as the networking option and if the Openv Switch package has been updated
in the release, it may interrupt network connectivity.

Updating Proxmox through the GUI

In this section, we will see how to update a Proxmox node through the GUI.
Proxmox checks for daily updates and displays relevant packages for which
updates are available based on subscription levels. The Updates menu in the
Proxmox GUI can be accessed by selecting the node and clicking on the
Updates menu. The following screenshot shows the available update packages
for our example node, pmx-o1:

Server Vie Noda pme0f O Restat O Shidown > Shell I BuleAcions -~ © Help
& Dalacantor
Eﬁ e Q Search Refresh Upgrade
101 (ouniu-01) @ Summery Yorsion
100 fom-1) Sl Packege ‘ Descripbon
% curren new
103 (cantos2)
PWD? (cantost) Sy Origin: Debian (48 llems
.o
& local pm0t) € Updas al 146 147 commanding peckage manager

g locat-hm (01" 0 Frrawal

& il (o) This package provides commandiing tools for searching and managing as well as querying information about packages as a low-level access to all features of the linapl-pkg library

& Disks These include: * apt-get for retrieval of packages and information about them from authenticated sources and for installation, upgrade and removal of packages togather with their
% pm-02 dependancies *apt-cache for querying avalable information about nstalled as well as installable packages * apt-cdrom to use removable media as a source for packages * apt-config
| Eb o4 @ cep as an Interface (o the configuration seftings * apt-key as an nterface to manage authentication keys
W Lo s 1 Replication
o 4 apt-transport-hitps 146 147 hitps download ransport for APT
© Test-Poolt -
& Task History
- This package enables the usage of 'deb hiips /oo distro main' ines in the elc/aptisources list so that &l package mangqers using the Ibapl-pky brary can access meladata and
@ Subsorpion packages available in sources accessible over hitps (Hypertext Transfer Protocol Secure), . This transport supports server as well & client authentication with cerfificates
apt-utls 146 147 package management related utilty programs

This package contains soms less used commandiine utiities related to package management with APT. . * apl-axtractiemplates is used by debconfto prompt for configuration
questions before installation. * apt-fiparchive is used to create Packages and other ndex files needed to publish an archive of Debian packages ™ apt-soripkgs is a Packages/Sources
file normalizer.

base-fles 99 90+deb%1 Debian base system miscellaneous fles

This package contains the basic flesystem hierarchy ofa Debien system, and sevesal important miscelanous fles, such s /elc/debian_version, /etc/host conf, fefzfissue, fetcmotd,
letc/profile, and others, and the lext of several common licanses in use on Debian systems

bind9-host 191031 1910347 Versionof host bundled with BIND 3 X

This package provides the host program in the form that s bundled with the BIND 9 X sources

In the preceding screenshot, we can see that the node pmx-e1 has 48 updates
available. The Updates feature shows the name of the package, the current
version installed, the new available version, and a description of the package.
To start the update or upgrade process, we simply need to click on Upgrade. It
will open the node shell on the default console, such as noVNC, and will start
the update process. Depending on the packages being updated, it may be
necessary to act on some prompts. The following screenshot shows a typical
prompt waiting for a response during the update process:

e VNC Command Terminal - naVNC - Mozilla Firefox I;Ii“
| © R hitps//172162.1:8008/7c0n : '

ystem upgracde: ap

H_l = J_l_'

librhdl 1
aml2 libz

s python-r
b socat spl sst
, 1 newly
163 MB of ar
operation, 15.7
Do you want to continue?

If the package list is old and has not been refreshed, it will notify that the
package database is out of date, as shown in the following screenshot:

@ VNC Command Terminal - noVNC - Mozilla Firefox M

| (D8 https://172.16.2.1:8006/ 7console=upg

lease update that first.

We can update the package list by clicking on Refresh through the GUI. To
restart the update process, click on the Upgrade button on the GUI again. The
following screenshot shows the updated interface in the GUI after clicking on
Refresh:

Task viewer: Update package database (%

m Status

Stop

starting apt-get update

Get:1 hitp://security.debian.org stretchfupdates InRelease [62.9 kB]

Ign:2 http://ftp.ca.debian.org/debian stretch InRelease

Get:3 http://ftp.ca.debian.org/debian stretch Release [118 kB]

Get:4 hitp://download. proxmox. com/debian/pve stretch InRelease [3058 B]

Get:5 http://download. proxmox. com/debian/ceph-uminous stretch InRelease [2914 B)

Get:6 hitp://ftp.ca.debian.org/debian stretch Release.qpg [2373 B]

Get:7 hitp://security.debian.org stretchfupdates/main amde4 Packages [163 kB]

Get:8 hitp://download. proxmox. com/debian/pve stretch/pve-no-subscription amd64 Packages [95.6 kB]
Get:9 hitp://security.debian.org stratch/updates/main Translation-en [75.8 kB]

Get:10 http://security.debian.org stretch/updates/contrb amd64 Packages [1352 B]

Get:11 http://security.debian.org stretch/updates/contrib Translation-en [1023 B]

Get:12 http://download. proxmox.com/debian/ceph-uminous stretch/main amd64 Packages [89.2 kB]
Get:13 http://ftp.ca.debian.org/debian stretch/main amde4 Packages [7095 kB]

Get:14 http://ftp.ca.debian.org/debian stretch/main Transkation-en [5393 kB)

Fetched 13.1 MB in 7s (1759 kB/s)

Reading package lsts...

TASK OK

The package database task window shows the list of the repositories being
read and the size of each package list being downloaded. We can stop the
package database update by clicking on Stop.

Proxmox downloads or refreshes the updated package list daily and sends an
email to the root email address. The Proxmox GUI update menu visually
displays the list. If there are no updates available, the list will be empty, with
no messages shown.

Updating Proxmox through the CLI

As mentioned earlier in this chapter, in the recent Proxmox release, a bug in
the software resulted in upgrading through the GUI having some issues. The
GUI is basically a frontend of the behind-the-scene commands that are run
through Proxmox scripts. Still, updating or upgrading Proxmox through the
CLI seems to be the safest path.

There are no special Proxmox-specific commands to update a Proxmox node.
The standard apt-get for all Debian-based distributions is used for the updating
process. Log in to the Proxmox node directly on the node or through SSH,
and then run the following command to update the list of new packages:

| # apt-get update

After the package database is up to date, we can start the update process using
the following command:

| # apt-get dist-upgrade

Difference between upgrade and
dist-upgrade

Besides the dist-upgrade command, there is another option available for
upgrade:

| # apt-get upgrade

This is also the standard Debian-based Linux distribution command.
However, there is a big difference between these two commands.

The apt-get upgrade command will only update the already installed packages
without installing any new ones or making significant changes to the
packages, such as removing them. This also will not satisfy any dependency
issues. If any packages require dependencies to be resolved, this command
will simply leave them alone. The main benefit of this package is that it will
very rarely break the system. On the downside, it also will not update or patch
everything that is necessary to bring a node up to date.

The apt-get dist-upgrade command, on the other hand, will upgrade all the
packages and remove any unneeded packages dictated by the package
maintainer. This command will also intelligently satisfy almost all the
required dependencies for a package being updated or marked for a new
installation.

Based on the previous explanation of these two update commands, we can see
that both of these commands have advantages and disadvantages. But to keep
a Proxmox node up to date, the apt-get dist-upgrade command seems to be the
right way to go. Proxmox is not just another Linux distribution, but a highly
specialized hypervisor. So packages that are included in a distribution are
carefully chosen by Proxmox developers. Also, there is no mention of the apt-
get upgrade command anywhere in the Proxmox wiki.

Recovering from the grub2 update
issue

Due to the latest grub2 update, there may be some instances, when updating a
Proxmox node through the GUI, that cause issues by breaking packages. This
is especially true for an earlier release, such as Proxmox 3.4. All the newer
versions of Proxmox seem to have this issue fixed. To prevent this issue from
happening, it is best to upgrade a node through SSH or the console by logging
in directly on the node and not through the GUI. If the upgrade has already
been applied through the GUI and there are unconfigured packages due to
issues, perform the following steps to fix the issue:

1. Check package status:

| # pveversion -v

2. Before configuring grub, we need to know the device where Proxmox is
installed. We can find the device by running the following command:

| # parted -1

3. If there are incorrect packages, run the following commands to kill the
background dpkg process and configure all the packages, including the
New grub2:

killall dpkg
dpkg --configure -a

4. Select the Proxmox device name when prompted during the grub2
installation.

5. Reboot the node.

6. Itis also possible to manually install grub2 on the Master Boot Record
(MBR). Run the following command to install grub2 on the boot device:

| # grub-install /dev/sdX

Updating after a subscription
change

The Proxmox subscription level for a node can be changed at any time by
simply applying a subscription key through the GUI. Different subscription
levels have different natures of package updates. If a node has started with no
subscription, it can always be changed to any paid subscription at any given
time. After the subscription level changes, it is important to update the node
accordingly so that updates related to the subscription level can be applied. In
this section, we will see how to update a node if the subscription level of the
node changes at any time. For example, we are assuming that the node is on
no subscription and we are adding a paid-level subscription. We can upload a
subscription key through the Subscription tabbed menu for a node on the
Proxmox GUI. But the modification that needs to be made to activate the
repository for subscription needs to be done through the CLI. To disable the
free subscription-level repository, we are going to comment out the following
command in the /etc/apt/sources.list file:

|# deb http://download.proxmox.com/debian stretch pve-no-subscription

After this, we need to uncomment the following line of code in
/etc/apt/sources.list.d/pve-enterprise.list t0 enable the SlleCI‘iptiOl‘l-l@VEl
repository:

|# deb https://enterprise.proxmox.com/debian/pve stretch pve-enterprise

After these modifications are made, we can update the Proxmox GUI by
following the steps in the Updating Proxmox through the GUI section in this
chapter.

To update through the command line, we can follow the steps in the Updating
Proxmox through the CLI section in this chapter.

The same enterprise repository works for all paid subscription levels, such as
Community, Basic, Standard, and Premium. All paid subscriptions receive the
same type of updates.

Rebooting dilemma after Proxmox
updates

After an update, all administrators face the question of whether the node
should be rebooted or not. The Proxmox upgrade process is usually very
informative and tells us whether the node really needs a reboot. Most of the
updates do not require any reboot. They are simply packaged updates. But
some upgrades, such as kernel releases, newer grubs, and security patches,
will require a node reboot every time. The exact method of rebooting depends
on the environment, number, and nature of the VMs stored per node. In this
section, we will see the most widely used method, which is by no means the
only method.

