
Modern
PyQt

Create GUI Applications for Project
Management, Computer Vision,
and Data Analysis
—
Joshua Willman

Modern PyQt
Create GUI Applications for Project

Management, Computer Vision,
and Data Analysis

Joshua Willman

Modern PyQt

ISBN-13 (pbk): 978-1-4842-6602-1			 ISBN-13 (electronic): 978-1-4842-6603-8
https://doi.org/10.1007/978-1-4842-6603-8

Copyright © 2021 by Joshua Willman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Rita Fernando
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484266021. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Joshua Willman
Hampton, VA, USA

https://doi.org/10.1007/978-1-4842-6603-8

To those who make me laugh

Valorie, Jason, Jazzmin, Teesha, Evelyn, Kalani

v

Table of Contents

Chapter 1: ��Overview of PyQt5�� 1

What Is PyQt?��� 2

Installing PyQt5�� 3

Project 1.1: Pomodoro Timer�� 4

Pomodoro Timer Solution��� 6

Explanation��� 17

Project 1.2: User Manager Application��� 31

User Manager Application Solution�� 32

Explanation��� 37

Summary��� 42

Chapter 2: ��Creating GUIs for Project Management�� 43

The Basics of Drag and Drop��� 44

Drag and Drop with PyQt�� 45

The QDrag and QMimeData Classes��� 47

Example 2.1: Drag and Drop Data from Other Sources�� 48

Explanation��� 52

Example 2.2: Drag and Drop Widgets��� 54

Explanation��� 58

Project 2.1: Project Management GUI�� 59

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

vi

Project Management GUI Solution��� 60

Explanation��� 67

Summary��� 72

Chapter 3: ��Data Visualization and Analysis��� 73

Steps for Data Analysis�� 74

The PyQtChart Module��� 76

Overview of Chart Types��� 76

Installing PyQtChart�� 78

Example 3.1: Creating a Simple Chart��� 78

Quick Glance at the Dataset��� 79

Explanation��� 83

Project 3.1: Data Visualization GUI��� 86

Quick Glance at the Dataset��� 86

Data Visualization GUI Solution�� 88

Explanation��� 96

Example 3.2: Combining Different Chart Types�� 101

A Brief Introduction to Linear Regression��� 102

Installing NumPy�� 104

Explanation��� 108

Project 3.2: Visualizing Data with Matplotlib�� 111

Introduction to Matplotlib��� 112

Quick Glance at the Dataset��� 113

Visualizing Data with Matplotlib Solution��� 113

Explanation��� 117

Summary��� 122

Chapter 4: ��Database Handling in PyQt��� 125

Using SQL with PyQt�� 126

Example 4.1: Creating the Database�� 128

Brief Introduction to SQL Commands��� 129

Explanation��� 136

Table of Contents

vii

Example 4.2: Displaying Data with QTableView��� 139

Explanation��� 143

Project 4.1: SQL Manager GUI�� 145

SQL Manager GUI Solution��� 145

Part 1: The Login Script�� 146

Part 2: The SQL Manager Script�� 153

Summary��� 162

Chapter 5: ��GUIs for Computer Vision��� 163

What Is Computer Vision?�� 166

Brief Overview of Digital Images�� 166

An Introduction to OpenCV��� 168

Installing OpenCV��� 168

Example 5.1: Display Images from OpenCV in PyQt��� 170

Explanation��� 174

Project 5.1: Image Processing GUI��� 178

Image Processing GUI Solution�� 179

Explanation��� 186

Example 5.2: Display Videos from OpenCV in PyQt�� 190

Explanation��� 197

Project 5.2: Human Detection and Tracking GUI��� 200

Human Detection and Tracking GUI Solution�� 201

Explanation��� 206

Summary��� 208

Chapter 6: ��Visualizing 3D Data�� 209

The PyQtDataVisualization Module�� 210

Installing PyQtDataVisualization��� 210

Example 6.1: Creating a 3D Bar Graph��� 210

Quick Glance at the Dataset��� 211

Explanation��� 215

Table of Contents

viii

Project 6.1: 3D Data Visualization GUI�� 218

Quick Glance at the Dataset��� 219

3�D Data Visualization GUI Solution��� 220

Explanation��� 231

Summary��� 239

Chapter 7: ��Introduction to Networking with PyQt��� 241

What Is Networking?�� 242

PyQt Networking Classes��� 242

Example 7.1: Requesting HTML from a Web Page��� 243

Installing Beautiful Soup�� 244

Installing PyQtWebEngine��� 244

Explanation��� 248

Project 7.1: Email Sender GUI�� 249

What Is the Simple Mail Transfer Protocol (SMTP)?��� 250

Setting Up Your Gmail Security Settings��� 250

Email Sender GUI Solution��� 251

Explanation��� 256

Summary��� 259

Chapter 8: ��Creating a Chatbot��� 261

What Is a Chatbot?��� 262

Brief Introduction to Natural Language Processing (NLP)�� 263

The ChatterBot Library��� 264

Installing ChatterBot��� 264

Creating a Simple ChatterBot��� 265

Project 8.1: Chatbot GUI��� 266

Chatbot GUI Solution�� 267

Explanation��� 276

Summary��� 282

Table of Contents

ix

Chapter 9: ��Deploying PyQt Applications�� 283

Project 9.1: Audio Recorder GUI��� 284

Audio Recorder GUI Solution�� 285

Explanation��� 290

Sharing Your PyQt Applications�� 299

Creating an Executable with PyInstaller��� 299

What’s Next?�� 304

Summary��� 305

�Index�� 307

Table of Contents

xi

About the Author

Joshua Willman began using Python in 2015 when he

needed to build neural networks using machine learning

libraries for image classification. While building large image

datasets for his research, he needed to build a program that

would simplify the workload and labeling process, which

introduced him to PyQt. Since then, he has tried to dive into

everything that is Python. 

He currently works as a Python developer, building

projects to help others learn more about coding in Python

for game development, AI, and machine learning. Recently,

he set up the site redhuli.io to explore his and others’

interests in utilizing programming for creativity.

He is also the author of Beginning PyQt: A Hands-on Approach to GUI Programming.

xiii

About the Technical Reviewer

Lentin Joseph is an author, roboticist, and robotics

entrepreneur from India. He runs a robotics software

company called Qbotics Labs in Kochi, Kerala. He has 10

years of experience in the robotics domain, primarily in

Robot Operating System (ROS), OpenCV, and PCL. 

He has authored several books on ROS, namely,

Learning Robotics Using Python, first and second editions;

Mastering ROS for Robotics Programming, first and second

editions; ROS Robotics Projects, first and second editions;

and Robot Operating System (ROS) for Absolute Beginners.

He has obtained his master’s in robotics and automation

from India and also worked at the Robotics Institute, CMU,

United States. He is also a TEDx speaker.

xv

Acknowledgments

A few simple words can mean a lot to a person. They can be the little bit of hope that lets

them know everything will be okay.

I first want to thank Apress Media LLC for giving me another opportunity to write, to

learn, and to improve my creativity and skills.

To the community of Python, PyQt, and Qt programmers, thank you for your support

and assistance.

To Adrian Rosebrock at PyImageSearch, thank you for your help, words of

encouragement, and the knowledge you continue to share with others.

To Lentin Joseph, thank you for your help and support.

To Rita Fernando, thank you for your insight and help.

To Divya Modi, I am not even sure if words are enough to express how grateful I am

for your patience. I owe you my deepest debt of gratitude.

To Christine Nieuwoudt, Callum Butler, and Giulio Mazzella, thank you for being the

friends I needed so much while away from home.

To Andrea Cotman, Aaron Rountree, Vinita Acklin, and Malik Ranger, thank you for

being the friends I need who make me miss home.

To my mother, Valorie Payne, thank you for your love and support and always being

there when I need you.

To my sisters, Jazzmin and Teesha Payne, and my brother, Jason Willman, I love and

miss all of you. P.S. Teesha, thank you for your help while writing this book.

To my wife, Lijing Ye (叶丽晶), once again I have to thank you for supporting me

while I disappeared to write. I know it wasn’t easy, and I thank you for always being

supportive. <3

To my daughter, Kalani, thank you for running up to hug me when I came home in

the evening. It means the world to me.

To everyone who picks up this book, thank you for reading, programming, and

continuing to learn. Without you, this wouldn’t be possible.

xvii

Introduction

When setting out to write this book, I didn’t realize that data was the underlying theme

the whole time. In everything we do now, data can be extracted. Our habits can be

analyzed and models created to improve the ways in which we live. Data can be used

to train and teach intelligent computer systems to think and make predictions. As we

continue to add to the heaps of data that already exist, our understanding of the world

continues to grow.

We understand what data is – a collection of numbers, names, words, and other types

of information. Data can either be organized or jumbled and left up to us to clean and

discern any meaning. The question this book aims to answer is how do we access and

manipulate the information hidden within. That is the beauty of PyQt and graphical user

interfaces (GUIs). We can create any application that visualizes and works with various

kinds of data, including text, images, video, audio, or anything else. With PyQt, you can

also easily leverage the power of existing Python modules in your applications.

That is what this book focuses on, showing you how to get started creating the

different tools you need to interact with the data you collect. In Modern PyQt, we will

begin to take a look at some of the ideas related to various fields and technologies that

are being used in business and research today. Topics related to business and project

management, data science, artificial intelligence (AI) and machine learning, computer

vision, and more are introduced.

PyQt is an amazing tool for creating desktop, mobile, and embedded applications.

Modern PyQt focuses on creating desktop applications for Mac, Windows, and Linux

platforms. There are so many modules and classes to cover that it is impossible to cram

them all into a single text. This guide aims to create a foundation for getting you started

in building your own GUI applications.

�Who Should Read This Book
This guide is intended for intermediate-level Python programmers or above with

experience developing and coding GUIs. Modern PyQt is created both for GUI

developers who have used PyQt before and are looking for assistance in building

xviii

applications and for programmers who have experience using other toolkits, such

as Tkinter or wxPython, and the concepts they have learned can be carried over for

developing applications with PyQt.

�The Focus of This Book
It must be stressed that this book is not an introduction to UI or GUI development, PyQt,

or Python. You won’t find a section that explains how to code in Python or lists all of

the PyQt classes. There is an overview of PyQt in Chapter 1, but if this is your first time

creating GUIs, it is recommended that you don’t rely on Modern PyQt for teaching the

basics. More focus is given on the creation of applications and features that will enhance

the capabilities of GUIs.

�About the Code
Each chapter contains example programs, projects, or both. Examples are designed to

introduce each chapter’s programming concepts. Projects will work toward creating

either a complete application or the foundation for a program that you can modify and

improve by adding your own features.

There are a few occasions when you will come across mathematical formulas.

Variables representing vectors and matrices are set in boldface to follow typographical

conventions.

�Installing Applications in This Book
This book uses the current version of Python, version 3.8. The only exception is in

Chapter 9, when you may need to roll back to an earlier version of Python to use the

PyInstaller module.

As of this writing, the version for PyQt is version 5.15. Applications in this book will

work on Python versions 3.5 and higher.

Various chapters will require you to install different Python or PyQt packages to run

the code. There are numerous ways to install Python packages, such as installing from

source, in a virtual environment, or using package managers or tools such as Anaconda.

To keep a uniform method for installation throughout this book, the Python Package

Introduction

xix

Installer (pip) is used. pip installs packages from the Python Package Index (PyPI).

This method will be followed unless otherwise stated in the text. If you prefer a different

method, there are tons of tutorials on the Internet to assist you.

pip should already come with Python, but if you find that you don’t have pip

installed on your computer, information about installing the package manager for your

specific platform can be found at https://pip.pypa.io/en/stable/. More information

about installing pip for Linux can also be found in the documentation.

One final thing to note is that this text installs packages using pip3 instead of pip.

With Python 2 recently no longer supported, pip3 is only used to ensure that the Python

3 environment is being used. You can still use pip instead of pip3.

�How This Book Is Organized
To give the breakdown on how to get started creating desktop applications with PyQt,

Chapter 1 will walk you through many of the fundamental concepts that you will

probably need when creating an application. Not all topics are covered, only the crucial

ones for getting you started. From there, Chapter 2 will give you the lowdown on

creating applications that use the drag and drop mechanism.

Chapters 3, 4, 5, and 6 focus on working with data. Chapter 3 introduces techniques

for visualizing and analyzing 2D data using PyQt and Matplotlib. In Chapter 4, you will

get to work with PyQt’s SQL classes. Computer vision is a relatively new field that works

with visual data, including images and videos. Chapter 5 will create GUIs that integrate

the OpenCV library for computer vision applications. In Chapter 6, you’ll be introduced

to the PyQt module for working with 3D data.

From there, Chapter 7 will briefly introduce the Python and PyQt classes for

networking. Chapter 8 will explore how to create a chatbot. To wrap everything up,

Chapter 9 will demonstrate how to create executable files from your PyQt applications.

�Links to the Source Code
The source code and datasets used in Modern PyQt can be found on GitHub via the

book’s product page, located at www.apress.com/9781484266021.

Introduction

https://pip.pypa.io/en/stable/
http://www.apress.com/9781484266021

xx

�Reader Feedback
Your feedback, questions, and comments are very important. If you would like to take

a moment to let me know your thoughts about the book or ask any questions you may

have, you can send comments to the following address: redhuli.comments@gmail.com.

You can also follow me on Twitter at https://twitter.com/RedHuli.

Introduction

https://twitter.com/RedHuli

1
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8_1

CHAPTER 1

Overview of PyQt5
Hello! Welcome to Modern PyQt! When you build an application, whether for desktop,

mobile, or embedded devices, your goal is to create a seamless experience for the user. If

you are designing a program for others to use, then you should always consider how the

user might interact with the software to solve their problems. Applications such as web

browsers, word processors, and video players are all created to enrich the end user’s life,

helping them achieve some task simply and efficiently.

Some programs are designed to perform a minimal number of tasks, such as the

clock on your computer. Others bundle together a multitude of features that allow

people to interact with machines in unique ways. An example of this is photo editing

software. What these applications generally have in common is some kind of user
interface (UI), a visual window into the happenings in human–machine interactions,

providing feedback to the user and assisting in the human’s decision-making process.

We still continue to use command-line interfaces to interact with our computers.

However, humans have naturally steered more and more to UIs that use visual controls

rather than textual prompts. These types of UIs, known as graphical user interfaces

(GUIs), utilize a computer’s graphical capabilities to create visual windows, menus,

and other elements for a user to interact with computers. Good GUI design blends

these visual components with intuitive design to improve functionality and a user’s

experience.

In Modern PyQt, we will focus on building GUI desktop applications with the Python

programming language and the PyQt toolkit. Recent years have seen an increase in the

number of both skilled and novice programmers using Python. Its uses are widespread,

being employed in general programming, web development, data science, machine

learning, game development, and more. So it’s no wonder that Python also includes

libraries for UI development.

https://doi.org/10.1007/978-1-4842-6603-8_1#DOI

2

In this chapter, you will

•	 Find out about PyQt.

•	 See how to install and get started using PyQt5.

•	 Be introduced to some key concepts in PyQt through two practical

applications:

•	 Pomodoro Timer

•	 Basic User Manager GUI

Note  This text wastes no time getting into building GUIs. Hopefully, you have
some prior experience with Python and have built user interfaces with PyQt or have
used some other UI development toolkit before, such as Tkinter or wxPython. While
the chapter is an overview of PyQt, this section only glosses over many of the
fundamental topics necessary for getting started with PyQt and building UIs. Take
a moment to review the fundamentals of PyQt if it is needed. Subsequent chapters
and topics will be handled at a much slower pace.

�What Is PyQt?
With the PyQt framework, you have tools at your disposal for building UIs that can work

with SQL databases, 2D and 3D graphics, network communication, multimedia, and so

much more.

However, PyQt is in fact a set of Python bindings that make it possible to use The Qt

Company’s Qt application framework. The cross-platform C++ development toolkit, Qt,

actually contains everything you need for building applications on Windows, MacOS,

Linux, Android, and embedded systems.

This means that by combining Python with Qt, you get the advantages of the C++

toolkit for making applications, such as the collection of GUI widgets and the ease of

creating flexible UIs and reusable software elements, along with the simplicity and large

collection of modules that already exist with Python. PyQt is like the glue holding them

both together.

At the time of publication, the latest version of PyQt5 is version 5.15. PyQt4 also

exists, but as of this writing, no more releases will be made for version 4.

Chapter 1 Overview of PyQt5

3

To learn more about PyQt, which is maintained by Riverbank Computing Limited,

check out www.riverbankcomputing.com/software/pyqt/.

If you are interested in learning more about the Qt framework, then have a look at

the Qt documentation at https://doc.qt.io/.

Note  PyQt contains many of Qt’s classes. However, there are some examples
when a class does not exist in the PyQt library. One notable example is the Qt QList
class. PyQt does not contain this class and rather takes full advantage of the list
data structure in Python.

�Installing PyQt5
Before you install PyQt, take a moment to ensure that Python v3.5 or higher is already

installed on your computer. The easiest way to check your version of Python is to enter the

following command into the command line for Windows or terminal for MacOS or Linux:

$ python --version

If you find that your version needs to be updated or that you don’t have Python, the

simplest way to get the latest version is to go to https://python.org/downloads/ and

find the installer for your OS.

Like Python, there are also a few ways to download PyQt5. PyQt has both a General

Public License (GPL) and a commercial version. For this guide, we will take a look at how

to install the latest GPL version of PyQt5 with wheels and the pip package installer. Enter

the following command into your shell:

$ pip3 install PyQt5

The wheel that supports both your platform and your version of Python will be

downloaded from the Python Package Index (PyPI) repository. The PyQt5 wheel already

includes the parts of Qt that you need as well as the sip module. sip is simply a tool that

connects the Qt software written in C++ to Python.

For Linux users (specifically Ubuntu), run the following command instead to install

PyQt:

$ sudo apt install python3-pyqt5

Chapter 1 Overview of PyQt5

http://www.riverbankcomputing.com/software/pyqt/
https://doc.qt.io/
https://python.org/downloads/

4

Note F or more information about installing PyQt5, please refer to the “Introduction.”

To ensure that PyQt5 is properly installed, enter python3 into the command line to

open the Python interpreter. Then input

>>> import PyQt5

If there are no errors, then you are ready to start making your own UI applications.

For further information about installing PyQt5, have a look at

www.riverbankcomputing.com/static/Docs/PyQt5/installation.html.

Also, if you are ever curious to know what version of PyQt5 you have installed on

your computer, enter the following two lines into the Python shell:

>>> from PyQt5.Qt import PYQT_VERSION_STR

>>> print("PyQt version:", PYQT_VERSION_STR)

Finally, if you want to find out the path to PyQt on your system or see a list of the

PyQt5 modules you have installed, use the Python help() function:

>>> import PyQt5

>>> help(PyQt5)

After you get PyQt5 installed, you are ready to move on to this chapter’s first

application – the Pomodoro Timer.

�Project 1.1: Pomodoro Timer
Given the number of distractions and challenges we all face trying to manage work,

family, and personal projects, creating a desktop application for time management as

the first project in this book seemed like the best thing to do.

The Pomodoro Technique 1 designed by Francesco Cirillo is a technique used

to increase your focus and productivity when trying to complete assignments or

meet deadlines. Choosing to use a Pomodoro Timer can help to give a task your full,

undivided attention. The timer you will be coding can be seen in Figure 1-1.

1�More information about the Pomodoro Technique can be found at https://francescocirillo.
com/pages/pomodoro-technique.

Chapter 1 Overview of PyQt5

http://www.riverbankcomputing.com/static/Docs/PyQt5/installation.html
https://francescocirillo.com/pages/pomodoro-technique
https://francescocirillo.com/pages/pomodoro-technique

5

A tomato-shaped kitchen timer was originally used by Cirillo. Rather than tackling an

assignment head-on for hours, this technique breaks the tasks into intervals, typically 25

minutes long (or one pomodoro). Each session of working is broken up by a short period

of rest.

The typical process of the Pomodoro Technique consists of the following six steps:

	 1.	 Choose a task that you would like to finish.

	 2.	 Set the Pomodoro Timer for 25 minutes.

	 3.	 Work solely on that task until the timer rings.

	 4.	 After the timer rings, make a checkmark on a piece of paper.

	 5.	 Take a short break. You could go outside, meditate, or do some

push-ups.

	 6.	 Once you have completed four Pomodoro cycles, you deserve

a longer break. This time could be 20, or even 30, minutes if

you need. (For this application, the long break’s timer is set to

15 minutes.) Reset your checkmarks, and then return back to

working on the task or start a new one.

Figure 1-1.  The Pomodoro Timer GUI displaying the different tabs, Pomodoro,
Short Break, and Long Break. The QLCDNumber widget displays the current tab’s
remaining time. The bottom of the GUI also gives the user a field for inputting their
current task and recording the number of pomodoro cycles

Chapter 1 Overview of PyQt5

6

This project will introduce a number of the primary tools and concepts you will need

to create your own GUIs with Python and PyQt. The Pomodoro Timer GUI demonstrates

the following concepts:

•	 How to use PyQt modules and widget classes for creating graphical

user interfaces

•	 The layout management classes, including QHBoxLayout and

QVBoxLayout

•	 The use of container classes for organizing groups of widgets

•	 PyQt’s signal and slot mechanism for event handling

•	 How to edit the appearance of widgets with Qt Style Sheets

•	 The QTimer class and event loops

•	 Using other Qt classes such as Qt and QIcon

Note  The first program in this chapter is a long one, but don’t get discouraged.
The hope is that you will continue following along and find out what this
application has to offer. By building this program yourself, you will be introduced to
some new ideas for creating your own GUIs.

In the following section, we will break apart the different widgets that comprise the

interface, discuss the layout, take a look at the code in Listing 1-1, and talk about the

logic behind the application.

�Pomodoro Timer Solution
Take a moment and refer back to Figure 1-1. Underneath the title bar of the window, you

should notice three tabs labeled as Pomodoro, Short Break, and Long Break. Each tab

has its own time limit – 25 minutes for the Pomodoro tab, 5 minutes for the Short Break,

and 15 for the Long Break.

When a user clicks any one of these tabs, they will be able to use a different timer.

Each tab is distinguishable by a different color (visual attributes of widgets can be

modified using Qt Style Sheets). The user can then choose to start, stop, or reset the

Chapter 1 Overview of PyQt5

7

current timer using the QPushButtons. After the user clicks the Start button, it is disabled

until either Stop or Reset is clicked. When a user switches to a different tab, that tab’s

settings and widgets are reset.

The upper portion of the GUI that contains the tabs, timers, and buttons is separate

from the lower portion, where the user can input their current task and see how many

pomodoros they have completed. If four cycles are completed, a message will be

displayed in the task bar urging the user to take a longer break. The widgets for each

section are grouped together using container widgets and then organized using various

layout managers.

All of these points and more will be broken down in the “Explanation” section.

The design for the application created in Listing 1-1 was influenced by some of the

different Pomodoro Timers that can be found on the Internet.

Listing 1-1.  Code for the Pomodoro Timer application

pomodoro.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLCDNumber,

QPushButton, QLabel, QLineEdit, QGroupBox, QTabWidget, QVBoxLayout,

QHBoxLayout)

from PyQt5.QtCore import Qt, QTimer

from PyQt5.QtGui import QIcon

from PomodoroStyleSheet import style_sheet

Global variables for each timer

POMODORO_TIME = 1500000 # 25 mins in milliseconds

SHORT_BREAK_TIME = 300000 # 5 mins in milliseconds

LONG_BREAK_TIME = 900000 # 15 mins in milliseconds

class PomodoroTimer(QWidget):

 def __init__(self): # Create default constructor

 super().__init__()

 self.initializeUI()

Chapter 1 Overview of PyQt5

8

 def initializeUI(self):

 """Initialize the window and display its contents to the screen."""

 self.setMinimumSize(500, 400)

 self.setWindowTitle("1.1 - Pomodoro Timer")

 self.setWindowIcon(QIcon("images/tomato.png"))

 self.pomodoro_limit = POMODORO_TIME

 self.short_break_limit = SHORT_BREAK_TIME

 self.long_break_limit = LONG_BREAK_TIME

 self.setupTabsAndWidgets()

 �# Variables related to the current tabs and widgets displayed in

the GUI's window

 self.current_tab_selected = 0

 self.current_start_button = self.pomodoro_start_button

 self.current_stop_button = self.pomodoro_stop_button

 self.current_reset_button = self.pomodoro_reset_button

 self.current_time_limit = self.pomodoro_limit

 self.current_lcd = self.pomodoro_lcd

 # Variables related to user's current task

 self.task_is_set = False

 self.number_of_tasks = 0

 self.task_complete_counter = 0

 # Create timer object

 self.timer = QTimer(self)

 self.timer.timeout.connect(self.updateTimer)

 self.show()

 def setupTabsAndWidgets(self):

 �"""Set up the tab bar for the different pomodoro stages: pomodoro,

short break, long break."""

 # Create the tab bar and the QWidgets (containers) for each tab

 self.tab_bar = QTabWidget(self)

Chapter 1 Overview of PyQt5

9

 self.pomodoro_tab = QWidget()

 self.pomodoro_tab.setObjectName("Pomodoro")

 self.short_break_tab = QWidget()

 self.short_break_tab.setObjectName("ShortBreak")

 self.long_break_tab = QWidget()

 self.long_break_tab.setObjectName("LongBreak")

 self.tab_bar.addTab(self.pomodoro_tab, "Pomodoro")

 self.tab_bar.addTab(self.short_break_tab, "Short Break")

 self.tab_bar.addTab(self.long_break_tab, "Long Break")

 self.tab_bar.currentChanged.connect(self.tabsSwitched)

 # Call the functions that contain the widgets for each tab

 self.pomodoroTab()

 self.shortBreakTab()

 self.longBreakTab()

 �# Create the line edit and button widgets and layout for Pomodoro

Taskbar

 self.enter_task_lineedit = QLineEdit()

 self.enter_task_lineedit.setClearButtonEnabled(True)

 self.enter_task_lineedit.setPlaceholderText("Enter Your Current Task")

 confirm_task_button = QPushButton(QIcon("images/plus.png"), None)

 confirm_task_button.setObjectName("ConfirmButton")

 confirm_task_button.clicked.connect(self.addTaskToTaskbar)

 task_entry_h_box = QHBoxLayout()

 task_entry_h_box.addWidget(self.enter_task_lineedit)

 task_entry_h_box.addWidget(confirm_task_button)

 self.tasks_v_box = QVBoxLayout()

 task_v_box = QVBoxLayout()

 task_v_box.addLayout(task_entry_h_box)

 task_v_box.addLayout(self.tasks_v_box)

Chapter 1 Overview of PyQt5

10

 # Container for taskbar

 task_bar_gb = QGroupBox("Tasks")

 task_bar_gb.setLayout(task_v_box)

 # Create and set layout for the main window

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(self.tab_bar)

 main_v_box.addWidget(task_bar_gb)

 self.setLayout(main_v_box)

 def pomodoroTab(self):

 """Set up the Pomodoro tab, widgets and layout."""

 # Convert starting time to display on timer

 start_time = self.calculateDisplayTime(self.pomodoro_limit)

 self.pomodoro_lcd = QLCDNumber()

 self.pomodoro_lcd.setObjectName("PomodoroLCD")

 self.pomodoro_lcd.setSegmentStyle(QLCDNumber.Filled)

 self.pomodoro_lcd.display(start_time)

 self.pomodoro_start_button = QPushButton("Start")

 self.pomodoro_start_button.clicked.connect(self.startCountDown)

 self.pomodoro_stop_button = QPushButton("Stop")

 self.pomodoro_stop_button.clicked.connect(self.stopCountDown)

 self.pomodoro_reset_button = QPushButton("Reset")

 self.pomodoro_reset_button.clicked.connect(self.resetCountDown)

 button_h_box = QHBoxLayout() # Horizontal layout for buttons

 button_h_box.addWidget(self.pomodoro_start_button)

 button_h_box.addWidget(self.pomodoro_stop_button)

 button_h_box.addWidget(self.pomodoro_reset_button)

 # Create and set layout for the pomodoro tab

 v_box = QVBoxLayout()

 v_box.addWidget(self.pomodoro_lcd)

 v_box.addLayout(button_h_box)

 self.pomodoro_tab.setLayout(v_box)

Chapter 1 Overview of PyQt5

11

 def shortBreakTab(self):

 """Set up the short break tab, widgets and layout."""

 # Convert starting time to display on timer

 start_time = self.calculateDisplayTime(self.short_break_limit)

 self.short_break_lcd = QLCDNumber()

 self.short_break_lcd.setObjectName("ShortLCD")

 self.short_break_lcd.setSegmentStyle(QLCDNumber.Filled)

 self.short_break_lcd.display(start_time)

 self.short_start_button = QPushButton("Start")

 self.short_start_button.clicked.connect(self.startCountDown)

 self.short_stop_button = QPushButton("Stop")

 self.short_stop_button.clicked.connect(self.stopCountDown)

 self.short_reset_button = QPushButton("Reset")

 self.short_reset_button.clicked.connect(self.resetCountDown)

 button_h_box = QHBoxLayout() # Horizontal layout for buttons

 button_h_box.addWidget(self.short_start_button)

 button_h_box.addWidget(self.short_stop_button)

 button_h_box.addWidget(self.short_reset_button)

 # Create and set layout for the short break tab

 v_box = QVBoxLayout()

 v_box.addWidget(self.short_break_lcd)

 v_box.addLayout(button_h_box)

 self.short_break_tab.setLayout(v_box)

 def longBreakTab(self):

 """Set up the long break tab, widgets and layout."""

 # Convert starting time to display on timer

 start_time = self.calculateDisplayTime(self.long_break_limit)

 self.long_break_lcd = QLCDNumber()

 self.long_break_lcd.setObjectName("LongLCD")

 self.long_break_lcd.setSegmentStyle(QLCDNumber.Filled)

 self.long_break_lcd.display(start_time)

Chapter 1 Overview of PyQt5

12

 self.long_start_button = QPushButton("Start")

 self.long_start_button.clicked.connect(self.startCountDown)

 self.long_stop_button = QPushButton("Stop")

 self.long_stop_button.clicked.connect(self.stopCountDown)

 self.long_reset_button = QPushButton("Reset")

 self.long_reset_button.clicked.connect(self.resetCountDown)

 button_h_box = QHBoxLayout() # Horizontal layout for buttons

 button_h_box.addWidget(self.long_start_button)

 button_h_box.addWidget(self.long_stop_button)

 button_h_box.addWidget(self.long_reset_button)

 # Create and set layout for the long break tab

 v_box = QVBoxLayout()

 v_box.addWidget(self.long_break_lcd)

 v_box.addLayout(button_h_box)

 self.long_break_tab.setLayout(v_box)

 def startCountDown(self):

 �"""Starts the timer. If the current tab's time is 00:00, reset the

time if user pushes the start button."""

 self.current_start_button.setEnabled(False)

 �# Used to reset counter_label if user has already has completed

four pomodoro cycles

 if self.task_is_set == True and self.task_complete_counter == 0:

 �self.counter_label.setText("{}/4".format(self.task_complete_

counter))

 remaining_time = self.calculateDisplayTime(self.current_time_limit)

 if remaining_time == "00:00":

 self.resetCountDown()

 self.timer.start(1000)

 else:

 self.timer.start(1000)

Chapter 1 Overview of PyQt5

13

 def stopCountDown(self):

 """If the timer is already running, then stop the timer."""

 if self.timer.isActive() != False:

 self.timer.stop()

 self.current_start_button.setEnabled(True)

 def resetCountDown(self):

 �"""Resets the time for the current tab when the reset button is

selected."""

 self.stopCountDown() # Stop countdown if timer is running

 # Reset time for currently selected tab

 if self.current_tab_selected == 0: # Pomodoro tab

 self.pomodoro_limit = POMODORO_TIME

 self.current_time_limit = self.pomodoro_limit

 reset_time = self.calculateDisplayTime(self.current_time_limit)

 elif self.current_tab_selected == 1: # Short break tab

 self.short_break_limit = SHORT_BREAK_TIME

 self.current_time_limit = self.short_break_limit

 reset_time = self.calculateDisplayTime(self.current_time_limit)

 elif self.current_tab_selected == 2: # Long break tab

 self.long_break_limit = LONG_BREAK_TIME

 self.current_time_limit = self.long_break_limit

 reset_time = self.calculateDisplayTime(self.current_time_limit)

 self.current_lcd.display(reset_time)

 def updateTimer(self):

 �"""Updates the timer and the current QLCDNumber widget. Also,

update the task counter if a task is set."""

 remaining_time = self.calculateDisplayTime(self.current_time_limit)

 if remaining_time == "00:00":

 self.stopCountDown()

 self.current_lcd.display(remaining_time)

Chapter 1 Overview of PyQt5

14

 if self.current_tab_selected == 0 and self.task_is_set == True:

 self.task_complete_counter += 1

 if self.task_complete_counter == 4:

 �self.counter_label.setText("Time for a long break.

{}/4".format(self.task_complete_counter))

 self.task_complete_counter = 0

 elif self.task_complete_counter < 4:

 �self.counter_label.setText("{}/4".format(self.task_

complete_counter))

 else:

 �# Update the current timer by decreasing the current running

time by one second

 self.current_time_limit -= 1000

 self.current_lcd.display(remaining_time)

 def tabsSwitched(self, index):

 �"""Depending upon which tab the user is currently looking at, the

information for that tab needs to be updated. This function updates

the different variables that keep track of the timer, buttons, lcds

and other widgets, and update them accordingly."""

 self.current_tab_selected = index

 self.stopCountDown()

 �# Reset variables, time and widgets depending upon which tab is the

current_tab_selected

 if self.current_tab_selected == 0: # Pomodoro tab

 self.current_start_button = self.pomodoro_start_button

 self.current_stop_button = self.pomodoro_stop_button

 self.current_reset_button = self.pomodoro_reset_button

 self.pomodoro_limit = POMODORO_TIME

 self.current_time_limit = self.pomodoro_limit

 reset_time = self.calculateDisplayTime(self.current_time_limit)

 self.current_lcd = self.pomodoro_lcd

 self.current_lcd.display(reset_time)

Chapter 1 Overview of PyQt5

15

 elif self.current_tab_selected == 1: # Short break tab

 self.current_start_button = self.short_start_button

 self.current_stop_button = self.short_stop_button

 self.current_reset_button = self.short_reset_button

 self.short_break_limit = SHORT_BREAK_TIME

 self.current_time_limit = self.short_break_limit

 reset_time = self.calculateDisplayTime(self.current_time_limit)

 self.current_lcd = self.short_break_lcd

 self.current_lcd.display(reset_time)

 elif self.current_tab_selected == 2: # Long break tab

 self.current_start_button = self.long_start_button

 self.current_stop_button = self.long_stop_button

 self.current_reset_button = self.long_reset_button

 self.long_break_limit = LONG_BREAK_TIME

 self.current_time_limit = self.long_break_limit

 reset_time = self.calculateDisplayTime(self.current_time_limit)

 self.current_lcd = self.long_break_lcd

 self.current_lcd.display(reset_time)

 def addTaskToTaskbar(self):

 �"""When the user clicks the plus button, the widgets for the new

task will be added to the task bar. Only one task is allowed to be

entered at a time."""

 text = self.enter_task_lineedit.text()

 self.enter_task_lineedit.clear()

 # Change number_of_tasks if you want to ask more tasks to the task bar

 if text != "" and self.number_of_tasks != 1:

 self.enter_task_lineedit.setReadOnly(True)

 self.task_is_set = True

 new_task = QLabel(text)

 �self.counter_label = QLabel("{}/4".format(self.task_complete_

counter))

 self.counter_label.setAlignment(Qt.AlignRight)

Chapter 1 Overview of PyQt5

16

 cancel_task_button = QPushButton(QIcon("images/minus.png"), None)

 cancel_task_button.setMaximumWidth(24)

 cancel_task_button.clicked.connect(self.clearCurrentTask)

 self.new_task_h_box = QHBoxLayout()

 self.new_task_h_box.addWidget(new_task)

 self.new_task_h_box.addWidget(self.counter_label)

 self.new_task_h_box.addWidget(cancel_task_button)

 self.tasks_v_box.addLayout(self.new_task_h_box)

 self.number_of_tasks += 1

 def clearCurrentTask(self):

 �"""Delete the current task, and reset variables and widgets related

to tasks."""

 �# Remove items from parent widget by setting the argument value in

setParent() to None

 self.new_task.setParent(None)

 self.counter_label.setParent(None)

 self.cancel_task_button.setParent(None)

 self.number_of_tasks -= 1

 self.task_is_set = False

 self.task_complete_counter = 0

 self.enter_task_lineedit.setReadOnly(False)

 def convertTotalTime(self, time_in_milli):

 """Convert time to milliseconds."""

 minutes = (time_in_milli / (1000 * 60)) % 60

 seconds = (time_in_milli / 1000) % 60

 return int(minutes), int(seconds)

 def calculateDisplayTime(self, time):

 �"""Calculate the time that should be displayed in the QLCDNumber

widget."""

 minutes, seconds = self.convertTotalTime(time)

 amount_of_time = "{:02d}:{:02d}".format(minutes, seconds)

 return amount_of_time

Chapter 1 Overview of PyQt5

17

Run main event loop

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = PomodoroTimer()

 sys.exit(app.exec_())

The resulting GUI can be seen in both Figures 1-1 and 1-2. The different timers

can be accessed by clicking a timer’s corresponding tab in the tab bar at the top of the

window.

�Explanation
A graphical user interface can be composed of many different components working

together to achieve some goal. The Pomodoro Timer created in Listing 1-1 is a good

example of an application that is comprised of different PyQt widgets and classes that

change and update depending upon the user’s actions.

Let’s begin by taking a look at the basic parts you will need just to create an empty

GUI window with Python and PyQt.

Figure 1-2.  The left image displays the tab used for short breaks, while the right
image shows the tab for long breaks

Chapter 1 Overview of PyQt5

18

�Creating an Empty Window

In order to follow along with the code written in this book, you will definitely need

a basic understanding of the Object-Oriented Programming (OOP) paradigm.

Rather than writing a program that works sequentially to perform a task, OOP builds

relationships between objects with their own properties and behaviors. Each object has

relationships with other objects. With GUIs, these objects are the widgets created from

classes – which are the templates for what an object can do and its attributes – and can

inherit properties and behaviors from a parent class.

When you create an instance of a class, such as a QPushButton widget, you are

essentially creating a button object that can be interacted with by clicking it. That button

not only has its own methods but also inherits from other classes.

The example code in Listing 1-2 takes a look at how to get started using PyQt classes

to build an empty window with the OOP approach. The code also acts as a good starting

point for any program that you may want to create in the future. Simply copy and paste

the code into a Python script and begin creating your application.

Listing 1-2.  Code demonstrating the basic structure for PyQt GUI applications

Import necessary modules

import sys

from PyQt5.QtWidgets import QApplication, QWidget

class ExampleClass(QWidget):

 def __init__(self): # Create default constructor

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents to the screen."""

 self.setGeometry(100, 100, 500, 400)

 self.setWindowTitle('Empty Window in PyQt')

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = ExampleClass()

 sys.exit(app.exec_())

Chapter 1 Overview of PyQt5

19

First, we need to import a couple of plugins, sys and PyQt5. The sys module can be

used to pass command-line arguments to our applications and safely exit a program.

The UI elements you need to create desktop-like applications are found in the

QtWidgets module. From QtWidgets, let’s import QApplication and QWidget. The

QApplication class manages an application’s main event loop, flow, initialization,

and finalization of widgets and provides session management. Only one instance of

QApplication is allowed per program. QWidget is the base class for all user interface objects.

The functionality of Qt classes can be extended using Python classes. Subclassing

Qt classes allows you to create classes that inherit properties and methods from a parent

class. Since the class created, ExampleClass, inherits from QWidget, we also have access

to QWidget’s different properties and methods. The default constructor for ExampleClass

is created using __init__(), and we use super() to inherit from our QWidget class. An

example of subclassing the QPushButton widget class can be seen in Chapter 2.

Next in initializeUI(), the size and location of the window is set with

setGeometry(), and the window’s title is assigned with setWindowTitle(). The show()

method is necessary for displaying the window to the screen.

Finally, we create the QApplication instance before creating any other objects in

our user interface. We create an instance of the ExampleClass which will generate and

display the GUI’s window. Lastly, we begin the main event loop with app.exec_().

Before going further, we should take a look at how PyQt’s modules and classes are

used in the Pomodoro Timer.

�PyQt Modules and Classes

The Qt framework has a number of modules and classes2 for building a variety of

different graphical applications.

For the Pomodoro Timer GUI, we need to import

•	 QtWidgets – Contains the traditional user interface components

primarily for desktop applications

•	 QtCore – Consists of essential non-GUI functions, such as

communication between widgets and threading

•	 QtGui – Provides the classes for graphics, basic imaging, fonts, and

more

2� www.riverbankcomputing.com/static/Docs/PyQt5/sip-classes.html.

Chapter 1 Overview of PyQt5

http://www.riverbankcomputing.com/static/Docs/PyQt5/sip-classes.html

20

These are but a few of the modules that we will be taking a look at throughout this

guide.

There are hundreds of PyQt classes, and the Pomodoro Timer uses only a few of

them, including QWidget, QPushButton, QLabel, and QLineEdit. Each class contains

its own attributes and methods. For example, the following bit of code from Listing 1-1

demonstrates how to create a QLineEdit widget for the Pomodoro Timer and alter a few

of its properties, such as enabling a clear button to be displayed if text is entered into the

input field of the widget and setting placeholder text:

self.enter_task_lineedit = QLineEdit() # Create object

A few methods of the QLineEdit class

self.enter_task_lineedit.setClearButtonEnabled(True)

self.enter_task_lineedit.setPlaceholderText("Enter Your Current Task")

Other examples that can be seen in this application include setting the maximum

width of a QPushButton with setMaximumWidth() or modifying the appearance of the

segments in QLCDNumber's display using setSegmentStyle().

Classes Qt and QIcon are also included in the Pomodoro Timer. The Qt class contains

numerous miscellaneous identifiers from the Qt framework. QIcon can be used for

setting an icon in a GUI’s title bar or on widgets, such as QPushButtons. An example of

setting the icon in the Pomodoro Timer’s title bar is shown in the following:

self.setWindowIcon(QIcon("images/tomato.png"))

The result can be seen in Figure 1-3.

The Pomodoro Timer uses three separate QLCDNumber objects for each of the

different countdown timers – pomodoro_lcd, short_break_lcd and long_break_lcd.

The different timers can be seen in Figures 1-1 and 1-2. These timers are controlled

using their respective start, stop, and reset QPushButton objects. All of these widgets are

separated and organized using the QTabWidget class, which acts as a container.

Figure 1-3.  An icon can be seen in the title bar of the window on Windows and
Linux. For Mac users, the icon will not be displayed due to MacOS guidelines

Chapter 1 Overview of PyQt5

21

Using Container Classes in PyQt

Container classes act as a means to arrange and control groups of widgets. This can be

useful for managing similar widgets or organizing objects to help the user navigate their

way around the GUI or simply to add decoration and space between widgets. QFrame,

QGroupBox, QStackedWidget, and QTabWidget are just some of the container classes,

and each one has unique features for controlling groups of objects. Widgets grouped

inside a container also need to be arranged using a layout manager which will be

discussed a little later in this chapter.

For our project, the PomodoroTimer class inherits from QWidget. After setting the

window’s minimum size and window title and icon in initializeUI(), we need to

create a number of variables for keeping track of which tab the user is currently viewing

as well as the user’s current task. If the user switches to another tab, we will need to

update the variables.

When the program begins, the user will always start on the Pomodoro tab. Therefore,

the following variables from Listing 1-1 are initialized to begin with values related to this

tab:

Each tab has an index value. The first tab is 0.

self.current_tab_selected = 0

self.current_start_button = self.pomodoro_start_button

self.current_stop_button = self.pomodoro_stop_button

self.current_reset_button = self.pomodoro_reset_button

self.current_time_limit = self.pomodoro_limit

self.current_lcd = self.pomodoro_lcd

Other variables, task_is_set, number_of_tasks, and task_complete_counter, are

also instantiated. Since there is no task created when the program begins, task_is_set

equals False.

The next step is to set up the tab bar and each tab in the setupTabsAndWidgets()

method. To use QTabWidget, we first create an instance of the tab widget, tab_bar, and

create the QWidget containers for each tab, also referred to as a page. The following

snippets of code from Listing 1-1 show how to set up the tab widget:

self.tab_bar = QTabWidget(self)

self.pomodoro_tab = QWidget()

Chapter 1 Overview of PyQt5

22

Next, we add the tab to tab_bar with addTab() and give the tab a name:

self.tab_bar.addTab(self.pomodoro_tab, "Pomodoro")

Then, we call the functions that contain the widgets for each page:

self.pomodoroTab()

This process is repeated for short_break_tab and long_break_tab. In the

pomodoroTab() method, the QLCDNumber and QPushButton objects are created. We begin by

calling calculateDisplayTime() to convert the pomodoro_limit from 1500000 milliseconds

to a more readable 25:00 (minutes and seconds). The value returned, start_time, is shown

in the QLCDNumber object using display(). Other tabs are also similarly structured.

Although these tabs are alike, three separate methods with their own display and

button widgets are created. This ensures that the correct tab has ownership of only the

widgets related to its page.

Finally, let’s take a brief look at where the user can enter the task that they are

currently working on. In the task bar, users can enter text into the QLineEdit widget,

enter_task_lineedit. If task_is_set is True, then every time the Pomodoro timer (not

the timers for the Short Break or Long Break) reaches 0, the QLabel widgets in the task

bar will reflect these situations accordingly.

All of these widgets are added to the task_bar_bg QGroupBox container. You can

assign a label to a QGroupBox object that is visible to the user. The following code from

Listing 1-1 shows how:

task_bar_gb = QGroupBox("Tasks")

In order to know when to update the QLCDNumber displays and other widgets, we

need a way to keep track of the time that has passed since starting a timer.

The QTimer Class

Whenever you begin running your application, QApplication.exec_() begins the main

event loop. Inside of this loop is where all of your program’s event checking, updating of

widgets, and other tasks occur. We can take advantage of this loop to create timers for

processing events at regular intervals or after a specified amount of time has passed.

QTimer is the main PyQt class for creating regular timers. For the Pomodoro

Timer, we create a timer instance that is a child of the PomodoroTimer class. This is

done by passing self as an argument to the timer. We can use timeout() to call a

Chapter 1 Overview of PyQt5

23

method to perform some task when the time reaches zero. In this case, timeout() calls

updateTimer(), and the current_lcd will then be updated to reflect the time remaining

for the current_tab_selected. The following bit of code from Listing 1-1 shows this

process. Check out the “Event Handling with Signals and Slots” section to learn more

about signals and slots and connect():

self.timer = QTimer(self) # Create timer object

self.timer.timeout.connect(self.updateTimer) # Connect the QTimer's signal,

timeout(), to a slot

When the user clicks the Start button in any of the tabs, the timer begins running.

The timer in Listing 1-1 is set to time out every 1000 milliseconds, or one second. This is

handled in startCountDown():

self.timer.start(1000)

So the basic pattern for using a QTimer object is to

	 1.	 Create an instance of QTimer.

	 2.	 Connect the timer to timeout().

	 3.	 start() the timer.

The updateTimer() method in the Pomodoro Timer is also used to keep track of how

many pomodoros have been completed. If the user has finished four cycles, a label is

displayed in the window advising them to take a longer break.

Only one timer is created for this application, and it is shared between the three

different tabs. timer is started, stopped, and reset as needed and depending upon the

current_tab_selected.

�Layout Management

Layout management is the manner in which we decide to arrange widgets in the

application’s window. PyQt provides a few different layout manager classes for

organizing widgets – QBoxLayout, QGridLayout, and QFormLayout. While these classes

each have their own rules, they are useful for handling sizing and positioning of widgets;

resizing, adding, or removing widgets; and using the space within a window efficiently.

PyQt also allows for nested layouts, giving you better control and more versatility for

arranging objects.

Chapter 1 Overview of PyQt5

24

QBoxLayout can be divided into two subclasses:

	 1.	 QHBoxLayout for arranging widgets horizontally in the window

	 2.	 QVBoxLayout for organizing widgets vertically in the window

The Pomodoro Timer application uses a combination of these two classes to

organize its widgets. Let’s take a look at a simplified version from Listing 1-1 of how

we create a nested layout using both the QHBoxLayout and QVBoxLayout classes in the

Pomodoro tab:

button_h_box = QHBoxLayout() # Horizontal box layout

Add widgets to a layout using addWidget()

button_h_box.addWidget(self.pomodoro_start_button)

Create vertical box layout for the pomodoro tab

v_box = QVBoxLayout()

v_box.addWidget(self.pomodoro_lcd)

v_box.addLayout(button_h_box) # Nested layout

self.pomodoro_tab.setLayout(v_box)

This bit of code is simplified in order to only show the main steps for creating

the layout managers and adding widgets to the correct layout. Use addWidget() to

add widgets to a layout; use addLayout() to create nested layouts. Depending upon

what manager you are using, the methods may change for adding widgets to a layout.

However, the procedure is still the same:

	 1.	 Create a layout manager object.

	 2.	 Add widgets and other layouts (if necessary) to the current

layout. There are also methods available for adding spacing and

stretching to a layout such as addSpacing().

	 3.	 Set the layout of the widget. This widget could possibly be a

container widget or the main window.

Widgets in the Pomodoro Timer for each tab as well as the task bar at the bottom of

the window are added to layouts in a similar fashion.

Chapter 1 Overview of PyQt5

25

�Event Handling with Signals and Slots

GUIs are designed to be responsive. When a user clicks a button, types on the keyboard,

or when a timer times out, these actions signal events and must be handled by the

application. These events can often lead the program to modify its behavior. Event

handling in PyQt is performed with the signals and slots mechanism and with special

event handlers.

Signals are the events that are triggered when a button is clicked or a tab is switched.

Slots are the methods that perform defined actions in response to the signal. Slots can be

built-in PyQt functions or Python methods created specifically for the application. The

connect() method associates the emitted signal with its intended slot. An example of

connecting to a signal from Listing 1-1 is accomplished by

self.tab_bar.currentChanged.connect(self.tabsSwitched)

The Pomodoro Timer needs to handle events caused when

•	 The user switches tabs. The tab_bar uses the currentChanged()

signal to update the variables and widgets related to the current_

tab_selected in the tabsSwitched() slot.

•	 The Start, Stop, or Reset button is clicked on any of the pages. These

buttons all emit the clicked() signal. Start buttons are connected

to the startCountDown() slot and begin the timer. Stop buttons

are connected to stopCountDown() and stop the timer. Reset is

connected to resetCountDown() and resets the timer and LCD

display for the current tab.

•	 The buttons for adding or deleting tasks in the task bar are clicked.

The confirm_task_button sends a signal that is connected to

addTaskToTaskbar(). This adds a task in the task bar only if the user

has entered text in enter_task_lineedit. If a task exists, then the

user can delete that task using the cancel_task_button.

•	 The timer times out. The timeout() signal is connected to

updateTimer(). The slot first checks if the remaining_time is 00:00.

If it is, the appropriate variables and widgets are updated. If not, the

current_time_limit is decreased by 1000 milliseconds and updated

in the current_lcd_display.

Chapter 1 Overview of PyQt5

26

While you can use built-in signals and slots, you can also customize your own in

PyQt. You have already seen in this project how to create custom slots.

PyQt also delivers events to widgets using predefined event handlers. One example

is the show() method for displaying the window. Event handlers are used for responding

to mouse movements, the pressing of keys, window operations, and more. An example of

customizing event handlers is demonstrated in Chapter 2.

�Qt Style Sheets

The last tool we are going to consider is useful for customizing the look and feel of your

applications. PyQt uses the QStyle class to mimic the appearance of your platform. A

single application created using PyQt will look different on Windows, Mac, or Linux

without you having to write any additional code. However, you can still modify the

look of a GUI by either creating a custom style or using Qt Style Sheets and applying

customized styles on top of a widget’s current style.

The format for Qt Style Sheets resembles that of HTML Cascading Style Sheets (CSS)

and is adapted for use in GUI programs. You can apply style sheets either to an entire

QApplication or individual widgets using the setStyleSheet() method.

When we imported modules at the beginning of Listing 1-1, you might have noticed

the following line of code:

from PomodoroStyleSheet import style_sheet

PomodoroStyleSheet is simply a Python script that contains the style_sheet for the

Pomodoro Timer. The style sheet code can be seen in Listing 1-3. For information about

where the styles are applied, have a look at the comments in the code. Comments in CSS

begin with /* and end with */.

To apply the style sheet in Listing 1-1, we use

app.setStyleSheet(style_sheet)

With Qt Style Sheets, you are able to add quite a bit of customization to your

applications. For more information or examples about Qt Style Sheets, refer to

https://doc.qt.io/qt-5/stylesheet.html.

Chapter 1 Overview of PyQt5

https://doc.qt.io/qt-5/stylesheet.html

27

Note  This project illustrates how detailed a style sheet can get. Programs in later
chapters will only use style sheets for minor instances and will leave the task of
stylizing them up to you.

