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Preface

We live in an age that is defined by the massive production and use of digital information. Everyday we
send and receive e-mails, exchange pictures of our loved ones, download music and video, and transact
business on-line. The digital revolution has become such a fundamental pillar of our existence it is very
difficult to imagine a life without it. According to one recent study, data was being created at a rate of 1.4
Gigabytes/person/year in the United States in 2004. Every year 75 Petabytes or 100 Million hours of new
broadcast content is created. We exchange 400 Petabytes of e-mail and purchase 488 Petabytes or about
814 M Cds worth (only in the United States) audio files yearly. Although these numbers are amazing, they
are growing even in a more phenomenal pace. Clearly, we need a reliable way to store, protect and exchange
all these data.

This book focuses on explaining the state of the art error control and correction methods used in data
storage devices such as hard disk drives. The advanced error control and correction methods ensure the
reliable transmission and storage of digital data. This in turn enables us to create, use and manipulate
data as we wish. The reliability levels that are required by storage devices are extremely high since unlike
communication systems generally no retransmission is possible. We expect to save our data and be able to
retrieve it perfectly at any future time. It is the art of error control and correction that makes this possible.

We start the book with an introduction on error control codes. Chapter 1 explains the finite fields, and
defines linear codes over these fields. The relationship between minimum distance and error correction
capability of a code is subsequently discussed. We give a detailed description of Reed-Solomon codes,
which are widely employed for error control and correction, and describe their encoding and decoding.

Chapter 2 and Chapter 3 introduce modulation codes that are widely used in data storage devices.
Modulation codes serve a number of useful purposes, the main one being the elimination of sequences,
which cause problems for signal processing, synchronization or coding purposes. The most common
constraint in use is the run-length one, and it is imposed on encoded sequences in order to bound the
minimal, and/or/maximal lengths of consecutive like channel symbols. Chapter 4 investigates maximum
transition run (MTR) codes. These codes limit the maximum number of consecutive transitions and
improve the minimum distance properties of recorded sequences. Chapter 5 introduces the spectrum
shaping codes, which are deployed widely by recording systems. For example, in optical recording systems
these codes are used to circumvent the interference between data tracks and servo tracking system.

Chapter 6 and Chapter 7 study the very important relationship between constrained codes and error
control and correction systems. They do this by looking at both code design techniques for different con-
straint and the architectural options such as reverse concatenation. Chapter 8 takes the analysis of previous
two chapters one step further by introducing encoding and decoding techniques based on convolutional
codes for partial response channels which represent a wide variety of recording systems. Chapter 9 in-
troduces the channel model and capacity definitions, and designs new classes of codes that approach the
information theoretical performance limits. Chapter 10 takes us into another direction by investigating
the coding and detection methods for multitrack systems. Multitrack systems envision a new architecture
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where multiple-read elements are employed both to record and retrieve the data. The data rate and access
time benefits of such a configuration is clear. Moreover, as Chapter 10 shows, with properly designed codes
one can improve the data density as well.

The last part of the book focuses on introducing the most recent developments in error control and
correction systems as applied to data storage channels. Chapter 11 is about one of the most important
developments in information theory in the last few decades, namely Turbo Codes. This chapter explains
both the basic principles of turbo coding and decoding techniques as well as their applications to data
storage systems. Soft decoding, turbo equalization, parallel and serially concatenated codes are among
the important concepts that are investigated in this chapter. The next chapter, Chapter 12, takes the
investigation of codes that employ soft decoding techniques one step further by giving a very good tutorial
on Low-Density Parity Check Codes. Gallager Codes, McKay Codes and Finite Geometry Codes are
among the Low-Density Parity Check Codes that are studied in this chapter. This chapter concludes with
the explanation of the sum-product decoding algorithm.

Chapter 13 focuses on a special class of turbo codes called Turbo Product Codes. These codes are
constructed by partitioning the data into rows and columns, and then encoding them separately. During
decoding phase soft-information exchange between rows and columns is used to increase the reliability
of each decoded information bit. This chapter uses both analytical and numerical techniques to evaluate
the performance of Turbo Product Codes. The next chapter, Chapter 14, continues in a sense in the same
direction as the pervious one by studying the Structured Low-Density Parity-Check Codes. The classical
construction for Low-Density Parity-Check Codes is based on large, sparse and randomly generated parity
check matrices. Clearly such a construction creates a number of implementation issues as well as analysis
ones. By designing and studying Low-Density Parity-Check Codes constructed from combinatorial objects
we can come up with better ways of analyzing and implementing them. Chapter 15, the final chapter of
this book, expands the turbo coding techniques to previously multitrack systems.

We believe this book covers all the relevant developments in error control and correction techniques as
applied to data storage channels. From this perspective we hope that it will be useful to both seasoned prac-
titioners as a reference material, and to interested readers who are new to this growing area of information
theory.

Bane Vasic
Erozan M. Kurtas
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Bartolomeu F. Uchôa-Filho, Mark A. Herro, Miroslav Despotović,
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1
An Introduction to

Error-Correcting
Codes

Mario Blaum
Hitachi Global Storage Technologies
San Jose, CA

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.2 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.3 Syndrome Decoding, Hamming Codes, and Capacity

of the Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
1.4 Codes over Bytes and Finite Fields . . . . . . . . . . . . . . . . . . . . . 1-8
1.5 Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
1.6 Reed Solomon Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
1.7 Decoding of RS Codes: The Key Equation . . . . . . . . . . . . . . 1-13
1.8 Decoding RS Codes with Euclid’s Algorithm . . . . . . . . . . . 1-16
1.9 Applications: Burst and Random Error Correction . . . . . 1-18

1.1 Introduction

When digital data are transmitted over a noisy channel, it is important to have a mechanism allowing
recovery against a limited number of errors. Normally, a user string of 0s and 1s, called bits, is encoded by
adding a number of redundant bits to it. When the receiver attempts to reconstruct the original message
sent, it starts by examining a possibly corrupted version of the encoded message, and then makes a decision.
This process is called the decoding.

The set of all possible encoded messages is called an error-correcting code. The field was started in the
late 1940s by the work of Shannon and Hamming, and since then thousands of papers on the subject
have been published. There are also several very good books touching different aspects of error-correcting
codes, for instance, [1, 3, 4, 5, 7, 8], to mention just a few.

The purpose of this chapter is giving an introduction to the theory and practice of error-correcting
codes. In particular, it will be shown how to encode and decode the most widely used codes, Reed Solomon
codes.

In principle, we will assume that our information symbols are bits, that is, 0s and 1s. The set {0, 1} has
a field structure under the exclusive-OR (⊕) and product operations. We denote this field GF(2), which
means Galois field of order 2.

Roughly, there are two types of error-correcting codes: codes of block type and codes of convolutional
type. Codes of block type encode a fixed number of bits, say k bits, into a vector of length n. So, the
information string is divided into blocks of k bits each. Convolutional codes take the string of information
bits globally and slide a window over the data in order to encode. A certain amount of memory is needed
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1-2 Advanced Error Control Techniques for Data Storage Systems

by the encoder. However, in this chapter we concentrate on block codes only. For more on convolutional
codes, see [3, 8].

As said above, we encode k information bits into n bits. So, we have a 1-1 function f ,

f : GF(2)k → GF(2)n

The function f defines the encoding procedure. The set of 2k encoded vectors of length n is called a code
of length n and dimension k, and we denote it as an [n, k] code. We call codewords the elements of the code
while we call words the vectors of length n in general. The ratio k/n is called the rate of the code.

The error-correcting power of a code is characterized by a parameter called the minimum (Hamming)
distance of the code. Formally:

Definition 1.1 Given two vectors of length n, say a and b, we call the Hamming distance between a
and b the number of coordinates in which they differ (notation, dH (a, b)). Given a code C of length n and
dimension k, let

d = min{dH (a , b) : a �= b, a , b, ∈ C}
We call d the minimum (Hamming) distance of the code C and we say that C is an [n, k, d] code.

It is easy to verify that dH (a, b) verifies the axioms of distance, that is,

1. dH (a, b) = dH (b, a)
2. dH (a, b) = 0 if and only if a = b
3. dH (a, c) ≤ dH (a , b) + dH (b, c)

We call a sphere of radius r and center a the set of vectors that are at distance at most r from a . The
relation between d and the maximum number of errors that code C can correct is given by the following
lemma:

Lemma 1.1 The maximum number of errors that an [n, k, d] code can correct is �(d − 1)/2
, where �x

denotes the largest integer smaller or equal to x.

Proof 1.1 Assume that vector a was transmitted but a possibly corrupted version of a , say r , was
received. Moreover, assume that no more than �(d − 1)/2
 errors have occurred.

Consider the set of 2k spheres of radius �(d − 1)/2
 whose centers are the codewords in C. By the
definition of d , all these spheres are disjoint. Hence, r belongs to one and only one sphere: the one whose
center is codeword a . So, the decoder looks for the sphere in which r belongs, and outputs the center of
that sphere as the decoded vector. As we see, whenever the number of errors is at most �(d − 1)/2
, this
procedure will give the correct answer.

Moreover, �(d−1)/2
 is the maximum number of errors that the code can correct. Let a , b, ∈ C such that
dH (a , b) = d. Let u be a vector such that dH (a , u) = 1+�(d −1)/2
 and dH (b, u) = d −1−�(d −1)/2
.
We easily verify that dH (b, u) ≤ dH (a , u), so, if a is transmitted and u is received (i.e., 1 + �(d − 1)/2

errors have occurred), the decoder cannot decide that the transmitted codeword was a , since codeword b
is at least as close to u as a . ✷

Example 1.1

Consider the following 1-1 relationship between GF(2)2 and GF(2)5 defining the encoding:

00 ↔ 00000

10 ↔ 00111

01 ↔ 11100

11 ↔ 11011
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The four vectors in GF(2)5 constitute a [5, 2, 3] code C. From Lemma 1.1, C can correct one error. For
instance, assume that we receive the vector r = 10100. The decoder looks into the four spheres of radius
1 (each sphere has six elements!) around each codeword, finding that r belongs in the sphere with center
11100. If we look at the table above, the final output of the decoder is the information block 01.

Example 1.1 shows that the decoder has to make at most 24 checks before arriving to the correct
decision. When large codes are involved, as is the case in applications, this decoding procedure is not
practical, since it amounts to an exhaustive search over a huge set of vectors. One of the goals in the theory
of error-correcting codes is finding codes with high rate and minimum distance as large as possible. The
possibility of finding codes with the right properties is often limited by bounds that constrain the choice
of parameters n, k and d . We give some of these bounds in the next section.

Let us point out that error-correcting codes can be used for detection instead of correction of errors.
The simplest example of an error-detecting code is given by a parity code: a parity is added to a string of
bits in such a way that the total number of bits is even (a more sophisticated way of saying this, is that
the sum modulo-2 of the bits has to be 0). For example, 0100 is encoded as 01001. If an error occurs,
or, more generally, an odd number of errors, these errors will be detected since the sum modulo 2 of the
received bits will be 1. Notice that two errors will be undetected. In general, if an [n, k, d] code is used for
detection only, the decoder checks whether the received vector is in the code or not. If it is not, then errors
are detected. It is easy to see that an [n, k, d] code can detect up to d − 1 errors. Also, we can choose to
correct less than �(d − 1)/2
 errors, say s errors, by taking disjoint spheres of radius s around codewords,
and using the remaining capacity to detect errors. In other words, we want to correct up to s errors or
detect up to s + t errors when more than s errors occur.

Another application of error-correcting codes is in erasure correction. An erased bit is a bit that cannot
be read, so the decoder has to decide if it was a 0 or a 1. An erasure is normally denoted with the symbol ?.
For instance, 01?0 means that we cannot read the third symbol. Obviously, it is easier to correct erasures
than to correct errors, since in the case of erasures we already know the location, we simply have to find
what the erased bit was. It is not hard to prove that an [n, k, d] code can correct up to d − 1 erasures. We
may also want to simultaneously correct errors and erasures. In fact, a code C with minimum distance d
can correct s errors together with t erasures whenever 2s + t ≤ d − 1.

1.2 Linear Codes

We have seen in the previous section that a binary code of length n is a subset of GF(2)n. Notice that,
being GF(2) a field, GF(2)n has a structure of vector space over GF(2). We say that a code C is linear if
it is a subspace of GF(2)n, that is,

1. 0 ∈ C
2. ∀ a , b ∈ C, a ⊕ b ∈ C

The symbol 0 denotes the all-zero vector. In general, vectors will be denoted with underlined letters,
otherwise letters denote scalars.

There are many interesting combinatorial questions regarding nonlinear codes. Probably, the most
important question is the following: given the length n and the minimum distance d , what is the max-
imum number of codewords that a code can have? For more about nonlinear codes, the reader is re-
ferred to [4]. From now on, we assume that all codes are linear. Linear codes are in general easier to
encode and decode than their nonlinear counterparts, hence they are more suitable for implementation in
applications.

In order to find the minimum distance of a linear code, it is enough to find its minimum weight. We say
that the (Hamming) weight of a vector u is the distance between u and the zero vector. In other words, the
weight of u, denoted w H (u), is the number of nonzero coordinates of the vector u. The minimum weight
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of a code is the minimum between all the weights of the nonzero codewords. The proof of the following
lemma is left as an exercise.

Lemma 1.2 Let C be a linear [n, k, d] code. Then, the minimum distance and the minimum weight of C
are the same.

Next, we introduce two important matrices that define a linear error-correcting code. Since a code C is
now a subspace, the dimension k of C is the cardinality of a basis of C. Consider then an [n, k, d] code C.
We say that a k × n matrix G is a generator matrix of a code C if the rows of G are a basis of C. Given a
generator matrix, the encoding process is simple.

Explicitly, let u be an information vector of length k and G a k × n generator matrix, then u is encoded
into the n-vector v given by

v = uG (1.1)

Example 1.2

Let G be the 2 × 5 matrix

G =
(

0 0 1 1 1
1 1 1 0 0

)

It is easy to see that G is a generator matrix of the [5, 2, 3] code described in Example 1.1.

Notice that, although a code may have many generator matrices, the encoding depends on the particular
matrix chosen, according to Equation 1.1. We say that G is a systematic generator matrix if G can be written
as

G = (Ik | V) (1.2)

where Ik is the k × k identity matrix and V is a k × (n − k) matrix. A systematic generator matrix has
the following advantage: given an information vector u of length k, the encoding given by Equation 1.1
outputs a codeword (u, w), where w has length n − k. In other words, a systematic encoder adds n − k
redundant bits to the k information bits, so information and redundancy are clearly separated. This also
simplifies the decoding process, since, after decoding, the redundant bits are simply discarded. For that
reason, most encoders used in applications are systematic.

A permutation of the columns of a generator matrix gives a new generator matrix defining a new code.
The codewords of the new code are permutations of the coordinates of the codewords of the original
code. We then say that the two codes are equivalent. Notice that equivalent codes have the same distance
properties, so their error correcting capabilities are exactly the same.

By permuting the columns of the generator matrix in Example 1.2, we obtain the following generator
matrix G ′:

G ′ =
(

1 0 0 1 1
0 1 1 1 0

)
(1.3)

The matrix G ′ defines a systematic encoder for a code that is equivalent to the one given in Example 1.1.
For instance, the information vector 11 is encoded into 11 101.

The second important matrix related to a code is the so called parity check matrix. We say that an
(n − k) × n matrix H is a parity check matrix of an [n, k] code C if and only if, for any c ∈ C,

c H T = 0 (1.4)



An Introduction to Error-Correcting Codes 1-5

where H T denotes the transpose of matrix H and 0 is a zero vector of length n − k. We say that the parity
check matrix H is in systematic form if

H = (W | In−k) (1.5)

where In−k is the (n − k) × (n − k) identity matrix and W is an (n − k) × k matrix.
Given a systematic generator matrix G of a code C, it is easy to find the systematic parity check

matrix H (and conversely). Explicitly, if G is given by Equation 1.2, H is given by

H = (V T | In−k) (1.6)

We leave the proof of this fact to the reader.
For example, the systematic parity check matrix of the code whose systematic generator matrix is given

by Equation 1.3, is

H =

0 1 1 0 0

1 1 0 1 0
1 0 0 0 1


 (1.7)

We state now an important property of parity check matrices.

Lemma 1.3 Let C be a linear [n, k, d] code and H a parity-check matrix. Then, any d − 1 columns of H
are linearly independent.

Proof 1.2 Numerate the columns of H from 0 to n − 1. Assume that columns 0 ≤ i1 < i2 < · · · <

im ≤ n − 1 are linearly dependent, where m ≤ d − 1. Without loss of generality, we may assume that the
sum of these columns is equal to the column vector zero. Let v be a vector of length n whose non-zero
coordinates are in locations i1, i2, . . . , im. Then, we have

v H T = 0

hence v is in C. But v has weight m ≤ d − 1, contradicting the fact that C has minimum distance d . ✷

Corollary 1.1 For any linear [n, k, d] code, the minimum distance d is the smallest number m such
that there is a subset of m linearly dependent columns.

Proof 1.3 It follows immediately from Lemma 1.3. ✷

Corollary 1.2 (Singleton Bound) For any linear [n, k, d] code,

d ≤ n − k + 1

Proof 1.4 Notice that, since H is an (n − k) × n matrix, any n − k + 1 columns are going to be linearly
dependent, so if d > n − k + 1, we would contradict Corollary 1.1. ✷

Codes meeting the Singleton bound are called maximum distance separable (MDS). In fact, except for
trivial cases, binary codes are not MDS. In order to obtain MDS codes, we will define codes over larger
fields, like the so-called Reed Solomon codes, to be described later in the chapter.

We also give a second bound relating the redundancy and the minimum distance of an [n, k, d] code:
the so-called Hamming or volume bound. Let us denote by V(r ) the number of elements in a sphere of
radius r whose center is an element in GF(2)n. It is easy to verify that

V(r ) =
r∑

i=0

(n

i

)
(1.8)
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We then have:

Lemma 1.4 (Hamming bound) Let C be a linear [n, k, d] code, then

n − k ≥ log2 V(�(d − 1)/2
) (1.9)

Proof 1.5 Notice that the 2k spheres with the 2k codewords as centers and radius �(d − 1)/2
 are
disjoint. The total number of vectors contained in these spheres is 2k V(�(d − 1)/2
). This number has to
be smaller than or equal to the total number of vectors in the space, that is,

2n ≥ 2k V(�(d − 1)/2
) (1.10)

Inequality 1.9 follows immediately from Inequality 1.10. ✷

A perfect code is a code for which Inequality 1.9 is in effect equality. Geometrically, a perfect code is a
code for which the 2k spheres of radius �(d − 1)/2
 and the codewords as centers cover the whole space.

There are not many perfect codes. In the binary case, the only nontrivial linear perfect codes are the
Hamming codes (to be presented in the next section) and the [23, 12, 7] Golay code (see [4]).

1.3 Syndrome Decoding, Hamming Codes,
and Capacity of the Channel

In this section, we study the first important family of codes, the so called Hamming codes. As we will see,
Hamming codes can correct up to one error.

Let C be an [n, k, d] code with parity check matrix H . Let u be a transmitted vector and r a possibly
corrupted received version of u. We say that the syndrome of r is the vector s of length n − k given by

s = r H T (1.11)

Notice that, if no errors occurred, the syndrome of r is the zero vector. The syndrome, however, tells us
more than a vector being in the code or not. Say, as before, that u was transmitted and r was received,
where r = u ⊕ e , e an error vector. Notice that,

s = r H T = (u ⊕ e)H T = uH T ⊕ e H T = e H T

since u is in C. Hence, the syndrome does not depend on the received vector but on the error vector. In the
next lemma, we show that to every error vector of weight ≤ (d − 1)/2 corresponds a unique syndrome.

Lemma 1.5 Let C be a linear [n, k, d] code with parity check matrix H. Then, there is a 1-1 correspondence
between errors of weight ≤ (d − 1)/2 and syndromes.

Proof 1.6 Let e1 and e2 be two distinct error vectors of weight ≤ (d − 1)/2 with syndromes s 1 = e1 H T

and s 2 = e2 H T . If s 1 = s 2, then s = (e1 ⊕ e2)H T = s 1 ⊕ s 2 = 0, hence e1 ⊕ e2 ∈ C. But e1 ⊕ e2 has
weight ≤ d − 1, a contradiction. ✷

Lemma 1.5 gives the key for a decoding method that is more efficient than exhaustive search. We can
construct a table with the 1-1 correspondence between syndromes and error patterns of weight ≤ (d −1)/2
and decode by look-up table. In other words, given a received vector, we first find its syndrome and then
we look in the table to which error pattern it corresponds. Once we obtain the error pattern, we add it to
the received vector, retrieving the original information. This procedure may be efficient for small codes,
but it is still too complex for large codes.
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Example 1.3

Consider the code whose parity matrix H is given by (7). We have seen that this is a [5, 2, 3] code. We have
6 error patterns of weight ≤ 1. The 1-1 correspondence between these error patterns and the syndromes,
can be immediately verified to be

00000 ↔ 000

10000 ↔ 011

01000 ↔ 110

00100 ↔ 100

00010 ↔ 010

00001 ↔ 001

For instance, assume that we receive the vector r = 10111. We obtain the syndrome s = r H T = 100.
Looking at the table above, we see that this syndrome corresponds to the error pattern e = 00100. Adding
this error pattern to the received vector, we conclude that the transmitted vector was r ⊕ e = 10011.

Given a number r or redundant bits, we say that a [2r − 1, 2r − r − 1, 3] Hamming code is a code
having an r × (2r − 1) parity check matrix H such that its columns are all the different nonzero vectors of
length r .

A Hamming code has minimum distance 3. This follows from its definition and Corollary 1.1: notice
that any two columns in H , being different, are linearly independent. Also, if we take any two different
columns and their sum, these three columns are linearly dependent, proving our assertion.

A natural way of writing the columns of H in a Hamming code, is by considering them as binary
numbers on base 2 in increasing order. This means, the first column is 1 on base 2, the second columns is
2 and so on. The last column is 2r − 1 on base 2, that is, (1, 1, . . . , 1)T . This parity check matrix, although
nonsystematic, makes the decoding very simple.

In effect, let r be a received vector such that r = v ⊕ e , where v was the transmitted codeword and e
is an error vector of weight 1. Then, the syndrome is s = e H T , which gives the column corresponding to
the location in error. This column, as a number on base 2, tells us exactly where the error has occurred, so
the received vector can be corrected.

Example 1.4

Consider the [7, 4, 3] Hamming code C with parity check matrix

H =

0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1


 (1.12)

Assume that vector r = 1100101 is received. The syndrome is s = r H T = 001, which is the binary
representation of the number 1. Hence, the first location is in error, so the decoder estimates that the
transmitted vector was v = 0100101.

We can obtain 1-error correcting codes of any length simply by shortening a Hamming code. This
procedure works as follows: Assume that we want to encode k information bits into a 1-error correcting
code. Let r be the smallest number such that k ≤ 2r − r − 1. Let H be the parity-check matrix of a
[2r − 1, 2r − r − 1, 3] Hamming code. Then construct a matrix H ′ by eliminating some 2r − r − 1 − k
columns from H . The code whose parity-check matrix is H ′ is a [k + r, k, d] code with d ≥ 3, hence it can
correct one error. We call it a shortened Hamming code. For instance, the [5, 2, 3] code whose parity-check
matrix is given by Equation 1.7, is a shortened Hamming code.
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In general, if H is the parity-check matrix of a code C, H ′ is a matrix obtained by eliminating a certain
number of columns from H and C ′ is the code with parity-check matrix H ′, we say that C ′ is obtained by
shortening C.

A [2r − 1, 2r − r − 1, 3] Hamming code can be extended to a [2r , 2r − r − 1, 4] Hamming code by
adding to each codeword a parity bit that is the exclusive-OR of the first 2r − 1 bits. The new code is called
an extended Hamming code.

So far we have not talked about probabilities of errors. Assume that we have a binary symmetric channel
(BSC), that is, the probability of a 1 becoming a 0 or of a 0 becoming a 1 is p < .5. Let Perr be the
probability of error after decoding using a code, that is, the output of the decoder does not correspond to
the originally transmitted information vector. A fundamental question is the following: given a BSC with
bit error probability p, does it exist a code of high rate that can arbitrarily lower Perr? The answer, due to
Shannon, is yes, provided that the code has rate below a parameter called the capacity of the channel, as
defined next:

Definition 1.2 Given a BSC with probability of bit error p, we say that the capacity of the channel is

C( p) = 1 + p log2 p + (1 − p) log2(1 − p) (1.13)

Theorem 1.1 (Shannon) For any ε > 0 and R < C( p), there is an [n, k] binary code of rate k/n ≥ R
with Perr < ε.

For a proof of Theorem 1.1 and some of its generalizations, the reader is referred to [5], or even to
Shannon’s original paper [6].

Theorem 1.1 has enormous theoretical importance: it shows that reliable communication is not limited
in the presence of noise, only the rate of communication is. For instance, if p = 0.01, the capacity of the
channel is C(0.01) = 0.9192. Hence, there are codes of rate ≥0.9 with Perr arbitrarily small. It also tells us
not to look for codes with rate 0.92 making Perr arbitrarily small.

The proof of Theorem 1.1, though, is based on probabilistic methods and the assumption of arbitrarily
large values of n. In practical applications, n cannot be too large. The theorem does not tell us how to
construct efficient codes, it just asserts their existence. Moreover, when we construct codes, we want them
to have efficient encoding and decoding algorithms. In the last few years, coding methods approaching
the Shannon limit have been developed, the so called turbo codes. Although great progress has been made
towards practical implementations of turbo codes, in applications like magnetic recording their complexity
is still a problem. A description of turbo codes is beyond the scope of this introduction. We refer the reader
to [2].

1.4 Codes over Bytes and Finite Fields

So far, we have considered linear codes over bits. Next we want to introduce codes over larger symbols,
mainly over bytes. A byte of size ν is a vector of ν bits. Mathematically, bytes are vectors in GF(2)ν . Typical
cases in magnetic and optical recording involve 8-bit bytes. Most of the general results in the previous
sections for codes over bits easily extend to codes over bytes. It is trivial to multiply bits, but we need a method
to multiply bytes. To this end, the theory of finite fields has been developed. Next we give a brief intro-
duction to the theory of finite fields.

We know how to add two binary vectors: we simply exclusive-OR them componentwise. What we need
now is a rule that allows us to multiply bytes while preserving associative, distributive, and multiplicative
inverse properties, that is, a product that gives to the set of bytes of length ν the structure of a field. To
this end, we will define a multiplication between vectors that satisfies the associative and commutative
properties, it has a 1 element, each nonzero element is invertible, and it is distributive with respect to the
sum operation.

Recall the definition of the ring Zm of integers modulo m: Zm is the set {0, 1, 2, . . . , m − 1}, with a sum
and product of any two elements defined as the residue of dividing by m the usual sum or product. It is
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not difficult to prove that Zm is a field if and only if m is a prime number. Using this analogy, we will give
to (GF(2))ν the structure of a field.

Consider the vector space (GF(2))ν over the field GF(2). We can view each vector as a polynomial
of degree ≤ ν − 1 as follows: the vector a = (a0, a1, . . . , aν−1) corresponds to the polynomial a(α) =
a0 + a1α + · · · + aν−1α

ν−1.
Our goal is to give to (GF(2))ν the structure of a field. We will denote such a field by GF(2ν). The sum

in GF(2ν) is the usual sum of vectors in (GF(2))ν . We need now to define a product.
Let f (x) be an irreducible polynomial (i.e., it cannot be expressed as the product of two polynomials of

smaller degree) of degree ν whose coefficients are in GF(2). Let a(α) and b(α) be two elements of GF(2ν).
We define the product between a(α) and b(α) in GF(2ν) as the unique polynomial c(α) of degree ≤ ν − 1
such that c(α) is the residue of dividing the product a(α)b(α) by f (α) (the notation g (x) ≡ h(x) (mod
f (x)) means that g (x) and h(x) have the same residue after dividing by f (x), i.e., g (α) = h(α)).

The sum and product operations defined above give to GF(2ν) a field structure. The role of the
irreducible polynomial f (x) is the same as the prime number m when Zm is a field. In effect, the proof
that GF(2ν) is a field when m is irreducible is essentially the same as the proof that Zm is a field when
m is prime. From now on, we denote the elements in GF(2ν) as polynomials in α of degree ≤ ν − 1
with coefficients in GF(2). Given two polynomials a(x) and b(x) with coefficients in GF(2), a(α)b(α)
denotes the product in GF(2ν), while a(x)b(x) denotes the regular product of polynomials. Notice that,
for the irreducible polynomial f (x), in particular, f (α) = 0 in GF(2ν), since f (x) ≡ 0 (mod f (x)).

So, the set GF(2ν) given by the irreducible polynomial f (x) of degree ν, is the set of polynomials of
degree ≤ ν − 1, where the sum operation is the regular sum of polynomials, and the product operation is
the residue of dividing by f (x) the regular product of two polynomials.

Example 1.5

Let us construct the field GF(8). Consider the polynomials of degree ≤ 2 over GF(2). Let f (x) =
1 + x + x3. Since f (x) has no roots over GF(2), it is irreducible (notice that such an assessment can
be made only for polynomials of degree 2 or 3). Let us consider the powers of α modulo f (α). Notice
that α3 = α3 + f (α) = 1 + α. Also, α4 = αα3 = α(1 + α) = α + α2. Similarly, we obtain α5 =
αα4 = α(α + α2) = α2 + α3 = 1 + α + α2, and α6 = αα5 = α + α2 + α3 = 1 + α2. Finally,
α7 = αα6 = α + α3 = 1.

As we can see, every nonzero element in GF(8) can be obtained as a power of the element α. In
this case, α is called a primitive element and the irreducible polynomial f (x) that defines the field is
called a primitive polynomial. It can be proven that it is always the case that the multiplicative group of a
finite field is cyclic, so there is always a primitive element. A convenient description of GF(8) is given in
Table 1.1.

The first column in Table 1.1 describes the element of the field in vector form, the second one as a
polynomial in α of degree ≤ 2, the third one as a power of α, and the last one gives the logarithm (also
called Zech logarithm): it simply indicates the corresponding power of α. As a convention, we denote by
−∞ the logarithm corresponding to the element 0.

TABLE 1.1 The Finite Field G F (8) Generated
by 1 + x + x3

Vector Polynomial Power of α Logarithm

000 0 0 −∞
100 1 1 0
010 α α 1
001 α2 α2 2
110 1 + α α3 3
011 α + α2 α4 4
111 1 + α + α2 α5 5
101 1 + α2 α6 6
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It is often convenient to express the elements in a finite field as powers of α: when we multiply two
of them, we obtain a new power of α whose exponent is the sum of the two exponents modulo 2ν − 1.
Explicitly, if i and j are the logarithms of two elements, in GF(2ν), then their product has logarithm
i + j (mod(2ν − 1)). In the example, if we want to multiply the vectors 101 and 111, we first look at
their logarithms. They are 6 and 5, respectively, so the logarithm of the product is 6 + 5 (mod 7) = 4,
corresponding to the vector 011.

In order to add vectors, the best way is to express them in vector form and add coordinate to coordinate
in the usual way.

1.5 Cyclic Codes

In the same way we defined codes over the binary field GF(2), we can define codes over any finite field
GF(2ν). Now, a code of length n is a subset of (GF(2ν))n, but since we study only linear codes, we
require that such a subset is a vector space. Similarly, we define the minimum (Hamming) distance and the
generator and parity-check matrices of a code. Some properties of binary linear codes, like the Singleton
bound, remain the same in the general case. Others, like the Hamming bound, require some modifications.

Consider a linear code C over GF(2ν) of length n. We say that C is cyclic if, for any codeword
(c0, c1, . . . , cn−1) ∈ C, then (cn−1, c0, c1, . . . , cn−2) ∈ C. In other words, the code is invariant under cyclic
shifts to the right.

If we write the codewords as polynomials of degree <n with coefficients in GF(2ν), this is equivalent
to say that if c(x) ∈ C, then xc(x) mod (xn − 1) ∈ C. Hence, if c(x) ∈ C, then, given any polynomial w(x),
the residue of dividing w(x)c(x) by xn − 1 is in C. In particular, if the degree of w(x)c(x) is smaller than
n, then w(x)c(x) ∈ C.

From now on, we write the elements of a cyclic code C as polynomials modulo xn − 1.

Theorem 1.2 C is an [n, k] cyclic code over GF(2ν) if and only if there is a (monic) polynomial g (x) of
degree n − k such that g (x) divides xn − 1 and each c(x) ∈ C is a multiple of g (x), that is, c(x) ∈ C if and
only if c(x) = w(x)g (x), deg(w) < k. We call g (x) a generator polynomial of C.

Proof 1.7 Let g (x) be a monic (i.e., lead coefficient is 1) polynomial in C such that g (x) has minimal
degree. If deg(g ) = 0 (i.e., g = 1), then C is the whole space (GF(2ν))n, so assume deg(g ) ≥ 1. Let c(x) be
any element inC. We can write c(x) = w(x)g (x) + r (x), where deg(r ) < deg(g ). Since deg(wg ) < n, g ∈ C
and C is cyclic, in particular, w(x)g (x) ∈ C. Hence, r (x) = c(x) − w(x)g (x) ∈ C. If r �= 0, we would
contradict the fact that g (x) has minimal degree, hence, r = 0 and c(x) is a multiple of g (x).

Similarly, we can prove that g (x) divides xn −1. Let xn −1 = h(x)g (x)+r (x), where deg(r ) < deg(g ).
In particular, h(x)g (x) ≡ −r (x) mod (xn − 1), hence, r (x) ∈ C. Since g (x) has minimal degree, r = 0,
so g (x) divides xn − 1.

Conversely, assume that every element in C is a multiple of g (x) and g divides xn − 1. It is immediate
that the code is linear and that it has dimension k. Let c(x) ∈ C, hence, c(x) = w(x)g (x) with deg(w) < k.
Also, since g (x) divides xn −1, xn −1 = h(x)g (x). Assume that c(x) = c0 + c1x + c2x2 +· · ·+ cn−1xn−1,
then, xc(x) ≡ cn−1+c0x+· · ·+cn−2xn−1(mod xn−1). We have to prove that cn−1+c0x+· · ·+cn−2xn−1 =
q(x)g (x), where q(x) has degree ≤ k − 1. Notice that

cn−1 + c0x + · · · + cn−2xn−1 = cn−1 + c0x + · · · + cn−2xn−1 + cn−1xn − cn−1xn

= c0x + · · · + cn−2xn−1 + cn−1xn − cn−1(xn − 1)

= xc(x) − cn−1(xn − 1)

= xw(x)g (x) − cn−1h(x)g (x)

= (xw(x) − cn−1h(x))g (x)

proving that the element is in the code. ✷
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Theorem 1.1 gives a method to find all cyclic codes of length n: simply take all the (monic) factors of
xn − 1. Each one of them is the generator polynomial of a cyclic code.

Example 1.6

Consider the [7, 4] cyclic code over GF(2) generated by g (x) = 1 + x + x3. We can verify that x7 − 1 =
g (x)(1 + x)(1 + x2 + x3), hence, g (x) indeed generates a cyclic code.

In order to encode an information polynomial over GF(2) of degree ≤ 3 into a codeword, we multiply
it by g (x).

Say that we want to encode u = (1, 0, 0, 1), which in polynomial form is u(x) = 1 + x3. Hence, the
encoding gives c(x) = u(x)g (x) = 1 + x + x4 + x6. In vector form, this gives c = (1 1 0 0 1 0 1).

It can be easily verified that the [7, 4] code given in this example has minimum distance 3 and is
equivalent to the Hamming code of Example 1.4. In other words, the codewords of the code given in this
example are permutations of the codewords of the [7,4,3] Hamming code given in Example 1.4.

The encoding method of a cyclic code with generator polynomial g is then very simple: we multiply the
information polynomial by g . However, this encoder is not systematic. A systematic encoder of a cyclic
code is given by the following algorithm:

Algorithm 1.1 (Systematic Encoding Algorithm for Cyclic Codes)

Let C be a cyclic [n, k] code over GF(2ν) with generator polynomial g (x). Let u(x) be an information
polynomial, deg(u) < k. Let r (x) be the residue of dividing xn−ku(x) by g (x). Then, u(x) is encoded into the
polynomial c(x) = u(x) − xkr (x).

We leave as an exercise proving that Algorithm 1.2 produces indeed a codeword in C.

Example 1.7

Consider the [7, 4] cyclic code over GF(2) of Example 1.6. If we want to encode systematically the
information vector u = (1, 0, 0, 1)(or u(x) = 1 + x3), we have to obtain first the residue of dividing
x3u(x) = x3 + x6 by g (x). This residue is r (x) = x + x2. Hence, the output of the encoder is c(x) =
u(x) − x4r (x) = 1 + x3 + x5 + x6. In vector form, this gives c = (1 0 0 1 0 1 1).

1.6 Reed Solomon Codes

Throughout this section, the codes considered are over the field GF(2ν). Let α be a primitive element in
GF(2ν), that is, α2ν−1 = 1, αi �= 1 for i �≡ 0 mod 2ν − 1. A Reed Solomon (RS) code of length n = 2ν − 1
and dimension k is the cyclic code generated by

g (x) = (x − α)(x − α2) · · · (x − αn−k−1)(x − αn−k)

Since each αi is a root of unity, x − αi divides xn − 1, hence g divides xn − 1 and the code is cyclic.
An equivalent way of describing a RS code, is as the set of polynomials over GF(2ν) of degree ≤ n − 1

with roots α, α2, . . . , αn−k , that is, F is in the code if and only if deg(F ) ≤ n − 1 and F (α) = F (α2) =
· · · = F (αn−k) = 0.

This property allows us to find a parity check matrix for a RS code. Say that F (x) = F0 + F1x + · · · +
Fn−1xn−1 is in the code. Let 1 ≤ i ≤ n − k, then

F (αi ) = F0 + F1α
i + · · · + Fn−1α

i(n−1) = 0 (1.14)

In other words, Equation 5.14 tells us that codeword (F0, F1, . . . , Fn−1) is orthogonal to the vectors
(1, αi , α2i , . . . , αi(n−1)), 1 ≤ i ≤ n − k. Hence these vectors are the rows of a parity check matrix for the
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RS code. A parity check matrix of an [n, k] RS code over GF(2ν) is then

H =




1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...
1 αn−k α(n−k)2 . . . α(n−k)(n−1)


 (1.15)

In order to show that H is in fact a parity check matrix, we need to prove that the rows of H are linearly
independent. The next lemma provides an even stronger result.

Lemma 1.6 Any set of n − k columns in matrix H defined by Equation 1.15 is linearly independent.

Proof 1.8 Take a set 0 ≤ i1 < i2 < · · · < in−k ≤ n−1 of columns of H . Denoteαi j byα j , 1 ≤ j ≤ n−k.
Columns i1, i2, . . . , in−k are linearly independent if and only if their determinant is nonzero, that is, if and
only if

det




α1 α2 . . . αn−k

(α1)2 (α2)2 . . . (αn−k)2

...
...

. . .
...

(α1)n−k (α2)n−k . . . (αn−k)n−k


 �= 0 (1.16)

Let

V(α1, α2, . . . , αn−k) = det




1 1 . . . 1
α1 α2 . . . αn−k

...
...

. . .
...

(α1)n−k−1 (α2)n−k−1 . . . (αn−k)n−k−1


 (1.17)

We call the determinant V(α1, α2, . . . , αn−k) a Vandermonde determinant: it is the determinant of an
(n − k) × (n − k) matrix whose rows are the powers of vector α1, α2, . . . , αn−k , the powers running
from 0 to n − k − 1. By properties of determinants, if we consider the determinant in Equation 1.16,
we have

det




α1 α2 . . . αn−k

(α1)2 (α2)2 . . . (αn−k)2

...
...

. . .
...

(α1)n−k (α2)n−k . . . (αn−k)n−k


 = α1α2 . . . αn−k V(α1, α2, . . . , αn−k). (1.18)

Hence, by Equation 1.16 and Equation 1.18, since the α j ’s are nonzero, it is enough to prove that
V(α1, α2, . . . , αn−k) �= 0. A well known result in literature states that

V(α1, α2, . . . , αn−k) =
∏

1≤i< j≤n−k

(α j − αi ) (1.19)

Since α is a primitive element in GF(2ν), its powers αl , 0 ≤ l ≤ n − 1 are distinct. In particular, the αi ’s,
l ≤ i ≤ n − k are distinct, hence, the product in the right hand side of Equation 1.19 nonzero. ✷

Corollary 1.3 An [n, k] RS code has minimum distance d = n − k + 1.
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Proof 1.9 Let H be the parity check matrix of the RS code defined by Equation 1.15. Notice that, since
any n − k columns in H are linearly independent, d ≥ n − k + 1 by Lemma 1.3.

On the other hand, d ≤ n − k + 1 by the Singleton bound (Corollary 1.2), so we have equality. ✷

Since RS codes meet the Singleton bound with equality, they are MDS (see Section 1.2).

Example 1.8

Consider the [7, 3, 5] RS code over GF(8), where GF(8) is given by Table 1.1. The generator polynomial is

g (x) = (x − α)(x − α2)(x − α3)(x − α4) = α3 + αx + x2 + α3x3 + x4

Assume that we want to encode the 3 byte vector u = 101 001 111. Writing the bytes as powers of α in
polynomial form, we have u(x) = α6 + α2x + α5x2.

In order to encode u(x), we perform

u(x)g (x) = α2 + α4x + α2x2 + α6x3 + α6x4 + α4x5 + α5x6

In vector form the output of the encoder is given by 001 011 001 101 101 011 111. If we encode u(x)
using a systematic encoder (Algorithm 1.1), then the output of the encoder is

α6 + α2x + α5x2 + α6x3 + α5x4 + α4x5 + α4x6

which in vector form is 101 001 111 101 111 011 011.

Next we make some observations:

� The definition given above for an [n, k] Reed Solomon code states that F (x) is in the code if and
only if it has as roots the powers α, α2, . . . , αn−k of a primitive element α. However, it is enough
to state that F has as roots a set of consecutive powers of α, say, αm, αm+1, . . . , αm+n−k−1, where
0 ≤ m ≤ n − 1. Although our definition (i.e., m = 1) gives the most usual setting for RS codes,
often engineering reasons may determine different choices of m. It is easy to verify that with the
more general definition of RS codes, the minimum distance remains n − k + 1.

� Given an [n, k] RS code, there is an easy way to shorten it and obtain an [n − l , k − l] code for
l < k. In effect, if we have only k − l bytes of information, we add l zeroes in order to obtain an
information string of length k. We then find the n − k redundant bytes using a systematic encoder.
When writing, of course, the l zeroes are not written, so we have an [n − l , k − l] code, called a
shortened RS code. It is immediately verified that shortened RS codes are also MDS.

We have defined RS codes, proven that they are MDS and showed how to encode them systematically. The
next step, to be developed in the next sections, is decoding them.

1.7 Decoding of RS Codes: The Key Equation

Through this section C denotes an [n, k] RS code (unless otherwise stated). Assume that a codeword
F (x) = ∑n−1

i=0 Fi xi in C is transmitted and a word R(x) = ∑n−1
i=0 Ri xi is received; hence, F and R are

related by an error vector E (x) =∑n−1
i=0 E i xi , where R(x) = F (x) + E (x). The decoder will attempt to

find E (x).
Let us start by computing the syndromes. For 1 ≤ j ≤ n − k, we have

S j = R(α j ) =
n−1∑
i=0

Ri α
i j =

n−1∑
i=0

E i α
i j (1.20)

Before proceeding further, consider Equation 1.20 in a particular case.
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Take the [n, n − 2] 1-byte correcting RS code. In this case, we have two syndromes S1 and S2, so, if
exactly one error has occurrred, say in location i , by Equation 1.20, we have

S1 = E i α
i and S2 = E i α

2i (1.21)

Hence, αi = S2/S1, so we can determine the location i in error. The error value is E i = (S1)2/S2.

Example 1.9

Consider the [7, 5, 3] RS code over GF(8), where GF(8) is given by Table 1.1. Assume that we want to
decode the received vector.

r = (101 001 110 001 011 010 100)

which in polynomial form is

R(x) = α6 + α2x + α3x2 + α2x3 + α4x4 + αx5 + x6

Evaluating the syndromes, we obtain S1 = R(α) = α2 and S2 = R(α2) = α4. Thus, S2/S1 = α2, meaning
that location 2 is in error. The error value is E 2 = (S1)2/S2 = (α2)2/α4 = 1, which in vector form is 100.
The output of the decoder is then

c = (101 001 010 001 011 010 100)

which in polynomial form is

C(x) = α6 + α2x + αx2 + α2x3 + α4x4 + αx5 + x6

Let E be the subset of {0, 1, . . . , n −1} of locations in error, that is, E = {l : El �= 0}. With this notation,
Equation 1.20 becomes

S j =
∑
i∈E

E i α
ij, 1 ≤ j ≤ n − k (1.22)

The decoder will find the error set E and the error values E i when the error correcting capability of the
code is not exceeded. Thus, if s is the number of errors and 2s ≤ n − k, the system of equations given by
Equation 1.22 has a unique solution. However, this is a nonlinear system, and it is very difficult to solve it
directly.

In order to find the set of locations in error E and the corresponding error values {E i : i ∈ E}, we define
two polynomials. The first one is called the error locator polynomial, which is the polynomial that has as
roots the values α−i , where i ∈ E . We denote this polynomial by σ (x). Explicitly,

σ (x) =
∏
i∈E

(x − α−i ) (1.23)

If somehow we can determine the polynomial σ (x), by finding its roots, we can obtain the set E of locations
in error. Once we have the set of locations in error, we need to find the errors themselves. We define a
second polynomial, called the error evaluator polynomial and denoted by w(x), as follows:

w(x) =
∑
i∈E

E i

∏
l∈E
l �=i

(x − α−l ) (1.24)

Since an [n, k] RS code corrects at most (n − k)/2 errors, we assume that |E | = deg(σ ) ≤ (n − k)/2.
Notice also that deg(w) ≤ |E | − 1, since w is a sum of polynomials of degree |E | − 1. Given a polynomial
f (x) = a0 + a1x + · · · + amxm with coefficients over a field F , we define the (formal) derivative of f ,
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denoted f ′, as the polynomial

f ′(x) = a1 + 2a2x + · · · + mamxm−1

For instance, over GF(8), if f (x) = α + α3x + α4x2, then f ′(x) = α3 (since 2 = 0 over GF(2)).
The formal derivative has several properties similar to the traditional derivative, like the derivative of a
product, ( f g )′ = f ′g + f g ′. Back to the error locator and error evaluator polynomials, we have the
following relationship between the two:

E i = w(α−i )

σ ′(α−i )
(1.25)

Let us prove some of these facts in the following lemma:

Lemma 1.7 The polynomials σ (x) and w(x) are relatively prime, and the error values E i are given by
Equation 1.25

Proof 1.10 In order to show that σ (x) and w(x) are relatively prime, it is enough to observe that they
have no roots in common. In effect, if α− j is a root of σ (x), then j ∈ E . By Equation 1.24,

w(α− j ) =
∑
i∈E

E i

∏
l∈E
l �=i

(α− j − α−l ) = E j

∏
l∈E
l �= j

(α− j − α−l ) �= 0 (1.26)

Hence, σ (x) and w(x) are relatively prime.
In order to prove Equation 1.25, notice that

σ ′(x) =
∑
i∈E

∏
l∈E
l �=i

(x − α−l )

hence,

σ ′(α− j ) =
∏
l∈E
l �= j

(α− j − α−l ) (1.27)

By Equation 1.26 and Equation 1.27, Equation 1.25 follows. ✷

The decoding methods of RS codes are based on finding the error locator and the error evaluator
polynomials. By finding the roots of the error locator polynomial, we determine the locations in error,
while the errors themselves can be found using Equation 1.25. We will establish a relationship between
σ (x) and w(x), but first we need to define a third polynomial, the syndrome polynomial. We define the
syndrome polynomial as the polynomial of degree ≤ n −k −1 whose coefficients are the n −k syndromes.
Explicitly,

S(x) = S1 + S2x + S3x2 + · · · + Sn−k xn−k−1 =
n−k−1∑

j=0

S j+1x j (1.28)

Notice that R(x) is in C if and only if S(x) = 0.
The next theorem gives the so called key equation for decoding RS codes, and it establishes a fundamental

relationship between σ (x), w(x) and S(x).

Theorem 1.3 There is a polynomial µ(x) such that the error locator, the error evaluator, and the syndrome
polynomials verify the following equation:

σ (x)S(x) = −w(x) + µ(x)xn−k (1.29)
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Alternatively, Equation 1.29 can be written as a congruence as follows:

σ (x)S(x) ≡ −w(x)(mod xn−k) (1.30)

Proof 1.11 By Equation 1.28 and Equation 1.22, we have

S(x) =
n−k−1∑

j=0

S j+1x j

=
n−k−1∑

j=0

(∑
i∈E

E i α
i( j+1)

)
x j

=
∑
i∈E

E i α
i

n−k−1∑
j=0

(αi x) j

=
∑
i∈E

E i α
i (αi x)n−k − 1

αi x − 1

=
∑
i∈E

E i
(αi x)n−k − 1

x − α−i
(1.31)

since
∑m

l=0 al = (am+1 − 1)/(a − 1) for a �= 1. Multiplying both sides of Equation 1.31 by σ (x), where
σ (x) is given by Equation 1.23, we obtain

σ (x)S(x) =
∑
i∈E

E i ((αi x)n−k − 1)
∏
l∈E
l �=i

(x − α−l )

= −
∑
i∈E

E i

∏
l∈E
l �=i

(x − α−l ) +


∑

i∈E
E i α

i(n−k)
∏
l∈E
l �=i

(x − α−l )


 xn−k

= −ω(x) + µ(x)xn−k

since ω(x) is given by Equation 1.24. This completes the proof. ✷

The decoding methods for RS codes concentrate on solving the key equation. In the next section we
describe an efficient decoder based on Euclid’s algorithm for polynomials. Another efficient decoding
algorithm is the so-called Berlekamp-Massey decoding algorithm [1].

1.8 Decoding RS Codes with Euclid’s Algorithm

Given two polynomials or integers A and B , Euclid’s algorithm provides a recursive procedure to find the
greatest common divisor C between A and B , denoted C = gcd(A, B). Moreover, the algorithm also finds
two polynomials or integers S and T such that C = S A + T B .

Recall that we want to solve the key equation

µ(x)xn−k + σ (x)S(x) = −ω(x)

In the recursion, xn−k will play the role of A and S(x) the role of B ; σ (x) and ω(x) will be obtained at a
certain step of the recursion.

Let us describe Euclid’s algorithm for integers or polynomials. Consider A and B such that A ≥ B if they
are integers and deg(A) ≥ deg(B) if they are polynomials. We start from the initial conditions r−1 = A
and r0 = B .
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We perform a recursion in steps 1, 2, . . . , i, . . . . At step i of the recursion, we obtain ri as the residue of
dividing ri−2 by ri−1, that is , ri−2 = qi ri−1 + ri , where ri < ri−1 for integers and deg(ri ) < deg(ri−1) for
polynomials. The recursion is then given by

ri = ri−2 − qi ri−1 (1.32)

We also obtain values si and ti such that ri = si A + ti B . Hence, the same recursion is valid for si and ti as
well:

si = si−2 − qi si−1 (1.33)

ti = ti−2 − qi ti−1 (1.34)

Since r−1 = A = (1)A + (0)B and r0 = B = (0)A + (1)B , we set the initial conditions s−1 = 1, t−1 =
0, s0 = 0 and t0 = 1.

Let us illustrate the process with A = 124 and B = 46. We will find gcd(124, 46). The idea is to divide
recursively by the residues of the division until obtaining a last residue 0. Then, the last divisor is the gcd.
The procedure works as follows:

124 = (1)124 + (0)46
46 = (0)124 + (1)46
32 = (1)124 + (−2)46
14 = (−1)124 + (3)46

4 = (3)124 + (−8)46
2 = (−10)124 + (27)46

Since 2 divides 4, 2 is the greatest common divisor between 124 and 46.
The best way to develop the process above, is to construct a table for ri , qi , si and ti using the initial

conditions and recursions from Equation 1.32 through Equation 1.34.
Let us do it again for 124 and 46.

i ri qi si = si−2 − qi si−1 ti = ti−2 − qi ti−1

−1 124 1 0
0 46 0 1
1 32 2 1 −2
2 14 1 −1 3
3 4 2 3 −8
4 2 3 −10 27
5 0 2 23 −62

From now on, let us concentrate on Euclid’s algorithm for polynomials. If we want to solve the key equation

µ(x)xn−k + σ (x)S(x) = −ω(x)

and the error correcting capability of the code has not been exceeded, then applying Euclid’s algorithm to
xn−k and to S(x), at a certain point of the recursion, we obtain

ri (x) = si (x)xn−k + ti (x)S(x)

where deg(ri ) ≤ �(n − k)/2
 − 1, and i is the first with this property. Then, ω(x) = −λri (x) and
σ (x) = λti (x), where λ is a constant that makes σ (x) monic. For a proof that Euclid’s algorithm gives the
right solution, see [1] or [5].

We illustrate the decoding of RS codes using Euclid’s algorithm with an example. Notice that we are
interested in ri (x) and ti (x) only.
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Example 1.10

Consider the [7, 3, 5] RS code over GF(8), and assume that we want to decode the received vector

r = (011 101 111 111 111 101 010)

which in polynomial form is

R(x) = α4 + α6x + α5x2 + α5x3 + α5x4 + α6x5 + αx6

Evaluating the syndromes, we obtain

S1 = R(α) = α5

S2 = R(α2) = α

S3 = R(α3) = 0
S4 = R(α4) = α3

Therefore, the syndrome polynomial is S(x) = α5 + αx + α3x3.
Next, we apply Euclid’s algorithm with respect to x4 and to S(x). When we find the first i for which

ri (x) has degree ≤ 1, we stop the algorithm and we obtain ω(x) and σ (x). The process is tabulated below.

i ri = ri−2 − qi ri−1 qi ti = ti−2 − qi ti−1

−1 x4 0
0 α5 + αx + α3x3 1
1 α2x + α5x2 α4x α4x
2 α5 + α2x α2 + α5x 1 + α6x + α2x2

So, for i = 2, we obtain a polynomial r2(x) = α5 + α2x of degree 1. Now, multiplying both r2(x) and
t2(x) by λ = α5, we obtain ω(x) = α3 + x and σ (x) = α5 + α4x + x2.

Searching the roots of σ (x), we verify that these roots are α0 = 1 and α5; hence, the errors are in locations
0 and 2. The derivative of σ (x) is σ ′(x) = α4. By Equation 1.25, we obtain E 0 = ω(1)/σ ′(1) = α4 and
E 2 = ω(α5)/σ ′(α5) = α5. Adding E 0 and E 2 to the received locations 0 and 2, the decoder concludes
that the transmitted polynomial was

F (x) = α6x + α5x3 + α5x4 + α6x5 + αx6

which in vector form is

c = (000 101 000 111 111 101 010)

If the information is carried in the first 3 bytes, then the output of the decoder is

u = (000 101 000)

1.9 Applications: Burst and Random Error Correction

In the previous sections we have studied how to encode and decode Reed-Solomon codes. In this section,
we will briefly examine how they are used in applications, mainly for correction of bursts of errors. The two
main methods for burst and combined burst and random error correction are interleaving and product
codes.

In practice, errors often come in bursts. A burst of length l is a vector whose nonzero entries are among
l consecutive (cyclically) entries, the first and last of them being nonzero. We consider binary bursts, and
we use the elements of larger fields (bytes) to correct them. Below are some examples of bursts of length 4
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in vectors of length 15:

0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Errors tend to come in bursts not only because the channel is bursty. Normally, both in optical and
magnetic recording, data is encoded using a so called modulation code, which attempts to match the data
to the characteristics of the channel. In general, the ECC is applied first to the random data and then
the encoded data is modulated using modulation codes (see the chapter on modulation codes in this
book). At the decoding, the order is reversed: when data exits the channel, it is first demodulated and
then corrected using the ECC. Now, the demodulator tends to propagate errors, even single-bit errors.
Although most modulation codes used in practice tend to control error propagation, nevertheless errors
have a bursty character. For that reason, we need to implement a burst-correcting scheme, as we will
see next.

A well-known relationship between the burst-correcting capability of a code and its redundancy is given
by the Reiger bound, to be presented next, and whose proof is left as an exercise.

Theorem 1.4 (Reiger Bound) Let C be an [n, k] linear code over a field GF(2ν) that can correct all bursts
of length up to l . Then 2l ≤ n − k.

Cyclic binary codes that can correct bursts were obtained by computer search. A well known family of
burst-correcting codes are the so called Fire codes. Here, we concentrate on the use of RS codes for burst
correction. There are good reasons for this. One of them is that, although good burst-correcting codes
have been found by computer search, there are no known general constructions giving cyclic codes that
approach the Reiger bound. Interleaving of RS codes on the other hand, to be described below, provides
a burst-correcting code whose redundancy, asymptotically, approaches the Reiger bound. The longer the
burst we want to correct, the more efficient interleaving of RS codes is. The second reason for choosing
interleaving of RS codes, and probably the most important one, is that, by increasing the error-correcting
capability of the individual RS codes, we can correct multiple bursts, as we will see. The known binary
cyclic codes are designed, in general, to correct only one burst. Let us start with the use of regular RS codes
for correction of bursts. Let C be an [n, k] RS code over GF(2b) (i.e., b-bit bytes). If this code can correct
s bytes, in particular, it can correct a burst of length up to (s − 1)b + 1 bits. In effect, a burst of length
(s − 1)b + 2 bits may affect s + 1 consecutive bytes, exceeding the byte-correcting capability of the code.
This happens when the burst of length (s − 1)b + 2 bits starts in the last bit of a byte. How good are the
PRS codes as burst-correcting codes? Given a binary [n, k] code that can correct bursts of length up to l ,
we define a parameter, called the burst-correcting efficiency of the code, as follows:

el = 2l

n − k
(1.35)

Notice that, by the Reiger bound, el ≤ 1. The closer el is to 1, the more efficient the code is for correction
of bursts. Going back to our [n, k] RS code over GF(2b), it can be regarded as an [nb, kb] binary code.
Assuming that the code can correct s bytes and its redundancy is n−k = 2s , its burst-correcting efficiency is

e(s−1)b+1 = (s − 1)b + 1

bs

Notice that, for s → ∞, e(s−1)b+1 → 1, justifying our assertion that for long bursts, RS codes are efficient
as burst-correcting codes (as a comparison, the efficiency of Fire codes, asymptotically, tends to 2/3).
However, when s is large, there is a problem regarding complexity. It may not be practical to implement a
RS code with too much redundancy. Moreover, the length of a RS code is limited; in the case of 8-bit bytes,
it cannot be more than 256 (when extended). An alternative would be to implement a 1-byte correcting
RS code interleaved s times.
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c0,0 c0,1 c0,2 . . . c0,m−1

c1,0 c1,1 c1,2 . . . c1,m−1

...
...

...
. . .

...

ck−1,0 ck−1,1 ck−1,2 . . . ck−1,m−1

ck,0 ck,1 ck,2 . . . ck,m−1

...
...

...
. . .

...

cn−1,0 cn−1,1 cn−1,2 . . . cn−1,m−1

FIGURE 1.1 Interleaving m times of code C.

An [n, k] code interleaved m times is illustrated in Figure 1.1. Each column c0, j , . . . , cn−1, j is a codeword
in an [n, k] code. In general, each symbol ci, j is a byte and the code is a RS code. The first k bytes carry
information bytes and the last n − k bytes are redundant bytes. The bytes are read in row order, and the
parameter m is called the depth of interleaving. If each of the individual codes can correct up to s errors,
then the interleaved scheme can correct up to s bursts of length up to m bytes each, or (m − 1)b + 1 bits
each. This occurs because a burst of length up to m bytes is distributed among m different codewords.
Intuitively, interleaving “randomizes” a burst.

The drawback of interleaving is delay: notice that we need to read most of the information bytes before
we are able to calculate and write the redundant bytes. Thus, we need enough buffer space to accomplish
this.

Interleaving of RS codes has been widely used in magnetic recording. For instance, in a disk, the data
are written in concentric tracks, and each track contains a number of information sectors. Typically,
a sector consists of 512 information 8-bit bytes (although the latest trends tend to larger sectors). A
typical embodiment would consist in dividing the 512 bytes into four codewords, each one containing 128
information bytes and 6 redundant bytes (i.e., each interleaved shortened RS codeword can correct up to
3 bytes). Therefore, this scheme can correct up to three bursts of length up to 25 bits each.

A natural generalization of the interleaved scheme described above is product codes. In effect, we may
consider that both rows and columns are encoded into error-correcting codes. The product of an [n1, k1]
code C1 with an [n2, k2] code C2, denoted C1 × C2, is illustrated in Figure 1.2. If C1 has minimum distance
d1 and C2 has minimum distance d2, it is easy to see that C1 × C2 has minimum distance d1d2.

In general, the symbols are read out in row order (although other readouts, like diagonal readouts, are
also possible). For encoding, first the column redundant symbols are obtained, and then the row redundant
symbols. For obtaining the checks on checks ci, j , k1 ≤ i ≤ n1 − 1, k2 ≤ j ≤ n2 − 1, it is easy to see that it
is irrelevant if we encode on columns or on rows first. If the symbols are read in row order, normally C1 is
called the outer code and C2 the inner code. For decoding, there are many possible procedures. The idea

c0,0 c0,1 c0,2 . . . c0,k2−1 c0,k2 c0,k2+1 . . . c0,n2−1

c1,0 c1,1 c1,2 . . . c1,k2−1 c1,k2 c1,k2+1 . . . c1,n2−1

...
...

...
. . .

...
...

...
. . .

...

ck1−1,0 ck1−1,1 ck1−1,2 . . . ck1−1,k2−1 ck1−1,k2 ck1−1,k2+1 . . . ck1−1,n2−1

ck1,0 ck1,1 ck1,2 . . . ck1,k2−1 ck1,k2 ck1,k2+1 . . . ck1,n2−1

...
...

...
. . .

...
...

...
. . .

...

cn1−1,0 cn1−1,1 cn1−1,2 . . . cn1−1,k2−1 cn1−1,k2 cn1−1,k2+1 . . . cn1−1,n2−1

FIGURE 1.2 Product code C1 × C2.
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is to correct long bursts together with random errors. The inner code C2 corrects first. In that case, two
events may happen when its error-correcting capability is exceeded: either the code will detect the error
event or it will miscorrect. If the code detects an error event (that may well have been caused by a long
burst), one alternative is to declare an erasure in the whole row, which will be communicated to the outer
code C1. The other event is a miscorrection, that cannot be detected. In this case, we expect that the errors
will be corrected by the error-erasure decoder of the outer code.

Product codes are important in practical applications. For instance, the code used in the DVD (digital
video disk) is a product code where C1 is a [208, 192, 17] RS code and C2 is a [182, 172, 11] RS code.
Both RS codes are defined over GF(256), where GF(256) is generated by the primitive polynomial
1 + x2 + x3 + x4 + x8.
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2.1 Introduction

Modulation codes are used to constrain the individual sequences that are recorded in data storage channels,
such as magnetic or optical disk or tape drives. The constraints are imposed in order to improve the detection
capabilities of the system. Perhaps the most widely known constraints are the runlength limited (RLL(d , k))
constraints, in which 1s are required to be separated by at least d and no more than k 0s. Such constraints
are useful in data recording channels that employ peak detection: waveform peaks, corresponding to data
ones, are detected independently of one another. The d-constraint helps to increase linear density while
mitigating intersymbol interference, and the k-constraint helps to provide feedback for timing and gain
control.

Peak detection was widely used until the early 1990s. While it is still used today in some magnetic tape
drives and some optical recording devices, most high density magnetic disk drives now use a form of
maximum likelihood (Viterbi) sequence detection. The data recording channel is modeled as a linear,
discrete-time, communications channel with intersymbol interference (ISI), described by its transfer
function and white Gaussian noise. The transfer function is often given by h(D) = (1 − D)(1 + D)N ,
where N depends on and increases with the linear recording density.

Broadly speaking, two classes of constraints are of interest in today’s high density recording channels:
(1) constraints for improving timing and gain control and simplifying the design of the Viterbi detector
for the channel, and (2) constraints for improving noise immunity. Some constraints serve both purposes.

Constraints in the first class usually take the form of a PRML (G , I ) constraint: the maximum run of
0s is G and the maximum run of 0s, within each of the two substrings defined by the even indices and
odd indices, is I . The G-constraint plays the same role as the k-constraint in peak detection, while the
I -constraint enables the Viterbi detector to work well within practical limits of memory.
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Constraints in the second class eliminate some of the possible recorded sequences in order to increase
the minimum distance between those that remain or eliminate the possibility of certain dominant error
events. This general goal does not specify how the constraints should be defined, but many such constraints
have been constructed [20] and the references therein for a variety of examples. Bounds on the capacities
of constraints that avoid a given set of error events have been given in [26].

Until recently, the only known constraints of this type were the matched-spectral-null (MSN) con-
straints. They describe sequences whose spectral nulls match those of the channel and therefore increase
its minimum distance. For example, a set of DC-balanced sequences (i.e., sequences of ±1 whose accumu-
lated digital sums are bounded) is an MSN constraint for the channel with transfer function h(D) = 1− D,
which doubles its minimum distance [18].

During the past few years, significant progress has been made in defining high capacity distance en-
hancing constraints for high density magnetic recording channels. One of the earliest examples of such a
constraint is the maximum transition run (MTR) constraint [28], which constrains the maximum run of
1s. We explain the main idea behind this type of distance-enhancing codes in Section 2.3.

Another approach to eliminating problematic error events is that of parity coding. Here, a few bits of
parity are appended to (or inserted in) each block of some large size, typically 100 bits. For some of the
most common error events, any single occurrence in each block can be eliminated. In this way, a more
limited immunity against noise can be achieved with less coding overhead [5].

Coding for more realistic recording channel models that include colored noise and intertrack interference
are discussed in Section 2.4. We point out that different constraints which avoid the same prescribed set
of differences may have different performance on more realistic channels. This makes some of them more
attractive for implementation.

For a more complete introduction to this subject, we refer the reader to any one of the many expository
treatments, such as [16], [17], or [24].

2.2 Constrained Systems and Codes

Modulation codes used in almost all contemporary storage products belong to the class of constrained
codes. These codes encode random input sequences to sequences that obey the constraint of a labeled
directed graph with a finite number of states and edges. The set of corresponding constrained sequences
is obtained by reading the labels of paths through the graph. Sets of such sequences are called constrained
systems or constraints. Figure 2.1 and Figure 2.2 depict graph representations of an RLL constraint and a
DC-balanced constraint.
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FIGURE 2.1 RLL (1, 3) constraint.
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FIGURE 2.2 DC-balanced constraint.
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Of special interest are those constraints that do not contain (globally or at certain positions) a finite
number of finite length strings. These systems are called systems of finite type (FT). An FT system X over
alphabetA can always be characterized by a finite list of forbidden strings F = {w1, . . . , w N} of symbols
inA. Defined this way, FT systems will be denoted by XAF . The RLL constraints form a prominent class of
FT constraints, while DC-balanced constraints are typically not FT.

Design of constrained codes begins with identifying constraints, such as those described in Section 2.1,
that achieve certain objectives. Once the system of constrained sequences is specified, information bits
are translated into sequences that obey the constraints via an encoder, which usually has the form of a
finite-state machine. The actual set of sequences produced by the encoder is called a constrained code
and is often denoted C. A decoder recovers user sequences from constrained sequences. While the decoder
is also implemented as a finite-state machine, it is usually required to have a stronger property, called
sliding-block decodablility, which controls error propagation [24].

The maximum rate of a constrained code is determined by Shannon capacity. The Shannon capacity or
simply capacity of a constrained system, denoted by C , is defined as

C = lim
n→∞

log2 N(n)

n

where N(n) is the number of sequences of length n. The capacity of a constrained system represented by
a graph G can be easily computed from the adjacency matrix (or state transition matrix) of G (provided
that the labeling of G satisfies some mildly innocent properties). The adjacency matrix of G with r states
and aij edges from state i to state j , 1 ≤ i, j ≤ r , is the r × r matrix A = A(G) = {aij}r×r . The Shannon
capacity of the constraint is given by

C = log2 λ(A)

where λ(A) is the largest real eigenvalue of A.
The state-splitting algorithm [1] (see also [24]) gives a general procedure for constructing constrained

codes at any rate up to capacity. In this algorithm, one starts with a graph representation of the desired
constraint and then transforms it into an encoder via various graph-theoretic operations including splitting
and merging of states. Given a desired constraint and a desired rate p/q ≤ C , one or more rounds of state
splitting are performed; the determination of which states to split and how to split them is governed by an
approximate eigenvector, that is, a vector x satisfying Aq x ≥ 2p x .

There are many other very important and interesting approaches to constrained code construction —
far too many to mention here. One approach combines state-splitting with look-ahead encoding to obtain
a very powerful technique which yields competent codes [14]. Another approach involves variable-length
and time-varying variations of these techniques [2, 13]. Many other effective coding constructions are
described in the monograph [17].

For high capacity constraints, graph transforming techniques, such as the state-splitting algorithm, may
result in encoder/decoder architectures with formidable complexity. Fortunately, a block encoder/decoder
architecture with acceptable implementation complexity for many constraints can be designed by well-
known enumerative [6], and other combinatorial [32] as well as heuristic techniques [25].

Translation of constrained sequences into the channel sequences depends on the modulation method.
Saturation recording of binary information on magnetic medium is accomplished by converting an input
stream of data into a spatial stream of bit cells along a track where each cell is fully magnetized in one of
two possible directions, denoted by 0 and 1. There are two important modulation methods commonly
used on magnetic recording channels: non-return-to-zero (NRZ) and modified non-return-to-zero (NRZI).
In NRZ modulation, the binary digits 0 and 1 in the input data stream correspond to 0 and 1 directions
of cell magnetizations, respectively. In NRZI modulation, the binary digit 1 corresponds to a magnetic
transition between two bit cells, and the binary digit 0 corresponds to no transition. For example, the
channel constraint which forbids transitions in two neighboring bit-cells, can be accomplished by either
F = {11} NRZI constraint or F = {101, 010} NRZ constraint. The graph representation of these two
constraints is shown in Figure 2.3. The NRZI representation is in this case simpler.
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FIGURE 2.3 Two equivalent constraints: (a) F = {11} NRZI, and (b) F = {101, 010} NRZ.

2.3 Constraints for ISI Channels

We discuss a class of codes known as codes which avoid specified differences. This is the only class of distance
enhancing codes used in commercial magnetic recording systems. There are two main reasons for this:
these codes simplify the channel detectors relative to the uncoded channel and even high rate codes in this
class can be realized by low complexity encoders and decoders.

2.3.1 Requirements

A number of papers have proposed using constrained codes to provide coding gain on channels with high
ISI (see [4, 10, 20, 28]). The main idea of this approach can be described as follows [20]. Consider a discrete-
time model for the magnetic recording channel with possibly constrained input a = {an} ∈ C ⊆ {−1, 1}∞,
impulse response {hn}, and output y = {yn} given by

yn =
∑

m

amhn−m + ηn (2.1)

where h(D) = ∑
n hn Dn = (1 − D)(1 + D)3 (E2PR4) or h(D) = ∑

n hn = (1 − D)(1 + D)4 (E3PR4),
ηn are independent Gaussian random variables with zero mean and variance σ 2. The quantity 1/σ 2

is referred to as the signal-to-noise ratio (SNR). The minimum distance of the uncoded channel
(Equation 2.1) is

d2
min = min

ε(D)�=0
‖h(D)ε(D)‖2

where ε(D) = ∑l−1
i=0 εi Di , (εi ∈ {−1, 0, 1}, ε0 = 1, εl−1 �= 0) is the polynomial corresponding to a normal-

ized input error sequence ε = {εi }l−1
i=0 of length l , and the squared norm of a polynomial is defined as

the sum of its squared coefficients. The minimum distance is bounded from above by ‖h(D)‖2, denoted
by

d2
MFB = ‖h(D)‖2 (2.2)

This bound is known as the matched-filter bound (MFB), and is achieved when the error sequence of length
l = 1, that is, ε(D) = 1, is in the set

arg min
ε(D)�=0

‖h(D)ε(D)‖2 (2.3)
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For channels that fail to achieve the MFB, that is, for which d2
min < ‖h(D)‖2, any error sequences ε(D)

for which

d2
min ≤ ‖h(D)ε(D)‖2 < ‖h(D)‖2 (2.4)

are of length l ≥ 2 and may belong to a constrained system X {−1,0,1}
L , where L is an appropriately chosen

finite list of forbidden strings.
For code C, we write the set of all admissible nonzero error sequences as

E(C) = {ε ∈ {−1, 0, 1}∞|
ε �= 0, ε = (a − b)/2, a, b ∈ C}

Given the condition E(C) ⊆ X {−1,0,1}
L , we seek to identify the least restrictive finite collection F of blocks

over the alphabet {0, 1} so that

C ⊆ X {0,1}
F =⇒ E(C) ⊆ X {−1,0,1}

L (2.5)

2.3.2 Definitions

A constrained code is defined by specifying F , the list of forbidden strings for code sequences. Prior to
that one needs to first characterize error sequences that satisfy Equation 2.4 and then specify L, the list
of forbidden strings for error sequences. Error event characterization can be done by using any of the
methods described by Karabed et al. [20]. Specification of L is usually straightforward.