For minimal virtual machine downtime, we can live-migrate all the VMs from
a node to a different node, and then migrate them back to the original node.
As of Proxmox VE 5.0, there is a nice GUI feature addition to instruct all VM
migrations with a menu instead of selecting and migrating one VM at a time.
The feature is under the Bulk Actions drop-down menu in the top-right corner
of the GUI, as shown in the following screenshot:

You are logged in as 'root@pam’ # @ Help & Create CT

D Restart () Shutdown > Shell i Bulk Actions © Help
P Bulk Start
M Bulk Stop
< Bulk Migrate

As you can see from the previous screenshot, we can also start or stop all
virtual machines. The selected action will only take place on a selected node
from the left-hand navigation pane of the GUI. If the Proxmox node requires
a reboot after an update, we can select Bulk Stop from the Bulk Actions
drop-down menu to shut down all VMs in the node, and then restart the node.
After the node restarts, start all VMs by clicking on Bulk Start under the drop-
down menu.

Always check and read all major or minor Proxmox update
releases before applying them to a node. This gives you a good
idea of what is being updated and its importance. If the
importance or seriousness is not critical, we can always put off
the update to avoid any node reboots. You can refer to the
Proxmox roadmap, which is a good place to find out new feature

additions, bug fixes, or simply information on changes, at http://pv
e.proxmox.com/wiki/Roadmap#Roadmap.
The official Proxmox forum is also a great place to hang out to get
information on issues due to updates. This is also a great place to learn about
fixes posted by Proxmox developers if there are any issues with the released
update.
Visit the official Proxmox forum at the following link:

https://forum.proxmox.com

http://pve.proxmox.com/wiki/Roadmap#Roadmap
https://forum.proxmox.com

Applying update without reboot

Although there is no built-in feature in Proxmox that will allow us to update
the host without ever needing a reboot, there is a third-party solution to
achieve this and never have to reboot again after applying an update. A server
reboot can be very disruptive for a busy virtual environment where downtime
has a high price tag on it. A service named KernelCare from CloudLinux can

solve this issue. More information about KernelCare can be found at https://ww
w.cloudlinux.com/all-products/product-overview/kernelcare.

Simply put, what KernelCare does is applies security patches on the runtime
kernel without needing to reboot a node. This allows a node to stay updated at
all times. Due to the possible downtime, many administrators forego patching.
With KernelCare, security updates are applied as they become available. This
does not disrupt the normal functioning or services of the node in any way.
The extremely affordable price and the easiness of the installation make
KernelCare an effective solution for an environment of any size.

KernelCare also provides completely free trial licenses to try out the service
before making a purchase. They can be installed in minutes by following the
official documentation at http://docs.kernelcare.com/index.html?installation.htm.

https://www.cloudlinux.com/all-products/product-overview/kernelcare
http://docs.kernelcare.com/index.html?installation.htm

Summary

In this chapter, we learned about the importance of keeping Proxmox nodes
up to date in a cluster and how to properly update and upgrade a node through
both the GUI and CLI. We also covered when to reboot or not reboot a node
after an upgrade.

In the next chapter, we are going to learn how to troubleshoot a Proxmox
cluster when various issues arise. These issues have been taken from real-
world Proxmox clusters serving live users.

Proxmox Troubleshooting

In this chapter, we are going to learn about the common Proxmox issues
found in a production environment and solutions to those issues. Once a
Proxmox cluster is set up, it usually runs without issues. However, when
issues arise, a system administrator’s knowledge is tested. Learning how to
properly troubleshoot can be made easier by learning about other people’s
resolutions. Throughout this chapter, we will gain some insight into Proxmox
troubleshooting, so that hopefully, when these issues arise in our own
Proxmox clusters, we will be able to identify and resolve problems quickly
and with ease.

All the issues explained in this chapter are those that may be commonly faced
by others. It is just not possible to explain all error possibilities, mainly due to
all of the components that work in concert to make up a stable system. As you
run your own cluster, you may face other issues that we have not documented
here.

The issues are divided into the following sections:

Proxmox nodes

The main cluster

Storage

Network connectivity

The KVM virtual machine
L. XC containers
Backup/restore

The VNC/SPICE console
A firewall

Proxmox node issues

This section contains issues related to the Proxmox node itself.

Issue — fresh Proxmox install stuck
with /dev to be a fully populated
error during node reboot

This issue occurs when the OS tries to boot with a non-standard VGA driver.
To prevent this issue, we need to add and modify some grub options. Restart
the node, and then press the E key from the Proxmox boot menu. At the end
of the Kernel boot line, add the following nomodeset, as shown in the following
screenshot:

GNU GRUB wversion 2.02-pve

setparams Proxmox Virtual Environment GNU/ZL 1nux

vmld/VYIAKCE-GNBR-m3wu-S067-%dpG-2z¥z2-10) ¥bd/KdVLOc-kmkM-Fpst -skhz-dLKT -ku
; then

oot --hint=" lvmid/VIAKCE-QNBR-m3wu-5067-%4pG-2

)17 145-tdct -4c4d

vmlinuz-4.2.8-1-pve root=/dev/mapper/pve-root ro quiet] nomodeset

yading 1nitial ramdisk ...

‘boot/initrd. img-4.2.8-1-pve

Minimum Emacs-like screen editing 1s supported. TAB lists completions. Press Ctrl-x
or F10 to boot, Ctrl-c or F2 for a command-line or ESC to discard edits and return
to the GRUB menu.

Press Ctrl + X or F10 to boot the node normally. To make this option
permanent, make the following modifications in setc/default/grub:

e [Uncomment GrRUB_TERMINAL=console
e Comment out GRUB_GFXMODE=some_X, some_Y

Issue — rejoining a node to a
Proxmox node with the same old IP
address

If you are rejoining a Proxmox node back to the cluster with the same IP
address, then the joining command must run with the -force option. Run the
following command from the node that is being rejoined:

| # pvecm add <any_proxmox_node_ip) -force

Without the additional -force option, the node will not be joined and an error
message will be displayed informing you of the existence of a certificate. This
also applies when a node is reinstalled completely with the same hostname
and IP address.

Issue — Proxmox installation
completed but grub is in an endless
loop after reboot

This is a common occurrence when Proxmox is installed on a node with
newer UEFI BIOS. Simply disabling the UEFI mode will allow the system to
boot. If this does not work, Proxmox should be installed manually over
Debian Stretch.

To get information and instructions on how to install Proxmox
8 when the 1SO installer does not work, refer to the following:

http://pve.proxmox.com/wiki/Install_Proxmox_VE_on_Debian_Stretch

http://pve.proxmox.com/wiki/Install_Proxmox_VE_on_Debian_Stretch

Issue — LSI MegaRAID 9240-
81/9240-4i causes an error during
booting of the Proxmox node

This issue can be prominent in the Supermicro motherboard with the LSI
chipset for hot-swap bays. There are two ways in which we can use cards in
the Proxmox mode:

Downloading and updating the LSI
driver

We can download and install the latest LSI drivers in Proxmox to activate the
LSI cards by performing the following steps:

1.

ok W

Run the following command to install the necessary program for
compiling;:

apt-get install build-essential

Run the following command to install header files for the currently
installed kernel:

apt-get install pve-headers-<version>-pve

Download the LSI drivers from http://www.avagotech.com/support/download-search.
Extract the downloaded driver in /usr/1ocal/sre.
After extracting the driver, the directory may appear as follows:

/usr/local/src/megaraid_sas-v00.00.05.30
Enter the driver directory and rename makefile tO makefile.orig. Then, copy

makefile.standalone {O makefile.

Compile the source using the following command:
make -C /usr/src/linux-headers-<version>/ M=$PWD modules

It will show some text output and warnings, but they are safe to
ignore. The driver will end up in the following directory:

/usr/local/src/megaraid_sas-v00.00.05.30/megaraid_sas.ko
Remove or rename the existing driver file in the following directory:

/1ib/modules/<version>-pve/kernel/drivers/scsi/megaraid/
megaraid_sas.ko

Copy the newly compiled driver to the previous directory, as follows:

cp /usr/local/src/megaraid_sas-v00.00.05.30/megaraid_sas.ko
/1ib/modules/<version>-pve/kernel/drivers/scsi/megaraid/
megaraid_sas.ko

http://www.avagotech.com/support/download-search

10. Back up the initial RAM disk by renaming it, as follows:

mv /boot/initrd.img-2.6.32-7-pve /boot/initrd.img-<version>
-pve.bak

11. Run the following command to update initranfs:

| # update-initramfs -c -k 2.6.32-7-pve

12. Run the following command to update grub, and then reboot it:

| # update-grub

Updating the Supermicro BIOS

We can also update the Supermicro BIOS to the latest firmware to use the LSI
cards. Always check whether you have the latest firmware before updating it.
For instructions on how to update the Supermicro BIOS firmware, refer to http:
//wahlnetwork.com/2013/06/03/the-easy-button-for-supermicro-bios-upgrades/.

http://wahlnetwork.com/2013/06/03/the-easy-button-for-supermicro-bios-upgrades/

Issue — the Upgrade button is
disabled on the Proxmox GUI,
which prevents the node upgrade

There are three common reasons why the Upgrade button could be disabled
on the Proxmox GUI. Check the following alternatives to fix this issue:

1. If the node does not have a valid subscription, ensure that the pve-no-
subscription repository is added. For Proxmox repository information,
visit the link: https://pve.proxmox.com/wiki/Package_repositories.

2. Refresh the browser cache to reload the graphic interface.

3. Avery basic mistake, but not unheard of, is to make sure that the root
user is logged in to facilitate the upgrade. The Upgrade button is only
visible when you log in with the root privilege.

https://pve.proxmox.com/wiki/Package_repositories

Issue — Proxmox cannot start due to
the getpwnam error

Boot the Proxmox node in recovery mode using the Proxmox installation
disk, or select the recovery option from Proxmox’s boot menu at the
beginning of the boot process. After the recovery shell is loaded, run the
following commands from the command prompt and then reboot:

| # apt-get update && apt-get dist-upgrade

Issue — cannot log in to the GUI as
root after reinstalling Proxmox on
the same node

In order to log in to the Proxmox GUI as root, local 100pback must be enabled in
the network interface file. Look for the following two lines to make sure they
are not commented out in /etc/network/interfaces:

auto lo
iface lo inet loopback

The main cluster issues

This section contains issues related to the main Proxmox’s cluster operations.