Listing 1-3.  The CSS code for the style sheet used in the Pomodoro Timer

project3

PomodoroStyleSheet.py

Style sheet for the Pomodoro Timer GUI

style_sheet = """

 QWidget{

 background-color: #D8D3D3 /* background for main window */

 }

 QTabWidget:pane{ /* The tab widget frame */

 border-top: 0px /* width of 0 pixels */

 }

 QTabBar:tab{ /* Style the tabs using tab sub-control and QTabBar */

 /* Add gradient look to the colors of each tab */

 background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,

 stop: 0 #E1E1E1, stop: 0.4 #DDDDDD,

 stop: 0.5 #D8D8D8, stop: 1.0 #D3D3D3);

 border: 2px solid #C4C4C3;

 border-bottom-color: #C2C7CB;

 border-top-left-radius: 4px;

 border-top-right-radius: 4px;

 min-width: 8ex;

 padding: 2px;

 }

3�Parts of the style sheet were influenced by https://doc.qt.io/qt-5/stylesheet-examples.
html.

Chapter 1 Overview of PyQt5

https://doc.qt.io/qt-5/stylesheet-examples.html
https://doc.qt.io/qt-5/stylesheet-examples.html

28

 QTabBar:tab:selected, QTabBar:tab:hover {

 �/* Use same color scheme for selected tab, and other tabs when the

user hovers over them */

 background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,

 stop: 0 #FAFAFA, stop: 0.4 #F4F4F4,

 stop: 0.5 #E7E7E7, stop: 1.0 #FAFAFA);

 }

 QTabBar:tab:selected {

 border-color: #9B9B9B;

 border-bottom-color: #C2C7CB; /* Same as pane color */

 }

 QTabBar:tab:!selected {

 �margin-top: 2px; /* Make non-selected tabs look smaller when not

selected */

 }

 QWidget#Pomodoro{ /* Pomodoro tab container widget */

 background-color: #EF635C;

 border: 1px solid #EF635C;

 border-radius: 4px;

 }

 QWidget#ShortBreak{ /* Short break tab container widget */

 background-color: #398AB5;

 border: 1px solid #398AB5;

 border-radius: 4px;

 }

 QWidget#LongBreak{ /* Long break tab container widget */

 background-color: #55A992;

 border: 1px solid #55A992;

 border-radius: 4px;

 }

Chapter 1 Overview of PyQt5

29

 QLCDNumber#PomodoroLCD{

 background-color: #F48B86;

 color: #FFFFFF;

 border: 2px solid #F48B86;

 border-radius: 4px;

 }

 QLCDNumber#ShortLCD{

 background-color: #5CAFDC;

 color: #FFFFFF;

 border: 2px solid #5CAFDC;

 border-radius: 4px;

 }

 QLCDNumber#LongLCD{

 background-color: #6DD4B7;

 color: #FFFFFF;

 border: 2px solid #6DD4B7;

 border-radius: 4px;

 }

 QPushButton{ /* General look of QPushButtons */

 background-color: #E1E1E1;

 border: 2px solid #C4C4C3;

 border-radius: 4px;

 }

 QPushButton:hover{

 background-color: #F8F4F4

 }

 QPushButton:pressed{

 background-color: #E9E9E9;

 border: 2px solid #C4C4C3;

 border-radius: 4px;

 }

Chapter 1 Overview of PyQt5

30

 QPushButton:disabled{

 background-color: #D8D3D3;

 border: 2px solid #C4C4C3;

 border-radius: 4px;

 }

 QGroupBox{ /* Style for Pomodoro task bar */

 background-color: #EF635C;

 border: 2px solid #EF635C;

 border-radius: 4px;

 margin-top: 3ex

 }

 QGroupBox:title{

 subcontrol-origin: margin;

 padding: 2px;

 }

 QLineEdit{

 background-color: #FFFFFF

 }

 QLabel{

 background-color: #EF635C;

 color: #FFFFFF

 }

"""

Changing the appearance of widgets can be very useful for helping a user

differentiate between objects and widget states and for more easily navigating around

the GUI. With style sheets, you can change a widget’s properties, pseudostates, and

subcontrols. Some of the properties that can be modified include a widget’s background

and foreground colors, fonts, border width and style, or margins. To change the

subcontrols of a complex widget, be sure to specify the subcontrol you want to adjust in

the style sheet. For example, to restrict changes only to an unselected tab of QTabBar in

Listing 1-3, you can use

 QTabBar:tab:!selected {/* Other CSS code */}

Chapter 1 Overview of PyQt5

31

In Listing 1-1, the setObjectName() method is included after selecting widgets to

give each object a specific name, for example:

 self.pomodoro_lcd.setObjectName("PomodoroLCD")

The object name can be used in the style sheet in Listing 1-3 to apply properties only

to that particular widget:

QLCDNumber#PomodoroLCD{/* Other CSS code */}

For this chapter’s next project, we are going to take a look at a few other important

concepts, namely, creating menus, dialog boxes, and Qt’s model/view paradigm.

�Project 1.2: User Manager Application
There are many applications that exist for managing the personal data of their clients.

The general UI allows users to view and modify their individual information. Meanwhile,

administrators who manage the application may be given extra privileges that allow

them to view, edit, and update a client’s information, assign and create groups for

organizing clients, and even disable others’ accounts.

This information can be presented to the administrator in a number of formats. For

the User Manager GUI shown in Figure 1-4, you will take a look at building a simple

interface that demonstrates how to create tables using PyQt and Python classes. This

project is just the foundation for what could be a much larger project.

In the next couple of sections, you will learn about

•	 PyQt’s model/view architecture and classes for working with data

•	 Using menus and the QAction class

•	 The difference between windows and dialogs and how to use QDialog

•	 Other widget and layout classes, particularly QComboBox and

QFormLayout

Chapter 1 Overview of PyQt5

32

�User Manager Application Solution
When the user opens the application, they are presented with a window similar to

Figure 1-4. However, the table will be empty. Listing 1-4 shows how to create a table and

add information into its rows and columns.

The user can click the Create New User button in the window. This will open up a

separate dialog box, shown in Figure 1-6, where the user can input their information

using QLineEdit and QComboBox widgets. After the user is finished entering data into

the table, they can choose to save the data or quit the program using the actions in the

File menu.

Listing 1-4.  Code for the User Manager application

user_manager.py

Import necessary modules

import sys, csv

from PyQt5.QtWidgets import (QApplication, QMainWindow, QPushButton,

QLineEdit, QComboBox, QGroupBox, QTableView, QHeaderView, QHBoxLayout,

QFormLayout, QVBoxLayout, QDialog, QFileDialog, QAction)

from PyQt5.QtGui import QIcon, QStandardItem, QStandardItemModel

from PyQt5.QtCore import Qt

Figure 1-4.  The User Manager GUI

Chapter 1 Overview of PyQt5

33

style_sheet = """

 QGroupBox:title{

 subcontrol-origin: margin;

 padding: 0 10px;

 } """

class UserManager(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents to the screen. """

 self.setGeometry(100, 100, 500, 300)

 self.setWindowTitle('1.2 - User Manager')

 self.setupModelView()

 self.setupMenu()

 self.show()

 def setupModelView(self):

 """Set up widgets, and standard item model and table view."""

 user_gb = QGroupBox("Users")

 �new_user_button = QPushButton(QIcon("images/plus.png"), "Create New

User")

 new_user_button.setMaximumWidth(160)

 new_user_button.clicked.connect(self.createNewUserDialog)

 �self.list_of_table_headers = ["First Name", "Last Name", "Profile

Name", "Location"]

 self.model = QStandardItemModel()

 self.model.setHorizontalHeaderLabels(self.list_of_table_headers)

 table_view = QTableView()

 table_view.setModel(self.model)

 �table_view.horizontalHeader().setSectionResizeMode(QHeaderView.

Stretch)

Chapter 1 Overview of PyQt5

34

 # Set initial row and column values

 self.model.setRowCount(0)

 self.model.setColumnCount(4)

 v_box = QVBoxLayout()

 v_box.addWidget(new_user_button, Qt.AlignLeft)

 v_box.addWidget(table_view)

 user_gb.setLayout(v_box)

 self.setCentralWidget(user_gb)

 def setupMenu(self):

 """Set up menubar."""

 # Create actions for file menu

 save_act = QAction('Save', self)

 save_act.setShortcut('Ctrl+S')

 save_act.triggered.connect(self.saveTableToFile)

 exit_act = QAction('Exit', self)

 exit_act.setShortcut('Ctrl+Q')

 exit_act.triggered.connect(self.close)

 # Create menubar

 menu_bar = self.menuBar()

 # For MacOS users, places menu bar in main window

 menu_bar.setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(save_act)

 file_menu.addSeparator()

 file_menu.addAction(exit_act)

 def createNewUserDialog(self):

 �"""Set up the dialog box that allows the user to enter new user

information."""

 self.new_user_dialog = QDialog(self)

 self.new_user_dialog.setWindowTitle("Create New User")

 self.new_user_dialog.setModal(True)

Chapter 1 Overview of PyQt5

35

 self.enter_first_line = QLineEdit()

 self.enter_last_line = QLineEdit()

 self.display_name_line = QLineEdit()

 �locations_list = ["Select Location...", "Algeria", "Argentina",

"Bolivia", "Canada", “Denmark", "Greece", "Iran", "Liberia", "New

Zealand", "Qatar", "Uganda"]

 self.location_cb = QComboBox()

 self.location_cb.addItems(locations_list)

 create_button = QPushButton("Create User")

 create_button.clicked.connect(self.addNewUserToTable)

 cancel_button = QPushButton("Cancel")

 cancel_button.clicked.connect(self.new_user_dialog.reject)

 button_h_box = QHBoxLayout()

 button_h_box.addWidget(create_button)

 button_h_box.addSpacing(15)

 button_h_box.addWidget(cancel_button)

 # Add widgets to form layout

 dialog_form = QFormLayout()

 dialog_form.setFormAlignment(Qt.AlignLeft)

 dialog_form.setFieldGrowthPolicy(QFormLayout.ExpandingFieldsGrow)

 dialog_form.addRow("First name", self.enter_first_line)

 dialog_form.addRow("Last name", self.enter_last_line)

 dialog_form.addRow("Display Name", self.display_name_line)

 dialog_form.addRow("Location", self.location_cb)

 dialog_form.addItem(button_h_box)

 self.new_user_dialog.setLayout(dialog_form)

 �# Restrict the size of the dialog in relation to the size of the

dialog_form's sizeHint()

self.new_user_dialog.setMaximumSize(dialog_form.sizeHint())

 self.new_user_dialog.show()

Chapter 1 Overview of PyQt5

36

 def addNewUserToTable(self):

 �"""Add information from input widgets in dialog box to a list. If a

widget is empty, append None to the list. Finally, add a new row to

the table."""

 new_user_info_list = []

 if self.enter_first_line.text() != "":

 �new_user_info_list.append(QStandardItem(self.enter_first_line.

text()))

 else:

 new_user_info_list.append(None)

 if self.enter_last_line.text() != "":

 �new_user_info_list.append(QStandardItem(self.enter_last_line.

text()))

 else:

 new_user_info_list.append(None)

 if self.display_name_line.text() != "":

 �new_user_info_list.append(QStandardItem(self.display_name_line.

text()))

 else:

 new_user_info_list.append(None)

 if self.location_cb.currentIndex() != 0:

 �new_user_info_list.append(QStandardItem(self.location_

cb.currentText()))

 else:

 new_user_info_list.append(None)

 # Add a new row to the model

 self.model.appendRow(new_user_info_list)

 self.new_user_dialog.close()

 def saveTableToFile(self):

 """Save user information to a csv file."""

 �file_name, _ = QFileDialog.getSaveFileName(self, 'Save Table', "",

"CSV Files (*.csv)")

Chapter 1 Overview of PyQt5

37

 �# If file_name exists and there is at least one row in the table,

then save

 if file_name and self.model.rowCount() != 0:

 with open(file_name, "w") as csv_wf:

 user_writer = csv.writer(csv_wf, delimiter=',')

 user_writer.writerow(self.list_of_table_headers)

 �# Iterate through each row and column in the table for row

in range(self.model.rowCount()):

 current_row_list = []

 for column in range(self.model.columnCount()):

 �item = str(self.model.data(self.model.index(row,

column)))

 current_row_list.append(item)

 user_writer.writerow(current_row_list)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = UserManager()

 sys.exit(app.exec_())

The completed User Manager’s interface can be seen in Figure 1-4.

�Explanation
We begin by importing the Python and PyQt5 packages. The csv module provides classes

for reading and writing tabular data in Comma-Separated Values (CSV) format.

From QtWidgets, we import classes for widgets such as QLineEdit and QComboBox;

QTableView and QHeaderView for creating and working with tables; layout classes

including QFormLayout; classes for building windows and menus, QMainWindow and

QAction; and QDialog and QFileDialog for creating dialog boxes.

The QtGui module contains the classes QStandardItem and QStandardItemModel

needed for using Qt’s model/view paradigm for arranging and displaying data.

The next step is to begin building the constructor for the UserManager class. This

time, our class will inherit from QMainWindow, not QWidget. First, initialize the window’s

location and size on your computer with setGeometry(). Then use setWindowTitle() to

set the GUI’s title. show() will display the window on the user’s screen.

Chapter 1 Overview of PyQt5

38

To create the GUI’s tabular view, this application uses Qt’s model/view programming

architecture.

�Qt’s Model/View Architecture

PyQt provides three convenience widgets for presenting data to a user in QTableWidget,

QListWidget, and QTreeWidget. Whether you want to display information in a table, in

a list, or in a hierarchical format using trees, these classes already contain all the basic

functionality you need for working with data.

However, if you want more control and customizability for both the appearance

and editing of data in larger projects or need to display data using different formats at

the same time, then you should consider Qt’s model/view architecture. Model/view
programming separates the work for handling data among three components and gives

more flexibility to developers for how they present the data. The three components are

•	 Model – Responsible for communicating with the data source,

accessing data, and linking the data with view and delegate classes

•	 View – Handles displaying data to the user using a list, table, or tree

format, retrieving data from the model, and working with input from

the user

•	 Delegate – In charge of painting data items and providing editor

widgets in the view. Reports back to the model if data has been edited

in the view, allowing the model to update the data source

The User Manager program uses the QStandardItemModel model class and the

QTableView view class. For this GUI, the default delegate class, QStyledItemDelegate, is

used.

In the setupModelView() method, the user_gb QGroupBox will contain all of the

main window’s widgets. If the user clicks the new_user_button, it will send a signal that

calls the createNewUserDialog() slot.

Building the model/view table is straightforward. First, create a model object:

self.model = QStandardItemModel()

You can also create labels for both the horizontal and vertical headers. To set the

horizontal header’s labels, use setHorizontalHeaderLabels(). This method accepts a

Python iterable object as an argument.

Chapter 1 Overview of PyQt5

39

Next, we can create the view object and set the model using setModel():

table_view = QTableView()

table_view.setModel(self.model)

You can also make the horizontal and vertical headers resize to fit the view and set

the number of rows and columns of the table. Items can be added to the table using

QStandardItem. Examples of how to append items and rows to the table can be seen in

the program’s addNewUserToTable() method.

Finally, QVBoxLayout is utilized to organize the widgets in user_gb. When using

QMainWindow, use setCentralWidget() to set the main window’s widget. The central

widget must be set for the QMainWindow class.

This example only demonstrates QTableView, but there are also QListView,

QTreeView, and many other model and delegate classes. More detailed information

related to model/view programming can be found at https://doc.qt.io/qt-5/model-

view-programming.html.

�Creating Menus

The more complex a GUI becomes, the more widgets and features you will need to add

to the application’s window. If you are not careful, your GUI can become crowded with

too many features. Thankfully, menus are a great way for organizing and tracking down

all of those components.

There are handful of menu types that you can employ, such as menu bars, toolbars,

context menus, and dock widgets, each with their own special purposes. By creating a

class that inherits from QMainWindow, developers have access to these classes and the

framework for easily building and managing a GUI’s main window.

The User Manager’s setupMenu() method illustrates how to create a simple menu

bar. Since menus consist of a collection of items for opening and saving files, undoing

actions, or closing an application, we need a way to manage all of these different

tasks. Luckily, the QAction class defines actions for menus and toolbars and does the

managing for us. For this project, we only need to create the foundation for the menu

bar.

The following code creates the save_act QAction in the menu, sets the shortcut hot

keys, and connects the action to the saveTableToFile() slot when the user triggers the

signal in the menu bar:

Chapter 1 Overview of PyQt5

https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html

40

save_act = QAction('Save', self)

save_act.setShortcut('Ctrl+S')

save_act.triggered.connect(self.saveTableToFile)

We can create the menu_bar object using menuBar() and individual menus in the

menu bar with addMenu(). To add our save action to the File menu, use the addAction()

method. The save_act triggers the saveTableToFile() slot, opening up a dialog box to

enter a file_name. If file_name is not empty and there is at least one row in the table,

then csv.writer() writes each row to the output file using CSV format. An example of

the output file is shown in Figure 1-5.

�Windows and Dialog Boxes

With Qt, any widget that is not placed inside of a parent widget is considered a window.

The main window of an application can consist of a menu bar, a status bar, and other

widgets and serves as the principal interface that the user sees. Dialog boxes are useful

for prompting the user for feedback about how to handle a situation; they are the small

pop-ups that you see when you close an application or when an error is encountered.

PyQt has some built-in dialogs for handling different circumstances. QMessageBox

creates general dialogs to display information to the user and get their feedback through

buttons. QFileDialog is useful for selecting local files or directories on your computer.

The QDialog class is the base class for all dialog boxes and can be used to create custom

dialogs. Other dialog classes will be introduced throughout the book.

Dialog boxes can be either modal, where the user cannot interact with the rest of the

program until the box is closed, or modeless, where interaction is not blocked even if the

dialog is still open.

When the new_user_button is clicked in the main window, a dialog box like

the one in Figure 1-6 is shown to the user. The QDialog object is created in the

createNewUserDialog() method:

self.new_user_dialog = QDialog(self)

Figure 1-5.  Output file for the User Manager using CSV format

Chapter 1 Overview of PyQt5

41

Passing self as an argument makes the dialog box a child of the parent window.

The QLabel, QLineEdit, and QComboBox widgets are instantiated and arranged in the

dialog using a combination of QFormLayout and QHBoxLayout. Adding multiple items to a

QComboBox is simple with addItems() and Python lists. The drop-down list can be seen

in Figure 1-7.

Widgets are added to a QFormLayout as a combination of a label and an object using

addRow(). For example, the First name label and corresponding widget are added by

dialog_form.addRow("First name", self.enter_first_line)

The buttons, Create User and Cancel, are added to the bottom of the dialog with the

addItem() method. If the Create User button is clicked, then text from the input widgets

is added to a list, and that list is added to the table using appendRow(). The dialog box is

then closed.

Figure 1-6.  The dialog box for entering a new user’s information

Chapter 1 Overview of PyQt5

42

�Summary
PyQt is a great toolkit for making cross-platform graphical user interface applications. By

combining the simplicity of Python code and the vast number of modules that already

exist with the large number of widgets and customizability found in Qt, you are able to

create some unique programs.

In this chapter, you took a look at two different projects to help summarize some of the

main concepts for creating interfaces with PyQt. The first application, the Pomodoro Timer,

demonstrates how you can use PyQt’s signals and slots to create widgets that communicate

and update their states or appearance based upon events caused either by the user or

the application’s internal workings. You were also introduced to a number of useful PyQt

modules and classes for layout management, containers, creating timers, and styling widgets.

The second GUI application introduced a few key ideas that we will expound upon

in further chapters as we go over SQL databases and data analysis topics, especially the

model/view paradigm and creating menus.

Of course, there are still plenty of topics that were not covered in this chapter. In

Chapter 2, we will continue to explore the idea of creating GUIs for managing projects

using PyQt’s drag and drop mechanics.

Figure 1-7.  Example of a drop-down QComboBox for the Create New User dialog

Chapter 1 Overview of PyQt5

43
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8_2

CHAPTER 2

Creating GUIs for
Project Management
We all have projects that need our time and attention. Some of these tasks may be

personal, perhaps finding time to write a novel or learning a new programming

language. Others may be work related, such as helping to build your company’s website

or launching a new product. To organize and prioritize assignments, we need some way

to keep track of their progress.

An important thing to remember is that all of those projects are only temporary

ventures. They have a beginning and an end. By managing different resources – time,

manpower, financial, risk, and others – you or your company can hope to create unique

services, products, or results.

Project management allows us to apply our knowledge, skills, and tools to these

projects so that we can meet defined goals. Thankfully, modern technology has given us

new ways to better utilize our time and assets. Existing applications already help us to

formulate our ideas, begin working on different steps of the plan, collaborate, manage

teams and assign tasks to specific members, track progress and provide feedback, and

see it all through until completion.

The general process for project management is as follows:

	 1.	 Conceptualize and initiate the project.

	 2.	 Define and plan the project by setting goals, creating a schedule,

and communicating with others, if necessary.

	 3.	 Execute the steps needed to create the project as sketched out in

the plan, and allow for some leeway when needed.

	 4.	 Monitor, control, and provide feedback about the performance

and quality of the project.

	 5.	 Complete the project and maintain or update.

https://doi.org/10.1007/978-1-4842-6603-8_2#DOI

44

The user interfaces created for project management applications come in an array

of different styles. They may include buttons, tables, charts or graphs, calendars, and

an assortment of other features that allow for team members to keep track of a project’s

progress. One feature that is key to many intuitive and responsive GUIs, especially for

project management applications, is the drag and drop mechanism.

This chapter begins to examine and use this important tool to give you ideas about

how to apply it to your own desktop and mobile applications. You will

•	 Understand how to apply drag and drop using PyQt in order to

•	 Drag and drop images from your computer onto PyQt widgets.

•	 Drag and drop widgets onto other PyQt objects.

•	 Build a simple project management GUI.

•	 Learn about the QDrag and QMimeData classes.

•	 Find out how to subclass PyQt widget classes.

•	 See how to reimplement PyQt event handlers.

While this chapter does discuss some of the topics that pertain to project

management, the main focus is on the drag and drop system using PyQt. Project

management serves as the backdrop to help us visualize and code examples where drag

and drop operations can be applied.

�The Basics of Drag and Drop
With the drag and drop mechanism, virtual objects can be “grabbed” using the pointer

and dragged across the screen onto a new location, where the objects are then dropped,

bringing about some predefined action. If designed correctly, this creates an intuitive

interface that can speed up the time it takes to complete repetitive tasks. Common drag

and drop examples include

•	 Moving or copying files between folders or directories

•	 Selecting and dragging text

•	 Rearranging widgets in a GUI to customize its layout

Chapter 2 Creating GUIs for Project Management

45

•	 Dragging a color, or some other attribute, onto a graphical object to

change its appearance

•	 Rearranging the tabs in a web browser

GUIs can often suffer if there are no clear indications about which items are

draggable or where objects can be dropped. A well-designed GUI that uses drag and

drop will give clear visual cues about objects that can be grabbed, relay feedback to

the user that an object is being dragged, and indicate the location of drop zones. A few

frequently used graphical prompts are

•	 Using distinct colors, outlines, or borders to identify drag and drop

choices.

•	 Adding textual notes on target locations.

•	 Specifying particular state styles for when an item is being dragged.

This can be accomplished using style sheets.

•	 Changing the look of the mouse cursor when hovering over an object

that can be dragged.

•	 Displaying drop zones using placeholder visuals after a user begins

dragging an item. Placeholder locations can be outlined with dashed

or dotted lines.

Of course, these are only some of the visual options you could use in your own

programs. One important thing to remember is to always use consistent cues throughout

your application.

�Drag and Drop with PyQt
Drag and drop provides an intuitive mechanism for copying or moving information

from one window to another or even within the same window. For the applications

created using PyQt, many of the widgets already contain some support for drag and drop

operations. For example, QTextEdit objects already support drag and drop for plain text,

rich text, and HTML formats. In addition, the item views that are part of Qt’s model/view

framework and graphics view classes also include drag and drop functionality.

Chapter 2 Creating GUIs for Project Management

46

For some widgets, enabling drag and drop is as simple as calling two methods,

setAcceptDrops() and setDragEnabled(), and setting their values equal to True. This is

illustrated in the Listing 2-1 for QTableWidget.

Listing 2-1.  Simple code to set up drag and drop capabilities

table_widget = QTableWidget()

table_widget.setAcceptDrops(True)

table_widget.setDragEnabled(True)

However, not all widgets inherit these methods. For example, you can call

setAcceptDrops() on QLabel objects, but there is no setDragEnabled() function. For

situations like these, if the widget you want to use lacks drag or drop functionality (or

you want to modify these behaviors), then you may need to reimplement certain event

handlers.

Since drag is normally initiated when a user clicks an item, you will need to consider

modifying the following functions:

•	 mousePressEvent() – Event triggered when the user clicks a widget

•	 mouseMoveEvent() – Used when a widget is moved

•	 mouseReleaseEvent() – Event generated when the mouse button is

released

The following are for handling events as drag and drop actions enter the target area:

•	 dragEnterEvent() – Event called as the dragging action is in progress

and the mouse enters the target widget

•	 dragMoveEvent() – Used when drag is in progress and the cursor

enters the target widget or when the cursor moves inside of the widget

•	 dragLeaveEvent() – Called when a drag is in progress and the mouse

leaves the area of the target widget

•	 dropEvent() – Event called when the dragged object is dropped on

the target widget

When data is finally dropped onto the target area, the developer needs to decide

how to handle the event. If the data is accepted, then use Qt.DropAction flags to decide

whether the data is moved from the source to the target with Qt.MoveAction or copied

Chapter 2 Creating GUIs for Project Management

47

with Qt.CopyAction or select some other action. Otherwise, if the item is not accepted,

then use functions such as ignore() or set setAccepted() to False to reject the drag and

drop operation.

�The QDrag and QMimeData Classes
Since we will be creating our own drag and drop features in this chapter, it is important

to learn a little about the QDrag and QMimeData classes. The data that can be moved in

or between applications can take on various formats: plain or formatted text, documents,

images, videos, sound files, color data, and more. In order to determine what kind of

data is moving around, the Multipurpose Internet Mail Extensions (MIME) format is

used to identify an object’s content type.

The QMimeData class acts as the container that is used to link the type of data stored

in the clipboard or transferred using drag and drop with its compatible MIME type.

QMimeData handles the different data types and allows for data to be safely moved and

copied between and within applications.

What QDrag does is provide support for transferring QMimeData objects using drag

and drop operations. The drag and drop system in PyQt revolves around the QDrag class.

In Listing 2-2, you can see how the QDrag object takes ownership of the QMimeData

object with setMimeData().

Listing 2-2.  Setting up QDrag and QMimeData

drag = QDrag(self) # Create QDrag object

mimedata = QMimeData() # Create QMimeData object

mimedata.setText(self.text()) # Data type is plain text

drag.setMimeData(mimedata) # Assign mimedata

exec_() begins the drag and drop operation with specified drop action(s)

drag.exec_(Qt.MoveAction)

If the dragged object is dropped onto a target area that accepts text data types, then

the drop is accepted. Otherwise, the drop will fail.

In the following two sections, you will see how to create two separate example GUIs

with drag and drop functionality, one that demonstrates how to accept drops from

external sources and the other that shows how to create draggable items and drop zones

using PyQt widgets.

Chapter 2 Creating GUIs for Project Management

48

�Example 2.1: Drag and Drop Data from Other
Sources
An important feature of many modern GUIs is the ability to drag data, such as text or

images, into an application from other sources. This is a very common feature of web

browsers, photo editing applications, and media players.

A good idea for smart GUI design is to inform the user of areas within the window

where they can drag and drop, or even import, images or other types of data. It is

important to clearly indicate a drop zone like in Figure 2-1. This can be achieved using

a variety of different techniques. For the following example in Listing 2-3, you will see

how to

•	 Subclass PyQt widgets to give them drag and drop capabilities.

•	 Use Qt Style Sheets to create visual indicators of drop zones.

Since QLabel widgets can be used for displaying text, images, or movies, label objects

are ideal for acting as drop areas.

Figure 2-1.  Example of a QLabel widget that acts as a drop zone to display image
files

Chapter 2 Creating GUIs for Project Management

49

Listing 2-3.  Code that demonstrates how to drag images from other sources onto

PyQt widgets

drag_drop_image.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QPushButton,

QVBoxLayout, QFileDialog)

from PyQt5.QtGui import QPixmap

from PyQt5.QtCore import Qt

style_sheet = """

 QLabel#TargetLabel{

 color: darkgrey;

 border: 2px dashed darkgrey;

 font: 24px 'Helvetica';

 qproperty-alignment: AlignCenter

 }

 QLabel{

 color: darkgrey;

 font: 18px 'Helvetica';

 qproperty-alignment: AlignCenter

 }

 QPushButton{

 border: 1px solid;

 border-radius: 3px;

 font: 18px 'Helvetica'

 }

 QPushButton:pressed{

 background-color: skyblue

 }"""

class TargetLabel(QLabel):

 def __init__(self):

 super().__init__()

Chapter 2 Creating GUIs for Project Management

50

 # Create interface and layout

 self.setText("Drag & Drop Files Here")

 self.setObjectName("TargetLabel")

 self.or_label = QLabel("or")

 self.select_image_button = QPushButton("Select Files")

 self.select_image_button.setFixedSize(150, 50)

 self.select_image_button.clicked.connect(self.selectImageFile)

 label_v_box = QVBoxLayout()

 label_v_box.addStretch(3)

 label_v_box.addWidget(self.or_label)

 label_v_box.addWidget(self.select_image_button, 0, Qt.AlignCenter)

 label_v_box.addStretch(1)

 self.setLayout(label_v_box)

 def setPixmap(self, image):

 �"""Reimplement setPixmap() method so that images will appear on

objects created from TargetLabel class. Hide other widgets."""

 �# Method gets called on parent class. Otherwise, the image would

not be seen.

 super().setPixmap(image)

 self.or_label.setVisible(False)

 self.select_image_button.setVisible(False)

 def selectImageFile(self):

 """Open an image file and display it on the label widget."""

 image_file, _ = QFileDialog.getOpenFileName(self, "Open Image", "",

 �"JPG Files (*.jpeg *.jpg);;PNG Files (*.png);;Bitmap Files

(*.bmp);;\

 GIF Files (*.gif)")

 if image_file:

 self.setPixmap(QPixmap(image_file))

 self.setScaledContents(True)

class DropTargetEx(QWidget):

Chapter 2 Creating GUIs for Project Management

51

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents to the screen. """

 self.setMinimumSize(500, 400)

 self.setWindowTitle("Ex 2.1 - Drag and Drop Image")

 self.setAcceptDrops(True)

 self.setupWidgets()

 self.show()

 def setupWidgets(self):

 �"""Set up the label widget that will display the image after a

drop, and the main layout."""

 self.target_label = TargetLabel()

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(self.target_label)

 self.setLayout(main_v_box)

 def dragEnterEvent(self, event):

 �"""Reimplement event handler to check the data type of an item

being dragged onto the widget."""

 if event.mimeData().hasImage:

 event.setAccepted(True)

 else:

 event.setAccepted(False)

 def dropEvent(self, event):

 �"""Reimplement event handler to handle when an item is dropped

on the target. If the mimeData is an image, then the item is

accepted."""

 if event.mimeData().hasImage:

 event.setDropAction(Qt.CopyAction)

 image_path = event.mimeData().urls()[0].toLocalFile()

 self.setImage(image_path)

Chapter 2 Creating GUIs for Project Management

52

 # Accept the drop action

 event.setAccepted(True)

 else:

 event.setAccepted(False)

 def setImage(self, image_file):

 �"""Set the label's pixmap when an item is dropped onto the target

area."""

 self.target_label.setPixmap(QPixmap(image_file))

 self.target_label.setScaledContents(True)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = DropTargetEx()

 sys.exit(app.exec_())

Figure 2-2 displays how the label will look after an image has been dropped onto it.

Notice how the QLabel text and the QPushButton are hidden from view.

�Explanation
To get started, we are going to import sys and a few PyQt5 classes for the widgets and

layouts that we need. Since we will be working with images in this example, we also need

to import QPixmap from the QtGui module.

Figure 2-2.  The GUI displays an image that has been dropped onto the window
using PyQt’s drag and drop system

Chapter 2 Creating GUIs for Project Management

53

Next, let’s set up a simple style sheet. If you look at Figure 2-1, you can see that there

are a dashed border and text, "Drag & Drop Files Here," serving as indicators to the

user that images can be dropped inside of this region. These are common methods used

in many applications for indicating drop zones. Visual properties for other widgets are

also applied in style_sheet.

There are two classes in this example, TargetLabel and DropTargetEx. The TargetLabel

class inherits from QLabel, acts as a container for other widgets, and creates the visual cues

for the drop area. We need to subclass QLabel in order to reimplement the setPixmap()

method to display an image when one is dropped into the main window. If an image is

dropped, then the text and button widgets are hidden by setting setVisible() to False.

Images can also be displayed in TargetLabel objects using the select_image_

button. This opens an instance of QFileDialog for the user to select local files.

The widgets in TargetLabel are all organized using a QVBoxLayout. In order to

customize a layout, methods such as addStretch() can be used for adding stretchable

space between widgets.

In DropTargetEx, the main window’s attributes are assigned, and show() is used to

display the GUI to the screen. Next, we instantiate the target_label object and arrange

it in the main window in setupWidgets().

To enable drops on a widget, setAcceptDrops() needs to be set to True. The

dragEnterEvent() and dropEvent() event handlers also need to be reimplemented.

The dragEnterEvent() function can be used to inform PyQt about what kind of data

a widget can accept. The following code from Listing 2-3 shows how to reimplement

dragEnterEvent() so that our widget can only receive image data types:

def dragEnterEvent(self, event):

 �# Check if the mimeData type from the drag event is an image. If so,

accept the drop. Otherwise, ignore.

 if event.mimeData().hasImage:

 event.setAccepted(True)

 else:

 event.setAccepted(False)

In dropEvent(), if the mimeData() type is an image, then we want to copy the

dropped image data from image_path. The type of drop action for the event in Listing 2-3

is assigned by

event.setDropAction(Qt.CopyAction)

Chapter 2 Creating GUIs for Project Management

54

The target_label’s pixmap is set by calling the reimplemented setPixmap()

method. Finally, the image that is dragged into the window is scaled to fit the label’s

current size using setScaledContents().

�Example 2.2: Drag and Drop Widgets
In the first example, you saw how simple PyQt makes it to reimplement event handlers

to add drag and drop functionality to widgets. Now we are going to take a look at how

we can use those same ideas to create widgets that can be moved around within the

same application window. Following along with this example will also make it easier to

understand the Project Manager application later in this chapter.

Example 2.2 demonstrates the fundamental steps necessary for creating widgets that

can be dragged and for building container classes that can receive data drops. The GUI

for this program can be seen in Figure 2-3.

For Listing 2-4, a simple program is created to help you understand how to subclass

different PyQt classes in order to give them either drag or drop capabilities.

Figure 2-3.  The GUI window is made up of two containers that can handle
QPushButton drops. The mouse pointer in the image is shown dragging a button
into the left container. The small square under the pointer is the basic feedback that
PyQt gives when a widget is being dragged

Chapter 2 Creating GUIs for Project Management

55

Listing 2-4.  Demonstrates how to subclass PyQt classes and reimplement drag

and drop event handlers

drag_drop_widget.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QPushButton,

QHBoxLayout, QVBoxLayout, QFrame)

from PyQt5.QtGui import QDrag

from PyQt5.QtCore import Qt, QMimeData

style_sheet = """

 QFrame#Containers{

 background-color: lightgrey;

 border: 2px solid black

 }"""

Class for objects that can be dragged

class DragButton(QPushButton):

 def __init__(self, text):

 super().__init__(text)

 self.setText(text)

 def mousePressEvent(self, event):

 """Reimplement the event handler when the object is pressed."""

 if event.button() == Qt.LeftButton:

 self.drag_start_postion = event.pos()

 def mouseMoveEvent(self, event):

 """Reimplement the event handler when the object is being dragged."""

 drag = QDrag(self) # Create drag object for MIME-based drag and drop

 mime_data = QMimeData()

 drag.setMimeData(mime_data)

 �# Begins the drag and drop operation and sets the type of drop

action

 drag.exec_(Qt.MoveAction)

Chapter 2 Creating GUIs for Project Management

56

Target: Where the dragged object is being dropped

class DropTargetWidget(QFrame):

 def __init__(self):

 super().__init__()

 # Enable drop events

 self.setAcceptDrops(True)

 self.setObjectName("Containers")

 # Create drop target class layout

 self.container_v_box = QVBoxLayout()

 self.container_v_box.setAlignment(Qt.AlignTop)

 self.setLayout(self.container_v_box)

 def addButton(self, button):

 """Add QPushButton widgets to container class layout."""

 self.container_v_box.addWidget(button, 0, Qt.AlignCenter)

 def dragEnterEvent(self, event):

 �"""Accept drag and drop operations when objects are dragged inside

widget."""

 event.acceptProposedAction()

 def dropEvent(self, event):

 �"""Check the source of the mouse event. If the source (position of

click on widget) does not already exist in the target widget then

the drop is accepted."""

 event.setDropAction(Qt.MoveAction)

 source = event.source() # Source of the mouse event

 if source not in self.children():

 event.setAccepted(True)

 self.container_v_box.addWidget(source, 0, Qt.AlignCenter)

 else:

 event.setAccepted(False)

class DragDropWidgetsEx(QWidget):

Chapter 2 Creating GUIs for Project Management

57

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents to the screen. """

 self.setMinimumSize(500, 400)

 self.setWindowTitle("Ex 2.2 - Drag and Drop Widgets")

 self.setupWidgets()

 self.show()

 def setupWidgets(self):

 �"""Set up the left and right DropTargetWidget objects, add a single

DragButton object to each one, and create the main layout for the

GUI."""

 left_target = DropTargetWidget()

 left_label = DragButton("Left")

 left_target.addButton(left_label)

 right_target = DropTargetWidget()

 right_label = DragButton("Right")

 right_target.addButton(right_label)

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(left_target)

 main_h_box.addWidget(right_target)

 self.setLayout(main_h_box)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = DragDropWidgetsEx()

 sys.exit(app.exec_())

The drag and drop GUI can be seen in Figure 2-3.

Chapter 2 Creating GUIs for Project Management

58

�Explanation
Let’s begin by importing the classes we need from QtWidgets, QtGui, and QtCore.

For this example, we will also begin using the QDrag and QMimeData classes.

The Qt Style Sheet here is only used to make the QFrame widgets stand out visually

from the window’s background.

�Creating Drag Widgets

The DragButton class that inherits from QPushButton sets up the properties and

reimplements the basic event handler functions necessary for creating a widget that can

be dragged. Objects created from this class will act as the draggable widgets in the GUI

window. For this class, both the mousePressEvent() and mouseMoveEvent() functions

are reimplemented so that we can distinguish between clicks and drags.

The mousePressEvent() function begins the drag and drop operation and stores the

position of where the mouse clicks the widget. If the user begins dragging the mouse

after clicking the DragButton object, then mouseMoveEvent() will create the QDrag and

QMimeData objects, set the drag object’s mime_data, and finally begin the drag and drop

operation with exec_(). The specified drop action is Qt.MoveAction.

�Creating Drop Targets

In Example 2.1, the entire main window acts as the drop area. Once an image is dropped

in the window, the QLabel widget will update to display that image to the user. For this

example, we will take a look at subclassing PyQt classes that will serve as drop areas.

Multiple instances of this class can then be added to a single application to create

separate drop areas.

The DropTargetWidget class inherits from QFrame. In the class constructor,

setAcceptDrops() is set to True so that the class can receive data drops. Next, we create

a simple layout, container_v_box. When the user adds buttons, either by using the

class’s addButton() method or by dropping buttons onto the DropTargetWidget object,

they will be added to the layout.

Our next step is to reimplement the dragEnterEvent() and dropEvent() event

handlers. You will typically use dragEnterEvent() to determine what kinds of data that

the widget can receive. Here we use this function to accept the proposed action, which is

Qt.MoveAction, without checking the type of data.

Chapter 2 Creating GUIs for Project Management

59

In dropEvent(), we use the source of the mouse event to determine whether or not

to accept the drop. If the source of the drag and drop came from outside the widget, then

add the source to the container_v_box layout and accept the move action. The results

of a successful drag and drop can be seen in Figure 2-4.

The last step is to create the DragDropWidgetsEx class to initialize and show the GUI

window and set up the DropTargetWidget and DragButton objects.

�Project 2.1: Project Management GUI
Project management applications are designed with ease of use in mind. Whether it’s for

keeping track of your to-do lists, ideas, or team projects, no user wants to be distracted

by a chaotic interface. A simplistic layout, clearly defined widgets and other interactive

elements, and intuitive mechanics such as drag and drop are important to project

management GUIs like the one shown in Figure 2-5.

Figure 2-4.  Shows the results of dragging and dropping the Right QPushButton
onto the left QFrame widget

Chapter 2 Creating GUIs for Project Management

60

Since no two projects are exactly the same, these types of applications are usually

fairly customizable. You or your team may have different goals, timelines, or resources.

Therefore, it is best that the different widgets that display information are updatable and

can reflect changes back to the user.

�Project Management GUI Solution
The interfaces of most project management GUIs are generally clutter-free. Each

widget that is displayed only gives the necessary visual or textual information to let

the user know only the essential details about a particular project such as the name,

team members working on it, deadline, and current level of progress. Only when the

user clicks a particular task will they be able to gain access to widgets that display more

information or provide tools for editing the project, typically by either expanding the

widget’s size or opening a dialog box.

The project1 found in Listing 2-5 focuses on only the essential requirements for

getting started making this kind of application. By doing so, we can focus on getting

many of the drag and drop mechanics working properly.

1�Some of the features for this application are loosely based on Trello boards (https://trello.com/).

Figure 2-5.  The project management GUI

Chapter 2 Creating GUIs for Project Management

https://trello.com/

61

The window in Figure 2-5 displays four separate categories to represent the process

a project might undergo, from conceptualization to execution, to review, and finally,

completion. Different tasks can be added to a category using the button at the bottom of

each section. Once a new task is created, the user can then add additional information

about that task by opening up a different dialog box. This dialog can be accessed by

clicking the QPushButton that appears next to each task’s label. Also, tasks can be

dragged and dropped between the different containers.

There are other features, such as deleting tasks or being able to create your own

custom categories, that are left up to you to implement.

Listing 2-5.  Code for the project management GUI

project_manager.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QFrame,

QPushButton, QLineEdit, QTextEdit, QHBoxLayout, QVBoxLayout, QDialog)

from PyQt5.QtCore import Qt, QMimeData, QSize

from PyQt5.QtGui import QDrag, QIcon, QPixmap, QPainter, QTextCursor

from ProjectManagerStyleSheet import style_sheet

class TaskWidget(QFrame):

 def __init__(self, title):

 super().__init__()

 self.setMinimumHeight(32)

 self.setObjectName("Task")

 self.title = title

 self.task_description = ""

 task_label = QLabel(title)

 task_label.setObjectName("TaskLabel")

 edit_task_button = QPushButton(QIcon("images/three_dots.png"), None)

 edit_task_button.setIconSize(QSize(28, 28))

 edit_task_button.setMaximumSize(30, 30)

 edit_task_button.clicked.connect(self.specifyTaskInfo)

Chapter 2 Creating GUIs for Project Management

62

 task_h_box = QHBoxLayout()

 task_h_box.addWidget(task_label)

 task_h_box.addWidget(edit_task_button)

 self.setLayout(task_h_box)

 def specifyTaskInfo(self):

 �"""Create the dialog box where the user can write more information

about their currently selected task."""

 self.task_info_dialog = QDialog(self)

 task_header = QLabel(self.title)

 task_header.setObjectName("TaskHeader")

 description_label = QLabel("Description")

 description_label.setObjectName("DescriptionLabel")

 self.enter_task_desc_text = QTextEdit()

 self.enter_task_desc_text.setText(self.task_description)

 # The cursor will appear at the end of the text edit input field

 self.enter_task_desc_text.moveCursor(QTextCursor.End)

 save_button = QPushButton("Save")

 save_button.clicked.connect(self.confirmTaskDescription)

 cancel_button = QPushButton("Cancel")

 cancel_button.clicked.connect(self.task_info_dialog.reject)

 # Create layout for the dialog's buttons

 button_h_box = QHBoxLayout()

 button_h_box.addWidget(save_button)

 button_h_box.addSpacing(15)

 button_h_box.addWidget(cancel_button)

 # Create layout and add widgets for the dialog box

 dialog_v_box = QVBoxLayout()

 dialog_v_box.addWidget(task_header)

 dialog_v_box.addWidget(description_label, Qt.AlignLeft)

 dialog_v_box.addWidget(self.enter_task_desc_text)

 dialog_v_box.addItem(button_h_box)

Chapter 2 Creating GUIs for Project Management

63

 self.task_info_dialog.setLayout(dialog_v_box)

 self.task_info_dialog.show() # Display dialog box

 def confirmTaskDescription(self):

 �"""When a user selects Save, save the info written in the text edit

widget to the task_description variable."""

 text = self.enter_task_desc_text.toPlainText()

 if text == "":

 pass

 elif text != "":

 self.task_description = text

 self.task_info_dialog.close() # Close dialog box

 def mousePressEvent(self, event):

 """Reimplement what happens when the user clicks on the widget."""

 if event.button() == Qt.LeftButton:

 self.drag_start_position = event.pos()

 def mouseMoveEvent(self, event):

 �"""Reimplement how to handle the widget being dragged. Change the

mouse icon when the user begins dragging the object."""

 drag = QDrag(self)

 �# When the user begins dragging the object, change the cursor's

icon and set the drop action

 drag.setDragCursor(QPixmap("images/drag.png"), Qt.MoveAction)

 mime_data = QMimeData()

 drag.setMimeData(mime_data)

 # Create the QPainter object that will draw the widget being dragged

 pixmap = QPixmap(self.size()) # Get the size of the object

 painter = QPainter(pixmap) # Set the painter's pixmap

 �# Draw the pixmap; grab() renders the widget into a pixmap

specified by rect()

 painter.drawPixmap(self.rect(), self.grab())

 painter.end()

Chapter 2 Creating GUIs for Project Management

64

 drag.setPixmap(pixmap) # Set the pixmap to represent the drag action

 drag.setHotSpot(event.pos())

 drag.exec_(Qt.MoveAction)

class TaskContainer(QWidget):

 def __init__(self, title, bg_color):

 super().__init__()

 self.setAcceptDrops(True)

 self.setObjectName("ContainerWidget")

 container_label = QLabel(title) # Container's title

 # Set the background color of the container's label

 �container_label.setStyleSheet("background-color: {}".format(bg_

color))

 �container_frame = QFrame() # Main container to hold all TaskWidget

objects

 container_frame.setObjectName("ContainerFrame")

 self.new_task_button = QPushButton("+ Add a new task")

 self.new_task_button.clicked.connect(self.createNewTask)

 self.tasks_v_box = QVBoxLayout()

 self.tasks_v_box.insertWidget(-1, self.new_task_button)

 container_frame.setLayout(self.tasks_v_box)

 # Main layout for container class

 container_v_box = QVBoxLayout()

 container_v_box.setSpacing(0) # No space between widgets

 container_v_box.setAlignment(Qt.AlignTop)

 container_v_box.addWidget(container_label)

 container_v_box.addWidget(container_frame)

 container_v_box.setContentsMargins(0, 0, 0, 0)

 self.setLayout(container_v_box)

 def createNewTask(self):

 �"""Set up the dialog box that allows the user to create a new

task."""

 self.new_task_dialog = QDialog(self)

Chapter 2 Creating GUIs for Project Management

65

 self.new_task_dialog.setWindowTitle("Create New Task")

 self.new_task_dialog.setModal(True) # Create a modal dialog

 self.enter_task_line = QLineEdit()

 �self.enter_task_line.setPlaceholderText("Enter a title for this

task...")

 self.add_task_button = QPushButton("Add Task")

 self.add_task_button.clicked.connect(self.confirmTask)

 cancel_button = QPushButton("Cancel")

 cancel_button.clicked.connect(self.new_task_dialog.reject)

 # Create layout for the dialog's buttons

 button_h_box = QHBoxLayout()

 button_h_box.addWidget(self.add_task_button)

 button_h_box.addSpacing(15)

 button_h_box.addWidget(cancel_button)

 # Create layout and add widgets for the dialog box

 dialog_v_box = QVBoxLayout()

 dialog_v_box.addWidget(self.enter_task_line)

 dialog_v_box.addItem(button_h_box)

 self.new_task_dialog.setLayout(dialog_v_box)

 self.new_task_dialog.show()

 def confirmTask(self):

 �"""If a user clicks Add Task in the dialog box, create a new

TaskWidget object and insert it into the container's layout."""

 if self.enter_task_line.text() != "":

 new_task = TaskWidget(self.enter_task_line.text())

 self.tasks_v_box.insertWidget(0, new_task, 0)

 self.new_task_dialog.close()

 def dragEnterEvent(self, event):

 """Accept the dragging event onto the widget."""

 event.setAccepted(True)

Chapter 2 Creating GUIs for Project Management

66

 def dropEvent(self, event):

 �"""Check the source of the mouse event. If the source does not

already exist in the target widget then the drop is allowed."""

 event.setDropAction(Qt.MoveAction)

 source = event.source()

 if source not in self.children():

 event.setAccepted(True)

 self.tasks_v_box.addWidget(source)

 else:

 event.setAccepted(False)

 �# Whenever a widget is dropped, ensure new_task_button stays at the

bottom of the container

 self.tasks_v_box.insertWidget(-1, self.new_task_button)

class ProjectManager(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents to the screen. """

 self.setMinimumSize(800, 400)

 self.showMaximized()

 self.setWindowTitle('2.1 - Project Manager')

 self.setupWidgets()

 self.show()

 def setupWidgets(self):

 """Set up the containers and main layout for the window."""

 �possible_container = TaskContainer("Possible Projects", "#0AC2E4")

Blue

 progress_container = TaskContainer("In Progress", "#F88A20") # Orange

 review_container = TaskContainer("Under Review", "#E7CA5F") # Yellow

 �completed_container = TaskContainer("Completed Projects",

"#10C94E") # Green

Chapter 2 Creating GUIs for Project Management

67

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(possible_container)

 main_h_box.addWidget(progress_container)

 main_h_box.addWidget(review_container)

 main_h_box.addWidget(completed_container)

 self.setLayout(main_h_box)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = ProjectManager()

 sys.exit(app.exec_())

The complete application’s GUI is shown in Figure 2-5.

�Explanation
For this project, we will use many of the concepts learned in the previous examples.

Similar to Example 2.2, one Python class will be used for handling the drop operations,

and another class will act as the target area for drop actions.

To begin, import the widget, layout, and dialog classes from the QtWidgets module.

The QDrag and QMimeData classes will be used for creating the drag and drop mechanics

and transferring data between widgets in the application, respectively.

Other classes we need to include are QIcon and QSize for setting and adjusting

the size of icons, QPixmap and QPainter for recreating and drawing an image of the

widget the user is dragging on the screen, and QTextCursor for interacting with the

cursor in the QTextEdit widgets. Finally, we import the style_sheet for the GUI from

ProjectManagerStyleSheet.

Let’s begin with the TaskWidget class that inherits from QFrame and functions as a

draggable widget. The container consists of two widgets: task_label for displaying a

task’s title and edit_task_button that the user can click to open a dialog box.

The edit_task_button’s clicked() signal is connected to the specifyTaskInfo()

slot. This opens a QDialog object for the user to enter description text into a QTextEdit

widget. The dialog box can be seen in Figure 2-6. If the user clicks the Save button in

the dialog, the text they entered will be saved to the task_description variable in

confirmTaskDescription(). The next time a user opens this dialog, they then can pick

up where they left off and make new changes or add notes to the description.

Chapter 2 Creating GUIs for Project Management

68

This class reimplements the mousePressEvent() and mouseMoveEvent() functions

similar to Example 2.2. However, there are some notable differences. When the user

begins dragging the widget, the mouse cursor’s icon will change to let the user know

they have begun moving the widget. This is accomplished using the setDragCursor()

method in the following code from Listing 2-5:

drag.setDragCursor(QPixmap("images/drag.png"), Qt.MoveAction)

Also, this program demonstrates how to display an image of the selected TaskWidget

object while it is being dragged. Figure 2-7 illustrates both the changed drag cursor

icon and the visual feedback for the current task being dragged. Refer to the code and

comments in mouseMoveEvent() to see how to use the QPixmap and QPainter classes to

create this type of feedback.

If you begin dragging a widget, the mouse will automatically snap to its top-left

corner. To avoid this, you can set the mouse’s hot spot using the setHotSpot() method.

For the project in Listing 2-5, the hot spot reflects the position of the drag event (where

the mouse clicked the widget):

drag.setHotSpot(event.pos())

Figure 2-6.  Dialog box for users to enter more detailed information about specific
tasks

Chapter 2 Creating GUIs for Project Management

69

Figure 2-7.  Visual feedback for drag and drop operations can be given to the user
in different ways. Changing the mouse cursor’s icon, displaying an image of the
widget while it is being dragged, and using style sheets to indicate that an object
can be dragged are just a few of the methods utilized in the Project Manager GUI

TaskContainer instances act as the drop areas for the TaskWidget objects. When the

application first begins, the containers will be empty except for the new_task_button.