A natural way to construct a collectionF of blocks forbidden in code sequences based on the collection
L of blocks forbidden in error sequences is the following. From the above definition of error sequences
ε = {εi } we see that εi = 1 requires ai = 1 and εi = −1 requires ai = 0, that is, ai = (1 + εi )/2. For each
block wE ∈ L, construct a list FwE of blocks of the same length l according to the rule:

FwE = {wC ∈ {−1, 1}l |
w i
C = (1 + w i

E )/2 for all i for which w i
E �= 0}

Then the collection F obtained as F = ∪wE∈LFwE satisfies requirement (Equation 2.5). However, the
constrained system X {0,1}

F obtained this way may not be the most efficient. (Bounds on the achievable rates
of codes which avoid specified differences were found recently in [26].)

We illustrate the above ideas on the example of the E2PR4 channel. Its transfer function is h(D) =
(1 − D)(1 + D)3, and its MFB is ‖(1 − D)(1 + D)3 · 1‖2 = 10. The error polynomial ε(D) = 1 − D + D2

is the unique error polynomial for which ‖(1 − D)(1 + D)3ε(D)‖2 = 6, and the error polynomials
ε(D) = 1 − D + D2 + D5 − D6 + D7 and ε(D) = ∑l−1

i=0(−1)i Di for l ≥ 4 are the only polynomials for
which ‖(1 − D)(1 + D)3ε(D)‖2 = 8 (see [20]).

It is easy to show that these error events are not in the constrained error set defined by the list of forbidden
error strings L = {+−+ 0 0, +−+−}, where + denotes 1 and − denotes −1. To see that, note that an error
sequence that does not contain the string +−+ 0 0 cannot have error polynomials ε(D) = 1 − D + D2

or ε(D) = 1 − D + D2 + D5 − D6 + D7, while an error sequence that does not contain string +−+−
cannot have an error polynomial of the form ε(D) = ∑l−1

i=0(−1)i Di for l ≥ 4. Therefore, by the above
procedure of defining the list of forbidden code strings, we obtain the F = {+−+} NRZ constraint. Its
capacity is about 0.81, and a rate 4/5 code into the constraint was first given in [19].

In [20], the following approach was used to obtain several higher rate constraints. For each of error
strings in L, we write all pairs of channel strings whose difference is the error string. To defineF , we look
for the longest string(s) appearing in at least one of the strings in each channel pair. For the example above
and the +−+ 0 0 error string, a case-by-case analysis of channel pairs is depicted in Figure 2.4. We can
distinguish two types (denoted by A and B in the figure) of pairs of code sequences involved in forming
an error event. In a pair of type A, at least one of the sequences has a transition run of length 4. In a pair
of type B, both sequences have transition runs of length 3, but for one of them the run starts at an even
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FIGURE 2.4 Possible pairs of sequences for which error event + − +00 may occur.

position and for the other at an odd position. This implies that an NRZI constrained system that limits
the run of 1s to 3 when it starts at an odd position, and to 2 when it starts at an even position, eliminates
all possibilities shown bold-faced in Figure 2.4. In addition, this constraint eliminates all error sequences
containing the string +−+−. The capacity of the constraint is about 0.916, and rate 8/9 block codes with
this constraint has been implemented in several commercial read channel chips. More about the constraint
and the codes can be found in [4, 10, 20, 28].

2.4 Channels with Colored Noise and Intertrack Interference

Magnetic recording systems always operate in the presence of colored noise intertrack interference, and
data dependent noise. Codes for these more realistic channel models are studied in [27]. Below, we briefly
outline the problem.

Data recording and retrieval process is usually modeled as a linear, continuous-time, communica-
tions channel described by its Lorentzian step response and additive white Gaussian noise. The most
common discrete-time channel model is given by Equation 2.1. Magnetic recording systems employ
channel equalization to the most closely matching transfer function h(D) = ∑

n hn Dn of the form
h(D) = (1 − D)(1 + D)N . This equalization alters the spectral density of the noise, and a better channel
model assumes that the ηn in Equation 2.1 are identically distributed, Gaussian random variables with
zero mean, variance σ 2, and normalized cross-correlation E {ηnηk}/σ 2 = ρn−k .

In practice, there is always intertrack interference (ITI), that is, the read head picks up magnetization
from an adjacent track. Therefore, the channel output is given by

yn =
∑

m

amhn−m +
∑

m

xmgn−m + ηn (2.6)

where {gn} is the discrete-time impulse response of the head to the adjacent track, and x = {xn} ∈ C is
the sequence recorded on that track. We assume that the noise is white.

In the ideal case (Equation 2.1), the probability of detecting b given that a was recorded is equal to
Q(d(ε)/σ ), where d(ε) is the distance between a and b given by

d2(ε) =
∑

n

(∑
m

εmhn−m

)2

(2.7)

Therefore, a lower bound, and a close approximation for small σ , to the minimum probability of an
error-event in the system is given by Q(dmin,C/σ ), where

dmin,C = min
ε∈EC

d(ε)
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is the channel minimum distance of code C. We refer to

dmin = min
ε∈{−1,0,1}∞

d(ε) (2.8)

as the minimum distance of the uncoded channel, and to the ratio dmin,C/dmin as the gain in distance of
code C over the uncoded channel.

In the case of colored noise, the probability of detecting b given that a was recorded equals to Q(
(ε)/σ ),
where 
(ε) is the distance between a and b given by


2(ε) =
[∑

n

(∑
m εmhn−m

)2]2∑
n

∑
k

(∑
m εmhn−m

)
ρn−k

(∑
m εmhk−m

)
Therefore, a lower bound to the minimum probability of an error-event in the system is given by
Q

(

min,C/σ

)
, where


min,C = min
ε∈EC


(ε)

In the case of ITI (Equation 2.6), we are interested in the probability of detecting sequence b given that
sequence a was recorded on the track being read and sequence x was recorded on an adjacent track. This
probability is

Q(δ(ε, x)/σ ),

where δ(ε, x) is the distance between a and b in the presence of x given by [30]

δ2(ε, x) = 1[∑
n

(∑
m εmhn−m

)2][∑
n

(∑
m εmhn−m

)2 +∑
n

(∑
m xmgn−m

) (∑
m εmhn−m

)]2

Therefore, a lower bound to the minimum probability of an error-event in the system is proportional to
Q(δmin,C/σ ), where

δmin,C = min
ε �=0,x∈C

δ(ε, x)

Distance δmin,C can be bounded as follows [30]:

δmin,C ≥ (1 − M)dmin,C (2.9)

where M = maxn,x∈C
∑

m xmgn−m, that is, M is the maximum absolute value of the interference. Note
that M = ∑

n |gn|. We will assume that M < 1. The bound is achieved if and only if there exists an ε,
d(ε) = dmin,C , for which

∑
m εmhn−m ∈ {−1, 0, 1} for all n, and there exists an x ∈ C such that

∑
m xmgn−m =

∓M whenever
∑

m εmhn−m = ±1.

2.5 An Example

There are codes that provide gain in minimum distance on channels with ITI and colored noise, but not
on the AWGN channel with the same transfer function. This is best illustrated using the example of the
partial response channel with the transfer function h(D) = (1 − D)(1 + D)2 known as EPR4. It is well
known that for the EPR4 channel d2

min = 4. Moreover, as discussed in Section 2.3, the following result
holds:

Proposition 2.1 Error events ε(D) such that

d2(ε) = d2
min = 4
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take one of the following two forms:

ε(D) =
k−1∑
j=0

D2 j , k ≥ 1

or

ε(D) =
l−1∑
i=0

(−1)i Di , l ≥ 3

Therefore, an improvement of error-probability performance can be accomplished by codes which elimi-
nate the error sequences ε containing the strings −1 + 1 − 1 and +1 − 1 + 1. Such codes were extensively
studied in [20].

In the case of ITI Equation 2.6, we assume that the impulse response to the reading head from an
adjacent track is described by g (D) = αH(D), where the parameter α depends on the track to head
distance. Under this assumption, the bound (Equation 2.9) gives δ2

min ≥ d2
min(1 − 4α)2. The following

result was shown in [30]:

Proposition 2.2 Error events ε(D) such that

min
x∈C

δ2(ε, x) = δ2
min = d2

min(1 − 4α)2 = 4(1 − 4α)2

take the following form:

ε(D) =
l−1∑
i=0

(−1)i Di , l ≥ 5

For all other error sequences for which d2(ε) = 4, we have minx∈C δ2(ε, x) = 4(1 − 3α)2.
Therefore, an improvement in error-probability performance of this channel can be accomplished by

limiting the length of strings of alternating symbols in code sequences to four. For the NRZI type of
recording, this can be achieved by a code that limits the runs of successive ones to three. Note that the set
of minimum distance error events is smaller than in the case with no ITI. Thus performance improvement
can be accomplished by higher rate codes which would not provide any gain on the ideal channel.

Channel equalization to the EPR4 target introduces cross-correlation among noise samples for a range
of current linear recording densities (see [27] and references therein). The following result was obtained
in [27]:

Proposition 2.3 Error events ε(D) such that


2(ε) = 
2
min

take the following form:

ε(D) =
l−1∑
i=0

(−1)i Di , l ≥ 3, l odd

Again, the set of minimum distance error events is smaller than in the ideal case (white noise), and
performance improvement can be provided by codes which would not give any gain on the ideal channel.
For example, since all minimum distance error events have odd parity, a single parity check code can be
used.
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2.6 Future Directions

2.6.1 Soft-Output Decoding of Modulation Codes

Detection and decoding in magnetic recording systems is organized as a concatenation of a channel detector,
an inner decoder, and an outer decoder, and as such should benefit from techniques known as erasure
and list decoding. To declare erasures or generate lists, the inner decoder (or channel detector) needs to
assess symbol/sequence reliabilities. Although the information required for this is the same one necessary
for producing a single estimate, some additional complexity is usually required. So far, the predicted gains
for erasure and list decoding of magnetic recording channels with additive white Gaussian noise were not
sufficient to justify the increasing complexity of the channel detector and inner and outer decoder. However,
this is not the case for systems employing new magneto-resistive reading heads, for which an important
noise source, thermal asperities, is to be handled by passing erasure flags from the inner to the outer decoder.

In recent years, one more reason for developing simple soft-output channel detectors has surfaced. The
success of turbo-like coding schemes on memoryless channels has sparked the interest in using them as
modulation codes for ISI channels. Several recent results show that the improvements in performance that
turbo codes offer when applied to magnetic recording channels at moderate linear densities are even more
dramatic than in the memoryless case [12, 29]. The decoders for turbo and low density parity check codes
(LDPC) either require or perform much better with soft input information which has to be supplied by
the channel detector as its soft output. The decoders provide soft outputs which can then be utilized by the
outer Reed-Solomon (RS) decoder [22]. A general soft-output sequence detection was introduced in [11],
and it is possible to get information on symbol reliabilities by extending those techniques [21, 31].

2.6.2 Reversed Concatenation

Typically, the modulation encoder is the inner encoder, that is, it is placed downstream of an error-
correction encoder (ECC) such as an RS encoder; this configuration is known as standard concatenation
(Figure 2.5). This is natural since otherwise the ECC encoder might well destroy the modulation properties
before passing across the channel. However, this scheme has the disadvantage that the modulation decoder,
which must come before the ECC decoder, may propagate channel errors before they can be corrected.
This is particularly problematic for modulation encoders of very high rate, based on very long block size.
For this reason, a good deal of attention has recently focused on a reversed concatenation scheme, where
the encoders are concatenated in the reversed order (Figure 2.6). Special arrangements must be made

Error
Correction
Encoder

Modulation
Encoder

Channel Modulation
Decoder

Error
Correction
Decoder
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Data
Modul.

Encoder

Data
Modul.

Decoder

Systematic
ECC

Encoder
Append Channel Split

Systematic
ECC

Decoder

Parity Parity
Parity
Modul.

Encoder

Parity
Modul.

Decoder

FIGURE 2.6 Reversed concatenation.



2-10 Advanced Error Control Techniques for Data Storage Systems

to ensure that the output of the ECC encoder satisfies the modulation constraints. Typically, this is done
by insisting that this encoder be systematic and then reencoding the parity information using a second
modulation encoder (the “parity modulation encoder”), whose corresponding decoder is designed to limit
error propagation; the encoded parity is then appended to the modulation-encoded data stream (typically
a few merging bits may need to be inserted in between the two streams in order to ensure that the entire
stream satisfies the constraint). In this scheme, after passing through the channel the modulation-encoded
data stream is split from the modulation-encoded parity stream, and the latter is then decoded via the
parity modulation decoder before being passed on to the ECC decoder. In this way, many channel errors
can be corrected before the data modulation decoder, thereby mitigating the problem of error propagation.
Moreover, if the data modulation encoder has high rate, then the overall scheme will also have high rate
because the parity stream is relatively small.

Reversed concatenation was introduced in [3] and later in [23]. Recent interest in the subject has been
spurred on by the introduction of a lossless compression scheme, which improves the efficiency of reversed
concatenation [15], and an analysis demonstrating the benefits in terms of reduced levels of interleaving [8];
see also [9]. Research on fitting soft decision detection into reversed concatenation can be found in [7, 33].
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3.1 Introduction

Codes based on runlength-limited sequences have been the state of the art corner stone of current disc
recorders whether their nature is magnetic or optical. This chapter provides a detailed description of
various properties of runlength-limited sequences and the next section gives a comprehensive review of
the code construction methods, ad hoc as well as systematic, that are available.

The length of time usually expressed in channel bits between consecutive transitions is known as the
runlength. For instance, the runlengths in the word

0111100111000000

are of length 1, 4, 2, 3, and 6. Runlength-limited (RLL) sequences are characterized by two parameters,
(d+1) and (k+1), which stipulate the minimum (with the exception of the very first and last runlength) and
maximum runlength, respectively, that may occur in the sequence. The parameter d controls the highest
transition frequency and thus has a bearing on intersymbol interference when the sequence is transmitted
over a bandwidth-limited channel. In the transmission of binary data it is generally desirable that the
received signal is self-synchronizing or self-clocking. Timing is commonly recovered with a phase-locked
loop. The maximum runlength parameter k ensures adequate frequency of transitions for synchronization
of the read clock.

Recording codes that are based on RLL sequences have found almost universal application in disc
recording practice. In consumer electronics, we have the EFM code (rate = 8/17, d = 2, k = 10), which
is employed in the Compact Disc (CD), and the EFMPlus code (rate = 8/16, d = 2, k = 10) used in the
DVD.

A dk-limited binary sequence, in short, (dk) sequence, satisfies simultaneously the following two
conditions:

1. d constraint — two logical 1s are separated by a run of consecutive 0s of length at least d.

2. k constraint — any run of consecutive 0s is of length at most k.

3-1
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If only proviso (1.) is satisfied, the sequence is said to be d-limited (with k = ∞), and will be termed
(d) sequence. In general, a (dk) sequence is not employed in optical or magnetic recording without a
simple coding step. A (dk) sequence is converted to a runlength-limited channel sequence in the following
way. Let the channel signals be represented by a bipolar sequence {yi }, yi ∈ {−1, 1}. The channel signals
represent the positive or negative magnetization of the recording medium, or pits or lands when dealing
with optical recording. The logical 1s in the (dk) sequence indicate the positions of a transition 1 → −1
or −1 → 1 of the corresponding RLL sequence. The (dk) sequence

0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 . . .

would be converted to the RLL channel sequence

1 −1 −1 −1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 1 . . . .

Waveforms that are transmitted without such an intermediate coding step are referred to as non-return-
to-zero (NRZ). It can readily be verified that the minimum and maximum distance between consecutive
transitions of the RLL sequence derived from a (dk) sequence is d + 1 and k + 1 symbols, respectively,
or in other words, the RLL sequence has the virtue that at least d + 1 and at most k + 1 consecutive like
symbols (runs) occur.

The outline of this chapter is as follows. We start with a discussion of the maximum rate of RLL
sequences given the parameters d and k. Thereafter we will present various methods for constructing
codes for generating RLL sequences.

3.2 Asymptotic Information Rate

3.2.1 Counting of Sequences

This section addresses the problem of counting the number of sequences of a certain length which comply
with given dk constraints. We start for the sake of clerical convenience with the enumeration of (d)
sequences. Let Nd (n) denote the number of distinct (d) sequences of length n and define

Nd (n) = 0, n < 0
(3.1)

Nd (0) = 1

The number of (d) sequences of length n > 0 is found with the recursive relations [1]

(i) Nd (n) = n + 1, 1 ≤ n ≤ d + 1
(3.2)

(i i) Nd (n) = Nd (n − 1) + Nd (n − d − 1), n > d + 1

The proof of Equation 3.2, taken from [1], is straightforward.

1. If n ≤ d + 1, a (d) sequence can contain only a single 1 (and there are exactly n such sequences),
or the sequence must be the all 0 sequence (and there is only one such sequence).

2. If n > d + 1, a (d) sequence can be built by one of the following procedures:
i. To build any (d) sequence of length n starting with a 0, take the concatenation of a 0 and any

(d) sequence of length n − 1. There are Nd (n − 1) of such.
ii. Any (d) sequence of length n starting with a 1 can be constructed by the concatenation of a 1

and d 0s followed by any (d) sequence of length n − d − 1. There are Nd (n − d − 1) of such.

Table 3.1 lists the number of distinct (d) sequences as a function of the sequence length n with the
minimum runlength d as a parameter.

When d = 0, we simply find that N0(n) = 2N0(n − 1), or in other words, when there is no restriction
at all, the number of combinations doubles when a bit is added, which is, of course, a well-known result.
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TABLE 3.1 Number of Distinct (d) Sequences as a Function of the Sequence
Length n and the Minimum Runlength d as a Parameter.

d \ n 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 5 8 13 21 34 55 89 144 233 377 610 987
2 3 4 6 9 13 19 28 41 60 88 129 189 277
3 3 4 5 7 10 14 19 26 36 50 69 95 131
4 3 4 5 6 8 11 15 20 26 34 45 60 80
5 3 4 5 6 7 9 12 16 21 27 34 43 55

The numbers N1(n) are

1, 2, 3, 5, 8, 13, . . . ,

where each number is the sum of its two predecessors. These numbers are called Fibonacci numbers.
The number of (dk) sequences of length n can be found in a similar fashion. Let N(n) denote the number

of (dk) sequences of length n. (For the sake of simplicity in notation no subscript is used in this case.) Define

N(n) = 0, n < 0

N(0) = 1 (3.3)

The number of (dk) sequences of length n is given by

N(n) = n + 1, 1 ≤ n ≤ d + 1

N(n) = N(n − 1) + N(n − d − 1), d + 1 ≤ n ≤ k

N(n) = d + k + 1 − n +
k∑

i=d

N(n − i − 1), k < n ≤ d + k (3.4)

N(n) =
k∑

i=d

N(n − i − 1), n > d + k

The proof of the above recursion relations is not interesting and therefore omitted (see [1]).

3.2.2 Capacity

An encoder translates arbitrary user (or source) information into, in this particular instance, a sequence
that satisfies given dk constraints. On the average, m source symbols are translated into n channel symbols.
What is the maximum value of R = m/n that can be attained for some specified values of the minimum
and maximum runlength d and k?

The maximum value of the rate, R, that can be achieved by any code is called the capacity of a (dk)
code. The capacity, or asymptotic information rate, of (dk) sequences, denoted by C(d , k), defined as
the number of information bits per channel bit that can maximally be carried by the (dk) sequences, on
average, is governed by the specified constraints and is given by

C (d , k) = lim
n→∞

1

n
log2 Ndk(n) (3.5)

We simply find

C (d , k) = log2 λdk (3.6)

where λdk is the largest real root of the characteristic equation

zk+2 − zk+1 − zk−d+1 + 1 = 0 (3.7)

Table 3.2 lists the capacity C (d , k) versus the parameters d and k.
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TABLE 3.2 Capacity C(d , k) versus Runlength
Parameters d and k

k d = 0 d = 1 d = 2 d = 3 d = 4

1 0.6942
2 0.8791 0.4057
3 0.9468 0.5515 0.2878
4 0.9752 0.6174 0.4057 0.2232
5 0.9881 0.6509 0.4650 0.3218 0.1823
6 0.9942 0.6690 0.4979 0.3746 0.2669
∞ 1.000 0.6942 0.5515 0.4650 0.4057

3.3 Other Constraints

Besides sequences with simple runlength constraints as discussed above, there are a variety of channel
constraints that have been reported in the literature.

3.3.1 MTR Constraints

The maximum transition run (MTR) codes, introduced by Moon and Brickner [2], d = 0, have different
constraints on the maximum runs of 0s and 1s. The maximum 0 runlength constraint, k0, is imposed, as
in standard RLL constraints, for clock recovery, while the maximum runlength constraint on 1s, denote by
k1, is imposed to bound the maximum number of consecutive transitions (i.e., consecutive 1s). It has been
shown by Moon and Brickner [2] that removing said vexatious sequences leads to improved robustness
against additive noise. MTR (d , k) constraints, d > 0, have been advocated as they are said to improve
the detection quality. The MTR constraint limits the number of consecutive strings of the form 0d 1, that
is, repetitive occurrence of the minimum runlength are limited. In wireless infrared communications
applications, the MTR constraint is imposed as otherwise catastrophic receiver failure under near-field
may be induced [3, 4]. Implementations of these codes usually have d = 1 and rate equal to 2/3.

3.3.2 (O,G/I ) Sequences

Partial response signaling in conjunction with maximum likelihood detection [5–8] is a data detection
technique commonly used in magnetic recording. Special runlength constraints are needed to avoid
vexatious sequences which could foil the detection circuitry. These constraints are characterized by two
parameters G and I . The parameter G stipulates the maximum number of allowed 0s between consecutive
1s, while the parameter I stipulates the maximum number of 0s between 1s in both the even and odd
numbered positions of the sequence. The G constraint, as the k constraint in dk sequences, is imposed to
improve the timing. The I constraint is used to limit the hardware requirements of the detection circuitry.
Marcus et al. [9] showed that it is possible to represent (O , G/I ) constraints by state-transition diagrams.

To that end, we define three parameters. The quantity g denotes the number of 0s since the last 1, and
a and b denote the number of 0s since the last 1 in the even and odd subsequence. It is immediate that

g (a , b) =
{

2a + 1 if a < b
2b if a ≥ b

Each state in the state-transition diagram is labeled with 2-tuples (a , b), where by definition 0 ≤ a , b ≤ I
and g (a , b) ≤ G . A transition between the states numbered by (a , b) to (b, a + 1) (emitting a 0) and (a , b)
to (b, 0) (emitting a 1) are easily attached.

By computing the maximum eigenvalue of the above state-transition matrix, we obtain the capacity of
the (O , G/I ) sequences. Results of computations are listed in Table 3.3.

Examples of implementation of (O , G/I ) constrained codes were given by Marcus, Siegel and Patel [10],
Eggenberger and Patel [11] and Fitzpatrick and Knudson [12].
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TABLE 3.3 Capacity for Selected
Values of G and I [9]

G I Capacity

4 4 0.9614
4 3 0.9395
3 6 0.9445
3 5 0.9415
3 4 0.9342
3 3 0.9157

3.3.3 Weakly Constrained Sequences

Weakly constrained codes do not follow the letter of the law, as they produce sequences that violate the
channel constraints with probability p. It is argued that if the channel is not free of errors, it is pointless to
feed the channel with perfectly constrained sequences. In the case of a dk-constrained channel, violation
of the d-constraint will very often lead to errors at the receiving site, but a violation of the k-constraint is
usually harmless. Clearly, the extra freedom offered by weak constraints will result in an increase of the
channel capacity. An analytic expression between the capacity and violation probability of the k-constraint
has been derived by Janssen and Immink [13]. Worked examples of weakly constrained codes have been
given by Immink [14] and Jin et al. [15].

3.3.4 Two-Dimensional RLL Constraints

In conventional recording systems, information is organized along tracks. Interaction between neighboring
tracks during writing and reading of the information cannot be neglected. During reading, in particular
when tracking, either dynamic or static, is not optimal, both the information track itself plus part of the
neighboring tracks are read, and a noisy phenomenon, called crosstalk, or inter-track interference (ITI)
may disturb the reading process. Crosstalk is usually modeled as additive noise, and thus, essentially, the
recording process is considered to be one-dimensional. Advanced coding systems that take into account
inter-track interference, were developed by Soljanin and Georghiades [16].

It is expected that future mass data systems will show more of their two-dimensional character: the
track pitch will become smaller and smaller relative to the reading-head dimensions, and, as a result,
the recording process has to be modeled as a two-dimensional process. An example of a type of code,
where the two-dimensional character of the medium is exploited to increase the code rate was introduced
by Marcellin and Weber [17]. They introduced multi-track (d , k)-constrained binary codes. Such n-track
codes are extensions of regular (d , k) codes for use in multi-track systems. In an n-track (d , k)-constrained
binary code, the d constraint is required to be satisfied on each track, but the k constraint is required to be
satisfied only by the bit-wise logical “or” of n consecutive tracks. For example, assume two parallel tracks,
where the following sequences might be produced by a 2-track (d , k) code:

track 1 000010100010100
track 2 010000010000001

Note that the d = 1 constraint is satisfied in each track, but that the k = 2 constraint is satisfied only in a
joint manner — there are never more than two consecutive occurrences of 0 on both tracks simultaneously.
Although n-track codes can provide significant capacity increase over regular (d , k) codes, they suffer from
the fact that a single faulty track (as caused by media defects, for example) may cause loss of synchronization
and hence loss of the data on all tracks. To overcome this flaw Swanson and Wolf [18] introduced a class of
codes, where a first track satisfies the regular (d , k) constraint, while the k-constraint of the second track is
satisfied in the “joint” manner. Orcutt and Marcellin [19, 20] computed the capacity of redundant multi-
track (d , k)-constrained binary codes, which allow only r tracks to be faulty at every time instant. Vasic
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computed capacity bounds and spectral properties [21–23]. Further improvements of n-track systems
with faulty tracks were given by Ke and Marcellin [24].

In holographic recording, data is stored using optical means in the form of two-dimensional binary
patterns. In order to safeguard the reliability of these patterns, certain channel constraints have been
proposed. More information on holographic memories and channel constraints can be found in [25, 26].

Codes that take into account the two-dimensional character have been investigated by several authors.
Talyansky, Etzion and Roth [27] studied efficient coding algorithms for two types of constraints on two-
dimensional binary arrays. The first constraint considered is that of the t-conservative arrays, where each
row and column of the array has at least t transitions. Blaum, Siegel, Sincerbox and Vardy [28–30] disclosed
a code which eliminates long periodic stretches of contiguous light or dark regions in any of the dimensions
of the holographic medium such that interference between adjacent images recorded in the same volume
is effectively minimized.

Kato and Zeger [31] considered two-dimensional RLL constraints. A two-dimensional binary pattern
of 1s and 0s arranged in an m×n rectangle is said to satisfy a two-dimensional (d , k) constraint if it satisfies
a one-dimensional (d , k)-constraint both horizontally and vertically. In contrast to the one-dimensional
capacity, there is little known about the two-dimensional capacity. It was shown by Calkin and Wilf that
C(d , k) is bounded as 0.587891 ≤ C (d , k) ≤ 0.588339 [32]. Bounds on C(d , k) have been derived by
Kato and Zeger [31] and Siegel and Wolf [33].

3.4 Codes for the Noiseless Channel

In the present section, we take a look at the techniques that are available to produce constrained sequences
in a practical manner. Encoders have the task of translating arbitrary source information onto a con-
strained sequence. It is most important that this be done as efficiently as possible within some practical
considerations. Efficiency is usually measured in terms of the ratio of code rate R and capacity C of the
constrained channel. A good encoder algorithm realizes a code rate close to the capacity of the constrained
sequences, uses a simple implementation, and avoids the propagation of errors in the process of decoding.

In coding practice, the source sequence is partitioned into blocks of length p, and under the code rules
such blocks are mapped onto words of q channel symbols. The rate of such an encoder is R = p/q ≤ C .
A code may be state dependent, in which case the codeword used to represent a given source block is a
function of the channel or encoder state, or the code may be state independent. State independence implies
that codewords can be freely concatenated without violating the sequence constraints. When the encoder
is state dependent, it typically takes the form of a synchronous finite-state machine.

A decoder is preferably state independent. Due to errors made during transmission, a state-dependent
decoder could easily lose track of the encoder state, and as a result the decoder could possibly make error
after error with no guarantee of recovery. In order to avoid error propagation, a decoder should preferably
use a finite observation interval of channel bits for decoding, thus limiting the span in which errors may
occur. Such a decoder is called a sliding block decoder. A sliding block decoder makes a decision on a received
word on the basis of the q-bit word itself, as well as a number of m preceding q-bit words and a upcoming
q-bit words. Essentially, the decoder comprises a register of length (m + a + 1) and a logic function f (.)
that translates the contents of the register into the retrieved q-bit source word. Since the constants m and
a are finite, an error in the retrieved sequence can propagate in the decoded sequence only for a finite
distance, at most the decoder window length (m + a + 1). An important subclass of the sliding-block
decoder is the block decoder, which uses only a single codeword for reproducing the source word, that is,
m = a = 0 [34]. The above parameters define the playing field of the code designer. Early players are
Tang and Bahl [1], Franaszek [35–38], and Cattermole [39]. In addition, important contributions were
made by Jacoby [40, 41], Lempel [42], Patel [43], Cohen [44], and many others. Tutorial expositions can
be found in [9, 45, 46].

In its simplest form, the set of encoder states, called principal states, is a subset of the channel states
used to describe the constraints. From each of the principal states there are at least 2p constrained words
beginning at such a state and ending in a principal state. The set of principal states can be found by
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invoking Franaszek’s procedure [35]. Flawless concatenation of the words is implied by the structure of
the finite-state machine describing the constraints.

Concatenation of codewords can also be established by using merging bits between constrained words
[40, 47, 48]. Merging bits are used, for example, in the EFM code employed in the Compact Disc [49].
Each source word has a unique q ′-bit channel representation. We require one look-up table for trans-
lating source words into constrained words of length q ′ plus some logic circuitry for determining the
q − q ′ merging bits. Decoding is extremely simple: discard the merging bits and translate the q ′-bit
word into the p-bit source word. For (dk) codes the relation between Franaszek’s principal state and
the merging bit procedures was found by Gu and Fuja [50]. Immink [51] gave a constructive proof that
(dk) codes with merging bits can be made for which C − R < 1/(2q). As a result, (dk) codes with
a rate only 0.1% less than Shannon’s capacity can be constructed with codewords of length q ≈ 500.
The number of codewords grows exponentially with the codeword length, and the key obstacle to prac-
tically approaching capacity is the massive hardware required for the translation. The massiveness prob-
lem can be solved by using a technique called enumeration [52], which makes it possible to translate
source words into codewords and vice versa by invoking an algorithmic procedure rather than perform-
ing the translation with a look-up table. Single channel bit errors could corrupt the entire data in the
decoded word, and, of course, the longer the codeword the greater the number of data symbols affected.
This difficulty can be solved by a special configuration of the error correcting code and the recording
code [51, 53].

A breakthrough in code design occurred in the 1980s with the elegant construction method presented
by Adler, Coppersmith, and Hassner (ACH) [54]. A generalized procedure was published by Ashley and
Marcus [55]. The ACH algorithm, also called state-splitting algorithm, gives a step-by-step approach for
designing constrained codes. The guarantee of a sliding-block decoder and the explicit bound on the
decoder window length are the key strengths of the ACH algorithm. Roughly speaking, the state-splitting
algorithm proceeds by iteratively modifying the FSTD. At each round of iteration, the maximum weight
(greater than unity) is reduced, so that we eventually reach an FSTD whose approximate eigenvector has
binary components. Complexity issues related to the number of encoder states and window length are an
active field of research, which is exemplified by, for example, [56–58].

The sequence replacement technique [59] converts source words of length p into (0, k)-constrained words
of length q = p + 1. The control bit is set to 1 and appended at the beginning of the p-bit source word.
If this ( p + 1)-bit sequence satisfies the prescribed constraint, it is transmitted. If, on the other hand, the
constraint is violated, that is, a runlength of at least k + 1 0s occur, we remove the trespassing k + 1 0s.
The position where the start of the violation was found is encoded in k + 1 bits, which are appended at the
beginning of the p +1-bit word. Such a modification is signaled to the receiver by setting the control bit to
0s. The codeword remains of length p+1. The above procedure is repeated until all forbidden subsequences
have been removed. The receiver can reconstruct the source word as the position information is stored
at a predefined position in the codeword. In certain situations the entire source word has to be modified
which makes the procedure prone to error propagation. The class of rate (q − 1)/q , (0, k)-constrained
codes, k = 1 + �q/3)�, q ≥ 9, was constructed to minimize error propagation [60]. Error propagation is
confined to one decoded byte irrespective of the codeword length q .

Recently, the publications by Fair et al. [61] and Immink and Patrovics [62] on guided scrambling brought
new insights into high-rate code design. Guided scrambling is a member of a larger class of related coding
schemes called multi-mode codes. In multi-mode codes, the p-bit source word is mapped into (m+ p)-bit
codewords. Each source word x can be represented by a member of a selection set consisting of L = 2m

codewords. Examples of such mappings are the guided scrambling algorithm presented by Fair et al. [61],
and the scrambling using a Reed-Solomon code by Kunisa et al. [63].

The encoder opts for transmitting that codeword that minimizes, according to a prescribed criterion,
for example, the low-frequency spectral contents of the encoded sequence. There are two key elements
which need to be chosen judiciously: (a) the mapping between the source words and their corresponding
selection sets, and (b) the criterion used to select the “best” word. Provided that 2m is large enough and
the selection set contains sufficiently different codewords, multi-mode codes can also be used to satisfy
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almost any channel constraint with a suitably chosen selection method. A clear disadvantage is that the
encoder needs to generate all 2m possible codewords, compute the criterion, and make the decision.
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4.1 Introduction

The written data and corresponding readback waveform in any recording system are subject to noise and
distortions that limit reliability of the system. An error correction code allows a certain amount of data
corruption to be corrected in the decoder by providing specific redundancy in the recorded data. If the
system is more susceptible to errors in specific data patterns, a more direct approach is to employ a channel
coding constraint that prevents these troublesome patterns so that the error simply does not occur.

In the text that follows, a specific class of codes designed to improve the performance of recording
systems is explored. The discussion follows a methodology that is generally applicable to the development
of code constraints to improve minimum distance properties of communications or recording systems.
Initially, the system is characterized in terms of types of error events and the probability with which they
may occur, a value expressed as a distance in a geometric context. Having identified the error types that
are most likely to corrupt the system, pairs of code bit sequences that produce these errors are determined.
An error occurs when noise, combined with intersymbol interference (ISI) causes the received signal
produced by one code bit sequence to resemble that produced by another. This ambiguity is resolved by
simply enforcing a constraint in the encoder, which prevents one or both of the code bit sequences. When
only one of the two error-producing code bit sequences is removed, the detector and/or decoder must be
modified to choose in favor of the valid sequence. The resulting encoder and detector/decoder work in
concert to improve the system performance. However, the addition of a code constraint reduces the code
rate and the amount of information conveyed in a sequence of code bits. An analysis or simulation is then
used to verify that a net gain results from removing error events at the expense of a lower code rate.

A properly chosen maximum transition run (MTR) constraint, which limits the number of consecutive
transitions, is shown to prevent minimum-distance errors for a variety of channel responses applicable
to recording systems. This idea of using a code constraint to prevent problematic bit sequences is not
new to recording. For years, RLL(d , k) codes which specify a minimum, d , and maximum, k, number of
nontransitions between transitions have been used with d > 0 to help peak detector base read circuits by

4-1
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reducing the effects of ISI in adjacent transitions. A d = 1 code has also been used to improve the distance
properties of a high order partial-response maximum likelihood (PRML) channel.1 Moreover, while an
MTR constraint is sufficient to remove certain, minimum-distance error events, it is not a unique solution
to this problem. Other coding schemes based on forbidding one of the pairs of error generating code
sequences have been shown to give similar distance gains.2,3 For recording systems, RLL d > 0 and MTR
constraints are of particular interest because many of the disturbances that fall outside the simple linear ISI
and additive white Gaussian noise (AWGN) model occur when transitions are brought in close proximity
to one another.

4.2 Error Event Characterization

For convenience and ease of analysis, the channel is assumed to be linear with additive white Gaussian
noise such that the received signal is written as

rk = sk + nk =
L−1∑
i=0

hkak−i + nk

where the discrete-time channel is represented as h(D) =∑L
k=0 hk Dk , and the input data are taken from

the binary alphabet {0, 1}. Typically, h(D) is formed by equalizing the received signal with a noise-whitened
matched filter such that the noise statistics are preserved, and h(D) is the combined response of the channel
and equalizer. The noise is assumed to be additive white Gaussian noise with variance σ 2

n . The maximum
likelihood sequence detection (MLSD) estimates an N-sample input sequence ak = [ak , ak−1, . . . , ak−N+1]
using

âk = arg


min

ak

N+L−2∑
j=0

(
rk− j −

L−1∑
i=0

hi ak−i− j

)2



where ak−i = 0 for i ≥ N. An error is produced whenever the estimated sequence does not match the input
sequence in one or more locations, that is, âk �= ak such that ek = { ak−âk , k=0...N−1

0, elsewhere . Using Marcum’s Q
function

Q(x) = Pr[X > x] = 1√
2π

∫ ∞

x

e−z2/2 dz

the probability of a particular error is Pr(â �= a | a) ≈ Q(dâ,a/2σn) where

dâ,a =

√√√√N+L−2∑
i=0

(
L−1∑
j=0

h j ei− j

)2

This value is the Euclidean distance between two points whose coordinates correspond to the noiseless
received signals generated by two valid input sequences. For low error rate situations, a small change in
the distance d results in an exponential change in the error probability. Therefore, the performance of the
system is dominated by those error events that produce the minimum distance, dmin.

To compute the minimum distance as shown above, the corresponding error event must be known. In
the general case, the length of the input sequence and, therefore, the possible error event sequences are
unbounded. However, by considering all error events up to a particular length, the minimum distance can
be bounded by

min
ek

N−1∑
k=0

(
L−1∑
j=0

f j ek− j

)2

≤ d2
min ≤ min

ek

N+L−2∑
k=0

(
L−1∑
j=0

f j ek− j

)2
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where N is the length of the error event ek .4 The lower-bound has particular relevance to the fixed delay
tree search with decision feedback (FDTS/DF) detector as it gives the exact minimum distance when N −1
is equal to the depth of the tree search.5 It is often useful to compare the result of this calculation to the
matched filter bound

dMF =

√√√√ L−1∑
k=0

f 2
k

which indicates the distance for the case where a single bit is transmitted. For channels with little ISI, it
is common for dmin = dMF ; however, for many of the responses seen in data storage channels, the ISI
structure is more severe, and dmin < dMF . In any case, the minimum distance for the uncoded channel is
never larger than dMF .

The error events of interest here are closed error events, or, in other words, those that are finite in
duration. Open, or quasi-catastrophic, error events can extend indefinitely and are generally handled by
additional code constraints in practical MLSD implementations. In this discussion, error events are shown
to start and end with nonzero terms ek . To be an independent error event, these sequences are both preceded
and followed by L − 1 zero terms. Often, the errors of interest are short, or have a predictable form, so that
they can be identified by a simple exhaustive search of all events up to a particular length N. However, to
guarantee that all events have been identified, a more rigorous approach is followed. Altekar et al. describe
a suitable method for finding error events in partial response channels up to a certain distance.6

With low-order partial response channels, such as PR1, PR4, and EPR4 characterized by the response
polynomials (1 + D), (1 − D)(1 + D), and (1 − D)(1 + D)2, respectively, dmin = dMF . However, as
shown in Table 4.1, error events other than a single bit error are dominant for channels with a greater high
frequency roll-off; that is, those with higher order (1 + D) factors. In particular, these errors consist of
groups of terms for which the signs of consecutive error bits alternate. An error event written as ±{e1, 〈e2〉}
indicates that the same distance is obtained by concatenating error sequence e1 with a nonnegative integer
number (0, 1, 2, . . . ) of repetitions of sequence e2. Because these errors correspond to a signal difference
with a significant high-frequency component, it is not too surprising that they are prevalent in channels
that are inherently low-pass in nature.

The basic pattern that emerges in these error sequences for the high-order partial response channels is
that they are defined by, or contain, the sequences ±{+1, −1} and ±{+1, −1, +1}. Two particular cases
of interest are PR2 with a response (1 + D)2 and E2PR4 with a response (1 − D)(1 + D)3. Error events
with distances up through dMF are given for these two channels in Table 4.2 and Table 4.3, respectively.
In longitudinal magnetic disc recording, a Lorentzian pulse is often used to model the transition response

TABLE 4.1 Distance to Matched Filter Bound for Partial Response Channels

Response Polynomial d2
min d2

MF dmin /dMF (dB) Minimum Distance Errors

PR1 (1 + D) 2 2 0 ±{+1, 〈−1, +1〉}
±{+1, −1, 〈+1, −1〉}

PR2 (1 + D)2 4 6 −1.76 ±{+1, −1, 〈+1, −1〉}
±{+1, −1, +1, 〈−1, +1〉}

EPR2 (1 + D)3 10 20 −3.01 ±{+1, −1}
Dicode (1 − D) 2 2 0 ±{+1, 〈+1〉}
PR4 (1 − D)(1 + D) 2 2 0 ±{+1, 〈0, +1〉}
EPR4 (1 − D)(1 + D)2 4 4 0 ±{+1, 〈0, +1〉}

±{+1, −1, +1, 〈−1, +1〉}
±{+1, −1, +1, −1, 〈+1, −1〉}

E2PR4 (1 − D)(1 + D)3 6 10 −2.22 ±{+1, −1, +1}
E3PR4 (1 − D)(1 + D)4 12 26 −3.36 ±{+1, −1, +1}
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TABLE 4.2 Dominant Closed Error Events for a PR2 (1 + D)2 Channel

d2 d2/d2
MF (dB) Error Events

4 −1.76 ±{+1, −1, 〈+1, −1〉}
±{+1, −1, +1, 〈−1, +1〉}

6 0.00 ±1
±{+1, −1, 0, +1, −1, +1, 〈−1, +1〉}
±{+1, −1, 〈+1, −1〉, 0, +1, −1, 〈+1, −1〉}
±{+1, −1, +1, 〈−1, +1〉, 0, −1, +1, 〈−1, +1〉}

TABLE 4.3 Dominant Closed Error Events for an E2PR4
(1 − D)(1 + D)3 Channel

d2 d2/d2
MF (dB) Error Events

6 −2.22 ±{+1, −1 +1, 〈−1, +1〉}
8 −0.97 ±{+1, −1 +1, −1, 〈+1, −1〉}

±{+1, −1, +1, −1, +1, 〈−1, +1〉}
±{+1, −1, +1, 0, 0, +1, −1, +1}

10 0.00 ±1
±{+1, 0, 0, +1, −1, +1}
±{+1, −1, +1, 0, −1, +1, −1}
±{+1, −1, +1, 0, 0, +1}
±{+1, −1, +1, 0, 0, +1, −1, +1, −1, 〈+1, −1〉}
±{+1, −1, +1, 0, 0, +1, −1, +1, −1, +1, 〈−1, +1〉}
±{+1, −1, +1, 0, 0, 0 + 1, −1, +1}
±{+1, −1, +1, 0, 0, +1, 0, 0, +1, −1, +1}
±{+1, −1, +1, 0, 0, +1, −1, +1, 0, 0, +1, −1, +1}
±{+1, −1, +1, −1, 〈+1, −1〉, 0, 0, −1, +1, −1}
±{+1, −1, +1, −1, +1, 〈−1, +1〉, 0, 0, +1, −1, +1}

of the magnetic channel. This transition response is defined by

p(t) = A

1 + ( 2t
P W50

)2

where PW50 parameterizes the width of the pulse. For a symbol clock period of T , the symbol density,
defined as Ds = PW50/T , gives a measure of the severity of the channel intersymbol interference (ISI).
Figure 4.1 shows the relevant distance between several key error events as a function of density. As symbol
density increases, the high-frequency roll-off of the channel response also increases, and just as with the
partial response polynomials, the error events with alternating signs become dominant. Although the
Lorentzian response with AWGN provides a reasonable approximation for the recording channel, it is not
purported to be an exact model. As such, there will always be a place for analysis of errors in specific
recording systems.7

4.3 Maximum Transition Run Codes

For channels where the minimum distance is not produced by a single bit error, a code can be constructed
to prevent the error from occurring by prohibiting one or both of the pairs of sequences whose difference
produces the error. Because the constraints used to prevent errors will require a greater density of code
bits to maintain a particular data density, this approach does not always provide a net gain. Fortunately,
there are a number of cases where the distance gain does exceed the code rate penalty.

First, consider the high density Lorentzian channels (Ds ∼ 3) and E2PR4 response. For these, the
dominant error events have the form ±{+1, −1, +1}. The pairs of input sequences, which generate these
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FIGURE 4.1 Euclidean distance for key error events in a Lorentzian channel.

errors, contain at least one pattern with three or more consecutive transitions as shown in Figure 4.2.
If all input sequences that contain three or more consecutive transitions are eliminated, a detector can
be constructed such that the original minimum distance error events are suppressed. A maximum tran-
sition run code with constraint parameter j is one that limits the number of consecutive transitions
to j . In the case of the E2PR4 channel, a code with j = 2 is sufficient to prevent the ±{+1, −1, +1}
error event. More generally, this constraint will prevent error events of the form ±{+1, −1, +1, (−1, +1)}.
Specifically, this constraint will allow the suppression of an error event where one or both of the se-
quences involved in the error contain j + 1 or more transitions. Because an MTR code usually includes
a runlength limited k constraint to assist with timing recovery, the code parameters are encapsulated as
MTR( j ; k).

The MTR code with j = 1 will also prevent any error events of the form ±{+1, −1, 〈+1, −1〉}. This
constraint is implied by RLL(d , k) codes with d > 0. Specifically, the MTR j = 1 constraint is the same
as the more common RLL d = 1. Because d = 1 codes automatically prevent transition runs, they have
the same distance-enhancing properties as MTR j = 2 codes, albeit at a lower code rate. This distance
enhancing property of the d = 1 constraint has been exploited for both E2PR4 decoders and FDTS/DF.1,5

It is convenient to describe the MTR constraints in terms of an NRZI format where a 1 and 0 rep-
resent, respectively, the presence and absence of a transition. In this form, j indicates the maximum
number of consecutive 1s, and k is the maximum number of consecutive 0s. A precoder of the form
P (D) = 1/(1 ⊕ D) is used to generate the mapping from NRZI bits, denoted xk , to the NRZ channel
input symbols ak . Thus, the precoder implements ak = ak−1 ⊕ xk .

A simple rate 4/5 MTR(2; 8) code can be constructed by removing from the list of 32 5-bit codewords,
the all 0s codeword, all codewords with three or more consecutive transitions, and all codewords with more

(a) (b)

FIGURE 4.2 Pairs of write sequences which produce a ±{+1, −1, +1} error event.
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than a single transition at the beginning or end. The set of 16 valid codewords is given by {00001, 00010,
00100, 00101, 00110, 01000, 01001, 01010, 01100, 01101, 10000, 10001, 10010, 10100, 10101, 10110}.

The MTR constraint is useful when the specific objective of the code designer is to limit the length
of transition runs. With partial response channels such as PR4, an INRZI precoder given by P (D) =
1/(1 ⊕ D)2 is often used to convert (0, G/I ) codes into bit streams that avoid certain quasi-catastrophic
error events (those errors that can occur in a Viterbi decoder truncated to have a finite decision delay).
If an RLL(0, k) coded sequence intended to be NRZI precoded is, instead, INRZI precoded, the output
satisfies NRZI precoded MTR(k + 1; k + 1) constraints. The MTR( j ; k) constraints remove all E2PR4
quasi-catastrophic error events except those that contain repetitions of ±{+1, 0}. This particular event
can be prevented by eliminating repetitions of the NRZI sequence {1, 1, 0, 0} from the encoder output.8

Cideciyan et al. define a formal constraint t to limit the number of consecutive {0, 0} and {1, 1} pairs.9

The use of the MTR constraint here is justified by the minimum distance gain it provides; however,
an MTR constraint can provide additional benefits in the magnetic recording channel. In the presence
of intertrack interference, the use of an MTR j = 3 constraint has been suggested as a means to reduce
the ±(+1, −1, +1, −1, +1, 〈−1, +1〉) error event in EPR4 channels.10 When transitions in a longitudinal
recording system are written with a narrow spacing, the zigzag nature of the transitions allows portions of
pairs of transitions to overlap and partially erase the transition pair. With an MTR j = 2 coded system, the
dibit transition pairs can be recorded with the leading transition written early and the trailing transition
written late to mitigate the effects of partial erasure.11 However, if the increased separation is too large, it
will be difficult to resolve the position of adjacent dibits as the two transitions separated by a nontransition
are moved closer to one another. To avoid this difficulty, the code can be further constrained to require a
minimum of two nontransitions between successive dibit patterns.9

Although the MTR j = 2 code will provide the desired distance gain, it is not a unique solution. In
Figure 4.2, the error event produced by sequence pair (a) can be eliminated with MTR j = 3. Pair (b)
is generated by a shifted tribit (three consecutive transitions). If these tribits are prevented from starting
at either even or odd clock periods, then the decoder can uniquely resolve the correct sequence, and
the error event will be prevented.12,13 Although the time-varying nature of the constraints yields a more
complicated detector, the available code rate is higher. These constraints are written as TMTR( j − 1/j ; k)
to indicate that the MTR constraint alternates between j − 1 and j for sequences starting at either an
even or odd time index. In fact, this code is also an MTR( j ; k) code, but the added constraint of j − 1 for
transition runs starting on every other code bit period provides the same distance gain as the MTR( j −1; k)
code.

For the strictly low-pass channels characterized by (1 + D)n, the high-order response polynomials
are also sensitive to error events with an even number of consecutive alternating signs. In particular, for
PR2(n = 2), minimum distance error event is {+1, −1}. Although there are several pairs of sequences
which can produce this error, if an MTR j = 2 constraint is employed, this type of error is only produced by
a shifted dibit (two consecutive transitions). Just as a time-varying TMTR(2/3; k) constraint can be used to
prevent a shifted tribit, so too can a TMTR(1/2; k) constraint be used to prevent a shifted dibit error, thus
yielding a 1.76 dB distance gain.14 A set of codewords suitable for implementing a rate 3/4 TMTR(1/2; 6)
code is given by {0001, 0010, 0100, 0101, 0110, 1000, 1001, 1010}. Because the MTR constraint is time-
varying for even and odd time indices, choosing codewords with an even length simplifies the design by
making the constraints uniquely position dependent within the codeword. Although the use of parity
codes is beyond the scope of this discussion, it is worth noting that a parity code combined with an
MTR(1/2; k) code can prevent single occurrences of error events with distances up to 3.98 dB from
dmin.15

TMTR codes prevent errors due to shifted transition runs by allowing these patterns to begin only on
alternating sample indices. A sufficient condition for avoiding shifted transition run errors is to enforce
a constraint that uniquely specifies a valid starting position for the transition run. The even/odd timing
requirements of the TMTR code provide this constraint. Another approach, proposed as an alternative
to the TMTR(1/2; k) code, is to combine an MTR(2; k) code with a constraint that forces dibits to be
preceded by one of either an even or odd number of nontransitions.16 Herein, this type of code is denoted
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(a) (b)

FIGURE 4.3 Pairs of write sequences which produce an error containing a shifted tribit.

MTR( j ; k, odd) if the number of nontransitions preceding a run of j transitions is odd. The same idea
can be applied to shifted tribits in an E2PR4 channel with an MTR(3; k, odd) code. An error event with
a shifted tribit must be preceded by a single bit error during the period of nontransitions for the error to
occur. This condition is illustrated in Figure 4.3; the bottom sequence for the pair labeled (a) is disallowed
because it contains an even number of nontransitions before the tribit. In the same figure, the sequence
pair labeled (b) shows two valid sequences that can produce an error containing a shifted tribit. Note that
the squared distance for this error, ±{+1, 0, 0, +1, −1, +1}, in an E2PR4 channel is 10, which is the same
as dMF . For isolated transitions and dibits (runs of transitions up to j − 1), no constraint is placed on
the number of 0s preceding the transition run. A set of codewords which give a rate 3/4 MTR(3; 7, odd)
code are given by {00010, 00100, 00101, 00110, 01000, 01010, 01100, 01101, 10000, 10001, 10010, 10100,
10101, 10110, 11000, 11010}.

All the MTR variants discussed to this point will serve to eliminate the targeted error sequences. What
varies from one to another is the detector/decoder complexity and available code capacity. The capacity
for a set of constraints is an upper bound on the achievable code rate, R. Recording channels, which
suffer from ISI are particularly sensitive to code rate because the SNR loss is greater than the 10 · log10 R
that would be expected if the only penalty were increased noise bandwidth. Assuming that the rate loss is
incurred to remove error events with distances less than dMF , the penalty can be computed from Figure 4.1
as a function of density. For convenience, define user density as the number of data bits per PW50, that
is, the symbol density is Ds = Du/R. The rate loss penalty for a code with rate R = 1/2 increases from
4 dB at user density Du = 1 to 5.31 dB at Du = 2, and 5.67 dB at Du = 3. Ultimately, the penalty will
be higher in a real system; the computation here is for a linear ISI channel, and additional rate dependent
loss mechanisms such as partial erasure and transition noise are neglected.

To compute capacity, a finite state transition diagram (FSTD) representing the code constraints is
constructed. All valid coded bit streams can be obtained by traversing states in the FSTD and concatenating
the corresponding edge labels. In addition to computing capacity, the FSTD can be used as the basis for
certain code construction techniques.17 The FSTD for a MTR( j ; k) code is shown in Figure 4.4 where an
NRZI format is assumed for the code bits. Note that the dotted lines indicate additional states, like those
previous, may be added as necessary to give the proper number of states.

For an FSTD with N states, an adjacency matrix describing the edges is constructed. This is an N-by-N
matrix A, where each entry aij is the number of edges from state i to state j . As an example, consider an

1

j +k

2 j

j +1j +2

1

1
1 0

1 1

0

0
00

FIGURE 4.4 Finite state transition diagram for an MTR( j ; k) code.
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TABLE 4.4 Capacities for MTR( j ; k) Codes

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

k = 1 0.0000 0.4057 0.5515 0.6174 0.6509 0.6690
k = 2 0.4057 0.6942 0.7947 0.8376 0.8579 0.8680
k = 3 0.5515 0.7947 0.8791 0.9146 0.9309 0.9388
k = 4 0.6174 0.8376 0.9146 0.9468 0.9614 0.9684
k = 5 0.6509 0.8579 0.9309 0.9614 0.9752 0.9818
k = 6 0.6690 0.8680 0.9388 0.9684 0.9818 0.9881
k = 7 0.6793 0.8732 0.9427 0.9718 0.9850 0.9912
k = 8 0.6853 0.8760 0.9447 0.9735 0.9865 0.9927
k = 9 0.6888 0.8774 0.9457 0.9744 0.9873 0.9934
k = 10 0.6909 0.8782 0.9462 0.9748 0.9877 0.9938
k = 11 0.6922 0.8786 0.9465 0.9750 0.9879 0.9940
k = 12 0.6930 0.8789 0.9466 0.9751 0.9880 0.9941
k = ∞ 0.6942 0.8791 0.9468 0.9752 0.9881 0.9942

MTR(2; 4) constraint. The adjacency matrix is then

A =




0 1 1 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0




Given A, capacity is then computed as

C = log2 λ(A)

where λ(A) is the largest real eigenvalue of the matrix A.18 For the MTR(2; 4) example, the capacity is
C = log2(1.7871) = 0.8376. Capacities for different values of j and k are provided in Table 4.4. For MTR
constraints of j = 4, the impact to capacity is minimal, and codes with rates of 24/25 can be constructed.
Typically, MTR codes are specified with j < k, but because j and k represent the maximum number of
consecutive 1s and 0s, respectively, the capacity for MTR( j ; k) is the same as for MTR(k; j ).

The TMTR codes were proposed as a means of obtaining the same distance gain, but at a higher capacity.
The FSTD for a TMTR( j − 1/j ; k) code is shown in Figure 4.5. In this figure, the states are shown with

j + k+1

1

2

j+1 j +2j+k+2j +2k j +k

j

0

0 000

1

1

0

1

1

1

1

1(odd k)

1(even k)1(odd k)

1(even k)

0(odd j )0(even j )

FIGURE 4.5 Finite state transition diagram for a TMTR( j − 1/j ; k) code.



Maximum Transition Run Coding 4-9

TABLE 4.5 Capacities for MTR( j − 1/j ; k) Codes

j = 1/2 j = 2/3 j = 3/4 j = 4/5

k = 1 0.0000 0.5000 0.5840 0.6358
k = 2 0.5706 0.7507 0.8170 0.8482
k = 3 0.6804 0.8423 0.8974 0.9231
k = 4 0.7381 0.8802 0.9312 0.9543
k = 5 0.7619 0.8983 0.9466 0.9685
k = 6 0.7764 0.9070 0.9540 0.9753
k = 7 0.7831 0.9115 0.9576 0.9786
k = 8 0.7874 0.9137 0.9594 0.9802
k = 9 0.7894 0.9149 0.9604 0.9810
k = 10 0.7908 0.9156 0.9608 0.9814
k = 11 0.7915 0.9159 0.9611 0.9816
k = 12 0.7919 0.9161 0.9612 0.9817
k = ∞ 0.7925 0.9163 0.9613 0.9818

circles or squares to indicate alternating clock periods, that is, the squares represent an odd time index
and the circles an even time index, or vice versa. The end states for runs of 0s and ones are determined
by whether k and j are even or odd. To be valid, edges can only connect from squares to circles and from
circles to squares. Table 4.5 lists the capacities for different values of j and k. Of interest to E2PR4 channels
are the TMTR(2/3; k) codes. For large values of k, the capacity of these codes approaches 0.9163, which
is significantly better than the 0.8791 attained by MTR(2; k) codes. For PR2 channels, the MTR j = 1
(or RLL d = 1) codes are limited to a capacity of 0.6942, while TMTR(1/2; k) codes are available with
capacities up to 0.7925.

Even greater capacities are available from the MTR( j ; k, odd) codes where an odd number of 0s must
precede a run of j 1s. The state diagram for this code is shown in Figure 4.6. If the RLL k constraint is an

1 2 3 k1 k1+1 k 1+ 2 k1+j

k1+j +1k1+j+2k1+j+3k 1+j+k 2
k 1+ j

+k2+1
k 1+k2
+ 2j − 1 k1+j+4

1

1

1

1 1

1

1

1

1

0

0 0 0

0000

0
0

0
0

0

0

FIGURE 4.6 Finite state transition diagram for an MTR( j ; k, odd) code.
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TABLE 4.6 Capacities for MTR( j ; k, odd) Codes

j = 2 j = 3 j = 4 j = 5

k = 1 0.0000 0.0000 0.0000 0.0000
k = 2 0.6054 0.7618 0.8232 0.8510
k = 3 0.7366 0.8569 0.9049 0.9263
k = 4 0.7720 0.8903 0.9363 0.9566
k = 5 0.7996 0.9089 0.9519 0.9709
k = 6 0.8086 0.9165 0.9588 0.9774
k = 7 0.8161 0.9211 0.9625 0.9807
k = 8 0.8187 0.9231 0.9642 0.9823
k = 9 0.8210 0.9243 0.9651 0.9831
k = 10 0.8218 0.9248 0.9656 0.9835
k = 11 0.8225 0.9252 0.9658 0.9837
k = 12 0.8227 0.9253 0.9659 0.9838
k = ∞ 0.8232 0.9255 0.9661 0.9839

odd number, then k1 = k, and k2 = k −1; otherwise, k1 = k −1, and k2 = k. In any case, k1 +k2 = 2k −1,
and the total number of states is 2(k + j − 1). Capacities for different parameter values are listed in
Table 4.6. For E2PR4 channels, an MTR(3; k, odd) code provides capacities up to 0.9255 compared with
0.9163 for the TMTR(2/3; k) code. The increase in capacity is even more dramatic for PR2 channels where
an MTR(2; k, odd) code has capacities up to 0.8232 compared with 0.7925 for TMTR(1/2; k).

4.4 Detector Design for MTR Constraints

The code constraints considered to this point provide a distance gain by allowing sequences that contain,
at most, one type of bit sequence involved in generating an error event. However, it is the detector which
must determine the correct sequence from the receive signal waveform. In order to resolve the ambiguity
about which pair of error-generating sequences was actually written, the detector must be modified to
prevent detection of the disallowed sequences.

A common detector choice is MLSD, implemented with a Viterbi detector.19 If the channel response
has length L time-samples (e.g., L = 5 for E2PR4), each detector state may correspond to a sequence
with up to L − 2 transitions. Therefore, if L > j + 2, at least two states in the detector will correspond to
forbidden sequences. Considering edges from previous states, one additional transition can be implied, so
for L > j + 1, at least two edges in the trellis will correspond to illegal sequences. In the case of a TMTR
code, these illegal states and edges will also be time-varying to match the code constraints.

As an example, consider the N = 2L−1 = 16 state trellis section shown in Figure 4.7. For the
TMTR(2/3; k) code, the states with the NRZ sequence labels 0101 and 1010, which correspond to three
consecutive transitions, are illegal during time periods for which only sequences of two transitions are
allowed. At all time periods, transitions between 0101 and 1010 are removed because they correspond to
four consecutive transitions. By removing these states and transitions, the Viterbi path memory can only
contain sequences that are permitted by the TMTR constraints. For a static MTR(2; k) constraint, the states
0101 and 1010 are always illegal. The additional states and edges removed by j = 2 are shown with dotted
lines in the figure. The MTR( j ; k, odd) codes require a slightly different approach. Accommodating the
constraint within the trellis structure by pruning states and edges would require a 2 j+k+1 state trellis such
that a sequence with a transition, followed by k nontransitions and then j transitions is represented. Clearly,
this is unreasonable for large values of k. Alternatively, for states corresponding to j consecutive transitions,
the detector can look back through the path memory associated with the edges leading into the state in
question. If the number of nontransitions preceding the j -transition run is even, the edge is disallowed.

Fixed delay tree search with decision feedback (FDTS/DF) is another detector structure that has been
suggested for use with MTR coded system. This detector uses a decision feedback equalizer (DFE) to
remove ISI due to symbols beyond a chosen truncation point in the response. A distance metric, such as is
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FIGURE 4.7 E2PR4 Viterbi trellis shown with states and edges removed for a TMTR(2/3; k) code and in dashed lines
for an MTR(2; k) code.

used with MLSD, is computed for possible sequences constructed from the remaining ISI terms. Decisions
are made at a fixed time-delay determined by the tree depth or number of ISI terms considered. For an
MTR j = 2 code and FDTS/DF with t = 2 (sequence estimation using the f0 + f1 D + f2 D portion of the
channel response), Figure 4.8 shows the relevant sequences in the tree search eliminated by the code. As
shown, the previous decision is used to dynamically deselect one of two detector paths, thereby preventing
the illegal tribit patterns.

4.5 Simulation Results

The net SNR gain for a particular MTR coding scheme can be estimated by subtracting the rate loss penalty
from the distance gain. Because this value is only an approximation, simulations are used to provide a more
accurate result. Here, the coding gain on a Lorentzian channel equalized to an E2PR4 target is examined.
Although it is the difference in SNR that is of interest here, the definition used in the plot is the squared
peak of the isolated transition response to the integrated noise power in the 1/PW50 frequency band.
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For several types of codes, the SNR required to obtain a bit error rate (BER) of 10−5 is shown as a function
of user density in Figure 4.9. To isolate the distance gain of the code, ideal clock synchronization and gain
control are assumed. The receive signal is equalized to the E2PR4 response with a relatively long FIR filter
designed to minimize the mean squared error at the equalizer output.

A rate 16/17 RLL(0, 6/6) code is used in lieu of an uncoded reference. From the figure, it is clear that
although the RLL(1,7) code provides a significant distance gain, its code rate loss exceeds the distance gain,
giving a net loss. Of course, such a code is often chosen to mitigate transition noise and nonlinearities,
which are not reflected in this model. At a user density of Du = 2.5, the rate 6/7 MTR codes provides a
net gain of about 1 dB while, as expected, the rate 8/9 TMTR provides a slightly larger gain.

4.6 Summary

Performance in recording channels, subject to severe intersymbol interference, is limited by error event
sequences that produce a minimum distance less than the matched filter bound. High density Lorentzian,
PR2, and E2PR4 channels are all subject to error events that can be avoided by properly constraining the
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maximum number of consecutive transitions. A variety of code constraints with varying capacities can
be formed around this basic idea. For a simple linear channel with additive Gaussian noise, these codes
provide a net performance gain, despite the fact that the MTR constraint reduces the code rate.
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5.1 Introduction

The first application of spectrum shaping codes was related to digital communication systems that used
transformers to connect two communication lines. Because transformers do not convey dc-component,
and suppress low frequency components, direct transmission of source signals whose power spectral den-
sities contain these frequency components were not possible without significant distortion. That is why
dc-free or dc-balanced codes were devised [1–3, 10–13]. Their role is to transform a source sequence into
a channel sequence whose spectral characteristic corresponds to spectral characteristic of communication
channel. At the end of communication line, the sequence is received by the decoder that generates original
sequence without errors in the case of noiseless channel. In recording systems that can be modeled as any
communication system, this kind of codes have been widely used. For instance in digital audio tape sys-
tems, they prevent write signal distortion that can occur due to transformer-coupling in write electronics
[2]. In optical recording systems they are used to circumvent the interference between recorded signal and
servo tracking system. Further development of spectrum shaping codes for recording systems was driven
by requirements for better codes in the sense of larger rejection of low frequency components. The codes
providing this feature are codes with higher order spectral zero at f = 0, and can be found in [14, 16, 17].
Although the width of suppressed frequencies of these codes is smaller than in the case of dc-balanced codes,
the rejection in the vicinity of f = 0 is significantly larger. Another class of spectrum shaping codes were
invented in order to support the use of frequency multiplexing technique for track following [1], and par-
tial response technique for high density data storage [15]. Both techniques require the spectral nulls of the
recorded signal at frequencies that can be different than f = 0 in order to enable reliable data storage. The
typical example of such codes are codes that have spectral zeros at submultiple of channel symbol frequency.

5-1
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FIGURE 5.1 Recording system.

For this type of codes see, for example, [18–20]. The fourth characteristic group of spectrum shaping codes
are those that give rise to spectral lines. Their purpose is to give the reference information to the head posi-
tioning servo system that positions and maintains the head accurately over a track in digital recorders [1].

Besides spectral constraint, recorded sequences have to comply with certain time constraints. That is
why it is interesting to say something about compound codes, which generate sequences that in the same
time satisfy more than one constraint. Typical representatives are RLL (runlength limited) dc-free codes.
RLL dc-free sequences have confined minimal, and maximal consecutive like channel symbols, and in
the same time, their spectrum has zero at f = 0, [21, 22]. Important classes of spectrum shaping codes
are dc-free error correcting codes. It was mentioned earlier that the decoder of dc-free code will decode
channel sequence without errors if the channel is noiseless. Because a recording channel is not noiseless,
a lot of effort was put into design of dc-free error correcting codes, both block and convolutional codes.
The examples of these codes can be found in [27–30].

The goal of this chapter is to give a survey of spectrum shaping codes for digital recording systems from
the theoretical, and practical point of view. The organization of the article is as follows. Section 5.2 contains
short description of recording system with respect to the role of spectrum shaping codes. In Section 5.3,
dc-free codes are considered. Some theoretical basis for studying of dc-free codes are given, which will
be important for studying of all types of spectrum shaping codes [4–8]. Section 5.4 discusses codes with
higher order spectral zeros at f = 0, and codes with zeros at frequencies that are submultiple of channel
symbol frequency. In Section 5.5, certain compound constraint codes are mentioned. The specific example
of RLL-dc code is given. All codes are considered from the point of view of maxentropic sequences. The
channel capacity of maxentropic sequences are computed, and corresponding power spectral densities are
given. Also, the basic encoding techniques are described.

5.2 Recording System and Spectrum Shaping Codes

The encoder of spectrum shaping code is the last in the chain of encoders preceding the recording channel,
and the decoder of spectrum shaping code is the first in the chain of the decoders that follows the recording
channel. As shown in Figure 5.1, the encoder receives a symbol stream c = {ck}∞k=0 from an error correcting
code encoder, and transforms it into the stream of channel symbols x = {xk}∞k=0 that matches the spectral
characteristics of the recording channel with impulse response h(t). n(t) is additive noise. The decoder
accepts data stream from the channel y = {yk}∞k=0, and transforms it to the symbol stream ĉ = {ĉ k}∞k=0

that is the noisy version of c, and fed to the error correcting code decoder. From the point of view of
error correcting code encoder, and decoder, the spectrum shaping code encoder, and decoder are merely
part of the recording channel. One can also define the code rate R of the spectrum shaping codes. In the
case of block codes, the input stream c is divided into the sourcewords of length k, which are encoded in
codewords of length n forming the output stream x. The coding rate is defined as the ration of the word
length at the input k, and the codeword length n, R = k/n.

5.3 Dc-free Codes

5.3.1 Introduction

Dc-free codes belong to a class of spectrum shaping codes that transform the spectrum of the input
sequence into an encoded sequence whose spectrum has zero at the zero frequency. Dc-free codes emerged
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first in digital communications. The intrinsic part of communication lines were coupling devices whose
characteristic as well as the characteristic of digital recording channels is that they suppress the low
frequency components of the transmitted signal or recorded data respectively. This implies the necessity of
signal processing techniques, which will reshape the spectrum of the original source sequence, and in that
way match the characteristics of the communication or recording channels. Not only that dc-free codes
give zero at dc, but also the low frequency components of the encoded sequence are suppressed depending
on the choice of code parameters. But this is not the only reason for employing dc-free codes. The other
reason for using dc-free codes is that the optical data storage systems use high-pass filters to diminish the
effect of dirt on system performance caused for example by fingerprints on an optical medium. Another
reason is to prevent the mutual interference between recorded data, and servomechanism for track tracking
that operates at a low frequency [1]. All those arguments indicate the importance of dc-free codes for data
recording systems.

Dc-free codes attracted considerable attention of the data storage community, and a number of papers,
and patents have been published till now, and a large number of references can be found in [2].

This part of the chapter is organized in the following manner. In the Section 5.3.2, theoretical back-
ground of dc-free constraint sequences is given. Section 5.3.3 considers the finite state transition diagram
(FSTD) description of dc-free constraints and method for computing the noiseless channel capacity of
the constrained channel. Section 5.3.4 presents power spectral density (PSD) characteristics of dc-free
constraints, and discusses the most important parameters that determine PSD, and channel capacity, and
their mutual dependence. Section 5.3.5 contains survey of simple and well-known coding techniques for
generating dc-free sequences.

5.3.2 Dc-free Constraint Sequences

The starting point for analysis and design of dc-free codes is the result by Pierobon [3]. Before stating the
result of Pierobon the notion of running digital sum is defined. The running digital sum (RDS) at moment
n, zn, of sequence of symbols x = {xk}∞k=0 is defined as

zn =
n∑

k=0

xk (5.1)

Pierobon proved that the power spectral density Sx ( f ) of a sequence x vanishes at zero frequency, regardless
of the sequence distribution, if and only if the running digital sum z = {zk}∞k=0 of the encoded sequence
is bounded, that is, |zn| ≤ N, for each n, when N < ∞. This condition describes the constraint posed
on the sequences that are eligible for recording on a recording medium. In other words, any sequence
that violates the condition on RDS will not be permitted in the recording channel, and sequences that
satisfy this constraint are called dc-free sequences. It follows that recording channels are channels with the
constraint that is called dc-free constraint. Further, the effect of RDS is twofold; first, it affects the shape
of power spectral density of constrained sequences, and second the upper bound N on RDS determines
the capacity of a constrained recording channel [1]. In general case, the capacity of noiseless constrained
channels was defined by Shannon [4] as

C = lim
T→∞

log2 n (T)

T
(5.2)

n(T) is total number of admissible sequences, and T is sequence duration. The channel capacity determines
the maximal theoretical code rate R of an constrained code. It will be explained later that the upper bound of
RDS, N, has contradictory effects on the channel capacity, and desired power spectral density of recording
sequences so that code design is a compromise between two opposite requirements.
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5.3.3 Capacity of Dc-free Constraint

In order to compute the channel capacity of dc-free constrained channels, the notion of digital sum
variation (DSV) is introduced. If Nmax is the maximum value of z, and Nmin is its minimum value then
digital sum variation is defined as N = Nmax − Nmin +1. Actually, DSV is equal to the number of different
values that z can take. Intuitively, it can be seen that the total number of admissible sequences n(T) depends
on DSV, that is, the larger N, the larger n(T), and the larger channel capacity C .

