Qt5 Python GUI

Programming
Cookbook

By B.M. Harwani

Qt5 Python GUI Programming
Cookbook

Building responsive and powerful cross-platform applications
with PyQt

B.M. Harwani

BIRMINGHAM - MUMBAI

Qt5 Python GUI Programming Cookbook

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri

Content Development Editor: Zeeyan Pinheiro
Technical Editor: Vibhuti Gawde

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Jason Monteiro

Production Coordinator: Nilesh Mohite

First published: July 2018
Production reference: 1270718
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-100-0

www.packtpub.com

http://www.packtpub.com

I am thankful to my family—my small world: Anushka (my wife) and
my two little darlings, Chirag and Naman, for allowing me to work on
the book even during time that I was supposed to spend with them.

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

B.M. Harwani is the founder and owner of Microchip Computer Education (MCE), based
in Ajmer, India. He graduated with a BE in computer engineering from the University of
Pune and also has a C level (masters diploma in computer technology) from DOEACC,
Government of India. Having been involved in the teaching field for over 20 years, he has
developed the art of explaining even the most complicated topics in a straightforward and
easily understandable fashion. He is also a renowned speaker and the author of several
books. To learn more, visit his blog, a site that helps programmers.

A big thank you to the entire editorial team at Packt, who worked tirelessly to produce this
book. Really, I enjoyed working with each of you.

I should not forget to thank my dear students, who have been a good teacher for me as they
make me understand the basic problems they face in a subject and enable me to directly hit
those topics. The endless interesting queries from my students help me write books with a
practical approach.

About the reviewers

Marcus Ottosson is a company director, software developer, and artist with a decade of
experience in the film and visual effects industry. He has built countless user interfaces and
tools with Python and Qt for projects such as Marvel’s Doctor Strange and Alfonso Cuaron’s
Gravity. He has written several Python frameworks for use in the creation of film and
games, such as Pyblish and Avalon, along with PyQt, a compatibility wrapper around all
the available bindings of Qt for Python.

Sivan Griinberg has close to 20 years of multidisciplinary IT expertise and a razor-sharp
eye for quality. A long-time open source devotee, his contributions can be found, literally,
all over open source. He has been utilizing the Python ecosystem for R&D endeavors ever
since it was pitched to him by The SABDFL and Ubuntu. Alongside Shir, a product,
content, and operations expert, he runs Vitakka.co, providing infrastructure consulting and
coding solutions in all-things digital.

My amazing family, Eric, Helena, Shir, Moshik, and the Debian/Ubuntu, Python,
GNOME, and KDE communities—uwithout you, these lines would have never been
written.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

N

Chapter 1: Creating a User Interface with Qt Components
Introduction
PyQt
Ways of creating GUI applications
Displaying a welcome message
Understanding the Label widget
Methods
Understanding the Line Edit widget
Methods
Understanding the Push Button widget
How to do it...
How it works...
Using the Radio Button widget
Understanding Radio Button
Methods
Signal description
How to do it...
How it works...
Grouping radio buttons
Getting ready
How to do it...
How it works...
Displaying options in the form of checkboxes
Getting ready
Method application
Signal description
How to do it...
How it works...
Displaying two groups of checkboxes
Getting ready
How to do it...
How it works...

Chapter 2: Event Handling - Signals and Slots
Introduction
Using Signal/Slot Editor
How to do it...
Copying and pasting text from one Line Edit widget to another
Getting ready

O 0o 0o

11
11
12
12
12
13
14
17
18
19
19
19
20
22
22
23
23
26
27
27
27
28
28
30
31
31
31
34

35
35
36
36
38
39

Table of Contents

How to do it...
How it works...
Converting data types and making a small calculator
How to do it...
How it works...
Using the Spin Box widget
Getting ready
How to do it...
How it works...
Using scrollbars and sliders
Getting ready
How to do it...
How it works...
Using List Widget
Getting ready
How to do it...
How it works...
Selecting multiple list items from one List Widget and displaying
them in another
How to do it...
How it works...
Adding items into List Widget
How to do it...
How it works...
Performing operations in List Widget
Getting ready
Methods provided by the QListWidgetltem class
How to do it....
How it works...
Using the Combo Box widget
How to do it...
How it works...
Using the Font Combo Box widget
Getting ready
How to do it...
How it works...
Using the Progress Bar widget
Getting ready
How to do it...
How it works...

Chapter 3: Working with Date and Time

Displaying LCD digits
Using Timers
Using the QTime class

39
44
45
46
48
51
51
52
54
55
55
58
59
61
61
62
64

65
65
67
68
68
69
70
70
70
71
73
77
78
80
81
81
82
83
84
85
85
87

88
88
89
89

[ii]

Table of Contents

Displaying system clock time in LCD-like digits
How to do it...
How it works...
Displaying the date selected by the user from Calendar Widget
Getting ready
Displaying a calendar
Using the QDate class
Using the Date Edit widget
How to do it...
How it works...
Creating a hotel reservation form
Getting ready
How to do it...
How it works...
Displaying tabular data using Table Widget
Getting ready
Table Widget
The QTableWidgetltem class
How to do it...
How it works...

Chapter 4: Understanding OOP Concepts
Object-oriented programming
Creating a class
Using the built-in class attributes

Accessing class variables in instance methods
Instances

Using classes in GUI
How to do it...
How it works...
Making the application more elaborate

Inheritance
Types of inheritance

Using single inheritance
Getting ready
How to do it...
How it works...

Using multilevel inheritance
Getting ready
How to do it...
How it works...

Using multiple inheritance
Getting ready
How to do it...
How it works...

Chapter 5: Understanding Dialogs

90
90
91
92
92
93
94
95
96
97
99
99
101
104
105
105
105
105
106
108

109
109
109
110
111
111
113
113
115
116
119
119
120
120
121
123
125
125
126
129
131
132
132
135

138

[iii]

Table of Contents

Introduction
The input dialog box
Using the input dialog
How to do it...
How it works...
Using the color dialog
How to do it...
How it works...
Using the font dialog
How to do it...
How it works...
Using the file dialog
Getting ready
How to do it...
How it works...

Chapter 6: Understanding Layouts

Understanding layouts
Spacers

Using Horizontal Layout
How to do it...
How it works...

Using Vertical Layout
How to do it...
How it works...

Using Grid Layout
How to do it...
How it works...

Using Form Layout
Getting ready
How to do it...
How it works...

Chapter 7: Networking and Managing Large Documents
Introduction
Creating a small browser
How to do it...
How it works...
Creating a server-side application
How to do it...
How it works...
Establishing client-server communication
How to do it...
How it works...
Creating a dockable and floatable sign-in form

138
139
141
141
142
144
144
146
148
148
149
152
152
154
157

162
162
163
164
164
169
170
170
175
176
176
182
183
183
183
187

189
189
190
190
193
194
194
196
197
197
200
205

[iv]

Table of Contents

Getting ready
How to do it...
How it works...
Multiple Document Interface
Getting ready
How to do it...
How it works...
Displaying information in sections using Tab Widget
How to do it...
How it works...
Creating a custom menu bar
How to do it...
How it works...

Chapter 8: Doing Asynchronous Programming in Python
Introduction
Multithreading
Asynchronous programming
Updating progress bar using thread
How to do it...
How it works...
Updating two progress bars using two threads
How to do it...
How it works...
Updating progress bars using threads bound with a locking
mechanism
How to do it...
How it works...
Updating progress bars simultaneously using asynchronous
operations
How to do it...
How it works...
Managing resources using context manager
Context manager
How to do it...
How it works...

Chapter 9: Database Handling
Introduction
Creating the cursor object
Creating a database
How to do it...
How it works...
Creating a database table
How to do it...

205
206
211
214
214
215
219
223
223
227
229
229
240

244
244
245
246
246
246
248
249
250
252

254
254
256

258
258
260
262
263
264
266

269
269
270
271
271
273
273
274

[v]

Table of Contents

How it works...
Inserting rows in the specified database table
How to do it...
How it works...
Displaying rows in the specified database table
How to do it...
How it works...
Navigating through the rows of the specified database table
How to do it...
How it works...
Searching a database table for specific information
How to do it...
How it works...
Creating a signin form — applying an authentication procedure
How to do it...
How it works...
Updating a database table — changing a user's password
How to do it...
How it works...
Deleting a row from a database table
How to do it...
How it works...

Chapter 10: Using Graphics
Introduction
Displaying mouse coordinates
How to do it...
How it works...
Displaying coordinates where the mouse button is clicked and
released
How to do it...
How it works...
Displaying a point where the mouse button is clicked
How to do it...
How it works...
Drawing a line between two mouse clicks
How to do it...
How it works...
Drawing lines of different types
How to do it...
How it works...
Drawing a circle of a desired size
How to do it...
How it works...
Drawing a rectangle between two mouse clicks

276
278
279
282
284
284
288
289
289
292
294
294
297
298
299
301
302
302
305
307
307
310

315
315
316
316
318

319
319
321
322
322
324
325
325
327
328
328
331
333
333
335
336

[vil

Table of Contents

How to do it...
How it works...
Drawing text in a desired font and size
How to do it...
How it works...
Creating a toolbar that shows different graphics tools
How to do it...
How it works...
Plotting a line using Matplotlib
Getting ready
How to do it...
How it works...
Plotting a bar using Matplotlib
Getting ready
How to do it...
How it works...

Chapter 11: Implementing Animation

Introduction
Implementing animation

Displaying a 2D graphical image
How to do it...
How it works...

Making a ball move down on the click of a button
How to do it...
How it works...

Making a bouncing ball
How to do it...
How it works...

Making a ball animate as per the specified curve
How to do it...
How it works...

Chapter 12: Using Google Maps

Introduction

Finding out details of a location or a landmark
How to do it...
How it works...

Getting complete information from latitude and longitude values
How to do it...
How it works...

Finding out the distance between two locations
How to do it...
How it works...

Displaying location on Google Maps

336
338
339
339
343
344
345
353
355
355
356
356
357
358
358
359

360
360
361
361
361
363
364
364
366
367
367
369
370
370
372

374
374
375
375
377
378
379
381
382
382
384
385

[vii]

Table of Contents

How to do it... 385
How it works... 387
Chapter 13: Running Python Scripts on Android and iOS 389
Introduction 389
Copying scripts from PC to Android devices 392
How to do it 392
Prompting for a username and displaying a welcome message 394
How to do it... 394
How it works... 395
Understanding different buttons in a dialog box 397
How to do it... 397
How it works... 398
Performing single selection from a list 400
How to do it... 400
How it works... 401
Performing multiple selections from a list 402
How to do it... 402
How it works... 403
Displaying a Date Picker dialog 404
How to do it... 404
How it works... 405
Capturing images using a camera 406
How to do it... 407
How it works... 407
Making an Android device speak a text input 408
How to do it... 409
How it works... 409
Creating a cross-platform Python script using Kivy 409
Getting started 410
How to do it... 411
Packaging a Python Script into the Android APK using Buildozer 414
Getting ready 414
How to do it... 415
How it works 421
Packaging Python script for iOS 422
How to do it... 422
How it works... 427
Other Books You May Enjoy 428
Index 431

[viii]

Preface

PyQt is one of the best cross-platform interface toolkits currently available; it's stable,
mature, and completely native. If you want control over all aspects of UI elements, PyQt is
what you need. This book will guide you through every concept you need to create fully
functional GUI applications using PyQT, with only a few lines of code.

As you expand your GUI using more widgets, you will cover networks, databases, and
graphical libraries that greatly enhance its functionality. The book shows you how to use
QT Designer to design user interfaces and implement and test dialogs, events, the
clipboard, and drag and drop functionality to customize your GUIL You will learn a variety
of topics, such as look and feel customization, GUI animation, graphics rendering,
implementing Google Maps, and more. Lastly, the book takes you through how Qt5 can
help you create cross-platform apps that are compatible with Android and iOS. You will be
able to develop functional and appealing software using PyQt through interesting and fun
recipes that will expand your knowledge of GUIs.

Who this book is for

This book is meant for intermediate to advanced programmers and developers who have
some preliminary knowledge of Python programming. This book can be of great use for
trainers, teachers, and software developers who wish to build a fully-featured GUI-based
application in Python.

What this book covers

Chapter 1, Creating a User Interface with Qt Components, teaches readers to use certain basic
widgets of Qt Designer and how to display a welcome message along with the username.
You will also be learning how to choose one out of several options using radio buttons and
choose more than one out of several options by making use of checkboxes.

Chapter 2, Event Handling — Signals and Slots, covers how to execute specific tasks on the
occurrence of certain events on any widget, how to copy and paste text from one Line Edit
widget to another, convert data types and make a small calculator, and use spin boxes,
scrollbars, and sliders. You will also learn to perform multiple tasks using the List Widget.

Chapter 3, Working with Date and Time, focuses on learning how to display the system clock
time using an LCD, show the date selected by the user from Calendar Widget, create a hotel
reservation form, and display tabular data using Table widget.

Preface

Chapter 4, Understanding OOP Concepts, discusses object-oriented programming concepts
such as how to use classes, single inheritance, multilevel inheritance in GUI applications,
and multiple inheritance.

Chapter 5, Understanding Dialogs, explores the use of certain dialogs, where each dialog is
meant for fetching a different kind of information. You will also learn to take input from the
user using input dialog.

Chapter 6, Understanding Layouts, explains how to arrange widgets horizontally, vertically,
and in different layouts by making use of Horizontal Layout, Vertical Layout, Grid Layout,
and arranging widgets in two column layout using Form Layout.

Chapter 7, Networking and Managing Large Documents, demonstrates how to make a small
browser, establish a connection between client and server, create a dockable and floatable
sign in form, and manage more than one document using MDI. Also, you will be learn how
to display information in sections using the Tab widget. You will learn how to create a
custom menu bar that invokes different graphics tools when a specific menu item is chosen.

Chapter 8, Doing Asynchronous Programming in Python, looks at the concept of
asynchronous operations using threads. To see the impact of asynchronous operations on
GUIs, you will be making use of a progress bar, that is, the progress bars will be updated
through threads asynchronously.

Chapter 9, Database Handling, outlines how to manage a SQLite database to keep
information for future use. Using the knowledge gained, you will learn to make a signin
form that checks whether a user's email address and password are correct or not.

Chapter 10, Using Graphics, explains how to display certain graphics in the application.
You will also learn how to create a toolbar of your own that contains certain tools that can
be used to draw different graphics.

Chapter 11, Implementing Animation, features how to display a 2D graphical image, make a
ball move down on the click of a button, make a bouncing ball, and make a ball animate as
per the specified curve.

Chapter 12, Using Google Maps, showcases how to use the Google API to display location
and other information. You will learn to derive the distance between two locations and
display location on Google Maps on the basis of longitude and latitude values that are
entered.

[2]

Preface

Chapter 13, Running Python Scripts on Android and iOS devices, takes you through how to
use QPython to run Python scripts on Android devices. You will learn how to package
Kivy Python scripts on Android and iOS devices. You will be making several applications
for mobile devices, such as prompting for the user’s name and displaying a welcome
message, understanding different buttons in a Dialog box, performing single and multiple
selections from a list, selecting date using a Date Picker dialog, capturing images using a
camera, making Android devices speak text, creating cross-platform Python scripts using
Kivy, packaging Python scripts into the Android APK using Buildozer, and packaging
Python scripts for iOS.

To get the most out of this book

You need to have some preliminary knowledge of Python programming. You need to
install Python and PyQt5. The steps to install Python and PyQt are explained in the
Appendix. To run Python script on Android devices, you need to install QPython on your
Android device. To package Python scripts into Android’s APK using the Kivy library, you
need to install Kivy, a Virtual Box, and Buildozer packager. Similarly, to run Python scripts
on iOS devices, you need a macOS machine and some library tools, including Cython. The
steps to install these software are explained in chapter 13, Running Python Scripts on
Android and iOS.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

[3]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Qt5-Python-GUI-Programming-Cookbook. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "This template creates a form whose superclass is Qiidget rather than Qbialog."

A block of code is set as follows:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoSignalSlotl import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.show ()
if _ name_ =="_ _main__ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

[4]

https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-Python-GUI-Programming-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Qt5PythonGUIProgrammingCookbook_ColorImages.pdf

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]

exten => s,1,Dial (Zap/1]30)

exten => s,2,Voicemail (ul00)

exten => s,102,Voicemail (b100)
exten => 1i,1,Voicemail (s0)

Any command-line input or output is written as follows:
C:\Pythonbook\PyQt5>pyuic5 demoLineEdit.ui —o demoLineEdit.py

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The amount the slider handle moves can be specified via the pageStep property."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting ready,How to do
it..., How it works..., There’s more..., and Seealso).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or anypreliminary settings required for the recipe.

[5]

Preface

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make you
moreknowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

[6]

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[7]

https://www.packtpub.com/

Creating a User Interface with
Qt Components

In this chapter, we will learn to use the following widgets:

¢ Displaying a welcome message

Using the Radio Button widget
¢ Grouping radio buttons

Displaying options in the form of checkboxes

Displaying two groups of checkboxes

Introduction

We will be learning to create GUI applications using the Qt toolkit. The Qt toolkit, known
simply as Qt, is a cross-platform application and UI framework developed by Trolltech,
which is used for developing GUI applications. It runs on several platforms, including
Windows, macOS X, Linux, and other UNIX platforms. It is also referred to as a widget
toolkit because it provides widgets such as buttons, labels, textboxes, push buttons, and list
boxes, which are required for designing a GUI. It includes a cross-platform collection of
classes, integrated development tools, and a cross-platform IDE. To create real-time
applications, we will be making use of Python bindings for the Qt toolkit called, PyQt5.

Creating a User Interface with Qt Components Chapter 1

PyQt

PyQt is a set of Python bindings for the cross-platform application framework that
combines all the advantages of Qt and Python. With PyQt, you can include Qt libraries in
Python code, enabling you to write GUI applications in Python. In other words, PyQt
allows you to access all the facilities provided by Qt through Python code. Since PyQt
depends on the Qt libraries to run, when you install PyQt, the required version of Qt is also
installed automatically on your machine.

A GUI application may consist of a main window with several dialogs or just a single
dialog. A small GUI application usually consists of at least one dialog. A dialog application
contains buttons. It doesn't contain a menu bar, toolbar, status bar, or central widget,
whereas a main window application normally has all of those.

Dialogs are of the following two types:

e Modal: This dialog is one that blocks the user from interacting with other parts of
the application. The dialog is the only part of the application that the user can
interact with. Until the dialog is closed, no other part of the application can be
accessed.

e Modeless: This dialog is the opposite of a modal dialog. When a modeless dialog
is active, the user is free to interact with the dialog and with the rest of the
application.

Ways of creating GUI applications

There are the following two ways to write a GUI application:

e From scratch, using a simple text editor
e With Qt Designer, a visual design tool with which you can create a user interface
quickly using drag and drop

You will be using Qt Designer to develop GUI applications in PyQt, as it is a quick and easy
way to design user interfaces without writing a single line of code. So, launch Qt Designer
by double-clicking on its icon on desktop.

[9]

Creating a User Interface with Qt Components Chapter 1

On opening, Qt Designer asks you to select a template for your new application, as shown
in the following screenshot:

Mew Form - Ot Designer >

d templatesiforms
Dialog with Buttons Bottom
Dialog with Buttons Right
Dialog without Buttons
Main Window

Widget

Widgets

Embedded Design
Device: MNone
Screen Size: | Default size -

Show this Dialog on Startup

Open... Recent Close

Qt Designer provides a number of templates that are suitable for different kinds of
applications. You can choose any of these templates and then click the Create button.

Qt Designer provides the following predefined templates for a new application:

¢ Dialog with Buttons Bottom: This template creates a form with the OK and
Cancel buttons in the bottom-right corner.

¢ Dialog with Buttons Right: This template creates a form with the OK and
Cancel buttons in the top-right corner.

[10]

Creating a User Interface with Qt Components Chapter 1

¢ Dialog without Buttons: This template creates an empty form on which you can
place widgets. The superclass for dialogs is 0Dialog.

¢ Main Window: This template provides a main application window with a menu
bar and a toolbar that can be removed if not required.

e Widget: This template creates a form whose superclass is QWidget rather than
QDialog.

Every GUI application has a top-level widget and the rest of the widgets are called its
children. The top-level widget can be 0Dialog, QWidget, or QMainWindow, depending on
the template you require. If you want to create an application based on the dialog template,
then the top-level widget or the first class that you inherit will be 9Dialog. Similarly, to
create an application based on the Main Window template, the top-level widget will be
OMainWindow, and to create the application based on the Widget template, you need to
inherit the gwidget class. As mentioned previously, the rest of the widgets that are used
for the user interface are called child widgets of the classes.

Qt Designer displays a menu bar and toolbar at the top. It shows a Widget box on the left
that contains a variety of widgets used to develop applications, grouped in sections. All
you have to do is drag and drop the widgets you want from the form. You can arrange
widgets in layouts, set their appearance, provide initial attributes, and connect their signals
to slots.

Displaying a welcome message

In this recipe, the user will be prompted to enter his/her name followed by clicking a push
button. On clicking the button, a welcome message will appear, "Hello," followed by the
name entered by the user. For this recipe, we need to make use of three widgets, Label,
Line Edit, and Push Button. Let's understand these widgets one by one.

Understanding the Label widget

The Label widget is an instance of the QLabel class and is used for displaying messages
and images. Because the Label widgets simply display results of computations and don't
take any input, they are simply used for supplying information on the screen.

[11]

Creating a User Interface with Qt Components Chapter 1

Methods

The following are the methods provided by the QLabel class:

e setText (): This method assigns text to the Label widget

e setPixmap (): This method assigns pixmap, an instance of the QPixmap class, to
the Label widget

e setNum (): This method assigns an integer or double value to the Label widget

e clear (): This method clears text from the Label widget

The default text of QLabel is TextLabel. That is, when you add a QLabel class to a form by
dragging a Label widget and dropping it on the form, it will display TextLabel. Besides
using setText (), you can also assign text to a selected QLabel object by setting its text
property in the Property Editor window.

Understanding the Line Edit widget

The Line Edit widget is that is popularly used for entering single-line data. The Line Edit
widget is an instance of the 0LineEdit class, and you can not only enter, but also edit the
data too. Besides entering data, you can undo, redo, cut, and paste data in the Line Edit
widget.

Methods

The following are the methods provided by the QLineEdit class:

® setEchoMode (): It sets the echo mode of the Line Edit widget. That is, it
determines how the contents of the Line Edit widget are to be displayed. The
available options are as follows:
e Normal: This is the default mode and it displays characters the way they are
entered
® NoEcho: It switches off the Line Edit echo, that is, it doesn't display
anything
e pPassword: This option is used for password fields, no text will be displayed;
instead, asterisks appear for the text entered by the user
® PasswordEchoOnEdit: It displays the actual text while editing the
password fields, otherwise it will display the asterisks for the text

[12]

Creating a User Interface with Qt Components Chapter 1

e maxLength (): This method is used to specify the maximum length of text that
can be entered in the Line Edit widget.

e setText (): This method is used for assigning text to the Line Edit widget.

e text (): This method accesses the text entered in the Line Edit widget.

e clear (): This method clears or deletes the complete content of the Line Edit
widget.

e setReadOnly (): When the Boolean value true is passed to this method, it will
make the Line Edit widget read-only, that is, non-editable. The user cannot make
any changes to the contents displayed through the Line Edit widget, but can only
copy.

e isReadOnly (): This method returns the Boolean value true if the Line Edit
widget is in read-only mode, otherwise it returns false.

® setEnabled (): By default, the Line Edit widget is enabled, that is, the user can
make changes to it. But if the Boolean value false is passed to this method, it will
disable the Line Edit widget so the user cannot edit its content, but can only
assign text via the setText () method.

e setFocus (): This method positions the cursor on the specified Line Edit widget.

Understanding the Push Button widget

To display a push button in an application, you need to create an instance of the
QPushButton class. When assigning text to buttons, you can create shortcut keys by
preceding any character in the text with an ampersand. For example, if the text assigned to
a push button is Click Me, the character C will be underlined to indicate that it is a
shortcut key, and the user can select the button by pressing Alt + C. The button emits the
clicked() signal if it is activated. Besides text, an icon can also be displayed in the push
button. The methods for displaying text and an icon in a push button are as follows:

e setText (): This method is used to assign text to the push button
e setIcon (): This method is used to assign an icon to the push button

[13]

Creating a User Interface with Qt Components Chapter 1

How to do it...

Let's create a new application based on the Dialog without Buttons template. As said
earlier, this application will prompt the user to enter a name and, on clicking the push
button after entering a name, the application with display a hello message along with the
entered name. Here are the steps to create this application:

1. Drag a Label widget from the Display Widgets category and drop it on the
form. Set its text property to Enter your name. Set the objectName property of
the Label widget to 1abelResponse.

2. Drag one more Label widget from the Display Widgets category and drop it on
the form. Do not change the text property of this Label widget and leave its text
property to its default value, TextLabel. This is because the text property of this
Label widget will be set through code, that is, it will be used to display the hello
message to the user.

3. Drag one Line Edit from the Input Widgets category and drop it on the form. Set
its objectName property to 1ineEditName.

4. Drag one Push Button widget from the Buttons category and drop it onto the
form. Set its text property to Click. You can change the text property of the Push
Button widget through any of three ways: by double-clicking the Push Button
widget and overwriting the default text, by right-clicking the Push Button
widget and selecting the Change text... option from the context menu that pops
up, or by selecting the text property from the Property Editor window and
overwriting the default text.

5. Set the objectName property of the Push Button widget to ButtonClickMe.

[14]

Creating a User Interface with Qt Components

Chapter 1

6. Save the application with the name demoLineEdit .ui. Now the form will

appear, as shown in the following screenshot:

[qt Designer e o X
File Edit Form View Settings Window Help
i = =i . | [T : z
OB D HRRE NEwrEs 5N
i | Sl Bl i s L e e e = Object p—
¥ Layouts Al v 5 Dialog QDialog
g Vertical Layout - Enter your name - | E:t:‘cmCﬁckMe % gi:t.:::luttnn
u]] Herizontal Layout labelResponse " Qlabet
Grid Layout Textlabel lineEditName @@ OLineEdit |
gg Form Layeut ‘Pffiﬁt?ﬁiﬁt &
B8l Horizontal Spacer) |Fi|ter |"‘_"ﬁ — /"
x Wertical Spacer Dialog : QDialog
N Buttons Property Value y
@ Push Button =
Tool Button Dialog
@ Radio Button i dowModal: NonMadal
B CheckBox enabled =
a Command Link Button > qu [0, 0), 379 x 185]
@ Dizlog Button Box : ;‘Z;:F'::::‘s'ze ‘[]p::’"ﬂi Preferred, 0, 0]
oL, o Views (Model-Basen) > maximumSize 16777215 x 16777215
IV > sizelncrement 0x0
B Tree View > baseSize 0x0 b
e Table View | Action Editor 5
— DB XA
v Item Widgets (Item-Based)
List Widget Name Used Text sh
S5 Tree Widget

Table Widget < b

Signal /Slot Editor Action Editor Resource Browser

The user interface that you create with Qt Designer is stored in a . ui file that
includes all the form's information: its widgets, layout, and so on. The . ui file is
an XML file, and you need to convert it to Python code. That way, you can
maintain a clear separation between the visual interface and the behavior
implemented in code.

[15]

Creating a User Interface with Qt Components Chapter 1

7. To use the .ui file, you first need to convert it into a Python script. The
command utility that you will use for converting a . ui file into a Python script is
pyuic5. In Windows, the pyuic5 utility is bundled with PyQt. To do the
conversion, you need to open a Command Prompt window and navigate to the
folder where the file is saved and issue the following command:

C:\Pythonbook\PyQt5>pyuic5 demoLineEdit.ui —o demoLineEdit.py

Let's assume that we saved the form at this location: C: \Pythonbook\PyQt5>.
The preceding command shows the conversion of the demoLineEdit . ui file into
a Python script, demoLineEdit.py.

The Python code generated by this method should not be modified
manually, as any changes will be overwritten the next time you run the
pyuic5 command.

The code of the generated Python script file, demoLineEdit . py, can be seen in
the source code bundle of this book.

8. Treat the code in the demoLineEdit . py file as a header file, and import it to the
file from which you will invoke its user interface design.

The header file is a term referred to those files which are imported into the
current file. The command to import such files is usually written at the top
in the script, hence named as header files.

9. Let's create another Python file with the name callLineEdit.py and import
the demoLineEdit .py code into it as follows:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoLineEdit import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.ButtonClickMe.clicked.connect (self.dispmessage)
self.show ()
def dispmessage (self):
self.ui.labelResponse.setText ("Hello "
+self.ui.lineEditName.text ())
if _ name_ =="_main__ ":

[16]

Creating a User Interface with Qt Components Chapter 1

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

The demoLineEdit . py file is very easy to understand. A class with the name of the top-
level object is created, with Ui_ prepended. Since the top-level object used in our
application is Dialog, the Ui_Dialog class is created and stores the interface elements of
our widget. That class has two methods, setupUi () and retranslateUi (). The
setupUi () method sets up the widgets; it creates the widgets that you use while defining
the user interface in Qt Designer. The method creates the widgets one by one and also sets
their properties. The setupUi () method takes a single argument, which is the top-level
widget in which the user interface (child widgets) is created. In our application, it is an
instance of QDialog. The retranslateUi () method translates the interface.

Let's understand what callLineEdit .py does statement-wise:

1. It imports the necessary modules. QWidget is the base class of all user interface
objects in PyQt5.
2. It creates a new MyForm class that inherits from the base class, 9Dialog.

3. It provides the default constructor for QDialog. The default constructor has no
parent, and a widget with no parent is known as a window.

4. Event handling in PyQt5 uses signals and slots. A signal is an event, and a slot is
a method that is executed on the occurrence of a signal. For example, when you
click a push button, a c1icked () event, also known as a signal, occurs. The
connect () method connects signals with slots. In this case, the slot is a method:
dispmessage (). That is, when the user clicks the push button, the
dispmessage () method will be invoked. clicked () is an event here and an
event handling loop waits for an event to occur and then dispatches it to perform
some task. The event handling loop continues to work until either the exit ()
method is called or the main widget is destroyed.

5. It creates an application object with the name app through the 0application ()
method. Every PyQt5 application must create sys.argv application object which
contains a list of arguments from the command line, and it is passed to the
method while creating the application object. The sys.argv parameter helps in
passing and controlling the startup attributes of a script.

[17]

Creating a User Interface with Qt Components Chapter 1

6. An instance of the MyForm class is created with the name w.
7. The show () method will display the widget on the screen.

8. The dispmessage () method performs event handling for the push button. It
displays the Hello text, along with the name entered in the Line Edit widget.

9. The sys.exit () method ensures a clean exit, releasing memory resources.

The exec_ () method has an underscore because exec is a Python
keyword.

On executing the preceding program, you get a window with the Line Edit and Push
Button widgets, as shown in the following screenshot. When the push button is selected,
the displmessage () method will be executed, displaying the Hello message along with
the user's name that is entered in the Line Edit widget:

B Dialog ? x B Dialog ? x
Enter your name || Enter your name |J0hn
Textlabel Helo John

Using the Radio Button widget

This recipe displays certain flight types via Radio Button and when the user selects the
radio button, the price associated with that flight will be displayed. We need to first
understand the workings of Radio Button.

[18]

Creating a User Interface with Qt Components Chapter 1

Understanding Radio Button

The Radio Button widgets are very popular when you want the user to select only one
option out of the available options. Such options are known as mutually exclusive options.
When the user selects an option, the previously selected option is automatically deselected.
The Radio Button widgets are instances of the QRadioButton class. Every radio button has
an associated text label. The radio button can be either in selected (checked) or unselected
(unchecked) states. If you want two or more sets of radio buttons, where each set allows the
exclusive selection of a radio button, put them into different button groups (instances of
QButtonGroup). The methods provided by QrRadioButton are shown next.

Methods

The QradioButton class provides the following methods:

e isChecked (): This method returns the Boolean value true if the button is in the
selected state.

e setIcon (): This method displays an icon with the radio button.

e setText (): This method assigns the text to the radio button. If you want to
specify a shortcut key for the radio button, precede the preferred character in the
text with an ampersand (&). The shortcut character will be underlined.

e setChecked (): To make any radio button appear selected by default, pass the
Boolean value true to this method.

Signal description

Signals emitted by QRadioButton are as follows:

e toggled(): This signal is emitted whenever the button changes its state from
checked to unchecked or vice versa

e clicked(): This signal is emitted when a button is activated (that is, pressed and
released) or when its shortcut key is pressed

e stateChanged(): This signal is emitted when a radio button changes its state from
checked to unchecked or vice versa

To understand the concept of radio buttons, let's create an application that asks the user to
select the flight type and displays three options, First Class, Business Class, and Economy
Class, in the form of radio buttons. On selecting an option through the radio button, the
price for that flight will be displayed.

[19]

Creating a User Interface with Qt Components Chapter 1

How to do it...

Let's create a new application based on the Dialog without Buttons template. This
application will display different flight types along with their respective prices. When a
user selects a flight type, its price will be displayed on the screen:

1.

Drag and drop two Label widgets and three Radio Button widgets onto the
form.

Set the text property of the first Label widget to Choose the flight type and
delete the text property of the second Label widget. The text property of the
second Label widget will be set through code; it will be used to display the price
of the selected flight type.

Set the text property of the three Radio Button widgets to First Class $150,
Business Class $125,and Economy Class $100.

Set the objectName property of the second Label widget to 1abelFare. The
default object names of the three radio buttons are radioButton,
radioButton_2, and radioButton_3. Change the objectName property of
these three radio buttons to radioButtonFirstClass,

radioButtonBusinessClass, and radioButtonEconomyClass.

Save the application with name demoRadioButtonl.ui.

Take a look at the following screenshot:

Dialog - demoRadioButtonl.ui EI@
Choose the flight type

O First Class - $150

O Business Class $125

O Economy Class $100

The demoRadioButtonl.ui application is an XML file and needs to be
converted into Python code through the pyuic5 command utility. The
generated Python code, demoRadioButtonl.py, can be seen in the source
code bundle of this book.

[20]

Creating a User Interface with Qt Components Chapter 1

6. Import the demoRadioButtonl.py file as a header file in the Python script that
you are going to create next to invoke the user interface design.

7. In the Python script, write the code to display the flight type on the basis of the
radio button selected by the user. Name the source file cal1RadioButtonl.py;
its code is shown here:

import sys

from PyQt5.QtWidgets import QDialog, QApplication

from demoRadioButtonl import *

class MyForm(QDialog) :

def _ _init_ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.radioButtonFirstClass.toggled.connect (self.

dispFare)
self.ui.radioButtonBusinessClass.toggled.connect (self.
dispFare)
self.ui.radioButtonEconomyClass.toggled.connect (self.
dispFare)

self.show ()
def dispFare (self):

fare=0

if self.ui.radioButtonFirstClass.isChecked ()==True:
fare=150

if self.ui.radioButtonBusinessClass.isChecked()==True:
fare=125

if self.ui.radioButtonEconomyClass.isChecked ()==True:
fare=100

self.ui.labelFare.setText ("Alr Fare is "+str (fare))
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm()
w.show ()
sys.exit (app.exec_())

[21]

Creating a User Interface with Qt Components Chapter 1

How it works...

The toggled() event of Radio Button is connected to the dispFare () function, which will
display the price of the selected flight type. In the dispFare () function, you check the
state of the radio buttons. Hence, if radioButtonFirstClass is selected, the value 50 is
assigned to the fare variable. Similarly, if radioButtonBusinessClass is selected, the
value 125 is assigned to the fare variable. Similarly, the value 100 is assigned to the fare
variable when radioButtonEconomyClass is selected. Finally, the value in the fare

variable is displayed via labelFare.

On executing the previous program, you get a dialog that displays three flight types and
prompts the user to select the one that he/she wants to use for travel. On selecting a flight
type, the price of the selected flight type is displayed, as shown in the following screenshot:

i Dialog ? *

Choose the flight type

® First Class $150

O Business Class $125
O Economy Class $100

Air Fare is 150

Grouping radio buttons

In this application, we will learn to create two groups of radio buttons. The user can select
radio buttons from either group and accordingly the result or text will appear on the screen.

[22]

Creating a User Interface with Qt Components Chapter 1

Getting ready

We will display a dialog that displays shirts of different sizes and different payment
methods. On selecting a shirt size and a payment method, the selected shirt size and
payment method will be displayed on the screen. We will create two groups of radio
buttons, one of the shirt sizes and other payment methods. The shirt size group displays
four radio buttons showing four different types of the size such as M, L, XL, and XXL,
where M stands for medium size, L stands for large size, and so on. The payment method
group displays three radio buttons, Debit/Credit Card, NetBanking, and Cash On
Delivery. The user can select any radio button from either of the groups. When the user
selects any of the shirt sizes or payment methods, the selected shirt size and payment
method will be displayed.

How to do it...
Let's recreate the preceding application step by step:

1. Create a new application based on the Dialog without Buttons template.

2. Drag and drop three Label widgets and seven Radio Button widgets. Out of
these seven radio buttons, we will arrange four radio buttons in one vertical
layout and the other three radio buttons in the second vertical layout. The two
layouts will help in grouping these radio buttons. Radio buttons being mutually
exclusive will allow only one radio button to be selected from a layout or group.

3. Set the text property of the first two Label widgets to Choose your Shirt
Size and Choose your payment method respectively.

4. Delete the text property of the third Label widget because we will display the
selected shirt size and payment method through the code.

5. In the Property Editor window, increase the font size of all the widgets to
increase their visibility in the application.

6. Set the text property of the first four radio buttons to M, L, XL, and XXL. Arrange
these four radio buttons into one vertical layout.

7. Set the text property of the next three radio buttons to Debit/Credit Card,
NetBanking, and Cash On Delivery. Arrange these three radio buttons into a
second vertical layout. Remember, these vertical layouts help by grouping these
radio buttons.

8. Change the object names of the first four radio buttons to radioButtonMedium,
radioButtonLarge, radioButtonXL, and radioButtonXXL.

[23]

Creating a User Interface with Qt Components Chapter 1

9.

10.

11.

12.

13.
14.

15.

Set the objectName property of the first VBoxLayout layout to
verticalLayout. The VBoxLayout layout will be used for aligning radio
buttons vertically.

Change the object names of next three radio buttons to radioButtonDebitCard,
radioButtonNetBanking, and radioButtonCashOnDelivery.

Set the objectName property of the second QvBoxLayout object to
verticalLayout_2.

Set the objectName property of the third Label widget to labelSelected. Itis
through this Label widget that the selected shirt size and payment method will
be displayed.

Save the application with the name demoRadioButton2.ui.

Now, the form will appear, as shown in the following screenshot:

Dialog - demoRadioButton2.ui* EI@
Choose your Shirt Size

oL
O XL
0 XXL

Choose your payment method

O Debit/Credit Card
© NetBanking
© Cash On Delivery

The .ui (XML) file is then converted into Python code through the pyuic5
command utility. You can find the Python code, demoRadioButton2.py, in the
source code bundle for this book.

Import the demoRadioButton2.py file, as a header file in our program to invoke
the user interface design and to write code to display the selected shirt size and
payment method through a Label widget when the user selects or unselects any
of the radio buttons.

[24]

Creating a User Interface with Qt Components Chapter 1

16. Let's name the program callRadioButton2.pyw; its code is shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoRadioButton2 import *
class MyForm(QDialog) :
def _ init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.radioButtonMedium.toggled.connect (self.
dispSelected)
self.ui.radioButtonlLarge.toggled.connect (self.
dispSelected)
self.ui.radioButtonXL.toggled.connect (self.dispSelected)
self.ui.radioButtonXXL.toggled.connect (self.
dispSelected)
self.ui.radioButtonDebitCard.toggled.connect (self.
dispSelected)
self.ui.radioButtonNetBanking.toggled.connect (self.
dispSelected)
self.ui.radioButtonCashOnDelivery.toggled.connect (self.
dispSelected)
self.show()
def dispSelected(self):
selectedl="";
selected2=""
if self.ui.radioButtonMedium.isChecked()==True:
selectedl="Medium"
if self.ui.radioButtonLarge.isChecked()==True:
selectedl="Large"
if self.ui.radioButtonXL.isChecked()==True:
selectedl="Extra Large"
if self.ui.radioButtonXXL.isChecked ()==True:
selectedl="Extra Extra Large"
if self.ui.radioButtonDebitCard.isChecked()==True:
selected2="Debit/Credit Card"
if self.ui.radioButtonNetBanking.isChecked()==True:
selected2="NetBanking"
if self.ui.radioButtonCashOnDelivery.isChecked()==True:
selected2="Cash On Delivery"
self.ui.labelSelected.setText ("Chosen shirt size is
"+selectedl+" and payment method as " + selected2)
if _ name_ =="_main__ ":
app = QApplication(sys.argv)
w = MyForm()
w.show ()
sys.exit (app.exec_())

[25]

Creating a User Interface with Qt Components Chapter 1

How it works...

The toggled() event of all the radio buttons is connected to the dispSelected () function,
which will display the selected shirt size and payment method. In the dispSelected ()
function, you check the status of the radio buttons to find out whether they are checked or
unchecked. On the basis of the selected radio button in the first vertical layout, the value of
the selectedl variable will be set to Medium, Large, Extra Large, or Extra Extra
Large. Similarly, from the second vertical layout, depending on the radio button selected,
the value of the selected?2 variable will be initialized to Debit/Credit Card, NetBanking,
or Cash On Delivery. Finally, the shirt size and payment method assigned to the
selectedl variable and selected variables will be displayed via the 1abelselected
widget. On running the application, you get a dialog prompting you to select the shirt size
and payment method. On selecting a shirt size and payment method, the selected shirt size
and payment method are displayed via the Label widget, as shown in the following
screenshot:

B Dialog ? X
Choose your Shirt Size
oM
®L

O XL
O XXL

Choose your payment method

O Debit/Credit Card
® NetBanking
O Cash On Delivery

Chosen shirt size is Large and payment method as NetBanking

[26]

Creating a User Interface with Qt Components Chapter 1

Displaying options in the form of
checkboxes

While creating applications, you may come across a situation where you need to provide
several options for the user to select from. That is, you want the user to select one or more
than one option from a set of options. In such situations, you need to make use of
checkboxes. Let's find out more about checkboxes.

Getting ready

Whereas radio buttons allow only one option to be selected in a group, checkboxes allow
you to select more than one option. That is, selecting a checkbox will not affect other
checkboxes in the application. Checkboxes are displayed with a text label as an instance of
the 0CheckBox class. A checkbox can be in any of three states: selected (checked),
unselected (unchecked), or tristate (unchanged). Tristate is a no change state; the user has
neither checked nor unchecked the checkbox.

Method application

The following are the methods provided by the gCheckBox class:

e isChecked (): This method returns the Boolean value true if the checkbox is
checked, and otherwise returns false.

e setTristate ():If you don't want the user to change the state of the checkbox,
you pass the Boolean value true to this method. The user will not be able to check
or uncheck the checkbox.

e setIcon ():This method is used to display an icon with the checkbox.

e setText (): This method assigns text to the checkbox. To specify a shortcut key
for the checkbox, precede the preferred character in the text with an ampersand.
The shortcut character will appear as underlined.

e setChecked (): In order to make a checkbox appear as checked by default, pass
the Boolean value true to this method.

[27]

Creating a User Interface with Qt Components Chapter 1

Signal description

The signals emitted by gCheckBox are as follows:

e clicked(): This signal is emitted when a checkbox is activated (that is, pressed
and released) or when its shortcut key is pressed

e stateChanged(): This signal is emitted whenever a checkbox changes its state
from checked to unchecked or vice versa

To understand the Check Box widget, let's assume that you run a restaurant where several
food items, such as pizzas, are sold. The pizza is sold along with different toppings, such as
extra cheese, extra olives, and so on, and the price of each topping is also mentioned with it.
The user can select a regular pizza with one or more toppings. What you want is that when
a topping is selected, the total price of the pizza, including the selected topping, is
displayed.

How to do it...

The focus of this recipe is to understand how an action is initiated when the state of a
checkbox changes from checked to unchecked or vice versa. Following is the step-by-step
procedure to create such an application:

1. Begin by creating a new application based on the Dialog without Buttons
template.

2. Drag and drop three Label widgets and three Check Box widgets onto the form.

3. Set the text property of the first two Label widgets to Reqular Pizza $10 and
Select your extra toppings.

4. In the Property Editor window, increase the font size of all three labels and
checkboxes to increase their visibility in the application.

5. Set the text property of the three checkboxes to Extra Cheese $1, Extra
Olives $1,and Extra Sausages $2.The default object names of the three
checkboxes are checkBox, checkBox_2, and checkBox_ 3.

6. Change these to checkBoxCheese, checkBoxOlives, and checkBoxSausages,
respectively.

7. Set the objectName property of the Label widget to 1abelAmount.

[28]

Creating a User Interface with Qt Components Chapter 1

8. Save the application with the name demoCheckBox1.ui. Now, the form will
appear as shown in the following screenshot:

Dialog - demoCheckbox1.ui li“é‘
Regular Pizza $10

Select your extra toppings = [Extra Cheese $1

O Extra Olives $1
O Extra Sausages $2

TextLabel

The .ui (XML) file is then converted into Python code through the pyuic5
command utility. The Python code generated in the demoCheckBox1 .py file can
be seen in the source code bundle of this book.

9. Import the demoCheckBox1.py file, as a header file in our program to invoke the
user interface design and to write code to calculate the total cost of regular pizza,
along with the selected toppings, through a Label widget when the user selects
or unselects any of the checkboxes.

10. Let's name the program callCheckBox1.pyw; its code is shown here:

import sys

from PyQt5.QtWidgets import QDialog

from PyQt5.QtWidgets import QApplication, QWidget, QPushButton
from demoCheckBox1l import *

class MyForm(QDialog) :

def

def

_ _init_ (self):

super () .__init__ ()

self.ui = Ui_Dialog()

self.ui.setupUi (self)
self.ui.checkBoxCheese.stateChanged.connect (self.
dispAmount)
self.ui.checkBoxOlives.stateChanged.connect (self.
dispAmount)
self.ui.checkBoxSausages.stateChanged.connect (self.
dispAmount)

self.show ()

dispAmount (self) :

amount=10

[29]

Creating a User Interface with Qt Components Chapter 1

if self.ui.checkBoxCheese.isChecked()==True:
amount=amount+1

if self.ui.checkBoxOlives.isChecked()==True:
amount=amount+1

if self.ui.checkBoxSausages.isChecked()==True:

amount=amount+2
self.ui.labelAmount.setText ("Total amount for pizza is

"+str (amount))
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

The stateChanged() event of checkboxes is connected to the di spAmount function, which
will calculate the cost of the pizza along with the toppings selected. In the

dispAmount function, you check the status of the checkboxes to find out whether they are
checked or unchecked. The cost of the toppings whose checkboxes are checked is added
and stored in the amount variable. Finally, the addition of the amount stored in the amount
variable is displayed via 1abelAmount. On running the application, you get a dialog
prompting you to select the toppings that you want to add to your regular pizza. On
selecting any toppings, the amount of the regular pizza along with the selected toppings
will be displayed on the screen, as shown in the following screenshot:

1 Dialog ? X B Dialog ? >
Regular Pizza $10 Regular Pizza $10
Select your extra toppings [0 Extra Cheese $1 Select your extra toppings Extra Cheese &1
[Extra Olives $1 [Extra Olives $1
[Extra Sausaqges $2 Extra Sausaaes $2
TextLabel Total amount for pizza is 13

The dispAmount function will be invoked every time the status of any
checkbox changes. As a result, the total amount will be displayed via the
Label widget, as soon as any checkbox is checked or unchecked.

[30]

Creating a User Interface with Qt Components Chapter 1

Displaying two groups of checkboxes

In this application, we will learn to make two groups of checkboxes. The user can select any
number of checkboxes from either group and, accordingly, the result will appear.

Getting ready

We will try displaying a menu of a restaurant where different types of ice creams and
drinks are served. We will create two groups of checkboxes, one of ice creams and the other
of drinks. The ice cream group displays four checkboxes showing four different types of ice
cream, mint chocolate chip, cookie dough, and so on, along with their prices. The drinks
group displays three checkboxes, coffee, soda, and so on, along with their prices. The user
can select any number of checkboxes from either of the groups. When the user selects any
of the ice creams or drinks, the total price of the selected ice creams and drinks will be
displayed.

How to do it...

Here are the steps to create an application, which explain how checkboxes can be arranged
into different groups and how to take respective action when the state of any checkbox
from any group changes:

1. Create a new application based on the Dialog without Buttons template.

2. Drag and drop four Label widgets, seven Check Box widgets, and two Group
Box widgets onto the form.

3. Set the text property of the first three Label widgets to Menu, Select your
IceCream, and Select your drink respectively.

4. Delete the text property of the fourth Label widget because we will display the
total amount of the selected ice creams and drinks through the code.

5. Through Property Editor, increase the font size of the all the widgets to increase
their visibility in the application.

6. Set the text property of the first four checkboxes to Mint Choclate Chips $4,
Cookie Dough $2,Choclate Almond $3, and Rocky Road $5.Put these four
checkboxes into the first group box.

7. Set the text property of the next three checkboxes to Coffee $2, Soda $3, and
Tea $1 respectively. Put these three checkboxes into the second group box.

[31]

Creating a User Interface with Qt Components

Chapter 1

8. Change the object names of the first four checkboxes to
checkBoxChoclateChips, checkBoxCookieDough,
checkBoxChoclateAlmond, and checkBoxRockyRoad.

10.

11.
12.
13.

Set the objectName property of the first group box to groupBoxIceCreams.

Change the objectName property of the next three checkboxes to

checkBoxCoffee, checkBoxSoda, and checkBoxTea.

Set the objectName property of the second group box to groupBoxDrinks.

Set the objectName property of the fourth Label widget to 1abelAmount.

Save the application with the name demoCheckBox2 . ui. It is through this Label
widget that the total amount of the selected ice creams and drinks will be
displayed, as shown in the following screenshot:

Dialog - demoCheckbox2.ui®

Select your IceCream

Select your drink

Menu

IceCreams

H Mint Choclate Chips $ 4
[0 Cookie Dough $2

_D Chocolate Almond $3
[0 Rocky Road $ 5

Drinks

_E!Coﬁee$2
[Soda $ 3
OTea$ 1

=

The .ui (XML) file is then converted into Python code through the pyuic5

command utility. You can find the generated Python code,

the demoCheckbox2.py file, in the source code bundle of this book.

[32]

Creating a User Interface with Qt Components Chapter 1

14. Import the demoCheckBox2 . py file as a header file in our program to invoke the
user interface design, and to write code to calculate the total cost of ice creams
and drinks through a Label widget when the user selects or unselects any of the
checkboxes.

15. Let's name the program callCheckBox2.pyw; its code is shown here:

import sys

from PyQt5.QtWidgets import QDialog

from PyQt5.QtWidgets import QApplication, QWidget, QPushButton

from demoCheckBox2 import *

class MyForm(QDialog) :

def _ init__ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.checkBoxChoclateAlmond.stateChanged.connect
(self.dispAmount)
self.ui.checkBoxChoclateChips.stateChanged.connect (self.

dispAmount)
self.ui.checkBoxCookieDough.stateChanged.connect (self.
dispAmount)
self.ui.checkBoxRockyRoad.stateChanged.connect (self.
dispAmount)
self.ui.checkBoxCoffee.stateChanged.connect (self.
dispAmount)
self.ui.checkBoxSoda.stateChanged.connect (self.
dispAmount)
self.ui.checkBoxTea.stateChanged.connect (self.
dispAmount)

self.show ()
def dispAmount (self):

amount=0

if self.ui.checkBoxChoclateAlmond.isChecked ()==True:
amount=amount+3

if self.ui.checkBoxChoclateChips.isChecked ()==True:
amount=amount+4

if self.ui.checkBoxCookieDough.isChecked ()==True:
amount=amount+2

if self.ui.checkBoxRockyRoad.isChecked()==True:
amount=amount+5

if self.ui.checkBoxCoffee.isChecked()==True:
amount=amount+2

if self.ui.checkBoxSoda.isChecked()==True:
amount=amount+3

if self.ui.checkBoxTea.isChecked()==True:

amount=amount+1
self.ui.labelAmount.setText ("Total amount is

[33]

Creating a User Interface with Qt Components Chapter 1

S"+str (amount))
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

The stateChanged() event of all the checkboxes is connected to the dispAmount function,
which will calculate the cost of the selected ice creams and drinks. In the

dispAmount function, you check the status of the checkboxes to find out whether they are
checked or unchecked. The cost of the ice creams and drinks whose checkboxes are checked
is added and stored in the amount variable. Finally, the addition of the amount stored in
the amount variable is displayed via the 1abelAmount widget. On running the application,
you get a dialog prompting you to select the ice creams or drinks that you want to order.
On selecting the ice creams or drinks, the total amount of the chosen items will be
displayed, as shown in the following screenshot:

B Dizlog 7 *

Menu

TceCreams

Select your IceCream Mint Choclate Chips $4
O Cookie Dough $2
Chocolate Almond $3
O Rocky Road $5

. Drinks
Select your drink

O Coffee $2
Soda $3
Tea $1

Total amount is $11

[34]

Event Handling - Signals and
Slots

In this chapter, we will learn about the following topics:

¢ Using Signal/Slot Editor

e Copying and pasting text from one Line Edit widget to another

e Converting data types and making a small calculator

¢ Using the Spin Box widget

¢ Using scrollbars and sliders

e Using List Widget

e Selecting multiple list items from one List Widget and displaying them in
another

¢ Adding items into List Widget

¢ Performing operations in List Widget

¢ Using the Combo Box widget

¢ Using the Font Combo Box widget

¢ Using the Progress Bar widget

Introduction

Event handling is an important mechanism in every application. The application should not
only recognize the event, but must take the respective action to serve the event, too. The
action taken on any event determines the course of the application. Each programming
language has a different technique for handling or listening to events. Let's see how Python
handles its events.

Event Handling - Signals and Slots Chapter 2

Using Signal/Slot Editor

In PyQt, the event handling mechanism is also known as signals and slots. An event can be
in the form of clicking or double-clicking on a widget, or pressing the Enter key, or selecting
an option from a radio button, checkbox, and so on. Every widget emits a signal when any
event is applied on it and, that signal needs to be connected to a method, also known as a
slot. A slot refers to the method containing the code that you want to be executed on the
occurrence of a signal. Most widgets have predefined slots; you don't have to write code to
connect a predefined signal to a predefined slot.

You can even edit a signal/slot by navigating to the Edit | Edit Signals/Slots tool in the
toolbar.

How to do it...

To edit the signals and slots of different widgets placed on the form, you need to switch to
signals and slots editing mode by performing the following steps:

1. You can press the F4 key, navigate to the Edit | Edit Signals/Slots option, or
select the Edit Signals/Slots icon from the toolbar. The mode displays all the
signal and slot connections in the form of arrows, indicating the connection of a
widget with its respective slot.

You can also create new signal and slot connections between widgets in
this mode and delete an existing signal.

2. To establish a signal and slot connection between two widgets in a form, select a
widget by left-clicking the mouse on the widget, dragging the mouse towards
another widget to which you want to connect, and releasing the mouse button
over it.

3. To cancel the connection while dragging the mouse, simply press the Esc key.

4. On releasing the mouse over the destination widget, a Connection Dialog box
appears, prompting you to select a signal from the source widget and a slot from
the destination widget.

5. After selecting the respective signal and slot, select OK to establish the signal and
slot connection.

[36]

Event Handling - Signals and Slots

Chapter 2

The following screenshot shows dragging a Push Button over a Line Edit widget:

Dialeg - untitled®

PushButton

[meSm]

6. On releasing the mouse button on the Line Edit widget, you get the list of

predefined signals and slots, as shown in the following screenshot:

[] Show signals and slots inherited from QWidget

Configure Connection - Ot Designer
pushButton (QPushButton) lineEdit (QLineEdit)

clicked() clear()

clicked(bool) copyl()

pressed() cut()

released() paste()

toggled(bool) redo(]
selectAll()
undo()

Edit... Edit...

[371]

Event Handling - Signals and Slots Chapter 2

You can also select Cancel in the Configure Connection dialog box to
! cancel the signal and slot connection.
TIP

7. When connected, the selected signal and slot will appear as labels in the arrow,
connecting the two widgets.
8. To modify a signal and slot connection, double-click the connection path or one
of its labels to display the Configure Connection dialog box.
9. From the Configure Connection dialog, you can edit a signal or a slot as desired.
10. To delete a signal and slot connection, select its arrow on the form and press the
Delete key.

The signal and slot connection can also be established between any widget and the form. To
do so, you can perform the following steps:

1. Select the widget, drag the mouse, and release the mouse button over the form.
The end point of the connection changes to the electrical ground symbol,
representing that a connection has been established with the form.

2. To come out of signal and slot editing mode, navigate to Edit | Edit Widgets or
press the F3 key.

Copying and pasting text from one Line Edit
widget to another

This recipe will make you understand how an event performed on one widget invokes a
predefined action on the associated widget. Because we want to copy content from one
Line Edit widget on clicking the push button, we need to invoke the selectAll () method
on the occurrence of the pressed() event on push button. Also, we need to invoke the

copy () method on occurrence of the released() event on the push button. To paste the
content in the clipboard into another Line Edit widget on clicking of another push button,
we need to invoke the paste () method on the occurrence of the clicked() event on another
push button.

[38]

Event Handling - Signals and Slots Chapter 2

Getting ready

Let's create an application that consists of two Line Edit and two Push Button widgets. On
clicking the first push button, the text in the first Line Edit widget will be copied and on
clicking the second push button, the text copied from the first Line Edit widget will be
pasted onto the second Line Edit widget.

Let's create a new application based on the Dialog without Buttons template by
performing the following steps:

1. Begin by adding QLineEdit and QPushButton to the form by dragging and
dropping the Line Edit and Push Button widgets from the Widget box on the

form.

To preview a form while editing, select either Form, Preview, or use Ctrl +

0R.

2. To copy the text of the Line Edit widget when the user selects the push button on
the form, you need to connect the push button's signal to the slot of Line Edit.

Let's learn how to do it.

How to do it...

Initially, the form is in widget editing mode, and to apply signal and slot connections, you
need to first switch to signals and slots editing mode:

1. Select the Edit Signals/Slots icon from the toolbar to switch to signals and slots
editing mode.

[39]

Event Handling - Signals and Slots

Chapter 2

2. On the form, select the push button, drag the mouse to the Line Edit widget, and
release the mouse button. The Configure Connection dialog will pop up,
allowing you to establish a signal and slot connection between the Push Button
and the Line Edit widgets, as shown in the following screenshot:

[] show signals and slots inherited from QWwidget

Configure Connection - Ct Designer
pushButton (QPushButton) lineEdit (QLineEdit)

clicked() clear()

clicked(bool) copy()

pressed() cut(]

released() paste()

toggledibool) reda(]
selectAll])
undo(]

Edit... Edit...

Cancel

3. Select the pressed() event or signal from the pushButton (QPushButton) tab and

the selectAll() slot for the lineEdit (QLineEdit) tab.

The connected signal of the Push Button widget with the slot of Line Edit will
appear in the form of an arrow, representing the signal and slot connection
between the two widgets, as shown in the following screenshot:

[40]

Event Handling - Signals and Slots Chapter 2

. Dhalog - demoSignalSlotl.ui™ |E|

wcelectAll] |

[

Eressed?%

4. Set the text property of the Push Button widget to Copy to represent the fact that
it will copy the text entered in the Line Edit widget.

5. Next, we will repeat the procedure of clicking the push button and dragging it to
the Line Edit widget to connect the released() signal of the push button with the
copy() slot of the Line Edit widget. On the form, you will see another arrow,
representing the second signal and slot connection established between the two
widgets, as is shown in the following screenshot:

. Dialog - demoSignalSlot].ui® |E|

| selectall)

released()
0

4
pressed()

6. In order to paste the copied content, drag and drop one push button and one
Line Edit widget on the form.

[41]

Event Handling - Signals and Slots Chapter 2

7. Set the text property of the Push Button widget to Paste.
8. Click the push button and, keeping the mouse button pressed, drag it and release
it on the Line Edit widget.

9. From the Configure Connection dialog, select the clicked() event from
the pushButton (QPushButton) column and the paste() slot from the lineEdit
(QLineEdit) column.
10. Save the form with the name demoSignall.ui. The form will now appear as
shown in the following screenshot:

! Dialog - demoSignalSiotl.ui® |E|

| selectall)

T

[paste() [+

The form will be saved in a file with the .ui extension. The demoSignalil.ui file

[42]

Event Handling - Signals and Slots Chapter 2

will contain all the information of the form, its widgets, layout, and so on. The
.ui file is an XML file, and it needs to be converted into Python code by making
use of the pyuic5 utility. The generated Python code file, demoSignall.py, can
be seen in the source code bundle of this book. In the demoSignall.py file, you
will find that it imports everything from both modules, ot Core and QtGui, as
you will be needing them for developing GUI applications:

e OtCore: The QtCore module forms the foundation of all Qt-based
applications. It contains the most fundamental classes, such as
QCoreApplication, Q0bject, and so on. These classes do important tasks,
such as event handling, implementing the signal and slot mechanism, I/O
operations, handling strings, and so on. The module includes several classes,
including QFile, ODir, QIODevice, QTimer, QString, QDate, and QTime.

® OtGui: As the name suggests, the 0t GUT module contains the classes
required in developing cross-platform GUI applications. The module
contains the GUI classes, such as QCheckBox, QComboBox, QDateTimeEdit,
QLineEdit, QPushButton, QPainter, QPaintDevice, QApplication,
QTextEdit, and QTextDocument

11. Treat the demoSignalSlotl.py file, as a header file and import it to the file
from which you will invoke its user interface design.

12. Create another Python file with the name calldemoSignall.pyw and import
the demoSignall.py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoSignalSlotl import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.show()
if _ name_ =="_ _main__ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

[43]

Event Handling - Signals and Slots Chapter 2

How it works...

The sys module is imported as it supplies access to the command-line arguments stored in
the sys.argv list. This is because every PyQt GUI application must have a QApplication
object to provide access to information such as the application's directory, screen size, and
so on, so that you create an QApplication object. To enable PyQt to use and apply
command-line arguments (if any), you pass the command-line arguments while creating a
QApplication object. You create an instance of MyForm and call its show () method, which
adds a new event to the QApplication object's event queue. This new event is used to
display all the widgets specified in the MyForm class. The app . exec_ method is called to
start the QApplication object's event loop. Once the event loop begins, the top-level
widget used in the class, MyForm, is displayed, along with its child widgets. All the system-
generated events, as well as user interaction events, are added to the event queue. The
application's event loop continuously checks to see whether an event has occurred. On the
occurrence of an event, the event loop processes it and invokes the associated slot or
method. On closing the top-level widget of the application, PyQt deletes the widget and
performs a clean termination of the application.

In PyQt, any widget can be used as a top-level window. The super () .__init__ ()
method invokes the base class constructor from the MyForm class, that is, the constructor of
the Qbialog class is invoked from MyForm class to indicate that QDialog is displayed
through this class is a top-level window.

The user interface design is instantiated by calling the setupUI () method of the class that
was created in the Python code (Ui_Dialog). We create an instance of

the Ui_Dialog class, the class that was created in the Python code, and invoke its

setupUi () method. The Dialog widget will be created as the parent of all the user
interface widgets and displayed on the screen. Remember, 0Dialog, QMainWindow, and all
of the PyQt's widgets are derived from Qwidget.

On running the application, you get two pairs of the Line Edit and Push Button widgets.
On typing text into one Line Edit widget, when you click the Copy push button, the text
will be copied.

[44]

Event Handling - Signals and Slots Chapter 2

Now, on clicking the Paste push button, the copied text will be pasted in the second Line
Edit widget, as shown in the following screenshot:

B | Dialog ? d

Johny

Copy

Johny

Converting data types and making a small
calculator

The most commonly used widget for accepting one-line data is the Line Edit widget, and
the default data type in a Line Edit widget is string. In order to do any computation on two
integer values, you need to convert the string data entered in the Line Edit widget to the
integer data type and then convert the result of computation, which will be a numeric data
type, back to string type before being displaying through a Label widget. This recipe does
exactly that.

[45]

Event Handling - Signals and Slots Chapter 2

How to do it...

To understand how data is accepted by the user and how type casting is done, let's create
an application based on the Dialog without Buttons template by performing the following
steps:

1. Add three QLabel, two QLineEdit, and one QPushButton widget to the form
by dragging and dropping three Label, two Line Edit, and four Push Button
widgets on the form.

2. Set the text property of the two Label widgets to Enter First Number and
Enter Second Number.

3. Set the objectName property of the three Labels to 1abelFirstNumber,
labelSecondNumber, and labelResult.

4. Set the objectName property of the two Line Edit widgets to
lineEditFirstNumber and lineEditSecondNumber.

5. Set the objectName property of the four Push Button widgets to
pushButtonPlus, pushButtonSubtract, pushButtonMultiply, and
pushButtonDivide, respectively.

6. Set the push button's text property to +, -, x, and /, respectively.

7. Delete the default text property of the third label, because the Python script will
set the value and then display it when the two numerical values are added.

8. Don't forget to drag the Label widget in the designer in order to ensure it is long
enough to display the text that will be assigned to it through the Python script.

9. Save the Ul file as demoCalculator.ui.

10. You can also increase the width of the Label widget by setting the width
property under geometry from the Property Editor window:

Dialeg - demoCalculator.ui EI@

Enter first number | |

Enter second number - | |

[46]

Event Handling - Signals and Slots Chapter 2

The . ui file, which is in XML format, needs to be converted into Python code.
The generated Python code, demoCalculator.py, can be seen in the source code
bundle of this book.

11. Create a Python script named callCalculator.pyw that imports the Python
code demoCalculator.py to invoke a user interface design, and that fetches the
values entered in the Line Edit widgets and displays their addition. The code in
the Python script callCalculator.pyw is shown here:

import sys

from PyQt5.QtWidgets import QDialog, QApplication
from demoCalculator import *

class MyForm(QDialog) :

def

def

def

def

__init_ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonPlus.clicked.connect (self.addtwonum)
self.ui.pushButtonSubtract.clicked.connect
(self.subtracttwonum)
self.ui.pushButtonMultiply.clicked.connect
(self.multiplytwonum)
self.ui.pushButtonDivide.clicked.connect (self.dividetwonum)
self.show ()
addtwonum (self) :
if len(self.ui.lineEditFirstNumber.text ()) !=0:

a=int (self.ui.lineEditFirstNumber.text ())

else:
a=0
if len(self.ui.lineEditSecondNumber.text ()) !=0:
b=int (self.ui.lineEditSecondNumber.text ())
else:
b=0
sum=a+b
self.ui.labelResult.setText ("Addition: " +str (sum))
subtracttwonum (self) :
if len(self.ui.lineEditFirstNumber.text ()) !=0:
a=int (self.ui.lineEditFirstNumber.text ())
else:
a=0
if len(self.ui.lineEditSecondNumber.text ()) !=0:
b=int (self.ui.lineEditSecondNumber.text ())
else:
b=0
diff=a-b
self.uil.labelResult.setText ("Substraction: " +str(diff))

multiplytwonum(self) :

[47]

Event Handling - Signals and Slots Chapter 2

if len(self.ui.lineEditFirstNumber.text ()) !=0:
a=int (self.ui.lineEditFirstNumber.text ())
else:
a=0
if len(self.ui.lineEditSecondNumber.text ()) !=0:
b=int (self.ui.lineEditSecondNumber.text ())
else:
b=0
mult=a*b
self.ui.labelResult.setText ("Multiplication: " +str(mult))
def dividetwonum (self) :
if len(self.ui.lineEditFirstNumber.text ()) !=0:
a=int (self.ui.lineEditFirstNumber.text ())
else:
a=0
if len(self.ui.lineEditSecondNumber.text ()) !=0:
b=int (self.ui.lineEditSecondNumber.text ())
else:

b=0
division=a/b
self.ui.labelResult.setText ("Division: "+str (round

(division, 2)))

if name__ =="__main__ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

There are the following four functions used in this code:

e len (): This function returns the number of characters in the string

e str (): This function converts the argument passed into the string data type

e int (): This function converts the argument passed into the integer data type

e round (): This function rounds the number passed to the specified decimal digits

The clicked () event of pushButtonPlus is connected to the addtwonum () method to
display the sum of the numbers entered in the two Line Edit widgets. In the
addtwonum () method, you first validate 1ineEditFirstNumber and
lineEditSecondNumber to ensure that if either Line Edit is left blank by the user, the
value of that Line Edit is zero.