Rather than use addWidget() to append the widget to the layout, the button is added

to the layout using insertWidget(). In the next bit of code from Listing 2-5, the -1

argument makes certain that the new_task_button will always appear at the bottom of a

TaskContainer:

self.tasks_v_box.insertWidget(-1, self.new_task_button)

When the user wants to add a new task by clicking the new_task_button, a dialog

box, shown in Figure 2-8, appears. The user can then enter a task’s title and click Add

Task to send a signal to the confirmTask() slot where a new TaskWidget object will be

created. The event handlers dragEnterEvent() and dropEvent() are reimplemented

much like in Example 2.2.

Chapter 2 Creating GUIs for Project Management

70

With the draggable widget and drop area classes created, the class for the main

window can be constructed. In the ProjectManager class, the four TaskContainer

objects are generated and added to the main_h_box layout.

�Style Sheet for the Project Manager

Qt Style Sheets are really useful for customizing the look of desktop and mobile

applications and giving them fresh and unique designs. The project management GUI

manipulates the look of a number of different widgets to visually break apart the different

containers and to help users easily navigate their way around the window. In Listing 2-6,

you can find the CSS code as well as comments to help you better understand the

modifications made to the different PyQt classes.

Listing 2-6.  The code for the style sheet of the Project Manager application

ProjectManagerStyleSheet.py

Style sheet for the Project Manager GUI

style_sheet = """

 QWidget{ /* Main window's background color */

 background-color: #ACADAD

 }

 QFrame#ContainerFrame{ /* Style border for TaskContainer class */

 background-color: #8B8E96;

 border-bottom-left-radius: 4px;

 border-bottom-right-radius: 4px

 }

 �QFrame:hover#Task{ /* Indicate that the object is interactive and can

be dragged when the user hovers over it*/

 border: 3px solid #2B2B2B

 }

Figure 2-8.  Dialog box for creating new tasks

Chapter 2 Creating GUIs for Project Management

71

 QLabel#TaskHeader{ /* Style header for dialog box */

 background-color: #8B8E96;

 qproperty-alignment: AlignLeft;

 padding: 0px 0px;

 }

 QLabel#TaskLabel{ /* Set alignment for QLabel in TaskWidget class */

 qproperty-alignment: AlignLeft;

 }

 QLabel#DescriptionLabel{ /* Style for label in dialog box */

 background-color: #8B8E96;

 qproperty-alignment: AlignLeft;

 padding: 0px 0px;

 font: 13px

 }

 QLabel{ /* Style for QLabel objects for TaskContainer's title */

 color: #EFEFEF;

 qproperty-alignment: AlignCenter;

 border-top-left-radius: 4px; border-top-right-radius: 4px;

 padding: 10px 0px;

 font: bold 15px

 }

 QPushButton{

 color: #4E4C4C;

 font: 14px 'Helvetica'

 }

 QPushButton#Task{

 color: #EFEFEF

 }

 QDialog{

 background-color: #8B8E96

 }

Chapter 2 Creating GUIs for Project Management

72

 QLineEdit{

 background-color: #FFFFFF

 }

 QTextEdit{

 background-color: #FFFFFF

 }"""

The style_sheet is imported by the project management GUI in Listing 2-3 and

then applied to the application by

app.setStyleSheet(style_sheet)

�Summary
The drag and drop mechanism is an important feature included in many desktop and

mobile applications. The process of selecting files, images or text, either from within a

program or from external sources or applying commands and tools at a specific location

within a GUI is made simpler with intuitive drag and drop controls. Drag and drop takes

advantage of how humans generally interact with computers through point and click

actions and mouse movements and combines them with the visual context and cues

provided by graphics, to create smoother and more user-friendly interfaces.

In this chapter, we saw how to use drag and drop for moving images from your

local system onto PyQt applications. We also learned how to subclass PyQt classes

and reimplement event handlers in order to drag and drop widgets back and forth

between PyQt classes. These ideas were applied to the concept of project management

applications as these types of UIs need to be customizable and accessible to a wide range

of users with potentially different technical skill levels.

The core class for drag and drop used by PyQt is QDrag. This class can be combined

with QMimeData to make it possible to transfer any type of information between

applications safely using drag and drop. One of the benefits of working with MIME data

is that drag and drop actions are not simply limited to text or images. With PyQt, you can

also create your own data types. For more information about how to do this, check out

https://doc.qt.io/qt-5/dnd.html.

In the next chapter, we will begin taking a look at additional PyQt modules designed

for creating charts and graphs to visualize and analyze data.

Chapter 2 Creating GUIs for Project Management

https://doc.qt.io/qt-5/dnd.html

73
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8_3

CHAPTER 3

Data Visualization
and Analysis
Unless you have been living under a rock for the last few decades, then you know just

how important collecting and understanding data has become. The evolution of data
science, the field of study interested in extracting knowledge and patterns from data,

continues to spread its reach and permeate into a majority of other industries.

Our world continues to find new uses for data, from Internet search algorithms to

product recommendation, image and speech recognition, and more. The applications

we can create from studying and understanding data seem endless. However, data often

does not come in a nice package with a pretty bow on top. It is often unstructured and

hard for the human brain to comprehend if not organized and presented visually.

Data visualization allows us to see data presented in visual form, helping us to gain

insight and make effective decisions based on the patterns within the information. This

process makes it much easier for humans to discern relationships between variables

when viewed graphically with charts, tables, and graphs. There are already a few

programming languages available for working with data, including Python, Java, SQL,

and R.

In this chapter, we will explore some of the tools provided by PyQt for creating

2D charts for visualizing and analyzing data. While some basic data visualization

concepts are covered in this chapter, the main focus is to serve as an introduction to GUI

development for data visualization with PyQt. Some of the topics covered in this chapter

include

•	 Learning about and installing the PyQtChart module for creating 2D

charts

•	 Creating various GUIs for data visualization using public datasets

•	 Seeing various techniques for modifying the appearance of charts

https://doi.org/10.1007/978-1-4842-6603-8_3#DOI

74

•	 Utilizing PyQtChart classes for performing linear regression

•	 Taking a look at two other libraries often used for data science with

Python – NumPy and Matplotlib

•	 Building a data visualization GUI that combines PyQt and Matplotlib

Before moving on to creating charts, it is important to understand the steps

necessary for collecting, processing, visualizing, and analyzing data.

�Steps for Data Analysis
Data analysis is the process of collecting, cleaning, shaping, and modeling data with

the purpose of discovering useful information that can be used in decision-making

processes. Data visualization is but one part of the whole operation.

A number of data analysis tools already exist for processing, visualizing, and

manipulating data, as well as analyzing correlations between datasets. The general

process for data analysis is illustrated in Figure 3-1. While the process for a single project

is generally cyclical, problems, such as having insufficient amounts of data or incorrectly

processing data, can cause a researcher to repeat previous steps.

Figure 3-1.  Depiction of the data analysis process

Chapter 3 Data Visualization and Analysis

75

Different texts may view the process of building data analysis projects in slightly

different ways, but the general process is as follows:

•	 Designing Data Problem – Establish the purpose and the parameters

for collecting data. Decide what problem your project is looking to

solve, what kind of data you will need, and identify possible sources

for collecting data.

•	 Data Collection – Gather the information based on guidelines set in

the previous step. Possible data sources may include databases or

scraping from websites.

•	 Data Processing and Cleaning – This step includes organizing,

managing, and storing your data. After processing, you can begin to

clean the data by removing empty spaces, duplicates, or errors.

•	 Data Analysis – With the data cleaned, you can begin exploring the

data and testing different analysis and visualization techniques

to look for patterns and new questions to better understand the

underlying data. Different statistical techniques may also be needed

to identify relationships in the data. You may also need to return to

previous steps for further data collection or cleaning.

•	 Data Evaluation – Dive further into the data to answer the questions

specific to your problem. Evaluate your prediction models and assure

accurate results.

•	 Reporting Results – Relay and present the results of analysis to others.

This may involve the use of data visualization techniques to help

others see the relationships in the data. In many cases, this step could

also involve deploying your model for use by others. With the project

complete, return back to designing a new data problem.

With a basic understanding of the data analysis process, let’s move on and begin

seeing how we can use PyQt to help us visualize our own datasets.

Chapter 3 Data Visualization and Analysis

76

�The PyQtChart Module
The Qt library includes an extensive library for creating charts – Qt Chart. The

PyQtChart module is a set of Python bindings that allow you to seamlessly integrate

2D charts into your Python programs. With PyQtChart, you can create customizable

and interactive GUIs for data visualization. The charts and graphs are created using the

Qt Graphics View Framework, enabling developers to include animation, incorporate

interactive elements, and create dynamic plots.

In the upcoming sections in this chapter, you will see how to install the PyQtChart

module and then get started building interfaces for working with data.

Note I f you are interested in visualizing data in 3D, PyQt also includes a set of
bindings for the Qt Data Visualization library, which we will explore in Chapter 6.

For more information about the Riverbank Computing’s PyQtChart module, have a

look at https://riverbankcomputing.com/software/pyqtchart.

If you are interested in finding out more about the Qt Company’s Qt Chart library or

would like some examples of other ways that you can use Qt Chart, check out https://

doc.qt.io/qt-5/qtcharts-index.html.

�Overview of Chart Types
PyQtChart provides a number of easy-to-use classes for building charts. When you are

creating data-centric applications, the QChart class can be used to display different

types of information, presented by employing one of the different chart types listed in

Table 3-1.

Each of the chart types inherits from one of the many QAbstractSeries derived

classes. Once data has been added to a series class instance, the data can be

visualized using QChart. Different kinds of series can be displayed in a single chart.

When utilizing datasets, you can also consider using model mapper classes, such as

QDataWidgetMapper, as a data source for creating editable charts.

Chapter 3 Data Visualization and Analysis

https://riverbankcomputing.com/software/pyqtchart
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html

77

More information about the different chart types can be found at https://doc.

qt.io/qt-5/qtcharts-overview.html.

Table 3-1.  The PyQtChart module’s chart types. The classes needed to create the

different chart types are also included in the table

Chart Types Description PyQtChart Classes

Area chart Based on line charts with the area under the

line filled in. Useful for emphasizing the scale

of difference between groups.

QAreaSeries; boundaries

between lines are created with

QLineSeries.

Bar chart Represents data using horizontal or vertical

bars. Can also create horizontal or stacked bar

charts. Useful for comparing discrete values.

QBarSet to create one set of

bars; then use QBarSeries,

QBarHorizontalSeries, or

QStackedBarSeries.

Box plot Represents data as quartiles with whiskers

(box-and-whisker charts) to visualize

variations and outliers in the data values.

QBoxSet to create a single

box-and-whisker item and then

QBoxPlotSeries.

Candlestick

chart

Represents data as boxes where the tails of

the boxes depict high and low fluctuations in

the data. Typically used in financial charts.

QCandlestickSet to

create a candlestick and then

QCandlestickSeries.

Line chart,

spline chart

Represents data as a series of data points

joined by a line. Useful for comparing

continuous values.

QLineSeries, QSplineSeries.

Scatter plot Displays data as a collection of points. Useful

for showing the existence of a relationship

between two variables.

QScatterSeries.

Pie chart Represents data as a pie divided into slices.

Useful for displaying the share of each part in

relation to the total value.

QPieSeries; add slices using

QPieSlice.

Polar plot Displays data in a circular graph, where a

series is represented by a closed curve from

the center. Placement of data points is based

on the radial distance and angle from the pole

(the center).

Use QPolarChart, which inherits

from QChart and includes support

for line, spline, and scatter series.

Chapter 3 Data Visualization and Analysis

https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html

78

�Installing PyQtChart
The PyQt framework has a number of add-ons that are not installed at the same time

you install PyQt5. PyQtChart for visualizing 2D data happens to be one of them, and

installing the module is thankfully very simple.

To obtain the PyQtChart module from the PyPI repository, open up your computer’s

shell and enter

$ pip3 install PyQtChart

After the installation is complete, go into the Python shell by entering python3 in the

command line. Then enter

>>> import PyQt5.QtChart

If no errors appear, then you are ready to start using PyQt’s PyQtChart module in

your own applications.

�Example 3.1: Creating a Simple Chart
To get started, we will first see how to create a simple line chart, shown in Figure 3-2,

using the PyQtChart module. Line charts are very useful for visualizing how one variable

(represented on the vertical y-axis and referred to as the dependent variable) changes

with respect to another (represented on the horizontal x-axis and denoted as the

independent variable). Line graphs are great for depicting continuous values typically

related to time. By looking at the slope of the line for any given segment, the user can

understand the direction of the trends in the data.

By the end of this example, you will understand how to

•	 Create a simple chart using QChart and QChartView.

•	 Add data to a PyQtChart series, namely, QLineSeries.

•	 Set up the chart’s axes, legend, and other chart-related features.

•	 Load real data from CSV-formatted files for data visualization.

With a few modifications to the program in Listing 3-1, such as the path to the file name,

the columns selected for independent and dependent variables, and the values displayed in

the axes, this example can be quickly adapted to your own data visualization projects.

Chapter 3 Data Visualization and Analysis

79

�Quick Glance at the Dataset
Rather than creating synthetic data for the examples found in this chapter, a better

approach may be to actually show how to collect and utilize public datasets for data

visualization. The step-by-step process for setting up and viewing data using PyQtChart

is covered in the “Explanation” section of this example.

Before you begin creating a chart, you need to decide which chart type you want

to use. This data will be represented in a series – a related set of data items. You can

think of a series as a column you select from a dataset. For this example, we will use the

QLineSeries class to represent our series of data.

Let’s take a look at the data we will visualize using PyQt in Table 3-2. Governments

are able to pay for development projects, education, healthcare, infrastructure, and other

goods and services through public spending. For an early-industrialized country, such

as Sweden, a portion of their public spending as a percentage of GDP focused on social

spending,1 and the amount spent increased over time. Rapid growth in the late twentieth

century can be associated with the intensity of funding for education and healthcare.

Note T he datasets for this chapter can be found on GitHub at the link in the
“Introduction.”

1�The data used for this example is permitted under the CC BY license. More information can
be found in Esteban Ortiz-Ospina (2016). “Government Spending.” Published online at
OurWorldInData.org. Retrieved from https://ourworldindata.org/government-spending
[online resource].

Table 3-2.  The header row and the first five rows in the social_spending_sweden.

csv file. The Code column for each country is included in the original dataset

Entity Code Year SocialExpenditureGDP(%)

Sweden SWE 1880 0.72

Sweden SWE 1890 0.85

Sweden SWE 1900 0.85

Sweden SWE 1910 1.03

Sweden SWE 1920 1.14

Chapter 3 Data Visualization and Analysis

http://ourworldindata.org
https://ourworldindata.org/government-spending

80

This trend of increased public social expenditure with relation to time can be seen in

both the data in Table 3-2 and the line chart in Figure 3-2. Values in the Year column will

act as the independent variable, and values in the SocialExpenditureGDP(%) column

will serve as the dependent variable for our chart.

To understand how you can create the chart shown in Figure 3-2 from an actual

dataset, follow along with Listing 3-1 and the “Explanation” section.

Listing 3-1.  Code for plotting a simple line chart in PyQt

simple_line_chart.py

Import necessary modules

import sys, csv

from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout

from PyQt5.QtChart import QChart, QChartView, QLineSeries, QValueAxis

from PyQt5.QtCore import Qt

from PyQt5.QtGui import QPainter

class DisplayGraph(QWidget):

Figure 3-2.  A simple line chart displaying the growth in public social spending in
Sweden from 1880 to 2016

Chapter 3 Data Visualization and Analysis

81

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents."""

 self.setMinimumSize(600, 400)

 self.setWindowTitle("Ex 3.1 - Line Chart Example")

 self.setupChart()

 self.show()

 def setupChart(self):

 �"""Set up the GUI's graph line series type, chart instance, chart

axes, and chart view widget."""

 # Collect x and y data values from the CSV file

 x_values, y_values = self.loadCSVFile()

 # Create chart object

 chart = QChart()

 �chart.setTitle("Public Social Spending as a Share of GDP for

Sweden, 1880 to 2016")

 chart.setAnimationOptions(QChart.SeriesAnimations)

 chart.legend().hide() # Hide the chart's legend

 line_series = QLineSeries() # Using line charts for this example

 �# Loop through corresponding x and y values and add them to the

line chart

 for value in range(0, self.row_count - 1):

 line_series.append(x_values[value], y_values[value])

 chart.addSeries(line_series) # Add line series to chart instance

 # Specify parameters for the x and y axes

 axis_x = QValueAxis()

 axis_x.setLabelFormat("%i")

 axis_x.setTickCount(10)

 axis_x.setRange(1880, 2016)

 chart.addAxis(axis_x, Qt.AlignBottom)

 line_series.attachAxis(axis_x)

Chapter 3 Data Visualization and Analysis

82

 axis_y = QValueAxis()

 axis_y.setLabelFormat("%i" + "%")

 axis_y.setRange(0, 40)

 chart.addAxis(axis_y, Qt.AlignLeft)

 line_series.attachAxis(axis_y)

 # Create QChartView object for displaying the chart

 chart_view = QChartView(chart)

 chart_view.setRenderHint(QPainter.Antialiasing)

 # Create layout and set the layout for the window

 v_box = QVBoxLayout()

 v_box.addWidget(chart_view)

 self.setLayout(v_box)

 def loadCSVFile(self):

 """Load data from CSV file for the line chart.

 Select and store x and y values into Python list objects.

 Return the x_values and y_values lists."""

 x_values, y_values = [], []

 file_name = "files/social_spending_sweden.csv"

 with open(file_name, "r") as csv_f:

 reader = csv.reader(csv_f)

 header_labels = next(reader) # Skip header row

 for row in reader:

 x = int(row[2])

 x_values.append(x)

 y = float(row[3])

 y_values.append(y)

 �# Count the number of rows in the CSV file. Reset the reader's

current position back to the top of the file

 csv_f.seek(0)

 self.row_count = len(list(reader))

 return x_values, y_values

Chapter 3 Data Visualization and Analysis

83

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = DisplayGraph()

 sys.exit(app.exec_())

The GUI for this simple example can be seen in Figure 3-2.

�Explanation
For this program, let’s first import the Python and PyQt classes we need for creating

GUIs, including sys, QApplication, QWidget, a layout class (in this case QVBoxLayout),

and Qt. In addition to these classes, we also need to import csv for working with CSV

data files.

The QtChart module contains all of the classes you need for creating 2D charts and

graphs. Let’s import QChart and QChartView. The QChart class handles the graphical

representation of the series used in your applications as well as other related objects,

including axes and the legend. The QChartView class is a convenience class that can also

be used as a standalone widget for displaying charts.

Depending upon the needs of your application, you can either

•	 Create a simple QChartView object.

•	 Create an instance of QChart and display the data by adding the chart

to a QChartView object.

•	 Create a QChart, which inherits from QGraphicsWidget, and show

the chart in a QGraphicsScene. This has the advantage of providing

more tools for modifying your application graphically, but may not be

necessary if you are only looking for a way to simply visualize data.

We will use QLineSeries to create the line series and QValueAxis to manipulate the

chart’s axes. QPainter is the class used for drawing PyQt objects.

With the classes we need imported, we can now begin initializing the window for the

application in the DisplayGraph class.

Chapter 3 Data Visualization and Analysis

84

�Creating a Chart

The general process for visualizing data using QChart is as follows:

	 1.	 Create a QChart object.

	 2.	 Instantiate the series, such as QLineSeries or QSplineSeries, for

visualizing data in the chart and add data to the series.

	 3.	 Add the series to the chart instance.

	 4.	 Specify the parameters for the chart’s axes. This can be done

either by using the createDefaultAxes() method (shown in

Example 3.2) or stating the boundaries explicitly.

	 5.	 Create a view to display the chart, such as QChartView or a

QGraphicsScene.

In the setupChart() function, we initially load the data points from the CSV

file. We’ll take a look at how the loadCSVFile() function works later in this section.

Following this step, create the chart object. Use setTitle() to create the chart's title.

Since QChart inherits from Qt’s graphics classes, you can incorporate animations into

your charts. Use the setAnimationOptions() function to use the built-in animations.

A legend is an area in a chart that explains the different symbols, markings, and other

graphical elements in a chart. In PyQt, the legend is an object that can be referenced by

the chart. The easiest way to achieve this is by calling the reference to the legend like in

the following line of code:

chart.legend().setAlignment(Qt.AlignRight)

This will place the legend to the right of the chart. The QLegend class also includes

other methods for setting the color, marker shape, border style, and more.

The next step is to create the series for the chart type and add points using append(),

shown in Listing 3-2.

Listing 3-2.  Adding points to a series

line_series = QLineSeries()

line_series.append(1, 2)

line_series.append(3, -3)

Chapter 3 Data Visualization and Analysis

85

The quickest way to add lots of points is to use a for loop. After all of the points have

been appended to the series, you can add the series to the chart in Listing 3-1 using

addSeries():

chart.addSeries(line_series)

Project 3.1 shows you how to add multiple series to a single chart. With the series

added, you are now ready to create the axes. There are a few different classes provided

for creating an axis, including ones for numeric values, categories, bar categories, dates

and times, and logarithmic values. The following bit of code demonstrates how to create

the x-axis in Listing 3-1. The y-axis is set up in a similar manner:

axis_x = QValueAxis() # Create value axis instance

axis_x.setLabelFormat("%i") # Display integer values

axis_x.setTickCount(10) # Number of grid lines drawn

axis_x.setRange(1880, 2016) # Set the axis' range

chart.addAxis(axis_x, Qt.AlignBottom) # Add the axis to the chart

line_series.attachAxis(axis_x) # Attach the axis to the series

The last step is to create the QChartView object so we can view the chart and add the

view widget to the layout:

 chart_view = QChartView(chart) # Add chart to view

�Loading Data from CSV Files

We took a brief look at writing information stored in PyQt tables to CSV-formatted files

in Chapter 1. In this example, you can see how to read information from files using the

reader() function.

With reader(), you can iterate over the lines in a file. For this application, we need

some way to select specific columns for the independent and dependent variables and

then store those values into lists. Selecting specific columns can be done by specifying

the column’s index value while iterating over the file’s contents:

for row in reader: # For each row in the file

 # Look at items in the third column; index starts at 0

 x = int(row[2])

Chapter 3 Data Visualization and Analysis

86

The csv module also includes classes for working with information from a file using

Python dictionaries – DictReader and DictWriter. If you choose to use either one of these

methods, you will need to specify the column’s header value rather than the index value.

Note T he data found in this chapter has already been cleaned up to fit the needs
of the examples. Knowing this, data is read from the files without performing
checks for null or missing data to keep more focus on creating GUI applications.

More information about working with CSV files in Python can be found at https://

docs.python.org/3/library/csv.html.

�Project 3.1: Data Visualization GUI
Now that we have seen how to visualize a single data series with QChart, we can move

on to visualizing multiple series on the same chart. This project, shown in Figure 3-3, will

take what you have learned in Example 3.1 and build upon that knowledge to show you

more possibilities with PyQtChart.

It can be useful to plot multiple lines in a single chart to compare the trends between

different series. For this application, you will

•	 Plot multiple series in a single QChart instance.

•	 Learn how to use different built-in Qt themes and styles to customize

the look of your charts.

•	 See how to visualize data in a table using Qt’s model/view framework.

•	 Find out how to subclass QChartView to implement scroll and drag

features.

The program in this section demonstrates how you could begin building your own

application to fit a user’s data visualization needs.

�Quick Glance at the Dataset
This project uses the same source of data used in Example 3.1 and also focuses on

studying the relationship between public social spending and time. However, this

application also visualizes the information for a number of different countries.

Chapter 3 Data Visualization and Analysis

https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html

87

Table 3-3 presents a few examples of the different countries listed in the data file. We

will be using the Entity, Year, and SocialExpenditureGDP(%) columns. The values in the

Entity column will be used for differentiating the different line series and for the labels in

the chart’s legend.

Let’s take a moment to better understand the different components of the GUI’s

main window.

Figure 3-3.  GUI application for visualizing multiple series of data in the same
chart. The dock widget on the left side contains widgets for changing different visual
parameters of the chart and a table for viewing the values for the different series

Table 3-3.  Sample data from social_spending_simplified.csv displaying the

header row and five randomly selected rows. Row Value is included in the table

only as a reference for locating the row in the CSV file

Row Value Entity Code Year SocialExpenditureGDP(%)

12 Australia AUS 1964 5.976754619

48 Canada CAN 1963 8.290315209

114 France FRA 1978 19.45212529

201 Japan JPN 1900 0.17

281 United Kingdom GBR 1965 11.0674075

Chapter 3 Data Visualization and Analysis

88

�Data Visualization GUI Solution
The main goal of this project is to demonstrate how you can integrate charts created

with PyQtChart into your GUI applications. The window includes a QDockWidget

which contains various PyQt widgets2 for modifying the appearance of charts and chart

features. These include

•	 QComboBox widgets for selecting different Qt Styles, animation styles,

and legend locations in the window

•	 QCheckBox for turning on and off antialiasing

•	 QPushButton for resetting the chart’s axes

•	 QTableView for displaying color-coded data related to the plotted line

series

The dock widget can be hidden or retrieved using the menu bar.

In this project, you will see how to create a different line series for each of the

different countries represented in the dataset. Each country is represented by a different

color in the chart. Also, similar to Example 3.1, with some small modifications to the

program in Listing 3-3, you can also deploy the application for viewing other datasets.

Listing 3-3.  Code for the data visualization application

data_visualization.py

Import necessary modules

import sys, csv, random

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget,

QPushButton, QComboBox, QCheckBox, QFormLayout, QDockWidget, QTableView,

QHeaderView, QGraphicsView)

from PyQt5.QtChart import QChart, QChartView, QLineSeries, QValueAxis

from PyQt5.QtCore import Qt

from PyQt5.QtGui import QPainter, QColor, QStandardItemModel, QStandardItem

class ChartView(QChartView):

2�Parts of this GUI are adapted from the Qt Chart Themes Example found on the https://doc.
qt.io/ website.

Chapter 3 Data Visualization and Analysis

https://doc.qt.io/
https://doc.qt.io/

89

 def __init__(self, chart):

 super().__init__(chart)

 self.chart = chart

 # Starting position for mouse press event

 self.start_pos = None

 def wheelEvent(self, event):

 �"""Reimplement the scroll wheel on the mouse for zooming in and out

on the chart."""

 �zoom_factor = 1.0 # Simple way to control the total amount zoomed

in or out

 scale_factor = 1.10 # How much to scale into or out of the chart

 if event.angleDelta().y() >= 120 and zoom_factor < 3.0:

 zoom_factor *= 1.25

 self.chart.zoom(scale_factor)

 elif event.angleDelta().y() <= -120 and zoom_factor > 0.5:

 zoom_factor *= 0.8

 self.chart.zoom(1 / scale_factor)

 def mousePressEvent(self, event):

 �"""If the mouse button is pressed, change the mouse cursor and get

the coordinates of the click."""

 if event.button() == Qt.LeftButton:

 self.setDragMode(QGraphicsView.ScrollHandDrag)

 self.start_pos = event.pos()

 def mouseMoveEvent(self, event):

 �"""Reimplement the mouseMoveEvent so that the user can scroll the

chart area."""

 if (event.buttons() == Qt.LeftButton):

 delta = self.start_pos - event.pos()

 self.chart.scroll(delta.x(), -delta.y())

 self.start_pos = event.pos()

 def mouseReleaseEvent(self, event):

 self.setDragMode(QGraphicsView.NoDrag) # Don’t display mouse cursor

Chapter 3 Data Visualization and Analysis

90

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents."""

 self.setMinimumSize(1200, 600)

 self.setWindowTitle("3.1 - Data Visualization GUI")

 self.setupChart()

 self.setupToolsDockWidget()

 self.setupMenu()

 self.show()

 def setupChart(self):

 �"""Set up the GUI's graph series type, chart instance, chart axes,

and chart view widget."""

 random.seed(50) # Create seed for random numbers

 # Create the model instance and set the headers

 self.model = QStandardItemModel()

 self.model.setColumnCount(3)

 �self.model.setHorizontalHeaderLabels(["Year", "Social Exp. %GDP",

"Country"])

 # Collect x and y data values and labels from the CSV file

 xy_data_and_labels = self.loadCSVFile()

 # Create the individual lists for x, y and labels values

 x_values, y_values, labels = [], [], []

 # Append items to the corresponding lists

 for item in range(len(xy_data_and_labels)):

 x_values.append(xy_data_and_labels[item][0])

 y_values.append(xy_data_and_labels[item][1])

 labels.append(xy_data_and_labels[item][2])

Chapter 3 Data Visualization and Analysis

91

 # Remove all duplicates from the labels list using list comprehension.

 # This list will be used to create the labels in the chart's legend.

 set_of_labels = []

 [set_of_labels.append(x) for x in labels if x not in set_of_labels]

 # Create chart object

 self.chart = QChart()

 �self.chart.setTitle("Public Social Spending as a Share of GDP, 1880

to 2016")

 self.chart.legend().hide() # Hide legend at the start

 # Specify parameters for the x and y axes

 self.axis_x = QValueAxis()

 self.axis_x.setLabelFormat("%i")

 self.axis_x.setTickCount(10)

 self.axis_x.setRange(1880, 2016)

 self.chart.addAxis(self.axis_x, Qt.AlignBottom)

 self.axis_y = QValueAxis()

 self.axis_y.setLabelFormat("%i" + "%")

 self.axis_y.setRange(0, 40)

 self.chart.addAxis(self.axis_y, Qt.AlignLeft)

 �# Create a Python dict to associate the labels with the individual

line series

 series_dict = {}

 for label in set_of_labels:

 # Create labels from data and add them to a Python dictionary

 series_label = 'series_{}'.format(label)

 �series_dict[series_label] = label # Create label value for each

line series

 # For each of the keys in the dict, create a line series

 for keys in series_dict.keys():

 # Use get() to access the corresponding value for a key

 label = series_dict.get(keys)

Chapter 3 Data Visualization and Analysis

92

 # Create line series instance and set its name and color values

 line_series = QLineSeries()

 line_series.setName(label)

 �line_series.setColor(QColor(random.randint(10, 254), random.

randint(10, 254), random.randint(10, 254)))

 # Append x and y coordinates to the series

 for value in range(len(xy_data_and_labels)):

 if line_series.name() == xy_data_and_labels[value][2]:

 line_series.append(x_values[value], y_values[value])

 �# Create and add items to the model (for displaying in

the table)

 �items = [QStandardItem(str(item)) for item in xy_data_

and_labels[value]]

 color = line_series.pen().color()

 for item in items:

 item.setBackground(color)

 self.model.insertRow(value, items)

 self.chart.addSeries(line_series)

 line_series.attachAxis(self.axis_x)

 line_series.attachAxis(self.axis_y)

 # Create QChartView object for displaying the chart

 self.chart_view = ChartView(self.chart)

 self.setCentralWidget(self.chart_view)

 def setupMenu(self):

 """Create a simple menu to manage the dock widget."""

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

 # Create view menu and add actions

 view_menu = menu_bar.addMenu('View')

 view_menu.addAction(self.toggle_dock_tools_act)

Chapter 3 Data Visualization and Analysis

93

 def setupToolsDockWidget(self):

 �"""Set up the dock widget that displays different tools and themes

for interacting with the chart. Also displays the data values in a

table view object."""

 tools_dock = QDockWidget()

 tools_dock.setWindowTitle("Tools")

 tools_dock.setMinimumWidth(400)

 �tools_dock.setAllowedAreas(Qt.LeftDockWidgetArea |

Qt.RightDockWidgetArea)

 # Create widgets for dock widget area

 themes_cb = QComboBox()

 �themes_cb.addItems(["Light", "Cerulean Blue", "Dark", "Sand Brown",

"NCS Blue", "High Contrast", "Icy Blue", "Qt"])

 themes_cb.currentTextChanged.connect(self.changeChartTheme)

 self.animations_cb = QComboBox()

 self.animations_cb.addItem("No Animation", QChart.NoAnimation)

 �self.animations_cb.addItem("Grid Animation", QChart.

GridAxisAnimations)

 �self.animations_cb.addItem("Series Animation", QChart.

SeriesAnimations)

 self.animations_cb.addItem("All Animations", QChart.AllAnimations)

 �self.animations_cb.currentIndexChanged.connect(self.

changeAnimations)

 self.legend_cb = QComboBox()

 self.legend_cb.addItem("No Legend")

 self.legend_cb.addItem("Align Left", Qt.AlignLeft)

 self.legend_cb.addItem("Align Top", Qt.AlignTop)

 self.legend_cb.addItem("Align Right", Qt.AlignRight)

 self.legend_cb.addItem("Align Bottom", Qt.AlignBottom)

 self.legend_cb.currentTextChanged.connect(self.changeLegend)

 self.antialiasing_check_box = QCheckBox()

 �self.antialiasing_check_box.toggled.connect(self.

toggleAntialiasing)

Chapter 3 Data Visualization and Analysis

94

 reset_button = QPushButton("Reset Chart Axes")

 reset_button.clicked.connect(self.resetChartZoom)

 # Create table view and set its model

 data_table_view = QTableView()

 data_table_view.setModel(self.model)

 �data_table_view.horizontalHeader().setSectionResizeMode(QHeaderVie

w.Stretch)

 �data_table_view.verticalHeader().setSectionResizeMode(QHeaderView.

Stretch)

 dock_form = QFormLayout()

 dock_form.setAlignment(Qt.AlignTop)

 dock_form.addRow("Themes:", themes_cb)

 dock_form.addRow("Animations:", self.animations_cb)

 dock_form.addRow("Legend:", self.legend_cb)

 dock_form.addRow("Anti-Aliasing", self.antialiasing_check_box)

 dock_form.addRow(reset_button)

 dock_form.addRow(data_table_view)

 # Create QWidget object to act as a container for dock widgets

 tools_container = QWidget()

 tools_container.setLayout(dock_form)

 tools_dock.setWidget(tools_container)

 self.addDockWidget(Qt.LeftDockWidgetArea, tools_dock)

 # Handles the visibility of the dock widget

 self.toggle_dock_tools_act = tools_dock.toggleViewAction()

 def changeChartTheme(self, text):

 �"""Slot for changing the theme of the chart. The charts themes are

represented by numerical values specified by the Qt library.”””

 �themes_dict = {"Light": 0, "Cerulean Blue": 1, "Dark": 2, "Sand

Brown": 3, "NCS Blue": 4, "High Contrast": 5, "Icy Blue": 6, "Qt": 7}

 theme = themes_dict.get(text)

 if theme == 0:

 self.setupChart()

 else:

 self.chart.setTheme(theme)

Chapter 3 Data Visualization and Analysis

95

 def changeAnimations(self):

 """Slot for changing the animation style of the chart."""

 animation = QChart.AnimationOptions(

 self.animations_cb.itemData(self.animations_cb.currentIndex()))

 self.chart.setAnimationOptions(animation)

 def changeLegend(self, text):

 """Slot for turning off the legend, or changing its location."""

 alignment = self.legend_cb.itemData(self.legend_cb.currentIndex())

 if text == "No Legend":

 self.chart.legend().hide()

 else:

 self.chart.legend().setAlignment(Qt.Alignment(alignment))

 self.chart.legend().show()

 def toggleAntialiasing(self, state):

 �"""If self.antialiasing_check_box.isChecked() is True, turn on

antialiasing."""

 if state:

 self.chart_view.setRenderHint(QPainter.Antialiasing, on=True)

 else:

 self.chart_view.setRenderHint(QPainter.Antialiasing, on=False)

 def resetChartZoom(self):

 """Reset the chart and the axes."""

 self.chart.zoomReset()

 self.axis_x.setRange(1880, 2016)

 self.axis_y.setRange(0, 40)

 def loadCSVFile(self):

 """Load data from CSV file for the chart.

 Select and store x and y values and labels into Python list objects.

 Return the xy_data_and_labels list."""

 file_name = "files/social_spending_simplified.csv"

 with open(file_name, "r") as csv_f:

 reader = csv.reader(csv_f)

 header_labels = next(reader)

Chapter 3 Data Visualization and Analysis

96

 row_values = [] # Store current row values

 xy_data_and_labels = [] # Store all values

 for i, row in enumerate(reader):

 x = int(row[2])

 y = float(row[3])

 label = row[0]

 row_values.append(x)

 row_values.append(y)

 row_values.append(label)

 �# Add row_values to xy_data_and_labels, then reset row_

values

 xy_data_and_labels.append(row_values)

 row_values = []

 return xy_data_and_labels

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec_())

The data visualization GUI can be seen in Figure 3-3.

�Explanation
To start, let’s first import the Python and PyQt5 modules that we need. A number

of widget classes are needed from QtWidgets for creating the GUI’s window.

QGraphicsView is only used in this application to display a drag hand in QChartView as

visual feedback to the user.

QTableView is imported so that we can view data from a model,

QStandardItemModel, using Qt’s model/view paradigm. You can refer to the section

titled “Qt’s Model/View Architecture” in Chapter 1 for a refresher. In order to add items

to the model, QStandardItem also needs to be imported from the QtGui module.

Chapter 3 Data Visualization and Analysis

97

�Implementing Dragging and Scrolling in QChartView

Before we get into setting up the application’s main class for displaying the GUI window,

let’s take a look at the ChartView class which subclasses QChartView. By subclassing

QChartView, we are able to modify the class’s event handlers to implement drag and

scroll features specifically in the QChartView area of the window.

In the ChartView class constructor, chart is included as a parameter so that we have

access to a few QChart class functions, mainly, zoom() and scroll(). In this class, the

following events are reimplemented:

•	 wheelEvent() – Use the scroll wheel on the mouse to zoom in or out

on the chart. Manage how much the user can scroll into or out of the

chart area. angleDelta() refers to how much the wheel has rotated

in eighths of a degree. Since most mouse types rotate in steps of 15

degrees, we use a factor of 120 to determine if we should zoom or not

(i.e., 120 units * 1/8 = 15 degrees). Depending upon the direction of

the wheel, the chart’s zoom is based on the scale_factor value.

•	 mousePressEvent() – Display a hand to the user to indicate that

dragging is enabled.

•	 mouseMoveEvent() – Drag the chart. Use scroll() to move around

the chart area.

•	 releaseMouseEvent() – Hide the drag hand once the mouse button

is released.

Figure 3-4 shows the results of dragging and scrolling around in the chart. You could

also create dynamic charts that allow the user to add or remove values by clicking in the

chart view region.

Chapter 3 Data Visualization and Analysis

98

�Setting Up a Chart to Display Multiple Line Series

In the MainWindow class that inherits from QMainWindow, we set up the widgets and other

parameters that will be displayed in the GUI. The setupChart() function is where we

create the QStandardItemModel instance for accessing our data, call loadCSVFile() to

load our data, and set up the QChart object, multiple QLineSeries instances, and the

QChartView object for displaying the data.

The loadCSVFile() function has a few notable differences from Example 3.1. For

starters, the data we need from each row is stored in a single list, xy_data_and_labels.

The labels from the dataset need to be included in order to create separate line series

and labels in the legend that pertain to each of the countries. With the dataset loaded, we

then break down the larger list into its separate x_values, y_values, and corresponding

country labels. This step is performed for better readability in Listing 3-2.

The purpose of set_of_labels is threefold: to create labels from the dataset that will

be displayed in the legend, to create a separate line series for each of the labels, and to

match the different values in the data based on their labels to their corresponding line

series using line_series.name().

Figure 3-4.  An example of zooming and scrolling in the chart view

Chapter 3 Data Visualization and Analysis

99

Once the data preparation is complete, the process for setting up the chart object,

creating the axes, and visualizing the data is similar to Example 3.1, except this time we

also need to account for the multiple line series. For each of the labels in set_of_labels,

create a separate QLineSeries instance, and assign it a specific name and color using

setName() and setColor().

Next, using a for loop, iterate through the items in xy_data_and_labels. If the

name() corresponds to the label values in xy_data_and_labels at index 2, append the

x and y coordinate values to the line_series. Also for each added value in the line_

series, create a QStandardItem consisting of the data points and the label, and add the

corresponding items into the model using insertRow(). The color for each item will

be the same as the line_series.pen().color() and is set using the setBackground()

method.

With the points and labels added to their respective line_series and all of the items

added to the model, add the line_series to the chart and also attach the x and y axes to

the series with attachAxis().

After iterating through the keys in the series_dict, create the QChartView instance

and pass chart as an argument.

�Changing Chart Themes, Animations, and More

The tools for changing the chart’s theme, animation style, and legend location,

toggling antialiasing on or off, and displaying our data are all located in the tools_dock

QDockWidget. You can use the setAllowedAreas() method to specify where the dock

widget can be placed in the window.

There are a few different widgets contained in the dock widget. These include

•	 themes_cb – A QComboBox for selecting between the different

predefined QtChart themes. Items are appended to the combobox

using addItems(). When an item is selected, a signal is sent to the

changeChartTheme() slot. Since changing a theme overwrites the

previous customizations you applied to charts, when the user selects

the Light (default) theme, the original chart is recreated by calling

setupChart(). Some examples of different chart themes are shown in

Figure 3-5.

Chapter 3 Data Visualization and Analysis

100

•	 animations_cb – A QComboBox for selecting the chart’s animation

style. The user can choose no animation or animations for the grid

lines, series, or both. Items are added to the combobox by specifying

the string to be displayed and the userData in the addItem()

function. The userData specifies the role to be used if the item

is selected in the combobox, such as QChart.NoAnimation. Using

itemData(), we are able to retrieve that role and apply the correct

animation type to the chart.

•	 legend_cb – A QComboBox for aligning the legend to different sides of

the chart, set up in a similar manner as the animations_cb.

An example is shown in Figure 3-6.

Figure 3-5.  Examples of a few of Qt’s different built-in chart themes. These can be
changed in the GUI by using the QComboBox located in the dock widget

Chapter 3 Data Visualization and Analysis

101

Figure 3-6.  Demonstration of aligning the legend to the left side of the chart

•	 antialiasing_check_box – A QCheckBox for toggling antialiasing on

or off depending upon the state of the widget.

•	 reset_button – A QPushButton that calls the resetChartZoom() slot

when clicked() and resets the chart to its original settings using

zoomReset(). Also it resets the chart's axes.

•	 data_table_view – A QTableView instance for displaying tabular

data. The view’s model is set using setModel().

Widgets are arranged in tools_dock using QFormLayout. The dock widget can be

displayed or hidden by using the menu bar created in setupMenu().

We have seen in this project how to create multiple series of the same type and view

them in a single chart. Next, we will see how to display series of different types in one chart.

�Example 3.2: Combining Different Chart Types
You may often find that a single chart, or several charts spread out across multiple views,

cannot clearly depict the relationship between two variables. Combining two or even

more chart types in a single view can be helpful for analyzing data in different ways or

visually validating the relationship between two variables. It is even possible to combine

different types of data into one chart.

Chapter 3 Data Visualization and Analysis

102

Depending upon your requirements, you may see fit to mix and match different chart

types, such as bar graphs and line charts. For this next example, found in Listing 3-3, we

will be taking a look at not only combining two different chart types but also how to use

statistical methods for analyzing data.

We will be using a different PyQtChart series: QScatterSeries. Scatter charts, or

scatter plots, are useful for visualizing and testing for correlation between two variables.

Data points in a scatter plot with some kind of relationship will fall along a line or a

curve. The tighter the points fit to the line, the stronger their correlation. Relationships in

scatter plots can be categorized by the patterns present in the data.

It is important to remember that simply because a relationship is observed between

two variables, it does not mean that changes in one variable are responsible for changes

in the other. There may be some other underlying factor that has not been considered

yet that is the real cause for what appears to be correlation. If a correlation has been

established, you can then begin using analysis techniques, such as regression analysis, to

assess the relationship between the variables in your data.

�A Brief Introduction to Linear Regression
Statistical methods are often applied to visualized data to analyze and discover

underlying patterns and trends. One commonly used statistical method is regression
analysis. The goal of regression analysis is to understand or predict the values of a

dependent variable based on some independent variables.

Imagine taking a set of plotted points and drawing a line through the middle of

them. This line, often referred to as a regression line or line of best fit, represents the

relationship between the independent variable and the dependent variable and can be

used to make, with some degree of uncertainty, accurate predictions on new data. An

example of a line of best fit can be seen in Figure 3-7.

For the purposes of this example, we will be using a basic regression analysis

technique, simple linear regression, for establishing the causal relationship between

our variables with a regression line. The equation of a line is represented by

Y = a + bX

Chapter 3 Data Visualization and Analysis

103

where Y denotes the values for the dependent variable, a is the y-intercept, b is the slope

of the line, and X denotes values for the independent variable. Using the independent

and dependent variables in the dataset, we can calculate the values for the slope and

the y-intercept and plot the line that best fits the data points. The resulting equation can

then be used for prediction.

�Quick Glance at the Dataset

The Swedish Auto Insurance dataset3 takes a look at the factors that may influence the

possibility of a client making an auto insurance claim and, given the occurrence of an

accident, the potential amount of the payout.

3�More information about the original dataset can be found in Frees, E. (2009). Regression
Modeling with Actuarial and Financial Applications (International Series on Actuarial Science).
Cambridge: Cambridge University Press. doi:10.1017/CBO9780511814372.

Figure 3-7.  Scatter plot showing payments vs. claims and the line of best fit for the
Swedish insurance dataset

Chapter 3 Data Visualization and Analysis

104

For this example, we are going to plot the relationship between the number of insurance

claims and the total amount paid in Swedish kronor. From Figure 3-7, it is evident that the

payment amounts linearly increase with the number of claims for the different geographical

areas in Sweden. Using the data points in the scatter plot (a few rows are listed in Table 3-4),

we can then plot a regression line for predicting payout amounts given new claims.

This time, we will use a very useful library, NumPy, for arranging the datasets into

arrays rather than Python lists. This will simplify the code needed to calculate the

regression line in Listing 3-3.

�Installing NumPy
NumPy is a widely used package for scientific computing in Python. The library allows

you to easily format your data into arrays, which share some similarities to Python

lists. However, NumPy arrays are homogeneous and make the task of managing and

interacting with large amounts of data faster. NumPy also includes some mathematical

functions for interacting with the arrays you create. More information about NumPy can

be found at https://numpy.org.

If you do not already have NumPy installed on your device, you can download the

wheel from the PyPI repository. To install NumPy, enter the following command into the

command line:

$ pip3 install numpy

Table 3-4.  First five rows in the auto_insurance_sweden.csv file. The data used

does not include all of the information in the original dataset to avoid overplotting.

This file does not include a header row

x (Total Number of Claims) y (Total Payment for Claims in Swedish Kronor (in
Thousands))

108 392.5

19 46.2

13 15.7

124 422.2

40 119.4

Chapter 3 Data Visualization and Analysis

https://numpy.org

105

Next, let’s verify that the installation worked correctly. You can either enter import

numpy into the Python shell or use the show command:

$ pip3 show numpy

You can also use show to find out what version of NumPy you currently have

installed. The current version as of this writing is 1.19. Upgrading to the current version

of NumPy can be done with

$ pip3 install --upgrade numpy

With NumPy installed, you are ready to see how to create charts that combine

different PyQtChart series types in Listing 3-4.

Listing 3-4.  Code that demonstrates how to display different series types in the

same QChart object

combine_charts.py

Import necessary modules

import sys, csv

import numpy as np

from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout

from PyQt5.QtChart import QChart, QChartView, QScatterSeries, QLineSeries

from PyQt5.QtCore import Qt

from PyQt5.QtGui import QColor

def linearRegression(x_values, y_values):

 """Find the regression line that fits best to the data.

 �Calculate the values for m, the slope of a line, and b, the y-intercept

in the equation Y = a + bX."""

 # Calculate the average values for x and y

 mean_x, mean_y = np.mean(x_values), np.mean(y_values)

 �# Calculate the covariance and variance for the slope coefficient;

covariance_xy describes the linear relationship of the variables as

they change; variance_x calculates how far observed x_values differs

from the mean_x

 covariance_xy = np.sum((x_values - mean_x) * (y_values - mean_y))

 variance_x = np.sum((x_values - mean_x) ** 2)

Chapter 3 Data Visualization and Analysis

106

 # Calculate the slope, m, and the y-intercept, b

 b_slope = covariance_xy / variance_x

 a_intercept = mean_y - b_slope * mean_x

 return (a_intercept, b_slope)

class DisplayGraph(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents."""

 self.setMinimumSize(700, 500)

 self.setWindowTitle("Ex 3.2 - Combining Charts")

 self.row_count = 0 # Number of rows in CSV file

 self.setupChart()

 self.show()

 def setupChart(self):

 """Set up the GUI's series and chart."""

 # Collect x and y data values from the CSV file

 x_values, y_values = self.loadCSVFile()

 # Get the largest x and y values; Used for setting the chart's axes

 x_max, y_max = max(x_values), max(y_values)

 # Create numpy arrays from the x and y values

 x_values = np.array(x_values)

 y_values = np.array(y_values)

 # Calculate the regression line

 coefficients = linearRegression(x_values, y_values)

 # Create chart object

 chart = QChart()

 chart.setTitle("Auto Insurance for Geographical Zones in Sweden")

 chart.legend().hide()

Chapter 3 Data Visualization and Analysis

107

 # Create scatter series and add points to the series

 scatter_series = QScatterSeries()

 scatter_series.setName("DataPoints")

 scatter_series.setMarkerSize(9.0)

 scatter_series.hovered.connect(self.displayPointInfo)

 for value in range(0, self.row_count - 1):

 scatter_series.append(x_values[value], y_values[value])

 scatter_series.setBorderColor(QColor(‘#000000'))

 # Create line series and add points to the series

 line_series = QLineSeries()

 line_series.setName("RegressionLine")

 # Calculate the regression line

 for x in x_values:

 y_pred = coefficients[0] + coefficients[1] * x

 line_series.append(x, y_pred)

 # Add both series to the chart and create x and y axes

 chart.addSeries(scatter_series)

 chart.addSeries(line_series)

 chart.createDefaultAxes()

 axis_x = chart.axes(Qt.Horizontal)

 axis_x[0].setTitleText("Number of Claims")

 axis_x[0].setRange(0, x_max)

 axis_x[0].setLabelFormat("%i")

 axis_y = chart.axes(Qt.Vertical)

 �axis_y[0].setTitleText("Total Payment in Swedish Kronor (in

thousands)")

 axis_y[0].setRange(0, y_max + 20)

 # Create QChartView object for displaying the chart

 chart_view = QChartView(chart)

 v_box = QVBoxLayout()

 v_box.addWidget(chart_view)

 self.setLayout(v_box)

Chapter 3 Data Visualization and Analysis

108

 def displayPointInfo(self, point):

 """Demonstration that series can be interacted with."""

 print("(X: {}, Y: {})".format(point.x(), point.y()))

 def loadCSVFile(self):

 """Load data from CSV file for the scatter chart.

 Select and store x and y values into Python list objects.

 Return the x_values and y_values lists."""

 x_values, y_values = [], []

 file_name = "files/auto_insurance_sweden.csv"

 with open(file_name, "r") as csv_f:

 reader = csv.reader(csv_f)

 for row in reader:

 x = float(row[0])

 x_values.append(x)

 y = float(row[1])

 y_values.append(y)

 �# Count the number of rows in the CSV file. Reset the reader's

current position back to the top of the file

 csv_f.seek(0)

 self.row_count = len(list(reader))

 return x_values, y_values

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = DisplayGraph()

 sys.exit(app.exec_())

Figure 3-7 shows the graphical user interface for Example 3.2, displaying both the

scatter plot data and the line of best fit.

�Explanation
Let’s get started by importing the modules and PyQt classes we need. A common

practice is to import numpy and set its alias to np.

Chapter 3 Data Visualization and Analysis

109

From the QtWidgets module, we need the basic classes to create a GUI window and

set the layout. We also need to import QChart and QChartView to create the chart. This

example will utilize both the QLineSeries and the QScatterSeries classes.

The linearRegression() function builds the equation for calculating the regression

line that represents the relationship between the independent variable, x_values, and

the dependent variable, y_values, in the dataset. You can refer back to this example’s

introduction and the code in Listing 3-3 to understand the fundamentals of the linear

regression equation.

Next, we begin building the class for the GUI’s main window, DisplayGraph.

After initializing the main window’s title and minimum size, let’s set up the chart

for visualizing our data. Using the loadCSVFile() function, create two Python lists,

x_values and y_values, that will hold their respective x and y coordinate values.

Refer to Table 3-5 to visualize a few rows from the dataset. For this example, x_values

corresponds to column 0, the number of claims reported; y_values refers to column

1, the total insurance payment in Swedish kronor. This data will be used to create the

points in the scatter plot.

We can now create our NumPy arrays for the x and y values. These arrays are passed

as arguments to the linearRegression() function, which returns the coefficient values,

a_intercept and b_slope, as a Python tuple. These values will be used to calculate

the regression line for the QLineSeries, line_series. The relationship between the

independent and dependent variables is summarized by the regression line on the graph

with the equation

Total Payment = 19.994 + 3.414 * Number of Claims

After preparing the data for visualization and estimating the values for the linear

regression equation, we can now create the QChart object, set its title, and hide the

chart’s legend. With QScatterSeries, we can visualize the relationship between the

variables in the dataset. In a for loop, use the append() method to add all of the points to

scatter_series.