Issue — Proxmox virtual machines
are running, but the Proxmox GUI
shows that everything is offline

This is usually caused by one of the three services, such as pvedaemon, pvestatd,
or pveproxy crashing or stopping working for any number of reasons. Simply
restarting them through SSH will fix this issue. One of the common causes of
this issue is if any NFS shared storage gets stuck during an extended backup
task. A node reboot will always fix this issue. But reboot is not always
possible in a production node. Forcefully unmounting the NFS shared storage
under /mnt/pve/<share>, then running the following commands will show
everything normally again:

service pvedaemon restart
service pveproxy restart
service pvestatd restart

Issue — kernel panic when
disconnecting USB devices, such as a
keyboard, mouse, or UPS

There is no real solution to this issue yet, as the issue is not reproducible all
the time. This issue has been seen on a variety of hardware with both standard
and nonstandard Proxmox installations. However, almost all of the time, the
issue does not cause the server to freeze permanently, thus the panic can just
be ignored and you can go on as usual.

Kernel panic seems to mostly occur with kernels 2.6.32-26, 2.6.32-27, and
2.6.32-28. 1t is nonexistent in kernel 3.2 and later. For the regular day-to-day
operations of a cluster, this issue can be safely ignored unless it causes the
node to freeze on occasions.

Issue — virtual machines on
Proxmox will not shut down if
shutdown is initiated from the
Proxmox GUI

This issue is not consistent and is not directly related to Proxmox. The
Shutdown button on Proxmox’s GUI only sends an ACPI signal to a virtual
machine to initiate the shutdown process.

Once the VM receives an ACPI signal, it starts the shutdown process.
However, if the VM has a number of processes running in the memory, it
might take a while to end processes before shutdown. The ending of processes
may take longer, which causes Proxmox to issue a timeout error. The issue
may occur for both Windows and Linux. The workaround for this is to access
the VM through a console or SPICE and then manually shut down the VM.

Issue — kernel panic with HP
NC360T (Intel 82571EB chipset)
only in Proxmox VE 3.2

An immediate workaround is to use Broadcom for the network interface card.
A permanent fix is to download E1000 drivers from the Intel website and
compile a module from those sources. The E1000 driver can be downloaded
from this link: http://www.intel.com/support/network/sb/cs-006120.htm.

http://www.intel.com/support/network/sb/cs-006120.htm

Issue — the Proxmox cluster is out of
quorum and cluster filesystem is in
read-only mode

This occurs when a node falls out of quorum. To prevent an error occurring in
the cluster configuration files, Proxmox puts the cluster filesystem in the
read-only mode for the node in question. Run the following commands from
the node with this issue. We have to stop the cluster service, start it in local
mode, delete or move the existing corosync.conf file, and then restart the cluster.
A new corosync.conf file will be synced with the node with a read-only issue.
Perform the following steps to overcome this issue:

1.

2.

Stop the cluster in the node using the following command:

systemctl stop pve-cluster

Start the cluster filesystem in the local node using the following
command:

/usr/bin/pmxcfs -1

Remove or back up the corosync.conf file using the following command:

mv /etc/pve/corosync.conf directory_path

Stop and start the cluster normally using the following commands:

systemctl stop pve-cluster
systemctl start pve-cluster

Issue — VM will not respond to
shutdown or restart

First check whether High Availability (HA) is enabled for the VM or not, as
HA will prevent any manual action such as the VM shutdown, stop, restart, or
start because the main purpose of HA is for actions to be taken without user
interaction. In order to manually perform any task for a VM, we need to
disable HA for the VM, perform a task, and then re-enable HA. Also, if
anything inside the guest VM is preventing it from shutting down, it will not
respond to the GUI shutdown or restart option. In such cases, it is best to
shutdown or restart from within the guest VM.

Issue — Proxmox GUI not
responding after Firefox update

Due to a Firefox update, the Proxmox GUI may become non-responsive, even
after successful login. In Firefox, on the address bar, type about:config.

On the search bar, type touch and find the following entry:

| dom.w3c_touch_events.enabled

Change the value to e and try to log in to the GUI again.

Issue — the Proxmox GUI is not
showing RRD graphs

If a node or VM is running fine, but there are no RRD graphs on the Status
page, it might be due to the stuck pvestatd service or corrupted RRD cache.
Run the following commands to restart the pvestatd service and clear the RRD
cache:

rrdcache -P FLUSHALL
systemctl restart pvestatd

Storage issues

This section contains issues related to storage systems supported by Proxmox,
such as local, NFS, Ceph, GlusterFS, and so on.

Issue — deleting a damaged LVM
from Proxmox with the error read
failed from 0 to 4096

This error occurs when a LVM storage in Proxmox becomes partially or fully
corrupted. In such cases the LVM may need to remove manually. This will
remove the LVM which will cause data loss. Run the following command
from the CLI to remove the LVM:

| # dmsetup remove /dev/<volume_group>/<lvm_name>

Issue — Proxmox cannot mount NFS
share due to the timing out error

Some NFS servers, such as FreeNAS, do a reverse lookup for hostnames. In
such cases accessing the NFS storage from Proxmox causes timing out error.
We need to add Proxmox hostnames to the host files of the NFS server to
prevent time out error:

| # nano /etc/hosts

Issue — how to delete leftover NFS
shares in Proxmox or what to do
when the NFS stale file handle error
occurs?

When NFS shares are deleted from Proxmox storage, in some cases, it still
remains mounted, which causes the NFS stale file handle error. Simply
manually unmounting the share and removing the NFS mount point folder
from the Proxmox directory fixes this issue. Run the following commands
from the Proxmox node:

umount -f /mnt/<nfs_share>
rmdir /mnt/<nfs_share>

Issue — Proxmox issues —mode
session exit code 21 errors while
trying to access the iISCSI target

Run the following command from the Proxmox node to fix the error:

| # iscsiadm -m node -1 ALL

Issue — cannot read an iSCSI target
even after it has been deleted from
Proxmox storage

When trying to read the same iSCSI target after it has been deleted from
Proxmox storage, an error occurs mentioning the target that has already been
added to Proxmox. In these cases, the iSCSI daemon has to be restarted to
clear the issue. Run the following command from all the Proxmox nodes:

| # /etc/init.d/open-iscsi restart

Issue — a Ceph node is removed
from the Proxmox cluster, but OSDs
still show up in PVE

This is a common occurrence when a Ceph node is taken offline without
removing all the Ceph-related processes first. The OSDs in the node must be
removed or moved to another node before taking the node offline. Run the
following commands to remove OSDs:

ceph osd out <osd.id>

ceph osd crush remove osd <osd.id>
ceph auth del osd.<id>

ceph osd rm <osd.id>

Issue — the no such block device
error during creation of an OSD
through the Proxmox GUI

When creating an OSD through the Proxmox GUI, sometimes this error
occurs. This is not a common occurrence and is not reproducible at all times.
Although there are no permanent fixes for this issue, it can be ignored. So,
just retry to create an OSD. The issue seems to be isolated in Proxmox 4.x
releases.

Issue — the fstrim command does not
trim unused blocks for the Ceph
storage

To properly trim unused blocks for virtual disks stored on the Ceph storage,
perform the following steps:

1. Use a virtio disk type for a virtual disk.
2. Enable the discard option through <vm_id>.conf. Add discard=on to the drive
properties of virtioe, like the following:

<rbd_storage>:<virtual disk>, cache=writethrough,
size=506G, discard=on

Issue — the RBD couldn’t connect to
cluster (500) error when connecting
Ceph with Proxmox

Authentication failure is the most common cause for this error when Ceph
RBD storage cannot connect to Proxmox. Proxmox requires a copy of the
Ceph admin keyring to authenticate. The name of the keyring must match the
storage ID assigned through the Proxmox GUI. Refer to Chapter 5, Installing
and Configuring Ceph, for information on how to set up the Ceph cluster to
be used as storage backend.

Issue — changing the storage type
from IDE to VirtIO after the VM

has been set up and the OS has been
installed

If IDE was used during the initial VM setup and needs to be changed to
VirtlO later, this can be done through the Proxmox GUI without reinstalling
the OS. The VM will need to be powered off first, and then the virtual disk
needs to be removed through the Proxmox GUI. After clicking on Remove,
the virtual disk will become unused, as shown in the following screenshot:

>— Console Keyboard Layout Default
&~ Hardware E=2 Memory 128.00 MiB/1.00 GiB
£+ Options ﬁ} Processars 1 (1 sockets, 1 cores) [numa=1]
— EJ Display Default
@ CD/DVD Drive (ide2) none,media=cdrom
@ Monitor
— Network Device (net0) virtio=CA:35:61:2A:34.CD ,bridge=vmbr0
Hatlomn £ Unused Disk 0 local-lvm:vm-100-disk-1

Double-click on the unused virtual disk or navigate to Add | Hard Disk to add
it back to the VM. Select VirtlO as Bus/Device from the dialog box. It is very
important to keep in mind that following this procedure on a Windows VM,
which has one single IDE disk image, will make the VM inaccessible. The
reason is Windows does not come equipped with VirtIO driver, it needs to be
manually loaded. To change the primary Windows disk image from IDE to
VirtlO, add a second disk image of any size into the Windows guest VM, then
boot into it. Load the VirtIO driver ISO file downloaded from https:/fedorapeople.

org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso.

Go to Control Panel | Device Manager and update the disk drive detected
using the driver from the loaded ISO image. Once the proper driver is loaded
and the VirtIO disk drive is fully recognized, shutdown Windows. Then
remove the disk image added for this purpose and follow the steps described
earlier in this section.

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso

Issue — the pveceph configuration
not initialized (500) error when you
click on the Ceph tab in the
Proxmox GUI

This error occurs when you click on the Ceph tab in the Proxmox GUI
without initializing the Ceph storage. If Ceph is not going to be used along
with Proxmox on the same cluster, then this error should simply be ignored.
But if any Proxmox node is going to be used to manage Ceph through the
Proxmox GUI, then simply copy the Ceph configuration file from
/etc/pve/ceph.conf INtO /etc/ceph/ceph.conf, Which will allow you to manage Ceph
even if there is no OSD or mon in that node. Since Ceph configuration may
change over time, it is recommended to create a symlink for the configuration
file instead of a simple copy. The following command will create a symlink of
the Ceph configuration file in the /etc/ceph directory:

| # 1n -s /etc/pve/ceph.conf /etc/ceph/ceph.conf

Issue — the CephFS storage
disappears after a Proxmox node
reboots

CephFS needs to be mounted in order to make it available for storage service.
If the mount point is not set in /etc/fstab, it will need to be remounted after
each reboot. The following format is used to enter the CephFS in /etc/fstab:

id={user-ID}[,conf={path/to/conf.conf}] /mount/path fuse.ceph defaults 0 0
id=admin, conf=/etc/ceph/conf.conf /mnt/<path> fuse.ceph defaults 0 ©

Issue — VM cloning does not parse in
the Ceph storage

When full cloning is performed on a virtual machine stored on Ceph storage,
it looses parse on the virtual disk. For cloning, Proxmox uses the gemu-img
method instead of rbd flattening. Until it is implemented in later versions of
Proxmox, VM clones will lose parsing on Ceph storage.