The common tool for description of constrained sequences is a finite state transition diagram (FSTD). It
was shown by Shannon [4] that the FSTD description of a constrained channel can be used for computation
of its channel capacity. In this section that result is used to determine the channel capacity of M-ary dc-free
constraint, where M is the number of levels that are permitted in the recording channel [5]. One example
of FSTD representing dc-free constraint is given in Figure 5.2. It depicts M-ary dc-free constraint when
the channel symbol alphabet is {−(M − 1)/2, . . . , −1, 0, 1, . . . , (M − 1)/2}, M odd. If M is even, then the
channel symbol alphabet can be chosen as {−(M − 1), −(M − 3) . . . , −1, 0, 1, . . . , (M − 3), (M − 1)}.
The state of the FSTD represents the value of RDS, zk , at time instant k. An edge between two states
represents the transition between states, while a label above the edge denotes the input symbol generated
during the transition between states. The number of states is equal to DSV, N. To compute the channel
capacity, the connection matrix of FSTD is introduced. The connection matrix D of FSTD is a square
matrix of dimension N, where the entry dij of matrix D represents number of edges emanating from state
i , and ending at state j . The connection matrix for FSTD shown in Figure 5.2 is

D =

1 1 0

1 1 1
0 1 1


 (5.3)

On the other hand, because the transition from one state to another depends only on the current state,
each FSTD may be assigned corresponding Markov chain s ={sk}∞k=0, where each state of FSTD is related
to a value that Markov chain can take. The finite number of values that Markov chain takes is equal to the
number of states of FSTD. Each edge is assigned a transition probability pij, from state i to state j , where
i, j ∈ ∑, where

∑
is the set of all states of Markov chain. The measure of uncertainty or measure of

information generated by a Markov chain is equal to the entropy of Markov chain. It is calculated as

H (X) =
N∑

i=1

pi Hi (5.4)

where pi is probability of state i(i = 1, . . . , N), and Hi is the entropy of the state i , that is, uncertainty of
being in state i(i = 1, . . . , N) at any time instant. It is defined as the entropy of the transition probabilities
pij, Hi =∑N

j=1 pij log 1
pij

.

It was proven by Shannon [4] that channel capacity of constrained noiseless channel is

C = max H(X) = log2 λmax (5.5)

λmax is the maximum eigenvalue of connection matrix D of FSTD representing channel constraint. The
Equation (5.5) connects the channel capacity of the constrained channel to maximum entropy notion.

1 1

−1 −1

0

0

0

FIGURE 5.2 FSTD for M = 3, N = 3 dc-free constraint.
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TABLE 5.1 Capacity of Dc-free Constraint

N M=2 M=3 M=4 M=5 M=6 M=7 M=9

3 0.5 1.2716 — 1.5850 — — —
4 0.6492 1.3885 1 1.8325 — 2 —
5 0.7925 1.4500 1.2925 1.9765 — 2.2159 2.3219
6 0.8495 1.4864 1.4500 2.0642 1.5850 2.3559 2.5114
7 0.8858 1.5098 1.5665 2.1223 1.7952 2.4529 2.6423
8 0.9103 1.5258 1.6508 2.1626 1.9227 2.5211 2.7388
9 0.9276 1.5371 1.7111 2.1919 2.0283 2.5713 2.8117

10 0.9403 1.5455 1.7573 2.2137 2.1085 2.6094 2.8672

It shows that maximum entropy Markov chain generates maximal number of sequences of certain length.
The constrained sequences generated by a Markov chain having maximum entropy are called maxentropic
sequences. Table 5.1 contains the channel capacities for some M-ary dc-free constraints. Table 5.1 shows
that channel capacity increases when two degrees of freedom DSV, and M increase. For M = 2, the closed
form expression for channel capacity was derived [1]. The derivation is based on the recurrent relation that
exists between characteristic polynomials of connection matrices DN , DN−1, DN−2, where the subscripts
denote the DSV of the corresponding channels described by connection matrices. The formula for channel
capacity is

C (N) = log2 2 cos
π

N + 1
(5.6)

The results obtained by Equation 5.6 agree with those found in Table 5.1.

5.3.4 Spectral Characteristics of Dc-free Constraint

In Section 5.3.2, a necessary and sufficient condition for the null of a power spectral density at f = 0 is
introduced. In this section the importance of variance of RDS will be considered, and the power spectral
densities of maxentropic dc-free sequences will be shown.

In [6], Justesen derived interesting relation between the sum variance (variance of RDS) E [z2
k ]=σ 2

z (N)
where N is a digital sum variation, and so-called cut-off frequency ω0

2σ 2
z (N)ω0 ≈ 1 (5.7)

The cut-off frequency is defined as the value of the frequency ω0 = 2π f0, such that Sx ( f0) = 0.5.
The cut-off frequency determines the bandwidth, called notch width, from f = 0 to f = f0, within
which the power spectral density of recorded sequence Sx ( f ) is low. The performance is better if the
cut-off frequency f0 is larger giving the larger notch width. On the other hand, from Equation 5.7, it
is clear that the larger cut-off frequency f0, the smaller sum variance σ 2

z (N). Having in mind that the
sum variance σ 2

z (N), and the channel capacity C (N) both decrease as N decreases, it can be assumed
that the capacity of the constrained channel C (N) is smaller as cut-off frequency f0 grows, implying that
the redundancy 1 − C (N) is bigger [1]. The previous discussion also points out the equal importance of
redundancy 1 − C (N), and sum variance σ 2

z (N) as performance measures for spectrum shaping codes.
That is why in [1], the new measure of performance for spectrum shaping codes was introduced as the
product of redundancy, and sum variance (1 − C (N))σ 2

z (N). It was shown that this product is tightly
bounded, from below, and above for N > 9 in the case of maxentropic dc-free sequences. This shows the
significance of the relation Equation 5.7, that reveals the conflicting demands posed on the constrained
sequences. If one wants to get better suppression of low frequency components of power spectral density,
one must pay with bigger redundancy, that is, code inefficiency. Although the previous result is derived
for binary recording channels, the conclusions are true for M > 2.

In what follows, the power spectral densities for some maxentropic M-ary dc-free sequences will be
computed. In order to compute the power spectral density of the constrained channel, FSTD of Moore
type, and corresponding Markov chain representation of the constrained channel are used. For example,
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FIGURE 5.3 Moore type FSTD for M = 3, N = 3 dc-free constraint.

in Figure 5.3, the FSTD of Moore type for M = 3, N = 3, dc-free constrained channel is depicted. The
characteristic of the Moore type FSTD, as opposed to the FSTD found in Figure 5.2, is that all edges entering
the same state have the same label, that is, the same channel symbol is generated by visiting particular
state. In this example the alphabet of channel symbols is {−1, 0, 1}. If the initial state is s0 = 4, and z0 = 0,
then zk ∈ { − 1, 0, 1} meaning N = 3. It can be seen that states 1 and 2 correspond to zk = −1, states 3,
4, and 5 to zk = 0, and 6 and 7 to zk = 1.

Associated with FSTD, there exists a Markov chain generating maxentropic M-ary dc-free sequences
with transition probabilities given by [4]

pij = 1

λmax
dij

v j

vi
(5.8)

The quantities vi , and v j are the entries of the right eigenvector corresponding to the maximal eigenvalue
λmax of the connection matrix D. The methods for computing power spectral density Sx ( f ) of Markov
sources were proposed in [7, 8], and are used here in order to get the spectra of maxentropic M-ary dc-free
sequences. The equation for continuous part of power spectral density of Markov source is given as

Sx ( f ) = Cx (0) + 2
∞∑

k=1

Cx (k) cos 2πk f (5.9)

where Cx (k), k = 0, 1, 2, . . ., is autocovariance function of generated sequence x, and can be written as

Cx (k) = ξ T �(P |k| − P∞)ξ (5.10)

In Equation 5.10, each entree of vector ξ , which has as many entrees as there are states of Markov chain,
represents symbol emitted when particular state of Markov chain is visited. Further, matrix � is a diagonal
matrix whose diagonal elements are steady state probabilities of Markov chain, P is a transition probability
matrix, and each row of P∞ is equal to the steady state probability vector of Markov chain. The importance
of maxentropic sequences is that their power spectral density corresponds to the power spectral density
of the codes whose code rate R is near the channel capacity C , and consequently can be used as a good
approximation of the spectrum of those codes. The power spectral density of maxentropic sequences does
not depend on the specific encoder and decoder realization, and therefore it is easier to compute than the
spectrum of the specific code.

Figure 5.4 shows PSD of maxentropic sequences for M = 3, and N = 3, 4, 5 versus normalized frequency
f where normalization is done by fs = 1/Ts , where Ts is a signaling interval. It is interesting to check the
validity of the formula Equation 5.7 for previously computed PSD. For instance, the normalized cut-off
frequency for M = 3, N = 4, is f0 = 0.1, ω0 = 0.6283, and by formula Equation 5.7, approximate sum
variance is 0.7958. The formula for exact value of the sum variance is given in [6], according to which
σ 2

z = −∑∞
k=1 kRx (k) = 0.8028, meaning that Equation 5.7 provides good approximation for relation

between sum variance and cut-off frequency.
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FIGURE 5.4 Continuous part of the power spectral density of M = 3, N = 3, 4, 5 maxentropic sequences.

5.3.5 Encoding and Decoding of Dc-free Constraints

Finite state transition diagrams of dc-free constraints, and their maxentropic Markov chains are of great
importance. They are analytical tools that provide a number of parameters, such as channel capacity, cut-
off frequency, sum variance, representing theoretical bounds of dc-free constraints. Those parameters have
a practical meaning for the designers of encoders and decoders of dc-free codes. But these analytical tools
do not give a recipe how to build practical encoders, and decoders. This section considers the standard
solutions for realization of encoders and decoders of dc-free constraints. To determine the quality of
particular encoder for constraint channels, two parameters are introduced. The first, called code rate
efficiency, is defined as the ratio of code rate R, and channel capacity C , η = R/C . While the first one
is commonly used for any channel coding scheme, the second was specially defined for dc-free codes [1].
The encoder efficiency E is

E = (1 − C (N))σ 2
z (N)

(1 − R)s 2
z

(5.11)

The encoder efficiency compares the product of redundancy, and sum variance of maxentropic sequence
for particular channel, and product of redundancy, and sum variance of specific encoder for the same
channel. The maxentropic sequence was taken as a reference because it achieves the channel capacity of
dc-free constraint channel. The importance of sum variance was explained in the previous section.

In general, encoders, and decoders can be divided into two groups, state independent and state dependent
encoders and decoders. State independent encoders are usually realized by look-up tables where there
exists one-to-one correspondence between sourcewords and codewords. As opposed to state independent
encoders, state dependent encoders are designed as a synchronous finite state machines [9] where the
next codeword is the function of a current internal state of the encoder, and a current sourceword. The
advantage of state dependent encoding is that sometimes more efficient codes can be constructed (in terms
of code rate) [1] with shorter codewords.
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Similarly, the output of state dependent decoder depends on the decoder current state, the current input
codeword, as well as finitely many upcoming codewords [9]. The weakness of this type of decoders is that if
an error occurs due to the noisy channel the decoder could lose track of states. In turn, this can lead to the
series of errors, that is, error propagation. In order to prevent this kind of event, state independent encoders
are introduced. The decoder’s output depends only on the certain number of preceding codewords, current
codeword, and certain number of upcoming codewords. The name for such type of decoders is sliding
window decoders [9].

Here, both types of encoders will be presented. It is assumed that recording channel is binary channel
with channel alphabet {−1, 1}. The main idea behind dc-free encoder realization is the fact that the RDS of
channel sequence has to be bounded. Having that in mind, the notion of codeword disparity is introduced.
The disparity d of codeword x = (x1x2 . . . xn) of length n is defined as

d =
n∑

i=1

xi (5.12)

The simplest idea is to use only codewords that have zero disparity. Each sourceword is assigned a unique
codeword of zero disparity. It means that RDS at the end of each codeword will be equal to zero, if z0 = 0.
This type of encoding is called zero disparity encoding, and it is obviously state independent. It is simple,
but the main shortcoming is inefficiency in terms of code rate R for a fixed codeword length n, because
the number of possible codewords with zero disparity of length n is finite, ( n

n/2 ). The larger efficiency η

can be achieved by increasing the codeword length n, which in the same time makes the look-up table
realization of encoder more complex.

Another way for achieving better efficiency is to use so-called low disparity codes. The drawback of this
technique is the increase of the power of low frequency components as compared to zero disparity coding.
The codes that belong to this class of encoding can be found in [10]. Again the goal is to keep the value
of RDS within some prescribed bounds. In addition to zero disparity codewords, it is allowed to use the
codewords with low disparity. As explained in [1], let S+ denote all codewords with positive disparity,
and let S− denote all codewords with negative disparity. S+ is the union, S+ = ∪K

j=0 S j , K ≤ n/2, where
S j is the set of all codewords with disparity d = 2 j . The set S− is obtained by inverting codewords of
set S+. K = 0 represents the case of zero disparity encoding. If K = 1, each sourceword is assigned a pair
of codewords of opposite disparity or a codeword of zero disparity. In process of encoding, the value of
RDS is tracked. Because the encoder has a choice of two codewords to send to the channel, it chooses one
whose disparity minimizes absolute value of RDS. Actually, the encoder has two codebooks, and chooses
the codeword from one codebook such that an instantaneous value of RDS is within some bounds.

The polarity bit coding is yet another simple method that generates dc-free sequences [11, 12]. One extra
bit, called polarity bit, is added to n − 1 source bits comprising codeword of length n. The polarity bit is
set to 1. If the disparity of the codeword has the same sign as RDS at the moment of sending the codeword,
the inverted codeword is recorded. Otherwise original codeword is recorded. The decoder, based on the
polarity bit, recognizes if the codeword was inverted or not.

In [1], the encoder efficiency E versus codeword length n of above coding techniques is shown. The
conclusion can be drawn that low disparity codes outperform zero disparity codes, and zero disparity
codes outperform polarity bit codes. Also, for small codeword lengths, low, and zero disparity codes have
unit efficiency, while the efficiency drops as the codeword length increases.

It is worth to mention two more coding techniques. Their realizations do not rely on look-up tables so
that they are convenient if better efficiency is necessary. One is based on enumerating the set of sequences
denoted by T = T(zn, n, N, z0) [1], where n is a sequence length, N is the maximal value of RDS within
the sequence, zn and z0 are final and initial value of RDS. It is understood that the minimal value of RDS is
1. The enumeration algorithm establishes one to one correspondence between set T and the set of integers
0, 1, . . . , |T | − 1. The enumeration represents the foundation of decoding algorithm. Also algorithm that
performs reverse operation was derived, that enables mapping from the set of integers to the set of con-
strained sequences. The second technique uses the fact that each k-bit binary sourceword can be divided in
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FIGURE 5.5 Encoder for M = 3, N = 3 dc-free constraint.

TABLE 5.2 Decoding Table
for M=3, N=3, Dc-free Code

Window Decoded Bit

1 1
0 0

−1 1

two segments, each having equal disparity [13]. The zero disparity codeword is obtained by inverting one of
two segments. Additional l bits are used to mark the position splitting these two segments. Those additional
l bits are usually coded with zero disparity word. It follows that code rate is R = k/(k + l). The encoding
is possible because there always exists one to one correspondence between sourcewords and codewords.

5.3.5.1 State Dependent Encoding

Here, the example of state dependent encoder, and sliding window decoder is presented, for the following
parameters M = 3, N = 3. It is assumed that the source generates binary sequences with alphabet {0, 1}.
The set of channel symbols is {−1, 0, 1}. The capacity of this constraint is C = 1.2716 bits/symbol. The
code rate of R = 1/1 bits/symbol is chosen. It means that both sourceword length, and codeword length
is 1. The code rate efficiency is η = 0.77. The starting point for encoder construction is FSTD presented
at Figure 5.3, that represents Moore type FSTD of M = 3, N = 3 dc-free constraint. This type of FSTD
belongs to almost finite type according to Proposition 7 in [9]. According to Theorem 3 in [9], there exists a
noncatastrophic finite state encoder accompanied with sliding window decoder. Approximate eigenvector
is v = [1 1 1 1 1 1 1] that guarantees the existence of enough number of edges from each state, and there is
no need for state splitting. The encoder is shown in Figure 5.5. Every label above an edge consists of pair,
sourceword/codeword. From every state emanate as many edges as there are sourcewords, and in this case,
it is 21 = 2. The input bits are assigned in such a way to minimize the size of the decoder window. Table 5.2
gives sliding window decoder table. It can be seen that only one symbol is enough to decode a bit.

5.4 Codes with Higher Order Spectral Zeros

5.4.1 Introduction

The first representatives of spectrum shaping codes were dc-free codes discussed in the previous section.
Further development of spectrum shaping codes went into two directions. One direction is the improve-
ment in suppressing of low frequencies, and the other is the introduction of spectral zeros at frequencies
different than zero frequency.



5-10 Advanced Error Control Techniques for Data Storage Systems

As it was pointed out at the very beginning, the role of spectrum shaping codes is to match the spectral
characteristics of source sequences to the channel characteristics, and in the case of dc-free codes to cancel
out dc, and to reduce the low frequency components of the recorded signal. The goodness of some code
is measured by notch width determined by cut-off frequency. This parameter determines the frequency
bandwidth within which the power spectral density is less than some value, but it does not tell anything
about how well these spectral components are rejected. Further improvement in terms of better suppression
of low frequency components is achieved by generalizing of basic concepts given in previous sections. The
better reduction of low frequency components is obtained by putting constraint on so-called kth order
RDS [14]. That results in higher order zeros of power spectrum density.

The importance of spectrum shaping codes was rediscovered with introducing of partial response
signaling techniques in high density recording devices [15]. The spectrum of such kind of recording
channels can have zero not only at f = 0 but also at Nyquist frequency f = fs /2, where fs is a channel
symbol frequency. The spectrum of codes that are designed to match partial response recording channels,
have to have zeros not only at f = 0, but at some other frequencies as well, as required by specific channel.
It was revealed that spectrum shaping codes on partial response channels have an additional virtue. It
turned out that they exhibit enhanced error correcting capabilities on partial response channels.

In this section codes that give rise to higher order spectral nulls at frequencies f = 0, and f = p fs /q ,
where p, and q are relatively prime, are presented. The results discussed here are due to Eleftheriou, and
Cideciyan [14], and Immink [1]. Among the authors that considered these problems are Immink [16],
Immink, and Beenker [17], Marcus, and Siegel [18], and Karabed, and Siegel [19].

5.4.2 Sequences with Higher Order Zeros at f = 0

First time the notion of sequences whose power spectral densities have higher order spectral nulls was
introduced by Immink in [16]. He defined running digital sum sum (RDSS) of sequence {xk}n

k=0 as

yn =
n∑

i=0

zi =
n∑

i=0

i∑
j=0

x j (5.13)

where zk is the value of RDS at moment k. It can be proven that power spectral density of sequence {xk}∞k=0

has second order zero at f = 0, that is, Sx (0) = 0, and S(2)
x (0) = 0, if and only if RDSS is bounded.

The sequences whose RDSS is bounded are called dc2-constrained sequences, and corresponding codes
are dc2-constrained codes. The odd derivatives of power spectral density Sx ( f ) are zero because Sx ( f ) is
an even function of frequency f .

As in the case of dc-free constraint, similar encoding techniques are applied for higher order constraints,
for example, zero disparity encoding, enumerative encoding, state dependent encoding. Zero disparity
encoding employs the codewords that have zero disparity with respect to both RDS, and RDSS. The
enumerative encoding counts the number of codewords of fixed length n, x = (x1x2 . . . xn), denoted by
An(dz , dy), that satisfy RDS disparity dx = ∑n

i=1 xi , and RDSS disparity dy = ∑n
j=1

∑ j
i=1 xi . The state

dependent encoding are organized in the following way. All codewords are of zero dz disparity, and are
divided in two groups; one consists of codewords having zero, and positive dy disparity, and the other
consists of codewords having zero, and negative dy disparity. The encoder chooses the next codeword such
that at the end of that codeword the RDSS is close to zero.

The larger rejection of low frequencies is accomplished if the higher derivatives of power spectral density
S(k)

x ( f ), k > 2 are zero at f = 0. The condition for vanishing of higher order derivatives is defined in [17],
and it uses the concept of codeword moment. The kth moment of codeword x is defined as

µ0
k(x) =

n∑
i=1

i k xi (5.14)

where k ∈ {0, 1, 2, . . .}. The superscript 0 means that the spectral null is at f = 0. The first 2K + 1
derivatives of power spectral density Sx ( f ) vanish at f = 0, if the first K + 1 codeword moments µ0

k(x)
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are zero. The concept of kth codeword moment is very useful in computing the error correcting capabilities
of codes with higher order spectral zeros, and it is related to kth order running digital sum that is introduced
in the following section [14].

5.4.3 K-RDS f Sequences

In [14], more general approach was taken. The concepts of kth order running digital sum at frequency f ,
and K-RSD f FSTD are introduced. They are used to describe necessary, and sufficient conditions that an
FSTD has to satisfy in order to be able to generate sequences whose power spectral densities have desired
characteristics. Two main theorems of [14], Theorem 2, and Theorem 4, completely describe FSTDs that
generate sequences with spectral nulls of order K at f = 0, and f = pf s /q , respectively. The frequency fs

is a channel symbol frequency, and p, and q are relatively prime numbers. In this section just Theorem 4
will be presented.

The kth order RDS f at frequency f = pf s /q of sequence x ={xk}n
k=0 is defined as

σ
f

k (x) =
n∑

i1=0

i1∑
i2=0

. . .

ik−1∑
ik=0

w ik xik (5.15)

where w = e− j 2πp/q . In order to be able to state the main result, another notion has to be defined. For an
FSTD is said that it is K -RDS f FSTD if there is a mapping ψ from the set of states

∑
onto a finite set of

complex numbers ς such that x(D) = wz(D)(1 − w−1 D)K , where x = {xk}n
k=0 is a channel sequence,

zn = ψ(sn+1), s = {sk}n
k=0 is a state Markov process (sk ∈∑), and a(D) =∑∞

k=0 ak defines D transform
of sequence a = {ak}∞k=0. The spectrum of sequence x generated by state process s assigned to an FSTD has
a spectral null of order K at f = p fs /q , if and only if FSTD is an K -RDS f FSTD. The main result of [14],
Theorem 4, that completely describes K -RDS f FSTD, says that the following statements are equivalent:

1. There are K functions, ψk , 1 ≤ k ≤ K , that map the set of states
∑

onto a finite set of complex
numbers ς such that

xn = wψ1(sn+1) − ψ1(sn)
(5.16)

ψk−1(sn) = ψk(sn) − w−1ψk(sn−1), 2 ≤ k ≤ K

2. There are K functions, ψk , 1 ≤ k ≤ K , that map the set of states
∑

onto a finite set of complex
numbers ς such that the kth order RDS f , 1 ≤ k ≤ K , of any channel sequence is given by

σ
f

1 (x) = w n+1ψ1(sn+1) − ψ1(s0)
(5.17)

σ
f

k (x) = w n+1ψk(sn+1) − ψk(s0) −
k−1∑
i=1

ψk−i (s0)

(
n + i

i

)
, 2 ≤ k ≤ K

3. There are K − 1 functions, ψk , 1 ≤ k ≤ K − 1, that map the set of states � onto a finite set of
complex numbers ς such that for every cycle of states s0, s1, . . . , sn+1 = s0 of length that is multiple
of q , the following equations are satisfied

σ
f

1 (x) = 0
(5.18)

σ
f

k (x) = −
k−1∑
i=1

ψk−i (s0)

(
n + i

i

)
, 2 ≤ k ≤ K

4. K -RDS f FSTD that goes through the state sequence s = {sk}n
k=0 generates channel sequence

x = {xk}n
k=0, that has a spectral null of order K at f = p fs /q .
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It should be noted that spectral null of order K guarantees that first 2K −1 derivatives of power spectral
density Sx ( f ) vanish at frequency f . If, in formula (Equation 5.15), and expressions in Theorem 4, w
is replaced by 1, and superscript f with 0, Theorem 4 becomes Theorem 2 from [14] that completely
characterizes FSTD that generates sequences with K -th order spectral null at f = 0. A usefulness of
previous results can be seen from manipulation of two formulas in (Equation 5.16), which gives

σ
f

n+1 = Aσ f
n + w n1xn (5.19)

where σ f
n = w nψn is K -dimensional column vector, A is a lower triangular all one matrix, and 1 is

K -dimensional all one vector. Again if w = 1 then this formula is valid for the case of spectral null at
f = 0. If σ

f
0 = 0, the kth element of vector σ f

n represents kth-order RDS f of sequence x at moment n.
The Equation (5.19) describes dynamics of K -RDS f FSTD with respect to time. Also, the Equation (5.19)

is related to the concept of canonical state transition diagrams [18], denoted by D f
K . These diagrams

have a countably infinite number of states, and there exists a finite state subdiagram of DK that generates
sequences with K th order spectral null at frequency f . One such finite state subdiagram, D0

2 , is shown
in Figure 5.6, for the following values of parameters: cardinality of channel symbol alphabet M = 2,
1-RDS0, and 2-RDS0 assume values from {−1, 0, 1}, and K = 2. One can notice that 1-RDS0 is obtained
by setting w = 1, and k = 1 in Equation 5.15, which is classical RDS as defined by Equation 5.1, while
2-RDS0 is obtained by setting w = 1, and k = 2 in Equation 5.15, which is classical RDSS as defined by
Equation 5.15. In this case vector σ f

n is two-dimensional, where first entree is zn, and the second is yn, if
the notation from previous section is used. The graph can be drawn such that abscissa represents zn, and
ordinate represents yn. If Vk denotes the number of different values that kth-order RDS f can assume then
for K = 2, the following relation holds between V1, the number of values that 1-RDS0 can assume, V2, the
number of values that 2-RDS0 can assume

V1 = 2
⌊√

V2 − 1
⌋+ 1 (5.20)

where �x� defines the largest integer smaller than x . In general, it is proven that finite bound on Vk implies
the finite bound on all Vj , j < k. These FSTD enables the computation of capacities, and power spec-
tral densities of the constraints, and encoder/decoder design. Table 5.3 gives capacities for some values
of constraint parameters. In Figure 5.7, the power spectral densities of two maxentropic sequences, (1)
with first order spectral null, and parameters M = 2, N = 3, and (2) with second-order spectral null, and
parameters M = 2, V1 = V2 = 3, 2-RDS0, at frequency f = 0 are shown. It can be seen that sequences with
second-order spectral null has better rejection of low frequency components although the notch width
is wider in the case of sequences with first-order spectral null. The relation between cut-off frequency,
and sum variance, Equation 5.7, is no longer valid. Figure 5.8 depicts, power spectrum of two binary
memoryless codes with spectral zero at f = 0.5 fs , whose codeword length are (1) n = 4, and (2) n = 8.
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1
1

1

1

10−1
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0

−1

FIGURE 5.6 Canonical state diagram for M = 2, V1 = V2 = 3, 2-RDS0 constraint.
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TABLE 5.3 Capacity of Higher
Order Zero Constraint for M=2, f=0

K Vk C

2 V2 = 3 0.2500
2 V2 = 4 0.3471
2 V2 = 5 0.4428
2 V2 = 6 0.5155
2 V2 = 7 0.5615
3 V3 = 5 0.1250
3 V3 = 6 0.1250
3 V3 = 7 0.1735
3 V3 = 8 0.1946
3 V3 = 9 0.2500
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FIGURE 5.7 Power spectral density: (i) M = 2, N = 3 dc-free constraint; (ii) M = 2, V1 = V2 = 3, 2-RDS0 constraint.

These codes satisfy condition that σ
fs /2

1 (x) = 0, and closed form expression for their power spectral
densities is derived in [1]. The larger codeword length, the smaller notch width, saying that better rejection
of low frequency components has to be paid by redundancy.

A number of constructions of codes with higher order spectral zeros, based on FSTDs, can be found
in [14].

At the end, we give a useful relation between kth codeword moment at frequency f, µ f
k (x), and kth-order

RDS f . Lemma 1 from [14] says that the following two statements are equivalent

σ k
f (x) = 0, 1 ≤ k ≤ K

µk
f (x) =

n∑
i=0

i kw i xi =0, 0 ≤ k ≤ K − 1

for codeword x = (x0x1 . . . xn).
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FIGURE 5.8 Power spectral density of codes with spectral zero at f = fs /2: (i) Codeword length n = 4; (ii) Codeword
length n = 8.

5.4.4 K -RDSf Sequences on Partial Response Channels

As it was mentioned in introduction, codes that generates K -RDS f constrained sequences improve the
performance of recording systems utilizing partial response channels. The most interesting cases are of
channels whose transfer functions have (1 − D)P , (1 + D)P or both as factors. Here, two results will be
given that concerns partial response channels. One is related to Hamming distance of binary sequences
having one K th order spectral null [17], and the other considers Euclidean distance of encoded sequences
that was conveyed through partial response channel [14]. It is assumed that used codes have spectral zeros
identical to spectral zeros of the channels. This notion of matched spectral zeros of codes, and partial
response channels was introduced in [20].

Hamming distance. According to [17], the lower bound of minimum Hamming distance d H
min between

two binary sequences that have K th order spectral null at f = 0 or f = fs /2 is given as

d H
min ≥ 2K (5.21)

Euclidean distance. Before stating the result, the Euclidean distance for this kind of codes and channels will
be discussed. Let’s consider two sequences of channel symbols x = {xi }n

i=0, and x̂ = {x̂ i }n
i=0, generated

by the following sequences of states, ψ = {ψi }n+1
i=0 , and ψ̂ = {ψ̂ i }n+1

i=0 respectively, such that ψ0 = ψ̂0,
ψn+1 = ψ̂n+1. The error sequence at the input of the channel is defined as ei = xi − x̂ i , 0 ≤ i ≤ n. If the
error sequence at the output of the channel with memory H is denoted as ε = {εi }n+H

i=0 , then Euclidean
distance is defined as

d2
min = min

ε

n+H∑
i=0

|εi |2 (5.22)

where minimum is taken over all allowable output error sequences and all n.
The lower bound on Euclidean distance d2

min for sequences with K th order spectral null at f = 0 or
f = fs /2 at the output of a partial response channel with a spectral null of order P at f = 0 or f = fs /2
is given by

d2
min ≥ 8d2(K + P ) (5.23)
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where 2d is the minimum distance between two amplitude levels. The lower bound in Equation 5.23 can
be reached if M + P ≤ 10.

5.5 Composite Constrained and Combined Encoding

Previous two sections considered the codes that main purpose is to shape the spectrum of the channel
stream in order to match spectral characteristics of the channel, and in that way make recording reliable.
This type of encoding represents just one of many types of encoding used in digital recording systems.
Like any communication system, a recording system employs different encoding techniques such as source
encoding, channel encoding, and modulation encoding. It means that a channel sequence has to satisfy
different kinds of constraints to be reliable recorded. That’s why there is a need for codes that generate
sequences satisfying composite constraints. One example of such codes are codes that are in the same
time RLL (run length limited), and dc-free codes [21, 22]. RLL codes are widely used in digital recording
systems. They confine minimal, and maximal number of consecutive like symbols in a recording channel
to fight intersymbol interference, and to enable clock recovery. In wider sense, to this group of codes
belongs the combination of dc-free codes and error correcting codes that improves the performance of
dc-free codes on noisy recording channels. For instance those codes can be found in [27–30].

The construction of composite constrained codes can be based on so-called composite graphs generating
composite constraint. A composite graph represents the composition of two or more graphs that generate
different constraints, and the sequence satisfying composite constraint is the one that in the same time
satisfies the constraints of composition constituents. Here, the formal approach of graph composition will
be given. The basis for spectral analysis of composite constraints can be found in [23–25].

A sofic or constrained system S is the set of all biinfinite sequences generated by walks on a directed
graph G = G(S) whose edges are labeled by symbols in a finite alphabet A. The graph G = (V, E , π) is
given by a finite set of vertices (or states) V , a finite set of directed edges E , and a labeling π : E → A. So,
for a given sequence of edges {e (k)}(e (k) ∈ E ), we have the output sequence {a(k) = π(e (k))}. A graph G is
strongly connected if for every two vertices u, v ∈ V there exists a path (sequence of edges) from u to v . A
graph, G , is deterministic if for each state v ∈ V , the outgoing edges from v , E (v), are distinctly labeled.

The connection matrix (or vertex transition matrix) D(G) = D = [D(u, v)]u,v∈V of graph G is |V |×|V |
matrix where entry D(u, v) is the number of edges from vertex u to vertex v , and |V | is the number of
vertices of the graph G .

One type of composition of two graphs is given by Kronecker’s product. The Kronecker’s product of
the graphs G 0 = (V0, E 0, π0) and G 1 = (V1, E 1, π1), G = G 0 ⊗ G 1, is the graph G = (V, E , π) for which
V = V0 × V1 (× denotes Cartesian product of the sets) and for every edge e0 from u0 to v0 in G 0 and every
edge e1 from u1 to v1 in G 1, there exists an edge e(e = (e0, e1)) in G , emanating from vertex u = (u0, u1) ∈
V and terminating at v = (v0, v1) ∈ V with the vector label π(e) = π(e0, e1) = [π0(e0)π1(e1)].

So, the graph G = G 0 ⊗ G 1 generates vector sequences {a(k)} = {[a(k)
0 a(k)

1 ]}. If connection matrices
of the graphs G 0 and G 1 are D0and D1, then the adjacency matrix of the graph G = G 0 ⊗ G 1, D, is
D = D0 ⊗ D1, wherein now ⊗ denotes the Kronecker’s product of matrices [26]

D = [D(u, v)]u,v∈V = [D(u = (u0, u1), v = (v0, v1))]u0,v0∈V0;u1,v1∈V1

(5.24)
= D0(u0, u1) ⊗ D1(u1, v1) = [D0(u0, v0) · D1(u1, v1)]u0,v0∈V0;u1,v1∈V

As an example, Figure 5.9 shows two deterministic graphs G 0 and G 1 and their Kronecker’s product, G .
The Kronecker’s product of the graphs represents the vector constrained system in which the component

subsequences of the constrained systems, are generated independently. So the vector sequence carries an
average amount of information equal to the sum of average amounts of information of the constituent
sequences. Consequently the capacity of the Kronecker’s product G = ⊗0≤i≤N−1G i = G 0 ⊗ G 1 ⊗ · · · ⊗
G N−1 is C (G) =∑0≤i≤N−1 C (G i ). The proof of this statement follows directly from the fact that the set
of eigenvalues of D(G) is the set of all products of eigenvalues of the factor graph connection matrices [26].

As an example we show the composition of two graphs, G 1 representing M = 3, (d = 1, k = 2) RLL
constraint (Figure 5.10), and G 2 representing M = 3, N = 3 dc-free constraint (Figure 5.3). Resulting
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FIGURE 5.9 (a) An example of two graphs G 0 and G 1 (V0 = {1, 2}, V1 = {I, II}, A0 = {a , b, c}, A1 = {A, B , C}),
and (b) Their Kronecker’s product.

graph G 3 generates sequences that are in the same time RLL, and dc-free (Figure 5.11), with parameters
M = 3, (d = 1, k = 2), N = 3. Both constrained systems use the same alphabet A = {−1, 0, 1}. This
composition is slightly modified as compared to previously defined Kronecker’s product. Namely, there
exists transition between the states in composite graph, u = (u0, u1) ∈ V , and v = (v0, v1) ∈ V , if
π0(e0) = π1(e1). Then, the label of corresponding edge will be π(e) = π0(e0) = π1(e1). It should be
noted that resulting graph is not always strongly connected. That’s why, the irreducible component of G 3

should be found that has the same Shannon capacity C as reducible graph. The final form of the composite
graph is obtained by finding the Shannon cover of G 3 [9]. The graph in Figure 5.11 has ten states and it is
Moore’s type FSTD. The Shannon capacity is C = 0.4650 bits/sym, and the chosen code rate is R = 1/3
bits/sym, which is less than C . Table with capacities of this constraint is given in [22]. In order to get the
encoder, the algorithm from [9] was applied, and it is shown in Figure 5.12. The sliding window decoder
for this code can be found in [22].

At the end, in Figure 5.13, the spectrum of M-ary RLL dc-free maxentropic sequences are show, for
fixed DSV, N = 7, and different values of parameter M.
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FIGURE 5.10 FSTD of M-ary RLL constrait, M = 3, (d = 1, k = 2).
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FIGURE 5.11 FSTD of M-ary RLL dc-free constraint, M = 3, (d = 1, k = 2), N = 3.
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5.6 Conclusion

This chapter gives a survey of basic concepts and ideas of spectrum shaping codes for digital recording
systems. We considered theoretical, and practical aspects of four groups of spectrum shaping codes,
dc-free codes, codes with higher order spectral null at f = 0, codes with spectral nulls at the submultiples
of channel symbol frequency, and codes with composite constraints. We provided constrained channel
capacities, power spectral densities, and some practical solutions for encoding and decoding schemes.
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6.1 Introduction

Constrained codes (alternatively called modulation codes, line codes or transmission codes) impose run-
length or disparity constraints on the coded sequences, in order to either comply with the input restrictions
of some communications channels, as determined by intersymbol interference or bandwidth limitations,
or to aid in receiver synchronization and detection processes. Usually, these codes are not designed for
error correction although they sometimes have limited error detection capabilities.

Binary runlength constrained codes, that is, (d , k) or (d , k, C) codes, find application on digital magnetic
and optical recorders [54, 56]. Here d is the minimum number and k the maximum number of code
zeros between consecutive code ones in the nonreturn to zero inverse (NRZI) representation and C
the upper bound on the running disparity between ones and zeros in the nonreturn to zero (NRZ)
representation.

Binary dc free codes have a bounded running disparity of ones and zeros in the coded sequences. These
codes have been employed in early disc systems and later on in tape drives, and they also find widespread

6-1
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FIGURE 6.1 Traditional and combined coding schemes.

application on metallic and optical cable systems. Since the minimum Hamming distance dmin is at least
2, dc free codes can detect at least one error. Balanced binary codes are dc free codes with equal numbers
of ones and zeros in every codeword. This class of codes can also be considered as a subset of the class of
constant weight codes.

In Figure 6.1(a), we show the traditional concatenated coding scheme, used to achieve both the goals of
conforming to the channel input constraints and of providing error correction. To date, this approach is still
used in many recording standards and products. One disadvantage of this scheme is the error propagation
at the output of the constraint code’s decoder: a single channel error may trigger multiple decoding errors.
In general, the closer the coding rate R of the constrained code approaches the capacity C of the input
restricted channel, the higher the complexity of such a constrained coding scheme, and the more the errors
propagated. The propagated errors furthermore tend to be bursty in nature, which poses an additional load
on the error-correcting scheme, and hence even more redundancy may be required. Consequently, since
the early 1980s, several researchers have investigated the coding scheme in Figure 6.1(b). In the literature,
codes for this scheme have been called combined codes, and on occasion also combi-codes or transcontrol
codes.

During the late 1970s and early 1980s, the question was also posed whether some soft decision coding
gain could be obtained from the constrained codes employed at that time, by using Viterbi decoding —
see for example, [95]. This was partly inspired by the benefits of trellis-coded modulation for bandlimited
channels, which was introduced at that time and which furthermore contributed to the impetus to develop
combined codes.

It should also be noted that during the period under review here, several combined code constructions
were furthermore aimed at partial response channels and later also on channels with two dimensional
runlength constraints (e.g., [21]), as well as on channels with multilevel (M-ary instead of binary) symbols
(e.g., [76]). However, a complete overview of code constructions for all these channels, is beyond the scope
of this chapter.

In this chapter, we thus emphasize codes for the channel with one dimensional (d , k) constraints.
The development of these codes went hand in hand with the development of error correcting dc free
codes during the same time period, often by the same researchers and often using the same construction
techniques, hence we also include some results and references on the latter class of codes.

6.2 Bounds

At first, the construction of error-correcting constrained codes, that is, constrained codes with minimum
Hamming distance dmin ≥ 3, appeared to be an elusive goal. Consequently, to find an existence proof,
some early lower bounds on the Hamming distance achievable with runlength constrained block codes or
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balanced block codes were set up, using Gilbert type arguments, and published in [30]. To find an existence
proof, the freedom of having infinitely long codewords was assumed.

Briefly, a constrained code with Hamming distance dmin can be formed by selecting a word from the
set of all constrained words of length n bits as first code word, and by purging all other words at d < dmin

from the set. Subsequently, a second word at d = dmin from the first word can be selected, and all words
remaining at d < dmin from this word can also be purged. This purging process can be continued until
only the desired set of code words remains.

Thus, since
(

n
i

)
is the maximum number of binary words which may be at distance i < dmin from a

code word, we can arrive at the following lower bound on the minimum Hamming distance achievable
with an (n, k) constrained block code with n → ∞:

2nC ≥ 2k
dmin−1∑

i=0

(
n

i

)
(6.1)

where C is the capacity of the noiseless input restricted channel. Stated differently, if C > k/n, we can
obtain an (n, k) block code with desirable dmin by making n large enough.

This bound is also a rather loose lower bound on the minimum k achievable with a specified n and
dmin, since firstly not all binary words at distance i from a retained codeword satisfy the constraints, and
secondly the number of words which has to be purged as the purging process continues, may grow smaller,
as some of these words have been purged earlier.

As shown in [30], the bound can be tightened for balanced dc free codes, for which n will be even. Note
that the distance between two words with the same weight and hence also the parameter i in Equation 6.1,
can only be even for words of the same weight. Setting i = 2a , and making use of the balance between ones
and zeros in both the constrained words retained and those purged, we can form a bound for balanced
(d , k, C ) sequences as

2nC ≥ 2k

(dmin−2)/2∑
a=0

(
n/2

a

)2

(6.2)

which simplifies for a balanced code with constant weight w = n/2 (and minimum runlength d = 0) to

(
n

n/2

)
≥ 2k

(dmin−2)/2∑ (
n/2

a

)2

(6.3)

For further work and improvements on the topics of both lower and upper bounds, refer to [2, 43, 60, 73,
94, 97, 98]. A few results from these references will be briefly discussed next.

Ytrehus [98] derived recursive upper bounds for several choices of (d , k). Kolesnik and Krachkovsky
[62] generalised the Gilbert-Varshamov bound to constrained systems by estimating the average volume of
such constrained spheres. They then used a generating function for the distribution of pair wise distances
of words in the constrained system, together with the Perron-Frobenius theorem, in order to obtain
asymptotic existence results relating the attainable code rate R to a prescribed relative minimum distance
dmin when n → ∞. Gu and Fuja [43] improved on this Gilbert-Varshamov bound even further, still using
average volume sphere arguments. Marcus [73], use labelled graphs to improve on the bound of Kolesnik
and Krachkovsky.

Abdel-Ghaffar and Weber in [2] derive explicit sharp lower and upper bounds on the size of optimal
codes that avoid computer search techniques. Using sphere packing arguments, they derive general upper
bounds on the sizes of error-correcting codes and apply these bounds to bit-shift error correcting (d , k)
codes. These bounds improve on the bounds given by Ytrehus [98].

In [43], Gu and Fuja provide a generalised Gilbert-Varshamov bound, derived via analysis of a code-
search algorithm. This bound is applicable to block codes whose codewords must be drawn from irregular
sets. It is demonstrated that the average volume of a sphere of a given radius approaches the maximum such
volume and so a bound previously expressed in terms of the maximum volume can in fact be expressed in
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terms of the average volume. This bound is then applied specifically to error-correcting (d , k)-constrained
codes.

6.3 Example: A Trellis Code Construction

Some early work on the actual construction of error-correcting constrained codes, can be traced back
to [29–34], and interestingly, as later discovered, also to [4]. Subsequently, many widely different and
sometimes ad hoc approaches to constructing such codes, evolved. We next present as simple example,
suitable for an introductory and tutorial presentation, an approach from the earlier work on trellis codes.
In the following section, we shall give an overview and classification of other block and trellis code
constructions in the literature.

Trellis code constructions have the advantage that a general decoding algorithm, namely the Viterbi
algorithm is immediately available. Constrained codes are usually nonlinear and suitable decoding algo-
rithms may thus be difficult to find or complex to implement. Furthermore, soft decisions may be utilized
when doing Viterbi decoding, in order to obtain additional coding gain.

The construction procedure in this section can be used to obtain trellis codes having various coding rates,
constraint lengths and free distances, and with complexity commensurate with that of the class of linear
binary convolutional codes widely used in practice. It uses the distance preserving mapping technique first
described in [34, 35]. For related work, refer to [14, 38, 40, 41, 90].

Refer to Figure 6.2. The mapping table in Figure 6.2 maps the output binary n-tuple code symbols
from a R = k/n convolutional code (henceforth called the base code) into constrained binary m-tuples,
which in this application are code words from a (d , k) code. The key idea is to find an ordered subset
of 2n m-tuples, out of the set of all possible constrained m-tuples with cardinality N(m), such that the
Hamming distance between any two constrained m-tuples is at least as large as the distance between the
corresponding convolutional code’s output n-tuples which are mapped onto them. This property may be
called distance preserving, since the Hamming distance of the base code will be at least be conserved, and
may sometimes even be increased in the resulting trellis code.

To illustrate this idea, we first present an example. We use the simple, “generic text book example”
four state, binary R = 1/2, v = 2, dfree = 5 convolutional code in Figure 6.3(a) as base code. At the
output of the encoder, we can map the set of binary 2-tuple code symbols, {00, 01, 10, 11} onto con-
strained 4-tuples with d = 1, specifically using the set {0100, 0010, 1000, 1010}. Note that the last bit
of each constrained 4-tuple used here is a merging bit, initially set to 0, to allow concatenation of the
constrained symbols, without violating the d constraint. The state system of the resulting code appears in
Figure 6.3(b).It should be stressed that the intention is to decode this resulting code in one step with the
Viterbi algorithm.

In general, the property of distance preserving can be verified by setting up the matrices D = [dij]
and E = [eij]. Briefly, let dij be the Hamming distance between the binary code symbols i and j , where

k - tuples

INFORMATION
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UNCONSTRAINED
BINARY CODE SYMBOLS

P = {p0, p1, ... , p2n−1}
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BINARY CODE SYMBOLS
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FIGURE 6.2 Distance preserving trellis code: encoding process.
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FIGURE 6.3 State systems: (a) Convolutional base code, (b) Constrained trellis code.

0 ≤ i, j ≤ 2n − 1. The key to this code construction technique is thus to find an ordered subset of 2n

constrained m-tuples such that eij ≥ dij, for all i and j , and where eij is the Hamming distance between the
i ′th and j ′th m-tuples in the subset. Thus D and E can be set up to verify the mapping for our example
code in Figure 6.3:

D =




0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0


 and E =




0 2 2 3
2 0 2 1
2 2 0 1
3 1 1 0


 (6.4)

In this example the base code has dfree = 5, consequently the resulting (d = 1, k) constrained code will
also have dfree ≥ 5. It can be shown by inspection that the maximum runlength k can be reduced to k = 3,
by inverting the merging bit whenever possible.

Furthermore, note that the same mapping can now be applied to any R = 1/2 convolutional base code.
In this way, we can thus easily construct more powerful trellis codes achieving larger free distances.

The procedure in the above example can be formalized as follows. Let the unconstrained binary n-
tuples form a set U = {ui }, with cardinality 2n. The n-bit code symbols of a linear R = k/n convolutional
code will always be contained in U . The set of all constrained binary m-tuples may be represented by set
C = {ci }, with cardinality N(m). The m-bit code symbols of the desired R′ = k/m constrained trellis
code will be a subset of C .

In general, we want to transform a linear rate R = k/n convolutional code with free distance dfree

into rate R′ = k/m, d ′
free trellis code with d ′

free ≥ dfree. Usually, m > n, and to maximize the rate R′ of
the constrained trellis code derived from a given R = k/n base code, we thus choose to only investigate
mappings such that

n = �log2 N(m)
 (6.5)

The transformation will be per invariable mapping table as shown in Figure 6.3, that is, the same uncon-
strained binary code symbol will always be mapped onto the same constrained code symbol, irrespective
of the base code.

To formalize the above: we want to map the ordered subset containing all unconstrained binary n-tuples,
that is, P = {p0, p1, . . . , p2n−1}, with elements pi ∈ U, pi < pi+1, onto an ordered subset of constrained
m-tuples, that is, Q = {q0, q1, . . . , q2n−1}, with Q ⊂ C . To devise the mapping table, we first compute
the Hamming distance matrix D with elements dij, being the Hamming distance between unconstrained
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binary n-tuples pi and p j , or,

dij = w(pi + p j ) 0 ≤ i, j ≤ 2n − 1 (6.6)

where w(x) denotes the Hamming weight of x and addition is modulo 2. The task is now to find a suitable
ordered subset Q, with 2n elements qi from the set C , such that the Hamming distance matrix E with
elements

eij = w(qi + q j ) 0 ≤ i, j ≤ 2n − 1 (6.7)

has

eij ≥ dij, for all i, j (6.8)

Note that the matrices D and E are square symmetric matrices with all-zero diagonal elements. Further-
more, the total number of permutations of the N(m) constrained m-tuples, taken 2n at a time, grows very
rapidly with the tuple length m. For this reason in [35], we modeled the search as a tree search, similar to
the Fano algorithm, but with the number of branches per node in the tree decreasing by one at each new
depth. Note also that the main diagonal divides D into an upper and a lower triangular array with equal
valued entries, and due to the symmetry only one of these need to be used in the search. The search may
furthermore be sped up by reordering P such that the maximum valued elements in D are encountered
earlier. See [35] for more details.

A few tests can also be performed before the tree search to establish the nonexistence of a suitable subset
of constrained m-tuples or to prove that a specific m-tuple cannot be a member of the ordered subset of
m-tuples — refer to [35].

Using prefix constructions, a mapping for some m may be used as kernel and extended to find a mapping
for m + 1. The principle can be explained as follows. The set of binary (n + 1)-tuples, can be ordered
following normal lexicography, that is, setting up the standard table of (n + 1)-bit binary numbers. It
is easy to see that this set is partitioned into two subsets each containing 2n elements. The first subset
of (n + 1)-bit binary numbers are obtained by prefixing the set of n-bit binary numbers with a most
significant bit 0, and the second subset of (n + 1)-bit binary numbers by prefixing the set of binary n-bit
binary numbers with a most significant bit 1. Within each subset, the intradistance between elements is
determined by the n × n D matrix, and stays the same. However, the binary prefixes of 0 and 1 account for
an additional one unit of distance between two elements from the two different subsets. In a similar way,
the ordered subset Q, containing 2n constrained binary m-tuples can be extended to an ordered subset
containing 2n+1 constrained (m + 2)-tuples by using two prefixes with Hamming distance at least one
unit. For the d = 1 constraint, we can use the prefixes 00 and 10 and still satisfy the minimum runlength
requirement. When using balanced symbols to construct dc free codes, we can use the prefixes 01 and 10.

Explicit mappings for m-tuples with d = 1, where it was attempted to maximize the combined code’s
rate R′ = k/m, and to minimize k, are reported in [35], as well as mappings using balanced m-tuples from
which dc free codes can be obtained. The highest achievable code rates with the mappings published, were
R′ = 4/9 and R′ = 3/6 respectively. The maximum achievable free distances, will be determined by the
underlying R = 4/5 and R = 3/4 base codes — in the literature on convolutional codes there are many
codes of these rates available with different free distances and constraint lengths. Song and Shwedyk [90]
later investigated a graph theoretic procedure to enumerate all the distance preserving mappings as in [35].

Finally, as discussed in [38], note that we can expand and generalize the concept of a distance preserving
mapping to include a distance conserving mapping (DCM), as well as a distance increasing mapping
(DIM) and a controlled distance reducing mapping (DRM).

In this section, we have thus presented a code construction procedure, capable of constructing powerful
constrained trellis codes. By using this construction procedure, advantage can be taken of the many results
on, and vast literature covering good convolutional codes. Furthermore an important reason for presenting
this procedure is that it can also be applied to other constraints and channels as in [38, 14].
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6.4 An Overview of Some Other Code Constructions

A literature search, which was not exhaustive, revealed more than one hundred papers on the topic
of combining error correction with constrained codes. We attempted to include a representative selec-
tion of papers in our bibliography. As can be seen, several disjoint, and sometimes ad hoc procedures
evolved. We next present a short overview, attempting to indicate some of the most important trends and
directions.

6.4.1 Channel Models and Error Types

Much of the work on error correcting constrained codes focused on the binary symmetric channel, since
these codes dominate the theory of linear error correcting codes, and also exhibit certain robustness. Refer
to [13, 18, 67] for a few examples of constructions aimed at correcting additive or reversal errors on the
binary symmetric channel. It should however be noted that these codes cannot be directly interleaved to
correct burst errors — usually the channel’s input constraints will be violated.

Some experimental work (see e.g., [51]) showed that peak shift errors, that is, errors represented in
NRZI as 010 → 001 or 010 → 100, dominate on many recording channels, and this inspired a body of
work on suitable code constructions. In one test of the IBM 3380 disk, 85% of the observed errors were
shift errors [47]. For examples of such code constructions, refer to [11, 47, 63, 64, 70, 87].

During the late 1980s, as recording densities increased, it was observed that the electronic circuits for
bit synchronization might fail more often; hence the topic of correcting bit insertion/deletion errors also
received some attention. However, these errors, although they may have very destructive consequences,
have a much lower probability of occurrence than the above error types and hence not many papers were
published on this topic — see [11, 37, 46, 59] for a few examples of code constructions.

6.4.2 Input Constraints

Simultaneously with the interest in combined codes for magnetic recording, several researchers investigated
combined codes for cable systems with somewhat different input constraints, such as a dc free power
spectral density, or maximum runlength constraint, with no restriction on the minimum runlength —
see for example, [5, 60–61, 79, 82–86].

In this regard, it is interesting to note that the balanced codes, a subset of the family of constant weight
codes, are dc free, and bounds on the cardinalities of balanced codes as a function of dmin, have been
tabulated in a few text books on coding for error correction and papers in the literature even before the
new interest in combined codes during the 1980s.

In terms of (d , k) constraints, the (1, 7) and (2, 7) constraints dominated the magnetic recording industry
for a long time, hence most researchers of combined codes attempted to conform with these constraints,
or at least with d = 1 or 2 — see for example, [1, 6].

So far, the success of investigations into the construction of new combined codes appears to be propor-
tional to the capacity of the input constrained channel. For (d , k, C) parameters of practical interest, the
channel capacity increases in the same order if the input constraint is relaxed from (d , k, C) to (d , k) to
(0, k, C ) to (0, k). Consequently, very few results have been published on error correcting (d , k, C) codes.
On the other hand, when it was proposed to relax the d constraint for magnetic recording systems, results
on (0, k) combined codes followed readily — for example, [93].

6.4.3 Block and Trellis Code Constructions

Most constructions in the vast field of linear error correcting codes can be classified as either a block code
or a trellis code, and the same holds for combined codes. For a few results on block codes, refer to [2, 30,
67, 72, 87, 91], and for some results on trellis codes (or convolutional codes), refer to [15, 19, 45, 48–50,
100].
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In the highly competitive recording industry, an increase in storage density of a few percentage points
can be an important advantage. Although trellis codes have the advantages of Viterbi decoding and soft
decision coding gain, some of the combined code constructions using block codes achieve higher code
rates and hence the best exploitation of the Shannon capacity of the input-constrained noiseless channel.
Furthermore, interleaving of the sequences of combined trellis codes in order to correct burst errors, can
violate the (d , k) constraints. On the other hand, block-coding schemes are sometimes based on linear
error correcting codes, burst error correcting in nature, such as Reed-Solomon codes.

Several authors (see e.g., [10, 36, 55]) have considered a block code construction which is systematic
over a (d , k) constrained sequence. In its simplest form, a finite state machine or lookup table encoder may
firstly map the bits from the information source onto a (d , k) sequence of length k bits. Next the parity
bits of an (n, k) error correcting codeword can be computed. Finally, these parity bits are appended to the
information (d , k) sequence in such a way that the parity sequence also complies with the channel’s (d , k)
constraints. This constrained parity sequence can be obtained by using means such as a lookup table,
buffer bits between parity bits, etc.

Some authors have also parsed the (d , k) sequence into substrings, starting with a 1 and followed
by between d and k zeros, or alternatively in reverse order. In [36, 17] the authors went a step further
and showed that a unique integer composition can be associated with each (d , k) sequence. By imposing
compositional restrictions on the (d , k) sequences, some error detection becomes possible. Error cor-
rection can be done by further appending parity bits. An advantage of applying the theory of integer
compositions here, is that generating functions and channel capacities followed naturally. However, due
to the compositional restrictions, code rates were too low for practical implementations, except when
d > 4, while historically recording systems employed codes with d = 1 or 2, as dictated by physical factors
such as detection window width. The parity bits in [36] typically keep track of the number of parts in
the composition, or of the sum of the indexes of the positions in which a part occurs, both expressed
modulo a small integer, and hence the number of parity bits could stay fixed, irrespective of the codeword
length.

6.4.4 Combined Codes Directly Derived from Linear Error Correcting Codes

A natural question posed early in the development of combined codes, was whether a subcode of a linear
error correcting code, or a coset code, having the required constraints, might be used as a combined
code. This may have the advantage of making the powerful theory of linear codes applicable to the input
constrained channel and perhaps using off-the-shelf decoders.

Examples considering subcodes of linear block codes can be found for example in [80], while subcodes
of linear convolutional codes can be found in [78].

Pataputian and Kumar in [80] presented a (d , k) subcode of a linear block code. The modulation code
is treated as a subcode of the error correcting code (a Hamming code), and they find a subcode of an
error correcting code satisfying the additional (d , k) constraints required. They do this by selecting the
coset in the standard array of Hamming codes which has the maximum number of (d , k) constrained
sequences. This approach requires modulation codes that have very large block sizes when compared to
conventional modulation codes in practice. One advantage of this scheme is that off-the-shelf decoders
can be used. Systematic (but suboptimum) subcodes are also presented. In a similar approach, Liu and
Lin [72] describes a class of (d , k) block codes with minimum Hamming distance of 3 based on dklr -
sequences (the l and r represent the maximum number of consecutive zeros at the beginning and end of a
(d , k)-sequence respectively) and cyclic Hamming codes. A codeword in the constructed code is formed by
two subblocks satisfying the dklr constraint. One is the message subblock and the other is the parity check
subblock.

Similarly, employing cosets in new code constructions, has been considered in for example [18, 48–50].
Hole in [48] presented cosets of convolutional codes with short maximum zero-run lengths, that is, the
k parameter. He achieved this by using cosets of (n, k) convolutional codes to generate the channel inputs.
For k ≤ n − 2 it is shown that there exist cosets with short maximum zero-run length for any constraint
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length. Any coset of an (n, n−1) code with high rate and/or large constraint length is shown to have a large
maximum zero-run length. A systematic procedure for obtaining cosets with short maximum zero-run
length (n, k) codes is also given.

6.4.5 Constrained Codes Carefully Matched to Error Correcting Codes

Another natural approach was to carefully match the constrained codewords to the symbols of the
error correcting code. In this way error correcting performance may be optimized. See for example [6].
The distance preserving mappings in [35] also fall into this category.

6.4.6 Constructions Employing Ideas from Contemporary
Developments in Coding Techniques

One important contemporary idea was the principle of set partitioning applied to the channel signals,
borrowed from the field of trellis coded modulation (TCM) where it was applied very successfully to
amplitude/phase signals to develop combined coding and modulation schemes for the bandlimited chan-
nel. Attempts to apply it to the binary input constrained channel, met with limited success, due to the
signal set lacking the same degree of symmetry.

Another important development was the ACH or state splitting algorithm for constructing finite state
machine modulation codes for the input restricted channel — see for example, [21, 77] for application to
combined codes. Application, again, does not follow directly. Nasiri-Kenari and Rushforth [77] show how
the state-splitting and merging procedure can be adapted and applied to the problem of finding efficient
(d , k) codes with guaranteed minimum Hamming distance. A second procedure in [77] partitions the
encoder for a state-dependent (d , k) code into two subsections, one with memory and one without, and
then combine the subsystem having memory with a matched convolutional code.

6.4.7 Restrictions on the (d, k) Sequence

By imposing compositional restrictions on (d , k) sequences, or by alternating between sets of (d , k) se-
quences with either only odd or even parity, error detecting and ultimately error correcting codes could
be constructed — see, [36, 67].

Lee and Wolf [67] first derived a codebook Q consisting of all codewords adhering to the (d , k) constraint.
However, concatenation of codewords from this codebook usually violates the (d , k) constraints. Therefore,
the codebook Q is divided into maximal concatenatable subsets. Using a finite state code construction
algorithm, they then generate a code with minimum free distance of three. Ferreira and Lin [36] presented
combinatorial and algebraic techniques for systematically constructing different (d , k) block codes capable
of detecting and correcting single bit errors, single peak-shift errors, double adjacent errors and multiple
adjacent erasures. Their constructions are based on representing constrained sequences using integer
compositions. Codes are obtained by imposing restrictions on such compositions and by appending
parity bits to the constrained sequences.

Lee and Madisetti [69] proposes a general construction scheme for error correcting (d , k) codes having a
minimum Hamming distance of 4. The proposed method uses a codeword set with a minimum Hamming
distance of 2, instead of using two sets obtained by partitioning a concatenatable codeword set as in Lee
and Wolf [67]. This means the code rate is always higher than that of Lee and Wolf. This proposed coding
scheme is especially beneficial when the code lengths are short.

6.4.8 Multilevel Constructions

Several researchers have considered algorithms with multilevel partitioning of the symbol set, which is
especially suitable for the constructing of dc free codes — see for example [13, 57].
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On the other hand, M-ary multilevel (d , k) codes with error correction abilities have also received
attention [76]. M-ary (d , k) codes are used for recording media that support unsaturated M-ary (M ≥ 3)
signalling. This is different than the normal binary case (M = 2) where the media is saturated. In [76],
McLaughlin presented codes that achieve high coding densities, with improved minimum distance over
an ordinary Adler-Coppersmith-Hassner code designed with the state-splitting algorithm. It is also shown
that these codes have comparable minimum distance to Ungerboeck style amplitude modulation trellis
codes.

6.4.9 Constructions Using the Lee or Levenshtein Metrics

Most of the work under review, employed the Hamming distance metric, since it is widely known and
the best understood. Consequently most constructions are directed towards the correction of additive
(reversal) errors. After it was realized that codes over the Lee metric could be used to correct shift errors
and to some extent insertions/deletion errors, some publications followed [11, 47, 63, 87].

Bours [11] suggested the use of the Lee distance when considering peak-shift errors. Roth and Siegel
[87] showed that some of the Lee-metric BCH codes could be used to provide efficient protections against
bit-shift or synchronisation errors. For bit-shift correction, these codes possess a smaller redundancy
than the codes in Hamming metric. In [63], Krachkovsky et al. proposed another class of fixed length,
t-error-correcting codes in the Lee metric. In their codes, the Galois field characteristics may be chosen
independently of t and metric parameter q (where q is the alphabet size).

Similarly, a few papers employed the Levenshtein metric to correct insertions/deletions – see for example,
[7, 37]. These errors cause catastrophic failures due to loss of synchronisation. Although these errors are
not as common as the other types of errors, it is important to have a method to detect them and differentiate
them from regular errors. Insertions/deletions, also known as synchronisation errors, are different from
peak-shift or bit-shift errors in that all the 1s are shifted after an insertion/deletion. In a peak-shift error,
only one 1 is shifted. Often, the Levenshtein distance is used in this environment rather than the Hamming
distance.

Blaum et al. [7] used the (1, 7) modulation code to present two methods to recover from insertions
or deletions. The first method (based on variable length codes) allows for the identification of up to
three insertions and/or deletions in a given block, permitting quick synchronisation recovery. The second
method, based on block codes, allows for the detection of large numbers of insertions and deletions.
Kuznetsov and Vinck [64] presented codes for the correction of one of the following: a peak-shift of type
(k − d)/2 or less, a deletion of (k − d)/2 or less zeros between adjacent ones and an insertion of (k − d)/2
or less zeros between adjacent ones.

Klove [59] presented codes correcting a single insertion/deletion of a zero or a single peak-shift. Partic-
ularly, he considers variable length (d , k) codes of constant Hamming weight.

6.4.10 Spectral Shaping Constraints and Error Correction

Codes with higher order spectral nulls [20, 52] were initially constructed for shaping the spectrum in the
frequency domain, without consideration for error correction. Later, it was realized that these codes may
also have good additive error correction properties, and in fact also insertion/deletion error correction
properties [37]. Thus there seems to be a link to be further investigated.

6.4.11 Maximum Likelihood Decoding of Standard Constrained Codes

Some researchers revisited the approach as in [95], and investigated maximum likelihood or Viterbi
decoding of standard constrained codes as employed in products on the market, reporting some gain for
the digital compact cassette [12] and the DVD [44].
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6.5 Post Combined Coding System Architectures

The movement to construct combined codes, or error correcting constrained codes as defined in
Figure 6.1(b), experienced a peak during the 1990s, although a few new papers still appear every year.
The emphasis of later work in order to achieve the same goals, has shifted to some extent to reversed
concatenation (or post modulation coding) [10, 24, 42, 55] and to iterative decoding techniques – see for
example, [25–27].

With these alternative approaches, higher coding rates and hence storage densities may be achieved. In
the traditional concatenated coding scheme, the efficiency (R/C) of the constrained code, was more of
a limiting factor than the efficiency of the error correcting code, and this influenced the post combined
coding architectures later proposed. Many of the proposed combined coding schemes described in this
chapter, also suffered the limitation of being too narrowly focused on one type of error.

Immink describes “a practical method for approaching the channel capacity of constrained channels”
in [55], expanding a scheme previously proposed by Bliss [10]. Immink’s scheme employs very long
constrained code words while avoiding the possibly massive error propagation which may be triggered by
a single channel error. The technique can be used in conjunction with any constrained code and it reverses
the normal hierarchy of the error correction and channel codes. Block diagrams of Immink’s scheme are
shown in Figure 6.4.
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Essential to Immink’s scheme is the lossless compression step with limited error propagation, used
to create the intermediate coding layer. A symbol error-correcting code, such as a byte orientated Reed-
Solomon code is used to encode the intermediate layer. Look up tables, which are carefully matched, are
used between the layers. Finally, the two sequences generated by the first and second constrained codes are
cascaded and transmitted.

At the receiving end, the received sequence is decoded by firstly retrieving the parity symbols under the
decoding rules of the second channel decoder. Next the constrained sequence is blocked into q-tuples and
by using a lookup table are translated into the symbols of the intermediate sequence. Transmission errors
in the intermediate sequence or parity symbols are corrected with the aid of the ECC code. The corrected
intermediate sequence is decompressed and a constrained sequence which is essentially error-free, is
obtained. This sequence is decoded and the original data retrieved.

In [55] the systematic design of the long block-decodable (d , k) constrained block codes, essential for
the new coding method, is also considered. To this effect, Immink employs enumerative encoding and
concatenatable (d , k, l , r ) sequences, that is, (d , k) sequences with at most l consecutive leading zeros
preceding the first one, and at most r consecutive trailing zeros succeeding the last one.

Examples of explicit results in [55] include a rate R = 256/371 (d , k) = (1, 12) code which achieves
99.6% of the capacity of the (1, 12) constrained channel, and a R = 256/466 (d , k) = (2, 15) code achieving
99.86% of the capacity of the (2, 15) constrained channel.

In conclusion, Immink’s scheme made possible the use of long constrained codewords while avoiding
error propagation, in order to approach the capacity of the input constrained channel. Important, it also
offers the capability of correcting random and burst channel errors with powerful state of the art error
correction codes such as Reed-Solomon codes.

6.6 Conclusion

In this chapter, we have attempted to give the reader an introduction to, and overview of the topic of
combined codes. It currently appears that, in magnetic recording applications, this field and approach
may have been overtaken by other systems architectures. However, it has stimulated much research and
debate and has thus contributed to the development of newer architectures. Also, combined codes have
potentially other applications in digital communications and the transmission of information. Hopefully,
this presentation will thus help to stimulate further research.
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7.1 Introduction

A constraint imposes a restriction on the set of sequences that are allowed to be transmitted on a channel.
Constrained coding is a process by which a user data sequence is encoded in a lossless manner into a sequence
that satisfies the constraint. The most common use of constrained coding is for runlength limitations, as
discussed in Chapter 3. Constrained codes (also referred to as modulation codes, line codes, or runlength
codes) are used in various magnetic and optical data storage systems. They are used for various reasons,
such as improving timing recovery and handling physical limitations of the recording media.

In error-control coding (ECC), the transmission is restricted to a subset of sequences in such a way that
the receiver can decode the original transmitted sequence in the presence of errors introduced by a noisy
channel. In the case of linear codes, it is possible to put the ECC into systematic form, in which the parity
bits are appended to the user bits. Recently, there have been breakthroughs in the development of ECCs
such as Turbo codes and low-density parity-check (LDPC) codes that make use of soft information for
near-optimal decoding performance.

Both error-control codes and constrained codes are widely used in digital storage systems, where the
situation corresponds to a noisy channel whose input is required to satisfy a modulation constraint.
Although constrained coding and error-control coding share many similarities, they are typically designed
and implemented separately.

This chapter considers several configurations for integration of the constrained code and the error-
control code:

� The most commonly used configuration is called standard concatenation, in which the constrained
code is the inner code and the error-control code is the outer code in a serial concatenation.

� A promising alternate configuration is reverse concatenation, in which a constrained code forms the
outer code and a systematic error-control code forms the inner code, where the parity bits from the

7-1
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ECC are passed through another constrained code. Reverse concatenation possesses the advantages
of reducing error-propagation and facilitating soft decoding.

� The bit insertion method is a variation of reverse concatenation in which the parity is inserted into
the sequence. This technique is also known as constrained codes with unconstrained positions.

� Finally, the lossless compression technique is a variation of reverse concatenation in which an ad-
ditional lossless compression code is used in order to reduce the codeword expansion due to
the constrained code. This is not applicable in situations where soft decoding of the ECC is
desired.

Schemes like reverse concatenation and the bit insertion method allow for the decoder to make direct
use of the soft information from the channel, and also to reduce error-propagation. Methods for decoding
the constraint for additional coding gain are also discussed.

7.2 Configurations

7.2.1 Definitions

Since constraints are typically imposed on words of finite length in data storage applications, the approach
taken here is to consider the constraint to be defined by a set of valid words called the constraint set SC . Note
that this approach is more general than the notion of constrained systems, in which the valid sequences
correspond to traversals through a constraint graph. More background about constrained coding and its
applications can be found in [12–14,17].

Some preliminary definitions are useful for the description of constrained and error-control coding:
For an alphabet A and block length n, the elements {w1, w2, . . . , wn} of An are known as words. We define
a code as a subset of words that are specified by an encoder function f which is a one-to-one function
from Ak to An whose image is Im f . The number of information symbols is given by k = log |A|(|Im f |),
where |S| denotes the number of elements of a set S. The words in Im f are known as codewords,
and the rate of the code is k/n. We focus our attention on the binary alphabet A consisting of the
elements 0 and 1. (Note that these binary values are then mapped into magnetic polarizations for magnetic
recording.)

The constraint set SC of length nC is a subset of AnC that defines the valid words that satisfy the constraint.
In this context, the capacity of the constraint is defined by cap(SC ) = 1

nC
log|A|(|SC |). A constrained code

is a code whose codewords all belong to the constraint set, and can be defined by an encoder function fC ,
whose image satisfies Im ( fC ) ⊂ SC . This implies kC ≤ log|A|(|SC |).

An error-control code SECC of length nECC is a subset of AnECC . The error-control code can be defined by
an encoder function fECC that is a one-to-one map from AkECC to AnECC . Note that kECC = log|A|(|SECC|).
The set of ECC codewords SECC = Im fECC is chosen so that it is possible for a decoder to recover the
original codeword from a corrupted version of it.

Typically, the set SECC possesses some geometric or mathematical structure that can be made use of
in the decoding algorithm. We focus on linear codes, where the codewords form an additive group. In
this case, it is possible to put the ECC into systematic form such that the encoder function fECC produces
a word that is the concatenation of the input word with a parity word. In other words, the output is
fECC(u) = {u, v ( p)} ∈ AnECC , which is a concatenation of the input word u ∈ AkECC of length kECC and
a parity word v ( p) of length nECC − kECC. (The notation {x , y} represents the concatenated sequence
{x1, x2, . . . , xk , y1, y2, . . . , yl }, where x = {x1, x2, . . . , xk} and y = {y1, y2, . . . , yl }.) In this context, it is
useful to define a parity encoder function f p

ECC whose output is just the parity portion: f p
ECC(u) = v (p).