When PyQt creates points in a scatter plot, bars in a bar graph, or any other

graphical object in a chart, you can actually make them interactive using PyQt’s signal

and slot mechanism. For this program, the points added to the scatter series are

connected to the displayPointInfo() slot using the built-in hovered() signal. When a

user hovers over the points, their values will be printed in the shell window. This can be

seen in Figure 3-8. Of course, this is just an example to demonstrate how to connect the

Chapter 3 Data Visualization and Analysis

110

objects in your graph using signals and slots. Using QPainter and other graphics classes,

you could actually create visual objects that display the points or values of your data in

the GUI window.

We can now create the QLineSeries object for plotting the regression line. Using the

coefficient values for the slope and y-intercept, we can calculate the predicted y values

for the regression line. Adding two or more series to a QChart instance in Listing 3-4 is as

easy as calling addSeries() multiple times on the same chart instance:

chart.addSeries(scatter_series)

chart.addSeries(line_series)

Unlike the previous two applications in this chapter, this example shows how to

create a chart’s axes using createDefaultAxes(), which creates axes based on the

values in the series added to the chart. This function should be called after all series have

been added. Axes created for the series are specific to the type of series. Call the axes()

method and the Qt orientation to access and modify a specific axis. The following bit of

code is found in Listing 3-4:

axis_x = chart.axes(Qt.Horizontal)

axis_x[0].setRange(0, x_max)

Finally, create an instance of QChartView and pass chart as an argument. Add

chart_view to the window’s layout and use show() to display the GUI on the screen.

Figure 3-8.  PyQt’s signals and slots can be used to visualize the values of different
points in the scatter plot

Chapter 3 Data Visualization and Analysis

111

�Project 3.2: Visualizing Data with Matplotlib
In previous sections, we have focused mainly on using PyQtChart classes for data

visualization. However, depending upon the requirements of your application, that is not

your only choice for creating good-looking and interactive charts.

For this chapter’s final project seen in Figure 3-9, you will take a look at Matplotlib,

a commonly used graphing library for Python. Using Matplotlib instead of PyQtChart

might be a better choice if you already have experience working with the library, want

to make use of the extensive plotting tools that Matplotlib offers, or need to move an

existing Matplotlib project into a PyQt application.

Before jumping into the solution, let’s take a brief look at both the Matplotlib toolkit

and the dataset we will be using this time around.

Figure 3-9.  PyQt application embedded with multiple Matplotlib canvases. The
left figure displays the relationship between the sepal lengths and widths; the top-
right figure shows the regression line for petal sizes; the bottom-right figure displays
a histogram showing the distribution of iris petal sizes

Chapter 3 Data Visualization and Analysis

112

�Introduction to Matplotlib
A popular library used with Python for data visualization already exists – Matplotlib.

The framework, just like PyQtChart, includes tools for plotting data in different

types of charts and figures. Also like PyQt, graphs created using Matplotlib can

be fixed, dynamic, or interactive. There is also functionality included for 3D data

visualization.

Matplotlib, which is built around NumPy arrays, also includes a number of

significant features for working with different graphics backends, such as Qt, for

rendering plots. This is the reason that you can embed Matplotlib plots in your PyQt

applications with very little effort. The default backend for Matplotlib is Agg.

Check out https://matplotlib.org for more information.

�Installing Matplotlib

Any projects in this book that utilize Matplotlib use version 3.3, which is the current

edition as of this writing. To install the Matplotlib library, open up your computer’s shell

environment and enter the following command:

$ pip3 install matplotlib

If all goes well, you can next verify that Matplotlib installed correctly by entering

import matplotlib into the Python shell or using the show command:

$ pip3 show matplotlib

You can also use show to check which version of Matplotlib you have installed. If you

need to upgrade your version of Matplotlib, enter

$ pip3 install -U matplotlib

Once Matplotlib is finished installing, you are ready to begin embedding Matplotlib

into your PyQt applications.

Chapter 3 Data Visualization and Analysis

https://matplotlib.org

113

�Quick Glance at the Dataset
For this chapter’s final program, we will be using a well-known dataset – the Iris

dataset4 – for learning how to embed Matplotlib plots in PyQt5 applications. First

presented in Ronald Fisher’s research paper “The use of multiple measurements in

taxonomic problems” in 1936, the dataset contains information about three classes of

iris plants with 50 examples collected for each. The columns hold information related to

both the sepal and petal lengths and widths for the different iris samples.

Table 3-5 lists a few rows selected from the Iris dataset.

�Visualizing Data with Matplotlib Solution
The following project in Listing 3-5 explores how to embed Matplotlib figures into

PyQt applications for data visualization and analysis. You will also find out how to

use different Matplotlib graphs, chiefly line charts, scatter plots, and histograms, for

analyzing how to visualize the same dataset using varying techniques.

4�More information about this dataset can be found in Dua, D. and Graff, C. (2019). UCI Machine
Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

Table 3-5.  Six selected rows in the iris.csv file (the first two rows from each variety

of iris). The measurements for the parts of the irises are in centimeters

sepal.length sepal.width petal.length petal.width variety

5.1 3.5 1.4 0.2 Setosa

4.9 3 1.4 0.2 Setosa

7 3.2 4.7 1.4 Versicolor

6.4 3.2 4.5 1.5 Versicolor

6.3 3.3 6 2.5 Virginica

5.8 2.7 5.1 1.9 Virginica

Chapter 3 Data Visualization and Analysis

http://archive.ics.uci.edu/ml

114

Listing 3-5.  Creating GUI applications for visualizing data with PyQt5 and

Matplotlib

pyqt_matplotlib.py

Import necessary modules

import sys, csv

from PyQt5.QtWidgets import QApplication, QMainWindow, QWidget,

QVBoxLayout, QHBoxLayout

import numpy as np

import matplotlib

matplotlib.use('Qt5Agg') # Configure the backend to use Qt5

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg,

NavigationToolbar2QT

from matplotlib.figure import Figure

class CreateCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, nrow=1, ncol=1):

 # Create Matplotlib Figure object

 figure = Figure(figsize=(6, 5), dpi=100)

 # Reserve width and height space for subplots

 figure.subplots_adjust(wspace= 0.3, hspace=0.4)

 �# Create the axes and set the number of rows/columns for the

subplot(s)

 self.axes = figure.subplots(nrow, ncol)

 super(CreateCanvas, self).__init__(figure)

class DisplayGraph(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents."""

 self.setMinimumSize(1000, 800)

 self.setWindowTitle("3.2 - PyQt5 + Matplotlib")

Chapter 3 Data Visualization and Analysis

115

 self.setupChart()

 self.show()

 def setupChart(self):

 �"""Set up the GUI's window and widgets that are embedded with

Matplotlib figures."""

 # Load the iris dataset from the CSV file

 iris_data = self.loadCSVFile()

 �# Create the different feature variables for each of the columns in

the iris dataset

 �sepal_length, sepal_width = iris_data[:, 0].astype(float), iris_

data[:, 1].astype(float)

 �petal_length, petal_width = iris_data[:, 2].astype(float), iris_

data[:, 3].astype(float)

 labels = iris_data[:, 4].astype(str)

 �# Convert target labels to encoded labels that will be used for

color coding the points in the scatter plots

 encoded_labels = []

 for label in labels:

 if label == "Setosa":

 encoded_labels.append(0)

 elif label == "Versicolor":

 encoded_labels.append(1)

 elif label == "Virginica":

 encoded_labels.append(2)

 �# Create a canvas object for the scatter plot that visualizes the

relationship between sepal_length and sepal_width

 scatter_canvas = CreateCanvas(self)

 �scatter_canvas.axes.set_title('Sepal Length vs. Sepal Width',

fontsize=16)

 �scatter_canvas.axes.scatter(sepal_length, sepal_width, s=100 *

petal_width,

 c=encoded_labels, cmap='viridis', alpha=0.4)

 scatter_canvas.axes.set_xlabel("Sepal length (cm)", fontsize=12)

Chapter 3 Data Visualization and Analysis

116

 scatter_canvas.axes.set_ylabel("Sepal width (cm)", fontsize=12)

 self.addToolBar(NavigationToolbar2QT(scatter_canvas, self))

 # Regression line for petal length vs. petal width

 reg_line = np.polyfit(petal_length, petal_width, 1)

 poly_reg_line = np.poly1d(reg_line)

 �# Create a canvas object for the scatter plot and histogram that

visualize the relationship between petal_length and petal_width

 mixed_canvas = CreateCanvas(self, nrow=2, ncol=1)

 mixed_canvas.axes[0].scatter(petal_length, petal_width, alpha=0.5,

 c=encoded_labels, cmap='viridis')

 �mixed_canvas.axes[0].set_title("Regression Analysis for Iris

Petals", fontsize=14)

 �mixed_canvas.axes[0].plot(petal_length, poly_reg_line(petal_

length), c='black')

 mixed_canvas.axes[0].set_xlabel("Petal length (cm)", fontsize=12)

 mixed_canvas.axes[0].set_ylabel("Petal width (cm)", fontsize=12)

 mixed_canvas.axes[0].grid(True)

 # Create histogram for petal length

 �mixed_canvas.axes[1].hist(petal_length[:50], bins=15,

color='purple', alpha=0.6, label="Setosa")

 �mixed_canvas.axes[1].hist(petal_length[51:100], bins=15,

color='lightgreen', alpha=0.6, label="Versicolor")

 �mixed_canvas.axes[1].hist(petal_length[101:149], bins=15,

color='yellow', alpha=0.6, label="Virginica")

 �mixed_canvas.axes[1].set_title("Histogram for Iris Petals",

fontsize=14,)

 mixed_canvas.axes[1].set_xlabel("Petal length (cm)", fontsize=12)

 mixed_canvas.axes[1].set_ylabel("Petal width (cm)", fontsize=12)

 mixed_canvas.axes[1].legend()

 self.addToolBar(NavigationToolbar2QT(mixed_canvas, self))

 charts_h_box = QHBoxLayout()

 charts_h_box.addWidget(scatter_canvas)

 charts_h_box.addWidget(mixed_canvas)

Chapter 3 Data Visualization and Analysis

117

 main_v_box = QVBoxLayout()

 main_v_box.addLayout(charts_h_box)

 container = QWidget()

 container.setLayout(main_v_box)

 self.setCentralWidget(container)

 def loadCSVFile(self):

 """Load the iris dataset and store the data in a numpy array."""

 file_name = "files/iris.csv"

 with open(file_name, "r") as csv_f:

 reader = csv.reader(csv_f)

 header_labels = next(reader)

 data = np.array(list(reader))

 return data

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = DisplayGraph()

 sys.exit(app.exec_())

The PyQt GUI with embedded Matplotlib canvases can be seen in Figure 3-9.

�Explanation
For this project, we will once again be using the csv module for working with data. We also

need to import a few basic classes from QtWidgets to create the GUI’s window. The numpy

module is used for configuring the data from the Iris dataset into NumPy arrays, making it

easier to work with our data in Matplotlib, and for calculating the line of best fit.

Next, let’s take a look at the classes we need for embedding Matplotlib. We need to be

sure to use the Qt5Aff backend for this project with the use() function. From backend_

qt5aff, let’s import

•	 FigureCanvasQTAgg – Creates the canvas object where the rendered

figure is placed. The canvas, which is modified to import from the Qt5

backend, is also a Qt widget.

•	 NavigationToolbar2QT – The toolbar widget that gives a user access

to interact with the plot.

Chapter 3 Data Visualization and Analysis

118

Figure objects are the outmost container for a plot in Matplotlib and can contain

one or more Axes. An Axes object in Matplotlib is actually the rectangular area for

generating plots.

�Embedding Matplotlib Canvases in PyQt

If you only want to quickly display a Matplotlib plot in a PyQt GUI, then the following

short code in Listing 3-6 shows you how to get started creating a figure, canvas, and axes

with little trouble.

Listing 3-6.  Embedding a Matplotlib plot in a PyQt application

Import necessary PyQt5 and matplotlib modules

import sys

from PyQt5.QtWidgets import QApplication, QMainWindow

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg

from matplotlib.figure import Figure

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 �# Create the figure that will be rendered in the canvas using the

Qt5 backend. figsize can be used to set the size of the figure in

inches.

 figure = Figure(figsize=(6, 5))

 canvas = FigureCanvasQTAgg(figure)

 # Create a single subplot in row 1, column 1 on subplot 1

 axes = figure.add_subplot(111)

 # Add a graph to axes instance using plot() or other functions

 axes.plot([1, 2, 1, 3, 0])

 axes.set_title("Creating a Basic Plot")

 axes.grid(True)

 axes.set_xlabel("Independent Variable")

 axes.set_ylabel("Dependent Variable")

Chapter 3 Data Visualization and Analysis

119

 self.setCentralWidget(canvas)

 self.show()

app = QApplication(sys.argv)

window = MainWindow()

sys.exit(app.exec_())

The output of the code can be seen in Figure 3-10.

For this example, let’s create the CreateCanvas class that inherits from

FigureCanvasQTAgg. Here we construct the canvas, set up the figure, and set how many

subplots there are in the canvas by specifying the number of rows, nrow, and columns,

ncol, to create the axes. The dpi keyword specifies the resolution of the figure. The

subplot() function in Listing 3-6 is used to create the axes based on rows and columns:

self.axes = figure.subplots(nrow, ncol)

Figure 3-10.  A basic Matplotlib graph embedded in a PyQt GUI

Chapter 3 Data Visualization and Analysis

120

Later in the program, we will use indexing to work with each of the different axes

when there are multiple subplots. You can also add plots to a figure using add_subplot()

or add_axes().

The DisplayGraph class sets up the GUI’s main window. In setupChart(), we first

load the Iris dataset and create a NumPy array, data, to hold the information. Next, we

split up the data into separate arrays based on the iris features and label columns. An

example for the labels array is seen in the following code from Listing 3-6, where [:, 4]

states that we want to use all of the rows in column 4 and typecast the data as strings:

labels = iris_data[:, 4].astype(str)

Label encoding is a common technique used in preprocessing data. The process

takes labels that are string types and represents them as numeric values. For this

problem, we encode labels for better visualizing data in two of the different plots.

Working with Different Matplotlib Chart Types

The GUI created in Listing 3-4 utilizes three different graph types – scatter plots, a line

chart, and a histogram. Two separate instances of the CreateCanvas class are created,

scatter_canvas and mixed_canvas, to demonstrate how to create subplots on the same

canvas object. Let’s see how we create the scatter plot in Listing 3-6 for visualizing the

relationship between iris sepal sizes shown on the left in Figure 3-9:

scatter_canvas = CreateCanvas(self) # Create canvas object

Set the title for the plot (axes)

scatter_canvas.axes.set_title('Sepal Length vs. Sepal Width', fontsize=16)

Create a scatterplot from the sepal_length and sepal_width data. s refers

to marker size for each point; c is the color of each point; we use a

built-in colormap (cmap); alpha refers the transparency of the points

scatter_canvas.axes.scatter(sepal_length, sepal_width, s=100 * petal_width,

c=encoded_labels, cmap='viridis', alpha=0.4)

Set the labels for the x and y axes

scatter_canvas.axes.set_xlabel("Sepal length (cm)")

scatter_canvas.axes.set_ylabel("Sepal width (cm)")

Following the first plot, we create the mixed_canvas for visualizing data related to the

iris petal lengths and widths. This canvas in Listing 3-6 has two rows and one column:

mixed_canvas = CreateCanvas(self, nrow=2, ncol=1)

Chapter 3 Data Visualization and Analysis

121

The next scatter plot is produced in a similar manner as the first, except we use the

index of axes for the mixed_canvas to generate the graph:

mixed_canvas.axes[0].scatter(petal_length, petal_width, alpha=0.5,

c=encoded_labels, cmap='viridis')

In Example 3.2, the function for calculating the regression line was written from

scratch. NumPy already includes a function, polyfit(), for performing the same

task. The poly1d() is used for working with one-dimensional polynomials. This is

demonstrated in the following in code from Listing 3-6:

reg_line = np.polyfit(petal_length, petal_width, 1)

poly_reg_line = np.poly1d(reg_line)

The regression line, poly_reg_line, is then plotted on the same axes by

mixed_canvas.axes[0].plot(petal_length, poly_reg_line(petal_length),

c='black')

Finally, we can create a histogram with hist(). A histogram is similar to a bar chart,

but shows how often an event occurs in the data. In order to display data for all three iris

types in the same graph, we create three separate histogram instances. An example for

the Setosa iris type is shown in the following snippet from Listing 3-6. The bins keyword

refers to the number of bars used to visualize the data:

mixed_canvas.axes[1].hist(petal_length[:50], bins=15, color='purple',

alpha=0.6, label="Setosa")

A chart’s legend can be created for each of the labels in an axes by

mixed_canvas.axes[1].legend()

A toolbar widget is also created and added to the main window for each of the canvas

objects.

�Creating a Navigation Toolbar

For the two canvases, a separate NavigationToolbar2QT object is created and added as a

widget to the main window using addToolBar():

self.addToolBar(NavigationToolbar2QT(scatter_canvas, self))

Chapter 3 Data Visualization and Analysis

122

If you need to include Matplotlib’s navigation toolbar, seen in Figure 3-11, the

following buttons and functionality are already included (viewed from left to right):

•	 Home – When a user pans around or zooms in or out on a plot,

its appearance is modified. Clicking Home will undo all actions

performed on the plot.

•	 Back/Forward – Used to undo or redo the previous action performed

on the plot.

•	 Pan/Zoom – This button has two modes: 1) With the left mouse button,

the user can pan around the data in the chart. 2) Using the right

mouse button, the user can zoom in and out of the selected region.

•	 Zoom-to-rectangle – User can define a rectangular area in the view

and zoom into that region.

•	 Subplot-configuration – Configures the appearance of the plot.

•	 Figure-configuration – Configures the appearance of the figures.

If multiple figures were created, the user will be able to select which

axes they want to modify.

•	 Save – Opens a file dialog to save an image of the current figure.

Toolbars can also be moved around and set in different locations within the GUI’s

window. For more information about Matplotlib’s navigation toolbar, refer to https://

matplotlib.org/3.1.1/users/navigation_toolbar.html.

�Summary
Data science is a rapidly growing field, and the number of tools, with varying types, we

use to understand and visualize data is also increasing. To build a project for identifying

patterns in data, the data analysis process sets up some guidelines for collecting,

processing and cleaning, visualizing, and deploying data models for public use.

Figure 3-11.  The NavigationToolbar2QT toolbar

Chapter 3 Data Visualization and Analysis

https://matplotlib.org/3.1.1/users/navigation_toolbar.html
https://matplotlib.org/3.1.1/users/navigation_toolbar.html

123

There are an array of chart types, such as line graphs, bar graphs, or candlestick

charts, for visualizing data and handling different analysis and statistics scenarios.

An additional module, PyQtChart, can be installed for creating PyQt GUIs for 2D data

visualization. Since PyQt charts are created on top of Qt’s Graphics View Framework and

the QPainter API, developers can not only integrate charts into their applications but

also make them interactive, dynamic, and even stylized.

In this chapter, we saw how to set up basic line charts and create a user interface for

generating and interacting with multiple line series and how to display different chart

types on a single graph for regression analysis. We also walked through the process

of using a popular plotting tool, Matplotlib, alongside PyQt for creating data-centric

programs.

In Chapter 4, you will learn about creating GUIs for database handling using

relational database management systems.

Chapter 3 Data Visualization and Analysis

125
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8_4

CHAPTER 4

Database Handling
in PyQt
Let’s continue exploring the possibilities of working with data with one of the most

widely used tools for accessing and managing data – Structured Query Language

(SQL). Much of the world’s data is collected and stored in the cloud or on servers,
computers that store and provide data to client computers when the client makes

requests for information from the server.

As you saw in Chapter 3, data can be visualized using various tools, such as charts

and graphs. Tables and lists are also commonly used tools for visualizing and analyzing

data. With only a few commands, SQL allows you to access information stored in a

database, a collection of structured data, and edit only the data that you require.

Of course, the data that we collect isn’t isolated. Data has relationships and is

oftentimes associated with other information. The data collected from a store that sells

shoes can be stored in databases to track information about their current inventory,

the brands they sell, the current items on order, the customers’ information, and so on.

SQL allows you to manage those relationships in relational databases, where data is

organized into tables that retain the connections between other tables.

This chapter will show you how to

•	 Use PyQt’s QtSql module and classes to create and query small SQL

databases.

•	 Work with JSON-formatted files for reading and writing data files.

•	 Utilize the argparse module to query databases from the

command line.

https://doi.org/10.1007/978-1-4842-6603-8_4#DOI

126

•	 Build an application for managing SQL databases using model and

view classes.

•	 Add splash screens to your PyQt applications with the QSplashScreen

class.

The next section will introduce you to working with databases using PyQt.

�Using SQL with PyQt
PyQt makes displaying the information in databases relatively straightforward using Qt’s

model/view architecture. PyQt has data model classes created specifically for handling

SQL databases depending upon your needs. For example, QSqlQueryModel allows for

easy access to databases in a read-only format, meaning you can only manipulate data

with a query to the database. QSqlTableModel is handy for working with data in tables

that have no relationships with other tables. Finally, QSqlRelationalTableModel is

useful for handling databases where the tables do share relationships. Data in the table

models can also be edited through a PyQt view class.

Other classes in the QtSql module allow connecting with and manipulating

databases. Connections are made using the QSqlDatabase class, and interactions with

the data are done with QSqlQuery. There are also other classes for accessing specific

items in the database or for providing information about database errors.

In order to manage data, you will also need to select a relational database
management system (RDBMS). An RDBMS is software that is used for creating and

managing databases based on relational models. Commonly used RDBMS software

includes PostgreSQL, MySQL, SQLite, and Open Database Connectivity (ODBC). These

RDBMSs typically have slightly different purposes and syntax, but all of them rely on SQL

as the main language for interacting with a database.

The QtSql module has different driver plugins related to the RDBMSs for

communicating with the databases. QtSql and a few other drivers, including SQLite and

ODBC, already come prebuilt when you install PyQt5. As of PyQt5 version 5.15, there is

only support for a few of the SQL backends due to licensing arrangements with Qt and

the various companies. If you want to use other drivers, such as MySQL, you can find

more information about installing different drivers at https://doc.qt.io/qt-5/sql-

driver.html. Another option is to roll back to a previous version if the driver that you

want to use is currently not supported in your current version of PyQt5.

Chapter 4 Database Handling in PyQt

https://doc.qt.io/qt-5/sql-driver.html
https://doc.qt.io/qt-5/sql-driver.html

127

To find out which drivers you already have installed, open your Python 3

environment in the shell and run the following code:

>>> from PyQt5.QtSql import QSqlDatabase

>>> print(QSqlDatabase.drivers())

This will print out a list of the different plugins you have installed. Be aware that this

does not necessarily mean that just because you have the driver, you can immediately use

it. You may still need to build the plugin. Refer to the Qt documentation for assistance.

In this chapter, we will be working with SQLite3 (the QSQLITE driver). This is done

for two reasons, the first being that SQLite3 in PyQt is supported on Mac, Windows,

and Linux. SQLite3 ships with both Python and PyQt5, so there should not be any

complications if you simply want to get the code in this chapter up and running. Second,

SQLite3 is perfect for creating small- to medium-sized applications where your database

is a single file and can be stored locally and not on a remote server.

When accessing databases on a server through a network, different clients are able to

request different information from the same database at the same time. This is one of the

benefits of using RDBMSs such as MySQL. If you choose to use the drivers, you will also

need to specify other information such as the server name and the database name. The

following code illustrates how this may be achieved with PyQt:

Specify the information needed for connecting to the database

server = 'localhost' # 127.0.0.1

database = 'DB_NAME'

user_name = 'josh'

password = 'safe_password'

With PyQt, we could then use these settings specified by the user and pass them

along to QSqlDatabase to connect to the database:

Specify the driver type, such as QMYSQL, QSQLITE, or QPSQL

database = QSqlDatabase.addDatabase("QODBC3")

database.setHostName(server)

database.setDatabaseName(database)

database.setUserName(user_name)

database.setPassword(password)

In the first program, we will see how to create a database using the SQL classes in

PyQt.

Chapter 4 Database Handling in PyQt

128

�Example 4.1: Creating the Database
For this first example, we are going to find out how to use PyQt’s QtSql module for

creating and querying a small SQL database. The schematic displayed in Figure 4-1

shows the tables and the relationships between the data. Information in a database is

stored in tabular format, where the rows are referred to as records and the columns as

fields. The fields store information such as first_name, store_id, or model_year.

The following lists information about the various tables that comprise the

FishingStores database:

•	 customers – Information about the different customers, including

their first and last names, phone number, and email.

•	 stores – Contains information about the different stores. Each record

contains the store’s name, phone number, and state.

•	 orders – Includes information about orders placed at the various

stores and from which customers. Records contain the customer’s ID,

the order date, the status of the order, and the ID of the store where

the sale occurred.

Figure 4-1.  The tables, items, and relationships in the FishingStores database

Chapter 4 Database Handling in PyQt

129

•	 products – Holds information about the different products that the

different stores sell. Information includes the product’s name, model

year, and listing price.

•	 order_products – Consists of items purchased in an order. Items

are connected to the order’s ID and the product’s ID. The table also

includes the number of items ordered and the listing price.

Before jumping into the code, let’s take a moment to get familiar with some common

SQL commands.

�Brief Introduction to SQL Commands
SQL statements are used to instruct the server to perform certain operations on the

data. When creating items in a table, a developer can specify their data type using SQL

keywords, such as INTEGER, DATE, TIME, CHAR, and VARCHAR, the last of which is useful for

creating strings of variable length. There are also keywords that are used for creating and

manipulating records, performing mathematical calculations, comparing data using set

theory, and even deleting tables and records.

Let’s look at a few example query statements for working with the database that you

will create in Listing 4-1. First, we create a table called products that contains its own

unique product_id:

CREATE TABLE products (

 product_id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL)

Foreign keys are specified by FOREIGN KEY and which table the key REFERENCES. Here

we can see how the foreign key store_id references the store_name in a different table,

stores:

FOREIGN KEY (store_id) REFERENCES stores (store_name))

SELECT statements are used to select data from a database. An asterisk, *, means that

you wish to see all the information in a table:

SELECT * FROM orders

You can also SELECT specific fields or records:

SELECT first_name, last_name FROM customers WHERE customer_id > 20

Chapter 4 Database Handling in PyQt

130

INSERT is useful for adding new records into a table:

INSERT INTO products (product_name, model_year, list_price) VALUES

('Topwater Lure, 7 1/2"', 27.99, 2019)

To erase a record from a table, use DELETE. To delete an entire table, you can use DROP:

DROP TABLE IF EXISTS customers

SQL commands are generally followed by a semicolon, ;. However, we won’t need to

use them since the query commands are passed as arguments to PyQt functions. For a

full list of keywords used in SQLite3, check out www.sqlite.org/lang_keywords.html.

In Listing 4-1, you will see how to use some of these commands to create and insert

data into a database.

Note B e sure to run Listing 4-1 to create the database before running any of the
other programs.

Listing 4-1.  Creates the FishingStores database used throughout this chapter

create_database.py

Import necessary modules

import sys, os

from PyQt5.QtCore import QCoreApplication

from PyQt5.QtSql import QSqlDatabase, QSqlQuery

Uncomment to load all relevant information about the different plugins,

in this case SQL Drivers, that PyQt is trying to load. Useful if you want

to use plugins other than SQLite and are getting errors

#os.environ['QT_DEBUG_PLUGINS'] = "1"

class CreateDatabaseObjects():

 """Select the SQL driver and set up the database tables."""

 �# Create connection to the database. If .sql file does not exist, a new

.sql file will be created.

 database = QSqlDatabase.addDatabase("QSQLITE") # SQLite version 3

 database.setDatabaseName("databases/FishingStores.sql")

Chapter 4 Database Handling in PyQt

http://www.sqlite.org/lang_keywords.html

131

 if not database.open():

 print("Unable to open data source file.")

 print("Connection failed: ", database.lastError().text())

 sys.exit(1) # Error code 1 - signifies error in opening file

 query = QSqlQuery()

 # Erase tables if they already exist (avoids having duplicate data)

 query.exec_("DROP TABLE IF EXISTS customers")

 query.exec_("DROP TABLE IF EXISTS stores")

 query.exec_("DROP TABLE IF EXISTS orders")

 query.exec_("DROP TABLE IF EXISTS products")

 query.exec_("DROP TABLE IF EXISTS order_products")

 # Create customers table

 query.exec_("""CREATE TABLE customers (

 customer_id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

 first_name VARCHAR (100) NOT NULL,

 last_name VARCHAR (100) NOT NULL,

 phone VARCHAR (25),

 email VARCHAR (255) NOT NULL)""")

 # Create stores table

 query.exec_("""CREATE TABLE stores (

 store_id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

 store_name VARCHAR (100) NOT NULL,

 phone VARCHAR (25),

 state VARCHAR (5))""")

 # Create orders table

 # order_status: Pending = 1, Processing = 2, Completed = 3, Rejected = 4

 query.exec_("""CREATE TABLE orders (

 order_id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

 customer_id INTEGER,

 order_date TEXT NOT NULL,

 order_status TINYINT NOT NULL,

 store_id INTEGER NOT NULL,

 FOREIGN KEY (customer_id) REFERENCES customers (customer_id),

 FOREIGN KEY (store_id) REFERENCES stores (store_name))""")

Chapter 4 Database Handling in PyQt

132

 # Create products table

 query.exec_("""CREATE TABLE products (

 product_id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

 product_name VARCHAR (100) NOT NULL,

 model_year VARCHAR (100) NOT NULL,

 list_price DECIMAL (10, 2) NOT NULL)""")

 # Create order_products table

 query.exec_("""CREATE TABLE order_products (

 order_id INTEGER,

 product_id INTEGER,

 quantity INTEGER NOT NULL,

 list_price DECIMAL (10, 2) NOT NULL,

 FOREIGN KEY (order_id) REFERENCES orders (order_id),

 FOREIGN KEY (product_id) REFERENCES products (product_name))""")

class InsertDataIntoTables():

 """Create data and populate the tables."""

 customers = [["James", "Smith", 'NULL'], ["Mary", "Johnson", 'NULL'],

 �["John", "Williams", 'NULL'], ["Patricia", "Brown",

'(716) 472-1234'],

 ["Lijing", "Ye", 'NULL'], ["Andrea", "Cotman", 'NULL'],

 ["Aaron", "Rountree", 'NULL'], ["Malik", "Ranger", 'NULL'],

 �["Helen", "Rodriguez", 'NULL'], ["Linda", "Martinez",

'NULL'],

 �["William", "Hernandez", '(757) 408-1121'], ["Elizabeth",

"Lopez", '(804) 543-9876'],

 �["David", "Gonzalez", 'NULL'], ["Barbara", "Wilson",

'NULL'],

 �["Richard", "Anderson", 'NULL'], ["Susan", "Thomas",

'(213) 854-7771'],

 �["Joseph", "Taylor", '(609) 341-9801'], ["Jessica",

"Moore", '(707) 121-0909'],

 ["Thomas", "Jackson", 'NULL'], ["Sarah", "Martin", 'NULL'],

 �["Ryan", "Lee", 'NULL'], ["Cynthia", "Perez", '(754)

908-5432'],

Chapter 4 Database Handling in PyQt

133

 �["Jacob", "Thompson", '(763) 765-1023'], ["Kathleen",

"White", 'NULL'],

 �["Gary", "Harris", 'NULL'], ["Amy", "Sanchez", '(213)

198-4510'],

 �["Nicholas", "Clark", 'NULL'], ["Shirley", "Ramirez",

'(231) 480-1567'],

 ["Eric", "Lewis", 'NULL'], ["Angela", "Miller", 'NULL']]

 stores = [['Boston Fish Supplies', '(617) 987-6543', 'MA'],

 ['Miami Fish Supplies', '(786) 123-4567', 'FL']]

 �orders = [[2, '2020-01-04', 1, 1], [18, '2020-01-05', 2, 1], [30,

'2020-01-08', 1, 2], [6, '2020-01-10', 3, 2],

 �[21, '2020-01-11', 1, 2], [19, '2020-01-11', 3, 1], [27,

'2020-01-12', 3, 1], [1, '2020-01-14', 2, 2],

 �[5, '2020-01-15', 1, 2], [29, '2020-01-15', 2, 1], [28,

'2020-01-16', 1, 2], [9, '2020-01-17', 1, 1],

 �[26, '2020-01-17', 2, 2], [10, '2020-01-18', 3, 1], [3,

'2020-01-18', 3, 2], [11, '2020-01-19', 4, 2],

 �[14, '2020-01-20', 1, 1], [20, '2020-01-20', 2, 1], [8,

'2020-01-20', 3, 1], [12, '2020-01-20', 2, 2],

 �[15, '2020-01-21', 4, 1], [4, '2020-01-23', 1, 1], [22,

'2020-01-24', 3, 2], [13, '2020-01-26', 2, 2],

 �[7, '2020-01-26', 1, 2], [16, '2020-01-27', 3, 2], [17,

'2020-01-29', 2, 1], [23, '2020-01-30', 3, 1],

 [24, '2020-02-01', 1, 2], [25, '2020-02-03',2, 2]]

 �products = [['Orca Topwater Lure, 7 1/2"', 27.99, 2019], ['Feather

Lure, 6"', 12.99, 2019],

 �['Sailure Fishing Lure, 5 1/2"', 24.99, 2020], ['Waxwing

Saltwater Jig, 1/2 oz.', 13.99, 2020],

 �['7\'3" Bait-Stik Spinning Rod', 59.99, 2018], ['6\'6"

Handcrafted Spinning Rod', 119.95, 2019],

 �['7\' Lite Spinning Rod', 169.99, 2020], ['7\' Boat

Spinning Rod', 79.99, 2020],

 �['6\'6" Conventional Rod', 69.99, 2020], ['165 qt. Maxcold

Cooler', 129.99, 2018],

Chapter 4 Database Handling in PyQt

134

 �['120 qt. Premium Marine Cooler', 399.99, 2019], ['5.3

Lever Drag Casting Reel', 199.99, 2018],

 �['4.6 Lever Drag Casting Reel', 249.99, 2020], ['Offshore

Tackle Bag', 159.99, 2017]]

 �order_products = [[1, 2, 1, 24.99], [2, 14, 2, 159.99], [3, 11, 1,

399.99], [4, 1, 8, 27.99], [5, 1, 2, 12.99],

 �[6, 4, 4, 13.99], [7, 1, 1, 27.99], [8, 8, 2, 79.99],

[9, 8, 1, 79.99], [10, 13, 1, 249.99],

 �[11, 1, 1, 27.99], [12, 11, 3, 399.99], [13, 12, 2,

199.99], [14, 7, 1, 169.99], [15, 3, 3, 24.99],

 �[16, 10, 1, 129.99], [17, 13, 1, 249.99], [18, 6, 2,

119.95], [19, 5, 1, 59.99], [20, 8, 1, 79.99],

 �[21, 6, 1, 119.95], [22, 5, 2, 59.99], [23, 14, 1,

159.99], [24, 2, 2, 12.99], [25, 1, 1, 27.99],

 �[26, 10, 1, 129.99], [27, 2, 3, 12.99], [28, 9, 1,

69.99], [29, 13, 1, 249.99], [30, 6, 1, 119.95]]

 # Create the QSqlQuery instance

 query = QSqlQuery()

 # Positional binding to insert records into the customers table

 �query.prepare("INSERT INTO customers (first_name, last_name, phone,

email) VALUES (?, ?, ?, ?)")

 # Add the values to the query to be inserted into the customers table

 for i in range(len(customers)):

 first_name = customers[i][0]

 last_name = customers[i][1]

 phone = customers[i][2]

 �email = (last_name).lower() + "." + (first_name).lower() +

"@email.com"

 query.addBindValue(first_name)

 query.addBindValue(last_name)

 query.addBindValue(phone)

 query.addBindValue(email)

 query.exec_()

Chapter 4 Database Handling in PyQt

135

 # Positional binding to insert records into the stores table

 �query.prepare("INSERT INTO stores (store_name, phone, state) VALUES (?,

?, ?)")

 # Add the values to the query to be inserted into the stores table

 for i in range(len(stores)):

 store_name = stores[i][0]

 phone = stores[i][1]

 state = stores[i][2]

 query.addBindValue(store_name)

 query.addBindValue(phone)

 query.addBindValue(state)

 query.exec_()

 # Positional binding to insert records into the orders table

 �query.prepare("INSERT INTO orders (customer_id, order_date, order_

status, store_id) VALUES (?, ?, ?, ?)")

 # Add the values to the query to be inserted into the orders table

 for i in range(len(orders)):

 customer_id = orders[i][0]

 order_date = orders[i][1]

 order_status = orders[i][2]

 store_id = orders[i][3]

 query.addBindValue(customer_id)

 query.addBindValue(order_date)

 query.addBindValue(order_status)

 query.addBindValue(store_id)

 query.exec_()

 # Positional binding to insert records into the products table

 �query.prepare("INSERT INTO products (product_name, model_year, list_

price) VALUES (?, ?, ?)")

 # Add the values to the query to be inserted into the products table

 for i in range(len(products)):

 product_name = products[i][0]

 model_year = products[i][1]

 list_price = products[i][2]

Chapter 4 Database Handling in PyQt

136

 query.addBindValue(product_name)

 query.addBindValue(model_year)

 query.addBindValue(list_price)

 query.exec_()

 # Positional binding to insert records into the order_products table

 �query.prepare("INSERT INTO order_products (order_id, product_id,

quantity, list_price) VALUES (?, ?, ?, ?)")

 # Add the values to the query to be inserted into the order_products table

 for i in range(len(order_products)):

 order_id = order_products[i][0]

 product_id = order_products[i][1]

 quantity = order_products[i][2]

 list_price = order_products[i][3]

 query.addBindValue(order_id)

 query.addBindValue(product_id)

 query.addBindValue(quantity)

 query.addBindValue(list_price)

 query.exec_()

 print("[INFO] Database successfully created.")

 sys.exit(0) # Exit the program after creating the database

if __name__ == "__main__":

 app = QCoreApplication(sys.argv)

 CreateDatabaseObjects()

 InsertDataIntoTables()

 sys.exit(app.exec_())

This program creates the FishingStores database that we will visualize and

manipulate in Listings 4-2 and 4-3.

�Explanation
Unlike previous applications in this book, no GUI will appear when the user runs the

program. Instead, we use QCoreApplication to create a PyQt application that can be run

using the command line. After executing the program, the following line will be printed

in the command window:

Chapter 4 Database Handling in PyQt

137

$ [INFO] Database successfully created.

The first time you run this program, you will create the FishingStores.sql file in the

databases/ directory.

Tip R erunning this script will recreate the database. This is useful if you have
made changes to the data and want to start over again.

We only need to import two classes from QtSql – QSqlDatabase for creating the

connection to a database and QSqlQuery for executing queries and manipulating SQL

databases. The program is separated into two classes:

•	 CreateDatabaseObjects – Connect to the database, drop existing

tables, and create new tables.

•	 InsertDataIntoTables – Populate the various tables.

When using PyQt SQL classes, the first thing you must do is connect to the database

using QSqlDatabase. For SQLite3, that merely means specifying the QSQLITE driver using

addDatabase() and stating the file name of the database with setDatabaseName(). It is

possible to use more than one database in the same application. If the database file does

not already exist, then it will be created. The open() function must be called to establish

the connection.

To begin executing queries in Listing 4-1, make an instance of QSqlQuery:

 query = QSqlQuery()

Next, let’s use the SQL command DROP to delete any tables that already exist. This is

useful if you are rerunning the Python script. If you do not drop the table first, then you

will append the new information to the existing tables:

query.exec_("DROP TABLE IF EXISTS orders")

The exec_() function is used to execute the query statement.

Since the process used in Listing 4-1 for creating each table is similar, we will only

discuss how to set up the orders table in the following section of code. Use CREATE TABLE

orders to generate the new table. Each entry in orders will have a unique order_id

using AUTOINCREMENT and UNIQUE. The orders table will include information about an

order’s ID, a link to a customer who purchased the product, the date of purchase, the

Chapter 4 Database Handling in PyQt

138

current status of the order, and the ID of the store where it was purchased. Using FOREIGN

KEY and REFERENCES, you can establish the relationships between different tables. All of

the database's connections are illustrated in Figure 4-1:

Create orders table

query.exec_("""CREATE TABLE orders (

 order_id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

 customer_id INTEGER,

 order_date TEXT NOT NULL,

 order_status TINYINT NOT NULL,

 store_id INTEGER NOT NULL,

 FOREIGN KEY (customer_id) REFERENCES customers (customer_id),

 FOREIGN KEY (store_id) REFERENCES stores (store_name))""")

Since we know that the store_id will only consist of value 1 or 2, we use a TINYINT

to conserve disk space since they only use 1 byte compared to the 4 bytes that INTEGERS

use.

Now we can begin inserting records into the tables we created. The records in

Listing 4-1 are stored in a Python list that is used to populate the table. For example,

the first record in the orders table is shown in the following in the orders list:

orders = [[2, '2020-01-04', 1, 1], ...]

The first value in the list, 2, corresponds to customer_id, '2020-01-04' refers to

order_date, 1 to order_status, and finally 1 to store_id. The other items in the orders

list are set up in the same fashion. The exec_() function is very useful for performing

queries, such as retrieving tables and even inserting a new record into a table. However,

if you have a large database and need to insert a lot of information, you can use

placeholders, ?, and the prepare() function. The question mark acts as a temporary

variable, allowing you to insert multiple records using the same query instance. Let’s

take a look at how to insert data into the orders table in Listing 4-1:

Positional binding to insert records into the orders table

query.prepare("INSERT INTO orders (customer_id, order_date, order_status,

store_id) VALUES (?, ?, ?, ?)")

Chapter 4 Database Handling in PyQt

139

Each of the values, such as customer_id or store_id, corresponds to one of the

placeholders. The order_id is not included in the following section of code from Listing 4-1

since AUTOINCREMENT is used to update its value:

i refers to item at the ith index in the orders list

for i in range(len(orders)):

 customer_id = orders[i][0]

 order_date = orders[i][1]

 order_status = orders[i][2]

 store_id = orders[i][3]

 query.addBindValue(customer_id)

 query.addBindValue(order_date)

 query.addBindValue(order_status)

 query.addBindValue(store_id)

 query.exec_()

The prepare() function gets the query ready for execution. Next, we need to cycle

through all the values in the orders list and bind them to their placeholders using

addBindValue(). Call exec_() at the end of each iteration to insert the values into the

orders table.

Of course, you can also add a single record to any table using exec_():

query.exec_("INSERT INTO orders(customer_id, order_date, order_status,

store_id) VALUES(12, '1990-04-20', 3, 1")

With your database built, you are now ready to use PyQt’s SQL classes and the

QTableView widget to visualize the data.

�Example 4.2: Displaying Data with QTableView
Tables, lists, charts, and other types of visual tools are helpful for humans to visualize,

organize, understand, and find meaning in data. In this next example seen in Figure 4-2,

you will use two different QtSql models, QSqlQueryModel and QSqlTableModel, for

displaying a SQL database using PyQt’s QTableView class.

Chapter 4 Database Handling in PyQt

140

In order to specify which model class we want to use for handling the data in

Listing 4-2, we will also take advantage of Python’s argparse module for passing

arguments to our application using the command line.

Listing 4-2.  Code for interacting with the FishingStores database using different

QtSql model classes and the command line

view_database.py

Import necessary modules

import sys, argparse

from PyQt5.QtWidgets import (QApplication, QMainWindow, QTableView,

QHeaderView, QMessageBox)

from PyQt5.QtSql import QSqlDatabase, QSqlQuery, QSqlQueryModel,

QSqlTableModel

def parseCommandLine():

 �"""Use argparse to parse the command line for the SQL data model and

any queries to the database. Users can enter multiple queries in the

command line."""

 parser = argparse.ArgumentParser()

 parser.add_argument("-d", "--data-model", type=str,

Figure 4-2.  The customers table from the FishingStores database

Chapter 4 Database Handling in PyQt

141

 choices=['read-only', 'read-write'], default="read-only",

 help="Select the type of data model for viewing SQL data: \

 read-only = QSqlQueryModel; read-write = QSqlTableModel")

 �parser.add_argument("-q", "--query", type=str, default=["SELECT * FROM

customers"],

 nargs="*", help="Pass a query in the command line")

 args = vars(parser.parse_args())

 return args

class DisplayDatabase(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and its contents."""

 self.setMinimumSize(1000, 500)

 self.setWindowTitle("Ex 4.2 - Display SQL Data in PyQt Tables")

 self.createConnection()

 self.setupTable(args["data_model"], args["query"])

 self.show()

 def createConnection(self):

 �"""Set up connection to the database. Check if the tables needed

exist."""

 self.database = QSqlDatabase.addDatabase("QSQLITE")

 self.database.setDatabaseName("databases/FishingStores.sql")

 if not self.database.open():

 print("Unable to open data source file.")

 print("Connection failed: ", self.database.lastError().text())

 sys.exit(1) # Error code 1 - signifies error in opening file

 # Check if the tables we want to use exist in the database

 �tables_needed = {'customers', 'stores', 'orders', 'products',

'order_products'}

 tables_not_found = tables_needed - set(self.database.tables())

Chapter 4 Database Handling in PyQt

142

 if tables_not_found:

 QMessageBox.critical(None, 'Error',

 �'The following tables are missing from the database: {}'.

format(tables_not_found))

 sys.exit(1) # Error code 1 – signifies error

 def setupTable(self, data_model, query_cmdline):

 �"""Set up the main window. The SQL model used is based on data_

model; The query_cmdline argument is a list of queries from the

command line."""

 if data_model == "read-write":

 # Create the model instance

 self.model = QSqlTableModel()

 �# Populate the model with data. Example of using setQuery()

to display data in the table view; you would typically use

setTable() to populate the model

 for qry in query_cmdline:

 query = QSqlQuery(qry)

 self.model.setQuery(query)

 elif data_model == "read-only":

 self.model = QSqlQueryModel()

 # Populate the model with data

 for qry in query_cmdline:

 self.model.setQuery(qry)

 table_view = QTableView()

 table_view.setModel(self.model)

 �table_view.hideColumn(0) # Useful if you don't want to view the id

values

 �table_view.horizontalHeader().setSectionResizeMode(QHeaderView.

Stretch)

 self.setCentralWidget(table_view)

Chapter 4 Database Handling in PyQt

143

if __name__ == "__main__":

 args = parseCommandLine() # Return any command line arguments

 app = QApplication(sys.argv)

 window = DisplayDatabase()

 sys.exit(app.exec_())

The database created in Listing 4-1 can be viewed using different PyQt model classes

and a table view object. An example of this is shown in Figure 4-2.

�Explanation
On top of the QtWidgets needed for creating the QTableView object and tampering with

its headers using QHeaderView and the SQL classes, we also need to import the Python

module argparse.

For the purposes of this project, argparse will allow the user to pass arguments in

the command line for choosing a SQL data model, QSqlTableModel or QSqlQueryModel,

and for managing data and one or more query statements.

First, let’s create the parser instance to parse the command line. The add_

argument() method is used to fill the parser with information about the arguments

to be passed. The parse_args() function returns an object with two attributes,

--data-model and --query. The user is able to pass more than one query argument as

we shall see soon.

The DisplayDatabase class creates the parameters and functions for setting up the

GUI’s main window. createConnection() is used to establish and test the connection

to the database similar to Listing 4-1. However, this time we already know the contents

of the database we want to check out. Let’s also take a moment to make sure that the

tables we want to interact with also exist. If a table we request is not present, then a

QMessageBox.critical() dialog will appear to inform us of the missing table. The

program will then exit using sys.exit(1).

If no errors occur, we can begin setting up the data model and table view instances in

setupTable() using the following line from Listing 4-2:

self.setupTable(args["data_model"], args["query"])

Chapter 4 Database Handling in PyQt

144

The two parameters in setupTable() correspond to the --data-model and --query

arguments passed using argparse. If neither argument was specified, then the default

model arguments will be passed. The command is shown in the following, and the

results are shown in Figure 4-2:

$ python3 view_database.py

Otherwise, the user can specify the type of data model and any number of queries.

Make sure the last statement in --query is a SELECT statement. Otherwise, no data will

appear in the table. The following lines of code show example commands for you to try

out and see the results in the GUI window. You should also definitely try out your own.

The following selects the QSqlTableModel with read-write, creates a new stores

record, and displays the stores table. The result can be seen in Figure 4-3. Also, notice

how each query is a string specified with "" and a space between each one.

$ python3 view_database.py --data-model read-write --query "INSERT INTO

stores (store_name, phone, state) VALUES ('Hampton Fish Supplies', '(757)

987-6543', 'VA')" "SELECT * FROM stores"

Note A ny changes you make using queries or in the QSqlTableModel will also
alter the actual data. To recreate the original database, rerun Listing 4-1.

Use QSqlQueryModel and delete customers with customer_ids less than 20.

Figure 4-3.  The stores table with a new record added. Using QSqlTableModel,
data can also be edited in the table as shown in the image

Chapter 4 Database Handling in PyQt

145

$ python3 view_database.py --data-model read-only --query "DELETE FROM

customers WHERE customer_id <= 20" "SELECT * FROM customers" "SELECT * FROM

customers"

Only display product_id and product_name columns from the products table:

$ python3 view_database.py --query "SELECT product_id, product_name FROM

products"

Update the email for the customer with customer_id = 3:

$ python3 view_database.py -q "UPDATE customers SET email = 'hahaha@email.

com' WHERE customer_id = 3" "SELECT * from customers"

QSqlTableModel inherits from the QSqlQueryModel class, and therefore you can use

setQuery() to update the data shown in the table view. It is generally a better practice to

use other functions such as setTable() or setSort() if you already know which tables

you want to view and edit. This is mostly due to how QSqlTableModel manages data

shown in tabular form.

�Project 4.1: SQL Manager GUI
Now that we have seen how to create SQL databases, modify the data using SQL

commands, and display the records with PyQt classes, we can move on to this chapter’s

final project – a graphical user interface for managing SQL databases in a single

application.

�SQL Manager GUI Solution
For the general user who needs to interact with data, manipulating SQL databases using

the command line isn’t very convenient or user-friendly. The purpose of this application

is to create the foundation for a light and user-friendly GUI that makes accessing and

editing data faster and easier. Creating a GUI can speed up the process for creating

databases, writing SQL code, comparing relationships, modifying data, and more.

Chapter 4 Database Handling in PyQt

146

This application is broken into two scripts:

	 1.	 Login.py – Creates the login UI

	 2.	 sql_manager.py – The GUI for interacting with the FishingStores

database

�Part 1: The Login Script
Software systems that manage relational databases often allow for multiple users to handle

the data at any given time. Accessing a database often requires a user to connect to a secure

server or to the cloud by entering their username and password into the application’s login

screen. The login window you will create for this project is shown in Figure 4-4.

The application in Listing 4-3 has two main purposes. If the user already has an

account, then they simply enter their username and password and log in. Otherwise,

they will need to click the No Account? button seen in Figure 4-4 to register as a new

user.