[48]

Event Handling - Signals and Slots Chapter 2

The values entered in the two Line Edit widgets are retrieved, converted into integers
through int (), and assigned to the two variables a and b. The sum of the values in the a
and b variables is computed and stored in the sum variable. The result in the variable sumis
converted into string format through st r method and displayed via 1abelResult, as
shown in the following screenshot:

B Dialog ? #

Enter first number 3 |

Enter second number [2 |

: X /

Addition: 5

Similarly, the clicked () event of pushButtonSubtract is connected to the
subtracttwonum () method to display the subtraction of the numbers entered in the two
Line Edit widgets. Again, after validation of the two Line Edit widgets, the values entered
in them are retrieved and converted into integers. Subtraction is applied on the two
numbers and the result is assigned to the diff variable. Finally, the result in the diff
variable is converted into string format through the str () method and displayed via
labelResult, as shown in the following screenshot:

B Dialog ? x

Enter first number 3 |

Enter second number |2 |

= O [

Substraction: 1

[49]

Event Handling - Signals and Slots Chapter 2

Similarly, the clicked() event of pushButtonMultiply and pushButtonDivide are
connected to the multiplytwonum() and dividetwonum () methods, respectively. These
methods multiply and divide the values entered in the two Line Edit widgets and display
them through the 1abelResult widget.

The result of the multiplication is shown in the following screenshot:

i Dialeg ? it

Enter first number 3 |

Enter second number |2 |

Multiplication: 6

The result of the division is shown in the following screenshot:

B Dialog ? *

Enter first number 13 |

Enter second number |2 |

Division: 1.5

[50]

Event Handling - Signals and Slots Chapter 2

Using the Spin Box widget

The Spin Box widget is used for displaying integer values, floating-point values, and text.
It applies a constraint on the user: the user cannot enter any random data, but can select
only from the available options displayed through Spin Box. A Spin Box widget displays
an initial value by default that can be increased or decreased by selecting the up/down
button or up/down arrow key on the keyboard. You can choose a value that is displayed by
either clicking on it or typing it in manually.

Getting ready

A Spin Box widget can be created using two classes, 0QSpinBox and QDoubleSpinBox,
where 0SpinBox displays only integer values, and the QDoubleSpinBox class displays
floating-point values. Methods provided by 0SpinBox are shown in the following list:

e value (): This method returns the current integer value selected from the spin
box.

e text (): This method returns the text displayed by the spin box.

e setPrefix(): This method assigns the prefix text that is prepended to the value
returned by the spin box.

e setSuffix (): This method assigns the suffix text that is to be appended to the
value returned by the spin box.

e cleanText (): This method returns the value of the spin box without a suffix, a
prefix, or leading or trailing whitespaces.

e setValue (): This method assigns the value to the spin box.

e setSinglesStep (): This method sets the step size of the spin box. Step size is the
increment/decrement value of the spin box, that is, it is the value by which the
spin box's value will increase or decrease on selecting the up or down buttons.

e setMinimum (): This method sets the minimum value of the spin box.

e setMaximum (): This method sets the maximum value of the spin box.

e setWrapping (): This method passes the Boolean value true to this method to
enable wrapping in the spin box. Wrapping means the spin box returns to the
first value (minimum value) when the up button is pressed while displaying the
maximum value.

[51]

Event Handling - Signals and Slots Chapter 2

Signals emitted by the 9SpinBox class are as follows:

¢ valueChanged(): This signal is emitted when the value of the spin box is changed
either by selecting the up/down button or using the setvalue () method

¢ editingFinished(): This signal is emitted when focus is lost on the spin box

The class used for dealing with float values in spin boxes is QDoubleSpinBox. All the
preceding methods are supported by the OQDoubleSpinBox class too. It displays values up
to two decimal places by default. To change the precision, use round (), which displays the
values up to the specified number of decimal places; the value will be rounded to the
specified number of decimals.

spin box are 0, 99, 1, and 0, and of a double spin box are 0.000000,

The default minimum, maximum, singleStep, and value properties of a
0 99.990000, 1.000000, and 0.000000, respectively.

Let's create an application that will ask the user to enter a price for a book, followed by the
quantity of the books purchased by the customer, and will display the total amount of
books. Also, the application will prompt you to enter a price for 1 kg of sugar, followed by
the quantity of sugar bought by the user. On entering the quantity of sugar, the app will
display the total amount of sugar. The quantity of the books and the sugar will be entered
through a spin box and double spin box, respectively.

How to do it...

To understand how integer and float values can be accepted through spin boxes and used
in further computation, let's create a new application based on the Dialog without Buttons
template and follow these steps:

1. Let's begin by dragging and dropping three Label, a Spin Box, a Double Spin
Box, and four Line Edit widgets.

2. The text property of two Label widgets is set to Book Price value and Sugar
Price, and the objectName property of the third Label widget is set to
labelTotalAmount.

3. Set the objectName property of the four Line Edit widgets to
lineEditBookPrice, lineEditBookAmount, lineEditSugarPrice, and
lineEditSugarAmount, respectively.

[52]

Event Handling - Signals and Slots Chapter 2

4.

10.

Set the objectName property of the Spin Box widget to spinBoxBookQty and
that of the Double Spin Box widget to doubleSpinBoxSugarWeight.

. Delete the default text property of the third Label widget, TextLabel, as you will

be setting its text in the program to display the total amount.

. The third Label widget will become invisible on deleting its text property.
. Disable the two Line Edit widgets, 1ineEditBookAmount and

lineEditSugarAmount, by unchecking their enabled property from the
Property Editor window as you want them to display non-editable values.

. Save the application with the name demoSpinner.ui:

Dialog - demoSpinBox.ui* EI@

BookPrice [|]
Sugar Price |:| 0.00 3

On using the pyuic5 command utility, the . ui (XML) file will be converted into
Python code. The generated Python code file, demoSpinner.py, can be seen in
the source code of this book.

Create a Python script file named calldemoSpinner.pyw that imports the code,
demoSpinner.py, enabling you to invoke the user interface design that displays
the numbers selected through spin boxes and also compute the total book
amount and total sugar amount. The calldemoSpinner.pyw file will appear as
shown here:

import sys

from PyQt5.QtWidgets import QDialog, QApplication

from demoSpinBox import *

class MyForm(QDialog) :

def _ _init_ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.spinBoxBookQty.editingFinished.connect (self.
resultl)
self.ui.doubleSpinBoxSugarWeight.editingFinished.connect
(self.result?2)
self.show ()

[53]

Event Handling - Signals and Slots

Chapter 2

def resultl (self):
if len(self.ui.lineEditBookPrice.text ()) !=0:

def

if name__=="__main

app
W =

else:

bookPrice=int (self.ui.lineEditBookPrice.text ())

bookPrice=0
totalBookAmount=self.ui.spinBoxBookQty.value ()
bookPrice
self.ui.lineEditBookAmount.setText (str
(totalBookAmount))

*

result2 (self) :
if len(self.ui.lineEditSugarPrice.text ())!=0:

else:

sugarPrice=float (self.ui.lineEditSugarPrice.
text ())

sugarPrice=0

totalSugarAmount=self.ui.
doubleSpinBoxSugarWeight.value () * sugarPrice
self.ui.lineEditSugarAmount.setText (str (round
(totalSugarAmount,2)))

totalBookAmount=int (self.ui.lineEditBookAmount.
text ())
totalAmount=totalBookAmount+totalSugarAmount
self.ui.labelTotalAmount.setText (str (round
(totalAmount, 2)))

= QApplication(sys.argv)

MyForm ()

w.show ()
sys.exit (app.exec_())

How it works...

In this code, you can see that the editingFinished signal of the two spin boxes is
attached to the resultl and result2 functions. It means that when focus is lost on any of
the spin boxes, the respective method will be invoked. Focus is lost on a widget when the
user moves onto other widgets with the mouse or by pressing the Tab key:

e In the resultl method, you retrieve the integer value for the purchased book
quantity from the Spin Box widget and multiply it with the book price entered in
the 1ineEditBookPrice widget to compute the total book cost. The total book
cost is then displayed through the 1ineEditBookAmount widget.

[54]

Event Handling - Signals and Slots Chapter 2

e Similarly, in the result2 method, you retrieve the floating-point value that is
the weight of the sugar purchased from the double spin box and multiply it with
the price of the sugar per kg entered in the 1ineEditSugarPrice widget to
compute the total sugar cost, which is then displayed through the
lineEditSugarAmount widget. The total of the book cost and sugar cost is
finally displayed through the 1abelTotalAmount widget, as shown in the
following screenshot:

8 Dialeg ? X

Book Price 85 3 5 255
Sugar Price 40 1.58 5 63.2]
318.2

Using scrollbars and sliders

Scrollbars are useful while looking at large documents or images that cannot appear in a
limited visible area. Scrollbars appear horizontally or vertically, indicating your current
position in the document or image and the size of the region that is not visible. Using the
slider handle provided with these bars, you can access the hidden part of the document or
image.

Sliders are a way of selecting an integer value between two values. That is, a slider can
represent a minimum and maximum range of values, and the user can select a value within
this range by moving the slider handle to the desired location in the slider.

Getting ready

Scrollbars are used for viewing documents or images that are larger than the view area. To
display horizontal or vertical scrollbars, you use the HorizontalScrollBar and
VerticalScrollBar widgets, which are instances of the 0ScrollBar class. These
scrollbars have a slider handle that can be moved to view the area that is not visible. The
location of the slider handle indicates the location within the document or image. A
scrollbar has the following controls:

e Slider handle: This control is used to move to any part of the document or image
quickly.

[551]

Event Handling - Signals and Slots Chapter 2

Scroll arrows: These are the arrows on either side of the scrollbars that are used
to view the desired area of the document or image that is not currently visible.
On using these scroll arrows, the position of the slider handle moves to show the
current location within the document or image.

Page control: The page control is the background of the scrollbar over which the
slider handle is dragged. When the background is clicked, the slider handle
moves towards the click by one page. The amount the slider handle moves can be
specified via the pageStep property. The page step is the amount by which a
slider moves when the user presses the Page Up and Page Down keys. You can set
the amount of the pageStep property by using the setPageStep () method.

The method that is specifically used to set and retrieve values from scrollbars is the
value () method, described here.

The value () method fetches the value of the slider handle, that is, its distance value from
the start of the scrollbar. You get the minimum value of the scrollbar when the slider
handle is at the top edge in a vertical scrollbar or at the left edge in a horizontal scrollbar,
and you get the maximum value of the scroll bar when the slider handle is at the bottom
edge in a vertical scrollbar or at the right edge in a horizontal scrollbar. You can move the
slider handle to its minimum and maximum values via the keyboard too, by pressing

the Home and End keys, respectively. Let's take a look at the following methods:

setValue (): This method assigns value to the scrollbar and, as per the value
assigned, the location of the slider handle is set in the scrollbar

minimum () : This method returns the minimum value of the scrollbar
maximum () : This method returns the maximum value of the scrollbar
setMinimum () : This method assigns the minimum value to the scrollbar
setMaximum () : This method assigns the maximum value to the scrollbar
setSingleStep (): This method sets the single step value

setPageStep () : This method sets the page step value

QScrollBar provides only integer values.

The signals emitted through the 0Scrol1Bar class are shown in the following list:

valueChanged(): This signal is emitted when the scrollbar's value is changed,
that is, when its slider handle is moved

[561]

Event Handling - Signals and Slots Chapter 2

e sliderPressed(): This signal is emitted when the user starts to drag the slider
handle

e sliderMoved(): This signal is emitted when the user drags the slider handle
e sliderReleased(): This signal is emitted when the user releases the slider handle

e actionTriggered(): This signal is emitted when the scrollbar is changed by user
interaction

Sliders are generally used to represent some integer value. Unlike scrollbars, which are
mostly used to display large documents or images, the sliders are interactive and an easier
way to enter or represent integer values. That is, by moving and positioning its handle
along a horizontal or vertical groove, you can make a horizontal or vertical slider to
represent some integer value. To display horizontal and vertical sliders, the
HorizontalSlider and VerticalSlider widgets are used, which are instances of the
QSlider class. Similar to the methods that we saw in scrollbars, the sliders too generate
signals such as valueChanged(), sliderPressed(), sliderMoved(), sliderReleased(), and
many more on moving the slider handle.

The slider handle in scrollbars and sliders represents a value within the minimum and
maximum range. To change the default minimum and maximum values, you can change
their values by assigning values to the minimum, maximum, singleStep, and pageStep
properties.

The default values of the minimum, maximum, singleStep, pageStep,
0 and value properties of sliders are 0, 99, 1, 10, and 0, respectively.

Let's create an application consisting of horizontal and vertical scrollbars, as well as
horizontal and vertical sliders. The horizontal scrollbar and slider will represent sugar level
and blood pressure respectively. That is, on moving the horizontal scroll bar, the sugar
level of the patient will be displayed through the Line Edit widget. Similarly, the horizontal
slider, when moved, will represent blood pressure and will be displayed through the Line
Edit widget.

The vertical scrollbar and slider will represent the heart rate and cholesterol level,
respectively. On moving the vertical scrollbar, the heart rate will be displayed via the Line
Edit widget and on moving the vertical slider, the cholesterol level will be displayed
through the Line Edit widget.

[571

Event Handling - Signals and Slots Chapter 2

How to do it...

To understand the working of the horizontal and vertical scrollbars, and the working of the
horizontal and vertical sliders, to understand how scrollbars and sliders generate signals
when their values are changed, and the how respective slot or method can be associated to
them, perform the following steps:

1.

Let's create a new application of the Dialog without Buttons template and drag
and drop horizontal and vertical scrollbars and sliders onto the form.

Drop four Label widgets and a Line Edit widget to display the value of the
scrollbar and slider handle.

Set the text property of the four Label widgets to Sugar Level, Blood
Pressure, Pulse rate, and Cholesterol, respectively.

Set the objectName property of the horizontal scrollbar to
horizontalScrollBarSugarLevel, vertical scroll bar to
verticalScrollBarPulseRate, horizontal slider to
horizontalSliderBloodPressure, and vertical slider to
verticalSliderCholestrolLevel.

Set the objectName property of the Line Edit widget to 1ineEditResult.

Save the application with the name demoSliders.ui.The form will appear as
shown in the following screenshot:

Dialog - demoScrollBar.ui EI@
Sugar Level < >
Blood Pressure |
Pulse rate - Cholestrol Level

W
-

[581]

Event Handling - Signals and Slots Chapter 2

The pyuic5 command utility will convert the .ui (XML) file into Python code.
The generated Python file, demoScrollBar.py, can be seen in the source code
bundle of this book.

7. Create a Python script file named callScrollBar.pyw that imports the code,
demoScrollBar.py, to invoke the user interface design and synchronizes the
movement of the scrollbar and slider handles. The script will also display the
value of the scrollbar and slider handle with a Label widget. The Python
script callScrollBar.pyw will appear, as shown here:

import sys

from PyQt5.QtWidgets import QDialog, QApplication
from demoScrollBar import *

class MyForm(QDialog) :

def

def

def

def

def

__init_ (self):

super () .__init__ ()

self.ui = Ui_Dialog()

self.ui.setupUi (self)
self.ui.horizontalScrollBarSugarLevel.valueChanged.connect
(self.scrollhorizontal)
self.ui.verticalScrollBarPulseRate.valueChanged.connect
(self.scrollvertical)
self.ui.horizontalSliderBloodPressure.valueChanged.connect
(self.sliderhorizontal)
self.ui.verticalSliderCholestrolLevel.valueChanged.connect
(self.slidervertical)

self.show()

scrollhorizontal (self,value) :

self.ui.lineEditResult.setText ("Sugar Level : "+str(value))
scrollvertical (self, wvalue):
self.ui.lineEditResult.setText ("Pulse Rate : "+str(value))

sliderhorizontal (self, wvalue):
self.ui.lineEditResult.setText ("Blood Pressure
"+str(value))

slidervertical (self, wvalue):
self.ui.lineEditResult.setText ("Cholestrol Level
"+str(value))

if _ name_ =="_ _main__ ":
app = QApplication(sys.argv)
w = MyForm{()
w.show ()

sys.exit (app.exec_())

[591]

Event Handling - Signals and Slots Chapter 2

How it works...

In this code, you are connecting the valueChanged () signal of each widget with the
respective functions so that if the scrollbar or slider handle of the widget is moved, the
corresponding function is invoked to perform the desired task. For instance, when the
slider handle of the horizontal scrollbar is moved, the scrollhorizontal function is
invoked. The scrollhorizontal function displays the value represented by the scrollbar,
that is, Sugar Level, through the Label widget. Similarly, when the slider handle of the
vertical scrollbar or slider is moved, the scrollvertical function is invoked and the
heart rate, the value of the slider handle of the vertical scrollbar, is displayed through the

Label widget, as shown in the following screenshot:

B Dialog ? *
Sugar Level < >
Blood Pressure |
Pulse rate A Cholestrol Level -

Sugar Level : 24

[60]

Event Handling - Signals and Slots Chapter 2

Similarly, when the horizontal and vertical sliders are moved, the blood pressure and
cholesterol levels are displayed accordingly, as shown in the following screenshot:

B Dialog ? *
Sugar Level < >
Blood Pressure |
Pulse rate " Cholestrol Level

-

Cholestrol Level : 86

Using List Widget

To display several values in an easier and expandable format, you can use List Widget,
which is an instance of the QListWidget class. List Widget displays several items that can
not only be viewed, but can be edited and deleted, too. You can add or remove list items

one at a time from the List Widget item, or collectively you can set list items by using its
internal model.

Getting ready

Items in the list are instances of the QListWidgetItem class. The methods provided by
QListWidget are shown in the following list:

e insertItem(): This method inserts a new item with the supplied text into List
Widget at the specified location.

[61]

Event Handling - Signals and Slots Chapter 2

insertItems (): This method inserts multiple items from the supplied list,
starting at the specified location.

count () : This method returns the count of the number of items in the list.
takeItem(): This method removes and returns items from the specified row in
List Widget.

currentItem (): This method returns the current item in the list.
setCurrentItem(): This method replaces the current item in the list with the
specified item.

addItem(): This method appends the item with the specified text at the end of
List Widget.

addItems (): This method appends items from the supplied list at the end of List
Widget.

clear (): This method removes all items from List Widget.

currentRow () : This method returns the row number of the current selected list
item. If no list item is selected, it returns the value -1.

setCurrentRow () : This method selects the specified row in List Widget.

item () : This method returns the list item at the specified row.

Signals emitted by the QListwWidget class are shown in the following list:

currentRowChanged(): This signal is emitted when the row of the current list
item changes

currentTextChanged(): This signal is emitted whenever the text in the current list
item is changed

e currentltemChanged(): This signal is emitted when the focus of the current list

item is changed

How to do it...

So, let's create an application that displays certain diagnostic tests through List Widget, and
that when the user selects any test from List Widget, the selected test is displayed through
a Label widget. Here is the step-by-step procedure to create the application:

1.

2.

Create a new application of the Dialog without Buttons template and drag and
drop two Label widgets and one List Widget onto the form.

Set the text property of the first Label widget to Choose the Diagnosis
Tests.

[62]

Event Handling - Signals and Slots Chapter 2

3. Set the objectName property of List Widget to 1istWidgetDiagnosis.

4. Set the objectName property of the Label widget to 1abelTest.

5. Delete the default text property of the 1abelTest widget as we will display the
selected diagnosis test through this widget via code.

6. To display diagnosis tests through List Widget, right-click on it and from the
context menu that opens up, select the Edit Items option.

7. Add the diagnosis tests one by one, followed by clicking on the + button at the
bottom after typing every test, as shown in the following screenshot:

Edit List Widget - Ot Designer t

Urine Analaysis 55

Chest X Ray 100§

Sugar Level test 53

Hemoglobin test 57

Thyroid Stimulating Harmone test 510

—';4" S— & @ Properties <<

Cancel

8. Save the application with the name demoListWidget1.ui. The form will appear
as shown in the following screenshot:

Dialog - demelListWidget.ui EI@
Choose the Diagnosis Tests

Urine Analaysis $5

Chest X Ray 100%

Sugar Level test $3

Hemoglobin test $7

Thyroid Stimulating Harmone test $10

[63]

Event Handling - Signals and Slots Chapter 2

The pyuic5 command utility will convert the .ui (XML) file into Python code.
The generated Python code, demoListWidgetl.py, can be seen in the source
code bundle of this book.

9. Create a Python script file named calllListWidget1.pyw that imports the code,
demoListWidgetl.py, to invoke the user interface design and the code that
displays the diagnosis test selected from List Widget. The code in the Python
script, callListWidgetl.pyw, is as shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoListWidgetl import *
class MyForm(QDialog) :
def _ init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.listWidgetDiagnosis.itemClicked.connect (self.
dispSelectedTest)
self.show ()
def dispSelectedTest (self):
self.uil.labelTest.setText ("You have selected
"tself.ui.listWidgetDiagnosis.currentItem() .text ())
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm()
w.show ()
sys.exit (app.exec_())

How it works...

You can see that the itemClicked event of List Widget is connected to the
dispSelectedTest () method. That is, on clicking any of the list items from List Widget,
the dispSelectedTest () method is invoked, which uses the current Item method of
List Widget to display the selected item of List Widget through the label called 1abelTest.

[64]

Event Handling - Signals and Slots Chapter 2

On running the application, you will see List Widget showing a few diagnosis tests; on
selecting a test from the List Widget, the test will appear through the Label widget, as
shown in the following screenshot:

B Dialog

Choose the Diagnosis Tests Urine Analaysis $5

Chest X Ray 100%

Sugar Level test $3

Hemoglobin test $7

Thyroid Stimulating Harmone test $10

You have selected Sugar Level test $3

Selecting multiple list items from one List
Widget and displaying them in another

In the preceding application, you were selecting only a single diagnosis test from the List
Widget item. What if I want to do multiple selections from the List Widget item? In the
case of multiple selections, instead of a Line Edit widget, you need another List Widget to
store the selected diagnosis test.

How to do it...

Let's create an application that displays certain diagnosis tests through List Widget and
when user selects any test from List Widget, the selected test will be displayed in another
List Widget:

1. So, create a new application of the Dialog without Buttons template and drag
and drop two Label widgets and two List Widget onto the form.

2. Set the text property of the first Label widget as Diagnosis Tests and that of
the other to Selected tests are.

3. Set the objectName property of the first List Widget to 1istWidgetDiagnosis
and of the second List Widget to 1istWidgetSelectedTests.

[65]

Event Handling - Signals and Slots Chapter 2

4.

5.

8.

To display diagnosis tests through List Widget, right-click on it and from the
context menu that opens up, select the Edit Items option.

Add the diagnosis tests one by one followed by clicking on the + button at the
bottom after typing every test.

To enable multiple selections from List Widget, select the
listWidgetDiagnosis widget and from the Property Editor window, change
the selectionMode property from SingleSelection toMultiSelection.

Save the application with the name demoListWidget2.ui. The form will appear
as shown in the following screenshot:

Dialog - demolistWidget2.ui EI\EI

Diagnosis Tests

Urine Analaysis $5

Chest X Ray 100$

Sugar Level test $3

Hemoglobin test $7

Thyroid Stimulating Harmone test $10

Selected tests are

By using the pyuic5 utility, the XML file demoListWidget2.ui will be
converted into Python code as the demoListWidget2.py file. The generated
Python code, from the demoListWidget2.py file, can be seen in the source code
bundle of this book.

Create a Python script file named calllListWidget2.pyw that imports the code,
demoListWidget2.py, to invoke the user interface design and the code that
displays the multiple selected diagnosis tests selected from List Widget. The
Python script callListWidget2.pyw will appear as shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoListWidget2 import *
class MyForm(QDialog) :
def __init_ (self):
super () .__init__ ()

[66]

Event Handling - Signals and Slots Chapter 2

self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.listWidgetDiagnosis.itemSelectionChanged.connect
(self.dispSelectedTest)
self.show()

def dispSelectedTest (self):
self.ui.listWidgetSelectedTests.clear ()
items = self.ui.listWidgetDiagnosis.selectedItems ()
for 1 in list (items):

self.ui.listWidgetSelectedTests.addItem(i.text ())
if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)

w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

You can see that the itemSelectionChanged event of the first List Widget is connected to
the dispSelectedTest () method. That is, on selecting or unselecting any of the list items
from the first List Widget item, the dispSelectedTest () method is invoked. The
dispSelectedTest () method invokes the selectedItems () method on List Widget to
get the list of all the selected items. Thereafter, using the for loop, all the selected items are
added to the second List Widget by invoking the addItem () method on it.

On running the application, you will see List Widget showing a few diagnosis tests; on
selecting any number of tests from the first List Widget, all the selected tests will appear
through the second List Widget item, as shown in the following screenshot:

i Dialog 7 %

Diagicsis)lee Urine Analaysis $5

Chest X Ray 100

Sugar Level test $3

‘Hemoglobin test $7
Thyroid Stimulating Harmone test $10

Chest X Ray 100%
Hemoglobin test §7

Selected tests are

[67]

Event Handling - Signals and Slots Chapter 2

Adding items into List Widget

Although you can add items to the List Widget item manually through Property Editor,
sometimes you need to add items to the List Widget item dynamically through code. Let's
create an application that explains the process of adding items to List Widget.

In this application, you will use Label, Line Edit, Push Button, and List Widget. The List
Widget item will be empty initially, and the user is asked to enter desired food items

into Line Edit and select an Add to List button. The entered food item will then be added to
the List Widget item. All subsequent food items will be added below the previous entry.

How to do it...

Perform the following steps to know how items can be added to the List Widget item:

1. We will begin by creating a new application based on the Dialog without
Buttons template and dragging and dropping Label, Line Edit, Push Button,
and List Widget onto the form.

2. Set the text property of the Label and Push Button widgets to Your favourite
food itemand Add to List, respectively.

3. Set the objectName property of the Line Edit widget to 1ineEditFoodItem,
that of Push Button to pushButtonAdd, and that of List Widget to
listWidgetSelectedItems.

4. Save the application with the name demoListWidget3.ui. The form will
appear as shown in the following screenshot:

Dialog - demolistWidget3.ui EI@

Your favourite food item - |

Add to List

[68]

Event Handling - Signals and Slots Chapter 2

On executing the pyuics5 utility, the XML file demoListWidget3.ui will be
converted into Python code as demoListWidget3.py. The code of the generated
Python file, demoListWidget3.py, can be seen in the source code bundle of this
book.

5. Create a Python script file named callListWidget3.pyw that imports the
Python code demoListWidget3.py to invoke the user interface design and adds
the food items entered by the user in Line Edit to List Widget. The Python code
inthe callListWidget3.pyw file will appear as shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoListWidget3 import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonAdd.clicked.connect (self.addlist)
self.show ()
def addlist (self):
self.ui.listWidgetSelectedItems.addItem(self.ui.
lineEditFoodItem.text ())
self.ui.lineEditFoodItem.setText ('")
self.ui.lineEditFoodItem.setFocus ()
if _ name_ =="_ _main__ ":
app = QApplication(sys.argv)
w = MyForm()
w.show ()
sys.exit (app.exec_())

How it works...

The clicked() event of the Push Button widget is connected to the add1list function.
Hence, after entering the text to be added to List Widget in the Line Edit widget, when the
user selects the Add to List button, the addlist function is invoked. The add1list function
retrieves the text entered in Line Edit and adds it to List Widget. The text in the Line Edit
widget is then removed, and the focus is set on it, enabling the user to enter different text.

[69]

Event Handling - Signals and Slots Chapter 2

In the following screenshot, you can see the text entered by the user in the Line Edit widget
is added to List Widget when the user selects the Add to List button:

5 Dialog ? X

Your favourite food item [Mangoes| | [choco Bar

Add to List

Mangoes

Performing operations in List Widget

In this recipe, you will learn how to perform different operations on list items in List
Widget. List Widget is basically used for showing a collection of similar items, enabling the
user to choose the desired items. Consequently, you need to add items to List Widget. Also,
you might require to edit any item in List Widget. Sometimes, you might require to delete
an item from List Widget. One more operation that you might want to perform on List
Widget is deleting all items from it, clearing the entire List Widget item. Before learning
how to add, edit, and delete items from List Widget, let's understand the concept of a list
item.

Getting ready

List Widget consists of several list items. These list items are instances of the
QListWidgetItem class. The list items can be inserted into List Widget using the
insertItem() or addItem () methods. List items may be in text or icon form and can be
checked or unchecked. Methods provided by QListWidgetItem are given next.

Methods provided by the QListWidgetitem class

Let's take a look at the following methods provided by the QListWidgetItem class:

e setText (): This method assigns the specified text to the list item

[70]

Event Handling - Signals and Slots Chapter 2

e setIcon (): This method assigns the specified icon to the list item

e checkState (): This method returns the Boolean value depending on whether
the list item is in a checked or unchecked state

e setHidden (): This method passes the Boolean value true to this method to hide
the list item

e isHidden (): This method returns true if the list item is hidden

We have learned to add items to List Widget. What if you want to edit an existing item in
List Widget, or you want to delete an item from List Widget, or you want to delete all the
items from List Widget?

Let's learn to perform different operations on List Widget by creating an application. This
application will display Line Edit, List Widget, and a couple of Push Button widgets. You
can add items to List Widget by entering the text in Line Edit, followed by clicking

the Add button. Similarly, you can edit any item from List Widget by clicking an item from
List Widget, followed by clicking the Edit button. Not only this, but you can even delete
any item from List Widget by clicking the Delete button. If you want to clear the entire List
Widget, simply click on the Delete All button.

How to do it....

Perform the following steps to understand how different operations can be applied on the
List Widget item; how items can be added, edited, and deleted from the List Widget item;
and how the entire List Widget item can be cleared:

1. Open Qt Designer, create a new application based on the Dialog without
Buttons template, and drag and drop a Label, Line Edit, four Push Button, and
List Widget widgets onto the form.

2. Set the text property of the Label widget to Enter an item.

3. Set the text property of the four Push Button widgets to Add, Edit, Delete, and
Delete All.

4. Set the objectName property of the four Push Button widgets to
psuhButtonAdd, pushButtonEdit, pushButtonDelete, and
pushButtonDeleteAll.

5. Save the application with the name demoListWidgetOp.ui.

[71]

Event Handling - Signals and Slots Chapter 2

The form will appear as shown in the following screenshot:

Dialog - demolistWidgetOp.ui EI@

Enter an item

Add

Edit Delete Delete All

The XML file demoListWidgetOp.ui needs to be converted into the Python
script by making use of the pyuic5 command utility. The generated Python
file demoListWidgetOp.py can be seen in the source code bundle of this book.

6. Create a Python script file named calllListWidgetOp.pyw that imports the
Python code, demoListWidgetOp.py, enabling you to invoke the user interface
design and add, delete, and edit the list items in List Widget. The code in the
Python script callListWidgetOp.pyw is shown here:

import sys

from PyQt5.QtWidgets import QDialog, QApplication, QInputDialog,

QListWidgetItem

from demoListWidgetOp import *

class MyForm(QDialog) :

def _ _init_ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.listWidget.addItem('Ice Cream')
self.ui.listWidget.addItem('Soda")
self.ui.listWidget.addItem('Coffee")
self.ui.listWidget.addItem('Chocolate")
self.ui.pushButtonAdd.clicked.connect (self.addlist)
self.ui.pushButtonEdit.clicked.connect (self.editlist)
self.ui.pushButtonDelete.clicked.connect (self.delitem)
self.ui.pushButtonDeleteAll.clicked.connect
(self.delallitems)
self.show()

[72]

Event Handling - Signals and Slots Chapter 2

def addlist (self):
self.ui.listWidget.addItem(self.ui.lineEdit.text ())
self.ui.lineEdit.setText ('")
self.ui.lineEdit.setFocus/()
def editlist (self):
row=self.ui.listWidget.currentRow ()
newtext, ok=QInputDialog.getText (self, "Enter new text",
"Enter new text")
if ok and (len(newtext) !=0):
self.ui.listWidget.takeItem(self.ui.listWidget.
currentRow ())
self.ui.listWidget.insertItem(row,
QListWidgetItem (newtext))
def delitem(self):
self.ui.listWidget.takeItem(self.ui.listWidget.
currentRow ())
def delallitems (self):
self.ui.listWidget.clear ()
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

The clicked() event of pushButtonAdd is connected to the add1list function. Similarly, the
clicked() event of the pushButtonEdit, pushButtonDelete, and pushButtonDeleteAll
objects are connected to the editlist, delitem, and delallitems functions,
respectively. That is, on clicking any push button, the respective function is invoked. The
addlist function calls the addItem function on the List Widget item to add the text
entered in the Line Edit widget. The editlist function uses the currentRow method on
List Widget to find out the list item to be edited. The get Text method of the
QInputDialog class is invoked to prompt the user for the new text or edited text. On
clicking the OK button in the dialog, the current list item will be replaced by the text
entered in the dialog box. The delitem function invokes the takeItem method on List
Widget to delete the current row, that is, the selected list item. The delallitems function
invokes the clear method on theList Widget item to clear or delete all the list items from
the List Widget item.

[73]

Event Handling - Signals and Slots Chapter 2

On running the application, you will find an empty List Widget, Line Edit, and Add push
button below the Line Edit widget. Add any text in the Line Edit widget and click on the
Add button to add that item to List Widget. After adding four items to List Widget, it
might appear as shown in the following screenshot:

i Dialog 7 st
Enter an item || | lce Cream
Soda
Coffee
Chocolate
Edit Delete Delete All

Let's add one more item, Pizza, to List Widget. Type Pizza in the Line Edit widget and
click the Add button. The Pizza item will be added to the List Widget item, as shown in the
following screenshot:

1 Dialog ? *

Enter an item |pjzz4| Ice Cream
Soda

Cofee

Chocolate

Pizza

Edit Delete Delete All

[74]

Event Handling - Signals and Slots Chapter 2

Assuming we want to edit the Pizza item from List Widget, click the Pizza item in List
Widget and click on the Edit button. On clicking the Edit button, you get a dialog box
prompting you to enter a new item to replace the Pizza item. Let's enter Cold Drink in the
dialog box, followed by clicking the OK button, as shown in the following screenshot:

| |
Enter an item |Pizza | lce Cream
Soda
B ' Enter new text ? x Coffee
Enter new text Chocolate
|COId Drink] Pizza
Cancel
Edit Delete Delete All

You can see in the following screenshot that the Pizza item in List Widget is replaced by
the text Cold Drink:

i Dialeg ? bt

Enter an item || | Ice Cream
Soda

Cofee

Chocolate
Cold Drink

Edit Delete Delete All

[75]

Event Handling - Signals and Slots Chapter 2

In order to delete any item from List Widget, simply click that item from List Widget,
followed by clicking the Delete button. Let's click the Coffee item from List Widget and
click on the Delete button; the Coffee item will be deleted from List Widget, as shown in
the following screenshot:

B Dialog ? x
Enter an item lce Cream
Soda
Add Chocolate
Cold Drink

Edit Delete All

On clicking the Delete All button, the entire List Widget item will become empty, as
shown in the following screenshot:

1 Dialog 7 X

Enter an item

Add

Edit Delete Delete All

[761]

Event Handling - Signals and Slots Chapter 2

Using the Combo Box widget

Combo boxes are used for getting input from the user with an applied constraint; that is,
the user will be shown certain options in the form of a popup list and he/she can only select
from the available choices. A combo box takes less space when compared with List Widget.
The oComboBox class is used for displaying combo boxes. Not only can you display text
through a combo box, but pixmaps too. Here are the methods provided by the 0ComboBox
class:

Method Usage

setItemText () Sets or changes the text of the item in the combo box.

removeItem() Removes the specific item from the combo box.

clear () Removes all items from the combo box.

currentText () Returns the text of the current item, that is, the item that is currently chosen.

setCurrent Index () Sets the current index of the Combo.box, that is, it sets the desired item in the
combo box as the currently chosen item.

count () Returns the count of the items in the combo box.

setMaxCount () Sets the maximum number of items that are allowed in the combo box.

setEditable () Make the combo box editable, that is, the user can edit items in the combo box.

addItem () Appends the specified content to the combo box.

addItems () Appends each of the strings supplied in the text to the combo box.

itemText () Returns the text at the specified index location in the combo box.

Returns the index location of the currently chosen item in the combo box. If the
currentIndex () combo box is empty or no item is currently chosen in the combo box, the
method will return —1 as the index.

The following are the signals that are generated by QComboBox:

Signal Description

Emitted when the index of the combo box is changed, that is, the user selects
some new item in the combo box.

currentIndexChanged()

activated() Emitted when the index is changed by the user.
highlighted() Emitted when the user highlights an item in the combo box.

editTextChanged() Emitted when the text of an editable combo box is changed.

To understand the workings of a combo box practically, let's create a recipe. This recipe will
display certain bank account types via a combo box and will prompt the user to choose the
type of bank account he/she wants to open. The selected bank account type from the combo
box will be displayed on the screen through a Label widget.

[77]

Event Handling - Signals and Slots Chapter 2

How to do it...

The following are the steps to create an application that makes use of a combo box to show
certain options and explains how the selected option from the combo box can be displayed:

1.

Create a new application of the Dialog without Buttons template, drag two
Label widgets and a Combo Box widget from the Widget box, and drop them
onto the form.

Set the text property of the first Label widget to Select your account type.
Delete the default text property of the second Label widget, as its text will be set
through code.

Set the objectName property of the Combo Box widget to
comboBoxAccountType.

The second Label widget will be used to display the bank account type that is
chosen by the user, so set the objectName property of the second Label widget
to labelAccountType.

As we want the Combo Box widget to display certain bank account types, right-
click on the Combo Box widget and from the context menu that opens up, select
the Edit Items option.

Add some bank account types to the Combo Box widget one by one.

Save the application by name as demoComboBox . ui.

Click the + button displayed at the bottom of the dialog to add a bank account
type to the Combo Box widget, as shown in the following screenshot:

Edit Combobox - Ot Designer >

Saving Account

Current Account
Recurring Deposit Account
Fixed Deposit Account

‘h'“ - & @ Properties <<
cance

[78]

Event Handling - Signals and Slots Chapter 2

10.

11.

12.

After adding the desired bank account types, click on the OK button to exit from
the dialog. The form will now appear, as shown in the following screenshot:

Dialeg - demoComboBozx.ui EI@

Select your account type Saving Account =

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted to the Python code. The pyuic5 utility can
be used for generating Python code from the XML file. The generated file,
demoComboBox . py, can be seen in the source code bundle of this book.

Treat the demoComboBox . py file as a header file, and import it to the file from
which you will invoke its user interface design that is you will be able to access
the combo box.

Create another Python file with the name callComboBox.pyw and import the
demoComboBox . py code into it. The code in the Python
script callComboBox . pyw is as shown here:

import sys

from PyQt5.QtWidgets import QDialog, QApplication

from demoComboBox import *

class MyForm(QDialog) :

def __init_ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.comboBoxAccountType.currentIndexChanged.connect
(self.dispAccountType)
self.show()

def dispAccountType (self):
self.ui.labelAccountType.setText ("You have selected
"tself.ui.comboBoxAccountType.itemText (self.ui.
comboBoxAccountType.currentIndex ()))

if name__ =="__main__ ":

[79]

Event Handling - Signals and Slots Chapter 2

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

In the demoComboBox . py file, a class with the name of the top-level object is created with
Ui_ prepended. Thatis, for the top-level object, Dialog, the Ui_Dialog class, is created
and stores the interface elements of our widget. That class includes two methods,
setupUi and retranslateUi.

The setupUi method creates the widgets that are used in defining the user interface in Qt
Designer. Also, the properties of the widgets are set in this method. The setupUi method
takes a single argument, which is the top-level widget of the application, an instance of
QODialog. The retranslateUi method translates the interface.

In the callComboBox.pyw file, whenever the user selects any item from the combo box, the
current IndexChanged signal will be emitted and the current IndexChanged signal is
connected to the dispAccountType method, so whenever any item is selected from the
combo box, the dispAccount Type method will be invoked.

In the dispAccountType method, you access the currently selected index number by
invoking the current Index method of the 9ComboBox class and passing the fetched index
location to the itemText method of the QComboBox class to get the text of the currently
selected combo box item. The currently selected combo box item is then displayed through
the Label widget.

On running the application, you will find a combo box showing four bank account
types: Saving Account, Current Account, Recurring Deposit Account, and Fixed Deposit
Account, as shown in the following screenshot:

[80]

Event Handling - Signals and Slots Chapter 2

1 Dialeg ? *

Select your account type Saving Account o
Saving Account

Current Account
Recurring Deposit Account
Fixed Deposit Account

On selecting a bank account type from the combo box, the chosen bank account type will be
displayed through the Label widget, as shown in the following screenshot:

B Dialog ? x

Select your account type Current Account =

You have selected Current Account

Using the Font Combo Box widget

The Font Combo Box widget, as the name suggests, displays a list of font styles to choose
from. The chosen font style can be applied to the desired content if required.

Getting ready

To understand the workings of the Font Combo Box widget practically, let's create a recipe.
This recipe will display a Font Combo Box widget and a Text Edit widget. The user will be
able to type the desired content in the Text Edit widget. After typing the text in the Text
Edit widget, when the user selects any font style from the Font Combo Box widget, the
selected font will be applied to the content typed into the Text Edit widget.

[81]

Event Handling - Signals and Slots Chapter 2

How to do it...

Here are the steps to display an active Font Combo Box widget and to apply the selected
font to the text written in the Text Edit widget:

1. Create a new application of the Dialog without Buttons template and drag two
Label widgets, a Font Combo Box widget, and a Text Edit widget from the
Widget box and drop them onto the form.

2. Set the text property of the first Label widget to Select desired font and
that of the second Label widget to Type some text.

3. Save the application by name as demoFontComboBox. ui. The form will now
appear as shown in the following screenshot:

Dialog - demoFontComboBox.ui® E“él

Select desired font | MS Shell Dig 2 v|

Type some text

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted to the Python code. On converting to Python
code, the generated file, demoFontComboBox.py, can be seen in the source code
bundle of this book. The preceding code will be used as a header file and is
imported into the file in which the GUI is desired, that is, the user interface
designed can be accessed in any Python script by simply importing the preceding
code.

4. Create another Python file with the name callFontFontComboBox.pyw and
import the demoFontComboBox . py code into it.

[82]

Event Handling - Signals and Slots Chapter 2

The code in the Python script, cal1FontComboBox . pyw, is as shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoFontComboBox import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init_ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
mnyFont=0Q0tGui.QFont (self.ui.fontComboBox.itemText (self.ui.
fontComboBox.currentIndex()),15)
self.ui.textEdit.setFont (myFont)
self.ui.fontComboBox.currentFontChanged.connect
(self.changeFont)
self.show()
def changeFont (self):
nyFont=0Q0tGui.QFont (self.ui.fontComboBox.itemText (self.ui.

fontComboBox.currentIndex()),15)
self.ui.textEdit.setFont (myFont)
if _ name_ =="_ _main__ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

In the callFontComboBox.pyw file, whenever the user selects any font style from the Font
Combo Box widget, the currentFontChanged signal is emitted and this signal is
connected to the changeFont method, so whenever any font style is chosen from the Font
Combo Box widget, the changeFont () method will be invoked.

In the changeFont () method, you access the selected font style by invoking two methods.
The first method invoked is the current Index () method of the QFont ComboBox class,
which fetches the index number of the selected font style. The second method invoked is
the itemText () method, and the index location of the currently selected font style is
passed to this method to access the chosen font style. The chosen font style is then applied
to the content written in the Text Edit widget.

[83]

Event Handling - Signals and Slots Chapter 2

On running the application, you will find a Font Combo Box widget showing available font
styles in the system, as shown in the following screenshot:

i Dialog ? ¥

Select desired font | MS Shell Dig 2 M

'& ~
Tz rrren Peslcadero

" Playhill

T PMingLiU-ExtB A3 45
Poor Richard
T Pristina

P -
TOURRTZ TS

T fagw ﬁa&a

T Beavie

T Rockwell

T Rockwell Condensed v

Type some text in the Text Edit widget and choose the desired font from the font combo
box. The chosen font style will be applied to the text written in the Text Edit widget, as
shown in the following screenshot:

i Dialog ? *

Select desired font | Algerian| §
Type some text WE ARE WORKING ON PYTHON GUI
APPS

Using the Progress Bar widget

The Progress Bar widget is very useful in representing the progress of any task. Whether it
is downloading a file from a server, virus scanning on a machine, or some other critical
task, the Progress Bar widget helps inform the user of the percentage of the task that is
done and the percentage that is pending. As the task completes, the Progress Bar widget
keeps updating, indicating progress in the task.

[84]

Event Handling - Signals and Slots Chapter 2

Getting ready

To understand how the progress bar is updated to show the progress of any task, let's
create a recipe. This recipe will display a Progress Bar widget, indicating the total time
required to download a file. When the user clicks the push button to begin downloading
the file, the Progress Bar widget will update from 0% to 100% gradually; that is, the
progress bar will update as the file is being downloaded. The Progress Bar widget will
show 100% when the file is completely downloaded.

How to do it...

Initially, the Progress Bar widget is at 0% and to make it go up, we need to make use of a
loop. The loop will increment its value as the task represented by the Progress Bar widget
progresses towards completion. Every increment in the loop value will add to some
progress in the Progress Bar widget. Here is the step-by-step procedure to show how a
progress bar can be updated:

1. Create a new application from the Dialog without Buttons template, and drag a
Label widget, a Progress Bar widget, and a Push Button widget from the Widget
box and drop them onto the form.

2. Set the text property of the Label widget to Downloading the file and that of
the Push Button widget to Start Downloading.

3. Set the objectName property of the Push Button widget to pushButtonsStart.

4. Save the application by name as demoProgressBar.ui. The form will now
appear, as shown in the following screenshot:

Dialog - demoProgressBar.ui E\@

Downloading the file

0%

Start Downloading

[85]

Event Handling - Signals and Slots Chapter 2

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to be converted into Python code. The generated Python
code, demoProgressBar.py, can be seen in the source code bundle of this

book. The preceding code will be used as a header file and is imported into the
file in which the GUI is desired; that is, the user interface designed in the code can
be accessed in any Python script by simply importing the preceding code.

5. Create another Python file with the name callProgressBar.pyw and import
the demoProgressBar.py code into it. The code in the Python
script callProgressBar.pyw is as shown here:

import sys

from PyQt5.QtWidgets import QDialog, QApplication

from demoProgressBar import *

class MyForm(QDialog) :

def _ init__ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonStart.clicked.connect (self.updateBar)
self.show()

def updateBar (self):
x =0
while x < 100:
x += 0.0001
self.ui.progressBar.setValue (x)

if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm()
w.show ()
sys.exit (app.exec_())

[86]

Event Handling - Signals and Slots Chapter 2

How it works...

In the callProgressBar.pyw file, because we want the progress bar to show its progress
when the push button is pressed, the clicked() event of the progress bar is connected to the
updateBar () method, so when the push button is clicked, the updateBar () method will
be invoked. In the updateBar () method, a while loop is used that loops from 0 to 100. A
variable, x, is initialized to the value 0. With every iteration of the while loop, the value of x
is incremented by 0.0001. The value in the x variable is applied to the progress bar when
updating it. That is, with every iteration of the while loop, the value of x is incremented and
the value of x is used in updating the progress bar. Hence, the progress bar will begin its
progress at 0% and continue until it reaches 100%.

On running the application, initially, you will find the Progress Bar widget at 0% along
with the push button at the bottom with the caption Start Downloading (see the following
screenshot). Click the Start Downloading push button and you will see that the progress
bar begins showing progress gradually. The progress bar keeps going up until it reaches
100% to indicate that the file is completely downloaded:

B Dialog ? * 8 Dialeg ? *

Downloading the file Downloading the file

0% I 100%

Start Downloading | Start Downloading |

[871]

Working with Date and Time

In this chapter, we will cover the following topics:

¢ Displaying LCD digits

¢ Displaying system clock time in LCD-like digits

e Displaying the data selected by the user from Calendar Widget
¢ Creating a hotel reservation form

¢ Displaying tabular data using Table Widget

Displaying LCD digits
Qt Designer enables us to display LCD-like digits of any size by making use of its LCD
Number widget. The LCD Number widget is an instance of the QLCDNumber class and it

can be used to display decimal, hexadecimal, octal, and binary digits of any size. The
methods provided by QLCDNumber are as follows:

¢ setMode(): This method is used to change the base of the numbers. Available
options are as follows:
e Hex: This option is used to display hexadecimal digits

¢ Dec: This option is used to display decimal digits
e Oct: This option is used to display octal digits
¢ Bin: This option is used to display binary digits
e display(): This method is used to display the supplied data in LCD digit format.

e value(): This method returns the numerical value displayed by the LCD Number
widget.

We want the displayed system clock time to be updated automatically. For this, we need to
implement timers.

Working with Date and Time Chapter 3

Using Timers

Timers are used for performing repetitive tasks. A timer is an instance of the QTimer class.
The task to be repeated needs to be written in a method and that method, in turn, is
invoked via the timeout() signal of the 0Timer instance. The timeout() signal can be
configured or adjusted using the following methods:

e start (n): It compels the timer to generate the timeout() signal at n millisecond
intervals

e setSingleShot (true):It constrains the timer to generate the timeout() signal
only once

e singleShot (n): It makes the timer generate a timeout() signal only once, and
that too after n milliseconds

Before we go ahead and make an application, we need to understand one more class,
QTime, which is used to fetch and measure system clock time.

Using the QTime class

The QTime class not only helps in reading the current time from the system clock but also
provides all clock time functions. It shows time in terms of hours, minutes, seconds, and
milliseconds since midnight. Also, it helps in measuring the span of elapsed time. The time
returned by the QTime class is in 24-hour format. The methods provided by the QTime class

are as follows:

e currentTime (): This method accesses the system clock time and returns it as a
QTime object

e hour (): This method returns the number of hours

e minute (): This method returns the number of minutes

e seconds () : This method returns the number of seconds

e msec (): This method returns the number of milliseconds

e addsecs () : This method returns the time after adding the specified number of
seconds

¢ addMsecs () : This method returns the time after adding the specified number of
milliseconds

e secsTo (): This method returns the difference in the number of seconds between
two QTime objects

[891]

Working with Date and Time Chapter 3

e msecsTo (): This method returns the difference in the number of milliseconds
between two times

Displaying system clock time in LCD-like
digits
Liquid Crystal Display (LCD) digits are a seven-segment display that is commonly used in

almost all electronic devices. These LCD digits are much more readable than dot matrix
displays. Let's create an application that displays system clock time in LCD-like digits.

How to do it...

In this application, we will be making use of the QTime class to fetch the current system's
time. Following are the steps to create such an application:

1. Open Qt Designer and create a new application based on the Dialog without
Buttons template.
2. Save the application with the name demoLCD. ui.

3. Since we want to display LCD-like digits, drag and drop the LCD Number
widget onto the form, as shown in the following screenshot:

Dialog - demolCD.ui =S

4. From the Property Editor window, set the Width and Height properties of the
LCD Number widget to 100 and 40 respectively, just to make the system clock
quite visible. Use the pyuic5 command utility to convert the .ui (XML) file into
Python code. The generated Python demoLCD. py file can be seen in the source
code bundle of the book.

[90]

Working with Date and Time Chapter 3

5. Create a Python script named callLCD.pyw which imports the code,
demoLCD. py, to invoke the user interface design and display the current system
clock time through the LCD Number widget.

6. The script must also include a timer to keep updating the LCD display at fixed
intervals. The Python callLcCD. pyw script appears as shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoLCD import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
timer = QtCore.QTimer (self)
timer.timeout.connect (self.showlcd)
timer.start (1000)
self.showlcd()
def showlcd(self) :
time = QtCore.QTime.currentTime ()
text = time.toString('hh:mm")
self.ui.lcdNumber.display (text)
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm()
w.show ()
sys.exit (app.exec_())

How it works...

In this code, you can see that an instance of QTimer is created with the named timer, and its
timeout() signal is connected to showlcd (). Whenever timeout() is generated, the
showlcd () method will be invoked. Also, via start (), you set the timer to generate a
timeout() signal after every 1,000 milliseconds.

[91]

Working with Date and Time Chapter 3

In the showlcd () method, you fetch the current system clock time, convert it into a string
data type, make it appear in the HH:MM format, and display it with the LCD Number
widget, as shown in the following screenshot:

i Dialog ? x

Displaying the date selected by the user
from Calendar Widget

This application will make use of two widgets, Calendar Widget and Date Edit. The date
selected by the user from Calendar Widget will be reflected in the Date Edit widget. Both
widgets are commonly used when displaying current date as well as the date required by
the user, with the only difference that Calendar Widget has a bigger and more readable
visual, whereas the Date Edit widget consumes much less space.

Getting ready

To make this recipe, we need to understand the following things first:

¢ Calendar Widget displays the desired monthly calendar
¢ The gDate class accesses the date from the system clock
e The Date Edit widget will display the date that is selected from Calendar Widget

So, let's first understand the preceding widgets and class one by one.

[92]

Working with Date and Time Chapter 3

Displaying a calendar

In order to enable the user to select a date, you need to display a monthly calendar.
Calendar Widget in Qt Designer helps in doing so. This widget is an instance of the
QCalendarWidget class that displays the current month and year by default and can be
changed if desired. The days appear in short form (Sun, Mon, Tue, and so on), and
Saturday and Sunday are marked in red. Also, Sunday is displayed as the first column in
the calendar. You can use the following properties of Calendar Widget to configure its
display:

e minimumDate: This property is used for specifying the minimum date range.

e maximumDate: This property is used for specifying the maximum date range.

e selectionMode: This property helps in enabling or disabling the user's ability to
select a date from Calendar Widget. If this property is set to NoSelection, it will
not allow the user to select any date.

e verticalHeaderFormat: You can remove the week numbers from Calendar
Widget by setting this property to NoVerticalHeader.

e gridVisible: This property helps in making the calendar grid visible or invisible.
You can set this property to the Boolean value True to make the calendar grid
visible.

e HorizontalHeaderFormat: This property is used for setting the days format to be
displayed. The following are the available options:

e SingleLetterDayNames: A single letter for days is displayed in the header,
such as M for Monday, T for Tuesday, and so on.

e ShortDayNames: The short form of days are displayed in the header, such
as Mon for Monday, Tue for Tuesday, and so on.

¢ LongDayNames: The header displays days in complete forms, such
as Monday, Tuesday, and so on.

e NoHorizontalHeader: Using this option in HorizontalHeaderFormat makes
the header invisible.

The methods provided by ocalendarWidget are given in the following list:

e selectedDate (): This method returns the currently selected date. The date is
returned as a QDate object.

e monthShown () : This method returns the currently displayed month.
e yearshown (): This method returns the currently displayed year.

e setFirstDayOfWeek (): This method is used to set the day of the week in the
first column.

[93]

Working with Date and Time Chapter 3

e selectionChanged () : This method is invoked when the user changes the
currently selected date.

Let's look at the gDate class as the system date is returned as an instance of this class only.
Also, the gDate class provides methods to extract the year, month, and day from the ghate
instance.

Using the QDate class

The gpate class helps in handling dates. The instance of the QDate class accesses the date
from the system clock and displays the date, which includes the year, month, and day,
using the Gregorian calendar. The following is the list of methods provided by the Qbate
class:

e currentDate (): This method returns the system date as a QDate instance.

e setDate (): This method sets the date based on the supplied year, month, and
day.

e year (): This method returns the year from the specified oDate instance.

e month () : This method returns the month from the specified gDate instance.

¢ day () : This method returns the day from the specified gbate instance.

e dayOfWeek (): This method returns the day of the week from the specified
QDate instance.

e addDays () : This method adds the specified number of days to the specified date
and returns the new date.

¢ addMonths () : This method adds the specified number of months to the specified
date and returns the new date.

e addYears (): This method adds the specified number of years to the specified
date and returns the new date.

e daysTo (): This method returns the number of days between two dates.

e daysInMonth (): This method returns the number of days in the specified
month.

e daysInYear (): This method returns the number of days in the specified year.

e isLeapYear (): This method returns true if the specified date is in a leap year.

e toPyDate (): This method returns the date as a string. The format parameter
determines the format of the result string.

[94]

Working with Date and Time Chapter 3

The following expressions are used for specifying the format:

e d: This expression displays the day as a number without a leading zero (1 to 31)

e dd: This expression displays the day as a number with a leading zero (01 to 31)

¢ ddd: This expression displays the day in short format (Mon, Tue, and so on)

e dddd: This expression displays the day in long format (Monday, Tuesday, and so
on)

e M: This expression displays the month as a number without a leading zero (1 to
12)

e MM: This expression displays the month as a number with a leading zero (01 to
12)

e MMM: This expression displays the month in short format (Jan, Feb, and so on)

e MMMM: This expression displays the month in long format (January, February,
and so on)

e yy: This expression displays the year as a two-digit number (00 to 99)
¢ yyyy: This expression displays the year as a four-digit number

Let's take a look at the following examples:

e dd.MM.yyyy will display the date as 15.01.2018
e ddd MMMM d yy will display the date as Sun January 15 18

To display the date that is selected by the user in Calendar Widget, you use a Date Edit
widget.

Using the Date Edit widget

To display and edit dates, the Date Edit widget is used, which is an instance of the
QDateEdit class.

The properties used to configure the Date Edit widget are as follows:

e minimumDate: A minimum date can be defined for the widget by making use of
this property

e maximumDate: A maximum date can be defined for the widget by making use
of this property

The following are the methods provided by the QDateEdit class:

e setDate (): This method is used to set the date to be displayed in the widget

[95]

Working with Date and Time Chapter 3

e setDisplayFormat (): This method is used to set the date format for the date
being displayed in the Date Edit widget

The formats, with their output, are as follows:

e dd.MM.yyyy 15.01.2018

e MMM d yy Jan 15 18

e MMM d yyyy Jan 15 2018

e MMMM d yy January 15 18

As mentioned previously, in the following application you will learn to display the date
that is selected by the user in Calendar Widget with the Date Edit widget.

How to do it...

Both widgets, Calendar Widget and Date Edit, are meant for accepting dates, with the only
difference that Calendar Widget has a bigger display and shows weekdays too, along with
the dates, whereas the Date Edit widget provides the spin buttons to spin between days,
months, and years. Here are the steps to build an application that displays the date selected
through Calendar Widget in the Date Edit widget:

1. Open Qt Designer and create a new Dialog without Buttons template.

2. Drag and drop the Calendar Widget and Date Edit widgets onto the form,

3. Save the application with the name demoCalendar.ui. The application is shown
in the following screenshot:

Dialog - demeCalendar.ui* EI@

* January, 2018 >
Sun Mon Tue Wed Thu Fri Sat
B 1 2 3 4 5 &
7 8 9 o 1 12 13
14 15 16 17 18 19 20
21 22 23 24 23 26 7
28 29 30 Ell 1

[= (R T S VU Y Ny

01/01/2000 =

[961]

Working with Date and Time Chapter 3

The pyuic5 command utility will convert the .ui (XML) file into Python code.
You can find the generated Python script, demoCalendar.py, in the source code
bundle of the book.

4. Create a Python script named callCalendar.pyw that imports the code,
demoCalendar.py, to invoke the user interface design and display the selected
date from Calendar Widget in the Date Edit widget. The Python
script, callCalendar.pyw, appears as shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoCalendar import *
class MyForm(QDialog) :
def _ init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.calendarWidget.selectionChanged.connect
(self.dispdate)
self.show ()
def dispdate (self):
self.ui.dateEdit.setDate(self.ui.calendarWidget.
selectedDate ())
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

In the code, you can see that the selectionChanged signal of Calendar Widget is
connected to the dispdate function. Hence, as the user selects a date, the

dispdate function will be invoked. In the dispdate function, the date selected by the user
is retrieved through the selectedbate () method and displayed in the Date Edit widget
through setDate.

On running the application, Calendar Widget will display the current system date and the
Date Edit widget will simply display the default date, 01/01/2000.

[971]

Working with Date and Time Chapter 3

The date is displayed in the default date format, mm/dd/yyyy, as shown in the following
screenshot:

B Dialog 7 X
L ol January, 2018 2>
Sun Mon Tue Wed Thu Fri Sat
1 E)| 1 2 3 4 5 f
2 7 8 9 10 1 12 13
3 14 13 16 17 18 19 20
4 21 22 23 24 25 26 27
5 28 29 30 E)| 1 2 3
6 4 5 7 7 H 9 10

On selecting any date from Calendar Widget, the selected date will be displayed on the
Date Edit widget, as shown in the following screenshot:

B Dialog ? *

- January, 2018 L
Sun Men Tue Wed Thu Fri Sat
31 1 2 3 4 5 6
7 8 9 10 1 12 13
14 13 16 17 18 19 20

2 B 3 »# s » 2

28 29 30 £l 1 2 3

L= S N S

[981]

Working with Date and Time Chapter 3

You can display the date in a different format with the setDisplayFormat () method.
Let's modify the dispdate () function to display the date in MMM d yyyy format:

def dispdate(self):
self.ui.dateEdit.setDisplayFormat ('MMM d yyyy')
self.ui.dateEdit.setDate(self.ui.calendarWidget.selectedDate())

Now, the date selected from Calendar Widget will appear in the desired format in the Date
Edit widget, as shown in the following screenshot:

1 Dialog ? d

L] January, 2018 >

Sun Mon Tue Wed Thu Fri Sat

1 3 1 2 3 4 5 G

2 7 a 9 10 11 12 13

3 14 15 16 17 18 19 20

4 2 2 4 5 % 27

5 28 29 30 3 1 2 3

] 4 5 G 7 3 9 10

Creating a hotel reservation form

This application will display Calendar Widget, prompting the user to select the date for
reserving a room. Also, a Spin Box widget will be displayed that asks the user to choose the
number of days they want to stay. Besides this, a Combo Box widget will be displayed on
the hotel reservation form that prompts the user to select the room type. The room rent will
be based on the selected room type.

Getting ready

Before we begin creating a hotel reservation form, let's understand the use of the Combo
Box widget first.

[991]

Working with Date and Time Chapter 3

In order to display several options in minimum space, Combo Box is preferred. The
QComboBox class is used for displaying a Combo Box widget. Not only text, but graphic
images too can be displayed via a Combo Box widget. Here are the methods provided by
the QComboBox class:

setItemText (): This method is used to change the item in the Combo Box
widget.

removeItem (): This method is used to remove an item from the Combo Box
widget.

clear (): This method is used for removing all items from the Combo Box
widget.

currentText (): This method returns the text of the currently selected item from
the Combo Box widget.

setCurrentIndex (): This method is used to set the current item.

count () : This method returns the count of the number of items in the Combo
Box widget.

setMaxCount (): This method is used to set the maximum count of the number
of items allowed in the Combo Box widget. It sets the maximum capacity of the
Combo Box widget.

setEditable (): If the Boolean value True is passed to this method, it will make
the Combo Box widget editable.

addItem(): This method is used to append the specified text to the Combo Box
widget.

addItens (): This method is used to append each of the strings supplied in this
method to the Combo Box widget. Each string is appended, one below the other.
itemText (): This method returns the text at the specified index location in the
Combo Box widget.

currentIndex (): This method returns the index of the currently selected item
in the Combo Box widget. An empty combo box or a combo box with no selected
item returns -1.

The signals generated by the Combo Box widget are shown in the following list:

currentIndexChanged(): This signal is emitted if the index of the Combo Box
widget is changed, that is, when some text other than the currently selected text
is chosen in the Combo Box widget

activated(): This signal is emitted when the index is changed by user interaction

[100]

Working with Date and Time Chapter 3

e highlighted(): This signal is emitted when the user highlights an item in the
Combo Box widget

¢ editTextChanged(): This signal is emitted when the text of an editable Combo
Box widget is changed

The next application is a hotel reservation form that prompts the user to specify the date of
the reservation, the number of days staying, and the room type the user wants to book.
Then, it computes the total room rent accordingly. The user can specify the date of his
journey with Calendar Widget, the number of days with a Spin Box widget, and the room
type with a Combo Box widget. The Combo Box widget will display four room class
options: Suite, Super Luxury, Super Deluxe, and Ordinary room. The rate of these room
types is assumed to be $40, $30, $20, and $10, respectively.

How to do it...

In this application, you will learn to make use of Calendar Widget, Spin Box, and Combo
Box. All three widgets make the data entry easier and error-proof. The Calendar Widget
item gives you the comfort of switching to the desired month and day. Similarly, the Spin
Box widget enables you to select a value from the available options; the user cannot enter
any invalid data and this is also the case with the Combo Box widget. This is the step-by-
step procedure to develop this application:

1. In the application, six Label widgets, a Calendar Widget item, a Spin Box
widget, a Combo Box widget, and a Push Button widget are used.

2. The text property of the first four Label widgets is set to Hotel Room
Reservation, Date of Reservation, Number of days, and Room type.

3. Set the objectName property of the fifth and sixth Label widgets to
Enteredinfo and RoomRentinfo, respectively.

4. The Enteredinfo widget will be used to display the options selected in the
different widgets by the user, and the RoomRent info widget will be used to
display the computed room rent.

5. Delete the text property of the two Label widgets, Enteredinfo and
RoomRentinfo, to make them invisible in the form; their respective text will be
assigned through programming.

[101]

Working with Date and Time Chapter 3

6. The text property of the Push Button widget is set to Calculate Room Rent,
the point size of the Label widget representing the Hotel Room Reservation text
is increased, and its Bold property is set to make it appear as the header of the
application

7. Save the application with the name reservehotel.ui. The application is shown
in the following screenshot:

Dialog - reservehotel.ui® EI@
Hotel Room Reservation

Date of Reservation * January, 2018 i
n Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

8 9 10 11 12 13

15 16 17 18 19 20

22 23 24 25 26 27

Number of days

Room type ¢

Caclulate Room Rent

The pyuic5 command utility converts the . ui (XML) file into Python code. The
generated Python code, reservehotel.py, can be seen in the code bundle of the
book.

8. Create a Python script named computeRoomRent . pyw that imports the code,
reservehotel.py, to invoke the user interface design and compute and display
the total room rent on the basis of the number of persons and room type selected.
The script will also display the date, a number of persons, and room type options
selected by the user.