Issue — VM disk images stored on
ZFS is extremely slow

If the VM disk images are stored on ZFS storage, which is configured as
RAIDZ3, the VMs will suffer a big performance loss. Especially if the ZFS
loses a drive and it goes into data rebalancing, the load on the storage will
make the VM almost unusable. When using ZFS, the RAID10 will provide
the best performance possible from ZFS storage. RAID10 will have paired
vdevs where data will be mirrored and then will be stripped among multiple
vdevs. One drawback of using RAID10 is it provides half of the disk capacity
of the total number of drives. For example, if 20 2 TB drives are used in a
RAID10 ZFS configuration, then the usable space will only be 20 TB. For a
non-critical node such as backup storage, the use of RAIDZ3 could be a good
choice, since it will provide the maximum capacity possible at the expense of
performance.

Network connectivity issues

This section contains issues related to virtual or physical network connectivity
within Proxmox.

Issue — no connectivity on Realtek
RTL.8111/8411 rev. 06 network
interfaces

Some newer Realtek chipsets don’t get compiled with the right drivers. This
causes the interface to be up without any network traffic. In order to fix this
issue, the older driver needs to be downloaded from the Realtek site and
compiled manually. The driver can be downloaded from http://www.realtek.com.tw/

Downloads/.

Since this driver is manually installed, during a kernel update it will get
updated automatically. To prevent this and ensure that the driver builds itself
automatically when a new kernel is installed, run the following commands
and then reboot the node:

apt-get install dkms build-essential pve-headers-4.10.15-pve
mkdir /usr/src/r8168-8.037.00

cat << EOF > /usr/src/r8168-8.037.00/dkms.conf
PACKAGE_NAME=r8168

PACKAGE_VERSION=8.037.00

MAKE[0]=""make'"

BUILT_MODULE_NAME[0]=r8168
BUILT_MODULE_LOCATION[O]="src/"
DEST_MODULE_LOCATION[0]="/kernel/updates/dkms"
AUTOINSTALL="YES"

EOF

dkms add -m r8168 -v 8.037.00

dkms build -m r8168 -v 8.037.00

dkms install -m r8168 -v 8.037.00

dkms status

http://www.realtek.com.tw/Downloads/

Issue — network performance is
slower with the E1000 virtual
network interfaces

The performance of the E1000 virtual network interfaces is about 30-35% less
than VirtlO virtual network interfaces. Changing vINICs to VirtIO will
increase the overall network bandwidth of a virtual machine. The VirtIO
drivers are included in all major Linux flavors. For Windows machines, an
ISO file with VirtIO drivers can be downloaded from http://www.linux-kvm.org/page/

WindowsGuestDrivers/Download_Drivers.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

Issue — patch port for Open vSwitch
in Proxmox not working

Currently, there are three Open vSwitch options that are fully supported
through Proxmox, such as OVSBridge, OVSIntPort, and OVSBond. The
OVSPatchPort option that is required for the patch port cannot be configured
through the Proxmox GUI. Thus, even if we manually create a configuration
in the network interface file, it still seems to be out of reach. An alternative
solution where the patch port is required is to use an Open vSwitch fake
bridge. A patch port allows us to create an extension of the main bridge. For
example, if we are connecting two physical switches with each other, the
ports where we will connect the network cable to becomes patch ports for
these two switches. Fake bridges look and act like full Open vSwitch bridges
but are tied to a particular VLAN. A fake bridge depends on an already
configured main Open vSwitch bridge. Assuming that the main bridge is
vmbre, the content of the /etc/network/interfaces will look as follows for a fake
bridge named 11 for VLAN ID #11:

auto vmbril

allow-vmbre vmbril

iface vmbrll inet manual
ovs_bridge vmbro
ovs_type OVSBridge
ovs_options vmbro 11

The entry option for a fake bridge is as follows:

| ovs_options <main_bridge> <vlan_id>

We can now connect a VM to this bridge without assigning any VLAN ID to
the virtual network interface.

Issue — trying to add a node to a
newly created Proxmox cluster when
nodes do not form quorum

From Proxmox 4.0 and later, we now require the multicast feature. Without
this, nodes will be unable to form quorum. So, when we add a new node to a
cluster, if the process gets stuck at Waiting for Quorum..., we need to ensure
that multicast is enabled on the switch. As soon as multicast is available,
nodes will form quorum without any issues.

Issue — implemented IPv6 but
firewall rules do not get applied

All firewall rules are primarily applied to IPv4 traffic. In order to also apply
these rules to IPv6, we need to ensure that the following entry is present in

/etc/network/interfaces.

| iface lo inet6 loopback
We also need to load the IPv6 driver into /etc/modules during boot. Simply add
the fOHOWil‘lg entry in /etc/modules:

| ipve

KVM virtual machine issues

This section contains issues related to KVM virtual machines only.

Issue — Windows 7/XP machine
converted to Proxmox KVM hangs
during boot

The Windows operating system can be unforgiving when you convert or
migrate from one type of hardware to another. It is certainly possible to
convert/migrate just about any Windows OS, as long as a proper procedure is
followed. For in-depth information on the proper procedure to migrate
Windows machines to a virtual machine, refer to http://pve proxmox.com/wiki/Migratio

n_of_servers_to_Proxmox_VE#mergeide.

http://pve.proxmox.com/wiki/Migration_of_servers_to_Proxmox_VE#mergeide

Issue — Windows 7 VM does not
reboot, instead it shuts down,
requiring a manual boot from
Proxmox

This issue causes a Windows 7 virtual machine to shut down when a reboot is
initiated from within the OS. A manual power-on through the Proxmox GUI
is required to power up the VM. This is an issue caused by the installation of
Windows itself, especially a VM that is configured with a standard video.
Changing the display to SPICE solves the issue for this type of Windows 7
virtual machine. This is not a common occurrence and causes an issue in
some Windows 7 VMs, while others run just fine. Following screenshot
shows the display adapter selected as SPICE:

Edit: Display

Graphic card: | SPICE |

o T e

Issue — the gemu-img command
does not convert the .vimdk image
files created with the .ova template
in Proxmox VE 5.0

The .vndk image files created with VMware’s .ova template may present the
following error messages during conversion with the gemu-ing command:

gemu-img convert -f vmdk disk1.vmdk -0 gcow2 vm-101-disk-1.cqcow2

gemu-img: 'image' uses a vmdk feature which is not supported by this gemu version:
VMDK version 3

gemu-img: Could not open 'diskl.vmdk': Could not open 'diskl.vmdk': Wrong medium

type
gemu-img: Could not open 'diskl.vmdk'

The .vmdks format is only supported in pve-qemu-kvm 2.0 and later. Enter the
following command to check the version installed in the Proxmox node:

| # pveversion -v | grep pve-qemu-kvm
Look for the version number of pve-qgemu-kvm. A .vmdk file can still be converted

by following the instructions given at http:/ask.xmodulo.com/convert-ova-to-qcow2-linux.
html.

http://ask.xmodulo.com/convert-ova-to-qcow2-linux.html

Issue — online migration of a virtual
machine fails with a failed to sync
data error

In order to migrate virtual machines online without powering them off, the
virtual disk of the VM must be on a shared storage system. Any VM with a
virtual disk on local storage cannot be migrated live. The error will look as

follows:

Aug 12 19:54:37
Aug 12 19:54:37
Aug 12 19:54:37
local disks

Aug 12 19:54:37
Aug 12 19:54:37
can't do online

starting migration of VM 134 to node 'pmx-02' (172.17.2.2)
copying disk images
ERROR: Failed to sync data - can't do online migration - VM uses

aborting phase 1 - cleanup resources
ERROR: migration aborted (duration 00:00:00): Failed to sync data -
migration - VM uses local disks

TASK ERROR: migration aborted

Issue — no audio in Windows KVM

Sound devices must be added manually by adding the following line in a
KVM virtual machine configuration file located in /etc/pve/qenu-
server/<vm_id>.conf.

args: -device intel-hda,id=sound5, bus=pci.0, addr=0x18 -device hda-micro, id=sound5-
codecO, bus=sound5.0, cad=0 -device hda-duplex, id=sound5-codecl, bus=sound5.0, cad=1

After saving the configuration file, the VM will need to be powered off and
then powered on. Windows 7 and later will automatically install the necessary
driver for the sound device.

Issue — the VirtIO virtual disk is not
available during the Windows
Server installation

The VirtIO drivers are not included in the Windows Server installation.
During the installation, the Windows setup will not see any VirtIO virtual
disks attached to the virtual machine. A VirtlO driver must be downloaded
and loaded during the installation in order to activate the VirtIO virtual disk
with the Windows operating system. The ISO image of VirtlO drivers can be
downloaded from http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

L. XC container issues

This section contains issues related to LXC containers only.

Issue — a Proxmox node hangs when
trying to stop or restart an LXC
container

This has been an issue since the initial release of Proxmox VE 4.0. Due to a
bug when shutdown, stop, or restart was initiated for LXC container from
GUI, the node itself became unusable and all network connectivity was lost.
The only way to come out of it was to reboot the entire node. In consecutive
later releases, this issue has been addressed and patched by Proxmox
developers. If you are in Proxmox 4.0, an immediate upgrade to 4.1 or later is
highly recommended.

Issue — the noVNC console only
shows a cursor for LXC containers

Due to unknown reasons, the noVNC console may only show a cursor, as
shown in the following screenshot, when trying to access an LXC container:

il VBl

This does not mean that the container is frozen. Simply hit Enter to get to the
login prompt.

Backup/restore issues

This section contains issues related to backing up and restoring Proxmox.

Issue — a Proxmox VM is locked
after backup crashes unexpectedly

This is a common cause after a VM backup is interrupted or crashed. Simply
unlocking the VM through SSH using the following command will fix this
issue:

| # qm unlock <vm_id>

Issue — how can Proxmox back up
only the primary OS virtual disk
instead of all the virtual disks for a
VM?

By default, a Proxmox backup will back up all the virtual disks assigned to a
VM. If we want to exclude certain virtual disks from the backup process, we
only need to add the backup=no option at the end of a virtual disk line item in
<vm_id>.conf, as follows:

virtio®: rbd-hdd-01:vm-101-diskl, size=80G

virtio®: rbd-hdd-01:vm-101-disk2, size=200G, backup=no
In the previous example, the virtual machine has two virtual disks. The disk1
is for the primary OS and diskz is for the secondary. By adding backup=no,
Proxmox will skip this disk during the backup process and only back up the
primary disk.