Listing 4-3.  Code for the login GUI. Imported in the sql_manager script (Listing 4-4)

Login.py

Import necessary modules

import sys, time, json

from PyQt5.QtWidgets import (QWidget, QDialog, QLabel, QPushButton,

QLineEdit, QMessageBox, QFormLayout, QVBoxLayout)

Figure 4-4.  The login window for the SQL Manager application

Chapter 4 Database Handling in PyQt

147

from PyQt5.QtCore import Qt

from PyQt5.QtGui import QFont

class LoginGUI(QWidget):

 def __init__(self, parent=None):

 super().__init__()

 self.parent = parent

 self.initializeUI()

 def initializeUI(self):

 """Initialize the Login GUI window."""

 self.setFixedSize(400, 240)

 self.setWindowTitle("4.1 - SQL Management GUI")

 self.setupWindow()

 def setupWindow(self):

 """Set up the widgets for the login GUI."""

 header_label = QLabel("SQL Management GUI")

 header_label.setFont(QFont('Arial', 20))

 header_label.setAlignment(Qt.AlignCenter)

 server_name_entry = QLineEdit()

 server_name_entry.setMinimumWidth(250)

 server_name_entry.setText("localhost")

 self.user_entry = QLineEdit()

 self.user_entry.setMinimumWidth(250)

 self.password_entry = QLineEdit()

 self.password_entry.setMinimumWidth(250)

 self.password_entry.setEchoMode(QLineEdit.Password)

 # Arrange the QLineEdit widgets into a QFormLayout

 login_form = QFormLayout()

 login_form.setLabelAlignment(Qt.AlignLeft)

 login_form.addRow("Server Name:", server_name_entry)

 login_form.addRow("User Login:", self.user_entry)

 login_form.addRow("Password:", self.password_entry)

Chapter 4 Database Handling in PyQt

148

 connect_button = QPushButton("Connect")

 connect_button.clicked.connect(self.connectToDatabase)

 new_user_button = QPushButton("No Account?")

 new_user_button.clicked.connect(self.createNewUser)

 main_v_box = QVBoxLayout()

 main_v_box.setAlignment(Qt.AlignTop)

 main_v_box.addWidget(header_label)

 main_v_box.addSpacing(10)

 main_v_box.addLayout(login_form)

 main_v_box.addWidget(connect_button)

 main_v_box.addWidget(new_user_button)

 self.setLayout(main_v_box)

 def connectToDatabase(self):

 �"""Check the user's information. Close the login window if a match

is found, and open the SQL manager window."""

 users = {} # Create an empty dictionary to store user information

 with open('files/login.json') as json_f:

 login_data = json.load(json_f)

 # Load information from json file into a dictionary

 for login in login_data['loginList']:

 user, pswd = login['username'], login['password']

 users[user] = pswd # Set the dict's key and value pair

 # Collect information that the user entered

 user_name = self.user_entry.text()

 password = self.password_entry.text()

 if (user_name, password) in users.items():

 self.close()

 # Open the SQL management application

 �time.sleep(0.5) # Pause slightly before showing the parent

window

 self.parent.show()

Chapter 4 Database Handling in PyQt

149

 else:

 QMessageBox.warning(self, "Information Incorrect",

 "The user name or password is incorrect.", QMessageBox.Close)

 def createNewUser(self):

 """Set up the dialog box for the user to create a new user account."""

 self.hide() # Hide the login window

 self.new_user_dialog = QDialog(self)

 self.new_user_dialog.setWindowTitle("Create New User")

 header_label = QLabel("Create New User Account")

 self.new_user_entry = QLineEdit()

 self.new_password = QLineEdit()

 self.new_password.setEchoMode(QLineEdit.Password)

 self.confirm_password = QLineEdit()

 self.confirm_password.setEchoMode(QLineEdit.Password)

 # Arrange QLineEdit widgets in a QFormLayout

 dialog_form = QFormLayout()

 dialog_form.addRow("New User Login:", self.new_user_entry)

 dialog_form.addRow("New Password", self.new_password)

 dialog_form.addRow("Confirm Password", self.confirm_password)

 # Create sign up button

 create_acct_button = QPushButton("Create New Account")

 create_acct_button.clicked.connect(self.acceptUserInfo)

 dialog_v_box = QVBoxLayout()

 dialog_v_box.setAlignment(Qt.AlignTop)

 dialog_v_box.addWidget(header_label)

 dialog_v_box.addSpacing(10)

 dialog_v_box.addLayout(dialog_form, 1)

 dialog_v_box.addWidget(create_acct_button)

 self.new_user_dialog.setLayout(dialog_v_box)

 self.new_user_dialog.show()

Chapter 4 Database Handling in PyQt

150

 def acceptUserInfo(self):

 �"""Verify that the user's passwords match. If so, save them user's

info to the json file and display the login window."""

 user_name_text = self.new_user_entry.text()

 pswd_text = self.new_password.text()

 confirm_text = self.confirm_password.text()

 if pswd_text != confirm_text:

 QMessageBox.warning(self, "Error Message",

 "The passwords you entered do not match. Please try again.",

 QMessageBox.Close)

 else:

 �# If the passwords match, save the passwords to the json file

and return to the login screen.

 user_info = {}

 with open('files/login.json', "r+") as json_f:

 login_data = json.load(json_f)

 login_data['loginList'].append({

 "username": user_name_text,

 "password": pswd_text})

 login_data.update(user_info)

 json_f.seek(0) # Reset the file pointer to position 0

 json.dump(login_data, json_f, indent=2)

 self.new_user_dialog.close()

 self.show()

The login interface is displayed in Figure 4-4.

�Explanation

This part of the application is a simple GUI, composed of widgets from the QtWidgets

module. Since we will also be working with files formatted using JavaScript Object

Notation (JSON), the json module is also imported. More information about working

with JSON files can be found at https://docs.python.org/3/library/json.

html#module-json.tool.

Chapter 4 Database Handling in PyQt

https://docs.python.org/3/library/json.html#module-json.tool
https://docs.python.org/3/library/json.html#module-json.tool

151

The LoginGUI class in Listing 4-3 creates the interface for logging into the SQL

Manager application in Listing 4-4. When the user starts the application, they will first be

greeted by a splash screen, which is then followed by the login window. We will discuss

creating splash screens with PyQt a little later in this chapter.

The window is composed of a few labels, line edit widgets, and buttons that are

arranged using QFormLayout. Since we are using SQLite3, we don’t need to worry about

our server name, which is specified as localhost. It is included in the application as an

example. If you were using other RDBMSs, you would need to collect other information

from the user, such as the server or database name. You could definitely modify this

window should you choose to use different drivers.

If the user already has an account, they can input their username and password in the

current fields and click the connect_button. This sends a signal that is connected to the

connectToDatabase() slot. In the following snippet of code from Listing 4-3, we collect the

user_name and password text and look for a match in the login.json file. If one is found,

we close() the login window and open the parent window, created in Listing 4-4:

if (user_name, password) in users.items():

 self.close() # Close login window

 # Open the SQL management application

 self.parent.show()

If the user does not have an account, they can create a new one by clicking the new_

user_button. This emits a signal that calls createNewUser(), which displays the new_user_

dialog shown in Figure 4-5. After the user successfully enters their login information and

clicks the create_acct_button, they can then log into the SQL Manager application.

Figure 4-5.  The dialog box to create a new user

Chapter 4 Database Handling in PyQt

152

There are numerous ways to improve this system for logging into an application.

For example, you could validate the type of characters a user inputs to meet certain

formatting standards, use hashing to create secure passwords, or even check if a

username already exists in the database of users.

Working with JSON Files

Whether the user is logging in or creating a new account, we need a way to manage

their username and password. If the user is logging in, we need to read from the login.

json file shown in Figure 4-6 and look for a username and password combination that

matches what the user entered.

We first need to read from the file and use load() to return the information in the file

as a dictionary. This is demonstrated in the following bit of code from Listing 4-3:

with open('files/login.json') as json_f:

 login_data = json.load(json_f)

Then we load the information and store the key and value pairs in the users

dictionary:

Load information from json file into a dictionary

for login in login_data['loginList']:

 user, pswd = login['username'], login['password']

 users[user] = pswd # Set the dict's key and value

We’ll use those values and compare them to the user’s entries.

Figure 4-6.  The login.json file before creating a new user account (left) and with
the new user’s information stored in the file (right)

Chapter 4 Database Handling in PyQt

153

To write to a file in Listing 4-3, we first need to open the file and use json’s load()

function to create a dictionary object:

with open('files/login.json', "r+") as json_f:

 login_data = json.load(json_f)

Next, let’s add our new information to the loginList:

login_data['loginList'].append({

 "username": user_name_text,

 "password": pswd_text})

We then update the dictionary item with the user_info using update(), return the

pointer back to the beginning of the file, and overwrite the previous information using

dump():

login_data.update(user_info)

json_f.seek(0) # Reset the file pointer to position 0

json.dump(login_data, json_f, indent=2)

Now that the user has logged in, they can begin interacting with the SQL Manager

GUI.

�Part 2: The SQL Manager Script
The QSqlQueryModel class gives us the high-level functionality we need to quickly and

easily query databases and display the results using QTableView. The following program

displayed in Figure 4-7 has four main components:

•	 A QTreeView widget for displaying the available database files

•	 A QTextEdit widget for entering queries

•	 A QToolbar widget for executing queries or clearing the text edit

widget

•	 A QTableView widget for displaying query results

Chapter 4 Database Handling in PyQt

154

Let’s have a look at the SQL Manager GUI found in Listing 4-4.

Listing 4-4.  The code for the SQL Manager application

sql_manager.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QTextEdit,

QTableView, QTreeView, QHeaderView, QSplitter, QToolBar, QAction,

QFileSystemModel, QMessageBox, QHBoxLayout, QSplashScreen)

from PyQt5.QtSql import QSqlDatabase, QSqlQuery, QSqlQueryModel

from PyQt5.QtGui import QFont, QIcon, QPixmap

from PyQt5.QtCore import Qt, QSize, QDir

from Login import LoginGUI # Import the login script

Figure 4-7.  The SQL Manager GUI. The image showcases the available directories
in the tree view, a few example queries, and their results visualized in the table view

Chapter 4 Database Handling in PyQt

155

class SQLManager(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and its contents."""

 self.setMinimumSize(1100, 800)

 �self.move(QApplication.desktop().screen().rect().center() - self.

rect().center())

 self.setWindowTitle("4.1 - SQL Management GUI")

 self.login = LoginGUI(self)

 self.login.show()

 self.createConnection()

 self.setupWindow()

 self.setupToolbar()

 def createConnection(self):

 �"""Set up connection to the database. Check if the tables needed

exist."""

 self.database = QSqlDatabase.addDatabase("QSQLITE")

 self.database.setDatabaseName("databases/FishingStores.sql")

 if not self.database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error in opening file

 # Check if the tables we want to use exist in the database

 �tables_needed = {'customers', 'stores', 'orders', 'products',

'order_products'}

 tables_not_found = tables_needed - set(self.database.tables())

 if tables_not_found:

 QMessageBox.critical(None, 'Error',

 �'The following tables are missing from the database: {}'.

format(tables_not_found))

 sys.exit(1) # Error code 1 – signifies error

Chapter 4 Database Handling in PyQt

156

 def setupWindow(self):

 �"""Set up the directory model/view instances, SQL model/view

instances, and other widgets to be displayed in the main window."""

 # Create tree model/view for displaying databases in the directory

 directory = QDir.currentPath() + "/databases"

 system_model = QFileSystemModel()

 system_model.setRootPath(directory)

 index = system_model.index(directory)

 tree_view = QTreeView()

 tree_view.setIndentation(15) # Indentation of items in view

 tree_view.setMaximumWidth(300)

 tree_view.setModel(system_model)

 tree_view.setRootIndex(index)

 self.query_entry_field = QTextEdit()

 self.query_entry_field.setFont(QFont("Courier", 14))

 �self.query_entry_field.setPlaceholderText("Enter your queries

here...")

 # Create the model/view instances

 self.sql_model = QSqlQueryModel()

 �# Create the table view instance and set its parameters and its

delegate

 table_view = QTableView()

 table_view.setAlternatingRowColors(True)

 table_view.setModel(self.sql_model)

 �table_view.horizontalHeader().setSectionResizeMode(QHeaderView.

Stretch)

 �table_view.verticalHeader().setSectionResizeMode(QHeaderView.

Stretch)

 # Create splitter that contains the text edit and table view objects

 splitter = QSplitter()

 splitter.setOrientation(Qt.Vertical)

 splitter.addWidget(self.query_entry_field)

 splitter.addWidget(table_view)

Chapter 4 Database Handling in PyQt

157

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(tree_view)

 main_h_box.addWidget(splitter)

 main_container = QWidget()

 main_container.setLayout(main_h_box)

 self.setCentralWidget(main_container)

 def setupToolbar(self):

 �"""Create the toolbar for running queries and clearing the text

edit widget."""

 toolbar = QToolBar(self)

 toolbar.setIconSize(QSize(24, 24))

 self.addToolBar(Qt.RightToolBarArea, toolbar)

 # Create actions

 �clear_text_act = QAction(QIcon("icons/clear.png"), "Clear Query",

toolbar)

 clear_text_act.setToolTip("Clear the queries in the text field.")

 clear_text_act.triggered.connect(self.clearText)

 �run_query_act = QAction(QIcon("icons/run.png"), "Run Query",

toolbar)

 run_query_act.setToolTip("Run the queries in the text field.")

 run_query_act.triggered.connect(self.runQuery)

 # Add actions to the toolbar

 toolbar.addAction(clear_text_act)

 toolbar.addAction(run_query_act)

 def runQuery(self):

 """Run the query/queries entered in the QTextEdit widget."""

 query_text = self.query_entry_field.toPlainText()

 queries = query_text.split('\n')

 if query_text != "":

 for qry in queries:

 if qry == "":

Chapter 4 Database Handling in PyQt

158

 # Pass over empty lines

 pass

 else:

 query = QSqlQuery(qry)

 self.sql_model.setQuery(query)

 def clearText(self):

 """Clear the QTextEdit widget's text."""

 self.query_entry_field.clear()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 # Display splash screen

 splash = QSplashScreen(QPixmap("images/sql_splashscreen.png"))

 splash.show()

 app.processEvents()

 window = SQLManager()

 splash.finish(window)

 sys.exit(app.exec_())

The GUI for the SQL Manager can be seen in Figure 4-7.

�Explanation

For this application, we will need to import quite a few classes. QMainWindow is needed

for easily setting up the toolbar. QFileSystemModel, QDir, and QTreeView are used for

accessing the local file system, accessing paths and files, and displaying the contents

of the path, respectively. The text edit and table widgets are arranged in a QSplitter

widget. QSplashScreen is used to add a splash screen to the application. The last import

is the LoginGUI class from Listing 4-3.

The class SQLManager creates the main window and is centered in the computer’s

screen in Listing 4-4 using

self.move(QApplication.desktop().screen().rect().center() - self.rect().

center())

Chapter 4 Database Handling in PyQt

159

We begin by connecting to the database just like in Listing 4-2. In the setupWindow()

function, the three main widgets are created and arranged in the main window using a

QSplitter container for the text edit and table widgets and a QHBoxLayout to arrange all

of the objects.

First, we create the directory for displaying database files using model/view

programming in Listing 4-4. The QFileSystemModel class provides the model for

accessing data on the computer’s local system:

system_model = QFileSystemModel() # Create system model

Set the root path the the current file path

system_model.setRootPath(directory)

Get the index of the system model

index = system_model.index(directory)

Then set the model for the tree_view and set its root index to the system_model’s

index:

tree_view = QTreeView()

tree_view.setModel(system_model)

tree_view.setRootIndex(index)

Second, the QTextEdit object, query_entry_field, is used for entering query

statements. Each statement is placed on a new line by pressing the Return key. The user

can run queries or clear the query_entry_field using the toolbar on the right of the

window. The toolbar and its actions are created in the setupToolbar() function.

Since this application uses QSqlQueryModel, the FishingStores database can only

be interacted with using the query_entry_field. You could use QSqlTableModel or

QSqlRelationalTableModel for creating an editable table. The table_view has alternating

row colors by setting setAlternatingRowColors() to True; its horizontal and vertical

headers will also stretch to fill available space.

If the user has entered a query into the query_entry_field, they can execute the

statements by triggering the run_query_act button in the toolbar. The signal emitted

triggers runQuery(). All of the lines in the text edit widget are converted into a queries

list, and then, if there are no errors, each qry in queries is executed using setQuery():

query = QSqlQuery(qry)

self.sql_model.setQuery(query)

An example of how to query the database can be seen in Figure 4-7.

Chapter 4 Database Handling in PyQt

160

Example SQL Queries

This section includes a few example queries that you can try out yourself in the SQL

Manager GUI built in Listing 4-4. These queries can be entered into query_entry_field

and run using the run_query_act button in the toolbar.

For example, if you would like to display all of the rows from a specific table, use the

following command:

SELECT * FROM products

If you have specific columns of data that you would like to visualize, be sure to

specify the column names rather than using the asterisk:

SELECT product_name, model_year FROM products

The SQL Manager GUI also allows you to create and insert new records. The next

example shows how to create a new row and insert it into the orders table:

INSERT INTO orders (customer_id, order_date, order_status, store_id) VALUES

(31, "2020-02-16", 2, 1)

select * from orders

Using the application, you can enter multiple queries at one time. You can also drop

existing tables and even create new ones in the FishingStores database. The following

code demonstrates how to create a new table, brands, add a few records into the table,

and view the items in the table view:

DROP TABLE IF EXISTS brands

CREATE TABLE brands (brand_id INTEGER PRIMARY KEY UNIQUE NOT NULL, brand_

name VARCHAR (100))

INSERT INTO brands (brand_name) VALUES ("Hardy")

INSERT INTO brands (brand_name) VALUES ("Greys")

Select * FROM brands

Feel free to experiment with other types of queries and create new tables and

records. Be sure to use the correct punctuation, such as parentheses and apostrophes for

strings, when adding new entries into the database.

Chapter 4 Database Handling in PyQt

161

Figure 4-8.  The SQL Manager application’s splash screen. Image used for the
splash screen is from www.flaticon.com

Creating a Splash Screen

A splash screen is a graphical element used in many programs for displaying a logo

and/or textual information about the application. They are typically seen when an

application is launched and can be useful if your application needs some time to load

the main window. The SQL Manager application introduces how to set up a simple

splash screen, shown in Figure 4-8.

The general process for displaying a simple splash screen in Listing 4-4 is as follows:

app = QApplication(sys.argv) # QApplication instance

Create and display splash screen

splash = QSplashScreen(QPixmap("images/sql_splashscreen.png"))

splash.show()

app.processEvents() # The splash screen is displayed before the main event

loop starts. We need to use processEvents() to receive mouse clicks

window = SQLManager() # The main window instance

Chapter 4 Database Handling in PyQt

https://www.flaticon.com

162

splash.finish(window) # Closes the splash screen once the main window is

displayed

sys.exit(app.exec_()) # Begin the main loop

You can also display messages in the splash screen to inform the user about

packages that are being loaded or other useful information. Clicking the splash screen

will hide it and display the login window for the application.

�Summary
SQL is a very important tool used by data scientists for creating databases and

manipulating and retrieving data stored in databases. In a world influenced greatly

by data, working with databases is another way that we can better understand the

underlying relationships of the world we live in. Creating tools and applications that

streamline the process for handling data is very important, whether for small companies

that work with single-file databases or for large companies that unify data and machine

learning techniques to create competitive products while reducing cost.

In this chapter, we have explored how to use PyQt and SQLite3 to create a small

database, edit and retrieve information from the database, and create an interactive

application for making the process of visualizing data easier using PyQt widgets and

model/view programming.

In Chapter 5, you will see how to work with image and video data to create GUIs for

computer vision.

Chapter 4 Database Handling in PyQt

163
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8_5

CHAPTER 5

GUIs for Computer Vision
When you look at the following image in Figure 5-1, what do you see? You will probably

notice the people walking, the street signs, the buildings, and even the lights and the

storefronts. From the image, you might recall memories of similar bustling streets that

you yourself have walked on or times spent with your family and friends in the city.

Smaller details in the picture, such as the sign for the “Restricted parking ZONE,” will

probably stand out to you, and other information, such as the national flag of the United

Kingdom, will give you clues and details about where the image was taken. Moreover,

you can also visually distinguish all the different people and clothes in the foreground as

they begin to move and blur together into the background.

These concepts of memories and visual cues that we can easily gather from a single

image are generally trivial to a human. However, to a computer, the image in Figure 5-1

is merely an array of pixels, a bunch of numbers organized together that represent the

colors of red, green, and blue. Similar to how humans have trouble obtaining meaning

from rows and columns filled with numerical values without any context, a computer

has difficulty understanding meaning from the objects and colors in an image.

Figure 5-1.  What information can you infer by looking at the image? Image is
from https://unsplash.com

https://doi.org/10.1007/978-1-4842-6603-8_5#DOI
https://unsplash.com

164

Let’s look at a few more examples of images that are easy for us to understand, but

have proven difficult for machines. Take a look at the images in Figure 5-2. All of the

images display the same famous landmark, the Sydney Opera House, and even though

the building is viewed from different viewpoints and under different lighting conditions,

we are still able to recognize the structure. What may appear as subtle changes to us,

visual changes in view or lighting, can also pose problems for a computer. The ability to

correctly match key features that make an object or a person identifiable is important for

computers, especially for object recognition and image registration.

Another complication for computers can be seen in Figure 5-3. Occlusion occurs

when two or more objects move close together causing the objects to appear to merge

together or when one object covers part or all of another object from view in an image.

This can cause problems, especially when creating a computer system for tracking

objects.

Figure 5-2.  The Sydney Opera House in Sydney, New South Wales, Australia, seen
from different viewpoints. Images are from https://pixabay.com

Chapter 5 GUIs for Computer Vision

https://pixabay.com

165

Fortunately, recent decades have witnessed a new field of study, computer vision,

emerge in the hopes that computers will be able to make sense of not only photos but

also videos, as well as humans do.

Computer vision is used in a number of different industries and fields of research.

This chapter focuses primarily on introducing some of the fundamental ideas for

creating graphical user interfaces to solve computer vision problems using PyQt and

Python. Since visual data can be visualized using images and thus videos, this chapter is

also broken into two parts to cover both digital media.

In this chapter, you will

•	 Be introduced to the field of computer vision.

•	 Learn about and install the OpenCV library.

•	 Create GUIs for working with either images or video data.

•	 Discover OpenCV functions used in computer vision applications for

•	 Image processing

•	 Human detection and tracking

•	 Briefly learn about threading in PyQt applications using QThread.

In the next sections, you will learn a little about computer vision, digital images, and

the OpenCV library.

Figure 5-3.  How many sheep do you see? Occlusion can even prove difficult for
humans. Image is from https://unsplash.com

Chapter 5 GUIs for Computer Vision

https://unsplash.com

166

�What Is Computer Vision?
Computer vision1 is a field of computer science aimed at creating computer systems

that can interpret and react accordingly to visual information acquired from digital

data. Using 2D or 3D digital media, computer vision seeks to recover three-dimensional

structure and understanding about the world to gain better insight about a visual scene.

The domain combines engineering, scientific, and statistical methods to solve complex

problems that are easy for the human visual system.

The implementation of computer vision systems has been used to improve

the capabilities of many industries, including computer graphics, retail, medicine,

surveillance, facial and object recognition, and more. We are surrounded by applications

that use computer vision techniques to unlock our phones using facial recognition,

organize and recommend images to us, and even manage and moderate image content

in online message boards.

Machines have also benefited greatly from computer vision techniques. Applied

to the fields of artificial intelligence, machine learning, and deep learning, robots are

beginning to better understand and interact with the visual world. Repetitive tasks can

be automated using machines, and autonomous vehicles can analyze video feeds in real

time to accurately navigate and detect other cars, pedestrians, and the road. The large

amounts of visual content we upload to the Internet every day, along with increased

computational processing power in recent years, only help to improve the potential of

intelligent computer systems.

Before jumping into the code, let’s have a look at the basic structure of a digital image

to help create GUI applications in PyQt.

�Brief Overview of Digital Images
Digital images are visual representations of our environments. As humans, we are able

to visually perceive and identify objects, people, or locations in images. However, to a

computer, an image is an array of integer values. This concept is represented in Figure 5-4.

1�Some great resources to learn more about computer vision, OpenCV, and other related topics are
Szeliski, R. (2010). Computer vision: Algorithms and applications. Springer Science & Business

Media.
Adrian Rosebrock. Practical Python and OpenCV. PyImageSearch. https://www.pyimages-

earch.com/practical-python-opencv/, accessed in August 2020.

Chapter 5 GUIs for Computer Vision

https://www.pyimagesearch.com/practical-python-opencv/
https://www.pyimagesearch.com/practical-python-opencv/

167

The visual information stored in digital images is actually encoded as numerical

values. Each integer represents the intensity value for a given color, from 0 to 255, and

is assigned to a pixel, the smallest element in an image. By combining and organizing

pixels as a two-dimensional matrix of pixels, we can create an image. The rows and

columns in the matrix correspond to the height and width of the image, respectively. The

resolution of an image refers to the size of, or number of pixels in, an image.

Since images can be defined with matrices, individual pixels can also be accessed

and manipulated using the specific coordinates of a pixel, which we will denote as x for

row values and y for column values. With the top-left corner of the image starting at (0,

0), x values increase as you move down the rows, and y values increase as you move to

the right across the columns.

For grayscale images, like the one shown in Figure 5-4, pixel values represent the

brightness of a pixel as an 8-bit integer expressing the possible range of 0–255 values.

Color images have a third dimension, channels, that is commonly specified using three

colors, red, green, and blue (RGB). Each color denotes one channel, meaning that RGB

images have three channels. Mixing different RGB values will produce new colors. PyQt

and OpenCV both have methods for working with RGB as well as other color spaces,

such as BGR (blue, green, red); hue, saturation, value (HSV); and grayscale.

Working with videos is also straightforward, as they are simply comprised of a

sequence of images played together at a very fast rate to produce the impression of motion.

Figure 5-4.  Representation of how a computer sees only numbers in a grayscale
image. Values of 0 and 255 represent black pixels and white pixels, respectively,
and values in between stand for varying shades of gray. Modified image is
originally from https://pixabay.com

Chapter 5 GUIs for Computer Vision

https://pixabay.com

168

�An Introduction to OpenCV
In this chapter, we are going to take a look at a very popular software library, OpenCV,

that has support for a few different programming languages, including Python. OpenCV

is both open source and cross-platform and contains an extensive list of optimized

algorithms and modules designed for creating real-time computer vision, machine

learning, and deep learning applications whose processes can be accelerated using

OpenCV’s support for Graphics Processing Units (GPUs). The library is designed with

ease of use in mind and is publicly used by a number of companies, both large and small.

Images in OpenCV are stored as Mat objects, container matrices that contain the

pixel values in the image. The following list contains a selection of what OpenCV can be

used for:

•	 Functions for image processing, such as image filtering,

transformations, and color space conversions

•	 Camera calibration and 3D reconstruction to gain 3D information

from 2D images and videos

•	 Analyzing videos for motion extraction and feature tracking

•	 Object detection, which also includes facial and person recognition

•	 Machine learning and deep learning for classification and regression

analysis

•	 Image stitching for creating panoramas from multiple images

More information about OpenCV can be found at https://opencv.org.

Next, let’s see how to install OpenCV using the pip package manager and then get

started creating our first GUI for displaying images.

�Installing OpenCV
There are a couple of options for downloading OpenCV. One way is to download and

install OpenCV from source from the OpenCV website or from GitHub at https://

github.com/opencv/opencv. There is also support for installing OpenCV using the

Anaconda package manager.

Chapter 5 GUIs for Computer Vision

https://opencv.org
https://github.com/opencv/opencv
https://github.com/opencv/opencv

169

Thankfully, there is also an unofficial PyPI wheel that makes it simple to download

OpenCV using the pip3 command on your desktop computer. Depending upon your

needs, there are a few different options. If you only need OpenCV’s main modules, which

include image processing, video analysis, and machine learning, open your computer’s

command-line interface and run

$ pip3 install opencv-python

This command is sufficient for the examples found in this chapter. If you want access

to extra modules, including modules for working with GPUs, enter

$ pip3 install opencv-contrib-python

The current version of OpenCV as of publication is version 4.4.0. After the

installation is complete, open up the Python 3 shell and check to make sure OpenCV

works properly. Enter

>>> import cv2

If no errors appear, then you are ready to get started using OpenCV.

Tip  While you will receive no error now, there is a possibility that after you run
the first GUI program, you may receive errors about how PyQt and OpenCV need
to use shared Qt resources. The version of Qt used to compile PyQt5 is different
from the version used by OpenCV. If this occurs, first, uninstall OpenCV using pip3
uninstall <opencv-package-name>. Then, install the headless environment
using pip3 install opencv-python-headless or opencv-contrib-
python-headless depending upon your requirements. These packages do not
contain any GUI functionality.

For Linux users (specifically Ubuntu) running into issues using OpenCV and PyQt,

you can also try to use the APT package manager. Try running the following code to

install OpenCV if the previous installation options are still giving you trouble:

$ sudo apt install python3-opencv

More information about installation can be found in the OpenCV documentation,

specifically in the “OpenCV Tutorials” section of the website, at https://docs.opencv.

org/master/.

Chapter 5 GUIs for Computer Vision

https://docs.opencv.org/master/
https://docs.opencv.org/master/

170

Note  Before moving on, make sure you also have the NumPy library installed for
handling image data in OpenCV. Installing NumPy is covered back in Chapter 3.

�Example 5.1: Display Images from OpenCV in PyQt
For this first example, you are going to see how to use both PyQt image classes and

OpenCV functions for reading and displaying images. You will create a simple GUI that

also demonstrates how to use the different color spaces and how to convert OpenCV

images so they can be viewed using PyQt widgets. Figure 5-5 illustrates how the images

will look in the application’s window.

The GUI window depicted in Figure 5-5, created in Listing 5-1, is comprised of a

menu bar with options for the user to select images from their computer and a few

QLabel widgets for displaying images and textual information.

Figure 5-5.  Both images are displayed on a QLabel widget using Qt classes. The
image on the left displays the original image. The image on the right shows the
same image, but in the BGR color space used by OpenCV

Chapter 5 GUIs for Computer Vision

171

Listing 5-1.  Demonstrates how to convert and display images loaded from

OpenCV onto QLabel widgets

display_images.py

Import necessary modules

import sys, os, cv2

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QLabel,

QFileDialog, QMessageBox, QHBoxLayout, QVBoxLayout, QAction)

from PyQt5.QtGui import QPixmap, QImage

from PyQt5.QtCore import Qt

style_sheet = """

 QLabel#ImageLabel{

 color: darkgrey;

 border: 2px dashed darkgrey

 }

 QLabel{

 qproperty-alignment: AlignCenter

 }"""

class DisplayImage(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents to the screen."""

 self.setMinimumSize(800, 500)

 self.setWindowTitle('Ex 5.1 - Displaying Images')

 self.setupWindow()

 self.setupMenu()

 self.show()

 def setupWindow(self):

 """Set up widgets in the main window."""

Chapter 5 GUIs for Computer Vision

172

 �# Create two QLabels, one for original image and one for displaying

example from OpenCV

 original_img_header = QLabel("Original Image")

 self.original_label = QLabel()

 self.original_label.setObjectName("ImageLabel")

 opencv_img_header = QLabel("OpenCV Image")

 self.opencv_label = QLabel()

 self.opencv_label.setObjectName("ImageLabel")

 # Create horizontal and vertical layouts

 original_v_box = QVBoxLayout()

 original_v_box.addWidget(original_img_header)

 original_v_box.addWidget(self.original_label, 1)

 opencv_v_box = QVBoxLayout()

 opencv_v_box.addWidget(opencv_img_header)

 opencv_v_box.addWidget(self.opencv_label, 1)

 main_h_box = QHBoxLayout()

 main_h_box.addLayout(original_v_box, Qt.AlignCenter)

 main_h_box.addLayout(opencv_v_box, Qt.AlignCenter)

 # Create container widget and set main window's widget

 container = QWidget()

 container.setLayout(main_h_box)

 self.setCentralWidget(container)

 def setupMenu(self):

 """Simple menu bar to select local images."""

 # Create actions for file menu

 open_act = QAction('Open...', self)

 open_act.setShortcut('Ctrl+O')

 open_act.triggered.connect(self.openImageFile)

 # Create menu bar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

Chapter 5 GUIs for Computer Vision

173

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(open_act)

 def openImageFile(self):

 �"""Open an image file and display the contents in the two label

widgets."""

 �image_file, _ = QFileDialog.getOpenFileName(self, "Open Image",

os.getenv('HOME'), "Images (*.png *.jpeg *.jpg *.bmp)")

 if image_file:

 image = QImage() # Create QImage instance

 image.load(image_file)

 # Set the pixmap for the original_label using the QImage instance

 self.original_label.setPixmap(QPixmap.fromImage(image).scaled(

 �self.original_label.width(), self.original_label.

height(), Qt.KeepAspectRatioByExpanding))

 �# Display the image that has been converted from the OpenCV Mat

object to a Qt QImage

 converted_image = self.convertCVToQImage(image_file)

 �self.opencv_label.setPixmap(QPixmap.fromImage(converted_image).

scaled(

 �self.opencv_label.width(), self.opencv_label.height(),

Qt.KeepAspectRatioByExpanding))

 �self.adjustSize() # Adjust the size of the main window to

better fit its contents

 else:

 QMessageBox.information(self, "Error",

 "No image was loaded.", QMessageBox.Ok)

 def convertCVToQImage(self, image_file):

 �"""Demonstrates how to load a cv image and convert the image to a

Qt QImage. Displays the OpenCV image for comparison. Returns the

converted Qimage."""

 cv_image = cv2.imread(image_file)

Chapter 5 GUIs for Computer Vision

174

 # Demonstrate what the cv_image looks like using imshow()

 cv2.imshow('OpenCV Image', cv_image)

 cv2.waitKey(0) # waits for user to press any key

 cv2.destroyAllWindows() # Close the cv window

 �# Get the shape of the image, height * width * channels. BGR/RGB/

HSV images have 3 channels

 �height, width, channels = cv_image.shape # Format: (rows, columns,

channels)

 �# Number of bytes required by the image pixels in a row; dependency

on the number of channels

 bytes_per_line = width * channels

 # Create instance of QImage using data from cv_image

 �converted_Qt_image = QImage(cv_image, width, height, bytes_per_

line, QImage.Format_RGB888)

 return converted_Qt_image

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = DisplayImage()

 sys.exit(app.exec_())

The GUI window can be seen in Figure 5-5.

�Explanation
Let’s begin by importing a few libraries, including sys, os, and OpenCV with cv2. From

QtWidgets, we need classes for creating the main window, widgets, layouts, dialog boxes,

and actions in the menu bar. QPixmap and QImage will be used for handling image data.

Next, we create a simple Qt Style Sheet for creating dashed borders around the

QLabel widgets that use the ImageLabel tag. When the application is first started, the

label widgets will be empty, as seen in Figure 5-6, and the user can then use the menu

bar to select an image for viewing. Note that drag and drop functionality from Chapter 2

could also be added to this application for loading images.

Chapter 5 GUIs for Computer Vision

175

The setup for this GUI is very straightforward. After initializing the main window’s

minimum size and title in setupWindow(), we create four QLabel objects, two for

displaying the headers above the images and two for displaying the images, original_

label and opencv_label. All of the labels are organized into a nested layout using a

combination of QHBoxLayout and QVBoxLayouts.

This GUI also includes a menu bar created in setupMenu(). Image files are loaded

using open_act. When selected, open_act emits a signal that calls the openImageFile()

slot for loading and displaying images in the window.

�Displaying Images Using PyQt Widgets

PyQt has a few different classes for managing image data. For the purposes of this

chapter, we will focus on two of them – QPixmap and QImage. QPixmap is the main

class you will be using in your applications for displaying 2D images. If you only need to

read or write an image without manipulating the file, then create a QPixmap object and

call QLabel’s setPixmap() function to set the pixmap and show the image on the screen.

Figure 5-6.  The initial window for Listing 5-1. The label widgets are empty and
outlined using Qt Style Sheets

Chapter 5 GUIs for Computer Vision

176

However, if you need to modify an image’s data, you will need to convert from QPixmap

to QImage, perform the operations, and then convert back to QPixmap to show the

image. This is demonstrated in the following code from Listing 5-1:

image = QImage() # Create QImage instance

image.load(image_file) # Load an image file

Set the pixmap for the label using the QImage instance; use fromImage()

to convert a QImage into a QPixmap

label.setPixmap(QPixmap.fromImage(image))

In openImageFile(), we see how to use QFileDialog to select a local file from one

of four image formats set using the filter “Images (*.png *.jpeg *.jpg *.bmp)”.

If the user selects an image, we load the file using QImage, convert to a QPixmap,

and set the pixmap in the original_label on the left like in Figure 5-6. The image

is also scaled to fit within the label widget using the scaled() function and Qt.

KeepAspectRatioByExpanding to preserve the aspect ratio of the original image file.

The image displayed on the right is also created in a similar fashion. However, the

image is loaded using OpenCV’s imshow() function. The general process for reading and

displaying an image in OpenCV is shown in Listing 5-2.

Listing 5-2.  Demonstrates how to show an image using OpenCV

cv_image = cv2.imread(image_file) # Load file

cv2.imshow('OpenCV Image', cv_image)

cv2.waitKey(0) # Waits for user to press any key

cv2.destroyAllWindows() # Close the cv2 window

This is also included in the convertCVToQImage() function for comparison. The

output from imshow() is shown in Figure 5-7. After the OpenCV window appears, press

any key to close it.

Chapter 5 GUIs for Computer Vision

177

In order to convert the OpenCV Mat object into a QImage instance, we need the

image’s height, width, and number of channels. These values are then passed to the

QImage instance along with the number of bytes_per_line. The converted_Qt_Image is

returned, converted to a QPixmap, and finally displayed in the GUI window.

You will notice that the fox in the OpenCV image in Figure 5-6 is blue, but in Figure 5-7

the animal’s colors are normal. This is because of the way OpenCV represents image

data. Pixel values are stored using the BGR color space, rather than the more commonly

used RGB. To display Mat objects using libraries other than OpenCV, you will need to

change the color space. Converting the colors can be handled in one of two ways.

•	 After an image is loaded using imread(), use cv2.cvtColor(image,

cv2.COLOR_BGR2RGB) on the Mat object to convert the image pixel

values to RGB or other color spaces.

•	 When creating a QImage object, pass QImage.Format_BGR888 as an

argument to reverse the colors from BGR to RGB.

In the following project, we are going to take what we learned in Example 5.1 and see

how to create an interface for image processing.

Figure 5-7.  An image displayed using OpenCV. Image displayed in the window is
from https://pixabay.com

Chapter 5 GUIs for Computer Vision

https://pixabay.com

178

�Project 5.1: Image Processing GUI
As we discussed back in Chapter 3, the process for cleaning and organizing data is a

necessary step for data visualization, even when working with images and videos. In a

computer vision system, cleaning up images can help to remove noise or distortion or

better help to extract useful information from the image data. The process for image

processing generally involves importing an image, analyzing and applying operations,

and outputting the resulting image or information from the analysis.

Some common image processing techniques include

•	 Geometric transformations such as rotations, scaling, translations,

and shearing

•	 Point operators for pixel and color transformations

•	 Finding edges, corners, lines, and other shapes using feature detection

•	 Image filtering for smoothing or sharpening edges and removing noise

•	 Histogram equalization for improving an image’s quality

Image processing can become more costly with images that have higher resolutions

and on large image datasets.

For this project, we are going to create a GUI, shown in Figure 5-8, that displays an

image loaded using OpenCV, performs a few basic image processing techniques, and

then outputs the image for viewing on a QLabel widget in the GUI window.

Figure 5-8.  The original image (left). The altered image with brightness, contrast,
and smoothing techniques applied (right). Image displayed in the window is from
https://pixabay.com

Chapter 5 GUIs for Computer Vision

https://pixabay.com

179

�Image Processing GUI Solution
This GUI, created in Listing 5-3, builds on the ideas learned in Example 5.1. After the

application opens, the user can still select an image to view in the window using the

menu bar. Also included is the ability to save an altered image.

The side panel on the right of the window in Figure 5-8 utilizes a few of the many

image processing functions that are included in OpenCV. The user can use the two spin

boxes for selecting values that change the contrast and brightness; the two checkboxes

are used for applying either smoothing filter or edge detection algorithms. One or

multiple operations can be applied at a time using the Apply Processes button. Finally, a

button is included at the bottom of the side panel to reset the image settings.

Listing 5-3.  Code for image processing GUI

image_processing.py

Import necessary modules

import sys, os, cv2

import numpy as np

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QLabel,

QPushButton, QCheckBox, QSpinBox, QDoubleSpinBox, QFrame, QFileDialog,

QMessageBox, QHBoxLayout, QVBoxLayout, QAction)

from PyQt5.QtGui import QPixmap, QImage

from PyQt5.QtCore import Qt

style_sheet = """

 QLabel#ImageLabel{

 color: darkgrey;

 border: 2px solid #000000;

 qproperty-alignment: AlignCenter

 }"""

class ImageProcessingGUI(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

Chapter 5 GUIs for Computer Vision

180

 def initializeUI(self):

 """Initialize the window and display its contents to the screen."""

 self.setMinimumSize(900, 600)

 self.setWindowTitle('5.1 - Image Processing GUI')

 self.contrast_adjusted = False

 self.brightness_adjusted = False

 self.image_smoothing_checked = False

 self.edge_detection_checked = False

 self.setupWindow()

 self.setupMenu()

 self.show()

 def setupWindow(self):

 """Set up widgets in the main window."""

 self.image_label = QLabel()

 self.image_label.setObjectName("ImageLabel")

 # Create various widgets for image processing in the side panel

 contrast_label = QLabel("Contrast [Range: 0.0:4.0]")

 self.contrast_spinbox = QDoubleSpinBox()

 self.contrast_spinbox.setMinimumWidth(100)

 self.contrast_spinbox.setRange(0.0, 4.0)

 self.contrast_spinbox.setValue(1.0)

 self.contrast_spinbox.setSingleStep(.10)

 self.contrast_spinbox.valueChanged.connect(self.adjustContrast)

 brightness_label = QLabel("Brightness [Range: -127:127]")

 self.brightness_spinbox = QSpinBox()

 self.brightness_spinbox.setMinimumWidth(100)

 self.brightness_spinbox.setRange(-127, 127)

 self.brightness_spinbox.setValue(0)

 self.brightness_spinbox.setSingleStep(1)

 self.brightness_spinbox.valueChanged.connect(self.adjustBrightness)

 smoothing_label = QLabel("Image Smoothing Filters")

 self.filter_2D_cb = QCheckBox("2D Convolution")

 self.filter_2D_cb.stateChanged.connect(self.imageSmoothingFilter)

Chapter 5 GUIs for Computer Vision

181

 edges_label = QLabel("Detect Edges")

 self.canny_cb = QCheckBox("Canny Edge Detector")

 self.canny_cb.stateChanged.connect(self.edgeDetection)

 self.apply_process_button = QPushButton("Apply Processes")

 self.apply_process_button.setEnabled(False)

 �self.apply_process_button.clicked.connect(self.

applyImageProcessing)

 reset_button = QPushButton("Reset Image Settings")

 reset_button.clicked.connect(self.resetImageAndSettings)

 �# Create horizontal and vertical layouts for the side panel and

main window

 side_panel_v_box = QVBoxLayout()

 side_panel_v_box.setAlignment(Qt.AlignTop)

 side_panel_v_box.addWidget(contrast_label)

 side_panel_v_box.addWidget(self.contrast_spinbox)

 side_panel_v_box.addWidget(brightness_label)

 side_panel_v_box.addWidget(self.brightness_spinbox)

 side_panel_v_box.addSpacing(15)

 side_panel_v_box.addWidget(smoothing_label)

 side_panel_v_box.addWidget(self.filter_2D_cb)

 side_panel_v_box.addWidget(edges_label)

 side_panel_v_box.addWidget(self.canny_cb)

 side_panel_v_box.addWidget(self.apply_process_button)

 side_panel_v_box.addStretch(1)

 side_panel_v_box.addWidget(reset_button)

 side_panel_frame = QFrame()

 side_panel_frame.setMinimumWidth(200)

 side_panel_frame.setFrameStyle(QFrame.WinPanel)

 side_panel_frame.setLayout(side_panel_v_box)

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(self.image_label, 1)

 main_h_box.addWidget(side_panel_frame)

Chapter 5 GUIs for Computer Vision

182

 # Create container widget and set main window's widget

 container = QWidget()

 container.setLayout(main_h_box)

 self.setCentralWidget(container)

 def setupMenu(self):

 """Simple menu bar to select and save local images."""

 # Create actions for file menu

 open_act = QAction('Open...', self)

 open_act.setShortcut('Ctrl+O')

 open_act.triggered.connect(self.openImageFile)

 save_act = QAction('Save...', self)

 save_act.setShortcut('Ctrl+S')

 save_act.triggered.connect(self.saveImageFile)

 # Create menu bar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(open_act)

 file_menu.addAction(save_act)

 def adjustContrast(self):

 """The slot corresponding to adjusting image contrast."""

 if self.image_label.pixmap() != None:

 self.contrast_adjusted = True

 def adjustBrightness(self):

 """The slot corresponding to adjusting image brightness."""

 if self.image_label.pixmap() != None:

 self.brightness_adjusted = True

 def imageSmoothingFilter(self, state):

 �"""The slot corresponding to applying 2D Convolution for smoothing

the image."""

Chapter 5 GUIs for Computer Vision

183

 if state == Qt.Checked and self.image_label.pixmap() != None:

 self.image_smoothing_checked = True

 elif state != Qt.Checked and self.image_label.pixmap() != None:

 self.image_smoothing_checked = False

 def edgeDetection(self, state):

 """The slot corresponding to applying edge detection."""

 if state == Qt.Checked and self.image_label.pixmap() != None:

 self.edge_detection_checked = True

 elif state != Qt.Checked and self.image_label.pixmap() != None:

 self.edge_detection_checked = False

 def applyImageProcessing(self):

 �"""For the boolean variables related to the image processing

techniques, if True, apply the corresponding process to the image

and display the changes in the QLabel, image_label."""

 �if self.contrast_adjusted == True or self.brightness_adjusted ==

True:

 contrast = self.contrast_spinbox.value()

 brightness = self.brightness_spinbox.value()

 �self.cv_image = cv2.convertScaleAbs(self.cv_image, self.

processed_cv_image, contrast, brightness)

 if self.image_smoothing_checked == True:

 kernel = np.ones((5, 5), np.float32) / 25

 self.cv_image = cv2.filter2D(self.cv_image, -1, kernel)

 if self.edge_detection_checked == True:

 self.cv_image = cv2.Canny(self.cv_image, 100, 200)

 self.convertCVToQImage(self.cv_image)

 self.image_label.repaint() # Repaint the updated image on the label

 def resetImageAndSettings(self):

 �"""Reset the displayed image and widgets used for image

processing."""

 answer = QMessageBox.information(self, "Reset Image",

 �"Are you sure you want to reset the image settings?",

QMessageBox.Yes | QMessageBox.No, QMessageBox.No)

Chapter 5 GUIs for Computer Vision

184

 if answer == QMessageBox.No:

 pass

 elif answer == QMessageBox.Yes and self.image_label.pixmap() != None:

 self.resetWidgetValues()

 self.cv_image = self.copy_cv_image

 self.convertCVToQImage(self.copy_cv_image)

 def resetWidgetValues(self):

 �"""Reset the spinbox and checkbox values to their beginning

values."""

 self.contrast_spinbox.setValue(1.0)

 self.brightness_spinbox.setValue(0)

 self.filter_2D_cb.setChecked(False)

 self.canny_cb.setChecked(False)

 def openImageFile(self):

 �"""Open an image file and display the contents in the label

widget."""

 image_file, _ = QFileDialog.getOpenFileName(self, "Open Image",

 os.getenv('HOME'), "Images (*.png *.jpeg *.jpg *.bmp)")

 if image_file:

 self.resetWidgetValues() # Reset the states of the widgets

 self.apply_process_button.setEnabled(True)

 self.cv_image = cv2.imread(image_file) # Original image

 �self.copy_cv_image = self.cv_image # A copy of the original

image

 �# Create a destination image for the contrast and brightness

processes

 �self.processed_cv_image = np.zeros(self.cv_image.shape, self.

cv_image.dtype)

 �self.convertCVToQImage(self.cv_image) # Convert the OpenCV

image to a Qt Image

Chapter 5 GUIs for Computer Vision

185

 else:

 QMessageBox.information(self, "Error",

 "No image was loaded.", QMessageBox.Ok)

 def saveImageFile(self):

 """Save the contents of the image_label to file."""

 �image_file, _ = QFileDialog.getSaveFileName(self, "Save Image",

os.getenv('HOME'),

 "JPEG (*.jpeg);;JPG (*.jpg);;PNG (*.png);;Bitmap (*.bmp)")

 if image_file and self.image_label.pixmap() != None:

 # Save the file using OpenCV's imwrite() function

 cv2.imwrite(image_file, self.cv_image)

 else:

 QMessageBox.information(self, "Error",

 "Unable to save image.", QMessageBox.Ok)

 def convertCVToQImage(self, image):

 �"""Load a cv image and convert the image to a Qt QImage. Display

the image in image_label."""

 cv_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 �# Get the shape of the image, height * width * channels. BGR/RGB/

HSV images have 3 channels

 �height, width, channels = cv_image.shape # Format: (rows, columns,

channels)

 �# Number of bytes required by the image pixels in a row; dependency

on the number of channels

 bytes_per_line = width * channels

 # Create instance of QImage using data from cv_image

 �converted_Qt_image = QImage(cv_image, width, height, bytes_per_

line, QImage.Format_RGB888)

 �self.image_label.setPixmap(QPixmap.fromImage(converted_Qt_image).

scaled(

 �self.image_label.width(), self.image_label.height(),

Qt.KeepAspectRatio))

Chapter 5 GUIs for Computer Vision

186

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = ImageProcessingGUI()

 sys.exit(app.exec_())

The image processing application can be seen in Figure 5-8.

�Explanation
Begin by importing many of the same modules and classes used in Example 5.1. This

time, be sure to import numpy and a few extra widget classes – QCheckbox, QSpinBox,

QDoubleSpinBox, and QFrame.

The ImageProcessingGUI class is where we set up the main window seen in

Figure 5-9. You can see the empty image label on the left and a couple of widgets for

applying image processing operations on the right.

•	 contrast_spinbox – A QDoubleSpinBox for selecting float values

that modify the image’s contrast. The widget’s range is from 0.0 to 4.0.

Connected to the adjustContrast() slot. Used in conjunction with

brightness_spinbox.

Figure 5-9.  The initial window for Listing 5-3

Chapter 5 GUIs for Computer Vision

187

•	 brightness_spinbox – A QSpinBox for selecting int values that

adjust the image’s brightness. The widget’s range is from –127 to

127. Connected to the adjustBrightness() slot. Used together with

contrast_spinbox.

•	 filter_2D_cb – A QCheckBox that applies smoothing using 2D

convolution, if checked. Connected to the imageSmoothingFilter()

slot.

•	 canny_cb – A QCheckBox that applies the Canny edge detection

algorithm, if checked. Connected to the edgeDetection() slot.

Corresponding Boolean variables are created for each of the widgets and are set to

True in each of the slots. We check if the user has selected an image by checking if the

label has a pixmap set in Listing 5-3:

if self.image_label.pixmap() != None:

 self.contrast_adjusted = True

If an image has been loaded, then the user can apply any of the different operations

by clicking the apply_process_button. The reset_button resets the widgets and

the image back to their original settings. These widgets are all arranged in the side_

panel_v_box layout. A QFrame object, side_panel_frame, acts as a container for the

different widgets. The menu bar contains two actions, open_act and save_act:

•	 open_act – Emits a signal that calls openImageFile(). Loads an

image using OpenCV’s imread(), creating the Mat object, cv_image,

on which operations will be performed. copy_cv_image is used when

resetting the image. processed_cv_image is a NumPy array filled

with zeros with the same dimensions as cv_image and is used as the

destination image for contrast and brightness processes.

•	 save_act – Saves the current cv_image using OpenCV’s imwrite()

function.

While OpenCV has many different functions for manipulating images, this GUI only

employs a few of them to demonstrate how to integrate OpenCV into your own projects.

Chapter 5 GUIs for Computer Vision

188

�A Few Image Processing Techniques

Depending upon which widgets the user has interacted with in the side panel, the

selected operations will be applied in applyImageProcessing(). Once the operations are

complete, the output will be displayed on the image_label using convertCVToQImage().

Refer back to Example 5.1 for information about using PyQt image classes.

Now, let’s take a moment to talk about the image processing techniques used in this

application.

Point Operators

Point operators are operations performed on the pixels in an image to produce a

modified output image. For Project 5.1, we are specifically looking at the equation for

changing the contrast and brightness in an image:

g(X) = af(X) + b

where matrix X refers to an image comprised of pixel locations, a is the contrast

parameter and a > 0, b is the brightness term, f(X) refers to the operation over some

finite range (the input image), and g(X) is the output image.

Since the terms are correlated, we check if either contrast_spinbox or brightness_

spinbox values have changed in the following code from Listing 5-3. If at least one has

changed, then we can apply the convertScaleAbs() function to the image to change the

contrast or brightness. If only one spin box value was changed, we still need to get the

other value using value() to perform the calculations:

if self.contrast_adjusted == True or self.brightness_adjusted == True:

 contrast = self.contrast_spinbox.value()

 brightness = self.brightness_spinbox.value()

 self.cv_image = cv2.convertScaleAbs(self.cv_image, self.processed_cv_

image, contrast, brightness)

Image Filters

Image filtering is a very useful technique for editing the properties of an image. Filters

are useful for enhancing some features in an image to make them sharper or removing

other features, such as noise, by smoothing the image.

Chapter 5 GUIs for Computer Vision

189

If filter_2D_cb is checked, we create a 5 × 5 filter, or kernel, filled with ones and

divide all of the values by 25. Each entry in the matrix is therefore equal to 1/25. The

filter2D() function performs 2D matrix convolution using the provided kernel and

cv_image. This is shown in the following code from Listing 5-3:

if self.image_smoothing_checked == True:

 kernel = np.ones((5, 5), np.float32) / 25

 self.cv_image = cv2.filter2D(self.cv_image, -1, kernel)

Using this specific kernel means that for every pixel in the image, the 5 × 5 matrix

is centered on the pixel, and for every pixel that falls under the kernel, the values are

summed and then divided by 25. Using this kernel will make the features in the image

smoother. You can also modify the kernel to see how different sizes and values will affect

the output.

OpenCV also has other techniques provided for image filtering, including Gaussian

and median filtering.

Edge Detection

Finally, let’s take a look at edge detection, which is useful for gathering information

about edges, boundaries, and structures of objects in an image. For this project, we

will be specifically using Canny edge detection. What is important to note is that this

method reduces the amount of noise in an image, making the accuracy of detecting

edges greater. If you are interested in learning more about Canny edge detection, more

information can be found on the OpenCV documentation website.