[102]

Working with Date and Time Chapter 3

The Python script computeRoomRent . pyw will appear as shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from reservehotel import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.roomtypes=['Suite', 'Super Luxury', 'Super Deluxe',
'Ordinary']
self.addcontent ()
self.ui.pushButton.clicked.connect (self.computeRoomRent)
self.show()
def addcontent (self):
for i in self.roomtypes:
self.uil.comboBox.addItem (1)
def computeRoomRent (self) :
dateselected=self.ui.calendarWidget.selectedDate ()
dateinstring=str (dateselected.toPyDate())
noOfDays=self.ui.spinBox.value ()
chosenRoomType=self.ui.comboBox.itemText (self.ui.comboBox.
currentIndex())
self.ui.Enteredinfo.setText ('Date of reservation:
'+dateinstring+ ', Number of days: '+ str(noOfDays) + '
nand Room type selected: '+ chosenRoomType)
roomRent=0

if chosenRoomType=="Suite":
roomRent=40

if chosenRoomType=="Super Luxury":
roomRent=30

if chosenRoomType=="Super Deluxe":
roomRent=20

if chosenRoomType=="Ordinary":

roomRent=10
total=roomRent*noOfDays
self.ui.RoomRentinfo.setText ('Room Rent for single
day for '+ chosenRoomType +' type is '+
str(roomRent)+ 'S$. nTotal room rent is '+
str(total)+ ')
if _ name_ =="_ _main__ ":

app = QApplication(sys.argv)

w = MyForm/()

w.show ()

sys.exit (app.exec_())

[103]

Working with Date and Time Chapter 3

How it works...

In this code, you can see that a roomtypes list is defined with four elements: Suite, Super
Luxury, Super Deluxe, and Ordinary. To make the elements of the roomt ypes list
appear as options in the Combo Box widget, the addcontent method is invoked and adds
the elements of roomtypes to the Combo Box widget with the addItem () method. Also,
the clicked() signal of the Push Button widget is connected to the computeRoomRent ()
method, which is invoked when the user selects the push button after selecting the date of
the reservation, the number of persons staying, and room type. In the computeRoomRent ()
method, you fetch the date from Calendar Widget, the number of persons from the Spin
Box widget, and the room type from the Combo Box widget, and then display them
through an Enteredinfo widget to indicate the options that are selected by the user. Then,
the room rent of an individual is determined on the basis of the room type selected and is
multiplied by the number of persons to compute the total room rent. The total room rent is
then displayed via roomRent, as shown in the following screenshot:

1 Dialeg ? *

Hotel Room Reservation

Date of Reservation - January, 2018 s
n Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

8 9 10 11 12 13

15 16 17 18 19 20

22 23 24 25 26 27

Number of days 2 =

Room type Super Luxury h

| Caclulate Room Rent

Date of reservation: 2018-01-23, Number of days: 2
and Room type selected: Super Luxury

Room Rent for single day for Super Luxury type is 30%.
Total room rent is 60%

[104]

Working with Date and Time Chapter 3

Displaying tabular data using Table Widget

In this recipe, we will learn to display data in tabular format, that is, in the row and column
format. We will display the different room types of a hotel and their respective rents per
day.

Getting ready

Before we begin creating this recipe, let's first understand Table Widget.

Table Widget

Table Widget is used for displaying data in tabular format, arranged in rows and columns.
Table Widget is an instance of the QTableWidget class and the items that are displayed in
the different rows and columns of a table are instances of the QTableWidget Item class.
Here are the methods provided by the 0TableWidget class:

¢ setRowCount (): This method is used to define the number of rows you want in
Table Widget

e setColumnCount (): This method is used to define the number of columns
required in Table Widget

e rowCount (): This method returns the number of rows in the table

e columnCount (): This method returns the number of columns in the table

e clear (): This method clears the entire table

e setItem(): This method sets the content for a given row and column of the table

The QTableWidgetltem class

As mentioned earlier, the items displayed in Table Widget are instances of the
QTableWidgetItem class. You can display text, images, or any other widgets as items in
Table Widget. Here are the methods provided by the 0TableWidgetItem class:

e setFont (): This method sets the font for the text label of the Table Widget item

¢ setCheckState (): This method passes the Boolean value True to this method
to check the table item and passes the value False to uncheck the Table Widget
item

[105]

Working with Date and Time Chapter 3

e checkState (): This method returns the Boolean value as True if the Table
Widget item is checked, or otherwise returns False

Let's now create an application to demonstrate how information is displayed with a Table
Widget item.

How to do it...

Information displayed in tabular format is more organized, more readable, and more easily
comparable than data that is displayed in traditional paragraphs. Here are the steps to
make an application that displays data via Table Widget:

1. Open Qt Designer and create a new application based on the Dialog without
Buttons template.

2. Drag and drop a Table Widget item onto the form.

3. To assign it the default size of three rows and two columns, from the Property
Editor window set the value of rowCount and columnCount to 4 and 2,
respectively.

4. To display the row and column headers, the horizontalHeaderVisible and
verticalHeaderVisible properties are already checked by default

5. Save the application with the name DemoTableWidget .ui. The Table Widget
item will appear as shown in the following screenshot:

Dialeg - DemoTableWidget.ui El@
[[n
1 2

1

2
(] []

3

4
[n n

[106]

Working with Date and Time Chapter 3

The pyuic5 command utility is used for generating Python code. The generated
Python script, DemoTableWidget . py, can be seen in the source code bundle of
this book.

6. Create a Python script named callTableWidget .pyw that imports the Python
code, DemoTableWidget . py, which enables us to invoke the user interface
design and displays information in the Table Widget item. The code in the
Python script, callTableWidget . pyw, is as shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication,QTableWidgetItem
from DemoTableWidget import *
class MyForm(QDialog) :
def _ _init_ (self,data):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.data=data
self.addcontent ()
def addcontent (self) :
row=0
for tup in self.data:
col=0
for item in tup:
oneitem=QTableWidgetItem (item)
self.ui.tableWidget.setItem(row, col, oneitem)
col+=1
row+=1
data=1[]
data.append
data.append
data.append
data.append
if _ name_ =="__main_ ":
app = QApplication(sys.argv)
w = MyForm(data)
w.show ()
sys.exit (app.exec_())

'Suite', '40))

'Super Luxury', '30))
'Super Deluxe', '20))
'Ordinary', '10))

[107]

Working with Date and Time Chapter 3

How it works...

If you want to display information in four rows and two columns of Table Widget, create a
list named data that stores four tuples, each of which consists of two elements, roomtypes
and roomRent. In the addcontent method, you fetch one tuple at a time from the data list
and assign it temporarily to the tup variable. The tup variable contains two elements, room
type and room rent. With the help of another for loop, you fetch each element from the
tup variable; that is, you fetch room type and room rent and assign them to the

item variable. The content of the item variable is then converted into an instance of
QTableWidgetItemand assigned to oneitem, which in turn is further assigned to and
displayed in Table Widget at a particular row and column position using the

set Item method. With the help of nested for loops, you display the information of the
data list in Table Widget, as shown in the following screenshot:

B Dialog ? >

2 Super Luxury 308

3 Super Deluxe 208

4 Ordinary 108

[108]

Understanding OOP Concepts

In this chapter, we will cover the following topics:

¢ Object-oriented programming
¢ Using classes in GUI

Using single inheritance

Using multilevel inheritance

Using multiple inheritance

Object-oriented programming

Python supports object-oriented programming (OOP). OOP supports reusability; that is,
code that was written earlier can be reused for making large applications, instead of
starting from scratch. The term object in OOP refers to a variable or instance of a class,
where a class is a template or blueprint of a structure that consists of methods and
variables. The variables in the class are called data members, and the methods are called
member functions. When instances or objects of a class are made, the objects automatically
get access to data members and methods.

Creating a class

The class statement is used for creating a class. The following is the syntax for creating a
class:

class class_name (base_classes) :
statement (s)

Here, class_name is an identifier to identify the class. After the class statement comes the
statements that make up the body of the class. The class body consists of different
methods and variables to be defined in that class.

Understanding OOP Concepts Chapter 4

You can make an individual class or a class that inherits another class. The class that is
being inherited is called the base class. The base_classes parameter after class_name in
the syntax represents all the base classes that this class will be inheriting. If there is more
than one base class, then they need to be separated by commas. The class that is being
inherited is called the super class or base class, and the inheriting class is called a derived
class or subclass. The derived class can use the methods and variables of the base class, and
hence implements reusability:

class Student:
name = ""
def _ _init_ (self, name):
self.name = name
def printName (self) :
return self.name

In this example, Student is a class that contains an attribute called name that is initialized
to null.

Using the built-in class attributes

A class statement automatically assigns certain values to certain fixed class attributes.
Those class attributes can be used to fetch information about the class. The list of class
attributes are as follows:

e _ name__: This attribute represents the class name used in the class statement

e _ bases__: This attribute represents the base class names mentioned in the
class statement

e _ dict__:The dictionary object that represents other class attributes

e _ module__: This attribute represents the module name in which the class is
defined

A class can have any number of methods, and each method can have any number of
parameters. One mandatory first parameter is always defined in a method, and that first
parameter is usually named self (though you can give any name to this parameter). The
self parameter refers to the instance of the class that calls the method. The syntax for
defining methods in a class is as follows:

class class_name (base_classes) :
Syntax:
variable (s)
def method 1 (self):
statement (s)

[110]

Understanding OOP Concepts Chapter 4

[def method n(self):
statement (s)]

A class can have the following two types of data member:

e Class variable: These are the variables that are shareable by all instances, and
changes made to these variables by any one instance can be seen by other
instances too. These are the data members that are defined outside of any
method of the class.

e Instance variable: These variables, which are defined inside a method, only
belong to the current instance of the object and are known as instance variables.
Changes made to instance variables by any instance are limited to that particular
instance and don't affect the instance variables of other instances.

Let's see how to create an instance method and how it can be used to access class variables.

Accessing class variables in instance methods

To access class variables, the class variables must be prefixed with the class name. For
example, to access the name class variable of the Student class, you need to access it as
follows:

Student .name

You can see that the name class variable is prefixed with the Sstudent class name.

Instances

To use the variables and methods of any class, we need to create its objects or instances. An
instance of a class gets its own copy of variables and methods. This means the variable of
one instance will not interfere with the variable of another instance. We can create as many
instances of a class as desired. To create an instance of a class, you need to write the class
name followed by arguments (if any). For example, the following statement creates an
instance of the Student class with the name studentOb7:

studentObj=Student ()

[111]

Understanding OOP Concepts Chapter 4

You can create any number of instances of the Student class. For example, the following
line creates another instance of the Student class:

courseStudent=Student ()
Now, the instance can access the class attribute and method of the class.

You need to specify self explicitly when defining the method. While calling the method,
self is not mandatory because Python adds it automatically.

To define the variables of a class, we get help from the __init__ () method. The
__init__ () method is like a constructor in traditional OOP languages and is the first
method to be executed after the creation of an instance. It is used for initializing the
variables of the class. Depending on how the __init__ () method is defined in the class,
that is, with or without parameters, the arguments may or may not be passed to the
__init__ () method.

As mentioned earlier, the first argument of every class method is a class instance that is
called self.Inthe __init__ () method, self refers to the newly created instance:

class Student:
name = ""
def _ _init__ (self):
self.name = "David"
studentObj=Student ()

In the preceding example, the studentObj instance is the instance of
the Student class being created, and its class variable will be initialized to the
David string.

Even arguments can be passed to the __init__ () method, as shown in the following
example:

class Student:
name = ""
def _ _init_ (self, name):
self.name = name
studentObj=Student ("David")

In the preceding example, the studentObj instance is created and the David string is
passed to it. The string will be assigned to the name parameter defined inthe __init__ ()
method, which, in turn, will be used to initialize the class variable, name, of the instance.
Remember, the init__ () method must not return a value.

[112]

Understanding OOP Concepts Chapter 4

Like the class variables, the methods of the class can be accessed by the instance of the class,
followed by the method name, with a period (.) in between. Assuming there is a
printName () method in the Student class, it can be accessed via the student0Obj instance
with the following statement:

studentObj.printName ()

Using classes in GUI

The data received from the user through the GUI can be directly processed by making use
of simple variables, and the processed data can be displayed through variables only. But to
keep the data in a structured format and get the benefits of OOP, we will learn to keep data
in the form of classes. That is, the data accessed by the user through the GUI can be
assigned to the class variables, processed, and displayed through class methods.

Let's create an application that will prompt the user to enter a name and, on clicking the
push button after entering a name, the application will display a hello message along with
the entered name. The name entered by the user will be assigned to a class variable and the
hello message will also be generated by invoking the class method of the class.

How to do it...

The focus of this recipe is to understand how the data entered by the user is assigned to the
class variable, and how the message displayed can be accessed via class methods. Let's
create a new application based on the Dialog without Buttons template and follow these
steps:

1. Drag and drop two Label widgets, one Line Edit, and one Push Button widget
onto the form.

2. Set the text property of the first Label widget to Enter your name.

text property to its default value of TextLabel. This is because its text

Let's not change the text property of the second Label widget and keep its
0 property will be set through code to display the hello message.

[113]

Understanding OOP Concepts Chapter 4

Set the text property of the Push Button widget to Click.

Set the objectName property of the Line Edit widget to 1ineEditName.

Set the objectName property of the Label widget to 1abelResponse.

Set the objectName property of the Push Button widget to ButtonClickMe.

NSO w

Save the application with the name LineEditClass.ui. The application will
appear as shown in the following screenshot:

Dialog - LineEditClass.ui E\@

Enter your name | |

TextLabel

Click

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to be converted to Python code.

8. To do the conversion, you need to open a Command Prompt window, navigate
to the folder where the file is saved, and issue the following command line:

C:\Pythonbook\PyQt5>pyuic5 LineEdit.uiClass -o LineEditClass.py

The generated Python script, LineEditClass.py, can be seen in the source code
bundle of this book.

9. Treat the preceding code as a header file, and import it into the file from which
you will invoke its user interface design.

10. Create another Python file with the name callLineEditClass.pyw and import
the LineEditClass.py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from LineEditClass import *
class Student:

name = ""

def _ _init_ (self, name):

self.name = name
def printName (self):

[114]

Understanding OOP Concepts Chapter 4

return self.name
class MyForm(QDialog) :
def _ init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.ButtonClickMe.clicked.connect (self.dispmessage)
self.show()
def dispmessage (self):
studentObj=Student (self.ui.lineEditName.text ())
self.ui.labelResponse.setText ("Hello
"t+studentObj.printName ())
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

In the LineEditClass.py file, a class with the name of the top-level object is created with
Ui_ prepended. Thatis, for the top-level object, Dialog, the Ui_Dialog class is created
and stores the interface elements of our widget. That class has two methods, setupUi ()
and retranslateUi (). The setupUi () method creates the widgets that are used in
defining the user interface in Qt Designer. Also, the properties of the widgets are set in this
method. The setupUi () method takes a single argument, which is the top-level widget of
the application, an instance of QDialog. The retranslateUi () method translates the
interface.

In the calllLineEditClass.py file, you can see that a class is defined called student. The
Student class includes a class variable called name and the following two methods:

e _ init__ ():Itisa constructor that takes the mandatory self parameter and a
name parameter, which will be used to initialize the name class variable

¢ printName: This method simply returns the value in the name class variable

[115]

Understanding OOP Concepts Chapter 4

The clicked () event of the Push Button widget is connected to the dispmessage ()
method; after entering a name in the Line Edit widget, when the user clicks the push
button, the dispmessage () method will be invoked. The dispmessage () method defines
the object of the Student class by name, studentOb3j, and passes the name entered by the
user in the Line Edit widget as a parameter. Hence, the constructor of the Student class
will be invoked and the name entered by the user is passed to the constructor. The name
entered in the Line Edit widget will be assigned to the class variable, name. After that, the
Label widget called 1abelResponse is set to display the string, Hel1o, and the
printName method of the Student class is invoked, which returns the string assigned to
the name variable. Hence, on clicking the push button, the Label widget will be set to
display the string, Hel1lo, followed by the name entered by the user in the Line Edit box, as
shown in the following screenshot:

i Dialog ? x

Enter your name |Thomas

Hello Thomas

Making the application more elaborate

We can also make use of two or more class attributes in the class.

Let's assume that besides the class name Student, we want to also add student's code to
the class. In that case, we need to add one more attribute, code to the class, and also a
getCode () method, which will access the student code assigned. Besides the class, the GUI
will also change.

[116]

Understanding OOP Concepts Chapter 4

We need to add one more Label widgets and one Line Edit widget to the application and
let's save it by another name, demoStudentClass. After adding the Label and Line Edit
widgets, the user interface will appear as shown in the following screenshot:

Maleg - demoStudentClass.ui [=] &=

Student Code | |

Student Name | |

Click

The user interface file, demoStudentClass.ui, needs to be converted into Python code.

The generated Python script, demoStudentClass.py, can be seen in the source code
bundle of this book.

Let's create another Python file with the name callStudentClass.pyw and import the
demoStudentClass.py code to it. The code in callStudentClass.pyw is as follows:

import sys

from PyQt5.QtWidgets import QDialog, QApplication
from demoStudentClass import *

class Student:

name = ""

code = ""

def _ _init_ (self, code, name):
self.code = code

self.name = name

def getCode (self):
return self.code

def getName (self):
return self.name

class MyForm(QDialog) :

def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.ButtonClickMe.clicked.connect (self.dispmessage)
self.show ()

def dispmessage (self):

[117]

Understanding OOP Concepts Chapter 4

studentObj=Student (self.ui.lineEditCode.text (),
self.ui.lineEditName.text ())
self.ui.labelResponse.setText ("Code:
"+studentObj.getCode () +", Name:"+studentObj.getName ())
if _ name_ =="__main_ ":

app = QApplication(sys.argv)

w = MyForm/()

w.show ()

sys.exit (app.exec_())

In the preceding code, you see that a class is defined called Student. The Student class
includes the two class variables called name and code. Besides the two class variables, the
Student class includes the following three methods too:

e _ init_ ():Itisa constructor that takes the mandatory self parameter and
two parameters, code and name, which will be used to initialize the two class
variables, code and name

e getCode (): This method simply returns the value in the code class variable
e getName () : This method simply returns the value in the name class variable

The clicked () event of the Push Button widget is connected to the

dispmessage () method; after entering the code and name in the Line Edit widget, when
the user clicks the Push Button, the dispmessage () method will be invoked. The
dispmessage () method defines the object of the Student class by name, studentOb3j,
and passes the code and name entered by the user in the Line Edit widgets as parameters.
The constructor of the Student class, __init__ (), will be invoked and the code and name
entered by the user are passed to it. The code and name entered will be assigned to the class
variables code and name, respectively. After that, the Label widget called 1abelResponse
is set to display the code and name entered by invoking the two methods, getCode and
getName, via the studentObj object of the Student class.

[118]

Understanding OOP Concepts Chapter 4

Hence, on clicking the push button, the Label widget will display the code and name
entered by the user in two Line Edit widgets, as shown in the following screenshot:

i Dialog ? *

Student Code |A1005 |

Student Name |David |

Code: A1005, Name:David

[cik |

Inheritance

Inheritance is a concept by which the method and variables of an existing class can be
reused by another class, without the need for re-coding them. That is, existing code that is
tested and run can be reused immediately in other classes.

Types of inheritance

The following are the three types of inheritance:

¢ Single inheritance: One class inherits another class

e Multilevel inheritance: One class inherits another class, which in turn is
inherited by some other class

e Multiple inheritance: One class inherits two or more classes

[119]

Understanding OOP Concepts Chapter 4

Using single inheritance

Single inheritance is the simplest type of inheritance, where one class is derived from
another single class, as shown in the following diagram:

[A]
T
[B]

Class B inherits class A. Here, class A will be called the super class or base class, and class B
will be called the derived class or subclass.

The following statement defines single inheritance where the Marks class inherits the
Student class:

class Marks (Student) :

In the preceding statement, Student is the base class and Marks is the derived class.
Consequently, the instance of the Marks class can access the methods and variables of
the student class.

Getting ready

To understand the concept of single inheritance through a running example, let's create an
application that will prompt the user to enter the code, name, and history and geography
marks of a student, and will display them on the click of a button.

The code and name entered by the user will be assigned to the class members of a class
called student. The history and geography marks will be assigned to the class members of
another class called Marks. To access code and name, along with the history and geography
marks, the Marks class will inherit the student class. Using inheritance, the instance of the
Marks class will access and display the code and name of the Student class.

[120]

Understanding OOP Concepts Chapter 4

How to do it...

Launch Qt Designer and create a new application based on the Dialog without Buttons
template by performing the following steps:

1.

In the application, drag and drop five Label widgets, four Line Edit widgets, and
one Push Button widget onto the form.

Set the text property of the four Label widgets to Student Code, Student
Name, History Marks, and Geography Marks.

Delete the text property of the fifth Label widget, as its text property will be set
through the code to display the code, name, and history and geography marks.
Set the text property of the Push Button widget to Click.

Set the objectName property of the four Line Edit widgets to 1ineEditCode,
lineEditName, lineEditHistoryMarks, and lineEditGeographyMarks.
Set the objectName property of the Label widget to 1abelResponse and the
objectName property of the Push Button widget to ButtonClickMe.

Save the application with the name demoSimpleInheritance.ui. The
application will appear as shown in the following screenshot:

Dialog - demoSimplelnheritance.ui EI@

Student Code | |

Student Name | |

History Marks | |

Geography Marks | |

Click

[121]

Understanding OOP Concepts Chapter 4

The user interface file, demoSimpleInheritance.ui, is an XML file and is
converted into Python code using the pyuic5 utility. You can find the generated
Python script, demoSimpleInheritance.py, in the source code bundle of this
book. The preceding code will be used as a header file, and will be imported in
another Python script file, which will invoke the user interface design defined
in, demoSimpleInheritance.py file.

8. Create another Python file with the name callSimpleInheritance.pyw and
import the demoSimpleInheritance.py code into it. The code in the Python
script, callsimpleInheritance.pyw, is as given here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoSimpleInheritance import *

class Student:
nn

name =

code P nn

def _ _init_ (self, code, name):
self.code = code
self.name = name

def getCode (self):
return self.code
def getName (self):
return self.name
class Marks (Student) :
historyMarks = 0
geographyMarks = 0

def __init__ (self, code, name, historyMarks,
geographyMarks) :
Student.__init_ (self, code, name)

self.historyMarks = historyMarks
self.geographyMarks = geographyMarks

def getHistoryMarks (self):
return self.historyMarks

def getGeographyMarks (self):
return self.geographyMarks

class MyForm(QDialog) :

def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.ButtonClickMe.clicked.connect (self.dispmessage)
self.show()

def dispmessage (self):
marksObj=Marks (self.ui.lineEditCode.text (),
self.ui.lineEditName.text (),

[122]

Understanding OOP Concepts Chapter 4

self.ui.lineEditHistoryMarks.text (),
self.ui.lineEditGeographyMarks.text ())
self.ui.labelResponse.setText ("Code:
"tmarksObj.getCode () +", Name:"+marksObj.getName ()+"
nHistory Marks:"+marksObj.getHistoryMarks ()+", Geography
Marks:"+marksObj.getGeographyMarks ())

if name__ =="__main__ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

In this code, you see that a class is defined, called student. The student class includes
two class variables called name and code, along with the following three methods:

e __init__ ():Itisa constructor that takes the mandatory self parameter and
two parameters, code and name, that will be used to initialize the two class
variables, code and name

e getCode () : This method simply returns the value in the code class variable
e getName (): This method simply returns the value in the name class variable

The Marks class inherits the Student class. Consequently, an instance of the Marks class
will not only be able to access its own members, but also that of the Student class.

The Marks class includes two class variables called historyMarks and geographyMarks,
along with the following three methods:

e __init__ ():Itisa constructor that takes the mandatory self parameter and
four parameters, code, name, historyMarks, and geographyMarks. From this
constructor, the constructor of the student class will be invoked and the code
and name parameters will be passed to this constructor. The historyMarks and
geographyMarks parameters will be used to initialize the class members,
historyMarks, and geographyMarks.

® getHistoryMarks (): This method simply returns the value in the
historyMarks class variable.

® getGeographyMarks (): This method simply returns the value in the
geographyMarks class variable.

[123]

Understanding OOP Concepts Chapter 4

The clicked () event of the Push Button is connected to the dispmessage () method.
After entering the code, name, and history and geography marks in the Line Edit widgets,
when the user clicks the push button, the dispmessage () method will be invoked. The
dispmessage () method defines the object of the Marks class by name, marksOb3j, and
passes the code, name, and history and geography marks entered by the user in the Line
Edit widgets as parameters. The constructor of the Marks class, __init__ (), will be
invoked and the code, name, history, and geography marks entered by the user are passed
to it. From the constructor of the Marks class, the constructor of the Student class will be
invoked and code and name will be passed to that constructor. The code and name
parameters will be assigned to the code and name class variables, respectively, of the
Student class. Similarly, the history and geography marks will be assigned

to historyMarks and geographyMarks class variables, respectively, of the Marks class.
After that, the Label widget called 1abelResponse is set to display the code, name, and
history and geography marks entered by invoking the four methods, getCode, getName,
getHistoryMarks, and getGeographyMarks, via the marksObj object. The marksObj
object of the Marks class gets the right to access the getCode and getName methods of the
Student class because of using inheritance. Hence, on clicking the push button, the Label
widget will display the code, name, history marks, and geography marks entered by the
user via the Label widget called 1abelResponse, as shown in this screenshot:

i’ Dialog ? d

Student Code |A1005 |

Student Name |David |

History Marks |78 |

Geography Marks [82 |

Code: A1005, Name:David
History Marks:78, Geography Marks:82

[124]

Understanding OOP Concepts Chapter 4

Using multilevel inheritance

Multilevel inheritance is where one class inherits another single class. The inheriting class
in turn is inherited by a third class, as shown in the following diagram:

[B]

N

<]

In the preceding diagram, you can see that class B inherits class A and class C, in turn,
inherits class B.

The following statement defines multilevel inheritance, where the Result class inherits the
Marks class and the Marks class, in turn, inherits the Student class:

class Student:
class Marks (Student) :
class Result (Marks) :

In the preceding statement, Student is the base class and the Marks class inherits the
Student class. The Result class inherits the Marks class. Consequently, the instance of the
Result class can access the methods and variables of the Marks class, and the instance of
the Marks class can access the methods and variables of the Student class.

Getting ready

To understand the concept of multilevel inheritance, let's create an application that will
prompt the user to enter the code, name, history marks, and geography marks of a student
and will display the total marks and percentage on the click of a button. The total marks
will be the sum of history marks and geography marks. Assuming the maximum mark is
100, the formula for computing the percentage is: total marks/200 * 100.

[125]

Understanding OOP Concepts Chapter 4

The code and name entered by the user will be assigned to the class members of a class
called student. The history and geography marks will be assigned to the class members of
another class called Marks. To access code and name along with the history and geography
marks, the Marks class will inherit the student class. Using this multilevel inheritance, the
instance of the Marks class will access the code and name of the Student class. To calculate
total marks and percentage, one more class is used, called the Result class. The Result
class will inherit the Marks class. Consequently, the instance of the Result class can access
the class members of the Marks class, as well as those of the Student class. The Result
class has two class members, totalMarks and percentage. The totalMarks class
member will be assigned the sum of the historyMarks and geographyMarks members of
the Marks class. The percentage member will be assigned the percentage acquired on the
basis of the history and geography marks.

How to do it...

In all, there are three classes, named Student, Marks, and Result, where the Result class
will inherit the Marks class and the Marks class, in turn, will inherit the Student class.
Consequently, the members of the Result class can access the class members of the Marks
class as well as those of the Student class. Here is the step-by-step procedure to create this
application:

1. Launch Qt Designer and create a new application based on the Dialog without
Buttons template.

2. Drag and drop six Label widgets, six Line Edit widgets, and one Push Button
widget onto the form.

3. Set the text property of the six Label widgets to Student Code, Student Name,
History Marks, Geography Marks, Total, and Percentage.

4. Set the text property of the Push Button widget to C1ick.

5. Set the objectName property of the six Line Edit widgets to 1ineEditCode,
lineEditName, lineEditHistoryMarks, lineEditGeographyMarks,
lineEditTotal, and lineEditPercentage.

6. Set the objectName property of the Push Button widget to ButtonClickMe.

7. Disable the 1ineEditTotal and lineEditPercentage boxes by unchecking
the Enable property from the Property Editor window. The 1ineEditTotal and
lineEditPercentage widgets are disabled because values in these boxes will

be assigned through the code and we don't want their values to be altered by the
user.

[126]

Understanding OOP Concepts Chapter 4

8. Save the application with the name demoMultilevelInheritance.ui. The
application will appear as shown in the following screenshot:

Dialeg - demoMultilevellnheritance.ui® EI@

Student Code | |

Student Name = - | |

History Marks | |

Geography Marks | |

Total

Percentage

Click

The user interface file, demoMultilevelInheritance.ui, is an XML file and is
converted into Python code by making use of the pyuic5 utility. You can see the
generated Python script, demoMultilevelInheritance.py, in the source code
bundle of this book. The demoMultilevelInheritance.py file will be used as
a header file, and will be imported in another Python script file, which will use
the GUI created in demoMultilevelInheritance.py.

9. Create another Python file with the name callMultilevelInheritance.pyw
and import the demoMultilevelInheritance.py code into it. The code in the
Python script, callMultilevelInheritance.pyw, is as shown here:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoMultilevelInheritance import *

class Student:
nmw

name =
code = nmw
def _ _init_ (self, code, name):
self.code = code
self.name = name

def getCode (self):
return self.code
def getName (self):

[127]

Understanding OOP Concepts Chapter 4

return self.name
class Marks (Student) :
historyMarks = 0
geographyMarks = 0

def __init__ (self, code, name, historyMarks,
geographyMarks) :
Student.__init_ (self, code, name)

self.historyMarks = historyMarks
self.geographyMarks = geographyMarks
def getHistoryMarks (self) :
return self.historyMarks
def getGeographyMarks (self) :
return self.geographyMarks
class Result (Marks) :
totalMarks = 0

percentage = 0
def __init__ (self, code, name, historyMarks,
geographyMarks) :
Marks.__init__ (self, code, name, historyMarks,
geographyMarks)
self.totalMarks = historyMarks + geographyMarks
self.percentage = (historyMarks +

geographyMarks) / 200 * 100

def getTotalMarks (self):
return self.totalMarks

def getPercentage (self):
return self.percentage

class MyForm(QDialog) :

def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.ButtonClickMe.clicked.connect (self.dispmessage)
self.show ()

def dispmessage (self):
resultObj=Result (self.ui.lineEditCode.text (),
self.ui.lineEditName.text (),
int (self.ui.lineEditHistoryMarks.text ()),
int (self.ui.lineEditGeographyMarks.text ()))
self.ui.lineEditTotal.setText (str (resultObj.
getTotalMarks()))
self.ui.lineEditPercentage.setText (str (resultObj.
getPercentage()))

if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)

w = MyForm/()

w.show ()

sys.exit (app.exec_())

[128]

Understanding OOP Concepts Chapter 4

How it works...

In the preceding code, in the callMultilevelInheritance.pyuw file, you can see that a
class is defined called student. The Student class includes two class variables called name
and code, along with the following three methods:

e __init__ ():Itisa constructor that takes the mandatory self parameter and
two parameters, code, and name, that will be used to initialize the two class
variables code and name

e getCode () : This method simply returns the value in the code class variable

¢ getName () : This method simply returns the value in the name class variable

The Marks class inherits the Student class. Consequently, an instance of the Marks class
will not only be able to access its own members, but also those of the Student class.

The Marks class includes two class variables called historyMarks and geographyMarks,
along with the following three methods:

e __init__ ():Itisa constructor that takes the mandatory self parameter and
four parameters, code, name, historyMarks, and geographyMarks. From this
constructor, the constructor of the Student class will be invoked and the code
and name parameters will be passed to this constructor. The historyMarks and
geographyMarks parameters will be used to initialize the historyMarks and
geographyMarks class members.

® getHistoryMarks (): This method simply returns the value in the
historyMarks class variable.

® getGeographyMarks (): This method simply returns the value in the
geographyMarks class variable.

The Result class inherits the Marks class. An instance of the Result class will not only be
able to access its own members, but also those of the Marks class and of the Student class

too.

[129]

Understanding OOP Concepts Chapter 4

The Result class includes two class variables, called totalMarks and percentage, along
with the following three methods:

e __init__ ():Itisa constructor that takes the mandatory self parameter and
four parameters, code, name, historyMarks, and geographyMarks. From this
constructor, the constructor of the Marks class will be invoked and the code,
name, historyMarks, and geographyMarks parameters will be passed to that
constructor. The sum of historyMarks and geographyMarks will be assigned
to the totalMarks class variable. Assuming the maximum mark for each is 100,
the percentage of the history and geography marks will be computed and
assigned to the percentage class variable.

® getTotalMarks (): This method simply returns the sum of the historyMarks
and geographyMarks class variables.

e getPercentage (): This method simply returns the percentage of the history
and geography marks.

The clicked () event of the Push Button widget is connected to the

dispmessage () method. After entering code, name, history marks, and geography marks
in the Line Edit widgets, when the user clicks the push button, the

dispmessage () method will be invoked. The dispmessage () method defines the object
of the Result class by name, resultObj, and passes the code, name, history, and
geography marks entered by the user in the Line Edit widgets as parameters. The
constructor of the Result class, __init__ (), will be invoked and the code, name, history
marks, and geography marks entered by the user are passed to it. From the Result class's
constructor, the Marks class's constructor will be invoked and code, name, history marks,
and geography marks will be passed to that constructor. From the Marks class's
constructor, the student class constructor will be invoked and the code and name
parameters are passed to it. In the Student class's constructor, the code and name
parameters will be assigned to the class variables code and name, respectively. Similarly,
the history and geography marks will be assigned to the historyMarks and
geographyMarks class variables, respectively, of the Marks class.

The sum of historyMarks and geographyMarks will be assigned to the totalMarks
class variable. Also, the percentage of the history and geography marks will be computed
and assigned to the percentage class variable.

After that, the Line Edit widget called 1ineEditTotal is set to display the total marks,
that is, the sum of history and geography marks, by invoking the get TotalMarks method
via resultObj. Also, the Line Edit widget called 1ineEditPercentage is set to display
the percentage of marks by invoking the getPercentage method via result0Obj.

[130]

Understanding OOP Concepts Chapter 4

Hence, on clicking the push button, the Line Edit widgets called 1ineEditTotal and
lineEditPercentage will display the total marks and percentage of history and
geography marks entered by the user, as shown in the following screenshot:

B Dialog ? X

Student Code |A1005 |

Student Name |David |

History Marks |78 |

Geography Marks [82 |

Total 160

Percentage 80.0

Using multiple inheritance

Multiple inheritance is where one class inherits two or more classes, as shown in the
following diagram:

[A] [B]

tJ

Class C inherits both classes, class A and class B.

The following statement defines multilevel inheritance where the Result class inherits the
Marks class and the Marks class in turn inherits the student class:

class Student:
class Marks:
class Result (Student, Marks) :

[131]

Understanding OOP Concepts Chapter 4

In the preceding statements, Student and Marks are the base classes and the Result class
inherits both the student class and the Marks class. Consequently, the instance of the
Result class can access the methods and variables of the Marks and student classes.

Getting ready

To understand the concept of multilevel inheritance practically, let's create an application
that will prompt the user to enter the code, name, history marks, and geography marks of a
student, and will display the total marks and percentage on the click of a button. The total
marks will be the sum of history marks and geography marks. Assuming the maximum
mark for each is 100, the formula for computing the percentage is: total marks/200 * 100.

The code and name entered by the user will be assigned to the class members of a class
called student. The history and geography marks will be assigned to the class members of
another class called Marks.

To access code and name, along with the history and geography marks, the Result class
will inherit both classes, the Student class as well as the Marks class. Using this multiple
inheritance, the instance of the Result class can access the code and name of the Student
class, as well as the historyMarks and geographyMarks class variables of the Marks
class. In other words, using multiple inheritance, the instance of the Result class can access
the class members of the Marks class, as well as those of the Student class. The Result
class has two class members, totalMarks and percentage. The totalMarks class
member will be assigned the sum of the historyMarks and geographyMarks members of
the Marks class. The percentage member will be assigned the percentage acquired on the
basis of the history and geography marks.

How to do it...

Let's understand through a step-by-step procedure how multilevel inheritance is applied to
three classes, Student, Marks, and Result. The Result class will inherit both classes,
Student and Marks. These steps explain how the members of the Result class can access
the class members of the student and Marks classes through multilevel inheritance:

1. Launch Qt Designer and create a new application based on the Dialog without
Buttons template.

2. In the application, drag and drop six Label widgets, six Line Edit widgets, and
one Push Button widget onto the form.

[132]

Understanding OOP Concepts Chapter 4

3.

Set the text property of the six Label widgets to Student Code, Student Name,
History Marks, Geography Marks, Total, and Percentage.

Set the text property of the Push Button widget to C1ick.

Set the objectName property of the six Line Edit widgets to 1ineEditCode,
lineEditName, l1ineEditHistoryMarks, lineEditGeographyMarks,
lineEditTotal, and lineEditPercentage.

Set the objectName property of the Push Button widget to ButtonClickMe.
Disable the 1ineEditTotal and lineEditPercentage boxes by unchecking
the Enable property from the Property Editor window. The 1ineEditTotal and
lineEditPercentage boxes are disabled because values in these boxes will be

assigned through the code, and we don't want their values to be altered by the
user.

Save the application with the name demoMultipleInheritance.ui. The
application will appear as shown in the following screenshot:

Dialog - demoMultiplelnheritance.ui EI@

Student Code | |

Student Name - | |

History Marks | |

Geography Marks | |

Total

Percentage

Click

The user interface file demoMultipleInheritance .ui is an XML file and is
converted into Python code using the pyuic5 utility. You can find the generated
Python code, demoMultipleInheritance.py, in the source code bundle of this
book. The demoMultipleInheritance.py file will be used as a header file and
will be imported in another Python script file, which will invoke the GUI created
in the demoMultipleInheritance.py file.

[133]

Understanding OOP Concepts Chapter 4

9. Create another Python file with the name callMultipleInheritance.pyw and
import the demoMultipleInheritance.py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoMultipleInheritance import *

class Student:
nn

name =

code e nn

def _ _init_ (self, code, name):
self.code = code
self.name = name

def getCode (self):
return self.code
def getName (self):
return self.name
class Marks:
historyMarks = 0
geographyMarks = 0
def __init__ (self, historyMarks, geographyMarks) :
self.historyMarks = historyMarks
self.geographyMarks = geographyMarks
def getHistoryMarks (self):
return self.historyMarks
def getGeographyMarks (self) :
return self.geographyMarks
class Result (Student, Marks):
totalMarks = 0

percentage = 0
def __init__ (self, code, name, historyMarks,
geographyMarks) :

Student._ _init_ (self, code, name)

Marks.__init__ (self, historyMarks, geographyMarks)
self.totalMarks = historyMarks + geographyMarks
self.percentage = (historyMarks +
geographyMarks) / 200 * 100

def getTotalMarks (self):
return self.totalMarks

def getPercentage (self):
return self.percentage

class MyForm(QDialog) :

def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.ButtonClickMe.clicked.connect (self.dispmessage)
self.show ()

def dispmessage (self):

[134]

Understanding OOP Concepts Chapter 4

resultObj=Result (self.ui.lineEditCode.text (),
self.ui.lineEditName.text (),

int (self.ui.lineEditHistoryMarks.text ()),

int (self.ui.lineEditGeographyMarks.text ()))
self.ui.lineEditTotal.setText (str(resultObj.
getTotalMarks()))
self.ui.lineEditPercentage.setText (str (resultObj.
getPercentage()))

if name__ =="__main__ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

In this code, you can see that a class is defined called Student. The Student class includes
two class variables called name and code, along with the following three methods:

e __init__ ():Itisa constructor that takes the mandatory self parameter and
two parameters, code and name, that will be used to initialize the two class
variables code and name

e getCode () : This method simply returns the value in the code class variable

e getName (): This method simply returns the value in the name class variable

The Marks class includes two class variables, called historyMarks and geographyMarks,
along with the following three methods:

e _ init_ ():Itisa constructor that takes the mandatory self parameter and
two parameters, historyMarks and geographyMarks. The historyMarks and
geographyMarks parameters will be used to initialize the historyMarks and
geographyMarks class members.

e getHistoryMarks (): This method simply returns the value in the
historyMarks class variable.

® getGeographyMarks (): This method simply returns the value in the
geographyMarks class variable.

The Result class inherits the Student class as well as the Marks class. An instance of the
Result class will not only be able to access its own members, but also those of the Marks
class and of the student class too.

[135]

Understanding OOP Concepts Chapter 4

The Result class includes two class variables called totalMarks and percentage, along
with the following three methods:

e __init__ ():Itisa constructor that takes the mandatory self parameter and
four parameters, code, name, historyMarks, and geographyMarks. From this
constructor, the sStudent class constructor will be invoked and the code and
name parameters will be passed to that constructor. Also, from this constructor,
the Marks class constructor will be invoked and the historyMarks and
geographyMarks parameters will be passed to that constructor. The sum of
historyMarks and geographyMarks will be assigned to the totalMarks class
variable. Assuming the maximum mark for each is 100, the percentage of the
history and geography marks will be computed and assigned to the percentage
class variable.

e getTotalMarks (): This method simply returns the sum of the historyMarks
and geography class variables.

e getPercentage (): This method simply returns the percentage of history and
geography marks.

The clicked () event of the Push Button widget is connected to the

dispmessage () method. After entering code, name, history marks, and geography marks
in the Line Edit widgets, when the user clicks the push button, the

dispmessage () method will be invoked. The dispmessage () method defines the object
of the Result class by name, resultObj, and passes the code, name, history marks, and
geography marks entered by the user in the Line Edit widgets as parameters. The
constructor of the Result class, __init__ (), will be invoked and the code, name, history
marks, and geography marks entered by the user are passed to it. From the Result class's
constructor, the Student class constructor and the Marks class constructor will be invoked.
The code and name will be passed to the Student class constructor, and history and
geography marks will be passed to the Marks class constructor.

In the Student class constructor, the code and name will be assigned to the code and
name class variables, respectively. Similarly, in the Marks class constructor, the history and
geography marks will be assigned to the historyMarks and geographyMarks class
variables, respectively, of the Marks class.

The sum of historyMarks and geographyMarks will be assigned to the totalMarks
class variable. Also, the percentage of the history and geography marks will be computed
and assigned to the percentage class variable.

[136]

Understanding OOP Concepts Chapter 4

After that, the Line Edit widget called 1ineEditTotal is set to display the total marks,
that is, the sum of the history and geography marks, by invoking the

getTotalMarks method via resultObj. Also, the Line Edit widget called
lineEditPercentage is set to display the percentage of marks by invoking the
getPercentage method via resultObj.

Hence, on clicking the push button, the Line Edit widgets called 1ineEditTotal and
lineEditPercentage will display the total marks and percentage of the history and
geography marks entered by the user, as shown in the following screenshot:

B Dialog ? X

Student Code [A1005 |

Student Name |David |

History Marks (78 |

Geography Marks [82 |

Total 160

Percentage 80.0

[137]

Understanding Dialogs

In this chapter, we will learn how to use the following types of dialog:

e The input dialog box

Using the input dialog

Using the color dialog

Using the font dialog
Using the file dialog

Introduction

Dialogs are required in all applications to get input from the user, and also to guide the
user to enter the correct data. Interactive dialogs make the application quite user-friendly
too. There are basically the following two types of dialog:

e Modal dialog: A modal dialog is a dialog that wants the user to enter mandatory
information. This type of dialog doesn't allow the user to use other parts of the
application until the modal dialog is closed. That is, the user needs to enter the
required information in the modal dialog, and after closing the dialog, the user
can access the rest of the application.

¢ Non-modal or modeless dialogs: These are dialogs that enable the user to
interact with the rest of the application and dialog box too. That is, the user can
continue interacting with the rest of the application while keeping the modeless
dialog open. That is why modeless dialogs are usually used for getting non-
essential or non-critical information from the user.

Understanding Dialogs Chapter 5

The input dialog box

An input dialog box is created with the help of the 0InputDialog class. The
QInputDialog class provides a dialog to get a single value from the user. The provided
input dialog consists of a text field and two buttons, OK and Cancel. The text field enables
us to get a single value from the user, where that single value can be a string, a number, or
an item from a list. The following are the methods provided by the 0InputDialog class to
accept different types of input from the user:

e getInt (): This method shows a spin box for accepting an integer number. To
get an integer from the user, you need to use the following syntax:

getInt (self, window title, label before LineEdit widget, default
value, minimum, maximum and step size)

Take a look at the following example:

quantity, ok = QInputDialog.getInt (self, "Order Quantity", "Enter
quantity:", 2, 1, 100, 1)

The preceding code prompts the user to enter quantity. If the user does not enter
any value, the default value 2 will be assigned to the quantity variable. The user
can enter any value between 1 and 100.

e getDouble (): This method shows a spin box with a floating point number to
accept fractional values. To get a fractional value from the user, you need to use
the following syntax:

getDouble (self, window title, label before LineEdit widget, default
value, minimum, maximum and number of decimal places desired)

Take a look at the following example:

price, ok = QInputDialog.getDouble(self, "Price of the product",
"Enter price:", 1.50,0, 100, 2)

The preceding code prompts the user to enter the price of the product. If the user
does not enters any value, the default value 1.50 will be assigned to the
price variable. The user can enter any value between 0 and 100.

[139]

Understanding Dialogs Chapter 5

e getText (): This method shows a Line Edit widget to accept text from the user.
To get text from the user, you need to use the following syntax:

getText (self, window title, label before LineEdit widget)

Take a look at the following example:

name, ok = QtGui.QInputDialog.getText (self, 'Get Customer Name',
'Enter your name:')

The preceding code will display an input dialog box with the title, Get Customer
Name. The dialog box will also display a Line Edit widget allowing user to enter
some text. A Label widget will also be displayed before the Line Edit widget
showing the text, Enter your name:. The customer's name, entered in the dialog
box will be assigned to the name variable.

e getItem(): This method shows a combo box displaying several items to choose
from. To get an item from a drop-down box, you need to use the following
syntax:

getItem(self, window title, label before combo box, array , current
item, Boolean Editable)

Here, array is the list of items that need to be displayed in the combo box. The
current item is the item thatis treated as the current item in the combo

box. Editable is the Boolean value, which, if set to True, means the user can edit
the combo box and enter their own text. When Editable is set to False, it means
the user can only select an item from the combo box but cannot edit items. Take a
look at the following example:

countryName, ok = QInputDialog.getItem(self, "Input Dialog", "List
of countries", countries, 0, False)

The preceding code will display an input dialog with the title Input Dialog. The
dialog box shows a combo box showing a list of countries that are displayed via
the elements from the countries array. The Label widget before the combo box
shows the text, List of countries. The selected country name from the combo box
will be assigned to the countryName variable. Users can only choose the country
from the combo box but cannot edit any country name from the combo box.

[140]

Understanding Dialogs Chapter 5

Using the input dialog

The input dialog can accept data of any type, including integer, double, and text. In this
recipe, we will learn to get text from the user. We will make use of an input dialog to know
the name of the country in which the user lives.

The input dialog box will display a combo box showing different country names. On
choosing a country by name, the chosen country name will appear in the textbox.

How to do it...

Let's create a new application based on the Dialog without Buttons template by
performing the following steps:

1. Since the application will prompt the user to choose the country that he/she lives,
via input dialog, so drag and drop one Label widget, one Line Edit widget, and
one Push Button widget onto the form.

. Set the text property of the Label widget to Your Country.

. Set the text property of the Push Button widget to Choose Country.

. Set the objectName property of the Line Edit widget to 1ineEditCountry.

. Set the objectName property of the Push Button widget to
pushButtonCountry.

Q1 = W N

(@)

. Save the application with the name demoInputDialog.ui.

The form will now look as follows:

Dialog - demolnputDialog.ui EI@

Your Country: | | Choose Country

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs converting to Python code.

7. To do the conversion, you need to open a Command Prompt window, navigate
to the folder where the file is saved, and issue the following command line:

C:\Pythonbook\PyQt5>pyuic5 demoInputDialog.ui -o demoInputDialog.py

[141]

Understanding Dialogs

Chapter 5

You can find the generated Python script, demoInputDialog.py, in the source
code bundle of this book.

8. Treat the demoInputDialog.py script as a header file, and import it to the file
from which you will invoke its user interface design.

9. Create another Python file with the name callInputDialog.pyw and import
the demoInputDialog.py code into it:

import sys

from PyQt5.QtWidgets import QDialog, QApplication, QInputDialog
from demoInputDialog import *

class MyForm(QDialog) :

def

__init_ (self):

super () .__init__ ()

self.ui = Ui_Dialog()

self.ui.setupUi (self)
self.ui.pushButtonCountry.clicked.connect (self.dispmessage)
self.show()

def dispmessage (self):
countries = ("Albania", "Algeria", "Andorra", "Angola",
"Antigua and Barbuda", "Argentina", "Armenia", "Aruba",
"Australia", "Austria", "Azerbaijan")
countryName, ok = QInputDialog.getItem(self, "Input
Dialog", "List of countries", countries, 0, False)
if ok and countryName:

self.ui.lineEditCountry.setText (countryName)
if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)

w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

In the demoInputDialog.py file, a class with the name of the top-level object is created
with Ui_ prepended. That is, for the top-level object, Dialog, the Ui_Dialog classis
created and stores the interface elements of our widget. That class has two methods,
setupUi () and retranslateUi ().

The setupUi () method creates the widgets that are used in defining the user interface in
Qt Designer. Also, the properties of the widgets are set in this method. The setupUi ()
method takes a single argument, which is the top-level widget of the application, an
instance of QDialog. The retranslateUi () method translates the interface.

[142]

Understanding Dialogs Chapter 5

In the callInputDialog.pyw file, you can see that the click event of the Push Button
widget is connected to the dispmessage () method that is used to select the country; when
the user clicks the push button, the dispmessage () method will be invoked. The
dispmessage () method defines a string array called countries that contains several
country names in the form of array elements. After that, the get Item method of the
QInputDialog class is invoked and opens up an input dialog box displaying a combo box.
When the user clicks the combo box, it will expand, showing the country names that are
assigned to the countries string array. When the user selects a country, followed by
clicking the OK button in the dialog box, the selected country name will be assigned to

the count ryName variable. The selected country name will then be displayed through the
Line Edit widget.

On running the application, you get an empty Line Edit widget and a push button, Choose
Country, as shown in the following screenshot:

1 Dialeg ? >

Your Country: || | [Choose Country |

On clicking the Choose Country button, the input dialog box will open, as shown in the
following screenshot. The input dialog shows a combo box along with two buttons, OK and
Cancel. On clicking the combo box, it will expand to show all the country names, as shown
in the following screenshot:

B Input Dialog ? b4 B Input Dialog ? .

List of countries List of countries

Albania - Antigua and Barbuda -
Albaniz ~

Cance Algeria

Andarra

| Angola —
: Antigua and Barbuda

Argentina

Armenia

Aruba

Australia

Austria W

[143]

Understanding Dialogs Chapter 5

After choosing a country name from the combo box, followed by clicking the OK button,
the chosen country name will be displayed in the Line Edit box, as shown in the following
screenshot:

B Dialog ? *

Your Country: |Antiqua and Barbuda | [Choose Country |

Using the color dialog

In this recipe, we will learn to use color dialog to display a color palette, allowing users to
select predefined colors from the palette or create a new custom color.

The application includes a frame, and when the user selects any color from the color dialog,
the chosen color will be applied to the frame. Besides this, the hex code of the selected color
will also be displayed via a Label widget.

In this recipe, we will be making use of the 0ColorDialog class, which provides a dialog
widget for selecting color values.

How to do it...

Let's create a new application based on the Dialog without Buttons template by
performing the following steps:

Drag and drop a Push Button, a Frame, and a Label widget onto the form.

Set the text property of the Push Button widget to Choose color.

Set the objectName property of the Push Button widget to pushButtonColor.
Set the objectName property of the Frame widget to frameColor.

Set the Label widget to 1abelColor.

SRS

6. Save the application with the name demoColorDialog.ui.

[144]

Understanding Dialogs

Chapter 5

The form will now look as follows:

Dialeg - demoColorDialog.ui El@

n -]
Choose color u .
n]]

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file. You can use pyuic5 utility to convert the XML file into Python code.
The generated Python script, demoColorDialog.py, can be seen in the source
code bundle of this book. The demoColorbialog.py script will be used as a
header file, and will be imported in another Python script file, which will invoke
this user interface design.

7. Create another Python file with the name callColorbDialog.pyw and import
the demoColorDialog.py code into it:

import sys

from PyQt5.QtWidgets import QDialog, QApplication, QColorDialog
from PyQt5.QtGui import QColor

from demoColorDialog import *

class MyForm(QDialog) :

def

def

__init_ (self):

super () .__init__ ()

col = QColor (0, 0, 0)

self.ui = Ui_Dialog()

self.ui.setupUi (self)
self.ui.frameColor.setStyleSheet ("QWidget { background-
color: %s }" % col.name())
self.ui.pushButtonColor.clicked.connect (self.dispcolor)
self.show()

dispcolor (self):

col = QColorDialog.getColor ()

if col.isValid():
self.ui.frameColor.setStyleSheet ("QWidget { background-

o

color: %s }" % col.name())

[145]

Understanding Dialogs Chapter 5

self.ui.labelColor.setText ("You have selected the color
with
code: " + str(col.name()))
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

In the callColorDialog.pyuw file, you can see that the click() event of the push button is
connected to the dispcolor () method; that is, when the user clicks the Choose color
button, the dispcolor () method will be invoked. The dispmessage () method invokes
the getColor () method of the 9ColorbDialog class, which opens up a dialog showing
different colors. Not only can the user choose any predefined basic color from the dialog
box, but they can create a new custom color too. After choosing the desired color, when the
user clicks the OK button from the color dialog, the chosen color will be assigned to the
frame by invoking the set Stylesheet () method on the Frame widget class. Also, the hex
code of the chosen color is displayed via the Label widget.

On running the application, initially you see a push button, Choose color, and a frame that
is filled with black by default, as shown in the following screenshot:

i Dialog ? >

| Choose color |

[146]

Understanding Dialogs

Chapter 5

On clicking the Choose color button, the color dialog opens up, showing the basic colors
shown in the following screenshot. The color dialog also enables you to create your own

custom color too:

87 Select Color

Basic colors

Pick Screen Color |

Custom colors

N
I I I |

| Add to Custom Colors |

x

"|4

Hue: Red:
Sat: Green:
Val: Blue:

HTML: |#54ffF1 |

I OK || Cancel |

After selecting a color, when you select the OK button, the chosen color will be applied to
the frame and the hex code of the chosen color will be displayed via the Label widget, as

shown in the following screenshot:

i Dialeg

[Choose color

You have selected the color with code: #54fff1

[147]

Understanding Dialogs Chapter 5

Using the font dialog

In this recipe, we will learn to use a font dialog to apply different fonts and styles to the
selected text.

We will make use of a Text Edit widget and a Push Button widget in this application. The
push button, when clicked, will open the font dialog. The font and style selected from the
font dialog will be applied to the text written in the Text Edit widget.

In this recipe, we will be making use of the QFontDialog class, which displays a Dialog
widget meant for selecting a font.

How to do it...

Let's create a new application based on the Dialog without Buttons template by
performing the following steps:

Drag and drop a Push Button and a Text Edit widget onto the form.

Set the text property of the Push Button widget to Choose Font.

Set the objectName property of the Push Button widget to pushButtonFont.
Save the application with the name demoFontDialog.ui.

After performing the preceding steps, the application will appear as shown in the
following screenshot:

SRS

Dialog - demoFontDialeg.ui E\@
Change Font

[148]

Understanding Dialogs

Chapter 5

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file. Using the pyuic5 command, you can convert the XML file into Python
code. The generated Python script, demoFontDialog.py, can be seen in the
source code bundle of this book. The demoFontDialog.py script will be used as
a header file, and will be imported in another Python script file, which will invoke
this user interface design.

6. Create another Python file with the name callFontDialog.pyw and import the
demoFontDialog.py code into it:

import sys

from PyQt5.QtWidgets import QDialog, QApplication, QFontDialog
from demoFontDialog import *

class MyForm(QDialog) :

def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonFont.clicked.connect (self.changefont)
self.show ()

def changefont (self):
font, ok = QFontDialog.getFont ()
if ok:
self.ul.textEdit.setFont (font)

if _ name_ =="_main__ ":

app = QApplication(sys.argv)

w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

In the callFontDialog.pyw file, you can see that the click() event of the push button is
connected to the changefont () method; that is, when the user clicks the Choose Font
button, the change () method will be invoked. The changefont () method invokes the
getFont () method of the QFontDialog class, which opens up a dialog showing different
fonts, font styles, sizes, and effects. On choosing a font, font style, size, or effect, the effect of
the choice on the text will be displayed in the Sample box. On choosing the desired font,
font style, size, and effect, when user clicks the OK button, the selected choices will be
assigned to the font variable. Subsequently, the setFont () method is invoked on the
TextEdit class to apply the chosen font and styles to the text displayed through the Text

Edit widget.

[149]

Understanding Dialogs Chapter 5

On running the application, you see a push button, the Change Font widget, and the Text
Edit widget, as shown in the following screenshot:

B Dialog ? x

Change Font

To see the impact of a chosen font from the font dialog, you need to type some text in the
Text Edit widget, as shown in the following screenshot:

B Dialog ? x

Change Font

This is 3 sample test to demonstrate different fonts|

[150]

Understanding Dialogs Chapter 5

On selecting the Change Font button, the font dialog will open up, as shown in the
following screenshot. You can see that a different font name will be displayed on the
leftmost tab. The middle tab shows different font styles that enable you to make the text
appear in bold, italic, bold italic, and regular. The rightmost tab shows different sizes. At
the bottom, you can see different checkboxes that enable you to make text appear in
underline, strikeout, and so on. Choose the options from any tab and the impact of the
chosen font and style can be seen on the sample text shown in the Sample box. After
selecting the desired font and style, click the OK button to close the font dialog:

B Select Font
Font Font style Size
Britannic Bold Bold 13
Bodoni MT Poster Cormpressed A | | Mormal 2 A
Book Antiqua Bold)
Bookrnan Old Style [talic 10
Bookshelf Symbol 7 Bold Italic 1
Borgd 12
Bradley Hand ITC 14
Britannic Bold 16
Broadway 13
Rruch Scrint MT v 20 v
Effects Sample
[] strikeout
] underline AaBb‘(sz
Writing System
Any 7
Cancl

[151]

Understanding Dialogs Chapter 5

The effect of the chosen font and style will appear on the text written in the Text Edit
widget, as shown in the following screenshot:

i Dialog ? X
Change Font

This is a sample test to
demonstrate different fonts

Using the file dialog

In this recipe, we will learn to use a file dialog to understand how different file operations,
such as opening a file and saving a file, are done.

We will learn to create a file menu with two menu items, Open and Save. On clicking the
Open menu item, the file open dialog box will open, which will help in browsing and
choosing the file to open. The file contents of the opened file is displayed in the Text Edit
box. The user can even update the file contents if desired. After making the desired
modifications in the file, when the user clicks the Save option from the File menu, the file
contents will be updated.

Getting ready

In this recipe, we will be making use of the QFileDialog class, which displays a dialog
that allows users to select files or directories. The files can be selected for both opening and
saving.

[152]

Understanding Dialogs Chapter 5

In this recipe, I will be using the following two methods of the QFileDialog class:

® getOpenFileName (): This method opens the file dialog, enabling the user to
browse the directories and open the desired file. The syntax of
the getOpenFileName () method is as follows:

file_name = QFileDialog.getOpenFileName (self, dialog_title, path,
filter)

In the preceding code, filter represents the file extensions; it determines the
types of file displayed to open, for example as follows:

file_name = QFileDialog.getOpenFileName (self, 'Open file', '/home')

In the preceding example, file dialog is opened that shows all the
files of home directory to browse from.

file_name = QFileDialog.getOpenFileName (self, 'Open file', '/home',
"Images (*.png *.jpg);;Text files (.txt);;XML files (*.xml)")

In the preceding example, you can see that files from the home directory are
displayed. The files with the extensions .png, . jpg, .txt, and .xml will be
displayed in the dialog box.

® getSaveFileName (): This method opens the file save dialog, enabling the user
to save the file with the desired name and in the desired folder. The syntax of the
getSaveFileName () method is as follows:

file_name = QFileDialog.getSaveFileName (self, dialog_title, path,
filter, options)

options represents various options for how to run the dialog, for example, take a
look at the following code:

file_name, _ =
QFileDialog.getSaveFileName (self, "QFileDialog.getSaveFileName ()", ""
,"All Files (*);;Text Files (*.txt)", options=options)

In the preceding example, the File Save dialog box will be opened
allowing you to save the files with the desired extension. If you
don't specify the file extension, then it will be saved with the
default extension, .txt.

[153]

Understanding Dialogs Chapter 5

How to do it...

Let's create a new application based on the Main Window template. The Main Window
template includes a menu at the top by default:

1.

We can even use two push buttons to initiate the file open dialog box and file
save dialog box, but using the menu items to initiate file operations will give the
feel of a real-time application.

The default menu bar in the Main Window template shows Type Here in place
of the menu name.

The Type Here option indicates that the user can type the desired menu name,
replacing the Type Here text. Let's type File, creating a menu in the menu bar.
On pressing the Enter key, the term Type Here will appear as a menu item under
the File menu.

Let's type Open as the first menu item in the File menu.

On pressing the Enter key after creating the first menu item, Open, the term Type
Here will appear below Open.

Replace Type Here with the menu item, Save.

After creating the File menu along with two menu items, Open and Save

The application will appear as shown in the following screenshot:

MainWindow - demoFileDialog.ui® EI@
'ﬁ‘ Type Here
[open ¥
Save &
Type Here
Add Separator

[154]

Understanding Dialogs Chapter 5

In the Action Editor window that is below the Property Editor window, you can
see that the default object names of the Open and Save menu items are
actionOpen and actionSave, respectively. The Shortcut tab in the Action
Editor window is currently blank, as no shortcut has yet been assigned to either

menu item:
Action Editor g X
BEN @ | (x| /. [Filter
Mame Used Text Shortout Checkable ToolTip
actionOpen Open L] Open
actionSave Save] Save
< >

10. To assign a shortcut to the Open menu item, double-click on the blank space in
the Shortcut tab of the actionOpen menu item. You get the dialog box, as shown
in the following screenshot:

Edit action - Ot Designer >
Text: |m |
Object name: |acﬁu:un0pen |
ToolTip: |O|:uen |
Icon theme: | | -
Tcon: Mormal Off ~ | | |*

Checkable: [
Shorteut: [Ctrl+0 || »

Cancel

[155]

Understanding Dialogs Chapter 5

The Text, Object name, and ToolTip boxes are automatically filled with default
text.

11. Click on the Shortcut box to place the cursor in that box, and press the Ctrl and
O keys to assign Ctrl + O as a shortcut to the Open menu item.

12. Double-click on the blank space in the Shortcut tab of the actionSave menu
item and press Ctrl + S in the Shortcut box of the dialog box that opens up.

13. After assigning the shortcut keys to both the menu items, Open and Save. The
Action Editor window will appear as shown in the following screenshot:

Action Editor g X

T
g

NPE x A |

Mame Uzed Text Shortcut Checkable TeclTip
actionOpen Open Ctrl+ O O] Open
action5ave Save Ctrl+5] Save

£ >

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file. On application of the pyuic5 command, the XML file will be converted
into Python code. The generated Python script, demoFileDialog.py, can be seen
in the source code bundle of the book. The demoFileDialog.py script will be
used as a header file, and will be imported in another Python script file, which
will invoke this user interface design, the File menu and its respective menu
items.

14. Create another Python file with the name callFileDialog.pyw and import the
demoFileDialog.py code into it:

import sys
from PyQt5.QtWidgets import QOMainWindow, QApplication, QAction,
QFileDialog
from demoFileDialog import *
class MyForm(QMainWindow) :
def __init_ (self):
super () .__init__ ()
self.ui = Ui_MainWindow ()

[156]

Understanding Dialogs Chapter 5

self.ui.setupUi (self)
self.ui.actionOpen.triggered.connect (self.openFileDialoq)
self.ui.actionSave.triggered.connect (self.saveFileDialoq)
self.show()
def openFileDialog(self):
fname = QFileDialog.getOpenFileName (self, 'Open file',
'/home")
if fname[O0]:
f = open(fname[0], 'r'")
with f:
data = f.read()
self.ui.textEdit.setText (data)
def saveFileDialog(self):
options = QFileDialog.Options()
options |= QFileDialog.DontUseNativeDialog
fileName, _ = QFileDialog.getSaveFileName (self,
"QFileDialog.
getSaveFileName ()","","All Files (*);;Text Files (*.txt)",
options=options)
f = open(fileName, 'w')
text = self.uil.textEdit.toPlainText ()
f.write (text)
f.close()
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

In the callFileDialog.pyw file, you can see that the click() event of the Open menu item
with objectName, act ionOpen, is connected to the openFileDialog method; when the
user clicks the Open menu item, the openFileDialog method will be invoked. Similarly,
the click() event of the Save menu item with objectName, actionSave, is connected to the
saveFileDialog method; when the user clicks the Save menu item, the

saveFileDialog method will be invoked.

In the openFileDialog method, the open file dialog is opened by invoking the
getOpenFileName method of the QFileDialog class. The open file dialog enables the user
to browse the directories and choose the desired file to open. After selecting the file, when
the user clicks the OK button, the selected filename is assigned to the fname variable. The
file is opened in read-only mode and the file contents are read and assigned to the Text Edit
widget; that is, the file content is displayed in the Text Edit widget.

[157]

Understanding Dialogs Chapter 5

After making the changes in the file contents being displayed in the Text Edit widget, when
the user clicks the Save menu item from the File dialog, the saveFileDialog () method
will be invoked.

In the saveFileDialog () method, the getSaveFileName () method is invoked on the
QFileDialog class, which will open the file save dialog box. You can save the file with the
same name at the same location, or with some other name. If the same filename is provided
at the same location, then, on clicking the OK button, you get a dialog box asking whether
you want to overwrite the original file with the updated content. On supplying the
filename, that file is opened in write mode and the content in the Text Edit widget will be
read and written into the file. That is, the updated file contents that are available in the Text
Edit widget are written into the supplied filename.