An important class of error-control codes for magnetic recording are the Reed-Solomon codes, which
are linear codes that can be put into systematic form. Reed-Solomon codes are symbol-oriented ECCs,
with symbols of size B bits (corresponding to the Galois field GF(2B )), where a typical value is B = 8.
The encoder takes kB symbols and produces nB symbols, which corresponds to kECC = B · kB bits and
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nECC = B · nB bits. With Reed-Solomon codes, if any bit in a symbol is incorrect, the entire symbol is
considered incorrect. The decoder for the Reed-Solomon code has the ability to correct a limited number
of symbol errors (e.g., it can correct � nB −kB

2 
 symbol errors).
In many data storage systems, it is necessary to satisfy simultaneously the needs of constrained coding

and error-control coding. A conceptually simple solution to this problem is to choose the intersection of
the constraint set SC with an error-control code SECC. Assuming that the two sets are of the same length
(nC = nECC), then the words in the intersection set SC ∩ SECC would be suitable for decoding by both the
ECC decoder and constraint decoder since they are codewords in both codes. An encoding function f for
this situation could be defined by an indexing function for an exhaustive list of the words in SC ∩ SECC.
Suppose A is a binary alphabet. Let k = �log2(SC ∩ SECC)
, and index 2k words of the set SC ∩ SECC using
the numbers {0, 1, . . . , 2k − 1} in binary representation. An encoder function f can then be defined by
mapping this binary index u ∈ Ak to the corresponding indexed word w ∈ SC ∩ SECC ⊂ An.

For practical implementations, it is important to choose a scheme that permits the encoding and
decoding to be performed within the limits on complexity imposed by existing hardware. In particular,
the direct approach of using an encoder function f for the intersection SC ∩ SECC requires memory that
is exponential in the codeword length to store an exhaustive encoder table. In contrast, most constrained
codes and error-control codes in use today have associated encoders and decoders which offer efficient
implementations; in particular, their complexity and storage requirements do not increase exponentially
with the codeword length. This chapter considers a number of approaches to this problem of combined
constrained and error-control coding based on configurations that make use of the existing encoders and
decoders for the constrained code and the error-control code.

7.2.2 Standard Concatenation

The standard concatenation scheme, shown in Figure 7.1, consists of the serial concatenation of an ECC
as the outer code and a constrained code as the inner code. In terms of the encoding functions, the user
sequence u is mapped v = fECC(u) and then to w = fC ( fECC(u)). Note that in this case, nECC is equal to kC ,
and in particular, the output word w belongs to SC , but does not belong to SECC. The overall rate of
standard concatenation is kC

nC
· kECC

nECC
.

Suppose that the transmitted word is w and the received word is ŵ . The decoding of the constrained code
(also known as demodulation) is typically implemented as the inverse of the encoder function: v̂ = f −1

C (ŵ).
A problem known as error-propagation arises when a small number of errors in the received word becomes
magnified by demodulation. Let d(·, ·) be a function that measures the Hamming distance between two
words, that is, the number of symbols in which the two words differ. Generally speaking, error-propagation
is said to occur when d(w , ŵ) is small but d( f −1

C (w), f −1
C (ŵ)) is large.

The constrained code is typically implemented in such a way as to reduce the error-propagation caused by
the demodulation function f −1

C . The impact of error-propagation depends on the details of the decoder for
the error-control code. Common constructions of constrained codes involve block codes or sliding-block
codes with short block lengths. As an example, consider a binary block code of length NC with an encoder
function FC that maps from AKC to ANC . (Note that upper-case letters are used to represent parameters
of the short block code, while lower-case letters are used to represent parameters of the full code.)

This encoder function FC for the short block code can be used to implement the encoder function fC

for the entire constrained word. The image of FC should be chosen such that the concatenation of any
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v = fECC(u) v̂ = fC
−1(ŵ )w = fC(v )

u v̂w ŵ

FIGURE 7.1 Standard concatenation scheme.
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combination of words yields an overall word of length nC that belongs to SC (and the constraint is said to
be maintained across blocks). If u(1), u(2), . . . , u(kC /KC ) are all words of length KC , then the full constraint
encoder fC can be defined by the block encoder as follows

fC

({
u(1), u(2), . . . , u(kC /KC )

}) = {
FC

(
u(1)

)
, FC

(
u(2)

)
, . . . , FC

(
u(kC /KC )

)}
For the short block code, the encoding function FC can be an arbitrary map from AKC to ANC . As a result,
for the corresponding demodulation map F −1

C , one or more bit errors in a word of NC bits are assumed
to result in an incorrect word upon demodulation, resulting in many bits in error in the demodulated
output. The error-propagation effect, however, can be limited through the use of short block codes.

Suppose that a constrained code based on short block codes of rate KC /NC is used with an ECC with
symbol size B . In the worst case, a single bit error can propagate into �KC /B� symbol errors, and a
short burst of bit errors on the boundary of two blocks can result in �2KC /B� symbol errors. The error-
propagation effect becomes worse for large KC , so that it is typical to choose a value of KC that is matched
to the symbol size B , such as KC = B . This need to use short block lengths usually places a significant
restriction on the design of the constrained code, making it difficult to use constrained codes whose rate
approaches the capacity of the modulation constraint.

7.2.3 Reverse Concatenation

To allow for better combining of the error-control code and the constrained code so as to mitigate the
effects of error-propagation, one promising approach is the reverse concatenation scheme, which reverses
the order of the ECC and constrained code so that the encoding of the constraint takes place before the
encoding of the error-control code, as shown in Figure 7.2. This method allows the decoder to perform
decoding on most of the received word with the need for demodulation.

This method has the following benefits:

� It allows the use of arbitrary constrained codes
� It reduces error propagation
� It facilitates the use of soft decoding

Reverse concatenation is also known as “modified concatenation,” or the “commuted configuration.”
Its history in the literature goes back to Bliss [4] and Mansuripur [16], and was analyzed in [7] and [11]
as a method of preventing error-propagation in magnetic recording systems. It may also be viewed as
related to specific schemes presented in [3,10,15,18,19] that combine (d , k) run-length constraints with
error-control codes for detecting and correcting bit errors or bit shifts.
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Reverse concatenation involves a main constrained code C1 and an auxiliary constrained code C2,
which have rates kC1/nC1 and kC2/nC2, respectively. It also assumes the use of a systematic ECC of
rate kECC/nECC. There are no restrictions on the design of the main constrained code C1 since the de-
modulation of this code takes place after its decoding by the ECC, so that it does not suffer from error-
propagation. This allows the usage of constrained codes that have rates arbitrarily close to the capacity
of the constraint. The auxiliary constrained code, however, must be designed in such a way as to pre-
vent error propagation during demodulation, much as in the case of the constrained code in standard
concatenation.

The encoding for reverse concatenation uses the encoding functions for C1, C2 and the ECC as follows:
First, the main constrained code maps the user word u to w (m) = fC1(u). This constrained codeword
is then encoded by the systematic encoder for the ECC. The parity portion v (p) = f p

ECC( fC1(u))) of the
ECC codeword is then encoded by the constrained code C2 to give w (p) = fC2(v (p)). The end result is the
word

w = {
w (m), w ( p)

}
(7.1)

= {
fC1(u), fC2

(
f p
ECC( fC1(u))

)}
(7.2)

The code parameters for reverse concatenation are related as follows: nC = nC1 +nC2, kC2 = nECC −kECC,
kECC = nC1, and kC1 = len(u). The two constrained codes C1 and C2 should be chosen such that for any
input u and v , placing the two words fC1(u) and fC2(v) together gives a word w = { fC1(u), fC2(v)} that
belongs to the target constraint set SC .

Note that the overall rate is

kC1

nC1 + nC2
= kC1

nC1 + nC2

kC2
(nECC − kECC)

(7.3)

= kC1

nC1

(
1 + nC2

kC2

(
nECC

kECC
− 1

))−1

(7.4)

If the constrained code C2 were not used (i.e., kC2/nC2 = 1), then the overall rate would be the same as
in standard concatenation. The constrained code C2 is necessary, however, to make sure that the parity
bits also satisfy the constraint.

To reduce error-propagation during demodulation of the auxiliary constrained code C2, it is typically
implemented using block codes or sliding-window block codes with short block length, as in the case of
the constrained code in standard concatenation. For example, for the case of an ECC with symbol size B ,
the code C2 could be implemented by putting together words from a short block code of rate KC2/NC2,
where the length KC2 is chosen to match B (e.g., it is equal to B , or a multiple of B).

The advantages of reverse concatenation over standard concatenation lie in the decoding process. Error-
propagation occurs when demodulation must be performed before decoding takes place. With reverse
concatenation, the error-propagation during demodulation is restricted to the parity portion of the ECC
codeword. Note that reverse concatenation is most effective when the ECC code rate kECC/nECC is high.

The decoding procedure for reverse concatenation is as follows: (For simplicity in exposition in this
section, we consider the ECC to be a hard-decision ECC, although this discussion generalizes in a straight-
forward manner to soft-decoding.) Suppose the channel decoder (e.g., a Viterbi decoder) produces a
received sequence ŵ that is a possibly erroneous copy of the transmitted word w . This sequence can
be divided into a message portion ŵ (m) and a parity portion ŵ ( p), based on the correspondence to C1
and C2, respectively. The parity portion ŵ ( p) is first demodulated by the code C2, which has limited
error-propagation by design (e.g., KC2 = B), to obtain the word v̂ (p). On the other hand, the message
portion ŵ (m) can go directly to the ECC decoder without any need for demodulation. The ECC decoder
performs decoding on the word {ŵ (m), v̂ (p)}. If the ECC decoding is successful, then the output w̃ (m) is
an error-free version of the constrained message bits. In this case there is no risk of error-propagation
during demodulation, and applying demodulation using f −1

C1 yields a replica ũ of the original user bits u,
completing the successful decoding.
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FIGURE 7.3 Bit insertion scheme.

To summarize, for reverse concatenation, the encoder’s output to the channel satisfies the constraint,
while the decoder sees only limited error propagation from demodulation. The main constrained code C1
can have arbitrary design, so there is no restriction on the function fC1, and in particular, it is possible
to use a constrained code with extremely long block length. This method is most effective when the
ECC code rate is high, since the parity portion comprises a small part of the whole codeword. Reverse
concatenation gives an effective method to meet a desired modulation constraint using a near-capacity
constrained code.

7.2.4 Bit Insertion

For certain classes of constraints, it is possible to use a variation on reverse concatenation to insert the
parity bits into a constrained message sequence in such a way that the resulting sequence does not violate
the constraint. This bit insertion scheme, shown in Figure 7.3, entails choosing a modulation code C1
such that inserting bits into the sequence in some predetermined pattern results in a sequence that still
meets the target constraint (e.g., it belongs to the constraint set SC ). In other words, instead of using a
constrained code C2, the parity bits v (p) from the encoder are inserted directly into pre-specified locations
in the sequence w (m) = fC1(u).

The surprising advantage of this approach is that no error-propagation due to demodulation takes place
at all. The entire sequence received from the channel decoder can be directly used by the ECC decoder
(after possibly some permutation of the order), without the need for demodulation. (This bit insertion
method is also beneficial for soft decoding as discussed in Section 7.3, since soft information for all bits
is directly usable by the ECC decoder.) As in Section 7.2.3, if the ECC decoding is successful, then the
decoder output w̃ (m) is error-free and can be demodulated by f −1

C1 to yield the original user bits u.
While simple and effective, the bit insertion method is only useful for certain classes of constraints. It

has been considered by Anim-Appiah and McLaughlin [1] for using (0, k) modulation codes with Turbo
Codes, and has been considered by van Wijngaarden and Immink [20,21] for the (0, G/I )-RLL constraint.
An extensive analysis of this technique is given by Campello et al. in [5], which considers the “unconstrained
positions” in a constrained code, referring to the locations that are suitable for placing parity bits with
arbitrary values.

7.2.5 Lossless Compression

One issue with reverse concatenation is that the input to the ECC encoder is increased by a factor of
nC1/kC1 compared with standard concatenation since fECC is applied to fC1(u) instead of u directly. For
constrained codes with low rate (e.g., kC1/nC1 ≈ 0.5), this poses a problem as the length of the ECC
codeword expands proportionally, which leads to increased complexity in the ECC encoder and decoder.
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To reduce codeword expansion in reverse concatenation, Immink proposed in [11] the use of a lossless
compression code to compress the input to the ECC encoder. This technique is typically used in a sce-
nario with a symbol-oriented hard-decision decoder such as a Reed-Solomon code. In this context, the
compression should have the following characteristics:

� The sequence to be compressed satisfies a modulation constraint.
� The compression map should be lossless, so that it is possible to exactly recover the original sequence.
� The compression map should cause little error propagation. (This can be accomplished using short

block lengths.)

The lossless compression code can be defined by an encoding function fL whose image is a superset
of the constraint set: Im( fL ) ⊃ SC . The rate is lower-bounded by the constraint capacity: cap(SC ) ≤
kL /nL . (In contrast, with constrained coding, the encoding function fC has an image that is a subset
of the constrained set, Im( fC ) ⊂ SC , and constrained code rate is upper-bounded by the constraint
capacity, kC /nC ≤ cap(SC ).) This map fL can also be called an expanding coder, or “excoder” (in analogy
to “encoder”). This is an invertible mapping from AkL to AnL . The inverse map f −1

L then gives the
corresponding compression map, which is a bijection from Im ( fL) to AkL [9].

Applying this idea to reverse concatenation, the excoder map fL should have an image that is a superset
of SC1, where nL = nC1. Then as shown in Figure 7.4, the compression map f −1

L is applied to the
constrained word w (m) = fC1(u) to obtain t. Then the ECC encoder produces parity corresponding to t
using a systematic ECC encoder to obtain v (p) = f p

ECC(t). Finally, the parity portion is modulated by the
constraint C2, and the transmitted word has the form:

w = {
fC1(u), fC2

(
f p
ECC

(
f −1

L ( fC1(u))
))}

As in reverse concatenation, C1 and C2 are chosen such that the resulting word w belongs to the constraint
set SC . In this case, nL = nC1, while kL = kECC.

As for the decoder for this configuration, if the received word is ŵ , the message portion ŵ (m) must be
first compressed by f −1

L before it can be used by the ECC decoder. Hence, the compression map f −1
L should

be designed to have limited error-propagation. In particular, the goal is to create an excoder function fL

such that the compression map f −1
L has limited error-propagation. In terms of practical implementation,

this can be accomplished through short block codes or sliding-block codes.
The rest of the decoding procedure goes as follows, as shown in Figure 7.4. Let t̂ = f −1

L (ŵ (m)) represent
the compressed version of the message portion of the received word. Meanwhile, the parity portion ŵ (p)
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must be demodulated by C2, so that the input to the ECC decoder is {t̂, f −1
C2 (ŵ (p))}. Upon successful

decoding, a corrected version of the message portion is obtained, which is denoted by t̃. Next, the excoder
fL performs decompression on t̃ to recover the corrected w̃ (m) = fL (t̃), and finally, demodulation is
performed for the constrained code C1 to recover the user data ũ = f −1

C1 (w̃ (m)).
For the design of the lossless compression code, the goal is to decrease the codeword expansion, so that

it is desirable to have as low a compression rate K L /NL as possible. On the other hand, error propagation
must be avoided, which limits the selection of lossless compression codes (e.g., to ones with short block
length). At one extreme, the compression could be trivial, so that the output t is exactly the same as
the input w (m); this situation corresponds to reverse concatenation (Figure 7.2). At the other extreme,
the lossless compression could compress w (m) back to u (demodulating the code C1), corresponding to
standard concatenation (Figure 7.1). Choosing a compression code in between these two extremes allows
for the benefits of reverse concatenation, while minimizing its codeword expansion relative to standard
concatenation.

(It should be noted that this lossless compression technique is not generally applicable for soft decoding,
since the compression step tends to further obscure the reliability information. In general, the compression
code may be an arbitrary assignment of codewords, so that the computation of postcompression reliability
information is a difficult task, similar to computing postdemodulation reliability information for an
arbitrary constrained code.)

Block codes for lossless compression are given in [7] and [11]. The basic construction is a block code
of rate K L /NL and an invertible function FL that maps from K L bits to NL bits. Then the excoder fL can
be constructed using FL (similarly to how fC is built from FC ):

fL

({
v (1), v (2), . . . , v (kL /K L )

}) = {
FL

(
u(1)

)
, FL

(
u(2)

)
, . . . , FL

(
u(kL /K L )

)}
When any sequence from the constraint set SC is divided into words of length NL , these words should
all lie in the image of FL and so that they can be mapped via the compression map F −1

L to a word of
length K L .

Sliding-block lossless compression codes are discussed in [9]. The compression map is a sliding-block
decoder from sequences of NL -codewords of the constraint set SC to unconstrained sequences of length
K L ; that is, a NL -codeword w (i) is compressed into a K L -frame t(i) as a deterministic function of the
current NL -codeword and perhaps some m preceding and a following NL -codewords. The sliding-block
window length is defined by the sum m + a + 1, and the code is said to be sliding-block compressible. The
excoder, on the other hand, takes the form of a finite-state machine.

The existence of sliding-block compressible codes was shown in [9] for constraints defined as finite-
memory constrained systems: if cap(SC ) ≤ kL /nL , then for this constrained system SC , there exists a
lossless compression code of rate K L /NL that is sliding-block compressible. Recall that the state-splitting
algorithm for designing encoders for constrained codes (Ref. [17]) is guided by an “approximate eigenvec-
tor” that satisfies a certain inequality. For sliding-block lossless compression codes, this reversed inequality
is used in a variant of the state-splitting algorithm for constructing finite-state excoders.

7.3 Reverse Concatenation and Soft Iterative Decoding

A very important benefit of reverse concatenation is the ability for the ECC decoder to make use of the
full information available from the channel. Many channels provide soft information, which is typically a
real-valued metric on each bit indicating its reliability, for example, a probability or a log-likelihood ratio
(LLR). For many situations, the ability to obtain this soft information on the channel output allows the
decoder for the error-control codes to improve its performance.

With standard concatenation, the usual implementations of constrained codes make it difficult to
associate soft information to the bits of the demodulated output. In other words, given bit-wise probabilities
for the word w , it is not straightforward to obtain bit-wise probabilities for the demodulated word v . With
reverse concatenation, however, it is possible to directly use soft information for the message portion (w (m)).
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This is possible because no demodulation step is necessary for the message portion. (The bit insertion
method is even better, allowing the use of soft information on the whole received word! The bit insertion
method, however, can only be used on a limited class of constraints.) This ability of reverse concatenation
to use soft information directly from the channel is critical for using constrained codes with ECCs such as
Turbo codes and low-density parity-check (LDPC) codes whose iterative decoders rely on soft information
for their superior performance over other codes. Of the extensive literature on applying these soft iterative
ECCs in the context of magnetic and optical storage, a number of papers (e.g., [1,2,8]) also consider their
application in the context of a constrained code.

In addition, with reverse concatenation, a soft decoder for the constraint can be used in conjunction
with the ECC decoder to obtain additional coding gain from the constraint, as presented in [8]. The basic
idea is that the constraint imposes restrictions on the valid codewords, as defined by the constrained
set SC , and the constraint decoder uses knowledge of these restrictions to improve the soft information
(e.g., the bit-wise probabilities) for use in the ECC decoder.

While for arbitrary constraint sets SC , it may be difficult to perform this soft decoding, for certain
constraints, it is possible to take advantage of the structure of the constraint to perform a soft-in, soft-out
(SISO) decoding to make useful updates to the soft information. For example, as shown in [6,8], for the
case of the (d , k)-RLL constraints (and other constraints whose codewords can be represented by traversals
on a trellis), it is possible to use the structure of the constraint to define a SISO decoder for the constraint
using the BCJR algorithm.

With a SISO decoder for the constraint, it is possible to iterate between the ECC decoder and the
constraint decoder as follows: Assume the parity portion has been demodulated according to the auxiliary
constrained code C2. Then the ECC decoder receives the message portion and performs a SISO decoding
(e.g., for LDPC or Turbo codes) to obtain updated soft output. This is used to create a new estimate of
soft information that is passed to the constraint decoder. The SISO decoder for the constraint then uses
the structure of the constraint to produce soft output that can then be combined with the channel soft
information to create an updated soft input for the ECC decoder. By iterating back and forth between the
ECC decoder and the constraint decoder, it is possible to gain additional coding gain by making use of the
redundancy that is inherent in the constraint.

Note that the effectiveness of the soft constraint decoder requires the use of reverse concatenation (or the
bit insertion method), as opposed to standard concatenation, in which the process of demodulation can
distort the soft information. Also, note that the gains from decoding the constraint are more significant
for lower rate constraints (e.g., kC /nC less than 2/3) since there is more redundancy imposed by the
constraint that can be exploited for error-correction purposes. As a result, this technique of decoding
the constraint may be more applicable to channels that use lower-rate constraints (e.g., optical storage).
Finally, the channel decoder has been largely ignored in this discussion. As intersymbol interference is
present in both magnetic and optical recording channels, it is common to use a trellis-based (e.g., Viterbi)
detector for the channel. This is an additional issue that needs to be considered in combination with the
constraint decoder and the ECC decoder.
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8.1 Introduction

Partial-response equalization plays an important role in magnetic recording. In particular, the partial-
response system described by the polynomial Pn(D) = (1 − D)(1 + D)n, where n is a nonnegative
integer and D denotes a symbol delay, represents an interesting and largely adopted model for the high-
density magnetic recording channel [2, 3]. The excellent performance of systems based on partial-response
models sparked interest in the search for compatible coding techniques. In this chapter, we describe the
application of convolutional coding to partial-response channels, a technique that was introduced by Wolf
and Ungerboeck [1] for the (1 ± D) channel in 1986. Many authors have subsequently elaborated on this
coded system, such as Zehavi and Wolf [4], Hole [14], Hole and Ytrehus [15], and Siala and Kaleh [16].
The extension of this coding technique to the more general case of the Pn(D) channel has been considered
by Uchôa-Filho and Herro [12, 13], and refined by Despotović et al. [19, 20].

The key point in dealing with the convolutionally coded partial-response systems is to view the Pn(D)
channel as a finite state machine, as is usually done for convolutional encoders. Assuming binary channel
inputs, the trellis associated with the channel has 2n+1 states. This channel trellis is then combined with
the trellis describing the convolutional code, resulting in a trellis for the overall system that describes all
possible coded sequences. Decoding is provided by the Viterbi algorithm operating on this trellis. The
properties of this trellis are discussed in detail in this chapter. The combination of a precoder and a
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convolutional encoder drawn from a restricted set of generator matrices plays a key role in reducing the
number of required decoder states. Other issues taken into consideration are the limitation of the length
of equal symbol runs, which is addressed through the use of cosets of convolutional codes, and a code
search for good codes based upon the (squared Euclidean) distance spectrum criterion.

This chapter is organized as follows. The description of the coded system and some preliminaries are
given in Section 8.2. In Section 8.3, we derive a lower bound on the minimum free squared Euclidean
distance of the trellis corresponding to the overall system. This bound, which is related to the minimum
free Hamming distance of a subcode of the convolutional code, is then shown to be weak (and hence
of little significance) when n > 0, which suggests the need for a computer-aided search for good codes.
In Section 8.4, we point out several structural properties of the coded system and establish the rules
which guide the computer search. In this section, we introduce the important theory of trellis match-
ing. Section 8.5 addresses the problem of limiting the length of equal symbol runs for synchronization
purposes. Section 8.6 deals with the problem of avoiding flawed codewords. Flawed codewords result
whenever two infinitely long paths in the trellis of the overall system have the same labels (symbols from
the output of the partial-response channel). In Section 8.7, the distance spectrum criterion for trellis codes
is presented, which we adopt for finding good codes. These codes are tabulated for the (1 − D)(1 + D)2

and (1 − D)(1 + D)3 channels in Section 8.8.

8.2 Encoding System Description and Preliminaries

The block diagram of the encoded system that we consider in this chapter is shown in Figure 8.1. In
this section we describe the components of this system and introduce some needed definitions. Unless
otherwise stated, the signals and transfer functions of the blocks in Figure 8.1 are represented by their D-
transforms. Beginning at the left, the input sequence, U(D) = [U 1(D), . . . , U k(D)], is first encoded by the
(m, k) convolutional encoder of rate Rc = k/m, represented by the generator matrix G(D). The ith input
sequence is represented by the polynomial U i (D) = ui

0 +ui
1 D +· · · , where ui

t ∈ G F (2) for 1 ≤ i ≤ k, and
for each time instant t ≥ 0. The input sequence produces the encoded sequence, V(D) = U(D)G(D) =
[V 1(D), . . . , V m(D)]. The representation of the jth encoded sequence is V j (D) = v j

0 + v j
1 D +· · ·, where

v j
t ∈ G F (2) for 1 ≤ j ≤ m, and for each time instant t ≥ 0. The generator matrix G(D)

�=(G j
i (D)),

where G j
i (D) = ∑ν

l=0 g j
l ,i Dl , and the elements g j

l ,i ∈ G F (2), 1 ≤ i ≤ k, and 1 ≤ j ≤ m, represent
the tap connections in the encoder. We define the ith input constraint length of the encoder by νi =
max j {degG j

i (D)} and the overall constraint length of the encoder by ν = ∑k
i=1 νi . The jth encoded

0 −1

1 +1
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FIGURE 8.1 The convolutionally coded partial-response system. (Copyright c© 2001 IEEE. Reproduced with
permission.)
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sequence, V j (D), can be written in terms of U(D) and G(D) as follows:

V j (D) =
k∑

i=1

U i (D)G j
i (D), 1 ≤ j ≤ m (8.1)

The m encoded sequences are multiplexed into a single sequence, called the codeword, as follows:

V(D) =
m∑

j=1

D j−1V j (Dm) (8.2)

A coset of the code is used to avoid the all zero sequence, since this sequence causes loss of clock synchro-
nization. The coset sequence T̃(D) is added to the codeword V(D), giving

W(D) ≡ V(D) ⊕ T̃(D) (8.3)

where ⊕ denotes addition of polynomials over G F (2). The sequence W(D) is passed through a precoder.
In the communication context, precoding is used as a method of avoiding error propagation in symbol-by-
symbol detection of partial-response signals [11]. In this chapter, where maximum-likelihood sequence
detection is adopted, the precoder has other purposes, as will become clear in the following sections. The
transfer function of the precoder for the Pn(D) = (1 − D)(1 + D)n channel is chosen to be (1 ⊕ D)−n−1,
which corresponds to [1/Pn(D)]mod 2. The precoded sequence, R(D), is then given by

R(D) ≡ (1 ⊕ D)−n−1W(D) (8.4)

where we consider the two sequences R(D) and W(D) to have the same length. The polar NRZ modulator
(i.e., the map: 0 → −1, 1 → +1) is introduced to make the system of Figure 8.1 compatible with
saturation recording [6]. The output of the modulator is given by

X(D) = 2R(D) − 1(D) (8.5)

where 1(D) is the all one sequence with the same length as R(D). The modulated sequence X(D) is then
sent to the Pn(D) = p0 + p1 D + p2 D2 +· · · + pn+1 Dn+1 channel, which results in the multilevel channel
output sequence

Y (D) = Pn(D)X(D) +
n+1∑
j=1

( n+1∑
i= j

(−1)pi

)
D j−1 −

{
terms in D j , where
j ≥ length of W(D)

}
(8.6)

where the second term is the response (independent of X(D)) due to the initial content of the unit-delay
cells of the Pn(D) channel (namely −1, −1, . . . , −1). We illustrate this with an example.

Example 8.1

Consider the P2(D) = (1 − D)(1 + D)2 channel and the sequence W(D) = (10110100) = 1 + D2 +
D3 + D5. Then the precoder output is R(D) = (11100000) = (1 ⊕ D)−3W(D) = 1 + D + D2. The
modulated sequence is X(D) = (+ + + − − − −−) = 2R(D)−1(D) = 1+D+D2−D3−D4−D5−
D6 − D7. Finally, the multilevel channel output sequence is Y (D) = (+2, +4, +2, −2, −4, −2, 0, 0) =
X(D)P2(D) + (1 + 2D + D2) − (D8 + 2D9 + D10) = 2 + 4D + 2D2 − 2D3 − 4D4 − 2D5.

A closed form for the number of output levels as a function of n is in general difficult to obtain. But for
the most commonly used channels, namely for n = 0, 1, 2, or 3, these numbers are well known. For n = 0
and n = 1 there are three levels, namely 0 and ±2. For n = 2 there are five levels, namely 0, ±2, and ±4.
And for n = 3 there are seven levels, namely 0, ±2, ±4, and ±6.
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After passing through the partial response “channel,” zero mean, i.i.d., Gaussian noise N(D) is added to
Y (D), producing the noisy sequence Z(D). A Viterbi detector is then used to find the maximum likelihood
estimate Û (D) of U (D) from the noisy channel output Z(D).

8.3 Trellis Codes for Partial-Response Channels
Based Upon the Hamming Metric

For the trellis code formed at the output of the 1 − D channel, in the encoded system of Figure 8.1 (with
n = 0), Wolf and Ungerboeck [1] derived a lower bound on the minimum free squared Euclidean distance,
which is monotonically related to the minimum free Hamming distance of the convolutional code. From
this result, it follows that convolutional codes with large free Hamming distance generate trellis codes with
large free squared Euclidean distance. In this section, we present the extension of the result for the 1 − D
channel to the Pn(D) channel case, and conclude that similar guidelines exist for choosing a convolutional
code that leads to a trellis code with large free squared Euclidean distance. We also introduce some concepts
which will be useful in the forthcoming sections.

The set of all output sequences V(D), as the input sequence U(D) ranges over all possible values, is
called the convolutional code, denoted by C , and generated by the encoder G(D). Let ωH (V(D)) be the
Hamming weight of the coded sequence V(D), that is, the number of nonzero coefficients in V(D).
The minimum free Hamming distance of C , denoted by dH (C), is defined as the minimum of the set
{ωH (V(D)) | V(D) ∈ C , V(D) �= 0}.

We denote the channel code by the set of noiseless output sequences Y (D) from the Pn(D) channel in
Figure 8.1. This code is multilevel and nonlinear trellis. The trellis for the channel code is called the decoder
trellis, which is the trellis for the overall system modelled as the combination of the convolutional encoder,
the precoder, and the Pn(D) channel. A channel codeword of the channel code consists of the multilevel labels
on any path in the decoder trellis that starts in any state and ends in any state (not necessarily the same as the
starting state). We say that an error event of length l has occurred when two paths in the decoder trellis, say
Y (D) and Y ′(D), diverge from each other at time t and remerge at time t + l − 1. We may assume with no
loss of generality that t = 0 and that the correct channel codeword Y (D) = y0 + y1 D + · · · + yl−1 Dl−1

and the incorrect channel codeword Y ′(D) = y ′
0 + y ′

1 D +· · · + y ′
l−1 Dl−1. A typical error event is shown

in Figure 8.2.
The squared Euclidean distance between Y (D) and Y ′(D) is defined as

d2
E (Y, Y ′) �=

l−1∑
i=0

(yi − y ′
i )

2 (8.7)

y¢t

yt

yt+1

y¢t+1

y ¢t+l−1

yt+l−1

FIGURE 8.2 A typical error event in a decoder trellis. (Modified from Uchôa Filho, B. F. and Herro, M. A., IEEE
Trans. Inform. Theory, vol. 43, No. 2, pp. 441–453, Mar. 1997. Copyright c© 1997 IEEE. With permission.)
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The minimum free squared Euclidean distance of the channel code is defined as

d2
free

�= min
Y �=Y ′

(
d2

E (Y, Y ′)
)

(8.8)

where the minimization is over all possible error events.
We now present a lower bound on the minimum free squared Euclidean distance, d2

free, of the channel
code for the Pn(D) channel, generated by the convolutional code C . This lower bound relates dH (C) to
d2

free. In the derivation we consider T̃(D) ≡ 0. However, it can easily be shown that adding T̃(D) �≡ 0
modulo 2 to every codeword of C , as given in Equation 8.3, will not change dH (C). Thus the bound is
also valid for T̃(D) �≡ 0.

We define the function |Y (D)| for polynomials Y (D) with even coefficients as

|Y (D)| �≡ y0

2
+ y1

2
D + y2

2
D2 + · · · (mod 2) (8.9)

where |Y (D)| reduces to a binary sequence because the (mod 2) reduction is carried out on each coefficient
of Y (D), after the division by 2. As an example, consider the sequence Y (D) = 2 + 4D + 2D2 − 2D3 −
4D4 − 2D5 given in Example 8.1. We have that |Y (D)| ≡ 1 + 2D + D2 − D3 − 2D4 − D5 (mod 2) ≡
1 + D2 + D3 + D5.

It is shown in Appendix A that the correspondence between Y (D) and W(D) is given by

W(D) ≡ |Y (D)| (8.10)

Note that the binary sequence obtained in the previous paragraph is the sequence W(D) in Example 8.1.
It can be seen from Equation 8.10 that the sequence W(D) can be recovered from the noiseless channel
output Y (D) in a symbol-by-symbol fashion. Moreover, because of Equation 8.10, whenever a bit w is 0,
the corresponding channel output y is divisible by 4, and whenever a bit w is 1, the corresponding channel
output y is divisible by 4 with remainder 2. This can be expressed analytically as:

w ≡ 0 (mod 2) ⇐⇒ y ∈ 4ZZ
�= {0, ±4, ±8, . . . }

(8.11)
w ≡ 1 (mod 2) ⇐⇒ y ∈ 4ZZ + 2

�= {2, ±6, ±10, . . . }

where ZZ is the set of all integers.
We now define the binary representation of an error event E (D), as done in references [5, 15]. The

binary representation of an error event E (D) is the modulo 2 sum of the two binary sequences W(D) and
W′(D) that produce, at the output of the channel, the sequences Y (D) and Y ′(D), respectively. Using the
function defined in Equation 8.9 we may write

E (D)
�≡ (w0 ⊕ w ′

0) ⊕ (w1 ⊕ w ′
1)D ⊕ · · · ⊕ (wl−1 ⊕ w ′

l−1)Dl−1

�≡ (|y0| ⊕ |y ′
0|) ⊕ (|y1| ⊕ |y ′

1|)D ⊕ · · · ⊕ (|yl−1| ⊕ |y ′
l−1|)Dl−1

�≡ e0 ⊕ e1 D ⊕ · · · ⊕ el−1 Dl−1 (8.12)

Note that E (D) is independent of T̃(D) since E (D) ≡ W(D) ⊕ W′(D) ≡ V(D) ⊕ T̃(D) ⊕ V ′(D) ⊕
T̃(D) ≡ V(D)⊕V ′(D). It also follows from these equivalences that E (D) ≡ V(D)⊕V ′(D) is a codeword
of C , since V(D) and V ′(D) are two codewords of C , and C is a linear code. Zehavi and Wolf [5] observed
that since E (D) must be a codeword of the convolutional code, only sequences that are codewords can
be potential error events, that is, not every sequence is the binary representation of an error event. In the
next lemma we reduce even further the set of such possible binary representations.
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Define the subset Cn of the convolutional code C as

Cn
�={V(D) ∈ C | (1 ⊕ D)n+1 divides V(D)}

Clearly Cn is a linear subcode of C and C−1 = C ⊇ C0 ⊇ C1 ⊇ C2 ⊇ · · · .

Lemma 8.1 If E (D) is the binary representation of an error event, then E (D) ∈ Cn.

Proof 8.1 Consider the difference sequence Y (D) − Y ′(D). From Equation 8.6 we have that

Y (D) − Y ′(D) = (X(D) − X ′(D))Pn(D)

since the terms independent of X(D) cancel out. If we apply the polynomial function defined in
Equation 8.9 to the previous equation and use the results in Appendix B, we have the following
equivalences:

|Y (D) − Y ′(D)| ≡ |(X(D) − X ′(D))Pn(D)|
≡ |X(D) − X ′(D)|[Pn(D)]mod 2

≡ |X(D) − X ′(D)|(1 ⊕ D)n+1

≡ E (D)

where the last equivalence, namely E (D) ≡ |Y (D) − Y ′(D)|, comes from Equation 8.12. Therefore
(1 ⊕ D)n+1 divides E (D) and consequently E (D) ∈ Cn as claimed. ✷

We are now ready to state the lower bound on d2
free.

Theorem 8.1 The minimum free squared Euclidean distance of the channel code, for the precoded Pn(D) =
(1− D)(1+ D)n channel, generated by the convolutional code C, according to the encoded system of Figure 8.1,
is lower bounded by:

d2
free ≥ 4dH (Cn)

Proof 8.2 First note that because of Equation 8.11 whenever two encoded bits, say w and w ′, differ
from each other, the squared Euclidean distance between their corresponding channel outputs, namely
y and y ′, is lower bounded by the intersubset squared Euclidean distance between the subsets 4ZZ and
4ZZ + 2, which is 4. The rest of the proof follows from Lemma 8.1. The binary representation of any error
event in the decoder trellis is a codeword in Cn, and this has at least dH (Cn) ones. Therefore d2

free is lower
bounded by 4dH (Cn). ✷

Remark 8.1 For n = 0 this bound is equivalent to the bound of Wolf and Ungerboeck (Lemma 8.2,
[1]), namely d2

free ≥ 4d (e)
H , where d (e)

H is the weight of the lowest even weight codeword in C . To see
this equivalence note that, for n = 0, C0 is the set of all codewords of C that have even weight, since a
polynomial V(D) is divisible by (1 ⊕ D) in G F (2) if and only if V(D) has even weight. Thus, for n = 0,
dH (C0) = d (e)

H .

The immediate consequence of Theorem 8.1 is that convolutional codes whose subcode Cn has large
minimum free Hamming distance dH (Cn) are good candidates to generate channel codes with large d2

free.
The advantage of this construction is that many convolutional codes designed for the Hamming metric
have already been found and are tabulated in references such as [10]. Many of these channel codes for the
1 − D channel were found in [1]. For this simpler channel, the bound given in Theorem 8.1 is always
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tight [1]. However, for the Pn(D) channel (n > 0), the actual d2
free of the channel code is often much

larger than the lower bound. We can see this by means of an example. Assume n = 2, so that the output
levels are 0, ±2, and ±4. The bit w = 0 may be converted to the output level y = −4, and the bit w ′ = 1
may be converted to y ′ = +2. Then d2

E (y, y ′) = d2
E (−4, +2) = 36, as opposed to 4 given by the bound

in Theorem 8.1. This discrepancy between the actual d2
free and the bound becomes even more prominent

when T̃(D) �≡ 0, as we shall verify in Section 8.4. We now give an example of channel codes designed
using this method.

Example 8.2

Consider the (4, 1) convolutional code C with constraint lengthν = 1 generated by G(D) = [1+D, 1, 0, 1].
This code has dH (C ) = dH (C0) = dH (C2) = 6. Hence the bound given in Theorem 8.1 becomes
d2

free ≥ 4 × 6 = 24. For n = 0, the channel code generated by C has d2
free = 24. But for n = 2, d2

free =
56 > 24.

Since the bound given in Theorem 8.1 is weak when n > 0, basing a search for channel codes with
large d2

free solely on convolutional codes with large dH appears to be too restrictive and does not exploit
the channel memory in an efficient way. A computer-aided search is thus required to find good channel
codes. The theoretical elements related to this search are presented next in Section 8.4.

8.4 Trellis-Matched Codes for Partial-Response Channels

In this section we point out some structural properties of channel codes and establish the rules (for
choosing G(D) and T̃(D)) which guided the computer search that led to the channel codes given in
Section 8.8.

The first concern is with the state complexity of the decoder trellises for the channel codes generated
by the convolutional encoders. As mentioned in the introductory section, under binary inputs the Pn(D)
channel has 2n+1 states. The precoder does not increase the number of states since it shares the same (up
to a one-to-one map — the polar NRZ map) states with the Pn(D) channel. In other words, once the state
of the precoder is known, the state of the channel trellis can be determined. On the other hand, since the
decoder trellis is obtained from the product of the trellis of the convolutional code (which has 2ν states)
and the channel trellis, the number of states of the decoder trellis is in general 2n+ν+1. However, depending
on a structural property of the encoder, the decoder trellis can have fewer states. We use the following
classification as we refer to the number of states of the decoder trellis.

We say that a channel code is unmatched (UM) to the Pn(D) channel if the decoder trellis has 2n+ν+1

states; that it is partially trellis matched (PTM) to the Pn(D) channel if the decoder trellis has 2n′+ν+1

states, where 0 ≤ n′ < n; and that it is totally trellis matched (TTM) (or simply trellis matched (TM)) to
the Pn(D) channel if the decoder trellis has at most 2ν states. Since reduced-complexity decoder trellises
are preferred, this chapter focuses on channel codes that are TTM to the Pn(D) channel.

In Theorem 8.2 we will present a sufficient condition for a convolutional encoder to generate a channel
code that is TTM to the Pn(D) channel. To do this we require the following definitions.

Definition 8.1 We define the input generator vector, Gin(D), as another representation for an (m, k)
convolutional encoder which is equivalent to and derived from G(D) as given below:

Gin(D) = [
G 1

in(D), . . . , G k
in(D)

]
where G i

in(D) = ∑m
j=1 D j−1G j

i (Dm), 1 ≤ i ≤ k. Note that G i
in(D) is the result of multiplexing the

polynomials in the i th row of G(D).
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The input generator vector, for a particular encoder, is given in the following example.

Example 8.3

Consider the (5,2) convolutional encoder with constraint length ν = 2 represented by the following
generator matrix:

G(D) =
(

D 1 + D 1 0 0
1 0 0 D 0

)

Then m = 5, k = 2, and Gin(D) = [G 1
in(D), G 2

in(D)] = [D + D2 + D5 + D6, 1 + D8].

Definition 8.2 An encoder is said to be feedback free if none of the G j
i (D) are rational polynomials.

Clearly the encoder of Example 8.3 is a feedback free encoder. All encoders considered in this chapter
are feedback free encoders. In the following theorem, T̃(D) ≡ 0. The case T̃(D) �≡ 0 will be treated later
in this section.

Theorem 8.2 Let n′ be the largest nonnegative integer (if it exists) such that the input generator vector
Gin(D) for C may be factored as:

Gin(D) = (1 ⊕ D)n′+1 G′
in(D)

Then the channel code generated by C is TTM to the Pn(D) channel if n′ ≥ n.

Proof 8.3 We begin this proof by writing the overall output sequence V(D) in terms of Gin(D).
Substituting Equation 8.1 into Equation 8.2 yields

V(D) =
m∑

j=1

D j−1

(
k∑

i=1

U i (Dm)G j
i (Dm)

)

=
k∑

i=1

U i (Dm)
m∑

j=1

D j−1 G j
i (Dm)

=
k∑

i=1

U i (Dm)G i
in(D)

From the assumption of the theorem we may write V(D) as

V(D) = (1 ⊕ D)n′+1
k∑

i=1

U i (Dm)G ′i
in(D) (8.13)

Then the precoded output in equivalence (8.4), for T̃(D) ≡ 0, becomes

R(D) = (1 ⊕ D)−n−1V(D) = (1 ⊕ D)n′−n
k∑

i=1

U i (Dm)G ′i
in(D)

Now we note that if n′ ≥ n the feedback free modified encoder

(1 ⊕ D)n′−nG′
in(D) (8.14)

may be used to produce R(D) directly from the input U (D), and it has at most 2ν states. To see this note
that since the degree of G i

in(D) satisfies mνi ≤ deg G i
in(D) ≤ mνi + m − 1, the input constraint length
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of the encoder, νi , can be determined by:

νi =
⌊

deg G i
in(D)

m

⌋

where [x] is the largest integer less than or equal to x . From Equation 8.14, the corresponding
degree for the modified encoder is equal to n′ − n + deg G ′i

in(D) = n′ − n + (deg G i
in(D) − n′ − 1) =

deg G i
in(D) − n − 1. Then the input constraint length of the modified encoder, νi (modified), can be

similarly determined by:

νi (modified) =
⌊

deg G i
in(D) − n − 1

m

⌋

≤
⌊

mνi + m − n − 2

m

⌋
≤ νi ,

which shows that the modified encoder has at most 2ν states (since ν = ∑k
i=1 νi ).

It follows from these facts that all states of the precoder can be determined by at most 2ν states, the
states of the modified encoder. We know, from the second paragraph of this section, that the states of the
precoded Pn(D) channel trellis can be determined from the states of the precoder. Therefore the states
of the precoded Pn(D) channel trellis can be determined from the states of the modified encoder, and
consequently the decoder trellis has at most 2ν states if n′ ≥ n. ✷

In the following we define a class of convolutional encoders for which an encoder, combined with the
precoder for the Pn(D) channel, generates a decoder trellis with exactly 2ν states.

Definition 8.3 There can exist many encoders G(D) that generate the same code C . An encoder G(D)
of constraint length ν (realized with 2ν states) that generates C is said to be a minimal encoder for C if no
other encoder with constraint length smaller than ν (realized with fewer than 2ν states) generates C .

Lemma 8.2 If the convolutional encoder G(D) is minimal and satisfies the condition in Theorem 8.2,
then it generates a decoder trellis with exactly 2ν states.

Proof 8.4 Let C be the convolutional code generated by a minimal convolutional encoder G(D)
(or Gin(D)), with constraint length ν, satisfying the condition in Theorem 8.2. Let C be the channel
code generated by C . Suppose that a decoder trellis for C with fewer than 2ν states exists. If we apply the
equivalence in Equation 8.10 to each channel codeword Y (D) of C, the resulting set of sequences is clearly
the convolutional code C . Hence, by this procedure, we have found a trellis for C with fewer than 2ν states,
which contradicts the assumption on the minimality of G(D). Therefore, from Theorem 8.2, the decoder
trellis has exactly 2ν states. ✷

A criterion for determining whether or not a convolutional encoder is minimal was established by
Forney [8]. He showed that an encoder G(D) is minimal if and only if each k by k subdeterminant of
G(D) has degree not exceeding ν, and the greatest common divisor of all such subdeterminants is equal
to 1. We treat the case where the encoder is nonminimal later in this section.

In Theorem 8.2, we note that since n′ ≥ n, Equation 8.13 implies that every codeword V(D) of C is
divisible by (1 ⊕ D)n+1, which further implies that Cn = C . Hence, from Lemma 8.1, every codeword
V(D) of C is the binary representation of some error event. From this fact, and from Lemma 8.2, it follows
that the decoder trellis and the trellis of the convolutional code are the same, except for the labels. We
illustrate this by means of an example.
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(0, 0, 0, 0, 0)
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FIGURE 8.3 (a) The trellis of the convolutional code and; (b) the decoder trellis of Example 8.4. (Copyright c© 1997
IEEE. Reproduced with permission.)

Example 8.4

Consider the minimal (5,1) convolutional encoder with constraint length ν = 1, represented by the fol-
lowing generator matrix G(D) = [1, D, 1 + D, 1 + D, 0]. The input generator vector can be fac-
tored as Gin(D) ≡ [1 ⊕ D2 ⊕ D3 ⊕ D6 ⊕ D7 ⊕ D8] ≡ (1 ⊕ D)5[1 ⊕ D ⊕ D3]. The trellis of the
convolutional code and the decoder trellis when the P3(D) = (1− D)(1+ D)3 channel is used are shown in
Figure 8.3.

Remark 8.2 In this chapter, we label the states of the decoder trellis with the contents of the unit-delay
cells of the precoded (1 − D)(1 + D)n partial-response system when the inputs are the coset branch bits.
In the decoder trellis of Figure 8.3(b), for example, the state labels are “− − −−” and “+ + + −”.

In Example 8.4, n′ = 4 > 3 = n. Note that both trellises are the same. Also note the correspondence
between the bits in the trellis of the convolutional code and the multilevel labels in the decoder trellis. It
satisfies the equivalence in Equation 8.10. Every codeword V(D) of this convolutional code is divisible by
(1 ⊕ D)5, which implies that they are also divisible by (1 ⊕ D)4, where 4 = n + 1. Recall that we can also
represent a codeword of a convolutional code by the labels on a path in the trellis of the convolutional
code that starts and ends in the zero state. For example, consider the codeword “101101100001110,” which
corresponds to the path in the trellis of Figure 8.3(a) that leaves state zero, goes to state one and remains
there for one time instant, and then returns to state zero again. The D-transform of this codeword is
V(D) ≡ 1 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6 ⊕ D11 ⊕ D12 ⊕ D13 ≡ (1 ⊕ D)5(1 ⊕ D ⊕ D3 ⊕ D5 ⊕ D6 ⊕ D8), that
is, V(D) is divisible by (1 ⊕ D)5.

The convolutional code in Example 8.4 has dH (C) = dH (C3) = 6, so that the bound of Theorem
8.1 becomes d2

free ≥ 4 × 6 = 24. However the corresponding channel code has d2
free = 108, more than

four times larger than the bound. This example also supports the fact that the bound of Theorem 8.1 is
rather weak.

8.5 Run-Length Limited Trellis-Matched Codes

8.5.1 Cosets of Convolutional Codes

Now we begin to consider nontrivial cosets of convolutional codes, that is, we start to analyze the case
T̃(D) �≡ 0. Assume that T̃(D) is not a codeword of C . Then the set

C ⊕ T̃
�= {V(D) ⊕ T̃(D)|V(D) ∈ C}
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is a nontrivial coset of the convolutional code C . The trellis for the coset C ⊕ T̃ is called the coset trellis [15].
The sequence T̃(D) is called the coset representative and is not unique. The binary labels on any path
in the coset trellis that starts and ends in the all zero state is called a coset word. T̃(D) is chosen to be a
periodic sequence of period m, the number of output lines of the convolutional encoder. Let T(D) be the
polynomial of degree at most m − 1 which corresponds to a period of T̃(D). With this choice the binary
addition in Equation 8.3, which generates the coset of C , can be implemented by simply inverting the bits
on the output lines of the convolutional encoder corresponding to ones in T(D). The periodic sequence
T̃(D) can be written in terms of T(D) as below:

T̃(D) =
nb∑

	=1

D(	−1)mT(D) (8.15)

where nb is the number of branches in the path whose labels form the codeword V(D) in Equation 8.3.
We denote the maximum zero-run length of the channel code, that is, the maximum run of zeros between

two consecutive nonzero symbols in any path of the decoder trellis, by L max. We can see from Equation 8.11
that the channel output y = 0 only if the coset bit w = 0. Hence L max can be upper bounded by the
maximum zero-run length of the coset. Focusing on the (1 − D) channel, Hole and Ytrehus [15] have
observed that a good choice of T(D) may not only limit L max, but may also yield a trellis code with d2

free

larger than the lower bound given in Theorem 8.1. It was shown in [13] that this assertion remains true
for the Pn(D) channel. We verify this by means of an example.

Example 8.5

Consider the convolutional encoder of Example 8.4. The coset trellis and the decoder trellis for the choice
T(D) = [10001] = 1 + D4 are given in Figure 8.4.

The channel code given in Example 8.5 has d2
free = 264. This is 11 times larger than the bound of

Theorem 8.1. Note also that the maximum zero-run length of the coset is 3. However, we can see by
inspection that the decoder trellis of Figure 8.4(b) has L max = 2 < 3. This is because some of the bits
equal to “0” in the coset are converted into either −4 or 4 in the decoder trellis.

It is important to note that the output lines of the convolutional encoder can not be permuted. This
would not necessarily imply the corresponding permutation of the multilevel labels in the branches of the
decoder trellis. This is due to the fact that Pn(D) channels have memory. The coset representative cannot
be changed either. For example, if we choose T(D) = [01111] = D + D2 + D3 + D4 instead of the T(D)
given in Example 8.5, the channel code generated by this coset can not be represented by a trellis with
only two states. Four states are needed instead. To see this consider the four input sequences: U (1)

1 = [0],

(2, 4, 0, −4, −2)
(0, 0, 2, 6, 6)

(2
, −

2, −
6, −

6, −
2)

(0, −6, −4, 4, 6)

_ _ _ _ _ _ _ _

+++  _ +++  _

(a) (b)

10001

01001

0 0

1 1

00111

11111

FIGURE 8.4 (a) The coset trellis and; (b) the decoder trellis of Example 8.5. (Copyright c© 1997 IEEE. Reproduced
with permission.)
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U (2)
1 = [1], U (3)

1 = [1, 1], and U (4)
1 = [1, 1, 0]. The branch labels in the coset trellis for these inputs are:

R(1) = [01111], R(2) = [11001] , R(3) = [11001, 10111] and R(4) = [11001, 10111, 00001], respectively.
These branch labels in turn drive the channel state from “− − −−” to “− − −−”, “− − −+”, “+ + +−”
and “+ + + +,” respectively. Any other sequence will drive the channel state from “− − −−” to one of
the channel states above. Therefore, the decoder trellis has four states. After these observations we can see
that a good choice of the coset C ⊕ T̃ is necessary to achieve good results. We devote the remainder of this
section to establishing the rules that lead to good choices of T(D).

In the last paragraph, we noted that the choice of T(D) may also have an effect on the structure of the
channel code. In particular, while C generates a channel code that is TTM to the Pn(D) channel, the coset
C ⊕ T̃ may not do so. It is therefore important to know for which polynomials T(D) the channel code
generated by the coset C ⊕ T̃ is TTM to the Pn(D) channel. This is addressed in the theorem below.

Theorem 8.3 Consider an (m, k) convolutional encoder that generates C and satisfies the condition
in Theorem 8.2, that is, C generates a channel code that is TTM to the Pn(D) channel. Let C ⊕ T̃ be a
coset of C , where T(D) is a polynomial of degree at most m − 1, and T̃(D) �∈ C. Then the channel code
generated by C ⊕ T̃ is TTM to the Pn(D) channel if (1 ⊕ D)n+1 divides T(D), which in turn requires that
m ≥ n + 2.

Proof 8.5 From Equation 8.15, since (1 ⊕ D)n+1 divides T(D), (1 ⊕ D)n+1 certainly divides T̃(D).
By assumption, (1 ⊕ D)n+1 divides V(D). Consequently (1 ⊕ D)n+1 also divides the coset sequence
W(D) ≡ V(D) ⊕ T̃(D) in Equation 8.3. If we replace V(D) by W(D) ≡ V(D) ⊕ T̃(D) in Theorem 8.2,
and repeat the proof of that theorem, we have proved the first part of Theorem 8.3. The requirement on
the minimum number of encoder output lines m can be seen from the fact that T(D) must have degree at
least n + 1 for (1 ⊕ D)n+1 to divide T(D). Since the degree of T(D) is at most m − 1, the result follows
immediately. ✷

Note that in Example 8.5, T(D) ≡ 1 ⊕ D4 ≡ (1 ⊕ D)4, which satisfies the condition in Theorem 8.3.

The remainder of this section discusses the search for good channel codes performed in [13, 20],
whether adding constraints to G(D) and T(D) can lead to good channel codes while reducing search
time, or whether these constraints overly restrict the choices of G(D) and T(D), making it difficult to find
good channel codes.

Note that the requirement on the minimum number of encoder output lines m ≥ n + 2, from
Theorem 8.3, imposes a constraint on the choice of code rates. For example, run-length limited time-
invariant channel codes of rate Rc = k/3, TTM to the (1 − D)(1 + D)2 channel, do not exist. Neither
do run-length limited time-invariant channel codes of rate Rc = k/4, TTM to the (1 − D)(1 + D)3

channel. The choice of T(D) as in Theorem 8.3 always leads to a time-invariant decoder trellis. If T(D)
is not so restricted, however, there may still exist TTM channel codes with a time-varying decoder trellis.
In this chapter, only the time-invariant case, that is, only the case of cosets that satisfy the condition in
Theorem 8.3, is considered.

8.5.1.1 Bit Stuffing

A very simple technique to limit L max is the so-called bit stuffing technique. In this technique we form
the (m, k) convolutional code as follows. First a convolutional code with parameters (m − b, k), with
1 ≤ b < m − k, is used. Then b “ones” are “stuffed” into the b bit positions (left uncoded), and this
leads to the desired (m, k) code. A simple bound on L max can be derived when this technique is used. For
example, let “1” represent a “stuffed” bit and “x” an encoded bit. Suppose that m = 8 and b = 2, and
we choose “xx1x1xxx”. Since “x” can be either “0” or “1,” the worst scenario would be the following:
. . . xx1x1000001x1xxx . . . . Thus L max can be bounded by L max ≤ 5. Another equivalent representation
for the encoder in Figure 8.1 which is particularly helpful to visualize the bit stuffing technique is as
follows.
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Definition 8.4 We define the output generator vector as

Gout(D) = [
G 1

out(D), . . . , G m
out(D)

]
where G j

out(D) = ∑k
i=1 Di−1G j

i (Dk), 1 ≤ j ≤ m.

The representation given in Definition 8.4, for the encoder in Example 8.3, is Gout(D) = [G 1
out(D),

G 2
out(D), G 3

out(D), G 4
out(D), G 5

out(D)] = [D + D2, 1 + D2, 1, D3, 0]. Note that Gout(D) is the modified
1 by m generator matrix Gm(D) introduced for the same purpose in [15]. We can see that an encoder
G(D) with b all zero columns, or equivalently, an encoder Gout(D) with b coordinates equal to zero, along
with a choice of T(D) having ones in at least one of the b positions that are equal to zero in Gout(D),
may be used to accomplish the bit stuffing technique. In other words, the encoded system of Figure 8.1 is
general enough to realize bit stuffing by an appropriate choice of Gout(D) and T(D). Despite its simplicity,
this technique can generate channel codes with large d2

free and very low values of L max. However, the
bit stuffing technique considerably limits the number of possible choices of encoders. As a result, no
good codes, and in some cases no code at all, exist for certain code rates. In a code search, the bit stuffing
technique is used whenever it leads to good channel codes. When this is not the case, L max is determined by
inspection.

8.6 Avoiding Flawed Codewords

A channel codeword is said to be a flawed channel codeword if the initial state is not uniquely determined
from the multilevel labels alone [7, 15]. Such a codeword exists in a channel code if and only if there are two
infinitely long paths in the decoder trellis with the same multilevel labels. This is an undesirable situation
since it may lead to ambiguity in the decoding process. For the 1 − D channel, Hole and Ytrehus [15]
showed that minimal encoders generate channel codes that do not contain flawed codewords. Their proof
was based on a property of the convolutional codes generated by minimal encoders derived by Forney [9].
It can be similarly shown that the same is true for the Pn(D) channels. However, in this case, some
nonminimal encoders also generate channel codes not containing flawed codewords. This is due to the
fact that each of the coset bits “0” and “1” can be converted, at the output of the Pn(D) channel, into
more than one multilevel symbol, if n > 0. Consequently, two infinitely long paths in the trellis of the
convolutional code with the same binary labels may be converted by the Pn(D) channel into two paths in
the decoder trellis with different labels. In other words, a convolutional code containing flawed codewords
may generate a channel code free of flawed channel codewords. In addition, there exist many nonminimal
encoders that satisfy the condition in Theorem 8.2. Note that minimality of convolutional encoders by
itself does not imply the total match of a channel code, i.e., the minimum number of states for the decoder
trellis. In fact minimality is not a condition in Theorem 8.2. Therefore some nonminimal encoders can
lead to trellis matched channel codes, whereas some minimal encoders may not. In the next example, we
give a nonminimal (4,2) convolutional encoder with constraint length ν = 2 for the (1 − D)(1 + D)2

channel. For the same parameters, no minimal encoder exists that leads to a good channel code TTM to
the (1 − D)(1 + D)2 channel.

Example 8.6

Consider the nonminimal (4,2) convolutional encoder with constraint length ν = 2 represented by the
following generator matrix:

G(D) =
(

0 1 + D 0 1 + D
0 1 + D 1 + D 1 + D

)

The decoder trellis for the channel code TTM to the (1 − D)(1 + D)2 channel is shown in Figure 8.5.
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FIGURE 8.5 The decoder trellis of Example 8.6. (Copyright c© 1997 IEEE. Reproduced with permission.)

This channel code has d2
free = 40 and L max = 3. It can be seen from Figure 8.5 that this channel code

does not contain any flawed codewords. In a code search, when minimal encoders do not lead to good
channel codes, the minimality constraint is relaxed and the best channel code generated by a nonminimal
encoder (when this exists) is presented.

We end this section with a summary of the conditions that limit the choices of G(D) and T(D) according
to the results of this section.

Requirements on G(D) and T(D):

(i) m ≥ n + 2
(ii) 1 ≤ k < m

(iii) G(D) is a feedback free encoder
(iv) G(D) is a minimal encoder
(v) Gin(D) = (1 ⊕ D)n′+1G′

in(D), n′ ≥ n
(vi) Gout(D) has at least one coordinate equal to zero, for bit stuffing

(vii) (1 ⊕ D)n+1 divides T(D)
(viii) T(D) has “1” in at least one of the positions where Gout(D) is zero, for bit stuffing

(ix) 1 ≤ ν ≤ 5
(x) νi ≥ 1, for 1 ≤ i ≤ k, to avoid parallel transitions in the decoder trellis

If the bit stuffing technique is too restrictive, then conditions (vi) and (viii) are eliminated. If minimality
is too restrictive, then condition (iv) is eliminated.
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8.7 The Distance Spectrum Criterion for Trellis Codes

The distance spectrum of a trellis code is defined as the collection of ordered pairs (di , Mi ), i = 1, 2, . . . ,
of all distances di , where di < di+1, together with the average number (multiplicity), Mi , of paths in the
trellis at distance di from a given (reference) path in the trellis, under the condition that the two paths
diverge from the same node at t = 0 and remerge only once at some later time. The average is taken over
all paths as reference paths. The pair (di , Mi ) is called the i th spectral line.

For the trellis codes considered in this chapter, the distance di represents the squared Euclidean distance
between sequences and, by convention, d2

free
�= d1. It is widely known that, under the assumption of AWGN

and high SNR, higher d2
free implies lower probability of error. At moderate to low SNR, however, this need

not be true since the whole distance spectrum influences the upper bound on the probability of error of
the code [17], and a code optimized for some specific SNR may not be optimal if the SNR is changed.
Nevertheless, it is easily observable that a higher d2

free code should have better distance spectrum altogether,
since codewords at distance di from the reference codeword should be mutually separated by at least d2

free.
Thus, if d2

free is smaller, then there is more space available for a larger number of codewords at di , potentially
increasing Mi . Naturally, counterexamples can be constructed with low d2

free and good spectrum at di , but
high d2

free codes surely cannot be bad in this regard. The same argument may be used for the number Mj

of codewords at distance d j , with regard to distance di , j > i . Consequently, it is reasonable to assume,
and it has been confirmed by all the examples we encountered, that the cumulative distance spectra [18]
of two codes, defined as

∑
di <dlim

Mi , almost never intersect as dlim increases. Consequently, the error
performance curves of these two codes almost never intersect if all the other parameters of the two codes
remain the same [20, 21].

In the next section, we use a simple yet reasonably robust criterion for achieving good codes, called
the (squared Euclidean) distance spectrum (DS) criterion, defined as follows. In comparing (say) code C
with code C ′ with distance spectra (di , Mi ) and (di , M′

i ), i = 1, 2, . . . , respectively, the distance spectrum
criterion declares that code C is better than code C ′ if there exists a positive integer j such that Mi = M′

i

for all i < j and 0 ≤ Mj < M′
j . Note that the code with larger d2

free is considered better according to this
criterion, regardless of the other spectral lines.

8.8 Good Trellis-Matched Codes for the Partial-Response
Channels Based on the Distance Spectrum Criterion

Regarding the coded system of Figure 8.1, the best channel codes [13, 20], along with their respective
distance spectra (first five spectral lines), are shown in Table 8.1 for the EPR4 channel and in Table 8.2 for
the E2PR4 channel. Similar tables for the 1 − D channel can be found in [15]. In Figure 8.1, the column
T(D) refers to the coset representative (see [6, Equation 8.15 and tables description] for details). The
input generator vector, Gin(D), and T(D) are given in the standard octal notation. For example, Gin(D) =
64 [24, 34] and T(D) = 74 denote: Gin(D) = (110)4 [010100, 011100] = (1+D)4[D+D3, D+D2+D3]
and T(D) = 111100 = 1+ D + D2 + D3. In the L max column, the maximum identical symbol-run length
is listed. Most frequently, this is the zero-run length, but in two cases (shown in Table 8.2), the maximum
run-length channel output symbol is nonzero, and is listed in parenthesis following the length of the run.
For instance, 4(2) indicates that the run “2222” of length 4 is the longest identical symbol-run. All codes
shown in Table 8.1 and Table 8.2 are free of flawed codewords.

Appendix A

In this appendix we show the equivalence in Equation 8.10. First we observe that the coefficients of Pn(D)
satisfy pi = −pn+1−i . If we substitute Equation 8.5 into Equation 8.6, and disregard the terms in D j
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TABLE 8.1 Distance Spectra for Channel Codes TTM to the EPR4 Channel

Rc ν Gin T(D) L max Distance spectrum

1/5 1 63[67] 36 1 (88,0.25)(104,0.25)(120,0.25)(136,0.25)(144,0.125)
1/5 1 63[76] 42 2 (128,1)(224,0.5)(288,0.5)(320,0.25)(384,0.5)
1/5 2 63[7754] 42 3 (200,0.25)(216,0.25)(240,0.25)(256,0.75)(264,0.25)
1/5 3 63[55777] 42 2 (224,0.25)(240,0.5625)(256,0.25)(272,0.25)(288,0.25)
1/5 4 63[5574076] 42 2 (288,0.375)(304,0.5)(312,0.03125)(320,0.38281)(328,0.09375)
1/5 5 65[63155246] 42 2 (328,0.15625)(344,0.28125)(360,0.25)(376,0.29688)(392,0.21094)
1/4 1 66[1] 74 1 (80,1)(144,0.5)(176,0.5)(208,0.25)(240,0.5)
1/4 2 66[26] 74 1 (104,1)(184,0.5)(192,0.5)(224,0.5)(232,0.5)
1/4 3 66[2134] 74 2 (168,0.25)(184,0.25)(200,0.5)(216,0.75)(232,0.5)
2/5 2 63[174, 514] 74 4 (48,1.5)(56,0.25)(64,0.75)(72,0.375)(80,1.03125)
2/5 3 63[74, 5124] 42 2 (80,0.75)(88,0.5)(96,1.5)(104,0.5)(112,2)
2/4 2 64[24, 34] 74 3 (40,2)(56,1)(72,1.5)(80,1)(88,3.25)
2/4 3 64[5, 436] 74 8 (48,1.28125)(56,0.63281)(64,1.30469)(72,1.90039)(80,3.67847)
2/4a 4 64[202, 552] 74 3 (56,0.875)(64,1.35156)(72,2.18945)(80,3.16211)(88,3.92285)
3/5 3 63[26, 15, 404] 74 11 (32,2.0625)(40,2.00391)(48,4.2544)(56,7.86763)(64,12.7282)
3/5 4 63[14, 61, 4044] 74 14 (40,2.875)(48,1.75879)(56,5.93607)(64,9.51839)(72,18.3108)

a Code found in [20]. All other codes were obtained from [13].
Source: Despotović, M., Šenk, V., and Uchôa-Filho, B. F., IEEE Trans. Commun., vol. 49, no. 7, pp. 1121–1124, July

2001. Copyright c© 2001 IEEE. Reproduced with permission.

TABLE 8.2 Distance Spectra for Channel Codes TTM to the E2PR4 Channel

Rc ν Gin T(D) L max Distance spectrum

1/5 1 65[64] 42 2 (264,1)(512,0.5)(544,0.5)(760,0.25)(792,0.5)
1/5 2 64[7734] 42 2 (464,0.125)(480,0.125)(496,0.25)(504,0.125)(512,0.25)
1/5 3 68[7416] 42 2 (536,0.25)(552,0.25)(616,0.25)(632,0.25)(656,0.0625)
1/5 4 65[5253524] 42 3 (664,0.0625)(680,0.0625)(688,0.01563)(720,0.01563)(728,0.0625)
1/5 5 65[42116304] 42 3 (792,0.01563)(800,0.03125)(808,0.125)(824,0.125)(848,0.03516)
2/5a 2 65[12, 16] 42 3 (112,2)(184,1)(192,0.5)(216,0.5)(224,1)
2/5a 2 64[7, 47] 42 4 (120,0.25)(152,1.5)(160,0.5)(200,0.28125)(224,0.1875)
2/5a 3 64[3004, 74] 42 3 (152,2)(200,0.375)(216,0.0625)(224,1.375)(232,0.51563)
2/5a 3 64[37, 7074] 42 11 (160,0.46875)(192,1.5)(200,0.30469)(232,0.03125)(240,0.66406)
2/5a 4 64[74, 30601] 42 3 (216,0.5)(224,2)(232,0.5)(240,1)(256,1)
3/5 3 64[3, 24, 62] 42 4 (48,1.5)(64,1.25)(72,0.875)(80,0.34375)(88,1.25781)
3/5 3 64[54, 42, 21] 42 8 (72,1)(80,1.25)(88,1.5625)(96,0.35156)(104,0.76563)
3/5 4 65[2, 3, 43] 42 4 (48,1.5)(64,0.125)(72,0.85156)(80,0.49414)(88,0.70313)
3/5 4 64[7, 26, 201] 42 4(2) (64,0.0625)(72,0.28125)(80,1.28125)(88,1.41016)(96,1.04297)
3/5 4 64[3, 43, 4604] 42 11 (80,1.6875)(88,0.6875)(96,0.625)(104,0.57813)(112,1.55469)
4/5 4 64[2, 1, 02, 05] 42 4(−2) (40,3.0625)(48,2.75)(56,1.75)(64,1.47656)(72,2.51758)

a Code found in [20]. All other codes were obtained from [13].
Source: Despotović, M., Šenk, V., and Uchôa-Filho, B. F., IEEE Trans. Commun., vol. 49, no. 7, pp. 1121–1124, July

2001. Copyright c© 2001 IEEE. Reproduced with permission.

where j ≥ length of W(D), the channel output sequence becomes:

Y (D) = 2Pn(D)R(D) − 1(D)Pn(D)︸ ︷︷ ︸
a

+
n+1∑
j=1

(
n+1∑
i= j

(−1)pi

)
D j−1

︸ ︷︷ ︸
b

Expanding a and b we have:

a = p0 + ( p1 + p0)D + ( p2 + p1 + p0)D2 + · · · + ( pn+1 + · · · + p1 + p0)Dn+1

+ ( pn+1 + · · · + p1 + p0)Dn+2 + ( pn+1 + · · · + p1 + p0)Dn+3 + · · ·
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and

b = (−p1 − p2 − · · · − pn+1) + (−p2 − p3 − · · · − pn+1)D + · · · + (−pn+1)Dn

Thus,

−a + b = (−pn+1 − · · · − p1 − p0)
∑

i

Di = 0

since pi = −pn+1−i . Then the channel output sequence becomes:

Y (D) = 2Pn(D)R(D) = 2 Pn(D)(1 ⊕ D)−n−1︸ ︷︷ ︸
≡1(mod 2)

W(D)

and we find that

W(D) ≡ Y (D)

2
(mod 2)

Appendix B

In this appendix we show the equivalence |(X(D) − X ′(D))Pn(D)| ≡ |X(D) − X ′(D)|(1 ⊕ D)n+1, used
in the proof of Lemma 8.1. Note that xi − x ′

i ∈ {0, ±2} and pi ∈ ZZ. Then the division by 2 in the function
defined in Equation 8.9 can be carried out in the polynomial (X(D) − X ′(D)). Thus, we can have

|(X(D) − X ′(D))Pn(D)| ≡ (X(D) − X ′(D))Pn(D)

2
(mod 2)

≡ (X(D) − X ′(D))

2
Pn(D) (mod 2)

≡ |(X(D) − X ′(D))|[Pn(D)]mod 2

≡ |(X(D) − X ′(D))|(1 ⊕ D)n+1
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9.1 Introduction

A partial response (PR) channel is an intersymbol interference (ISI) channel with a binary input alphabet
and additive white Gaussian noise (AWGN). The capacity of a PR channel is strictly greater than its
i.u.d. capacity, which is defined as the information rate when the PR channel inputs are independent and
uniformly distributed (i.u.d.) random variables.

The computations of the capacity C and the i.u.d. capacity Ci.u.d. of a PR channel have been subjects
of research for some time [1–3]. The information rates and the capacities of finite-state machines and
Markov chains are closely related to the capacities of PR channels and have been studied in [4–7]. For a
summary of capacity computation methods, see [8].

Recently, a Monte Carlo method for computing the information rate of a finite-state machine channel
whose inputs are Markov processes was proposed independently by Arnold and Loeliger [9] and Pfister
et al. [10]. This method can be used to compute Ci.u.d., which is a lower bound on C . In [11], Kavčić

9-1
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proposed a Markov process optimization algorithm to tighten the lower bounds, and in [12] Vontobel
and Arnold used this algorithm to compute tight upper bounds. The feedback capacity of PR channels
computed in [13] is also an upper bound on C , and is in some cases tighter than the Vontobel-Arnold
bound [12]. These methods (summarized in [8]) give bounds that are so tight that, for all practical
purposes, we consider the capacities of PR channels to be known.