If the canny_cb is checked, we use the Canny() function, passing the cv_image and

minimum and maximum threshold values to determine if a detected edge is really an

edge or not in the following snippet from Listing 5-3:

if self.edge_detection_checked == True:

 self.cv_image = cv2.Canny(self.cv_image, 100, 200)

 self.convertCVToQImage(self.cv_image)

Figure 5-10 displays the results of using edge detection on an image.

Chapter 5 GUIs for Computer Vision

190

The previous two examples have demonstrated methods for visualizing images using

OpenCV in PyQt GUIs. Next, let’s see how to work with video data.

�Example 5.2: Display Videos from OpenCV in PyQt
Now that we have taken a look at how to create GUIs for handling images, this next

example, shown in Figure 5-11, explains how to load video files using OpenCV and play

the videos on PyQt widgets. Users are able to use the application to either view video files

or use their computer’s built-in camera.

Figure 5-10.  Output from Canny edge detection algorithm displayed in the
window

Chapter 5 GUIs for Computer Vision

191

Figure 5-11.  Displays a video in the window using the computer’s web cam

The program created in Listing 5-4 shows how to display videos loaded using

OpenCV and introduces concepts about threading and demonstrates how to implement

threading into your applications.

Listing 5-4.  Demonstrates how to display videos loaded using OpenCV in PyQt

display_video.py

Import necessary modules

import sys, os, cv2

from numpy import ndarray

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QLabel,

QPushButton, QLineEdit, QFrame, QFileDialog, QMessageBox, QHBoxLayout,

QVBoxLayout, QAction)

from PyQt5.QtGui import QPixmap, QImage

from PyQt5.QtCore import Qt, QThread, pyqtSignal

style_sheet = """

 QLabel#VideoLabel{

 color: darkgrey;

 border: 2px solid darkgrey;

 qproperty-alignment: AlignCenter

 }"""

Chapter 5 GUIs for Computer Vision

192

class VideoWorkerThread(QThread):

 �"""Worker thread for capturing video and for performing human

detection."""

 frame_data_updated = pyqtSignal(ndarray)

 invalid_video_file = pyqtSignal()

 def __init__(self, parent, video_file=None):

 super().__init__()

 self.parent = parent

 self.video_file = video_file

 def run(self):

 �"""The code that we want to run in a separate thread, in this case

capturing video using OpenCV, is placed in this function. run() is

called after start()."""

 �capture = cv2.VideoCapture(self.video_file) # 0 opens the default

camera

 if not capture.isOpened():

 self.invalid_video_file.emit()

 else:

 while self.parent.thread_is_running:

 # Read frames from the camera

 ret_val, frame = capture.read()

 if not ret_val:

 break # Error or reached the end of the video

 else:

 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 self.frame_data_updated.emit(frame)

 �# waitKey() displays the image for specified time, in

this case 30 ms

 cv2.waitKey(30)

 def stopThread(self):

 """Process all pending events before stopping the thread."""

 self.wait()

 QApplication.processEvents()

Chapter 5 GUIs for Computer Vision

193

class DisplayVideo(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents to the screen."""

 self.setMinimumSize(800, 500)

 self.setWindowTitle('Ex 5.2 - Displaying Videos')

 self.thread_is_running = False

 self.setupWindow()

 self.setupMenu()

 self.show()

 def setupWindow(self):

 """Set up widgets in the main window."""

 self.video_display_label = QLabel()

 self.video_display_label.setObjectName("VideoLabel")

 self.display_video_path_line = QLineEdit()

 self.display_video_path_line.setClearButtonEnabled(True)

 �self.display_video_path_line.setPlaceholderText("Select video or

use webcam")

 self.start_button = QPushButton("Start Video")

 self.start_button.clicked.connect(self.startVideo)

 stop_button = QPushButton("Stop Video")

 stop_button.clicked.connect(self.stopCurrentVideo)

 # Create horizontal and vertical layouts

 side_panel_v_box = QVBoxLayout()

 side_panel_v_box.setAlignment(Qt.AlignTop)

 side_panel_v_box.addWidget(self.display_video_path_line)

 side_panel_v_box.addWidget(self.start_button)

 side_panel_v_box.addWidget(stop_button)

Chapter 5 GUIs for Computer Vision

194

 side_panel_frame = QFrame()

 side_panel_frame.setMinimumWidth(200)

 side_panel_frame.setLayout(side_panel_v_box)

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(self.video_display_label, 1)

 main_h_box.addWidget(side_panel_frame)

 # Create container widget and set main window's widget

 container = QWidget()

 container.setLayout(main_h_box)

 self.setCentralWidget(container)

 def setupMenu(self):

 """Simple menu bar to select local videos."""

 # Create actions for file menu

 open_act = QAction('Open...', self)

 open_act.setShortcut('Ctrl+O')

 open_act.triggered.connect(self.openVideoFile)

 # Create menu bar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(open_act)

 def startVideo(self):

 """Create and begin running the worker thread to play the video."""

 self.thread_is_running = True

 self.start_button.setEnabled(False)

 self.start_button.repaint()

 �# Create an instance of the worker thread if a user has chosen a

local file

 if self.display_video_path_line.text() != "":

 video_file = self.display_video_path_line.text()

 self.video_thread_worker = VideoWorkerThread(self, video_file)

Chapter 5 GUIs for Computer Vision

195

 else:

 # Use the webcam

 self.video_thread_worker = VideoWorkerThread(self, 0)

 �# Connect to the thread's signal to update the frames in the video_

display_label

 �self.video_thread_worker.frame_data_updated.connect(self.

updateVideoFrames)

 �self.video_thread_worker.invalid_video_file.connect(self.

invalidVideoFile)

 self.video_thread_worker.start() # Start the thread

 def stopCurrentVideo(self):

 �"""Stop the current video, process events, and clear the video_

display_label."""

 if self.thread_is_running == True:

 self.thread_is_running = False

 self.video_thread_worker.stopThread()

 self.video_display_label.clear()

 self.start_button.setEnabled(True)

 def openVideoFile(self):

 �"""Open a video file and display the file's path in the line edit

widget."""

 �video_file, _ = QFileDialog.getOpenFileName(self, "Open Video",

os.getenv('HOME'), "Videos (*.mp4 *.avi)")

 if video_file:

 �self.display_video_path_line.setText(video_file) # Use selected

file's path

 else:

 �QMessageBox.information(self, "Error", "No video was loaded.",

QMessageBox.Ok)

 def updateVideoFrames(self, video_frame):

 �"""A video is a collection of images played together in quick

succession. For each frame (image) in the video, convert it to a

QImage object to be displayed in the QLabel widget."""

Chapter 5 GUIs for Computer Vision

196

 �# Get the shape of the frame, height * width * channels. BGR/RGB/

HSV images have 3 channels

 �height, width, channels = video_frame.shape # Format: (rows,

columns, channels)

 �# Number of bytes required by the image pixels in a row; dependency

on the number of channels

 bytes_per_line = width * channels

 # Create instance of QImage using data from the video file

 �converted_Qt_image = QImage(video_frame, width, height, bytes_per_

line, QImage.Format_RGB888)

 # Set the video_display_label's pixmap

 �self.video_display_label.setPixmap(QPixmap.fromImage(converted_Qt_

image).scaled(

 �self.video_display_label.width(), self.video_display_label.

height(), Qt.KeepAspectRatioByExpanding))

 def invalidVideoFile(self):

 �"""Display a dialog box to inform the user that an error occurred

while loading the video."""

 �QMessageBox.warning(self, "Error", "No video was loaded.",

QMessageBox.Ok)

 self.start_button.setEnabled(True)

 def closeEvent(self, event):

 �"""Reimplement the closing event to ensure that the thread

closes."""

 if self.thread_is_running == True:

 self.video_thread_worker.quit()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = DisplayVideo()

 sys.exit(app.exec_())

The completed application for playing videos can be seen in Figure 5-11.

Chapter 5 GUIs for Computer Vision

197

Figure 5-12.  The initial application created in Listing 5-4

�Explanation
Creating a GUI for displaying videos with OpenCV and PyQt takes a little bit more work

because of the way that applications are created in PyQt. We will still need many of the

same packages that we imported in other examples, along with a few additional ones.

From numpy, we import the ndarray class that we will use to create arrays that hold

the data for each of the separate frames in a video. QThread is used to create a separate

thread from the application’s main thread. pyqtSignal is used in PyQt for creating

custom signals.

The application’s main window consists of a QLabel for displaying the videos and

a side panel composed of a QLineEdit widget for displaying a video file's path if one is

selected and two QPushButton widgets for playing and stopping the video. Figure 5-12

shows the window when the application is first opened.

Running a video is similar to displaying an image with OpenCV. The key difference

is that we need to create a loop to read in every frame in succession. This is shown in

Listing 5-5.

Chapter 5 GUIs for Computer Vision

198

Listing 5-5.  Example code for displaying a video in OpenCV

capture = cv2.VideoCapture(0) # Video capture object

while (True):

 ret_val, frame = capture.read() # Read frames

 # Display resulting frames in the video

 cv2.imshow('Frame', frame)

 # Display frames at speed of 1 ms; press q to quit

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

capture.release() # Release the capture object

cv2.destroyAllWindows() # Destroy all of the windows

However, if we are going to play videos loaded using OpenCV in PyQt, we need to

consider first how PyQt processes events to avoid freezing the application.

�Overview of Threading in PyQt

When a PyQt application is started using exec_(), the program’s event loop begins.

Starting the event loop also creates a thread. This thread is known as the main thread,

and all events that occur in the application, such as clicking a button or typing text in line

edit widgets, will be handled sequentially using your computer’s Central Processing Unit

(CPU) and other resources.

Opening and displaying videos from OpenCV will cause our application to become

hung up as more resources are needed. Since your GUI must run in the main thread, we

need to create a secondary thread, also known as a worker thread, to unload some of

the extra processing work from the main thread and keep our application responsive.

The communication between the main thread and any secondary threads in PyQt is

managed with signals and slots.

The process for creating a secondary thread involves

	 1.	 Subclassing QThread and reimplementing the run() function

	 2.	 Creating an instance of the worker thread in the main thread and

calling start() to begin running the thread

Chapter 5 GUIs for Computer Vision

199

VideoWorkerThread will serve as the worker thread for this application and handles

opening the video file and updating the frames. While all widget classes have their own

built-in signals, you can also create custom signals for classes that inherit from QObject

using pyqtSignal. The two custom signals created in the VideoWorkerThread class in

Listing 5-4 are shown in the following code:

frame_data_updated = pyqtSignal(ndarray)

invalid_video_file = pyqtSignal()

The signal frame_data_updated is emitted whenever we need to update the video

frames. There are many PyQt classes, including all widgets, that cannot be run in a

secondary thread. In order to display an error message using QMessageBox to the user

if the video_file path is incorrect, invalid_video_file is used to emit a signal in the

main thread.

Any processes that we want to perform in the secondary thread need to be added to

run(). Create the videoCapture instance and pass video_file as an argument. Use the

isOpened() function to check if the capture is valid; if not, we emit the invalid_video_

file signal and call the invalidVideoFile() slot in the main thread to inform the user

of the error.

Otherwise, as long as thread_is_running is True, use read() to load the image data

for that frame, convert from the BGR color space to RGB, and emit the frame_data_

updated signal to update the frames in the updateVideoFrames() slot.

If the user clicks the start_button, we create an instance of VideoWorkerThread,

connect the custom pyqtSignals to their corresponding slots, and run the worker thread

by calling start() in the main thread of Listing 5-4:

self.video_thread_worker.start() # Start the thread

Finally, if the stop_button is pressed, the stopThread() function is called, blocking

the main thread until run() is complete using wait(). QApplication.processEvents()

is then called to process all pending events in the main thread. Playing a video in the GUI

can be seen in Figure 5-13. In Project 5.2, we will see how to apply object recognition

techniques to detect humans in videos.

Chapter 5 GUIs for Computer Vision

200

�Project 5.2: Human Detection and Tracking GUI
Detecting objects, specifically faces and people, in images and videos has a number of

practical applications, especially in visual surveillance systems, photography, and the

detection of pedestrians by autonomous vehicles. Detection and tracking of people in

image and video data are two slightly different tasks. Human detection involves finding

all instances of people that exist in an image. With a person located, human tracking

can use the detections in a video sequence to follow the path of an individual. This can

be particularly useful in tracking pedestrians walking in environments that are cluttered

with other moving objects and people.

Figure 5-13.  Displaying a selected video file in the GUI window

Figure 5-14.  The HOG (Histogram of Oriented Gradients) descriptor integrated
into a PyQt application. The right image shows an instance where the descriptor
incorrectly predicts detecting a human

Chapter 5 GUIs for Computer Vision

201

In this project, you will create a simple human detection and tracking application

using a combination of common tools – a Histogram of Oriented Gradients (HOG)

descriptor and a Linear Support Vector Machine (SVM)2 – used for detecting human

beings in videos. These algorithms go beyond the scope of this book. For more

information, check out the OpenCV documentation or the references mentioned in the

footnotes of this chapter.

�Human Detection and Tracking GUI Solution
Listing 5-6 has a similar structure to the application you built in Example 5.2 with a few

features removed, the most notable being the deletion of the menu bar. This will allow us

to focus more on implementing the functionality for human detection. QThread is used

this time to create a secondary thread for playing the video and for detecting humans

using the HOG descriptor.

Note R efer to the GitHub link found in the “Introduction” to download the video
file used in the code, or edit the video_file path in Listing 5-6 to use your own
video.

Listing 5-6.  Code for human detection and tracking GUI

human_detection.py

Import necessary modules

import sys, cv2

from numpy import ndarray, array

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QLabel,

QPushButton, QFrame, QHBoxLayout, QVBoxLayout)

from PyQt5.QtGui import QPixmap, QImage

from PyQt5.QtCore import Qt, QThread, pyqtSignal

2�This method was used as a pedestrian detector in the following research paper: Dalal, N., &
Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1,
pp. 886-893). IEEE.

Chapter 5 GUIs for Computer Vision

202

style_sheet = """

 QLabel#VideoLabel{

 color: darkgrey;

 border: 2px solid darkgrey;

 qproperty-alignment: AlignCenter

 }"""

class VideoWorkerThread(QThread):

 """Worker thread for capturing video."""

 frame_data_updated = pyqtSignal(ndarray)

 def __init__(self, parent, video_file=None):

 super().__init__()

 self.parent = parent

 self.video_file = video_file

 def run(self):

 �"""The code that we want to run in a separate thread, in this case

capturing video using OpenCV, is placed in this function. run() is

called after start()."""

 �self.capture = cv2.VideoCapture(self.video_file) # 0 opens the

default camera

 while self.parent.thread_is_running:

 # Read frames from the camera

 ret_val, frame = self.capture.read()

 if not ret_val:

 break # Error or reached the end of the video

 else:

 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 # Resize an image for faster detection

 frame = cv2.resize(frame, (600, 400))

 rects = self.createHOGDescriptor(frame)

 �# Draw the detections (rects) in the frame; tr and br refer

to the top-left and bottom-left corners of the detected

rects, respectively.

Chapter 5 GUIs for Computer Vision

203

 for (x_tr, y_tr, x_br, y_br) in rects:

 �frame = cv2.rectangle(frame, (x_tr, y_tr), (x_br, y_

br), (0, 0, 255), 2)

 self.frame_data_updated.emit(frame)

 def createHOGDescriptor(self, frame):

 �"""Function creates the HOG Descriptor for human detection and

returns the detections (rects)."""

 # Initialize OpenCV's HOG Descriptor and SVM classifier

 hog = cv2.HOGDescriptor()

 hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

 �# Detect people in the image and return the bounding rectangles.

Altering the parameters in detectMultiScale() can affect the

accuracy of detections. winStride refers to the number of steps the

sliding window moves in the x and y directions; the sliding window

is padded to improve accuracy; a smaller scale value will increase

detection accuracy, but also increase processing time

 rects, weights = hog.detectMultiScale(frame, winStride=(4, 4),

 padding=(8, 8), scale=1.1)

 �# For each of the rects detected in an image, add the values for

the corners of the rect to an array

 �rects = array([[x, y, x + width, y + height] for (x, y, width,

height) in rects])

 return rects

 def stopThread(self):

 """Process all pending events before stopping the thread."""

 self.wait()

 QApplication.processEvents()

class DisplayVideo(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

Chapter 5 GUIs for Computer Vision

204

 def initializeUI(self):

 """Initialize the window and display its contents to the screen."""

 self.setMinimumSize(800, 500)

 self.setWindowTitle('5.2 - Human Detection GUI')

 self.thread_is_running = False

 self.setupWindow()

 self.show()

 def setupWindow(self):

 """Set up widgets in the main window."""

 self.video_display_label = QLabel()

 self.video_display_label.setObjectName("VideoLabel")

 self.start_button = QPushButton("Start Video")

 self.start_button.clicked.connect(self.startVideo)

 stop_button = QPushButton("Stop Video")

 stop_button.clicked.connect(self.stopCurrentVideo)

 # Create horizontal and vertical layouts

 side_panel_v_box = QVBoxLayout()

 side_panel_v_box.setAlignment(Qt.AlignTop)

 side_panel_v_box.addWidget(self.start_button)

 side_panel_v_box.addWidget(stop_button)

 side_panel_frame = QFrame()

 side_panel_frame.setMinimumWidth(200)

 side_panel_frame.setLayout(side_panel_v_box)

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(self.video_display_label, 1)

 main_h_box.addWidget(side_panel_frame)

 # Create container widget and set main window's widget

 container = QWidget()

 container.setLayout(main_h_box)

 self.setCentralWidget(container)

Chapter 5 GUIs for Computer Vision

205

 def startVideo(self):

 """Create and begin running the worker thread to play the video."""

 self.thread_is_running = True

 self.start_button.setEnabled(False)

 self.start_button.repaint()

 # Create an instance of the worker thread using a local video file

 video_file = "media/people_mall.mp4"

 self.video_thread_worker = VideoWorkerThread(self, video_file)

 �# Connect to the thread's signal to update the frames in the video_

display_label

 �self.video_thread_worker.frame_data_updated.connect(self.

updateVideoFrames)

 self.video_thread_worker.start() # Start the thread

 def stopCurrentVideo(self):

 �"""Stop the current video, process events, and clear the video_

display_label."""

 if self.thread_is_running == True:

 self.thread_is_running = False

 self.video_thread_worker.stopThread()

 self.video_display_label.clear()

 self.start_button.setEnabled(True)

 def updateVideoFrames(self, video_frame):

 �"""A video is a collection of images played together in quick

succession. For each frame (image) in the video, convert it to a

QImage object to be displayed in the QLabel widget."""

 �# Get the shape of the frame, height * width * channels. BGR/RGB/

HSV images have 3 channels

 �height, width, channels = video_frame.shape # Format: (rows,

columns, channels)

 �# Number of bytes required by the image pixels in a row; dependency

on the number of channels

 bytes_per_line = width * channels

Chapter 5 GUIs for Computer Vision

206

 # Create instance of QImage using data from the video file

 �converted_Qt_image = QImage(video_frame, width, height, bytes_per_

line, QImage.Format_RGB888)

 # Set the video_display_label's pixmap

 �self.video_display_label.setPixmap(QPixmap.fromImage(converted_Qt_

image).scaled(

 �self.video_display_label.width(), self.video_display_label.

height(), Qt.KeepAspectRatioByExpanding))

 def closeEvent(self, event):

 �"""Reimplement the closing event to ensure that the thread

closes."""

 if self.thread_is_running == True:

 self.video_thread_worker.quit()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = DisplayVideo()

 sys.exit(app.exec_())

Figure 5-14 shows the completed GUI with examples of accurate and false

predictions of human detection.

�Explanation
Refer to Example 5.2 for more information about threading or setting up this

application’s main window. After the application is opened, which is depicted in

Figure 5-15, the user can click the start_button to begin playing the video. Doing so

will create the video_thread_worker instance and start the secondary thread where

updating the frames and detecting pedestrians occurs.

Chapter 5 GUIs for Computer Vision

207

In the secondary thread’s run() method, we create the videoCapture object and use

the read() function to load the frames in the video. Depending upon your computer’s

CPU, running a video and detecting objects can considerably impact the playback

speed. Resizing the images to a smaller size with resize() can have an effect on your

application’s performance, but can also result in a loss of information in the image.

Next, we call the createHOGDescriptor() function where an instance

of the HOGDescriptor() is created and then fed into the SVM detector. The

detectMultiScale() function detects humans in the frame and produces the values

for the rectangular boundaries around the different detections seen in Figure 5-14. All

of the different detections for that single frame are appended to the rects list using list

comprehension, returned, and drawn on the image using

for (x_tr, y_tr, x_br, y_br) in rects:

 frame = cv2.rectangle(frame, (x_tr, y_tr), (x_br, y_br), (0, 0, 255), 2)

The process is repeated until either the user clicks the stop_button or the end of the

video file is reached.

Figure 5-15.  The human detection and tracking GUI created in Listing 5-6

Chapter 5 GUIs for Computer Vision

208

�Summary
The purpose of computer vision is to create systems that can make sense of the

information found in visual data. Using images, videos, and other digital formats, we can

use computer vision to extract three-dimensional features, structure, and understanding

from two-dimensional scenes. Combining these techniques with other fields of study,

including artificial intelligence and machine learning, intelligent visual systems can be

created that can interact with their environments.

While current computer vision systems still lack deeper contextual understanding

and situational awareness, research, the increase in the amount of data, and faster

hardware continue to improve the capabilities of modern technology.

Visual data can be stored in different forms, including images and videos. With that

in mind, PyQt GUIs were created in this chapter to cover aspects of both formats and

integrated with the OpenCV library. The main projects in this chapter focused on image

processing and human detection, introducing some of the common methods used in

computer vision. The programs created could be used as foundations for larger GUI

applications. It is also worth noting that PyQt has its own modules for handling images,

video, and even audio. We will take a look at PyQt’s media classes briefly in Chapter 9.

In Chapter 6, you will see how to build GUIs for visualizing 3D data using PyQt5.

Chapter 5 GUIs for Computer Vision

209
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8_6

CHAPTER 6

Visualizing 3D Data
Humans are creatures living in a three-dimensional world with eyes that only see two

dimensions. The brain uses the visual information received from both of our eyes

to perceive depth, allowing humans to have stereoscopic vision. Visual cues such as

shading, shadows, and perspective also help give us the perception of depth. Our eyes

are even able to understand three dimensions when shown an image or video.

The data that researchers collect exists within a three-dimensional world, and 3D data

visualizations are great for creating models and maps, developing virtual environments

for games, building simulations, localization in robotics, and more. Adding a third

dimension to the 2D charts that we created back in Chapter 3 can also help to see data

from a different perspective. When data is no longer restricted to a flat image, the user is

able to freely move around and manipulate the items in a scene, visualizing depth, size,

and other complex relationships that two-dimensional graphs sometimes lack.

With PyQt, you are able to build your own 3D graphical user interfaces. The tools

you need to design and conceptualize three-dimensional data are provided to you.

Choosing the right method for visualizing your data can be a crucial step for effectively

communicating with others the results of your data.

This chapter will show you how to

•	 Install and get started in using the PyQtDataVisualization module

for visualizing 3D data.

•	 Create interactive 3D bar graphs using public datasets.

•	 Build 3D graphs that visualize the information from multiple

datasets.

•	 Work with built-in functions for controlling various parameters about

the data displayed in a graph.

Before we see how to create an application, let’s find out a little more about the

module we’ll be using in this chapter.

https://doi.org/10.1007/978-1-4842-6603-8_6#DOI

210

�The PyQtDataVisualization Module
In Chapter 3, we saw how to work with two-dimensional data to create interactive GUIs.

PyQt also includes a module, PyQtDataVisualization, for visualizing three-dimensional

data. The module is a Python binding for the Qt Data Visualization library and allows

you to create fluid and responsive 3D applications by utilizing the various features that

are already built into the library.

With PyQtDataVisualization, you can create scatter, bar, and surface graphs or even

make dynamic applications that receive data from digital sensors. More information

about the PyQtDataVisualization module can be found at the Riverbank Computing’s

website, www.riverbankcomputing.com/software/pyqtdatavisualization/intro.

If you are also interested in finding out more about The Qt Company’s Qt Data

Visualization library, have a look at https://doc.qt.io/qt-5/qtdatavisualization-

index.html. There, you will find more information about the different classes and see a

few examples of other applications that you can build.

�Installing PyQtDataVisualization
To download the wheel from PyPI for PyQtDataVisualization, open up your command-

line application and enter

$ pip3 install PyQtDataVisualization

Once the installation is complete, run the command python3 to enter the Python 3

shell environment. Enter the following line of code to check that the module was

installed correctly:

>>> import PyQt5.QtDataVisualization

If there are no errors, then you are ready to get started visualizing 3D data with PyQt.

�Example 6.1: Creating a 3D Bar Graph
Bar graphs are an effective tool for comparing different groups of data or for showing

changes over time. They are great for visually conveying patterns or trends quickly to

consumers. In many cases, using two variables is enough to capture the meaning in your

data, but sometimes adding an additional axis to a graph is key to better understand the

depth or volume that can only be visualized by including a third dimension.

Chapter 6 Visualizing 3D Data

http://www.riverbankcomputing.com/software/pyqtdatavisualization/intro
https://doc.qt.io/qt-5/qtdatavisualization-index.html
https://doc.qt.io/qt-5/qtdatavisualization-index.html

211

The GUI you will make in Figure 6-1 illustrates how to create a 3D bar graph using the

Q3DBars class. Interaction with the data is performed by rotating the scene or zooming

into the graph or by clicking individual bars to access further information about a

particular item. PyQt allows a user to intuitively perform these actions using the mouse.

Additional features can be implemented to create more informative and responsive

graphs, such as allowing users to select entire rows or columns of data at a single time.

Just as we did in Chapter 3, this chapter will also take advantage of public datasets to

demonstrate how to create graphs using PyQt.

�Quick Glance at the Dataset
Understanding climate data is important for creating daily weather forecasts and, on a

long-term scale, showing how the climate is changing globally or in a particular country

or city. Using data that has been collected over decades can help to provide important

clues about what the future may hold as the climate changes. Graphs, charts, and

maps are useful and assist scientists and researchers in planning for extreme weather

conditions or future energy needs.

Figure 6-1.  Bar graph representing the average temperature per month in
Reykjavík, Iceland, from 1990 to 2000. Clicking a bar will reveal information
specific to that item

Chapter 6 Visualizing 3D Data

212

For this example, we are going to visualize and compare the data for the annual and

monthly climate in Reykjavík, Iceland,1 over an 11-year period (1990–2000). A sample of

the Reykjavík climate dataset is shown in Table 6-1.

Note T he datasets for this chapter can be found on GitHub at the link in the
“Introduction.”

In Listing 6-1, you will see how to use the preceding data to create a 3D bar graph

using PyQtDataVisualization.

Listing 6-1.  The code for creating a basic bar graph with the

PyQtDataVisualization module

bar_graph_3D.py

Import necessary modules

import sys, csv

import numpy as np

from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QVBoxLayout

from PyQt5.QtDataVisualization import (Q3DBars, QBarDataItem, QBar3DSeries,

QValue3DAxis, Q3DCamera)

1�Data from the Icelandic Meteorological Office website, Climatology, Climatological data,
published in May 2012. Retrieved on September 1, 2020, from https://en.vedur.is.

Table 6-1.  The header row and select rows from the Reykjavik_temp.csv file. The

dataset includes information about the year (ar), the average temperature per

month (°C), and the annual average temperature (arid)

nr ar jan feb mar apr mai jun jul aug sep oct nov des arid

1 1990 0.4 -1.6 -1.5 0.4 7.2 9.8 11.6 11.1 6.6 5 3.7 -0.3 4.4

1 1991 1.1 2.2 1.8 1.3 6.8 9.5 13 11 7.7 4.7 0.2 1.3 5

1 1992 2.5 0.1 0.5 2.6 5.8 7.8 9.9 9.9 6.8 4.3 0.8 -0.5 4.2

1 1993 -2.3 0.7 1.3 3.7 5.4 9.1 10.1 9.3 9.1 4.8 3.5 -1.6 4.4

1 1994 -1.7 -1.7 -1.4 1.6 6.9 8 12 10.6 7 3.6 2.4 -1 4.1

Chapter 6 Visualizing 3D Data

https://en.vedur.is

213

from PyQt5.QtCore import Qt

from PyQt5.QtGui import QColor

class SimpleBarGraph(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents."""

 self.setMinimumSize(800, 700)

 self.setWindowTitle('6.1 - 3D Bar Graph')

 self.setupGraph()

 self.show()

 def setupGraph(self):

 """Load data and set up the window for the bar graph."""

 �header_label = QLabel("Average Monthly Temperatures in Reykjavík,

Iceland 1990-2000 (°C)")

 header_label.setAlignment(Qt.AlignCenter)

 �# Load the data about average temperatures in Reykjavík from the

CSV file

 temperature_data = self.loadCSVFile()

 �# Select 11 sample years: 1990-2000. Don't select the first and

last columns

 rows, columns = temperature_data.shape

 years = temperature_data[rows - 11:rows, 1]

 �monthly_temps = temperature_data[rows - 11:rows, 2:columns -

1].astype(float)

 bar_graph = Q3DBars() # Create instance for bar graph

 �bar_graph.scene().activeCamera().setCameraPreset(Q3DCamera.

CameraPresetFront)

Chapter 6 Visualizing 3D Data

214

 # Create a list of QBarDataItem objects

 data_items = []

 for row in monthly_temps:

 data_items.append([QBarDataItem(value) for value in row])

 months = ["January", "February", "March", "April", "May", "June",

 "July", "August", "September", "October", "November", "December"]

 �# Create instance of QBar3DSeries, change the base color and color

of selected items, and add data and labels to the series

 series = QBar3DSeries()

 series.setBaseColor(QColor("#17A4D9"))

 series.setSingleHighlightColor(QColor("#F8A307"))

 series.dataProxy().addRows(data_items)

 series.dataProxy().setRowLabels(years) # rowLabel

 series.dataProxy().setColumnLabels(months) # colLabel

 �# Create the valueLabel. Use QValue3dAxis so we can format the

axis's label

 temperature_axis = QValue3DAxis()

 temperature_axis.setRange(-10, 20)

 temperature_axis.setLabelFormat(u"%.1f \N{degree sign}C")

 bar_graph.setValueAxis(temperature_axis)

 �# When items in the graph are selected, a label appears overhead

with information about that item. Set the format of information in

the label

 �series.setItemLabelFormat("Reykjavík - @colLabel @rowLabel:

@valueLabel")

 bar_graph.addSeries(series)# Add the series to the bar graph

 �# 3D graph classes inherit QWindow, so we must use

createWindowContainer() to create a holder for the 3D graph in our

window since they can't be used as a normal widget

 container = self.createWindowContainer(bar_graph)

 v_box = QVBoxLayout()

 v_box.addWidget(header_label)

Chapter 6 Visualizing 3D Data

215

 v_box.addWidget(container, 1)

 self.setLayout(v_box)

 def loadCSVFile(self):

 """Load the data from a CSV-formatted file using csv and numpy."""

 file_name = "files/Reykjavik_temp.csv"

 with open(file_name, "r") as csv_f:

 reader = csv.reader(csv_f)

 header_labels = next(reader)

 data = np.array(list(reader))

 return data

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = SimpleBarGraph()

 sys.exit(app.exec_())

Figure 6-1 displays the 3D bar graph representing the monthly and annual

temperature data for Reykjavík, Iceland, from 1990 to 2000.

�Explanation
To begin, we need to import the modules we need. The data we want to use is saved

in CSV-formatted files, so we need to include csv. We will use numpy to make loading

and working with the data easier. Information about installing NumPy can be found in

Chapter 3.

Next, we import the classes we need from QtWidgets for the GUI’s window. To

visualize 3D data in PyQt, we need to import a few classes from QtDataVisualization,

including

•	 Q3DBars – Class for creating 3D bar graphs

•	 QBarDataItem – Class that holds the data for a single bar in the graph

•	 QBar3DSeries – Represents the data series for 3D bar graphs

•	 QValue3DAxis – Class for manipulating a graph’s axis

•	 Q3DCamera – Creates a camera in 3D space, used for rotating and

zooming in and out

Chapter 6 Visualizing 3D Data

216

The SimpleBarGraph class inherits from QWidget and will serve as the application’s

main window. To begin setting up the graph, we need to first load the CSV data from

Reykjavik_temp.csv using loadCSVFile(). This returns a NumPy array that contains

the temperature_data. The following code found in Listing 6-1 illustrates how to select

the years and the months from the data shown in Table 6-1:

Get the shape of the array (rows * columns)

rows, columns = temperature_data.shape

Select the last 11 rows and the second column (index starts at 0, so we

use 1 select the second column)

years = temperature_data[rows - 11:rows, 1]

Select the last 11 rows and all of the month columns

monthly_temps = temperature_data[rows - 11:rows, 2:columns -

1].astype(float)

The next step is to instantiate Q3DBars and the scene’s camera. The camera will allow

the user to rotate and zoom into the scene. An example of this is shown in Figure 6-2.

Figure 6-2.  Rotating the graph in the window will show the underside of the figure

Chapter 6 Visualizing 3D Data

217

The Q3DCamera class has a number of preset views, including CameraPresetLeft,

CameraPresetRight, and CameraPresetBehind, which we can set using

setCameraPreset(), shown in the following line from Listing 6-1. There are a total of 25

presets. We’ll explore these in Project 6.1:

bar_graph.scene().activeCamera().setCameraPreset(Q3DCamera.

CameraPresetFront)

Each of the bars in the bar graph in Listing 6-1 is represented as a QBarDataItem. To

insert a row of data items, use a Python for loop and append QBarDataItem objects to

the data_items list:

for row in monthly_temps:

 data_items.append([QBarDataItem(value) for value in row])

There are 12 items in each row, one for each month. The data displayed in PyQt

graphs is represented using series classes. For Q3DBars, we use QBar3DSeries. You can

set the base color of the bars and the color when they are selected in Listing 6-1 with

series.setBaseColor(QColor("#17A4D9"))

series.setSingleHighlightColor(QColor("#F8A307"))

A PyQt data proxy class is used to add, insert, change, or remove rows of data

for PyQtDataVisualization classes. For this example, we would use QBarDataProxy.

However, the data proxy in Listing 6-1 can also be accessed by calling dataProxy():

Add data to the series, and set the row labels

series.dataProxy().addRows(data_items)

series.dataProxy().setRowLabels(years) # Row labels

series.dataProxy().setColumnLabels(months) # Column labels

To manipulate the third axis’s range and label in Listing 6-1, create an instance of

QValue3DAxis and use setRange() and setLabelFormat():

temperature_axis = QValue3DAxis()

temperature_axis.setRange(-10, 20)

temperature_axis.setLabelFormat(u"%.1f \N{degree sign}C")

bar_graph.setValueAxis(temperature_axis) # Set the axis

Chapter 6 Visualizing 3D Data

218

When a bar is clicked in the graph, textual information is displayed to the user above

the selected item. The text displayed can be modified using setItemLabelFormat(). The

following code from Listing 6-1 displays information about the column, row, and value

of the clicked item:

series.setItemLabelFormat("Reykjavík - @colLabel @rowLabel: @valueLabel")

The different labels, axes, and item labels can be seen in Figures 6-1 and 6-2. The last

step in Listing 6-1 is to add the series to the bar_graph so the user can see the data:

bar_graph.addSeries(series)

Since Q3DBars inherits from the QWindow class, if you only want to display

a graph as a top-level window, you don’t need to create a QApplication instance.

Instead, you could use QGuiApplication since you don’t need the support for

widgets that QApplication has. If you want to display a 3D graph in a QApplication,

create a container widget, and pass the graph object as an argument to

createWindowContainer(). Then add the container to a layout.

The next application demonstrates how to display multiple series in Q3DBars and

how to tinker around with the different graph and series properties.

�Project 6.1: 3D Data Visualization GUI
Example 6.1 demonstrated how to visualize a single country’s climate data. However,

what happens if you want to compare the data for multiple countries or cities in the

same graph? Thankfully, Q3DBars also allows you to graph multiple series concurrently,

even if the series have different row and column sizes.

The GUI2 created in the project in Figure 6-3 shows how you can use the climate data

collected from multiple cities in the United States and graph them in the same Q3DBars

instance.

2�This application was influenced by the example found in the Qt documentation: https://doc.
qt.io/qt-5/qtdatavisualization-bars-example.html.

Chapter 6 Visualizing 3D Data

https://doc.qt.io/qt-5/qtdatavisualization-bars-example.html
https://doc.qt.io/qt-5/qtdatavisualization-bars-example.html

219

�Quick Glance at the Dataset
The climatological data3 used in this example pertains to different cities in the United

States. The cities – Spokane, Washington; Las Vegas, Nevada; and Richmond, Virginia –

pertain to different regions of the United States with varying seasonal climates.

The original dataset uses temperatures in degrees Fahrenheit; data has been

converted to degrees Celsius for this project. Table 6-2 lists a few rows from the

Richmond dataset.

3�Source: NOAA National Centers for Environmental information, Climate at a Glance: City Time
Series, published in September 2020, retrieved on September 1, 2020, from www.ncdc.noaa.gov/cag/.

Figure 6-3.  The 3D data visualization GUI displaying data related to the average
monthly temperatures for three different US cities from 1990 to 2000

Chapter 6 Visualizing 3D Data

220

�3D Data Visualization GUI Solution
The program in Listing 6-2 builds upon the previous concepts learned in this chapter.

There are many noticeable differences, including the use of new datasets, adding

multiple series in the same Q3DBars graph, and using several widgets in a QToolBox

object for adjusting and controlling the properties of the graph and different series.

Listing 6-2.  Code for the 3D data visualization GUI

bar_3D_multiseries.py

Import necessary modules

import sys, csv

import numpy as np

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QLabel,

QSlider, QComboBox, QPushButton, QCheckBox, QToolBox, QHBoxLayout,

QVBoxLayout)

from PyQt5.QtDataVisualization import (Q3DBars, QBarDataItem, QBar3DSeries,

QValue3DAxis, QAbstract3DSeries, QAbstract3DGraph, Q3DCamera, Q3DTheme)

from PyQt5.QtCore import Qt, QObject, pyqtSignal

Table 6-2.  The header row and first five rows from the Richmond_temp.csv file.

Months are abbreviated in the table. The dataset includes information about the

year and the average temperature per month (°C) in Richmond, Virginia. The

datasets for Spokane, Washington, and Las Vegas, Nevada, are not shown since

they are set up in a similar manner

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1990 7.6 8.5 10.8 14.1 18.4 23.6 26.3 24.2 20.5 16.9 11.1 7.6

1991 4.2 6.3 10.1 15.3 21.9 23.7 26.7 25.5 21.6 15.2 9.4 6.4

1992 4.4 5.6 8.1 14 16.2 21.2 26 22.8 20.9 13.1 10 4.7

1993 4.9 2.8 7.3 12.9 19.4 23.6 27.7 25.5 22.2 14.4 10.2 3.6

1994 0.4 4.2 9.1 16.9 16.9 25.2 26.9 23.8 20.3 13.9 11.1 7.2

Chapter 6 Visualizing 3D Data

221

style_sheet = """

 QToolBox:tab { /* Style for tabs in QToolBox */

 background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,

 stop: 0 #E1E1E1, stop: 0.4 #DDDDDD,

 stop: 0.5 #D8D8D8, stop: 1.0 #D3D3D3);

 border-radius: 5px;

 color: #777C80

 }

 QToolBox:tab:selected { /* Style for tabs when selected */

 background: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,

 stop: 0 #6FC7E8, stop: 0.4 #6CC6E8,

 stop: 0.5 #66BBDA, stop: 1.0 #60B9DA);

 color: #FFFFFF

 }"""

class GraphModifier(QObject):

 �# Create pyqtSignals for keeping track of the state of the background

and grid when the theme is changed

 background_selected = pyqtSignal(bool)

 grid_selected = pyqtSignal(bool)

 def __init__(self, parent, bar_graph):

 super().__init__()

 self.graph = bar_graph

 self.parent = parent

 # Set up rotation and visual variables

 self.horizontal_rotation = 0

 self.vertical_rotation = 0

 self.camera_preset = Q3DCamera.CameraPresetFront

 self.bar_style = QAbstract3DSeries.MeshBar

 self.bars_are_smooth = False

 def rotateHorizontal(self, rotation):

 self.graph.scene().activeCamera().setCameraPosition(

 rotation, self.vertical_rotation)

Chapter 6 Visualizing 3D Data

222

 def rotateVertical(self, rotation):

 self.graph.scene().activeCamera().setCameraPosition(

 self.horizontal_rotation, rotation)

 def changeCameraView(self):

 �"""Change the camera's preset (the angle from which we view the

camera) by cycling through Qt's different preset camera views."""

 �self.graph.scene().activeCamera().setCameraPreset(self.camera_

preset + 1)

 preset = int(self.camera_preset) + 1

 if preset > Q3DCamera.CameraPresetDirectlyBelow:

 �# Reset predefined position for camera to 0

(CameraPresetFrontLow)

 self.camera_preset = Q3DCamera.CameraPresetFrontLow

 else:

 self.camera_preset = Q3DCamera.CameraPreset(preset)

 def showOrHideBackground(self, state):

 self.graph.activeTheme().setBackgroundEnabled(state)

 def showOrHideGrid(self, state):

 self.graph.activeTheme().setGridEnabled(state)

 def smoothenBars(self, state):

 """Smoothen the edges of the items in all series."""

 self.bars_are_smooth = state

 for series in self.graph.seriesList():

 series.setMeshSmooth(self.bars_are_smooth)

 def changeTheme(self, theme):

 �"""Change the theme and appearance of the graph. Update the

QCheckbox widgets."""

 active_theme = self.graph.activeTheme()

 active_theme.setType(Q3DTheme.Theme(theme))

 self.background_selected.emit(active_theme.isBackgroundEnabled())

 self.grid_selected.emit(active_theme.isGridEnabled())

Chapter 6 Visualizing 3D Data

223

 def changeBarStyle(self, style):

 """Change the visual style of the bars."""

 combo_box = self.sender()

 if isinstance(combo_box, QComboBox):

 �self.bar_style = QAbstract3DSeries.Mesh(combo_box.

itemData(style))

 for series in self.graph.seriesList():

 series.setMesh(self.bar_style)

 def showOrHideSeries(self, state):

 �"""Show or hide the secondary series. seriesList()[1] refers to

Spokane; seriesList()[2] refers to Richmond."""

 checkbox = self.sender()

 if state == Qt.Checked and checkbox.text() == "Show Second Series":

 self.graph.seriesList()[1].setVisible(True)

 elif state != Qt.Checked and checkbox.text() == "Show Second Series":

 self.graph.seriesList()[1].setVisible(False)

 if state == Qt.Checked and checkbox.text() == "Show Third Series":

 self.graph.seriesList()[2].setVisible(True)

 elif state != Qt.Checked and checkbox.text() == "Show Third Series":

 self.graph.seriesList()[2].setVisible(False)

 def changeSelectionStyle(self, style):

 �"""Choose the style used to select data, by rows, columns or other

options."""

 combo_box = self.sender()

 if isinstance(combo_box, QComboBox):

 selection_style = combo_box.itemData(style)

 �self.graph.setSelectionMode(QAbstract3DGraph.

SelectionFlags(selection_style))

 def selectYears(self, year):

 """Select a specific year to view."""

 if year >= len(self.parent.years):

 self.graph.axes()[1].setRange(0, len(self.parent.years) - 1)

 else:

 self.graph.axes()[1].setRange(year, year)

Chapter 6 Visualizing 3D Data

224

 def selectMonths(self, month):

 """Select a specific month to view."""

 if month >= len(self.parent.months):

 self.graph.axes()[0].setRange(0, len(self.parent.months) - 1)

 else:

 self.graph.axes()[0].setRange(month, month)

class SimpleBarGraph(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents."""

 self.showMaximized()

 self.setMinimumSize(1000, 800)

 self.setWindowTitle('6.1 - 3D Bar Graph Multiseries')

 self.setupWindow()

 self.show()

 def setupWindow(self):

 �"""The window is comprised of two main parts: A Q3DBars graph on

the left, and QToolBox on the right containing different widgets

for tweaking different settings in the Q3DBars graph."""

 �header_label = QLabel("Comparison of Average Monthly Temperatures

of Select U.S. Cities 1990-2000 (°C)")

 header_label.setAlignment(Qt.AlignCenter)

 # Load and prepare the data for the three datasets

 �data_files = ["LasVegas_temp.csv", "Spokane_temp.csv", "Richmond_

temp.csv"]

 temperature_data = {}

 �# Create a dictionary with key, value pairs pertaining to each city

and dataset

 for f in data_files:

Chapter 6 Visualizing 3D Data

225

 �data_name = f.split("_")[0] + "_data" # Create a dictionary key

for each city

 data = self.loadCSVFile("files/" + f)

 �# Select 11 years: 1990-2000; the first column in each file is

the years

 rows, columns = data.shape

 self.years = data[:, 0]

 monthly_temps = data[:, 1:columns].astype(float)

 temperature_data[data_name] = monthly_temps

 bar_graph = Q3DBars() # Create instance for bar graph

 �bar_graph.setMultiSeriesUniform(True) # Bars are scaled

proportionately

 �bar_graph.scene().activeCamera().setCameraPreset(Q3DCamera.

CameraPresetFront)

 # Create lists of QBarDataItem objects for each city

 vegas_data_items = []

 for row in temperature_data["LasVegas_data"]:

 vegas_data_items.append([QBarDataItem(value) for value in row])

 spokane_data_items = []

 for row in temperature_data["Spokane_data"]:

 spokane_data_items.append([QBarDataItem(value) for value in row])

 richmond_data_items = []

 for row in temperature_data["Richmond_data"]:

 �richmond_data_items.append([QBarDataItem(value) for value in

row])

 �self.months = ["January", "February", "March", "April", "May",

"June",

 "July", "August", "September", "October", "November", "December"]

 �# Create instances of QBar3DSeries for each set of data;

dataProxy() handles modifying data in the series

 vegas_series = QBar3DSeries()

 vegas_series.dataProxy().addRows(vegas_data_items)

Chapter 6 Visualizing 3D Data

226

 vegas_series.dataProxy().setRowLabels(self.years) # rowLabel

 vegas_series.dataProxy().setColumnLabels(self.months) # colLabel

 spokane_series = QBar3DSeries()

 spokane_series.dataProxy().addRows(spokane_data_items)

 richmond_series = QBar3DSeries()

 richmond_series.dataProxy().addRows(richmond_data_items)

 # Create the valueLabel

 temperature_axis = QValue3DAxis()

 temperature_axis.setRange(-10, 40)

 temperature_axis.setLabelFormat(u"%.1f \N{degree sign}C")

 bar_graph.setValueAxis(temperature_axis)

 �# Set the format for the labels that appear when items are

clicked on

 �vegas_series.setItemLabelFormat("LasVegas - @colLabel @rowLabel:

@valueLabel")

 �spokane_series.setItemLabelFormat("Spokane - @colLabel @rowLabel:

@valueLabel")

 �richmond_series.setItemLabelFormat("Richmond - @colLabel @rowLabel:

@valueLabel")

 # Add the three series to the bar graph

 bar_graph.setPrimarySeries(vegas_series)

 bar_graph.addSeries(spokane_series)

 bar_graph.addSeries(richmond_series)

 # Create a QWidget to hold only the graph

 graph_container = QWidget.createWindowContainer(bar_graph)

 main_h_box = QHBoxLayout() # Main layout for the entire window

 graph_v_box = QVBoxLayout() # Layout that holds the graph

 graph_v_box.addWidget(header_label)

 graph_v_box.addWidget(graph_container, 1)

Chapter 6 Visualizing 3D Data

227

 ###

 �# The following section creates the QToolBox that appears on the

right of the window and contains widgets for interacting with the

graph

 �self.modifier = GraphModifier(self, bar_graph) # Create modifier

instance

 settings_toolbox = QToolBox()

 settings_toolbox.setFixedWidth(300)

 settings_toolbox.setCurrentIndex(0) # Show the first tab

 �# The first tab - Widgets for rotating the bar graph and changing

the camera

 horizontal_rotation_slider = QSlider(Qt.Horizontal)

 horizontal_rotation_slider.setTickInterval(20)

 horizontal_rotation_slider.setRange(-180, 180)

 horizontal_rotation_slider.setValue(0)

 horizontal_rotation_slider.setTickPosition(QSlider.TicksBelow)

 �horizontal_rotation_slider.valueChanged.connect(self.modifier.

rotateHorizontal)

 vertical_rotation_slider = QSlider(Qt.Horizontal)

 vertical_rotation_slider.setTickInterval(20)

 vertical_rotation_slider.setRange(-180, 180)

 vertical_rotation_slider.setValue(0)

 vertical_rotation_slider.setTickPosition(QSlider.TicksBelow)

 �vertical_rotation_slider.valueChanged.connect(self.modifier.

rotateVertical)

 # QPushButton for changing the camera's view point

 camera_view_button = QPushButton("Change Camera View")

 camera_view_button.clicked.connect(self.modifier.changeCameraView)

 # Layout for the View tab (first tab)

 view_tab_container = QWidget()

 view_tab_v_box = QVBoxLayout()

 view_tab_v_box.setAlignment(Qt.AlignTop)

 view_tab_v_box.addWidget(QLabel("Rotate Horizontally"))

Chapter 6 Visualizing 3D Data

228

 view_tab_v_box.addWidget(horizontal_rotation_slider)

 view_tab_v_box.addWidget(QLabel("Rotate Vertically"))

 view_tab_v_box.addWidget(vertical_rotation_slider)

 view_tab_v_box.addWidget(camera_view_button)

 view_tab_container.setLayout(view_tab_v_box)

 settings_toolbox.addItem(view_tab_container, "View")

 �# The second tab - Widgets for changing the appearance of the graph.

Recheck the background and grid checkboxes if the theme has changed

 show_background_cb = QCheckBox("Show Background")

 show_background_cb.setChecked(True)

 �show_background_cb.stateChanged.connect(self.modifier.

showOrHideBackground)

 �self.modifier.background_selected.connect(show_background_

cb.setChecked)

 show_grid_cb = QCheckBox("Show Grid")

 show_grid_cb.setChecked(True)

 show_grid_cb.stateChanged.connect(self.modifier.showOrHideGrid)

 self.modifier.grid_selected.connect(show_grid_cb.setChecked)

 smooth_bars_cb = QCheckBox("Smoothen Bars")

 smooth_bars_cb.stateChanged.connect(self.modifier.smoothenBars)

 # QComboBox for selecting the Qt theme

 themes = ["Qt", "Primary Colors", "Digia", "Stone Moss", "Army Blue",

 "Retro", "Ebony", "Isabelle"]

 select_theme_combo = QComboBox()

 select_theme_combo.addItems(themes)

 select_theme_combo.setCurrentIndex(0)

 �select_theme_combo.currentIndexChanged.connect(self.modifier.

changeTheme)

 # QComboBox for selecting the visual style of the bars

 bar_style_combo = QComboBox()

 bar_style_combo.addItem("Bar", QAbstract3DSeries.MeshBar)

 bar_style_combo.addItem("Pyramid", QAbstract3DSeries.MeshPyramid)

Chapter 6 Visualizing 3D Data

229

 bar_style_combo.addItem("Cylinder", QAbstract3DSeries.MeshCylinder)

 bar_style_combo.addItem("Sphere", QAbstract3DSeries.MeshSphere)

 bar_style_combo.setCurrentIndex(0)

 �bar_style_combo.currentIndexChanged.connect(self.modifier.

changeBarStyle)

 # Layout for the Style tab (second tab)

 style_tab_container = QWidget()

 style_tab_v_box = QVBoxLayout()

 style_tab_v_box.setAlignment(Qt.AlignTop)

 style_tab_v_box.addWidget(show_background_cb)

 style_tab_v_box.addWidget(show_grid_cb)

 style_tab_v_box.addWidget(smooth_bars_cb)

 style_tab_v_box.addWidget(QLabel("Select Qt Theme"))

 style_tab_v_box.addWidget(select_theme_combo)

 style_tab_v_box.addWidget(QLabel("Select Bar Style"))

 style_tab_v_box.addWidget(bar_style_combo)

 style_tab_container.setLayout(style_tab_v_box)

 settings_toolbox.addItem(style_tab_container, "Style")

 �# The third tab - Widgets for hiding/showing different series and

changing how items are viewed and selected

 second_series_cb = QCheckBox("Show Second Series")

 second_series_cb.setChecked(True)

 �second_series_cb.stateChanged.connect(self.modifier.

showOrHideSeries)

 third_series_cb = QCheckBox("Show Third Series")

 third_series_cb.setChecked(True)

 �third_series_cb.stateChanged.connect(self.modifier.

showOrHideSeries)

 # QComboBox for changing how items in the bar graph are selected

 selection_mode_combo = QComboBox()

 �selection_mode_combo.addItem("None", QAbstract3DGraph.