On running the application, you find a File menu with two menu items, Open and Save, as
shown in the following screenshot. You can see the shortcuts of the Open and Save menu
items too:

B MainWindow — O >
File

Open Ctrl+C
Save Ctrl+5

[158]

Understanding Dialogs

Chapter 5

On clicking the Open menu item from the File menu, or on pressing the shortcut keys Ctrl
+ O, you get the Open file dialog, as shown in the following screenshot. You can browse the
desired directory and select the file to open. After selecting the file, you need to click

the Open button from the dialog;:

B Openfile .
Pt e * ThisPC » Local Disk (D) Search Local Disk (D) ¥e)
Organize + Mew folder =2 -« [TH 9
B Thic PC s Mame Date modified Type i
=2 KUNAINGHISUSEETOgram | rougniNetbeans Ua/Us/ 2013 2 B PV VICTOSort UTTice |
- 3D Objects 5] SarnsonMeteor Mic_OM_v1 16/ 168:01 AM PDF File
I Desktop .__] samsonmic 16/01/2016 233 PM Text Document
ii} Documents {__] savingrows 2/2016 1:40 PM Tet Document
-'r Downloads i2] ScheduleofVideos 17225 PM Microsoft Office |
= 9/04/2017 4:26 PM % ent
J‘ Music _|_'| Shoperlpdate 19/04/2017 426 PM Text Documen
s 5] shriganeshalatterhead 19/11/2016 2:31 PM Microsoft Office
=/ Pictures =) _
_ =/ StepstoAdMOb 19/08/2017 4:43 PM Text Document
M Videos j testCap 146 PM Text Document
‘s Local Disk (C]] tet 7519PM Microsoft Office.
= Local Disk (D) 0] texts &0 PM Microsoft Office.,
- Local Disk (E:) T TurboC++ for Windows 7 09 15.7:54 PM Shortcut
& wishealifircflnnr ISR AAG DR DKIAG File ¥
=k Network b llEs % >
File name: ‘testCap X

[159]

Understanding Dialogs Chapter 5

The content of the selected file will be displayed in the Text Edit box, as shown in the
following screenshot:

B MainWindow — O -
File

22j05/2017 2:17:42 PM
this is the file for demonstration|

[160]

Understanding Dialogs Chapter 5

After making modifications in the file contents shown in the Text Edit box, when the user
clicks on the Save menu item from the File menu, the get SaveFileName method will be
invoked to display the save file dialog box. Let's save the file with the original name,
followed by clicking the Save button, as shown in the following screenshot:

B ' OFileDialog.getSaveFileMame(]) 7 *
Look in: Bz - 2 0 Eﬁ E] [%
Bn My Computer Mame Size Type Date Modified =
1KB : i
a P S — _1| OOPsBann?rMatter.txt bd:F!Ie 20/08/..:22 PM
=] O0PsTutorialCode.be BKE bt File 13/08/..36 PM
] RunningFirstlS..hMetBeans.docx 403 KB doc..ile 04/08/..:16 PM
| SamsonMeteor Mic_OM_v1.pdf 3TME pdf File 16/01/...:01 AM
5| samsenmic.tt 158..tes tet File 16/01/..:33 PM
=] savingrows.bd 989..tes bt File 15/02/..:40 PM
2] scheduleofVideos.xlsx 1TKB wlsx File 23/09/...:25 PM
|=| ShoperUpdatelog 131..tes |og File 15/04/...:26 PM
@ shriganeshalatterhead. docx 10KE doc.ile 19/11/.:31 PM
=] StepstoAdiOb.bdt O bytes bt File 19/08/..:43 PM
5| testCap.xt TAbytes tt File 07/03/...:46 PM
9] text.docx 56KB doc..ile 26/05/...:19 PM
] texts.docx TOKB doc..ile 147047207 PM
E viahsalifirstfloor.png 16 KB pngFile 25/07/..:49 PM
< 3 || [E videopublisher.td 590..tes tutFile 16/06/..:5% PM i
File name: |testCa|:|.txt | | Save
Files of type: | Al Files (%) hd Cancel

Because the file is being saved with the same name, you will get a dialog box asking for
confirmation to replace the original file with the new content, as shown in the following
screenshot. Click on Yes to update the file with the new content:

B ' OFileDialog.getSaveFileNa... X

testCap.tet already exists.
é ! b Do you want to replace it?

[161]

Understanding Layouts

In this chapter, we will focus on the following topics:

e Using Horizontal Layout
¢ Using Vertical Layout

e Using Grid Layout

e Using Form Layout

Understanding layouts

As the name suggest, layouts are used for arranging widgets in the desired format. On
arranging certain widgets in a layout, certain size and alignment constraints are applied to
the widgets automatically. For example, on increasing the size of the window, the widgets
in the layout also increase in size to use up the increased space. Similarly, on reducing the
size of the window, the widgets in the layout also decrease in size. The following question
arises: how does the layout know what the recommended size of the widget is?

Basically, each widget has a property called sizeHint that contains the widget's
recommended size. When the window is resized and the layout size also changes, it is
through the sizeHint property of the widget that the layout managers know the size
requirement of the widget.

In order to apply the size constraints on the widgets, you can make use of the following two
properties:

e minimumSize: If the window size is decreased, the widget will still not become
smaller than the size specified in the minimumSize property.

e maximumSize: Similarly, if the window is increased, the widget will not become
larger than the size specified in the maximumSize property.

When the preceding properties are set, the value specified in the sizeHint property will be
overridden.

Understanding Layouts Chapter 6

To arrange widgets in a layout, simply select all the widgets with Ctrl + left-click and click
Layout Manager on the toolbar. Another way is to right-click to open the context menu.
From the context menu, you can select the Layout menu option, followed by selecting the
desired layout from the submenu that pops up.

On selecting the desired layout, the widgets will be laid out in the selected layout, and the
layout will be indicated by a red line around the widgets that is not visible at runtime. To
see whether the widgets are properly laid out, you can preview the form by selecting Form,
Preview, or Ctrl + R. To break the layout, select Form, Break Layout, enter Ctrl + O, or select
the Break Layout icon from the toolbar.

9 The layouts can be nested.

The following are layout managers provided by Qt Designer:

¢ Horizontal Layout
¢ Vertical Layout

e Grid Layout

e Form Layout

Spacers

In order to control spacing between widgets, horizontal and vertical spacers are used.
When a horizontal spacer is kept between the two widgets, the two widgets will be pushed
as far left and right as possible. If the window size is increased, the widget sizes will not
change and the extra space will be consumed by the spacer. Similarly, when the window
size is decreased, the spacer will automatically reduce but the widget sizes will not be
changed.

0 Spacers expand to fill empty space and shrink if the space is decreased.

Let's look at the procedure for arranging widgets in a horizontal box layout.

[163]

Understanding Layouts Chapter 6

Using Horizontal Layout

A horizontal layout arranges widgets next to each other in a row that is, widgets are
horizontally aligned using Horizontal Layout. Let's understand this concept by making an

application.

How to do it...

In this application, we will prompt the user to enter an email address and password. The
main focus of this recipe is to understand how two pairs of the Label and Line Edit widgets
are horizontally aligned. Here is the step-by-step procedure to create this application:

1. Let's create an application based on the Dialog without Buttons template and
add two QLabel, two QlineEdit, and one QPushButton widget to the form by
dragging and dropping two Label, two Line Edit, and a Push Button widget on
the form.

2. Set the text property of the two Label widgets to Name and Email Address.

3. Also, set the text property of the Push Button widget to Submit.

4. As the purpose of this application is to understand the layout and nothing else,
we won't be setting the objectName property of any of the widgets in the
application.

The form will now appear as shown in the following screenshot:

Dialog - demoHOrizontalLayout.ui El@

Name | |

Email Address - | |

Submit

[164]

Understanding Layouts Chapter 6

5.

We will be applying Horizontal Layout on each pair of Label and Line
Edit widgets. So, click on the Label widget with the text, Name, and, keeping the
Ctrl key pressed, click on the Line Edit widget besides it.

0 You can select more than one widget by using Ctrl + left-click.

6.

7.

After selecting the Label and Line Edit widgets, right-click and select the Layout
menu option from the context menu that opens up.

On selecting the Layout menu option, several submenu options will appear on
the screen; select the Layout Horizontally submenu option. Both the Label and
Line Edit widgets will be aligned horizontally, as shown in the following
screenshot:

Dialog - dermoHOrizontallayout.ui® E\@

Email Address - |

Submit

What if you want to break the layout? This is very simple: you can break any
layout at any time by just selecting the layout and right-clicking on it. The
context menu will pop up; select the Layout menu option from the context menu,
followed by the Break Layout submenu option.

To horizontally align the second pair of Label widgets with the text, Email
Address, and the Line Edit widget beside it, repeat the same procedure as

mentioned in steps 6 and 7. This pair of Label and Line Edit widgets will also be
horizontally aligned, as shown in the following screenshot.

[165]

Understanding Layouts Chapter 6

You can see that a red rectangle surrounds the two widgets. This red rectangle is
the horizontal layout window:

Dialog - demoHQOrizontalLayout.ui® EI@

Email Address | |

Submit

10. To create some space between the first pair of Label and Line Edit widgets, drag
the Horizontal Spacer widget from the Spacers tab of Widget Box and drop it in
between the Label widget with the text, Name, and the Line Edit widget beside it.

The Horizontal Spacer widget initially takes up the default space between
the two widgets. The spacers appear as blue springs on the form.

11. Adjust the size of the horizontal spacer by dragging its nodes to constrain the
width of the Line Edit widget, as shown in the following screenshot:

Dialog - demoHQrizentallayout.ui® EI@

[Email Address | |

Submit

[166]

Understanding Layouts Chapter 6

12. Select the red rectangle of the Horizontal Layout widget from the first pair
of Label and Line Edit widgets, and drag it to the right so that its width becomes
equal to the second pair.

13. On dragging the Horizontal Layout widget, the horizontal spacer will increase
its width to consume the extra blank space between the two widgets, as shown in
the following screenshot:

Dialeg - demoHOnzontalLayout.ui™ EI@

Email Address ‘ |

Submit

14. Save the application as demoHorizontalLayout.ui.

The user interface created with Qt Designer is stored in a . ui file, which is an XML file, and
we need to convert it to Python code. To do the conversion, you need to open a Command
Prompt window and navigate to the folder where the file is saved, then issue the following
command line:

C:\Pythonbook\PyQt5>pyuic5 demoHorizontalLayout.ui -o
demoHorizontalLayout.py

The Python script file demoHorizontalLayout . py may have the following code:

from PyQt5 import QtCore, QtGui, QtWidgets
class Ui_Dialog(object) :
def setupUi(self, Dialog):

Dialog.setObjectName ("Dialog")
Dialog.resize (483, 243)
self.pushButton = QtWidgets.QPushButton (Dialog)
self.pushButton.setGeometry (QtCore.QRect (120, 130, 111,
23))
font = QtGui.QFont ()
font.setPointSize (12)

[167]

Understanding Layouts Chapter 6

self.pushButton.setFont (font)
self.pushButton.setObjectName ("pushButton")
self.widget = QtWidgets.QWidget (Dialog)
self.widget.setGeometry (QtCore.QRect (20, 30, 271, 27))
self.widget.setObjectName ("widget™")
self.horizontallayout = QtWidgets.QHBoxLayout (self.widget)
self.horizontallayout.setContentsMargins (0, 0, 0, 0)
self.horizontallayout.setObjectName ("horizontalLayout")
self.label = QtWidgets.QLabel (self.widget)
font = QtGui.QFont ()
font.setPointSize (12)
self.label.setFont (font)
self.label.setObjectName ("label")
self.horizontallayout.addWidget (self.label)
spacerltem = QtWidgets.QSpacerItem (40, 20, QtWidgets.
Q0SizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum)
self.horizontallayout.addItem(spacerItem)
self.lineEdit = QtWidgets.QLineEdit (self.widget)
font = QtGui.QFont ()
font.setPointSize (12)
self.lineEdit.setFont (font)
self.lineEdit.setObjectName ("lineEdit")
self.horizontallayout.addWidget (self.lineEdit)
self.widgetl = QtWidgets.QWidget (Dialog)
self.widgetl.setGeometry (QtCore.QRect (20, 80, 276, 27))
self.widgetl.setObjectName ("widgetl")
self.horizontallayout_2 = QtWidgets.QHBoxLayout (self.
widgetl)
self.horizontallayout_2.setContentsMargins (0, 0, 0, 0)
self.horizontallLayout_2.setObjectName ("horizontallLayout_2")
self.label_2 = QtWidgets.QLabel (self.widgetl)
font = QtGui.QFont ()
font.setPointSize (12)
self.label_2.setFont (font)
self.label_2.setObjectName ("label_2")
self.horizontallayout_2.addWidget (self.label_2)
self.lineEdit_2 = QtWidgets.QLineEdit (self.widgetl)
font = QtGui.QFont ()
font.setPointSize (12)
self.lineEdit_2.setFont (font)
self.lineEdit_2.setObjectName ("lineEdit_2")
self.horizontallayout_2.addWidget (self.lineEdit_2)
self.retranslateUi (Dialog)
QtCore.QMetaObject.connectSlotsByName (Dialog)

def retranslateUi(self, Dialog):
_translate = QtCore.QCoreApplication.translate
Dialog.setWindowTitle (_translate("Dialog", "Dialog"))
self.pushButton.setText (_translate ("Dialog", "Submit"))

[168]

Understanding Layouts Chapter 6

self.label.setText (_translate("Dialog", "Name"))
self.label_2.setText (_translate("Dialog", "Email Address"))
if _ name_ == "_ _main_ ":

import sys

app = QtWidgets.QApplication(sys.argv)
Dialog = QtWidgets.QDialog()

ui = Ui_Dialog()

ui.setupUi (Dialogqg)

Dialog.show ()

sys.exit (app.exec_())

How it works...

You can see in the code that a Line Edit widget with the default objectName

property, 1ineEdit, and a Label widget with the default objectName property as label are
placed on the form. Both the Line Edit and Label widgets are horizontally aligned using
the Horizontal Layout widget. The Horizontal Layout widget has the default objectName
property, horizontalLayout. On aligning the Label and Line Edit widgets, the horizontal
space between the two widgets is reduced. So, a spacer is kept between the Label and Line
Edit widgets. The second pair, Label with the default objectName property label_2 and
the Line Edit widget with the default objectName property 1ineEdit_2, are horizontally
aligned by Horizontal Layout with the default objectName

property, horizontalLayout_2.

On running the application, you will find that the two pairs of Label and Line Edit widgets
are horizontally aligned, as shown in the following screenshot:

1 Dialog ? X

Name | |

Email Address | ‘

| Submit |

[169]

Understanding Layouts Chapter 6

Using Vertical Layout

Vertical Layout arranges the selected widgets vertically, in a column one below the other.
In the following application, you will learn the process of laying widgets in a vertical
layout.

How to do it...

In this application, we will prompt the user to enter a name and email address. The labels
and textboxes for entering names and email addresses, along with the submit button, will
be arranged vertically one below the other via Vertical Layout. Here are the steps to create
the application:

1. Launch Qt Designer and create an application based on the Dialog without
Buttons template, then add two QLabel, two QlineEdit, and one QPushButton
widget to the form by dragging and dropping two Label, two Line Edit, and
one Push Button widget onto the form.

2. Set the text property of the two Label widgets to Name and Email Address.

3. Set the text property of the Push Button widget to Submit. Because the purpose
of this application is to understand the layout and nothing else, we won't be
setting the objectName property of any of the widgets in the application. The
form will now appear as shown in the following screenshot:

Dialeg - demoverticalLlayout.ui®

Name | |

Email Address - | |

Submit

[170]

Understanding Layouts Chapter 6

4.

10.

Before the application of Vertical Layout on the widgets, we need to align the
widgets horizontally. So, we will apply the Horizontal Layout widget on each
pair of Label and Line Edit widgets. So, click the Label widget with the text
Name and, keeping the Ctrl key pressed, click on the Line Edit widget besides it.

After selecting the Label and Line Edit widgets, right-click the mouse button and
select the Layout menu option from the context menu that opens up.

On selecting the Layout menu option, several submenu options will appear on
the screen. Select the Layout Horizontally submenu option. Both the Label and
Line Edit widgets will be aligned horizontally.

To horizontally align the second pair of Label with the text, Email Address,
and the Line Edit widget beside it, repeat the same procedure as mentioned in
the previous steps, 5 and 6. You can see that a red rectangle surrounds the two
widgets. This red rectangle is the horizontal layout window.

To create some space between the first pair of Label and Line Edit widgets, drag
the Horizontal Spacer widget from the Spacers tab of Widget Box and drop it in
between the Label widget with the text, Name, and the Line Edit widget besides
it. The horizontal spacer will initially take up the default space between the two
widgets.

Select the red rectangle of the Horizontal Layout widget from the first pair of
Label and Line Edit widgets, and drag it to the right so that its width becomes
equal to the second pair.

On dragging the Horizontal Layout widget, the horizontal spacer will increase
its width to consume the extra blank space between the two widgets, as shown in
the following screenshot:

Dialog - demoverticalLayout.ui® =

Name }'.l'.f.".".".".f.".f."-f-"-f-",i | l

mail Adress | :

Submit

[171]

Understanding Layouts Chapter 6

11.

12.
13.

14.

15.

16.

Now, select three things: the first Horizontal Layout window, the second
Horizontal Layout window, and the Submit button. Keep the Ctrl key pressed
during these multiple selections.

Once these three things are selected, right-click to open the context menu.
From the context menu, select the Layout menu option, followed by the Layout
Vertically submenu option. The three items will be aligned vertically, and the
width of the Submit button will be increased to match the width of the widest
layout, as shown in the following screenshot:

Dialeg - demoverticalLayout.ui® EI@

T S ——
Name l’.".f.f.".".".".f.f.l'.f.".".f.f.l’i r

sEmail Address | "

| Submit
L |

You can also select the Layout Vertically icon from the toolbar to arrange the
widgets in a vertical layout.

If you want to control the width of the Submit button, you can use the
minimumSize and maximumSize properties of this widget. You will notice that
the vertical space between the two horizontal layouts is greatly reduced.

To create some space between the two horizontal layouts, drag the Vertical
Spacer widget from the Spacers tab of Widget Box and drop it in between the
two horizontal layouts.

The vertical spacer will initially take up the default space between the two
horizontal layouts

[172]

Understanding Layouts Chapter 6

17. To create vertical space between the second horizontal layout and the Submit
button, drag the vertical spacer and drop it between the second horizontal layout
and the Submit button.

18. Select the red rectangle of Vertical Layout and drag it down to increase its
height.

19. On dragging the Vertical Layout widget, the vertical spacer will increase its
height to consume the extra blank space between the two horizontal layouts and
the Submit button, as shown in the following screenshot:

Dialeg - demoverticalLlayout.ui Ii”él

Name l’.f.l'.l'.f.l'.l'.l'.f.l'.l'.f.l'.".".f.l'l ‘ ‘

[Email Address ‘ ‘

20. Save the application as demoverticalLayout.ui.

As we know that the user interface created with Qt Designer is stored in a . ui file, which is
an XML file, it needs to be converted into Python code. To do the conversion, you need to

open a Command Prompt window and navigate to the folder where the file is saved, then
issue the following command:

C:PyQt5>pyuic5 demoverticallLayout.ui —-o demoverticalLayout.py

The Python script file, demoverticalLayout.py, may have the following code:

from PyQt5 import QtCore, QtGui, QtWidgets
class Ui_Dialog(object) :
def setupUi(self, Dialog):

Dialog.setObjectName ("Dialog")
Dialog.resize (407, 211)
self.widget = QtWidgets.QWidget (Dialog)
self.widget.setGeometry (QtCore.QRect (20, 30, 278, 161))
self.widget.setObjectName ("widget")
self.verticallayout = QtWidgets.QVBoxLayout (self.widget)

[173]

Understanding Layouts

Chapter 6

self
self

font

font.
self.
self.
self.

.verticallLayout.setContentsMargins (0, 0, 0, O0)
.verticallLayout.setObjectName ("verticallLayout")
self.
self.
self.

horizontallLayout = QtWidgets.QHBoxLayout ()
horizontalLayout.setObjectName ("horizontalLayout")
label = QtWidgets.QLabel (self.widget)

= QtGui.QFont ()

setPointSize (12)

label.setFont (font)

label.setObjectName ("label")
horizontallLayout.addWidget (self.label)

spacerltem = QtWidgets.QSpacerItem (40, 20, QtWidgets.
Q0SizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum)

self.
self.

font

font.
self.
self.
self.

self

horizontallayout.addItem(spacerItem)
lineEdit = QtWidgets.QLineEdit (self.widget)
= QtGui.QFont ()

setPointSize (12)

lineEdit.setFont (font)
lineEdit.setObjectName ("lineEdit")
horizontallLayout.addWidget (self.lineEdit)

.verticalLayout.addLayout (self.horizontallLayout)

spacerIteml = QtWidgets.QSpacerItem (20, 40, QtWidgets.
Q0SizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding)

self

font

font.
self.
self.
self.
self.

font

font.
self.
self.
self.

self

.verticallLayout.addItem(spacerIteml)
self.
self.
self.

horizontallLayout_2 = QtWidgets.QHBoxLayout ()
horizontallLayout_2.setObjectName ("horizontalLayout_2")
label_2 = QtWidgets.QLabel (self.widget)

= QtGui.QFont ()

setPointSize (12)

label_2.setFont (font)

label_2.setObjectName ("label_2")
horizontallLayout_2.addWidget (self.label_2)
lineEdit_2 = QtWidgets.QLineEdit (self.widget)
= QtGui.QFont ()

setPointSize (12)

lineEdit_2.setFont (font)
lineEdit_2.setObjectName ("lineEdit_2")
horizontallayout_2.addWidget (self.lineEdit_2)

.verticallLayout.addLayout (self.horizontallLayout_2)

spacerltem?2 = QtWidgets.QSpacerItem (20, 40, QtWidgets.
QSizePolicy.Minimum, QtWidgets.QSizePolicy.

Expanding)

self.verticallayout.addItem(spacerIltem?2)
self.pushButton = QtWidgets.QPushButton (self.widget)
font = QtGui.QFont ()

font.setPointSize (12)

self.pushButton.setFont (font)
self.pushButton.setObjectName ("pushButton")
self.verticallLayout.addWidget (self.pushButton)

[174]

Understanding Layouts Chapter 6

self.retranslateUi (Dialoq)
QtCore.QMetaObject.connectSlotsByName (Dialog)

def retranslateUi(self, Dialog):
_translate = QtCore.QCoreApplication.translate
Dialog.setWindowTitle (_translate("Dialog", "Dialog"))

self.label.setText (_translate("Dialog", "Name"))
self.label_2.setText (_translate("Dialog", "Email Address"))
self.pushButton.setText (_translate("Dialog", "Submit"))

if _ name_ == "_ main__ ":

import sys

app = QtWidgets.QApplication(sys.argv)
Dialog = QtWidgets.QDialog()

ui = Ui_Dialog()

ui.setupUi (Dialogqg)

Dialog.show ()

sys.exit (app.exec_())

How it works...

You can see in the code that a Line Edit widget with the default objectName

lineEdit property and the Label widget with the default objectName label property are
placed on the form and are horizontally aligned using the horizontal layout with the
default objectName property, horizontalLayout. On aligning the Label and Line Edit
widgets, the horizontal space between the two widgets is reduced. So, a spacer is kept
between the Label and Line Edit widgets. The second pair, the Label widget with the
default objectName label_2 property and the Line Edit widget with the default
objectName 1lineEdit_2 property, are horizontally aligned using the horizontal layout
with the default objectName horizontalLayout_2 property. Then, the first two
horizontal layouts and the Submit button with the default objectName

pushButton property are vertically aligned using the Vertical Layout widget with the
default objectName property, verticalLayout. The horizontal space between the first
pair of Label and Line Edit widgets is increased by placing a horizontal spacer between
them. Similarly, the vertical space between the two horizontal layouts is increased by
placing a vertical spacer called spacerIteml between them. Also, a vertical spacer called
spacerItem? is placed between the second horizontal layout and the Submit button to
increase the vertical space between them.

[175]

Understanding Layouts Chapter 6

On running the application, you will find that the two pairs of Label and Line Edit
widgets, and the Submit button, are vertically aligned, as shown in the following
screenshot:

B Dialog 7 >

Name [|

Email Address | |

| Submit |

Using Grid Layout

Grid Layout arranges widgets in a stretchable grid. To understand how the Gird Layout
widget arranges the widgets, let's create an application.

How to do it...

In this application, we will make a simple sign-in form, prompting the user to enter an
email address and password, followed by clicking the Submit button. Below the Submit
button, there will be two buttons, Cancel and Forgot Password. The application will help
you understand how these widgets are arranged in a grid pattern. Following are the steps
to create this application:

1. Launch Qt Designer and create an application based on the Dialog without
Buttons template, then add two QLabel, two QlineEdit, and three
QPushButton widgets to the form by dragging and dropping two Label, two
Line Edit, and three Push Button widgets on the form.

2. Set the text property of the two Label widgets to Name and Email Address.

[176]

Understanding Layouts

Chapter 6

3. Set the text property of the three Push Button widgets to Submit, Cancel, and

Forgot Password.

4. Because the purpose of this application is to understand the layout and nothing
else, we won't be setting the objectName property of any of the widgets in the

application.

5. To increase the vertical space between the two Line Edit widgets, drag the
Vertical Spacer widget from the Spacers tab of Widget Box and drop it in
between the two Line Edit widgets. The vertical spacer will initially take up the

blank space between the two Line Edit widgets.

6. To create vertical space between the second Line Edit widget and the Submit
button, drag the Vertical Spacer widget and drop it between them.

The application will appear as shown in the following screenshot:

Dialeg - demoGridLayout.ur™

Name |

l‘.‘.‘\".‘\".\{

Email Address |

I‘.‘.‘.‘.‘.‘J{

Submit

Cancel Foraot Password

=R S5

7. Select all the widgets on the form by pressing the Ctrl key and clicking all the

widgets on the form.

8. After selecting all the widgets, right-click the mouse button to open the context

menu.

[177]

Understanding Layouts

Chapter 6

9. From the context menu, select the Layout menu option, followed by selecting the

Layout in a Grid submenu option.

The widgets will be aligned in the grid as shown in the following screenshot:

-

\| Dialog - demoGridLayout.ui®

‘Name . ‘

+\\\‘.\\\\\\\‘l

Email Address |

}'\\\\\\\\\“‘{

Submit

Cancel Forgot Password

=)

r
™
k

. Dialog - demoGridLayout.ui*

IName: | ‘

| l\\\\\\‘i

Email Address||

}].\\\\\\{

Submit

}\\\\\\{

Cancel ' |Forgot Password

[178]

Understanding Layouts Chapter 6

10. To increase the vertical space between the Submit and Cancel push buttons,
drag the Vertical Spacer widget from the Spacers tab of Widget Box and drop it
in between them.

11. To increase the horizontal space between the Cancel and Forgot Password push
buttons, drag the Horizontal Spacer widget from the Spacers tab and drop it in
between them.

The form will now appear as shown in the following screenshot:

Dialog - demeGridLayout.ui® =N

Email ﬁddress_| | |

Submit

}‘\,\,\\,\,\,\{

Cancel El'ﬁmi Forgot Password

12. Save the application by name as demoGridLayout . ui.

The user interface created with Qt Designer is stored in a . ui file, which is an XML file, and
needs to be converted into Python code. To do the conversion, you need to open a
Command Prompt window and navigate to the folder where the file is saved, then issue the
following command:

C:PyQt5>pyuic5 demoGridLayout.ui —-o demoGridLayout.py

The Python script file demoGridLayout . py may have the following code:

from PyQt5 import QtCore, QtGui, OQOtWidgets
class Ui_Dialog(object) :
def setupUi(self, Dialog):
Dialog.setObjectName ("Dialog")
Dialog.resize (369, 279)

[179]

Understanding Layouts

Chapter 6

self
self
self

self
font

font.
.pushButton.setFont (font)

.pushButton.setObjectName ("pushButton")
self.

self
self

.widget = QtWidgets.QWidget (Dialog)
.widget.setGeometry (QtCore.QRect (20, 31, 276, 216))
.widget.setObjectName ("widget™")

self.
self.
self.

gridLayout = QtWidgets.QGridLayout (self.widget)
gridLayout.setContentsMargins (0, 0, 0, O0)
gridLayout.setObjectName ("gridLayout")

.pushButton = QtWidgets.QPushButton (self.widget)

= QtGui.QFont ()
setPointSize (12)

gridLayout.addWidget (self.pushButton, 4, 0, 1, 5)

spacerltem = QtWidgets.QSpacerItem (20, 40, QtWidgets.
Q0SizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding)

self.
self.

font

font.
self.
self.
self.
self.

font

font.
self.
self.
self.
self.

font

font.
self.
self.
self.
self.

font

font.
self.
self.
self.

gridLayout.addItem(spacerItem, 5, 0, 1, 1)
label = QtWidgets.QLabel (self.widget)

= QtGui.QFont ()

setPointSize (12)

label.setFont (font)

label.setObjectName ("label")
gridLayout.addWidget (self.label, 0, 0, 1, 1)
label_2 = QtWidgets.QLabel (self.widget)

= QtGui.QFont ()

setPointSize (12)

label_2.setFont (font)

label_2.setObjectName ("label_2")
gridLayout.addWidget (self.label_2, 2, 0, 1, 2)
lineEdit_2 = QtWidgets.QLineEdit (self.widget)
= QtGui.QFont ()

setPointSize (12)

lineEdit_2.setFont (font)
lineEdit_2.setObjectName ("lineEdit_2")
gridLayout.addWidget (self.linekEdit_2, 2, 2, 1, 3)
lineEdit = QtWidgets.QLineEdit (self.widget)

= QtGui.QFont ()

setPointSize (12)

lineEdit.setFont (font)

lineEdit.setObjectName ("lineEdit™")
gridLayout.addWidget (self.linekEdit, 0, 2, 1, 3)

spacerIteml = QtWidgets.QSpacerItem (20, 40, QtWidgets.
QOSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding)

self.

gridLayout.addItem(spacerIteml, 3, 1, 1, 1)

spacerltem?2 = QtWidgets.QSpacerItem (20, 40, QtWidgets.
QOSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding)

self.
self.

font

font.

gridLayout.addItem(spacerItem2, 1, 2, 1, 3)

pushButton_2 = QtWidgets.QPushButton (self.widget)
= QtGui.QFont ()
setPointSize (12)

[180]

Understanding Layouts Chapter 6

if

self.pushButton_2.setFont (font)
self.pushButton_2.setObjectName ("pushButton_2")
self.gridLayout.addWidget (self.pushButton_2, 6, 0, 1, 3)
self.pushButton_3 = QtWidgets.QPushButton (self.widget)
font = QtGui.QFont ()
font.setPointSize (12)
self.pushButton_3.setFont (font)
self.pushButton_3.setObjectName ("pushButton_3")
self.gridLayout.addWidget (self.pushButton_3, 6, 4, 1, 1)
spacerItem3 = QtWidgets.QSpacerItem (40, 20, QtWidgets.
Q0SizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum)
self.gridLayout.addItem(spacerItem3, 6, 3, 1, 1)
self.retranslateUi (Dialog)
QtCore.QMetaObject.connectSlotsByName (Dialog)
def retranslateUi(self, Dialog):

_translate = QtCore.QCoreApplication.translate
Dialog.setWindowTitle (_translate("Dialog", "Dialog"))
self.pushButton.setText (_translate ("Dialog", "Submit"))
self.label.setText (_translate("Dialog", "Name"))
self.label_2.setText (_translate("Dialog", "Email Address"))
self.pushButton_2.setText (_translate("Dialog", "Cancel"))
self.pushButton_3.setText (_translate("Dialog",
"Forgot Password"))

__name__ == "_ main_ ":

import sys

app = QtWidgets.QApplication(sys.argv)

Dialog = QtWidgets.QDialog()

ui = Ui_Dialog()

ui.setupUi (Dialogqg)

Dialog.show ()

sys.exit (app.exec_())

[181]

Understanding Layouts Chapter 6

How it works...

You can see in the code that a Line Edit widget with the default objectName

lineEdit property and a Label widget with the default objectName label property are
placed on the form. Similarly, a second pair, a Label widget with the default objectName
label_2 property and a Line Edit widget with the default objectName

lineEdit_2 property are placed on the form. The vertical space between the two pairs of
Label and Line Edit widgets is increased by placing a vertical spacer called spacerIteml
between them. A Push Button widget with the text, Submit, and

objectName, pushButton, is also placed on the form. Again, the vertical space between the
second Label with objectName label_2 and the Push Button widget with

objectName pushButton is increased by placing a vertical spacer called spacerItem2
between them. Two more push buttons with the default objectName

properties, pushButton_2 and pushButton_3, are placed on the form. All the widgets are
arranged in a stretchable grid layout with the default object name, gridLayout. The
vertical space between the two push buttons with the object names, pushButton and
pushButton_2, is increased by placing a vertical spacer called spacerItem3 between
them.

On running the application, you will find that the two pairs of Label and Line Edit
widgets, and the Submit, Cancel, and Forgot Password buttons, are arranged in a
stretchable grid, as shown in the following screenshot:

i Dialog ? bt

Name | |

Email Address | |

| Submit |

Cancel Forgot Password

[182]

Understanding Layouts Chapter 6

Using Form Layout

Form Layout is considered to be the most demanding layout in almost all applications. This
two-column layout is required when displaying products, services, and so on, as well as in
accepting feedback or other information from users or customers.

Getting ready

The form layout arranges the widgets in a two-column format. Like a sign-up form of any
site or any order form, where the form is divided into two columns, the column on the left
shows labels or text and the column on the right shows empty textboxes. Similarly, the
form layout arranges the widgets in the left and right columns. Let's understand the
concept of Form Layout using an application.

How to do it...

In this application, we will make two columns, one for displaying messages and the other
column for accepting input from the user. Besides two pairs of Label and Line Edit widgets
for taking input from the user, the application will have two buttons that will also be
arranged in the form layout. Here are the steps to create an application that arranges
widgets using Form Layout:

1. Launch Qt Designer and create an application based on the Dialog without
Buttons template, then add two QLabel, two QLineEdit, and two
QPushButton widgets to the form by dragging and dropping two Label, two
Line Edit, and two PushButton widgets on the form.

2. Set the text property of the two Label widgets to Name and Email Address.

3. Set the text property of the two Push Button widgets to Cancel and Submit.

4. Because the purpose of this application is to understand the layout and nothing
else, we won't be setting the objectName property of any of the widgets in the
application.

[183]

Understanding Layouts

Chapter 6

The application will appear as shown in the following screenshot:

Dialog - demoFormlayout.ui®

=][&]

Name |

Email Address |

Cancel Submit

5. Select all the widgets on the form by pressing the Ctrl key and clicking all the

widgets on the form.

6. After selecting all the widgets, right-click the mouse button to open the context

menu.

7. From the context menu, select the Layout menu option, followed by selecting the

Layout in a Form Layout submenu option.

The widgets will be aligned in the Form Layout widget, as shown in the following

screenshot:

Dialog - demoFormlayout.ui®

Email Address |

Cancel Submit

=&

[184]

Understanding Layouts Chapter 6

8. To increase the vertical space between the two Line Edit widgets, drag the
Vertical Spacer widget from the Spacers tab of Widget Box and drop it in
between them.

9. To increase the vertical space between the second Line Edit widget and the
Submit button, drag the Vertical Spacer widget from the Spacers tab and drop it
in between them.

10. Select the red rectangle of the Form Layout widget and drag it vertically to
increase its height. The two vertical spacers will automatically increase in height
to use the empty space in between the widgets.

The form will now appear as shown in the following screenshot:

Dialog - demoFormlLayout.ui™

éEmaiI Address ‘ ‘

Cancel Submit

11. Save the application as demoFormLayout .ui.

The user interface created with Qt Designer is stored in a . ui file, which is an XML file, and
needs to be converted into Python code. To do the conversion, you need to open a
Command Prompt window and navigate to the folder where the file is saved, then issue the
following command:

C:PyQt5>pyuic5 demoFormLayout.ui —-o demoFormLayout.py

The Python script file, demoFormLayout . py, may have the following code:

from PyQt5 import QtCore, QtGui, OQOtWidgets
class Ui_Dialog (object) :
def setupUi(self, Dialog):
Dialog.setObjectName ("Dialog")
Dialog.resize (407, 211)
self.widget = QtWidgets.QWidget (Dialogqg)

[185]

Understanding Layouts

Chapter 6

self
self

font

font.
self.
self.
self.

.widget.setGeometry (QtCore.QRect (20, 30, 276, 141))
.widget.setObjectName ("widget")

self.
self.
self.
self.

formLayout = QtWidgets.QFormLayout (self.widget)
formLayout.setContentsMargins (0, 0, 0, O0)
formLayout.setObjectName ("formLayout")

label = QtWidgets.QLabel (self.widget)

= QtGui.QFont ()

setPointSize (12)

label.setFont (font)

label.setObjectName ("label")
formLayout.setWidget (0, QtWidgets.QFormLayout.

LabelRole, self.label)

self.

font

font.
self.
self.
self.

lineEdit = QtWidgets.QLineEdit (self.widget)

= QtGui.QFont ()

setPointSize (12)

lineEdit.setFont (font)

lineEdit.setObjectName ("lineEdit")
formLayout.setWidget (0, QtWidgets.QFormLayout.

FieldRole,self.lineEdit)

self.

font

font.
self.
self.
self.

label_2 = QtWidgets.QLabel (self.widget)

= QtGui.QFont ()

setPointSize (12)

label_2.setFont (font)

label_2.setObjectName ("label_2")
formLayout.setWidget (2, QtWidgets.QFormLayout.

LabelRole, self.label_2)

self.

font

font.
self.
self.
self.

lineEdit_2 = QtWidgets.QLineEdit (self.widget)
= QtGui.QFont ()

setPointSize (12)

lineEdit_2.setFont (font)
lineEdit_2.setObjectName ("lineEdit_2")
formLayout.setWidget (2, QtWidgets.QFormLayout.

FieldRole, self.lineEdit_2)

self
font

font.

self
self

.pushButton_2 = QtWidgets.QPushButton (self.widget)

= QtGui.QFont ()
setPointSize (12)

.pushButton_2.setFont (font)
.pushButton_2.setObjectName ("pushButton_2")
self.

formLayout.setWidget (4, QtWidgets.QFormLayout.

LabelRole,self.pushButton_2)

self
font

font.

self
self

.pushButton = QtWidgets.QPushButton (self.widget)

= QtGui.QFont ()
setPointSize (12)

.pushButton.setFont (font)
.pushButton.setObjectName ("pushButton")
self.

formLayout.setWidget (4, QtWidgets.QFormLayout.

FieldRole, self.pushButton)
spacerltem = QtWidgets.QSpacerItem (20, 40, QtWidgets.

[186]

Understanding Layouts Chapter 6

QOSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding)
self.formLayout.setItem(l, QtWidgets.QFormLayout.FieldRole,
spacerItem)
spacerIteml = QtWidgets.QSpacerItem (20, 40, QtWidgets.
Q0SizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding)
self.formLayout.setItem (3, QtWidgets.QFormLayout.FieldRole,
spacerIteml)
self.retranslateUi (Dialogq)
QtCore.QMetaObject.connectSlotsByName (Dialog)
def retranslateUi(self, Dialog):

_translate = QtCore.QCoreApplication.translate
Dialog.setWindowTitle (_translate("Dialog", "Dialog"))
self.label.setText (_translate("Dialog", "Name"))
self.label_2.setText (_translate("Dialog", "Email Address"))
self.pushButton_2.setText (_translate("Dialog", "Cancel"))
self.pushButton.setText (_translate("Dialog", "Submit"))

if _ name_ == "_ main__ ":

import sys

app = QtWidgets.QApplication(sys.argv)

Dialog = QtWidgets.QDialog()

ui = Ui_Dialog()

ui.setupUi (Dialogqg)

Dialog.show ()

sys.exit (app.exec_())

How it works...

You can see in the code that a Line Edit widget with the default

objectName 1lineEdit property and a Label widget with the default objectName

labels property is placed on the form. Similarly, a second pair, a Label widget with the
default objectName label_2 property and a Line Edit widget with the default
objectName lineEdit_2 property are placed on the form. The two push buttons with the
object names, pushButton and pushButton_2, are placed on the form. All six widgets are
selected and aligned in a two-column format using the Form Layout widget with the
default objectName formLayout property.

[187]

Understanding Layouts

Chapter 6

On running the application, you will find that the two pairs of Label and Line Edit
widgets, and the Cancel and Submit buttons, are arranged in a Form Layout widget as

shown in the following screenshot:

-

~

\\.' Dialog - demoGridLayout.ui*

IName: | \

| }\\\\\‘.‘l

Email Address |

|],‘.'.\\\\1

Submit

}\\\\\\i

Cancel ' Forgot Password

[Dialog - demoGridLayout.ui* =n <"
Name \
Email Address |
Submit
Cancel Forgot Password
o [R]

[188]

Networking and Managing
Large Documents

In this chapter, we will learn how to use networking concepts and about how large
documents can be viewed in chunks. We will cover the following topics:

¢ Creating a small browser
¢ Creating a server-side application

Establishing client-server communication

Creating a dockable and floatable sign-in form

Multiple Document Interface

Displaying information in sections using Tab Widget

Creating a custom menu bar

Introduction

Space on a device screen is always limited, but sometimes you come across a situation in
which you want to display lots of information or services on the screen. In such a situation,
you can either use dockable widgets that can be floated anywhere on the screen; MDI to
display multiple documents as and when desired; a Tab Widget box to display information
in different chunks; or menus to display the required information on the click of a menu
item. Also, to better understand networking concepts, you need to understand how clients
and servers communicate. This chapter will help you understand all this.

Networking and Managing Large Documents Chapter 7

Creating a small browser

Let's now learn a technique to display a web page or the content of an HTML document.
We will simply be making use of the Line Edit and Push Button widgets so that the user
can enter the URL of the desired site, followed by clicking on the Push Button widget. On
clicking the push button, that site will appear in a customized widget. Let's see how.

In this recipe, we will learn how to make a small browser. Because Qt Designer does not
includes any widgets specifically, the focus of this recipe is to make you understand how a
custom widget can be promoted into QWwebEngineView, which in turn can be used for
displaying a web page.

The application will prompt for a URL and when the user clicks the Go button after
entering the URL, the specified web page will open in the QWebEngineView object.

How to do it...

In this recipe, we will require just three widgets: one for entering the URL, a second for
clicking the button, and a third for displaying the website. Here are the steps to creating a
simple browser:

1. Create an application based on the Dialog without Buttons template.

2. Add the QLabel, QLineEdit, QPushButton, and QWidget widgets to the form
by dragging and dropping Label, Line Edit, Push Button, and Widget onto the
form.

3. Set the text property of the Label widget to Enter URL.

4. Set the text property of the Push Button widget to Go.

5. Set the objectName property of the Line Edit widget to 1ineEditURL and that
of the Push Button widget to pushButtonGo.

6. Save the application as demoBrowser.ui.

[190]

Networking and Managing Large Documents Chapter 7

The form will now appear as shown in the following screenshot:

Dialog - demoBrowser.ui® El@

Enter URL - | | Go

7. The next step is to promote QWidget to QWebEngineView because, to display
web pages, QWlebEngineView is required.

8. Promote the Qwidget object by right-clicking on it and selecting the Promote to
... option from the menu that pops up.

9. In the dialog box that appears, leave the Base class name option as the default,
QWidget.

10. In the Promoted class name box, enter QWebEngineView and in the Header file

box type PyQt5.Q0tWebEngineWidgets.

[191]

Networking and Managing Large Documents

Chapter 7

11. Select the Promote button to promote QWidget to the QWebEngineView class, as

shown in the following screenshot:

Promoted Widgets - Cit Designer

Promoted Classes

Mame
v OWidget
OWebEngineView PyCt5.0tWebEngineWidgets [

Header file

Global include Usage

Mew Promoted Class

Base class name: Qwidget -

Promoted dass name: | |
Header file: | |
Global include O

Promote

Add

Reset

Close

The user interface created with Qt Designer is stored in a . ui file, which is
an XML file, and needs to be converted into Python code.

12. To do the conversion, you need to open a Command Prompt window and
navigate to the folder where the file is saved, then issue the following command:

C:\Pythonbook\PyQt5>pyuic5 demoBrowser.ui —-o demoBrowser.py

You can see the auto-generated Python script file demoBrowser. py in the

source code bundle of this book.

13. Treat the preceding code as a header file, and import it into the file from which

you will invoke its user interface design.

[192]

Networking and Managing Large Documents Chapter 7

14. Let's create another Python file with the name callBrowser.pyw and import the
demoBrowser .py code into it:

import sys
from PyQt5.QtCore import QUrl
from PyQt5.QtWidgets import QApplication, QDialog
from PyQt5.QtWebEngineWidgets import QWebEngineView
from demoBrowser import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonGo.clicked.connect (self.dispSite)
self.show ()
def dispSite(self):
self.ui.widget.load(QUrl (self.ui.lineEditURL.text ()))
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

In the demoBrowser. py file, a class with the name of the top-level object is created, with
Ui_ prepended. Thatis, for the top-level object, Dialog, the Ui_Dialog class is created
and stores the interface elements of our widget. That class includes two methods,
setupUi () and retranslateUi (). The setupUi () method creates the widgets that are
used in defining the user interface in Qt Designer. Also, the properties of the widgets are
set in this method. The setupUi () method takes a single argument, which is the top-level
widget of the application, an instance of QDialog. The retranslateUi () method
translates the interface.

In the callBrowser.pyuw file, you see that the click() event of the Push Button widget is
connected to the dispSite method; after entering a URL in the Line Edit widget, when the
user clicks the Push Button, the di spSite method will be invoked.

The dispSite () method invokes the 1oad () method of the QwWidget class. Recall that the
QWidget object is promoted to the QWwebEngineView class for viewing web pages.

The load () method of the QWebEngineVview class is supplied with the URL entered in the
lineEditURL object consequently, the web page of the specified URL opens up or loads in
the QWebEngine widget.

[193]

Networking and Managing Large Documents Chapter 7

On running the application, you get an empty Line Edit box and a Push Button widget.
Enter the desired URL in the Line Edit widget and click on the Go push button, and you
will find the web page opens in the QWwebEngineview widget, as shown in the following
screenshot:

Enter URL |http://bmharwani.com] Go

SN 1981U0)

Creating a server-side application

Networking plays a major role in modern life. We need to understand how communication
is established between two machines. When two machines communicate, one is usually a
server and the other is a client. The client sends requests to the server and the server
responds by serving the request made by the client.

In this recipe, we will be creating a client-server application where a connection is
established between client and server and each will be able to transfer text messages to the
other. That is, two applications will be made and will be executed simultaneously, and the
text written in one application will appear in the other.

[194]

Networking and Managing Large Documents Chapter 7

How to do it...

Let's begin by creating a server application first, as follows:

1.
2.

NS g W

Create an application based on the Dialog without Buttons template.
Add a QLabel, QTextEdit, QLineEdit, and QPushButton to the form by

dragging and dropping the Label, a Text Edit, Line Edit, and Push Button
widgets on the form.

Set the text property of the Label widget to Server to indicate that this is the
server application.

Set the text property of the Push Button widget to Send.

Set the objectName property of the Text Edit widget to textEditMessages.
Set the objectName property of the Line Edit widget to 1ineEditMessage.
Set the Push Button widget to pushButtonSend.

Save the application as demoServer.ui. The form will now appear as shown in
the following screenshot:

Malog - demoServer.ui E@

Server

Send

[195]

Networking and Managing Large Documents Chapter 7

The user interface created with Qt Designer is stored in a . ui file, which is an XML file, and
needs to be converted into Python code. The code of the generated file, demoServer.py,
can be seen in the source code bundle of this book.

How it works...

The demoServer.py file will be treated as a header file and will be imported into another
Python file that will use the GUI of the header file and transmit the data from the server to
client and vice versa. But before that, let's create a GUI for the client application. The GUI of
the client application is exactly the same as that of the server application, with the only
difference that the Label widget at the top of this application will display the text Client.

The demoServer.py file is a generated Python script of the GUI widgets that we dragged
and dropped onto the form.

To establish a connection between the server and client, we will require a socket object. To
create the socket object, you need to supply the following two arguments:

¢ Socket address: The socket address is represented using certain address families.
Each address family requires certain parameters to establish a connection. We
will be using the AF_INET address family in this application. The AF_INET
address family needs a pair of (host, port) to establish a connection where the
parameter, host is the hostname which can either be in string format, internet
domain notation, or IPv4 address format and the parameter; port is an integer
that represents the port number used for communication.

e Socket type: The socket type is represented through several
constants: SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, SOCK_RDM, and
SOCK_SEQPACKET. We will use the most generally used socket
type, SOCK_STREAWN, in this application.

The setsockopt () method is used in the application for setting the value of the given
socket option. It includes the following two essential parameters:

e SOL_SOCKET: This parameter is the socket layer itself. It is used for protocol-
independent options.

e SO_REUSEADDR: This parameter allows other sockets to bind () to this port
unless there is an active listening socket bound to the port already.

[196]

Networking and Managing Large Documents Chapter 7

You can see in the earlier code that a ServerThread class is created, which inherits the
Thread class of Python's threading module. The run () function is overridden where the
TCP_IP and TCP_HOST variables are defined and t cpServer is bound with these variables.

Thereafter, the server waits to see whether any client connection is made. For each new
client connection, the server creates a new ClientThread inside the while loop. This is
because creating a new thread for each client will not block the GUI functionality of the
server. Finally, the threads are joined.

Establishing client-server communication

In this recipe, we will learn to make a client and will see how it can send messages to the
server. The main idea is to understand how a message is sent, how the server listens to the
port, and how communication is established between the two.

How to do it...

To send messages to the server, we will be making use of the Line Edit and Push Button
widgets. The message written in the Line Edit widget will be passed to the server on the
click of the push button. Here is the step-by-step procedure for creating a client application:

1. Create another application based on the Dialog without Buttons template.

2. Add QLabel, QTextEdit, QLineEdit, and QPushButton to the form by
dragging and dropping the Label, Text Edit, Line Edit, and Push Button widgets
on the form.

Set the text property of the Label widget to Client.

Set the text property of the Push Button widget to Send.

Set the objectName property of the Text Edit widget to textEditMessages.
Set the objectName property of the Line Edit widget to 1ineEditMessage.
Set the Push Button widget to pushButtonSend.

® N W

Save the application by name as demoClient.ui.

[197]

Networking and Managing Large Documents Chapter 7

The form will now appear as shown in the following screenshot:

Dialog - demoClient.ui E@
Client

| | Send

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. The code of the
autogenerated file, demoClient . py, can be seen in the source code bundle of this
book. To use the GUI created in the demoClient.py file, it needs to be imported
into another Python file that will use the GUI and will transmit data from the
server to the client and vice versa.

9. Create another Python file with the name callServer.pyw and import the
demoServer.py code into it. The code in the callServer.pyw script is as
shown here:

import sys, time

from PyQt5 import QtGui

from PyQt5 import QtCore

from PyQt5.QtWidgets import QApplication, QDialog
from PyQt5.QtCore import QCoreApplication

[198]

Networking and Managing Large Documents Chapter 7

import socket

from threading import Thread

from socketserver import ThreadingMixIn
conn=None

from demoServer import *

class Window (QDialog) :

def

def

__init_ (self):

super () .__init__ ()

self.ui = Ui_Dialog()

self.ui.setupUi (self)
self.textEditMessages=self.ui.textEditMessages
self.ui.pushButtonSend.clicked.connect (self.dispMessage)
self.show ()

dispMessage (self) :
text=self.ui.lineEditMessage.text ()
global conn

conn.send (text.encode ("utf-8"))
self.ui.textEditMessages.append("Server:
"tself.ui.lineEditMessage.text ())
self.ui.lineEditMessage.setText ("")

class ServerThread (Thread) :

def

def

_ _init_ (self,window) :
Thread.__init__ (self)
self.window=window
run (self) :
TCP_IP = '0.0.0.0"
TCP_PORT = 80
BUFFER_SIZE = 1024
tcpServer = socket.socket (socket.AF_INET,
socket .SOCK_STREAM)
tcpServer.setsockopt (socket.SOL_SOCKET,
socket .SO_REUSEADDR, 1)
tcpServer.bind ((TCP_IP, TCP_PORT))
threads = []
tcpServer.listen (4)
while True:
global conn
(conn, (ip,port)) = tcpServer.accept ()
newthread = ClientThread (ip,port, window)
newthread.start ()
threads.append (newthread)
for t in threads:
t.join ()

class ClientThread(Thread) :

def

__init__ (self,ip,port,window) :
Thread._ _init_ (self)
self.window=window

[199]

Networking and Managing Large Documents Chapter 7

self.ip = ip
self.port = port
def run(self):

while True :
global conn
data = conn.recv(1024)
window.textEditMessages.append("Client:
"+data.decode ("utf-8"))

if _ name_ =="_ _main__ ":
app = QApplication(sys.argv)
window = Window ()

serverThread=ServerThread (window)
serverThread.start ()
window.exec ()

sys.exit (app.exec_())

How it works...

In the ClientThread class, the run function is overridden. In the run function, each client
waits for data received from the server and displays that data in the Text Edit widget. A
window class object is passed to the serverThread class, which passes that object to
ClientThread, which, in turn, uses it to access the content written in the Line Edit
element.

The received data is decoded because the data received is in the form of bytes, which have
to be converted into strings using UTF-8 encoding.

The demoClient.py file that we generated in the preceding section needs to be treated as a
header file and needs to be imported into another Python file that will use the GUI of the
header file and transmit data from the client to the server and vice versa. So, let's create
another Python file with the name callClient.pyw and import the demoClient.py code
into it:

import sys
from PyQt5.Q0tWidgets import QApplication, QDialog
import socket
from threading import Thread
from socketserver import ThreadingMixIn
from demoClient import *
tcpClientA=None
class Window (QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()

[200]

Networking and Managing Large Documents Chapter 7

self.ui.setupUi (self)
self.textEditMessages=self.ui.textEditMessages
self.ui.pushButtonSend.clicked.connect (self.dispMessage)
self.show()
def dispMessage (self):
text=self.ui.lineEditMessage.text ()
self.ui.textEditMessages.append("Client:
"t+self.ui.lineEditMessage.text ())
tcpClientA.send(text.encode ())
self.ui.lineEditMessage.setText ("")
class ClientThread (Thread) :
def _ _init__ (self,window) :
Thread.__init__ (self)
self.window=window
def run(self):
host = socket.gethostname ()
port = 80
BUFFER_SIZE = 1024
global tcpClientA
tcpClientA = socket.socket (socket.AF_INET,
socket .SOCK_STREAM)
tcpClientA.connect ((host, port))
while True:
data = tcpClientA.recv (BUFFER_SIZE)
window.textEditMessages.append ("Server:
"+data.decode ("utf-8"))
tcpClientA.close ()

if _ name_ =="__main__ ":
app = QApplication(sys.argv)
window = Window ()

clientThread=ClientThread (window)
clientThread.start ()
window.exec ()

sys.exit (app.exec_())

A ClientThread class is a class that inherits the Thread class and overrides the

run function. In the run function, you fetch the IP address of the server by invoking the
hostname method on the socket class; and, using port 80, the client tries to connect to the
server. Once a connection with the server is made, the client tries to receive data from the
server inside the while loop.

On receiving the data from the server, the data is converted into string format from byte
format and displayed in the Text Edit widget.

[201]

Networking and Managing Large Documents Chapter 7

We need to run both applications to see client-server communication. On running the
callServer.pyuw file, you get the output shown on the left side of the following
screenshot, and on running the callClient.pyw file, you get the output shown on the
right side. Both are same; only the labels at the top distinguish them:

1 Dialog ? X
Server
I | [Send |
1 Dialog ? X
Client
[l | [Send |

[202]

Networking and Managing Large Documents Chapter 7

The user can type the text in the Line Edit box at the bottom, followed by pressing the Send
button. On pressing the Send button, the text entered in the Line Edit widget will appear in
the Text Edit box of both server and client applications. Text is prefixed with server: to
indicate that the text is sent from the server, as shown in the following screenshot:

1 Dialog ? *
Server
Server: Hello
[Hello] | [Send |
i Dialog ? =
Client
Server: Hello
[| [Send |

[203]

Networking and Managing Large Documents Chapter 7

Similarly, if text is written in the Line Edit widget of the client application followed by
pressing the Send button, the text will appear in the Text Edit widget of both applications.
The text will be prefixed with C1ient: to indicate that the text has been sent from the

client, as shown in the following screenshot:

B Dialog ? X
Client
Server: Hello
Client: How are you?
[How are you? [Send |
B Dialog ? X
Server
Server: Hello
Client: How are you?
[Hello] [Send |

[204]

Networking and Managing Large Documents Chapter 7

Creating a dockable and floatable sign-in
form

In this recipe, we will learn to create a sign-in form that will ask for the email address and
password of the user for authentication. This sign-in form is different from the usual sign-in
form, in the sense that it is a dockable form. That is, you can dock this sign-in form to any of
the four sides of the window—top, left, right, and bottom and can even use it as a floatable
form. This dockable sign-in form will be created using the Dock widget, so let's get a quick
idea about the Dock widget.

Getting ready

To create a detachable set of widgets or tools, you need a Dock widget. A Dock widget is
created with the QDockWidget class and is a container that has a title bar and buttons at the
top to size it. The Dock widget, which contains a collection of widgets or tools, can be
closed, docked in the dock area, or floated and placed anywhere on the desktop. The Dock
widget can be docked in different dock areas, such as LeftDockWidgetArea,
RightDockWidgetArea, TopDockWidgetArea, and BottomDockWidgetArea. The
TopDockWidgetArea dock area is below the toolbar. You can also restrict the dock areas
where the Dock widget can be docked. When you do so, the Dock widget can be docked to
the specified dock areas only. When a Dock window is dragged out of the dock area, it
becomes a free-floating window.

Here are the properties that control the movement of the Dock widget and the appearance
of its title bar and other buttons:

I’r0perty		Description
DockWidgetClosable		Makes the Dock widget closable.
Do ckWidgetMovable		Makes the Dock widget movable between dock areas.

Makes the Dock widget floatable, that is, the Dock widget can

DockWidgetFloatable be detached from the main window and floated on the desktop.

Displays a vertical title bar on the left side of the Dock

DockWidgetVerticalTitleBar|| .
widget.

It switches on properties such as DockWidgetClosable,
AllDockWidgetFeatures DockWidgetMovable, and DockWidgetFloatable,
that is, the Dock widget can be closed, moved, or floated.

NoDockWidgetFeatures ||If selected, the Dock widget cannot be closed, moved, or floated.

[205]

Networking and Managing Large Documents Chapter 7

In order to make a dockable sign-in form for this recipe, we will be making use of the Dock
widget and a few more widgets. Let's see the step-by-step procedure for doing this.

How to do it...

Let's make a small sign-in form in the Dock widget that will prompt the user for their email
address and password. Being dockable, this sign-in form can be moved anywhere on the
screen and can be made floatable. Here are the steps to create this application:

1. Launch Qt Designer and create a new Main Window application.
2. Drag and drop a Dock widget onto the form.

3. Drag and drop the widgets that you want to be available in dock areas or as
floating windows in the Dock widget.

4. Drag and drop three Label widgets, two Line Edit widgets, and a Push Button
widget on the Dock widget.

5. Set the text property of the three Label widgets to Sign In, Email Address,
and Password.
6. Set the text property of the Push Button widget to Sign In.

7. We will not set the objectName property of the Line Edit and Push Button
widgets and will not provide any code for the Push Button widget, because the
purpose of this application is to understand how the Dock widget works.

8. Save the application as demoDockWidget .ui.

[206]

Networking and Managing Large Documents Chapter 7

The form will appear as shown in the following screenshot:

MainWindow - demoeDockWidget.ui® E\@
I Type Here a a
Dockable Sign In Form g X

Sign In
Email Address | |

Password - | |
s Sign In .
1 o o

[207]

Networking and Managing Large Documents Chapter 7

9. To enable all features in the Dock widget, select it and check its
AllDockWidgetFeatures property in the features section of the Property Editor
window, as shown in the following screenshot:

Property Editor g x

— — o
Flter S j
| L=
- -

dockWidget_2 : QDodkWidget

Property Value -~
ImhUrlCharactersOnly]
ImhLatinQOnly]
ImhExclusivelnputiask]
v
floating]
* features DockWidgetClosable|DockWidgetMoaowvablel...

DockWidgetClosable
DockWidgetMovable
DockWidgetFloatable
DockWidgetVertical TitleBar []
DockWidgetFeatureMask L]
AllDockWidgetFeatures
MoDockWidgetFeatures]
Rezerved [] W

In the preceding screenshot, the AllDockWidgetFeatures property is to make the
Dock widget closable, movable in the dock, and floatable anywhere on the
Desktop. If the NoDockWidgetFeatures property is selected, then all other
properties in the features section are unchecked automatically. That means all
buttons will disappear from the Dock widget, and you will not be able to close or
move it. If you want the Dock widget to appear as floatable on application
startup, check the floating property just above the features section in the
Property Editor window.

[208]

Networking and Managing Large Documents Chapter 7

Look at the following screenshot depicting various features and constraints on the
Dock widget:

Property Editor B X

[Filter |EGE —s ;fi

dockWidget_2 : QDock\Widget

Property Value "
* allowedAreas LeftDockWidgetirea|RightDockWidgetirea...
LeftDockWidgetfrea
RightDockWidgetirea
TepDockWidgetfrea
BottormDockWidgetfrea
DockWidgetirea_Mask
AllDockWidgethreas
MoDockWidgetirea]
* windowTitle Dockable Sign In Form
tranzlatable
disambiguation
comment
dockWidgetfrea LeftDockWidgetfrea
docked iy

Perform the following steps to apply the desired features and constraints to the Dock
widget:

1. Check the AllDockWidgetAreas option in the allowedAreas section to enable
the Dock widget to be docked in all of the left, right, top, and bottom Dock
widget areas.

2. Also, by using the windowTitle property in the Property Editor window, set the
title of the dock window to Dockable Sign In Form, as shown in the preceding
screenshot.

[209]

Networking and Managing Large Documents Chapter 7

3. Check the docked property because it is an essential property to make a Dock
widget dockable. If the docked property is not checked, the Dock widget cannot
be docked to any of the allowable areas.

4. Leave the dockWidgetArea property with its default value,
LeftDockWidgetArea. The dockWidgetArea property determines the location
where you want the Dock widget to appear as docked when the application is
launched. The LeftDockWidgetArea value for the dockWidgetArea property
will make the Dock widget first appear as docked in the left Dock widget area. If
the NoDockWidgetArea property is set in the allowedAreas section, then all
other properties in the allowedAreas section are unselected automatically.
Consequently, you can move the Dock window anywhere on the desktop, but
you cannot dock it in the dock areas of the Main Window template. The user
interface created with Qt Designer is stored in a . ui file, which is an XML file,
and needs to be converted into Python code. On the application of the pyuic5
command line utility on the XML file, the generated file is a Python script file,
demoDockWidget . py. You can see the code of the generated
demoDockWidget . py file in the source code bundle of this book.

5. Treat the code in the demoDockWidget . py file as a header file, and import it into
the file from which you will invoke its user interface design.

6. Create another Python file with the name callDockWidget .pyw and import the
demoDockWidget . py code into it:

import sys
from PyQt5.QtWidgets import QMainWindow, QApplication
from demoDockWidget import *
class AppWindow (QMainWindow) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_MainWindow ()
self.ui.setupUi (self)
self.show()
if _ name_ =="__main_ ":
app = QApplication(sys.argv)
w = AppWindow ()
w.show ()
sys.exit (app.exec_())

[210]

Networking and Managing Large Documents Chapter 7

How it works...

As you can see in the preceding code, the necessary modules are imported. An AppWindow
class is created that inherits from the base class, QMainWindow. The default constructor for
OMainWindow is invoked.

Because every PyQt5 application needs an application object, in the preceding code, an
application object was created with the name app by invoking the QApplication ()
method. For passing command line arguments and other external attributes to the
application, the sys.argv parameter was passed as a parameter to the QApplication ()
method. The sys.argv parameter contains command line arguments and other external
attributes, if there are any. In order to display the widgets defined in the interface, an
instance of the AppWindow class was created with the name w, and the show () method was
invoked on it. To exit the application and return the code to Python interpreter that might
be used for error handling, the sys.exit () method was called.

When the application is executed, you get a Dock widget that is docked to the left dockable
area by default, as shown in the following screenshot. This is because you have assigned
the LeftDockWidgetArea value to the dockWidgetArea property of the Dock widget:

B MainWindow — O X

Dockabl... & X

Email Addr

Password

[211]

Networking and Managing Large Documents

Chapter 7

The widgets inside the Dock widget are not completely visible, as the default left and

dockable areas are narrower than the widgets placed in the Dock widget. So, you can drag
the right border of the Dock widget to make all the contained widgets visible, as shown in
the following screenshot:

B MainWindow

Dockable Sign In Form

Email Address

Password

Sign In

Sian In

You can drag the widget to any area. If you drag it to the top, it will be docked in the

TopDockWidgetArea dock area, as shown in the following screenshot:

[212]

Networking and Managing Large Documents Chapter 7

5] MainWindow - O

Dockable Sign In Form F X

Sign In

Email Address | |

Password | |

Sign In

Similarly, when the Dock widget is dragged to the right, it will be docked in the
RightDockWidgetArea

You can drag the Dock widget outside the Main Window template to make it an
independent floating window. The Dock widget will appear as an independent floating
window and can be moved anywhere on the desktop:

Dockable Sign In Ferm H

Sign In

Email Address | |

Password | |

Sign In

[213]

Networking and Managing Large Documents Chapter 7

Multiple Document Interface

In this recipe, we will learn how to create an application that will display more than one
document at a time. Not only will we be able to manage more than one document, but we
will also learn to arrange the documents in different formats. We will be able to manage
more than one document using a concept called Multiple Document Interface, so let's see a
quick introduction to this.

Getting ready

Usually, an application provides one document per main window and such applications
are said to be Single Document Interface (SDI) applications. As the name suggests, a
Multiple Document Interface (MDI) application is able to display several documents. An
MDI application consists of a main window along with a menu bar, a toolbar, and a central
space. Several documents can be displayed in the central space, where each document can
be managed through individual child window widgets; in MDI, several documents can be
displayed and each document is displayed in its own window. These child windows are
also known as subwindows.

MDI is implemented by making use of the MdiArea widget. The MdiArea widget provides
an area where child windows or subwindows are displayed. A subwindow has a title and
buttons to show, hide, and maximize its size. Each subwindow can display an individual
document. The subwindows can be arranged in a cascade or tile pattern by setting the
respective property of the MdiArea widget. The MdiArea widget is an instance of the
OMdiArea class and the subwindows are instances of QMdi SubWindow.

Here are the methods provided by gMdiArea:

e subWindowList (): This method returns a list of all subwindows in the MDI
area. The returned list is arranged in the order that is set through the
WindowOrder () function.

¢ WindowOrder: This static variable sets the criteria for ordering the list of child
windows. Following are the valid values that can be assigned to this static

variable:
e CreationOrder: The windows are returned in the order of their

creation. This is the default order.

[214]

Networking and Managing Large Documents Chapter 7

e StackingOrder: The windows are returned in the order in which
they are stacked, with the topmost window last in the list.

e ActivationHistoryOrder: The windows are returned in the
order in which they were activated.

e activateNextSubWindow (): This method sets the focus to the next window in

the list of child windows. The current window order determines the next
window to be activated.

e activatePreviousSubWindow (): This method sets the focus to the previous
window in the list of child windows. The current window order determines the
previous window to be activated.

¢ cascadeSubWindows () : This method arranges subwindows in cascade fashion.

e tileSubWindows (): This method arranges subwindows in tile fashion.

e closeAllSubWindows (): This method closes all subwindows.

e setViewMode (): This method sets the view mode of the MDI area. The
subwindows can be viewed in two modes, SubWindow View and Tabbed
View:

¢ SubWindow View: This method displays subwindows with window

frames (default). You can see the content of more than one subwindow if
arranged in tile fashion. It is also represented by a constant value, 0.

e Tabbed View: Displays subwindows with tabs in a tab bar. Only the
content of one subwindow contents can be seen at a time. It is also
represented by a constant value, 1.