Issue — backup of virtual machines
stops prematurely with an operation
not permitted error

This error usually looks like this from syslog of the Proxmox node:

ERROR: job failed with err -1 - Operation not permitted

INFO: aborting backup job

INFO: stopping kvm after backup task

ERROR: Backup of VM 101 failed - job failed with err -1 - Operation not permitted
The primary cause of this issue is when the backup storage has less space than
the total storage required for an assigned backup task. Verify the total storage

space that is required for backing up the selected virtual machines.

Issue — a backup task takes a very
long time to complete, or it crashes
when multiple nodes are backing up
to the same backup storage

When multiple Proxmox nodes are backing up to the same backup storage
simultaneously, it tends to take a very long time or the backup crashes. This is
a common occurrence when backup traffic coexists with the main cluster
traffic on a gigabit network and the backup node only has one network
interface. By separating backups in multiple subnets over multiple network
interfaces, we can prevent this issue.

Issue — backup of virtual machines
aborts a backup task prematurely

During a VM backup, the following error message appears in the backup log
after it aborts a running backup task:

101: INFO: status: 1% (129309081/4294967296), sparse 0% (886784), duration 91,
33/33 MB/s
[...]
107: INFO: status: 80% (2706263244/4294967296), sparse 16% (698703462), duration
1950, 5/4 MB/s
107: ERROR: interrupted by signal
107: INFO: aborting backup job
This error usually occurs when there is a version mismatch for the pve-gemu-kvm
package in Proxmox. At the time of writing, the available pve-genu-kvm package
version is 2.9.0-4. Check for the version that is installed when you get this
error during a backup. If you’re using an older version, then upgrade to the

latest version using the following command to fix the issue.

Issue — backup storage has a lot of
.dat files and .tmp folders using the
storage space

Due to a backup crash or unfinished backups, there may be backup files
leftover in the backup storage, such as the .dat files and .tmp folders. These
files and folders can be easily deleted to reclaim storage space.

VNC/SPICE console issues

This section contains issues related to the VNC and SPICE consoles in
Proxmox.

Issue — the mouse pointer is not
shared with SPICE (virt-viewer) on
Windows 8 VM

In order to have a seamless mouse point between the VM and host machine,
SPICE guest tools must be installed inside the VM. The guest tools package
contains full driver support for Windows 7 and Windows 2008 R2. However,
the support for Windows 8 or 8.1 is close to nonexistent.

Issue — remote viewer is unable to
connect to a SPICE-enabled virtual
machine on the Windows OS

This issue is caused by a firewall that blocks the SPICE port, which prevents
SPICE-enabled virtual machines from being connected to SPICE. Open port
3128 from Windows firewall to allow remote viewer to connect to a SPICE
virtual machine.

Firewall issues

This section shows issues regarding the Proxmox firewall feature.

Issue — rules are created and a
firewall is enabled for vNIC, but
rules do not get applied

On rare occasions, due to changes in the network interface or other reasons,
the firewall service may get stuck. In such cases, we can restart the service
using the following command:

| # systemctl restart pve-firewall

If the previous command does not help, then check the syslog of the node to
look for a clue. If nothing helps, then a reboot will clear any firewall issues.
As of Proxmox VE 5.0, if a firewall becomes inactive, it does not fall back on
a predefined set of protection; a firewall simply becomes nonexistent.

Issue — a firewall is enabled for a
VM and the necessary rules are
created, but nothing is being filtered
for that VM

This issue may occur when the firewall is not enabled in the virtual network
interface of the VM. For each VM, a firewall needs to be enabled in two
different places. The first one is under the Firewall tab menu, as shown in the
following screenshot:

Server View Virtual Machine 100 (kvm-1') on node ‘pmx-01'

== Datacenter

S Edit
qu T & Summary i
101 (ubuntu-01) = >— Console Firewall Enabled
100 (kvm-1) 2 Hardware DHCP Disabled
i icontvad) & Options NDP Enabled
[T 102 (centos1) _)
=2 R : Router Advertisement Disabled
= local (pmx-01) = Task History
MAC filt Enabled
g local-lvm (pmx-01 @ Monitor ol i
g rbd-01 (pmx-01) IP filter Disabled
Backup]
EO pmx-02 log_level_in nolog
?@ pmx-03 3 Replication log_level out nolog
¥ Linux_VMs 9 Snapshots Input Policy DROP
Test-Pool1 .
» O vl Output Policy ACCEPT
% Options
& Alias

Another place where the firewall needs to be enabled is in the vNIC of the
VM, as shown in the following screenshot:

Edit: Network Device

[| Bridged mode Model: VirtlO (paravirtualized)
VLAN Tag: MAC address: CA-3561:2A:34:CD
Bridge: | vmbr0 Rate limit (MB/s):
Firewall: (4 Multiqueues:
[NAT mode Disconnect:

o v KE =R

Summary

We hope this troubleshooting chapter has provided you with some insight into
some of the common issues that are most likely to surface in a Proxmox
cluster. As mentioned earlier in this chapter, this is by no means a complete
list of all the possible issues. If at all possible, always hold off major Proxmox
upgrades for a production cluster. Give it some time to work out the bugs.
This way, your cluster will have very little chance of going down due to any
unforeseen bugs.

Purchasing a Proxmox subscription is the best way to ensure that there are
fewer bugs in the repositories, since Proxmox Enterprise repositories go
through an additional layer of scrutiny and testing. For information on
Proxmox SubSCl‘iptiOI‘lS, refer to hitps://www.proxmox.com/proxmox-ve/pricing.

The Proxmox forum is also a great place to ask for help or share issues with
the community. There are many forum users who are ready to provide their
expertise. Visit the forum at http://forum.proxmox.com.

https://www.proxmox.com/proxmox-ve/pricing
http://forum.proxmox.com

Rescuing Proxmox

Whether we want to accept it or not, a network environment is always at risk
of something going wrong. Even if we take out the hardware and software
from the equation, there is always the human factor. Sometimes all it takes is
a small mistake that can snowball very rapidly to something major. A well
thought out disaster plan can go a long way to combating a situation, or
sometimes on the ball quick thinking can save the day.

As we approach the end of the book, in this concluding chapter we are going
to see some situations where things went wrong and what do to do when the
same happens to you in the virtual environment you are part of. Like Chapter 15,
Proxmox Troubleshooting, these are not all-inclusive scenarios. You may, or
will, come across other situations that are not covered in this chapter. As a
good administrator, you can expand on this through your own documentation,
but we hope we were able to put together some critical situations that you
may face in your career and that the solutions provided here will prove
extremely valuable.

This chapter is divided into the following categories of scenario:

e Recovering from OS drive failure
Recovering from a quorum failure
Recovering from a node failure
Recovering from a network failure

[
[
[
e Recovering from Ceph failure

Recovering from OS drive failure

OS drive failure is one of the critical failures when a node becomes fully
inaccessible. Since Proxmox stores all cluster-related configuration files on
Proxmox Cluster file system (pmxcfs), no cluster data is lost even when the
OS drive fails completely. Refer to Chapter 3, Proxmox under the Hood, to
recap details on pmxcfs. There are mainly two types of OS drive failure:

e Physical drive failure
e OS data corruption

Physical drive failure

This failure occurs when the physical drive itself becomes completely
unusable or defective. In this scenario, the only option is to replace the
damaged drive with a new one and install clean Proxmox VE on it. One way
to prevent downtime due to physical drive failure is to use two physical drives
for the OS in mirror mode. During Proxmox installation, we can select the
Advanced option to create a ZFS mirror on two physical drives. This way
when one drive becomes physically damaged, it does not cause any downtime
since there is a second drive with all of the OS files. This same RAID-level
redundancy can be achieved using a RAID card and by creating Raid 1 on
two physical drives.

OS data corruption

This failure occurs when no physical damage has occurred but critical files of
the OS itself become corrupted, or some portion of the OS is accidentally
deleted. In some cases, this can also occur due to an incomplete upgrade or
due to the presence of bugs in the update or patch. File partition corruption
can also cause severe unrecoverable OS data corruption. In most cases when
there is a filesystem error or any data corruption, the OS boot process will
drop in the maintenance shell or we can manually enter into Proxmox rescue
mode by rebooting the node from Proxmox ISO CDROM and selecting
Rescue Boot, as shown in the following screenshot:

Proxmox WE 5.8 (huild c155hShc-1) - http://www. proxmox.cons

¢ PROXMO.

I Welcome to Proxmox Virtual Environment

Install Proxmox VE
Install Proxmox VE (Debug mode)
Rescue Boot

Test memory

Migrating VMs from a faulty node

Depending on the nature of the OS drive failure, the length of the downtime
will vary. If the fix takes more than a tolerable amount of downtime, then it
may be necessary to start the VMs previously served by the faulty node on
different nodes in the cluster. When the VM disk images are stored on a
shared storage node, then we can simply move the VM configuration file to a
different node and turn them on. The following commands will move KVM
and LXC VMs from one node to another within pmxcfs:

mv /etc/pve/nodes/<faulty_node>/1xc/<lxc_id>.conf
/etc/pve/nodes/<second_node>/1xc/<lxc_id>.conf
mv /etc/pve/nodes/<faulty node>/gemu-server/<kvm_id>.conf
/etc/pve/nodes/<second_node>/qemu-server/<kvm_id>.conf
If the VM disk images are stored locally on the same OS drive, the previous
method, however, will not work, because if the drive is physically damaged or
corrupted, so will the VM disk images be. In other cases, where the VM disk
images are stored locally on the same node but on different drives, the
previous method will also not work since the VM disk images will need to be

moved or the drives will need to be mounted on a different node first.

Reinstalling Proxmox

If the Proxmox OS was not mirrored or if the OS is beyond repair, it may be
necessary to reinstall Proxmox on a new or reformatted OS drive. If the node
was part of a cluster, then after the OS reinstall, simply re-add the node into
the cluster. If both IP address and hostname are the same as before, it may be
necessary to add the node forcefully with the -r option in the pvecm add
command. Reinstalling Proxmox and then re-adding to the cluster may be a
faster solution in most cases than trying to fix an OS-related issue, but each
use case will vary based on the environment and where disk images are
stored.

Recovering from a quorum failure

There are various reason why a Proxmox cluster can lose a quorum. For the
cluster to operate correctly, a quorum must exist within the nodes. A quorum
is established when the majority of the nodes are online. If 51% of the nodes
go offline for whatever reason, a quorum will be lost, resulting in a cluster
error. A Proxmox quorum relies on multicast. So if multicast gets disabled in
the switch, the cluster can also lose a quorum. A manual misconfiguration in
the cluster file can also cause loss of a quorum. When a quorum is lost, the
following error messages will appear in log files under /var/1og/corosync:

corosync[9999]: [QUORUM] Quorum provider: corosync_votequorum failed to
initialize.
corosync[9999]: [SERV] Service engine 'corosync_quorum' failed to load for
reason

'configuration error: nodelist or quorum.expected_votes must be configured!'