Error-correction and modulation codes for PR channels are numerous. Here, we only consider error-
correcting codes that are aimed at achieving the capacities of PR channels. Before the invention of turbo
codes [14] the codes for PR channels were dominated by trellis codes [15–17]. Matched spectral null (MSN)
trellis codes whose binary codeword sequences have nulls in specific frequency locations matching the
spectral nulls of the channels were proposed in [18].

The advent of turbo [14] and low-density parity-check (LDPC) [19, 20] codes has sparked research
in iteratively decodable codes for PR channels. Typically the BCJR algorithm [21] is used to perform the
maximum a posteriori symbol detection on the channel, while iterative decoding algorithms are used to
provide constituent decoders in the iterative decoding schemes. Early iteratively decodable codes for PR
channels were parallel and serially concatenated turbo codes [22–25]. Subsequent schemes concentrated
on simplifying turbo equalization [26, 27]. The LDPC codes and turbo product codes over PR channels
have been investigated in [28–30]. Luby et al. [31] introduced irregular LDPC codes and proposed a
method to analyze the asymptotic performance of these codes over erasure channels. The analysis was
soon thereafter expanded to various other memoryless channels by Richardson and Urbanke [32]. They
used the density evolution analysis tool for the computation of noise thresholds [32], and the optimization
of code degree sequences [33] that produced the capacity-achieving codes for memoryless channels [34].
Kavčić et al. [35] modified the density evolution to fit the PR channels, computed noise thresholds of
random LDPC codes over PR channels and proved that these codes can achieve rates that approach the
i.u.d. capacity, but not higher. This was supported by evidence of code constructions that approach Ci.u.d.

very closely [36].
Here, we construct codes that achieve rates higher than Ci.u.d.. Our approach is to (1) compute a (max-

imized) channel information rate achievable by an input Markov process of reasonably low complexity,
(2) construct an inner trellis code that mimics this Markov process and therefore achieves a comparable
information rate over the channel of interest, and (3) construct an outer LDPC code that ensures that
the information rate of the inner code is approached. The strategy is therefore to compute an achievable
information rate, and then construct a concatenation of two codes whose overall code rate matches the
computed information rate. Hence the name matched information rate (MIR) code.

This chapter is organized into six sections. Section 9.2 and Section 9.3, are tutorial-like expositions
of the channel capacity and trellis code terminologies. In Section 9.4 and Section 9.5, we design inner
MIR trellis codes and outer LDPC codes, respectively. In Section 9.6 the success of the methodology is
demonstrated with two examples of constructed codes (one for a channel with a spectral null, and the
other for a channel without a spectral null).

9.2 The Channel Model and Capacity Definitions

9.2.1 The Channel Model

Let t ∈ Z denote a discrete-time variable. Denote the channel input as a sequence of random variables Xt ,
and the channel output as a sequence of random variables Yt . The channel law is

Yt =
J∑

k=0

hk Xt−k + Wt (9.1)

where J > 0 is the ISI length and h0, h1, . . . , h J capture the memory in the channel. Often the channel
memory is represented by a partial response polynomial h(D) = ∑J

k=0 hk Dk . For example, the partial
response polynomial of the dicode channel (Yt = Xt − Xt−1 + Wt ) is h(D) = 1 − D. We assume that the



Capacity-Approaching Codes for Partial Response Channels 9-3

noise process Wt is white and Gaussian, with mean 0 and variance σ 2. We also assume that the realizations
xt of the random variables Xt take values in a binary alphabetX = {−1, 1} which is of practical relevance
in many binary recording and communications channels. We will interchangeably use the input alphabets
X = {−1, 1} and A = {0, 1}. Thereby, we will use the standard conversion Xt = 1 − 2At , where At is a
discrete-time random process with binary realizations at ∈ A = {0, 1}.

The signal-to-noise ratio (in dB) of a PR channel is defined as

SNR = 10 log10

∑J
k=0 h2

k

σ 2
(9.2)

The most comprehensive known model to which our methods apply is the finite-state model with
autoregressive observations described in [37, 38]. However, since all methods for the model in Equation 9.1
canonically extend to the channel model in [37, 38], without loss of generality, it suffices to consider the
model in Equation 9.1 with binary inputs and AWGN.

9.2.2 The Channel Capacity

The channel capacity of a PR channel is defined as [39]

C = lim
N→∞

1

N

[
max

P
X N

1
(x N

1 )
I
(

X N
1 ; Y N

1 | X0
−J +1 = x0

−J +1

)] = lim
N→∞

1

N

[
max

P
X N

1
(x N

1 )
I
(

X N
1 ; Y N

1

)]
(9.3)

where I(X N
1 ; Y N

1 | X0
−J +1 = x0

−J +1) is the mutual information rate between the sequence of channel
inputs X N

1 = (X1, X2, . . . , X N) and the sequence of channel outputs Y N
1 = (Y1, Y2, . . . , YN), given that

the symbols transmitted over the channel at time t = −J + 1 through t = 0 are x0
−J +1. Following [1], we

can drop the conditioning on the symbols X0
−J +1 = x0

−J +1 because the channel is indecomposable [39].
Another capacity of interest is the i.u.d. capacity, defined as the information rate when the input sequence

X N
1 consists of i.u.d. random variables Xt

Ci.u.d. = lim
N→∞

1

N
· I
(

X N
1 ; Y N

1

) ∣∣∣∣
P

X N
1

(x N
1 )=2−N

(9.4)

9.2.3 Trellis Representations

We introduce a general notion of a channel trellis. At time t, the channel trellis has 2L states (where
L ≥ J ), indexed by S = {0, 1, . . . , 2L − 1}. Exactly 2n branches emanate from each trellis state, where
n ≥ 1. A branch at time t is determined by a 4-tuple bt = (st−1, ut , vt , st ), where st−1 ∈S and st ∈S are
the starting state and the ending state, respectively. The symbol ut is an n-tuple of input symbols, that
is, ut ∈ An = {0, 1}n or ut ∈ X n = {−1, 1}n. The symbol vt ∈ Rn is an n-tuple of real-valued noiseless
channel outputs. Every branch is uniquely determined by its starting state st−1 and its input n-tuple ut .
That is, vt and st are (deterministic) functions of st−1 and ut . The random 4-tuple Bt = (St−1, Ut , Vt , St )
stands for a random branch, whose realizations are the 4-tuples bt .

To characterize a time-invariant channel trellis, we need only specify one trellis section. We distinguish
3 trellis types determined by the properties of their trellis sections:

� A minimal channel trellis is a channel trellis whose trellis section has the smallest possible number
of states (i.e., 2 J states) and corresponds to a single input and a single output (i.e., n = 1).

� An original channel trellis is a channel trellis whose trellis section has 2L ≥ 2J states and corresponds
to a single input and a single output (i.e., n = 1).

� An extended channel trellis is a channel trellis whose trellis section corresponds to n channel inputs
and n channel outputs, where n > 1. The number of states is 2L ≥ 2J .
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b00 = (0, [0], [0], 0)

b01 = (0, [1], [−2], 1)

b10 = (1, [0], [2], 0)

b11 = (1, [1], [0], 1)

0

1

0

1

(a) minimal

(0)

(0)

(0)

(0)

0

1

2

3

0

1

2

3

(b) original

b00 = (0, [0], [0], 0)(0)

b01 = (0, [1], [−2], 1)
(0)

b12 = (1, [0], [2], 2)
(0)

b13 = (1, [1], [0], 3)(0)

b20 = (2, [0], [0], 0)
(0)

b21 = (2, [1], [−2], 1)(0)

b32 = (3, [0], [2], 2)
(0)

b33 = (3, [1], [0], 3)
(0)

FIGURE 9.1 (a) The minimal trellis for 1 − D channel. (b) An original trellis for 1 − D channel with L = 2 and
n = 1.

The minimal trellis for the dicode channel with 2 J = 2 states and n = 1 input (and output) symbol
per section is shown in Figure 9.1(a). An original trellis for the dicode channel with 2L = 4 states and
n = 1 input (and output) symbol per section is shown in Figure 9.1(b). The 3rd order extension of the
minimal trellis is shown in Figure 9.2(a). This trellis is obtained by concatenating n = 3 sections of the
minimal trellis in Figure 9.1(a). The 2nd order extension of the original trellis from Figure 9.1(b) is shown
in Figure 9.2(b).

9.2.4 The Markov Channel Capacity

Let i ∈ S and j ∈ S denote the starting and the ending state of a branch in the trellis section, respectively.
If the trellis is an original channel trellis, then there exists at most one branch connecting state i to state j .
If, however, the trellis is an extended channel trellis, then there may be several branches connecting a pair
of states i and j . Let L be the number of distinct branches that connect states i and j . These branches are
denoted by b(�)

ij = (i, u(�)
ij , v (�)

ij , j ), where 0 ≤ � ≤ L − 1, u(�)
ij ∈ An is the binary channel input n-tuple

and v (�)
ij ∈ Rn is the real-valued noiseless channel output n-tuple.

Denote by τ the set of all triples (i, �, j ) for which a branch b(�)
ij exists in the trellis section. Since the trellis

section uniquely determines the trellis, we say that τ represents a channel trellis. We call a branch b(�)
ij valid if

(i, �, j ) ∈ τ . By assigning a probability P (�)
ij = Pr(Bt = b(�)

ij | St−1 = i) = Pr(St = j, Bt = b(�)
ij | St−1 = i)

to every branch b(�)
ij of the channel trellis section we define an input Markov process on τ . Denote the

probability of state i by µi = Pr(St = i). The Markov process is stationary if for every j ∈ S ,

µ j =
∑

i,�:(i,�, j )∈τ

µi P (�)
ij (9.5)
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b00 = (0, [000], [ 0, 0, 0], 0)(0)

b00 = (0, [010], [ 0, −2, 2], 0)(1)

b00 = (0, [100], [−2, 2, 0], 0)
(2)

b00 = (0, [110], [−2, 0, 2], 0)
(3)

b01 = (0, [001], [ 0, 0, −2], 1)(0)

b01 = (0, [011], [ 0, −2, 0], 1)(1)

b01 = (0, [101], [−2, 2, −2], 1)
(2)

b01 = (0, [111], [−2, 0, 0], 1)
(3)

b10 = (1, [000], [ 2, 0, 0], 0)(0)

b10 = (1, [010], [ 2, −2, 2], 0)
(1)

b10 = (1, [100], [ 0, 2, 0], 0)
(2)

b10 = (1, [110], [ 0, 0, 2], 0)(3)

b11 = (1, [001], [ 2, 0, −2], 1)(0)

b11 = (1, [011], [ 2, −2, 0], 1)
(1)

b11 = (1, [101], [ 0, 2, −2], 1)(2)

b11 = (1, [111], [ 0, 0, 0], 1)(3)

0

1

0

1

(a) extended (b) extended

0

1

2

3

0

1

2

3

b00 = (0 ,[00], [0, 0], 0)
(0)

b01 = (0, [01], [0, −2], 1)
(0)

b02 = (0, [10], [−2, 2], 2)(0)

b03 = (0, [11], [−2, 0], 3)(0)

b10 = (1, [00], [2, 0], 0)
(0)

b11 = (1, [01], [2, −2], 1)(0)

b12 = (1, [10], [0, 2], 2)
(0)

b13 = (1, [11], [0, 0], 3)
(0)

b20 = (2, [00], [0, 0], 0)
(0)

b21 = (2, [01], [0, −2], 1)(0)

b22 = (2, [10], [−2, 2], 2)(0)

b23 = (2, [11], [−2, 0], 3)
(0)

b30 = (3, [00], [2, 0], 0)
(0)

b31 = (3, [01], [2, −2], 1)(0)

b32 = (3, [10], [0, 2], 2)
(0)

b33 = (3, [11], [0, 0], 3) 
(0)

FIGURE 9.2 (a) The 3rd order extension of the minimal trellis. (b) The 2nd order extension of the original trellis
in 9.1(b).

Denote by P(τ ) the collection of Markov transition probabilities P (�)
ij for all branches (i, �, j ) ∈ τ . For

this Markov source, the Markov channel information rate is defined as

IP(τ ) = lim
N→∞

1

nN
I
(

XnN
1 ; Y nN

1

) = lim
N→∞

1

nN
I
(

B N
1 ; Y nN

1

)
(9.6)

where the branch sequence B N
1 is a random sequence defined by the probabilities P(τ ).

We define the Markov channel capacity for a trellis τ as

Cτ = max
P(τ )
IP(τ ) (9.7)

where the maximization in Equation 9.7 is conducted over all Markov processes P(τ ) defined over τ .
Since the set of stationary Markov processes is a subset of the set of all stationary discrete-time processes,
it is clear that Cτ ≤ C . Let τo(L ) be an original channel trellis with 2L ≥ 2J . Denote the Markov channel
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TABLE 9.1 Algorithm 1 Iterative Optimization of Markov Chain Transition Probabilities

Initialization Pick a channel trellis τ and an arbitrary probability mass function P (�)
ij defined over τ that satisfies: (1) 0 ≤

P (�)
ij ≤ 1 if (i, �, j ) ∈ τ ; otherwise P (�)

ij = 0 and (2)
∑

j,�:(i,�, j )∈τ
P (�)

ij = 1 for any i .

Repeat until convergence

1. For N large (say, N > 106), generate a realization of a sequence of N trellis branches bN
1 according to the Markov

probabilities P (�)
ij . Determine the channel input sequence xnN

1 that corresponds to the branch sequence bN
1 . Pass xnN

1

through the PR channel to get a realization of the channel output ynN
1 .

2. Run the forward-backward sum-product (BCJR) algorithm and for all 1 ≤ t ≤ N compute the a posteriori proba-

bilities R(�)
ij (t, ynN

1 ) = Pr(Bt = b(�)
ij | Y nN

1 = ynN
1 ) and Ri (t, ynN

1 ) = Pr(St = i | Y nN
1 = ynN

1 ).

3. Compute the estimate of the expectation term T̂ (�)
ij = 1

N

N∑
t=1

log2

R(�)
ij

(t,ynN
1 )

R
(�)
ij

(t,ynN
1

)

µi P
(�)
ij

Ri (t,ynN
1 )

Ri (t,ynN
1

)
µi

.

4. Compute the estimate of the noisy adjacency matrix, with the entries

Âij =
{ ∑

�:(i,�, j )∈τ

2
T̂ (�)

ij if states i and j are connected by at least one branch

0 otherwise

,

and find its maximal eigenvalue Ŵmax and the corresponding right eigenvector [ê1, ê2, . . . , ê M]T.

5. For (i, �, j ) ∈ τ , compute the new transition probabilities as P (�)
ij = ê j

êi
· 2

T̂
(�)
ij

Ŵmax
and go back to 1.

Terminate the algorithm and set Ĉτ = 1
n log2 Ŵmax. The input distribution P(τ ) that achieves Ĉτ is given by the collection

of probabilities P (�)
ij .

capacity defined on this trellis by Cτo (L ), or simply CL . Then an alternative expression for the channel
capacity is

C = lim
L→∞

Cτo (L ) = lim
L→∞

CL (9.8)

9.2.5 Computing the Markov Channel Capacity

Table 9.1 gives a method to estimate the capacity Cτ . Since the method in Table 9.1 is a Monte Carlo
algorithm, we denote its capacity estimate by Ĉτ .

In Figure 9.3, we show the Markov rates Ĉτ computed by the algorithm in Table 9.1 for the dicode
channel trellises given in Figure 9.1 and Figure 9.2. Also shown in Figure 9.3 are the i.u.d. capacity Ci.u.d.,
the numerical capacity Ĉ6 (which is the tightest known lower bound on the channel capacity C) and the
minimum of all known upper bounds on C (the water-filling bound [39, 40], the feedback capacity [13]
and the Vontobel-Arnold bound [12]).

9.3 Trellis Codes, Superchannels and Their Information Rates

We consider binary time-invariant trellis codes that map k input bits to n output bits. Each trellis section
has NS states, indexed by {0, 1, . . . , NS − 1}. A branch of a trellis code is described by a 4-tuple bt =
(st−1, ut , vt , st ), where st−1 ∈ {0, 1, . . . , NS − 1} is the starting state, st ∈ {0, 1, . . . , NS − 1} is the ending
state, ut ∈ Ak is the input k-tuple, and vt ∈ An is the output n-tuple. The code rate is r = k/n. Figure 9.4
shows an example of a Wolf-Ungerboeck (W-U) trellis code [15] with rate 2/3.
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FIGURE 9.3 Markov Capacities for the trellises in Figure 9.1(a,b) and 9.2(a,b). The region between the tightest
known lower and upper bound is shaded.

We refer to a superchannel as a concatenation of a trellis code and a PR channel and describe it by a joint
code/channel trellis. The number of states in a superchannel trellis may be greater than the number of states
in the constituent trellis code. Figure 9.5 gives an example of the superchannel trellis obtained by concate-
nating the trellis code in Figure 9.4 with the dicode channel in Figure 9.1(a). Note that exactly 2k branches
emanate from each state of the superchannel trellis, that is, one branch for every binary input k-tuple.

0

1

2

3

0

1

2

3

b00 = (0, [11], [101], 0)(0)

(0)b01 = (0, [10], [111], 1)
(0)

b02 = (0, [01], [001], 2)
(0)b03 = (0, [00], [011], 3)
(0)b10 = (1, [10], [000], 0)
(0)b11 = (1, [11], [010], 1)
(0)

b12 = (1, [00], [100], 2)
(0)b13 = (1, [01], [110], 3)
(0)

b20 = (2, [11], [111], 0)
(0)b21 = (2, [10], [101], 1)
(0)b22 = (2, [01], [011], 2)
(0)b23 = (2, [00], [001], 3)
(0)b30 = (3, [10], [010], 0)
(0)

b31 = (3, [11], [000], 1)
(0)

b32 = (3, [00], [110], 2)
(0)b33 = (3, [01], [100], 3)

FIGURE 9.4 Wolf-Ungerboeck trellis code of rate r = 2/3.
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b00 = (0, [11], [0, 2, −2], 0)(0)

(0)b01 = (0, [10], [0, 0, 0], 1)
(0)b02 = (0, [01], [2, 0, −2], 2)
(0)

b03 = (0, [00], [2, −2, 0], 3)
(0)

b14 = (1, [00], [0, 2, 0], 4)
(0)b15 = (1, [01], [0, 0, 2], 5)
(0)b16 = (1, [10], [2, 0, 0], 6)
(0)b17 = (1, [11], [2, −2, 2], 7)
(0)b20 = (2, [11], [0, 0, 0], 0)
(0)b21 = (2, [10], [0, 2, −2], 1)
(0)b22 = (2, [01], [2, −2, 0], 2)
(0)b23 = (2, [00], [2, 0, −2], 3)
(0)b34 = (3, [00], [0, 0, 2], 4)
(0)b35 = (3, [01], [0, 2, 0], 5)
(0)b36 = (3, [10], [2, −2, 2], 6)
(0)b37 = (3, [11], [2, 0, 0], 7)

b40 = (4, [11], [−2, 0, 0], 0)(0)

b41 = (4, [10], [−2, 2, −2], 1)(0)

b42 = (4, [01], [0, −2, 0], 2)(0)

b43 = (4, [00], [0, 0, −2], 3)(0)

b54 = (5, [00], [−2, 0, 2], 4)(0)

b55 = (5, [01], [−2, 2, 0], 5)(0)

b56 = (5, [10], [0, −2, 2], 6)(0)

b57 = (5, [11], [0, 0, 0], 7)(0)

b60 = (6, [11], [−2, 2, −2], 0)(0)

b61 = (6, [10], [−2, 0, 0], 1)(0)

b62 = (6, [01], [0, 0, −2], 2)(0)

b63 = (6, [00], [0, −2, 0], 3)(0)

b74 = (7, [00], [−2, 2, 0], 4)(0)

b75 = (7, [01], [−2, 0, 2], 5)(0)

b76 = (7, [10], [0, 0, 0], 6)(0)

b77 = (7, [11], [0, −2, 2], 7)(0)

FIGURE 9.5 Superchannel obtained by concatenating the trellis code in Figure 9.4 and the dicode channel in
Figure 9.1(a).

We assume that the trellis code inputs are i.u.d. symbols. This means that the conditional probability
P (�)

ij = Pr(Bt = b(�)
ij | St = i) of each superchannel trellis branch equals 2−k . Under this i.u.d. assumption,

we define the superchannel information rate as the information rate between the superchannel input
sequence U N

1 and the superchannel output sequence Y nN
1

IS = lim
N→∞

1

nN
I
(

U N
1 ; Y nN

1

) ∣∣∣∣
P

U N
1

(uN
1 )=2−k N

(9.9)

9.3.1 Coding Theorems for Superchannels

Theorem 9.1 [achievability of IS with a linear code] The i.u.d. superchannel information rate IS in
Equation (9.9) can be achieved by an outer linear (coset) code.

Proof 9.1 The proof is given in [41]. ✷

Theorem 9.1 suggests that we could use a concatenation scheme to surpass the i.u.d. capacity Ci.u.d.

of the PR channel if we construct a superchannel whose i.u.d. rate is IS > Ci.u.d.. Consider the block
diagram shown in Figure 9.6. The binary vector D M

1 first enters a linear encoder represented by an

G T PR
detector/
decoder

superchannel

Y1
nN

U1
N

D1
M

γ1
kN

D1
Mˆ

FIGURE 9.6 A concatenation scheme for partial response channels.
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M × N generator matrix G . Before the codeword enters the trellis encoder ‘T’, a coset-defining binary
vector γ N

1 is modulo-2-added on. Different choices of the vector γ N
1 may cause different error rates since

the channel has memory. Although we cannot claim that the achievable rate of the best linear (coset) code
is upper-bounded by IS , we have the following “random converse” theorem.

Theorem 9.2 (Random Code Converse) If R > IS , there exists δ > 0 such that for any given M × N
generator matrix G (of a linear code) with M/N > R and any given detection/decoding method, the average
error rate over all the coset codes is greater than δ.

Proof 9.2 The proof is given in [41]. ✷

Theorem 9.2 exposes the difficulties in finding a linear (coset) code that surpasses the superchannel
i.u.d. rate IS . Namely, a randomly chosen linear (coset) code will not achieve a rate higher than IS .
Theorem 9.2 also reveals that without the inner code, the average rate achievable by a linear (coset) code
is upper-bounded by the i.u.d. channel capacity Ci.u.d.. To surpass Ci.u.d., we separate the complex code
construction problem into two smaller problems: designing an inner trellis code, and an outer linear (coset)
code. We first construct an inner trellis code whose superchannel i.u.d. rate IS satisfies C ≈ IS > Ci.u.d..

9.4 Matched Information Rate (MIR) Trellis Codes

We design a trellis code for a PR channel, such that the i.u.d. rate IS of the resulting superchannel is as
close as possible to the (numerical) channel capacity. An interesting feature of our design is that the trellis
code is constructed for a specific target code rate r . Our general strategy is to first choose an extended
channel trellis τ , and use the algorithm in Table 9.1 to find the optimal Markov probabilities for this trellis
at the code rate r . We then construct a superchannel to mimic the optimal Markov process on the trellis τ .

We next specify the design rules to construct MIR superchannels. These rules are derived to formalize
the design methodology. We adopt these rules because they satisfy our intuition and deliver good codes.
We make no claim regarding their optimality.

9.4.1 Choosing the Extended Channel Trellis
and the Superchannel Code Rate

We construct a superchannel trellis with n output symbols per every k binary input symbols. Our first task
is to pick k and n. Let r be the target code rate. Pick an integer n > 0 and an nth order extended channel
trellis τ . For this trellis, run the algorithm in Table 9.1. Denote by P (�)

ij the optimized probabilities of the

trellis τ for which Ĉτ = r .
Rule 1: The rate r in of the inner trellis code should satisfy the constraint

r < r in = k

n
≤ 1

n
min

(i,�, j )∈τ

[
log2

1

P (�)
ij

]
(9.10)

The reason for obeying the lower bound r in = k/n > r is that r in = r would mean that we would not
have the option of using a powerful outer code.

The upper bound k ≤ min(i,�, j )∈τ [− log2 P (�)
ij ] is motivated by the unique decodability of the trellis

code. To avoid non-unique decodability, we require that all 2k branches emanating from each super-
channel state have distinct noiseless output n-tuples1. The assumption that the input to the superchan-
nel is i.u.d. implies that the conditional probability of each of the branches is 2−k . Since the goal is to

1This is sufficient (but not always necessary) requirement for the construction of a uniquely decodable trellis.
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TABLE 9.2 Optimized Transition Probabilities for the Dicode Channel at Rate r = 1/2 Using the Extended
Channel Trellis in Figure 9.2(a): The Integer Values k, Ki and n(�)

i j are Determined using Rules 1-3

Optimized
Branch Branch Label Transition Integers Integer

b(�)
ij

(
i, u(�)

ij , v (�)
ij , j
)

Probability k = 2, K0 = 5, K1 = 5 Probability

b(0)
00 (0,[000],[ 0, 0, 0],0) P (0)

00 = 0.005 n(0)
00 = 0 n(0)

00 /(K0 · 2k ) = 0.00

b(1)
00 (0,[010],[ 0,-2, 2],0) P (1)

00 = 0.146 n(1)
00 = 3 n(1)

00 /(K0 · 2k ) = 0.15

b(2)
00 (0,[100],[-2, 2, 0],0) P (2)

00 = 0.146 n(2)
00 = 3 n(2)

00 /(K0 · 2k ) = 0.15

b(3)
00 (0,[110],[-2, 0, 2],0) P (3)

00 = 0.195 n(3)
00 = 4 n(3)

00 /(K0 · 2k ) = 0.20

b(0)
01 (0,[001],[ 0, 0,-2],1) P (0)

01 = 0.066 n(0)
01 = 1 n(0)

01 /(K0 · 2k ) = 0.05

b(1)
01 (0,[011],[ 0,-2, 0],1) P (1)

01 = 0.145 n(1)
01 = 3 n(1)

01 /(K0 · 2k ) = 0.15

b(2)
01 (0,[101],[-2, 2,-2],1) P (2)

01 = 0.231 n(2)
01 = 5 n(2)

01 /(K0 · 2k ) = 0.25

b(3)
01 (0,[111],[-2, 0, 0],1) P (3)

01 = 0.066 n(3)
01 = 1 n(3)

01 /(K0 · 2k ) = 0.05

b(0)
10 (1,[000],[ 2, 0, 0],0) P (0)

10 = 0.066 n(0)
10 = 1 n(0)

10 /(K1 · 2k ) = 0.05

b(1)
10 (1,[010],[ 2,-2, 2],0) P (1)

10 = 0.231 n(1)
10 = 5 n(1)

10 /(K1 · 2k ) = 0.25

b(2)
10 (1,[100],[ 0, 2, 0],0) P (2)

10 = 0.145 n(2)
10 = 3 n(2)

10 /(K1 · 2k ) = 0.15

b(3)
10 (1,[110],[ 0, 0, 2],0) P (3)

10 = 0.066 n(3)
10 = 1 n(3)

10 /(K1 · 2k ) = 0.05

b(0)
11 (1,[001],[ 2, 0,-2],1) P (0)

11 = 0.195 n(0)
11 = 4 n(0)

11 /(K1 · 2k ) = 0.20

b(1)
11 (1,[011],[ 2,-2, 0],1) P (1)

11 = 0.146 n(1)
11 = 3 n(1)

11 /(K1 · 2k ) = 0.15

b(2)
11 (1,[101],[ 0, 2,-2],1) P (2)

11 = 0.146 n(2)
11 = 3 n(2)

11 /(K1 · 2k ) = 0.15

b(3)
11 (1,[111],[ 0, 0, 0],1) P (3)

11 = 0.005 n(3)
11 = 0 n(3)

11 /(K1 · 2k ) = 0.00

create a superchannel trellis that mimics the optimal Markov process on the extended trellis τ , the oc-
currence probabilities of the superchannel output n-tuples should match the occurrence probabilities
of the noiseless output n-tuples of the extended trellis τ . However, if P (�)

ij > 2−k , this would not be
possible.

Our task now becomes finding the smallest possible positive integers k and n such that an n-th order
extended trellis τ satisfies Equation 9.10. The search for k and n can be conducted systematically starting
with n = 1 and increasing n until such a trellis is found. This procedure delivers k, n, the extended trellis
τ , the optimized branching probabilities P (�)

ij , and the signal-to-noise ratio SNR(τ,r ) for which Ĉτ = r .
Consider the dicode channel in Figure 9.1(a). Suppose our target code rate is r = 1/2. The simplest

extended trellis of this channel for which Rule 1 holds is the extended trellis in Figure 9.2(a) with n = 3.
Hence, we pick the inner trellis code rate r in = k/n = 2/3 which satisfies Equation 9.10. The corresponding
branching probabilities are given in Table 9.2. We shall use this example throughout the chapter to illustrate
the design method.

9.4.2 Choosing the Number of States in the Superchannel

We now want to design a superchannel with rate r in = k/n. Let P (�)
ij be the branching probabilities of the

extended trellis τ evaluated at SNR(τ,r ). Let µi = Pr(St = i) denote the stationary probability of each state
0 ≤ i ≤ NS − 1 in the extended channel trellis τ .

Let K denote the number of states in the superchannel trellis (K ≤ Kmax, where Kmax is a predefined
maximal number of states in the superchannel trellis). Our strategy is to split each state i of the channel
trellis τ into Ki states of the superchannel trellis. We say that these Ki states are of type ti . Obviously,
K = ∑NS−1

i=0 Ki ≤ Kmax. Our goal is to find integers Ki such that the state types ti in the superchannel
trellis occur with the same probabilities as the state i in the extended channel trellis τ , that is, we desire
µi ≈ Ki /K . Define a probability mass function (pmf) κ = (κ0, κ1, . . . , κNS−1), where κi = Ki /K . Denote
by µ the pmf µ = (µ0, µ1, . . . , µNS−1).
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Rule 2: Pick the pmf κ such that D(κ‖µ) is minimized under the constraint NS ≤ K = ∑NS−1
i=0 Ki ≤

Kmax, where D(·‖·) denotes the Kullback-Leibler distance [40].
Consider again the dicode channel example with r = 1/2. Rule 1 gave k = 2 and n = 3, and the

probabilities P (�)
ij in Table 9.2. Solving Equation 9.5, we get µ0 = µ1 = 0.5. With Kmax = 12, we get six

solutions that satisfy Rule 2. They are 1 ≤ K0 = K1 ≤ 6. This illustrates that there may not be a unique
solution to the optimization problem in Rule 2. If this happens, then further refinement using Rule 3
(presented next) is needed.

9.4.3 Choosing the Branch Type Numbers in the Superchannel

We say that a branch of the superchannel trellis is of type t(�)
ij if

1. Its starting state is of type ti and its ending state is of type t j

2. Its noiseless output n-tuple matches the noiseless output n-tuple of the branch b(�)
ij in τ

Denote by n(�)
ij the number of branches in the superchannel trellis of type t(�)

ij . For a fixed i ∈
{0, 1, . . . , NS − 1}, denote by νi the pmf whose individual probabilities are n(�)

ij /(Ki · 2k), where i is
fixed and � and j are varied under the constraint (i, �, j ) ∈ τ . Obviously

∑
i :(i,�, j )∈τ

n(�)
ij

Ki · 2k
= 1 (9.11)

Similarly, for a fixed i ∈ {0, 1, . . . , NS − 1}, denote by πi the pmf whose individual probabilities are P (�)
ij ,

where i is fixed and � and j are varied under the constraint (i, �, j ) ∈ τ .
Rule 3: Determine 0 ≤ n(�)

ij ∈ Z such that
∑NS−1

i=0 κi D(νi ‖πi ) is minimized under the constraints∑
j,�:(i,�, j )∈τ n(�)

ij = Ki · 2k and
∑

i,�:(i,�, j )∈τ n(�)
ij = K j · 2k .

We have established that Rule 2 may not deliver a unique solution. In this case, among all solution
candidates for Rule 2, we pick the solution that minimizes the objective function in Rule 3. In the dicode
channel example with the target rate r = 1/2, Rule 2 delivered a set of solutions K0 = K1 ≤ Kmax/2 = 6.
Applying Rule 3, we get the integers n(�)

ij in Table 9.2 and K0 = K1 = 5, i.e., a superchannel trellis with
K = K0 + K1 = 10 states.

9.4.4 Choosing the Branch Connections

Rules 1-3 guarantee that the marginal probability that the superchannel branch is of type t(�)
ij is very close

to the value µi P (�)
ij . However, this does not guarantee that the resulting output process of the superchannel

will mimic the output hidden Markov process of the channel trellis τ . Therefore, we need to choose a
branch connection assignment with the following three requirements in mind:

1. Exactly n(�)
ij branches should be of type t(�)

ij .

2. A branch of type t(�)
ij must start at a state of type ti and end at a state of type t j .

3. Branches emanating from a given state must have distinct types2, that is, there cannot be two (or
more) branches of the same type t(�)

ij emanating from a given state of type ti .

Rule 4: Pick the superchannel branch connections that satisfy requirements (1)-(3) and deliver a super-
channel with the maximal information rate IS evaluated at SNR(τ,r ).

If the integers Ki and n(�)
ij are very small, Rule 4 can be satisfied by an exhaustive search. Very often

the exhaustive search procedure is too complex and we soften our goal by finding a “good enough”

2This requirement can be removed if we choose not to obey Rule 1.
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TABLE 9.3 Rate rin = 2/3 Superchannel Trellis for the 1 − D Channel and Design Rate r = 1/2

Super- Noiseless
channel Trellis- Superchannel
Input code Output

Start k-tuple Output n-tuple End
State (Rule 5) n-tuple (Rule 4) State

0 0,0 1,0,1 −2, 2, −2 9
0 0,1 1,0,0 −2, 2, 0 0
0 1,0 0,1,1 0, −2, 0 5
0 1,1 1,1,0 −2, 0, 2 1
1 0,0 1,1,1 −2, 0, 0 9
1 0,1 1,0,1 −2, 2, −2 6
1 1,0 0,1,1 0, −2, 0 8
1 1,1 1,1,0 −2, 0, 2 2
2 0,0 0,1,1 0, −2, 0 6
2 0,1 1,0,1 −2, 2, −2 8
2 1,0 0,1,0 0, −2, 2 3
2 1,1 1,1,0 −2, 0, 2 0
3 0,0 1,0,1 −2, 2, −2 7
3 0,1 1,0,0 −2, 2, 0 2
3 1,0 0,1,0 0, −2, 2 4
3 1,1 1,1,0 −2, 0, 2 4
4 0,0 0,0,1 0, 0, −2 7
4 0,1 1,0,1 −2, 2, −2 5
4 1,0 0,1,0 0, −2, 2 1
4 1,1 1,0,0 −2, 2, 0 3
5 0,0 0,1,1 2, −2, 0 6
5 0,1 1,0,1 0, 2, −2 8
5 1,0 0,1,0 2, −2, 2 4
5 1,1 1,1,0 0, 0, 2 2
6 0,0 0,0,1 2, 0, −2 5
6 0,1 1,0,1 0, 2, −2 5
6 1,0 0,1,1 2, −2, 0 7
6 1,1 0,1,0 2, −2, 2 2
7 0,0 0,0,1 2, 0, −2 9
7 0,1 1,0,1 0, 2, −2 6
7 1,0 0,1,0 2, −2, 2 1
7 1,1 1,0,0 0, 2, 0 3
8 0,0 0,0,1 2, 0, −2 7
8 0,1 1,0,0 0, 2, 0 1
8 1,0 0,1,0 2, −2, 2 3
8 1,1 0,0,0 2, 0, 0 0
9 0,0 0,0,1 2, 0, −2 8
9 0,1 1,0,0 0, 2, 0 4
9 1,0 0,1,1 2, −2, 0 9
9 1,1 0,1,0 2, −2, 2 0

superchannel using the following ordinal optimization [42] randomized search procedure. We randomly
pick (say) 2000 superchannels that satisfy Rules 1-3. For each of these superchannels, we coarsely estimate
their i.u.d. rates IS (say by using a trellis length of 104 trellis sections in the Monte Carlo method of [9, 10]).
We keep (say) only 10 superchannels that have the 10 highest (coarsely estimated) i.u.d. rates. For these
10 superchannels, we now make fine estimates (with long trellises, say 108 trellis stages) of the i.u.d. rates
IS , and pick the superchannel with the highest i.u.d. rate IS .

Applying Rule 4 to the dicode channel example with the target rate r = 1/2 delivered the branch
connections assignment presented in Table 9.3. The information rate of the constructed MIR super-
channel (shown in Figure 9.7) is only 0.1dB away from the Markov capacity Ĉτ of the extended channel
trellis in Figure 9.2(a) at the target rate r = 1/2. At r = 1/2, the designed MIR super-trellis has a higher
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ˆ

target rate
r = 1/2

FIGURE 9.7 Information rates of the MIR (Table 9.3), W-U (Figure 9.5) and MSN superchannels with r in = 2/3
(target rate r = 1/2). ĈFig. 9.2−a is the numerical Markov capacity of the trellis in Figure 9.2(a), whose optimal Markov
probabilities were used to construct the MIR superchannel. The region between the tightest known lower and upper
bound is shaded.

super-trellis information rate than other known trellis codes (the rate-2/3 W-U code [15] in Figure 9.5 and
the rate-4/6 MSN code [18]). Much more importantly, we now have a method to construct superchannel
trellises for any channel, even if the channel does not have spectral nulls.

9.5 Outer LDPC Codes

For the dicode channel, Figure 9.7 reveals that the i.u.d. capacity Ci.u.d. equals the design rate r = 1/2
at SNR = 0.82 dB. The i.u.d. rate of the superchannel trellis shown in Table 9.3 equals IS = 1/2 at
SNR = 0.40 dB (see Figure 9.7). Theorem 9.1 asserts that there exists at least one linear (coset) code
such that, if we apply this code to the superchannel and utilize maximum likelihood (ML) decoding, we
may gain 0.42 dB over Ci.u.d.. Since it is impractical to perform the ML decoding, we construct iteratively
decodable outer codes.

9.5.1 Encoding/Decoding System

The normal graph [43] of the entire concatenated coding system is shown in Figure 9.8. We utilize k
separate subcodes as the outer code (we explain the reason below), where k is the number of input bits at
each stage of the MIR trellis code. Let the rate of the i th subcode be r (i) = K (i)/N, where 0 ≤ i ≤ k − 1.
Let D be an i.u.d. binary sequence of length K (total) =∑k−1

i=0 K (i) to be transmitted over the channel. The
encoding algorithm can be described by the following three steps (see also Figure 9.8):

1. The sequence D is separated into k subsequences D = [D(0), D(1), . . . , D(k−1)], where the i th
subsequence D(i) is of length K (i).

2. The i th subsequence D(i) enters the i th LDPC encoder whose code-rate is r (i) = K (i)/N. The
output sequence from the i th encoder is denoted by [U (i)]N

1 = [U (i)
1 , . . . , U (i)

N ].
3. The whole sequence U N

1 = [U1, . . . , Ut , . . . , UN] enters the MIR trellis encoder, where Ut =
(U (0)

t , . . . , U (k−1)
t ). The sequence Y nN

1 is observed at the channel output.



9-14 Advanced Error Control Techniques for Data Storage Systems
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…
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D(0) D(1) D(k−1)

…… …

FIGURE 9.8 The normal graph of an outer LDPC code (consisting of k subcodes) and the inner superchannel trellis.

For the purpose of systematically designing good outer codes, we specify a serial multistage decoding
schedule [44] depicted in Figure 9.9. To guarantee that the decoding algorithm of Figure 9.9 works well,
we have to solve the following three problems:

� A trellis section can be viewed as a collection of branches {bt = (st−1, ut , vt , st )}. In terms of
optimizing the superchannel i.u.d. information rate IS , it is irrelevant how the input vector ut of
each branch is chosen. However, to construct a good and practically decodable LDPC code we need
to choose the branch input-bit assignment judiciously. We develop the input-bit assignment design
rule (Rule 5) in Section 9.5.2.

� Consider the soft-output random variables L (i)
t

def= Pr(U (i)
t = 0 | Y nN

1 ). For a general rate-k/n inner

trellis code, when N → ∞, the statistical properties of L (i)
t1

and L ( j )
t2

are the same if and only if
i = j . In other words, different superchannel bit positions have different soft-output statistics,
which is why we utilize k different subcodes. Now the question is: how to determine the rates r (i)

of the constituent subcodes? Section 9.5.3 gives the answer.
� For large N, we need to optimize each of the k subcodes. In Section 9.5.4, we develop an optimization

method along the lines of [33, 36].

BCJR
decoder 0

LDPC
decoder 0

BCJR
decoder 1

LDPC
decoder 1

BCJR
decoder 2

LDPC
decoder 2

BCJR
decoder k−1

LDPC
decoder k−1

Y1
nN D(0)ˆ

D(1)ˆ

D(2)ˆ

D(k−1)ˆ

FIGURE 9.9 The iterative decoder. The k codes are successively decoded, each iteratively.
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9.5.2 Choosing the Branch Input-Bit Assignment

We need to specify the input k-tuple ut = [u(0)
t , u(1)

t , . . . , u(k−1)
t ] (where u(i)

t ∈A) for every branch bt =
(st−1, ut , vt , st ) of the superchannel trellis. Generally, if the bit assignments for u(0)

t , . . . , u(i−1)
t are given,

then only the bit assignment for u(i)
t determines the performance of Decoder i in Figure 9.9, irrespective

of the bit assignment for u(i+1)
t , . . . , u(k−1)

t . Therefore we use the following rule to determine the bit
assignment.

Rule 5: (Greedy bit assignment algorithm)
For 0 ≤ i ≤ k − 1

Assume that Decoders 0 through i − 1 decode without errors. Find the bit assignment for the i th
location u(i)

t such that the i th BCJR decoder in Figure 9.9 delivers the lowest probability of bit error in
the first iteration.

This algorithm guarantees a good decoding start which is typically sufficient to ensure good decoding
properties for the concatenated LDPC decoder [35].

By applying Rule 5, we have selected one good input-bit assignment for the trellis code shown in
Table 9.3. The input bit assignment is shown in the third column of Table 9.3.

9.5.3 Determining the Outer Subcode Rates

Ideally, the superchannel i.u.d. rate IS should equal the target rate r

r = r in · rout = k

n
· rout = lim

N→∞
1

nN
· I
(

U N
1 ; Y nN

1

)∣∣∣∣
P

U N
1

(uN
1 )=2−k N

= IS

From the chain rule [40], we have

I
(

U N
1 ; Y nN

1

)= I
([

U (0)
]N

1
; Y nN

1

)
+

k−1∑
i=1

I
([

U (i)
]N

1
; Y nN

1

∣∣ [U (0)
]N

1
, . . . ,

[
U (i−1)

]N

1

)

where [U (i)]N
1 = [U (i)

1 , U (i)
2 , . . . , U (i)

N ]. Hence, the assumption that Decoders 0 through i − 1 perform
error-less decoding before Decoder i starts the decoding process is valid only if

r (i) ≤ lim
N→∞

1

N
· I
([

U (i)
]N

1
; Y nN

1

∣∣ [U (0)
]N

1
, . . . ,

[
U (i−1)

]N

1

)
(9.12)

Therefore, a reasonable rate-assignment is

r (i) = lim
N→∞

1

N
· I
([

U (i)
]N

1
; Y N

1

∣∣ [U (0)
]N

1
, . . . ,

[
U (i−1)

]N

1

)
(9.13)

where the sequences [U (i)]N
1 are i.u.d. for all 0 ≤ i ≤ k − 1. The rates in Equation 9.13 can be computed

by Monte Carlo simulations [9, 10]. Consequently, we get rout = 1
k

∑k−1
i=0 r (i).

To summarize, first we choose two integers (K (total), N), where N is large enough, such that K (total)/(k N)
is not greater than (and is as close as possible to) rout = r/r in. Then we choose K (i), for 0 ≤ i ≤ k − 1
such that

∑k−1
i=0 K (i) = K (total) and K (i)/N ≈ r (i), where r (i) is computed by Equation 9.13.

9.5.4 Subcode Optimization

9.5.4.1 Outer Code Optimization

To optimize the outer code for a given superchannel we generalize the single code optimization method
for a PR channel (with no inner code) [33, 34, 36] to a joint optimization of k different subcodes. This
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generalization is summarized as follows:

1. Given a superchannel trellis of rate r in = k/n, we optimize k different constituent subcodes shown
in Figure 9.8 according to the decoding scenario shown in Figure 9.9. That is, while optimizing
the degree sequences of the LDPC Subcode i , we assume that the symbols [U (0)]N

1 , [U (1)]N
1 , . . . ,

[U (i−1)]N
1 are decoded without errors and that no prior information on the symbols [U (i+1)]N

1 , . . . ,
[U (k−1)]N

1 is available.
2. The i th constituent subcode of rate r (i) is optimized using the optimization from [36]. We make a

change in the density evolution [32, 35] to reflect the fact that Decoders 0 through i −1 have decoded
symbols [U (0)]N

1 through [U (i−1)]N
1 without errors. This is done by generating i.u.d. realizations

of symbols [u(0)]N
1 through [u(i−1)]N

1 , and running the BCJR algorithm (in the density evolution
step) with prior knowledge of these symbols.

3. We obtain k pairs (λ(i), ρ(i)), 0 ≤ i ≤ k − 1, of the optimized edge degree sequences [31], each pair
corresponding to one constituent subcode. The noise threshold [32] of the entire code is given by
σ ∗ = min{σ ∗

0 , σ ∗
1 , . . . , σ ∗

k−1}, where σ ∗
i is the noise threshold for Subcode i .

9.5.4.2 LDPC Decoding

Figure 9.9 seems to suggest that we need k different BCJR decoders and k different LDPC decoders to
decode our code. In fact we only need one BCJR detector and one LDPC decoder. The single LDPC code
is constructed by interleaving the constituent subcodes.

The parity check matrix of Subcode i is constructed to be a low-density parity-check matrix with degree
sequences λ(i) and ρ(i). Denote the parity-check matrix of Subcode i by

H(i) =
[

h(i)
1 h(i)

2 , . . . , h(i)
N

]
where h(i)

j represents the j th column of the matrix H(i). The parity check matrix H of the entire code is
obtained by interleaving the columns of the subcode parity check matrices

H =




h(0)
1 0 ... 0 h(0)

2 0 . . . 0 h(0)
N 0 . . . 0

0 h(1)
1 . . . 0 0 h(1)

2 . . . 0 0 h(1)
N . . . 0

...
...

. . .
...

...
...

. . .
... · · · ...

...
. . .

...

0 0 ... h(k−1)
1 0 0 . . . h(k−1)

2 0 0 . . . h(k−1)
N


 . (9.14)

The size of the matrix H is (k N − K (total)) × (k N), where K (total) =∑k−1
i=0 K (i).

9.6 Optimization Results

We perform the optimization on the dicode (1 − D) channel which has a spectral null at frequency ω = 0,
and on the 1 + 3D + D2 channel which does not have a spectral null.

9.6.1 Dicode Channel

The inner trellis code with code rate r in = k/n = 2/3 for the dicode channel is given in Table 9.3. Since
k = 2, we have 2 outer LDPC subcodes. Using Equation 9.13, we found their rates to be r (0) = 0.66 and
r (1) = 0.84, respectively. The rate of the outer code is thus rout = 1

2 · (r (0) + r (1)) = 3/4. The resulting
overall code rate is then r = r in · rout = 2

3 · 3
4 = 1/2, which is exactly our target code rate.

The optimized degree sequences together with their respective thresholds are given in Table 9.4. We
constructed an outer LDPC code by interleaving the parity check matrices obtained from the optimized
degree sequences, see Equation 9.14. The code block length was set to 106 binary symbols. The bit error
rate (BER) simulation curve is shown in Figure 9.10. For comparison, Figure 9.10 also shows a tight lower
bound Ĉ6 and an upper bound CU on the capacity, the superchannel i.u.d. rate Is , the i.u.d. capacity Ci.u.d.
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TABLE 9.4 Good Degree Sequences and the Noise
Thresholds for Separately Coded Even and Odd Bits of the
Outer LDPC Code on the Superchannel from Table 9.3

Subcode 0 (even bits) Subcode 1 (odd bits)

r (0) = 0.660 r (1) = 0.840

x λ
(0)
x ρ

(0)
x x λ

(1)
x ρ

(1)
x

2 0.2225 2 0.2191
3 0.1611 3 0.1526
5 0.1627 4 0.1057
6 0.0164 15 0.0017

10 0.0024 16 0.0003
11 0.3325 17 0.0914
13 0.1406 23 0.3855
16 0.3929 49 0.1205
24 0.1340 50 0.4001 0.1321
48 0.0035 51 0.0698
49 0.4314 59 0.3212

threshold - Subcode 0 threshold - Subcode 1
σ ∗

0 = 1.322 σ ∗
1 = 1.326

threshold σ ∗ = 1.322

SNR∗ = 10 log10
2

(σ∗)2 = 0.59 dB

and the noise tolerance threshold SNR∗ = 10 log10

∑
j

h2
j

(σ ∗)2 of the code in Table 9.4. We see that the threshold
SNR∗ surpasses the i.u.d. channel capacity Ci.u.d. by 0.23 dB and is 0.19 dB away from the superchannel
i.u.d. rate IS . The code simulation shows that a BER of 10−6 is achieved at an SNR that surpasses Ci.u.d.

by 0.14 dB.
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FIGURE 9.10 BER versus SNR for the Dicode channel. Code rate r = 1/2; code length 106 bits.
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TABLE 9.5 Rate r in = 1/2 Superchannel Trellis for the
1 + 3D + D2 Channel and Design Rate r = 1/3

Super- Trellis- Noiseless
Channel code Superchannel

Start Input Output Output End
State k-tuple n-tuple n-tuple State

0 0 0,0 5, 5 1
0 1 0,1 5, 3 3
1 0 0,0 5, 5 2
1 1 1,1 3,-3 6
2 0 0,0 5, 5 0
2 1 1,1 3,-3 5
3 0 1,0 -3,-3 4
3 1 1,1 -3,-5 7
4 0 0,0 3, 5 0
4 1 0,1 3, 3 3
5 0 0,0 -3, 3 2
5 1 1,1 -5,-5 7
6 0 0,0 -3, 3 1
6 1 1,1 -5,-5 5
7 0 1,0 -5,-3 4
7 1 1,1 -5,-5 6

9.6.2 A Channel without Spectral Nulls

For the 1 + 3D + D2 channel we chose the design rate r = 1/3. Using Rules 1-5, we constructed an inner
trellis code of rate r in = k/n = 1/2 for the 1 + 3D + D2 channel; the superchannel trellis is given in
Table 9.5. Since k = 1, we have only one outer LDPC subcode of rate rout = 2/3, which gives the desired
code rate r = 1

2 · 2
3 = 1/3. The optimization of the outer LDPC code delivered the degree sequences and

the threshold shown in Table 9.6. Based on these degree sequences we constructed an LDPC code of block
length 106. The code’s BER performance curve is shown in Figure 9.11. We observe from Figure 9.11 that

TABLE 9.6 Good Degree Sequences and the
Noise Threshold for the Outer LDPC Code
Designed for the Superchannel in Table 9.5

rout = r (0) = 0.6667

i λi ρi

2 0.2031
3 0.2195
4 0.0022
6 0.1553

10 0.2974
13 0.3064
15 0.1906
27 0.1616
28 0.1399
38 0.2056
50 0.1184

threshold
σ ∗

0 = σ ∗ = 4.475

SNR∗ = 10 log10
11

(σ∗)2

= −2.60dB
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FIGURE 9.11 BER versus SNR for the 1 + 3D + D2 channel. Code rate r = 1/3; code length 106 bits.

the superchannel i.u.d. rate IS is 0.14 dB away from the lower bound on the channel capacity Ĉ5. The
noise threshold SNR∗ surpasses the i.u.d. channel capacity Ci.u.d. by 0.90 dB and is 0.15 dB away from IS .
The code simulation reveals that our design method yields a code that achieves a BER of 10−6 at an SNR
that surpasses Ci.u.d. by 0.77 dB.

9.7 Conclusion

We developed a methodology for designing capacity-approaching codes for partial response (PR) channels.
Since the PR channel is a channel with memory, its capacity C is greater than its i.u.d. capacity Ci.u.d..
We showed that rates above Ci.u.d. cannot be achieved by random linear codes. Given that our goal was to
construct a code that surpasses Ci.u.d., we chose a concatenated coding strategy where the inner code is a
(generally nonlinear) trellis code, and the outer code is a low-density parity-check (LDPC) code.

The key step in the design of the inner code is to identify a Markov input process that achieves a high
(capacity-approaching) information rate over the PR channel of interest. Then, we construct a trellis code
that mimics the identified Markov process. Hence, we name it a matched information rate (MIR) trellis
code. We choose an LDPC code as an outer code to show that the concatenation of the two codes approaches
the computed information rate of the identified Markov process. The outer code is optimized by modified
density evolution methods to fit our specific inner code and the PR channel.

MIR trellis code constructions are different from any previously known trellis code construction methods
in that we do not base the code construction on an algebraic criterion. Instead, the code construction is
purely probabilistic. We provided a set of rules to construct the inner MIR trellis codes. These rules apply
to any PR channel. Using our design rules and the outer code optimization, we constructed examples of
capacity-approaching codes for both channels with and without spectral nulls.
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10.1 Introduction

In traditional magnetic disk drive systems user data is recorded on concentric tracks as a sequence of
changes of the magnetization of small domains. The direction of the magnetization of a domain depends
on the polarity of a data-driven write current. The areal density of data stored on a disk can be increased by
either reducing the size of the magnetic domains along tracks (i.e., by increasing the linear density) and/or
by reducing the track pitch (i.e., by increasing the track, or radial, density). The linear density is limited
by several factors, including the finite sensitivity of the read head, properties of magnetic materials, head
design [47, 51], as well as the ability to detect and decode recorded data in the presence of intersymbol
interference (ISI) and noise. Most research in disk drive systems has focused on increasing linear density.
Extremely high densities, for example, 10 Gbits/in2, and data rates approaching 1 Gbits/s have been already
demonstrated in commercially available systems. Recent progress in heads and media design has opened
the possibility of reaching densities of 100 Gbits/in2 and perhaps even 1 Terabit/in2. However, the rate
of increase of the linear density in future magnetic recording systems is not likely to be as high as in
the past. This is due to the fact that as the linear density increases, the magnetic domains on the disk
surface become smaller and increasingly thermally unstable. The so-called super-paramagnetic effect [6]
represents a fundamental limiting factor for linear density.

Alternative approaches for increasing areal density are therefore required in order to meet the constant
demand for increases in data rate and capacity of storage devices, largely driven by the Internet. Since
the current linear densities are approaching the super-paramagnetic limit, the obvious alternative to an
increase in linear density is an increase in radial density. In modern systems, the radial density is mostly
limited by the mechanical design of the drive and the ability to accurately follow a track whose width is of
the order of 1 µm. In order to further increase radial density, multiple-head arrays have been developed
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[27, 36]. A head array is an arrangement of closely spaced heads that can read and write data simultaneously
on multiple tracks. Such heads can potentially provide both high density and high speed, but they suffer
from cross-talk or intertrack interference (ITI) [4]. This ITI is the consequence of a signal induced in the
heads due to the superposition of magnetic transitions in neighboring tracks. Today’s recording systems
have a large track pitch, and therefore ITI has a negligible effect on their performance. However, significant
advances in coding and signal processing for multitrack recording channels are required before potential
large radial densities together with head arrays may be practically applied.

10.2 The Current State of Research in Multitrack Codes

A number of multitrack coding and detection schemes have been proposed in the last decade. They can
be categorized as follows:

1. The first category is a class of multitrack codes which exploit the idea that the achievable areal
density can be increased indirectly. This is done through relaxing the per-track maximum runlength
constraint (the so-called k-constraint) in the recording codes and by imposing a constraint across
multiple tracks. Such codes have been studied by Marcellin et al. [20–23], Swanson and Wolf [29],
and Vasic et al. [39–43].

2. The second category is a class of techniques involving multitrack detection combined with partial-
response (PR) equalization [12] and maximum likelihood (multiple) sequence detection (MLSD).
Such techniques have computational complexity exponential in NM, where N is the number
of tracks and M is the memory of the PR channel. Multitrack codes and reduced-complexity
detectors for such systems have been studied by Soljanin et al. [31–33] and Kurtas et al. [12,
19]. More recently, a combination of equalization and maximum a posteriori (MAP) decoding,
reducing both ISI and ITI, was considered by Wu et al. [52] (see also Chugg et al. [7] who first
applied these ideas to page oriented holographic storage). The method presented in [12] combines
a multitrack version of the BCJR algorithm [1] with iterative Wiener filtering, and performs very
well in conjunction with low-density parity check (LDPC) codes. It’s major drawback is very high
complexity.

3. The third class of techniques uses the idea of imposing a constraint on a recorded bit sequence
in such a way that ITI on each PR channel is either completely eliminated or reduced. Recently,
Ahmed et al. [1] constructed a two-track runlength-limited code for a Class 4 partial response
(PR4) channel. The code forbids any transitions of opposite polarity on adjacent tracks, and results
in up to a 23% gain in areal density over an uncoded system. Similar two track schemes, but for a
different multitrack constraint, have been proposed by Davey et al. [7, 11] and by Lee and Madisetti
[20]. Due to their high complexity, these schemes can be used only for a small number of tracks
and low order PR polynomials.

In order to achieve high linear densities, equalization with respect to higher-order PR polynomials is
necessary. However, the complexity of read-channel chips increases exponentially with the order of the PR
polynomial. Furthermore, the largest contribution to the complexity comes from MLSD, which is already
the most complicated subsystem in the “read-channel” electronics and is a primary impediment to high
data throughput. Thus, increasing the complexity of a detector by another factor (N) in the exponent,
which is required for MLSD detection over N tracks, is not feasible.

10.3 Multitrack Channel Model

The magnetic recording channel is modeled by a discrete-time linear filter with a partial response poly-
nomial typically of the form h(D) = (1 − D)(1 + D)M , or h(D) = (1 + D)M , M ≥ 1, depending on
whether longitudinal or perpendicular recording is employed [46]. User data is encoded by N separate
error control encoders, and are organized in two-dimensional blocks of size N × n written on N adjacent
tracks (see Figure 10.1). The sequence recorded in the kth track is denoted by {a(k)

m }m∈Z . Adjacent tracks
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FIGURE 10.1 Discrete-time longitudinal multitrack recording channel model.

are read by an array of N heads. According to the channel model proposed by Vea and Moura [47], the
signal read by the kth head is equalized to some partial response target and is given by

r (k)(t) =
∑

1≤l≤N

α|l−k|
∑
m∈Z

a(l)
m · h(t − mT) + n(t), l ≤ k ≤ N

where h(t) is the impulse response of the PR target, n(t) is the colored noise process obtained by filtering
additive white Gaussian noise (AWGN) by the equalizer; the real numbers αd , 0 ≤ d ≤ N − 1 specify the
cross-talk between two tracks separated by d other tracks.

For longitudinal recording systems, we assume that the read head response to an isolated (positive-going)
transition written on a disk is the Lorentzian pulse, l(t) = (1+ (2t/PW50)2)−1. For perpendicular record-

ing, we assume that the transition response is the error function, g (t) = (2/
√

π) · ∫ S·t
0 exp(−x2) dx =

erf (St), where S = 2
√

ln 2 · T/P W50. The dibit response is defined as (g (t + T/2) − g (t − T/2)). The
channel density is defined as Sc = PW50/T , where PW50 represents the width of the channel impulse
response at half of its peak value, and T is the channel bit interval. This models ignores the effects of timing
jitter, that is, it assumes that the samples are taken at time instants t = mT , where the channel bit interval
T is known and fixed. It also ignores the effects of track-following error, that is, it is assumed that the kth
head is perfectly aligned with the kth track.

Another equalization scheme was recently proposed by Vasic and Venkateswaran [46] and shown in
Figure 10.1. The intertrack interference block is described by the matrix A = [α|i− j |]l≤i, j≤N [47]. The
in-track equalizer is an adaptive least mean-square error equalizer, while the inter-track equalizer is a
short zero-forcing equalizer. The equalized data are fed to a bank of N Viterbi detectors, and then to ECC
decoders.

10.4 Multitrack Constrained Codes

10.4.1 ITI Reducing Codes for PR Channels

Consider an N-track system in which each track is equalized to a PR channel with polynomial p(D) =
h0 + h1 D + · · · + hL DL . The N-track constrained system is defined as an oriented, strongly connected
graph G = (V, E ) with vertex set V and edge set E . The vertices are labeled by binary arrays � of
dimension N × L , � = (� j )1≤ j≤L , where each � j is a column vector of length N. The edges are labeled
by binary column vectors x of length N (more details on vector constrained systems can be found in [39]
and [43].) The response of the multitrack channel to an array of input symbols (�, x) is

y = h0 · x +
∑

1≤ j≤L

h j · �L+1− j
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TABLE 10.1 Shannon Capacities of ITI-Reducing Constraints

PR2 PR2 PR4 PR4 EPR4 EPR4

N ‘sign’ ‘zero’ ‘sign’ ‘zero’ ‘sign’ ‘zero’

1 C = 0.91625 C = 0.79248 C = 0.91096 C = 0.79248 C = 0.87472 C = 0.66540
2 C = 0.92466 C = 0.77398 C = 0.92190 C = 0.77398 C = 0.87703 C = 0.68491
3 C = 0.92668 C = 0.75000 C = 0.92444 C = 0.75000 C = 0.87680 C = 0.62652
4 C = 0.92910 C = 0.74009 C = 0.92731 C = 0.74009 C = 0.87976 C = 0.62696
5 C = 0.91625 C = 0.79248 C = 0.91096 C = 0.79248 C = 0.87472 C = 0.66540

where the value yi , 1 ≤ i ≤ N in the vector y corresponds to the i th track. In this section, we will be
interested in the following types of N-track ITI-reducing constraints imposed on elements of the vector y.

1. The number of zeros between two nonzero elements in y is at least d , d > 0 (the “zero” constraint)
2. Neighboring elements are either of the same sign or at least one of them is zero (the “sign” constraint)

It is not difficult to see that both of these constraints reduce ITI. The first constraint, also referred to
as a perpendicular minimum runlength constraint or d-constraint, requires that the signals in d tracks
neighboring the i th track all have zero crossings when the signal in track i is nonzero. This requirement
completely cancels ITI. The second constraint does not completely eliminate ITI, but rather allows only
“constructive” ITI, which in fact improves performance. This method is a generalization of the approaches
taken by Ahmed et al. [1] and Davey et al. [11].

The Shannon noiseless capacities of such constraints for various PR targets of interest are given in
Table 10.1. It can be seen that the rate penalty for ITI constraints (especially for the “sign” constraint) is
not high. We were able to construct a 100% efficient rate 3/4 three-track code with 256 states for the PR2
and PR4 channels for the “zero” constraint.

10.4.2 Constrained Coding for Improved Synchronization

Multitrack codes that improve timing recovery and the immunity of synchronization schemes to media
defects have been introduced and extensively studied by Vasic et al. [26, 40–42]. Synchronization immunity
to media defects can be improved by allowing the clock recovery circuit to use any group of l tracks on
which the k-constraint is satisfied. This new class of codes was named redundant multitrack (d , k) codes,
or (d , k, N) codes, with N being the number of tracks. The redundancy r = N − l is the number of bad
tracks out of N tracks that can be tolerated while maintaining synchronization. Orcutt and Marcellin [23]
considered the (d, k, N, l) constraint assuming k ≥ d .

In [39], the starting point of the construction was a class of binary multitrack codes with very good clock
recovery properties. These are (d, k, N, l) constrained codes with k < d . In the same paper, a reduced-state
graph model of the constraint was defined, and based on it the Shannon capacities of the constraint were
computed. The same approach was then extended for the case of multiamplitude, multitrack runlength
limited (d , k) constrained channels with clock redundancy [41] (mainly for applications in optical record-
ing channels). In [20] the Shannon capacities of these channels were computed and some simple, 100%
efficient codes were constructed. The vertex labels of the graph of the constraint were modified to insure
that they are independent on the number of tracks. This resulted in significant computational savings for
the case when the number of tracks is large. In the same paper it was also shown that the increase of the
number of tracks written in parallel provides a significant improvement of per-track capacity for a more
restrictive clocking constraint case k < d .

10.4.3 Low-Complexity Encoder and Decoder Implementations

Substantial progress has been made in the theory of constrained codes using symbolic dynamics [23, 24],
as well as in low complexity encoding and decoding algorithms [15]. Despite this progress, the design of



Coding and Detection for Multitrack Systems 10-5

constrained codes remains difficult, especially for large constraint graphs such as multitrack constraint
graphs.

One class of codes that is not very difficult to implement is the class of multitrack enumerative codes.
The idea of enumerative coding originates from the work of Labin and Aigrain [20], Kautz [16], and
has been formulated as a general enumeration scheme for constrained sequences by Tang and Bahl [35]
(see also Cover [9]). It was also used by Immink et al. [12] as a practical method for the enumeration
of (single-track) (d , k) sequences and by Orcutt and Marcellin [29] for multitrack (d , k) block codes.
For this type of codes, it is essential to design an encoder/decoder pair that does not require large mem-
ory for storing the constraint graph (because this would be prohibitively complex). This design crite-
rion is met by creating only portions of the graph used in different stages of enumerative encoding/
decoding.

10.5 Multitrack Soft Error-Event Correcting Scheme

Multitrack, soft error-event correcting schemes were recently introduced by Vasic and Venkateswaran [46].
This error-correcting scheme supports soft error-event decoding and has complexity slightly higher than
the complexity of N MLSD detectors. The idea is to design a multitrack version of the “postprocessor”
which has been discussed by Cideciyan et al. [5], Conway [8], and Sonntag and Vasic [34], and is employed
in most of today’s commercial disk drives. The generalization of the postprocessor concept to multiple
tracks is nontrivial because the detector must be designed to mitigate the effect of errors caused both by
ISI and ITI, as explained below. For more details, the reader is referred to [46].

As mentioned above, a magnetic recording channel is characterized by a PR polynomial. The appropriate
PR polynomial depends on the recording density; this density unavoidably increases when going from the
outer sectors of the disk towards the inner sectors. Implementation of hard drive subsystems such as tracking
servo, timing recovery, and automatic gain control would be unacceptably costly if the PR polynomials
were allowed to vary with recording density. Thus, practical systems typically use only two partial response
polynomials, one for high-density regions and another for low-density regions.

As a consequence, the employed PR response polynomial is closely, but not completely, matched to
the discrete-time channel response, and the noise samples are not independent. Moreover, the noise
samples are neither Gaussian nor stationary because of media noise. The detector complexity, how-
ever, dictates the use of an MLSD detector with a squared Euclidean distance metric as opposed to a
more complex detector with optimal metric. The metric inaccuracy is in practice compensated by a so-
called postprocessor [34]. The idea of postprocessing can be generalized so as to apply for the multitrack
scenario.

The Viterbi detector produces some error patterns more often than others and the most frequently
occurring error patterns are a function of the PR polynomial and the noise coloration. The most frequent
patterns, called the dominant error sequences or error events E = {ei }1≤i≤I , and their probabilities can be
obtained experimentally [34] or analytically [2]. The index i referrs to an error type. Note that the relative
frequencies of error events strongly depend on the recording density.

The block diagram of a multitrack soft error-event correcting system is shown in Figure 10.2. User
data is encoded by a high-rate error control code (ECC) as shown in Figure 10.1. The decoding algorithm
combines syndrome decoding and soft-decision error correction. The error-event likelihoods needed for
soft decoding are computed from the channel sequence by using an algorithm proposed by Conway [8]
(see also [34].) By using the syndrome calculated for a received codeword, a list of all possible positions
where error events might have occurred is created. Then the error-event likelihoods are used to select the
most likely position and most likely type of the error event. Decoding is completed by finding the error
event position and type [12].

Error detection is based on the fact that one can calculate the likelihoods of each of the dominant error
sequences at each point in time. The parity bits introduced by the ECC serve to detect the errors, and to
provide some localization of the error type and the position where the error ends. The likelihoods are then
used to choose the most likely error events (type and position) for correction. The likelihoods in the k-th
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FIGURE 10.2 Block diagram of multitrack soft error-event correction scheme.

track are calculated using the following signals:

a. The read-back signal obtained from the kth head
b. The convolution of the signal obtained by combining the MLSD estimates of all tracks and the

channel partial response
c. The convolution of an alternative data pattern (given by a particular error-event) and the channel

partial response

The key idea of this approach is that not all candidate data patterns are considered, but only those whose
differences with respect to MLSD estimates form the set E .

During each clock cycle, K error-events with largest likelihoods are chosen, and the syndromes for
these error events are calculated. Throughout the processing of each block, a list of the K most likely error
events, along with their associated error types, positions and syndromes, is maintained. At the end of the
block, when the list of candidate error events is finalized, the likelihoods and syndromes are calculated
for each of the ( K

s ) combinations of s candidate error events that are possible. After disqualifying those
s -sets of candidates that overlap in the time domain, and those candidates and s -sets of candidates which
produced a syndrome which does not match the actual syndrome, the candidate or s -set which remains
and which has the highest likelihood is chosen for correction.

Practical reasons (such as decoding delay and thermal asperities) dictate the use of short codes, and
consequently, in order to keep the code rate high, only a relatively small number of parity bits is allowed,
making the design of error-event detection codes nontrivial. If all errors from a list E were made up of
contiguous bit errors and were shorter than m, then a cyclic code with n − k = m parity bits could be
used to detect a single error event [35]. In [44], Vasic introduced a systematic graph-based approach to
construct codes for this purpose. This method was further developed in [45].

The performance of multitrack soft error-event decoding will be illustrated on the example of cyclic BCH
codes; these codes have fairly large minimum distance, which allows for improvements of the performance
of the detector. Single-track state of the art systems use different codes designed to perform well for a given
set of dominant error events. However, these codes are not available in the public domain, and therefore
will not be discussed here.

Figure 10.3 shows the performance of the multitrack s = 2 error-event correction scheme (denoted by
2-EE) based on the (255, 239) BCH code. These results have been obtained for a three-track Lorentzian
channel, equalized to the E2PR4 target, with user bit density of 2.5, and 10% ITI (i.e., α1 = 0.1). The
channel bit density due to the [255, 239] BCH code is 2.67. This scheme provides a SNR gain of 3.5 dB at
BER = 10−6. An extension of the research regarding this multitrack scheme would include the investigation
of various PR targets and ECC schemes, the characterization of effects of track misalignment, residual ISI
and ITI on the performance of this scheme as well as low-complexity implementations.
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Abstract
This chapter describes the parallel and serial concatenated convolutional codes, i.e., turbo codes. First, the
use of these codes for additive white Gaussian noise (AWGN) channels is discussed. The iterative decoding
algorithm that uses two soft output component decoders as building blocks is presented in detail. Then, the
use of concatenated codes over recording channels is reviewed. Partial response channels (e.g., PR4, EPR4)
with additive white Gaussian noise are used to illustrate the main ideas. The concepts of turbo decoding
without turbo equalization and with turbo equalization as well as serial concatenation of a convolutional
code with the channel are explained. As more accurate models, Lorentzian channels are also considered
for longitudinal recording. Finally, the effects of precoding and media noise are studied in some depth,
and the existence of burst errors is noted.

11.1 Principles of Turbo Coding

In his celebrated work, Shannon proved that, an arbitrarily low probability of error can be obtained in
digital transmission over a noisy channel provided that the transmission rate is less than a certain quantity
called “channel capacity” [1]. He also proved that randomly selected codes of very large block lengths
can achieve this capacity. However, his proofs were not constructive, that is, he did not give any practical
coding/decoding approaches. Since then, coding theorists have been attacking the problem of designing
good channel codes with a lot of success (e.g., refer to the standard textbooks [2, 3] for a review of error
correcting codes).

Since codes with very long block lengths are expected to perform very well, methods for constructing
very long block length codes, that can be encoded and decoded relatively easily, have been investigated
intensively. One way of obtaining a large block length code is concatenating two simple codes so that the
encoding and the decoding of the overall code is less complex. For instance, Forney concatenated two
simple codes in series to obtain a more powerful overall code [4].

Turbo codes proposed in 1993 by Berrou et al., represent a different form of concatenating two simple
codes to obtain codes that achieve a near Shannon limit performance [5]. In turbo coding, two system-
atic recursive constituent convolutional encoders are concatenated in parallel via a long interleaver. For
decoding, a suboptimal iterative decoding algorithm is employed. Let us now describe the turbo coding
principle in detail.