How to do it...

Let's create an application that consists of two documents, and each document will be
displayed via its individual subwindow. We will learn how to arrange and view these
subwindows as desired:

1. Launch Qt Designer and create a new Main Window application.
2. Drag and drop a MdiArea widget onto the form.

3. Right-click on the widget and select Add Subwindow from the context menu to
add a subwindow to the MdiArea widget.

[215]

Networking and Managing Large Documents Chapter 7

When the subwindow is added to the MdiArea widget, the widget appears as the
dark background, as shown in the following screenshot:

Windows Type Here

4. Let's, right-click again on the MdiArea widget and add one more subwindow to
it.

5. To know which one is the first and which one is the second subwindow, drag
and drop a Label widget onto each subwindow.

6. Set the text property of the Label widget placed in the first subwindow to First
subwindow.

[216]

Networking and Managing Large Documents

Chapter 7

7. Set the text property of the Label widget placed in the second subwindow to
Second subwindow, as shown in the following screenshot:

MainWindow - demoMDI.ui*
Windows Type Here

Subwindow E@

First sub window

|

Subwindow

Second sub window

The MdiArea widget displays the documents placed in its subwindows in the

following two modes:

e SubWindow View: This is the default view mode. The subwindows can be
arranged in cascade or tile fashion in this view mode. When subwindows
are arranged in tile fashion, you can see the content of more than one
subwindow simultaneously.

e Tabbed View: In this mode, several tabs appear in a tab bar. When a tab is
selected, the subwindow associated with it is displayed. Only the content of
one subwindow can be seen at a time.

8. To activate the SubWindow View and Tabbed View modes through the menu
options, double-click the Type Here placeholder in the menu in the menu bar
and add two entries to it: SubWindow View and Tabbed View.

[217]

Networking and Managing Large Documents Chapter 7

Also, to see how the subwindows appear when arranged in cascade and tile
fashion, add two more menu items, Cascade View and Tile View, to the menu
bar as shown in the following screenshot:

MainWindow - demoMDI.ui® E@
Wlndows Type Here
ibiadosiiie ﬁ]@ Subwindow = [=2

Tabbed View &
Cascade View 8 W
Tile View &
Type Here

Add Separator

Second sub window

9. Save the application as demoMDI . ui. The user interface created with Qt Designer
is stored in a . ui file, which is an XML file, and needs to be converted into
Python code.On the application of the pyuic5 command line utility, the .ui
(XML) file will be converted into Python code:

C:\Pythonbook\PyQt5>pyuic5 demoMDI.ui -o demoMDI.py.

You can see the generated Python code, demoMD1I . py, in the source code bundle
of this book.

10. Treat the code in the demoMDI . py file as a header file, and you will import it to
the file from which you will invoke its user interface design. The user interface
design in the previous code includes MdiArea to display the subwindows
created in it, along with their respective widgets. The Python script that we are
going to create will contain the code for the menu options to do different tasks,
such as cascading and tiling the subwindows, changing the view mode from
SubWindow View to Tabbed View, and vice versa. Let's name that Python
script callMDI.pyw and import the demoMDI . py code into it:

import sys
from PyQt5.QtWidgets import QOMainWindow, QApplication, QAction,

[218]

Networking and Managing Large Documents Chapter 7

QFileDialog
from demoMDI import *
class MyForm(QMainWindow) :
def _ init__ (self):
super () .__init__ ()
self.ui = Ui_MainWindow ()
self.ui.setupUi (self)
self.uil.mdiArea.addSubWindow (self.ui.subwindow)
self.uil.mdiArea.addSubWindow (self.ui.subwindow_2)
self.ui.actionSubWindow_View.triggered.connect
(self.SubWindow_View)
self.ui.actionTabbed_View.triggered.connect (self.
Tabbed_View)
self.ui.actionCascade_View.triggered.connect (self.
cascadeArrange)
self.ui.actionTile_View.triggered.connect (self.tileArrange)
self.show()
def SubWindow_View (self) :
self.ui.mdiArea.setViewMode (0)
def Tabbed_View(self):
self.ui.mdiArea.setViewMode (1)
def cascadeArrange (self):
self.ui.mdiArea.cascadeSubWindows ()
def tileArrange (self):
self.ui.mdiArea.tileSubWindows ()
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

In the preceding code, you can see that the two subwindows with the default objectName
properties, subwindow and subwindow_2, are added to the MdiArea widget. After that,
the four menu options with objectName properties, act ionSubWindow_View,
actionTabbed_View, actionCascade_View, and actionTile_View are connected to
the four methods SubWindow_View, Tabbed_View, cascadeArrange, and tileArrange
respectively. Hence, when the SubWindow View menu option is selected by the user,

the subWindow_View method will be invoked. In the SubWindow_View method, the
SubWindow View mode is activated by passing the 0 constant value to the

setViewMode method of the MdiArea widget. The SubWindow View displays
subwindows with window frames.

[219]

Networking and Managing Large Documents Chapter 7

Similarly, when the Tabbed View menu option is selected by the user,

the Tabbed_view method will be invoked. In the Tabbed_view method, the Tabbed View
mode is activated by passing the 1 constant value to the setViewMode method of the
MdiArea widget. The Tabbed View mode displays tabs in a tab bar and on clicking a tab,
the associated subwindow will be displayed.

When the Cascade View menu option is selected, the cascadeArrange method is invoked,
which in turn invokes the cascadeSubWindows method of the MdiArea widget to arrange
subwindows in cascade form.

When the Tile View menu option is selected, the tileArrange method is invoked, which
in turn invokes the tilesubWindows method of the MdiArea widget to arrange
subwindows in tile form.

On running the application, the subwindows initially appear in shrunken mode in the
MdiArea widget, as shown in the following screenshot. You can see the subwindows along
with their titles and minimize, maximize, and close buttons:

5 MainWindow - O w

Windows

@ (== =] " mEE!Z!"

[220]

Networking and Managing Large Documents Chapter 7

You can drag their borders to the desired size. On selecting the first window from the
Windows menu, a subwindow becomes active; on selecting the second window, the next
subwindow will become active. The active subwindow appears with the brighter title and
boundary. In the following screenshot, you can notice that the second subwindow is active.
You can drag the boundaries of any subwindow to increase or decrease its size. You can
also minimize a subwindow and drag the boundaries of another subwindow to take up the
whole width of the MdiArea widget. If you select maximize in any subwindow, it will take
up all the space of MdiArea, making other subwindows invisible:

5] MainWindow — O X
Windows

[Subwindow | = | = J[2] '. [0 Subwindow [(o] mESe ‘

First sub window Second sub window

On selecting Cascade, the subwindows are arranged in cascade mode, as shown in the
following screenshot. If windows are maximized in Cascade mode, the top subwindow
takes up the whole MdiArea widget, hiding other subwindows behind it, as shown in the
following screenshot:

5 MainWindow - O X
Windows

:Eﬂ Subwindow | =)L = |22 | [

| m‘._'s- =~! B

Second sub window

[221]

Networking and Managing Large Documents Chapter 7

On selecting the Tile button, the subwindows are expanded and tiled. Both subwindows
expand equally to cover up the entire workspace, as shown in the following screenshot:

5 MainWindow - O ¥

Windows

(1] subwindow E@ [T subwindow = |[=] =]

First sub window Second sub window

On selecting the Tabbed View button, the MdiArea widget will change from the
Subwindow view to Tabbed View. You can select the tab of any subwindow to make it
active, as shown in the following screenshot:

B MainWindow - O *
Windows

Subwindow Subwindow

First sub window

[222]

Networking and Managing Large Documents Chapter 7

Displaying information in sections using
Tab Widget

In this application, we will make a small shopping cart that will display certain products
for sale in one tab; after selecting the desired products from the first tab, when the user
selects the second tab, they will be prompted to enter the preferred payment option. The
third tab will ask the user to enter the address for delivering the products.

We will use Tab Widget to enable us to select and fill in the desired information in chunks,
so you must be wondering, what is a Tab Widget?

When certain information is divided into small sections, and you want to display the
information for the section required by the user, then you need to use Tab Widget. In a Tab
Widget container, there are a number of tabs and when the user selects any tab, the
information assigned to that tab will be displayed.

How to do it...

Here is the step-by-step procedure to create an application that displays information in
chunks using tabs:

1. Let's create a new application based on the Dialog without Buttons template.

2. Drag and drop Tab Widget onto the form. When you drag Tab Widget onto a
dialog, it appears with two default tab buttons, labeled Tab1 and Tab2, as shown
in the following screenshot:

Dialog - dernoTabWidget.ui® El@

]] =
Tab 1 Tab 2

] =

]] =

[223]

Networking and Managing Large Documents Chapter 7

3. You can add more tab buttons to Tab Widget and delete existing buttons if you
want by adding a new tab button; right-click on either tab button and select
Insert Page from the menu that pops up. You will see two suboptions, After
Current Page and Before Current Page.

4. Select the After Current Page suboption to add a new tab after the current tab.
The new tab will have the default text Page, which you can always change. The
application that we are going to make consists of the following three tabs:

e The first tab displays certain products along with their prices. The user can
select any number of products from the first tab, followed by clicking the
Add to Cart button.

® On selecting the second tab, all the payment options will be displayed. The
user can choose to pay via Debit Card, Credit Card, Net Banking, or Cash
on Delivery.

¢ The third tab, when selected, will prompt the user for a delivery address: the
complete address of the customer along with state, country, and contact
number.

The first task that we will do is to change the default text of the tabs:

1. Using the currentTabText property of Tab Widget, change the text
displayed on each tab button.

2. Set the text property of the first tab button to Product Listing and that of
the second tab button to Payment Method.

3. To add a new tab button, right-click on the Payment Method tab and select
Insert Page from the context menu that appears.

4. From the two options that appear, After Current Page and Before Current
Page, select After Current Page to add a new tab after the Payment Method
tab. The new tab will have the default text Page.

5. Using the currentTabText property, change its text to Delivery Address.

6. Expand Tab Widget by selecting and dragging its nodes to provide a blank
space below the tab buttons, as shown in the following screenshot:

[224]

Networking and Managing Large Documents Chapter 7

Dialog - demoTabWidget.ui* EI@
| | | |
Products Listing ~ Payment Method = Delivery Address

7. Select each tab button and drop the desired widgets into the blank space
provided. For example, drop four Check Box widgets onto the first tab button,
Product Listing, to display the items available for sale.

8. Drop a Push Button widget on the form.

9. Change the text property of the four checkboxes to Ce11 Phone $150, Laptop
$500, Camera $250, and Shoes $200.

10. Change the text property of the Push Button widget to Add to Cart, as shown
in the following screenshot:

Dialog - demoTabWidget.ui® EI@

| | n
Products Listing =~ Payment Method Delivery Address

[Cell Phone $150
[Laptop $500
[Camera $250

[Shoes $200

Add to Cart

11. Similarly, to provide different payment methods, select the second tab and place
four radio buttons in the available space.

[225]

Networking and Managing Large Documents Chapter 7

12. Set the text property of the four radio buttons to Debit Card, Credit Card,
Net Banking, and Cash On Delivery, as shown in the following screenshot:

Dialog - demoTabWidget.ui® E“EI

] Products Listing Payment Met.hod Delivery Address
O Debit Card
O Credit Card
O Net Banking

O Cash On Delivery

13. Select the third tab and drag and drop few Line Edit widgets that prompt the
user to provide a delivery address.

14. Drag and drop six Label and six Line Edit widgets onto the form.

15. Set the text property of the Label widgets to Address 1, Address 2, State,
Country, Zip Code, and Contact Number. The Line Edit widgets in front of
each Label widget will be used to get the address for delivery, as shown in the
following screenshot:

Dialog - demoTabWidget.ui* EI@

n
Products Listing Payment Method = Delivery Address
Address 1 [|

Address 2 [|

. State [|

Country | |

Zip Code [|

Contact Number - - | |

[226]

Networking and Managing Large Documents Chapter 7

16. Save the application as demoTabWidget .ui.

17. The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. To do the conversion, you
need to open a Command Prompt window, navigate to the folder where the file
is saved, and issue this command:

C:PythonbookPyQt5>pyuic5 demoTabWidget.ui —-o demoTabWidget.py

The code of the generated Python script file, demoTabWidget . py, can be seen in
the source code bundle of this book. The user interface design created in the
autogenerated code demoTablWidget . py, is used by importing it into another
Python script.

18. Create another Python file with the name callTabWidget .pyw and import the
demoTabWidget . py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoTabWidget import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.show()
if _ name_ =="_ _main__ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

As you can see in callTabWidget . pyw, the necessary modules are imported. The MyForm
class is created and inherits from the base class, QDialog. The default constructor for
QDialog is invoked.

[227]

Networking and Managing Large Documents Chapter 7

An application object is created with the name app through the 0Application () method.
Every PyQt5 application must create an application object. The sys.argv parameter is
passed to the QApplication () method while creating the application object. The
sys.argv parameter contains a list of arguments from the command line and helps in
passing and controlling the startup attributes of a script. After this, an instance of the
MyForm class is created with the name w. The show () method is invoked on the instance,
which will display the widgets on the screen. The sys.exit () method ensures a clean exit,
releasing memory resources.

When the application is executed, you will find that the first tab, Products Listing, is
selected by default and the products available for sale specified in that tab are displayed as
shown in the following screenshot:

& Dialeg 7 X

Products Listing =~ Payment Method = Delivery Address

Cell Phone %150
[J Laptop £500
[0 Camera $250

Shoes $200

[AddtoCart |

Similarly, on selecting the other tabs, Payment Method and Delivery Address, you will see
the widgets prompting the user to choose the desired payment method and enter a delivery
address.

[228]

Networking and Managing Large Documents Chapter 7

Creating a custom menu bar

A big application is usually broken into small, independent, and manageable modules.
These modules can be invoked either by making different toolbar buttons or menu items.
That is, we can invoke a module on the click of a menu item. We have seen the File menu,
the Edit menu, and so on in different packages, so let's learn to make a custom menu bar of
our own.

In this recipe, we will learn to create a menu bar that shows certain menu items. We will
learn to add menu items, add submenu items to a menu item, add separators between
menu items, add shortcuts and tool tips to menu items, and much more. We will also learn
to add actions to these menu items, so that when any menu item is clicked, a certain action

will take place.

Our menu bar will consist of two menus, Draw and Edit. The Draw menu will consist of
four menu items, Draw Circle, Draw Rectangle, Draw Line, and Properties. The
Properties menu item will consist of two submenu items, Page Setup and Set Password.
The second menu, Edit, will consist of three menu items, Cut, Copy, and Paste. Let's create
a new application to understand how to create this menu bar practically.

How to do it...

We will be following a step-by-step procedure to make two menus, along with the
respective menu items in each. For quick access, each menu item will be associated with a
shortcut key too. Here are the steps to create our customized menu bar:

1. Launch Qt Designer and create a Main Window template-based application.

[229]

Networking and Managing Large Documents Chapter 7

You get the new application with the default menu bar because the Main
Window template of Qt Designer provides a main application window that
displays a menu bar by default. The default menu bar appears as shown in the
following screenshot:

MainWindow - demoMenuBar.ui® —

2. We can always remove the default menu bar by right-clicking in the main
window and selecting the Remove Menu Bar option from the context menu that
pops up.

3. You can also add a menu bar later by selecting the Create Menu Bar option from
the context menu.

[230]

Networking and Managing Large Documents Chapter 7

The default menu bar contains Type Here placeholders. You can replace
those with the menu item text.

4. Click the placeholder to highlight it and type to modify its text. When you add a
menu item, Type Here appears below the new menu item.

5. Again, just single left-click the Type Here placeholder to select it and simply type
the text for the next menu item.

6. You can delete any menu entry by right-clicking it and, from the context menu
that pops up, select the option Remove Action action_name.

The menus and menu items in the menu bar can be arranged by dragging
and dropping them at the desired location.

While writing menu or menu item text, if you add an ampersand character (&)
before any character, that character in the menu will appear as underlined and
will be treated as a shortcut key. We will also learn how to assign a shortcut key
to a menu item later.

7. When you create a new menu item by replacing the Type Here placeholders, that
menu item will appear as an individual action in the Action Editor box, from
where you can configure its properties.

Recall that we want to create two menus in this menu bar with text, Draw and
Edit. The Draw menu will have three menu items, Draw Circle, Draw
Rectangle, and Draw Line. After these three menu items, a separator will be
inserted followed by a fourth menu item called Properties. The Properties menu
item will have two submenu items, Page Setup and Set Password. The Edit menu
will contain three menu items, Cut, Copy, and Paste.

8. Double-click the Type Here placeholder and enter the text for the first menu,
Draw.

[231]

Networking and Managing Large Documents Chapter 7

The down arrow key on the Draw menu brings up the Type Here and Add
Separator options, as shown in the following screenshot:

MainWindow - demoMenuBar.ur™ El@
Draw | Type Here

| Type Here |
Add Separator

9. Double-click Type Here and type Draw Circle for the first menu item under
the Draw menu. The down arrow key on the Draw Circle menu provides the
Type Here and Add Separator options again.

10. Double-click Type Here and type Draw Rectangle for the menu item.
11. Press the down arrow key to get two options, Type Here and Add Separator.
12. Double-click Type Here and type Draw Line for the third menu item.

13. On pressing the down arrow key, again you get two options, Type Here and
Add Separator, as shown in the following screenshot:

[232]

Networking and Managing Large Documents Chapter 7

MainWindow - demoMenuBar.ui® El@
Draw | Type Here

| Draw Circle ﬁ
Draw Rectangle 44
Draw Line g
Type Here
Add Separator

14. Select Add Separator to add a separator after the first three menu items.

15. Press the down arrow key after the separator and add a fourth menu item,
Properties. This is done because we want two submenu items for the

Properties menu item.
16. Select the right arrow to add submenu items to the Properties menu.

17. Press the right arrow key on any menu item to add a submenu item to it. In the
submenu item, select Type Here and enter the first submenu, Page Setup.

[233]

Networking and Managing Large Documents Chapter 7

18. Select the down arrow and enter Set Password below the Page Setup submenu
item, as shown in the following screenshot:

MainWindow - demoMenuBar.ui® El@
Draw | Type Here

Draw Circle 3|
Draw Rectangle &

Draw Line L

Properties » | Page Setup ﬁ
Type Here Set Password 9
Add Separator Type Here

Add Separator

19. The first menu, Draw, is complete. Now, we need to add another menu, Edit.
Select the Draw menu and press the right arrow key to indicate that you want to
add a second menu to the menu bar.

20. Replace Type Here with Edit.

21. Press the down arrow and add three menu items, Cut, Copy, and Paste, as
shown in the following screenshot:

[234]

Networking and Managing Large Documents

Chapter 7

MainWindow - demoMenuBar.ui®

Draw | Edit | Type Here

Cut w |
Copy |
Paste LR
Type Here | :

Add Separator

(= |mESn]

The actions for all menu items will appear in the Action Editor box automatically,
as shown in the following screenshot:

Action Editor

0[P & x A~

Mame

actionDraw_Circle
actionDr...ectangle
actionDraw_Line
actionPage_Setup
actionSet_Password
actionCut
actionCopy

actionPaste

RERHERRA &
[+

Text Shortcut

Draw Circle
Draw Rectangle
Draw Line
Page Setup

Set Password
Cut

Copy
Paste

Checkable

oOooOoodood

ToolTip

Draw Circle
Draw Rectangle
Draw Line
Page Setup

Set Password
Cut

Copy
Paste

[235]

Networking and Managing Large Documents Chapter 7

You can see that the action names are generated by prefixing the text action to
every menu text and replacing the spaces with underscores. These actions can be
used to configure menu items.

22. To add a tooltip message that appears when the user hovers over any menu item,
you can use the ToolTip property.

23. To assign a tooltip message to the Draw Circle menu item of the Draw menu,
select actionDraw_Circle in the Action Editor box and set the ToolTip property
to To draw a circle. Similarly, you can assign tooltip messages to all of the
menu items.

24. To assign a shortcut key to any menu item, open its action from the Action
Editor box and click inside the Shortcut box.

25. In the Shortcut box, press the key combination that you want to assign to the
selected menu item.

For example, if you press Ctrl + C in the Shortcut box, Ctrl+C appears in the box,
as shown in the following screenshot:

Edit action - Ot Designer et

Text: |Draw Circle |

Object name: |a|:ﬁ|:|nDra'.r'.'_Cirde |

ToolTip: |T|:| draw a drde |
Icon theme: | | -
Lcon: Mormal Off = | ... ™

Checkable: []

Shorteut: |Ctrl+C -

[236]

Networking and Managing Large Documents Chapter 7

You can have any combination of shortcut keys, such as Shift + key, Alt + key, and
Ctrl + Shift + key, for any menu item. The shortcut keys will appear automatically
with the menu item in the menu bar. You can also make any menu item
checkable, that is, you can make it a toggle menu item.

26. To do so, select the action of the desired menu item and check the Checkable
checkbox. The actions of each menu item, along with its action name, menu text,
shortcut keys, checkable status, and tooltip, appear in the Action Editor box. The
following screenshot shows the action of the Set Password submenu item, which
confirms that its shortcut key is Shift + P and it is checkable:

Action Editor [4

T
&

0P e x ~

Mame Used Text Shortcut Checkable ToolTip
actionDraw_Circle Diraw Circle Ctrl+C | To draw a circle
actionDr...ectangle Draw Rectangle [l Draw Rectangle
actionDraw_Line Draw Line | Draw Line
actionPage_Setup Page Setup | Page Setup
actionSet_Password Set Password Shift+P Set Password
actionCut Cut] Cut
actionCopy Copy | Copy
actionPaste Paste | Paste

27. For the Draw Circle, Draw Rectangle, and Draw Line menu items, we will be
adding code to draw a circle, draw a rectangle, and draw a line respectively.

28. For the rest of the menu items, we want them so that when the user selects any of
them, a text message appears on the form indicating which menu item is
selected.

29. To display a message, drag and drop a Label widget onto the form.
30. Our menu bar is complete; save the application with the name demoMenuBar. ui.

31. We use the pyuic5 command line utility to convert the .ui (XML) file into
Python code.

[237]

Networking and Managing Large Documents Chapter 7

The generated Python code, demoMenuBar . py, can be seen in the source code
bundle of this book.

32. Create a Python script with the name callMenuBar.pyw that imports the
previous code, demoMenuBar . py, to invoke the menu and display the text
message with a Label widget when a menu item is selected.

You want a message to appear that indicates which menu item is selected. Also,
you want to draw a circle, rectangle, and line when the Draw Circle, Draw
Rectangle, and Draw Line menu items are selected, respectively. The code in the
Python callMenuBar.pyw script will appear as shown in the following

screenshot:

import sys
from PyQt5.0QtWidgets import QMainWindow, QApplication
from PyQt5.QtGui import QPainter

from demoMenuBar import *

class AppWindow (QMainWindow) :

def

def

__init_ (self):

super () .__init__ ()

self.ui = Ui_MainWindow ()

self.ui.setupUi (self)

self.posl = [0,0]

self.pos2 = [0,0]

self.toDraw=""
self.ui.actionDraw_Circle.triggered.connect (self.
drawCircle)
self.ui.actionDraw_Rectangle.triggered.connect (self.
drawRectangle)

self.ui.actionDraw_Line.triggered.connect (self.drawlLine)
self.ui.actionPage_Setup.triggered.connect (self.pageSetup)
self.ui.actionSet_Password.triggered.connect (self.
setPassword)

self.ui.actionCut.triggered.connect (self.cutMethod)
self.ui.actionCopy.triggered.connect (self.copyMethod)
self.ui.actionPaste.triggered.connect (self.pasteMethod)
self.show()

paintEvent (self, event):
gp = QPainter ()
gp.begin (self)
if self.toDraw=="rectangle":
width = self.pos2[0]-self.posl[0]
height = self.pos2[1l] - self.posl[l]
gp.drawRect (self.posl[0], self.posl[l], width, height)

[238]

Networking and Managing Large Documents Chapter 7

if self.toDraw=="1line":
gp.drawlLine (self.posl1[0], self.posl[1l], self.pos2[0],
self.pos2[1])

if self.toDraw=="circle":
width = self.pos2[0]-self.posl[0]

height = self.pos2[1] - self.posl[1]
rect = QtCore.QRect (self.posl1[0], self.posl[l], width,
height)

startAngle = 0
arcLength = 360 *16
gp.drawArc (rect, startAngle,
arcLength)

gp.end ()

def mousePressEvent (self, event):
if event.buttons() & QtCore.Qt.LeftButton:
self.pos1[0], self.posl[l] = event.pos().x(),
event.pos () .y ()

def mouseReleaseEvent (self, event):
self.pos2[0], self.pos2[l] = event.pos().x(),
event.pos () .y ()
self.update ()

def drawCircle (self):
self.ui.label.setText ("")
self.toDraw="circle"

def drawRectangle (self):
self.ui.label.setText ("")
self.toDraw="rectangle"

def drawLine (self):
self.ui.label.setText ("")
self.toDraw="1ine"

def pageSetup (self):
self.ui.label.setText ("Page Setup menu item is selected")

def setPassword(self):
self.ui.label.setText ("Set Password menu item is selected")

def cutMethod (self):
self.ui.label.setText ("Cut menu item is selected")

def copyMethod(self):
self.ui.label.setText ("Copy menu item is selected")

[239]

Networking and Managing Large Documents Chapter 7

def pasteMethod(self):
self.ui.label.setText ("Paste menu item is selected")

app = QApplication(sys.argv)
w = AppWindow ()

w.show ()

sys.exit (app.exec_())

How it works...

The triggered() signal of the action of each menu item is connected to its respective method.
The triggered() signal of the actionDraw_Circle menu item is connected to the
drawCircle () method, so that whenever the Draw Circle menu item is selected from the
menu bar, the drawCircle () method will be invoked. Similarly, the triggered() signal of
the actionDraw_Rectangle and actionDraw_Line menus are connected to the
drawRectangle () and drawLine () methods respectively. In the drawCircle () method,
the toDraw variable is assigned a string, circle. The toDraw variable will be used to
determine the graphics to be drawn in the paintEvent method. The toDraw variable can
be assigned any of the three strings, 1ine, circle, or rectangle. A conditional branching
is applied to the value in the toDraw variable and the methods to draw a line, rectangle, or
circle will be invoked accordingly. The figures will be drawn to the size determined by the
mouse, that is, the user needs to click the mouse and drag it to determine the size of the
figure.

Two methods, mousePressEvent () and mouseReleaseEvent (), are automatically called
when left mouse button is pressed and released respectively. To store the x and y
coordinates of the location where the left mouse button was pressed and released, two
arrays, pos1 and pos2, are used. The x and y coordinate values of the locations where the
left mouse button was pressed and released are assigned to the pos1 and pos2 arrays via
the mousePressEvent and mouseReleaseEvent methods.

In the mouseReleaseEvent method, after assigning the x and y coordinate values of the
location where the mouse button was released, the self.update method is invoked to
invoke the paintEvent () method. In the paintEvent () method, branching takes place
on the basis of the string assigned to the toDraw variable. If the t oDraw variable is assigned
the 1ine string, the drawLine () method will be invoked by the Qpainter class to draw
the line between the two mouse locations. Similarly, if the toDraw variable is assigned the
circle string, the drawArc () method will be invoked by the QPainter class to draw a
circle with the diameter supplied by mouse locations. If the t oDraw variable is assigned the
rectangle string, then the drawRect () method will be invoked by the gpainter class to
draw the rectangle of the width and height supplied by the mouse locations.

[240]

Networking and Managing Large Documents Chapter 7

Besides the three menu items, Draw Circle, Draw Rectangle, and Draw Line, if the user
clicks any other menu item, a message will be displayed indicating the menu item clicked
on by the user. Hence, the triggered() signals of the rest of the menu items are connected to
the methods that display the message information for the menu item that has been selected
by the user through a Label widget.

On running the application, you will find a menu bar with two menus, Draw and Edit. The
Draw menu will show the four menu items Draw Circle, Draw Rectangle, Draw Line, and
Properties, with a separator before the Properties menu item. The Properties menu item
shows two submenu items, Page Setup and Set Password, along with their shortcut keys,
as shown in the following screenshot:

B MainWindow — O x
Draw Edit

Draw Circle Shift+C

Draw Rectangle Ctrl+R

Draw Line Ctrl+L

Properties ’ Page Setup Shift+5

Set Password Shift+P

[241]

Networking and Managing Large Documents Chapter 7

To draw a circle, click on the Draw Circle menu item, click the mouse button at a location
on the form, and keeping the mouse button pressed, drag it to define the diameter of the
circle. On releasing the mouse button, a circle will be drawn between the mouse pressed
and mouse released locations, as shown in the following screenshot:

B MainWindow — O >
Draw Edit

Draw Circle Shift+C

Draw Rectangle Ctrl+R

Draw Line Ctrl+L

Properties r

[242]

Networking and Managing Large Documents Chapter 7

On selecting any other menu item, a message will be displayed, indicating the menu item
that is pressed. For example, on selecting the Copy menu item, you get a message, Copy
menu item is selected, as shown in the following screenshot:

B MainWindow — O x
Draw = Edit

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Copy menu item is selected

[243]

Doing Asynchronous
Programming in Python

In this chapter, we will learn to use asynchronous programming in Python, which is how
more than one task can be executed in parallel. We will be covering the following topics:

e Updating a progress bar using a thread

Updating two progress bars using two threads

Updating progress bars using threads bound with a locking mechanism

Updating progress bars simultaneously using asynchronous operations
¢ Managing resources using context manager

Introduction

Threads are used for running several programs concurrently in a single process, so they
help in implementing multitasking. Threads, once created, execute simultaneously and
independently of each other. Threads are basically small processes that are created for
executing certain tasks independently. Threads can be pre-empted, that is, interrupted or
stopped temporarily by setting them in sleep mode and then resuming execution.

To work with threads in Python, we will be making use of its threading module. The
threading module provides several methods that provide information on currently active
threads. A few of the methods provided by the threading module are as follows:

e threading.activeCount (): This method returns the number of currently
active thread objects

e threading.currentThread (): This method returns the current thread object

e threading.enumerate (): This method returns a list of all currently active
thread objects

Doing Asynchronous Programming in Python Chapter 8

Besides the preceding methods, the threading module has the Thread class, which
implements threading. The following are the methods provided by the Thread class:

run () : This method begins the execution of a thread

e start (): This method starts a thread by calling the run method

e join ([time]): This method waits for threads to terminate

e isAlive (): This method checks whether a thread is still executing
e getName (): This method returns the name of a thread

e setName () : This method sets the name of a thread

Multithreading

In multithreading, more than one thread runs simultaneously. Consequently, computation
and other jobs are performed quicker. This is because the time that is usually wasted in
waiting for I/O operations is used by another thread to perform its task.

Python includes GIL too. Global Interpreter Lock (GIL), a lock that
allows only one thread to execute at a time. But this feature is used that
often as it executes only one thread even in an architecture that has more
than one CPU, hence limiting the full utilization of all CPUs.

When two or more threads run concurrently, there may be an ambiguous situation where
two or more threads try to run a block of statements together. In such a situation, we need
to implement a mechanism that makes a thread wait until the current thread finishes its
processing on a block of statements. When the current thread finishes its processing,

only then is another thread allowed to process those statements. Such a mechanism is called
synchronization of threads. Locking is a popular technique used in synchronization of
threads. When a thread wants to execute a block of shared statements, it acquires a lock. No
thread can execute statements whose lock is acquired by another thread, hence such
threads are asked to wait to get those statements unlocked. The thread that acquired the
lock processes those statements, and when finished, releases the lock. The waiting thread
can then acquire the lock on that block of statements and begin its execution.

[245]

Doing Asynchronous Programming in Python Chapter 8

Asynchronous programming

Asynchronous programming makes processing a lot faster as more than one task executes
in parallel to the main thread. A Python library that is very commonly used in
asynchronous programming is asyncio. For asynchronous programming, you need an
event loop that schedules asynchronous tasks, that is, the event loop picks up a task that is
waiting in a queue for processing. Functions that need to be run asynchronously need to be
prefixed with the async keyword.

The functions that will be executed asynchronously are marked with the async keyword.
The event loop recognizes the asynchronous function through the async prefix. All
asynchronous functions are known as coroutine. Any asynchronous function (coroutine)
after starting a task, continues its task until either the task is over or it is asked to wait by
the await call. The asynchronous function will suspend its execution if the await call occurs.
The period of suspension is determined by the await asyncio.sleep (delay) method.
The function will go to sleep for the specified delay period.

The following are the methods that are required in asynchronous programming:

® asyncio.get_event_loop (): This method is used to get the default event
loop (). The eventloop schedules and runs asynchronous tasks.

e loop.run_until_complete (): This method won't return until all of the
asynchronous tasks are done.

Updating progress bar using thread

Progress bars are actively used in applications to indicate that a task is working in the
background. Threads also do the same; threads too work in the background and do their
assigned task. Let's see how the progress bar and threads can be linked.

In this recipe, we will be displaying a progress bar that is being updated using threads. The
value in the progress bar will be updated through a running thread.

How to do it...

To associate a progress bar with a thread and to update the progress bar interactively via
the thread, use the following steps:

1. Let's create an application based on the Dialog without Buttons template.

[246]

Doing Asynchronous Programming in Python Chapter 8

2.

6.

7.

Add gLabel and QProgressBar widgets to the form by dragging and dropping
the Label and Progress Bar widgets onto the form.

Set the text property of the Label widget to Downloading the file.

Let the objectName property of the Progress Bar widget be the default,
progressBar.

Save the application as demoProgressBarThread.ui. The form will now
appear as shown in the following screenshot:

Dialeg - demoProgressBarThread.ui EI@

Downloading the file

0%

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to be converted into Python code. The generated Python

script, demoProgressBarThread.py, can be seen in the source code bundle of
the book.

Treat the demoProgressBarThread. py script as a header file, and import it into
the file from which you will invoke its user interface design.

Create another Python file with the name callProgressBar.pyw and import
the demoProgressBarThread.py code into it:

import sys
import threading
import time
from PyQt5.QtWidgets import QDialog, QApplication
from demoProgressBarThread import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.show()
class myThread (threading.Thread):
counter=0
def _ _init_ (self, w):
threading.Thread.__init__ (self)

[247]

Doing Asynchronous Programming in Python Chapter 8

self.w=w
self.counter=0
def run(self):

print ("Starting " + self.name)

while self.counter <=100:
time.sleep (1)
w.ul.progressBar.setValue (self.counter)
self.counter+=10

print ("Exiting " + self.name)

if name__ =="__main__ ":

app = QApplication(sys.argv)
w = MyForm/()

threadl = myThread (w)
threadl.start ()

w.exec ()

sys.exit (app.exec_())

How it works...

In the callProgressBarThread. pyw file, there are two classes: one is the main class,
called the MyForm class, which basically interacts with the GUI form, and the second class is
the myThread class, which creates and invokes the thread to update the progress bar made
in the GUI form.

To use threads in Python, the first step is to import Thread. The import

threading statement imports Thread in the current script. After importing Thread, the
second step is to subclass our class from the Thread class. Hence, our class called
myThread inherits the Thread class.

In the main section of the script, an object of the main class, MyForm, is defined by name w.
Then, an object of the myThread class is defined by name, threadl. The progress bar
which is invoked in the main class, MyForm, has to be updated through the thread, hence
the object of the main class, w, is passed as a parameter while creating the thread object,
threadl. On invoking the start method on the thread object, thread1, the run method
defined in the myThread class will be invoked. In the run method, a counter is set to run
from value 0% to 100% with a delay of 1 second between every increment in the counter.
The value of the counter will be used to display progress in the progress bar. Hence, the
progress bar will progress from 0 to 100 with a delay of 1 second in between each
percentage.

[248]

Doing Asynchronous Programming in Python Chapter 8

On running the application, you will find the progress bar progressing from 0% to 100%, as
shown in the following screenshot:

i ' Dialog ? it

Downloading the file

.. 80%

thread. QprogressBar is an exception.

0 Very few widgets in Qt natively support being edited from another

Updating two progress bars using two
threads

For multitasking, you need more than one thread running simultaneously. The focus of this
recipe is on understanding how two tasks can be performed asynchronously via two
threads, that is, how CPU time is allocated to these two threads and how switching is done
between them.

This recipe will help you understand how two threads run independently without
interfering with each other. We will be making use of two progress bars in this recipe. One
progress bar will represent progress in downloading a file, and the other progress bar will
represent progress in scanning for viruses on the current drive. Both progress bars will
progress independently of each other through two different threads.

[249]

Doing Asynchronous Programming in Python Chapter 8

How to do it...

Let's learn how two progress bars are managed by two threads. To understand how CPU
time is allocated to each running thread to execute two tasks simultaneously, perform the
following steps:

1.

o Ok W

Let's create an application based on the Dialog without Buttons template. We
need two pair of QLabel and QProgressBar widgets in this application.

Add a QLabel and a QProgressBar widget to the form by dragging and
dropping a Label widget onto the form and, below the Label widget, drag and
drop a progress bar on the form.

Repeat the procedure for another pair of Label and Progress Bar widgets.

Set the text property of the first Label widget to Downloading the file.

Set the text property of the second Label widget to Scanning for Virus.

Set the objectName property of the first progress bar to
progressBarFileDownload.

Set the objectName property of the second progress bar to
progressBarVirusScan.

Save the application as demoTwoProgressBars.ui. After performing the
preceding steps, the form will now appear as shown in the following screenshot:

Dialog - demoTwoProgressBars.ui E@

Downloading the file

0%

Scanning for Virus

0%

[250]

Doing Asynchronous Programming in Python Chapter 8

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file. By applying the pyuic5 utility, the XML file can be converted into
Python code. You can find the generated Python script,
demoTwoProgressBars.py, in the source code bundle for the book.

9. Treat the demoTwoProgressBars.py script as a header file, and import it into
the file from which you will invoke its user interface design.

10. Create another Python file with the name callProgressBarTwoThreads.pyw
and import the demoTwoProgressBars.py code into it:

import sys

import threading

import time

from PyQt5.QtWidgets import QDialog, QApplication

from demoTwoProgressBars import *

class MyForm(QDialog) :

def _ _init__ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.show ()

class myThread (threading.Thread):
counter=0

def __init__ (self, w, ProgressBar):
threading.Thread.__init__ (self)
self.w=w

self.counter=0
self.progreassBar=ProgressBar
def run(self):
print ("Starting " + self.name+"n")
while self.counter <=100:
time.sleep (1)
self.progreassBar.setValue (self.counter)
self.counter+=10
print ("Exiting " + self.name+"n")
if _ name_ =="_main__ ":
app = QApplication(sys.argv)
w = MyForm()
threadl = myThread(w, w.uil.progressBarFileDownload)
thread2 = myThread(w, w.ul.progressBarVirusScan)
threadl.start ()
thread2.start ()
w.exec ()
threadl.join ()
thread2.join ()
sys.exit (app.exec_())

[251]

Doing Asynchronous Programming in Python Chapter 8

How it works...

In the callProgressBarTwoThreads . pyw file, there are two classes: one is the main class,
called the MyForm class, which basically interacts with the GUI form, and the second class is
the myThread class, which creates and invokes two threads, which in turn update the two
Progress Bar widgets used in the GUI. Recall, the two progress bars are defined in the GUI
to represent progress in downloading a file and scanning for viruses.

When using threads in Python, the first step is to import Thread. The import
threading statement imports Thread in the current script. After importing Thread, the
second step is to subclass our class from the Thread class. Hence, our class called
myThread inherits the Thread class.

In the main section of the script, an object of the main class, MyForm, is made, called w.
Thereafter, two threads are created by name, threadl and thread?2, by creating two
instances of the myThread class. Because thread1 is supposed to update the progress bar
that represents progress in file downloading, while creating it two parameters are passed to
it: the first is the instance of the main class, MyForm, and the second parameter is the
progress bar with the object name progressBarFileDownload.

The second thread, thread2, will update the progress bar that represents virus scanning,
so while creating the thread2 instance, two parameters are passed: the first is the MyForm
class instance, w, and the second parameter is ProgressBar with the object

name progressBarVirusScan.

On invoking the start method on the thread object, thread1, the run () method defined
in the myThread class will be invoked. In the run () method, a counter is set to run from 0%
to 100% with a delay of 1 second between every increment in the counter. The value of
counter will be used to display progress in the progress bar . Hence, the progress bar with
the object name progressBarFileDownload will progress from 0 to 100 with a delay of 1
second in between each percentage.

Similarly, when the start () method is invoked on the thread2 object, its run () method
will be invoked. Remember, the run methods of both threads will run independently,
without interfering with each other. The run () method of thread2 will make the progress
bar with the object name progressBarVirusScan progress from 0% to 100% with a delay
of 1 second between each increment in value.

[252]

Doing Asynchronous Programming in Python Chapter 8

On running the application, you will find the two progress bars progressing from 0%
to 100%, independently of each other. The thread will automatically stop when the
associated progress bar reaches 100%, as shown in the following screenshot:

B Dialog ? X

Downloading the file

a 20%

Scanning for Virus

4 20%

In order to control access to shared resources, a locking mechanism is applied to threads:
the Lock object is used to prevent two threads from accessing the same resource
simultaneously.

To work on any resource, a thread is compelled to acquire a lock on that resource first. Only
one thread at a time can acquire a lock on a resource. If a resource is locked, that is, it is
being used by some other thread, no other thread can access or perform tasks on that
resource until the current thread finishes its task on that resource and unlocks the resource,
that is, all other threads need to wait until the resource is unlocked. A lock can be in one of
two states, "locked" or "unlocked". Initially, a lock is in the unlocked state and the moment a
thread needs to access a resource, it acquires a lock and turns that lock into the "locked"
state, informing the other threads that the resource is in use.

To acquire and release the locks, a thread can use the following two basic methods:

e acquire (): This method is invoked by a thread to inform other threads that it
needs to work on a resource and needs to get a lock on it. If the resource is
already in a locked state, then this method will block the invoking thread. Only
when the resource becomes free will the blocked thread be unblocked, signaling
that the resource that it was waiting for is free now and can be locked by it. A
resource becomes free when a thread that is using it invokes the release ()
method, which indicates that the resource is now in an unlocked state and the
waiting thread is welcome to lock it.

[253]

Doing Asynchronous Programming in Python Chapter 8

e release (): As the name suggests, this method is invoked by a thread that has
locked a resource and has finished its tasks on that thread. By invoking the
release () method, the resource gets unlocked and can be acquired by any
waiting thread. This method should only be called when the resource is in the
locked state, otherwise, this method will result in an error.

Updating progress bars using threads
bound with a locking mechanism

This recipe will help you understand how two threads can avoid ambiguity by making use
of locks. That is how shared resources can be accessed and manipulated by two threads
simultaneously, without giving ambiguous results.

We will be making use of two progress bars in this recipe. One progress bar will represent
progress in downloading a file, and the other progress bar will represent progress in
scanning for viruses on the current drive. Only one progress bar will progress at a time.

How to do it...

The following steps will help you understand how two threads can run simultaneously,
updating a common shareable resource, without giving ambiguous results:

1. Let's create an application based on the Dialog without Buttons template. We
need two pair of QLabel and QProgressBar widgets in this application.

2. Add a QLabel and a QProgressBar widget to the form by dragging and
dropping a Label widget on the form and, below the Label widget, drag and
drop a Progress Bar widget on the form.

3. Repeat the procedure for another pair of Label and Progress Bar widgets.

4. Set the text property of the first Label widget to Downloading the file and
the second Label widget to Scanning for Virus.

5. Set the objectName property of the first Progress Bar widget to
progressBarFileDownload

6. Set the objectName property of the second Progress Bar widget to
progressBarVirusScan

[254]

Doing Asynchronous Programming in Python Chapter 8

7. Save the application as demoTwoProgressBarsLocks.ui. The form will now
appear as shown in the following screenshot:

Dialog - demoTwoProgressBarsLocks.ui E\@

Downloading the file

0%

Scanning for Virus

0%

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to convert into Python code. The pyuic5 command is used
for converting the XML file into a Python script. You can find the generated
Python script, demoTwoProgressBarsLocks.py, in the source code bundle for
this book.

8. Treat the demoTwoProgressBarsLocks.py file as a header file, and import it
into the file from which you will invoke its user interface design.

9. Create another Python file with the name
callProgressBarTIwoThreadsLocks.pyw and import the
demoTwoProgressBarsLocks.py code into it:

import sys
import threading
import time
from PyQt5.QtWidgets import QDialog, QApplication
from demoTwoProgressBarsLocks import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.show ()
class myThread (threading.Thread):
counter=0

[255]

Doing Asynchronous Programming in Python

Chapter 8

def __init__ (self, w, ProgressBar):
threading.Thread.__init__ (self)
self.w=w

self.counter=0
self.progreassBar=ProgressBar
def run(self):
print ("Starting " + self.name+"n")
threadLock.acquire ()
while self.counter <=100:
time.sleep (1)
self.progreassBar.setValue (self.counter)
self.counter+=10
threadLock.release ()
print ("Exiting " + self.name+"n")
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()

threadl = myThread(w, w.ui.progressBarFileDownload)

thread2 = myThread(w, w.ul.progressBarVirusScan)
threadLock = threading.Lock ()
threads = []
threadl.start ()
thread2.start ()
w.exec ()
threads.append (threadl)
threads.append (thread?2)
for t in threads:

t.join ()
sys.exit (app.exec_())

How it works...

In the callProgressBarTwoThreadsLocks.pyw file, there are two classes: one is the
main class, called the MyForm class, which basically interacts with the GUI form, and the
second class is the myThread class, which creates and invokes two threads, which in turn

update the two Progress Bar widgets used in the GUIL

To use threads in Python, the first step is to import Thread. The import

threading statement imports Thread in the current script. After importing Thread, the

second step is to subclass our class from the Thread class. Hence, our class called

myThread inherits the Thread class.

[256]

Doing Asynchronous Programming in Python Chapter 8

In the main section of the script, an object of the main class, MyForm, is made, called w.
Thereafter, two threads are created by name, threadl and thread?2, by creating two
instances of the myThread class. Because thread1 is supposed to update the progress bar
that represents progress in file downloading, while creating it two parameters are passed to
it. The first is the instance of the main class, MyForm, and the second parameter is

the ProgressBar with the object name progressBarFileDownload.

The second thread, thread2, will update the progress bar that represents virus scanning,
so while creating the thread2 instance, two parameters are passed. The first is the MyForm
class instance, w, and the second parameter is the ProgressBar with the object

name progressBarVirusScan.

On invoking the start method on the thread object threadi, the run method defined in
the myThread class will be invoked.

In the run method, the threadl object acquires the lock by invoking the acquire method.
Consequently, the while block will execute completely for this threadl object only. That is,
until the release method is called by thread1, the while loop for thread2 will not run.
In other words, the progress bar with the object name progressBarFileDownload, which
is being updated by thread1, will progress alone from 0 to 100. Once the progress bar
from threadl reaches 100, the release method is invoked by thread1. The thread2
object will execute its run method on release of the lock by thread1.

The run method of thread2 also acquires the lock so that no other thread can run this
block of code until thread? releases the lock. The run method makes the progress bar with
the object name progressBarVirusScan progress from 0 to 100 with a delay of 1 second
between each increment in value.

On running the application, you will find that the first progress bar, which represents file
downloading, progresses from 0% till 100%, whereas the other progress bar is still at

0% (see the left side of the next screenshot). When the first progress bar reaches 100%,
meaning when the first thread releases the lock, the second thread will start its job and
hence the second progress bar will begin progressing from 0% to 100% (see the right side of
the screenshot):

[257]

Doing Asynchronous Programming in Python Chapter 8

B Dialog ? * i’ Dialog ? x

Downloading the file Downloading the file

I 50% I 100%

Scanning for Virus Scanning for Virus

0% 20%

Updating progress bars simultaneously
using asynchronous operations

This recipe will help you understand how asynchronous operations are performed in
Python. asyncio is a library in Python that supports asynchronous programming.
Asynchronous means, that besides the main thread, one or more tasks will also execute in
parallel. While using asyncio, you should remember that only code written in methods
flagged as async can call any code in an asynchronous way. Besides this, async code can
only run inside an event loop. The event loop is the code that implements multitasking. It
also means that to perform asynchronous programming in Python, we need to either create
an event loop or get the current thread's default event loop object.

We will be making use of two progress bars and both will be updated simultaneously via
asynchronous operations.

How to do it...

Perform the following steps to understand how asynchronous operations are performed:

1. Let's create an application based on the Dialog without Buttons template. We
will require two pair of QLabel and QProgressBar widgets in this application.

[258]

Doing Asynchronous Programming in Python Chapter 8

2.

Add a QLabel and a QProgressBar widget to the form by dragging and
dropping a Label widget on the form and, below the Label widget, drag and
drop a Progress Bar widget on the form.

Repeat the procedure for another pair of Label and Progress Bar widgets.

Above the Label and Progress Bar pair, drag and drop a push button on the
form.

Set the text property of the push button to Start.

Set the text property of the first Label widget to Downloading the file and
the second Label widget to Scanning for Virus.

Set the objectName property of the push button to pushButtonStart.

Set the objectName property of the first Progress Bar widget to
progressBarFileDownload and that of the second Progress Bar widget to
progressBarVirusScan.

Save the application as demoTwoProgressBarsAsync.ui. The form will appear
as shown in the following screenshot:

Dialog - demoTwoProgressBarsAsync.ui EI@

Start
Downloading the file

0%

Scanning for Virus

0%

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to convert into the Python code. The pyuic5 command is
used for converting the XML file into the Python code. The generated Python
script, demoTwoProgressBarsAsync. py, can be seen in the source code bundle
for this book.

[259]

Doing Asynchronous Programming in Python Chapter 8

10. Treat the demoTwoProgressBarsAsync.py script as a header file, and import it
into the file from which you will invoke its user interface design.

11. Create another Python file with the name callProgressBarAsyncl.pyw and
import the demoTwoProgressBarsAsync.py code into it:

import sys, time
import asyncio
from PyQt5.QtWidgets import QDialog, QApplication
from quamash import QEventLoop
from demoTwoProgressBarsAsync import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonStart.clicked.connect (self.invokeAsync)
self.show ()
def invokeAsync (self):
asyncio.ensure_future (self.updt (0.5, self.ui.
progressBarFileDownload))
asyncio.ensure_future (self.updt (1, self.ui.
progressBarVirusScan))
@staticmethod
async def updt (delay, ProgressBar):
for i in range (101):
await asyncio.sleep (delay)
ProgressBar.setValue (1)
def stopper (loop) :
loop.stop()
if _ name_ =="_main__ ":
app = QApplication(sys.argv)
loop = QEventLoop (app)
asyncio.set_event_loop (loop)
w = MyForm()
w.exec ()
with loop:
loop.run_forever ()
loop.close()
sys.exit (app.exec_())

How it works...

In the callProgressBarAsyncl.pyw file, in the main section, an object of the
QEventLoop class is made called loop. For asynchronous programming, we use event
loops. Why?

[260]

Doing Asynchronous Programming in Python Chapter 8

In asynchronous programming, there might be more than one task in a queue waiting for
the CPU's attention. The event loop picks up a task from the queue and processes it. These
tasks that are picked up from the queue are also known as coroutines. After getting picked
up, the event loop is executed forever; that is, it will see whether there are any tasks in the
queue to be executed. If any are found, the task is executed. Following the current task, the
next in the queue is picked up, and so on.

The clicked() signal of the push button is connected with the invokeAsync () method.
Whenever the push button is clicked, it will invoke the invokeAsync () method.

In the invokeAsync () method, the asyncio.ensure_future method is called,
scheduling the execution of a corout ine object in the future. The
asyncio.ensure_future method is called twice.

When the asyncio.ensure_future method is called for the first time, it invokes

the updt static method and passes two parameters: one is a time delay of 0.5 seconds and
the second parameter is the progress bar with the object

name progressBarFileDownload.

In the second call to the asyncio.ensure_future method, it again invokes the updt static
method and passes two parameters: one is the time delay of 15 seconds and the second
parameter is the progress bar with the object name progressBarVirusScan.

In the updt static method, the progress bar that is supplied as a parameter is updated from
0 to 100. The progress bar is updated after the supplied delay. That is, the progress bar
with the object name progressBarFileDownload is updated from 0 to 100 with a delay of
0.5 seconds. Similarly, the progress bar with the object name progressBarVirusScan is
updated from 0 to 100 with a delay of 1 second.

When the progress bar with the object name progressBarFileDownload is updated by a
value of 1 and is asked to sleep for 0.5 seconds, the event loop picks up the next task; that
is, it updates the progress bar with the object name progressBarVirusScan. After
updating the progressBarVirusScan object name, a delay of 1 second is inserted. During
this delay of 1 second, the progress bar with the object name progressBarFileDownload
will be updated twice. Hence, the file download progress bar will update at double speed
when compared with the progress bar with the object name progressBarVirusScan.

To work with event loops in Python, you need to install quamash on your drive. So, execute
the following command:

Python -m pip install quamash

[261]

Doing Asynchronous Programming in Python Chapter 8

The preceding command will generate the following output:

EH Administrator: Command Prompt — O ®

hon -m pip install quamash

ny . whl

On running the application, you will find two progress bars and a push button at the top.
On clicking the Start button, both threads will start progressing. The file download
progress bar will progress at double the speed of the virus scanning progress bar, as shown
in the following screenshot:

1 Dialeg 7 >

Downloading the file

I 49%

Scanning for Virus

[24%

Managing resources using context manager

In this recipe, you will learn to update two progress bars simultaneously using two threads.
Synchronizing between the two threads and locking them will be handled through the
context manager. What is context manager? Let's have a quick look.

[262]

Doing Asynchronous Programming in Python Chapter 8

Context manager

Context manager enables us to allocate and release resources whenever desired. To
optimize the use of resources, it is essential that, when any resources are allocated by any
application or thread, they are freed or cleaned up so that they can be used by some other
application or thread. But sometimes the program crashes while executing, or for some
other reason the program does not terminate properly, and consequently, the allocated
resources are not properly freed. Context managers help in such situations by ensuring the
cleaning up of allocated resources takes place. Here is a small example of using the context
manager:

with method_call() as variable_name:
statements that use variable_name

variable_name is automatically cleaned

The with keyword plays a major role in the context manager. Using the with keyword, we
can call any method that returns a context manager. We assign the returned context
manager to any variable by using, as variable_name. The variable_name will exist only
within the indented block of the with statement, and will be automatically cleaned up
when the with block ends.

Context managers are very useful while using multiple threads. While using multiple
threads, you need to acquire locks when a thread accesses a common resource. Also, when
a task on a common resource is performed, you need to release the lock. If the locks are not
released because of some exception, it might lead to deadlocks. Context manager
automatically releases the lock by making use of its with keyword. Here is a small example
showing acquiring and releasing locks:

threadLock.acquire ()
statements that use resource

threadLock.release ()

[263]

Doing Asynchronous Programming in Python Chapter 8

You can see that once the lock is acquired, resources are used and finally the lock is
released. But this code might cause a disaster if the threadLock.release () command
does not execute because of some exception in the preceding statements. In such a situation,
it is better to use context manager. Here is the syntax for automatically releasing a lock
using context manager:

with threadLock:
statements that use resource

lock is released automatically

You can see in the preceding syntax that the moment the with block is over, the lock is
automatically released without executing the release () method.

Let's begin with creating an application in which two progress bars are updated using two
threads, and the locks in the threads are handled using context manager.

How to do it...

Let’s create an application based on the Dialog without Buttons template with the
following steps:

1. We need two pair of QLabel and QProgressBar widgets in this application. Add a
QLabel widget to the form by dragging and dropping a Label widget on the
form.

2. Below the Label widget, drag and drop a Progress Bar widget on the form.

®

Repeat the procedure for another pair of Label and Progress Bar widgets.
4. Set the text property of the first Label widget to Downloading the file and
that of the second Label widget to Scanning for Virus.

5. Set the objectName property of the first Progress Bar widget to
progressBarFileDownload.

6. Set the objectName property of the second Progress Bar widget to
progressBarVirusScan.

[264]

Doing Asynchronous Programming in Python Chapter 8

7. Save the application as demoTwoProgressBarsContextManager.ui. The form
will now appear as shown in the following screenshot:

Dialog - demoTweProgressBarsContextManager.ui® E\@
Downloading the file

0%

Scanning for Virus

0%

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to convert into Python code. The pyuic5 utility is used for
converting the XML file into Python code. You can see the generated Python

script, demoTwoProgressBarsContextManager . py, in the source code bundle
for this book.

8. Treat the demoTwoProgressBarsContextManager.py file as a header file and
import it into the file from which you will invoke its user interface design.

9. Create another Python file with the name
callProgressBarContextManager.pyw and import the
demoTwoProgressBarsContextManager.pyCodehﬁoit

import sys
import threading
import time
from PyQt5.QtWidgets import QDialog, QApplication
from demoTwoProgressBarsContextManager import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.show()

[265]

Doing Asynchronous Programming in Python Chapter 8

class myThread (threading.Thread):
counter=0

def __init__ (self, w, ProgressBar):
threading.Thread.__init__ (self)
self.w=w

self.counter=0
self.progreassBar=ProgressBar

def run(self):
print ("Starting " + self.name+"\n")
with threadLock:
while self.counter <=100:

time.sleep (1)
self.progreassBar.setValue (self.counter)
self.counter+=10
print ("Exiting " + self.name+"\n")

if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)

w = MyForm/()

threadl myThread (w, w.ul.progressBarFileDownload)

thread2 = myThread(w, w.ul.progressBarVirusScan)

threadLock = threading.Lock ()

threads = []

threadl.start ()

thread2.start ()

w.exec ()

threads.append (threadl)

threads.append (thread?2)

for t in threads:

t.join ()
sys.exit (app.exec_())

How it works...

You can see that there are two classes in this script: one is the main class, called the MyForm
class, which does the task of interacting with the GUI form. The second class is the
myThread class, which creates and invokes two threads, which in turn will update the two
Progress Bar widgets used in the GUL

[266]

Doing Asynchronous Programming in Python Chapter 8

The import threading statement imports Thread into the current script. Thereafter, your
class, myThread, inherits the Thread class. An object of the main class, MyForm, is made,
called w. Thereafter, two threads are created, threadl and thread2, by creating two
instances of the myThread class. Because thread1 is supposed to update the progress bar
that represents progress in file downloading while creating it, two parameters are passed to
it: the first is the instance of the main class, MyForm, and the second parameter is
ProgressBar with the object name progressBarFileDownload.

The second thread, thread2, will update the progress bar that represents virus scanning,
so while creating the thread2 instance two parameters are passed. The first is the MyForm
class instance, w, and the second parameter is ProgressBar with the object

name progressBarVirusScan. On, invoking the start method on the thread object,
threadl, the run method defined in the myThread class will be invoked.

In the run method, the threadl object does not acquire the lock but uses the context
manager by calling the with threadLock block. In the with block, the resources
automatically get locked. Also, the lock on resources automatically gets released when the
with block completes. So, there is no need to execute the acquire method or

the release method.

The progress bar with objectName progressBarFileDownload, which is being updated
by thread1, will progress from 0 to 100. Once the progress bar from threadl reaches 100,
the with block completes and the release method is automatically invoked internally by
threadl (via the context manager). The thread?2 object will execute its run () method
once the with block of threadl completes.

The run () method of thread2 also makes use of the context manager, so thread2 also
does not have to execute the acquire () and release () methods; the context manager
automatically locks the resource at the beginning of the with block, and releases the
resources when the with block completes. The run () method makes the Progress Bar
widget with the object name progressBarVirusScan progress from 0 to 100 with a delay
of 1 second between each increment in value.

[267]

Doing Asynchronous Programming in Python Chapter 8

On running the application, you will find that the first progress bar that represents the file
download progresses from 0% to 100% and executes completely, that is, it reaches 100%,
then the second progress bar will begin progressing from 0% to 100%, as shown in the
following screenshot:

4 DB Browser for SQLite - D\PacktPython\PythonPrograms\ECommerce.db — O X
File Edit View Help

& New Database & Open Database [Write Changes & Revert Changes
Edit Datab Il & X
Database Structure Browse Data Edit Pragmas Execute SQL EtE
. . Mode: |Text. ~ Import Export Set as NULL
= B B » M
sqL1
1 select ' from Useri
Type of data currently in cell: NULL
Apply
0 byte(z)
L4 >
Remote = ¢
EmnailAddress Password
Identi * | |
1 chirag@hotmail.com peacedd9 =k =
MName Commit Last modified Size
1 rows returned in 28ms from: select * from Users
=
i}
< >
SQL Log ; P.I-ot -DB-SF}IEI'I‘IE Remaote
UTF-8

[268]

Database Handling

Database handling plays a major role in any application as data needs to be stored for
future use. You need to store customer information, user information, product information,
order information, and so on. In this chapter, you will learn every task that is related to
database handling:

¢ Creating a database

¢ Creating a database table

e Inserting rows in the specified database table

¢ Displaying rows in the specified database table

e Navigating through the rows of the specified database table

e Searching a database table for specific information

¢ Creating a signin form — applying an authentication procedure
¢ Updating a database table — changing a user's password

¢ Deleting a row from a database table

We will be using SQLite for database handling. Before we move further into the chapter,
let's have a quick introduction to SQLite.

Introduction

SQLite is a very easy-to-use database engine. Basically, it is a lightweight database meant to
be used in small applications that can be stored in a single disk file. It is a very popular
database used in phones, tablets, small appliances, and instruments. SQLite does not
require a separate server process, and does not even require any configuration.

To make this database easy to use in Python scripts, the Python Standard Library includes a
module called sqglite3. So, to use SQLite in any Python application, you need to import
the sqlite3 module using the import statement shown here:

import sqglite3

Database Handling Chapter 9

The first step to use any database is to create a connect object, by means of which you
need to establish a connection with the database. The following example establishes a
connection to the ECommerce database:

conn = sqglite3.connect ('ECommerce.db')

This example will establish a connection to the ECommerce database if it already exists. If
the database does not already exist, the database will be created first and then the
connection established.

You can also create a temporary database in memory, that is, in RAM by using the
:memory: argument in the connect method, as shown here:

conn = sqglite3.connect (' :memory:"')
You can also supply the special name :memory: to create a database in RAM.

Once the job associated with the database is over, you need to close the connection using
the following statement:

conn.close()

Creating the cursor object

To work with database tables, you need to get a cursor object and pass the SQL statements
to the cursor object to execute them. The following statement creates a cursor object
called cur:

cur = conn.cursor ()

Using the cursor object, cur, you can execute SQL statements. For example, the following
set of statements creates a Users table consisting of three columns, id, EmailAddress, and
Password:

Get a cursor object

cur = conn.cursor ()

cur.execute ('' 'CREATE TABLE Users (id INTEGER PRIMARY KEY, EmailAddress
TEXT, Password TEXT)''')

conn.commit ()

Remember, you need to commit the changes to the database by invoking
the commit () method on the connection object, otherwise all the changes made to the
database will be lost.

[270]

Database Handling Chapter 9

The following set of statements will drop the Users table:

Get a cursor object

cur = conn.cursor ()

cur.execute('' 'DROP TABLE Users''')
conn.commit ()

Creating a database

In this recipe, we will be prompting the user to enter a database name, followed by clicking
the push button. Upon clicking the push button, if the specified database does not exist, it is
created and, if it already exists, it is connected.

How to do it...

Follow this step-by-step procedure to create a database in SQLite:

1. Let's create an application based on the Dialog without Buttons template.

2. Add two QLabel widgets, one QLineEdit widget, and one QPushButton
widget to the form by dragging and dropping two Label widget, one Line
Edit widget, and a Push Button widget on the form.

Set the text property of the first Label widget to Enter database name.
Delete the text property of the second Label widget because this is established.
Set the objectName property of the Line Edit widget to 1ineEditDBName.

o Uk W

Set the objectName property of the Push Button widget to
pushButtonCreateDB.

7. Set the objectName property of the second Label widget to 1abelResponse.

8. Save the application by name as demoDatabase . ui. The form will now appear
as shown in the following screenshot:

Dialog - demoDatabase.ui EI@

Enter database name - | |

Create Database

[271]

Database Handling

Chapter 9

The user interface created with Qt Designer is stored in a . ui file, which is
an XML file, and needs to be converted into Python code. By applying the
pyuich utility, the XML file is converted into Python code. The Python

script generated, demoDatabase . py, can be seen in the source code bundle
of the book.

9. Treat the demoDatabase. py script as a header file, and import it into the file
from which you will invoke its user interface design.

10. Create another Python file with the name callDatabase.pyw and import the
demoDatabase.py code into it:

import sglite3, sys

from PyQt5.QtWidgets import QDialog, QApplication
from sglite3 import Error

from demoDatabase import *

class MyForm(QDialog) :

def

def

if name__=="__main

app
W =

_ _init_ (self):

super () .__init__ ()

self.ui = Ui_Dialog()

self.ui.setupUi (self)

self.ui.pushButtonCreateDB.clicked.connect (self.

createDatabase)

self.show ()

createDatabase (self) :

try:
conn = sqglite3.connect (self.ui.lineEditDBName.
text ()+".db")
self.ui.labelResponse.setText ("Database is created")

except Error as e:
self.ui.labelResponse.setText ("Some error has
occurred")

finally:
conn.close ()

"w.

= QApplication(sys.argv)

MyForm ()

w.show ()

SER

exit (app.exec_())

[272]

Database Handling Chapter 9

How it works...

You can see in the script that the click() event of the push button with the objectName
property pushButtonCreateDB is connected to the createbDatabase () method. This
means that, whenever the push button is clicked, the createDatabase () method is
invoked. In the createDatabase () method, the connect () method is invoked on the
sqglite3 class and the database name entered by the user in the Line Edit widget is passed
to the connect () method. The connect () method will create the database if it does not
exist already. If no error occurs in creating the database, the message Database is created is
displayed via the Label widget to inform the user; otherwise, a Some error has occurred
message is displayed via the Label widget to indicate the occurrence of an error.

On running the application, you will be prompted to enter the database name. Suppose we
enter the database name as Ecommerce. Upon clicking the Create Database button, the
database will be created and you get the message Database is created:

B Dialog ? X

Enter database name |ECommerce

| Create Database |

Database is created

Creating a database table

In this recipe, we will be learning to create a database table. The user will be prompted to
specify the database name, followed by the table name that is to be created. The recipe
enables you to enter column names and their data types. Upon clicking the push button, the
table with the defined columns will be created in the specified database.

[273]

Database Handling Chapter 9

How to do it...

Here are the steps to create a GUI that enables the user to enter all the information for the
database table to be created. Using this GUI, the user can specify the database name,
column names, and choose column types too:

1. Let's create an application based on the Dialog without Buttons template.
2. Add five QLabel, three QLineEdit, one QComboBox, and two QPushButton

widgets to the form by dragging and dropping five Label, three Line Edit,
one Combo Box, and two Push Button widgets on the form.

3. Set the text property of the first four Label widgets to Enter database name,
Enter table name, Column Name, and Data Type.

4. Delete the text property of the fifth Label widget because this is established
through code.

5. Set the text property of the two push buttons to Add Column and Create
Table.

6. Set the objectName property of the three Line Edit widgets to 1ineEditDBName,
lineEditTableName, and 1ineEditColumnName.