The previous error may be because the hostname of the node could not be
resolved. Adding all the nodes’ hostnames and IP addresses to /etc/hosts may
help establish a quorum. The following is the host’s file content of our
example node:

GNU nano 2.7.4 File: setc/hosts

127.0.0.1 localhost.localdomain localhost
2.3 pmx—03.domain.com pmx—03 puelocalhost

it The following lines are desirable for IPub capable hosts

1 ipb-localhost ip6-loopback

fe00::0 ipb-localnet
(0 ipb-mcastprefix

ipb-allnodes
ipb-allrouters

ipb-allhosts

If the quorum is lost due to manual editing of the cluster configuration file,
then we need to reverse the change by re-editing the /etc/pve/corosync.conf file
or restoring it from a recent backup. Note that after a quorum is lost, the
pmxcfs will become read-only and so will all the files in it, including
corosync.conf. TO be able to edit the file, we can run the following command to
temporarily establish a quorum:

| # pvecm expected 1

The previous command sets the total vote count to 1 and lets the cluster

establish a quorum. Always make sure you edit the local copy of the cluster
file and that the content of this configuration is the same on all nodes. Only
then can a quorum be established. Any misconfiguration will cause split-
brain, causing the full loss of a quorum.

It is of utmost importance to avoid any manual configuration of
the corosync.cont file. If manual editing becomes necessary, then
8 only commit changes when fully capable of doing so. If unsure
of how the corosync.cont file works, it is best to avoid doing it
yourself and seek help from the Proxmox forum or paid support.

After restoring the content of corosync.conf with a working configuration,
restart the cluster using the following commands:

systemctl restart pve-cluster

systemctl restart corosync
If the quorum is lost or unable to be established due to a multicast error, then
the first step is to check if the multicast is properly configured or exists on the
network. We can use the following command format to check multicast
between nodes:

|# omping -c 10000 -i 0.001 -F -q <nodel_ip> <node2_ip>

If the previous test fails, that means multicast does not exist and the quorum is
failing.

Recovering from a node failure

A Proxmox node can physically fail due to hardware component failure such
as the motherboard, CPU, memory, power supply and so on, while the OS
drive remains intact. In such a scenario, we can simply move the OS drive to
a different node and power up. The new node does not need to be identical to
the faulty one at all. Since the network interface may be different, we only
will need to ensure the network configuration is set for the proper interface.
Also, if the Proxmox OS has a paid subscription, the key will need to be
reissued. Contact the seller where the subscription was purchased from or
Proxmox directly to get the subscription key reissued.

The subscription key is bound to the hardware component, so the reissue of
the key is required to bind the subscription key to the new hardware
component. It is important to note that the CPU count will matter when
moving the OS drive from one to another with a paid subscription. A
Proxmox subscription key purchased for one CPU count will not work for
multiple CPU nodes.

If the failed node had locally stored VM disk images on the same OS drive,
the VM will just power up when the new node comes online with the moved
OS drive from the failed node. If the disk images were stored locally on
separate drives, then those drives will also need to be moved to a new node,
and mount points must be reconfigured before the VM can be powered up.

Recovering from a network failure

The extent of network failure can span over multiple layers, causing
interruption between the Proxmox node and the user, or between the storage
node and Proxmox nodes. The failure can occur due to physical network
interface failure or an accidental network cable pull from nodes. The network
failure can also occur due to heavy network traffic, which may be caused by
but not limited to running a backup task on the same network path. In most
production environments, server nodes usually contain more than one
network interface for redundancy to reduce the loss of network connectivity
to a minimum. The three most common scenarios for network connectivity
interruptions are explained in the following sections.

Loss of connectivity between
Proxmox nodes

In this scenario, network connectivity is only interrupted between Proxmox
nodes in a cluster. When over half of the Proxmox nodes in a cluster cannot
communicate with each other, a quorum cannot be established. If multiple
nodes lose network connectivity simultaneously, this usually indicates a
network switch failure. This is a common scenario when a Proxmox cluster is
on a dedicated management interface. So a loss of this connectivity only
interrupts the quorum but not the VMs running on the nodes and users
accessing it. When a quorum is lost, VMs in respective nodes function
properly but from the GUI they may appear offline, including the nodes
themselves, as shown in the following screenshot:

Server View

Mode "pmx-03'
= Datacenter
b poc01 Q. Search
© pmx-02 & Summary Type Description
% E:ij?!hh > Shell = storage local (pmx-03)
® Test—];DUH o System = storage local-lvm (pmx-03)
= Network = storage rbd-01 (pmx-03)
@ DNS
@ Time

In the previous screenshot, the cluster lost a quorum so while accessing the

GUI from node pnx-o3, all other nodes appear offline even though they are
running.

Loss of connectivity between
Proxmox nodes and users

In this scenario, when the connection between the user and Proxmox node is
lost but the connection between Proxmox nodes and storage is unaffected,
then the VM continues to run fine, except users cannot access the VMs. If a
single interface is used for the Proxmox management and Proxmox public-
side traffic, then a loss of connectivity on this interface will interrupt cluster
communication and users will not be able to access their VMs running on this
node. This will also prevent any console access through SSH. If another
interface is used for shared storage and that interface did not lose
connectivity, then the VM itself will keep running without interruption.
Restoring connectivity will resume all usual operation of the node within
moments.

Another scenario when a node itself can lose network connectivity is the use
of Open vSwitch. In Proxmox 4.4, there was a situation when the node was
updated and rebooted, but the node could not start the network interface due
to an updated Open vSwitch package. The network service needed to be
manually restarted. If the node is in a remote location without immediate
access, and if there were other network interfaces in the node configured, that
were not Open vSwitch-dependent, such as InfiniBand or standard Linux
bridging on a different subnet, then we could still access the node from
another node through a different network interface.

Loss of connectivity between
Proxmox and storage nodes

If the network connectivity between Proxmox nodes and storage nodes is lost,
users will experience a frozen state in their VMs. If the connection is stored
within a reasonable amount of time, the VM will resume operation. If the
connection is not restored after an extended amount of time, the VM will need
to be restarted after the connection is restored. The reason VMs can continue
operating after the connection is restored is that VM data remains in the
memory, which is not directly affected by the storage node.

Usually, network connectivity affecting multiple nodes can be traced down to
a physical network switch, while a single node network connectivity loss is
due to the node itself or a single network cable.

Recovering from Ceph failure

Ceph is a very resilient, highly available storage system. Once a Ceph cluster
is configured, for the most part, it can run maintenance free. In most cases,
lack of knowledge on how Ceph works leads to major issues, causing cluster-
side interference. In this section, we will highlight some of the most common
issues and how to combat them in a Ceph cluster.

Best practices for a healthy Ceph
cluster

The following are a few best practices to keep a Ceph cluster running healthy:

If possible, keep all settings to default for a healthy cluster.

Use Ceph pool only to implement a different OSD type policy and not
for multitenancy, such as one pool for SSDs and another for HDDs.

Do not make frequent Ceph configuration changes. It adds extra
workload on the cluster OSDs, reducing the life of HDDs. After each
change, let the cluster rebalance data before making new changes.
Always keep in mind the core count of Ceph nodes when adjusting Ceph
threads. Do not let the number of threads become more than the core
count.

In a small Ceph cluster, SSDs will increase write performance. In a large
cluster, a higher OSD count will increase performance.

Do not use desktop class hard drives as OSDs in a small cluster.

Reduce backfill and recovery threads to a minimum to continue recovery
without hurting client request performance.

Stuck inconsistent PGs in Ceph

Over time, Ceph PGs may become inconsistent. The following steps will help
us to find the inconsistent PG and repair it:

1. Get PG name:

| # ceph health detail

2. Run this command to repair the PG:

| # ceph pg repair

Stuck inactive incomplete PGs in
Ceph

If any PG is stuck due to OSD or node failure and becomes unhealthy,
resulting in the cluster becoming inaccessible due to a blocked request for
greater than 32 secs, try the following:

1.

2.

Set noout to prevent data rebalancing;:

#ceph osd set noout

Query the PG to see which are the probing OSDs:

ceph pg xx.x query

Go to each probing OSD and delete the header folder here:

var/lib/ceph/osd/ceph-X/current/xx.x_head/
Restart all OSDs.

Run a PG query to see the PG does not exist. It should show something
like a noent message.

Force create a PG:

ceph pg force_pg _create x.xx

Restart PG OSDs.

Warning !!
0 Follow this only if all attempts to restore the placement group or

PG have failed. This will cause data loss.

Error while moving a Ceph journal
to another drive

When a Ceph journal is on SSD, it provides the fastest performance in a small
Ceph cluster with less than 50 OSDs. If a cluster was created initially with
OSDs co-located on the same spinner HDD, then it needs to be moved to SSD
for journaling. There are a few steps that must be followed to ensure a Ceph
journal can be written onto a new drive. When using SSD as a journaling
drive, always ensure not to overload it with too much journals for multiple
OSDs. As a rule of thumb, one SSD should be used for every five OSDs. We
can allocate multiple partitions on an SSD to store journals for multiple
OSDs. If proper steps are not followed to create a journaling drive, the
respective OSDs will not be able to start. The following steps will move an
OSD journal to another drive:

1. Format the SSD and create a number of partitions based on the number
of OSD journals needing to be stored.
2. Stop the OSD using this command:

| # service ceph stop osd.<id>

3. Flush the journal for the OSD:

| # ceph-osd -i <id> --flush-journal

4. Create Symlink:

rm /var/lib/ceph/osd/osd.<id>/journal
1n -s /dev/sdX /var/lib/ceph/osd/osd.<id>/journal

5. Create a new journal:

| # ceph-osd -i <id> --mkjournal

6. Start the OSD:

| # service ceph stop osd.<id>

As of Proxmox 5.5, we can start/stop OSDs from the GUI, but we cannot
move the journal drive. However, when creating new OSDs through the GUI,
we can manually select which drive we want to use as the journaling drive, as

shown in the following screenshot:

Create: Ceph OSD

Disk: Mo Disks unused

Journal Disk: Idevivda

Ceph node running out of resources
during recovery

On day-to-day operations, a Ceph node uses very little resources such as CPU
and memory. But during a cluster recovery, Ceph redistributes a large amount
of data between OSDs, which uses up a large portion of the node resources. If
a node is constantly running out of resources during recovery, check whether
there are any VMs running on that node. Those VMs will need to be powered
off or migrated to another node until the rebalancing finishes. If this is not the
case, then check the available resources of the node. It may be that the node
simply does not have enough resources to keep up with the Ceph recovery.
Another common reason for running out of resources is that Ceph may be
configured with higher performance values, such as a number of threads
allocated for recovery or maximum backfills allowed. A great feature of Ceph
is lots of the configuration can be applied during runtime, which gets applied
immediately. The following are some of the configuration options that need to
be checked if nodes are running out of resources during recovery:

To check the recovery values of an OSD, run this command format:

|# ceph daemon osd.0@ config show | grep recovery

This command will show all the OSD recovery-related options currently set
for OSDs, as shown in the following screenshot:

root@pmx—01:"# ceph daemon osd.0 config show | grep recovery
Yosd_min_recovery_priority": 0",
Yosd_recovery_retry_interval™: 30",
Yosd_allow_recovery_below_min_size": "true",
Yosd_recovery_thread_timeout": 30",
"osd_recovery_thread_suicide_timeout": 308",
“osd_recovery_sleep”: "0.01"
“osd_recovery_delay_start'
“osd_recovery_max_active" :
Yosd_recovery_max_single_start": 1%,
“osd_recovery_max_chunk": "8388608",
“osd_recovery_nax_omap_entries_per_chunk": "64000",
“osd_recovery_forget_lost_objects": “false",
Yosd_scrub_during_recovery": “false",
Yosd_force_recovery_pg_log_entries_factor": "1.3",
Yosd_debug_skip_full_check_in_recovery": "false",
Yosd_recovery_op_priority": "3,
"osd_recovery_priority”: "5",
“osd_recovery_cost": "20971520",
Yosd_recovery_op_warn_multiple”: 16",

From the previous screenshot, we can see that currently the value for
osd_recovery_max_active iS set to 3. This means the OSD recovery will use three

threads during recovery. If the Ceph node is struggling, we need to drop the
value to one thread using the following command:

| # ceph tell osd.* injectargs '--osd-recovery-max-active 1'

The previous command will change the recovery thread to 1 for all OSDs
because we have added a wildcard as the OSD ID instead of specifying one
particular OSD. The injectargs syntax changes values in real time without
needing to restart any OSD or node.

If we want to check the value currently set for max backfills, we can enter a
similar command as follows:
| # ceph daemon osd.® config show | grep backfills

For our example cluster, the command shows the backfills set to s, as shown
in the following screenshot:

root@pmx—01:"# ceph daemon osd.0 config show | grep backfills

"osd_max_backfills": 6",

As we can see from the previous screenshot, the backfills are set to a value of
6. This may be too high for a smaller node. This value should be set to 1 if the
node is running out of resources during recovery. We are going to change the
value using the following command we already have seen for the recovery
thread:

|# ceph tell osd.* injectargs '--osd-max-backfills 1'

It is important to note here that besides a node running out of resources, there
can also be a network bottleneck due to higher recovery values, such as an
extreme slowdown in network connectivity to the point where users will not
be able to access their VMs. In such a scenario, these recovery values will
also prove very helpful. Lower recovery values ensure that user requests do
not get interrupted, yet recovery takes place at a slower pace. If user
connectivity is not a priority, for example overnight, we can inject new higher
values to speed up recovery, then change them to a lower value before the
working day starts.

Summary

In this chapter, we got to see some of the most common scenarios when
things can go wrong and some steps to recover from them. By no means

are these the only issues that can bring a cluster down. This list should be
expanded through proper documentation as new issues surface and solutions
are found.

No amount of reading or study can equal hands-on experience with Proxmox.
You may already be a professional in the virtualization field, or you may be
just starting out on a networking career and looking for a way to stand out
from the crowd, but hopefully, this book will push you in the right direction.
Besides the official site and forum, you can also reach out to the author
directly to ask questions or to have a discussion, through the author
maintained forum at http://www.masteringproxmox.com/.

http://www.masteringproxmox.com/

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Understanding Proxmox VE and Advanced Installation
	Understanding Proxmox features
	It is free!
	Built-in firewall
	Open vSwitch
	The graphical user interface
	KVM virtual machines
	Linux containers, or LXC
	Storage plugins
	Vibrant culture

	The basic installation of Proxmox
	The advanced installation option
	Debugging the Proxmox installation
	Proxmox subscription and repositories
	Proxmox VE Enterprise repository
	Type
	Subscription key
	Status
	Server ID
	Sockets
	Last checked
	Next due date

	Proxmox VE No-Subscription repository
	Proxmox VE Test repository

	Summary

	Creating a Cluster and Exploring the Proxmox GUI
	Creating a Proxmox cluster
	Exploring the Proxmox GUI
	The GUI menu system
	Cluster tree view
	Server View
	Folder View
	Storage View
	Pool View
	The Datacenter menu
	Datacenter | Search
	Datacenter | Summary
	Datacenter | Options
	Datacenter | Storage
	Datacenter | Backup
	Datacenter | Permissions
	Datacenter | Permissions | Users
	Datacenter | Permissions | Groups
	Datacenter | Permissions | Pools
	Datacenter | Permissions | Roles
	Datacenter | Permissions | Authentication

	Datacenter | HA
	Datacenter | Firewall
	Datacenter | Support

	Node-specific menus
	Node | Search
	Node | Summary
	Node | Shell
	Node | System
	Node | Network
	Node | DNS
	Node | Time
	Node | Syslog

	Node | Updates
	Node | Firewall
	Node | Disks
	Node | Ceph
	Node | Task History
	Node | Subscription

	KVM menu
	KVM VM | Summary
	KVM | Console
	KVM | Hardware
	KVM | Options
	KVM VM | Task History
	KVM | Monitor
	KVM | Backup
	KVM VM | Snapshot
	KVM | Firewall
	KVM | Permissions

	LXC container menu
	LXC container | Summary
	LXC container | Resources
	LXC container | Network
	LXC container | DNS
	LXC container | Options
	LXC container | Task History
	LXC container | Backup
	LXC container | Snapshots
	LXC container | Firewall
	LXC container | Permissions

	Pool menu
	Pool | Summary
	Pool | Members
	Pool | Permissions

	Summary

	Proxmox under the Hood
	The Proxmox cluster file system
	Proxmox directory structure
	Dissecting the configuration files
	The cluster configuration file
	logging { }
	nodelist { }
	quorum { }
	totem { }
	interface { }

	Storage configuration file
	User configuration files
	The password configuration file
	KVM virtual machine configuration file
	Arguments in the KVM configuration file
	LXC container configuration file
	Version configuration file
	Member nodes
	Virtual machine list file
	The cluster log file
	Ceph configuration files
	Firewall configuration file

	Summary

	Storage Systems
	Local storage versus shared storage
	Live migration of a virtual machine
	Seamless expansion of multinode storage space
	Centralized backup
	Multilevel data tiering
	Central storage management

	Local and shared storage comparison
	A virtual disk image
	Supported image formats
	The .qcow2 images
	The .raw image type
	The .vmdk image type

	Virtual device types
	Managing disk images
	Resizing a virtual disk image
	Moving a virtual disk image
	Throttling a virtual disk image
	Caching a virtual disk image

	VirtIO bus type for Windows VMs
	Installing VirtIO drivers during Windows installation
	Installing VirtIO drivers after Windows installation

	Storage types in Proxmox
	Directory
	iSCSI
	Logical Volume Management
	NFS
	ZFS
	Ceph RBD
	GlusterFS

	Noncommercial/commercial storage options
	Summary

	Installing and Configuring Ceph
	Ceph components
	A physical node as cluster member
	Maps
	A cluster map
	A CRUSH map

	Monitor
	OSD
	OSD journal

	Metadata server
	PG
	Pools
	Ceph components summary

	Virtual Ceph for training
	Installing a Ceph cluster
	Installing Ceph on Proxmox
	Preparing a Proxmox node for Ceph
	Installing Ceph
	Creating mons from the Proxmox GUI
	Creating OSDs from Proxmox GUI
	Managing a Ceph pool using Proxmox GUI
	Creating a Ceph pool using Proxmox GUI
	Connecting Ceph to Proxmox
	Ceph command list

	Summary

	KVM Virtual Machines
	Exploring KVM
	Creating a KVM
	Creating a KVM using an ISO image
	General tab
	Node
	VM ID
	Name
	Resource Pool
	Help

	The OS tab
	The CD/DVD tab
	The Hard Disk tab
	Bus/Device
	Storage
	Disk size (GB)
	Format
	Cache
	No backup
	Discard
	IO thread

	The CPU tab
	Sockets
	Cores
	Enabling NUMA
	Type

	The Memory tab
	The Network tab
	Bridged mode
	Firewall
	NAT mode
	No network device
	Model
	MAC address
	Rate limit (MB/s)
	Multiqueues
	Disconnect

	Creating VM by cloning
	Creating VMs from a template
	Target node
	Mode

	Advanced configuration options for VMs
	Configuring a sound device
	Configuring PCI passthrough
	Configuring GPU passthrough
	Preparing for hotplug
	Configuring VMs with hotplug
	Hotplugging vCPUs
	Hotplugging memory
	Hotplugging disks/vNICs

	Migrating KVM virtual machines
	Summary

	LXC Virtual Machines
	Exploring LXC virtual machines
	Understanding container templates
	Creating an LXC container
	General tab
	Node
	CT ID
	Hostname
	Unprivileged container
	Resource Pool

	The Template tab
	The Root Disk tab
	Storage
	ACLs
	Enable quota

	The CPU tab
	Cores

	The Memory tab
	The Network tab
	Name
	MAC address
	Bridge
	The VLAN Tag
	Rate limit
	Firewall
	IPv4/IPv6

	The DNS tab
	The Confirm tab

	Managing an LXC container
	Adjusting resources using the GUI
	Adjusting resources using the CLI
	Adjusting resources using direct modification

	Migrating an LXC container
	Accessing an LXC container
	The noVNC console
	Direct shell through the CLI

	Converting OpenVZ to LXC
	Summary

	Network of Virtual Networks
	Exploring virtual networks
	Physical networks versus virtual networks
	A physical network
	A virtual network

	Networking components in Proxmox
	Virtual Network Interface Cards
	Adding/removing vNIC

	A virtual bridge
	Adding a virtual bridge through the GUI
	Name
	IP information
	Bridge ports
	VLAN-aware

	Adding a virtual bridge through CLI

	Extra bridge options
	bridge_stp
	bridge_fd

	Virtual LAN
	Adding a VLAN

	Network Address Translation/Translator
	Adding NAT/masquerading

	Network bonding
	Adding a bonding interface
	The layer 2 hash policy
	The layer 2+3 hash policy
	The layer 3+4 hash policy

	Multicast
	Configuring multicast on Netgear

	Open vSwitch
	Features of Open vSwitch
	Adding an Open vSwitch bridge
	Adding the Open vSwitch bond
	Adding Open vSwitch IntPort
	CLI for Open vSwitch
	Practicing Open vSwitch
	Configuration requirements
	Solutions