SelectionNone)

 selection_mode_combo.addItem("Bar", QAbstract3DGraph.SelectionItem)

Chapter 6 Visualizing 3D Data

230

 selection_mode_combo.addItem("Row", QAbstract3DGraph.SelectionRow)

 �selection_mode_combo.addItem("Column", QAbstract3DGraph.

SelectionColumn)

 �selection_mode_combo.addItem("Item, Row, Column", QAbstract3DGraph.

SelectionItemRowAndColumn)

 selection_mode_combo.setCurrentIndex(1)

 �selection_mode_combo.currentIndexChanged.connect(self.modifier.

changeSelectionStyle)

 # QComboBox for selecting which years to view

 select_year_combo = QComboBox()

 select_year_combo.addItems(self.years)

 select_year_combo.addItem("All Years")

 select_year_combo.setCurrentIndex(len(self.years))

 �select_year_combo.currentIndexChanged.connect(self.modifier.

selectYears)

 # QComboBox for selecting which months to view

 select_month_combo = QComboBox()

 select_month_combo.addItems(self.months)

 select_month_combo.addItem("All Months")

 select_month_combo.setCurrentIndex(len(self.months))

 �select_month_combo.currentIndexChanged.connect(self.modifier.

selectMonths)

 # Layout for the Selection tab (third tab)

 selection_tab_container = QWidget()

 selection_tab_v_box = QVBoxLayout()

 selection_tab_v_box.addWidget(second_series_cb)

 selection_tab_v_box.addWidget(third_series_cb)

 selection_tab_v_box.addWidget(QLabel("Choose Selection Mode"))

 selection_tab_v_box.addWidget(selection_mode_combo)

 selection_tab_v_box.addWidget(QLabel("Select Year"))

 selection_tab_v_box.addWidget(select_year_combo)

 selection_tab_v_box.addWidget(QLabel("Select Month"))

 selection_tab_v_box.addWidget(select_month_combo)

Chapter 6 Visualizing 3D Data

231

 selection_tab_container.setLayout(selection_tab_v_box)

 settings_toolbox.addItem(selection_tab_container, "Selection")

 # Set up the layout for the settings toolbox

 settings_v_box = QVBoxLayout()

 settings_v_box.addWidget(settings_toolbox, 0, Qt.AlignTop)

 main_h_box.addLayout(graph_v_box)

 main_h_box.addLayout(settings_v_box)

 main_widget = QWidget()

 main_widget.setLayout(main_h_box)

 self.setCentralWidget(main_widget)

 def loadCSVFile(self, file_name):

 """Load CSV files. Return data as numpy arrays."""

 with open(file_name, "r") as csv_f:

 reader = csv.reader(csv_f)

 header_labels = next(reader)

 data = np.array(list(reader))

 return data

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = SimpleBarGraph()

 sys.exit(app.exec_())

The 3D data visualization application’s interface can be seen in Figure 6-3.

�Explanation
For this project, we also need to include a few widget classes for adjusting the

parameters of the graph, including QSlider, QComboBox, QPushButton, and QCheckBox;

QToolBox is used for creating a container to hold and arrange those widgets on the side

of the window.

Chapter 6 Visualizing 3D Data

232

The classes associated with creating a Q3DBars graph are included along with

some new ones. QAbstract3DSeries is the base class for all 3D series types, and

QAbstract3DGraph provides the window and rendering process for the graph. Q3DTheme

provides the visual appearance and parameters for the graph.

The style_sheet is used to change the appearance of the QToolBox widget’s tabs

when they are selected or not selected.

�Creating Multiple Series

Let’s start by looking at the setupWindow() function. Just like in Example 6.1, we begin by

loading the CSV data, but this time for each of the three file paths in the data_files list.

Each file contains the temperature data for a different city in the United States from 1990

to 2000. An example of the data can be seen in Table 6-2.

For each of the files in Listing 6-2, a name is created from the file path and used as

the key in the temperature_data dictionary:

for f in data_files:

 # Dictionary key for each city stored in data_name

 data_name = f.split("_")[0] + "_data"

 data = self.loadCSVFile("files/" + f)

Data for the years and monthly_temps is selected from the NumPy array, data, for

each city. years is used for the labels in the graph; monthly_temps contains the values

for the current city while iterating through the for loop. Those values are assigned to the

current city, data_name, in the temperature_date dictionary in Listing 6-2 by

temperature_data[data_name] = monthly_temps

After iterating through the for loop, temperature_data will contain three keys –

LasVegas_data, Spokane_data, and Richmond_data. Each key will also have the values

for monthly_temps as its corresponding value, 12 items for each row (months), and 11

rows (years, 1990–2000).

We can now create the Q3DBars instance and set the scene’s camera preset. For each

of the cities, we also need to create a list of QBarDataItem objects. The following code

from Listing 6-2 creates the data items from the LasVegas_data:

Chapter 6 Visualizing 3D Data

233

vegas_data_items = []

for row in temperature_data["LasVegas_data"]:

 vegas_data_items.append([QBarDataItem(value) for value in row])

A QBar3DSeries object is also created for each of the cities. Let’s take a look at the

series for Las Vegas, vegas_series, in Listing 6-2. The other series are set up in a similar

fashion:

vegas_series = QBar3DSeries()

vegas_series.dataProxy().addRows(vegas_data_items)

Set the row and column labels

vegas_series.dataProxy().setRowLabels(self.years)

vegas_series.dataProxy().setColumnLabels(self.months)

The data proxy is used to add the rows of QBarDataItems to the series. Since we do not

explicitly define the row and column axes for the richmond_series and spokane_series,

row and column values are taken from the first added series. The temperature_axis is set

up just like in Example 6.1. Item labels are also created in Listing 6-2 for each series using

the setItemLabelFormat() function. The three series are then added to bar_graph:

bar_graph.setPrimarySeries(vegas_series)

bar_graph.addSeries(spokane_series)

bar_graph.addSeries(richmond_series)

Notice how setPrimarySeries() is used for the vegas_series. The primary

series of the graph determines the row and column axis labels.

Also, in order to place a 3D graph in the window, we need to use

createWindowContainer() to create a QWidget wrapper for Q3DBars (since it inherits

QWindow), allowing it to be placed inside a QWidget-based application.

�Setting Up the QToolBox

This application is made up of two major parts: the graph and the toolbox that houses

the widgets for interacting with the items in the graph. The QToolBox instance,

settings_toolbox, is a column of three tabs used to sort the different widgets for

modifying the graph and series properties. Each tab has an index position that can be set

with setCurrentIndex().

Chapter 6 Visualizing 3D Data

234

When the application begins, the user will see the View tab (seen in Figure 6-4 on

the left). Here they can use the two sliders to rotate the graph horizontally or vertically

or click the camera_view_button to cycle through many camera presets. Widgets in the

tab are arranged into a QVBoxLayout and placed inside a container QWidget. This step is

shown in the following code from Listing 6-2:

view_tab_container.setLayout(view_tab_v_box)

settings_toolbox.addItem(view_tab_container, "View")

The next tab, Style, is seen in the middle image of Figure 6-4. The tab is comprised

of QCheckBox widgets for showing the graph’s background or grid and for smoothing the

bars. The QComboBox widgets are used for selecting the different built-in visual themes or

for choosing a different shape to depict the data items (bar, pyramid, cylinder, or sphere).

There are also other shapes that are not included in this project.

Figure 6-4.  The three tabs in the toolbox: the View tab (left), the Style tab
(middle), and the Selection tab (right)

Chapter 6 Visualizing 3D Data

235

Lastly, the image on the right in Figure 6-4 shows the Selection tab. Here the user

can hide or display the secondary series, the Richmond and Spokane datasets, with

QCheckboxes. The three QComboBox widgets allow for choosing how to select data items

in the graph and for displaying specific years or months. Items selected in the bar graph

will appear highlighted with a different color. In this application, users can select a single

item or an entire row, column, or both. There are also many other selection options that

are not included.

All of these widgets are connected to different signals that we will examine in the

next section.

�Adjusting Properties with Widgets

The GraphModifier class inherits from QObject and is used to update the bar graph and

the different series and create a few custom signals with pyqtSignal. The instance of the

class, modifier, is instantiated in the SimpleBarGraph’s setupWindow() function.

The following lists the 13 different widgets in the settings_toolbox, the signals they

emit, and information about the slots they are connected to in the GraphModifier class:

•	 horizontal_rotation_slider – Emits a signal when the

user moves the slider and changes the values. Connected to

rotateHorizontal(). Uses the setCameraPosition() function to

rotate the scene’s camera horizontally.

•	 vertical_rotation_slider – Similar to horizontal_rotation_

slider. Calls rotateVertical() and rotates the camera vertically.

•	 camera_view_button – When clicked, connects to the

changeCameraView() slot. Cycles through the different camera

presets. Each preset is associated with an integer value, 1 for

CameraPresetFrontLow to 23 for CameraPresetDirectlyBelow.

•	 show_background_cb – When checked, sets setBackgroundEnabled()

to True in the showOrHideBackground() slot.

•	 show_grid_cb – When checked, sets setGridEnabled() to True in the

showOrHideGrid() slot.

•	 smooth_bars_cb – When checked, connects to smoothenBars(). For

all of the series in the graph, smooths the shapes for the bars using

setMeshSmooth().

Chapter 6 Visualizing 3D Data

236

•	 select_theme_combo – Emits a signal when a new item is selected.

Connects to changeTheme() and updates the theme using

setType(). Figure 6-5 displays one of the different themes. Also,

changing the theme resets the graph’s settings. Emits the custom

background_selected() and grid_selected() signals to update the

corresponding QCheckBoxes.

•	 bar_style_combo – Triggers the changeBarStyle() slot when a

different bar style is selected. Uses the Python function isinstance()

to check if the combobox object from the sender() is of the type

QComboBox. Gets the itemData() about the selected style and sets

the mesh style for all series.

•	 second_series_cb – When the state changes, calls

showOrHideSeries(). Checks the state of the checkbox and its text to

determine which series to display or hide.

•	 third_series_cb – Same as second_series_cb.

Figure 6-5.  Example of selecting built-in themes to represent the different series in
the graph

Chapter 6 Visualizing 3D Data

237

•	 selection_mode_combo – When the index of the combobox changes,

calls changeSelectionStyle() and uses isinstance() to check if

the combo_box object from sender() is a member of QComboBox. Uses

itemData() to determine the selection_style for the graph.

An example of hiding the secondary series and changing the selection mode is

shown in Figure 6-6.

•	 select_year_combo – If the current index changes, calls the

selectYears() slot. Checks first if the user has selected the All Years

option. Uses setRange() to set the axis for the graph.

•	 select_month_combo – Signal emitted when the index changes and

calls the selectMonths() slot. The process for selecting the month is

similar to select_year_combo.

Figure 6-7 shows the result of selecting the year 1997 using the select_year_combo

widget.

Figure 6-6.  An example of hiding the series for the Spokane and Richmond
datasets and changing the selection mode

Chapter 6 Visualizing 3D Data

238

Finally, the user can also hone in on a specific month in a particular year using the

select_year_combo and select_month_combo widgets together. This is demonstrated in

Figure 6-8.

Figure 6-7.  Displays the data for a single year, 1997, and all 12 months

Chapter 6 Visualizing 3D Data

239

There are still many other features that could be adjusted, such as the font style or

size of the labels or the shadow quality in the scene.

�Summary
There are numerous options for interacting with and visualizing the underlying data in

our world. In previous chapters, we have explored methods for creating GUIs to interact

with two-dimensional datasets, databases, and image and video formats. However, the

data displayed using 2D charts, tables, and images loses the interactivity that a three-

dimensional environment can offer.

With PyQt, you can display your data using 3D bar, scatter, and surface graphs.

These tools are dynamic and interactive from the start and can be further exploited

using PyQt’s widgets and the signal and slot mechanism. The examples in this chapter

demonstrated how to visualize the climatological data for different cities around the

globe using the PyQt classes for creating 3D bar graphs.

In Chapter 7, you will be introduced to the PyQt networking classes used for

accessing and sharing data across networks.

Figure 6-8.  Displays the data for all three series in September 1997

Chapter 6 Visualizing 3D Data

241
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8_7

CHAPTER 7

Introduction to
Networking with PyQt
We are connected like never before through a web of networks. They are the way we

communicate, connect with families and friends, do business, send photos, and play

video games with people we have never met. They let us share breaking news and listen

to incredible stories from places all around the world. We have become so used to

networks in our daily lives that most of us probably don’t even notice them very often. To

build this vast collection of intertwined systems, we need fast technologies and a set of

rules to maintain them.

Ideas spread faster because of networks. The Internet is one of the largest networks

humans have ever created. Your projects, photos, and videos can be uploaded and

shared and liked by others. Projects coded in this text could all be connected to other

applications in some way. Even if you want to create and share a small application that

only runs locally on someone’s computer, you still need a means for others to find and

have access to downloading and installing your application.

In this chapter, we will

•	 Learn some of the fundamentals about networks.

•	 Find out about the classes in PyQt5 for networking.

•	 Use the QtNetwork module and QWebEngineView class to create a

simple web browser that displays requested HTML code.

•	 Build a PyQt GUI that uses the Python smtplib module for sending

emails.

https://doi.org/10.1007/978-1-4842-6603-8_7#DOI

242

�What Is Networking?
A network is a group of computers linked together to share resources, allow for

communication within the group, and to permit the exchange of information among its

authorized members. Systems that create a network are a combination of both hardware

and software working together to allow everyone with access to communicate and

request information securely. Networking is involved in telephone calls, text messaging,

streaming videos over the Internet, and so much more.

For a network to function properly and to remain secure, it must rely on a set of

protocols, rules that decide how data is shared between different nodes on the same

network. Regardless of the underlying hardware, these devices still need to be able to

work together. There are a number of protocols, including Hypertext Transfer Protocol
(HTTP) for displaying web pages and exchanging information between clients and

servers. Transmission Control Protocol/Internet Protocol (TCP/IP) is another useful

Internet protocol for transferring information over an IP network. This only skims the

surface of networking, but it’s enough to get us started in this chapter.

�PyQt Networking Classes
PyQt5 offers both high-level and low-level networking classes in its QtNetwork module.

The lower-level classes allow for a developer to work closely with TCP/IP clients and

servers. These classes include functionality for working with both TCP, QTcpSocket and

QTcpServer, and UDP, QUdpSocket. TCP is more reliable than UDP and therefore used

most often in client–server applications. The QTcpSocket class can be used to execute

standard network protocols.

At the high level, classes such as QNetworkAccessManager, QNetworkRequest, and

QNetworkReply are great for working with HTTP. These three classes work together,

with network applications only having one instance of QNetworkAccessManager.

QNetworkRequest acts as a container for information about the request, including

the header (contains protocol information about the data it is carrying) and the body

(contains the actual data). The QNetworkAccessManager class keeps network requests

in order and keeps track of a request’s progress using signals and slots. With a request

made, QNetworkReply sends information back to the managing class, sending updates

about the progress of a request.

Please have a look at https://doc.qt.io/qt-5/topics-network-connectivity.

html for more information about Qt’s networking classes.

Chapter 7 Introduction to Networking with PyQt

https://doc.qt.io/qt-5/topics-network-connectivity.html
https://doc.qt.io/qt-5/topics-network-connectivity.html

243

�Example 7.1: Requesting HTML from a Web Page
For this chapter’s first program, we will create a simple application to show the process

for using the different QtNetwork classes for getting and posting data over HTTP.

Hypertext Markup Language (HTML) is the language that creates the documents

designed for being displayed on a web browser. HTTP has its own set of methods for

requesting data. There are a few different ones, but the general two are GET for collecting

information or resources from a server and POST for sending data to the server.

If you ever want to view the HTML code for a website in your browser, simply

right-click the page and select the appropriate option from the context menu that

appears. The application you are going to build is seen in Figure 7-1. This example

displays the HTML code for a web page and updates automatically every time a new

web page is viewed.

Before jumping into this section’s example code, we’ll need to install a few additional

Python and PyQt modules.

Figure 7-1.  The GUI for displaying a web page and viewing the underlying HTML
code

Chapter 7 Introduction to Networking with PyQt

244

�Installing Beautiful Soup
The first package we will be installing, Beautiful Soup, is typically used for web scraping,

the process of collecting useful data, such as images, text files, and even videos, from

the Internet. Accessing this data often means parsing through a web page’s HTML code

looking for the specific bits of information that we need to download. We won’t be web

scraping in this example. Instead, we will use Beautiful Soup to parse the code and make

it easier to read.

To get Beautiful Soup using the PyPI wheel, run the following command:

$ pip3 install beautifulsoup4

Debian or Linux users may need to use the following command to install the library:

$ sudo apt-get install python3-bs4

To check that everything is working properly, open up Python 3 and enter

>>> import bs4

The Beautiful Soup library already supports the HTML parser used by Python. If

you are interested in seeing what other HTML parsers are supported, check out lxml or

html5lib.

The documentation for Beautiful Soup can be found at www.crummy.com/software/

BeautifulSoup/bs4/doc/.

�Installing PyQtWebEngine
You may also need to install the PyQtWebEngine module, a collection of Python

bindings for the Qt WebEngine library. With PyQtWebEngine, you are able to create

applications that can embed a web browser into the graphical interface. Current versions

of Qt WebEngine are built upon Google’s Chromium software. For our purposes, we

only need to display a web page and the HTML that constructs that page in a QtWidgets-

based application. It sounds like a daunting task, but it really isn’t.

To get started installing PyQtWebEngine, open up your computer’s shell interface

and enter the following command:

$ pip3 install pyqtwebengine

Chapter 7 Introduction to Networking with PyQt

http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

245

To test that the installation was successful, open up the Python 3 shell and try

importing the package with the following line of code:

>>> import PyQt5.QtWebEngine

That’s all there is to it! You are now ready to get started creating applications that

connect to the Internet. More information about the PyQtWebEngine module can be

found at https://riverbankcomputing.com/software/pyqtwebengine.

In Listing 7-1, we will explore how to use HTTP request methods to retrieve and view

the HTML code for a web page.

Listing 7-1.  Code that demonstrates how to perform HTTP requests with PyQt

networking classes

request_html.py

Import necessary modules

import sys

from bs4 import BeautifulSoup

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QSplitter,

QTextEdit, QToolBar, QHBoxLayout, QAction)

from PyQt5.QtNetwork import QNetworkAccessManager, QNetworkRequest,

QNetworkReply

from PyQt5.QtWebEngineWidgets import QWebEngineView

from PyQt5.QtCore import Qt, QUrl, QSize

from PyQt5.QtGui import QFont, QIcon

class DisplayWebContent(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents."""

 self.showMaximized() # Window starts maximized

 self.setMinimumSize(1000, 500)

 self.setWindowTitle('Ex 7.1 - Request HTML')

Chapter 7 Introduction to Networking with PyQt

https://riverbankcomputing.com/software/pyqtwebengine

246

 self.setupWindow()

 self.setupToolbar()

 self.show()

 def setupWindow(self):

 """Set up the widgets in the main window."""

 home_page_url = "https://www.google.com"

 # Create the view instance for the web browser

 self.web_view = QWebEngineView()

 self.web_view.setUrl(QUrl(home_page_url))

 self.web_view.urlChanged.connect(self.loadHTML)

 self.html_text_edit = QTextEdit()

 self.html_text_edit.setText("Loading HTML...")

 self.html_text_edit.setFont(QFont('Courier', 12))

 # Create splitter container and arrange widgets

 splitter = QSplitter()

 splitter.setOrientation(Qt.Vertical)

 splitter.addWidget(self.web_view)

 splitter.addWidget(self.html_text_edit)

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(splitter)

 main_container = QWidget()

 main_container.setLayout(main_h_box)

 self.setCentralWidget(main_container)

 def setupToolbar(self):

 """Create the toolbar for navigating web pages."""

 toolbar = QToolBar()

 toolbar.setIconSize(QSize(24, 24))

 toolbar.setMovable(False)

 self.addToolBar(toolbar)

 # Create actions

 back_act = QAction(QIcon("icons/back.png"), "Back Button", toolbar)

 back_act.triggered.connect(self.web_view.back)

Chapter 7 Introduction to Networking with PyQt

247

 �forward_act = QAction(QIcon("icons/forward.png"), "Forward Button",

toolbar)

 forward_act.triggered.connect(self.web_view.forward)

 # Add actions to the toolbar

 toolbar.addAction(back_act)

 toolbar.addAction(forward_act)

 def loadHTML(self):

 �"""Send a GET request to retrieve the current web page and its

data."""

 # Retrieve the url of the current page

 url = self.web_view.url()

 request = QNetworkRequest(QUrl(url))

 �# Create QNetworkAccessManager to send request; emit finished()

signal to connect to replyFinished() and display the page's HTML

 self.manager = QNetworkAccessManager()

 self.manager.finished.connect(self.replyFinished)

 self.manager.get(request)

 def replyFinished(self, reply):

 �"""Get the reply data. Check for any errors that occurred while

loading the web pages."""

 error = reply.error()

 if error == QNetworkReply.NoError:

 �# The function readAll() returns a byte array containing the

requested data

 data = reply.readAll()

 # Use BeautifulSoup to "prettify" the HTML before displaying it

 soup = BeautifulSoup(data, features="html5lib")

 beautified_html = soup.prettify()

 self.html_text_edit.setPlainText(beautified_html)

 else:

 error = "[INFO] Error: {}".format(str(error))

 �self.html_text_edit.setPlainText(error + "\n" + reply.

errorString())

Chapter 7 Introduction to Networking with PyQt

248

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = DisplayWebContent()

 sys.exit(app.exec_())

The final GUI displaying a web page and the HTML code is shown in Figure 7-1.

�Explanation
We begin as normal by importing the modules we need for the application. We will

import BeautifulSoup from bs4. From QtWidgets, QSplitter will be used as a container

for the QWebEngineView (the widget used to view and interact with web pages) and the

QTextEdit widgets. The application’s QToolBar will contain two buttons for moving

between previously viewed web pages.

From QtNetwork, the network operations will be performed by

QNetworkAccessManager, QNetworkRequest, and QNetworkReply.

Let’s first see how the main window is arranged in setupWindow(). When the

application first opens, the user will be directed to Google. The next step is to create the

QWebEngineView instance and set its URL to home_page_url. Whenever we move to a

new website, the urlChanged() signal is emitted. This calls loadHTML(). We’ll talk about

this function a little later.

The HTML we request to view from each website is displayed in html_text_edit.

Both web_view and html_text_edit are contained in a QSplitter widget.

�Setting Up the Toolbar

The example’s toolbar is very simple. It contains two buttons, back_act and forward_

act, to navigate through web pages like in a normal web browser. Other tools, such as

the navigation bar, are left to the reader to implement. The QWebEngineView already

has built-in functions for navigating the Internet. The following code from Listing 7-1

illustrates how to implement the button for moving back to previously viewed web pages:

back_act = QAction(QIcon("icons/back.png"), "Back Button", toolbar)

back_act.triggered.connect(self.web_view.back)

The button for moving forward is set up in a similar manner.

Chapter 7 Introduction to Networking with PyQt

249

�Sending a GET Request

While this example only demonstrates how to perform GET requests, the

QNetworkAccessManager class also allows you to perform other HTTP operations. GET

requests are useful for receiving data and not affecting the contents of the web page.

When a user views a new website, the new url is retrieved using the following code

from Listing 7-1:

url = self.web_view.url()

This url is passed to QNetworkRequest. The next thing is to create the application’s

QNetworkAccessManager instance to manage the sending and retrieving of data from

the request. Since QNetworkAccessManager works asynchronously, we should call

readAll() immediately after the get() method. The readAll() function is used to read

and return data in an array of bytes; get() posts the request and returns a reply for

reading. However, the request has not been made at that time. So we need to connect the

manager to the finished() signal and perform the reading action in the slot connected

to the signal, replyFinished(). A simple download from a network can be accomplished

using the following code from Listing 7-1:

manager = QNetworkAccessManager()

manager.finished.connect(self.replyFinished)

manager.get(QNetworkRequest(QUrl("https://www.google.com")))

The next step is to use Beautiful Soup to make the returned data, the HTML code,

readable to a human. The html_text_edit will then update and display the returned

code.

�Project 7.1: Email Sender GUI
Python already has a number of built-in classes that make it easy to get started

connecting to servers, sending email, and working with different network protocols. In

this project, you will see how to create the PyQt application shown in Figure 7-2 and find

out how to use the Python module smtplib to send emails using the SMTP (Simple Mail

Transfer Protocol).

Chapter 7 Introduction to Networking with PyQt

250

Let’s first have a look at the network protocol we will need to use in order to create an

application that sends emails.

�What Is the Simple Mail Transfer Protocol (SMTP)?
There are different kinds of communication protocols that set the rules for what kind of

data can be transferred between nodes in a network. Simple Mail Transfer Protocol
(SMTP) is used when sending emails between users. Clients who want to send an email

open the TCP connection to the SMTP server, whose main purpose is to send, receive, or

relay mail between users sending mail on the server.

�Setting Up Your Gmail Security Settings
Since we are using Gmail in this project, we will need to work with Google’s security

settings. Otherwise, you will get an error, and your email will never be allowed to send.

Log in to your Gmail account, and at the top of the page where your user icon is, click

it, and then click Manage your Google Account. On the next page, look for Security (as

of this writing, it’s on the left of the window). This link will also take you directly to the

Security page: https://myaccount.google.com/security.

Figure 7-2.  The email sender GUI. QTextEdit widgets can be used for creating and
displaying rich text

Chapter 7 Introduction to Networking with PyQt

https://myaccount.google.com/security

251

Now, there are two ways to send an email using Python. The first is to turn on

access to less secure apps. It’s not recommended, but for a short application like this, it

shouldn’t be a problem. Just be sure to turn access off again when you are finished.

The second option is to proceed with two-step verification. This takes a few minutes,

and when you are finished, you will be given a 16-character password. While running the

program in Listing 7-2, when you get to the dialog shown in Figure 7-4, use the secure

password you received for verification and not your normal password. This will allow

you to send your email and keep your email account secure.

�Email Sender GUI Solution
This example will demonstrate how to use the Python module smtplib for connecting to

the SMTP server and sending an email. To create a secure connection, we will be using

Secure Sockets Layer (SSL) for establishing an encrypted link between the client and

the server.

The GUI created in Listing 7-2 is also relatively simple, composed of a few QLineEdit

widgets for inputting the sender’s and recipient’s email addresses and the subject

heading, a QTextEdit for creating the body of the email, and a QPushButton to send

the email. After clicking Send, users will be prompted for the password to their Gmail

account. If the email is successfully sent, a message will appear in the status bar at the

bottom of the window. Otherwise, an error message will be displayed.

The smtplib library in this application is also set up so that it always sends rich text.

Tip W hen you send a large message or if you have a poor Internet connection,
you may notice the GUI freeze for a few moments until the request is complete.
One way to alleviate this would be to use PyQt’s low-level networking threading
classes instead of smtplib.

Listing 7-2.  Code for the email sender application

Import necessary modules

import sys, smtplib

from email.message import EmailMessage

Chapter 7 Introduction to Networking with PyQt

252

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QLabel,

QPushButton, QLineEdit, QTextEdit, QDialog, QMessageBox, QDialogButtonBox,

QStatusBar, QGridLayout, QHBoxLayout, QVBoxLayout)

from PyQt5.QtGui import QFont

from PyQt5.QtCore import Qt

class PasswordDialog(QDialog):

 def __init__(self, parent):

 super().__init__()

 �# [INFO] This line only checks if sender and recipient line edits

are not blank. There are other checks you could make, such as if

the @ symbol exists, or if the email extension is valid.

 �if parent.sender_address.text() != "" and parent.recipient_address.

text() != "":

 self.setWindowTitle("Submit Gmail Password")

 self.setFixedSize(300, 100)

 self.setModal(True)

 enter_password_label = QLabel("Enter Password:")

 self.enter_password_line = QLineEdit()

 self.enter_password_line.setEchoMode(QLineEdit.Password)

 �# Create nested layout for widgets to enter the password and

for the QDialogButtonBox

 password_h_box = QHBoxLayout()

 password_h_box.addWidget(enter_password_label)

 password_h_box.addWidget(self.enter_password_line)

 buttons = QDialogButtonBox.Ok | QDialogButtonBox.Cancel

 button_box = QDialogButtonBox(buttons)

 button_box.accepted.connect(self.accept)

 button_box.rejected.connect(self.reject)

 dialog_v_box = QVBoxLayout()

 dialog_v_box.addLayout(password_h_box)

 dialog_v_box.addWidget(button_box)

 self.setLayout(dialog_v_box)

Chapter 7 Introduction to Networking with PyQt

253

 else:

 QMessageBox.information(self, "Missing Information",

 "Sender or Recipient Information is Empty.", QMessageBox.Ok)

class EmailGUI(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents."""

 self.setMinimumSize(800, 500)

 self.setWindowTitle('7.2 - Email GUI')

 self.setupWindow()

 self.show()

 def setupWindow(self):

 �"""Set up the widgets for inputting the headers and body of the

email."""

 window_label = QLabel("Send a Simple Email")

 window_label.setFont(QFont("Courier", 24))

 window_label.setAlignment(Qt.AlignCenter)

 sender_label = QLabel("From:")

 self.sender_address = QLineEdit()

 self.sender_address.setPlaceholderText("your_email@gmail.com")

 recipient_label = QLabel("To:")

 self.recipient_address = QLineEdit()

 self.recipient_address.setPlaceholderText("friend@email.com")

 subject_label = QLabel("Subject:")

 self.subject_line = QLineEdit()

 # Layout for the sender, recipient and subject widgets

 header_grid = QGridLayout()

 header_grid.addWidget(sender_label, 0, 0)

 header_grid.addWidget(self.sender_address, 0, 1)

Chapter 7 Introduction to Networking with PyQt

254

 header_grid.addWidget(recipient_label, 1, 0)

 header_grid.addWidget(self.recipient_address, 1, 1)

 header_grid.addWidget(subject_label, 2, 0)

 header_grid.addWidget(self.subject_line, 2, 1)

 �self.email_body = QTextEdit() # Input widget for creating email

contents

 send_button = QPushButton("Send")

 send_button.clicked.connect(self.inputPassword)

 bottom_h_box = QHBoxLayout()

 bottom_h_box.addWidget(QWidget(), 1)

 bottom_h_box.addWidget(send_button)

 # Nested layout for all widgets and layouts

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(window_label)

 main_v_box.addSpacing(10)

 main_v_box.addLayout(header_grid)

 main_v_box.addWidget(self.email_body)

 main_v_box.addLayout(bottom_h_box)

 container = QWidget()

 container.setLayout(main_v_box)

 self.setCentralWidget(container)

 self.status_bar = QStatusBar(self)

 self.setStatusBar(self.status_bar) # Create status bar

 def inputPassword(self):

 �"""Create an instance of the PasswordDialog class and input the

Gmail account password."""

 self.password_dialog = PasswordDialog(self)

 �if self.password_dialog.exec_() and self.password_dialog.enter_

password_line.text() != "":

 self.password_dialog.close()

 self.sendEmail()

 else:

 pass

Chapter 7 Introduction to Networking with PyQt

255

 def sendEmail(self):

 �"""Compose the email headers and contents. Use smtplib to login to

your Gmail account and send an email. Success or errors will be

displayed in the status bar accordingly."""

 # Define the headers and content of the email

 message = EmailMessage()

 message['Subject'] = self.subject_line.text()

 message['From'] = self.sender_address.text()

 message['To'] = self.recipient_address.text()

 # Convert the text in the QTextEdit to HTML

 message.add_alternative(self.email_body.toHtml(), subtype="html")

 with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:

 try:

 # Login to your Gmail username and password

 �smtp.login(self.sender_address.text(), self.password_

dialog.enter_password_line.text())

 smtp.send_message(message)

 # Display feedback in the status bar and clear input widgets

 self.status_bar.showMessage("Your email was sent!", 5000)

 self.subject_line.clear()

 self.recipient_address.clear()

 self.email_body.clear()

 except smtplib.SMTPResponseException as error:

 �error_message = "Email failed: {}, {}".format(error.smtp_

code, error.smtp_error)

 �self.status_bar.showMessage(error_message, 20000) # Display

error for 20 seconds

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = EmailGUI()

 sys.exit(app.exec_())

The GUI for sending emails can be seen in Figure 7-2.

Chapter 7 Introduction to Networking with PyQt

256

�Explanation
For this example, we do not need to import any classes from QtNetwork since we are

using smtplib to connect to the server and send the email. In order to create the headers

and structure for the email a user writes, the email module is imported. email can be

used to not only handle the contents of emails but also manage the types of data we

send through email, whether it’s plain or rich text, PDFs, images, or even videos. email.

message is the main class used to create the email.

The main window is created in the EmailGUI class. In setupWindow(), the line edit

and other widgets are instantiated and arranged in the GUI. The most notable aspect

is the QStatusBar object created at the bottom of the function. This is the reason why

EmailGUI inherits from QMainWindow. The main window is shown in Figure 7-3.

Once a user has filled in the sender and recipient email address fields and

other input areas, they can click the send_button. This emits a signal, calling

inputPassword(). The dialog box shown in 7-4 will appear requesting the user’s Gmail

password. The QDialog is subclassed so the user can accept the password, close the

dialog, and call the sendEmail() function at the same time.

Figure 7-3.  The email sender’s main window with placeholder text. While users
can only send emails using their Gmail accounts, recipients do not have this
restriction

Chapter 7 Introduction to Networking with PyQt

257

�Using the smtplib Module

We begin by setting up the email’s headers and body and collecting information from

the widgets in the main window. The process for creating the email’s subject, sender

('From'), and recipient ('To') is shown in the following code from Listing 7-2:

Define the headers and content of the email

message = EmailMessage()

message['Subject'] = self.subject_line.text()

message['From'] = self.sender_address.text()

message['To'] = self.recipient_address.text()

With the email headers prepared, next is the body. For this example, we always

format the text of email_body using toHtml(). You could change this part to only send

plain text or other data types. HTML is used in case the user wants to give the text some

color or style. The add_alternative() function can be used to combine one or more

kinds of data into a single body:

Convert the text in the QTextEdit to HTML

message.add_alternative(self.email_body.toHtml(), subtype="html")

The last thing to do is to connect to the SMTP server using a secure, encrypted

connection. This is done with SMTP_SSL(). Check out the following code from Listing 7-2:

with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:

 try:

 # Login to your Gmail username and password

 �smtp.login(self.sender_address.text(), self.password_dialog.enter_

password_line.text())

 smtp.send_message(message)

Figure 7-4.  Dialog to enter your Gmail password

Chapter 7 Introduction to Networking with PyQt

258

The domain name for the SMTP server is the name of the email provider’s domain.

For this example, it’s smtp.gmail.com. You could connect to other servers using different

domains. The port we need to use is 465 since we are using SSL. Otherwise, with a

regular connection, we could use 587.

With the encrypted connection set up, we can log in to our Gmail account using the

username from sender_address.text() and the password from password_dialog.

enter_password_line.text(). If the transmission was successful, a message will display

in the QStatusBar like in Figure 7-5.

A new email will appear in the recipient’s Gmail inbox like in Figure 7-6.

The contents of the email will display rich text. An example of this can be seen in

Figure 7-7.

Figure 7-6.  A new email in the Gmail inbox

Figure 7-5.  The status bar will either display text letting the user know the email
was successful or show errors if something went wrong

Chapter 7 Introduction to Networking with PyQt

259

�Summary
Communication, collaboration, and the ways in which we live are reliant on networks.

The Internet has changed the ways in which humans view themselves, creating

communities that are global and no longer dependent on the time of day or location.

Protocols help share information and maintain the security of these networks.

In this chapter, we saw how to construct a web browser that connected to a server

using QtNetwork classes and requested the HTML content of a web page. Email is still

an essential part of our lives. A GUI application was also constructed using PyQt widgets

and the smtplib module to create a working email application.

In Chapter 8, we will take a look at building a chatbot by leveraging artificial

intelligence and machine learning algorithms.

Figure 7-7.  The email’s contents. Can’t wait to go on vacation

Chapter 7 Introduction to Networking with PyQt

261
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8_8

CHAPTER 8

Creating a Chatbot
Some of the readers may remember earlier versions of the phone tree system. Still in use

today, picking up a phone and dialing a number for assistance usually meant listening

to a prerecorded message telling them about their options. Pressing the correct button

would lead them to the help they were seeking. However, it was often never that simple.

The phone tree system became overused. The monotone voices would list out your

options, and you could swear that the assistance you needed was always the last option.

Callers would often be led down a complicated and frustrating path of choosing one

option after another, becoming angrier as their problem wasn’t being solved. All you

really wanted was to speak to a human representative, and when you finally reached the

end of the maze of button pushing, the human was usually busy.

As time and technology improved, the systems changed. Callers could speak

keywords into the phone, and the voice recognition system would redirect their call.

Modern applications now allow users to speak into their phone, order a cup of coffee,

and receive a response telling them when it is ready. Enhancements in technology

have helped improve the system and, in some cases, migrated toward pop-up windows

in your web browser or live chats. Even today, this system is continuing to evolve and

improve, as robots are taking the place of human employees in certain positions.

Humans are often willing to speak to computers, but only if the conversations feel fluid

and similar to talking to a fellow human.

In this chapter, we will have a look at

•	 Designing a chatbot GUI with PyQt

•	 Using the ChatterBot library for generating the chatbot’s responses

using machine learning

In the following sections, you will find out about chatbots.

https://doi.org/10.1007/978-1-4842-6603-8_8#DOI

262

�What Is a Chatbot?
Recent decades have seen businesses move their platforms online, creating a digital

society that is fast-paced and difficult for a normal human to keep up with the increasing

demands of consumers. Fortunately, some of that work can be offloaded onto intelligent

automated computer programs.

Chatbots are computer applications designed to simulate human conversation,

giving the impression that you are communicating with a real person rather than a

robot. They play an important part in the way that businesses and customers interact

and communicate, improving the customer experience while reducing the workload

of employees and costs for businesses. Chatbots save employees’ time, freeing them to

perform more important and critical tasks. With chatbots, businesses are also able to

reach more customers while using less resources.

Businesses can use chatbots internally to manage communications among

employees regarding system updates, training exercises, or ordering business supplies.

For a consumer, chatbots can provide customer services and assistance when making

purchases online.

Like any computer program, they are great at performing rudimentary and routine

activities efficiently. Many chatbot systems are created so that questions which are

commonly and quickly answered can be handled by a chatbot, and complex requests are

forwarded to human employees. Chatbots are able to analyze a user’s request and return

an informative response based on the system’s rules.

There are different kinds of chatbots with differing degrees of complexity. Some

are only capable of handling basic queries, while others act as digital assistants that

learn from the user and deliver personalized responses based on the information

collected. Nowadays, chatbots are driven by varying degrees of artificial intelligence (AI)

algorithms and can be divided into two categories:

•	 Declarative chatbots that are rule based and generate automated

responses to a user’s inquiry based on a set of guidelines. Difficult

requests may cause the chatbot to refer the user to a human operator.

•	 Conversational chatbots that leverage the power of AI and machine

learning to deliver personalized, human-like, and predictive

responses based on the user’s question. These kinds of chatbots are

designed to learn from the conversations they have with a user.

Chapter 8 Creating a Chatbot

263

The performance and capabilities of chatbots continue to improve as researchers

dive deeper into the complexities of the human language.

�Brief Introduction to Natural Language Processing (NLP)
Natural Language Processing (NLP)1 is a field in computer science and AI that allows

computers to analyze and derive meaning from the human language, both spoken and

written. For the purposes of this chapter, we’ll be considering only textual language

sources.

Since computers can’t read text like a human can, NLP can be used to look for

patterns in books and other documents. Understanding language is a very complex

task. There are different ways to approach and simplify the process of learning

from text.

Sentences can be parsed and deconstructed into their fundamental parts using

speech and grammar rules. Algorithms that NLP uses may go about first removing words

that don’t offer much contextual value, words such as a, is, or are. An algorithm may then

split the remaining words into groups, counting how many times those words appear

in the text. Using these words or sequence of words, we can then find out how many

times they appear across multiple documents and gain insight about the content of the

different documents by the frequency of particular words.

We can also use rules and the information learned from training data to generate

new text. The two processes of parsing existing text and generating new text are key to

creating chatbots that use NLP.

Using large language datasets, we can train chatbots and other natural language

systems to create more intelligent computer applications. In NLP, these collections of

texts are referred to as a corpus. There are already many open source machine learning

libraries and datasets available to assist in creating a chatbot application, as we shall see

in the next section.

1�If you would like to find out more about NLP, the following text is a great resource to get you
started:

Lane, H. (2019). Natural Language Processing in Action: Understanding, analyzing, and gener-
ating text with Python. Manning Publications.

Chapter 8 Creating a Chatbot

264

�The ChatterBot Library
We are going to use the ChatterBot library to construct our chatbot’s logic. Using

ChatterBot, we are able to use machine learning algorithms that will generate automatic

responses from a user’s input. The library already has a collection of different corpora

in different languages, but you can also build your own conversation datasets to train

ChatterBot for your own purposes.

ChatterBot is designed to learn and improve its responses from a user’s input.

Responses are chosen by finding the closest matching statement that is similar to the

input and then selecting a reply from a set of known responses.

More information about training and using ChatterBot is found at https://

chatterbot.readthedocs.io/en/stable/index.html.

�Installing ChatterBot
For this project, you will need to install the ChatterBot library and possibly a few other

dependencies. To get started, open the Terminal application for Mac or Linux or the

Command Prompt for Windows and enter the following command:

$ pip3 install chatterbot

To check that ChatterBot is properly installed, open up the Python 3 environment

using the command python3 and enter

>>> import chatterbot

With ChatterBot installed, let’s also install the conversation data from the ChatterBot

Corpus:

$ pip3 install chatterbot-corpus

While installing the corpus, you may run into an error: Cannot uninstall 'PyYAML'.

To solve this problem, first, run the following command:

$ pip3 install chatterbot-corpus --ignore-installed

Then, rerun the command to install the ChatterBot Corpus.

Chapter 8 Creating a Chatbot

https://chatterbot.readthedocs.io/en/stable/index.html
https://chatterbot.readthedocs.io/en/stable/index.html

265

ChatterBot is also dependent on a few other packages, so there is a possibility that

you may receive errors if the following packages are also not installed. To install spaCy,

an open source library for NLP, enter the following command into the command line:

$ pip3 install spacy

For the final step, you may need to install the English spaCy model. To do so, run the

following command:

$ python3 -m spacy download en

The en model is a shortcut for downloading the statistical model en_core_web_sm.

With those steps out of the way, let’s see how to set up a simple ChatterBot.

�Creating a Simple ChatterBot
This section will introduce you to using the ChatterBot library. Follow along with the

code and comments in Listing 8-1 to create a very simple chatbot that follows along with

a very basic conversation.

Listing 8-1.  Basic code for setting ChatterBot

chatbot_example.py

Import necessary modules

from chatterbot import ChatBot # Import the chatbot

from chatterbot.trainers import ListTrainer # Method to train chatterbot

chatbot = ChatBot('Chatty') # Create the ChatBot called Chatty

Create the dialog

conversation = [

 "Hello",

 "Hi! How are you?",

 "I'm happy. How about you?",

 "Hungry.",

 "Let's have lunch!",

 "Let's go!"]

trainer = ListTrainer(chatbot) # Create trainer

trainer.train(conversation) # Train the chatbot

Chapter 8 Creating a Chatbot

266

while True:

 try:

 user_input = input('You: ')

 bot_response = chatbot.get_response(user_input)

 print('Bot: ' + str(bot_response))

 except(KeyboardInterrupt, EOFError, SystemExit):

 break

Of course, the conversation that the chatbot was trained on was very short. An

effective chatbot requires a massive amount of training data in order to quickly solve

user inquiries and respond to the user. In this chapter’s project, you will find out how to

load your own files or the ChatterBot Corpus and create a better chatbot.

�Project 8.1: Chatbot GUI
For many modern chatbot applications, the user interface has taken on the appearance

of chat and messaging applications. The interface for these programs often takes on

a very minimalistic style, displaying icons for the people in the conversation, speech

bubbles that appear whenever someone sends a message, and an area for inputting

text, images, or emojis. Other visual cues are often used, such as different colors for the

speech bubbles and a comic bookish tail appearing at the end of the bubble next to the

speaker’s icon.

Figure 8-1 showcases the chatbot application created in this project.

Chapter 8 Creating a Chatbot

267

�Chatbot GUI Solution
The chatbot application created in Listing 8-2 has a very simple graphical interface.

Users are unable to converse with the chatbot until they click the Start Chat button at

the top of the window. After clicking the button, the chatbot will begin training itself in a

separate thread. With the training complete, users can begin chatting. Drawing the text

and speech bubbles is handled using model/view programming classes.

Figure 8-1.  The chatbot GUI – having a friendly conversation with a chatbot

Chapter 8 Creating a Chatbot

268

Listing 8-2.  The code for the chatbot GUI

chatbotGUI.py

Import necessary modules

import sys

from chatterbot import ChatBot, utils

from chatterbot.trainers import ChatterBotCorpusTrainer

from chatterbot.comparisons import LevenshteinDistance

from PyQt5.QtWidgets import (QApplication, QWidget, QPushButton, QLineEdit,

QListView, QMessageBox, QVBoxLayout, QStyledItemDelegate)

from PyQt5.QtCore import (Qt, QAbstractListModel, QMargins, QSize, QRect,

QPoint, QThread, pyqtSignal)

from PyQt5.QtGui import QIcon, QColor, QImage, QPolygon

style_sheet = """

 QPushButton {

 background: #83E56C /* Green */

 }

 QListView {

 background: #FDF3DD

 }"""

class ChatWorkerThread(QThread):

 # Signal emitted when the chatbot is finished training

 training_finished = pyqtSignal()

 def __init__(self, chatbot):

 super().__init__()

 self.chatbot = chatbot

 def run(self):

 �"""This function handles training the chatbot. Once the training is

complete, the training_finished signal is emitted, which allows the

user to begin chatting."""

 self.trainer = ChatterBotCorpusTrainer(self.chatbot)

 self.trainer.train("chatterbot.corpus.english")

 self.training_finished.emit()

Chapter 8 Creating a Chatbot

269

class ChatLogModel(QAbstractListModel):

 def __init__(self):

 super().__init__()

 self.chat_messages = []

 def rowCount(self, index):

 �"""Necessary to include rowCount() when subclassing

QAbstractListModel. For this program, we only need to update the

the number of rows in the model,which is based on the length of

chat_messages."""

 return len(self.chat_messages)

 def data(self, index, role=Qt.DisplayRole):

 �"""Necessary to include data() when subclassing QAbstractListModel.

Retrieves items from the list and returns data specified by the

role, which in this case is displayed as text."""

 if role == Qt.DisplayRole:

 return self.chat_messages[index.row()]

 def appendMessage(self, user_input, user_or_chatbot):

 �"""First, append new messages to chat_messages. Doing so will

update the number of rows and indexes in the model (rowCount()),

which will then update the data()."""

 self.chat_messages.append([user_input, user_or_chatbot])

 �# Emit signal to indicate that the layout of items in the model has

changed

 self.layoutChanged.emit()

class DrawSpeechBubbleDelegate(QStyledItemDelegate):

 def __init__(self):

 super().__init__()

 self.image_offset = 5 # Horizontal offset for the image

 # The following variables are used when drawing the speech bubbles

 self.side_offset, self.top_offset = 40, 5

 self.tail_offset_x, self.tail_offset_y = 30, 0

 self.text_side_offset, self.text_top_offset = 50, 15

Chapter 8 Creating a Chatbot

270

 def paint(self, painter, option, index):

 �"""Reimplement the delegate's paint() function. Renders

the delegate using the specified QPainter (painter) and

QStyleOptionViewItem (option) for the item being drawn at given

index (the row value). This function paints the item."""

 text, user_or_chatbot = index.model().data(index, Qt.DisplayRole)

 �image, image_rect = QImage(), QRect() # Initialize objects for the

user and chahbot icons

 �color, bubble_margins = QColor(), QMargins() # Initialize objects

for drawing speech bubbles

 �tail_points = QPolygon() # Initialize QPolygon object for drawing

the tail on the speech bubbles

 �# Use user_or_chatbot value to select the image to display, the

color of the pen and the brush. Set the margins for speech bubble.

Set the points for the speech bubble's tail.

 if user_or_chatbot == "chatbot":

 image.load("images/bot.png")

 �image_rect = QRect(QPoint(option.rect.left() + self.image_

offset, option.rect.center().y() - 12), QSize(24, 24))

 color = QColor("#83E56C")

 �bubble_margins = QMargins(self.side_offset, self.top_offset,

self.side_offset, self.top_offset)

 �tail_points = QPolygon([QPoint(option.rect.x() + self.tail_

offset_x, option.rect.center().y()),

 �QPoint(option.rect.x() + self.side_offset,

option.rect.center().y() - 5),

 �QPoint(option.rect.x() + self.side_offset,

option.rect.center().y() + 5)])

 elif user_or_chatbot == "user":

 image.load("images/user.png")

 �image_rect = QRect(QPoint(option.rect.right() - self.image_

offset - 24, option.rect.center().y() - 12), QSize(24, 24))

 color = QColor("#38E0F9")

 �bubble_margins = QMargins(self.side_offset, self.top_offset,

self.side_offset, self.top_offset)

Chapter 8 Creating a Chatbot

271

 �tail_points = QPolygon([QPoint(option.rect.right() - self.tail_

offset_x, option.rect.center().y()),

 �QPoint(option.rect.right() - self.side_offset,

option.rect.center().y() - 5),

 �QPoint(option.rect.right() - self.side_offset,

option.rect.center().y() + 5)])

 # Draw the image next to the speech bubble

 painter.drawImage(image_rect, image)

 �# Set the QPainter's pen and brush colors; draw the speech bubble

and tail

 painter.setPen(color)

 painter.setBrush(color)

 # Remove the margins from the rectangle to shrink its size

 �painter.drawRoundedRect(option.rect.marginsRemoved(bubble_margins),

5, 5)

 painter.drawPolygon(tail_points)

 # Draw the text in the speech bubble

 painter.setPen(QColor("#4A4C4B")) # Reset pen color for the text

 �text_margins = QMargins(self.text_side_offset, self.text_top_

offset, self.text_side_offset, self.text_top_offset)

 �painter.drawText(option.rect.marginsRemoved(text_margins),

Qt.AlignVCenter | Qt.TextWordWrap, text)

 def sizeHint(self, option, index):

 �"""Reimplement to figure out the size of the item displayed at the

given index. Uses option to figure out the style information, in

this case, the margins of the speech bubble."""

 text, user_or_chatbot = index.model().data(index, Qt.DisplayRole)

 �font_size = QApplication.fontMetrics() # Calculate the size of the

text

 �text_margins = QMargins(self.text_side_offset, self.text_top_

offset, self.text_side_offset, self.text_top_offset)

Chapter 8 Creating a Chatbot

272

 �# Remove the margins, get the rectangle for the font, and add the

margins back in

 rect = option.rect.marginsRemoved(text_margins)

 rect = font_size.boundingRect(rect, Qt.TextWordWrap, text)

 rect = rect.marginsAdded(text_margins)

 return rect.size()

class Chatbot(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and its contents."""

 self.setMinimumSize(450, 600)

 self.setWindowTitle("8.1 - PyQt Chatbot")

 self.setWindowFlag(Qt.Window)

 self.chat_started = False

 self.setupWindow()

 self.show()

 def setupWindow(self):

 �"""Set up the widgets and model/view instances for the main

window."""

 self.chat_button = QPushButton(QIcon("images/chat.png"), "Start Chat")

 self.chat_button.setLayoutDirection(Qt.RightToLeft)

 self.chat_button.pressed.connect(self.chatButtonPressed)

 �# Create the model for keeping track of new messages (data), the

list view for displaying the chat log, and the delegate for drawing

the items in the list view

 self.model = ChatLogModel()

 self.chat_log_view = QListView()

 self.chat_log_view.setModel(self.model)

Chapter 8 Creating a Chatbot

273

 message_delegate = DrawSpeechBubbleDelegate()

 self.chat_log_view.setItemDelegate(message_delegate)

 # Create the QLineEdit widget for entering text

 self.user_input_line = QLineEdit()

 self.user_input_line.setMinimumHeight(24)

 �self.user_input_line.setPlaceholderText("Press 'Start Chat' to

begin chatting...")

 self.user_input_line.returnPressed.connect(self.enterUserMessage)

 main_v_box = QVBoxLayout()

 main_v_box.setContentsMargins(0, 2, 0, 10)

 main_v_box.addWidget(self.chat_button, Qt.AlignRight)

 main_v_box.setSpacing(10)

 main_v_box.addWidget(self.chat_log_view)

 main_v_box.addWidget(self.user_input_line)

 self.setLayout(main_v_box)

 def chatButtonPressed(self):

 �"""When the user begins chatting, the appearance and state of the

chat_button are set, and the chatbot is created. The user can also

end the chat."""

 button = self.sender()

 if button.text() == "Start Chat":

 self.chat_button.setText("End Chat")

 self.chat_button.setIcon(QIcon("images/end.png"))

 self.chat_button.setStyleSheet("background: #EC7161") # Red

 self.chat_button.setDisabled(True)

 self.createChatbot()

 elif button.text() == "End Chat":

 self.endCurrentChat()

 def enterUserMessage(self):

 �"""Get the text from the line edit widget and append the message to

the model. Then display the chatbot's response."""

 user_input = self.user_input_line.text()

Chapter 8 Creating a Chatbot

274

 if user_input != "" and self.chat_started == True:

 self.model.appendMessage(user_input, "user")

 self.displayChatbotResponse(user_input)

 self.user_input_line.clear() # Clear the QLineEdit's text

 def displayChatbotResponse(self, user_input):

 �"""Get the response from the chatbot, convert the reply to a string

and append the text to the model where it will be added to the

window."""

 chatbot_reply = self.chatbot.get_response(user_input)

 self.model.appendMessage(str(chatbot_reply), "chatbot")

 # Uncomment to get the time it takes for the chatbot to respond

 #print(utils.get_response_time(self.chatbot))

 def createChatbot(self):

 """Create the chatbot and train it in a separate thread."""