7. Set the objectName property of the Combo Box widget to ComboBoxDataType.

8. Set the objectName property of the two push buttons to pushButtonAddColumn
and pushButtonCreateTable.

9. Set the objectName property of the fifth Label widget to LabelResponse.

10.

Save the application by name as demoCreateTable.ui. The form will now

appear as shown in the following screenshot:

Dialog - demoCreateTable.ui =]
Enter database name - | |
Enter table name | |
Column Name Data Type
| | integer Add Column

Create Table

[274]

Database Handling

Chapter 9

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. The pyuic5 command is
used to convert the XML file into Python code. The Python script generated,
demoCreateTable.py, can be seen in the source code bundle of this book.

11. Treat the demoCreateTable.py script as a header file, and import it into the file
from which you will invoke its user interface design.
12. Create another Python file with the name callCreateTable.pyw and import
the demoCreateTable.py code into it:

import sglite3, sys

from PyQt5.QtWidgets import QDialog, QApplication
from sglite3 import Error

from demoCreateTable import *

tabledefinition=""

class MyForm(QDialog) :

def

def

def

__init_ (self):

super () .__init__ ()

self.ui = Ui_Dialog()

self.ui.setupUi (self)

self.ui.pushButtonCreateTable.clicked.connect (

self.createTable)

self.ui.pushButtonAddColumn.clicked.connect (self.

addColumns)

self.show ()

addColumns (self) :

global tabledefinition

if tabledefinition=="":
tabledefinition="CREATE TABLE IF NOT EXISTS "+
self.ui.lineEditTableName.text ()+" ("+
self.ui.lineEditColumnName.text ()+" "+
self.ui.comboBoxDataType.itemText (self.ui.
comboBoxDataType.currentIndex())

else:
tabledefinition+=", "+self.ui.lineEditColumnName
.text ()+" "+ self.ui.comboBoxDataType.itemText
(self.ui.comboBoxDataType.currentIndex())
self.ui.lineEditColumnName.setText ("")
self.uil.lineEditColumnName.setFocus ()

createTable (self) :

global tabledefinition

try:
conn = sqglite3.connect (self.ui.lineEditDBName.
text ()+".db")
self.ui.labelResponse.setText ("Database is
connected")

[275]

Database Handling Chapter 9

c = conn.cursor ()
tabledefinition+=");"
c.execute (tabledefinition)
self.ui.labelResponse.setText ("Table is successfully
created")

except Error as e:
self.ui.labelResponse.setText ("Error in creating

table")
finally:
conn.close ()
if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

You can see in the script that the click() event of the push button with the objectName
property pushButtonCreateTable is connected to the createTable () method. This
means that, whenever this push button is clicked, the createTable () method will be
invoked. Similarly, the click() event of the push button with the objectName

property pushButtonAddColumn is connected to the addColumns () method. That is, this
button, when clicked, will invoke the addColumns () method.

In the addColumns () method, the CREATE TABLE SQL statement is defined, which
consists of the column name entered in the Line Edit widget and the data type selected
from the combo box. The user can add any number of columns to the table.

In the createTable () method, first the connection to the database is established, and
thereafter the CREATE TABLE SQL statement defined in the addColumns () method is
executed. If the table is successfully created, a message is displayed informing you of the
successful creation of the table through the last Label widget. Finally, the connection to the
database is closed.

On running the application, you will be prompted to enter the database name and table
name that you want to create, followed by the columns required in that table. Let's assume
you want to create a Users table in the ECommerce table consisting of two columns,
EmailAddress and Password. Both the columns are assumed to be of the text type.

[276]

Database Handling

Chapter 9

The first column name, Email Address, in the Users table can be defined as shown in the

following screenshot:

o Add Column

i1 Dialog
Enter database name [ECommerce |
Enter table name |Users |
Column Name Data Type
|[Email Address | text
| Create Table |

Let's define one more column, called Password, of the text type in the Users table,

followed by clicking the Create Table button. If the table is created with the specified
number of columns successfully, a message, Table is successfully created, is displayed via
the last Label widget, as shown in the following screenshot:

i Add Column

i Dialog
Enter database name |ECommerce |
Enter table name [Users |
Column Name Data Type
\Password | text
[Create Table |
Table is successfully created

[277]

Database Handling Chapter 9

To verify that the table was created, I will be making use of a visual tool that enables you to
create, edit, and view the database tables and rows inside them. That visual tool is DB
Browser for SQLite, which I downloaded from http://sqlitebrowser.org/. On launching
DB Browser for SQLite, click the Open Database tab below the main menu. Browse and
select the ECommerce database from the current folder. The ECommerce database shows the
Users table consisting of two columns, EmailAddress and Password, as shown in the
following screenshot, confirming that the database table was created successfully:

4 DB Browser for SOLite - D:\PacktPython'\PythenPrograms\ECommerce.db - o x
File Edit View Help

¢ New Database & Open Database Write C

Database Structure BrowseData EditPragmas Execute SQL Bt Gl S
[CreateTable % Create Index Modify Table Delete Table Mode: [Text > meecs Eirtik
Name Type Schema
v || Tables (1)
v [Users CREATE TABLE Users(Email Address text, Password text)
|_J EmailAddress text ‘EmailAddress’ text
[=] Password text “Password text
Indices (0)
& Views (0)
L] Triggers (0)

Type of data currently in cell: NULL
Obyte(s)

Remote F x

Identity ~|

Name Commit Last modified Size

5QL Log Flot DB Schema g Remote

Inserting rows in the specified database
table

In this recipe, we will be learning to insert rows into a table. We assume a table called
Users consisting of two columns, EmailAddress and Password, already exists in a
database called ECommerce.

After entering the email address and password in the respective Line Edit widgets, when
the user clicks the Insert Row button, the row will be inserted into the specified database
table.

[278]

http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/

Database Handling Chapter 9

How to do it...

Here are the steps to insert rows into a database table that exists in SQLite:

1.

Let's create an application based on the Dialog without Buttons template.

2. Add five QLabel widgets, four QLineEdit widgets, and one QPushButton

widgets to the form by dragging and dropping five Label widgets, four Line Edit
widgtes, and one Push Button widget on the form.

Set the text property of the first four Label widgets to Enter database name,
Enter table name, Email Address, and Password.

Delete the text property of the fifth Label widget this is established through code.
Set the text property of the push button to Insert Row.

Set the objectName property of the four Line Edit widgets to 1ineEditDBName,
lineEditTableName, lineEditEmailAddress, and lineEditPassword.

Set the objectName property of the Push Button widget to
pushButtonInsertRow.

Set the objectName property of the fifth Label widget to 1labelResponse. As we
don't want the password to be displayed, we want asterisks to appear when the
user enters their password.

To do this, select the Line Edit widget that is meant for entering the password
and, from the Property Editor window, select the echoMode property and set it

to Password, instead of the default Normal, as shown in the following
screenshot:

Property Editor g x

|: ter |CL5Y —= /“IY'

lineEditPassward : QLineEdit

Property Value 6
ImhExclusivelnput... [
v
inputhlask
text
maxLength 32767
frame
echoMode Password ¥ |[*

Mormal

alignment NDEChD
 Password

dragEnabled PasswordEchoOnEdit

AT | [1

cursorPosition

[279]

Database Handling Chapter 9

The echoMode property shows the following four options:

e Normal: It is the default property and it displays characters when
typed in the Line Edit widget.

e NoEcho: It does not display anything when typed in the Line Edit
widget, that is, you will not even know the length of the text
entered.

e Password: It is used mostly for passwords. It displays asterisks
when typed in the Line Edit widget.

¢ PasswordEchoOnEdit: It displays the password while being typed
in the Line Edit widget, although the content typed is quickly
replaced by asterisks.

10. Save the application by name as demoInsertRowsInTable.ui. The form will
now appear as shown in the following screenshot:

Dialog - demelnsertRowsinTable.ui EI@

Enter database name - | |

Enter table name | |

Email Address | |

Password | |

Insert Row

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to be converted into Python code. By applying the pyuic5
utility, the XML file will be converted into Python code. The Python script
generated, demoInsertRowsInTable.py, can be seen in the source code bundle
of the book.

[280]

Database Handling Chapter 9

11. Create another Python file with the name callInsertRows.pyw and import the
demoInsertRowsInTable.py code into it. The code in the Python
script callInsertRows.pyw is as shown here:

import sglite3, sys
from PyQt5.QtWidgets import QDialog, QApplication
from sglite3 import Error
from demoInsertRowsInTable import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonInsertRow.clicked.connect (self.
InsertRows)
self.show ()
def InsertRows (self):
sglStatement="INSERT INTO "+
self.ui.lineEditTableName.text () +"
VALUES ('"+self.ui.lineEditEmailAddress.text ()+""',
'"+self.ui.lineEditPassword.text ()+"")"
try:
conn = sqglite3.connect (self.ui.lineEditDBName.
text ()+ ".db")
with conn:
cur = conn.cursor ()
cur.execute (sglStatement)
self.ui.labelResponse.setText ("Row successfully
inserted")
except Error as e:
self.ui.labelResponse.setText ("Error in inserting

row")

finally:
conn.close ()
if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)
w = MyForm()

w.show ()

sys.exit (app.exec_())

[281]

Database Handling Chapter 9

How it works...

You can see in the script that the click event of the push button with the objectName
property pushButtonInsertRow is connected to the InsertRows () method. This means
that, whenever this push button is clicked, the InsertRows () method will be invoked. In
the InsertRows () method, an INSERT SQL statement is defined that fetches the email
address and password entered in the Line Edit widgets. A connection is established with
the database whose name is entered in the Line Edit widget. Thereafter, the INSERT SQL
statement is executed, which adds a new row to the specified database table. Finally, the
connection to the database is closed.

On running the application, you will be prompted to specify the database name, table
name, and the data for the two columns, Email Address and Password. After entering
the required information, when you click the Insert Row button, a new row will be added
to the table and a message, Row successfully inserted, will be displayed, as shown in the
following screenshot:

B Dialog ? X

Enter database name |[ECommerce |

Enter table name [Users |
Email Address |bmharwani@yahoo.com |
Password [ssesessese |

| Insert Row |

Row successfully inserted

[282]

Database Handling Chapter 9

To verify that the row was inserted into the Users table, I will be making use of a visual
tool called DB Browser for SQLite. It is a wonderful tool that enables you to create, edit, and
view the database tables and rows inside them. You can download DB Browser for SQLite
from http://sqlitebrowser.org/. On launching DB Browser for SQLite, you need to first
open the database. To do so, click the Open Database tab below the main menu. Browse
and select the Ecommerce database from the current folder. The Ecommerce database
shows the Users table. Click on the Execute SQL button; you get a small window to type
the SQL statement. Write an SQL statement, select * from Users, and click the Run
icon above the window.

All the rows entered in the Users table will be displayed in tabular format, as shown in the
following screenshot. It confirms that the application made in our recipe is working
perfectly well:

? DB Browser for S0Lite - D\PacktPython'\PythonProgramsiECommerce.db = {E) X
File Edit View Help

b Mew Database & Open Database Write Changes
Edit Database Cell g X
Database Structure Browse Data Edit Pragmas Execute SOL
e Mode: Text ¥ Impart Export Setas NULL
s B B > oM
sQL1
1 select * from Use:’si
Type of data currently in cell: MULL P
Apply
0 byte
= = yte(s)
EmailAddress Password Seme s
1 bmharwani@yahoo.com diamond123 Identity x|
2 chirag@hotmail.com peaceddd Mame Commit Last modified Size
2 rows returned in Oms from: select * from Users
=

SQLlog Plot DBSchema Remote

[283]

http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/

Database Handling Chapter 9

Displaying rows in the specified database

table

In this recipe, we will be learning to fetch rows from a given database table and display
them in tabular format via the Table widget. We assume a table called Users consisting of
two columns, EmailAddress and Password, already exists in a database called
ECommerce. Also, we assume that the Users table contains some rows in it.

How to do it...

Follow this step-by-step procedure to access rows from the database table in SQLite:

1.

Let's create an application based on the Dialog without Buttons template.

2. Add three QLabel widgets, two QLineEdit widgets, one QPushButton, and

one QTableWidget widget to the form by dragging and dropping three Label
widgets, two Line Edit widgets, one Push Button widget, and a Table widget on
the form.

Set the text property of the two Label widgets to Enter database name and
Enter table name.

Delete the text property of the third Label widget because its text property will
be set through code.

Set the text property of the push button to Display Rows.

Set the objectName property of the two Line Edit widgets to 1ineEditDBName
and lineEditTableName.

Set the objectName property of the Push Button widget to
pushButtonDisplayRows.

Set the objectName property of the third Label widget to 1abelResponse.

[284]

Database Handling Chapter 9

9. Save the application by name as demoDisplayRowsOfTable.ui. The form will
now appear as shown in the following screenshot:

Dialog - demoDisplayRowsOfTable.ui = | S
Enter database name - | |

Enter table name | |

Display Rows
1 2

]

2

3

| | | | |

| | | |

| | n

The Users table whose rows will be displayed through the Table widget
consists of two columns.

10. Select the Table widget and select its columnCount property in the Property
Editor window.

[285]

Database Handling Chapter 9

11. Set the columnCount property to 2 and the rowCount property to 3, as shown in
the following screenshot:

Froperty Editor B X

[Filter g = fl:

tableWidget : QTableWidget

Property Value =
sortingEnabled]
wordWrap

cornerButtonEnabled

QTableWidget
2

columnCount

horizontalHeaderVisible
horizontalHeaderCasca... [| AlignLeft, AlignVCenter
horizontalHeaderDefau... 100]

Property Editor Object Inspector

Action Editor B X
D@ x /A [Filter

Mame Uzed Text Sho!

< >

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to be converted into Python code. By applying the pyuic5
utility, the XML file will be converted into Python code. The Python

script generated, demoInsertRowsInTable.py, can be seen in the source code
bundle of this book.

12. Treat the demoInsertRowsInTable.py script as a header file, and import it into
the file from which you will invoke its user interface design.

[286]

Database Handling Chapter 9

13. Create another Python file with the name callDisplayRows.pyw and import
the demoDisplayRowsOfTable.py code into it:

import sglite3, sys

from PyQt5.QtWidgets import QDialog, QApplication,QTableWidgetItem

from sglite3 import Error

from demoDisplayRowsOfTable import *

class MyForm(QDialog) :

def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonDisplayRows.clicked.
connect (self.DisplayRows)

self.show ()

def DisplayRows (self):
sglStatement="SELECT * FROM "+
self.ui.lineEditTableName.text ()

try:
conn = sqglite3.connect (self.ui.lineEditDBName.
text ()+ ".db")
cur = conn.cursor ()
cur.execute (sglStatement)
rows = cur.fetchall ()
rowNo=0

for tuple in rows:
self.ui.labelResponse.setText ("")
colNo=0
for columns in tuple:
oneColumn=QTableWidgetItem (columns)
self.ui.tableWidget.setItem(rowNo, colNo, oneColumn)
colNo+=1
rowNo+=1
except Error as e:
self.ui.tableWidget.clear ()
self.ui.labelResponse.setText ("Error in accessing
table")
finally:
conn.close ()
if _ name_ =="_ _main__ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

[287]

Database Handling Chapter 9

How it works...

You can see in the script that the click() event of the push button with the objectName
property pushButtonDisplayRows is connected to the DisplayRows () method. This
means that, whenever this push button is clicked, the DisplayRows () method will be
invoked. In the DisplayRows () method, an SQL. SELECT statement is defined that fetches
the rows from the table whose name is specified in the Line Edit widget. Also, a connection
is established with the database whose name is entered in the Line Edit widget. Thereafter,
the SOL. SELECT statement is executed. The fetchall () method is executed on the cursor
to keep all the rows that are accessed from the database table.

A for loop is executed to access one tuple at a time from the received rows, and again a
for loop is executed on the tuple to get data in each column of that row. The data accessed
in each column of the row is assigned to the Table widget for display. After displaying the
data in the first row, the second row is picked up from the rows and the procedure is
repeated to display the data in the second row in the Table widget. The two nested for
loops are executed until all the rows are displayed through the Table widget.

Upon running the application, you will be prompted to specify the database name and
table name. After entering the required information, when you click the Display Rows
button, the content of the specified database table is displayed through the Table widget, as
shown in the following screenshot:

B Dialog 7 X

Enter database name |ECommerce |

Enter table name |Users |

Display Rows

1 2

1 chirag@hotmai.. peaced99
2 bmharwani@ya... diamond123

3 naman@hotma.. noddy777

[288]

Database Handling Chapter 9

Navigating through the rows of the specified
database table

In this recipe, we will be learning to fetch rows from a given database table one at a time.
That is, on running the application, the first row of the database table will be displayed.
You will be provided with four push buttons in the application, called Next, Previous,
First, and Last. As the name suggests, upon clicking the Next button, the next row in the
sequence will be displayed. Similarly, upon clicking the Previous button, the previous row
in the sequence will be displayed. Upon clicking the Last button, the last row of the
database table will be displayed and, upon clicking the First button, the first row of the
database table will be displayed.

How to do it...

Here are the steps to understand how rows from a database table are accessed and
displayed one by one:

1. Let's create an application based on the Dialog without Buttons template.

2. Add three 0Label widgets, two QLineEdit widgets, and four
QPushButton widgets to the form by dragging and dropping three Label
widgets, two Line Edit widgets, and four Push Button widgets on the form.

3. Set the text property of the two Label widgets to Email Address and
Password.

4. Delete the text property of the third Label widget because its text property will
be set through code.

5. Set the text property of the four push buttons to First Row, Previous, Next,
and Last Row.

6. Set the objectName property of the two Line Edit widgets to
lineEditEmailAddress and lineEditPassword.

7. Set the objectName property of the four push buttons to pushButtonFirst,
pushButtonPrevious, pushButtonNext, and pushButtonLast.

8. Set the objectName property of the third Label widget to 1abelResponse.
Because we don't want the password to be displayed, we want the asterisks to
appear when the user enters their password.

9. Select the Line Edit widget that is meant for entering the password
(1ineEditPassword) and, from the Property Editor window, select the
echoMode property and set it to Password instead of the default Normal.

[289]

Database Handling

Chapter 9

10. Save the application by name as demoShowRecords. The form will now appear

as shown in the following screenshot:

Dialog - demoShowRecords.ui E“EI

Email Address | |

Password | |
First Row Previous Next Last Row
u n u
n |
| L |

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and on applying the pyuic5 command, the XML file can be converted
into Python code. The Python script generated, demoShowRecords . py, can be

seen in the source code bundle of the book.

11. Treat the demoShowRecords. py script as a header file, and import it into the file

from which you will invoke its user interface design.

12. Create another Python file with the name callShowRecords.pyw and import

the demoShowRecords . py code into it.

import sglite3, sys

from PyQt5.QtWidgets import QDialog, QApplication,QTableWidgetItem

from sglite3 import Error
from demoShowRecords import *

rowNo=1

sglStatement="SELECT EmailAddress, Password FROM Users"
conn = sqglite3.connect ("ECommerce.db")

cur = conn.cursor ()

class MyForm(QDialog) :
def _ _init_ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
cur.execute (sglStatement)
self.ui.pushButtonFirst.clicked.connect (self.
ShowFirstRow)

self.ui.pushButtonPrevious.clicked.connect (self.

ShowPreviousRow)

self.ui.pushButtonNext.clicked.connect (self.ShowNextRow)

[290]

Database Handling Chapter 9

self.ui.pushButtonLast.clicked.connect (self.ShowLastRow)
self.show ()
def ShowFirstRow(self) :
try:
cur.execute (sglStatement)
row=cur.fetchone ()
if row:
self.ui.lineEditEmailAddress.setText (row[0])
self.ui.lineEditPassword.setText (row[1])
except Error as e:
self.ui.labelResponse.setText ("Error in accessing
table")
def ShowPreviousRow (self) :
global rowNo
rowNo -= 1
sglStatement="SELECT EmailAddress, Password FROM Users
where rowid="+str (rowNo)
cur.execute (sglStatement)
row=cur.fetchone ()
if row:
self.ui.labelResponse.setText ("")
self.ui.lineEditEmailAddress.setText (row[0])
self.ui.lineEditPassword.setText (row[1])
else:
rowNo += 1
self.ui.labelResponse.setText ("This is the first
row")
def ShowNextRow (self) :
global rowNo
rowNo += 1
sglStatement="SELECT EmailAddress, Password FROM
Users where rowid="+str (rowNo)
cur.execute (sglStatement)
row=cur.fetchone ()
if row:
self.ui.labelResponse.setText ("")
self.ui.lineEditEmailAddress.setText (row[0])
self.ui.lineEditPassword.setText (row[1])

else:
rowNo -= 1
self.ui.labelResponse.setText ("This is the last
row")

def ShowLastRow (self) :
cur.execute (sglStatement)
for row in cur.fetchall():
self.ui.lineEditEmailAddress.setText (row[0])
self.ui.lineEditPassword.setText (row[1])
if _ name_ =="_ _main_ ":

[291]

Database Handling Chapter 9

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

You can see in the script that the click() event of the push button with the objectName
property pushButtonFirst is connected to the ShowFirstRow () method, the push
button with the objectName property pushButtonPrevious is connected to the
ShowPreviousRow () method, the push button with the objectName property
pushButtonNext is connected to the ShowNextRow () method, and the push button with
the objectName property pushButtonLast is connected to the ShowLastRow () method.

Whenever a push button is clicked, the associated method will be invoked.

In the ShowFirstRow () method, an SQL. SELECT statement is executed that fetches the
email address and password columns of the Users table. The fetchone () method is
executed on the cursor to access the first row from the rows that are received on execution
of the SQL. SELECT statement. The data in the EmailAddress and Password columns is
displayed through two Line Edit widgets on the screen. If an error occurs when accessing
the rows, an error message, Error in accessing table, will be displayed through the
Label widget.

To fetch the previous row, we make use of a global variable, rowNo, which is initialized to
1. In the ShowPreviousRow () method, the value of the global variable, rowNo, is
decremented by 1. Thereafter, an SQI. SELECT statement is executed that fetches the
EmailAddress and Password columns of the Users table whose rowid=rowNo. Because
the rowNo variable is decremented by 1, the SOL. SELECT statement will fetch the previous
row in the sequence. The fetchone () method is executed on the cursor to access the
received row, and the data in the EmailAddress and Password columns is displayed
through two Line Edit widgets on the screen.

If the first row is already being displayed, then, upon clicking the Previous button, it will
simply display a message, This is the first row, through the Label widget.

[292]

Database Handling Chapter 9

We make use of the global variable rowNo while accessing the next row in the sequence too.
In the ShowNextRow () method, the value of the global variable rowNo is incremented by 1.
Thereafter, an SOQL SELECT statement is executed that fetches the EmailAddress and
Password columns of the Users table whose rowid=rowNo; hence, the next row, that is,
the one whose rowid is one higher than the current row, is accessed. The fetchone ()
method is executed on the cursor to access the received row and the data in the
EmailAddress and Password columns is displayed through two Line Edit widgets on the
screen.

If you are looking at the last row in the database table, then, upon clicking the Next button,
it will simply display a message, This is the last row, through the Label widget.

In the ShowLastRow () method, an SQL. SELECT statement is executed that fetches the
EmailAddress and Password columns of the Users table. The fetchall () method is
executed on the cursor to access the remainder of the rows in the database table. Using the
for loop, a row variable is moved to the last row from the rows that are received upon
execution of the SQL. SELECT statement. The data in the EmailAddress and Password
columns of the last row is displayed through two Line Edit widgets on the screen.

Upon running the application, you will get the first row of the database table displayed on
the screen, as shown in the following screenshot. If you click the Previous button now, you
get the message, This is the first row:

1 Dialog ? X

Email Address [chirag@hotmail.com |

Password [e0sencse |

First Row Next Last Row

This is the first row

[293]

Database Handling Chapter 9

Upon clicking the Next button, the next row in the sequence will be displayed on the
screen, as shown in the following screenshot:

i Dialog T X
Email Address |bmharwani@yahoo.com |
Password [essssssess |
First Row Previous Next Last Row

Upon clicking the Last Row button, the last row in the database table will be displayed, as
shown in the following screenshot:

1 Dialog 7 *
Email Address [ravi@gmail.com |
Password (eseese |
First Row Previous Next Last Row
This is the last row

Searching a database table for specific
information

In this recipe, we will be learning how searching is performed in a database table to fetch
the desired information. We assume that a user has forgotten their password. So, you will
be prompted to enter the database name, table name, and email address of the user whose
password is required. If any user with the email address supplied exists in the database
table, then the password of that user will be searched for, accessed, and displayed on the
screen.

[294]

Database Handling Chapter 9

How to do it...

Follow these steps to find out how data can be searched for in a database table in SQLite:

1. Let's create an application based on the Dialog without Buttons template.

2. Add five QLabel widgets, four QLineEdit widgets, and one QPushButton
widget to the form by dragging and dropping five Label widgets, four Line Edit
widgets, and one Push Button widget on the form.

3. Set the text property of the first three Label widgets to Enter database name,
Enter table name, and Email Address.

4. Delete the text property of the fourth Label widget this is established through
code.

5. Set the text property of the fifth Label widget to Password.
6. Set the text property of the push button to Search.

7. Set the objectName property of the four Line Edit widgets to 1ineEditDBName,
lineEditTableName, lineEditEmailAddress, and 1ineEditPassword.

8. Set the objectName property of the Push Button widget to pushButtonSearch.
9. Set the objectName property of the fourth Label widget to 1abelResponse.

10.

Save the application by name as demoSearchRows . ui. The form will now

appear as shown in the following screenshot:

Dialog - demoSearchRows.ui

Enter database name

Enter table name

Email Address

Password

[=)

Search

The user interface created with Qt Designer is stored in a . ui file, an XML file
that needs to be converted into Python code through application of the pyuic5

command. The generated Python script, demoSearchRows . py, can be seen in the
source code bundle of the book.

[295]

Database Handling Chapter 9

11. Treat the demoSearchRows. py script as a header file, and import it into the file
from which you will invoke its user interface design.

12. Create another Python file with the name callSearchRows.pyw and import the
demoSearchRows . py code into it:

import sglite3, sys
from PyQt5.QtWidgets import QDialog, QApplication
from sglite3 import Error
from demoSearchRows import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonSearch.clicked.connect (self.
SearchRows)
self.show ()
def SearchRows (self):
sglStatement="SELECT Password FROM
"+self.ui.lineEditTableName.text () +" where EmailAddress
like'"+self.ui.lineEditEmailAddress.text ()+""'"

try:
conn = sqglite3.connect (self.ui.lineEditDBName.text ()+
mw .db")
cur = conn.cursor ()

cur.execute (sglStatement)
row = cur.fetchone ()

if row==None:
self.ui.labelResponse.setText ("Sorry, No User found with
this email address")
self.ui.lineEditPassword.setText ("")

else:
self.ui.labelResponse.setText ("Email Address Found,
Password of this User is :")
self.ui.lineEditPassword.setText (row[0])

except Error as e:
self.ui.labelResponse.setText ("Error in accessing row")

finally:
conn.close ()
if _ name_ =="_main__ ":

app = QApplication(sys.argv)
w = MyForm()

w.show ()

sys.exit (app.exec_())

[296]

Database Handling Chapter 9

How it works...

You can see in the script that the click() event of the push button with the objectName
property pushButtonSearch is connected to the SearchRows () method. This means that,
whenever the push button is clicked, the SearchRows () method is invoked. In the
SearchRows () method, the connect () method is invoked on the sqlite3 class and the
database name entered by the user in the Line Edit widget is passed to the connect ()
method. The connection to the database is established. An SQL search statement is
defined that fetches the Password column from the table supplied whose email address
matches the email address supplied. The search SQL statement is executed on the given
database table. The fetchone () method is executed on the cursor to fetch one row from
the executed SQL statement. If the fetched row is not None, that is, there is a row in the
database table that matches the given email address, the password in the row is accessed
and assigned to the Line Edit widget with the object name 1ineEditPassword for display.
Finally, the connection to the database is closed.

If an error occurs in the execution of the SQL statement, that is, if the database is not found,
the table name is incorrectly entered, or the email address column does not exist in the
given table, an error message, Error in accessing row, is displayed via the Label widget
with the objectName property, labelResponse.

Upon running the application, we get a dialog that prompts us for the database name, table
name, and column name from the table. Suppose we want to find out the password of the
user whose email address is bmharwani@yahoo.comin the Users table of the ECommerce
database. After entering the required information in the boxes, when you click on the
Search button, the password of the user will be accessed from the table and displayed
through the Line Edit widget, as shown in the following screenshot:

1 Dialog ? X

Enter database name |ECommerce |

Enter table name |Users |
Email Address |bmharwani@yahoo.com |
[Search |

Email Address Found, Password of this User is :

Password |diamond123

[297]

Database Handling Chapter 9

If the email address supplied is not found in the Users table, you get the message "Sorry,
No User found with this email address," which is displayed through the Label widget as
shown here:

B Dialog ? *

Enter database name |[ECommerce |

Enter table name |Users |

Email Address \bintu@yahoo.com |

Sorry, No User found with this email address

Password |

Creating a signin form - applying an
authentication procedure

In this recipe, we will be learning how rows can be accessed from a specific table and
compared with the information supplied.

We assume that a database called ECommerce already exists and a table called Users also
exists in the ECommerce database. The Users table consists of two columns, EmailAddress
and Password. Also, we assume that the Users table contains a few rows in it. The user
will be prompted to enter their email address and password in the signin form. The Users
table is searched for the specified email address. If the email address is found in the Users
table, then the password in that row is compared with the password entered. If the two
passwords match, a welcome message is displayed; otherwise, an error message indicating
that the email address or password don't match is displayed.

[298]

Database Handling Chapter 9

How to do it...

Here are the steps to understand how data in a database table can be compared with data
entered by the user and authenticate a user:

1.

2.

Let's create an application based on the Dialog without Buttons template.

Add three QLabel widgets, two QLineEdit widgets, and one QPushButton
widget to the form by dragging and dropping three Label widgets, two Line Edit
widgets, and one Push Button widget on the form.

. Set the text property of the first two Label widgets to Email Address and

Password.

. Delete the text property of the third Label widget this is established through

code.

. Set the text property of the push button to Sign In.
. Set the objectName property of the two Line Edit widgets to

lineEditEmailAddress and lineEditPassword.

. Set the objectName property of the Push Button widget to pushButtonSearch.
. Set the objectName property of the third Label widget to 1abelResponse.
. Save the application by name as demoSignInForm.ui. The form will now

appear as shown in the following screenshot:

Dialeg - demaoSigninFarm.ui EI@
Email Address | |
Password | |

Sign In
]]	
]	
] n	

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. By applying the pyuic5
command, the XML file can be converted into Python code. The Python

script generated, demoSignInForm.py, can be seen in the source code bundle of
the book.

[299]

Database Handling Chapter 9

10. Treat the demoSignInForm.py file as a header file, and import it into the file
from which you will invoke its user interface design.

11. Create another Python file with the name callSignInForm.pyw and import the
demoSignInForm.py code into it:

import sglite3, sys
from PyQt5.QtWidgets import QDialog, QApplication
from sglite3 import Error
from demoSignInForm import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonSearch.clicked.connect (self.
SearchRows)
self.show ()
def SearchRows (self):
sglStatement="SELECT EmailAddress, Password FROM Users
where EmailAddress like'"+self.ui.lineEditEmailAddress.

text ()+"'and Password like '""+ self.ui.lineEditPassword.
text ()+"'"
try:

conn = sqglite3.connect ("ECommerce.db")

cur = conn.cursor ()

cur.execute (sglStatement)

row = cur.fetchone()

if row==None:
self.ui.labelResponse.setText ("Sorry, Incorrect
email address or password ")
else:
self.ui.labelResponse.setText ("You are welcome ")
except Error as e:
self.ui.labelResponse.setText ("Error in accessing

row")

finally:
conn.close ()
if _ name_ =="__main__ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

[300]

Database Handling Chapter 9

How it works...

You can see in the script that the click event of the push button with the objectName
property pushButtonSearch is connected to the SearchRows () method. This means that,
whenever the push button is clicked, the SearchRows () method is invoked. In the
SearchRows () method, the connect () method is invoked on the sqglite3 class to
establish a connection with the ECommerce database. An SQL search statement is defined
that fetches the EmailAddress and Password columns from the Users table whose email
address matches the email address supplied. The search SQL statement is executed on the
Users table. The fetchone () method is executed on the cursor to fetch one row from the
executed SQL statement. If the fetched row is not None, that is, there is a row in the
database table that matches the given email address and password, a welcome message is
displayed with the Label widget with the objectName property, 1abelResponse. Finally,
the connection to the database is closed.

If an error occurs in the execution of the SQL statement, if the database is not found, or if
the table name is incorrectly entered, or the email address or password columns do not
exist in the Users table, an error message, Error in accessing row, is displayed via the
Label widget with the objectName property, labelResponse.

Upon running the application, you will be prompted to enter an email address and
password. Upon entering the correct email address and password, when you click the Sign
In button, you receive the message, You are welcome, as shown in the following
screenshot:

B Dialog 4 X
Email Address |bmharwani@yahoo.com |
Password [esesesssee |

You are welcome

[301]

Database Handling Chapter 9

But if either email address or password is entered incorrectly, you get the message, Sorry,
Incorrect email address or password, as shown in the following screenshot:

i Dialog 7 X
Email Address [bmharwani@yahoo.com |
Password [essssesss |

Sorry, Incorrect email address or password

Updating a database table — changing a
user's password

In this recipe, you will learn how to update any information in the database. Changing
passwords is a very common requirement in almost all applications. In this recipe, we
assume that a database called ECommerce already exists and a table called Users also exists
in the ECommerce database. The Users table consists of two columns, EmailAddress and
Password. Also, we assume that the Users table contains a few rows in it. The user will be
prompted to enter their email address and password in the form. The Users table is
searched for the specified email address and password. If a row is found with the specified
email address and password, the user will be prompted to enter a new password. The new
password will be asked for twice, that is, the user will be asked to enter their new password
in both the New Password box and the Re-enter New Password box. If the passwords
entered in the two boxes match, the password will be changed, that is, the old password
will be replaced by the new password.

How to do it...

The procedure for deleting data from the database table is very critical, and any mistake in
executing such an application can lead to disaster. Here come the steps to delete any row
from the given database table:

1. Let's create an application based on the Dialog without Buttons template.

[302]

Database Handling Chapter 9

2.

10.

Add five QLabel widgets, four QLineEdit widgets, and
one QPushButton widget to the form by dragging and dropping five Label
widgets, four Line Edit widgets, and one Push Button widget on the form.

Set the text property of the first four Label widgets to Email Address, 01d
Password, New Password, and Re-enter New Password.

Delete the text property of the fifth Label widget this is established through code.
Set the text property of the push button to Change Password.

Set the objectName property of the four Line Edit widgets to
lineEditEmailAddress, lineEditOldPassword, l1ineEditNewPassword,
and lineEditRePassword. Since we don't want the password to be displayed in
any of the Line Edit widgets that are associated with the password, we want the
asterisks to appear when the user enters the password.

Select the three Line Edit widgets one at a time and from the Property Editor
window.

Select the echoMode property and set it to Password instead of the default
Normal.

Set the objectName property of the Push Button widget to
pushButtonChangePassword.

Set the objectName property of the fifth Label widget to 1abelResponse.

Save the application by name as demoChangePassword.ui. The form will now
appear as shown in the following screenshot:

Dialog - deroChangePassword.ui E“EI

Email Address | |

Old Password | |

New Password | |

Re-enter New Password | |

Change Password

[303]

Database Handling Chapter 9

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. The pyuic5 command is
used to convert the XML file into Python code. The Python script generated,
demoChangePassword.py, can be seen in the source code bundle of this book.

11. Treat the demoChangePassword.py script as a header file, and import it into the
file from which you will invoke its user interface design.

12. Create another Python file with the name callChangePassword.pyw and
import the demoChangePassword. py code into it:

import sglite3, sys
from PyQt5.QtWidgets import QDialog, QApplication
from sglite3 import Error
from demoChangePassword import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonChangePassword.clicked.connect (self.
ChangePassword)
self.show ()
def ChangePassword(self):
selectStatement="SELECT EmailAddress, Password FROM
Users where EmailAddress like '""+self.ui.
lineEditEmailAddress.text ()+"'and Password like '"+
self.ui.lineEditOldPassword.text ()+"'"
try:
conn = sqglite3.connect ("ECommerce.db")
cur = conn.cursor ()
cur.execute (selectStatement)
row = cur.fetchone ()
if row==None:
self.ui.labelResponse.setText ("Sorry, Incorrect
email address or password")
else:
if self.ui.lineEditNewPassword.text ()==
self.ui.lineEditRePassword.text () :
updateStatement="UPDATE Users set Password = '" +
self.ui.lineEditNewPassword.text ()+"' WHERE
EmailAddress like'"+self.ui.lineEditEmailAddress.
text ()+"'"
with conn:
cur.execute (updateStatement)
self.ui.labelResponse.setText ("Password successfully
changed")

[304]

Database Handling Chapter 9

else:
self.ui.labelResponse.setText ("The two passwords
don't match")

except Error as e:
self.ui.labelResponse.setText ("Error in accessing

row")

finally:
conn.close ()
if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

You can see in the script that the click() event of the push button with the objectName
property pushButtonChangePassword is connected to the ChangePassword () method.
This means that, whenever the push button is clicked, the ChangePassword () method
will be invoked. In the ChangePassword () method, the connect () method is invoked on
the sqlite3 class to establish a connection with the ECommerce database. An SQL SELECT
statement is defined that fetches the EmailaAddress and Password columns from the
Users table whose email address and password matches the email address and password
entered in the Line Edit widgets. The SQL SELECT statement is executed on the Users
table. The fetchone () method is executed on the cursor to fetch one row from the
executed SQL statement. If the fetched row is not None, that is, there is a row in the
database table, then it is confirmed whether the new passwords entered in the two Line
Edit widgets, 1ineEditNewPassword and lineEditRePassword, are exactly the same. If
the two passwords are the same, then an UPDATE SQL statement is executed to update the
Users table, changing the password to the new one.

If the two passwords do not match, then no updating is applied to the database table and a
message, The two passwords don't match, is displayed through the Label widget.

If an error occurs in the execution of the SQL SELECT or UPDATE statement, then an error
message, Error in accessing row, is displayed via a Label widget with the objectName
property labelResponse.

[305]

Database Handling Chapter 9

Upon running the application, you will be prompted to enter the email address and
password, along with the new password, too. If the email address or password does not
match, an error message, Sorry, Incorrect email address or password, is displayed via the
Label widget, as shown in the following screenshot:

5 Dialog ? x
Email Address |bmharwani@yahoo.com |
Old Password ([essssesse |

New Password [eeessse |

Re-enter New Password |uuu. |

| Change Password

Sorry, Incorrect email address or password

If the email address and password entered are correct, but the new passwords entered in
the New Password and Re-enter New Password boxes do not match, then the message The
two passwords don't match is displayed on the screen, as shown in the following
screenshot:

i Dialog ? *
Email Address [bmharwani@yahoo.com |
Old Password [esssssssse |

New Password [essssse |

Re-enter New Password [eeeesse |

| Change Password

The two passwords don't match

[306]

Database Handling Chapter 9

If the email address and passwords are all entered correctly, that is, if the user row is found
in the database table and the new passwords entered in the New Password and Re-enter
New Password boxes match, then the Users table is updated and, upon successfully
updating the table, a message, Password successfully changed, is displayed on the screen,
as shown in the following screenshot:

5 Dialog ? X

Email Address [bmharwani@yahoo.com |
Old Password ‘llllllllll |
New Password (eecssse |

Re-enter New Password (eesssse |

| Change Password

Password successfully changed

Deleting a row from a database table

In this recipe, we will be learning how to remove a row from a database table. We assume
that a database called ECommerce already exists and a table called Users also exists in the
ECommerce database. The Users table consists of two columns, EmailAddress and
Password. Also, we assume that the User table contains a few rows in it. The user will be
prompted to enter their email address and password in the form. The Users table is
searched for the specified email address and password. If any row is found with the
specified email address and password in the Users table, you will be prompted to confirm
whether you are sure that you want to delete the row. If you click on the Yes button, the
row will be deleted.

How to do it...

The procedure for deleting data from the database table is very critical, and any mistake in
executing such an application can lead to disaster. The following are the steps for deleting
any row from the given database table:

1. Let's create an application based on the Dialog without Buttons template.

[307]

Database Handling Chapter 9

2.

10.

11.

Add four QLabel widgets, two QLineEdit widgets, and three
QPushButton widgets to the form by dragging and dropping four Label
widgets, two LineEdit widgets, and three Push Button widgets on the form.

Set the text property of the first three Label widgets to Email Address,
Password, and Are you Sure?

Delete the text property of the fourth Label widget this is established through
code.

Set the text property of the three push buttons to Delete User, Yes, and No.

Set the objectName property of the two Line Edit widgets to
lineEditEmailAddress and lineEditPassword.

Set the objectName property of the three Push Button widgets to
pushButtonDelete, pushButtonYes, and pushButtonNo.

Set the objectName property of the fourth Label widget to 1abelResponse.

Save the application by name as demoDeleteUser.ui. The form will now
appear as shown in the following screenshot:

Dialog - demoDeletelser.ui EI@
|

Email Address

Password [|

Delete User

Are you Sure ? Yes No

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to be converted into Python code. The pyuic5 command is
used for converting the XML file into Python code. The Python script generated,
demoDeleteUser.py, can be seen in the source code bundle of this book.

Treat the demoDeleteUser. py script as a header file, and import it into the file
from which you will invoke its user interface design.

Create another Python file with the name callbDeleteUser.pyw and import the
demoDeleteUser.py code into it:

import sglite3, sys

[308]

Database Handling Chapter 9

from PyQt5.QtWidgets import QDialog, QApplication
from sglite3 import Error
from demoDeleteUser import *
class MyForm(QDialog) :
def _ init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonDelete.clicked.connect (self.
DeleteUser)
self.ui.pushButtonYes.clicked.connect (self.
ConfirmDelete)
self.ui.labelSure.hide ()
self.ui.pushButtonYes.hide ()
self.ui.pushButtonNo.hide ()
self.show ()
def DeleteUser (self):
selectStatement="SELECT * FROM Users where EmailAddress
like'"+self.ui.lineEditEmailAddress.text ()+"'

and Password like '""+ self.ui.lineEditPassword.
text ()+"'"
try:

conn = sqglite3.connect ("ECommerce.db")

cur = conn.cursor ()

cur.execute (selectStatement)
row = cur.fetchone()

if row==None:
self.ui.labelSure.hide ()
self.ui.pushButtonYes.hide ()
self.ui.pushButtonNo.hide ()
self.ui.labelResponse.setText ("Sorry, Incorrect
email address or password ")

else:
self.ui.labelSure.show ()
self.ui.pushButtonYes.show ()
self.ui.pushButtonNo.show ()
self.ui.labelResponse.setText ("")

except Error as e:
self.ui.labelResponse.setText ("Error in accessing
user account")

finally:
conn.close()

def ConfirmDelete (self):
deleteStatement="DELETE FROM Users where EmailAddress
like ""+self.ui.lineEditEmailAddress.text ()+"'

and Password like '""+ self.ui.lineEditPassword.
text ()+|l ™
try:

[309]

Database Handling Chapter 9

conn = sqglite3.connect ("ECommerce.db")
cur = conn.cursor ()
with conn:
cur.execute (deleteStatement)
self.ui.labelResponse.setText ("User successfully
deleted")
except Error as e:
self.ui.labelResponse.setText ("Error in deleting
user account")
finally:
conn.close ()
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

In this application, the Label widget with the text Are you Sure? and the two push buttons,
Yes and No, are initially hidden. These three widgets will be displayed only when the
email address and password entered by the user are found in the database table. These
three widgets enable the user to confirm that they really want to delete the row. So, the
hide () method is invoked on these three widgets to make them initially invisible. Also, the
click() event of the push button with the objectName property pushButtonDelete is
connected to the DeleteUser () method. This means that whenever the Delete button is
clicked, the DeleteUser () method is invoked. Similarly, the click() event of the push
button with the objectName property pushButtonYes is connected to the
ConfirmDelete () method. This means that when the user confirms deletion of the row by
clicking the Yes button, the Confirmbelete () method will be invoked.

In the DeleteUser () method, you first search to see whether any row exists in the Users
table that matches the email address and password entered. The connect () method is
invoked on the sqlite3 class to establish a connection with the ECommerce database. An
SQL SELECT statement is defined that fetches the EmailAddress and Password columns
from the Users table whose email address and password matches the email address and
passwords supplied. The SQL SELECT statement is executed on the Users table. The
fetchone () method is executed on the cursor to fetch one row from the executed SQL
statement. If the fetched row is not None, that is, there is a row in the database table that
matches the given email address and password, the three widgets, the Label, and two push
buttons, will be made visible. The user will be shown the message Are you Sure? followed
by two push buttons with the text Yes and No.

[310]

Database Handling Chapter 9

If the user clicks the Yes button, then the Confirmbelete () method is executed. In the
ConfirmDelete () method, an SQL DELETE method is defined that deletes the row that
matches the entered email address and password from the Users table. After establishing a
connection with the ECommerce database, the SQL DELETE method is executed. If the row
is successfully deleted from the Users table, a message, User successfully deleted, will be
displayed through the Label widget; otherwise, an error message, Error in deleting user
account, will be displayed.

Before running the application, we will launch a visual tool called DB Browser for SQLite.
The visual tool enables us to create, edit, and view the database tables and rows inside
them. Using DB Browser for SQLite, we will first see the existing rows in the Users table.
After that, the application will run and a row will be deleted. Again, from DB Browser for
SQLite, we will confirm the row was really deleted from the Users table.

So, launch DB Browser for SQLite and click the Open Database tab below the main menu.
Browse and select the Ecommerce database from the current folder. The Ecommerce
database shows the Users table consisting of two columns, EmailAddress and Password.
Click on the Execute SQL button to write an SQL statement. In the window, write the SQL
statement select * from Users, followed by clicking the Run icon. All existing rows in
the Users table will be displayed on the screen. You can see in the following screenshot
that the Users table has two rows:

2 DB Browser for SOlite - D:\PacktPython'\PythonProgramsiECommerce.db == O X
File Edit View Help

{4 Mew Database & Open Database |4 Write Changes & Revert Changes
Edit Database Cell 8 X
Database Structure Browse Data Edit Pragmas Execute SQL
- Mode: [Text ~ Impart Export Setas NULL
= B F= S |
sqL1
1 select ' from Users
Type of data currently in cell: NULL o
pply
0 byte(s) i
< >
Remate g X
EmailAddress Password
i . e Identit > | |
1 chirag@hotmail.com peacedd9 ¥ &
X X Mame Commit Last modified Size
2 bmharwani@yzhoo.com diamond123
2 rows returned in 43ms from: select * from Users
i
£ >

5QL Log Plot DB Schema Remote

[311]

Database Handling Chapter 9

Upon running the application, you will be prompted to enter your email address and
password. If you enter the wrong email address and password, you get the message Sorry,
Incorrect email address or password, as shown in the following screenshot:

i Dialog T *
Email Address \bmharwani@yahoo.com |
Password essssesese |

Delete User

Sorry, Incorrect email address or password

Upon entering the correct email address and password, when you click the Delete User
button, the three widgets—the Label widget and two push buttons, will be made visible,

and you get the message Are you Sure?, along with the two push buttons, Yes and No, as
shown in the following screenshot:

[312]

Database Handling Chapter 9

i Dialog ? x
Email Address |bmharwani@yahoo.com |
Password [eseseessse |

Are you Sure ? Yes No

Upon clicking the Yes push button, the row in the Users table whose email address and
password matches the email address and password supplied will be deleted and a
confirmation message, User successfully deleted, will be displayed through the Label
widget, as shown in the following screenshot:

i Dialog ? X
Email Address |bmharwani@yahoo.com |
Password [esennesnse |

Delete User
Are you Sure ? Yes No
User successfully deleted

[313]

Database Handling Chapter 9

Let's check through the visual tool as to whether the row was actually deleted from the
Users table. Therefore, launch the DB Browser for SQLite and click the Open Database tab
below the main menu. Browse and select the Ecommerce database from the current folder.
The Ecommerce database will show the Users table. Click on the Execute SQL button to
write an SQL statement. In the window, write the SQL statement select * from Users,
followed by clicking the Run icon. All existing rows in the Users table will be displayed on
the screen. Before running the application, we saw that there were two rows in the Users
table. This time, you see only one row in the Users table (see the following screenshot),
confirming that a row was deleted from the Users table:

4 DB Browser for 50Lite - DA\PacktPython'\PythonPrograms\ECommerce.db == O >
File Edit WYiew Help

 Mew Database & Open Database [Write Changes % Revert Changes
Edit Database Cell 7 X
Database Structure Browse Data Edit Pragmas Execute SQL
= . Mode: |Text ¥ Import Export Setas NULL
2 B B ¢ M
5QL1
3 select % from Usev_"#
Type of data currently in cell: NULL
Apply
0 byte(s)
< >
Remote T X
EmailAddress Password
2 2 Identi b -
1 chirag@hotmail.com peaceddd i -
MName Commit Last modified Size
1 rows returned in 28ms from: select * from Users
==
=]
< >

SQL Log Plot DB Schema Remote

UTF-8

[314]

10

Using Graphics

In every application, graphics play a major role in making it more user-friendly. Graphics
make concepts easier to understand. In this chapter, we will be covering the following

topics:

Displaying mouse coordinates

Displaying coordinates where the mouse button is clicked and released
Displaying a point where the mouse button is clicked
Drawing a line between two mouse clicks

Drawing lines of different types

Drawing a circle of a desired size

Drawing a rectangle between two mouse clicks
Drawing text in a desired font and size

Creating a toolbar that shows different graphics tools
Plotting a line using Matplotlib

Plotting a bar using Matplotlib

Introduction

For drawing and painting in Python, we will be making use of several classes. The most
important of them is the QPainter class.

This class is used for painting. It can draw lines, rectang]les, circles, and complex shapes.
While drawing with Qpainter, you can use the QPainter class pen to define the color of
the drawing; thickness of the pen/brush; style; whether the line is drawn as solid, dotted, or
dash-dot; and so on.

Using Graphics Chapter 10

Several methods of the Qpainter class are used in this chapter to draw different shapes. A
few of them are listed here:

® QPainter::drawLine (): This method is used for drawing a line between two
sets of x and y coordinates

® QPainter::drawPoints (): This method is used for drawing a point at a
location specified through the supplied x and y coordinates

e QPainter::drawRect (): This method is used for drawing a rectangle between
two sets of x and y coordinates

e QPainter::drawArc (): This method is used for drawing an arc from the
specified center location, between two specified angles, and with a specified
radius

® QPainter::drawText (): This method is used for drawing text in a specified
font style, color, and size

To understand the different classes and methods required to display graphics practically,
let's follow some recipes.

Displaying mouse coordinates

To draw any shape with the mouse, you need to know where the mouse button is clicked,
to where the mouse is dragged, and where the mouse button is released. Only after
knowing the coordinates where the mouse button is clicked can you go ahead and execute
commands to draw different shapes. In this recipe, we will be learning to display the x and
y coordinates to which the mouse is moved on the form.

How to do it...

In this recipe, we will be tracking mouse movement and will be displaying the x and y
coordinates which the mouse is moved on the form. So, in all, we will be using two Label
widgets in this application, one for displaying a message and the other for displaying
mouse coordinates. The complete steps for creating this application are shown here:

1. Let's create an application based on the Dialog without Buttons template.

2. Add two QLabel widgets to the form by dragging and dropping two Label
widgets on the form.

3. Set the text property of the first Label widget to This app will display x,y
coordinates where mouse is moved on.

[316]

Using Graphics Chapter 10

4. Delete the text property of the second Label widget as its text property will be set
through code.

5. Save the application by name as demoMousetrack.ui.

The form will now appear as shown in the following screenshot:

Dialog - demoMousetrack.ui E\@

This app will display x,y co-ordinates where mouse is-moved on

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. The pyuic5 utility is used
for converting the XML file into Python code. The generated Python script,
demoMousetrack.py, can be seen in the source code bundle of the book.

6. Treat the demoMousetrack.py script as a header file, and import it into the file
from which you will invoke its user interface design.

7. Create another Python file with the name callMouseTrack.pyw and import the
demoMousetrack.py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoMousetrack import *
class MyForm(QDialog) :
def _ init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.setMouseTracking (True)
self.ui.setupUi (self)
self.show()
def mouseMoveEvent (self, event):
x = event.x ()

[317]

Using Graphics Chapter 10

y = event.y ()

text = "x: {0}, y: {1}".format (x, V)
self.ui.label.setText (text)
if _ name_ =="_ _main__ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

To enable the application to keep track of the mouse, a method,

setMouseTracking (True), is used. This method will sense the mouse movement and
whenever the mouse is moved, it will invoke the mouseMoveEvent () method. In
mouseMoveEvent (), the x and y methods are invoked on the event object to get the x and
y coordinate values of the mouse's location. The x and y coordinates are assigned to the x
and y variables respectively. The values in the x and y coordinates are displayed in the
desired format via the Label widget.

On running the application, you will get a message that on moving the mouse, its x and y
coordinate values will be displayed. When you move the mouse on the form, the x and y
coordinates of the mouse location will be displayed through the second Label widget, as
shown in the following screenshot:

i Dialog ? >
This app will display x,y co-ordinates where mouse is moved on

x: 471, yv: 241

[318]

Using Graphics Chapter 10

Displaying coordinates where the mouse
button is clicked and released

In this recipe, we will be learning to display the x and y coordinates where the mouse
button is clicked, along with the coordinates of where the mouse button is released.

How to do it...

Two methods, mousePressEvent () and mouseReleaseEvent (), will play major role in
this recipe. The mousePressEvent () method will be automatically invoked when the
mouse is pressed and will reveal the x and y coordinates when the mouse press event has
occurred. Similarly, the mouseReleaseEvent () method will be invoked automatically
whenever the mouse button is released. Two Label widgets will be used in this recipe to
display the coordinates where the mouse button is clicked and where the mouse button is
released. Here are the steps to create such an application:

1. Let's create an application based on the Dialog without Buttons template.

2. Add three 0Label widgets to the form by dragging and dropping three Label
widgets on the form.

3. Set the text property of the first Label widget to Displays the x,y
coordinates where mouse is pressed and released.

4. Delete the text property of the second and third Label widgets, as their text
properties will be set through code.

5. Set the objectName property of the second Label widget to 1abelPress, as it
will be used for displaying the x and y coordinates of the location where the
mouse button is clicked.

6. Set the objectName property of the third Label widget to 1labelRelease
because it will be used for displaying the x and y coordinates of the location
where the mouse button is released.

7. Save the application by name as demoMouseClicks.ui.

[319]

Using Graphics Chapter 10

The form will now appear as shown in the following screenshot:

Dialeg - demoMouseClicks.ui EI@

Displays the x, v co-ordinates where mouse button is pressed and released

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. The pyuic5 utility is used
for converting the XML file into Python code. The generated Python script,
demoMouseClicks.py, can be seen in the source code bundle of the book.

8. Treat the demoMouseClicks.py script as a header file, and import it into the file
from which you will invoke its user interface design.

9. Create another Python file with the name callMouseClickCoordinates.pyw
and import the demoMouseClicks.py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from demoMouseClicks import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.show ()
def mousePressEvent (self, event):
if event.buttons() & QtCore.Qt.LeftButton:

x = event.x ()
y = event.y ()
text = "x: {0}, y: {1}".format (x, vy)
self.ui.labelPress.setText ('Mouse button pressed at
'+text)
def mouseReleaseEvent (self, event):
x = event.x ()

y = event.y ()

[320]

Using Graphics Chapter 10

text = "x: {0}, y: {1}".format (x, V)
self.ui.labelRelease.setText ('Mouse button released at
'+text)
self.update ()

if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

Two methods are automatically invoked when you click the mouse. The
mousePressEvent () method is invoked when you press the mouse button and the
mouseReleaseEvent () method is invoked when you release the mouse button. To display
the x and y coordinates of the location where the mouse button is clicked and released, we
make use of these two methods. In both the methods, we simply invoke the x () and y ()
methods on the event object to fetch the x and y coordinate values of the mouse location.
The fetched x and y values will be assigned to the x and y variables, respectively. The
values in the x and y variables are formatted in the desired format and displayed through
the two Label widgets.

On running the application, you will get a message that the x and y coordinates of the
location where the mouse button is clicked and released will be displayed.

When you press the mouse button and release it, the x and y coordinates of the location
where the mouse is pressed and released will be displayed through the two Label widgets,
as shown in the following screenshot:

1 Dialog ? X

Displays the x, y co-ordinates where mouse button is pressed and released

Mouse button pressed at x: 134, y: 152

Mouse button released at x: 352, y: 238

[321]

Using Graphics Chapter 10

Displaying a point where the mouse button
is clicked

In this recipe, we will be learning to display the point where the mouse button is clicked on
the form. Point here means a dot. That is, wherever the user presses the mouse, a dot will
appear at that coordinate. You will also learn to define the size of the dot too.

How to do it...

The mousePressEvent () method will be used in this recipe as it is the method that is
automatically invoked when the mouse is pressed on the form. In the mousePressEvent ()
method, we will execute the command to display a dot or point of the desired size. Here are
the steps to understand how you can display a point or dot on the form where the mouse
button is clicked:

1. Let's create an application based on the Dialog without Buttons template.

2. Add a QLabel widgets to the form by dragging and dropping a Label widget on
the form.

3. Set the text property of the Label widget to Click the mouse where you
want to display a dot.

4. Save the application by name as demoDrawDot . ui.

The form will now appear as shown in the following screenshot:

Dialog - demoDrawDot.ui Ii“ﬁl

Click the mouse where you want to display a dot

[322]

Using Graphics Chapter 10

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. The pyuic5 utility is used
for converting the XML file into Python code. The generated Python script,
demoDrawDot . py, can be seen in the source code bundle of the book.

5. Treat the demoDrawDot . py script as a header file, and import it into the file from
which you will invoke its user interface design.

6. Create another Python file with the name callbDrawDot .pyw and import the
demoDrawDot . py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from PyQt5.QtGui import QPainter, QPen
from PyQt5.QtCore import Qt
from demoDrawDot import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.posl = [0,0]
self.show ()
def paintEvent (self, event):
gp = QPainter ()
gp.begin (self)
pen = QPen (Qt.black, 5)
gp.setPen (pen)
gp.drawPoint (self.posl[0], self.posl[1])
gp.end ()
def mousePressEvent (self, event):
if event.buttons() & QtCore.Qt.LeftButton:
self.posl[0], self.posl[l] = event.pos().x(),
event.pos () .y ()
self.update()
if _ name_ =="_main__ ":
app = QApplication(sys.argv)
w = MyForm()
w.show ()
sys.exit (app.exec_())

[323]

Using Graphics Chapter 10

How it works...

Because we want to display the point where the mouse button is clicked, the
mousePressEvent () method is used. In the mousePressEvent () method, the

pos () .x () and pos () .y () methods are invoked on the event object to fetch the locations
of the x and y coordinates and assign them to the 0 and 1 elements of the pos1 array. That
is, the pos1 array is initialized to the x and y coordinate values where the mouse button is
clicked. After initializing the pos1 array, the sel1f.update () method is called to invoke
the paintEvent () method.

In the paintEvent () method, an object of the QPainter class is defined by name as gp.
An object of the QPen class is defined by name as pen to set the thickness of the pen and its
color. Finally, a point is displayed by invoking the drawPoint () method at the location
whose value is defined in the pos1 array, that is, where the mouse button is clicked.

On running the application, you will get a message that a dot will be displayed where the
mouse button will be clicked. When you click the mouse, a point will appear at that
location, as shown in the following screenshot:

1 Dialog ? ¥

Click the mouse where you want to display a dot

[324]

Using Graphics Chapter 10

Drawing a line between two mouse clicks

In this recipe, we will learn to display a line between two points, from where the mouse
button is clicked till where the mouse button is released on the form. The focus of this
recipe is to understand how the mouse press and release events are handled, how the x a
and y coordinates where the mouse button is clicked and released are accessed, and how a
line is drawn from the location where the mouse button is clicked to the location where the
mouse button is released.

How to do it...

The major players in this recipe are the mousePressEvent (), mouseReleaseEvent (),
and paintEvent () methods. The mousePressEvent () and mouseReleaseEvent ()
methods are automatically executed whenever the mouse button is clicked or released,
respectively. These two methods will be used to access the x and y coordinates where the
mouse button is clicked and released. Finally, the paintEvent () method is used to draw a
line between the coordinates that were supplied by the mousePressEvent () and
mouseReleaseEvent () methods. Here is the step-by-step procedure to create this

application:

1. Let's create an application based on the Dialog without Buttons template.

2. Add a QLabel widget to the form by dragging and dropping a Label widget on
the form.

3. Set the text property of the Label widget to Click the mouse and drag it
to draw the line of desired size.

4. Save the application by name as demoDrawLine.ui.

[325]

Using Graphics Chapter 10

The form will now appear as shown in the following screenshot:

Dialeg - demoDrawLine.ui E\@

Click the mouse and drag it to draw the line of desired size

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. The pyuic5 utility is used
for converting the XML file into Python code. The generated Python script,
demoDrawLine.py, can be seen in the source code bundle of the book.

5. Treat the demoDrawLine.py script as a header file, and import it into the file
from which you will invoke its user interface design.

6. Create another Python file with the name callDrawLine.pyw and import the
demoDrawLine.py code into it:

import sys

from PyQt5.QtWidgets import QDialog, QApplication

from PyQt5.QtGui import QPainter

from demoDrawLine import *

class MyForm(QDialog) :

def _ _init_ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.posl = [0,0]
self.pos2 = [0,0]
self.show ()

[326]

Using Graphics Chapter 10

def paintEvent (self, event):
gp = QPainter()
gp.begin(self)
gp.drawlLine (self.posl1[0], self.posl[1l], self.pos2[0],
self.pos2[1])
gp.end ()
def mousePressEvent (self, event):
if event.buttons () & QtCore.Qt.LeftButton:
self.posl[0], self.posl[l] = event.pos().x(),
event.pos () .y ()
def mouseReleaseEvent (self, event):
self.pos2[0], self.pos2[1l] = event.pos().x(),
event.pos () .y ()
self.update()

if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

As we want to display a line between the locations where the mouse button is clicked and
released, we will be making use of two methods, mousePressEvent () and
mouseReleaseEvent (). As the name suggests, the mousePressEvent () method is
automatically invoked when a mouse button is pressed. Similarly, the
mouseReleaseEvent () method is automatically invoked when the mouse button is
released. In these two methods, we will be simply saving the values of the x and y
coordinates where the mouse button is clicked and released. Two arrays are defined in this
application, pos1 and pos2, where pos1 stores the x and y coordinates of the location
where the mouse button is clicked, and the pos2 array stores the x and y coordinates of the
location where the mouse button is released. Once the x and y coordinates of the locations
where the mouse button is clicked and released are assigned to the pos1 and pos?2 arrays,
the self.update () method is invoked in the mouseReleaseEvent () method to invoke
the paintEvent () method. In the paintEvent () method, the drawLine () method is
invoked and the x and y coordinates stored in the pos1 and pos2 array are passed to it to
draw a line between the mouse press and mouse release locations.

[327]

Using Graphics Chapter 10

On running the application, you will get a message to click and drag the mouse button
between the locations where the line is required. So, click the mouse button and keeping the
mouse button pressed, drag it to the desired location and release the mouse button. A line
will be drawn between the locations where the mouse button is clicked and where it is
released, as shown in the following screenshot:

B Dialog ? x

Click the mouse and drag it to draw the line of desired size

Drawing lines of different types

In this recipe, we will be learning to display lines of different types between two points,
from the mouse click location to where the mouse button is released. The user will be
shown different line types to choose from, such as solid, dash line, dash-dot line, and so on.
The line will be draw in the selected line type.

How to do it...

It is the QPen class that is used for defining the size or thickness of the pen used for
drawing shapes. The setStyle () method of the Qpen class is used in this recipe to define
the style of the line. Here is the step-by-step procedure to draw lines of different styles:

1. Let's create an application based on the Dialog without Buttons template.
2. Add a gLabel widget to the form by dragging and dropping a Label widget on
the form.

[328]

Using Graphics Chapter 10

3. Add a oListwWidget widget by dragging and dropping a List Widget item on
the form.

4. Set the text property of the Label widget to Select the style from the
list and then click and drag to draw a line.

5. Save the application by name as demoDrawDiffLine.ui.

6. The List Widget item will be used for showing different types of lines, so right-
click on the List Widget widget and select the Edit Items option to add a few line
types to the List Widget item. Click the + (plus) button at the bottom of the

dialog box that opens up and add a few line types, as shown in the following
screenshot:

Edit List Widget - Ot Designer *

SolidLine
DashLine
DashDotline
Dotline
DashDotDotLine

| = & 9 Properties <<

Cancel

7. Set the objectName property of the List Widget item to 1istWidgetLineType.

[329]

Using Graphics Chapter 10

The form will now appear as shown in the following screenshot:

Dialog - demoDrawDiffLine.ui EI@

Select the style from the list and then click and drag to draw a line

SolidLine
DashLine
DashDotLine
DotLine
DashDotDotLine

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. The pyuic5 utility is used
for converting the XML file into Python code. The generated Python script,
demoDrawDiffLine.py, can be seen in the source code bundle of the book.

8. Treat the demoDrawDiffLine.py script as a header file, and import it into the
file from which you will invoke its user interface design.

9. Create another Python file with the name callDrawDiffLine.pyw and import
the demoDrawDiffLine.py code into it:

import sys

from PyQt5.QtWidgets import QDialog, QApplication

from PyQt5.QtGui import QPainter, QPen

from PyQt5.QtCore import Qt

from demoDrawDiffLine import *

class MyForm(QDialog) :

def _ _init_ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.lineType="SolidLine"
self.posl = [0,0]

[330]

Using Graphics Chapter 10
self.pos2 = [0,0]
self.show()
def paintEvent (self, event):
gp = QPainter()
gp.begin(self)
pen = QPen (Qt.black, 4)
self.lineTypeFormat="Qt."+self.lineType
if self.lineTypeFormat == "Qt.SolidLine":
pen.setStyle (Qt.SolidLine)
elif self.lineTypeFormat == "Qt.DashLine":
pen.setStyle (Qt.DashLine)
elif self.lineTypeFormat =="Qt.DashDotLine":
pen.setStyle (Qt.DashDotLine)
elif self.lineTypeFormat =="Qt.DotLine":
pen.setStyle (Qt.DotLine)
elif self.lineTypeFormat =="Qt.DashDotDotLine":
pen.setStyle (Qt.DashDotDotLine)
gp.setPen (pen)
gp.drawlLine (self.posl1[0], self.posl[1l],
self.pos2[0], self.pos2[1])
gp.end ()
def mousePressEvent (self, event):
if event.buttons () & QtCore.Qt.LeftButton:
self.posl[0], self.posl[l] = event.pos().x(),
event.pos () .y ()
def mouseReleaseEvent (self, event):
self.lineType=self.ui.listWidgetLineType.currentItem{()
.text ()
self.pos2[0], self.pos2[1l] = event.pos().x(),
event.pos () .y ()
self.update()
if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

A line has to be drawn between the mouse press and mouse release locations, so we will be
making use of two methods in this application, mousePressEvent () and
mouseReleaseEvent (). The mousePressEvent () method is automatically invoked

when the left mouse button is clicked. Similarly, the mouseReleaseEvent () method is

automatically invoked when the mouse button is released.