11.1.1 Parallel Concatenated Convolutional Codes

Turbo codes generated an abundance of literature after their invention in 1993, mainly because of their
exceptional performance for very low signal to noise ratios. For example, by using a rate 1/2 turbo code
with an interleaver size of 65536 and memory-4 component codes, Berrou et al. [5] demonstrated that a
bit error rate of 10−5 can be obtained within 0.7 dB of the channel capacity over an AWGN channel. We
note that the capacity for rate 1/2 transmission is at 0 dB1.

The idea in turbo coding is to concatenate two recursive systematic convolutional codes in parallel via
an interleaver. For encoding, the information sequence is divided into blocks of a certain length. The input
of the first encoder is the information block and the input of the second encoder is an interleaved version

1By the statement “the capacity is at 0 dB,” we mean that the channel capacity is equal to the transmission rate, that
is, 1/2, when the signal to noise ratio is 0 dB.
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FIGURE 11.1 Rate 1/3 turbo code with 5/7 component codes.

of the information block. The systematic bits and the parity bits of the first and second encoders constitute
the codeword corresponding to the information block. As an example, the block diagram of the rate 1/3
turbo code with 5/7 (in octal notation) component convolutional codes2 is shown in Figure 11.1.

A code rate of 1/3 is not acceptable for many applications. Fortunately, there are means of obtaining
higher rate turbo codes that still have a very good performance. To achieve higher code rates, different rate
component convolutional codes can be used or certain puncturing schemes can be employed. For example,
the rate 1/2 code example provided in the original turbo coding paper [5] is obtained by puncturing half
of the parity bits.

For parallel concatenated convolutional codes, the component codes should be chosen as convolutional
codes with feedback (hence, the term recursive), on the other hand, they can be nonsystematic. It is also
common practice to choose identical component encoders. One can argue that any recursive convolutional
encoder has an equivalent feedback-free representation, so the requirement about the recursiveness of the
component codes may not be clear. To explain this, we note that, although the codewords generated by
the two encoders are the same, they correspond to different input sequences. Therefore, for the purpose
of constructing turbo codes, the recursive encoder and its feedback-free version are not equivalent.

The problem of selecting the feedback and the feedforward generator polynomials of the component
codes to optimize the performance is studied in [6] and [7], and it is found that, the feedback polynomial
should be primitive, whereas we have more flexibility in the selection of the feedforward polynomial. The
reason is that, the number of problematic weight 2 information sequences (the sequences that terminate
before the end of the block) are lowest if the feedback generator polynomial is primitive.

The other ingredient of the turbo coding scheme, the interleaver, can be chosen pseudo-randomly. When
the interleaver is selected very large, in the order of several thousand bits or more, a very good bit error rate
performance, usually within 1 dB or so of the Shannon limit is obtained, at the expense of the increased
decoding delay. Although pseudo-random interleavers perform well, there are a number of interleaver
design techniques that are useful. For instance, the S-random interleaver proposed in [8] provides a sig-
nificant performance improvement over the pseudo-random interleavers, specifically, for relatively larger
signal to noise ratios. For a review of different interleaver design techniques, the reader is referred to [9].

Maximum likelihood decoding of turbo codes is very difficult because of the pseudo-random interleaver
used. In general, one has to consider all the possible codewords (there are 2N possibilities, where N is the

2The term p/q convolutional code is used to indicate the feedforward and feedback connections in the convolutional
code in octal notation. For example, 5/7, or in binary notation 101/111 means that the feedforward link is “connected,
not connected and connected” and the feedback link is all connected.
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interleaver size), compute the corresponding cost for each one (e.g., Euclidean distance with the received
signal), and choose the one with the lowest cost as the transmitted codeword. Even for short interleavers, this
is a tedious task. Fortunately, to perform this task practically, an iterative decoding algorithm is proposed
in [5]. The iterative decoder offers a near optimal performance, and it is perhaps the most important
contribution of the original turbo coding paper [5]. From Shannon’s result, we know that codes with large
block lengths chosen randomly usually have a very good performance. However, decoding such randomly
chosen codes is nearly impossible. In essence, turbo coding is a way to obtain very large block length
“random-like” (due to the existence of the interleaver) codes, yet we still have a near-optimal decoding
algorithm. Since the iterative decoding algorithm is essential to understand turbo codes, we will describe
it in some detail in a separate section.

Let us now give a brief explanation of why turbo codes perform so well. Turbo codes are linear block
codes. Therefore, for the purposes of analysis, we can simply assume that the all-zero codeword is trans-
mitted. The possible error sequences corresponding to this transmission are all the nonzero codewords.
Consider a codeword with information weight 1, that is, a codeword obtained by encoding a weight
one information sequence. Since the component encoders are recursive convolutional encoders, the parity
sequences corresponding to this information sequence will not terminate until the end of the block is
reached, because the component encoders are infinite impulse response filters. With a good selection of
the interleaver, if the single “1” occurs towards the end of the information block for one of the component
encoders, it will occur towards the beginning of the input block for the other component encoder. There-
fore, the codewords with information weight 1, typically, have a large parity weight, hence a large total
weight. Furthermore, the interleaver “breaks down” the sequences with information weight greater than
one, that is, if the information block results in a lower weight parity sequence corresponding to one of the
encoders, it will have a larger weight parity sequence for the other one. Therefore, most of the codewords
will have large Hamming weights and they are less likely to be decoded as the correct codeword when the
all-zero codeword is transmitted, at least, for an AWGN channel. On the other hand, the interleaver cannot
break down all the sequences, and therefore, there will be some codewords with low weights as well, hence
the overall free distance of a turbo code is usually small. For a discussion on the effective free distance of
turbo codes, see [10]. Since the number of low weight codewords is typically small, although the asymptotic
performance of the code (for large signal to noise ratios) is limited by its relatively low free distance, its
performance is very good for low signal to noise ratios. We also note that, the most troublesome error
sequences for turbo codes are the ones with information weight 2, since those are the most difficult ones
for the interleaver to “break down”. A more detailed distance spectrum interpretation of the turbo coding
scheme can be found in [11].

To predict the performance of turbo codes, one can use Monte Carlo simulation results obtained by the
suboptimal iterative decoding algorithm. However, it is also important to develop performance bounds
and compare them with simulation results. In [12] and [13] the union bounding technique is applied to
derive an average upper bound on the probability of error for turbo codes over an AWGN channel using
maximum likelihood decoding. Other more sophisticated bounds on the performance are developed in [14,
15]. Simulation results show that the iterative turbo decoding algorithms perform very well. Particularly,
the simulation results and the union bound are very close to each other (in the region where the union
bound is tight) [13], which shows that the iterative decoding algorithm is near optimal. In [16], McEliece
et al. demonstrated that, the iterative decoding algorithm is not always optimal and may not even converge.
However, they also observed that it converges with a high probability.

Terminating the trellis of a recursive convolutional code (i.e., bringing the state of the encoder to the
all-zero state) is not possible by appending a number of zeros at the end of the information sequence due
to the existence of the interleaver and due the fact that, the states of the two component encoders are
in general different from each other. Instead, depending on the current state of the encoder, a nonzero
sequence should be appended. In [17], it has been demonstrated that, if the trellis is not terminated, the
performance of the turbo code deteriorates. The trellis termination problem is studied in [18] and an
algorithm which does not require the knowledge of the current state for either encoders is proposed. The
problem of trellis termination for turbo codes is also studied in [19, 20].
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FIGURE 11.2 Serial concatenation of convolutional and block codes.

11.1.2 Other Concatenation Schemes

Serial concatenation of convolutional and block codes are proposed in [21]. In this scheme, two component
codes are concatenated serially with an interleaver between them as shown in Figure 11.2. The component
codes can be chosen as convolutional or block codes. The input of the outer code is the original binary input
sequence and the input of the inner code is the scrambled (interleaved) version of the codeword generated
by the outer code. Generalization of this scheme to more than two component codes is straightforward.
Convolutional codes are usually preferred over block codes because of the existence of simple soft input-
soft output decoders and the possibility of greater interleaver gain. In [21], the code selection criteria are
studied and it is shown that, for superior bit error rate performance, the inner encoder must be chosen as
a recursive convolutional encoder. On the other hand, we have more flexibility to choose the outer code.
However, for a better performance, it should have a large free distance.

For decoding, a suboptimal iterative decoding algorithm based on the information exchange between
the two component decoders is used. The details of the decoding algorithm for serially concatenated
convolutional codes will be given in a separate section.

There are some obvious generalizations of the standard turbo coding scheme. For instance, one can use
linear block codes as the component codes instead of the recursive convolutional codes [22]. Or, one can
concatenate more than two component encoders in parallel instead of only two [23].

Another concatenation scheme is the hybrid concatenation introduced in [24]. Basically, in this case,
a third code is concatenated in parallel to the two serially concatenated component codes as shown in
Figure 11.3.

11.1.3 Other Iteratively Decodable Codes

Another family of iteratively decodable capacity approaching codes is the low density parity check (LDPC)
codes. These codes were first introduced in 1962 by Gallager [25] and after having been forgotten for almost
30 years, with the extensive research on “turbo-like” codes and iterative decoding algorithms; recently they
were rediscovered by MacKay [26]. LDPC codes are linear block codes [2, 27], and they are represented
by a large, randomly generated sparse parity check matrix H, that is, very few entries of the parity check
matrix are ones and the rest are all zeros.

Similar to the turbo codes, LDPC codes can be decoded using a simple, practically implementable
iterative decoding algorithm based on the message passing algorithm (or, belief propagation as it is named
in the artificial intelligence community). They can be considered as the most serious competitors to turbo
codes in terms of the offered performance and complexity. For example, recent results by Richardson et al.

Outer
Encoder

Interleaver
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Encoder
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Block
To channel

Interleaver
Inner

Encoder
To channel

FIGURE 11.3 Hybrid concatenation of convolutional and block codes.
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show that, irregular LDPC codes can achieve a performance within 0.13 dB of the channel capacity on
AWGN channels [28] and thus outperform any code discovered to date including turbo codes.

11.2 Iterative Decoding of Turbo Codes

In this section, we describe the iterative turbo decoding algorithm in detail based on the presentation
in [30]. Consider the standard rate 1/3 turbo coding scheme. Let us denote the input sequence by d =
(d1, d2, . . . , dN) where N is the interleaver length. The encoded sequence consists of three different parts:
the systematic bits denoted by xs = (xs

1 , xs
2 , . . . , xs

N) = d, the first parity part, that is, the parity bits
produced by the first encoder, denoted by x1p = (x1p

1 , x1p
2 , . . . , x1p

N ), and the second parity part denoted
by x2p = (x2 p

1 , x2 p
2 , . . . , x2p

N ), and generated by the second encoder from the interleaved information block.
We assume that the encoded sequence of bits is transmitted using BPSK modulation over an AWGN

channel.3 Therefore, the receiver observes the sequence R = (R1, R2, . . . , RN) where

Rk = (
ys

k , y1p
k , y2p

k

)
= (√

E s

(
2xs

k − 1
) + ηs

k ,
√

E s

(
2x1p

k − 1
) + η

1p
k ,

√
E s

(
2x2p

k − 1
) + η

2p
k

)
where E s is the energy per symbol transmitted. If the overall code rate is r , we have E s = r E b where E b is
the energy per information bit. The additive noise terms are distributed according to N (0, N0/2), where
N0/2 is the noise variance. We refer to E s /N0 as the signal to noise ratio (SNR) per symbol, and E b/N0

as the signal to noise ratio per information bit.
If some of the parity bits are punctured to obtain a turbo code with a different rate, the decoder operates

by inserting “0”s in the observation sequence for the bits that are punctured.
The rest of the section is divided into four parts. In the first part, we present the maximum a-posteriori

(MAP) decoding algorithm for convolutional codes [31]. We describe the iterative decoding algorithm of
turbo codes that uses the MAP decoders for the component codes as its building blocks in the second part.
Then, in the third part, we describe the iterative decoding of serially concatenated convolutional codes.
Finally, a brief review of other iterative decoding algorithms, including several simplified turbo decoders,
is given.

11.2.1 Maximum A-Posteriori (MAP) Decoder

There are different algorithms for the decoding of convolutional codes. The Viterbi algorithm is the
optimal decoder that minimizes the sequence error probability. However, minimizing the sequence error
probability does not directly translate into minimizing the bit error probability. In other words, if the
performance criteria is the minimum bit error probability, Viterbi algorithm is not optimal. In this case,
the MAP decoding algorithm derived in [31] is optimal. Let us now describe the MAP decoder in some
detail. Note that, we describe decoder structure with respect to the first component code, the decoder for
the second component code is similar.

Let us denote the state of the encoder at time k by Sk , where k = 0, 1, 2, . . . , 2M −1, M being the number
of memory elements in the encoder. Following a derivation similar to the one in [31], we can show that,
the log-likelihood of the information bits can be written as

�(dk) = log
Pr[dk = 1 | ys , y1p]

Pr[dk = 0 | ys , y1p]

= log

∑
m

∑
m′ γ1(yk , m′, m)αk−1(m′)βk(m)∑

m

∑
m′ γ0(yk , m′, m)αk−1(m′)βk(m)

3The AWGN channel model is not essential, and an arbitrary channel model may also be used.
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where yk = (ys
k , y1p

k ), αk(m) = p(Sk = m, y1, . . . , yk) and βk(m) = p(yk+1, . . . , yN | Sk = m) are
computed using the following forward and backward recursions respectively

αk(m) =
∑

m′
∑1

i=0 γi (yk , m′, m)αk−1(m′)∑
m′′

∑
m′

∑1
i=0 γi (yk , m′, m′′)αk−1(m′)

βk(m) =
∑

m′
∑1

i=0 γi (yk+1, m, m′)βk+1(m′)∑
m′′

∑
m′

∑1
i=0 γi (yk+1, m′′, m′)βk+1(m′)

with the initial values of α0(0) = 1, α0(m) = 0 for m �= 0, βN(0) = 1 and βN(m) = 0 for m �= 0. For the
MAP decoder of the second component code, the initial values are α0(0) = 1, α0(m) = 0 for m �= 0, and
βN(m) = αN(m). Finally, γi (ys , y1p

k , m′, m) is given by

γi

(
ys , y1 p

k , m′, m
) = p

(
ys

k

∣∣ dk = i, Sk = m, Sk−1 = m′)p
(

y1p
k

∣∣ dk = i, Sk = m, Sk−1 = m′)
Pr[dk = i | Sk = m, Sk−1 = m′]Pr[Sk = m | Sk−1 = m′]·

The probabilities p(ys
k | dk = i, Sk = m, Sk−1 = m′) and p(y1p

k | dk = i, Sk = m, Sk−1 = m′) are directly
dependent on the channel characteristics and the probability Pr[dk = i | Sk = m, Sk−1 = m′] is either
zero or one depending on whether the bit i is associated with the transition from state m′ to state m or not.
The last term, Pr[Sk = m | Sk−1 = m′] uses the a-priori likelihood information on the bit dk . Assuming
that L (dk) is the a-priori information, we can write

Pr[Sk = m | Sk−1 = m′] =
{

e L (dk )

1+e L (dk ) if Pr[dk = 1 | Sk = m, Sk−1 = m′] = 1
1

1+e L (dk ) if Pr[dk = 0 | Sk = m, Sk−1 = m′] = 1
.

11.2.2 The Iterative Decoder Structure

In this section, we describe the use of the two MAP decoders for the component codes in order to decode
the turbo code. First, let us write the log-likelihood of the information bit dk as the sum of three different
terms as

�(dk) = log

∑
m

∑
m′ γ

′
1(yk , m′, m)αk−1(m′)βk(m)∑

m

∑
m′ γ

′
0(yk , m′, m)αk−1(m′)βk(m)

+ L (dk) + log
p
(

ys
k

∣∣ dk = 1
)

p
(

ys
k

∣∣ dk = 0
)

where γ ′
i (y1 p

k , m′, m) = p(y1p
k | dk = i, Sk = m, Sk−1 = m′)Pr[dk = i | Sk = m, Sk−1 = m′].

In the above equation, the first term is the extrinsic information generated by the current decoder by
using the code constraints, the second term is the a-priori information and the last term is the systematic
likelihood information.

The iterative decoder works as follows. At each iteration step, one of the decoders takes the system-
atic information (directly from the observation of the systematic part) and the extrinsic log-likelihood
information produced by the other decoder in the previous iteration step to compute its new extrinsic
log-likelihood information. Then, this updated extrinsic information is fed into the other decoder for the
next iteration step. The extrinsic information of both decoders are initialized to zero before the iterations
start. The block diagram of the iterative decoding algorithm is presented in Figure 11.4.

Let us denote the systematic log-likelihood information of the input bit dk by L s (dk), the first extrinsic
log-likelihood information by L 1e (dk) and the second one by L 2e (dk), k = 1, 2, . . . , N. L s (dk) is directly
found from the systematic observation and L 1e (dk) and L 2e (dk) (at each iteration step) can be computed
from the code constraints by using the MAP decoding algorithm. In fact, the extrinsic information can be
computed by using any other decoding algorithm for systematic codes that accepts log-likelihood values of
the information bits and produces updated (independent) log-likelihoods, such as the soft output Viterbi
algorithm (SOVA) [32].
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FIGURE 11.4 Iterative (turbo) decoding algorithm.

To summarize, at each iteration step, the log-likelihood of the information bit dk is given by

�(dk) = log
P (dk = 1 | observation)

P (dk = 0 | observation)

= L s (dk) + L 1e (dk) + L 2e (dk).

The a-priori information (coming from the other decoder) is approximately independent of the extrinsic
information generated at the current iteration step. Therefore, further iterations do not deteriorate the
performance, and the iterative decoding algorithm converges with high probability. In other words, after
a number of iterations, the sum of the three likelihood values converges to the true log-likelihood of the
kth information bit, which can be used to make the final decision.

11.2.3 Iterative Decoding of Serially Concatenated Convolutional Codes

Similar to parallel concatenated convolutional codes, the optimal decoding of the serially concatenated
convolutional codes is almost impossible due to the interleaver used between the component codes.
Therefore, to decode serially concatenated convolutional codes, a practically implementable, suboptimal,
iterative decoding algorithm, utilizing soft output MAP component decoders, is used. The block diagram
of the decoder is shown in Figure 11.5. At each iteration step, the inner decoder uses the noisy channel
observations and the extrinsic log-likelihood ratio (LLR) information of its input block (the codeword
generated by the outer encoder) calculated by the outer decoder in the previous iteration and then updates
the extrinsic log-likelihood information of its input block using the inner code constraints. This updated
extrinsic information, corresponding to the output of the outer code, is used by the outer decoder to

Interleaver

De-
Interleaver

Inner
Decoder

Outer
Decoder

−

−

+

+
Channel
Output

Lext1

Lext2

FIGURE 11.5 Iterative decoding of serially concatenated codes.
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calculate the log-likelihood information of both the input and the output bits of the outer code based on
the code constraints. The LLRs of the output bits of the outer code are sent to the inner decoder for use in
the next iteration. After a number of iterations, the log-likelihood information of the input bits generated
by the outer decoder is used to recover the transmitted information bits.

There is an important difference between the decoding algorithms of parallel and serial concatenated
convolutional codes. For serial concatenation, although the inner decoder calculates only the LLR of
its input block, the outer decoder calculates LLRs of both its input and output blocks. However, for
parallel concatenation, only the LLRs of the original input block are calculated by both decoders, because
in parallel concatenation, for both decoders the noisy channel outputs are available and the extrinsic
information exchanged between the decoders are used as the a-priori information by the component
decoders to perform the MAP decoding. However, for serial concatenation, the input of the inner code is
the codeword generated by the outer code. Therefore, in order for the inner decoder to perform the MAP
decoding, it requires the a-priori information, which are the LLRs of the coded bits of the outer code in
this case. Likewise for the outer decoder, there is no channel output, so the LLR calculated by the inner
decoder for its input is used by the outer decoder instead of the noisy channel outputs as in the parallel
concatenation.

In terms of maximum-likelihood performance, serial concatenation is superior to parallel concatenation.
In addition, the error floor, caused by the relatively low free distance of the turbo codes, is observed at
lower bit error rates for serially concatenated codes.

11.2.4 Other Iterative Decoding Algorithms

The original iterative decoding algorithm for turbo codes [5] is complex. However, there are other simplified
iterative decoding algorithms [33–36]. These algorithms provide an appreciable decrease in the complexity
of the component decoders at the expense of some performance degradation (typically about 0.5 dB).
Jung [37] presents a good comparison of various iterative decoding schemes for turbo codes. Other studies
on the iterative decoding algorithm are reported in [38, 39]. Recently, it has also been observed that the
original turbo decoding algorithm, among others, can be considered as a special case of a broader class of
“belief propagation” algorithms for loopy Bayesian networks that are extensively studied in other fields,
especially in artificial intelligence [40].

A general study of iterative decoding of block and convolutional codes is presented in [41]. Using log-
likelihood algebra, the authors show that, any decoder that accepts soft inputs (including a-priori values)
and delivers soft outputs that can be split into three terms: the soft channel input, the a-priori input, and
the extrinsic value, can be used for decoding the component codes. The MAP decoding algorithm derived
in [31] and used in [5, 30] and the SOVA algorithm developed in [32, 36] are in this category. Furthermore,
the authors provide algorithms for soft decoding of systematic linear block codes, which makes it practical
to use block codes (with certain restrictions due to increased complexity in decoding) as component codes
in turbo code construction.

11.3 Performance of Turbo Codes over AWGN Channels

In this section, we present a set of results on the performance of turbo codes over AWGN channels. We
consider the turbo code with 5/7 component convolutional codes with pseudo-random interleaver, for
various block lengths (interleaver lengths). In Figure 11.6, the bit error rate performance is shown with
respect to the number of decoding iterations for N = 1000, Rc = 1/2 turbo code obtained by puncturing
half of the parity bits. While the bit error rate (BER) performance improves significantly during the first
few iterations; after that, the performance gain is not very significant. Using this particular turbo code, at
a BER of 10−5, we can obtain an approximate coding gain of 7 dB over the uncoded system.

In Figure 11.7, the BER performance of Rc = 1/2 turbo code is shown for different interleaver lengths
after 18 iterations. Larger interleavers improve the BER performance significantly, however the decoding
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delay increases as well. For example, by choosing N = 10000 we obtain a gain of 3 dB over the one using
N = 100 at a BER of 10−4, and the gain is even more for lower BER values. This improvement is due to
the fact that, by using larger interleavers we effectively increase the probability of breaking down the input
sequences that will result in low weight codewords, thus we have a larger interleaver gain. We also note
that, the capacity for rate 1/2 transmission over an AWGN channel is at 0 dB and by using an interleaver
of length 10000, we can obtain a bit error rate of 10−5 within 1.2 dB of the channel capacity. Simply by
employing larger interleavers we can approach to the channel capacity further [5].

11.4 Recording Channels

Digital magnetic recording channels can be modelled as binary input inter-symbol interference (ISI)
channels. In this chapter, we use two specific channel models. The first one is a simplistic partial response
(PR) channel representing the recording channel with an equivalent discrete ISI channel with additive
white Gaussian noise. This model can be used to represent an “ideal” recording channel. The second one
is a Lorentzian channel model (assuming longitudinal recording) which is a more accurate approximation
of the realistic magnetic recording channels.

11.4.1 Partial Response Channels

Partial response channels are nothing but ISI channels. For example in magnetic recording, important
partial response channels include the PR4 channel (i.e., (1 − D2) and the EPR4 channel (i.e., (1 + D −
D2 − D3), where D is the delay operator. In other words, PR4 and EPR4 refer to the equivalent discrete
channel models of yk = xk − xk−2 + vk and yk = xk + xk−1 − xk−2 − xk−3 + vk respectively, where yk is
the channel output, vk is additive white Gaussian noise and xk is the input to the ISI channel.

A PR channel can be considered as rate one nonbinary convolutional code (i.e., the channel outputs
are not necessarily 0 or 1). Therefore, it can be modelled as a finite state machine and a trellis can be
used to represent its input-output relationship. The optimal method (in terms of minimizing the bit error
probability) to recover the information bits from the channel output is to use a MAP decoder (usually
called the channel detector) matched to the trellis of the PR channel. This MAP decoder calculates the
log-likelihood information of the channel inputs from which the information bits are recovered. Viterbi
or soft output Viterbi algorithms can be used to recover the information bits as well.

We define the signal to noise ratio as SNR = E b

N0
, where E b is the energy per information bit and N0/2

is the two sided additive white Gaussian noise power spectral density. Here E s = E b · Rc , where Rc is the
code rate and E s is the average energy of the channel outputs.

11.4.2 Realistic Recording Channel Models

The block diagram of a more realistic recording channel model including an outer turbo code is shown in
Figure 11.8. Instead of directly recording the uncoded data sequence, we first use an error correcting code,
which is the turbo code for our case, to obtain the coded data sequence. This sequence is then interleaved
using a pseudo-random interleaver, and may be precoded to obtain another bit sequence. The precoded
bit sequence is fed into the write current driver which generates a two-level waveform called write current.
The mapping from the binary (precoded) data sequence to the write current is done in such a way that a
change in the write current corresponds to a “1”, and no change corresponds to a “0”. This is called NRZI
(non-return-to-zero inverse) recording. Finally, the write head magnetizes the medium in one direction
or the other depending on the polarity of the write current.

For longitudinal recording, in the readback process, the output voltage of the readback head corre-
sponding to an isolated positive transition is well modelled as a Lorentzian pulse given by

h(t) = 1

1 + (
2t
T50

)2
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FIGURE 11.8 Block diagram of the magnetic recording system with actual write/read.

where T50 is the width of the Lorentzian pulse at 50% amplitude level. The normalized density of the
system is defined as Dn = T50

T , where T is the duration of each bit interval.
The noiseless readback signal is of the form

r (t) =
∞∑

k=−∞
bkh(t − kT)

where bk = ak − ak−1 is the transition sequence corresponding to the recording channel input ak . The
di-bit response shown in Figure 11.8 corresponds to impulse response of the channel and it is given as
h(t) − h(t − T).

The noise in a magnetic recording system is a combination of media noise, head noise and thermal noise
generated in the preamplifier. The latter two components can be well modelled as additive Gaussian noise.
On the other hand, media noise which may be the result of the stochastic fluctuations on the position
of written transitions cannot be generally modelled as additive [42, 43] and it degrades the bit error rate
performance significantly. Ignoring the media noise, we define the SNR as

SNR = E i

N0

where E i = π
2×T50

is the energy of the impulse response of the recording channel, that is, the derivative
of the isolated transition response h(t) and N0/2 is the two sided additive white Gaussian noise power
spectral density.

For this channel model the optimum detection consists of a filter matched to p(t), symbol rate sampler
and a maximum likelihood sequence detector [44]. In general, the overall noise is not Gaussian, therefore,
the use of a matched filter is not optimal. Alternatively, one might use a low pass filter instead of the
matched filter as done in most practical systems. After uniform sampling, the receiver output is usually
equalized to an appropriate partial response target using a linear equalizer to reduce the computational
complexity of the channel detector following the uniform sampler. The function of the channel detec-
tor is to compute the log-likelihood values of the transmitted bits for the outer error correction code
decoder.

11.5 Turbo Codes for Recording Channels

Turbo codes are applied to digital magnetic recording successfully [45–52]. In particular the simplistic PR
channel model assuming Gaussian noise and ideal equalization to the PR target are used [45–51], and large
coding gains are obtained. Additionally in [52], it is shown that the performance improvement offered
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by the turbo coded system is preserved even if the ideal system is replaced by a more realistic Lorentzian
channel model (without including the media noise).

We can classify the use of turbo codes for magnetic recording channels in three categories; turbo
coding without turbo equalization, turbo coding with turbo equalization and convolutional coding with
an interleaver (i.e., serial concatenation of a convolutional code with the ISI channel). These three schemes
are detailed in the following subsections.

11.5.1 Turbo Coding without Turbo Equalization

In this scheme, whose block diagram is shown in Figure 11.9, the underlying error correcting code which
is used to produce the channel coded bits is a parallel concatenated convolutional code. To obtain the
bit sequence that will be stored in the magnetic medium, first the coded data sequence is generated by
the turbo encoder. Then, the coded bits are interleaved using a pseudo-random interleaver, and may be
precoded to obtain another bit sequence. In this case, the existence of the precoder is not crucial to obtain
an interleaving gain, however different precoders will perform differently [53].

The outer decoder is an iterative turbo decoder which uses the log-likelihood values for the channel
coded bits (i.e., the systematic and the transmitted parity bits) which are produced by the channel detector.
Clearly, appropriate de-interleaving should be employed while passing the computed log-likelihood values
to the turbo decoder. The soft information (i.e., the log-likelihoods) about the coded bits are — strictly
speaking — correlated. However, since their statistics are not easy to characterize, the decoder assumes
that they are the log-likelihoods of the observations from a BPSK transmission over an AWGN channel.
To perform the turbo decoding, the variance of the additive Gaussian noise should be specified. Here, we
assume that the noise variance is N0

2 though better alternatives may exist. Fortunately, the iterative turbo
decoding algorithm is very robust, and although there is not a good reason for assuming an AWGN channel
with the specified noise variance, it works properly, that is, errors are corrected in the subsequent iteration
steps as it will be illustrated later.

In this scheme, we do not allow the passage of information from the turbo decoder back to the channel
detector. Therefore, this scheme is called turbo coding without turbo equalization.

11.5.2 Turbo Coding with Turbo Equalization

This scheme also uses a turbo code as the underlying error correcting code. The only difference is in
the decoding algorithm. The extrinsic (new) information about the coded bits produced by the turbo
decoder (using the code constraints) is uncorrelated with the original log-likelihoods computed by the
channel detector. Therefore, the channel detector can make use of this new information to update the
log-likelihoods of the turbo coded bits. By including the channel detector in the iterative decoding algo-
rithm (together with the two MAP decoders), the performance of the decoding algorithm is improved.
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The process of feeding the extrinsic information of the turbo decoder back to the channel detector (and
vice versa in the subsequent iteration steps) is named “turbo equalization” [54]. Figure 11.10 illustrates the
passage of information between the channel detector and the turbo decoder to perform turbo equalization.
Similar to the previous scheme, for turbo coding with turbo equalization, precoding is not essential to
obtain an interleaver gain.

11.5.3 Convolutional Coding with an Interleaver

For turbo coding both with and without turbo equalization over recording channels, an outer turbo code
is connected “serially” with the recording channel. Since the recording channel acts as a rate 1 inner
code, the overall system can be viewed as a serial concatenation scheme [50]. A simpler system can be
obtained by replacing the underlying turbo code with a convolutional code. This scheme is called the serial
concatenation of a convolutional code with the partial response (ISI) channel [50]. The block diagram of
this scheme including the decoder is shown in Figure 11.11.

The decoding algorithm for this scheme involves the exchange of information between the channel
detector and a single MAP decoder for the convolutional code, which is similar to the turbo equalization.
In the first iteration step, using the original channel observations, the channel detector computes the log-
likelihood of its input by the MAP decoding algorithm and passes this information to the outer decoder.
Then, the outer decoder computes its extrinsic information using the code constraints and passes it back
to the channel detector. We note that, the outer decoder computes the extrinsic information for the parity
bits as well as the information bits of the underlying convolutional code. The iterations are repeated several
times to obtain the final likelihoods of the information bits transmitted and bit decisions are made.

Compared to the case of turbo decoding with turbo equalization, this algorithm is less complex due to
the decrease in the number of the MAP decoders from three (two for the turbo decoder and one for the
channel detector) to two (one for the outer decoder and one for the channel detector).
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FIGURE 11.11 Block diagram of convolutional coding with an interleaver.
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In [21], for serial concatenated codes it is shown that, for superior bit error rate performance, the inner
encoder must be chosen as a recursive convolutional encoder. Therefore, unlike the previous two schemes,
for the serial concatenation of a convolutional code with the PR channel, the use of a precoder is essential
to obtain a large interleaver gain. Precoding makes the PR channel “recursive,” thus the precoded channel
has good distance properties [53]. As will be shown in the next section, the convolutional coding with an
interleaver outperforms turbo coding when precoding is used.

11.6 Performance of Turbo Codes over Recording Channels

In this section, we present a set of results on the performance of turbo codes for magnetic recording
channels by using both the simplistic PR channel and the more realistic Lorentzian channel models.

11.6.1 Over PR Channels

For the simulations we consider the Rc = 4/5, N = 10000, 5/7 turbo code over PR4 and EPR4 chan-
nels. After pseudo-random interleaving, the coded bits are precoded with 1/1 ⊕ D2. Figure 11.12 and
Figure 11.13 show the BER for PR4 and EPR4 channels respectively. For comparison purposes, the BER
for the uncoded system is also included to the plots.

These results confirm that turbo coding both with and without turbo equalization introduces large
coding gains. For instance at 10−5 probability of bit error, turbo coding without turbo equalization
provides 6 dB and 5 dB coding gains over the uncoded system for PR4 and EPR4 channels respectively.
With turbo equalization, the same code introduces an additional 0.5 dB coding gain compared to the
system without turbo equalization. However, this additional gain comes at the expense of an increased
complexity, because for turbo equalization channel detector is used at every iteration unlike the case
without turbo equalization for which the channel detector is used only once.
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FIGURE 11.12 The BER of the 5/7 turbo code with Rc = 4/5 over PR4 channel, N = 10000.
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FIGURE 11.13 The BER of the 5/7 turbo code with Rc = 4/5 over the EPR4 channel, N = 10000.

11.6.2 Over Lorentzian Channels

In this section, we consider the 5/7 and 23/31 turbo codes with Rc = 16/17 over the Lorentzian channel with
Dn = 2.5. In our simulations, we use the (appropriate) iterative decoding algorithm with 15 iterations and
equalize the channel to an EPR4 target using a least mean squares (LMS) based linear equalizer with 21 taps.

In Figure 11.14, we present the performance of several codes for an interleaver length of N = 10016. We
assume that 1

1⊕D2 precoder is used and there is no media noise. We observe that the high rate coding (turbo
or convolutional with an interleaver) provides a significant coding gain of up to 4.5 dB over the uncoded
system at 10−5 bit error probability. Therefore, the coding gain of turbo codes is mostly preserved when the
simplistic PR channel model is replaced by the more realistic Lorentzian channel model. Furthermore, we
observe that the convolutional code used together with an interleaver outperforms the parallel concatenated
codes, which is in agreement with the observations made for the PR4 equalized ideal magnetic recording
channel model of [50].

We believe that the reason why the convolutional code (together with an interleaver) performs better
than the turbo code lies in the decoding algorithm. In the case of the convolutional code, the iterative
suboptimal decoding algorithm requires the exchange of information between two MAP decoders, whereas
in the parallel concatenation case, the exchange of information (when turbo equalization is employed)
is between three MAP decoders which results in a “worse” decoder. Performance bounds based on the
maximum likelihood decoding computed in [55] support our claim, since the simulation results for the
convolutionally coded systems are very close to the bounds based on the optimal (maximum likelihood)
decoding. On the other hand, for the turbo codes used in magnetic recording systems, the simulation
results (based on the suboptimal iterative decoding algorithm) are worse than the bounds computed using
maximum likelihood decoding.

In Figure 11.15, we present the performance of two different codes using different precoders (or, no
precoder). We see that the performance of these schemes vary slightly. However the best choice of the
precoding scheme is not clear, therefore for code design, one should take the various possibilities into
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account, as some schemes (including no precoding) may outperform the others. In our example, for
the convolutional code the 1

1⊕D2 precoding is the best choice. On the other hand for the turbo code, no
precoding is the best choice among the three different precoding schemes used. However as mentioned
in [50], at high SNRs, the BER performance is better for both serial and parallel concatenation with
precoding. Since we usually do not operate at very low SNRs especially for magnetic recording, we can
conclude that precoding improves the performance of the recording channels.

For the simulations, when turbo equalization is performed, improvements of up to 1 dB are observed.
It is interesting to note that for both parallel and serial concatenation, the improvement is more if the
component code is simpler. This result agrees with the observation that the simple convolutional code
outperforms the parallel concatenated code when concatenated serially with the channel [50].

In [51], for the uncoded system it is observed that, at high media noise levels the probability of error
cannot be made smaller than a certain value no matter how large the SNR is. On the other hand, the
convolutionally coded system is able to tolerate very high media noise levels. This property of turbo based
codes is very attractive for use in media noise limited magnetic recording channels.

Although turbo codes provide very low bit error rates for AWGN and magnetic recording channels,
they have a “burst” error problem. That is, when there is an error, it is likely that there are many errors
within the decoded block [56]. Such errors pose challenging problems for various applications including
magnetic recording systems, because the outer error correcting code (ECC) cannot correct the residual
errors if they exceed its error correction capability. Therefore, it is standard in magnetic recording literature
to study the error bursts and error event distributions to evaluate the performance of the system, see, for
instance, [57]. In [58] various burst error identification techniques are introduced for turbo and LDPC
coded systems.

11.7 Summary

In this chapter, we studied the parallel concatenated and serial concatenated convolutional codes, that
is, turbo codes. First, use of these codes for additive white Gaussian channels is discussed. The en-
coding procedures and the iterative decoding algorithm based on the two soft output component de-
coders are presented. Then, the use of concatenated codes over recording channels are discussed. Partial
response channels with additive white Gaussian noise are used as simple models to illustrate the main ideas.
The concepts of turbo decoding without turbo equalization and with turbo equalization are explained
in detail. As more accurate models, Lorentzian channels are also considered for longitudinal recording
channels.

To illustrate the capabilities and limitations of the various turbo coding approaches for AWGN and
recording channels, we presented a set of results, which verified that, the BER performance of turbo codes
is excellent and they provide a large coding gain over the uncoded systems for both channels. Despite
this appreciable coding gain, a negative side of turbo codes is the existence of error bursts even at low
probability of error values.
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12.1 Introduction

Low-density parity-check (LDPC) codes are a class of linear block codes which provide near-capacity per-
formance on a large collection of data transmission and storage channels while simultaneously admitting
implementable decoders. LDPC codes were first proposed by Gallager in his 1960 doctoral dissertation [1]
and were scarcely considered in the 35 years that followed. One notable exception is the important work
of Tanner in 1981 [2] in which Tanner generalized LDPC codes and introduced a graphical representa-
tion of LDPC codes, now called Tanner graphs. The study of LDPC codes was resurrected in the mid-
1990s with the work of MacKay, Luby, and others [3–5] who noticed, apparently independently of the
work of Gallager, the advantages of linear block codes which possess sparse (low-density) parity-check
matrices.

This tutorial chapter provides the foundations for the study and practice of LDPC codes. We will
start with the fundamental representations of LDPC codes via parity-check matrices and Tanner graphs.
Classification of LDPC ensembles via Tanner graph degree distributions will be introduced, but we will only
superficially cover the design of LDPC codes with optimal degree distributions via constrained pseudo-
random matrix construction. We will also review some of the other LDPC code construction techniques
which have appeared in the literature. The encoding problem for such LDPC codes will be presented and
certain special classes of LDPC codes which resolve the encoding problem will be introduced. Finally, the
iterative message-passing decoding algorithm (and certain simplifications) which provides near-optimal
performance will be presented.

12-1
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12.2 Representations of LPDC Codes

12.2.1 Matrix Representation

Although LDPC codes can be generalized to nonbinary alphabets, we shall consider only binary LDPC codes
for the sake of simplicity. Because LDPC codes form a class of linear block codes, they may be described
as a certain k-dimensional subspace C of the vector space Fn

2 of binary n-tuples over the binary field F2.

Given this, we may find a basis B = {g0, g1, . . . , gk−1} which spans C so that each c ∈ C may be written as
c = u0g0 + u1g1 +· · ·+ uk−1gk−1 for some {ui }; more compactly, c = uG where u = [u0 u1 . . . uk−1] and
G is the so-called k × n generator matrix whose rows are the vectors {gi } (as is conventional in coding,
all vectors are row vectors). The (n − k)-dimensional null space C⊥ of G comprises all vectors x ∈Fn

2 for
which xG T = 0 and is spanned by the basis B⊥ = {h0, h1, . . . , hn−k−1}. Thus, for each c ∈ C, chT

i = 0
for all i or, more compactly, cH T = 0 where H is the so-called (n − k) × n parity-check matrix whose
rows are the vectors {hi }, and is the generator matrix for the null space C⊥. The parity-check matrix H is
so named because it performs m = n − k separate parity checks on a received word.

A low-density parity-check code is a linear block code for which the parity-check matrix H has a low
density of 1s. A regular LDPC code is a linear block code whose parity-check matrix H contains exactly wc

1s in each column and exactly wr = wc (n/m) 1s in each row, where wc � m (equivalently, wr � n). The
code rate R = k/n is related to these parameters via R = 1 − wc /wr (this assumes H is full rank). If H
is low density, but the number of 1s in each column or row is not constant, then the code is an irregular
LDPC code. It is easiest to see the sense in which an LDPC code is regular or irregular through its graphical
representation.

12.2.2 Graphical Representation

Tanner considered LDPC codes (and a generalization) and showed how they may be represented effectively
by a so-called bipartite graph, now call a Tanner graph [2]. The Tanner graph of an LDPC code is analogous
to the trellis of a convolutional code in that it provides a complete representation of the code and it aids in
the description of the decoding algorithm. A bipartite graph is a graph (nodes connected by edges) whose
nodes may be separated into two types, and edges may only connect two nodes of different types. The two
types of nodes in a Tanner graph are the variable nodes and the check nodes (which we shall call v-nodes
and c-nodes, respectively).1 The Tanner graph of a code is drawn according to the following rule: check
node j is connected to variable node i whenever element hji in H is a 1. One may deduce from this that
there are m = n − k check nodes, one for each check equation, and n variable nodes, one for each code
bit ci . Further, the m rows of H specify the m c-node connections, and the n columns of H specify the n
v-node connections.

Example 12.1

Consider a (10, 5) linear block code with wc = 2 and wr = wc (n/m) = 4 with the following H matrix:

H =




1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1




1The nomenclature varies in the literature: variable nodes are also called bit or symbol nodes and check nodes are
also called function nodes.
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variable
nodes c2 c3c0 c1 c4 c6c5 c8c7 c9

f0 f1 f2 f3 f4
check
nodes

FIGURE 12.1 Tanner graph for example code.

The Tanner graph corresponding to H is depicted in Figure 12.1. Observe that v-nodes c0, c1, c2, and c3 are
connected to c-node f0 in accordance with the fact that, in the zeroth row of H , h00 = h01 = h02 = h03 = 1
(all others are zero). Observe that analogous situations hold for c-nodes f1, f2, f3, and f4 which corresponds
to rows 1, 2, 3, and 4 of H, respectively. Note, as follows from the fact that cH T = 0, the bit values connected
to the same check node must sum to zero. We may also proceed along columns to construct the Tanner
graph. For example, note that v-node c0 is connected to c-nodes f0 and f1 in accordance with the fact
that, in the zeroth column of H , h00 = h10 = 1.

Note that the Tanner graph in this example is regular: each v-node has two edge connections and each
c-node has four edge connections (i.e., the degree of each v-node is 2 and the degree of each c-node is
4). This is in accordance with the fact that wc = 2 and wr = 4. It is also clear from this example that
mwr = nwc .

For irregular LDPC codes, the parameters wc and wr are functions of the column and row numbers and
so such notation is not generally adopted in this case. Instead, it is usual in the literature (following [7])
to specify the v-node and c-node degree distribution polynomials, denoted by λ(x) and ρ(x), respectively.
In the polynomial

λ(x) =
dv∑

d=1

λd xd−1,

λd denotes the fraction of all edges connected to degree-d v-nodes and dv denotes the maximum v-node
degree. Similarly, in the polynomial

ρ(x) =
dc∑

d=1

ρd xd−1,

ρd denotes the fraction of all edges connected to degree-d c-nodes and dc denotes the maximum c-node
degree. Note for the regular code above, for which wc = dv = 2 and wr = dc = 4, we have λ(x) = x and
ρ(x) = x3.

A cycle (or loop) of length ν in a Tanner graph is a path comprising ν edges which closes back on itself.
The Tanner graph in the above example possesses a length-6 cycle as exemplified by the six bold edges in
the figure. The girth γ of a Tanner graph is the minimum cycle length of the graph. The shortest possible
cycle in a bipartite graph is clearly a length-4 cycle, and such cycles manifest themselves in the H matrix
as four 1s that lie on the corners of a submatrix of H . We are interested in cycles, particularly short cycles,
because they degrade the performance of the iterative decoding algorithm used for LDPC codes. This fact
will be made evident in the discussion of the iterative decoding algorithm.
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12.3 LDPC Code Design Approaches

Clearly, the most obvious path to the construction of an LDPC code is via the construction of a low-
density parity-check matrix with prescribed properties. A large number of design techniques exist in the
literature, and we introduce some of the more prominent ones in this section, albeit at a superficial level.
The design approaches target different design criteria, including efficient encoding and decoding, near-
capacity performance, or low-error rate floors. (Like turbo codes, LPDC codes often suffer from low-error
rate floors, owing both to poor distance spectra and weaknesses in the iterative decoding algorithm.)

12.3.1 Gallager Codes

The original LDPC codes due to Gallager [1] are regular LDPC codes with an H matrix of the form

H =




H1

H2

...
Hwc




where the submatrices Hd have the following structure. For any integers µ and wr greater than 1, each
submatrix Hd is µ × µwr with row weight wr and column weight 1. The submatrix H1 has the following
specific form: for i = 1, 2, . . . , µ, the i th row contains all of its wr 1s in columns (i − 1)wr + 1 to iwr . The
other submatrices are simply column permutations of H1. It is evident that H is regular, has dimension
µwc ×µwr , and has row and column weights wr and wc , respectively. The absence of length-4 cycles in H
is not guaranteed, but they can be avoided via computer design of H. Gallager showed that the ensemble
of such codes has excellent distance properties provided wc ≥ 3 and wr > wc . Further, such codes have
low-complexity encoders since parity bits can be solved for as a function of the user bits via the parity-check
matrix [1].

Gallager codes were generalized by Tanner in 1981 [2] and were studied for application to code-division
multiple-access communication channel in [9]. Gallager codes were extended by MacKay and others [3, 4].

12.3.2 MacKay Codes

MacKay had independently discovered the benefits of designing binary codes with sparse H matrices
and was the first to show the ability of these codes to perform near capacity limits [3, 4]. MacKay has
archived on a web page [10] a large number of LPDC codes that he has designed for application to data
communication and storage, most of which are regular. He provided in [4] algorithms to semi-randomly
generate sparse H matrices. A few of these are listed below in order of increasing algorithm complexity
(but not necessarily improved performance).

1. H is created by randomly generating weight-wc columns and (as near as possible) uniform row
weight.

2. H is created by randomly generating weight-wc columns, while ensuring weight-wr rows, and no
two columns having overlap greater than one.

3. H is generated as in Step 2, plus short cycles are avoided.
4. H is generated as in Step 3, plus H = [H1 H2] is constrained so that H2 is invertible (or at least H

is full rank).

One drawback of MacKay codes is that they lack sufficient structure to enable low-complexity encoding.
Encoding is performed by putting H in the form [P T I ] via Gauss-Jordan elimination, from which the
generator matrix can be put in the systematic form G = [I P ]. The problem with encoding via G is that
the submatrix P is generally not sparse so that, for codes of length n = 1000 or more, encoding complexity
is high. An efficient encoding technique employing only the H matrix was proposed in [6].
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12.3.3 Irregular LDPC Codes

Richardson et al. [7] and Luby et al. [8] defined ensembles of irregular LDPC codes parameterized by
the degree distribution polynomials λ(x) and ρ(x) and showed how to optimize these polynomials for
a variety of channels. Optimality is in the sense that, assuming message-passing decoding (described be-
low), a typical code in the ensemble was capable of reliable communication in worse channel conditions
than codes outside the ensemble are. The worst-case channel condition is called the decoding thresh-
old and the optimization of λ(x) and ρ(x) is found by a combination of a so-called density evolution
algorithm and an optimization algorithm. Density evolution refers to the evolution of the probability
density functions (pdfs) of the various quantities passed around the decoder’s Tanner graph. The decod-
ing threshold for a given λ(x)-ρ(x) pair is determined by evaluating the pdfs of computed log-likelihood
ratios (see the next section) of the code bits. The separate optimization algorithm optimizes over the
λ(x)-ρ(x) pairs.

Using this approach an irregular LDPC code has been designed whose simulated performance was
within 0.045 dB of the capacity limit for a binary-input AWGN channel [11]. This code had length
n = 107 and rate R = 1/2. It is generally true that designs via density evolution are best applied to codes
whose rate is not too high (R <∼ 3/4) and whose length is not too short (n >∼ 5000). The reason is that the
density evolution design algorithm assumes n → ∞ (hence, m → ∞), and so λ(x)-ρ(x) pairs which
are optimal for very long codes, will not be optimal for medium-length and short codes. As discussed
in [12–15], such λ(x)-ρ(x) pairs applied to medium-length and short codes gives rise to a high error-rate
floor.

Finally, we remark that, as for the MacKay codes, these irregular codes do not intrinsically lend themselves
to efficient encoding. However, as mentioned above, Richardson and Urbanke [6] have proposed algorithms
for achieving linear-time encoding for these codes.

12.3.4 Finite Geometry Codes

In [16, 17], regular LDPC codes are designed using techniques based on finite geometries [18]. The
resulting LDPC codes fall into the cyclic and quasi-cyclic classes of block codes and lend themselves to
simple encoder implementation via shift-register circuits. The cyclic finite geometry codes tend to have
relatively large minimum distances, but the quasi-cyclic codes tend to have somewhat small minimum
distances. Also, short LDPC codes (n on the order of 200 bits) designed using these techniques are generally
better than short LDPC codes designed using pseudo-random H matrices.

The cyclic finite geometry codes have the drawback that the parity-check matrix used in decoding is
n × n instead of (n − k) × n. (It is possible to choose an (n − k) × n submatrix of the n × n matrix to
decode, but the loss in performance is often non-negligible.) The n × n matrix is circulant, with its first
row equal to a certain incidence vector [16]. Another drawback is that the values of wr and wc are relatively
large which is undesirable since the complexity of the iterative message-passing decoder is proportional
to these values. One final drawback is that there is no flexibility in the choice of length and rate, although
this issue can be dealt with by code shortening and puncturing.

12.3.5 RA, IRA, and eIRA Codes

A type of code, called a repeat-accumulate (RA) code, which has the characteristics of both serial turbo
codes and LDPC codes, was proposed in [20]. The encoder for an RA code is shown in Figure 12.2 where it
is seen that user bits are repeated (2 or 3 times is typical), permuted, and then sent through an accumulator
(differential encoder). These codes have been shown to be capable of operation near capacity limits, but
they have the drawback that they are naturally low rate (rate 1/2 or lower).

The RA codes were generalized in such a way that some bits were repeated more than others yielding
irregular repeat-accumulate (IRA) codes [21]. As shown in Figure 12.2, the IRA encoder comprises a low-
density generator matrix, a permuter, and an accumulator. Such codes are capable of operation even closer
to theoretical limits than RA codes, and they permit higher code rates. A drawback to IRA codes is that
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1
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G Π
1×n
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k× (n−k)
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1⊕D

u w
repeat Π
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k×n
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1
1⊕D

FIGURE 12.2 Encoders for the repeat-acccumulate (RA), the irregular RA (IRA) code, and the extended IRA code
(eIRA).

they are nominally non-systematic codes, although they be put in a systematic form, but it is at the expense
of greatly lowering the rate as depicted in Figure 12.2.

Yang and Ryan [13–15] have proposed a class of efficiently encodable irregular LDPC codes which are
called extended IRA (eIRA) codes. (These codes were independently proposed in [22].) The eIRA encoder
is shown in Figure 12.2. Note that the eIRA encoder is systematic and permits both low and high rates.
Further, encoding can be efficiently performed directly from the H matrix which possesses an m × m
submatrix which facilitates computation of the parity bits from the user bits [15, 22].

12.3.6 Array Codes

Fan has shown that a certain class of codes called array codes can be viewed as LDPC codes and thus can be
decoded with a message passing algorithm [23, 24]. Subsequent to Fan’s work, Eleftheriou and Ölçer [25]
proposed a modified array code employing the following H matrix format

H =




I I I · · · I I · · · I
0 I α · · · α j−2 α j−1 · · · αk−2

0 0 I · · · α2( j−3) α2( j−2) · · · α2(k−3)

...
...

...
. . .

...
... · · · ...

0 0 · · · 0 I α j−1 · · · α( j−1)(k− j )


 (12.1)

where k and j are two integers such that k, j ≤ p where p denotes a prime number. I is the p × p identity
matrix, O is the p × p null matrix, and α is a p × p permutation matrix representing a single left- or
right-cyclic shift. The upper triangular nature of H guarantees encoding linear in the codeword length
(encoding is essentially the same as for eIRA codes).

These modified array codes have low error rate floors, and both low- and high-rate codes may be
designed, although the high-rate designs perform better (relative to other design techniques). However,
as is clear from the description of H above, only selected code lengths and rates are available.
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12.3.7 Combinatorial LDPC Codes

In view of the fact that LDPC codes may be designed by constrained random construction of H matrices,
it is not difficult to imagine that good LDPC codes may be designed via the application of combinatorial
mathematics. That is, design constraints (such as no cycles of length 4) applied to an H matrix of size
(n − k) × n may be cast as a problem in combinatorics. Several researchers have successfully approached
this problem via such combinatorial objects as Steiner systems, Kirkman systems, and balanced incomplete
block designs [16, 26–29].

12.4 Iterative Decoding Algorithms

12.4.1 Overview

In addition to introducing LDPC codes in his seminal work in 1960 [1], Gallager also provided a decoding
algorithm that is typically near optimal. Since that time, other researchers have independently discovered
that algorithm and related algorithms, albeit sometimes for different applications [4, 30]. The algorithm
iteratively computes the distributions of variables in graph-based models and comes under different names,
depending on the context. These names include: the sum-product algorithm (SPA), the belief propagation
algorithm (BPA), and the message passing algorithm (MPA). The term “message passing” usually refers
to all such iterative algorithms, including the SPA (BPA) and its approximations.

Much like optimal (maximum a posteriori, MAP) symbol-by-symbol decoding of trellis codes, we are
interested in computing the a posteriori probability (APP) that a given bit in the transmitted codeword
c = [c0 c1 . . . cn−1] equals 1, given the received word y = [y0 y1 . . . yn−1]. Without loss of generality, let
us focus on the decoding of bit ci so that we are interested in computing the APP

Pr(ci = 1 | y)

or the APP ratio (also called the likelihood ratio, LR)

l(ci )
�= Pr(ci = 0 | y)

Pr(ci = 1 | y)

Later we will extend this to the more numerically stable computation of the log-APP ratio, also called the
log-likelihood ratio (LLR):

L (ci )
�= log

[
Pr(ci = 0 | y)

Pr(ci = 1 | y)

]

where here and in the sequel the natural logarithm is assumed.
The MPA for the computation of Pr(ci = 1 | y), l(ci ), or L (ci ) is an iterative algorithm which is based on

the code’s Tanner graph. Specifically, we imagine that the v-nodes represent processors of one type, c-nodes
represent processors of another type, and the edges represent message paths. In one half-iteration, each
v-node processes its input messages and passes its resulting output messages up to neighboring c-nodes
(two nodes are said to be neighbors if they are connected by an edge). This is depicted in Figure 12.3 for the
message m↑02 from v-node c0 to c-node f2 (the subscripted arrow indicates the direction of the message,
keeping in mind that our Tanner graph convention places c-nodes above v-nodes). The information
passed concerns Pr(c0 = b | input messages), b ∈ {0, 1}, the ratio of such probabilities, or the logarithm
of the ratio of such probabilities. Note in the figure that the information passed to c-node f2 is all the
information available to v-node c0 from the channel and through its neighbors, excluding c-node f2; that
is, only extrinsic information is passed. Such extrinsic information m↑ij is computed for each connected
v-node/c-node pair ci / f j at each half-iteration.

In the other half-iteration, each c-node processes its input messages and passes its resulting output
messages down to its neighboring v-nodes. This is depicted in Figure 12.4 for the message m↓04 from
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y0 (channel sample)

f0 f1 f2

c0

FIGURE 12.3 Subgraph of a Tanner graph corresponding to an H matrix whose zeroth column is [1 1 1 0 0 . . . 0]T .

The arrows indicate message passing from node c0 to node f2.

c0 c1 c2 c4

f0

FIGURE 12.4 Subgraph of a Tanner graph corresponding to an H matrix whose zeroth row is [1 1 1 0 1 0 0 . . . 0]T .

The arrows indicate message passing from node f0 to node c4.

c-node f0 down to v-node c4. The information passed concerns Pr(check equation f0 is satisfied | input
messages), the ratio of such probabilities, or the logarithm of the ratio of such probabilities. Note, as for
the previous case, only extrinsic information is passed to v-node c4. Such extrinsic information m↓ji is
computed for each connected c-node/v-node pair f j /ci at each half-iteration.

After a prescribed maximum number of iterations or after some stopping criterion has been met, the
decoder computes the APP, the LR or the LLR from which decisions on the bits ci are made. One example
stopping criterion is to stop iterating when ĉ H T = 0, where ĉ is a tentatively decoded codeword.

The MPA assumes that the messages passed are statistically independent throughout the decoding
process. When the yi are independent, this independence assumption would hold true if the Tanner graph
possessed no cycles. Further, the MPA would yield exact APPs (or LRs or LLRs, depending on the version
of the algorithm) in this case [30]. However, for a graph of girth γ , the independence assumption is only
true up to the γ /2th iteration, after which messages start to loop back on themselves in the graph’s various
cycles. Still, simulations have shown that the message passing algorithm is generally very effective provided
length-4 cycles are avoided. Lin et al. [19] showed that some configurations of length-four cycles are not
harmful. It was shown in [31] how the message-passing schedule described above and below (the so-called
flooding schedule) may be modified to mitigate the negative effects of short cycles.

In the remainder of this section we present the “probability domain” version of the SPA (which computes
APPs) and its log-domain version, the log-SPA (which computes LLRs), as well as certain approximations.
Our treatment considers the special cases of the binary erasure channel (BEC), the binary symmetric
channel (BSC), and the binary-input AWGN channel (BI-AWGNC).

12.4.2 Probability-Domain SPA Decoder

We start by introducing the following notation:

� Vj = {v-nodes connected to c-node f j }.
� Vj \i = {v-nodes connected to c-node f j }\{v-node ci }.
� Ci = {c-nodes connected to v-node ci }.
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� Ci \ j = {c-nodes connected to v-node ci }\{c-node f j }.
� Mv (∼i) ={messages from all v-nodes except node ci }.
� Mc (∼ j ) ={messages from all c-nodes except node f j }.
� Pi = Pr(ci = 1 | yi ).
� Si = event that the check equations involving ci are satisfied.
� qij(b) = Pr(ci = b | Si , yi , Mc (∼ j )), where b ∈ {0, 1}. For the APP algorithm presently un-

der consideration, m↑ij = qij(b); for the LR algorithm, m↑ij = qij(0)/qij(1); and for the LLR
algorithm, m↑ij = log[qij(0)/qij(1)].

� rji(b) =Pr(check equation f j is satisfied | ci = b, Mv (∼i)), where b ∈ {0, 1}. For the APP algorithm
presently under consideration, m↓ji = rji(b); for the LR algorithm, m↓ji = rji(0)/rji(1); and for the
LLR algorithm, m↓ji = log[rji(0)/rji(1)].

Note that the messages qij(b), while interpreted as probabilities here, are random variables (RVs) as
they are functions of the RVs yi and other messages which are themselves RVs. Similarly, by virtue of the
message passing algorithm, the messages rji(b) are RVs.

Consider now the form of qij(0) which, given our new notation and the independence assumption, we
may express as (see Figure 12.5)

qij(0) = Pr(ci = 0 | yi , Si , Mc (∼ j ))

= (1 − Pi ) Pr(Si | ci = 0, yi , Mc (∼ j ))/ Pr(Si )

= Kij(1 − Pi )
∏

j ′∈Ci \ j

r j ′i (0) (12.2)

where we used Bayes’ rule twice to obtain the second line and the independence assumption to obtain the
third line. Similarly,

qij(1) = Kij Pi

∏
j ′∈Ci \ j

r j ′i (1). (12.3)

The constants Kij are chosen to ensure that qij(0) + qij(1) = 1.
To develop an expression for the rji(b), we need the following result.

Result

(Gallager [1]) Consider a sequence of M independent binary digits ai for which Pr(ai = 1) = pi . Then
the probability that {ai }M

i=1 contains an even number of 1s is

1

2
+ 1

2

M∏
l=i

(1 − 2pi ) (12.4)

yi

qij(b)

fj

ci

rji(b)

FIGURE 12.5 Illustration of message passing half-iteration for the computation of qij(b).
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fj

rji(b)

ciqij(b)

FIGURE 12.6 Illustration of message passing half-iteration for the computation of rji(b).

Proof 12.1 Induction on M. ✷

In view of this result, together with the correspondence pi ↔ qij(1), we have (see Figure 12.6)

rji(0) = 1

2
+ 1

2

∏
i ′∈Vj \i

(1 − 2qi ′ j (1)) (12.5)

since, when ci = 0, the bits {ci ′ : i ′ ∈ Vj \i} must contain an even number of 1s in order for check equation
f j to be satisfied. Clearly,

rji(1) = 1 − rji(0) (12.6)

The MPA for the computation of the APPs is initialized by setting qij(b) = Pr(ci = b | yi ) for all i, j
for which hij = 1 (i.e., qij(1) = Pi and qij(0) = 1 − Pi ). Here, yi represents the channel symbol that was
actually received (i.e., it is a not variable here). We consider the following special cases.

BEC. In this case, yi ∈ {0, 1, E } where E is the erasure symbol, and we define δ = Pr(yi = E | ci = b)
to be the erasure probability. Then it is easy to see that

Pr(ci = b | yi ) =



1 when yi = b
0 when yi = bc

1/2 when yi = E

where bc represents the complement of b.
BSC. In this case, yi ∈ {0, 1} and we define ε = Pr(yi = bc | ci = b) to be the error probability. Then it

is obvious that

Pr(ci = b | yi ) =
{

1 − ε when yi = b
ε when yi = bc

BI-AWGNC. We first let xi = 1 − 2ci be the i th transmitted binary value; note xi = +1(−1) when
ci = 0(1). We shall use xi and ci interchangeably hereafter. Then the i th received sample is yi = xi + ni

where the ni are independent and normally distributed as η(0, σ 2). Then it is easy to show that

Pr(xi = x | yi ) = [1 + exp(−2yx/σ 2)]−1

where x ∈ {±1}.

12.4.2.1 Summary of the Probability-Domain SPA Decoder

1. For i = 0, 1, . . . , n − 1, set Pi = Pr(ci = 1 | yi ) where yi is the i th received channel symbol. Then
set qij(0) = 1 − Pi and qij(1) = Pi for all i, j for which hij = 1.

2. Update {rji(b)} using Equation 12.5 and Equation 12.6.
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3. Update {qji(b)} using Equation 12.2 and Equation 12.3. Solve for the constants Kij.
4. For i = 0, 1, . . . , n − 1, compute

Qi (0) = Ki (1 − Pi )
∏
j∈Ci

rji(0) (12.7)

and

Qi (1) = Ki Pi

∏
j∈Ci

rji(1) (12.8)

where the constants Ki are chosen to ensure that Qi (0) + Qi (1) = 1.

5. For i = 0, 1, . . . , n − 1, set

ĉ i =
{

1, if Qi (1) > Qi (0)
0, else

If ĉ H T = 0 or the number of iterations equals the maximum limit, stop; else, go to Step 2.

Remark 12.1 This algorithm has been presented for pedagogical clarity, but may be adjusted to optimize
the number of computations. For example, Step 4 may be computed before Step 3 and Step 3 may be replaced
with the simple division qij(b) = Kij Qi (b)/rji(b). We note also that, for good codes, this algorithm is
able to detect an uncorrected codeword with near-unity probability (Step 5), unlike turbo codes [4].

12.4.3 Log-Domain SPA Decoder

As with the probability-domain Viterbi and BCJR algorithms, the probability-domain SPA suffers
because multiplications are involved (additions are less costly to implement) and many multiplications
of probabilities are involved which could become numerically unstable. Thus, as with the Viterbi and
BCJR algorithms, a log-domain version of the SPA is to be preferred. To do so, we first define the
following LLRs:

L (ci ) = log

(
Pr(ci = 0 | yi )

Pr(ci = 1 | yi )

)

L (rji) = log

(
rji(0)

rji(1)

)

L (qij) = log

(
qij(0)

qij(1)

)

L (Qi ) = log

(
Qi (0)

Qi (1)

)

The initialization steps for the three channels under consideration thus become:

L (qij) = L (ci ) =



+∞, yi = 0
−∞, yi = 1

0, yi = E
(BEC) (12.9)

L (qij) = L (ci ) = (−1)yi log

(
1 − ε

ε

)
(BSC)

L (qij) = L (ci ) = 2yi /σ
2 (BI-AWGNC)
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For Step 1, we first replace rji(0) with 1 − rji(1) in Equation 12.6 and rearrange it to obtain

1 − 2rji(1) =
∏

i ′∈Vj \i

(1 − 2qi ′ j (1))

Now using the fact that tanh[ 1
2 log( p0/p1)] = p0 − p1 = 1 − 2 p1, we may rewrite the equation above as

tanh

(
1

2
L (rji)

)
=
∏

i ′∈Vj \i

tanh

(
1

2
L (qi ′ j )

)
(12.10)

The problem with these expressions is that we are still left with a product and the complex tanh function.
We can remedy this as follows [1]. First, factor L (qij) into its sign and magnitude:

L (qij) = αijβij

αij = sign[L (qij)]

βij = |L (qij)|

so that Equation 12.10 may be rewritten as

tanh

(
1

2
L (rji)

)
=
∏

i ′∈Vj \i

αi ′ j ·
∏

i ′∈Vj \i

tanh

(
1

2
βi ′ j

)

We then have

L (rji) =
∏

i ′
αi ′ j · 2 tanh−1

(∏
i ′

tanh

(
1

2
βi ′ j

))

=
∏

i ′
αi ′ j · 2 tanh−1 log−1 log

(∏
i ′

tanh

(
1

2
βi ′ j

))

=
∏

i ′
αi ′ j · 2 tanh−1 log−1

∑
i ′

log

(
tanh

(
1

2
βi ′ j

))

=
∏

i ′∈Vj \i

αi ′ j · φ


∑

i ′∈Vj \i

φ
(
βi ′ j

) (12.11)

where we have defined

φ (x) = − log[tanh(x/2)] = log

(
e x + 1

e x − 1

)

and used the fact that φ−1(x) = φ(x) when x > 0. The function is fairly well behaved, as shown in
Figure 12.7, and so may be implemented by a look-up table.

For Step 2, we simply divide Equation 12.2 by Equation 12.3 and take the logarithm of both sides to
obtain

L (qij) = L (ci ) +
∑

j ′∈Ci \ j

L (r j ′i ) (12.12)

Step 3 is similarly modified so that

L (Qi ) = L (ci ) +
∑
j∈Ci

L (rji) (12.13)
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FIGURE 12.7 Plot of the φ(x) function.

12.4.3.1 Summary of the Log-Domain SPA Decoder

1. For i = 0, 1, . . . , n − 1, initialize L (qij) according to Equation 12.9 for all i, j for which hij = 1.

2. Update {L (rji)} using Equation 12.11.
3. Update {L (qij)} using Equation 12.12.
4. Update {L (Qi )} using Equation 12.13.
5. For i = 0, 1, . . . , n − 1, set

ĉ i =
{

1, if L (Qi ) < 0
0, else

If ĉ H T = 0 or the number of iterations equals the maximum limit, stop; else, go to Step 2.

Remark 12.2 This algorithm can be simplified further for the BEC and BSC channels since the initial
LLRs (see Equation 12.9) are ternary in the first case and binary in the second case. See the discussion of
the min-sum decoder below.

12.4.4 Reduced Complexity Decoders

It should be clear from the above that the log-domain SPA algorithm has lower complexity and is more
numerically stable than the probability-domain SPA algorithm. We now present decoders of lower com-
plexity which often suffer only a little in terms of performance. The degradation is typically on the order
of 0.5 dB, but is a function of the code and the channel as demonstrated in the example below.
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12.4.4.1 The Min-Sum Decoder [32]

Consider the update Equation 12.11 for L (rji) in the log-domain decoder. Note from the shape of φ(x)
that the term corresponding to the smallest βij in the summation dominates, so that

φ

(∑
i ′

φ(βi ′ j )

)
� φ

(
φ

(
min

i ′
βi ′ j

))
= min

i ′∈Vj \i
βi ′ j

Thus, the min-sum algorithm is simply the log-domain SPA with Step 1 replaced by

L (rji) =
∏

i ′∈Vj \i

αi ′ j · min
i ′∈Vj \i

βi ′ j

It can also be shown that, in the BI-AWGNC case, the initialization L (qij) = 2yi /σ
2 may be replaced by

L (qij) = yi when the min-sum algorithm is employed. The advantage, of course, is that knowledge of the
noise power σ 2 is unnecessary in this case.

12.4.4.2 The Min-Sum-Plus-Correction-Factor Decoder [34]

Note that we can write

rji(b) = Pr


∑

i ′∈Vj \i

c i ′ = b(mod 2) | Mv (˜i)




so that L (rji) corresponds to the (conditional) LLR of a sum of binary RVs. Now consider the following
general result.

Result

(Hagenauer et al. [33]) Consider two independent binary RVs a1 and a2 with probabilities Pr(ai = b) =
pib , b ∈ {0, 1}, and LLR’s L i = L (ai ) = log( pi0/pi1). The LLR of the binary sum A2 = a1 ⊕ a2, defined
as

L (A2) = log

[
Pr(A2 = 0)

Pr(A2 = 1)

]

is given by

L (A2) = log

(
1 + e L 1+L 2

e L 1 + e L 2

)
(12.14)

Proof 12.2

L (A2) = log

(
Pr(a1 ⊕ a2 = 0)

Pr(a1 ⊕ a2 = 1)

)

= log

(
p10 p20 + p11 p21

p10 p21 + p11 p20)

)

= log

(
1 + p10

p11

p20

p21

p10

p11
+ p20

p21

)

= log

(
1 + e L 1+L 2

e L 1 + e L 2

)
✷
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If more than two independent binary RVs are involved (as is the case for rji(b)), then the LLR of the
sum of these RVs may be computed by repeated application of this result. For example, the LLR of A3 =
a1 ⊕ a2 ⊕ a3 may be computed via A3 = A2 ⊕ a3 and

L (A3) = log

(
1 + e L (A2)+L 3

e L (A2) + e L 3

)

As a shorthand [33], we will write L 1 + L 2 to denote the computation of L (A2) = L (a1 ⊕ a2) from L 1

and L 2; and L 1 + L 2 + L 3 to denote the computation of L (A3) = L (a1 ⊕ a2 ⊕ a3) from L 1, L 2, and L 3;
and so on for more variables.

We now define, for any pair of real numbers x , y,

max∗(x , y) = log (e x + e y) (12.15)

which may be shown [35] to be

max∗(x , y) = max(x , y) + log
(

1 + e−|x−y|) (12.16)

Observe from Equation 12.14 and Equation 12.15 that we may write

L 1 + L 2 = max∗(0, L 1 + L 2) − max∗(L 1, L 2) (12.17)

so that

L 1 + L 2 = max(0, L 1 + L 2) − max(L 1, L 2) + s (L 1, L 2) (12.18)

where s (x , y) is a so-called correction term given by

s (x , y) = log
(

1 + e−|x+y|)− log
(

1 + e−|x−y|)
It can be shown [34] that

max(0, L 1 + L 2) − max(L 1, L 2) = sign(L 1)sign(L 2) min(|L 1|, |L 2|)
so that

L 1 + L 2 = sign(L 1)sign(L 2) min(|L 1|, |L 2|) + s (L 1, L 2) (12.19)

which may be approximated as

L 1 + L 2 � sign(L 1)sign(L 2) min(|L 1|, |L 2|) (12.20)

since |s (x , y)| ≤ 0.693.

Returning to the computation of L (rji) which we said corresponds to the LLR of a sum of binary RVs,
under the independence assumption, we may write

L (rji) = L (q1 j ) + . . . L (qi−1, j ) + L (qi+1, j ) + . . . L (qnj )

This expression may be computed via repeated application of Result 2 together with Equation 12.18 (see [34]
for an efficient way of doing this). Observe that, if the approximation Equation 12.20 is employed, we have
the min-sum algorithm. At the cost of slightly greater complexity, performance can be enhanced by using
a slightly tighter approximation, by substituting s̃ (x , y) for s (x , y) in Equation 12.19 where [34]

s̃ (x , y) =



c if |x + y| < 2 and |x − y| > 2 |x + y|
−c if |x − y| < 2 and |x + y| > 2 |x − y|
0 otherwise

and where c on the order of 0.5 is typical.
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Example 12.2

We consider two regular Euclidean geometry (EG) LDPC codes and their performance with the three
decoders discussed above: the (log-)SPA, the min sum, and the min sum with a correction factor (which
we denote by min-sum-c , with c set to 0.5). The first code is a cyclic rate-0.82 (4095, 3367) EG LPDC
code with minimum distance bound dmin ≥ 65. Because the code is cyclic, it may be implemented using a
shift-register circuit. The H matrix for this code is a 4095 × 4095 circulant matrix with row and column
weight 64. The second code is a (generalized) quasi-cyclic rate-0.875 (8176, 7156) EG LDPC code. Because
it is quasi-cyclic, encoding may be performed using several shift-register circuits. The H matrix for this
code is 1022 × 8176 and has column weight 4 and row weight 32. It comprises eight 511 × 2044 circulant
submatrices, each with column weight 2 and row weight 8. These codes are being considered for CCSDS
standardization for application to satellite communications [37] (see also [16, 17, 19]).