	Sample virtual networks
	Network #1 – Proxmox in its simplest form
	Network #2 – the multi-tenant environment
	Network #3 – academic institution

	A multi-tenant virtual environment
	A multi-tenant network diagram

	Summary

	The Proxmox VE Firewall
	Exploring the Proxmox VE firewall
	Components of the Proxmox firewall
	Zones
	Security groups
	IPSet
	Rules
	Protocols
	Macros
	The pve-firewall and pvefw-logger services

	Configuration files of a firewall

	Configuring the data center-specific firewall
	Configuring the Datacenter firewall through the GUI
	Creating the Datacenter firewall rules
	Creating the Datacenter IPSet
	Creating aliases

	Configuring the Datacenter firewall through the CLI
	[OPTIONS]
	[ALIASES]
	[IPSET <name>]
	[RULES]
	[group <name>]

	Configuring a host-specific firewall
	Creating host firewall rules
	Options for the host zone firewall
	Enable a firewall
	The SMURFS filter
	The TCP flags filter
	NDP
	nf_conntrack_max
	nf_conntrack_tcp_timeout_established
	log_level_in/out
	tcp_flags_log_level
	smurf_log_level

	Configuring the host firewall through the CLI

	Configuring a VM-specific firewall
	Creating VM firewall rules
	Creating aliases
	Creating IPSets
	Options for a VM zone firewall
	Enable DHCP
	The MAC filter
	Input/output policy

	Configuring a VM-specific firewall through the CLI

	Integrating a Suricata IDS/IPS
	Installing/configuring Suricata
	Limitations of Suricata in Proxmox

	Summary

	Proxmox High Availability
	Understanding HA
	HA in Proxmox
	How Proxmox HA works

	Requirements for HA setup
	At least three nodes
	Shared storage
	Fencing
	BIOS power-on feature

	Configuring Proxmox HA
	The HA menu
	Status
	The Resources menu

	The Groups menu
	ID
	Node
	The restricted checkbox
	The nofailback checkbox

	The Fencing menu

	Testing Proxmox HA configuration
	The Proxmox HA simulator
	Configuring the Proxmox HA simulator

	Summary

	Monitoring the Proxmox Cluster
	An introduction to monitoring
	Proxmox built-in monitoring
	Datacenter Status
	Node Status

	Zabbix as a monitoring solution
	Installing Zabbix
	Configuring Zabbix
	Configuring a host to monitor
	Displaying data using a graph
	Configuring the disk health notification
	Installing smart monitor tools
	Configuring the Zabbix agent
	Creating a Zabbix item in the GUI
	Creating a trigger in the GUI
	Creating graphs in the GUI

	Configuring SNMP in Proxmox
	Object Identifiers
	Management Information Base

	Adding an SNMP device in Zabbix
	Monitoring the Ceph cluster with the Proxmox GUI
	Monitoring a Ceph cluster with third-party options
	Summary

	Proxmox Production-Level Setup
	Defining the production level
	Key components
	Stable and scalable hardware
	Redundancy
	Node level
	Utility level
	Network level
	HVAC level
	Storage level

	Current load versus future growth
	Budget
	Simplicity
	Tracking hardware inventory
	Hardware selection

	Sizing CPU and memory
	Single socket versus multi-socket
	Hyper-threading – enable versus disable
	Start small with VM resources
	Balancing node resources

	Ceph cluster production
	Forget about hardware RAID
	Solid State Drive for Ceph Journal
	Network bandwidth

	Liquid cooling
	Total immersion in oil
	Total immersion in 3M Novec
	Direct contact liquid cooling

	Real-world Proxmox scenarios
	Scenario 1 – an academic institution
	Scenario 2 – multi-tier storage cluster with a Proxmox cluster
	Scenario 3 - Virtual infrastructure for a multi-tenant cloud service provider
	Scenario 4 – nested virtual environment for a software development company
	Scenario 5 – virtual infrastructure for a public library
	Scenario 6 – multi-floor office virtual infrastructure with virtual desktops
	Scenario 7 – virtual infrastructure for the hotel industry
	Scenario 8 – virtual infrastructure for geological survey organization

	Summary

	Back Up and Restore Virtual Machines
	Proxmox backup options
	A full backup
	Full backup modes
	Snapshot
	Suspend
	Stop

	Backup compression
	None
	LZO
	GZIP

	Snapshots

	Configuring backup storage
	Show VM configuration from backup

	Configuring full backup
	Creating a schedule for backup
	Node
	Storage
	Day of week
	Start Time
	Selection mode
	Send email to
	Email notification
	Compression
	Mode
	Enable

	Creating a manual backup

	Creating snapshots
	Restoring a virtual machine
	Backup/restore through the CLI
	Backup using the CLI
	Restore using the CLI
	Unlocking a VM after a backup error

	Virtual machine replication
	Creating a replication task through the GUI
	Target
	Schedule
	Rate limit (MB/s)
	Enabled

	Creating a replication task through the CLI
	Replication process

	Backup configuration file
	The bwlimit option
	The lockwait option
	The stopwait option
	The stdexcludes option
	The mailto option
	The script option
	The exclude-path option
	The pigz option

	Summary

	Updating/Upgrading Proxmox
	Introducing Proxmox updates
	Updating Proxmox through the GUI
	Updating Proxmox through the CLI
	Difference between upgrade and dist-upgrade

	Recovering from the grub2 update issue
	Updating after a subscription change
	Rebooting dilemma after Proxmox updates
	Applying update without reboot

	Summary

	Proxmox Troubleshooting
	Proxmox node issues
	Issue – fresh Proxmox install stuck with /dev to be a fully populated error during node reboot
	Issue – rejoining a node to a Proxmox node with the same old IP address
	Issue – Proxmox installation completed but grub is in an endless loop after reboot
	Issue – LSI MegaRAID 9240-8i/9240-4i causes an error during booting of the Proxmox node
	Downloading and updating the LSI driver
	Updating the Supermicro BIOS

	Issue – the Upgrade button is disabled on the Proxmox GUI, which prevents the node upgrade
	Issue – Proxmox cannot start due to the getpwnam error
	Issue – cannot log in to the GUI as root after reinstalling Proxmox on the same node

	The main cluster issues
	Issue – Proxmox virtual machines are running, but the Proxmox GUI shows that everything is offline
	Issue – kernel panic when disconnecting USB devices, such as a keyboard, mouse, or UPS
	Issue – virtual machines on Proxmox will not shut down if shutdown is initiated from the Proxmox GUI
	Issue – kernel panic with HP NC360T (Intel 82571EB chipset) only in Proxmox VE 3.2
	Issue – the Proxmox cluster is out of quorum and cluster filesystem is in read-only mode
	Issue – VM will not respond to shutdown or restart
	Issue – Proxmox GUI not responding after Firefox update
	Issue – the Proxmox GUI is not showing RRD graphs

	Storage issues
	Issue – deleting a damaged LVM from Proxmox with the error read failed from 0 to 4096
	Issue – Proxmox cannot mount NFS share due to the timing out error
	Issue – how to delete leftover NFS shares in Proxmox or what to do when the NFS stale file handle error occurs?
	Issue – Proxmox issues --mode session exit code 21 errors while trying to access the iSCSI target
	Issue – cannot read an iSCSI target even after it has been deleted from Proxmox storage
	Issue – a Ceph node is removed from the Proxmox cluster, but OSDs still show up in PVE
	Issue – the no such block device error during creation of an OSD through the Proxmox GUI
	Issue – the fstrim command does not trim unused blocks for the Ceph storage
	Issue – the RBD couldn't connect to cluster (500) error when connecting Ceph with Proxmox
	Issue – changing the storage type from IDE to VirtIO after the VM has been set up and the OS has been installed
	Issue – the pveceph configuration not initialized (500) error when you click on the Ceph tab in the Proxmox GUI
	Issue – the CephFS storage disappears after a Proxmox node reboots
	Issue – VM cloning does not parse in the Ceph storage
	Issue – VM disk images stored on ZFS is extremely slow

	Network connectivity issues
	Issue – no connectivity on Realtek RTL8111/8411 rev. 06 network interfaces
	Issue – network performance is slower with the E1000 virtual network interfaces
	Issue – patch port for Open vSwitch in Proxmox not working
	Issue – trying to add a node to a newly created Proxmox cluster when nodes do not form quorum
	Issue – implemented IPv6 but firewall rules do not get applied

	KVM virtual machine issues
	Issue – Windows 7/XP machine converted to Proxmox KVM hangs during boot
	Issue – Windows 7 VM does not reboot, instead it shuts down, requiring a manual boot from Proxmox
	Issue – the qemu-img command does not convert the .vmdk image files created with the .ova template in Proxmox VE 5.0
	Issue – online migration of a virtual machine fails with a failed to sync data error
	Issue – no audio in Windows KVM
	Issue – the VirtIO virtual disk is not available during the Windows Server installation

	LXC container issues
	Issue – a Proxmox node hangs when trying to stop or restart an LXC container
	Issue – the noVNC console only shows a cursor for LXC containers

	Backup/restore issues
	Issue – a Proxmox VM is locked after backup crashes unexpectedly
	Issue – how can Proxmox back up only the primary OS virtual disk instead of all the virtual disks for a VM?
	Issue – backup of virtual machines stops prematurely with an operation not permitted error
	Issue – a backup task takes a very long time to complete, or it crashes when multiple nodes are backing up to the same backup storage
	Issue – backup of virtual machines aborts a backup task prematurely
	Issue – backup storage has a lot of .dat files and .tmp folders using the storage space

	VNC/SPICE console issues
	Issue – the mouse pointer is not shared with SPICE (virt-viewer) on Windows 8 VM
	Issue – remote viewer is unable to connect to a SPICE-enabled virtual machine on the Windows OS

	Firewall issues
	Issue – rules are created and a firewall is enabled for vNIC, but rules do not get applied
	Issue – a firewall is enabled for a VM and the necessary rules are created, but nothing is being filtered for that VM

	Summary

	Rescuing Proxmox
	Recovering from OS drive failure
	Physical drive failure
	OS data corruption
	Migrating VMs from a faulty node
	Reinstalling Proxmox

	Recovering from a quorum failure
	Recovering from a node failure
	Recovering from a network failure
	Loss of connectivity between Proxmox nodes
	Loss of connectivity between Proxmox nodes and users
	Loss of connectivity between Proxmox and storage nodes

	Recovering from Ceph failure
	Best practices for a healthy Ceph cluster
	Stuck inconsistent PGs in Ceph
	Stuck inactive incomplete PGs in Ceph
	Error while moving a Ceph journal to another drive
	Ceph node running out of resources during recovery

	Summary