[331]

Using Graphics Chapter 10

In these two methods, we will be saving the values of the x and y coordinates where the
mouse button is clicked and released respectively. Two arrays are defined in this
application, pos1 and pos2, where pos1 stores the x and y coordinates of the location
where the mouse button is clicked and the pos2 array stores the x and y coordinates of the
location where the mouse button is released. In the mouseReleaseEvent () method, we
fetch the line type chosen by the user from the List widget and assign the chosen line type
to the 1ineType variable. Also, the self.update () method is invoked in the
mouseReleaseEvent () method to invoke the paintEvent () method. In the
paintEvent () method, you define a pen of 4 pixels in width and assign it a black color.
Also, you assign a style to the pen that matches the line type chosen by the user from the
List widget. Finally, the drawLine () method is invoked and the x and y coordinates stored
in the pos1 and pos2 array are passed to it to draw a line between the mouse press and
mouse release locations. The line will be displayed in the style that is selected from the List
widget.

On running the application, you will get a message to select the line type from the list and
click and drag the mouse button between the locations where the line is required. So, after
selecting a desired line type, click the mouse button and keeping the mouse button pressed,
drag it to the desired location and release the mouse button. A line will be drawn between
the locations where the mouse button is clicked and where it is released in the style that is
chosen from the list. The following screenshot shows the lines of different types:

B Dialeg ?

Select the style from the list and then click and drag to draw a line

SolidLine
DashLine
DashDotLine
DotlLine
DashDotDotLine

7 Dialog ?

Select the style from the list and then dlick and drag to draw a line

SolidLine
DashLine
DashDotLine
DotLine
DashDotDotLine

[332]

Using Graphics Chapter 10

Drawing a circle of a desired size

In this recipe, we will be learning to draw a circle. The user will click and drag the mouse to
define the diameter of the circle, and the circle will be drawn at the diameter specified by

the user.

How to do it...

A circle is nothing but an arc that is drawn from 0 to 360 degrees. The length of the arc, or
you can say the diameter of the circle, is determined by the distance of mouse press event
and mouse release events. A rectangle is defined internally from mouse press event until
mouse release event, and the circle is drawn within that rectangle. Here are the complete
steps to create this application:

1. Let's create an application based on the Dialog without Buttons template.

2. Add a gLabel widget to the form by dragging and dropping a Label widget on
the form.

3. Set the text property of the Label widget to Click the mouse and drag it
to draw a circle of the desired size.

4. Save the application by name as demoDrawCircle.ui. The form will now
appear as shown in the following screenshot:

Dialeg - demoDrawCircle.ui EI@

Click the mouse and drag it to draw the circle of desired size. = =

[333]

Using Graphics

Chapter 10

The user interface created with Qt Designer is stored in a . ui file and it is an XML
file. The XML file is converted into Python code by applying the pyuic5 utility.
You can find the generated Python code, demoDrawCircle.py, in the source

code bundle of the book.

5. Treat the demoDrawCircle.py script as a header file, and import it into the file

from which you will invoke its user interface design.

6. Create another Python file with the name callDrawCircle.pyw and import the

demoDrawCircle.py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from PyQt5.QtGui import QPainter
from demoDrawCircle import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.posl = [0,0]
self.pos2 = [0,0]
self.show ()
def paintEvent (self, event):
width = self.pos2[0]-self.posl[0]
height = self.pos2[1] - self.posl[1]
gp = QPainter ()
gp.begin (self)

rect = QtCore.QRect (self.posl[0], self.posl[l], width,

height)
startAngle = 0
arcLength = 360 *16
gp.drawArc (rect, startAngle, arclLength)
gp.end ()
def mousePressEvent (self, event):
if event.buttons() & QtCore.Qt.LeftButton:

self.posl[0], self.posl[l] = event.pos().x(),
event.pos () .y ()
def mouseReleaseEvent (self, event):
self.pos2[0], self.pos2[1l] = event.pos().x(),
event.pos () .y ()
self.update()
if _ name_ =="_main__ ":

app = QApplication(sys.argv)
w = MyForm()

w.show ()

sys.exit (app.exec_())

[334]

Using Graphics Chapter 10

How it works...

To draw a circle with the diameter defined between the mouse button pressed and released
locations, we will be making use of two methods, mousePressEvent () and
mouseReleaseEvent (). The mousePressEvent () method is automatically invoked when
a mouse button is pressed and the mouseReleaseEvent () method is automatically
invoked when the mouse button is released. In these two methods, we will be simply
saving the values of the x and y coordinates where the mouse button is clicked and
released. Two arrays, pos1 and pos2, are defined, where the pos1 array stores the x and y
coordinates of the location where the mouse button is clicked and the pos2 array stores the
x and y coordinates of the location where the mouse button is released. The

self.update () method that is invoked in the mouseReleaseEvent () method will
invoke the paintEvent () method. In the paintEvent () method, the width of the
rectangle is computed by finding the difference between the x coordinates of mouse press
and mouse release locations. Similarly, the height of the rectangle is computed by finding
the difference between the y coordinates of mouse press and mouse release events.

The circle will be created of a size equal to the width and height of the rectangle, that is, the
circle will be created within the boundaries specified by the user with the mouse.

Also, in the paintEvent () method, the drawArc () method is invoked and the rectangle,
starting angle of the arc, and length of the arc are passed to it. The starting angle is specified
as 0.

On running the application, you will get a message to click and drag the mouse button to
define the diameter of the circle to be drawn. So, click the mouse button and keeping the
mouse button pressed, drag it to the desired location and release the mouse button. A circle
will be drawn between the locations where the mouse button is clicked and where it is
released, as shown in the following screenshot:

7 Dialog ? X

Click the mouse and drag it to draw the dircle of desired size

[335]

Using Graphics Chapter 10

Drawing a rectangle between two mouse
clicks

In this recipe, we will be learning to display a rectangle between the two points where the
mouse button is clicked and released on the form.

How to do it...

It is a very simple application, where the mousePressEvent () and

mouseReleaseEvent () methods are used to find the x and y coordinates of the location
where the mouse is pressed and released, respectively. Thereafter, the drawRect () method
is invoked to draw the rectangle from the coordinates where the mouse button is clicked to
the coordinates where the mouse button is released. The step-by-step procedure for
creating this application is as follows:

1. Let's create an application based on the Dialog without Buttons template.

2. Add a gLabel widget to the form by dragging and dropping a Label widget on
the form.

3. Set the text property of the Label widget to Click the mouse and drag it
to draw a rectangle of the desired size.

4. Save the application by name as demoDrawRectangle.ui. The form will now
appear as shown in the following screenshot:

Dialog - demoDrawRectangle.ui EI@

Click the mouse and drag it to draw the rectangle of desired size

[3361]

Using Graphics Chapter 10

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file, and needs to be converted into Python code. The pyuic5 utility is used
for converting the XML file into Python code. The generated Python script,
demoDrawRectangle.py, can be seen in the source code bundle of the book.

5. Treat the demoDrawRectangle.py script as a header file, and import it into the
file from which you will invoke its user interface design.

6. Create another Python file with the name callDrawRectangle.pyw and import
the demoDrawRectangle.py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from PyQt5.QtGui import QPainter
from demoDrawRectangle import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.posl = [0,0]
self.pos2 = [0,0]
self.show ()
def paintEvent (self, event):
width = self.pos2[0]-self.posl[0]
height = self.pos2[1] - self.posl[1]
gp = QPainter ()
gp.begin (self)
gp.drawRect (self.posl[0], self.posl[l], width, height)
gp.end ()
def mousePressEvent (self, event):
if event.buttons () & QtCore.Qt.LeftButton:

self.posl[0], self.posl[l] = event.pos().x(),
event.pos () .y ()
def mouseReleaseEvent (self, event):
self.pos2[0], self.pos2[1l] = event.pos().x(),
event.pos () .y ()
self.update()
if _ name_ =="_main__ ":

app = QApplication(sys.argv)
w = MyForm()

w.show ()

sys.exit (app.exec_())

[337]

Using Graphics Chapter 10

How it works...

To draw a rectangle between the mouse button pressed and released locations, we will be
making use of two methods, mousePressEvent () and mouseReleaseEvent (). The
mousePressEvent () method is automatically invoked when a mouse button is pressed
and the mouseReleaseEvent () method is automatically invoked when the mouse button
is released. In these two methods, we will be simply saving the values of the x and y
coordinates where the mouse button is clicked and released respectively. Two arrays, pos1
and pos2, are defined, where the pos1 array stores the x and y coordinates of the location
where the mouse button is clicked and the pos2 array stores the x and y coordinates of the
location where the mouse button is released. The self.update () method that is invoked
in the mouseReleaseEvent () method will invoke the paintEvent () method. In the
paintEvent () method, the width of the rectangle is computed by finding the difference
between the x coordinates of mouse press and mouse release locations. Similarly, the height
of the rectangle is computed by finding the difference between the y coordinates of mouse
press and mouse release events.

Also, in the paintEvent () method, the drawRect () method is invoked and the x and y
coordinates stored in the pos1 array are passed to it. Also, the width and height of the
rectangle are passed to the drawRect () method to draw the rectangle between the mouse
press and mouse release locations.

On running the application, you will get a message to click and drag the mouse button
between the locations where the rectangle is required. So, click the mouse button and
keeping the mouse button pressed, drag it to the desired location and release the mouse
button.

A rectangle will be drawn between the locations where the mouse button is clicked and
where it is released, as shown in the following screenshot:

[338]

Using Graphics Chapter 10

B Dialog ? *

Click the mouse and drag it to draw the rectangle of desired size

Drawing text in a desired font and size

In this recipe, we will learn to draw text in a specific font and at a specific font size. Four
widgets will be required in this recipe such as Text Edit, List Widget, Combo Box, and
Push Button. The Text Edit widget will be used to enter the text that the user wants to
display in the desired font and size. The List Widget box will display different font names
that the user can select from. The Combo Box widget will display font sizes that the user
can select to define the size of the text. The Push Button widget will initiate the action, that
is, the text entered in the Text Edit widget will be displayed in the chosen font and size on
clicking the push button.

How to do it...

The Qpainter class is the focus of this recipe. The setFont () and drawText () methods
of the gpainter class will be used in this recipe. The setFont () method will be invoked
to set the font style and font size chosen by the user and the drawText () method will draw
the text written by the user in the Text Edit widget in the specified font style and size. Here
is the step-by-step procedure to learn how these methods are used:

1. Let's create an application based on the Dialog without Buttons template.

[339]

Using Graphics Chapter 10

2. Add the QLabel, QTextEdit, QListWidget, QComboBox, and QPushButton
widgets to the form by dragging and dropping a Label widget, a Text Edit
widget, a List Widget box, a Combo Box widget, and a Push Button widget on
the form.

3. Set the text property of the Label widget to Enter some text in leftmost
box, select font and size, and click the Draw Text button.

4. The List Widget box will be used for showing different fonts, so right-click on
the List Widget box and select the Edit Items option to add a few font names to
the List Widget box. Click the + (plus) button at the bottom of the dialog box that
opens up and add a few font names, as shown in the following screenshot:

Edit List Widget - Ot Designer x
Arial
Courier Mew
Times Mew Roman
Sans Senf
_.;.l, — & B Properties <<
Cancel

5. The Combo Box widget will be used for showing different font sizes, so we need
to add certain font sizes to the Combo Box widget. Right-click on the Combo Box
widget and select the Edit Items option.

[340]

Using Graphics Chapter 10

6.

Click the + (plus) button at the bottom of the dialog box that opens up and add a
couple of font sizes, as shown in the following screenshot:

Edit Combobox - Ot Designer >

12
14
16
13
20

| = & @ Properties <<

Cancel

10.

11.

Set the text property of the Push Button widget to Draw Text.
Set the objectName property of the List Widget box to 1istWidgetFont.
Set the objectName property of the Combo Box widget to comboBoxFontSize.

Set the objectName property of the Push Button widget to
pushButtonDrawText.

Save the application by name as demoDrawText . ui.

[341]

Using Graphics Chapter 10

The form will now appear as shown in this screenshot:

Dialog - demoDrawText.ui EI@

Enter some text in left most box, select font and size and click Draw Text button

Arial 12 ~ Draw Text
Courier New
Times New Roman
Sans Serif

The user interface created with Qt Designer is stored in a . ui file and it is an XML
file. The XML file is converted into Python code by applying the pyuic5 utility.
You can find the generated Python code, demoDrawText . py, in the source code
bundle of the book.

12. Treat the demoDrawText .py script as a header file, and import it into the file
from which you will invoke its user interface design.

13. Create another Python file with the name callDrawText .pyw and import the
demoDrawText . py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from PyQt5.QtGui import QPainter, QColor, QFont
from PyQt5.QtCore import Qt
from demoDrawText import *
class MyForm(QDialog) :
def _ init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonDrawText.clicked.connect (self.

[342]

Using Graphics Chapter 10

dispText)
self.textToDraw=""
self.fontName="Courier New"
self.fontSize=5
self.show()

def paintEvent (self, event):
gp = QPainter()
gp.begin(self)
gp.setPen (QColor (168, 34, 3))
gp.setFont (QFont (self.fontName, self.fontSize))
gp.drawText (event.rect (), Qt.AlignCenter,
self.textToDraw)
gp.end ()

def dispText (self):
self.fontName=self.ui.listWidgetFont.currentItem() .
text ()
self.fontSize=int (self.ui.comboBoxFontSize.itemText (
self.ui.comboBoxFontSize.currentIndex()))
self.textToDraw=self.ui.textEdit.toPlainText ()
self.update ()

if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)

w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

The click() event of the Push Button widget is connected to the dispText () method, that
is, whenever the push button is clicked, the dispText () method will be invoked.

In the dispText () method, the font name selected from the List Widget box is accessed
and assigned to the fontName variable. Also, the font size selected from the combo box is
accessed and assigned to the fontsize variable. Besides this, the text written in the Text
Edit widget is fetched and assigned to the text ToDraw variable. Finally, the
self.update () method is invoked; it will invoke the paintEvent () method.

[343]

Using Graphics Chapter 10

In the paintEvent () method, the drawText () method is called and will draw the text
written in the Text Edit widget in the font style that is assigned to the fontName variable,
and in the font size specified in the font Size variable. On running the application, you
will find a Text Edit widget on the extreme left, font names displayed in the List Widget
box, and font sizes displayed via the Combo box widget. You need to enter some text in the
Text Edit widget, select a font style from the List Widget box and font size from the Combo
Box widget, and click on the Draw Text button. On clicking the Draw Text button, the text
written in the Text Edit widget will be displayed in the selected font and selected font size,
as shown in the following screenshot:

B Dialog ? it

Enter some text in left most box. select font and size and click Draw Text button

Hello Python Arial 18 -

Courier New
Times New Roman
Sans Serif

Hello Python

Creating a toolbar that shows different
graphics tools

In this recipe, we will learn to create a toolbar that shows three toolbar buttons. These three
toolbar buttons show the icons for the line, circle, and rectangle. When the user clicks the
line toolbar button from the toolbar, he/she can click and drag the mouse on the form to
draw a line between the two mouse locations. Similarly, by clicking on the circle toolbar
button, the user can draw a circle on the form by clicking and dragging the mouse.

[344]

Using Graphics Chapter 10

How to do it...

The focus of this recipe is to help you understand how frequently used commands in an
application can be provided to the user via a toolbar, making them easy to access and use.
You will learn to create toolbar buttons, define their shortcuts, and their icons too. To define
the icons for the toolbar buttons, you will learn to create and use the resource file. The
creation and execution of each toolbar button is explained very clearly step by step:

1. Let’s create a new application to understand the steps involved in creating a
toolbar.

2. Launch Qt Designer and create a main window-based application. You get a new
application with the default menu bar.

3. You can remove the menu bar by right-clicking on it and selecting the Remove
Menu Bar option from the shortcut menu that pops up.

4. To add a toolbar, right-click on the Main Window template and select Add Tool
Bar from the context menu. A blank toolbar will be added below the menu bar,
as shown in the following screenshot:

MainWindow - untitled® EI@

[345]

Using Graphics Chapter 10

We want to create a toolbar with three toolbar buttons, line, circle, and rectangle.
Since the three toolbar buttons will represent three icon images, we assume we
have icon files, that is, files with an extension . ico for the line, circle, and
rectangle.

5. To add tools to the toolbar, create an action in the Action Editor box; each toolbar
button in the toolbar is represented by an action. The Action Editor box is
usually found below the Property Editor window.

6. If the Action Editor window is not visible, select Action Editor from the View
menu. The Action Editor window appears as shown here:

Action Editor g X
= g -
DDV@® x /A it
Mame Uzed Text Shortcut Checkable
£ >

7. In the Action Editor window, select the New button to create an action for the
first toolbar button. You get the dialog to enter detailed information for the new
action.

8. In the Text box, specify the name of the action, Circle.

9. In the Object name box, the name of the action object automatically appears,
prefixed with the text action.

10. In the ToolTip box, enter any descriptive text.

[346]

Using Graphics Chapter 10

11. In the Shortcut box, press Ctrl + C character to assign Ctrl + C as the shortcut
key for drawing a circle.

12. The Icon drop-down list shows two options, Choose Resource... and Choose
File.

13. You can assign an icon image to the action either by clicking the Choose File...
option or from the resource file:

Mew action - Ot Designer >

Text: |Cin:|e |

Object name: |an:1j|:|nCir|:|E |

ToolTip: |T|:| draw drde |
Icon theme: | | -
Icon: Mormal Off = EI
Checkable: [] Choose Resource...
Shortout: |CtrI+C Choose File...

Reset

Reset All

I K | Cancel

You can select several icons in a resource file and that resource file can then be
used in different applications.

[347]

Using Graphics

Chapter 10

14. Select the Choose Resource... option. You get the Select Resource dialog, as

shown in the following screenshot:

Select Resource - Ot Designer

7/ €

|Filter

<resource root>

QK

Cancel

Since no resource has yet been created, the dialog box is empty. You see two icons
at the top. The first icon represents Edit Resources and the second icon represents
Reload. On clicking the Edit Resources icon, you get the dialog shown here:

Edit Resources - Ot Designer pd
Prefix / Path Language / Alias
= =120
Conc

[348]

Using Graphics Chapter 10

Now let's see how we can create a resource file by performing the following steps:

1.

The first step is to create a resource file or load an existing resource file. The first
three icons at the bottom represent New Resource File, Edit Resource File, and
Remove.

Click on New Resource File icon. You will be prompted to specify the name of
the resource file.

Let's name the new resource file iconresource. The file will be saved with the
extension . qgrc.

The next step is to add a prefix to the resource file. The three icons below the
Prefix / Path pane are Add Prefix, Add Files, and Remove.

Click on the Add Prefix option, and you will be prompted to enter the prefix
name.

Enter the prefix as Graphics. After adding the prefix, we are ready to add our
three icons, circle, rectangle, and line, to the resource file. Recall that we have
three icon files with the extension . ico.

Click the Add Files option to add icons. On clicking the Add Files option, you
will be asked to browse to the drive/directory and select the icon files.

Select the three icon files one by one. After adding the three icons, the Edit
Resources dialog appears as shown here:

Edit Resources - Ot Designer x
IConresource.qre Prefix / Path Language / Alias
* Graphics
—

() ..r10code/circlelcon.ico
[] ..codefrectanglelcon.ico
A L.terlOcodeflinelcon.ico

Concel

[349]

Using Graphics Chapter 10

9. On clicking the OK button, the resource file will appear, showing the three icons
to choose from.
10. Since we want to assign an icon for the circle action, click on the circle icon,
followed by clicking the OK button:

Select Resource - Ot Designer X
/ e |FiItE|'

W =resource root=
¥ Graphics /
w [

v PacktPython circlelco... linelcon.i.. rectangl..

¥ PythonPrograms
chapterllcode

Cancel

The selected circle icon will be assigned to actionCircle.

11. Similarly, create two more actions, actionRectangle and actionLine, for the
rectangle and line toolbar buttons. After adding the three actions, the Action
Editor window will appear as shown here:

Action Editor g X
0P E x ~ Filter

Mame Uzed Text Shortcut Checkable

f___:.l actionCircle [] Circle Ctrl+(C]

[] actio...angle [] Rectangle Ctrl+R]

/" actionLine [] Line Ctrl+L]

£ >

[350]

Using Graphics Chapter 10

12. To display the toolbar buttons in the toolbar, click one action from the Action
Editor window and, keeping it pressed, drag it to the toolbar.

13. Save the application with the name demoToolBars.ui.

After dragging the three actions to the toolbar, the toolbar will appear as shown here:

MainWindow - demoToolBars.ui El@
o/

The pyuic5 command line utility will convert the .ui (XML) file into Python
code, and the generated code will be named demoToolBars.py. You can find the
demoToolBars.py script in the source code bundle of this book. The
iconresource.qrc file that we created must be converted into Python format
before we move further. The following command line will convert the resource
file into a Python script:

pyrcc5 iconresource.qgrc -o iconresource_rc.py

[351]

Using Graphics

Chapter 10

14. Create a Python script named callToolBars.pyw that imports the code,
demoToolBar.py, to invoke the toolbar and to draw the graphic whose toolbar
button is selected from the toolbar. The script file will appear as follows:

import sys

from PyQtb5.
from PyQtb5.

QtWidgets import QMainWindow, QApplication
QtGui import QPainter

from demoToolBars import *

class AppWindow (QMainWindow) :
def _ _init_ (self):

super () .__init__ ()
self.ui = Ui_MainWindow ()
self.ui.setupUi (self)
self.posl = [0,0]
self.pos2 = [0,0]
self.toDraw=""
self.ui.actionCircle.triggered.connect (self.drawCircle)
self.ui.actionRectangle.triggered.connect (self.
drawRectangle)
self.ui.actionLine.triggered.connect (self.drawLine)
self.show()

def paintEvent (self, event):

ap

ap
if

if

if

= QPainter ()

.begin(self)

self.toDraw=="rectangle":
width = self.pos2[0]-self.posl[0]

height = self.pos2[1] - self.posl[1]
gp.drawRect (self.posl[0], self.posl[1l], width,
height)

self.toDraw=="1ine":

gp.drawlLine (self.posl1[0], self.posl[1],
self.pos2[0], self.pos2[1])
self.toDraw=="circle":

width = self.pos2[0]-self.posl[0]
height = self.pos2[1] - self.posl[1]
rect = QtCore.QRect (self.posl1[0], self.posl[1l],
width, height)

startAngle = 0

arcLength = 360 *16

gp.drawArc (rect, startAngle, arcLength)
gp.end ()

def mousePressEvent (self, event):

if

event.buttons () & QtCore.Qt.LeftButton:
self.posl[0], self.posl[l] = event.pos().x(),
event.pos () .y ()

[352]

Using Graphics Chapter 10

def mouseReleaseEvent (self, event):
self.pos2[0], self.pos2[1l] = event.pos().x(),
event.pos () .y ()
self.update ()

def drawCircle (self):
self.toDraw="circle"

def drawRectangle (self):
self.toDraw="rectangle"

def drawLine (self) :
self.toDraw="1line"

app = QApplication(sys.argv)
w = AppWindow ()

w.show ()

sys.exit (app.exec_())

How it works...

The triggered() signal of the action of each toolbar button is connected to the respective
method. The triggered() signal of the actionCircle toolbar button is connected to the
drawCircle () method, so whenever the circle toolbar button is selected from the toolbar,
the drawCircle () method will be invoked. Similarly, the triggered() signal of
actionRectangle and actionLine are connected to the drawRectangle () and
drawLine () methods, respectively. In the drawCircle () method, a variable toDraw is
assigned a string, circle. The toDraw variable will be used to determine the graphics to
be drawn in the paintEvent () method. The toDraw variable can be assigned any of the
three strings, 1ine, circle, or rectangle. A conditional branching is applied on the value
in the toDraw variable and accordingly, methods to draw a line, rectangle, or circle will be
invoked.

How big a line, circle, or rectangle will be drawn is determined by the mouse clicks; the
user needs to click the mouse on the form and drag the mouse and release it at the location
up to which he/she wants to draw the line, circle, or rectangle. In other words, the length of
the line, width and height of the rectangle, and diameter of the circle will be determined by
the mouse.

[353]

Using Graphics Chapter 10

Two arrays, pos1 and pos2, are used to store the x and y coordinates of the location where
the mouse is clicked and the location where the mouse is released, respectively. The x and y
coordinate values are assigned to the pos1 and pos2 array via two methods,
mousePressEvent () and mouseReleaseEvent (). The mousePressEvent () method is
automatically invoked when the mouse button is clicked and the mouseReleaseEvent ()
method is automatically invoked when the mouse button is released.

In the mouseReleaseEvent () method, after assigning the x and y coordinate values of the
location where the mouse button is released, the self.update () method is invoked to
invoke the paintEvent () method. In the paintEvent () method, branching takes place
on the basis of the string assigned to the toDraw variable. If the t oDraw variable is assigned
the string 1ine (by the drawLine () method), the drawLine () method will be invoked of
QPainter class to draw the line between the two mouse locations. Similarly, if the toDraw
variable is assigned the string circle (by the drawCircle () method), the drawArc ()
method will be invoked of the gpainter class to draw a circle with a diameter supplied by
mouse locations. If the t oDraw variable is assigned the string rectangle by the
drawRectangle () method, then the drawRect () method will be invoked of the
QPainter class to draw a rectangle of the width and height supplied by the mouse
locations.

On running the application, you will find a toolbar with three toolbar buttons, circle,
rectangle, and line, as shown in the following screenshot (left). Click on the circle toolbar
button, then click the mouse button on the form, and, keeping the mouse button pressed,
drag it to define the diameter of the circle and release the mouse button. A circle will be
drawn from the location where the mouse button is clicked up to the location where the
mouse button is released (right):

17 MainWindow - O X 1 MainWindow - m} X

onOrs odrs

[354]

Using Graphics Chapter 10

To draw a rectangle, click on the rectangle tool, click the mouse button at a location on the
form, and, keeping the mouse button pressed, drag it to define the height and width of the
rectangle. On releasing the mouse button, a rectangle will be drawn between the mouse
pressed and mouse released locations (left). Similarly, click the line toolbar button and click
the mouse button on the form. Keeping the mouse button pressed, drag it up to the location
where you want the line to be drawn. On releasing the mouse button, a line will be drawn
between the locations where the mouse button is clicked and released (right):

B MainWindow - O X B MainWindow - O X

o OO

Plotting a line using Matplotlib

In this recipe, we will learn to plot a line using Matplotlib that passes through specific x and
y coordinates.

Matplotlib is a Python 2D plotting library that makes the complicated task of plotting lines,
histograms, bar charts, and so on quite easy. This library not only plots, but also provides
an API that enables the embedding of plots in applications too.

Getting ready

You can install Matplotlib by using the following statement:

pip install matplotlib

[355]

Using Graphics Chapter 10

Let's assume that we want to plot a line that uses the following sets of x and y coordinates:

x=10, y=20
x=20, y=40
x=30, y=60

On the x axis, the value of x begins from 0 and increases towards the right and on the y
axis, the value of y is 0 at the bottom and increases as we move up. Because the last pair of
coordinates is 30, 60, the graph will have the maximum x value of 30 and the maximum y
value of 60.

The following methods of matplotlib.pyplot will be used in this recipe:

e title (): This method is used to set the title of the graph

e xlabel (): This method is to display the specific text along the x axis

e ylabel (): This method is to display the specific text along the y axis

e plot (): This method is used for plotting at the specified x and y coordinates

How to do it...

Create a Python script with the name demoPlotLine.py and write the following code in it:

import matplotlib.pyplot as graph
graph.title('Plotting a Line!"')
graph.xlabel ('x - axis')
graph.ylabel ('y - axis')

x = [10,20,30]

y = [20,40,60]

graph.plot (x, V)

graph.show ()

How it works...

You import matplotlib.pyplot in the script and name it graph. Using the title ()
method, you set the title of the graph. Thereafter, the x1abel () and ylabel () methods
are invoked to define the text for the x axis and y axis, respectively. Because we want to plot
a line using three sets of x and y coordinates, two arrays are defined by name, x and y. The
values of the x and y coordinates that we want to plot are defined in the two arrays, x and y,
respectively. The plot () method is invoked and the two x and y arrays are passed to it to
plot the line using the three x and y coordinate values defined in the two arrays. The show
method is invoked to display the plotting.

[356]

Using Graphics Chapter 10

On running the application, you find that a line is plotted that passes through the specified
x and y coordinates. Also, the graph will show the specified title, Plotting a Line !. Besides
this, you can see the designated text being displayed along the x axis and y axis as shown in
the following screenshot:

) Figure 1 - O *

Plotting a Line!

60

554

50 4

45 4

40

y - axis

35 4

30 4

25+

204

al € $al= B/

Plotting a bar using Matplotlib

In this recipe, we will learn to plot a bar using Matplotlib that compares the growth of a
business over past three years. You will supply the profit percentage in 2016, 2017, and 2018
and the application will show a bar representing the profit percentage in the past three
years.

[357]

Using Graphics Chapter 10

Getting ready

Let's assume that the profit percentage of the organization over the last three years is as
follows:

e 2016: Profit was 70%
e 2017: Profit was 90%
e 2018: Profit is 80%

You want to display bars that represent profit percentages and along the x axis, and you
want the years to be displayed: 2016, 2017, and 2018. Along the y axis, you want to display
the bar that represent the profit percentage. The value of y on the y axis will begin from 0 at
the bottom and increases while moving toward the top, with the maximum value, 100, at
the top.

The following methods of matplotlib.pyplot will be used in this recipe:

e title (): This method is used to set the title of the graph

¢ bar (): To plot the bar from the two supplied arrays; one array will represent
data for the x axis, and the second array will represent data for the y axis

e plot (): This method is used for plotting at the specified x and y coordinates

How to do it...

Create a Python script with the name demoPlotBars.py and write the following code in it:

import matplotlib.pyplot as graph
years = ['2016', '2017', '2018"]
profit = [70, 90, 80]

graph.bar (years, profit)
graph.title ('Growth in Business')
graph.plot (100)

graph.show ()

[358]

Using Graphics Chapter 10

How it works...

You import matplotlib.pyplot in the script and name it graph. You define two arrays,
years and profit, where the years array will contain the data for 2016, 2017, and 2018 to
represent the years whose profits we want to compare. Similarly, the profit array will
contain the values that represent the profit percentages for the last three years. Thereafter,
the bar () method is invoked and the two arrays, years and profit, are passed to it to
display the bar comparing profits in the last three years. The title () method is invoked to
display the title, Growth in Business. The plot () method is invoked to indicate the
maximum y value along the y axis. Finally, the show () method is invoked to display the
bar.

On running the application, you find that a bar is plotted that displays the profits of the
organization in the past three years. The x axis shows the years and the y axis shows the
profit percentage. Also, the graph will show the specified title, Growth in Business as
shown in the following screenshot:

) Figure 1 = O X

Growth in Business

100 +

80 4

60 1

20

2016 2017 2018

& €9+l

[359]

11

Implementing Animation

In this chapter, you will learn how to apply motion to a given graphic image, hence
implementing animation. Animations play a major role in explaining the practical workings
of any machine, process, or system. In this chapter, we will be covering the following
topics:

Displaying a 2D graphical picture

Making a ball move down on the click of a button

Making a bouncing ball

Making a ball animate as per the specified curve

Introduction

To view and manage 2D graphical items in Python, we need to make use of a class

called QGraphicsScene. In order to display the contents of QGraphicsScene, we need the
help of another class, called 0GraphicsView. Basically, QGraphicsView provides a
scrollable viewport to display the contents of QGraphicsScene. QGraphicsScene acts as a
container for several graphical items. It also provides several standard shapes, such as
rectangles and ellipses, including text items. One more thing: the QGraphicsScene uses
OpenGL for rendering the graphics. The OpenGL is very efficient for displaying images
and performing multimedia processing tasks. The QGraphicsScene class provides several
methods that help in adding or removing graphical items from the scene. That is, you

can add any graphical item to the scene by calling the addItem function. Similarly, to
remove an item from the graphics scene, you can call the removeItem function.

Implementing Animation Chapter 11

Implementing animation

To apply animation in Python, we will be making use of the QPropertyAnimation class.
The QPropertyAnimation class in PyQt helps in creating and executing animations in
PyQt. The QPropertyAnimation class implements animation by manipulating Qt
properties such as a widget's geometry, position, and so on. The following are a few of the
QPropertyAnimation methods:

e start (): This method begins the animation
o stop (): This method ends the animation
e setStartValue (): This method is used to assign the starting value of the

animation

e setEndValue (): This method is used to assign the ending value of the
animation

e setDuration (): This method is used to set the duration of the animation in
milliseconds

e setKeyValueAt (): This method creates a keyframe at the given value

¢ setLoopCount (): This method sets the count of the repetitions desired in the
animation

Displaying a 2D graphical image

In this recipe, you will learn to display a 2D graphical image. We assume that you have a
graphical image by the name scene. jpg on your machine, and you will learn how it is
displayed on the form. The focus of this recipe is to understand how the Graphics View
widget is used to display an image.

How to do it...

The procedure for displaying graphics is very simple. You first need to create an object of
QGraphicsScene, which in turn makes use of the QGraphicsView class to show its
contents. Graphical items, including images, are then added to the 0GraphicsScene class
by invoking the addItem method of the QGraphicsScene class. Here are the steps to
display a 2D graphical image on the screen:

1. Create a new application based on the Dialog without Buttons template.
2. Drag and drop a Graphics View widget onto it.

[361]

Implementing Animation

Chapter 11

3. Save the application with the name demoGraphicsView.ui. The form will
appear as shown in the following screenshot:

Dialog - demoGraphicsView.ui ==

The pyuic5 command utility converts the . ui (XML) file into Python code. The
generated Python script, demoGraphicsView.py, can be seen in the source code
bundle of this book.

4. Create a Python script named callGraphicsView.pyw that imports the code,
demoGraphicsView.py, to invoke the user interface design, loads an image
from the disk, and displays it through Graphics View. The Python script
file, callGraphicsView. pyw, will include the following code:

import sys

from PyQt5.QtWidgets import QDialog, QApplication, QGraphicsScene,
QGraphicsPixmapIltem

from PyQt5.QtGui import QPixmap

from demoGraphicsView import *

class MyForm(QDialog) :

if

def

name__ == main__":

app

__init__ (self):
super () .__init__ ()

self.ui = Ui_Dialog()
self.ui.setupUi (self)

self.scene = QGraphicsScene (self)
pixmap= QtGui.QPixmap ()
pixmap.load ("scene.jpg")
item=QGraphicsPixmapItem (pixmap)
self.scene.addItem(item)

self.ui.graphicsView.setScene (self.scene)

J— | v

= QApplication(sys.argv)

myapp = MyForm()
myapp.show ()

sys.

exit (app.exec_())

[362]

Implementing Animation Chapter 11

How it works...

In this application, you are using Graphics View to display an image. You add a graphics
scene to the Graphics View widget, and you add QGraphicsPixmapItem. If you want to
add an image to the graphics scene, you need to provide it in the form of a pixmap item.
First, you need to represent the image as pixmap, and then you make it appear as a pixmap
item before adding it to the graphics scene. You need to create an instance of Qpixmap and
specify the image that you want to display through its 1oad () method. Then, you tag the
pixmap item as pixmapitem by passing pixmap to the constructor of
QGraphicsPixmapItem. pixmapitem is then added to the scene via addItem. If
pixmapitem is bigger than QGraphicsView, scrolling is enabled automatically.

In the previous code, I used an image with the filename scene. jpg. Please replace the
filename with an image filename that is available on your disk, or nothing will be displayed
on the screen.

The following methods are used:

® OGraphicsView.setScene: This method (self, 0GraphicsScene
scene) assigns the scene that is supplied as a parameter to the Graphicview
instance for display. If the scene is already being viewed, this function does
nothing. When a scene is set on a view, the QGraphicsScene.changed signal is
generated, and the view's scrollbars are adjusted to fit the size of the scene.

¢ addItem: This method adds the specified item to the scene. If an item is already
in a different scene, it will first be removed from its old scene and then added to
the current scene. On running the application, the scene. jpg image will be
displayed via the GrahicsView widget, as shown in the following screenshot:

57 Dialog ? *

Implementing Animation Chapter 11

Making a ball move down on the click of a
button

In this recipe, you will understand how a basic animation is applied on an object. This
recipe will consist of a push button and a ball, and when the push button is pressed, the
ball will start animating towards the ground.

How to do it...

To make this recipe, we will be making use of the QPropertyAnimation class. The

setStartValue () and setEndvValue () methods of the QPropertyAnimation class will
be used to define the coordinates where the animation needs to start and end, respectively.
The setDuration () method will be invoked to specify the delay in milliseconds between
every animation move. The following is the step-by-step procedure to apply an animation:

1. Create a new application based on the Dialog without Buttons template.

2. Drag and drop a Label widget and one Push Button widget onto the form.

3. Set the text property of the Push Button widget to Move Down. We assume that
you have a ball image on your computer with the filename coloredball. jpg.

4. Select its pixmap property to assign the ball image to the Label widget.

5. In the pixmap property, out of the two options, Choose Resource and Choose
File, select the Choose File option, browse your disk, and select
the coloredball. jpg file. The image of the ball will appear in place of the
Label widget.

6. Set the objectName property of the Push Button widget to
pushButtonPushDown and that of the Label widget to 1abelPic.

7. Save the application with the name demoAnimationl.ui. The application will
appear as shown in the following screenshot:

Dialog - demoAnimationT.ui |E|

Move Down —

@

[364]

Implementing Animation Chapter 11

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file that needs to be converted into Python code. On application of the
pyuic5 command utility, the . ui file is converted into a Python script. The

generated Python script, demoAnimationl.py, can be seen in the source code
bundle of this book.

8. Treat the demoAnimationl.py script as a header file, and import it into the file
from which you will invoke its user interface design.

9. Create another Python file with the name callAnimationl.pyw and import the
demoAnimationl.py code into it:

import sys

from PyQt5.QtWidgets import QDialog, QApplication

from PyQt5.QtCore import QRect, QPropertyAnimation

from demoAnimationl import *

class MyForm(QDialog) :

def _ _init_ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonMoveDown.clicked.connect (self.
startAnimation)
self.show ()
def startAnimation (self):

self.anim = QPropertyAnimation(self.ui.labelPic,
b"geometry")
self.anim.setDuration (10000)
self.anim.setStartValue (QRect (160, 70, 80, 80))
self.anim.setEndValue (QRect (160, 70, 220, 220))
self.anim.start ()

if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)

w = MyForm/()

w.show ()

sys.exit (app.exec_())

[365]

Implementing Animation Chapter 11

How it works...

You can see that the click() event of the Push Button widget with the objectName

property pushButtonMoveDown is connected to the startAnimation method; when the
push button is clicked, the startAnimation method is invoked. In the

startAnimation method, you create an object of the QPropertyAnimation class and
name it anim. While creating the QPropertyAnimation instance, you pass two arguments;
the first is the Label widget to which you want to apply the animation and the second is the
property that defines the object's attribute to which you want to apply the animation to the
object's attribute. Because you want to apply an animation to the ball's geometry, you

pass b"geometry" as the second attribute while defining the QPropertyAnimation
object. After that, you specify the duration of the animation as 10000 milliseconds,
meaning you want to change the geometry of the object after every 10,000 milliseconds.
Through the set startvalue method, you specify the region that is the rectangular area
where you want the animation to start, and by invoking the setEndvalue method, you
specify the rectangular region where you want to stop the animation. By invoking the
start method, you initiate the animation; consequently, the ball moves down from the
rectangular region specified through the set Startvalue method until it reaches the
rectangular region specified through the setEndvalue method.

On running the application, you will find a push button and a Label widget representing
the ball image on the screen, as shown in the following screenshot (left). On clicking the
Move Down push button, the ball starts animating towards the ground and stop its
animation at the region specified through the setEndvalue method, as shown in the
following screenshot (right):

B Dialog ? X i Dialog ? x
Move Down

[366]

Implementing Animation Chapter 11

Making a bouncing ball

In this recipe, you will make a bouncing ball; when clicking a button, a ball falls towards
the ground and on touching the ground, it bounces back to the top. In this recipe, you will
understand how a basic animation is applied on an object. This recipe will consist of a push
button and a ball, and when the push button is pressed, the ball will start animating
towards the ground.

How to do it...

To make a ball appear to be bouncing, we need to make it first animate towards the ground,
and then from the ground up to the sky. To do so, we will be invoking

the setKeyvalueAt method of the QPropertyAnimation class three times. The first and
second calls to the setKeyValueAt method will make the ball animate from the top to the
bottom. The third call to the setKeyValueAt method will make the ball animate from
bottom to top. The coordinates in the three setKeyValueAt methods are provided so that
the ball bounces in the opposite direction, and not where it came from. The following are
the steps to understand how a ball can be animated to appear to be bouncing:

1. Create a new application based on the Dialog without Buttons template.

2. Drag and drop a Label widget and one Push Button widget onto the form.

3. Set the text property of the Push Button widget to Bounce. We assume that you
have a ball image on your computer with the filename coloredball. jpg.

4. To assign the ball image to the Label widget, select its pixmap property.

5. In the pixmap property, out of the two options, Choose Resource and Choose
File, select the Choose File option, browse your disk, and select
the coloredball. jpg file. The image of the ball will appear in place of the
Label widget.

6. Set the objectName property of the Push Button widget to pushButtonBounce
and that of the Label widget to 1abelPic.

7. Save the application with the name demoAnimation3.ui.

[367]

Implementing Animation

Chapter 11

The applicati

on will appear as shown in the following screenshot:

0 Dialog - demoAnimation3.ui |EI

——

n n n
L] Bounce u
n | | | |

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to be converted into Python code. On application of the
pyuic5 command utility, the .ui file is converted into a Python script. The
generated Python script, demoAnimation3.py, can be seen in the source code
bundle of this book.

8. Treat the demoAnimation3.py script as a header file, and import it into the file
from which you will invoke its user interface design.

9. Create another Python file with the name callAnimation3.pyw and import the
demoAnimation3.py code into it:

import s
from PyQ
from PyQ
from dem
class My
def

def

vs

t5.0tWidgets import QDialog, QApplication
t5.0tCore import QRect, QPropertyAnimation
oAnimation3 import *

Form(QDialog) :
__init_ (self):
super () .__init__ ()

self.ui = Ui_Dialog()

self.ui.setupUi (self)
self.ui.pushButtonBounce.clicked.connect (self.
startAnimation)

self.show ()

startAnimation (self) :

self.anim = QPropertyAnimation(self.ui.labelPic,
b"geometry")

self.anim.setDuration (10000)
self.anim.setKeyValueAt (0, QRect (0, 0, 100, 80));

[368]

Implementing Animation Chapter 11

self.anim.setKeyValueAt (0.5, QRect (160, 160, 200, 180));
self.anim.setKeyValueAt (1, QRect (400, 0, 100, 80));

self.anim.start ()
if _ name_ =="_ _main_ ":
app = QApplication(sys.argv)
w = MyForm/()
w.show ()
sys.exit (app.exec_())

How it works...

You can see that the click() event of the Push Button widget with the objectName
property, pushButtonMoveDown, is connected to the startAnimation method; when the
push button is clicked, the startAnimation method will be invoked. In the
startAnimation method, you create an object of the QPropertyAnimation class and
name it anim. While creating the QPropertyAnimation instance, you pass two arguments:
the first is the Label widget to which you want to apply the animation, and the second is
the property that defines the object's attribute to which you want to apply the animation to
the object's attribute. Because you want to apply an animation to the ball's geometry, you
pass b"geometry" as the second attribute while defining the QPropertyAnimation
object. After that, you specify the duration of the animation as 10000 milliseconds,
meaning you want to change the geometry of the object after every 10,000 milliseconds.
Through the setKeyVvalue method, you specify the region that is the rectangular area
where you want the animation to start. You mention the top-left region through this
method because you want the ball to fall from the top-left corner towards the ground.
Through the second call to the setKeyValue method, you supply the region in which you
want the ball to fall to the ground. You also specify the angle of the fall. The ball will fall
diagonally down towards the ground. By invoking the third setvalue method, you
specify the end value where you want the animation to stop, which in this case is in the top-
right corner. Through these three calls to the setKeyVvalue method, you make the ball fall
diagonally down towards the ground and then bounce back to the top-right corner. By
invoking the start method, you initiate the animation.

On running the application, you will find the Push Button and Label widgets representing
the ball image at the top-left corner of the screen, as shown in the following screenshot
(left).

[369 1]

Implementing Animation Chapter 11

On clicking the Bounce push button, the ball starts animating diagonally down towards the
ground, as shown in the middle screenshot, and after touching the ground, the ball bounces
back towards the top-right corner of the screen, as shown on the right:

W7 Dialog

‘@

X ®7 Dialog ? X ¥ Dialog ? x

‘@

Bounce Bounce Bounce

R 4

Making a ball animate as per the specified
curve

A curve with the desired shape and size is created and a ball is set to move along the shape
of the curve on the click of a push button. In this recipe, you will understand how to
implement a guided animation.

How to do it...

The setKeyValueAt method of the QPropertyAnimation class determines the direction
of an animation. For guided animation, you invoke the setKeyvalueAt method in a loop.
The coordinates of the curve are passed to the setKeyvalueaAt method in the loop to make
the ball animate along the curve. Here are the steps to make an object animate as desired:

=L N

Create a new application based on the Dialog without Buttons template.

Drag and drop a Label widget and one Push Button widget onto the form.

Set the text property of the Push Button widget to Move With Curve.

Assuming you have a ball image on your computer with the

filename coloredball. jpg, you can assign this ball image to the Label widget
by using its pixmap property.

In the pixmap property, you will find two options, Choose Resource and Choose
File; select the Choose File option, browse your disk, and select

the coloredball. jpg file. The image of the ball will appear in place of the
Label widget.

[370]

Implementing Animation Chapter 11

6. Set the objectName property of the Push Button widget to
pushButtonMoveCurve and that of the Label widget to 1abelPic

7. Save the application with the name demoAnimation4.ui. The application will
appear as shown in the following screenshot:

Dialog - demoAnimationd.ui ==

—

Move With Curve

The user interface created with Qt Designer is stored in a . ui file and is an XML
file. The XML file is converted into Python code by applying the pyuic5 utility.
You can find the generated Python code, demoAnimation4.py, in the source
code bundle of this book.

8. Treat the demoAnimation4.py script as a header file, and import it into the file
from which you will invoke its user interface design.

9. Create another Python file with the name callAnimation4.pyw and import the
demoAnimation4.py code into it:

import sys

from PyQt5.QtWidgets import QDialog, QApplication

from PyQt5.QtCore import QRect, QPointF, QPropertyAnimation,

pygtProperty

from PyQt5.QtGui import QPainter, QPainterPath

from demoAnimationd4 import *

class MyForm(QDialog) :

def _ _init__ (self):

super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonMoveCurve.clicked.connect (self.
startAnimation)

[371]

Implementing Animation

Chapter 11

def

def

if name__=="__main

app
W

self.
self.
self.

path
path.moveTo (30,
path.cubicTo (30,
self.ui.labelPic.pos
self.show()
paintEvent (self,
ap QPainter ()
gp.begin(self)
gp.drawPath (self.path)
gp.end ()
startAnimation (self) :
self.anim QPropertyAnimation (self.ui.labelPic,
self.anim.setDuration (4000)
self.anim.setStartValue (QPointF (20, 20))
positionValues [n/80 for n in range (0,
for i in positionValues:
self.anim.setKeyValueAt (i,
self.path.pointAtPercent (i))
self.anim.setEndValue (QPointF (160,

self.anim.start ()
”.

QPainterPath ()

30)

30, 80, 180,
QPointF (20,

180,
20)

170)

e):

b'pos')

50) 1

150))

QApplication(sys.argv)
MyForm ()

w.show ()

SR

exit (app.exec_ ())

How it works...

First of all, you make the curve appear on the screen. This is the curve that will guide the
ball's animation; that is, it will act as a path for the animation. You define an instance of the
QPainterPath class and name it path. You invoke the moveTo method of the
QPainterPath class to specify the starting location of the path or curve. The

cubicTo method is invoked to specify the curved path for the ball's animation.

[372]

Implementing Animation Chapter 11

You can see that the click event of the Push Button widget with the objectName

property pushButtonMoveCurve is connected to the startAnimation method; when the
Push Button widget is clicked, the startAnimation () method will be invoked. In the
startAnimation method, you create an object of the QPropertyAnimation class

and name it anim. While creating the QPropertyAnimation instance, you pass two
arguments: the first is the Label widget to which you want to apply the animation, and the
second is the property that defines the object's attribute to which you want to apply the
animation to the object's attribute. Because you want to apply the animation to the ball's
position, you pass b 'pos" as the second attribute while defining the
QPropertyAnimation object. After that, you specify the duration of the animation as 4000
milliseconds, meaning you want to change the position of the ball after every 4000
milliseconds. Using the setStartvalue () method of the QPropertyAnimation class,
you specify the coordinates from where you want the ball to animate. You set the for loop
that specifies the values that the ball needs to move along. You specify the path of the ball's
animation by invoking the setKeyVvalue method inside the for loop. Because the ball
needs to be drawn at every point specified in the path, you set the point where the ball
needs to be drawn by invoking the pointAtPercent () method and passing it to the
setKeyValueAt () method. You also need to set the location where the animation needs to
stop by invoking the setEndvalue () method.

Shortly after, you specify the start and end locations of the animation, you specify the path
of animation, and the paintEvent () method is called to redraw the ball at every point of
the path.

On running the application, you find the Push Button widget and a Label widget
representing the ball image in the top-left corner of the screen (left side of the screenshot)
and on clicking the Move With Curve push button, the ball starts animating along the
drawn curve and stops where the curve ends (right side of the screenshot):

"' Dialog ? * 8 Dialog ? X

\Move With Curve Move With Curve

—

‘&

[373]

12

Using Google Maps

In this chapter, you will learn to use Google Maps in Python applications and explore the
different advantages provided by Google. You will learn to do the following tasks:

e Find out details of a location or landmark

¢ Get complete information from latitude and longitude values
¢ Find out the distance between a two locations

e Display a location on Google Maps

Introduction

The Google Maps APl is a set of methods and tools that can be used to find out complete
information, including longitude and latitude values, for any location. You can use the
Google Maps API methods to find distances between two locations or directions to any
location; you can even display Google Maps, marking that location, and much more.

More precisely, there is a Python client library for Google Maps Services. There are
several Google Maps APIs, including the Directions API, Distance Matrix API, Geocoding
API, Geolocation API, and many more. To use any Google Maps web services, your Python
script sends a request to Google; to serve that request, you need an API key. You need to
follow these steps to get an API key:

Visit https://console.developers.google.com

Log in to the console using your Google account

Select one of your existing projects or create a new project
Enable the API(s) you want to use

S e

Copy the API key and use it in your Python script

You need to visit the Google API Console, https://console.developers.google.com, and
get API keys so that your application is authenticated to work with Google Maps API web
services.

https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard
https://console.developers.google.com/apis/dashboard

Using Google Maps Chapter 12

API keys help in several ways; first of all, they help identify your application. The API key
is included with every request, hence it helps Google monitor your application's API usage,
know if your application has consumed its free daily quota, and consequently bill your
application too

So, in order to use Google Maps API web services in your Python application, you just need
to enable the desired API and get a API key for use in your Python application.

Finding out details of a location or a
landmark

In this recipe, you will be prompted to enter a location or landmark whose details you want
to know. For example, if you enter Buckingham Palace, the recipe will display the city
and postal code of the location where the palace is situated, along with its longitude and
latitude values.

How to do it...

The search method of the GoogleMaps class is the key player in this recipe. The landmark
or location entered by the user is passed to the search method. The city, postal_code,
lat, and 1ng properties of the object returned from the search method are used to display
the city, postal code, latitude, and longitude of the location, respectively. Let's see how it is
done through the following step-by-step procedure:

1. Create an application based on the Dialog without Buttons template.

2. Add six QLabel, a QLineEdit, and a QPushButton widget to the form by
dragging and dropping six Label, one Line Edit, and a Push Button widget onto
the form.

3. Set the text property of the first Label widget to Find out the City, Postal
Code, Longitude and Latitude and that of the second Label widget to
Enter location.

4. Delete the text property of the third, fourth, fifth, and sixth Label widgets,
because their text properties will be set through code; that is, the city, postal
code, longitude, and latitude of the entered location will be fetched through code
and will be displayed through these four Label widgets.

5. Set the text property of the Push Button widget to search.

6. Set the objectName property of the Line Edit widget to 1ineEditLocation.

[375]

Using Google Maps Chapter 12

7. Set the objectName property of the Push Button widget to pushButtonSearch.

8. Set the objectName property of the rest of the four Label widgets to 1abelCity,
labelPostalCode, labelLongitude, and labelLatitude.

9. Save the application by name as demoGoogleMap1l .ui. The form will now
appear as shown in the following screenshot:

Dialog - demeGoegleMap.ui EI@
Find out the City, Postal Code, Longitude and Latitude

Enter location | |

Search

The user interface created with Qt Designer is stored in a . ui file and it is an
XML file. The XML file is converted into Python code by applying the pyuic5
utility. You can find the generated Python code, demoGoogleMapl .py, in the
source code bundle for the book.

10. Treat the demoGoogleMapl . py script as a header file, and import it into the file
from which you will invoke its user interface design.

11. Create another Python file with the name callGoogleMapl.pyw and import the
demoGoogleMapl.py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from geolocation.main import GoogleMaps
from demoGoogleMapl import *
class MyForm(QDialog) :
def _ _init_ (self):
super () .__init__ ()

[376]

Using Google Maps Chapter 12

self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonSearch.clicked.connect (self.
displayDetails)
self.show()

def displayDetails(self):
address = str(self.ui.lineEditLocation.text ())
google_maps = GoogleMaps (api_key=
1519:9:9:9:9:9:9:9.9:9:9:5:9:9:9:0:0:0.9:9.9-5-9:9:9 .04
location = google_maps.search(location=address)
my_location = location.first ()
self.ui.labelCity.setText ("City:
"t+str (my_location.city))
self.ui.labelPostalCode.setText ("Postal Code: "
+str (my_location.postal_code))
self.ui.labellongitude.setText ("Longitude:
"t+str (my_location.lng))
self.ui.labellatitude.setText ("Latitude:
"t+str (my_location.lat))

if _ name_ =="_ _main_ ":

app = QApplication(sys.argv)

w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

You can see in the script that the click event of the push button with the objectName
property pushButtonSearch s connected to the displayDetails method. This means
that, whenever the push button is clicked, the displayDetails method will be invoked. In
the displayDetails method, you access the location entered by the user in the Line Edit
widget and assign that location to the address variable. You define a Google Maps instance
by passing the API key that you got on registering with Google. Invoke the search method
on the Google Maps instance, passing the location entered by the user in this method. The
result of the search method is assigned to the my_location structure. The city member of
the my_location structure contains the city entered by the user. Similarly, the
postal_code, 1ng, and lat members of the my_location structure contain the postal
code, longitude, and latitude information of the location entered by the user, respectively.
The city, postal code, longitude, and latitude information are displayed via the last four
Label widgets.

[377]

Using Google Maps Chapter 12

On running the application, you will be prompted to enter a location you want to find
information about. Suppose you enter Taj Mahal in the location, followed by clicking the
Search button. The city, postal code, longitude, and latitude information of the Taj Mahal
landmark will be displayed on the screen, as shown in the following screenshot:

5 Dialog ? *

Find out the City, Postal Code, Longitude and Latitude

Enter location [Taj Mahal |
[Search |
City: b'Agra’

Postal Code: b'282001"

Longitude: 78.0421552

Latitude: 27.1750151

Getting complete information from latitude
and longitude values

In this recipe, you will learn how to find out the complete details of a location whose
longitude and latitude values you know. This process of converting a point location, that is,
latitude and longitude values, into a readable address (the place name, city, country name,
and so on) is known as reverse geocoding.

The application will prompt you to enter longitude and latitude values, and then it will
display the matching location name, city, country, and postal code for that location.

[378]

Using Google Maps Chapter 12

How to do it...

Let's create an application based on the Dialog without Buttons template by performing
the following steps:

1.

Add seven QLabel, two QLineEdit, and a QPushButton widget to the form by
dragging and dropping seven Label, two Line Edit, and a Push Button widget
onto the form.

Set the text property of the first Label widget to Find out the Location,
City, Country and Postal Code, that of the second Label widget to Enter
Longitude, and that of the third Label widget to Enter Latitude.

Delete the text properties of the fourth, fifth, sixth, and seventh Label widgets
because their text properties will be set through code; that is, the location, city,
country, and postal code of the location whose longitude and latitude are entered
by the user will be accessed through code and will be displayed through these
four Label widgets.

Set the text property of the Push Button widget to Search.

Set the objectName property of the two Line Edit widgets to
lineEditLongitude and lineEditLatitude.

Set the objectName property of the Push Button widget to pushButtonSearch.
Set the objectName property of the other four Label widgets to 1abelLocation,
labelCity, labelCountry, and labelPostalCode.

Save the application by name as demoGoogleMap2.ui. The form will now
appear as shown in the following screenshot:

Dialog - demoGoogleMap2.ui \i"é‘

Find out the Location, City, Country and Postal Code

Enter Longitude [|

Enter Latitude [|

[379]

Using Google Maps Chapter 12

The user interface created with Qt Designer is stored in a . ui file, which is an
XML file and needs to be converted into Python code. The pyuic5 utility is used
to convert the XML file into Python code. The generated Python

script, demoGoogleMap2 . py, can be seen in the source code bundle for the book.

9. Treat the demoGoogleMap2 . py script as a header file, and import it into the file
from which you will invoke its user interface design.

10. Create another Python file with the name callGoogleMap2.pyw and import the
demoGoogleMap? .py code into it:

import sys
from PyQt5.QtWidgets import QDialog, QApplication
from geolocation.main import GoogleMaps
from demoGoogleMap2 import *
class MyForm(QDialog) :
def _ _init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonSearch.clicked.connect (self.
displayLocation)
self.show ()
def displaylLocation(self):
lng = float(self.ui.lineEditLongitude.text ())
lat = float (self.ui.lineEditLatitude.text ())
google_maps = GoogleMaps (api_key=
'ATzaSyDzCMD-JTg-IbJZZ9fKGE11lipbBiFRiGHA")
my_location = google_maps.search(lat=lat, 1lng=lng).
first ()
self.ui.labellLocation.setText ("Location:
"+str (my_location))
self.ui.labelCity.setText ("City:
"+str (my_location.city))
self.ui.labelCountry.setText ("Country:
"+str (my_location.country))
self.uil.labelPostalCode.setText ("Postal Code:
"+str (my_location.postal_code))
if _ name_ =="_main__ ":
app = QApplication(sys.argv)
w = MyForm()
w.show ()
sys.exit (app.exec_())

[380]

Using Google Maps Chapter 12

How it works...

In the script, you can see that the click() event of the push button with the objectName
property pushButtonSearch is connected to the displayLocation method. This means
that, whenever the push button is clicked, the displayLocation method will be invoked.
In the displayLocation method, you access the longitude and latitude entered by the
user through the two Line Edit widgets and assign them to two variables, 1ng and 1at,
respectively. A Google Maps instance is defined by passing the API key that you got on
registering with Google. Invoke the search method on the Google Maps instance, passing
the longitude and latitude values that were supplied by the user. The first method is
invoked on the retrieved search and the first location that matches the supplied longitude
and latitude values is assigned to the my_location structure. The location name is
displayed through the Label widget. To display the city, country, and postal code of the
location, the city, country, and postal_code members of the my_location structure
are used.

On running the application, you will be prompted to enter longitude and latitude values.
The location name, city, country, and postal code related to the supplied longitude and
latitude will be displayed on the screen through the four Label widgets, as shown in the
following screenshot:

1 Dialeg ? *

Find out the Location, City, Country and Postal Code

Enter Longitude [-0.140634 |

Enter Latitude [51.501476 |

Location: <LocationModel: b'London'>
City: b'London'
Country: b'United Kingdom'

Postal Code: b'SW1A'

[381]

Using Google Maps Chapter 12

Finding out the distance between two
locations

In this recipe, you will learn how to find out the distance in kilometers between the two
locations entered by the user. The recipe will simply prompt the user to enter two locations,
followed by clicking the Find Distance button, and the distance between the two will be
displayed.

How to do it...

Let's create an application based on the Dialog without Buttons template by performing the
following steps:

1. Add four QLabel, two QLineEdit, and a QPushButton widget to the form by
dragging and dropping four Label, two Line Edit, and a Push Button widget
onto the form.

2. Set the text property of the first Label widget to Find out the distance
between two locations, that of the second Label widget to Enter first
location, and that of the third Label widget to Enter second location.

3. Delete the text property of the fourth Label widget because its text property will
be set through code; that is, the distance between the two entered locations will
be computed through code and displayed in the fourth Label widget.

4. Set the text property of the Push Button widget to Find Distance.

5. Set the objectName properties of the two Line Edit widgets to
lineEditFirstLocation and lineEditSecondLocation.

6. Set the objectName property of the Push Button widget to
pushButtonFindDistance.

7. Set the objectName property of the fourth Label widget to 1abelDistance.

[382]

Using Google Maps

Chapter 12

8. Save the application by name as demoGoogleMap3.ui. The form will now
appear as shown in the following screenshot:

Dialog - demoGoogleMap3.ui li"é‘

Find out the distance between two locations

Enter first location [|

Enter second location | |

Find Distance

The user interface created with Qt Designer is stored in a . ui file and it is an XML
file. The XML file is converted into Python code by applying the pyuic5 utility.
You can find the generated Python code, demoGoogleMap3.py, in the source
code bundle for the book.

9. To use the GUI created in the demoGoogleMap3.py file, we need to create
another Python script and import demoGoogleMap3. py file in that script.

10. Create another Python file with the name callGoogleMap3.pyw and import the
demoGoogleMap3.py code into it:

import sys

from PyQt5.QtWidgets import QDialog, QApplication

from googlemaps.client import Client

from googlemaps.distance_matrix import distance_matrix
from demoGoogleMap3 import *

class MyForm(QDialog) :

def

def

__init_ (self):

super () .__init__ ()

self.ui = Ui_Dialog()

self.ui.setupUi (self)
self.ui.pushButtonFindDistance.clicked.connect (self.
displayDistance)

self.show ()

displayDistance (self):

apl_key = TXXXXXXXXXXXXXXXXXKXKXKXKXKXKXKXKXXXXXXXXXKXKKKX "
gmaps = Client (api_key)

data = distance_matrix (gmaps,
self.ui.lineEditFirstLocation.text (),
self.ui.lineEditSecondLocation.text ())

[383]

Using Google Maps Chapter 12

distance = data['rows'][0]['elements'] [0]['distance']
["text ']

self.ui.labelDistance.setText ("Distance between
"+self.ui.lineEditFirstLocation.text ()+"

and "+self.ui.lineEditSecondLocation.text ()+" is

"+str (distance))

if name__ =="__main__ ":

app = QApplication(sys.argv)
w = MyForm/()

w.show ()

sys.exit (app.exec_())

How it works...

You create an instance of the Client class and name it gmaps. While creating the Client
instance, you need to pass the API key that you got on registering with Google. The click()
event of the push button with objectName, pushButtonFindDistance, is connected to
the displayDistance method. This means that, whenever the push button is clicked, the
displayDistance method will be invoked. In the displayDistance method, you invoke
the distance_matrix method, passing the Client instance and the two locations entered
by the user, to find out the distance between them. The distance_matrix method returns
a multidimensional array that is assigned to the data array. From the data array, the
distance between the two locations is accessed and assigned to the distance variable. The
value in the distance variable is finally displayed through the Label widget.

On running the application, you will be prompted to enter the two locations whose
intervening distance you want to know. After entering the two locations, when you click
the Find Distance button, the distance between the two locations will be displayed on the
screen, as shown in the following screenshot:

1 Dialog ? *

Find out the distance between two locations

Enter first location |London |

Enter second location [Madrid |

Find Distance

Distance between London and Madrid is 1,736 km

[384]

Using Google Maps Chapter 12

Displaying location on Google Maps

In this recipe, you will learn how to display a location on Google Maps if you know the
longitude and latitude values of that location. You will be prompted to simply enter
longitude and latitude values and, when you click the Show Map button, that location will
appear on Google Maps.

How to do it...

Let's create an application based on the Dialog without Buttons template by performing
the following steps:

1.

Add two QLabel, two QLineEdit, a QPushButton, and a QWidget widget to
the form by dragging and dropping two Label, two Line Edit, a Push Button,
and a Widget container onto the form.

Set the text property of the two Label widgets to Longitude and Latitude.
Set the text property of the Push Button widget to Show Map.

Set the objectName property of the two Line Edit widgets to
lineEditLongitude and lineEditLatitude.

Set the objectName property of the Push Button widget to
pushButtonShowMap.

Save the application by name as showGoogleMap.ui. The form will now appear
as shown in the following screenshot:

Dialog - showGoogleMap.ui = s

Longitude | |

Latitude | |

Show Map

[385]

Using Google Maps

Chapter 12

7. The next step is to promote the Qwidget widget to QWebEngineView because, to

display Google Maps, QWebEngineView is required. Because Google maps is a
web application, we need a QWebEngineView to display and interact with

Google maps.

8. Promote the QWidget widget by right-clicking on it and selecting the Promote to

... option from the menu that pops up. In the dialog box that appears, leave the
Base class name option as the default, QWidget.

9. In the Promoted class name box, enter QWiebEngineView and, in the header file

box, type PyQT5.QtWebEngineWidgets.

10. Click on the Promote button to promote the Qwidget widget to the
QWebEngineView class, as shown in the following screenshot:

Promoted Widgets - Ot Designer

Promoted Classes

Mame Header file
¥ QWidget

OWebEngineView PyQts.CtWebEngineWidgets []

Global include Usage

MNew Promoted Class

Base dass name: QWidget hd

Promoted dass name: | |
Header file: | |
Global indude I

Promote

Add

Reset

Close

11. Click on the Close button to close the Promoted Widgets dialog box. The user
interface created with Qt Designer is stored in a . ui file, which is an XML file
and needs to be converted into Python code. The pyuic5 utility is used to
convert the XML file into Python code. The generated Python script,
showGoogleMap.py, can be seen in the source code bundle for the book.

[386 1]

Using Google Maps Chapter 12

12. Treat the showGoogleMap.py script as a header file, and import it into the file
from which you will invoke its user interface design.

13. Create another Python file with the name callGoogleMap.pyw and import the
showGoogleMap.py code into it:

import sys
from PyQt5.QtCore import QUrl
from PyQt5.QtWidgets import QApplication, QDialog
from PyQt5.QtWebEngineWidgets import QWebEngineView
from showGoogleMap import *
class MyForm(QDialog) :
def _ init__ (self):
super () .__init__ ()
self.ui = Ui_Dialog()
self.ui.setupUi (self)
self.ui.pushButtonShowMap.clicked.connect (self.dispSite)
self.show ()
def dispSite(self):
lng = float(self.ui.lineEditLongitude.text ())
lat = float (self.ui.lineEditLatitude.text ())
URL="https://www.google.com/maps/@"+self.ui.
lineEditLatitude.text ()+","
+self.ui.lineEditLongitude.text ()+",9z"
self.ui.widget.load(QUrl (URL))
if _ name_ =="_main__ ":
app = QApplication(sys.argv)
w = MyForm()
w.show ()
sys.exit (app.exec_())

How it works...