 �self.chatbot = ChatBot("Chatbot", storage_adapter="chatterbot.

storage.SQLStorageAdapter",

 database_uri='sqlite:///database.sqlite3',

 logic_adapters=[{"import_path": "chatterbot.logic.BestMatch",

 "statement_comparison_function": LevenshteinDistance}])

 �self.chat_worker = ChatWorkerThread(self.chatbot) # Create worker

thread

 self.chat_worker.training_finished.connect(self.trainingFinished)

 # Feedback for the user. Begin the thread for training the chatbot

 �self.model.appendMessage("[INFO] Chatbot is learning. Please wait a

moment.", "chatbot")

 self.chat_worker.start()

 def trainingFinished(self):

 �"""Once the chatbot has been trained, display messages to the user

and start chatting."""

 �self.model.appendMessage("[INFO] Chatbot is ready to begin chatting

with you.", "chatbot")

Chapter 8 Creating a Chatbot

275

 �self.model.appendMessage("Welcome to Chatbot. This chatbot gets

smarter the more you talk with it. Type anything to get started.",

"chatbot")

 �self.user_input_line.setPlaceholderText("Type your message and

press 'Enter'")

 self.chat_started = True

 self.chat_button.setDisabled(False) # Enable the chat_button

 def endCurrentChat(self):

 �"""Display a QMessageBox to the user asking if they want to quit

the current chat."""

 choice = QMessageBox.question(self, "End Chat",

 �"The chat history will be deleted. Are you sure you want to end

the chat?",

 QMessageBox.Yes | QMessageBox.No, QMessageBox.No)

 if choice == QMessageBox.Yes:

 �# Clearing the list will set the number of rows to 0 and clear

the chat area

 self.model.chat_messages = []

 �self.user_input_line.setPlaceholderText("Press 'Start Chat' to

begin chatting...")

 self.chat_button.setText("Start Chat")

 self.chat_button.setIcon(QIcon("images/chat.png"))

 self.chat_button.setStyleSheet("background: #83E56C") # Green

 self.chat_started = False

 else:

 �self.model.appendMessage("I thought you were going to leave me.",

"chatbot")

 def closeEvent(self, event):

 �"""Display a dialog box to confirm that the user wants to close the

application while in a chat."""

 if self.chat_started:

 �choice = QMessageBox.question(self, 'Leave Chat?', "Are you

sure you want to leave the chat?",

 QMessageBox.Yes | QMessageBox.No, QMessageBox.No)

Chapter 8 Creating a Chatbot

276

 if choice == QMessageBox.Yes:

 event.accept()

 else:

 event.ignore()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = Chatbot()

 sys.exit(app.exec_())

The chatbot desktop application is displayed in Figure 8-1.

�Explanation
In order to create the chatbot, we’ll first need to import a few classes from the

chatterbot library. For this example, we are going to import ChatterBotCorpusTrainer,

which will let us use the ChatterBot Corpus to train the chatbot. LevenshteinDistance is

used to help the chatbot select the best response when comparing two statements. The

utils module is included in case you want to check the amount of time that it takes for

the chatbot to respond.

The interface for this application is a relatively basic one, with the main part of

the window taken up by the QListView widget. Many of the PyQt classes included

are used to handle new messages and drawing speech bubbles in the application’s

window. QListView displays a list of items populated from a model, in this case

QAbstractListModel. The item delegate, QStyledItemDelegate, provides the tools for

drawing and editing items in the view.

A number of classes are imported from the QtCore and QtGui modules for drawing

the speech bubbles in the list view. QIcon is used to display an icon on the QPushButton

for starting or ending a chat session.

The training process for the chatbot occurs in a separate QThread, and the user is

notified when training is finished using a custom pyqtSignal.

The style_sheet is also quite simple, only being used to set the color of QPushButton

and the QListView.

Chapter 8 Creating a Chatbot

277

Figure 8-2.  The chatbot application when it is first launched

�Creating the GUI

The application’s main window shown in Figure 8-2 is created in the Chatbot class.

Comprised of three widgets, chat_button, chat_log_view, and user_input_line, the

application is designed to mimic the appearance of modern chat applications. The model

and message_delegate instances are all also created in the setupWindow() function.

These will be discussed further in a later section.

The chat_button object at the top of the window can be used to start or end a chat

session. When the user is not chatting, the button is green and displays the Start Chat

text and the chat.png icon; otherwise, the button is red and shows End Chat and the

end.png icon. The icons and text are arranged in Listing 8-2 from right to left using

self.chat_button.setLayoutDirection(Qt.RightToLeft)

Chapter 8 Creating a Chatbot

278

Users can enter text into the QLineEdit widget at the bottom of the window and

talk with the chatbot. This functionality is disabled until the user begins a chat session.

QLineEdit is used rather than QTextEdit because line edits already have the built-in

signal returnPressed().

When the user clicks the chat_button, it emits a signal that calls

chatButtonPressed(). This function can either be used to start or end a chat. We check

if the button’s text is Start Chat. If it is, the appearance of the chat_button changes and

becomes disabled. This is to prevent users from creating multiple Chatbot instances

and training threads. The next step is to call createChatbot() and begin the process of

training the chatbot.

�Creating the Chatbot

In createChatbot(), we create the chatbot object and specify its training parameters in

the following code from Listing 8-2. Quite a few arguments can be passed to a ChatBot

instance:

self.chatbot = ChatBot("Chatbot", storage_adapter="chatterbot.storage.

SQLStorageAdapter",

database_uri='sqlite:///database.sqlite3',

logic_adapters=[{"import_path": "chatterbot.logic.BestMatch",

"statement_comparison_function": LevenshteinDistance}])

The storage_adapter parameter is used to select or create a database, specified by

database_uri, for storing the conversation data. logic_adapters are used to decide

how the chatbot selects a reply; BestMatch will select a response based on a selection of

known responses. Finally, we use the LevenshteinDistance for comparing and selecting

replies.

Next, we instantiate ChatWorkerThread and pass the chatbot as an argument to the

class’s constructor. Begin running the thread with the following line from Listing 8-2:

self.chat_worker.start()

Training is performed in a separate thread to prevent the application from freezing.

This is especially useful if the dataset you are using is quite large. The chatbot created in

Listing 8-2 is initially set up to train using all of the files in the English corpus. You can

Chapter 8 Creating a Chatbot

279

Figure 8-3.  Output to the terminal window giving feedback to the user about the
training process

track the training process by looking at the output in the terminal shown in Figure 8-3.

When the training is finished, the training_finished() signal is emitted from the

secondary thread in Listing 8-2:

self.trainer.train("chatterbot.corpus.english")

self.training_finished.emit()

The trainingFinished() function notifies the user that they can begin chatting by

displaying messages in the chat_log_view, enables the chat_button, and sets the chat_

started variable to True. The user can finally begin chatting with the chatbot.

�Drawing the Messages

With a chat started, the user can now enter text into the user_input_line and press

Return on their keyboard to display their message in the chat_log_view. Pressing Return

calls enterUserMessage(), where the user_input’s text is added to the model using

appendMessage(). You may have already noticed that this is the same function used

Chapter 8 Creating a Chatbot

280

to display information in the list view while the chatbot is training. The function takes

as arguments a message, in this case user_input, and a string for who is sending the

message, either "user" or "chatbot".

Let’s pause for a moment and understand how the model, view, and delegate are

working together to draw the speech bubbles with text in the interface. A new message

is created by calling the model’s appendMessage() function. We want to create a

customized list view for displaying our conversation.

QListView visually presents data in a one-dimensional list. This makes it the ideal

widget for displaying messages in a list-like format. View classes require a model to

provide data and inform the view about the information. The role parameter specifies

the kind of information the data() function should return. It is necessary to check that

the role type is Qt.DisplayRole before returning the data to the view. The model is

used to update data whenever is needed (in our case, when a new message is sent or

the current chat ends). The view is then notified of these changes and displays them

accordingly.

By customizing the model, we can control how data is presented. Abstract models

can only be subclassed. Therefore, we create chatLogModel which inherits from

QAbstractListModel. The list chat_messages will keep track of all messages in the

current conversation.

To create our simple model, we must reimplement two functions: rowCount() for

returning the list of items (our messages) and data() to retrieve the items from the list

and pass them onto the delegate for drawing. So when the user writes and sends a new

message, it is added to chat_messages, the number of rows increases by one, and data()

returns the new messages to be updated in the view.

DrawSpeechBubbleDelegate subclasses QStyledItemDelegate and is used to draw

new messages in the list view. To do so, we must reimplement the class’s paint()

function. The sizeHint() function is also included so that items drawn in the list view

can adjust for the size of the bubble and the size of the text.

The QPainter class is very useful for drawing on widgets. In paint(), first check if

the user or the chatbot is sending a message by checking the data() sent from the model

for that row. The correct image, color, margin sizes, and coordinates for drawing the

speech bubble’s rectangle and tail are chosen based on the value of user_or_chatbot.

The QPainter object, painter, is created and the speech bubbles and text are drawn

according to their sizeHint(), specified margins, and other values.

Chapter 8 Creating a Chatbot

281

Figure 8-4.  Dialog boxes. Checks if the user wants to end the current chat when
they click the End Chat button (top). Asks if the user wants to close the application
while in a chat (bottom)

With that lengthy process for drawing a single speech bubble complete,

we return back to the function enterUserMessage(). The next step is to call

displayChatbotResponse(), get the chatbot’s reply, and go back through the process

again for drawing the chatbot’s message in the view.

Note  While chatting with the chatbot, you may begin to notice that the chatbot’s
response time is taking longer. This is because of how large your dataset is and
also due to how ChatterBot processes selecting a response. It is not an issue with
PyQt5.

While chatting, the user can end the chat either by clicking the End Chat button and

clearing the current chat history or by closing the application. Both of these situations

will cause a dialog box to appear for confirming the user’s decision. These are shown in

Figure 8-4.

Chapter 8 Creating a Chatbot

282

�Summary
Chatbots probably won’t be going anywhere in the future. Rather, they will continue to

adapt to new technologies, allowing people to move away from performing mundane

tasks and instead move more toward creativity and innovation. Advances in machine

learning and NLP will also continue to make chatbots faster and better at engaging and

assisting human users.

Current chatbots still lack the ability to handle complex human conversations,

but advances in AI and better data sources are helping to integrate chatbots into our

everyday lives. In the meantime, chatbots still continue to work in conjunction with

human agents to tackle more difficult situations.

In this chapter, we saw how to create a chatbot desktop application. The ChatterBot

library was used to build the chatbot’s logic. By itself, this application is nothing more

than a program that can keep you company if you feel lonely. However, this program

could be integrated into a larger application that opens a separate window or a drop-

down menu to assist the user when they need help. Information could be relayed back to

the main window using signals and slots. Chatbots can also be used to connect to remote

servers and query databases or provide customer service.

In the final chapter, we will take a look at PyQt’s multimedia classes and see how to

create executable files for deploying applications.

Chapter 8 Creating a Chatbot

283
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8_9

CHAPTER 9

Deploying PyQt
Applications
You’ve done it! You finally have your application finished, and you are ready to share

it with the world. The good news is that there are plenty of options for packaging your

Python code and getting your application ready for distribution. You will, however, need

to find the packaging software that best fits your needs.

Before choosing one, you will need to consider a number of factors, including whom

your target audience will be, what Python libraries or other third-party modules your

application requires, and how do you want to share your code with others, be it through

a downloadable standalone application, creating an open source project, or perhaps

sharing your code through a software repository such as PyPI.

In this final chapter, we will walk through a simple PyQt GUI created specifically to

see how to code and build a standalone application. You will take a look at

•	 Building a dynamic desktop application for recording audio using

PyQt’s QtMultimedia classes

•	 Creating resource files using PyQt5’s resource system

•	 Adding interactive application icons in the system tray

•	 Generating an executable application file using the PyInstaller

module

Let’s get started by looking at this chapter’s project – an audio recorder.

https://doi.org/10.1007/978-1-4842-6603-8_9#DOI

284

�Project 9.1: Audio Recorder GUI
We saw back in Chapter 5 how we can import visual data in PyQt GUIs using computer

vision libraries. PyQt has its very own modules that support working with multimedia,

including videos, audio, or cameras. The QtMultimedia module builds upon the

multimedia utilities of the user’s computer platform. This means that support for certain

PyQt media classes or functionality may be platform specific.

For this project, we will create a GUI application for recording voices, conversations,

and other sounds using the audio classes in QtMultimedia. The interface can be seen in

Figure 9-1.

Figure 9-1.  The GUI for the audio recorder application. The left image displays
the GUI’s first “screen” to begin recording; in the second “screen,” different widgets
appear allowing the user to stop recording and return back to the first “screen”

Chapter 9 Deploying PyQt Applications

285

�Audio Recorder GUI Solution
The project in Listing 9-1 is not a very elaborate interface. It makes use of a few basic

widgets and the QtMultimedia module’s classes for working with audio data. When the

application begins, the user can select the location where they want their audio files

to be stored. After clicking the green start button, the user is shown a set of different

widgets giving them feedback about the current recording’s time. By clicking the stop

button at the bottom of the window, the user can return to the first “screen” and begin

recording again. If the user does not specify a new file location, then the previous file will

be overwritten.

Listing 9-1.  Code for the audio recorder application

audio_recorder.py

Import necessary modules

import sys, os

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QPushButton,

QMessageBox, QMenu, QFileDialog, QVBoxLayout, QSystemTrayIcon)

from PyQt5.QtMultimedia import QAudioRecorder, QAudioEncoderSettings,

QMultimedia

from PyQt5.QtCore import Qt, QUrl

from PyQt5.QtGui import QIcon, QFont

from AudioRecorderStyleSheet import style_sheet

import resources

class AudioRecorder(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Initialize the window and display its contents to the screen."""

 self.setFixedSize(360, 540)

 self.setWindowTitle('9.1 - Audio Recorder')

 self.audio_path = "" # Empty variable for path to audio file

Chapter 9 Deploying PyQt Applications

286

 self.setupWindow()

 self.setupSystemTrayIcon()

 self.show()

 def setupWindow(self):

 �"""Set up widgets in the main window and the QAudioRecorder

instance."""

 # Set up two push buttons (the app's first "screen")

 self.select_path_button = QPushButton("Select Audio Path")

 self.select_path_button.setObjectName("SelectFile")

 self.select_path_button.setFixedWidth(140)

 self.select_path_button.clicked.connect(self.selectAudioPath)

 self.start_button = QPushButton()

 self.start_button.setObjectName("StartButton")

 self.start_button.setEnabled(False)

 self.start_button.setFixedSize(105, 105)

 self.start_button.clicked.connect(self.startRecording)

 # Set up the labels and stop button (the app's second "screen")

 self.recording_label = QLabel("Recording...")

 self.recording_label.setFont(QFont("Helvetica [Cronyx]", 32))

 self.recording_label.setVisible(False)

 self.recording_label.setAlignment(Qt.AlignHCenter)

 self.time_label = QLabel("00:00")

 self.time_label.setFont(QFont("Helvetica [Cronyx]", 18))

 self.time_label.setObjectName("Time")

 self.time_label.setVisible(False)

 self.time_label.setAlignment(Qt.AlignHCenter)

 self.stop_button = QPushButton()

 self.stop_button.setObjectName("StopButton")

 self.stop_button.setFixedSize(65, 65)

 self.stop_button.setVisible(False)

 self.stop_button.clicked.connect(self.stopRecording)

Chapter 9 Deploying PyQt Applications

287

 # Set up the main layout

 self.main_v_box = QVBoxLayout()

 self.main_v_box.setAlignment(Qt.AlignHCenter)

 self.main_v_box.addWidget(self.select_path_button)

 # Force select_path_button to be centered in the window

 self.main_v_box.setAlignment(self.select_path_button, Qt.AlignCenter)

 self.main_v_box.addStretch(3)

 self.main_v_box.addWidget(self.start_button)

 self.main_v_box.setAlignment(self.start_button, Qt.AlignCenter)

 self.main_v_box.addWidget(self.recording_label)

 self.main_v_box.addWidget(self.time_label)

 self.main_v_box.addStretch(3)

 self.main_v_box.addWidget(self.stop_button)

 self.main_v_box.setAlignment(self.stop_button, Qt.AlignCenter)

 self.main_v_box.addStretch(1)

 self.setLayout(self.main_v_box) # Set the beginning layout

 # Specify audio encoder settings

 audio_settings = QAudioEncoderSettings()

 �# Depending upon your platform or the codecs that you have

available, you will need to change the codec. For Linux users if

you are having issues use "audio/x-vorbis", and then select the

.ogg extension when saving the file

 audio_settings.setCodec("audio/wav")

 audio_settings.setQuality(QMultimedia.HighQuality)

 # Create instance of QAudioRecorder for recording audio

 self.audio_recorder = QAudioRecorder()

 # Uncomment to discover possible codecs supported on your platform

 #print(self.audio_recorder.supportedAudioCodecs())

 self.audio_recorder.setEncodingSettings(audio_settings)

 self.audio_recorder.durationChanged.connect(self.displayTime)

Chapter 9 Deploying PyQt Applications

288

 def setupSystemTrayIcon(self):

 �"""Set up system tray icon and context menu. User can re-open the

window if it was closed or quit the application using the tray

menu."""

 �self.tray_icon = QSystemTrayIcon(QIcon(":/resources/images/

mic_icon.png"))

 # Create the actions and context menu for the tray icon

 tray_menu = QMenu()

 open_act = tray_menu.addAction("Open")

 open_act.triggered.connect(self.show)

 tray_menu.addSeparator()

 quit_act = tray_menu.addAction("Quit")

 quit_act.triggered.connect(QApplication.quit)

 self.tray_icon.setContextMenu(tray_menu)

 self.tray_icon.show()

 def selectAudioPath(self):

 �"""Open file dialog and choose the directory for saving the audio

file."""

 path, _ = QFileDialog.getSaveFileName(self, "Save Audio File",

 os.getenv("HOME"), "WAV (*.wav)")

 if path:

 self.audio_path = path

 self.start_button.setEnabled(True)

 else:

 QMessageBox.information(self, "Error",

 "No directory selected.", QMessageBox.Ok)

 def startRecording(self):

 """Set up the audio output file location, reset widget states.

 Also starts the timer and begins recording. """

 �self.audio_recorder.setOutputLocation(QUrl.fromLocalFile(self.

audio_path))

Chapter 9 Deploying PyQt Applications

289

 # Set widget states

 self.select_path_button.setVisible(False)

 self.start_button.setVisible(False)

 self.recording_label.setVisible(True)

 self.time_label.setVisible(True)

 self.time_label.setText(“00:00") # Update the label

 self.stop_button.setVisible(True)

 # Start the timer and begin recording

 self.audio_recorder.record()

 def stopRecording(self):

 """Stop recording, stop the timer, and reset widget states."""

 self.audio_recorder.stop()

 # Reset widget states

 self.select_path_button.setVisible(True)

 self.start_button.setVisible(True)

 self.recording_label.setVisible(False)

 self.time_label.setVisible(False)

 self.stop_button.setVisible(False)

 def displayTime(self, duration):

 """Calculate the time displayed in the time_label widget."""

 minutes, seconds = self.convertTotalTime(duration)

 time_recorded = "{:02d}:{:02d}".format(minutes, seconds)

 self.time_label.setText(time_recorded)

 def convertTotalTime(self, time_in_milli):

 """Convert time from milliseconds."""

 minutes = (time_in_milli / (1000 * 60)) % 60

 seconds = (time_in_milli / 1000) % 60

 return int(minutes), int(seconds)

 def closeEvent(self, event):

 �"""Display a message in the system tray when the main window has

been closed."""

 �self.tray_icon.showMessage("Notification", "Audio Recorder is still

running.", 8000)

Chapter 9 Deploying PyQt Applications

290

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setWindowIcon(QIcon(":/resources/images/mic_icon.png"))

 app.setQuitOnLastWindowClosed(False) # Closing the window does not

close the application

 app.setStyleSheet(style_sheet)

 window = AudioRecorder()

 sys.exit(app.exec_())

The completed application can be seen in Figure 9-1.

�Explanation
For this project, we need to import a number of different resources – a few standard

Python modules, some classes from PyQt, and a couple of additional scripts that we

create ourselves. A few notable PyQt classes are QMenu which will be used to create a

context menu, QSystemTrayIcon to supply an icon for an application in the computer’s

system tray, and classes from the QtMultimedia module:

•	 QAudioRecorder – Class for recording audio

•	 QAudioEncoderSettings – Provides functions for processing digital

audio and audio encoding

•	 QMultimedia – Class providing miscellaneous identifiers when

working with the QtMultimedia module

AudioRecorderStyleSheet contains the application’s style sheet settings. We also

need to import the resources script to include images and other resources associated

with our application. Both of these imports will be covered in later sections.

The program’s main class, AudioRecorder, inherits from QWidget. This is where we

set up the widgets, the QAudioRecorder instance, and functions for the application’s

main window. This application has two “screens” which can be seen in Figure 9-1. When

the application first begins, the user can see two buttons, one for selecting a path to save

the audio file and another for starting the recording process (which is disabled at first

using start_button.setEnabled(False)).

Chapter 9 Deploying PyQt Applications

291

The user selects a directory using the select_path_button. When clicked, it emits a

signal that is connected to selectAudioPath(). Once a path is chosen, the start_button

is enabled. The user can then begin recording by clicking the start_button and calling

the startRecording() slot.

When this happens, a few actions occur: the audio_recorder object calls

setOutputLocation() to set the destination of the audio file; the widgets from the first

“screen” are disabled, and the widgets for the second “screen” are enabled; audio_

recorder calls record() and begins recording.

While recording, the user can see the widgets for the second “screen” – recording_

label, time_label, and stop_button. Rather than using QTimer to keep track of the

time that has passed, the QAudioRecorder class provides a signal, durationChanged(),

that we can use to update the time_label’s text while recording in the displayTime()

slot. If the user clicks the stop_button, a signal is sent to stopRecording(). Here we use

audio_recorder.stop() to stop recording and switch back to the first “screen.”

All of these widgets are arranged in the same layout, main_v_box, in the GUI’s

window.

�Using the QAudioRecorder Class

To create a very simple audio recorder using the QAudioRecorder class, let’s first create

an instance of QAudioEncoderSettings. An audio encoder is needed to convert the

analog sounds a user produces to a digital audio format. In the following code from

Listing 9-1, you can see how setCodec() is used to specify the audio codec format, in this

case wav. The setQuality() function is used to set the audio encoding quality:

Specify audio encoder settings

audio_settings = QAudioEncoderSettings()

audio_settings.setCodec("audio/wav")

audio_settings.setQuality(QMultimedia.HighQuality)

Next, pass the audio encoder settings to the QAudioRecorder instance using the

setEncoderSettings() function, and set the path for the output audio file:

audio_recorder = QAudioRecorder()

audio_recorder.setEncodingSettings(audio_settings)

audio_recorder.setOutputLocation(QUrl(path_to_file))

Chapter 9 Deploying PyQt Applications

292

To begin recording, call

audio_recorder.record()

To end recording, call

audio_recorder.stop()

The QAudioRecorder object is set up similarly in Listing 9-1.

�Creating Application Icons

A very common feature of many desktop applications is to include an icon in your

computer’s task bar. Sometimes referred to as the system tray or the menu bar depending

upon what platform you are using, they are the bars located at the top or bottom on your

computer’s desktop. Information such as Internet connection, date, time, and volume are

usually displayed in the system tray. Application icons can also be placed in the system tray

for conveniently accessing the application or using menus to perform additional functions.

Note T he QSystemTrayIcon class has support for Windows and Mac, and
the icon may not appear if you are using Linux. To check if your system has an
available system tray, create a QSystemTrayIcon instance, in this case called
tray_icon, and then run print(tray_icon.isSystemTrayAvailable()).

To create a system tray icon, first, create an instance of QSystemTrayIcon like in

Listing 9-1:

tray_icon = QSystemTrayIcon(QIcon("images/mic_icon.png"))

Then, create the menu instance, add actions, and pass the menu instance to

setContextMenu(). An example of this is shown in the following lines from Listing 9-1

to create the action for closing the program. Context menus act as pop-up menus for

conveniently displaying a list of commands for interacting with the application:

tray_menu = QMenu()

quit_act = tray_menu.addAction("Quit")

quit_act.triggered.connect(QApplication.quit)

self.tray_icon.setContextMenu(tray_menu)

self.tray_icon.show()

Chapter 9 Deploying PyQt Applications

293

Finally, use show() to make the icon visible in the system tray. The application’s icon

and context menu are shown in Figure 9-2.

The typical response of a program is to quit the application when closing the main

window. With PyQt, app.exec_() runs the application’s main loop. Closing the main

window will return a value of 0, indicating a successful closing of the application. This is

why a PyQt application is closed with the following code:

sys.exit(app.exec_())

The setQuitOnLastWindowClosed() function is called in Listing 9-1 to demonstrate

in this project how you can alter this behavior:

app.setQuitOnLastWindowClosed(False)

When the window is closed, a status notification message, shown in Figure 9-3, is

displayed to inform the user that the program is still running in the background. The

notification is created using the showMessage() function in closeEvent(). The user can

then reopen the window or quit the program using the context menu shown in Figure 9-2.

Figure 9-2.  The system tray icon on MacOS and its context menu

Figure 9-3.  An example of a status notification message on MacOS

Chapter 9 Deploying PyQt Applications

294

Another common feature is to display the application icon in the top-left corner of

the window or, for Mac, in the Dock area. Setting the application icon for Windows and

Linux users can typically be done during the initialization of the application’s class for

the main window with

self.setWindowIcon(QIcon(':/resources/images/mic_icon.png'))

To set the application icon seen in Figure 9-4 for Mac, use

app.setWindowIcon(QIcon(":/resources/images/mic_icon.png"))

Note  Windows typically uses ICO format bitmap files (.ico) for the icon images,
whereas MacOS uses Icon Resource files (.icns). Both formats are included in the
project’s resources/icons folder for your convenience.

More information about setting application icons can be found at https://doc.

qt.io/qt-5/appicon.html.

�Creating .qrc Resource Files

You probably noticed a colon and forward slash, :/, when loading the icon paths in the

previous section and in Listing 9-1 or Listing 9-3. Qt provides a resource management

system to store your application’s resources, such as images, icons, style sheets, and

other data resources, in a binary file. This file can then be included in your application’s

executable ensuring that the resources we need won’t be lost.

Let’s take a look at the files we need for the audio recorder. In the following, you can

see the Python scripts for the application and the style sheet. The images and icons

folders are located in resources. The AudioRecorder.spec file is a result of building the

application’s executable. Finally, you will notice two resource files: resources.py and

resources.qrc. Additional files include __init__.py and the README text file:

Figure 9-4.  The audio recorder GUI’s icon shown in the MacOS Dock

Chapter 9 Deploying PyQt Applications

https://doc.qt.io/qt-5/appicon.html
https://doc.qt.io/qt-5/appicon.html

295

AudioRecorder

├── __init__.py
├── audio_recorder.py
├── AudioRecorder.spec
├── AudioRecorderStyleSheet.py
├── README.txt
├── resources
│ └── icons
│ ├── mic_icon.icns
│ ├── mic_icon.ico
│ └── images
│ ├── mic_disabled.png
│ ├── mic_hover.png
│ ├── mic_icon.png
│ ├── mic_pressed.png
│ ├── mic.png
│ ├── stop_hover.png
│ ├── stop_pressed.png
│ └── stop.png
├── resources.py
└── resources.qrc

Qt uses resource collection files (.qrc) which are written using the Extensible

Markup Language (XML) format for wrapping information between tags. XML’s syntax is

similar to HTML. Listing 9-2 shows the .qrc file created for this project.

Listing 9-2.  Code for the resource collection file used in the audio recorder

application

resources.qrc

<!DOCTYPE RCC><RCC version="1.0">

<qresource>

 <file>resources/images/mic_disabled.png</file>

 <file>resources/images/mic_hover.png</file>

 <file>resources/images/mic_icon.png</file>

 <file>resources/images/mic_pressed.png</file>

 <file>resources/images/mic.png</file>

Chapter 9 Deploying PyQt Applications

296

 <file>resources/images/stop_hover.png</file>

 <file>resources/images/stop_pressed.png</file>

 <file>resources/images/stop.png</file>

 <file>resources/icons/mic_icon.ico</file>

 <file>resources/icons/mic_icon.icns</file>

</qresource>

</RCC>

The path to each of our resources we need relative to the .qrc file is placed between

the <file> and </file> tags. Since we are using PyQt, there is one additional step to

perform before we can use the .qrc file – we need to generate a Python module from the

.qrc file using the pyrcc5 utility. To create the module, navigate to the project’s directory

and enter the following code into the command line:

$ pyrcc5 resources.qrc -o resources.py

This outputs (-o) a resource file with the name resources.py. You can specify a

different name if necessary. The next step is to import the module in our application

using import resources.

Note T he resources.py is included for your convenience and can be
downloaded from the GitHub link in the “Introduction” or generated using pyrcc5.

With the module imported, you can now access files using the prefix :/. So the file

path resources/images/stop.png would become :/resources/images/stop.png.

There are a few other features for accessing resources using .qrc. For example, if you

have a long path name, you can use a file tag’s alias attribute to access a file. For

example, let’s use

<file alias="mic-img.png">resources/images/mic.png</file>

In the program, this image can be accessed as :/mic-img.png.

Once completed, run the program to make sure that there are no issues with

accessing the resources. Also, if at any point you update or modify the resources or

directories, be sure to update the .qrc file and rerun pyrcc5 to update the binary file.

More information about creating resource files can be found at https://doc.qt.io/

qt-5/resources.html.

Chapter 9 Deploying PyQt Applications

https://doc.qt.io/qt-5/resources.html
https://doc.qt.io/qt-5/resources.html

297

�Style Sheet for the Audio Recorder

The code for the Qt Style Sheet used in this application is in a separate Python script

shown in Listing 9-3. Style sheets can be applied to PyQt applications to create more

visually appealing and responsive GUIs. For the audio recorder GUI, the QPushButton

widgets will change their appearances if the user is hovering over or clicking the buttons.

For the start_button and stop_button objects, different images from the resource files

are selected depending upon their states.

Listing 9-3.  Code containing the style sheet settings for the audio recorder

application

AudioRecorderStyleSheet.py

Style sheet for the Audio Recorder GUI

style_sheet = """

 QWidget {

 background-color: #FFFFFF

 }

 QPushButton {

 background-color: #AFAFB0;

 border: 2px solid #949495;

 border-radius: 4px;

 padding: 5px

 }

 QPushButton:hover {

 background-color: #C2C2C4;

 }

 QPushButton:pressed {

 background-color: #909091;

 }

 /* Set up the appearance of the start button for normal, hovered

 and pressed states. */

 QPushButton#StartButton {

 background-color: #FFFFFF;

Chapter 9 Deploying PyQt Applications

298

 image: url(:/resources/images/mic.png);

 border: none

 }

 QPushButton#StartButton:hover {

 image: url(:/resources/images/mic_hover.png);

 }

 QPushButton#StartButton:pressed {

 image: url(:/resources/images/mic_pressed.png);

 }

 QPushButton#StartButton:disabled {

 image: url(:/resources/images/mic_disabled.png);

 }

 /* Set up the appearance of the stop button for normal, hovered

 and pressed states. */

 QPushButton#StopButton {

 background-color: #FFFFFF;

 image: url(:/resources/images/stop.png);

 border: none

 }

 QPushButton#StopButton:hover {

 image: url(:/resources/images/stop_hover.png);

 }

 QPushButton#StopButton:pressed {

 image: url(:/resources/images/stop_pressed.png);

 }

"""

In the next section, you will see how you can package your PyQt applications so they

can be easily shared with others.

Chapter 9 Deploying PyQt Applications

299

�Sharing Your PyQt Applications
Nowadays, there are so many options for packaging and distributing your Python

applications. Older methods for sharing software often involved packaging the code and

dependencies together into a single file for distribution. Software created this way could

be considered a finished product, where developers did not have to worry about the

technical capabilities of the user.

More modern options for deploying software include distributing open source

programs that other programmers can download and contribute to on platforms like

GitHub or uploading your completed applications to the PyPI repository for others to

install using the pip package management system. A notable downside to these methods

is that you may also need to download other Python libraries, potentially leading to

conflicts with other packages that you already have installed. More information about

the best practices for packaging Python projects can be found on the Python Packaging

Authority (PyPA) website at www.pypa.io.

For the purpose of creating desktop applications that users can simply open and

begin using right away, we will look at creating standalone executables with PyInstaller.

�Creating an Executable with PyInstaller
PyInstaller is an application that can be used to turn your Python scripts into self-

contained executables. This means that PyInstaller takes your Python scripts, the

Python interpreter, then searches for any necessary modules and libraries (even PyQt5

modules), and bundles them altogether, generating a single folder (or a single executable

file) that can then be shared.

While PyInstaller can be used on MacOS, Windows, Linux, and other platforms, it is

worth noting that the executable file that is created is specific to the system that it was

created on. To create an application for another OS, you will need to run PyInstaller with

Python on that OS.

There are also other options for packaging and distributing Python applications.

A few examples include PyOxidizer, Briefcase, and the fman build system (fbs).

Riverbank Computing Limited also has its own software for specifically deploying PyQt

applications – pyqtdeploy. If you are interested in using pyqtdeploy, have a look at

https://riverbankcomputing.com/software/pyqtdeploy/intro.

Further information about PyInstaller can be found at www.pyinstaller.org.

Chapter 9 Deploying PyQt Applications

http://www.pypa.io
https://riverbankcomputing.com/software/pyqtdeploy/intro
http://www.pyinstaller.org

300

�Installing PyInstaller

To install the most recent version of PyInstaller, open your computer’s shell and run

$ pip3 install pyinstaller

Next, enter the following command into the command line to verify that the

installation was successful:

$ pyinstaller --version

This will print your version of PyInstaller in the console, which, as of this writing, is

version 4.0. You are now ready to begin bundling your Python application.

Note A s of this writing, PyInstaller only works with Python versions 3.5–3.7. If
you are running the latest version of Python, v3.8, you may need to roll back to a
previous installation or choose one of the other packaging applications mentioned.

�Building the Executable

To begin creating the executable, first, navigate to the location of your application’s main

file for running the program. This file is generally called main.py. For this project, the

main file is audio_recorder.py:

$ cd path/to/AudioRecorder

Creating an executable with PyInstaller is almost effortless if you don’t need to

specify any options or resources. From the command line, enter

$ pyinstaller audio_recorder.py

Running this command will create a .spec file with the same name as the

specified Python file and two new folders – build and dist. The .spec file contains the

configuration settings and instructions used by PyInstaller for building your application;

build contains log files and working files needed for preparing and analyzing the

bundle; dist contains the folder, or optionally a single file, with the executable that can

be zipped up and distributed to others.

Chapter 9 Deploying PyQt Applications

301

We could stop here, but there are a few other options we have for specifying the

parameters of the executable that PyInstaller outputs. A few commonly used flags are

listed in the following:

•	 --windowed, --noconsole – Creates a windowed application and

prevents the shell window from opening up alongside the application

(best for GUIs).

•	 --onefile – Bundles the application into a single file that can be

distributed to others, meaning that users do not have to install any

other packages or even Python to run the application.

•	 --onedir – Bundles the application into a single folder (default).

•	 --icon – Sets the application icon for the executable. On Windows

use .ico, on Linux use .png, and on Mac use .icns image files.

•	 --add-data – Specifies additional non-binary files or folders that contain

resources, such as images, that the application needs. The option can be

used multiple times and will need to be stated for each resource.

•	 --name – Creates a name for the .spec file and the executable.

Let’s see how we can use them. In the following command, we specify that we do not

want the shell window to appear when running the application, set the path to the icon,

create a name for the program, and specify the main script:

$ pyinstaller --windowed --icon=resources/icons/mic_icon.icns --name

AudioRecorder audio_recorder.py

The newly created .spec file as well as the build and dist folders that are created

are shown in Figure 9-5. You can also see the contents of the dist folder and the

application with its icon.

If you run the executable in the dist folder, you will notice that our images appear

without any problems. This is the reason for using Qt’s resource system and the

resources.qrc file. Otherwise, you would need to specify each resource using the --add-

data flag or find some other means for importing your data files.

Note T he AudioRecorder.spec found on GitHub and in Listing 9-4 reflects
this build.

Chapter 9 Deploying PyQt Applications

302

One final note, if you wish to create a single executable file in the dist folder, then be

sure to include the --onefile flag:

$ pyinstaller --windowed --onefile --icon=resources/icons/mic_icon.icns

 --name AudioRecorder audio_recorder.py

�Creating an Executable Using the .spec File

When you run PyInstaller, a .spec file will automatically be generated based on the

options you specified. This file can also be created before running PyInstaller using pyi-

makespec (included with PyInstaller) and then used to create your executable.

Check out the comments in Listing 9-4 to see which settings were modified when

running PyInstaller.

Listing 9-4.  The specifications file for the audio recorder application

AudioRecorder.spec

-*- mode: python -*-

block_cipher = None

Figure 9-5.  The audio recorder project with its own application icon created with
PyInstaller and the default --onedir flag

Chapter 9 Deploying PyQt Applications

303

a = Analysis(['audio_recorder.py'],

 # Be sure to set the path name

 pathex=['/path/to/AudioRecorder'],

 binaries=[],

 # Use datas to specify resources not in .qrc

 datas=[],

 hiddenimports=[],

 hookspath=[],

 runtime_hooks=[],

 excludes=[],

 win_no_prefer_redirects=False,

 win_private_assemblies=False,

 cipher=block_cipher,

 noarchive=False)

pyz = PYZ(a.pure, a.zipped_data,

 cipher=block_cipher)

exe = EXE(pyz,

 a.scripts,

 [],

 exclude_binaries=True,

 # Set the name of the executable

 name='AudioRecorder',

 debug=False,

 bootloader_ignore_signals=False,

 strip=False,

 upx=True,

 # Hide the console by setting its value to False

 # Set the icon for the executable

 console=False , icon='resources/icons/mic_icon.icns')

coll = COLLECT(exe,

 a.binaries,

 a.zipfiles,

 a.datas,

 strip=False,

 upx=True,

 name='AudioRecorder')

Chapter 9 Deploying PyQt Applications

304

app = BUNDLE(coll,

 # Set the name of the app

 name='AudioRecorder.app',

 # Set the icon for the app

 icon='resources/icons/mic_icon.icns',

 bundle_identifier=None)

You can recreate the executable using only the files and resources found in the

AudioRecorder directory found on GitHub, by opening the .spec file, setting pathex in

Listing 9-4 to the location of AudioRecorder on your computer, navigating to the folder,

and entering the following line into the command line:

$ pyinstaller AudioRecorder.spec

Windows users will need to use mic_icon.ico; Linux users can use mic_icon.png.

You now have a working executable that you can distribute to other people.

�What’s Next?
Once you have an executable file, your adventure may be over. For some of you though,

you may need to occasionally update your application to fix problems, add new features,

update the software, or package your executable into an installer. Some of the earlier

mentioned tools, Briefcase and fbs, include the tools needed for packaging applications

that are ready for distribution to desktop platforms.

There are also other platform-specific tools available, such as dmgbuild for creating

MacOS disk images (.dmg), InstallForge or Nullsoft Scriptable Install System (NSIS) for

building Windows executable (.exe) files, and stdeb or fpm for producing Debian source

packages (.deb) for Linux.

Tip  Before distributing packages, always be sure to check the license(s) of
the software you are using. For example, PyQt5 uses two licenses – Riverbank
Commercial License and GPL v3. With GPL, you can distribute your applications
for free, but not for commercial purposes. More information about the
commercial version of PyQt can be found at www.riverbankcomputing.com/
commercial/. Further details about GPL are located at www.gnu.org.

Chapter 9 Deploying PyQt Applications

http://www.riverbankcomputing.com/commercial/
http://www.riverbankcomputing.com/commercial/
http://www.gnu.org

305

�Summary
The best way to build an application is to always be thinking about the user. The user

doesn’t have to be a single person. They could be a small business made up of a few

people or a large business formed by hundreds. It’s important to keep in mind that the

applications that you build could serve as the solution to simplifying their lives, saving or

making them money, or building new relationships.

In this chapter, we utilized PyQt’s QtMultimedia module to build a working audio

recorder. Using PyInstaller, the next step was to demonstrate how you could build an

executable file for distributing your application to others. There is no single solution for

packaging and deploying Python code, and it is best to find the solution that fits you and

your user’s needs.

Qt and PyQt are incredible tools; and, as we have seen in this guide, there are

numerous third-party libraries and other software that have support for them when it

comes to building applications.

Before you go, I want to thank you. My hope is that the lessons and projects in

this book have helped you in some way in solving your own problems. Thank you

for following along with me on this journey. Your feedback and questions are always

welcome. Good luck!

Chapter 9 Deploying PyQt Applications

307
© Joshua Willman 2021
J. Willman, Modern PyQt, https://doi.org/10.1007/978-1-4842-6603-8

Index

A, B
add_argument() method, 143
addNewUserToTable() method, 39
appendMessage() function, 279, 280
Artificial intelligence (AI)

algorithms, 259, 262
Audio Recorder GUI

application icons, 292, 293
code, 285–288, 290
QAudioRecorder class, 291
.qrc resource files, 294–296
QtMultimedia module, 284, 285, 290
style sheet, 297, 298

C
Chart types, 102

dataset, 104
NumPy, 104–106, 108
scatter plot, 110

ChartView class constructor, 97
Chatbot

AI algorithms, 262
businesses, 262
definition, 262
GUI, 266, 267
GUI solution

code, 267–274, 276
createChatbot(), 278, 279

creatin GUI, 277
drawing messages, 280, 281

library, 264–266
NLP, 263

chatButtonPressed(), 278
Computer vision, 165

definition, 166
implementation, 166

connectToDatabase() slot, 151
Container classes, 21, 22
convertCVToQImage() function, 176
createHOGDescriptor() function, 207

D
Data analysis, 74, 75
Data visualization, 73, 86

code, 88, 90, 92, 94–96
dataset, 86
events, 97
Matplotlib, 111
multiple line series, 98, 99
theme/animation, 99–101
zooming/scrolling, 98

Digital images, 166, 167
DisplayDatabase class, 143
Drag and drop mechanism

examples, 44
graphical prompts, 45
images, 53

https://doi.org/10.1007/978-1-4842-6603-8#DOI

308

PyQt, 45–47
QDrag and QMimeData classes, 47
sources, 48, 51, 52
widgets, 54, 55, 57, 59

Draggable widgets, 58

E
Edge detection, 189, 190
enterUserMessage(), 279, 281
exec_() function, 137, 138

F
FishingStores database, 128, 130, 132, 133,

135, 136
customers table, 140
QtSql model, 140, 141, 143

fman build system (fbs), 299

G
get() method, 249
Graphical user interfaces (GUIs), 1, 6, 165

H
Histogram of Oriented

Gradients (HOG), 200, 201
Human detection, 200, 201, 203, 204,

206, 207
Human tracking, 200
Hypertext Markup Language (HTML), 243

I, J, K
Image filtering, 168, 178, 188, 189
ImageProcessingGUI class, 186

Image processing techniques, 178
code, 179–183, 185, 186
edge detection, 189, 190
image filtering, 188, 189
initial window, 186, 187
kernel, 189
point operators, 188

L
Layout management, 23, 24, 42
linearRegression() function, 109
LoginGUI class, 151

M
Main thread, 197–199
Matplotlib, 112

chart types, 120, 121
install, 112
nagivation toolbar, 121, 122
PyQt, 118–120
visualization, 113, 115–117

mousePressEvent()
function, 46, 58, 68, 97

N
Natural Language Processing (NLP), 263
Networking

definition, 242
email sender GUI, 249, 250
email sender GUI solution

code, 251–255
smtplib, 251, 256–259

PyQt network classes, 242
requestingHTML, web page

GET request, 249
GUI, 243

Drag and drop mechanism (cont.)

Index

309

HTTP, 243
installing Beautiful Soup, 244
PyQtWebEngine module, 244–247
settingup toolbar, 248

Nullsoft Scriptable Install
System (NSIS), 304

O
Occlusion, 164, 165
OpenCV, 168

BGR color space, 170
display image, 177
human detection, 200
install, 168, 169
Mat objects, 177
play videos, 190, 191

initial application, 197, 198
PyQt, 191, 193, 194, 196, 197
thread, 198–200

PyQt, 170
QLabels, 171–174
Qt Style Sheets, 175
show image, 176
uses, 168

Open Database Connectivity (ODBC), 126

P
Payments vs. claims, 103
Point operators, 188
Pomodoro Timer, 6, 7

breaks, 17
code, 7–11, 13–16
creating empty window, 18, 19
event handlers, 25
layout management, 23, 24
PyQt modules and classes, 19, 20

container, 21, 22
QTimer, 22, 23

Qt style sheets, 26, 27, 29, 31
signals, 25
slots, 25, 26

prepare() function, 138, 139
Project management, 43

GUI, 59–66, 68, 69
style sheet, 70–72
tasks, 70

Pyqt application
building executable, 300, 301
PyInstaller, 299, 300
.spec file, 302, 303

PyQtChart module, 76
chart type, 76, 77
install, 78

PyQt framework, 2–4
Python Packaging Authority (PyPA), 299

Q
QImage, 176
QMimeData class, 47
QPixmap, 175, 176
QSqlQueryModel, 126, 139, 143–145,

153, 159
QSqlRelationalTableModel, 126, 159
QSqlTableModel, 126, 144, 145
QtChart class, 74, 77, 83, 111
QTimer class, 22, 23

R
readAll() function, 249
Relational database management system

(RDBMS), 125, 126
Resolution, 119, 167, 178

Index

310

S
setAlternatingRowColors() function, 159
setObjectName() method, 31
setQuality() function, 291
setQuitOnLastWindowClosed()

function, 293
setStyleSheet() method, 26
setupWindow() function, 159, 277
SimpleBarGraph’s setupWindow()

function, 235
Simple linear regression, 102
Simple line chart, 78

create a chart, 84, 85
CSV-formatted files, 85, 86
dataset, 79
public social spending, 80
PyQt, 80, 82

Simple Mail Transfer
Protocol (SMTP), 249, 250

sizeHint() function, 280
smtplib library, 251
Splash screen, 161, 162
SQL commands, 130
SQL Manager GUI

code, 154, 155, 157
JSON files, 152
login script, 146–148, 150
queries, 154, 160
scripts, 146, 153
splash screen, 161, 162

stopThread() function, 199
Structured Query

Language (SQL), 125–127

T
3D data visualization

creating bar graph
CSV data, 216
datset, 212, 214, 215
GUI, 211, 215
Q3DBars, 218
Q3DCamera class, 217

GUI, 218, 219
GUI solution

code, 220–222, 224, 226–229, 231
creating multiple series, 232, 233
settings_toolbox, 233, 234
widgets, adjusting properties,

235–237, 239
PyQtDataVisualization

module, 209, 210
trainingFinished() function, 279

U, V
User interface (UI), 1, 2, 17, 19, 44
User Manager application, 32, 34, 35

create menus, 39, 40
CSV format, 40
dialog boxes, 40–42
model/view programming, 38, 39
window, 40

User Manager GUI, 32

W, X, Y, Z
Worker thread, 198, 199

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Overview of PyQt5
	What Is PyQt?
	Installing PyQt5

	Project 1.1: Pomodoro Timer
	Pomodoro Timer Solution
	Explanation
	Creating an Empty Window
	PyQt Modules and Classes
	Using Container Classes in PyQt
	The QTimer Class

	Layout Management
	Event Handling with Signals and Slots
	Qt Style Sheets

	Project 1.2: User Manager Application
	User Manager Application Solution
	Explanation
	Qt’s Model/View Architecture
	Creating Menus
	Windows and Dialog Boxes

	Summary

	Chapter 2: Creating GUIs for Project Management
	The Basics of Drag and Drop
	Drag and Drop with PyQt
	The QDrag and QMimeData Classes

	Example 2.1: Drag and Drop Data from Other Sources
	Explanation

	Example 2.2: Drag and Drop Widgets
	Explanation
	Creating Drag Widgets
	Creating Drop Targets

	Project 2.1: Project Management GUI
	Project Management GUI Solution
	Explanation
	Style Sheet for the Project Manager

	Summary

	Chapter 3: Data Visualization and Analysis
	Steps for Data Analysis
	The PyQtChart Module
	Overview of Chart Types
	Installing PyQtChart

	Example 3.1: Creating a Simple Chart
	Quick Glance at the Dataset
	Explanation
	Creating a Chart
	Loading Data from CSV Files

	Project 3.1: Data Visualization GUI
	Quick Glance at the Dataset

	Data Visualization GUI Solution
	Explanation
	Implementing Dragging and Scrolling in QChartView
	Setting Up a Chart to Display Multiple Line Series
	Changing Chart Themes, Animations, and More

	Example 3.2: Combining Different Chart Types
	A Brief Introduction to Linear Regression
	Quick Glance at the Dataset

	Installing NumPy
	Explanation

	Project 3.2: Visualizing Data with Matplotlib
	Introduction to Matplotlib
	Installing Matplotlib

	Quick Glance at the Dataset

	Visualizing Data with Matplotlib Solution
	Explanation
	Embedding Matplotlib Canvases in PyQt
	Working with Different Matplotlib Chart Types

	Creating a Navigation Toolbar

	Summary

	Chapter 4: Database Handling in PyQt
	Using SQL with PyQt
	Example 4.1: Creating the Database
	Brief Introduction to SQL Commands
	Explanation

	Example 4.2: Displaying Data with QTableView
	Explanation

	Project 4.1: SQL Manager GUI
	SQL Manager GUI Solution
	Part 1: The Login Script
	Explanation
	Working with JSON Files

	Part 2: The SQL Manager Script
	Explanation
	Example SQL Queries
	Creating a Splash Screen

	Summary

	Chapter 5: GUIs for Computer Vision
	What Is Computer Vision?
	Brief Overview of Digital Images

	An Introduction to OpenCV
	Installing OpenCV

	Example 5.1: Display Images from OpenCV in PyQt
	Explanation
	Displaying Images Using PyQt Widgets

	Project 5.1: Image Processing GUI
	Image Processing GUI Solution
	Explanation
	A Few Image Processing Techniques
	Point Operators
	Image Filters
	Edge Detection

	Example 5.2: Display Videos from OpenCV in PyQt
	Explanation
	Overview of Threading in PyQt

	Project 5.2: Human Detection and Tracking GUI
	Human Detection and Tracking GUI Solution
	Explanation

	Summary

	Chapter 6: Visualizing 3D Data
	The PyQtDataVisualization Module
	Installing PyQtDataVisualization

	Example 6.1: Creating a 3D Bar Graph
	Quick Glance at the Dataset
	Explanation

	Project 6.1: 3D Data Visualization GUI
	Quick Glance at the Dataset

	3D Data Visualization GUI Solution
	Explanation
	Creating Multiple Series
	Setting Up the QToolBox
	Adjusting Properties with Widgets

	Summary

	Chapter 7: Introduction to Networking with PyQt
	What Is Networking?
	PyQt Networking Classes

	Example 7.1: Requesting HTML from a Web Page
	Installing Beautiful Soup
	Installing PyQtWebEngine
	Explanation
	Setting Up the Toolbar
	Sending a GET Request

	Project 7.1: Email Sender GUI
	What Is the Simple Mail Transfer Protocol (SMTP)?
	Setting Up Your Gmail Security Settings

	Email Sender GUI Solution
	Explanation
	Using the smtplib Module

	Summary

	Chapter 8: Creating a Chatbot
	What Is a Chatbot?
	Brief Introduction to Natural Language Processing (NLP)

	The ChatterBot Library
	Installing ChatterBot
	Creating a Simple ChatterBot

	Project 8.1: Chatbot GUI
	Chatbot GUI Solution
	Explanation
	Creating the GUI
	Creating the Chatbot
	Drawing the Messages

	Summary

	Chapter 9: Deploying PyQt Applications
	Project 9.1: Audio Recorder GUI
	Audio Recorder GUI Solution
	Explanation
	Using the QAudioRecorder Class
	Creating Application Icons
	Creating .qrc Resource Files
	Style Sheet for the Audio Recorder

	Sharing Your PyQt Applications
	Creating an Executable with PyInstaller
	Installing PyInstaller
	Building the Executable
	Creating an Executable Using the .spec File

	What’s Next?
	Summary

	Index