The performance of these codes for the three decoders on a BI-AWGNC is presented in Figure 12.8 and
Figure 12.9. We make the following observations (all measurements are with respect to a BER of 10−5).

� The length-4095 code is 1.6 dB away from the rate-0.82 BI-AWGNC capacity limit. The length-8176
code is closer to its capacity limit, only 0.9 dB away. Regular LDPC codes of these lengths might
be designed which are a bit closer to their respective capacity limits, but one would have to resort
to irregular LDPC codes to realize substantial gains. Of course, an irregular LDPC code would in
general require a more complex encoder.

� For the length-4095 code, the loss relative to the SPA decoder suffered by the min-sum decoder is
1.1 dB and the loss suffered by the min-sum-c decoder is 0.5 dB. For the length-8176 code, these
losses are 0.3 and 0.01 dB, respectively. We attribute the large losses for the length-4095 code to the
fact that its decoder relies on an H matrix with weight-64 rows. Thus, a minimum among 64 small
nonnegative numbers is taken at each check node in the code’s Tanner graph, so that a value near
zero is usually produced and passed to a neighboring variable node.
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FIGURE 12.8 Performance of a cyclic EG(4095, 3367) LDPC code on a binary-input AWGN channel and three
decoding algorithms.
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FIGURE 12.9 Performance of a quasi-cyclic EG(8176, 7156) LDPC code on a binary-input AWGN channel and three
decoding algorithms.

12.5 Concluding Remarks

Low-density parity-check codes are being studied for a large variety of applications, much as turbo codes,
trellis codes, and other codes were when they were first introduced to the coding community. As indicated
above, LDPC codes are capable of near-capacity performance while admitting an implementable decoder.
Among the advantages LDPC codes have over turbo codes are: (1) They allow a parallelizable decoder; (2)
They are more amenable to high code rates; (3) They generally possess a lower error-rate floor (for the
same length and rate); (4) They possess superior performance in bursts (due to interference, fading, and
so on), (5) They require no interleavers in the encoder and decoder; and (6) A single LDPC code can be
universally good over a collection of channels [36]. Among their disadvantages are: (1) Most LDPC codes
have somewhat complex encoders, (2) The connectivity among the decoder component processors can be
large and unwieldy; and (3) Turbo codes can often perform better when the code length is short. It is easy
to find in the literature many of the applications being explored for LPDC codes, including application to
deep space and satellite communications, wireless (single and multi-antenna) communications, magnetic
storage, and internet packet transmission.
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13.1 Introduction

The breakthrough of turbo codes [1] and low-density parity check codes [11, 37] has revolutionized the
coding research with several new concepts, among which code concatenation and iterative decoding are
being actively exploited both for wireless communications and future digital magnetic recording systems.
After being precoded, filtered and equalized to some simple partial response (PR) target, the magnetic
recording channel appears much like an intersymbol interference (ISI) channel to an outer code and,
hence, many of the techniques used in concatenated coding can be adopted. In particular, the observation
that an ISI channel can be effectively viewed as a rate-1 convolutional code leads to the natural format of a
serial concatenated system where the ISI channel is considered as the inner code and the error correction
code (ECC) as the outer code. With reasonable complexity, iterative decoding and equalization (IDE), or
turbo equalization, can be used to obtain good performance gains.

13-1
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It has been shown by many that turbo codes (based on punctured recursive systematic convolutional
codes) and LDPC codes can provide 4-5 dB of coding gain over uncoded systems at bit error rates (BER)
of around 10−5 or 10−6 [2–5], [6–10]. Since magnetic recording applications require BERs in the order
of 10−15 and since turbo and LDPC codes (as well as many other codes) would have already hit an error
floor well before they reach this point, significant coding gains cannot be guaranteed. An effective remedy
is to wrap a t-error correcting Reed-Solomon error correction code (RS-ECC) on top of these codes to
clear up the residue errors. In this set-up, it is important that the output of the LDPC or turbo decoder
(or other ECC codes) do not contain more than t byte errors that may cause the RS-ECC decoder to
fail.

Due to the high decoding complexity of turbo codes, current research focuses on lower complexity
solutions that are easily implementable in hardware. It has been recognized that very simple (almost
useless) component codes can result in an overall powerful code when properly concatenated using random
interleavers. Of particular interest is single-parity check codes due to their intrinsic high rates and the
availability of a simple and optimal soft decoder. Researchers have applied single-parity check codes
directly onto recording channels [32] as well as using them to construct a variety of well-performing codes
including LDPC codes, block turbo codes (BTC) (e.g., [14, 20, 29]), multiple-branch turbo codes [17, 18],
and concatenated tree (CT) codes [42].

In this work, we propose and study concatenated SPC codes for use in PR recording channels. Two
constructions are considered: the first in the form of turbo codes where two branches of SPC codes are
concatenated using a random interleaver, and the other in the form of product codes where arrays of SPC
codewords are lined up in a multidimensional fashion. We denote the former as turbo/SPC scheme and
the latter TPC/SPC scheme, that is, single parity check turbo product codes1 [7, 19].

We undertake a comprehensive study of the properties of concatenated SPC codes and their applicability
to PR recording channels, and highlight new results of this application. The fact that SPC codes are
intrinsically very weak codes and that turbo/SPC and TPC/SPC codes are generally worse than LDPC
codes on additive white Gaussian noise (AWGN) channels tend to indicate their inferiority on PR channels
also. However, our studies show that, when several codewords are combined to form a larger effective block
size and when the PR channel is properly precoded, concatenated SPC codes are capable of achieving large
coding gains just as LDPC codes, but with less complexity2.

Theoretical analysis is first conducted to explain the well-known spectral thinning phenomenon and
to quantify the interleaving gain. Next, we compute the thresholds for iterative decoding of concatenated
SPC codes using density evolution (DE) [21–24] to cast insight into the asymptotic performance limit of
such schemes. Finally, we study the distribution of errors at the output of the decoder (i.e., at the input to
the RS-ECC decoder) and show that concatenated SPC codes have an error distribution more favorable
than that of LDPC codes in the presence of an outer RS-ECC code.

The paper proceeds as follows. Section 13.2 presents the PR system model, followed by a brief
introduction to the turbo/SPC and TPC/SPC concatenated schemes. Section 13.3 conducts distance
spectrum analysis and Section 13.4 computes the iterative thresholds. Section 13.5 presents the simu-
lation results, which include bit error rate and bit/byte error statistics, and compares them with that of
(random) LDPC codes. Finally, Section 13.6 concludes the paper with a discussion of future work in
this area.

1Single parity check turbo product codes are also termed as array codes in [20] and hyper codes in [29].
2Randomly constructed LDPC codes typically have quadratic encoding complexity in the length N of the code

(O(N2)). It has been shown that several greedy algorithms can be applied to triangulate matrices (preprocessing) to
reduce encoding complexity, but the complexity of preprocessing may be as much as O(N3/2) [16]. Further, with the
exception of a few LDPC codes that have cyclic or quasi-cyclic structures (mostly from combinatorial or geometric
designs, see for examples [15]), large memory is generally required (for storage of generator and/or parity check
matrices), which is a big concern in hardware implementation.
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13.2 System Model

13.2.1 System Model

The digital recording channel is modeled as a L -tap ISI channel, where the channel impulse response is
assumed to be a partial response polynomial with AWGN:

rk =
∑L−1

i=0
hi xk−i + nk (13.1)

where xi , yi , hi and ni are transmitted symbols, received symbols, channel response and AWGN, respec-
tively. Specifically, we focus on the PR4 channel with channel response polynomial H(D) = 1 − D2 and
the EPR4 channel with H(D) = (1 − D2)(1 + D).

The overall system model is presented in Figure 13.1. Conforming to the set-up of the current and
immediate future recording systems, we use a Reed-Solomon code as the outer wrap (referred to as RS-
ECC) to clear up the residue errors. The data is first encoded using an RS-ECC and then the concatenated
SPC code (either the turbo/SPC scheme or the TPC/SPC scheme) which we refer to as the outer code.
The precoded ISI channel is treated as the inner code. The random interleaver between the outer and
inner code works to break the correlation among neighboring bits, to eliminate error bursts, and (in
conjunction with the precoder) to improve the overall distance spectrum by mapping low-weight error
events to high-weight ones (the so-called spectrum thinning phenomenon). We call this interleaver the
“channel interleaver” to differentiate it with the “code interleaver” in the outer code (i.e., the concatenated
SPC code). The outer code, the inner code and the channel interleaver together form a serial concatenated
system, where turbo equalization can be exploited to iterate soft information between the outer decoder
and the inner decoder/equalizer, and then feed the hard decision decoding to the RS-ECC code.

13.2.2 Concatenated SPC Codes

Magnetic recording systems require a high code rate R since for recording systems code rate loss (in dB)
is in the order of 10 log10(R2) rather than 10 log10(R) as in an AWGN channel [27]. Hence, we consider
only high-rate codes, that is, 2-branch turbo/SPC codes or 2-dimensional TPC/SPC codes.

Turbo/SPC codes: The turbo/SPC code comprises two parallel branches of (t + 1, t) SPC codes and a
random interleaver (Figure 13.2(a)). It should be noted that the interleaver between the parallel branches
is of size K = P t, that is, P blocks of data bits are taken and interleaved together before being encoded
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decoder
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FIGURE 13.1 System model of concatenated SPC codes on (precoded) PR channels.
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FIGURE 13.2 (a) Structure of a turbo/SPC code. (b) Structure of a 2-dimensional TPC/SPC code.

by the second branch. As we will show later, such combination of P blocks is essential in achieving the
interleaving gain. Since the (interleaved) systematic bits are not transmitted in the second branch, the
turbo/SPC code we consider is of parameters (N, K , R) = (P (t + 2), P t, t/(t + 2)).

TPC/SPC codes: Another way of concatenating SPC codes is to take the form of product codes. A product
code is formed by multidimensional arrays of codewords from linear block codes, where the codeword
length, the user data block size, and the minimum distance of the overall code are the product of those of
the component codes, respectively [12–14]. When the decoder takes an iterative (i.e. turbo) approach as
is typically the case, product codes are also called turbo product codes (TPC) or block turbo codes. We
consider 2-dimensional TPC/SPC codes whose code structure is illustrated in Figure 13.2(b). It is worth
mentioning that, for the same reason that we combine SPC codewords in the turbo/SPC scheme, several
blocks of TPC/SPC codewords will also be combined to form a larger effective block size before passing
to the channel interleaver (see Figure 13.1). The resulting TPC/SPC scheme has parameters (N, K , R) =
(Q(t +1)2, Qt2, t2/(t +1)2) [7, 9, 19] and it may also appear in the paper as a Q(t +1, t)2 TPC/SPC code.

It is interesting to note that the two schemes, although different in lengths and rates, bear structural
similarities. Depending on whether it has “parity-on-parity” bits or not, a TPC/SPC code can be either
viewed as a serial or parallel concatenation where a linear block interleaver is used between the component
codes. It is also worth noting that, from the graph-based point of view, both concatenated SPC schemes can
be viewed as special types of LDPC codes where each SPC codeword satisfies a check. The equivalent LDPC
code for the turbo/SPC scheme has a variable-node degree profile λ(x) = 1

t+1 + t
t+1 x and a check-node

degree profile ρ(x) = xt , that for the TPC/SPC code has a variable node degree profile λ(x) = x and a
check node degree profile ρ(x) = xt , where the coefficient of the term x j denotes the portion of edges
connecting to nodes of degree j +1 [22]. The encoding of these codes involves adding a single parity check
bit in each SPC code, and hence is extremely simple and a dense generator matrix need not be explicitly
stored as for random LDPC codes.

13.2.3 Iterative Decoding and Equalization

Since an overall maximum likelihood (ML) decoding and equalization of the coded PR system is pro-
hibitively complex, the practical yet effective way, is to use turbo equalization to iterate soft extrinsic
information (in the form of log-likelihood ratio or LLR) between the inner decoder/equalizer and the
outer decoder. From the coding theory, we know that the inner code needs to be recursive in order for a
serial concatenated system to achieve interleaving gain. The PR channel alone can be viewed as a rate-1
binary input real-valued output nonrecursive convolutional code. When a binary precoder is properly
placed before the PR channel, the combination of the precoder and the channel becomes a recursive code
that can be jointly equalized/decoded using maximum a posteriori probability (APP) decoding or the
BCJR algorithm [25]. As long as the memory size of the precoder is not larger than that of the PR channel,
no additional decoding complexity is introduced by the precoder.

The decoder of the outer concatenated SPC code performs the soft-in soft-out (SISO) message-passing
decoding based on component SPC codes. We use l to denote the number of local iterations within the
outer decoder (before LLRs are passed to the inner decoder for the next round of global iteration).
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TABLE 13.1 Decoding Complexity in Terms of Number of Operations
per Coded Bit per Iteration

Operations Turbo/SPC TPC/SPC LDPC BCJR

Addition d
(

3 − 1
t+1

)
d
(

3 − 1
t+1

)
4s 15 · 2m + 9

Min/max 5 · 2m − 2
Table lookup 2d 2d 2s 5 · 2m − 2

d-number of branches of the turbo/SPC code or dimensionality of the TPC/SPC
code; t-parameter of the component SPC code (t + 1, t); s -average column weight of
the LDPC code; m-memory size of the convolutional code.

For a (t + 1, t) SPC code with a1 ⊕ a2 ⊕ · · · ⊕ at+1 = 0, where ⊕ denotes the binary addition, the soft
extrinsic information of bit ai can be obtained from all other bits in the SPC codes as

L e (ai ) = 2 tanh−1

(
t+1∏

j=1, j �=i

tanh
L a (a j )

2

)
i = 1, 2, . . . , t + 1 (13.2)

where L a stands for the a priori LLR value and L e the extrinsic LLR value, and tanh(·) is the hyper tangent
function. This is known as the tanh rule decoding of SPC codes.

Since turbo/SPC and TPC/SPC schemes can be viewed as special types of LDPC codes, the same LDPC
decoder can be used where all checks are decoded and updated simultaneously. However, below we discuss
a slightly different approach, where checks are grouped into two groups (corresponding to upper/lower
branches or to row/column component codes) and updated alternatively. This “serial” update is expected
to converge a little faster than the “parallel” update.

The turbo/SPC decoder operates much like that of the turbo (convolutional) code. Each branch-decoder
takes the extrinsic LLRs from the other branch, adds it to that from the equivalent channel (i.e., the inner
code) to form the a priori LLR, and uses Equation 13.2 to compute new extrinsic LLRs to be passed to the
other branch for use in the subsequent decoding iterations. After l (local) iterations, the extrinsic LLRs
from both branches are added together and passed to the inner code. The TPC/SPC code can be iteratively
decoded in a similar manner. Detailed discussion and pseudo-code of the message-passing TPC/SPC
decoder can be found in [7, 9].

Table 13.1 compares the complexity of turbo/SPC, TPC/SPC, conventional LDPC (for comparison)
and log-domain BCJR decoders (for the channel decoder/equalizer). It is assumed that multiplications are
converted to additions in the log-domain [28], and that log(tanh( x

2 )) and its reverse function 2 tanh−1(e x )
are implemented through table lookups. We see that the decoding algorithms for the turbo/SPC and
TPC/SPC code require about 2/3 the complexity and about 1/3 the storage space of that for a regular
column-weight-3 LDPC code in each decoding iteration.

13.3 Analysis of Distance Spectrum

Despite their similarities in decoding algorithms, turbo/SPC and TPC/SPC codes have very different
distance spectra from random LDPC codes. For example, the minimum distance of a randomly-constructed
regular LDPC code of column weight ≥ 3 will, with high probability, increase linearly with block length
N (for large N). However, the minimum distance of a 2-dimensional TPC/SPC code is fixed to dm = 4
regardless of block lengths and that of turbo/SPC codes in the worst-case scenario is dm = 2. This partially
explains why they perform noticeably worse than conventional LDPC codes on AWGN channels. However,
on (precoded) ISI channels where iterative decoding and equalization is deployed, these codes perform on
par with LDPC codes due to the interleaving gain [7].

Before proceeding to discussion, we first note the results of [30, 31] which state that, for a serially
concatenated system with a recursive inner code, there exists an SNR threshold γ such that for any
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E b/No ≥ γ , the asymptotic word error rate (WER) is upper bounded by:

P U B
w = O


N

−
⌊

d
(o)
m −1

2

⌋
 (13.3)

where N is the interleaver size and d (o)
m the minimum distance of the outer code. This suggests that (i)

the outer code needs to have dm ≥ 3 in order to achieve the interleaving gain, and (ii) interleaving gain is
attainable when d (o)

m ≥ 3 (and the inner code is recursive). While these serve as a quick and general guideline,
caution needs to be exercised in extrapolating the result. Specifically, we will discuss two interesting results
with the concatenated SPC system3. First, although a TPC/SPC system has d (o)

m = 4 ≥ 3, interleaving
gain is not obtainable unless multiple TPC/SPC codewords are combined before passing to the channel
interleaver (i.e., Q ≥ 2). Second, although the ensemble of turbo/SPC systems has d (o)

m = 2 < 3 (worst
case), interleaving gain still exists so long as multiple SPC codewords are grouped in each branch (P ≥ 2).
Hence, while the concatenated SPC codes we consider in this work are not “good” codes by themselves4,
the combination of these codes with a precoded ISI channel become “good” codes due to spectral thinning.

13.3.1 Distance Properties of TPC/SPC Coded PR Systems

For ease of proposition, we use the precoded PR4 channel with channel response H(D) = 1−D2

1⊕D2 as an
example to quantify the interleaving gain of the TPC/SPC system. The result can be generalized to any ISI
channel.

We first introduce some notations that will be used here and in the analysis of turbo/SPC systems.
Let Aw ,h denote the input-output weight enumerator (IOWE) of a binary code, which enumerates the
number of codewords with input Hamming weight w and output Hamming weight h, and Ah the output
weight enumerator (OWE) where Ah = ∑

w Aw ,h . Similar notations, Aw ,dE and AdE , are used with the
ISI channel, where dE stands for the (output) Euclidean distance.

We consider an TPC/SPC system with parameters (N, K , R) = (Q(t + 1)2, Qt2, t2/(t + 1)2), where
each “codeword” of (effective) length N is composed of Q TPC/SPC codewords of length (t + 1)2 each.
To argue that TPC/SPC codes are capable of interleaving gain on precoded PR channels, we need to show
that the average OWE of the TPC/SPC system, ATPC/SPC

dE
, decreases with interleaver size for small dE , thus

providing a reduction in error rate. Using the ideas in [30, 32, 33] and assuming a uniform interleaver, we
have the average OWE given by:

ATPS/SPC
dE

=
N∑

l=4
l even

Ao
l × Ai

l ,dE(
N
l

) (13.4)

The sum of the series starts with l = 4 because TPC/SPC code has dm = 4 and only even terms are considered
because all codewords of the TPC/SPC code have even weights. Since a precoded PR channel is in general a
nonregular convolutional code, the all-zeros sequence cannot be treated as the reference codeword. Since it
is computationally prohibitive to perform an exact analysis of the full compound of error events pertaining
to the inner code (i.e., A(i)

l ,dE
) [35], we take a similar approach developed in [7, 32], and assume that the

input to the inner code are independent and identically distributed (i.i.d.) sequences of {0, 1}N . It then
follows that the equivalent trellis corresponding to odd/even bits of the precoded PR4 channel takes the
form as in Figure 13.3.

3We use “system” to denote the concatenation of an outer code with the (precoded) ISI channel, and “scheme” or
“code” to denote the outer code only.

4A “good” code as defined in [37] is a code that possesses a SNR threshold such that when the channel is better than
this threshold, the code can achieve arbitrarily small error probability as the block size goes to infinity.
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state 1 1

state 0 0
0/0

0/0
1/−2

1/+2

XD4XD4
E0 E1 E2

1/2(1+D)16

FIGURE 13.3 The equivalent trellis for even/odd bits of a precoded PR4 channel with response H(D) = 1−D2

1⊕D2 . Left:
trellis; right: state diagram.

Following similar derivations as in [33], the average error enumerating function with a uniform inter-
leaver is computed as

T(X, Y ) = X2Y 8

1 − 1
2 (1 + Y 16)

= X2Y 8

[(
1 + 1

2
+ 1

22
+ · · ·

)
+ Y 16

(
1

2
+ 2

22
+ 3

23
+ · · ·

)
+ O(Y 32)

]

= X2Y 8[2 + 2Y 16 + O(Y 32)] (13.5)

where the exponent of X is the Hamming distance between the error sequence and the i.i.d. reference
sequence at the input, and the exponent of Y is the corresponding squared Euclidean distance at the
output. The fractional terms in the branch weight enumerator such as 1/2(1 + Y 16) (Figure 13.3) are a
direct consequence of the assumption that the input corresponding to that branch can be a 0 or 1 with
equal probability [7, 37].

Several things can be observed from the transfer function (Equation 13.5). First, the i.i.d. input error
sequence (i.e., without an outer TPC/SPC code) always has input weight 2 for the precoded PR4 channel,
since every term in Equation 13.5 corresponds to X2. Second, any input error sequence of the form 1+ D2 j

results in an error event, and j = 1 results in the minimum Euclidean distance (among all such error
events) which is 8. Third, every finite weight codeword is the concatenation of k weight-2 input error
events for some integer k [7]. For large value of N, let TN(X2k , Y ) denote the truncated weight enumerator
truncated to length N, where each error event results from the joint effect of k input error sequences each
of weight 2. Hence,

TN(X2k , Y ) ∝
(

N

k

)
X2kY 8k[2 + 2Y 16 + O(Y 32)]k (13.6)

since there are approximately
(

N
k

)
ways to arrange k error events in a block of length N. For the least

nonzero l in the TPC/SPC system, namely l = 4 (i.e., k = 2 in Equation 13.6), we have Ai
l=4,dE =4 ≈ 4( N

2 ),

and Ao
l=4 ≈ Q[

√
N/Q
2

]2, (there are [(
√

N/Q
2

)]2 ways in which we can arrange a block of weight 4 within
a single TPC/SPC block and there are Q blocks in a codeword of length N.) Substituting them into
(Equation 13.4) and using the approximation

(
N
n

) ≈ Nn/n! for large N, we have

Ac
dE =4 ∝

N2

Q · N2

N4
∝ Q−1 (13.7)

Clearly, Equation 13.7 states that the reduction in word error rate is proportional to the number of blocks
Q of the TPC/SPC that form a codeword, rather than N as what would be expected from Equation 13.3.
This implies that a single TPC/SPC codeword (Q = 1), however long it is, does not get additional gain due
to the length of the code. This is important for finite-length block sizes, since the achievable interleaving
gain is limited to the number of blocks of the outer TPC/SPC codewords that are combined and interleaved.
Although we have only discussed the error event corresponding to the least nonzero l (i.e., l = 4), it can
be shown that for other values of small l , similar arguments hold.
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To handle a general ISI channel, it is convenient to consider the precoder separately from the channel.
That is, we treat the concatenation of the TPC/SPC and the precoder as a code whose codewords are
passed through the ISI channel. Since the interleaving gain is dependent only on the recursive nature of the
inner code, an interleaving gain will result regardless of the type of ISI channel. This idea will be further
explained in the analysis of turbo/SPC systems.

13.3.2 Distance Properties of Turbo/SPC Coded PR Systems

In this subsection, we show that although the minimum distance of the ensemble turbo/SPC codes (with
random interleavers5) is only 2, an interleaving gain still exists. Here we take a different approach from
what we did with the TPC/SPC system, namely, we separate the precoder from the ISI channel, and argue
that the combination of the binary precoder (i.e., recursive inner code) and the turbo/SPC code (outer
code) results in an interleaving gain, irrespective of what ISI channel follows. This approach obviates the
trouble of handling nonregular inner code, and the all-zeros sequence can therefore be used as the reference
(for the serial concatenation of the turbo/SPC code and the precoder). For simplicity, we take the precoder
1/(1 ⊕ D) as an example.

First, it is easy to show, as can also be inferred from Equation 13.3, that outer codewords of weight 3 or
more will lead to an interleaver gain. Hence we focus the investigation on weight-2 outer codewords only,
and show that the number of these codewords vanishes as P increases, where P is the number of SPC
blocks combined in each branch.

Let A( j )
w ,h , j = 1, 2, denote the IOWE of the jth SPC branch code that is parallelly concatenated in the

outer code. The IOWE of the turbo/SPC codewords, A(o)
w ,h , averaged over the code ensemble is given by:

A(o)
w ,h =

∑
h1

A(1)
w ,h1

A(2)
w ,h−h1(

K
w

) (13.8)

where K = Pt is the input sequence length.
In each branch where P blocks of (t + 1, t) SPC codewords are combined, the IOWE function is given

by (assuming even parity check):

ASPC(w , h) =
(

1 +
(

t

1

)
wh2 +

(
t

2

)
w 2h2 +

(
t

3

)
w 3h4 + · · · +

(
t

t

)
w t h2�t/2�

)P

=
(

t∑
j=0

(
t

j

)
w j h2� j/2�

)P

(13.9)

where the coefficient of the term w uhv denotes the number of codewords with input weight u and output
weight v . From the coefficients of Equation 13.9, we can obtain the IOWEs of the first SPC branch code:
A(1)

u,v = ASPC
u,v . For the second SPC branch, since only parity bits are transmitted, A(2)

u,v = A(1)
u,v+u .

With a little computation, it is easy to show that the number of weight-2 outer codewords is given by

A(o)
h=2 =

∑
w

A(o)
w ,h=2 = P

(
t

2

)(
P
(

t
2

)
(

P t
2

)
)

= O(t2) (13.10)

where the last equation assumes a large P (i.e., a large block size). Equation 13.10 indicates that the number
of weight-2 outer codewords is a function of a single parameter t, which is related only to the rate of SPC
codes and not the block length. Now consider the serial concatenation of the outer codewords with the

5If S-random interleavers are used such that bits within S distance are mapped to at least S distance apart, then the
outer codewords are guaranteed to have a minimum distance of at least 3 as long as S ≥ t.
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inner recursive precoder. The ensemble average OWE of the turbo/SPC system, Aturbo/SPC
h , can thus be

computed as:

Aturbo/SPC
h =

∑
h′

A(o)
h′

A(i)
h′ ,h(
N
h′
) =

∑
h′

∑
w

A(o)
w ,h′

A1/(1⊕D)
h′ ,h(

N
h′
) (13.11)

where the IOWE of the 1/(1 ⊕ D) precoder is given by [31, 40]:

A1/(1⊕D)
w ,h =

(
N − h

�w/2�
)(

h − 1

�w/2� − 1

)
(13.12)

Substituting Equation 13.10 and Equation 13.12 in Equation 13.11, we get the number of weight-s
codewords (for small-s ) produced by weight-2 outer codewords (i.e., h′ = 2), denoted as Aturbo/SPC:2

h=s , is
given as

Aturbo/SPC:2
h=s = (t − 1)2

2

N − s(
N
2

) = O(t P −1) (13.13)

where N = P (t + 2) is the length of the overall codeword (or the channel interleaver size). This indicates
that the number of small weight s codewords of the overall system due to weight-2 outer codewords
(which are caused by weight-2 input data sequences) vanishes as P increases. When the input weight is
greater than 2, the outer codeword always has weight greater than 2 and, hence, an interleaving gain can
be guaranteed. Hence, an interleaving gain exists for turbo/SPC systems and it is proportional to P .

It is also worth noting that the system model we considered above, namely, the combination of an outer
concatenated SPC code and an inner 1/(1⊕ D) code, essentially forms a product accumulate code, which is
shown to be a class of high-performance, low-complexity, high-rate “good” codes [38, 40]. Hence, depend-
ing on different view-stands, the coded ISI systems we discuss in this work can either be viewed as concate-
nated SPC codes on precoded ISI channels or product accumulate codes on non-precoded ISI channels.

13.4 Thresholds Analysis using Density Evolution

13.4.1 Introduction to Density Evolution and Gaussian Approximation

Distance spectrum analysis shows that both turbo/SPC and TPC/SPC systems possess good distance spectra
and that interleaving gain is achievable for both systems. However, since the analysis assumes a maximum
likelihood decoder which differs from the practical iterative decoder, it would be more convincing to
account for the suboptimality of iterative decoding in the analysis. Such analysis is possible using the
recently developed technique of density evolution [21–24].

Introduced for the analysis of LDPC codes, density evolution unveiled an SNR threshold effect for LDPC
codes in that error rate goes to zero when the channel is better than this threshold and that the error rate
is bounded away from zero otherwise [21–24]. This threshold clearly marks the performance limit we
can expect with the existing suboptimal decoder. Interestingly, the same threshold effect also presents in
turbo/SPC and TPC/SPC systems and, hence, the same DE treatment can be used for capacity analysis.
However, certain modifications are required.

Due to the space limitation, we go through the critical points in the application of density evolution to
turbo/SPC and TPC/SPC systems. Detailed discussion on density evolution and its application to a variety
of systems can be found in [21–24] [7].

13.4.2 Problem Formulation

Consider a unified architecture where the precoded PR channel is modeled as an inner rate-1 recursive
convolutional code, and the outer code is either a turbo/SPC or TPC/SPC code. A turbo equalizer iterates
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extrinsic LLR information, denoted as L (q)
i (a j ) and L (q)

o (a j ), between the inner and outer decoders, where
subscript i and o denote the quantities associated with the inner and outer codes, respectively. Assuming
infinite length and perfect interleaving, the LLR messages are approximated as i.i.d. random variables. Dur-
ing the qth iteration, the outer message-passing decoder generates extrinsic information on the jth coded bit
a j , denoted by L (q)

o (a j ), and passes it to the inner decoder. The inner MAP decoder then uses this extrinsic

information (treat as a priori) with the received signal and generates extrinsic information, L (q+1)
i (a j ).

The idea in density evolution is to examine the probability density function (pdf) of L (q)
o (a j ) during

the qth iteration, denoted by fL o
(q) (x | a j ). For infinite lengths and perfect interleaving, these random

variables are i.i.d. Hence, we drop the dependence on j . If the sign of (sign(a) · L (q)
o (a)) is positive, then the

decoding algorithm has converged to the correct codeword. The probability that sign(a) · L (q)
o (a) < 0 is

Pr(sign(a) · L (q)
o (a) < 0)

= Pr(a = +1)

∫ 0

−∞
fL o

(q) (x | a = +1) dx + Pr(a = −1)

∫ ∞

0

fL o
(q) (x | a = −1) dx (13.14)

The key is to find the critical SNR value, or the threshold of the system, such that

γ = inf
SNR

{
SNR : lim

q→∞
lim

N→∞
Pr
(

sign(a) · L o
(q)(a) < 0

)→ 0

}
(13.15)

where N denotes the block size.
Since it is quite difficult to analytically evaluate fL (q)

o
(x) for all q , simplification can be made by ap-

proximating fL (q)
o

(x) to be Gaussian (or Gaussian mixture). This is what is used by Wiberg et al. [34],
Chung et al. [22], El Gamal et al. [36], and many others to analyze concatenated codes. Further, Richard-
son and Urbanke have shown that, for binary input, output symmetric channels, a consistency con-
dition is preserved under density evolution for all messages, such that the pdf ’s satisfy the condition
fL o

(q) (x) = fL o
(q) (−x) · e x [21]. Imposing this constraint to the approximate Gaussian densities at every

step leads to (σ (q)
o )2 = 2m(q)

o , that is, the variance of the message density equals twice the mean. Under
i.i.d. and Gaussian assumptions, the mean of the messages, m(q)

o then serves as the sufficient statistics of
the message density. The problem thus reduces to:

γ = inf
SNR

{
SNR : lim

q→∞
lim

N→∞
sign(a)m(q)

o (x | a) → ∞
}

(13.16)

To solve the problem formulated in Equation 13.16, we need to examine the message flow within the
outer decoder, the inner decoder as well as between the two. In general, we need to evaluate m(q)

o as a

function of m(q)
i and vice versa.

13.4.3 Message Flow Within the Inner MAP Decoder

Since it is not straight-forward to derive m(q+1)
i as a function of m(q)

o for the inner MAP decoder, Monte

Carlo simulation is used to determine a relationship between m(q+1)
i and m(q)

o . This process is denoted as

m(q)
i = F(m(q−1)

o ) (13.17)

where the mean of the message m(q)
i is evaluated at the output of the inner MAP decoder given the input

a priori information is independent and Gaussian with mean ±m(q−1)
o and variance 2m(q−1)

o .6 Detailed
discussion of Monte Carlo simulation technique for computing γi can be found, for example, in [26].

6Again, due to the nonlinearity of the ISI channel, a sequence of i.i.d. bits are used as the transmitted data.
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13.4.4 Message Flow Within the Outer Code

Below we discuss how to compute m(q)
o as a function of m(q)

i for outer concatenated SPC codes. Since both
turbo/SPC and TPC/SPC codes can be viewed as special types of LDPC codes, we start with LDPC codes
to pinpoint the key steps, and then move onto turbo/SPC and TPC/SPC codes.

Irregular LDPC codes: Both turbo equalization and LDPC decoding are iterative processes. Let us use
superscript (q , l) to denote quantities during the qth (global) iteration of turbo equalization and lth (local)
iteration within the LDPC decoder. For irregular LDPC codes with bit-node and check-node degree profiles

λ(x) =∑k λk xk−1 and ρ(x) =∑ j ρ j x j−1, the code rate is given by R = 1 −
∑

k
λk/k∑

j
ρ j /j

. Message flow on

the code graph is a two-way procedure that composes of bit updates and check updates, which correspond
to summation in the real domain and the so-called check-sum operation or tanh rule, respectively. [9, 22,
23]. After L local iterations of message exchange, the message passed over to the inner MAP decoder is the
LLR of the bit in the L th iteration after subtracting L (q)

i which was obtained from the inner code and was
used as a priori information.

Under the Gaussian assumption, we are interested in tracking the means of L (q ,l)
b and L (q ,l)

c , denoted

as m(q ,l)
b and m(q ,l)

c , where subscripts b and c refer to quantities pertaining to bit-nodes and check-nodes,

respectively. To handle the irregularity of LDPC codes, we further introduce notations m(q ,l)
b,k and m(q ,l)

c , j to
denoted message mean associated with bit-nodes of degree k and check-nodes of degree j , respectively.
Treating extrinsic information as independent, the means of the extrinsic information at each local iteration
l are shown to be [22]

bit − to − check : m(q ,l)
b,k = m(q)

i + (k − 1) · m(q ,l−1)
c (13.18)

check − to − bit : m(q ,l)
c , j = ψ−1


1 −

[
1 −

∑
k

λkψ
(

m(q ,l)
b,k

)] j−1

 (13.19)

m(q ,l)
c =

∑
j

ρ j m
(q ,l)
c , j (13.20)

where ψ(x) is the expected value of 1 − tanh( u
2 ) where u follows a Gaussian distribution with mean x and

variance 2x . Specifically, ψ(x) is given by:

ψ(x) =
{

1 − 1√
4πx

∫∞
−∞ tanh

(
u
2

)
e− (u−x)2

4x du, x > 0

1, x = 0
(13.21)

ψ(x) is continuous and monotonically decreasing on [0, ∞) with ψ(0) = 1 and ψ(∞) = 0. The initial
condition is m(q ,0)

b = m(q ,0)
c = 0. When x is large (corresponding to low error probability), ψ(x) is shown

to be proportional to the error probability [22]. The above derivation is essentially an extension of Chung
et al.’s work [22] to the case of turbo equalization. For detailed discussions, readers are directed to [21–24]
and the references therein.

After L LDPC decoding iterations, the messages passed from the outer LDPC code to the inner MAP
decoder/equalizer follows a mixed Gaussian distribution where λ

′
k fraction of bits follow a Gaussian

distribution with mean value

m(q)
o,k = km(q ,L )

b,k , k = 1, 2, . . . (13.22)

and variance 2m(q)
o,k . Here λk

′ denotes the percentage of bits that have degree k, and is given by λ
′
k =

(λk/k)/(
∑

k λk/k). Hence, we can describe what is passed from the outer decoder to the inner decoder in

the q th turbo equalization as m(q)
o ∼ {<λ

′
k , m(q)

o,k >, k = 1, 2, . . .}. This will in turn be used by the inner

decoder to generate m(q+1)
i .
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After q global iterations between the outer and inner decoder (where each iteration contains L local
iterations within the LDPC decoder), the threshold can be evaluated as:

γLDPC = inf
SNR

{
SNR : lim

q→∞
·m(q ,L )

c → ∞
}

(13.23)

It is instructive to note that the value of L has a slight impact on the asymptotic threshold, but a quite
noticeable impact for finite-length finite-complexity performance. Specifically, it has been shown in [7]
that for a given complexity constraint, an optimal value of L can be computed using density evolution for
the concatenated system to reach the best performance.

Turbo/SPC codes: Using the degree profiles λ(x) = 1
t+1 + t

t+1 x and ρ(x) = xt , the message flow within
a Turbo/SPC decoder can be tracked following exactly the same steps as we described above. An alternative
procedure stems naturally from the decoding algorithm where checks corresponding to different branches
take turns to update. As expected, such a serial scheduling expedites the convergence and improves the
performance for finite-length systems, but has little impact on the asymptotic thresholds.

TPC/SPC codes: Although TPC/SPC codes can be viewed as a special type of LDPC codes, the above
DE procedure cannot be applied directly. This is because the underlying assumption of a cycle-free code
graph does not hold for TPC/SPC codes. Since any rectangular error pattern (or their combination) in
the 2-dimensional TPC/SPC bit-array results in a loop in the code graph [7], there always exist cycles of
length 4(k + 1) irrespective of block sizes (k can be any positive integer). Hence, messages being passed
in the code graph are not always independent (loop-free operation), and adjustment needs to be made
before it is applicable to TPC/SPC codes.

Notice that when the number of local iterations within the TPC/SPC code is restricted to be small,
the density evolution method would have operated on cycle-free subgraphs of TPC/SPC codes. In other
words, the messages exchanged along each step are statistically independent as long as the cycles have not
“closed.” Here, we restrict the number of local iterations within TPC/SPC codes to be one row update
and one column update, since any more updates in either direction will either pass information to its
source or pass duplicate information to the same node, which are unacceptable. On the other side, due to
the perfect random interleaver, infinite number of turbo iterations can be performed between the inner
and outer decoders if the messages within the outer TPC/SPC code are reset to zero in every new turbo
iteration.

For an exact threshold, the density evolution procedure should, in addition to avoiding looping messages,
also ensure completeness in the sense that every bit should have fully utilized all the messages (through
dependencies) from all the checks. Unfortunately, one row update followed by one column update is not
sufficient to exploit all the information contained in all bits and checks [7]. Hence, the resulting threshold
is a lower bound7.

13.4.5 Thresholds

The lower bound on the threshold for TPC/SPC codes, and the threshold for turbo/SPC codes are plotted
in Figure 13.4 for precoded PR4 and EPR4 channels. For comparison, we also evaluate LDPC codes on
nonprecoded PR channels8 We consider regular LDPC codes with column weight 3, since regular LDPC
codes are shown to be slightly advantageous over irregular ones at short block sizes and high rates such as
what will be used in data storage applications [39]. It can be seen that the thresholds of concatenated SPC
systems (and their lower bound) are within a few tenths a dB from that of LDPC systems. This indicates
they have comparable performance asymptotically.

7By lower bound, we mean that the exact thresholds of TPC/SPC system should be better than this. Put another
way, for a given dB, the achievable code rate (bandwidth efficiency) could be higher, or equivalently, for a given rate,
the required SNR could be smaller.

8It has been shown that randomly constructed LDPC codes perform better on ISI channels that are not precoded.
Hence, the comparison represents the best in both cases and is thus fair.
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FIGURE 13.4 Iterative thresholds computed using density evolution with a Gaussian approximation. (Solid lines:
bounds of LDPC or turbo/SPC systems; dashed lines: lower bounds of TPC/SPC systems.)

Also presented in Figure 13.4 are the corresponding simulation results of a length-4K block evaluated
at a BER of 10−5. It is interesting to observe that for practical block sizes concatenated SPC systems may
actually (slightly) outperform LDPC systems. Considering the small block size used in the simulation, the
0.5 ∼ 1 dB gap between performance points and threshold curves indicates a good agreement between
simulation and analysis.

13.5 Simulation Results

To be applicable to high-density recording systems, the concatenated SPC codes we consider have high rates
of 0.89 and 0.94 which are formed from (17,16) and (33,32) TPC codes, respectively. Several codewords
are combined and interleaved together to form an effective data block size of (around) 4K bits, the size
of a block in a hard-disk drive. At such high code rates and short block sizes, the two concatenated
SPC schemes differ very little in lengths, rates and performance. Hence, we do not differentiate them in
discussing the simulation results. For comparison, also presented are the results of regular LDPC codes
with column weight 3 and similar rates and lengths. In all the simulations presented, 2 iterations are
performed within the concatenated SPC decoders and 4 iterations within the LDPC decoder. This makes
the decoding complexity of LDPC codes slightly higher than that of concatenated SPC codes, but they are
the most efficient scheduling schemes we have found in my experiments.

Bit error rate: Figure 13.5 shows the performance of LDPC codes and concatenated SPC codes over PR4
and EPR4 channels. Gains of 4.4 to 5 dB over uncoded partial response maximum likelihood (PRML)
systems are obtained for concatenated SPC codes at a BER of 10−5, which are comparable to those of
LDPC codes. All concatenated SPC systems use a binary precoder with polynomial 1/(1 ⊕ D2) which is
the best-performing precoder for PR4/EPR4 channels, as shown in Figure 13.6. The ISI channels are not
precoded in LDPC systems, since as discussed in [26] nonprecoding leads to a better performance than
otherwise. This is also confirmed by our simulations. Hence, the comparison is fair as it represents the
best cases for both systems.

Error bursts: Although both concatenated SPC and LDPC codes can offer significant coding gains at a
BER level of 10−7, it is unclear whether and when they will have an error floor. Therefore, the conventional
use of RS-ECC is still necessary to reduce the BER to 10−15 as is targeted for recording systems. The RS-ECC
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code works on the byte level, capable of correcting up to t byte errors in each data block of size 4K bits or
512 bytes (t is usually around 10 to 20). Hence, the maximum number of uncorrected errors left in each
block after the turbo decoding/equalization of concatenated SPC codes and LDPC codes has to be small to
guarantee the proper functioning of the RS-ECC code. In other words, block error statistics is crucial to the
overall system performance. Unfortunately, this has been largely neglected in most of the previous work.

Figure 13.7 and Figure 13.8 plot the histograms of the number of bit/byte errors for LDPC codes and
TPC/SPC codes on EPR4 channels, respectively. The effective block size is 4K and the code rate is 0.94.
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The left column in each figure plots bit error histograms and the right byte error histograms, where a byte
composes of eight consecutive bits. The statistics are collected over more than 100, 000 blocks of data size
4K bits. At an SNR of 6.5 dB and after the 10th iteration (big loop), the maximum number of symbol
errors observed in a single block is less than 10 for concatenated SPC codes (which would be corrected by
the RS-ECC code), but around 50 for LDPC codes. If further iterations are allowed, error bursts in LDPC
codes are alleviated. Nevertheless a block containing 25 symbol errors is observed after 15 turbo iterations
and this may still cause the RS-ECC code to fail. Unless a more powerful RS-ECC is employed, LDPC
codes are prone to cause block failure, where all data in that block are presumed lost. It should be noted
that although what we have observed suggests that concatenated SPC codes may be more compatible to
magnetic recording systems than LDPC codes, the statistics are nonetheless insufficient. Due to the very
long simulation time in software, hardware tests over millions or billions of blocks are needed before a
convincing argument can be made.

13.6 Conclusion

This paper investigates the potential of applying concatenated single-parity check codes on PR magnetic
recording channels, with LDPC codes as a comparison study. Two ways of concatenation are studied, one
in the form of parallel turbo codes and the other product codes. While they have very different structures,
analysis and simulations show that the two schemes exhibit similar properties in terms of interleaving
gain, iterative thresholds and finite-length performances (especially at high rates). Below summarizes the
main results of this study.

1. Despite their relatively small minimum distances on AWGN channels, both concatenating schemes
are capable of achieving interleaving gain on precoded ISI channels. The key is to have several
codeword blocks combined and interleaved together.

2. Density evolution is an effective tool in the analysis of iterative decoding processes by accounting
for both the code structure (i.e, codeword space and the mapping of data space to codeword space)
and the iterative nature of the decoding algorithms. Thresholds (or their lower bounds) computed
using density evolution with a Gaussian approximation indicate these codes have comparable
performance asymptotically, and finite-length simulations agree with the analysis.

3. Simulations on high-rate and short-length concatenated SPC systems demonstrate considerable
coding gains over uncoded PRML systems. In particular, gains of more than 4.4 dB are observed
for length 4K and rate > 0.88 codes on PR4 and EPR4 channels, revealing a performance similar
to or slightly better than that of random LDPC codes.

4. In addition to the slightly smaller complexity than that of random LDPC codes, concatenated SPC
codes are linear time encodable. Further, they do not require large storage for parity check and
generator matrices. The interleaving pattern needs be stored, but algebraic interleavers which can
be pseudo-randomly generated “on the fly” can be used to save space in hardware implementation
[40, 41].

5. In contrast to LDPC codes whose large error bursts within a block tend to exceed the capacity of
RS-ECC wraps, our experiments indicate that the number of errors in each block is typically small
with concatenated SPC codes (although there may be more blocks in error). Such a spread error
distribution is not only desirable, but also crucial to ensure an overall low error probability in the
recording system. However, extensive experiments on massive data need to be conducted before a
firm conclusion can be reached.

To summarize, our study indicates that concatenated SPC codes can be a promising candidate for future
high-density magnetic recording systems. However, further experiments need to be carried out on more
realistic channel models, like the Lorentzian channel model and (eventually) the real data set collected in
the lab.

There are many other interesting problems regarding future digital data recording systems. For example,
how to efficiently incorporate the run-length limit (RLL) constraint into the SISO decoding/equalization



Concatenated Single-Parity Check Codes for High-Density Digital Recording Systems 13-17

scheme without affecting much of the overall code rate, performance and complexity? Interleaving is neces-
sary for coded PR systems that use turbo equalizations. How to implement interleaving and deinterleaving
schemes that are both space-efficient and time-efficient but still exhibiting good randomness? Most of all,
how to achieve a good trade-off among the many competing factors like performance, complexity, delay
and cost in a practical setting? These are a few of the many interesting problems that await to be addressed.
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14.1 Introduction

Iterative coding techniques that improve the reliability of input-constrained, intersymbol interference
(ISI) channels have recently attracted considerable attention for data storage applications. Inspired by the
success of turbo codes [6], several authors have considered iterative decoding architectures for coding
schemes comprised of a concatenation of an outer block, convolutional or turbo encoder with a rate one
code representing the channel. Such an architecture is equivalent to a serial concatenation of codes [4],
with the inner code being the ISI channel. Application of this concatenated scheme in magnetic and optical
recording systems is considered in [23, 24].

Theory and practice of the soft iterative detection were facilitated by using the concept of codes on graphs.
As shown in the chapter on message passing algorithms, a graph of a code representing the ISI channel is
trivial. Therefore, we will focus only on the design and graphical description of the outer code. The prime
examples of codes on graphs are low-density parity check codes (LDPC). One of the key results in codes
on graphs comes from Frey and Kschischang [36, 45] who observed that iterative decoding algorithms
developed for these codes are instances of probability propagation algorithms operating on a graphical
model of the code. The belief propagation algorithms and graphical models have been developed in the
expert systems literature by Pearl [65] and Lauritzen and Spiegelhalter [45]. MacKay and Neal [48, 58],
and McEliece et al. [59] showed that Gallager’s algorithm [31] for decoding low-density parity-check codes
proposed in the early 1960s is essentially an instance of Pearl’s algorithm. Extensive simulation results of
MacKay and Neal showed that Gallager codes could perform nearly as well as earlier developed turbo
codes [6]. The same authors also observed that turbo decoding is an instance of “belief” propagation and
provided a description of Pearl’s algorithm, and made explicit its connection to the basic turbo decoding

14-1
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algorithm described in [6]. The origins of the algorithm can be found in the work of Battail [3], Hartmann
and Rudolph [35], Gallager [32] and Tanner [87].

Application of the LDPC codes and the MPA for their decoding in magnetic and optical recording systems
is considered in [51, 52, 82, 83]. In fact, hard iterative decoding of the LDPC codes and their application
in storage systems was considered earlier in [46, 47, 86]. A detailed asymptotic analysis of the minimum
distance of the LDPC codes and the BER achieved by low complexity decoders can be found in [109].

More recently, Wiberg et al. [107] showed that graphs introduced by Tanner [87] more than two
decades ago to describe a generalization of Gallager codes provide a natural setting in which to describe
and study iterative soft-decision decoding techniques, in the same way as the code trellis [29] is an
appropriate model for describing and studying conventional maximum likelihood soft-decision decoding
using Viterbi’s algorithm. Forney [27] generalized Wilberg’s results and explained connections of various
two-way propagation algorithms with coding theory. Frey and Kschischang [30, 36, 45] showed that various
graphical models, such as Markov random fields, Tanner graphs, and Bayesian networks all support the
basic probability propagation algorithm in factor graphs, similarly as a trellis diagram supports Bahl,
Cocke, Jelinek, Raviv’s (BCJR) algorithm [3]. Frey and Kschischang also derived a general distributed
marginalization algorithm for functions described by factor graphs. From this general algorithm, Pearl’s
belief propagation algorithm as well as its instances: turbo decoding and message-passing can be easily
derived as special cases of probability propagation in a graphical model of the code. A good tutorial on
iterative decoding of block and convolutional codes is due to Hagenauer, Offer and Papke [33].

The theory of codes on graphs has not only improved the error performance, but it has also opened
new research avenues for investigating alternative suboptimal decoding schemes. It seems that almost any
proposed concatenated coding configuration has good performance provided that the used codewords are
long and iterative decoding is employed. The iterative decoding algorithms employed in the current research
literature are suboptimal, although simulations have demonstrated their performance to be near optimal
(e.g., near maximum-likelihood). Although suboptimal, these decoders still have very high complexity
and are incapable of operating in the high data rate regimes. The high complexity of the proposed schemes
is a direct consequence of the fact that for random codes a large amount of information is necessary to
specify positions of the nonzero elements in a parity-check matrix. In this chapter we will introduce well-
structured LDPC codes, a concept opposed to the prevalent practice of using random code constructions.
Our main focus will be on low-complexity coding schemes and structured LDPC codes: their construction
and performance in ISI magnetic recording channels.

In the past few years several random low-density parity-check (LDPC) codes have been designed with
performances very close to the Shannon limit [80], see for example, Richardson, Shokrollahi, and Urbanke
[75], MacKay [59], and Luby, Mitzenmacher, Shokrollahi, and Spielman [57]. At the same time, significant
progress has been made in designing structured LDPC codes. Examples of structured LDPC codes include
Kou, Lin and Fossorier’s [43] finite geometry codes, Tanner, Sridhara and Fuja’s [88] codes constructed
from groups, Rosenthal and Vontobel’s codes on regular graphs [77], and Johnson and Weller’s [37]
Steiner system codes. MacKay and Davey [60] also used Steiner systems (a subclass of BIBDs) to construct
Gallager codes. Rosenthal and Vontobel [77] constructed some short high-girth codes using a technique by
Margulis [62] based on k−regular Caley graphs of SL2(GF(q)), the special linear group, and PGL2(GF(q)) ,
the projective general linear group of dimension two over GF(q) , the finite field with q elements. Jon-Lark
Kim et. al [39] gave another explicit construction of LDPC codes using Lazebnik and Ustimenko’s [49]
method based on regular graphs. In a series of articles Vasic [91–93, 95, 96, 100], and Vasic, Kurtas
and Kuznetsov [94, 97, 98, 100], and [103] introduced several new classes of combinatorially constructed
regular LDPC codes, and analyzed their performance in longitudinal and perpendicular recording systems.
Sankaranarayanan, Vasic, and Kurtas [79] also showed how to construct irregular codes with a desired
degree distribution starting from a combinatorial design. In what follows, we will present a short overview
of some of these code constructions.

Although iterative decoding of LDPC codes is based on the concept of codes on graphs, a LDPC code
itself can be substantially simplified if it is based on combinatorial objects known as designs. In fact, the
construction considered in this chapter is purely combinatorial, and is based on balanced incomplete block
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designs (BIBD) [8]. Such combinatorial objects were extensively studied in connection with a large number
of problems in applied mathematics and communication theory. Combinatorial designs and codes are
very closely connected combinatorial entities, since one can be used to construct the other. For example,
codewords of fixed weight in many codes, including the Golay code and the class of quadratic residue (QR)
codes, support designs (see, [61, 85]).

As will be shown below, the parity-check matrix of the combinatorially constructed codes can be
defined as the incidence matrix of a 2-(v , c , 1) BIBD [17, 55], where v represents the number of parity
bits, and c represents the column weight of the parity-check matrix. We are interested in very high rate
and relatively short (less than 5000 bits) codes. High rates are necessary to control the equalization loss
that is unavoidable in partial response (PR) channels [14, 38, 41], while short block lengths are required to
maintain compatibility with existing data formats and enable simpler system architecture [91].

The first construction presented uses difference families such as the Bose [10, 11], Netto [66] and
Buratti [13] difference families over the group Zv , while the second construction is related to rectangular
integer lattices. The class of codes based on difference families offers the best tradeoff between code rate
and code length, but does not produce many high-rate, short-length codes, especially for large column
weights of the parity-check matrix. The second construction gives a much larger family of codes, at the
expense of the code rate. A third class of structured codes to be discussed in this chapter is the class of
codes on projective planes, such as codes on projective and affine geometries, codes on Hermitian unitals
and codes constructed from oval designs.

The encoding complexity of combinatorially constructed codes is very low and determined either by
the size of the cyclic difference family upon which a block design is based, or by the “vertical” dimension
of the lattice for the case of lattice constructions.

We start by introducing BIBDs in Section 14.2 and describing their relation to bipartite graphs and
parity-check matrices of regular Gallager codes. In Section 14.3 we introduce several constructions for
2-(v , 3, 1) systems (so called Steiner triple systems), based on cyclic difference families. We present three
constructions of cyclic difference families that result in regular codes with column weight c = 3, 4 and 5,
and give a list of known infinite families. We also give an overview of finite geometry codes in Section 14.4,
and a construction based on integer lattices in Section 14.5. The last section of this chapter, Section 14.6,
focuses on the performance evaluation of combinatorially constructed LDPC codes over PR channels. The
first attempt to apply iterative decoding for ISI channels is due to Douillard et al. [22]. Douillard and his
co-authors presented an iterative receiver structure, the so-called “turbo-equalizer,” capable of combating
ISI due to multipath effects in Gaussian and Rayleigh transmission channels. Soft-output decisions from
the channel detector and from the convolutional decoder were used in an iterative fashion to generate bit
estimates. Motivated largely by the potential applications to magnetic recording systems, several authors
have explored turbo coding methods for some (1 − D)(1 + D)N channels. Heegard [36] and Pusch,
et al. [71] illustrated the design and iterative decoding process of turbo codes for the (1 − D) channel,
using codes of rates 1/2 and lower. Ryan, et al. [72, 73] demonstrated that by using a parallel-concatenated
turbo code as an outer code, punctured to achieve rates 4/5, 8/9, and 16/17 it is possible to reduce the
bit error rate relative to previously known high-rate trellis-coding techniques on a precoded 1 − D or
1 − D2 channel. Souvignier et al. [84] and McPheters et al. [65] considered serial concatenated systems
with an outer code that is a high-rate convolutional code, rather than a turbo code. They found that
these convolutional codes perform as well as turbo codes. Additionally, they showed that removal of the
channel precoder improves the performance of the turbo-coded system at low SNR, and degrades the
performance of the convolutionally-coded system. Oberg and Siegel [67] found the error rates of precoded
and nonprecoded serial concatenated systems with high rate block codes. Recently, the performance of
LDPC codes in magnetic recording systems was analyzed by Fan, Kurtas, Friedmann and McLauglin [27]
and by Dholakia and Eleftheriou [21]. LDPC codes combined with noise prediction are discussed in [74]
and [20]. Ryan, McLaughlin et al. [72] combined an iterative decoding scheme with a maximum run
length constrained code. Vasic and Pedagani [104] introduced a coding scheme for which the modulation
code is completely removed and a channel constraint is imposed by structured (deliberate) error insertion.
The scheme uses the power of a LDPC code to correct both random and structured errors. Here, we also
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should note that the simple turbo product codes with single parity checks (TPC/SPC) can be considered
as a subclass of the structured LDPC codes. The TPC with single and multiple parities in columns and
rows are considered in [51, 52].

Lattice based LDPC codes in partial response channels were analyzed in [94], and iteratively decodable
codes based on Netto CDFs were introduced and studied in [95]. The application of these codes in
PR channels assuming decoding with the min-sum algorithm and limited number of iterations was also
discussed in [94]. Affine geometry codes that do not contain so-called Pasch configurations and hence have
increased minimum distance were introduced in [96]. In [96] LDPC codes based on mutually orthogonal
Latin rectangles were constructed and analyzed with respect to their performance in longitudinal magnetic
recording channels. The performance of LDPC codes based on Kirkman systems and low-density generator
matrix codes in perpendicular magnetic recording were extensively discussed in [98] and [79].

14.2 Combinatorial Designs and their Bipartite Graphs

A balanced incomplete block design (BIBD) with parameters (v , c , l) is an ordered pair (V, B), where V is
a v-element set and B is a collection of b c-subsets of V , called blocks, such that each element of V is
contained in exactly r blocks and any 2-subset of V is contained in exactly l blocks. Notice that c ·b = R ·v ,
so that r is uniquely determined by the remaining parameters of the design. We consider designs for which
every block contains exactly c points, and every point is contained in exactly r blocks. The notation
BIBD(v , c , l) is used for a BIBD on v points, block size c , and index l . A BIBD with block size c = 3 is
called a Steiner triple system. A design is called resolvable if there exists a nontrivial partition of its block set
B into disjoint subsets each of which partitions the set V . Each of these subsets is referred to as a parallel
class. Resolvable Steiner triple systems with index l = 1 are called Kirkman systems. These combinatorial
objects have been intensively studied in the combinatorial literature, and some construction methods
for them are described in [17, 18, 54]. A BIBD is called symmetric if b = v and r = c . A symmetric
BIBD(v , c , l) with c ≥ 3 is equivalent to a finite projective plane [55]. In addition to resolvable designs,
one can also use l-configurations for the design of LDPC codes. An l-configuration is a combinatorial
structure comprised of v points and b blocks such that: (a) each block contains c points; (b) each point is
incident with r blocks; (c) two different points are contained in at most l blocks.

We define the point-block incidence matrix of a (V, B) design as a v × b matrix A = (ai j ), in which
ai j = 1 if the i th element of V occurs in the j th block of B , and aij = 0 otherwise. If one thinks of points
of the design as parity-check equations and of blocks of the design as bits of a linear block code, then it
is possible to define the parity-check matrix of a LDPC code as the block-point incidence matrix of the
design. Since in a BIBD each block contains the same number of points c , and every point is contained in
the same number r of blocks, A defines a parity-check matrix H of a regular LDPC (Gallager) code [32].

For example, the collection B = {B1, B2, . . . , B12} of blocks B1 = {1, 2, 3}, B2 = {1, 5, 8}, B3 = {1, 4, 7},
B4 = {1, 6, 9}, B5 = {4, 8, 9}, B6 = {3, 4, 6}, B7 = {2, 6, 8}, B8 = {2, 4, 5}, B9 = {5, 6, 7}, B10 = {2, 7, 9},
B11 = {3, 5, 9}, B12 = {3, 7, 8} is a resolvable BIBD(9, 3, 1) system or Steiner system with v = 9, and b = 12.
The resolvability classes are {B1, B5, B9}, {B2, B6, B10}, {B3, B7, B11} and {B4, B8, B12}. The point-block
incidence matrix is of the form:

A = H =




1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 1
0 0 1 0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 1 1 0 1 0 0 0
0 0 1 0 0 0 0 0 1 1 0 1
0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 1 0




(14.1)

The rate of the code is R = (b − rank(H))/b. In general, the rank of H is hard to find, but the following
simple formula can be used to bound the rate of a LDPC code based on the parameters of a 2-(v , c , l)
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FIGURE 14.1 The bipartite graph representation of the Steiner (9,3,1) system.

design:

R ≥ l · x − v

l · x
where x = v(v − 1)

c(c − 1)
(14.2)

A more precise characterization of the rank (and “ p-rank”) of the incidence matrix of 2-designs was given
by Hamada in [34]. It should be noticed that the above bound is generally loose. For example, for the case
of codes constructed from projective planes, the bound is trivially equal to zero, while the actual rate of
the codes is quite high (see, [43]). Therefore, for a given code rate, many BIBD codes will have a larger
dimension than predicted by the above bound. The construction of maximum rate BIBD codes with c = 2
is trivial end reduces to finding Kv , the complete graph [55].

The parity check matrix of a linear block code can be represented as a bipartite graph [63, 87, 107].
The first vertex subset (B) contains bits or variables, while the second subset is comprised of parity-
check equations (V). An edge between a bit and an equation exists if the bit is involved in the check. For
example, the bipartite graph representation of the Steiner (9,3,1) system whose incidence matrix is given
in Equation 14.1 is shown in Figure 14.1.

In order to be properly protected, each bit should be involved in as many equations as possible. On the
other hand, iterative decoding algorithms require that the bipartite graph does not contain short cycles [45].
In other words, the girth of the graph (i.e., the length of the shortest cycle) must be large. Additionally, in
order to allow for efficient iterative decoding, the out-degree of check nodes must be limited too. By using
the incidence matrix of a design to define a code, one can observe that the constraint l = 1 imposed for
BIBDs automatically implies that there are no cycles of length four in the bipartite graph of the code.

14.3 LDPC Codes on Difference Families

Let V be a finite additive Abelian group of order v . Then t c-element subsets of V , Bi = {bi,1, . . . , bi,c },
1 ≤ i ≤ t, form a (v , c , l) difference family (DF) if every nonzero element of V can be represented in
exactly l ways as a difference of two elements within the same member of a family. In other words, every
nonzero element of V occurs l times among the differences bi,m − bi,n, 1 ≤ i ≤ t, 1 ≤ m, n ≤ c . The
sets Bi are called base blocks. If V is isomorphic to Zv , the additive group of integers modulo v , then the
corresponding (v , c , l) DF is called a cyclic difference family (CDF).

For example the blocks B1 = {3, 13, 15}, B2 = {9, 8, 14}, B3 = {27, 24, 11}, B4 = {19, 10, 2}, and B5 =
{26, 30, 6} are the base block of a (31,3,1) CDF of a group V = Z31 since the nonzero elements of the
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difference arrays

D(1) =

 0 10 12

21 0 2
19 29 0


 D(2) =


 0 30 5

1 0 6
26 25 0


 D(3) =


 0 28 15

3 0 18
16 13 0


 D(4) =


 0 22 14

9 0 23
17 8 0


 D(5) =


 0 4 11

27 0 7
20 24 0




formed as D(k)
i, j = b2,i − b2, j , 1 ≤ k ≤ 5) are all different.

If G is a group that acts on a set X , then the set {g x : g ∈ G}, x ∈ X , is called the orbit of x . For the
case that G = V and X = B , where B is the set of all base blocks of a CDF, a BIBD can be defined as the
union of orbits of B . If the number of base blocks is s , the number of blocks in BIBD is b = s v . For a
given constraint (v , c , l), the CDF construction maximizes the code rate, because for a given v the number
of blocks is maximized. The parity check matrix of a (v , c , l) CDF LDPC code can be written in the form

H = [H1 H2, . . . , Ht ] (14.3)

where each submatrix is of dimension v × v and each of the base blocks Bi = {bi,1, . . . , bi,c }, 1 ≤ i ≤ t,
specifies positions of nonzero elements in the first column of Hi . The CDF codes have a quasi-cyclic
structure similar to Townsend and Weldon’s [90] self-orthogonal quasi-cyclic codes and Weldon’s difference
set codes [105].

The blocks B1 = {3, 13, 15}, B2 = {9, 8, 14}, B3 = {27, 24, 11}, B4 = {19, 10, 2}, and B5 = {26, 30, 6}
are the base block of a (31,3,1) CDF of the group V = Z13. The orbits are given in Table 14.1.

A bound for dmin of Gallager codes with column weight c = 3 was first derived in [60]. Another lower
bound for dmin is due to Tanner [88], and can be applied to an arbitrary linear code with matrix of parity
checks H , represented by a bipartite graph. Using purely combinatorial arguments, lower bounds for
the minimum distance were derived in [93]. A general, nontrivial lower bound on dmin for codes based
on BIBDs with block size c can easily be obtained by using the fact that these codes are majority-logic
decodable. A code is one-step majority-logic decodable if for every bit there exists a set of L parity-
check equations that are orthogonal on that bit. In this context, the orthogonality condition imposes the
requirement that each of the check equations include the bit under consideration, and that no other bit
is checked more than once by any of the equations. If a code is one-step majority decodable, then the
minimum distance of the code is at least L + 1. From the described construction of LDPC codes based on
BIBDs, it follows that L = c and dmin ≥ c + 1.

As explained in the previous section, once a CDF is known, it is straightforward to construct a BIBD.
Constructing a CDF is a complex problem and it is solved only for certain values of v , c and l . One of the
first constructions of a difference set is due to Bose [10, 11] and Singer [81]. Most constructions of CDFs

TABLE 14.1 The Orbits of Base Blocks in a (31,3,1) BIBD

B1 orbit B2 orbit B3 orbit B4 orbit B5 orbit B1 orbit B2 orbit B3 orbit B4 orbit B5 orbit

3 13 15 9 8 14 27 24 11 19 10 2 26 30 6 19 29 0 25 24 30 12 9 27 4 26 18 11 15 22
4 14 16 10 9 15 28 25 12 20 11 3 27 0 7 20 30 1 26 25 0 13 10 28 5 27 19 12 16 23
5 15 17 11 10 16 29 26 13 21 12 4 28 1 8 21 0 2 27 26 1 14 11 29 6 28 20 13 17 24
6 16 8 12 11 17 30 27 4 22 13 5 29 2 9 22 1 3 28 27 2 15 12 30 7 29 21 14 18 25
7 17 19 13 12 18 0 28 15 23 14 6 30 3 10 23 2 4 29 28 3 16 13 0 8 30 22 15 19 26
8 18 20 14 13 19 1 29 16 24 15 7 0 4 11 24 3 5 30 29 4 17 14 1 9 0 23 16 20 27
9 19 21 15 14 20 2 30 17 25 16 8 1 5 12 25 4 6 0 30 5 18 15 2 10 1 24 17 21 28

10 20 22 16 15 21 3 0 18 26 17 9 2 6 13 26 5 7 1 0 6 19 16 3 11 2 25 18 22 29
11 21 23 17 16 22 4 1 19 27 18 10 3 7 14 27 6 8 2 1 7 20 17 4 12 3 26 19 23 30
12 22 24 18 17 23 5 2 20 28 19 11 4 8 15 28 7 9 3 2 8 21 18 5 13 4 27 20 24 0
13 23 25 19 18 24 6 3 21 29 20 12 5 9 16 29 8 10 4 3 9 22 19 6 14 5 28 21 25 1
14 24 26 20 19 25 7 4 22 30 21 13 6 10 17 30 9 11 5 4 10 23 20 7 15 6 29 22 26 2
15 25 27 21 20 26 8 5 23 0 22 14 7 11 18 0 10 12 6 5 11 24 21 8 16 7 30 23 27 3
16 26 28 22 21 27 9 6 24 1 23 15 8 12 19 1 11 13 7 6 12 25 22 9 17 8 0 24 28 4
17 27 29 23 22 28 10 7 25 2 24 16 9 13 20 2 12 14 8 7 13 26 23 10 18 9 1 25 29 5
18 28 30 24 23 29 11 8 26 3 25 17 10 14 21
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that followed Bose’s work are based on the same idea of using finite fields. For example, if one defines the
set of integers S as {i : 0 ≤ i ≤ q 2 − 1, ωi + ω ∈ GF(q)}, then S consists of q elements and represents a
cyclic difference set modulo q 2 − 1, with l = 1.

The first construction, considered in [103], is due to Netto [13, 16]. It applies for c = 3, and v a power
of a prime such that v ≡ 1 mod 6. Let ω be a primitive element of the field [64]. If v = 6t + 1, t ≥ 1, for
d | v − 1 let �d be the group of d−th powers in GF(v). Let ωi �d be a coset of d−th powers of the field.
Then the set {ωi �2t | 1 ≤ i ≤ t} defines a Steiner triple system difference family [66, 108] with parameters
(6t + 1, 3, 1). The base blocks of this family are typically given in the form {0, ωi (ω2t − 1), ωi (ω4t − 1)}
or less frequently in the form {ωi , ωi+2t , ωi+4t}. Similarly, for v ≡ 7 mod 12 one can show that the set
{ω2i �2t | 1 ≤ i ≤ t} defines the base blocks of a so-called Netto triple systems [66].

The second construction is due to Burratti, and is applicable for c = 4 and c = 5 [13]. For c = 4,
Burratti’s method gives CDFs with v points, provided that v is a prime of the form v ≡ 1 mod 12. The CDF
is a set of the form {ω6i B : 1 ≤ i ≤ t}, where base blocks have the form B = {0, 1, b, b2}, where again w is
a primitive element of GF(v). The numbers b ∈ GF(v) for several values of v are given in [13]. Similarly,
for c = 5, the CDF is given by {ω10i B : 1 ≤ i ≤ t}, where B = {0, 1, b, b2, b3}, and b ∈ GF(20t + 1).

The third construction, also due to Bose [11], is based on a mixed difference system. The sets {0.1, 0.2, 0.3},
{1.i, (2 · u).i, 0.(i + 1)}, {2.i, (2 · u − 1).i, 0.(i + 1)}, . . . , {u.i, (u + 1).i, 0.(i + 1)}, 1 ≤ i ≤ t, where the
elements are all taken mod(2 · u + 1) and the suffices are taken modulo three, form a mixed difference
system. The notation 0.1, 1.i etc. used above means, for example, that the symbols 1 and i appearing after
the decimal point are indices of 0 and 1, respectively. The mixed difference system uses several copies of
the original point set that can be distinguished based on the second index as described above. For more
information about this construction, see [1]. It can be shown that a Steiner triple system (where t = 3) of
order 6 · u + 3 exists for all u ≥ 0. In this case v = 3 · (2 · u + 1), c = 3, l = 1 are the parameters of BIBD
design. Some other interesting constructions based on Latin squares can be found in [17, 18].

14.4 Codes on Projective Planes

The above constructions give a very small set of design with parameters of practical interests. However,
so called infinite families [16] give an infinite range of block sizes. Infinite families of BIBDs include finite
projective geometries, finite Euclidean (affine) geometries, unitals, ovals, Denniston designs as well as
certain geometric equivalents of 2-designs (see [16, 62]). For certain choices of the parameters involved,
they reduce to finite Euclidean and finite projective geometries. In the following paragraph, we will
introduce some basic definitions and concepts regarding the above listed geometric entities. For more
details on codes on finite geometries, the reader is referred to [61] and [62].

The parity check matrix of a projective or an affine geometry code is defined as a line-point incidence
matrix of the geometry in which points are nonzero m-tuples (vectors) with elements in GF(ps ), where
s > 0, and p is a prime. The points and lines have the following set of properties: (a) every line consists of
the same number of points; (b) any two points are connected by one line only; (c) two lines intersect in at
most one point; and (d) each point is an intersection of a fixed number of lines. A finite projective geometry
PG(m, ps ) is constructed by using (m+1)-tuples of elements xi from GF( ps ), not all simultaneously equal
to zero, called points. Two (m+1)-tuples x = (x0, x1, . . . , xm) and y = (y0, y1, . . . , ym) represent the same
point if x = µx, for some nonzero µ ∈ GF( ps ). Hence, each point can be represented in ps − 1 ways.
All such representations of a point are referred to as its equivalence class. It is straightforward to see that
the number of points in PG(m, ps ) is ν = (p(m+1)s − 1)/(ps − 1). The equivalence classes, or points,
can be represented by [αi ] = {αi , βαi , β2αi , . . . , β ps −2αi }, where 0 ≤ i ≤ ν and β = αν . Let [αi ]
and [α j ] be two distinct points in PG(m, ps ). Then the line passing through them consists of points of
the form [λ1α

i + λ2α
j ], where λ1, λ2 ∈ GF(ps ) are not both equal to zero. Since [λ1α

i + λ2α
j ] and

[βkλ1α
i + βkλ2α

j ] are the same point, each line in PG(m, ps ) consists of ps + 1 points. The number of
lines intersecting at a given point is ( pms − 1)/( ps − 1), and the number of lines in projective geometry is

b = (ps (m+1) − 1
)/

( ps m − 1)/(p2s − 1)/(ps − 1) (14.4)
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∞1

∞2

∞3

∞4

(a) (b)

FIGURE 14.2 Obtaining a projective plane from an affine plane by adding points: (a) affine plane; (b) projective
plane.