In the script, you can see that the click event of the push button with the objectName
property pushButtonShowMap is connected to the dispSite () method. This means that,
whenever the push button is clicked, the dispSite () method will be invoked. In the
dispSite () method, you access the longitude and latitude entered by the user through
the two Line Edit widgets, and assign them to two variables, 1ng and 1at, respectively.
Thereafter, you create a URL that invokes Google Maps from google.com and passes the
latitude and longitude values entered by the user. The URL is initially in text form and is
typecast to a QUr1 instance and passed to the widget that is promoted to QWebEngineView
to display the website. The QUr1 is a class from Qt that provides several methods and
properties to manage URLs. Google Maps, with the specified latitude and longitude values,
is then displayed via the QWiebEngineVview widget.

[387]

https://www.google.com/

Using Google Maps

Chapter 12

On running the application, you will be prompted to enter the longitude and latitude

values of the location you want to see on Google Maps. After entering the longitude and
latitude values, when you click on the Show Map button, Google Maps will display that
location, as shown in the following screenshot:

A Dialeg ? et
Longitude |-115.13722 |
Latitude |36.17497 |
Show Map
o Lurystal valley ot Fire
| RN o
Stewar
15]
iarleston (158) Echa |
peak .1 G
559,
Red Rock
Canyon LasV 347
ional... 5 Las Vegas N
Nationa g &
. ® atio
Paradise ~Lree
@l Mountain Henderson + Are
Springs ﬁ -
Sloan Canyon Boulder City" @
National —
Gocale, § === =
Acaa Whills Baach
Mazp data 2018 Google India Terms Send fesdback 20km

[388]

13

Running Python Scripts on
Android and 10S

In this chapter, you will learn to run Python scripts on Android devices as well as on iOS.
You will learn about the following topics:

e Copying scripts from PC to Android devices

e Prompting for a username and displaying a welcome message
¢ Understanding different buttons in a Dialog box

¢ Performing single selection from a list

¢ Performing multiple selections from a list

e Displaying a Date Picker dialog

¢ Capturing images using a camera

e Making an Android device speak a text input

¢ Creating a cross-platform Python script using Kivy

¢ Packaging a Python script into the Android APK using Buildozer
¢ Packaging Python script for iOS

In order to run Python scripts on Android devices, we will be making use of QPython3.

Introduction

What is QPython3? QPython3 is a script engine that enables you to run Python scripts on
Android devices. Basically, it provides you with Python on Android as it contains the
Python interpreter, console, editor, and the SL4A library, making it possible for you to type,
edit, debug, and run Python scripts on Android devices. Not only can you run Python
scripts on Android devices, but you can access device sensors too. You can even access
Android APIs, such as SMS, GPS, NFC, and Bluetooth.

Running Python Scripts on Android and iOS Chapter 13

So, let's download QPython3 from the Google Play store and install it. When QPython3 is
launched on your Android device, it will appear as shown in the following screenshot:

22:07

QPython3

Programs QPYPI
course Community

The first screen shows following several tools:

e Console: This opens the Python interpreter, allowing us to type Python
commands and execute them directly

e Editor: This opens up a text editor where you can write, save, debug, and run
code

e Programs: This is used to find your scripts and projects on your device

¢ QPYPI: This opens the QPYPI page in the browser, allowing you to install the
packages listed there

e course: This opens the page showing links for courses and tutorials on Kivy,
Kivy on QPython, QSL4A Android Script Library, and much more

e Community: This opens the Community page, where you can ask QPython
questions and find answers

[390]

Running Python Scripts on Android and iOS Chapter 13

Editor is the place where you will be spending most of your time. On clicking the Editor
icon, the Editor window will open, as shown in the following screenshot. The Editor
window has several icons at the top as well as at the bottom. At the top are the following
two icons:

¢ QEdit - Open File: This opens the existing folder on the device, enabling you to
open any existing Python script.

e New When you click this icon, you will be asked what kind of file you want to
open, that is, whether it is Blank file, Script, WebApp (Project), ConsoleApp
(Project), or KivyApp (Project). Select the desired option and create the file.
After creating the file, you will be sent back to the Editor screen to type the
content for the newly created file.

The icons at the bottom of the Editor screen are used for saving the file, searching in the file,
running the file, undoing any action, running the Save as ... command to save the current
file by another name, and so on:

22:10 .. D.00K/s & & 0 airtel 46 4 (i) 65%

& QEdit-Welco.. [:

1| import android

3 app = android.Android()

4/ name = app.dialogGetInput("Enter Y

5| app.dialogDismiss()

5 app.dialogCreateAlert("Welcome", "
app. dlalogSetP051t1veButtonText(

s app.dialogShow()

(>=>BQp»oE=

[391]

Running Python Scripts on Android and iOS

Chapter 13

Copying scripts from PC to Android devices

To run QPython scripts on an Android device, either you can type them directly into
QPython's editor on the device, or you can type on your PC and then copy them to the
Android device for execution. We’ll walk through the process of copying from PC to

Android.

How to do it

Here is the step-by-step procedure to connect an Android device with a PC and copy the
QPython script to it:

1.
2.

Connect your Android phone with your PC using a USB cable.
When you connect your Android phone to the PC, several USB options will
appear; select the Turn ON the USB debugging option.

. By turning USB debugging on, you can execute different commands on the

Android device and run different tools as well.

. To confirm that the Android device is connected properly and is recognized by

your PC, use the adb devices command, as shown here:
C:\Users\Bintu>adb devices
The following output confirms that my Android device is recognized by my PC:

List of devices attached
d56ab82e device

Android Debug Bridge (ADB) is a command-line utility that is bundled with the
Android SDK. Using ADB, you can interact with your device through your PC.
You can install and run apps, run shell commands, copy and delete files, and

much more.

5. In order to see all the existing files in your Android device, run the adb shell

command. The adb shell command will open the interactive Linux command-
line shell on your Android device and you will get the $ prompt as follows:

C:\Users\Bintu>adb shell
shell@kenzo:/ $

[392]

Running Python Scripts on Android and iOS Chapter 13

The preceding $ prompt shows that you are no more on your PC but there are on
your Android device. On installing QPython on your device, a directory will be
created named gpython on the SD card of your device. You can change directory
to SD card and list the files in it, as shown here:

shell@kenzo:/ $ cd sdcardshell@kenzo:/sdcard $ cd gpython
shell@kenzo:/sdcard/gpython $ 1ls -1

drwxrwx——-x root sdcard_rw 2018-06-04 12:08 cache
drwxrwx——-x root sdcard_rw 2018-06-04 12:09 1lib
drwxrwx——x root sdcard_rw 2018-06-04 12:11 projects3
drwxrwx——-x root sdcard_rw 2018-06-07 20:43 scripts3
drwxrwx——x root sdcard_rw 2018-06-04 12:08 snippets3

6. To keep our Python scripts in a separate folder, we will create a new directory
named bintuscripts in the gpython folder, as shown here:

shell@kenzo:/sdcard/gpython $§ mkdir bintuscripts

7. To exit from the interactive Linux command-line shell on your Android device,
write the exit command followed by hitting the Enter key:

shell@kenzo:/sdcard/gpython $ exit

With the preceding command line, you will be back to the Command Prompt of
your PC.

8. We're assuming that you have a folder on your PC called QPythonScripts that
contains certain Python scripts and you want to copy or push a Python script
from your PC into your Android device.

9. The following is the command line to be used in order to copy a Python script
called WwelcomeMessage. py from the current folder of your PC into the folder
called bintuscripts in the SD card of your Android device:

C:\Users\Bintu\QPythonScripts>adb push WelcomeMessage.py
/sdcard/gpython/bintuscripts

If the preceding command line is executed successfully, you get the following
message:

WelcomeMessage.py: 1 file pushed. 0.0 MB/s (333 bytes in 0.016s)

[393]

Running Python Scripts on Android and iOS Chapter 13

10. Once copied to the Android device, you can launch QPython3 on your Android
device; open the Editor page, followed by opening the script that you copied to
the device.

11. You can run the script to see the output.

12. In order to take a screenshot of the script run on your Android device and copy
the screenshot to your PC, execute the following command line:

C:\Users\Bintu\QPythonScripts>adb shell screencap -p
/sdcard/screencap.png && adb pull /sdcard/screencap.png

The preceding command will save the screenshot of the Android screen to the SD
card with the name screencap.png (you can give it any name), and this pulls
that PNG file from the SD card to your current folder of your PC and saves it with
the same name.

If this command is executed successfully, you get the following message
confirming that the screenshot was successfully copied onto your PC:

/sdcard/screencap.png: 1 file pulled. 0.8 MB/s (12491 bytes in
0.016s)

Prompting for a username and displaying a
welcome message

This recipe will prompt the user to enter a name, and when the user clicks the OK button
after entering a name, they are greeted with an alert box with the text Hello, followed by
the name entered by the user.

How to do it...

In this recipe, we will be making use of the following methods:

e dialogGetInput (): This method is used to take input from the user
e app.dialogCreateAlert (): This method is used to greet the user

® app.dialogSetPositiveButtonText (): This method is used to display
positive button text and to keep the dialog box visible until the user presses
the OK button

[394]

Running Python Scripts on Android and iOS Chapter 13

Let's take a look at the following steps:

1. Type the following code in the Python script WwelcomeMessage.py in the current
folder:

import android

app = android.Android ()

name = app.dialogGetInput ("Enter Your Information", "Name:
") .result

app.dialogDismiss ()

app.dialogCreateAlert ("Welcome", "Hello %s" % name)
app.dialogSetPositiveButtonText ('OK'")

app.dialogShow ()

2. Copy or push this Python script into the Android device by using the following
command line:

C:\Users\Bintu\QPythonScripts>adb push WelcomeMessage.py
/sdcard/gpython/bintuscripts

How it works...

You invoke the Android () method of the android module to create an object called app. It
is through this app object that you will communicate with Android. You show a dialog box
prompting the user to enter his/her name. The name entered by the user is assigned to the
name variable. You invoke the dialogDismiss () method to dismiss the dialog or make it
invisible once the user presses the Enter key after entering a name, or presses the OK
button.

Thereafter, you welcome the user by displaying an alert box that shows Hello, followed by
the name of the user. To keep the alert box visible until the user sees it, a dialog box is
displayed with the OK button in it. The welcome message will be visible until the user
presses the OK button to close the dialog box.

A dialog is displayed using the dialogShow() method and is dismissed
using the dialogDismiss () method.

[395]

Running Python Scripts on Android and iOS Chapter 13

On running the application, you will find a dialog box asking you to enter your name, as
shown in the following left screenshot. After entering a name, when you click

the OK button, you will be greeted with the Hello message, followed by the name entered
by you (in the right screenshot). The dialog box displaying the greeting message will
remain there until you close the dialog by clicking the OK button, as shown in the
following screenshot:

we 773Ks © & L airtel 46 4 (CHW) 48% 9:21 e 0.03K/s & & L airtel 4G 4 19 48%

Enter Your Information

Welcome
Name;:

Hello Bintu

I Ok ll Cancel I

You can even display a welcome message through the Toast () method, as shown in the
following statement:

app.makeToast ("Welcome", "Hello %s" % name)

[3961

Running Python Scripts on Android and iOS Chapter 13

The only drawback is that the Toast output vanishes automatically after a specified
duration. It doesn't wait for the user to press any key.

Understanding different buttons in a dialog
box

This recipe will display a dialog box with three buttons: Yes, Cancel, and No. When the
user clicks a button, the respective message will be displayed, informing you of which
button was pressed by the user. The idea is to understand the response generated when any
button is pressed and take action accordingly.

How to do it...

In this recipe, we will be making use of the following methods:

e dialogCreateAlert (): This method is used to display a message via a dialog
box

e dialogSetPositiveButtonText (): This method is used to display the Yes
button in a dialog box

e dialogSetNegativeButtonText (): This method is used to display the No
button in a dialog box

e dialogSetNeutralButtonText (): This method is used to display the Cancel
button in a dialog box

e dialogGetResponse (): This method is used to take the response from the user
via a dialog box

Take a look at the following steps:

1. Type the following code in the Python script demoDialog.py in the current
folder of your computer:

import android

app = android.Android()

title = 'Understanding Dialog Buttons'
message = ('Do you want to Place the Order?')
app.dialogCreateAlert (title, message)
app.dialogSetPositiveButtonText ('Yes')
app.dialogSetNegativeButtonText ('No')
app.dialogSetNeutralButtonText ('Cancel')

[397]

Running Python Scripts on Android and iOS Chapter 13

app.dialogShow ()

response = app.dialogGetResponse () .result
print (response)

app.dialogDismiss ()
result=response["which"]

if result=="positive":
print ("You have selected Yes button")elif result=="negative":
print ("You have selected No button")elif result=="neutral":
print ("You have selected Cancel button")

else:
print ("Invalid response", response)

2. Copy or push this Python script into the Android device by using the following
command line:

C:\Users\Bintu\QPythonScripts>adb push demoDialog.py
/sdcard/gpython/bintuscripts

How it works...

An instance or object called app is created by executing the Android () method of the
android module. A dialog box is displayed with the title Understanding Dialog Buttons.
The dialog box will display a message, Do you want to Place the Order? Below the
message will be three buttons: Yes, No, and Cancel. The Yes button will be displayed by
invoking the dialogSetPositiveButtonText () method. Similarly, the No and Cancel
buttons will be created by invoking the dialogSetNegativeButtonText () and
dialogSetNeutralButtonText () methods, respectively. By invoking the
dialogGetResponse () method, you determine the response of the dialog box, that is, you
know which button is pressed by the user. The information on the button pressed by the
user is assigned to the response array. That is, the which element of the response array
stores the information of the button pressed by the user. The which element of the
response array will have a positive value if the Yes button is pressed, it will have

a negative value if the No button is pressed, and it will have a Neutral value if the
Cancel button is pressed. By observing the value assigned to the which element of the
response array, the respective message is displayed on the screen.

The dialogGetResponse () method is used for taking input from the
user, and it blocks until the user responds to the dialog.

[398]

Running Python Scripts on Android and iOS Chapter 13

On running the application, you will get a dialog asking whether you want to place an
order. Depending on your choice, you can press the Yes, Cancel, or No button (see the
following screenshot, on the left). Assuming you press the Cancel button, the which
element of the response array will be assigned a neutral value. The which element is set
to pass through the if elif ladder to display a message on the basis of the value assigned
to it. The message, You have selected Cancel button, will be displayed (see the following
screenshot, on the right):

e 0.00K/s © & L airtel 4G 4 (I 69% 11:38 v 0.03K/s @ & g airtel 36 4 (D 69%

& N0.1‘1 NEW = CTRL i

/data/user/0/org.qgpython.qpy3/files/bin/qpy
thon-android5.sh "/storage/emulated/0/qgpyth
on/bintuscripts/.last_tmp.py" && exit
tuscripts/.last_tmp.py" && exit <
{'which': 'neutral'}

You have selected Cancel button

#[QPython] Press enter to exit

Understanding Dialog Buttons

Do you want to Place the Order?

I Yes J { Cancel l J No

123 456 7 890
gwe T T t vy uiop
a s df g h j k |
& z x c vbnm g

?123

1

[399]

Running Python Scripts on Android and iOS Chapter 13

Performing single selection from a list

This recipe will display a dialog box, showing a list of items, allowing the user to select one
of them. The name of the selected item will be displayed via another dialog box.

How to do it...

In this recipe, we will be making use of the following methods:

e dialogCreateAlert (): This method is used to display a message via the dialog
box

e dialogSetItems (): This method is used to define the array of items to be
displayed in the list

® dialogGetResponse (): This method is used to get a response from the user

Take a look at the following steps:

1. First type the following code in the Python script demoSingleSelection.py, in
the current folder of your computer:

import android
app = android.Android()
app.dialogCreateAlert ("Select your food item")
app.dialogSetItems (['Pizza', 'Burger', 'Hot Dog'l])
app.dialogShow ()
response = app.dialogGetResponse () .result
selectedResult=response["item"]
if selectedResult==0:
app.dialogCreateAlert ("You have selected Pizza")
elif selectedResult==1:
app.dialogCreateAlert ("You have selected Burger")
elif selectedResult==2:
app.dialogCreateAlert ("You have selected Hot Dog")
app.dialogSetPositiveButtonText ('OK"')
app.dialogShow ()

2. Copy or push this Python script into the Android device by using the following
command:

C:\Users\Bintu\QPythonScripts>adb push demoSingleSelection.py
/sdcard/gpython/bintuscripts

[400]

Running Python Scripts on Android and iOS Chapter 13

How it works...

An object of the Android class is created by the name app. Using the dialogSetItems ()
method, three food items, Pizza, Burger, and Hot Dog, are displayed in the form of a list in
the dialog box. The dialogGetResponse () method is invoked to find the item selected by
the user. The user's selection is assigned to the response array and the index value of the
food item selected by the user will be assigned to the item element of the response array.
The index value in the item element of the response array is accessed and assigned to the
selectedResult variable. The value in the selectedResult variable will be 0 if the first
food item in the list is selected, 1 if the second food item in the list is selected, and so on.
Using the if elif ladder, the value in the selectedResult variable is branched to
display the food item selected by the user. The selected food item is displayed via another
dialog box. To keep the dialog box visible until the user presses the OK button, the dialog
box is accompanied by an OK button. After looking at the selected food item, when the
user clicks the OK button, the dialog box goes away.

On running the application, you get a dialog box showing three food items, Pizza, Burger,
and Hot Dog, as shown in the following screenshot on the left. On selecting any food item,
the selected food item will be displayed via another dialog box, as shown in the following

screenshot on the right:

«: 0.25K/s @ & . airtel 46 4 (i 78% 12:38

Select your food item

You have selected Burger

[401]

Running Python Scripts on Android and iOS Chapter 13

Performing multiple selections from a list

This recipe will show a list of items on an Android device, allowing you to select more than
one item from the list, hence enabling multiple selections from the list.

How to do it...

In this recipe, we will be making use of the following methods:

e dialogCreateAlert (): To display a message via the dialog box

e dialogSetMultiChoiceItems ():To define the array of items to be displayed
in list format in the dialog for multiple selections

e dialogSetPositiveButtonText (): To display a button in the dialog box to
indicate that all selections are complete

e dialogGetSelectedItems (): To get the array of selected items

Take a look at the following steps:

1. Type the following code in the Python script demoMultipleSelection.py in
the current folder of your computer:

import android
app = android.Android()
app.dialogCreateAlert ("Select your food items")
app.dialogSetMultiChoiceItems (['Pizza', 'Burger', 'Hot Dog'])
app.dialogSetPositiveButtonText ('Done')
app.dialogShow ()
app.dialogGetResponse ()
response = app.dialogGetSelectedItems ()
print (response)
selectedResult=response[1l]
n=len (selectedResult)
print ("You have selected following food items: ")
for i in range (0, n):
if selectedResult[i]==0:
print ("Pizza")elif selectedResult[i]==1:
print ("Burger")elif selectedResult[i]==2:
print ("Hot Dog")

[402]

Running Python Scripts on Android and iOS Chapter 13

2. Copy or push this Python script into the Android device by using the following
command:

C:\Users\Bintu\QPythonScripts>adb push demoMultipleSelection.py
/sdcard/gpython/bintuscripts

How it works...

An object Android class is created by the name app. A dialog box is created with a message
stating select your food items. The dialogSetMultiChoiceItems () method is invoked
to display a list of food items, allowing the user to select more than one item. To indicate
that the user is done selecting food items, the dialogSetPositiveButtonText () method
is invoked to display the Done button that the user can click to state that he/she is done
with selecting food items. The user can select any number of food items. The
dialogGetSelectedItems () method is invoked to get the list of selected food items and
the chosen list is assigned to the response array. The response array is a multidimensional
array and at its index location, 1, is a single dimensional array which contains the list of
chosen food items. So, the array at the index 1 location from response is accessed and
assigned to selectedResult single dimensional array. The length of the
selectedResult array determines the number of food items selected by the user. If the
user selects two items, their index locations will be stored in the selectedResult array.
For example, if the user selects the first and third food items, then the selectedResult
array will contain the values 0 and 2 because the array is zero-based. A for loop is used
and every element of the selectedResult array is accessed; depending on its value, the
name of the food item is displayed.

[403]

Running Python Scripts on Android and iOS

Chapter 13

On running the application, you get a dialog box showing a list of food items, allowing the
user to select more than one food item. Let's assume that the user selects the first and third
food item followed by clicking the Done button (see the below figure on left). The list of
selected food items will be displayed, as shown in the following screenshot on the right:

_a airtel 4G 4) 82% 13:34

< No.1 NEW CTRL

/data/user/0/org. qpython.qpy3/files/bin/qgpy

Select your food items

o 0.03Ks © & L airtel 46 4) 84%

[thon-androids.sh “/storage/emulated/0/qpyth
on/bintuscripts/.last_tmp.py" && exit
tuscripts/.last_tmp.py" &% exit
Result(id=6, result=[0, 2], error=None)

123 45467890

gwer T tyuionp
asdf gh j kI
&z x ¢ v bnm

123

Displaying a Date Picker dialog

In this recipe, you will learn to display a date picker dialog, allowing the user to scroll
through days, months, and years to select the desired date.

How to do it...

In this recipe, we will be making use of the following methods:

e dialogCreateDatePicker (): This method is used to display the date with the

specified initial date

e dialogGetResponse (): This method is used to get the response, that is, the

selection made by the user

[404]

Running Python Scripts on Android and iOS Chapter 13

e dialogDismiss (): This method is used to make the dialog box invisible after a
selection been made by the user

e get ("day"): This method is used to access the day in the Date type object

e get ("month"): This method is used to access the month in the Date type object

e get ("year"): This method is used to access the year in the Date type object

Let's take a look at the following steps:

1. Type the following code in the Python script demoDateSelection.py in the
current folder of your computer:

import android

app = android.Android()
app.dialogCreateDatePicker (2018, 7,10)
app.dialogShow ()

response = app.dialogGetResponse () .result
app.dialogDismiss ()

print ("You have selected following date: ")
print ("Day: "+ str(response.get ("day")))
print ("Month: " + str(response.get ("month")))
print ("Year: " + str(response.get ("year")))

2. Copy or push this Python script into the Android device by using the following
command line:

C:\Users\Bintu\QPythonScripts>adb push demoDateSelection.py
/sdcard/qgpython/bintuscripts

How it works...

An instance of the Android class is created by name app. By invoking the
dialogCreateDatePicker () method, the date picker is displayed; the initial date being
displayed is 10 July 2018. You can scroll to any day, month, and year by selecting the +
(plus) or - (negative) symbols. The Date Picker dialog is dismissed or made invisible when
the user clicks the OK button. Using the dialogGetResponse () method, the date selected
by the user is accessed and assigned to the response object. The day in the response object is
accessed by invoking the get () method on it and passing the day parameter to it.
Similarly, the month and year selected in the response object are accessed by invoking the
get () method on them and passing the month and year parameters to them. That is, the
day, month, and year are accessed from the response object and displayed on the screen
after being converted into string type.

[405]

Running Python Scripts on Android and iOS Chapter 13

On running the application, you get a date picker with initial date being displayed as 10
July 2018. You can scroll to any day, month, and year using the + and - symbols associated
with each of them. Let's select 15 Oct 2018 and click the OK button (see the following
screenshot on the left). You get the output showing the day, month, and year selected by
the user, as shown in the following screenshot on the right:

e 0.03K/s & = L airtel 4G 4 (EE) 83% 14:30 - 1.99K/s @ = . airtel 4G 4 (E8) 83%

< N0.1A NEW = CTRL

/data/user/0/org.qpython.qgpy3/files/bin/gpy
thon-androidS.sh "/storage/emulated/0/gpyth
on/bintuscripts/.last_tmp.py" &% exit
tuscripts/.last_tmp.py" 8% exit <
You have selected following date:

2 3 4567 8 90

qwe T T t yuiop
asdf gh j k I
{y z x ¢ v b nm

7123

Capturing images using a camera

In this recipe, you will learn to capture a picture on your device camera. You will learn to
access the Camera app on your Android device and click the pictures.

[406]

Running Python Scripts on Android and iOS Chapter 13

How to do it...

In this recipe, we will be making use of the following method
cameralnteractiveCapturePicture (), which activates the picture capturing app on an
Android device and the clicked picture is saved to the SD card with the specified name.

Let's take a look at the following steps:

1. Type the following code in the Python script demoCamera.py in the current
folder of your computer:

import android

app =
android.Android () app.cameralnteractiveCapturePicture ("/sdcard/camer

aPic.jpg")

2. Copy or push this Python script into the Android device by using the following
command line:

C:\Users\Bintu\QPythonScripts>adb push demoCamera.py
/sdcard/gpython/bintuscripts

How it works...

This recipe starts the picture capturing app on your Android device. That is, the Camera
app on your device will be invoked enabling you to click the pictures if required.

An object called app is defined by invoking Android () method of the android module.
The cameraInteractiveCapturePicture () method is invoked to start the camera and
take a picture. The clicked picture will be stored in the specified path in the sdcard folder
of your Android device with the cameraPic. jpg filename.

On running the application, the picture capturing app will automatically start, ready to take
a picture. The screenshot on the left shows the picture that is visible through the Camera
app. You focus the camera of your device on the object to be photographed and click the
Take picture button. The Take picture button appears as a big filled circle. On clicking the
Take picture button, the picture will be taken and you will be shown two options to select:
right or wrong.

[407]

Running Python Scripts on Android and iOS Chapter 13

The right option if selected will save the taken picture and wrong option if selected will
discard the picture as shown in the following screenshot:

Making an Android device speak a text input

In this recipe, we will see how an Android device generates sound from the supplied text.
That is, the device will speak the specified text.

[408]

Running Python Scripts on Android and iOS Chapter 13

How to do it...

In this recipe, we will be making use of the ttsSpeak () method, which activates
the speech synthesis application on an Android device and the device will generate sound
for the supplied text.

Let's take a look at the following steps:

1. Type the following code in the Python script demoTextToSpeach.py in the
current folder of your computer:

import androidapp = android.Android()
message = "Let us count from 1 to 10"
app.ttsSpeak (message)
for i in range(1,11):

app.ttsSpeak (str(i))

2. Copy or push this Python script into the Android device by using the following
command line:

C:\Users\Bintu\QPython\Scripts>adb push demoTextToSpeach.py
/sdcard/gpython/bintuscripts

How it works...

An object called app is created by invoking the Android () method of the android
module. A message, Let us count from 1 to 10 is passed to the ttsSpeak () method.
The ttsspeak () method will invoke the speech synthesis application in the phone, which
generates the spoken version of the supplied text. So, you get to hear "let us count from 1 to
10". After that, a loop is run from integer value 1 to 10 and each value in the loop is sent to
the ttsspeak () method. Consequently, your mobile will speak the numbers from 1 to 10.

Creating a cross-platform Python script
using Kivy

Kivy is a Python library that supports multitouch devices, including smartphones. You can
create cross-platform Python applications using Kivy as Kivy runs on Android, iOS, Linux,
and Windows. With Kivy, you can also access mobile APIs, like the Android API to use the
camera of your phone, compass sensor, and so on.

[409]

Running Python Scripts on Android and iOS Chapter 13

Kivy is an open source, cross-platform that is written in Python and Cython. Because Kivy
has several modules that are written in C, it requires Cython for its working. Cython is a
compiler that gives you the power of Python as well as C programming. You can write C
functions and use C libraries in Cython for writing efficient code.

Getting started

Let's create a very simple application that consists of a single button with the caption
Python On Android Device. The Kivy application needs to be made in a separate folder
and its main program has to be named main.py.

So, let's create a folder named helloworld. Write the following code and save it with the
name main.py in the helloworld folder:

from kivy.app import Appfrom kivy.uix.button import Button
class demoAndroidApp (App) :
def build(self):
return Button (text='Python On Android Device')
if _ name__ in ('__main_ ', '_ _android__'"):
demoAndroidApp () .run ()

The App class is imported from the kivy library because this class includes the properties
required to make a fully featured application. A class is made, named demoAndroidApp,
which inherits the App class, so the demoAndroidApp class gets the right to access the
methods and members of the App class. Thereafter, you check whether this Python script is
an independent script to be run individually, or is supposed to be imported into another
script. Being an independent script, the run () method is invoked to execute the
application.

To run this Kivy application, you need to install Kivy and it requires several steps. Let's
learn how to do it. But before that, let us understand one keyword pip that we will
frequently come across.

The pip command is a tool for installing and managing Python packages. PIP already
comes installed in the Linux platforms. Also, pip comes installed on Python version 3.4 and
later. You give the following command line on your Command Prompt to know whether
pip is installed on your PC:

C:\>pip --version

[410]

Running Python Scripts on Android and iOS Chapter 13

If pip is installed on your PC, you get the folder location where it is installed and will show
its version number too. If you do not have P installed, you can download and install it from
the nttps://pypi.org/project/pip/ URL.

Now, let us move ahead and learn the steps to install Kivy.

How to do it...

1. Before you install Kivy, you need to install Cython first as Kivy needs Cython.
The following statement installs Cython:

C:\helloworld>python -m pip install Cython

You may get the following output while installing Cython on your machine:

B Administrator: Command Prompt - O X

BEEE AR AR SRR AR
collected pack s: Cython

fully installed Cython-8.

C:\helloworld:>

2. Once Cython is installed, you can go ahead and install Kivy by executing the
following command line:

C:\helloworld>python -m pip install kivy

[411]

https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/

Running Python Scripts on Android and iOS Chapter 13

While installing Kivy, you may get the following output on the screen:

Bl Administrator: Command Prompt — m] w

Downl

3. You need to install Kivy dependencies, the modules that Kivy is dependent on.
The following statement installs the Kivy dependencies:

C:\helloworld>pip install docutils pygments pypiwin32
kivy.deps.sdl2 kivy.deps.glew

On executing the preceding command, you may get the following output on the
screen:

Requirement already satisfied: docutils in
c:usersBintuappdatalocalprogramspythonpython35-321ibsite-packages
(0.14)

Requirement already satisfied: pygments in
c:usersBintuappdatalocalprogramspythonpython35-321ibsite-packages
(2.2.0)

Collecting pypiwin32

Downloading
https://files.pythonhosted.org/packages/d0/1b/2£292bbd742e369a100c9
1faa0483172cd91alad22a6692055ac920946c5/pypiwin32-223-py3—-none—
any.whl

[412]

Running Python Scripts on Android and iOS Chapter 13

Collecting kivy.deps.sdl2

Downloading
https://files.pythonhosted.org/packages/d5/5a/1£8ca6e6e5343££fc4d145
fab0644e051cf52ee97bca9313307af0c8b5129/kivy.deps.sd12-0.1.17-cp35-
cp35m-win32.whl (2.1MB)

100% | ###4#444444 A H GRS 2. 1MB 369kB/s

Collecting kivy.deps.glew

Downloading
https://files.pythonhosted.org/packages/32/0£/16419££d63c60b0c19761
4c430eab35360a94154aclb846b3ee69£8¢c8061/pywin32-223-cp35-cp35m—
win32.whl (8.3MB)

100% | ####4#4444444 #4444 | 8.3MB 310kB/s

Installing collected packages: pywin32, pypiwin32, kivy.deps.sdl2,
kivy.deps.glew

Successfully installed kivy.deps.glew-0.1.9 kivy.deps.sdl12-0.1.17
pPypiwin32-223 pywin32-223

4. The Kivy platform needs OpenGL. So, you need to run the following command
to support a graphics card and other graphics hardware:

C:\helloworld>pip install kivy.deps.angle && set
KIVY_GIL_BACKEND=angle_sdl2

Now, Kivy is completely installed, along with its dependencies, and you are
ready to run your Kivy application.

5. Run your application by running the following command line:
C: helloworld>python main.py

The application will execute, showing you a big button with the caption Python
On Android Device, as shown in the following screenshot:

Python On Android Device

[413]

Running Python Scripts on Android and iOS Chapter 13

Packaging a Python Script into the Android
APK using Buildozer

In this recipe, we will be learning to package a Python script into the Android APK file
using Buildozer. Buildozer is a tool that packages mobile applications quite easily.
Basically, it auto-creates a buildozer. spec file, which stores configuration and other
settings of the application including its name, package, domain name, icon, and so on. It
also automatically downloads the prerequisites, such as python-for-android, the Android
SDK, NDK, and so on, and presents the Android APK file ready to distribute and install.
Not only for Android; Buildozer makes the Python script run on iOS too. The focus of this
recipe is to create a package for Android. First of all, we will be creating a Kivy Python
script that consists of a button and a label. When the button is clicked, the application
simply displays the message Welcome to Python on Smartphones.

Getting ready

This Kivy Python script is made in a folder. So, create a folder named dispmessage () and
write the following code in a file named main. py:

from kivy.app import App
from kivy.uix.button import Button
from kivy.uix.label import Label
from kivy.uix.boxlayout import BoxLayout
class MessageApp (App) :
def build(self):
layout = BoxLayout (orientation='horizontal')
pushButton = Button (text='Click Me')
pushButton.bind (on_press=self.dispMessage)
self.labelMessage = Label (text="")
layout.add_widget (pushButton)
layout.add_widget (self.labelMessage)
return layout
def dispMessage (self, event):
self.labelMessage.text = "Welcome to Python on Smartphones”
MessageApp () .run ()

The App class is imported from the kivy library because this class includes the properties
required to make a fully featured application. Besides the App class, the Button class,
the Label class, and the BoxLayout class are also imported into the application.

[414]

Running Python Scripts on Android and iOS Chapter 13

A MessageApp class is created, that inherits from the App class, so the MessageApp class
gets the right to access methods and members of the App class. Thereafter, an object of

the Button class is created by name, pushButton, and the button text supplied is C1ick
Me. Also, a Label widget's instance is created, named labelMessage, with no text. The text
for the Label widget will be supplied through the code. An object of BoxLayout is created
called layout and its orientation specified as horizontal. The pushButton and
labelMessage objects are added to the layout horizontally, beside each other. You also
bind the on_press event of the pushButton object with the dispMessage () method, so
that whenever the push button is pressed, the dispMessage () will be invoked. In the
dispMessage () method, you set the text for the 1abelMessage object as Welcome to
Python on Smartphones. Hence, whenever, the Click Me button is pressed, the
labelMessage object will display the text Welcome to Python on Smartphones. The

run () method is invoked at the end to execute the application.

To package this Python script into the Android APK, you need to install Buildozer and this
requires several steps. Let's learn how to do it step by step.

How to do it...

Because the Buildozer tool runs on the Linux operating system and I am using a Windows
operating system, we need to take the help of a virtual box to install Buildozer. Here are the
steps:

1. First, install Oracle VM VirtualBox.

2. Once VirtualBox is loaded, click on the New button to create a new Virtual
Machine.

3. Name the new Virtual Machine as BuildozerAndroidvM.

[415]

Running Python Scripts on Android and iOS

Chapter 13

4. Set the type of this Virtual Machine as Linux and version as Ubuntu (64 bit), as
shown in the following screenshot:

O Oracle VM Virtus

P

Mew

Settings Discard Start.

Create Virtual Machine

Name and operating system

Please choose a descriptive name for the new virtual machine
and select the type of operating system you intend to install on
it. The name you choose will be used throughout VirtualBox to
identify this machine.

. bl -

| | Global Tools

Marme: |Bui|dozerAndroiqu1 |

Type: |Linux - @x

‘Wersion: | Ubuntu (54-bit) i

Expert Mode . Cancel

Kivy provides you a Kivy Buildozer VM that you can download from the https:/
/kivy.org/#download URL.

[416]

https://kivy.org/#download
https://kivy.org/#download
https://kivy.org/#download
https://kivy.org/#download
https://kivy.org/#download
https://kivy.org/#download
https://kivy.org/#download
https://kivy.org/#download

Running Python Scripts on Android and iOS

Chapter 13

5. Click on the Next button, and you will be prompted to enter information for the

virtual hard disk.

6. Select the Use an existing virtual hard disk file option, select the downloaded
Kivy Virtual VM file, and then click on the Create button as shown in the

following screenshot:

€ Create Virtual Machine

Hard disk

the list or from another location using the folder icon.

machine is created.

The recommended size of the hard disk is 10.00 GB.
() Do not add a virtual hard disk

() Create a virtual hard disk now

(@) Use an existing virtual hard disk file

If you wish you can add a virtual hard disk to the new machine.
You can either create a new hard disk file or select one from

If you need a more complex storage set-up you can skip this
step and make the changes to the machine settings once the

|54 Buildozer YM-diskn0 1.vmdk (Normal, 20.00 GE. | [

Cancel

A virtual machine named BuildozerAndroidvM will be created.

[417]

Running Python Scripts on Android and iOS Chapter 13

7. Click on the Start icon at the top to run the virtual machine as shown in the
following screenshot:

%9 Oracle VM VirtualBox Manager = O >
File Machine Help
-.hv‘- ?
H
& {é} E& - Gﬁ hi g "
Mew Settings COiscard Start Machine Tools Global Tools
I P e ~
El @ BuildozerAndroidvii Welcome to VirtualBox!
@ Powersed Off
The left part of this window lists all virtual oy
machines and virtual machine groups on
your computer, _—
The right part of this window represents a
set of tools which are currently opened {or
can be opened) for the currently chasen
machine, For a list of currently available
tools chedk the corresponding menu at the
right side of the main tool bar located at
the top of the window. This list will be ’
extended with new tools in future
releases,
You can press the F1 key to getinstant
help, ar visit www. virtualbox.org for more
information and latest news. s

You will be asked to enter the password. The ID is kivy, and the password too is
kivy.

8. Enter the password and click on the Log In button.

9. Once you are logged in, from the Menu at the top, select the Terminal option
from the Menu option to open the Terminal window. By default, you will be in
the kivy folder. Change directory to the Downloads folder.

10. In the Downloads folder, create a folder named dispmessage () and in that
folder, create a file, main.py, with the code shown before.

11. Before packaging this Python script into the Android APK file, create a
buildozer.spec file (see the following screenshot). The buildozer. spec file
is automatically created by running the following command line in the
dispmessage folder:

buildozer init

[418]

Running Python Scripts on Android and iOS Chapter 13

12. Recall that the buildozer. spec file is a configuration file that stores
information such as the application's name, package name, domain name, icon,
and other details. The buildozer. spec file contains certain default information.
You can change the application's name, package, and other information as shown
in the following screenshot:

I
o]

ﬁ Terminal - kivy@kivyvm: ~/Downloads/dispmessage

File Edit Wiew Terminal Tabs Help

13. To create Android's APK file, run the following command line:

buildozer Android debug

[419]

Running Python Scripts on Android and iOS Chapter 13

The preceding command line will download and install Android ANT, Android
SDK, Android NDK, and other essential modules if they are missing, and finally
packages the Python script into an APK file, which can be found in the bin folder
that is automatically created (see the following screenshot):

[m]

Terminal - kivy@kivyvm: ~/Downloads/dispmessage a

View Terminal Tabs Help

[420]

Running Python Scripts on Android and iOS Chapter 13

14. Copy the APK file into any Android device, install it, and run it.

How it works

On running the Android application, you will find a push button, Click Me, on the left, as
shown in the following screenshot. The label on the right does not show any text at the

moment:

Click Me

On clicking the push button, the label on the right shows the text Welcome to Python on
Smartphones, as shown in the following screenshot:

Click Me Welcome to Python on Smartphones

[421]

Running Python Scripts on Android and iOS Chapter 13

Packaging Python script for iOS

In this recipe, we will be learning to package a Python script for iOS. iOS is a mobile
operating system developed by Apple Inc for its devices, including the iPhone, iPad, and
iPod Touch. To write, test and run this application, we will be requiring a Macintosh
computer.

First of all, we will be creating a Kivy Python script that comprises a button and a label.
When a button is clicked, the application simply displays the message Welcome to Python
on Smartphones. This Kivy Python script is made in a folder. So, create a folder named
helloworld and write the following code in a file named main.py:

from kivy.app import Appfrom kivy.uix.button import Button
from kivy.uix.label import Label
from kivy.uix.boxlayout import BoxLayout
class WelcomeApp (App) :
def build(self):
layout = BoxLayout (orientation='horizontal')
pushButton = Button(text='Click Me')
pushButton.bind (on_press=self.showMessage)
self.labelMessage = Label (text="")
layout.add_widget (pushButton)
layout.add_widget (self.labelMessage)
return layout
def showMessage (self, event):
self.labelMessage.text = "Python is compatible to Smartphones"
WelcomeApp () .run ()

How to do it...

1. The first step is to install Xcode and related SDK on your computer. Give the
following command line if the Xcode is not installed on your machine

xcode-select —-install

You might be prompted to install command-line developer tools as shown in the
folowing screenshot:

[422]

Running Python Scripts on Android and iOS Chapter 13

The "xcode-select” command requires the
ﬁ% command line developer tools. Would you like to
' install the tools now?

Choose Install to continue. Choose Get Xcode to install Xcode
and the command line developer tools from the App Store.

| Get Xcode | | NotNow | [Install |

2. Click on the Install button to install the tools. Next, you need to install libraries
for building. Give the following two command lines to install libraries:

brew install autoconf automake libtool pkg-config

On executing the preceding command line you get the output as shown in the
following screenshot:

8.0,0 [kivy-ios — bash — 114x39

Bintus-MacBook-Pro:kivy-ios bintuharwani% brew install autoconf automake libtool pkg-config
Updating Homebrew...
srning: pkg-config 8.29.2 is already installed and up-to-date
To reinstall 8.29.2, run ‘brew reinstall pkg-config’
=== Downloading https://homebrew.bintray.com/bottles/autoconf-2.69.mavericks.bottle.4.tar.gz

188. 0%

=== Pouring autoconf-2.69.mavericks.bettle.4.tar.gz

=== [aveats

Emacs Lisp files have been installed to:
Jusrflocal/share/emacs/site-lisp/autocont

==> Summary

\w Jusrflocal/Cellar/autoconf/2.609: 7B files, 3.8MB

=== Downleading https://ftp.gnu.erg/gnu/automake/automake-1.16.1.tar.xz

2 2 2 2 i o 2 2 2 188, 0%

= ./configure ==prefix=/usr/local/Cellar/automake/1.16.1

= make install

9 Jusrflocal/Cellar/automake/1.16.1: 131 files, 3MB, built in 28 seconds

=== Downloading https://homebrew.bintray.com/bottles/libtool-2.4.6_1.mavericks.bottle.tar.gz
HHHAE 7t 7t 7t 7t 5 1t 7 i g 7t i3 it 4 1t 7 7 laa.a%
=== Pouring libtool-2.4.6_l.mavericks.bottle.tar.gz

=== Caveats

In order to prevent conflicts with Apple's own libtool we have prepended a "g"

s0, you have instead: glibtool and glibtoolize.

=== Summary

w fusrflocal/Cellar/libtools/2.4.6_1: 7@ files, 3.7MB

Bintus-MacBook-Pro:kivy-ios bintuharwanis

The following command is also required to install libraries:

brew link libtool

[423]

Running Python Scripts on Android and iOS Chapter 13

Because Kivy requires Cython, execute the following command line to install
Cython:

sudo pip install Cython==0.28.3

While installing Cython, you get the output as shown in the following screenshot:

800 [kivy-ios — bash — 80x53 e
Bintus-MacBook-Pro:kivy—-ios bintuharwani% sudo pip install Cython==8.28.3 =

Collecting Cython==08.28.3

Downloading https://files.pythonhosted.org/packages/c3/8Bc/7f02cdac3d473azbballa
B3B5031a07694d54b1f837e5a06R060000be@137/Cython-0. 28, 3-cp27-cp2Tm-macosx_1@8_F_in
tel.macosx_1@0_09_intel.macosx_1@0_9_xB6_G4.macosx_10_1@0_intel.macosx_10_10_xB6_64.
whl (5.1MB)

100% | NENENERENNERERNERSERRNRRRRNNNN | . 145 100K/

Installing collected packages: Cython
Successfully installed Cython-8.28.3
Bintus-MacBook-Pro:kivy-ios bintuharwanis [

3. Next step is to download kivy-ios and install. To do so, execute the following
command line:

$ git clone git://github.com/kivy/kivy-ios

A folder called kxivy-ios will be created and kivy-ios files are downloaded
and copied in it. You get the output as shown in the following screenshot:

kivy-ios — bash — 114x39

Bintus-MacBook-Pro:helloworld bintuharwani% git clone git://aithub.com/kivy/kivy-ios =l
Cloning into 'kivy-ios'...

remote: Counting objects: 12BB2Z, done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 12862 (delta @), reused 3 (delta @), pack-reused 12B56
Receiving objects: 100% (12B62/12B62), B3.16 MiB | 505.80 KiB/s, done.
Resolving deltas: 18@% (3512/5%12), done.

Checking connectivity... done.

Bintus-MacBook-Pro:helloworld bintuharwanis% ls

kivy-ios main.py

Bintus-MacBook-Pro:helloworld bintuharwanis cd kivy-ios
Bintus-MacBook-Pro:kivy—-ics bintuharwani$./toolchain.py build kiwvy

[424]

Running Python Scripts on Android and iOS Chapter 13

4. Next step is to change directory to the kivy-ios folder and execute the
toolchain.py file. The toolchain is used in compiling the necessary libraries for
iOS to run our application. It is also very helpful in creating the Xcode project.

$ cd kivy-ios$./toolchain.py build kivy

5. Now, we can create an Xcode project. Execute the following command line
specifying the location of our helloworld folder where kivy python script is
written:

$./toolchain.py create ioskivyapp
/Users/bintuharwani/Desktop/helloworld

The preceding command line will create a folder ioskivyapp-ios and will
create the Xcode project in that folder by name, ioskivyapp.xcodeproj. On
executing the preceding command, you will get the output as shown in the
following screenshot:

80n _ [kivy—ios — bash — 9247 e

Bintus-MacBook-Pro:kivy—-ios bintuharwani$./toolchain.py create ioskivyapp /Users/bintuharw B
ani/Desktop/helloworld

Include dir added: {arch.arch}/freetype

The project need to have:

105 Frameworks: []

105 Libraries: []

105 local Frameworks: []

Libraries: ['/Users/bintuharwani/Desktop/helloworld/kivy-ios/dist/1lib/libfreetype.a']
Sources to link: []

Analysis of /Users/bintuharwani/Desktop/helloworld/kivy-ios/ioskivyapp-ios/ioskivyapp.xcodep
roj/project.pbxproj

Ensure fUsers/bintuharwani/Desktop/helloworld/kivy—ios/dist/lib/libfreetype.a is in the proj
ect

Project directory : ioskivyapp-ios

XCode project : iloskivyapp-ios/ioskivyapp.xcodeproj
Bintus-MacBook-Pro:kivy—ios bintuharwanig 1s
LICENSE build ioskivyapp-ios toolchain.py tools

Bintus-MacBook-Pro:kivy-ios bintuharwani$ open ioskivyapp-ios/ioskivyapp.xcodeprojfl

[425]

Running Python Scripts on Android and iOS

Chapter 13

Following is the list of files that are created in the ioskivyapp-ios folder:

8.0 0

(] ioskivyapp-ios — bash — B0x24

'l

Bintus-MacBook-Pro:ioskivyapp—ios bintuharwani% 1s
ioskivyapp-Info.plist
ioskivyapp.xcodepro]

LaunchImages
YourApp
bridge.h

bridge.m
icon.png
inskivyapp

main.m

Bintus—-MacBook-Pro:ioskivyapp—ios bintuharwani% .

6. You can execute the Xcode project by running the following command line:

open ioskivyapp.xcodeproj

Xcode will open up as shown in the following screenshot:

eo0e

p m | p!,'mkiuyap_p)liosnmim

ioskivyapp: Ready | Today at 8:49 am

m main.m

1@

]

EHF D=0

B = a A ©
i ioskivyapp
B) vorger, o5 sk 80

v

h bridge.h
m bridge.m

o 2

o e >

¥ (] YourApp
| android.txt
(] images
| pictures.kv
| README.txt
| shadow32.png

+OHEE

[E) toskivyapp 5[] Seurces)

/4 main.m
// ioskivyapp
1

#impart <Foundation/Foundation.hs
#import <UIKit/UIKit.h=

#include "/Users/bintuharwani/Desktop/helloworld/kiy

m main.m) No Selection

~ies/dist/reot/python/include/python2.7/Pythan.h"

#include "/Users/bintuharwani/Desktop/helloworld/kivy-ios/dist/include/comman/sd12/50L_main.h"

#include <dlfen.hs

void export_orientation(
woid load_custom_builtin_importer();

int main{int argc, char sargv[]) {
int ret =

NSAutoreleasePool # pool = [[NSAutoreleasePool alloc] init];

// Change the executing path to YourApp

chdir("YourApp");

/7 Special environment ta prefer .pyo, and don't write bytecode if .py are found
// because the process will not have a write attribute on the device.

putenv("PYTHONOPTIMIZE=2");
putenv("PYTHONDONTWRI TEBYTECODE="
putenv("PYTHONNOUSERSITE=1"} ;
putenv{"PYTHONPATH=.")
//putenv("PYTHONVERBOS

/7 Kivy envirenment to prefer some implementation on i0S platform

putenv("KIVY_gl
putenv("KIVY_NO_C
puteny("KIVY_NO_FILELO
puteny(“KIVY_WINDD
putenv("KIVY_IMAGE=imag
putenv("KIVY_AUDID=sd12"
puteny("KIVY_GL_BACKEND=
#ifndef DEBUG
puteny("KIVY_ND_CONSOLELOG
#endif

12

// Export orientation preferences for Kivy

export_orientation();

NSString * resourcePath = [[NSBundle mainBundle] resourcePath];
NSLog(§"PythonHome is: %s", (char =) [resourcePath UTF8String]);
Py_SetPythonHamel (char) [resourcePath UTF8Stringl);

NSLog(@"Initializing python');
Py_Initialize();
PySys_SetArgvlarge, argv);

40>

0 e
Identity and Type
Name | main.m

Type [I

Location | Relative to Group
main.m

Full Path /Users/bintuharwani/
Desktop/ hellowarld/
ivy-ios ioskivyapp-ios
main.m)

| Target Membership

irzr 7 loskivyapp

Text Settings
Text Encoding | Unicode (UTF-8) &
Line Endings |

Indent Using | Spaces

Widths
4 wrap lines

Source Control
0Dude

View Controller - A controller
that supports the fundamental
view-management madel in 05,

Navigation Controller - A

(controller that manages.
navigation through a hierarchy of
views

controller that manages a table

|—| Table View Controller - A
view.

oo |
ga !

7. You need to register as a developer in Apple developer center for running this
Xcode project.

[426]

Running Python Scripts on Android and iOS Chapter 13

How it works...

For making a fully featured application, you need the App class which is imported from the
kivy library. For creating interface elements like button, label, and so on and for arranging
them, several more classes like, the But ton class, Label class and BoxLayout too are
imported in the application.

To access methods and members of the App class, a class is created by name WelcomeApp
that inherits the App class. To create a button in the application, an object of the Button
class is created by name, pushButton. The text for the button is set as C1ick Me. Also, a
Label class's instance is created by name labelMessage without any default text. The text
for the Label widget will be displayed through the code. An object of BoxLayout is created
by name layout and its orientation specified as horizontal. The pushButton and
labelMessage objects are added to the layout horizontally that is one besides the other.
You also bind the on_press event of the pushBut ton object with the showMessage ()
method that is whenever the push button will be pressed, the showMessage () method will
be invoked. In the showMessage () method, you set the text for the 1abelMessage

object as, Python is compatible to Smartphones.Hence, whenever, the Click Me
button is pressed, the 1abe1Message object will display the text, Python is

compatible to Smartphones. The run () method is invoked at the end to execute the
application.

[427]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Frank Kane

Hands-On
Data Science
and Python

Machine Learning

Computer Vision with OpenCV 3 and Qt5

: https://www.amazon.com/Computer-Vision-OpenCV-multithreaded-cross-platform/dp/
178847239X/ref=sr_1_1?ie=UTF8&qid=1532586055&sr=8-1&keywords=Computer+Vision+
with+OpenCV+3+and+Qt5&dpID=51Z4ulhLAzL&preST=_SX218_B01,204,203,200_QL40
_&dpSrc=srch

Frank Kane
ISBN: 978-1-78728-074-8

¢ Learn how to clean your data and ready it for analysis
¢ Implement the popular clustering and regression methods in Python

Train efficient machine learning models using decision trees and random forests

Visualize the results of your analysis using Python's Matplotlib library

Use Apache Spark's MLIib package to perform machine learning on large
datasets

https://www.packtpub.com/big-data-and-business-intelligence/hands-data-science-and-python-machine-learning

Other Books You May Enjoy

Corey P. Schultz, Bob Perciaccante

Kali Linux

Cookbook

Qt5
Projects: https://www.amazon.com/Qt-Projects-cross-platform-applications-fr
amework/dp/1788293886/ref=sr_1_2_sspa?s=books&ie=UTF8&qid=1532586126

&sr=1-2-spons&keywords=Qt+5+Projects&psc=1
Corey P. Schultz, Bob Perciaccante

ISBN: 978-1-78439-030-3

¢ Acquire the key skills of ethical hacking to perform penetration testing
¢ Learn how to perform network reconnaissance

¢ Discover vulnerabilities in hosts

o Attack vulnerabilities to take control of workstations and servers

¢ Understand password cracking to bypass security

e Learn how to hack into wireless networks

o Attack web and database servers to exfiltrate data

¢ Obfuscate your command and control connections to avoid firewall and IPS
detection

[429]

https://www.packtpub.com/networking-and-servers/kali-linux-cookbook-second-edition

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[430]

2

2D graphical image
displaying 361, 363

A

Android Debug Bridge (ADB) 392
Android device
used, for generating sound from supplied text
408
animation
implementing 361
asynchronous operations
used, for updating progress bars simultaneously
258, 261, 262
asynchronous programming
about 246
methods 246

B

ball
animating, as per specified curve 370
animation, applying to 364, 366
bar
plotting, Matplotib used 357, 359
base class 110
bouncing ball
creating 367, 369
Buildozer
download link 416
used, for packaging a Python script into Android
APK 414,419,421
built-in class attributes

class variables, accessing in instance methods
111

instances 111
using 110

Index

C

camera
used, for capturing images 406
checkboxes
two groups, displaying 31, 34
circle, of desired size
drawing 333, 335
class
class variable 111
instance variable 111
using, in GUI 113,114
client-server communication
establishing 197, 200, 203
color dialog
using 144, 146,147
Combo Box widget
using 77,79, 81
context manager
used, for managing resources 262, 263, 267
coordinates
displaying, on click of mouse button 319, 321
displaying, on release of mouse button 319, 321
coroutines 261
cross-platform Python script
creating, with Kivy 409, 412
cursor object
creating 270
custom menu bar
about 229
creating 229,232,236,240, 241, 243

D

data types

converting 45, 48, 49, 50
database table

creating 273, 276, 278

row, deleting 307, 311, 313 inheritance 119

rows, displaying 284, 286, 288 guided animation

rows, inserting 278, 282, 283 implementing 370, 373
rows, navigating through 289, 292, 294

searching, for specific information 294, 297 H
specified user password, changing 302, 306, Horizontal Layout
307 about 164
database using 164, 165, 167
creating 271,273 working 169
date picker dialog
displaying 404, 406 |
DB Browser for SQL 311 .
. images
dialog box turi ith 406
buttons 397, 398 . cap uring, with camera
. inheritance
dialogs . . .
modal 9 multilevel inheritance 119
multiple inheritance 119
modeless 9

dockable and floatable sign-in form
creating 205, 206,210,212, 213

F

file dialog
using 152, 154, 156, 158, 161
Font Combo Box widget
using 81, 83
font dialog
using 148, 149,151
Form Layout
using 183, 184
working 188

G

Gird Layout
using 176
Google API Console
reference 374
Google Maps
about 374
location, displaying 385, 387
GUI applications
creating 11
creating, ways 9
GUI
application, elaborating 116
classes, using 113, 114

[432]

single inheritance 119
types 119
input dialog box 139, 140
input dialog
using 141, 143
i0S
Python script, packaging 422, 427

K

Kivy

used, for creating cross-platform Python script

410, 411, 413

L

label 169
Label widget
about 11
methods 12
landmark details
finding 375, 377
layouts
about 162
spacers, using 163
Line Edit widget
methods 12
text, copying to another 38, 40, 44
text, pasting to another 39, 40, 44
line

drawing, between two mouse clicks 325, 328
plotting, Matplotib used 355, 357
lines, of different types
drawing 328, 332
Liquid Crystal Display (LCD) digits
displaying 88
displaying, QTime class used 89
displaying, timers used 89
system clock time, displaying 90
List Widget
items, adding 68, 69
methods, provided by QListWidgetltem class 70
multiple list items, selecting 65, 66
operations, performing 70, 73, 76
using 61, 62, 64
list
multiple selections, performing 402
single selection, performing 400, 401
location details
finding 375, 377
location
details, obtaining from latitude and longitude
values 378, 380
displaying, on Google Maps 385, 388
distance, finding out 382, 384
loop 261

Matplotlib
used, for plotting bar 357
used, for plotting line 355, 357
modal dialog 138
mouse coordinates
displaying 316, 318
multilevel inheritance
using 125,126
working 129
Multiple Document Interface (MDI) application
about 214
creating 214, 216, 218
working 220, 222
multiple inheritance
using 134
working 136
multithreading 245

[433]

N

non-modal(modeless dialogs) 138

(0

object-oriented programming
about 109
built-in class attributes, using 110
class, creating 109
options
displaying, in form of checkboxes 27, 28, 30

P

path 372
PC, to Android device
QPython scripts, copying 392, 394
point
displaying, where mouse button is clicked 322,
324
Progress Bar widget
using 84, 87
progress bars
updating, simultaneously using asynchronous
operations 261
updating, thread used 246, 248
updating, with threads bound with locking
mechanism 254, 257
updating, with two threads 249, 252, 253
Push Button widget
about 13
using 14, 16
working 17
PyQt 9
PyQt5 8
Python script
packaging, foriOS 422, 426
packaging, into Android APK using Buildozer
414,417,420

Q

QCheckBox class
methods 27
signals 28

QPainter class
methods 316

QPython scripts
copying, from PC to Android device 392, 394
QPython3 389

R

Radio Button widget
about 18
methods 19
signal, describing 19
using 19, 20, 22
radio buttons
grouping 22, 26
rectangle
between two mouse clicks, drawing 336, 338
resources
managing, with context manager 262, 265, 267
reverse geocoding 378
rows
deleting, from database table 307, 311, 314
displaying, into database table 284, 288
inserting, into database table 278, 282
navigating through, of database table 289, 293

S

scrollbars, controls
page control 56
scroll arrows 56
slider handle 55
scrollbars
using 55, 57, 60
server-side application
creating 194, 196
socket address 196
socket type 196
signal editor
using 36, 38
signin form
creation, by applying authentication procedure
298, 301, 302
Single Document Interface (SDI) 214
single inheritance
using 120, 121, 123
sliders
using 55, 57, 60
slot editor

[434]

using 36, 38
small browser

creating 190, 191, 193
small calculator

creating 45, 48, 49, 50
Spin Box widget

using 51, 52, 54
SQLite

about 269

reference 278
synchronization of threads 245
system clock time

displaying, in LCD-like digits 90

T

Tab Widget
used, for displaying information in sections 223,
225,228
text
drawing, in desired font and size 339, 341, 344
thread
used, for updating progress bar 246, 248
using 244
toolbar
meaﬂng 344,347,349, 352, 353
tools, QPython3
community 390
Console 390
course 390
editor 390
programs 390
QPYPI 390
Trolltech 8

U

username
prompting for 394, 396

\"

Vertical Layout
using 170, 173,178,179
working 175, 182

W Label widget 11
Line Edit widget, using 12
welcome message Push Button widget 13
displaying 11, 394, 397

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Creating a User Interface with Qt Components
	Introduction
	PyQt
	Ways of creating GUI applications

	Displaying a welcome message
	Understanding the Label widget
	Methods

	Understanding the Line Edit widget
	Methods

	Understanding the Push Button widget
	How to do it...
	How it works...

	Using the Radio Button widget
	Understanding Radio Button
	Methods
	Signal description

	How to do it...
	How it works...

	Grouping radio buttons
	Getting ready
	How to do it...
	How it works...

	Displaying options in the form of checkboxes
	Getting ready
	Method application
	Signal description

	How to do it...
	How it works...

	Displaying two groups of checkboxes
	Getting ready
	How to do it...
	How it works...

	Chapter 2: Event Handling - Signals and Slots
	Introduction
	Using Signal/Slot Editor
	How to do it...

	Copying and pasting text from one Line Edit widget to another
	Getting ready
	How to do it...
	How it works...

	Converting data types and making a small calculator
	How to do it...
	How it works...

	Using the Spin Box widget
	Getting ready
	How to do it...
	How it works...

	Using scrollbars and sliders
	Getting ready
	How to do it...
	How it works...

	Using List Widget
	Getting ready
	How to do it...
	How it works...

	Selecting multiple list items from one List Widget and displaying them in another
	How to do it...
	How it works...

	Adding items into List Widget
	How to do it...
	How it works...

	Performing operations in List Widget
	Getting ready
	Methods provided by the QListWidgetItem class

	How to do it....
	How it works...

	Using the Combo Box widget
	How to do it…
	How it works...

	Using the Font Combo Box widget
	Getting ready
	How to do it…
	How it works...

	Using the Progress Bar widget
	Getting ready
	How to do it…
	How it works...

	Chapter 3: Working with Date and Time
	Displaying LCD digits
	Using Timers
	Using the QTime class

	Displaying system clock time in LCD-like digits
	How to do it...
	How it works...

	Displaying the date selected by the user from Calendar Widget
	Getting ready
	Displaying a calendar
	Using the QDate class
	Using the Date Edit widget

	How to do it...
	How it works...

	Creating a hotel reservation form
	Getting ready
	How to do it...
	How it works...

	Displaying tabular data using Table Widget
	Getting ready
	Table Widget
	The QTableWidgetItem class

	How to do it...
	How it works...

	Chapter 4: Understanding OOP Concepts
	Object-oriented programming
	Creating a class
	Using the built-in class attributes
	Accessing class variables in instance methods
	Instances

	Using classes in GUI
	How to do it...
	How it works...
	Making the application more elaborate
	Inheritance
	Types of inheritance

	Using single inheritance
	Getting ready
	How to do it...
	How it works...

	Using multilevel inheritance
	Getting ready
	How to do it...
	How it works...

	Using multiple inheritance
	Getting ready
	How to do it...
	How it works...

	Chapter 5: Understanding Dialogs
	Introduction
	The input dialog box
	Using the input dialog
	How to do it...
	How it works...

	Using the color dialog
	How to do it...
	How it works...

	Using the font dialog
	How to do it...
	How it works...

	Using the file dialog
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Understanding Layouts
	Understanding layouts
	Spacers

	Using Horizontal Layout
	How to do it...
	How it works...

	Using Vertical Layout
	How to do it...
	How it works...

	Using Grid Layout
	How to do it...
	How it works...

	Using Form Layout
	Getting ready
	How to do it...
	How it works...

	Chapter 7: Networking and Managing Large Documents
	Introduction
	Creating a small browser
	How to do it...
	How it works...

	Creating a server-side application
	How to do it...
	How it works...

	Establishing client-server communication
	How to do it...
	How it works...

	Creating a dockable and floatable sign-in form
	Getting ready
	How to do it...
	How it works...

	Multiple Document Interface
	Getting ready
	How to do it...
	How it works...

	Displaying information in sections using Tab Widget
	How to do it...
	How it works...

	Creating a custom menu bar
	How to do it…
	How it works...

	Chapter 8: Doing Asynchronous Programming in Python
	Introduction
	Multithreading
	Asynchronous programming

	Updating progress bar using thread
	How to do it...
	How it works...

	Updating two progress bars using two threads
	How to do it...
	How it works...

	Updating progress bars using threads bound with a locking mechanism
	How to do it...
	How it works...

	Updating progress bars simultaneously using asynchronous operations
	How to do it...
	How it works...

	Managing resources using context manager
	Context manager
	How to do it…
	How it works...

	Chapter 9: Database Handling
	Introduction
	Creating the cursor object

	Creating a database
	How to do it…
	How it works…

	Creating a database table
	How to do it…
	How it works…

	Inserting rows in the specified database table
	How to do it…
	How it works…

	Displaying rows in the specified database table
	How to do it…
	How it works…

	Navigating through the rows of the specified database table
	How to do it…
	How it works…

	Searching a database table for specific information
	How to do it…
	How it works…

	Creating a signin form – applying an authentication procedure
	How to do it…
	How it works…

	Updating a database table – changing a user's password
	How to do it…
	How it works…

	Deleting a row from a database table
	How to do it…
	How it works…

	Chapter 10: Using Graphics
	Introduction
	Displaying mouse coordinates
	How to do it...
	How it works...

	Displaying coordinates where the mouse button is clicked and released
	How to do it...
	How it works...

	Displaying a point where the mouse button is clicked
	How to do it...
	How it works...

	Drawing a line between two mouse clicks
	How to do it...
	How it works...

	Drawing lines of different types
	How to do it...
	How it works...

	Drawing a circle of a desired size
	How to do it...
	How it works...

	Drawing a rectangle between two mouse clicks
	How to do it...
	How it works...

	Drawing text in a desired font and size
	How to do it...
	How it works...

	Creating a toolbar that shows different graphics tools
	How to do it…
	How it works...

	Plotting a line using Matplotlib
	Getting ready
	How to do it...
	How it works...

	Plotting a bar using Matplotlib
	Getting ready
	How to do it...
	How it works...

	Chapter 11: Implementing Animation
	Introduction
	Implementing animation

	Displaying a 2D graphical image
	How to do it...
	How it works...

	Making a ball move down on the click of a button
	How to do it...
	How it works...

	Making a bouncing ball
	How to do it...
	How it works...

	Making a ball animate as per the specified curve
	How to do it...
	How it works...

	Chapter 12: Using Google Maps
	Introduction
	Finding out details of a location or a landmark
	How to do it…
	How it works…

	Getting complete information from latitude and longitude values
	How to do it…
	How it works…

	Finding out the distance between two locations
	How to do it…
	How it works…

	Displaying location on Google Maps
	How to do it…
	How it works…

	Chapter 13: Running Python Scripts on Android and iOS
	Introduction
	Copying scripts from PC to Android devices
	How to do it

	Prompting for a username and displaying a welcome message
	How to do it...
	How it works...

	Understanding different buttons in a dialog box
	How to do it...
	How it works...

	Performing single selection from a list
	How to do it...
	How it works...

	Performing multiple selections from a list
	How to do it...
	How it works...

	Displaying a Date Picker dialog
	How to do it...
	How it works...

	Capturing images using a camera
	How to do it...
	How it works...

	Making an Android device speak a text input
	How to do it...
	How it works...

	Creating a cross-platform Python script using Kivy
	Getting started
	How to do it...

	Packaging a Python Script into the Android APK using Buildozer
	Getting ready
	How to do it...
	How it works

	Packaging Python script for iOS
	How to do it...
	How it works...

	Other Books You May Enjoy
	Index