The main difference between projective and affine geometries is that projective planes do not contain
parallel lines. Affine planes may be considered as special case of projective planes, since they can be obtained
by removing the points belonging to the line at infinity (say x0 = 0). Conversely, a projective plane can be
obtained from an affine plane by adding an extra point to each line (a point at infinity), and connecting
these points by a line. Figure 14.2 illustrates this idea for a geometry with nine points. Each line in the
projective geometry contains one more point, and the points at infinity ∞1, ∞2, ∞3, ∞4 create a line so
that no parallel classes exist.

In the parity check matrix each column has weight ps + 1 and each row has weight ( pms − 1)/( ps − 1).
As an illustration of the above discussion, the parity-check matrix of a PG(2, 3) LDPC code is given below.

H =




1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 1 0 0 0 0 1
0 0 1 0 0 0 1 0 1 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0 0 0 1 0




(14.5)

Finite geometry LDPC codes were first considered by Kou, Lin and Fossorier [43], for the case p = 2.
Since in a finite geometry two lines cannot be incident with the same pair of points, the corresponding

parity checks are orthogonal. One advantage of these codes is that the code parameters, such as the
minimum distance and the girth of a bipartite graph, are easily controllable (see [43]). These features are
the result of the highly regular structures of these codes.
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The second class of finite geometry LDPC can be obtained from algebraic curves in a projective plane.
In a projective plane, an algebraic curve is a collection of points that satisfy a fixed homogeneous algebraic
equation of order n, for example, f (x0, x1, x2) = 0. An algebraic curve is irreducible if f (x0, x1, x2) is
irreducible over the ground field GF(q). The curve meets a line at most in n points. A conic is an algebraic
curve of order two defined by an equation of the form:

f (x0, x1, x2) = ax2
0 + bx2

1 + c x2
2 + f x1x2 + g x2x0 + hx0x2 = 0

A conic is irreducible if f (x0, x1, x2) is irreducible over the ground field GF(q). For k > m, a {k; m}-arc
in PG(2, q) is a set of k points such that no m + 1 points lie on a line. A c-arc in PG(2, q) is a set of
c points such that no three points lie on the same line. A c-arc is complete if it is not properly contained
in any (c + 1)-arc. A line of the plane is said to be a secant, a tangent or an exterior line with respect to
the oval, if the number of common points of the line with the oval is 2,1, and 0, respectively. For a given
value of q , (q + 1)-arcs of PG(2, q odd) are called ovals, and (q + 1)-arcs of PG(2, q even) together with
a nucleus point (a point for which every line incident to it is a tangent of the oval) are called hyperovals.
In PG(2, 2m), an oval design is an incidence structure with points comprised from the lines exterior to
the oval and blocks formed from points not on the oval. A block contains a point if and only if the
corresponding exterior point lies on the exterior line. It is a resolvable 2-(s (s − 1)/2, s/2, 1) Steiner design
where s = 2m. The rank of the incidence matrix of an oval design is 3m − 2m. In the section containing the
simulation results, we will present the performance of a code constructed from the nondegenerate conic
x0x2 = x2

1 . Figure 14.3 shows an oval and its corresponding lines. Codes on ovals were first described
in [106].

Unitals or Hermitian arcs are defined as follows. In PG(2, q), with q a perfect square, a Hermitian arc
is a {q√

q + 1,
√

q + 1}-arc. The arc is constructed from an algebraic curve of order
√

q + 1 given by the
equation:

x
√

q+1
0 + x

√
q+1

1 + x
√

q+1
2 = 0 (14.6)

The arc intersects any line of the plane in one or
√

q + 1 points. A code based on a unital can be obtained
as the arc constructed from an algebraic curve of order

√
q + 1, where the unital is a {q√

q + 1,
√

q + 1, 1}
Steiner system. For q a power of 2, the rank of the incidence matrix is {q√

q , and for q a power of an odd
prime, the rank of the incidence matrix is (q − √

q + 1)
√

q . Such designs are treated in a great detail by
Assmus and Key and in great detail in [2], but so far they have not been used for the construction of LDPC

Exterior
line

Nucleus

Oval

Secants

Tangents

FIGURE 14.3 Visualization of an oval.
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FIGURE 14.4 Achievable length-rate pairs for LDPC codes on projective planes.

codes. Figure 14.4 shows achievable length-rate pairs for LDPC codes on projective planes. Notice that
in [43] it was shown that affine and projective geometry codes can be modified in different ways so as to
produce a large set of code parameters and to achieve a good trade-off between length and code rate.

14.5 Lattice Construction of LDPC Codes

In this section we address the problem of constructing LDPC codes of large block lengths. The number of
parity bits is m × c , where m is a prime, and the blocks are defined as lines of different slopes connecting
points of an m×c integer lattice. The number of blocks is equal to m2. Integer lattices define l-congurations
with index l = 1. Here, each 2-tuple is contained in at most l = 1 blocks [92]. The goal of the lattice-based
construction is to trade the code rate and number of blocks for the simplicity of the construction and for
the flexibility of choosing the design parameters. Additionally, as shown in [99], 1-congurations greatly
simplify the construction of codes of large girth.

14.5.1 Codes on a Rectangular Subset of an Integer Lattice

Consider a rectangular subset L of the integer lattice, defined by

L = {(x , y) : 0 ≤ x ≤ c − 1, 0 ≤ y ≤ m − 1, }

where m ≥ c is a prime. Let λ : L → V be an one-to-one mapping from the set L to the point set V . An
example of such mapping is a simple linear mapping λ(x , y) = m · x + y + 1. The numbers λ(x , y) are
referred to as point labels.

A line is a set of c points specified by its slope s , 0 ≤ s ≤ m − 1 and starting point starting at the point
(0, a), contains the points {(x , a + s x mod m) : 0 ≤ x ≤ c − 1}, where 0 ≤ a ≤ m − 1. Figure 14.5
depicts a rectangular subset of the integer lattice with, m = 5 and c = 3. In the same figure, four lines with
slopes s = 0, s = 1, s = 2, and s = 3 are shown. Notice that in the configuration lines of infinite slope
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FIGURE 14.5 An example of the rectangular grid for m = 5 and c = 3.

are not included. In [94] it was shown that the set of blocks B containing all m c-element sets of points
in V obtained by taking labels of points along the lines with slopes s , 0 ≤ s ≤ m − 1 forms a resolvable
1-configuration. Each point in the configuration occurs in exactly m blocks. The lines with slopes s = 0,
s = 1, s = 2, s = 3 and s = 4, are {{1, 6, 11}, {2, 7, 12}, {3, 8, 13}, {4, 9, 14}, {5, 10, 15}}, {{1, 7,
13},{2, 8, 14}, {3, 9, 15}, {4, 10, 11}, {5, 6, 12}}, {{1, 8, 15},{2, 9, 11}, {3, 10, 12}, {4, 6, 13}, {5, 7, 14}},
{{1, 9, 12},{2, 10, 13}, {3, 6, 14}, {4, 7, 15}, {5, 8, 11}}, and {{1, 10, 14}, {2, 6, 15}, {3, 7, 11}, {4, 8,
12}, {5, 9, 13}}. The corresponding parity-check matrix is given by:

H =




1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0




(14.7)
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In general, the parity-check matrix of a lattice code can be written in the form:

H =




I I I . . . I
I P2,2 P2,3 . . . P2,m−1
I P3,2 P3,3 . . . P3,m−1

. . . . . . . . . . . . . . .
I Pc−1,2 Pc−1,3 . . . Pc−1,m−1


 (14.8)

where each submatrix Pi, j is a permutation matrix. The power of P which determines Pi, j (i.e., the position

of the bit 1 the first column of Pi, j ) can be found by using c j−1
i , the i th element of the first base block in

the class of blocks corresponding to the j th slope.
Similar parity check matrices have been obtained by several researchers using different approaches. The

examples include Tanner’s sparse difference codes [89], Blaum, Farrell, and Tilborg’s [9] array codes,
Eleftheriou and Olcer’s [25] array LDPC codes for application in digital subscriber lines, and codes
constructed by Kim et al. [39] with girth at least six.

Tanner graphs with large girth can be obtained by a judicious selection of sets of parallel lines included in
the integer lattice 1-configuration. The resulting parity-check matrix is of the form of an array of circulant
matrices. For example, for c = 3 it was shown in [92] that if the slope set represents an “arithmetically
constrained” sequence, defined by Odlyzko and Stanley [68], then the resulting codes have girth at least
eight. A generalization of this construction for higher girths is also straightforward. Other constructions of
codes of large girth include Rosenthal and Vontobel’s [77] construction based on an idea by Margulis [62],
and the previously mentioned result by Kim et al. [39] based on work of Lazebnik and Ustimenko [49].
The problem of constructing designs with high girth appears to be a very difficult problem in general [5].

14.6 Application in the Partial Response (PR) Channels

As we already mentioned in the introduction for this chapter, the LDPC codes were originally constructed
using an ensemble of random sparse parity-check matrices. Such random LDPC codes have been shown
to achieve near-optimum performance when decoded by soft iterative decoding algorithms (e.g., message
passing algorithm (MPA)), but due to the random structure of their parity check matrix large memory is
required for their implementation. The complexity of implementation can be reduced by using structured
LDPC codes constructed from algebraic and combinatoric objects described above. The generic channel
architecture and decoding algorithms are similar to both random and structured LDPC codes, but due to
the special properties of parity check matrices the implementation of the MPA algorithm for structured
LDPC codes is much simpler than for the random LDPC codes.

The bit error rate (BER) and other characteristics of the described structured LDPC codes depend on
a number of code parameters, such as rate, length, column weight of the parity check matrix, number of
short cycles in the bipartite graph of the code, as well as the type of precoder, the type of the PR channel
(i.e., equalization), amount of jitter and other factors. We present simulation results describing the effect of
some of these factors in a perpendicular magnetic recording channel, but first let us describe the channel
model used in simulations.

14.6.1 Channel Model and Signal Generation

Figure 14.6 shows a block diagram of a read/write channel using an LDPC code and an iterative detection
scheme for decoding. As we can see from this figure, the user data are encoded by an outer ECC code
(usually, Reed-Solomon (RS) code is used), then passed through a run-length limiting (RLL) encoder,
and then go to the LDPC encoder. The output of an LDPC encoder can be also precoded before the
coded sequence of bits is written on the medium. An analog part of the channel includes read/write heads,
the storage medium, different filters, sampling and timing circuits. These components were modeled as
described below. Due to electronic and media noise in the channel, the detector can not recover the original
user data with arbitrary small error probability, and the ECC decoder is used to detect and correct as many
channel errors as possible, decreasing the output BER and SFR of the channel to a level given by the
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FIGURE 14.6 System view of the encoding and decoding operations in the read/write channel of a disk drive.

channel specifications. Combining RLL and LDPC codes is not a trivial problem which has some technical
solutions, for example, described in [72, 104]. Here, we do not consider the effect of an outer ECC code,
nor the effect of the RLL code, and in our simulations the user data are directly passed through an LDPC
encoder.

Figure 14.7 shows how an input signal of the iterative detection scheme is generated. Formally, the
readback signal V(t) of a channel without jitter is defined as follows

V(t) =
∞∑

k=−∞
bk g (t − kTb) + Vn(t) (14.9)

where g (t) is the transition response of the channel, bk = {0, 1, −1} corresponding to no, positive or
negative transitions, Tb is the bit interval, and Vn(t) is Additive White Gaussian Noise (AWGN). The
transition response of a perpendicular channel is modeled as

g (t) = 1

2

(
πPW2

50

2 ln 2

)1/4

erf

(
2
√

2

PW50
t

)
(14.10)

where PW50 is the width of the perpendicular impulse response at 50% of its peak value, and erf (·) is an
error function defined as

erf (x) = 2√
π

∫ x

0

e−t2

dt. (14.11)

Here, the amplitude of the transition response is chosen in such a way that the energy of the impulse
response is equal to one. In simulations, we defined SNR as 10 log10 E i /N0, where E is the energy of the
impulse response which is assumed to be unity, and N0 is the spectral density height of the AWGN. The
linear density N D is defined as PW50/Tb .

bk sk

EQUALIZER

rk
g(t) LPF

Vn(t)

t = kTb

F(D)

FIGURE 14.7 Signal generation in the magnetic recording channel.
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14.6.2 Bit Error Rate (BER) of the Structured LDPC Codes Simulation Results

In this section, we present the BER performance of the structured LDPC codes in the perpendicular PR2
channel with target [121] at the normalized user density ND = 2 (channel ND is adjusted according to
the code rate, and is equal to ND/R). The soft output Viterbi algorithm (SOVA, [33]) is used on the PRML
trellis, and decoding is established by iterating between the inner SOVA decoder and the outer message
passing algorithm (MPA, [31, 59]). That is, the soft information is extracted from a partial response channel
using the SOVA operating on the channel trellis, and then used in the MPA for the LDPC decoding. The
bit “likelihoods” obtained from the MPA are passed back to the SOVA as a priori probabilities and so on.
The BER results are given below for the scheme in which the compound iteration “SOVA + 4 iterations of
MPA” is performed four times before the final hard decision is taken. In other words, the LDPC decoder
performs four internal (bit-to-check plus check-to-bit) iterations prior to suppling the inner decoder with
extrinsic information. Larger numbers of compound iterations improve the BER, but as we can see from
Figure 14.11 four compound iterations is a good compromise between the performance and increased
latency and complexity [53].

The BER were evaluated by simulations for two groups of codes. The first group consists of three Kirkman
codes with c = 3 and length n = 2420, 4401, and 5430 (rates R = 0.95, 0.963, and 0.966, respectively). The
second group consists of lattice codes with c = 4 and length n = 3481, 4489, and 7921 (rates R = 0.933,
0.941, and 0.955, respectively). The BER of the first group of codes and the BER of the random LDPC code
with column weight c = 3 are shown in Figure 14.8. As we can see from this figure, at the moderate SNR
values the random LDPC code has a bit better BER, and in simulations of the size 109 bits does not show
an error floor or a slope change. At the same time, the Kirkman LDPC codes exhibit a slope change at the
BER level 10−6 − 10−7. The BER of lattice LDPC codes with the column weight c = 4 and the BER of
the random LDPC code with column weight c = 4 are shown in Figure 14.9. In this case all BER are almost
on the top of each other at the moderate SNR values, but again the lattice LDPC codes exhibit some signs of
a slope change at the high SNR values. In Figure 14.10 we compare the BER of the structured LDPC codes
with different column weights c = 3, 4, 5 and the BER of turbo product code with single parity checks

20 21 22 23 24 25 26 27 28
10−7

10−6

10−5

10−4

10−3

10−2

10−1

SNR

B
E

R

uncoded Viterbi
random LDPC, n = 4352, R = 0.94
Kirkman LDPC, n = 2420, R = 0.95
Kirkman LDPC, n = 4401, R = 0.963
Kirkman LDPC, n = 5430, R = 0.966

FIGURE 14.8 BER of different Kirkman LDPC codes with column weight 3 in the perpendicular PR2 channel.
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FIGURE 14.9 BER of different lattice LDPC codes with column weight 4 in the perpendicular PR2 channel.
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Lattice LDPC, J = 5, R = 0.926

FIGURE 14.10 Comparison of the structured LDPC codes with different column weights of the parity check
matrix.
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FIGURE 14.11 Effect of the number of iterations on the BER of the lattice LDPC code with c = 4.

(TPC/SPC, [51, 52]) considered as an LDPC code with column weight c = 2. In this figure, the BER of the
TPC code is approximately 0.4 dB better at the BER level 10−4, but has an error floor at the SNR > 22 dB,
where all structured LDPC codes still are in the “waterfall” region. Finally, in Figure 14.11 we illustrate
the typical dependence of the BER from a number of compound iterations G for the lattice and Kirkman
LDPC codes. We can summarize the simulation results as follows:

� Kirkman and lattice LDPC codes show the BER that is close to the BER of random LDPC codes,
but due to their mathematical structure can lend themselves to low complexity implementations.

� The tested structure LDPC codes with column weights c = 3, 4, and 5 exibit a slope change of the
BER curves in the high SNR region, but not an error floor in contrast to the TPC/SPC codes.

� Larger numbers of compound iterations improve the BER, and in our simulations four compound
iterations were already a good compromise between the performance and increased latency and
complexity of the detector scheme.

14.7 Conclusion

We gave an overview of combinatorial constructions of high rate LDPC codes. The emphasis of the
exposition was on codes that have column weight not less than three and girth at least six. We discussed
BIBD codes obtained using constructions of cyclic difference families due to Bose, Netto and Buratti, and
affine integer lattice code. We presented bounds on the minimum distance of the codes and determined the
BER performance of these LDPC codes in PR magnetic recording channels by using computer simulations.
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Abstract
Intertrack interference (ITI) is considered as one of the major factors that severely degrade the performance
of the practical detectors, especially for narrow-track systems of future. As a result, multi-track systems,
where data are written in a group of adjacent tracks simultaneously and read back by multiple heads in
parallel, have received significant attention in recent years. In this chapter, we study the turbo coding and
iterative decoding schemes suitable for the multitrack recording systems. We describe the maximum a
posteriori detector for the multitrack channels in both cases of deterministic ITI and random ITI. We
provide simulation results showing that this concatenated coding scheme works very well. In particular, its
performance is only about 1 dB away from the information theoretical limits for the ideal partial response
channels. It is also shown that the performance achieved by the multitrack system is much better than that
of its single-track counterpart. Finally, we provide some results to illustrate the effects of the media noise
on the system performance.

15.1 Introduction

The areal density of the hard disk drives has been doubled every 18 months over the last decade [1]. We
can increase the areal density in two directions; the axial direction and the radial direction. In the axial
direction, we write the information bits close to each other, thus decrease the pulse width which increases
the intersymbol interference (ISI), while in the radial direction, we decrease the track width which increases
the intertrack interference (ITI). ITI is considered as one of the major factors that severely degrade the
performance of the practical detectors and limit the recording density, especially for narrow-track systems
of future. In fact, even with wide tracks, ITI can be present due to possible head misalignment [2]. As a
result, multitrack channels, where data are written in a group of adjacent tracks simultaneously and read
back by multiple heads in parallel, have received great attention due to their capability in combating the
problems caused by the ITI [2–6]. Compared to the single-track systems in the presence of ITI, by using a
multitrack recording system, a significantly better performance can be achieved, which in turn results in
a density increase for a given performance requirement. In [7, 8], the information theoretical results also
show that multitrack systems have higher achievable information rates, which is also justified by the fact
that multitrack systems are more robust than their single-track counterparts. Furthermore, we will show
later in this chapter that the multitrack systems are not only robust against the ITI, but also to the media
noise, which is a type of signal-dependent noise that exists in high-density recording channels.

Another motivation for employing the multitrack system lies in that it provides easier timing and
gain control, since the timing and gain information can be derived from any track or any subset of
tracks [9]. This brings the benefit of relaxing the synchronization constraints, such as the k constraint
of the run-length limited (RLL) codes [10], which further increases the storage density. In order to make
use of this advantage of multitrack systems, some work has already been performed on the design of the
two-dimensional modulation or constrained codes [9, 11–13].

With all these advantages, multitrack systems have the potential to play an important role in the future
storage industry. On the other hand, the practical difficulties and costs of developing multiple read/write
heads, as well as the inevitable increase of the complexity of the detection and coding/decoding schemes,
remain as the main obstacles.

Uncoded multitrack recording systems have been studied in [3, 6, 14–18] (see, also the references
therein). These works mainly focus on the development of suitable equalization and detection algorithms.
Channel coding techniques are used for the multitrack systems as well in [19, 20] to combat both the
intersymbol and intertrack interference, where conventional block and convolutional codes are employed.

In 1993, turbo codes were proposed [21], where the message sequence is encoded by two parallel
concatenated convolutional codes that are separated by an interleaver, and decoded by a suboptimal
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iterative decoding algorithm. The performance of the turbo codes is shown to approach the Shannon limit
in the additive white Gaussian noise (AWGN) channel when the size of the interleaver is selected sufficiently
large. Turbo coding schemes have also been proposed for the ISI channels, such as the magnetic recording
channels [22, 23], and it is shown that they can achieve an excellent performance in this case as well.

In this chapter, we consider the application of turbo codes to the multitrack systems (see also [8, 24]).
We use a turbo code, or just a single convolutional code with an interleaver, as the outer encoder, and
map the coded bits to different groups and transmit them through adjacent tracks. At the receiver, we
develop a modified maximum a posteriori (MAP) detector for the multitrack systems with deterministic
or random ITI. The turbo equalization [25] and the iterative decoding can be performed by exchanging
the soft information between the channel MAP detector and the outer soft-input soft-output decoder
that corresponds to the outer encoder. We show that the resulting system performance is very close to
the information theoretical limits obtained in [7, 8]. We also note that, other turbo-like codes, such as
low-density parity-check (LDPC) codes [26] and the block turbo codes (or, turbo product codes) [27] can
be applied to the multitrack recording systems as well.

The chapter is organized as follows. In Section 15.2, the multitrack recording channel model is given
which is nothing but a multi-input multi-output (MIMO) ISI channel. In Section 15.3, the capacity and
the achievable information rates over such channels with binary inputs are reviewed. These information
theoretical limits are useful to evaluate the effectiveness of the specific turbo coding schemes to be proposed.
In Section 15.4, a MIMO MAP detector is developed, and the turbo coding and iterative decoding scheme
are presented. The performance of the turbo coded systems is then compared with the information
theoretical limits developed in Section 15.3, for both multitrack and single-track systems when ITI is
present. Finally, the conclusions are provided in Section 15.5.

15.2 Multitrack Recording Channels

Mathematically, magnetic recording channels can be modeled as ISI channels. In addition, in the narrow-
track systems, which will be more and more popular in the future recording systems, the intertrack
interference will also be present. Both the ISI and the ITI are illustrated in Figure 15.1, where the black
block denotes the media track that records the desired signal and the gray ones represent the interfering
sources. In the axial direction, the interference comes from the adjacent symbols, and in the radial direction,
it results due to the adjacent tracks.

To deal with the increased ITI, we can write the signals to multiple tracks and use multiple heads to read
them for joint detection. In an (N, M) multitrack system, for which there are N heads reading M tracks

ITI

ISI

FIGURE 15.1 Multitrack system with intersymbol interference and intertrack interference.
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simultaneously, the received signal for the nth head can be expressed as

rn(t) =
M∑

m=1

an,m

∞∑
k=−∞

bm,k · p(t − kT) + wn(t) 1 ≤ n ≤ N (15.1)

where p(t) is the transition response of the channel, T is the symbol duration, wn(t) is the AWGN with
two sided power spectral density of N0/2, and {bm,k} is the transition symbol on the mth track with
bm,k = xm,k − xm,k−1 if {xm,k} is the transmitted binary signal.

Equivalently, the received signal is given by

rn(t) =
M∑

m=1

an,m

∞∑
k=−∞

xm,k · h(t − kT) + wn(t) 1 ≤ n ≤ N (15.2)

where h(t) is the pulse response of the channel with h(t) = p(t) − p(t − T). We assume that the pulse
responses from different tracks are the same except for the amplitude varying with the distance between the
track and the readhead, which is reflected by the coefficients {an,m}. This is a simplified model that is justified
by the experimental measurements [2]. Other models can also be used, for which the coding/decoding
schemes described later are still applicable.

For the sake of comparison, we also consider the single-track channels, which experience interference
from adjacent tracks as well, but have only one read head. The receiver detects the desired signal from the
corresponding track and considers the others as pure interference.

At the receiver, the output is passed through a matched filter, a sampler at the symbol rate and a
noise-whitening filter [10]. The l th received symbol for the nth head is then given by

yn,l =
M∑

m=1

an,m

K∑
k=0

xm,l−k · fk + zn,l 1 ≤ n ≤ N (15.3)

where {zn,l } is the white Gaussian noise sequence with variance σ 2
z = N0/2, and { fl } is the set of coefficients

of the equivalent discrete-time ISI channel with memory K . We denote the ITI matrix as A = [an,m]N×M

and consider both cases of deterministic and random ITI.
In practice, the output signal of the magnetic recording channel is usually equalized to an appropriate

partial response (PR) target using a linear equalizer. Therefore, for simplicity, the ideal PR channels are
often used to model the magnetic recording channels, where the received signal can be expressed by
Equation 15.3 with { fl } defined by the PR target. For the ideal normalized PR4 channel considered later
in this chapter, we have K = 2 and f0 = 1/

√
2, f1 = 0 and f2 = −1/

√
2.

As a more realistic example, we also use the longitudinal recording channel where the transition response
p(t) is modeled by the Lorentzian pulse

p(t) = 1

1 + (2t/PW50)2
(15.4)

where PW50 is the pulse width at the half height. We define the parameter Dn = PW50/T as the normalized
density of the recording system.

In high-density magnetic recording channels, signal-dependent noise, called media noise exists [28,
29]. In this chapter, we only consider the fluctuation of the position of the transition pulse, called jitter
noise, which is one of the main sources of the media noise. The received signal for the recording channel
with jitter noise is then given by

rn(t) =
M∑

m=1

an,m

∞∑
k=−∞

bm,k · p(t + jm,k − kT) + wn(t) 1 ≤ n ≤ N (15.5)

where { jm,k} is the independent zero-mean Gaussian noise term that reflects the amount of position jitter.
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The signal to noise ratio (SNR) is defined as

SNR = C1 · C2 · E s

N0
(15.6)

where E s is the transmitted symbol energy, and C1 and C2 are the normalization factors due to the received
ITI and the channel response, respectively. For the deterministic ITI and the random ITI cases, C1 can be
expressed as 1

N

∑N
n=1

∑M
m=1 a2

n,m and 1
N

∑N
n=1

∑M
m=1 E [a2

n,m], respectively. For the longitudinal channel,
C2 = ∫ ∞

−∞ h2(t) dt, and for the normalized PR4 channel, C2 = 1.

15.3 Information Theoretical Limits: Achievable
Information Rates

Before we describe the turbo coding/decoding scheme for the multitrack recording channels, we present
some results of the achievable information rates, which can be used as the ultimate theoretical limits of
the coding/decoding schemes.

For single-input single-output (SISO) ISI channels, the capacity is derived in [30]. For multitrack systems
with deterministic ITI, a lower bound on the capacity is derived in [31] following a similar approach as
in [32]. In both cases, Gaussian inputs are assumed to be used. However, for practical digital communication
systems, the inputs are constrained to be selected from a finite alphabet. For example, signals used in the
magnetic recording systems are binary. In general, with the use of the constrained inputs, one cannot
achieve the “unconstrained” capacity and the gap between the capacity and the achievable information
rates under such input constraints is far from ignorable in high SNR regions, especially when the size of
the alphabet is small. Therefore, it is also important to determine the information rates achievable under
the specific input constraints.

Simulation-based methods have been recently proposed to estimate the achievable information rates
for ISI channels with specific binary inputs [33–35]. The main idea is to use a simulation of the channel
and employ the BCJR algorithm [36] to estimate the joint probability of the output sequence. Then, this
estimate is used to compute the differential entropy of the output sequence and the mutual information
between the input and the output, thus the achievable information rates over the noisy channel. By
increasing the simulation complexity, one can easily obtain an accurate result. In [37], the maximization
of the information rates is performed for the case of Markov inputs with a certain memory, as opposed to
the use of independent identically distributed (i.i.d.) inputs.

We can extend these techniques to the case of MIMO ISI channels with deterministic and random ITI. The
key step is still the computation of the entropy, and thus the probability of the output sequence for a given
channel simulation. To accomplish this for the multitrack systems, we set up the channel trellis based on
both the ISI and the ITI, instead of the one that only takes the ISI into account. The details can be found in [8].

To give specific examples in this chapter, we consider the two-track and two-head channel with the ITI
matrix

A =
[

1 α

α 1

]
(15.7)

where the diagonal elements are set to 1, which represent the amplitudes of the desired signals to each
readhead, and off-diagonal elements represent the amplitudes of the ITI from the other track. We also
consider a single-track system with M = 2 and the ITI matrix [1 α] for comparison. For the case of
deterministic ITI, the entries of the matrix are fixed. On the other hand, for the random ITI case, we model
α as uniform random variables over [0, 1], which are assumed to be independent spatially and temporally,
and known to the receiver.

The information rates per track use for the multitrack and single-track systems with different values of
deterministicα are shown in Figure 15.2 for the PR4 channel where the input is constrained to be binary and
i.i.d. with equal probability of 1s and 0s. We observe that the improvement in the achievable information
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FIGURE 15.2 Information rates for the PR4 channel with deterministic α.

rates by adopting multitrack system is large, especially for high ITI levels. For example, to achieve a
transmission rate of 16/17 bits per track use for the single-track system with arbitrarily low probability of
error when α = 0.5, about 11.6 dB is needed, but only 6.0 dB is enough for the multitrack system.

Figure 15.3 shows the information rates per track use for the PR4 channels with uniform ITI coefficients,
which are known to the receiver only. We obtain similar conclusions by comparing the information rates
for the multitrack and the single-track systems for this case as well.

In Figure 15.4, we maximize the information rates over all the Markov inputs with a memory I = 2 for
the (2, 2) multitrack PR4 systems. We observe that in the low-to-medium SNR region, the information rate
achieved by the optimized Markov inputs is obviously larger than the one with i.i.d. inputs. Particularly,
to achieve a rate of 0.2 bits per track use, there is a gain of 2.6 dB when α = 0.5. However, when the
transmission rate considered is high, for example, 16/17 bits per track use, there is almost no difference
in the required SNR to make the error probability arbitrarily small.

We also present several results for the longitudinal channels with a normalized density of 2.0. Figure 15.5
shows the information rates per track use for the channels with a deterministic α. We also observe the
effectiveness of the multitrack recording compared to the single-track one. For example, when α is increased
from 0 to 0.5, the SNR loss is about 6.6 dB for the single-track system, whereas it is only 1.7 dB for the
multitrack case, for the transmission rate of 16/17 bits per track use.

15.4 Turbo Coding for Multitrack Recording Systems

In 1993, Berrou et al. introduced the turbo codes, which can achieve near Shannon-limit performance over
the memoryless AWGN channel [21]. For this reason, turbo coding and decoding techniques have been
comprehensively studied and applied to many other channels, such as the ISI channels [22, 23]. In this
section, we extend these techniques to the multitrack recording system, which can be viewed as a special
case of the general MIMO ISI channels. We first review the turbo codes and iterative decoding algorithm,
as well as their application to the ISI channels for completeness.
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FIGURE 15.5 Information rates for longitudinal recording channels with deterministic α(Dn = 2.0).

15.4.1 Turbo Codes and Iterative Decoding Algorithm

The diagram of a turbo encoder is shown in Figure 15.6, where the uncoded message bits, denoted by u, are
encoded by two parallel rate-1/2 recursive systematic convolutional (RSC) encoders that are separated by an
interleaver. The codeword corresponding to the message u is then formed by the systematic information
bits xs, and the parity bits, x1p and x2p, generated by the two RSC encoders. This is an example of a rate 1/3
turbo code, however, by puncturing some of the parity bits, higher rate codes can be easily obtained [21].

The interleaver, which is used to permute the input bits, is very important in the construction of the
turbo codes. For example, the average bit error rate (BER) over an AWGN channel is shown to be inversely
proportional to the interleaver length when a uniform interleaver is used [38] (which is a probabilistic device
that takes on each possible permutation with equal probability). This gain is referred as the interleaving gain.

RSC Encoder 1

Interleaver

RSC Encoder 2

Puncturing

u xs

x1p

x2p

FIGURE 15.6 Turbo code block diagram.
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Interleaver

Interleaver
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û

L2e

L1e

FIGURE 15.7 Block diagram of the turbo decoder.

Pseudo-random interleavers generally offer a good performance, therefore they are often used. However,
well designed interleavers can outperform the average (uniform) interleavers significantly, especially in
the high SNR region [39, 40].

The optimal decoder for the turbo code in the sense of minimizing the BER is the one that chooses the
codeword with the maximum posterior probability. Due to the existence of the interleaver, such a decoder
needs to perform an exhaustive search over the entire set of possible codewords. Therefore, its complexity
is huge and it is not feasible, especially when the interleaver length is chosen to be relatively large to obtain
a significant interleaving gain. A suboptimal decoding strategy is proposed in [21] to solve this problem.
For the component convolutional codes, this decoder uses two MAP decoders that iteratively produce
soft information about each bit, called extrinsic information, which is exchanged between the decoders.
The diagram of the turbo decoder is shown in Figure 15.7, where ys, y1p and y2p are the observations
corresponding to the systematic information bit sequence xs, and the two parity bit sequences, x1p and x2p,
respectively. L1e and L2e are the extrinsic information that is computed from the previous MAP decoder and
fed to the next one. The turbo decoder works iteratively until the final hard decisions on the uncoded bits
are made. For the details of the MAP algorithm and the iterative decoding for the component convolutional
codes, the reader is referred to another chapter in this book [41].

15.4.2 Turbo Coding and Turbo Equalization for ISI Channels

After the invention of the turbo codes and the iterative decoding algorithm, many researches have proposed
to apply these techniques for the transmission over other channels, including the ISI channels. For the
case of ISI channels, instead of the maximum likelihood sequence detector (MLSD) [10, 42], it is necessary
to use a soft-input soft-output detector or equalizer, which can generate soft reliability information about
the coded symbols from the noisy channel observations. This information can then be passed to the turbo
decoder to perform the iterative decoding. In addition, the extrinsic information generated by the turbo
decoder can also be fed back to the channel detector to update the a priori probabilities. The concept of
combining the channel equalizer and the turbo decoder in the iterative decoding scheme is called turbo
equalization [25, 43].

It is clear that a MAP detector can be used as the soft-input soft-output detector for the ISI channel,
where the soft information is computed based on the log-likelihood ratio (LLR) of the coded bit xl that is
transmitted over the ISI channel. We define the LLR as

�(xl ) = log
p(xl = 1 | yn)

p(xl = 0 | yn)
(15.8)

where yn = {y1, . . . , yl , . . . , yn} is assumed to be the channel output sequence or the observations with
block length n.
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To compute the a posteriori probability (APP) in Equation 15.8, we can use the BCJR algorithm [36]
operating on the trellis of the ISI channel. Suppose the trellis state at the time instance l is Sl , then we have

�(xl ) = log
p(xl = 1, yn)/p(yn)

p(xl = 0, yn)/p(yn)

= log

∑
(i, j )∈�(1) p(Sl−1 = i, Sl = j, yn)∑
(i, j )∈�(0) p(Sl−1 = i, Sl = j, yn)

(15.9)

where �(1) and �(0) are the sets of the valid state transitions where xl = 1 and xl = 0, respectively. We
can further write �(xl ) as [41]

�(xl ) = log

∑
(i, j )∈�(1)αl−1(i) · γl (i, j ) · βl ( j )∑
(i, j )∈�(0)αl−1(i) · γl (i, j ) · βl ( j )

(15.10)

where αl ( j ), βl ( j ) and γl (i, j ) are defined as

αl ( j ) = p(y1, . . . , yl , Sl = j ) (15.11)

βl ( j ) = p(yl+1, . . . , yn | Sl = j ) (15.12)

and

γl (i, j ) = p(Sl = j | Sl−1 = i) · p(yl | Sl−1 = i, Sl = j )

= p(xl ) · p(yl | Sl−1 = i, Sl = j ) (15.13)

Here p(xl ) is the a priori information about the coded bit xl , and it can be updated iteratively using the
extrinsic information generated by the turbo decoder. We can use the forward and backward recursions
to compute αl ( j ) and βl ( j ) in an efficient manner [36]. The details on the generation of the extrinsic
information are presented in [41].

In the above discussion, we use the turbo code as the outer encoder, where two parallel concatenated
convolutional codes (PCCC) separated by an interleaver are employed. As opposed to the PCCC scheme, a
single convolutional code (SCC) can be employed instead, since the ISI channel can be viewed as a rate-one
inner encoder. In this case, a precoder is necessary to make the channel (i.e., the inner code) recursive.
Because there is only one component decoder in this case, the computational complexity is smaller than
the one for the parallel concatenation, while the performance is shown to be comparable or, even better
in some cases [23].

In addition, other turbo-like codes, including the LDPC codes and the block turbo codes, can also be
used in place of the SCC or PCCC for the ISI channels [44, 45].

15.4.3 MAP Detector and Iterative Decoding for Multitrack Systems

We now extend the use of the code concatenation to the case of multitrack recording by designing the
corresponding MAP detectors for different ITI scenarios. The block diagrams of the transmitter and receiver
are shown in Figure 15.8. At the transmitter, we first encode the message bit sequence, denoted by u, by
using an outer encoder, such as the PCCC or SCC. After being passed through a random interleaver, the
coded bits, represented by x, are divided evenly into M groups, which are sent through the M transmitters
or tracks. The N output sequences of the MIMO ISI channels, corrupted by the additive white Gaussian
noise, constitute the received signal y. At the receiver, the turbo equalization is used where a modified
channel MAP detector takes the channel outputs and the extrinsic information fed back from the outer
decoder as its inputs, and generates the soft information about the coded bits. This soft information about
the inputs from different transmitters or tracks is deinterleaved and passed to the outer decoder. The outer
decoder, that is, a turbo decoder or a MAP decoder for a single convolutional code, generates the extrinsic
information, which is then fed back to the channel MAP detector after appropriate processing for the next
iteration step. The LLR of the message bits are used to make hard decisions after a number of iterations.
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FIGURE 15.8 Block diagram of the turbo coding scheme for the multitrack system.

We use a (2, 2) multitrack system with the ISI memory of K as an example to illustrate the necessary
modifications. First we should set up the channel trellis with 22K states according to the multiple inputs and
multiple outputs, which has 22K states. Assume that, at time instance l , the two coded bits transmitted over
the two tracks are x1,l and x2,l , and the two output sequences with length n are yn

1 = {y1,1, . . . , y1,l , . . . , y1,n}
and yn

2 = {y2,1, . . . , y2,l , . . . , y2,n}. In order to compute the log-likelihood ratios for x1,l and x2,l , we compute
four probabilities: P (x1,l = 0, x2,l = 0 | yn

1 , yn
2 ), P (x1,l = 0, x2,l = 1 | yn

1 , yn
2 ), P (x1,l = 1, x2,l = 0 | yn

1 , yn
2 )

and P (x1,l = 1, x2,l = 1 | yn
1 , yn

2 ). Thus, the log-likelihood ratios of the two bits can be computed as

�(x1,l ) = log
P
(

x1,l = 1, x2,l = 0
∣∣ yn

1 , yn
2

) + P
(

x1,l = 1, x2,l = 1
∣∣ yn

1 , yn
2

)
P
(

x1,l = 0, x2,l = 0
∣∣ yn

1 , yn
2

) + P
(

x1,l = 0, x2,l = 1
∣∣ yn

1 , yn
2

) (15.14)

�(x2,l ) = log
P
(

x1,l = 0, x2,l = 1
∣∣ yn

1 , yn
2

) + P
(

x1,l = 1, x2,l = 1
∣∣ yn

1 , yn
2

)
P
(

x1,l = 0, x2,l = 0
∣∣ yn

1 , yn
2

) + P
(

x1,l = 1, x2,l = 0
∣∣ yn

1 , yn
2

) (15.15)

Similar to the single-input single-output case, we can employ the BCJR algorithm after a minor modifi-
cation to compute the APPs. Suppose the trellis state at time instance l is Sl , then

γl (i, j ) = P (Sl = j | Sl−1 = i) · P (y1,l , y2,l | Sl−1 = i, Sl = j ) (15.16)

= P (x1,l , x2,l ) · P (y1,l | Sl−1 = i, Sl = j )P (y2,l | Sl−1 = i, Sl = j ) (15.17)

≈ P (x1,l )P (x2,l ) · P (y1,l | Sl−1 = i, Sl = j )P (y2,l | Sl−1 = i, Sl = j ) (15.18)

where Equation 15.17 holds because the two observations are independent for a given state transition and
the approximation in Equation 15.18 follows due to the use of the interleaver. When the ITI coefficients
are random and known to the receiver, we just use them in the decoding as if they are constant for each
symbol duration.

We can use a similar MAP detector and coding/decoding scheme for the single-track system, where there
is only one received signal and one desired transmitted signal. Compared to the decoding for the multitrack
systems, no detection is made for the other transmitted signal, which is considered as pure interference.

15.4.4 Examples

Figure 15.9 shows the performance of this turbo coding/decoding scheme for the (2, 2) PR4 channels with
deterministic ITI where α is set to be 0.5. The component convolutional code used for the outer encoder
is a (31, 33) code in octal form, the block length of the input to the outer encoder is 10016, the code rate
is 16/17 and the iterative decoding algorithm with 15 iterations is used. We employ both SCC and PCCC
and consider the use of a precoder, defined by 1/(1 ⊕ D2) where ⊕ indicates modulo-2 addition, as well.
The performance of the uncoded system is obtained by passing the uncoded and unprecoded information
bits through the channel and using the channel MAP decoder to detect them. The results show that SCC
achieves a better performance compared to the PCCC, and its complexity is lower. The performance is
only 1.2 dB away from the theoretical limit computed in Figure 15.2 for a code rate of 16/17 bits per track
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FIGURE 15.9 Performance of turbo coding for (2, 2) multitrack PR4 channels with deterministic α.

use if we consider a BER of 10−5 as reliable transmission (where the rate loss of 0.26 dB is considered).
This represents a coding gain of about 6 dB relative to the uncoded system. We also notice that, when the
SCC is used, the BER curve has lower error floor with the appropriate use of precoding. Therefore, we only
consider the combination of the SCC and the precoder in the following examples.

In Figure 15.10, the bit error rates of the iterative decoding with SCC for the multitrack and single-track
systems with different values of α are shown. Same parameters are used as the previous example and a
precoder of 1/(1 ⊕ D2) is still employed. Compared with the information rates shown in Figure 15.2,
the distances from the theoretical limits are from 0.8 dB to 1.2 dB (where the rate loss is considered),
respectively. To achieve a BER of 10−5 for the multitrack systems, there is an SNR gain of 1.6 dB and 5.3 dB
over the single-track systems when α = 0.2 and 0.5, respectively, which is in line with our expectations
from the information theoretical results.

We consider the case with uniform α (known to the receiver) in Figure 15.11 by using the same
coding/decoding scheme. The performance is about 1.5 dB away from the limits computed in Figure 15.3 for
both multitrack and single-track cases. There is an SNR gain of about 8.2 dB for the multitrack system over
the single-track one, which is also expected by comparing the achievable information rates for both systems.

In Figure 15.12, we show some results for the longitudinal channel with normalized density Dn = 2.0
and deterministic ITI, which is equalized to a (2, 2) EPR4 channel (1 + D − D2 − D3) with the same value
of α. We use a single convolutional code as the outer encoder, together with the precoder 1/(1 ⊕ D2),
and the code generators, the code rate and the block length are the same as in the earlier examples. We
observe that, to achieve a BER of 10−5, the required SNR per bit is 2.2 dB higher than the theoretical limit
for α = 0.2 and 3.0 dB higher for α = 0.5. Although the performance is still very good, it is inferior to the
previous examples. This may be due to two major factors. First, the equalizer target we used is based on
the one-dimensional design and there should be better alternatives which take both the axial and radial
interference into consideration. Also, the noise correlation due to the use of the equalizer is not taken into
account in the decoding process.

We consider the effects of the jitter noise on the performance in Figure 15.13, where the detector ignores
the existence of the jitter. We observe that the jitter degrades the system performance significantly. For



Turbo Coding for Multitrack Recording Channels 15-13

4 5 6 7 8 9 10 11 12 13

10−1

10−2

10−3

10−4

10−5

10−6

SNR per bit (dB)

B
it 

E
rr

or
 R

at
es

single-track, α = 0.2
single-track, α = 0.5
multi-track, α = 0.2
multi-track, α = 0.5
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the uncoded system, an error floor is observed, especially for the single-track case. Particularly, when
σ j = 0.1, the media noise is too high for the iterative decoding algorithm to correctly exchange the soft
information in the single-track system, therefore the decoding algorithm almost fails. However, for the
multitrack system, the turbo coding scheme still works well and very high coding gain can be obtained
compared to the uncoded case.

15.5 Discussion

In order to increase the areal density of the magnetic recording systems, narrow tracks are used, which
inevitably causes intertrack interference. We can employ multiple write and read heads to reduce the
effects of the ITI. In this chapter, we considered the application of turbo codes to the multitrack recording
systems, which are shown to achieve a very good performance (i.e., close to the information theoretical
limits), for both cases with deterministic and random ITI. When compared with the single-track systems,
the multitrack system has significant advantages in terms of the achievable information rates and the
detection performance, which indicates that a multitrack system is a good solution to increase the areal
densities of the future recording systems. In addition, we consider the effects of the media noise on the
performance of the turbo coding scheme, and show that the multitrack systems are also more robust
compared to the single-track ones even in the presence of media noise.

Since the design of the MAP detector for the multitrack systems is independent of the choice of the outer
decoder, in addition to the turbo code (or, a single convolutional code), we can apply other turbo-like
codes, such as the LDPC codes and block turbo codes, as well.

The MAP detector for the multitrack system can be considered as an optimal soft-output detector for
the MIMO ISI channels. However, if a multitrack system with more tracks is considered, the computational
complexity for this algorithm is high, as it is exponential in the number of tracks. Therefore, simplified
schemes should be used instead, at the cost of some performance degradation. For example, we can give
up the turbo equalization if the iterative decoding can be performed within the outer decoder (for the case
of PCCC). In addition, we can use other soft-input soft-output detectors with lower complexities, such as
the SOVA detector, or even other suboptimal detectors where the complexity increases linearly with the
number of tracks.

We also note that, we did not consider the constrained modulation codes, such as the run-length
limited codes for multitrack recording in this chapter. To make multitrack recording practical, new schemes
combining both constrained coding and channel coding, as well as the iterative decoding algorithm should
be employed [46].
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Infinite families, 14-7
Information block, in parallel concatenated convolutional

codes, 11-3
Information rates

achievable in multitrack channels, 15-5–15-6
of finite-state machines and Markov chains, 9-1
longitudinal recording channels with deterministic ITI,

15-8
Markov channels, 9-5
Monte Carlo method of computing for finite-state

machines, 9-1–9-2
trellis codes and superchannels of partial response

channels, 9-6–9-9
Information theoretical limits, 15-5–15-6

multitrack recording performance close to, 15-3
Inner decoder, 2-9, 11-8

recursive requirement for, 13-4
Inner encoders, 11-5
Inner superchannel trellis, graph of, 9-14
Inner trellis codes, 9-2
Input constraint length, of encoder, 8-8–8-9
Input constraints, 6-7
Input generator vector, 8-7, 8-8
Input-output weight enumerator (IOWE), 13-6, 13-8
Insertion errors. See also Bit insertion errors

correcting with Levenshtein metric, 6-10
Lee metric correction of, 6-10

Integer lattice designs, 14-3
Integrated constrained and error-control coding, 7-1–7-2

bit insertion methods, 7-6
lossless compression techniques, 7-6–7-8
possible configurations, 7-2–7-8

reverse concatenation and soft iterative decoding for,
7-8–7-9

reverse concatenation methods, 7-4–7-6
standard concatenation methods, 7-3–7-4

Interleaving, 1-18, 1-19, 1-20, 11-5, 11-8
convolutional coding with, 11-14–11-15
interleaver size and channel capacity approach, 11-11
not required for LDPC codes, 12-17
in parallel concatenated convolutional codes, 11-3
performance and interleaver lengths, 11-10
in turbo coding, 11-2, 13-2
violation of (d , k) constraints through, 6-8

Interleaving gain, 15-8
on precoded PR channels, 13-6
for turbo/SPC and TPC/SPC systems, 13-9, 13-16

Intermediate coding layer, lossless compression step in
creating, 6-12

Intersymbol interference (ISI), 2-1, 4-1, 10-1, 11-11
in axial direction of data storage devices, 15-2
and highest transition frequency, 3-1
as inner code, 13-1, 13-3, 14-1
iterative coding to improve reliability of, 14-1
magnetic recording channel as, 13-1
in multitrack systems, 15-3
in partial response channels, 9-1
severity of, 4-4
in single-input single-output channels, 15-5
turbo coding and turbo equalization for ISI channels,

15-9–15-10
Intertrack interference (ITI), 2-2, 3-5

channels with, 2-6–2-7
deterministic, 15-2
head misalignment and, 15-2
ITI-reducing codes for partial response channels,

10-3–10-4
with multiple-head arrays, 10-2
in narrow-track systems, 15-3, 15-15
performance degradation by, 15-2
performance of SCC scheme for multitrack and

single-track PR4 channels with uniform, 15-13
in radial direction of data storage devices, 15-2
random, 15-2

Irreducible polynomials, 1-9
Irregular LDPC codes, 12-5, 14-2

message flow in outer code, 13-111
Irregular repeat-accumulate (IRA) codes, 12-5–12-6
ISI channels

constraint definitions, 2-5–2-6
constraint requirements, 2-4–2-5
constraints for, 2-4

Iterative decoder structure, 11-7–11-8, 14-12
Iterative decoding algorithms, 12-7–12-8, 13-1, 14-2, 15-3

and equalization, 13-1, 13-4
log-domain SPA decoder, 12-11–12-13
and MAP detector for multitrack systems,

15-10–15-11
for multitrack recording systems, 15-2
probability-domain SPA decoder, 12-8–12-11
reduced complexity decoders, 12-13–12-17
and turbo codes for multitrack recording channels,

15-8–15-9
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Iterative decoding techniques, 6-11, 9-2, 9-14, 11-4,
11-5–11-6

iterative decoding of serially concatenated
convolutional codes, 11-8–11-9

maximum a-posteriori (MAP) decoder, 11-6–11-7
turbo codes, 11-5–11-6, 11-6–11-9

Iterative detection, 14-1
Iterative message-passing decoding algorithm, 12-1
Iterative thresholds, 13-13
Iterative Wiener filtering, 10-2
i.u.d. capacity, 9-1, 9-12, 9-19

equal to design rate, 9-13
information rates approaching, 9-2

J

Jitter noise, 15-4
effects on multitrack system performance, 15-12,

15-14

K

k-constraint, 2-1, 10-2. See also Per-track minimum
runlength constraint

K -RDS f sequences, 5-11–5-13
on partial response channels, 5-14–5-15

Kavcic, Aleksandar, 9-1
Kaynak, Mustafa N., 11-1
Key equations, 1-17

in decoding of RS codes, 1-13–1-16
Kirkman systems, 12-7, 14-16

bit error rate simulation results, 14-14
performance of LDPC codes based on, 14-4

Kronecker’s product, 5-15, 5-16
Kurtas, Erozan M., 11-1, 13-1, 14-1, 15-1
Kuznetsov, Alexander, 14-1

L

L-configuration, 14-4
Labeled graphs, 6-3
Lattice construction

bit error rate simulation results, 14-14
codes on rectangular subset of integer latitude,

14-10–14-12
effect of number of iterations on BER, 14-16
LDPC codes, 14-4, 14-10

LDPC decoding, 9-16
as iterative process, 13-11

Lee metrics, 6-10
Levenshtein metrics, 6-10
Li, Jing, 13-1
Likelihood ratio, 12-7
Line codes, 6-1
Linear codes, 1-3–1-6

LDPC codes as, 12-1
matrices defining, 1-4
over bits, 1-8

over bytes, 1-8
turbo codes as, 11-4

Linear density
limitations on, 10-1
trade-off with magnetic domain size, 10-1

Linear error correcting codes
combined codes derived from, 6-8–6-9
using as combined codes, 6-8

Linear independence, 1-12
of parity check matrices, 1-5

Linear perfect codes, 1-6
Linear recording density, increase in transfer function

with, 2-1
List decoding, 2-9
Locations in error, 1-14
Log-domain SPA decoder, 12-11–12-13
Log-likelihood ratio (LLR), 7-8, 11-6, 11-7, 11-8, 11-12,

11-13, 12-7, 13-4, 15-9
Longitudinal magnetic disc recording, 4-3

information rates with deterministic ITI, 15-8
Lorentzian pulse in, 10-3
performance of single convolutional code scheme

for, 15-14
Look-ahead encoding, 2-3
Lookup tables, 6-8, 6-12
Lorentzian channels, 11-11–11-12. See also Realistic

recording channels
coding gain equalized to E2PR4 target, 4-11
E2PR4-equalized, 4-12
Euclidean distance for key error events in, 4-5
high density, 4-4
turbo code performance over, 11-16–11-18

Lorentzian pulse, 4-3
in longitudinal recording systems, 10-3

Loss of synchronization, and faulty tracks, 3-5
Lossless compression scheme, 7-2

creation of intermediate coding layer using, 6-12
diagram, 7-7
and improved efficiency of reversed concatenation, 2-10
integrated constrained and error-control coding with,

7-6–7-8
Low-complexity encoders, 12-4
Low-density parity-check (LDPC) codes, 7-1, 12-1, 13-1.

See also Structured low-density parity-check
(LDPC) codes

achievable length-rate pairs on projective planes, 14-10
from algebraic curves, 14-9
application to multitrack recording systems, 15-3
array codes, 12-6
based on Kirkman systems, 14-4
based on mutually orthagonal Latin rectangles, 14-4
block failure proneness, 13-16
code design approaches, 12-4–12-7
combinatorial, 12-7
comparison with TPC/SPC codes on AWGN channels,

13-2
comparison with turbo codes, 12-17
as competitors to turbo codes, 11-5
on difference families, 14-5–14-7
extended IRA codes, 12-6
finite geometry codes, 12-5



Index I-9

Gallager codes, 12-4
graphical representation, 12-2–12-3
irregular LDPC codes, 12-5
irregular repeat-accumulate (IRA) codes, 12-5–12-6
iterative decoding algorithms, 12-7–12-17
lattice construction of, 14-10–14-12
MacKay codes, 12-4
matrix representations, 12-2
for partial-response channels, 9-2
performances close to Shannon limit, 14-2, 15-3
on projective planes, 14-7–14-10
repeat-accumulate (RA) codes, 12-5
representations of, 12-2–12-3
structured, 14-1–14-2
Tanner graphs of, 12-1, 12-3
thresholds of regular vs. irregular, 13-12
use in ISI channels, 15-10

Low disparity codes, efficiency improvements with, 5-8
Low-error rate floors, 12-4, 12-6, 12-17

for single-track recording, 15-15
Low frequency components

increased with low disparity codes, 5-8
suppression of, 5-3, 5-9
trade-off between suppression and redundancy, 5-13

Low-pass channels, 4-3, 4-6

M

Ma, Xiao, 9-1
MacKay codes, 12-4
Magnetic disk drive systems, 10-1
Magnetic domain size, trade-off with linear density, 10-1
Magnetic recording

distance enhancing codes used in, 2-4
interleaving of RS codes in, 1-20
performance improvements with precoding, 11-18
use of constrained codes, 7-1

Magnetic recording system
block diagram, 11-12
performance of LDPC codes in, 14-3
signal generation in, 14-13

Magnetic tape drives, 2-1
Magnetization direction, 10-1
Magneto-resistive reading heads, 2-9
Main constrained code, in reverse concatenation, 7-5
Marcus, Brian, 2-1
Markov chain

for computing power spectral density of constrained
channel, 5-5

and finite state transition diagrams (FSTDs), 5-4
iterative optimization of transition probabilities, 9-6
and maxentropic sequences, 5-5
steady state probability vector of, 5-6

Markov channel capacity, 15-5
computing, 9-6
partial response channels, 9-4–9-6

Markov channel information rate, 9-5
Markov probabilities, 9-9
Markov process optimization algorithm, 9-2, 9-19
Markov random fields, 14-2

Matched-filter bound (MFB), 2-4, 4-12
Matched information rate (MIR) trellis codes, 9-2, 9-9,

9-19
channel without spectral nulls, 9-18–9-19
choosing branch connections, 9-11–9-13
choosing branch type numbers in superchannel, 9-11
choosing extended channel trellis and superchannel

code rates, 9-9–9-10
choosing number of states in superchannel, 9-10–9-11
dicode channel results, 9-16–9-18
optimization results, 9-16–9-19

Matched spectral null (MSN) constraints, 2-2
Matched spectral null (MSN) trellis codes, 9-2
Matrix representations, LPDC codes, 12-2
Maxentropic dc-free sequences, 5-5, 5-16

continuous part of power spectral density of, 5-7
power spectral densities of, 5-5–5-6
spectrum of, 5-17

Maximum a posteriori (MAP) decoding and detection,
10-2, 11-6–11-7, 12-7, 13-4, 15-9

MAP detector and iterative decoding for multitrack
systems, 15-10–15-11

message flow in, 13-10
modified at receiving signal, 15-3

Maximum achievable free distances, 6-6. See also Free
distances

Maximum distance separable (MDS) codes, 1-5
Reed Solomon codes, 1-13

Maximum likelihood decoding, 9-13, 11-9, 13-4
difficulty with turbo codes, 11-3–11-4
of standard constrained codes, 6-10

Maximum likelihood sequence detection (MLSD), 3-4,
4-2, 8-4, 10-5, 11-12

in high-density magnetic disk drives, 2-1
increase in code complexity with, 10-2
in multitrack systems, 10-2
for partial-response channels, 8-3
in turbo coding and equalization for ISI channels, 15-9
with Viterbi detector, 4-10

Maximum posterior probability, and optimal decoder
choice for BER minimization, 15-9

Maximum runlength, 6-5, 6-7
Maximum transition run (MTR) coding, 4-1–4-2

detector design for MTR constraints, 4-10–4-11
error event characterization, 4-2–4-4
MTR codes, 4-4–4-10
simulation results, 4-11–4-12

Maximum transition run (MTR) constraints, 2-2, 3-4
Maximum weight, reducing at each round of iteration, 3-7
Maximum zero-run lengths, 6-8, 8-11
Media noise, 15-4
Memoryless channels

capacity-achieving codes for, 9-2, 15-6
turbo-like coding schemes on, 2-9

Merging bits, 3-7
Message flow

in inner MAP decoder, 13-10
in outer code, 13-11–13-12

Message-passing decoding algorithms, 12-1, 12-7
for LDPC codes, 12-9, 12-10

Milenkovic, Olgica, 10-1, 14-1
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Min-sum decoder, 12-14
Min-sum-plus-correction-factor decoder,

12-14–12-17
Minimal channel trellis, 9-3

diagram, 9-4
third-order extension of, 9-5

Minimal encoders, 8-9, 8-14
convolutional, 8-9

Minimum distance, 1-2, 1-3, 1-4, 1-7, 1-10, 1-20, 4-2
of finite geometry codes, 12-5
free Hamming, 8-2, 8-6
large in multitrack soft error-event decoding, 10-6
of linear codes, 1-3
of Reed Solomon codes, 1-12–1-13
turbo/SPC and TPC/SPC codes, 13-16
of turbo/SPC coded PR systems, 13-8
uncoded channels, 2-4

Minimum runlength
no restriction on, 6-7
number of distinct sequences as function of, 3-3

Minimum weight, 1-3, 1-4
Miscorrection, 1-21
Modified concatenation, 7-4
Modified non-return-to-zero (NRZI) modulation, 2-3.

See also NRZI modulation
Modulation codes, 1-19, 2-2. See also Constrained codes

soft-output decoding of, 2-9
for storage systems, 2-1–2-2
as subcodes of error correcting codes, 6-8

Modulation decoder, channel error propagation by, 2-9
Modulation encoding, 5-15
Modulation methods, 2-3
Monte Carlo algorithm

computing information rates, 9-1
computing Markov channel capacity, 9-6
message flow in inner MAP decoder, 13-10
in predicting turbo code performance, 11-4

Moore type finite state transition diagrams, 5-5–5-6,
5-16

MTR constraints, 3-4
reduction of code rate through, 4-13

Multi-input multi-output (MIMO) ISI channel, 15-3
Multi-mode codes, 3-7
Multiamplitude multitrack runlength limited constrained

channels, with clock redundancy, 10-4
Multilevel code constructions, 6-2, 6-9–6-10, 8-13
Multiple adjacent erasures, 6-9
Multiple-branch turbo codes, 13-2
Multiple-head arrays, 10-1
Multiplicative groups, 1-9
Multitrack block codes, 10-5
Multitrack channel model, 10-2–10-3
Multitrack constrained codes, 10-3

with good clock recovery properties, 10-4
for improved synchronization, 10-4
ITI-reducing codes for PR channels, 10-3–10-4
low-complexity encoder and decoder implementations,

10-4–10-5
Multitrack detection, with partial-response equalization,

10-2
Multitrack enumerative codes, 10-5

Multitrack recording channels, 15-3–15-5
and information theoretical limits, 15-5–15-6
MAP detector and iterative decoding for,

15-10–15-11
signal-to-noise ratio in, 15-5
turbo codes and iterative decoding algorithms,

15-8–15-9
turbo coding/decoding scheme examples,

15-11–15-15
turbo coding for, 15-1–15-3, 15-6–15-7
and turbo equalization for ISI channels,

15-9–15-10
Multitrack systems

block diagram of turbo coding scheme for, 15-11
coding and detection for, 10-1–10-2
current state of research in multitrack codes, 10-2
maximized information rates, 15-7
multitrack channel model, 10-2–10-3
multitrack constrained codes, 10-3–10-5
multitrack soft error-event correcting scheme,

10-5–10-7
narrow-track future systems, 15-3

Mutual interference, 5-3

N

Narayanan, Krishna R., 13-1
Narrow-track recording systems, 15-3

as cause of intertrack interference, 15-15
Near-capacity limit performance, 12-4. See also Near

Shannon limit performance
with irregular LDPC codes, 12-5
of LDPC codes, 12-17

Near Shannon limit performance, 11-2
Net performance gain, 4-13
Net SNR gain, for MTR coding schemes, 4-11
Noise

additive white Gaussian, 11-9 (See also Additive white
Gaussian noise (AWGN))

effects on turbo coding, 11-2
as limit on reliability, 4-1
in magnetic disk drive systems, 10-1
in magnetic recording systems, 11-12
media noise, 15-4
reliable communication not limited by, 1-8
signal dependent, 15-4
thermal asperities, 2-9
transmitting digital data over, 1-1

Noise immunity, 2-2
constraints for improving, 2-1

Noise thresholds
computation of, 9-2
for outer LDPC code, 9-18

Noiseless channel capacity, 6-8
computing, 5-3

Noiseless channel codes, 3-6–3-8
Noiseless output sequences, set of, 8-4
Non-return-to-zero (NRZ) modulation, 2-3, 6-1. See also

NRZ modulation
Nonlinear codes, combinatorial questions regarding, 1-3
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Nontrivial linear perfect codes, 1-6
Normalized cut-off frequency, 5-6, 5-7, 5-13, 5-17
Notch width

determined by cut-off-frequency, 5-10
trade-off with codeword length, 5-13

NRZ constraint diagram, 2-4
NRZ modulation, 2-3, 3-2, 8-3
NRZI constraint diagram, 2-4
NRZI modulation, 2-3
NRZI recording, 11-11
Nyquist frequency, 5-10

O

Odd time index, 4-9
Oenning, Travis R., 13-1
Off-the-shelf decoders, 6-8
(O , G/I ) sequences, 3-4
One-dimensional constraints, 6-2
Optical disk drives, 2-1
Optical recording systems, 7-9

applications for binary runlength constrained codes on,
6-1

multiamplitude multitrack runlength limited
constrained channels in, 10-4

use of constrained coding in, 7-1
use of dc-free codes in, 5-1

Optimized branching probabilities, 9-10
Optimized degree sequences, dicode channel, 9-16
Ordinal optimization, 9-12
Original channel trellis, 9-3

diagram, 9-4
second-order extension of, 9-5

Outer decoder, 11-8, 11-11, 15-10
message flow in, 13-11–13-12

Outer encoder, 11-5
turbo codes as, 15-3, 15-10

Outer LDPC codes, 9-2, 9-13
branch input-bit assignment for, 9-15
determining outer subcode rates, 9-15
encoding/decoding system, 9-13–9-14
LDPC decoding, 9-16
noise thresholds, 9-17
normal graph of, 9-14
outer code optimization, 9-15–9-16
subcode optimization, 9-15–9-16

Output weight enumerator (OWE), 13-6

P

Parallel class, 14-4
Parallel concatenated convolutional codes,

11-2–11-5
in outer encoder, 15-10
separated by interleaver, 15-2

Parallel concatenation, inferiority to serial concatenation,
11-9

Parallel transitions, avoiding in decoder trellis, 8-14
Parallelizable decoders, for LDPC codes, 12-17

Parity blocks, in parallel concatenated convolutional
codes, 11-3

Parity check codes, 2-8
Parity-check matrices, 12-1, 12-2, 14-11

of combinatorially constructed codes, 14-3
comparison of structured LDPC codes with column

weights of, 14-15
in finite geometry codes, 12-5
of Gallager codes, 14-3
for lattice codes, 14-12

Parity check matrix, 1-4–1-5, 1-6, 1-7, 1-10
linear independence of, 1-5
for Reed Solomon codes, 1-11
representation as bipartite graph, 14-5

Parity codes, 1-3, 2-2
Parity modulation encoder, 2-10
Parity-on-parity bits, 13-4
Partial response channels, 2-7, 6-2, 11-2, 11-11

application of structured low-density parity-check
(LDPC) codes in, 14-12–14-16

capacity-approaching codes for, 9-1–9-2
channel capacity, 9-3
channel model, 9-2–9-3
channel model and signal generation, 14-12–14-13
comparison of LDPC and TPC/SPC codes on, 13-2
concatenation scheme for, 9-8
conditions limiting choices of encoders for, 8-14
convolutional codes for, 8-1–8-2
distance to matched filter bound for, 4-3
encoding system description, 8-2–8-3
error-correction and modulation codes for, 9-2
excellent performance of systems based on, 8-1
as finite state machine, 8-1
as intersymbol interference (ISI) channel, 9-1
ITI-reducing codes for, 10-3–10-4
K -RDSf sequences on, 5-14–5-15
low-order, 4-3
Markov channel capacity, 9-4–9-6
minimum free squared Euclidean distance of channel

code for, 8-5
in multitrack recording systems, 15-4
outer LDPC codes, 9-13–9-16
performance of turbo codes over, 11-15
signal-to-noise ratio, 9-3
system model of concatenated SPC codes on, 13-3
trellis codes based on Hamming metric, 8-4–8-7
trellis-matched codes for, 8-7–8-10
trellis representations, 9-3–9-4

Partial-response equalization
diagram, 8-2
multitrack detection with, 10-2
role in magnetic recording, 8-1

Partial-response (PR) systems, 13-2
distance properties of TPC/SPC coded, 13-6–13-8
distance properties of turbo/SPC coded, 13-8–13-9

Partial response signaling
importance of spectrum shaping codes with, 5-19
with maximum likelihood detection, 3-4

Partial-response signals, symbol-by-symbol
detection, 8-3

Partial response technique, dc-free codes, 5-1
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Partitioning, 3-6
Peak detection, 2-1
Peak shift errors, 6-7, 6-9
Pearl’s algorithm, 14-1
Penalty, as function of density, 4-7
Per-track minimum runlength constraint, 10-2
Perfect codes, 1-6
Performance

bit error rate (BER), 11-9
of combinatorially constructed LDPC codes over PR

channels, 14-3
comparison of LDPC codes with concatenated SPC

systems, 13-12
cyclic EG LDPC code on binary-input AWGN channel,

12-16
improvements through generation of K-RDS f

sequences, 5-14
and interleaver lengths, 11-10
limited by error event sequences, 4-12
near-capacity for LDPC codes, 12-1
near-capacity for turbo codes in memoryless AWGN

channel, 15-6
quasi-cyclic ED LDPC code on AWGN channel, 12-17
reduced complexity decoders, 12-13
of systems based on partial-response models, 8-1
turbo codes over AWGN channels, 11-9–11-11
turbo codes over Lorentzian channels, 11-16–11-18
turbo codes over PR channels, 11-15
turbo codes over recording channels, 11-15–11-18

Performance improvement, by higher rate codes, 2-8
Permutations, number growth with tuple length, 6-6
Perpendicular minimum runlength constraint, 10-4
Perpendicular recording systems, error function as

transition response in, 10-3
Perron-Frobenius theorem, 6-3
Phase-locked loop, 3-1
Polarity bit coding, generating dc-free sequences with, 5-8
Post combined coding system architectures, 6-11–6-12
Post modulation coding, 6-11–6-12. See also

Concatenation
Power spectral density (PSD), 5-13

characteristics of dc-free constraints, 5-3
continuous part of Markov source, 5-6
higher-order zeros of, 5-10
as input constraint, 6-7
of maxentropic dc-free sequences, 5-5–5-6
vanishing at zero frequency, 5-3

PR4 channel, 11-2, 11-11
information rates with deterministic ITI, 15-6
information rates with uniform ITI, 15-7
performance of SCC scheme for multitrack and

single-track, 15-13
performance with deterministic ITI, 15-11, 15-12
precoded, 13-6

Precoded ISI channels, 13-5
Precoder, 8-2

comparison of performance by, 11-17
Precoder-convolutional encoder combination, 8-1–8-2
Precoder state, relationship to channel trellis state, 8-7
Precoding, 14-12

avoiding error propagation through, 8-3

effects with turbo codes, 11-2
performance improvements in magnetic recording

with, 11-18
unessential for interleaver gain, 11-14

Prime polynomials, 1-15
Primitive elements, 1-9

feedback polynomial in turbo coding, 11-3
Principal states, 3-6
PRML constraints, 2-1
Probabilistic code construction, 9-19
Probabilities of errors, 1-8
Probability density function, 13-10
Probability-domain SPA decoder, 12-8–12-11
Probability mass function, 9-10
Product codes, 1-18, 13-2, 13-9

importance in practical applications, 1-21
Projective planes

achievable length-rate pairs for LDPC codes on, 14-10
obtaining from affine plane, 14-8
structured LDPC codes on, 14-7–14-10

Pseudo-random interleavers, 11-3
performance, 15-9

Purging process, 6-3

Q

Quadratic residue (QR) codes, 14-3
Quasi-catastrophic error events, 4-6
Quasi-cyclic EG LDPC code, 12-5

performance on AWGN channel, 12-17

R

Radial density, in magnetic disk drive systems, 10-1
Random code converse theorem, 9-9
Random error correction, 1-18–1-21

Immink scheme for, 6-12
Random interleavers, 13-2, 13-3

in multitrack systems, 15-10
Random intertrack interference (ITI), 15-2

at received signal, 15-3
Rate, of error-correcting codes, 1-3
Rate loss penalty, subtracting from distance gain, 4-11
Rate of communication, limited by noise, 1-8
Reading head, impulse response from adjacent track,

2-8
Realistic recording channels, 11-11–11-12

coding for, 2-2
turbo code performance over, 11-16–11-18

Received signal
corruption by AWGN, 15-10
equalizing with noise-whitened matched filter, 4-2
modified MAP detector with ITI, 15-3

Recording channels, 11-11
partial response channels, 11-11
performance of turbo codes over, 11-15–11-18
realistic recording channel models, 11-11–11-12
sensitivity to code rate, 4-7
turbo codes for, 11-12–11-15
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Recording density, and relative frequencies of error events,
10-5

Recording media limitations, use of constrained coding
for, 7-1

Recording systems
schematic diagram, 5-2
and spectrum shaping codes, 5-2

Recursion relations, 3-3
Recursive convolutional codes, 11-3, 15-10

trellis termination of, 11-4
Recursive systematic convolutional (RSC) encoders, 15-8
Recursive upper bounds, 6-3
Reduced complexity decoders, 12-13

min-sum decoder, 12-14
min-sum-plus-correction-factor decoder, 12-14–12-17

Redundancy
and burst-correcting capability, 1-19
making use of inherent, 7-9
as performance measure for spectrum shaping codes,

5-5
trade-off with suppression of low frequency

components, 5-13
Redundant bits, 1-1
Redundant multitrack-constrained binary codes, 3-5, 10-4
Reed Solomon codes, 1-1, 1-11–1-13

block-coding schemes based on, 6-8
cleanup of residue errors with, 13-2
decoding via key equation, 1-13–1-16
decoding with Euclid’s algorithm, 1-16–1-18
encoding intermediate coding layer using, 6-12
in Immink lossless compression scheme, 7-7
interleaving of, 1-19
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